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TRAJECTORY PLANNING ON PRE-TACTICAL AND 

TACTICAL LEVEL IN AIR TRAFFIC MANAGEMENT 

Summary: 

Global air traffic demand is continuously increasing, and it is predicted 

to be tripled by 2050. The need for increasing air traffic capacity motivates a 

shift of ATM towards Trajectory Based Operations (TBOs). This implies the 

possibility to design efficient congestion-free aircraft trajectories more in 

advance (pre-tactical, strategic level) reducing controller’s workload on tactical 

level. As consequence, controllers will be able to manage more flights. 

Current flow management practices in air traffic management (ATM) 

system shows that under the present system settings there are only timid 

demand management actions taken prior to the day of operation such as: slot 

allocation and strategic flow rerouting. But the choice of air route for a 

particular flight is seen as a commercial decision to be taken by airlines, given 

air traffic control constraints. This thesis investigates the potential of robust 

trajectory planning (considered as an additional demand management action) 

at pre-tactical level as a mean to alleviate the en-route congestion in airspace. 

Robust trajectory planning (RTP) involves generation of congestion-free 

trajectories with minimum operating cost taking into account uncertainty of 

trajectory prediction and unforeseen event. Although planned cost could be 

higher than of conventional models, adding robustness to schedules might 

reduce cost of disruptions and hopefully lead to reductions in operating cost. 

The most of existing trajectory planning models consider finding of conflict-free 

trajectories without taking into account uncertainty of trajectory prediction. It is 

shown in the thesis that in the case of traffic disturbances, it is better to have a 

robust solution otherwise newly generated congestion problems would be hard 

and costly to solve. 

This thesis introduces a novel approach for route generation (3D 

trajectory) based on homotopic feature of continuous functions. It is shown that 

this approach is capable of generating a large number of route shapes with a 

reasonable number of decision variables. Those shapes are then coupled with 

time dimension in order to create trajectories (4D).  



RTP problem is modeled as a mixed-variable optimization problem and 

it is solved using stochastic optimization technique, precisely Simulated 

Annealing (SA). The results indicate that, under certain conditions, with small 

increase of total planned costs, it is possible to increase robustness of the 

proposed solution providing a good alternative to the solutions given by an 

existing conflict-free trajectory planning models. 
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UPRAVLJANJE PUTANJAMA VAZDUHOPLOVA U KONTROLI 

LETENJA NA PRE-TAKTIČKOM I TAKTIČKOM NIVOU  

Rezime: 

Globalna potražnja za vazdušnim saobraćajem  u stalnom je porastu i 

prognozira se da će broj letova biti utrostručen do 2050 godine. Potreba za 

povećanjem kapaciteta sistema vazdušnog saobraćaja motivisala je promene u 

sistemu upravljanja saobraćajnim tokovima u kome će u budućnosti centralnu 

ulogu imati putanje vazduhoplova tzv. “trajectory-based” koncept. Takav 

sistem omogućiće planiranje putanja vazduhoplova koje ne stvaraju zagušenja 

u sistemu na pre-taktičkom nivou i time smanjiti radno opterećenje kontrolora 

na taktičkom nivou. Kao posledica, kontrolor će moći da upravlja više letova 

nego u današnjem sistemu. 

Današnja praksa upravljanja saobraćajnim tokovima pokazuje da se mali 

broj upravljačkih akcija primenjuje pre dana obavljanja letova npr.: alokacija 

slotova poletanja i strateško upravljanje saobraćajnim tokovima. Međutim izbor 

putanje kojom će se odviti let posmatra se kao komercijalna odluka avio-

kompanije (uz poštovanje postavljenih ograničenja od strane kontrole letenja) i 

stoga je ostavljen na izbor avio-kompaniji. Većina, do danas razvijenih, modela 

upravljanja putanjama vazduhoplova ima za cilj generisanje bez-konfliktnih 

putanja, ne uzimajući u obzir neizvesnost u poziciji vazduhoplova. U ovoj 

doktorskoj disertaciji ispitivano je planiranje robustnih putanja vazduhoplova 

(RTP) na pre-taktičkom nivou kao sredstvo ublažavanja zagušenja u 

vazdušnom prostoru . Robustno upravljanje putanjama vazduhoplova 

podrazumeva izbor putanja vazduhoplova sa minimalnim operativnim 

troškovima koje ne izazivaju zagušenja u vazdušnom prostoru u uslovima 

neizvesnosti buduđe pozicije vazduhoplova i nepredviđenih događaja. Iako 

predviđeni (planirani) operativni troškovi robustnih putanja mogu u startu biti 

veći od operativnih troškova bez-konfliktnih putanja, robusnost može uticati na 

smanjenje troškove poremećaja putanja jer ne zahteva dodatnu promenu 

putanja vazduhplova radi izbegavanja konfliktnih situacija na taktičkom nivou. 

To na kraju može dovesti i do smanjenja stvarnih operativnih troškova. U tezi je 

pokazano, da je u slučaju poremećaja saobraćaja bolje imati robustno rešenje 

(putanje), jer novo-nastali problem zagušenosti vazdušnog prostora je teško i 



skupo rešiti tj. zahteva značajnu promenu putanja vazduhoplova na taktičkom 

nivou. 

U ovoj tezi je uveden novi pristup za generisanje putanja vazduhoplova 

zasnovan na primeni homotopije neprekidnih funkcija. Ovim pristupom 

moguće je generisati veliki broj kriva, koje predstavljaju alternativne 3D 

trajektorije vazduhoplova, uz pomoć malog broja upravljačkih promenljiva 

(dve, tri). Potom se, primenom modela definisanog u tezi, svakoj tački dobijene 

3D trajektorije pridodaje vreme u cilje dobijanja putanje vazduhoplova.  

RTP problem je modeliran kao problem matematičkog programiranja i 

rešen primenom tehnika stohastičke optimizacije, preciznije, simuliranog 

kaljenja. Rezultati pokazuju, da pod određenim uslovima, sa malim povećanjem 

ukupnih planiranih troškova moguće je znatno povećati robusnost predloženog 

rešenja, te razvijeni model predstavlja dobru alternativu konvencionalnim 

metodima za generisanje bez-konfliktnih putanja. 
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1. INTRODUCTION 

Global air traffic demand is continuously increasing, and en-route 

congestion is cited as one of the principal restricting factor to future growth of the 

airline industry [Bertsimas and Stock Patterson, 2000]. The need for increasing air 

traffic capacity motivates a shift of ATM towards Trajectory Based Operations 

(TBOs). This implies the possibility to design efficient congestion-free aircraft 

trajectories more in advance (pre-tactical, strategic level).  This thesis investigates 

the potential of robust trajectory planning (RTP) at pre-tactical level as a mean to 

alleviate en-route congestion in the airspace. A novel method for route generation 

based on homotopic feature of reference shapes is proposed. Centered on route 

generation model, a mathematical model is developed for robust trajectory 

planning that involves generation of congestion-free trajectories taking into 

account uncertainty of trajectory prediction and unforeseen events.  

In the remainder of this chapter the context of the research is set. It provides 

an overview of the problem of en-route congestion in European and USA airspace, 

in terms of magnitude and underlying causes. It then analyses the present way of 

dealing with this problem, indicating its principal limitations in this context. 

Operational systems currently in use at EUROCONTROL are also explained. A 

focused overview of literature in the field of Air Traffic Flow Management and 

Trajectory management is presented. 

In Chapter 2 the proposed model for robust trajectory planning is 

elaborated. After a statement of the proposed way forward, concept of flight 

interaction is presented as a measure of solution robustness. Several metrics of 

flight interaction are examined followed by system boundaries and solution space 

set-up. A technique for trajectory dimension space reduction using homotopic 

feature is investigated and proposed route generation model formulated. The 

specificities of the problem objectives are then analyzed, followed by the statement 

key model assumptions and the mathematical formulation itself. Finally, the 

complexity of the formulation is examined. 

Chapter 3 examines possible optimization techniques and explicates the 

choice of Simulated Annealing and specifics of built optimization model.  

To test the model, Chapter 4 describes a small hypothetical example that 

was developed first, illustrating the basic idea of the route generation model and 
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robust trajectory planning, and providing some valuable initial insights into 

model behavior. The model has been applied to a real life large-scale problem. 

Model results are examined and discussed. The advantage of RTP over 

conventional models is demonstrated by comparison of results of both models.  

Finally, Chapter 5 sums up the findings of this research, and cites the major 

contributions of the dissertation and point toward areas of future. 

1.1. Motivation 

The continuous growth of the air transportation industry has placed an 

enormous strain on the Air Transportation System (ATS) and it has not been 

matched with an adequate increase of capacity (airport and airspace). In the late 

80's, with a strong increase in air traffic, the total annual delay costs of European 

airlines due to congestion (including cost to passengers) were estimated to be $5 

billion, and an average delay of all movement reached values of 5 minutes per 

movement (20 minutes per delayed movement) [Vranas et al., 1994]. Similar 

figures have been shown by United States airlines. This congestion crisis led to the 

decision in Europe to found the Central Flow Management Unit for coordinating 

air traffic flows across the EUROCONTROL’s Member States. European 

EUROCONTROL Central Flow Management Unit – CFMU (now Network 

Operation unit in the Network Management Directorate) and United States’ FAA 

Air Traffic Control Systems Command Center (ATCSCC former Central Flow 

Control Facility) have to assure that the traffic volume is compatible with the 

capacities declared by the appropriate ATS authority.  

Besides delays decrease in the first years of CFMU service (mainly between 

1999-2003, red line Figure 1), delay is again rising with an air traffic increase [PRC, 

2009, 2010, 2011]. Studies performed by the EUROCONTROL Experimental Centre 

showed that a 5% increase of traffic results in a 26% increase of delay [Bertsimas 

and Stock Patterson, 2000].  
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Figure 1: Matching demand and capacity in European airspace [PRC, 2011] 

It is clear that the original forecast predicting three fold (lately reviewed to 

double) air traffic increase in 2020 compared to 2000 traffic [EC, 2001] won’t come 

true due to the global economic crisis and will be reached in 2050 instead, as 

shown by later studies [STATFOR, 2013]. However significant increases in 

demand expected to continue, and congestion is cited as one of the principal 

restricting factor to future growth of the airline industry.  

In 2012, about 17%1 of flights in Europe (9.55 million controlled flights being 

the annual total) arrived with more than 15 minutes delay compared with the 

schedule [PRC 2013]. IATA has estimated [IATA, 2013] that delays increased 

direct operating costs for European airlines by 4.5 billion Euros and an additional 

6.7 billion for passengers. U.S. airlines have cited even larger numbers.  

Figure 2 shows departure punctuality and reveals that part of primary2 

delay, not connected to turn around process, is almost equally caused by lack of 

airport and airspace capacity (including weather causes). One of the implications 

of both constraints at airport and in en-route airspace is that deriving good ATFM 

strategies has become a much more complicated task [Bertsimas et al., 2011]. 

                                                 

1
 which is an improvement compared to 24% in 2010 with the same number of IFR flights 

2
 Primary delays are those which can be directly attributed to the reason of delay, whereas “reactionary” 

delays are the result of primary delays on earlier flight legs, which cannot be absorbed during the turnaround 

phase at the airport [PRC, 2005] 



4 

 

 

Figure 2: Departure delay by cause [PRC, 2013] 

EUROCONTROL’s initiative to enhance European flight efficiency through 

en route airspace design resulted in the implementation of free route airspace 

(FRA) starting from 2009. FRA refers to a specific portion of airspace where 

airspace users may freely plan their routes between an entry point and an exit 

point without reference to the fixed Air Traffic Services (ATS) route network 

[Eurocontrol, 2012a]. However flight remains subject to ATC at all times.  

Figure 3 represent the horizontal en-route flight inefficiency3 for the actual 

trajectory (red line) and the filed flight plan (blue line). The comparison of the 

annual values of flight inefficiency () shows a continuous improvement of flight 

efficiency due to more direct routing given by ATC in the tactical phase of flight. 

Savings are approximated to 1.3 million NM, representing the equivalent of 8 

kiloton of fuel annually. Although the results are promising, local uncoordinated 

initiatives may not deliver the desired objective. With small airspaces, a large 

proportion of the observed inefficiency is due to the interface with adjacent 

airspace. This led to initiative for integration and enhanced cooperation between 

ACCs, forming Functional Airspace Block (FAB). FAB is defined [EC No 

1070/2009] as airspace established regardless of State boundaries, where the 

provision of air navigation services and related functions is performed by an 

integrated provider. 

                                                 

3
 An “inefficiency” is the difference between the length of the analyzed trajectory (great circle) and the 

achieved distance in percentage. Only portion between the departure and arrival terminal areas (radius of 

40NM around airports) is considered [PRC, 2013]. 
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Figure 3: European wide horizontal en route flight efficiency [PRC, 2013] 

All these initiatives represent step forward to trajectory based operations 

and the Free Flight concept in the future. However, incremental changes of 

technology and procedures are no longer sufficient to keep up with the growth of 

traffic [Neal et al., 2011]. The International Civil Aviation Organization (ICAO) has 

developed the Global Air Navigation Operational Concept in response to this 

problem. This represents a fundamental change in the operating paradigm for air 

navigation services [ICAO 9854]. Major systems development programs are 

underway around the world including the Next Generation Air Transportation 

System (NextGen) program in the United States [FAA, 2012], and the Single 

European Sky ATM Research (SESAR) program in Europe [SESAR, 2013]. The 

ICAO Global Operational Concept envisages that the primary means by which the 

priorities such as safety, efficiency, and cost-effectiveness are to be achieved is via 

trajectory management. Also it proposes that airspace users “should retain 

primary responsibility for the provision of Conflict management (assuring 

separation between aircraft)”4. This implies the possibility to design efficient 

aircraft trajectories that are conflict-free at strategic level. Pre-tactical conflict 

management will reduce the need for separation provision (and collision 

avoidance) to a designated level. However, special events such as severe weather, 

volcanic ash, ATC strikes etc., represent large influencing factor to flight 

                                                 

4
 However, the Operational Concept also states that the allocation of responsibilities is subject to the design 

of the ATM system. 
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inefficiency (Figure 4) today. This is not expected to change in the future, and 

therefore it is necessary to design robust trajectories that could alleviate the effects 

of an unforeseen event.  

 

Figure 4: Breakdown of ATFM delay in September 2012 [DNM, 2012] 

1.2. Current system and approach on solving congestion problem 

Air Transportation System (ATS) has three main elements: infrastructure, 

vehicles (airplanes) and operations. Infrastructure refers to structure that allow an 

airplane to operate, and it consists of a routed network for which node are airports 

or beacons and links are airways. Airline companies are in charge of operating 

airplanes (public transport). General and Military aviation are another category of 

ATS users. Air Traffic Management (ATM) aims at ensuring safe, efficient, and 

expeditious aircraft movement and it is composed of the following services [Babic 

and Netjasov, 2011]: 

 Air Space Management (ASM) – includes airspace design/modeling 

which aims to better adapt ATC capacity (route/sector capacity, 

arrival/departure airport capacity) to continuously changing demand. 

 Air Traffic Flow Management (ATFM) – aims to optimally use available 

capacity in order to minimize delay and cost to airspace users. In Europe 

it has evolved into the new concept of Air Traffic Flow and Capacity 

Management (ATFCM). 

 Air Traffic Service – is service which regulate and assists aircraft once 

airborne and consists of: flight information service (FIS), air traffic 

advisory service (AS) and air traffic control (ATC). ATC is responsible for 

safe flow of air traffic. Air Traffic Controller Officer (ATCO) monitors the 

traffic, ensures minimum safety separation between aircraft at all time, 

and in case of separation violation take measures for conflict resolution 

(vectoring, altitude change, and speed regulation). Additional ATCO role 
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is to keep aircraft separated from ground and other aerial vehicles, out of 

restricted areas etc. 

When flying from origin to destination airport, an aircraft must follow ATS 

routes and beacons on the airways network as stated in its flight plan (FPL). When 

two adjacent aircraft routes converge to the same point, there exists a risk of 

collision. Therefore, the main task of ATCO is to ensure conflict free trajectories, as 

stated above. As human beings, ATCO has working limits, which is the main 

factor that determines the airspace capacity. The airspace is then partitioned into 

sectors, each of them being assigned to a team of controllers. On the other hand 

airport capacity is mainly related to runway capacity, defined as the number of 

aircraft that can land/take-off at a given period of time (arrival/departure 

capacity). Factors influencing airport runway capacity are: number and 

configuration of runways, aircraft mix and operating sequence, approach speed, 

etc. Both, airport and airspace capacities, are strongly influenced by weather. 

With increasing air traffic demand and/or capacity degradation, some parts 

of the air traffic system reach their operational limits and become congested 

generating delays. Solutions for traffic congestion problem vary according to 

considered time horizon: 

 Long-term approaches (years in advance) include infrastructure 

improvements such as: construction of additional runway, improving ATC 

technologies and procedures, airspace sectorisation, etc.  

 Medium-term approaches (several months up to weeks in advance) 

consider modification of traffic flows in order to reduce peak demands and adapt 

ATC capacity to demand. (Strategic Flow Management). 

 Short-term approaches (several days up-to day of operation). Pre-tactical 

Flow Management (days in advance) attempts to optimally use available capacity, 

minimizing costs to airspace users. To cope with congestion, or avoid bad-weather 

and restricted areas (no-fly zones) some aircraft trajectories are then recomputed 

and ATFM regulations are applied. Short-term solutions also include Tactical Flow 

Management occurring on the day of operations which aims to increase usability 

of available capacity as much as possible, and Tactical Control which solves the 

potential conflict in real time. Neither of last two solutions considers solution costs 

due to higher goals.  
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The level at which solution is applied dictates the uncertainty involved and 

the room for maneuver [Matos et al., 2001]. At the strategic level, there is scope for 

significant changes in the routing of flows, but information available on traffic 

demand a few months ahead are very poor. As the day of operations gets closer 

the information available becomes more accurate but the room for introducing 

changes to the routings diminishes, decreasing optimality of the solution. 

1.2.1. Air Traffic Flow Management 

In the most general sense ATM can be viewed as a system supplying 

service with a finite number of elements [Tosic et al., 1995]. Each element (flight 

routes, sectors…) has limited capacity and is shared among several customers 

(flights). Therefore it is possible that total demand exceeds some element’s 

capacity at certain periods, and some customer may suffer delays or may receive 

control actions (assigned to different element). 

The flow control activity can be decomposed into two different phases 

[Bianco and Bielli, 1992]: congestion forecast and congestion prevention. The first 

phase requires accurate evaluation of air traffic capacity and demand, what is 

usually hard to forecast because of numerous influencing factors that vary with 

space and time. Once capacity and demand are evaluated, congestion prevention 

takes place and may involve control actions to keep delays and overall costs as 

low as possible. Such problem is called Air Traffic Flow Management Problem 

(ATFMP) in literature. 

Closely speaking of ATFMP the question is how to optimally control flights 

in the ATS network (assign route, speed and slot of departure) in order to 

minimize total costs (fuel, time, safety, passengers compensation costs, etc.) 

induced to users (airlines) with respect to the given system constraints. 

Mathematical formulation depends on the choice and meaning of the decision 

variable and the particular problem that model intends to solve (objective function 

and constraint definition). One general model, adapted from [Tosic et al., 1997], is 

here presented with the following notations used: 

  Total number of capacitated elements 

  Total number of time periods 

  set of all flights 
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   set of flight in   that have alternative routes (    ) 

   initial route for flight   in   

  set of initial routes for flights in  ,   ⋃       

   set of alternative routes for flight   in    

  set of all alternative routes for flights from   ,   ⋃        

  
  maximum allowed delay of an flight using route       

      input binary variable equal to 1 if flight using route   with delay   

demands service at element   during period  , and 0 otherwise 

(     ,        ̅̅ ̅̅ ̅̅ ,      ̅̅ ̅̅ ̅, t    ̅̅ ̅̅ ̅ ) 

    total capacity of element   at period   (     ̅̅ ̅̅ ̅, t    ̅̅ ̅̅ ̅ ) 

  
 ( ) total ground delay cost of flight using route       delayed for 

permitted number of   periods 

  
  total additional constant delay cost of flight assigned to the 

alternative route       . Equal to 0 if    . 

     decision binary variable equal to 1 if flight using route   is delayed   

periods, and 0 otherwise (     ,        ̅̅ ̅̅ ̅̅ ) 

   ∑ ∑(  
 ( )    

 )     

  
 

        

 (1) 

subject to: 

∑    
  
 

     ,                 (2) 

∑    
  
 

    ∑ ∑    
  
 

         ,  (       )        (3) 

∑ ∑      
  
 

               (   )      ̅̅ ̅̅ ̅, t    ̅̅ ̅̅ ̅ (4) 

    {   }     (   )      ,        ̅̅ ̅̅ ̅̅  (5) 

The objective function (1) represents the sum of the total ground delay 

assigned to flights and additional costs of flights assigned to alternative routes. 

Constraints (2) and (3) ensure that each flight is assigned to one route only and is 

given one delay. It is an assignment constraint that guarantees that each flight 

occupies only one element during a given time period. The capacity constraint (4) 

expresses the requirement that total demand should not exceed the capacity at any 
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element and for all periods. Finally integrality constraint (5) ensures that decision 

variables are of binary type. In addition, if consecutive flights5 are modeled, a 

coupling constraint is necessary to ensure that takeoff time for a consecutive flight 

is scheduled after the landing time of a preceding flight. In the case of hub airport 

with banks of connected flights, coupling constrains ensure that all transfer 

passengers reach their connected flight.  

Tosic and Babic in [Tosic and Babic, 1995] discussed several metrics to be 

used as cost function   
 ( ) (for delay measurements for their particular case) 

when solving the AFTMP: 

 Basic case where all flights that received controlled actions are treated 

equally without taking into account the magnitude of action. The objective is then 

to minimize the total number of flights which deviate from their initial-nominal 

route. 

 Using a single linear cost function for all flights will minimize the total 

amount of actions received (delayed minutes/additional flight miles). 

 In reality, unit costs differ from one flight to another because of: aircraft 

size (the bigger plane with more passengers carried, the greater operating costs 

are, etc.), flight type (feeder6 or non-feeder flight, cargo flight), etc. Using 

individual unit costs will minimize overall operating costs taking into account 

flight priority. On the other hand, use of individual unit costs especially in 

formulations that use dynamic landing priority rule, such as landing according to 

decreasing marginal cost, will raise equity (fairness) issue because of bias against 

“cheap” flights7 [Terrab, 1990], [Terrab and Paulose, 1993].  

 When the traffic assignment is controlled by a central authority (CFMU, 

ATCSCC), aiming to find a solution that is most desirable to the society (system-

optimum solution), fairness is a very important issue and it could be incorporated 

into objective function using a non-linear cost function. In that way, larger control 

                                                 

5
 Flights that are operated by the same aircraft on a given day 

6
 Flight that brings-in (feeds) passengers from small regional destinations to hub airports for onward journey 

(usually international or even intercontinental flights). 

Read more: http://www.businessdictionary.com/definition/feeder-airline.html#ixzz2vwqyZutz 

7
 Flights that have lower unit cost will be penalized more than others.  
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action will be penalized assuring balanced distribution of control actions among 

flights/airlines at the expense of higher total operating costs. 

Optimization models used to solve ATFMP may be classified according to 

different criteria: 

 Deterministic vs. Stochastic models – which are distinguished by whether 

the ATC capacity is assumed deterministic or probabilistic (presence of 

uncertainty). Although it is fairly common to consider airport and sector capacities 

as deterministic values, they are highly variable in reality and may change 

dramatically over time. When decisions are made under uncertainty one must 

consider the trade-off between possibilities to assign excessive inexpensive control 

action (e.g. ground holds) or to experience more expensive ones (e.g. holding at 

destination airport). 

 Static vs. Dynamic models – which are distinguished by whether or not 

the solutions are updated during time horizon. In static models control actions are 

chosen once at the beginning of the first time period. On the other hand with 

dynamic models, control actions are revised over time based on updated inputs 

(e.g. ATC capacities). Although dynamic models could yield better overall 

solution in the case of uncertainty, they will tend to penalize short-haul flights as 

shown in [Terrab, 1990], [Terrab and Paulose, 1993], [Bertsimas and Odoni, 1997]. 

 Network optimization (Minimum cost flow [Terrab and Odoni, 1993], 

[Helme, 1992], Maximum flow problem [Bianco and Bielli, 1992], Assignment 

problem [Lindsay, et. al., 1993], Multi-commodity problem [Bianco and Bielli, 

1992], [Lindsay, et. al., 1993], etc.), Dynamic programming (DP) [Andreatta and 

Romanin-Jacur, 1987], Linear (integer, mixed) programming (LP, IP, MILP) 

[Vranas et al, 1992], [Bertsimas and Stock Patterson, 1998], Non-linear 

programming (NLP) [Zenios, 1991], Stochastic programming (SLP) [Richetta and 

Odoni, 1994], Heuristic approach [Delahaye et al., 1994], [Delahaye and Odoni, 

1997], [Tosic et al., 1997] - based on the optimization method (techniques) used. 

 Ground-holding problem (GHP) [Andreatta and Romanin-Jacur, 1987], 

[Terrab and Odoni, 1993], [Vranas et al, 1992], Generalized traffic flow 

management problem (GTFMP) [Lindsay, et. al., 1993], [Delahaye et al., 1994], 

[Tosic et al., 1995], [Bertsimas and Stock Patterson, 1998], Traffic flow management 

rerouting problem (TFMRP) [Tosic et al., 1997], [Delahaye and Odoni, 1997], 
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[Bertsimas et al., 2008] and their subclasses – according to the type of problem they 

address. 

1.2.2. Review of literature in ATFM 

In the literature, problem of demand-capacity imbalance is addressed since 

80's. Early efforts in the area of ATFMP research were made by the Italian 

National Research Council (CNR) [Tosic and Babic, 1995] and complete research 

results are summarized in [Bianco and Bielli, 1992]. Even though the literature has 

adopted the view that Andreatta in 1986 and later Odoni in 1987 first formalized 

and introduced ATFMP. Later paragraphs present some of the published research 

relevant to ATFMP in last 20 years.  

1.2.2.1. Single airport ground holding problem - SAGHP 

Models and algorithms developed in 80's and early-90’s focus mainly on 

airport congestion. First models considered finding optimal aircraft release times 

(ground-holds assignment) in a very simplified single-airport configuration 

network - SAGHP. Andreatta and Romanin-Jacur in [Andreatta and Romanin-

Jacur, 1987] consider a stochastic version of a single-airport problem for a single 

time period. They assumed that congestion may arise only at the arrival airport 

during a given single period and modeled airport capacity as a random variable. 

They used Dynamic Programming (DP) to find an optimal ground holding policy 

(ground-holds assignment) for a given landing priority rule. Terrab in his PhD 

thesis [Terrab, 1990] and [Terrab and Odoni, 1993] presented an extension of a 

single-airport problem for multiple periods. Deterministic version of the SAGHP 

(capacity of arrival airport is a deterministic function known in advance) is 

formulated as an Integer Program (IP). As the constraint matrix of this formulation 

is totally-unimodular, a simplex method is used to solve the relaxed version of the 

problem. Network-type algorithms were even more effective in this approach. A 

static stochastic extension of the problem was solved with DP whose time 

complexity highly depends on the number of time periods and requires enormous 

computational effort. A solution approaches (heuristic) to the dynamic version of 

the SAGHP, built on static algorithms, were also proposed. In order to take 

advantage of additional weather information, that becomes available as time 

passes, Richetta in [Richetta, 1991] and [Richetta and Odoni, 1994] developed an 

optimal stochastic and dynamic model of SAGHP. To reduce the size of the 



13 

 

problem, flights are classified into small number of different classes. Flights that 

have identical ground-holding delay cost and are scheduled to arrive at the 

destination airport at the same period of time belong to the same class. A 

stochastic linear programming is used to efficiently solve a real instance of the 

problem at the busiest airport in Massachusetts, Boston’s Logan. Opposed to 

Andreatta’s or Terrab’s formulation, Richetta used dynamic landing priority rule 

such as FCFS, landing according to the decreasing marginal cost, etc. Terrab and 

Paulose in [Terrab and Paulose, 1993] proposed a fully dynamic formulation 

(control actions are subject to revision in the latter stages) of the single-airport 

problem but only applied with two-stage decision making. In [Hoffman, 1997], 

[Ball et al., 1999] and [Ball et al., 2003] another IP formulation of static and 

stochastic SAGHP is proposed. Although delays are assigned to individual flight, 

decision variables are aggregated to some extent and represents the number of 

flights selected to land during a given period i.e. planned arrival capacity. This 

formulation gives several advantages: first, it treats individual flight that is 

consistent with Collaborative Decision-Making (CDM) approach; second, pre- and 

post-processing are possible to reduce the number of decision variables by an 

order of magnitude; third and the most important, the constraint matrix associated 

with this IP is totally unimodular, and the LP relaxation yields integer solutions 

(proved by the authors). A dynamic stochastic optimization based approach is 

presented in [Mukherjee, 2004] and [Mukherjee and Hansen, 2007] for SAGHP, 

where ground delays assigned to flights can be revised during different decision 

stages, based on weather forecasts. 

1.2.2.2. Multi-airport ground holding problem - MAGHP 

Usually an aircraft performs more than one flight on a given day and when 

a specific aircraft is delayed, in many cases, the next flights (performed by the 

same aircraft) will also be delayed. In order to capture “network” effect, multi-

airport ground holding problem has been formulated - MAGHP. Static 

deterministic formulation of the problem was addressed for the first time by 

Vranas, Bertsimas and Odoni in [Vranas et al, 1992] and [Vranas et al, 1994a]. They 

considered the network of the K-busiest airports and the associated flights 

departing from and arriving to an airport of K. They presented three models with 

0-1 Integer formulation: (1) with departure and arrival capacity, (2) only with 

arrival capacity and (3) with arrival capacity and flight cancellation option. Flight 
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cancellation is introduced because the existence of delay’s upper bound could 

yield unfeasible solution. They proposed optimal solution as well as heuristic 

approach based on the LP relaxation of IP. Heuristics first collect a set of "critical" 

flights in LP (i.e. flights for which some integer constraints are violated) and gives 

a "rounding" scheme for those flights which leaves unchanged, as far as possible, 

the remaining flights. Same authors presented a dynamic extension of MAGHP in 

[Vranas et al, 1994b]. Dynamic and deterministic extension was also formulated as 

IP and efficiently solved. In dynamic and stochastic formulation, as airborne delay 

could not be totally avoided (depending on capacity scenario that is realized), 

ground delay could not be expressed in terms of landing assignment decision 

(equals 1 if flight land at given time). Those two decision variables are taken into 

account independently. Moreover, ground delay is not a binary variable. Because 

of the size of the formulation, heuristic approach was developed but was highly 

inefficient as stated by the authors. Andreatta and Brunetta in [Andreatta and 

Brunetta, 1998] proposed slightly different formulation of static and deterministic 

version of the MAGHP compared to Vranas et al. They model consecutive flights 

with one set of binary variables. Although the number of variables becomes very 

large (all pairs of flights) it is not dependent on the number of consecutive flights 

operated by an aircraft. In addition coupling constraints could be omitted in this 

formulation. Andreatta and Brunetta in [Andreatta and Brunetta, 1998] have 

performed a comparison of computational performance of three deterministic 

models for MAGHP: two models mentioned above and a model described in 

[Bertsimas and Stock Patterson, 1998]. The latter model is formulated as BIP with 

decision variables representing the arrival of a flight at a given point (could be 

airspace or airport) “by” the given time. As it is a general model of ATFMP it is 

explained in details in the following chapter. The authors concluded that 

Bertsimas and Stock model performs best in most cases especially due to strong 

formulation that yield integer solution of LP relaxation.  

Most of the models for MAGHP considered only arrival airport capacity as 

the main bottleneck taking into account that it takes longer for an aircraft to arrive 

than to depart. This is however not completely truth, as some runways are used 

for both operations at an airport. A way to extend models in order to incorporate 

the dependence between arrival and departure capacity was first introduced in 

[Vranas et al, 1994b]. It was shown that no additional variables are required, just 
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few more constraints. This was confirmed in [Bertsimas and Stock Patterson, 1998] 

using similar formulation. 

1.2.2.3. Generalized traffic flow management problem - GTFMP 

In mid-90's, it has become increasingly evident that more delays are caused 

by airspace congestion especially in Europe. As noted in [Tosic and Babic, 1995] 

crucial difference between possible solution for ATFMP with respect to airport 

and airspace network is the fact that first could be solved using only temporal 

solution while second one requires both temporal and spatial solution. This is 

because the solution of airspace congestion requires enormous amount of ground-

holds to be assigned which is very expensive and even not feasible (with 

constrained delay). Therefore, other options to resolve congestion by controlling a 

flight throughout its duration were introduced: speed management, rerouting, 

altitude change, etc. Zenios in [Zenios, 1991] propose a model to optimize the 

traffic flow and congestion (considering cost along with risk - dual objectives) at 

the target control sector by controlling ground-holds and flight level. Airspace is 

modeled as a multiple-period network with identical speeds assumed for all 

aircraft, one-class (commodity). The resulting nonlinear network problem was 

solved using numerical optimization technique. First, multi-period multi-

commodity (multi-class) network type model was reported in [Bianco and Bielli, 

1992] based on work of Bianco and Bielli in 1981 and 1982. The airspace structure 

was represented with direct multigraph (or pseudograph) where different arcs are 

associated to different flight levels along the same route. The optimal strategy of 

the traffic congestion problem was formalized as a maximum flow problem on the 

network: maximize source-generated flows so as to better match traffic demand 

with system capacity. The same authors proposed a second model to optimize 

flight plans of each aircraft by control actions such as altitude variation, speed 

control and departure delays. The objective was to minimize total delay and 

deviation from the nominal flight profile for all planes in the control region. 

Because of problem complexity and possible conflict with ATC procedures, flight 

planning was carried out according to FIFO (flight by flight) and the problem was 

decomposed and solved in sequential steps. Helme in [Helme, 1992] modeled 

airspace structure as the Space-Time Network very similarly to [Bianco and Bielli, 

1992]. The problem was formulated as minimum cost flow with capacitated links. 

Hence airports were modeled with one additional node and artificial link between 
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them. Single destination problem (single sink in the network) is efficiently solved. 

Multi-destination problem, however, does not conform to the pure minimum cost 

flow structure. This is because every sink in the network is equally treated and 

flow demands between source-sink pairs cannot be preserved (“who goes where” 

is ignored). Therefore multi-destination problem is formulated as a multi-

commodity minimum-cost flow on a network with commodity representing all 

flights going to a given airport. Implicit methods for handling capacity uncertainty 

as well as hubbing are proposed. While formulation of this model is 

straightforward, its computational performance were poor as referred in 

[Bertsimas and Odoni, 1997]. Time Assignment model of GTFMP presented in 

[Lindsay, et. al., 1993] is formulated as a Binary Integer Programming problem. 

The objective was to minimize the sum of ground and air delay costs for selected 

flights taking into account departure and arrival airport and airspace (sectors) 

capacities. Decision variables were times at which aircraft are to be at a selected 

fixes in their routes. Therefore it is possible to delay flights on the ground (by 

ground-holds) and in the air (by speed reduction, etc.). The problem was solved 

efficiently using custom developed software built upon the CPlex8 consisting of 

problem reduction techniques which are executed before CPlex optimization. 

Delahaye et al. in [Delahaye et al., 1994] considered controller workload in the 

traffic assignment problem rather than using capacitated airspace. The objective of 

the study was to minimize transportation costs and controller workload, where 

transportation cost included cost of distance travelled and congestion on the route 

and controller’s workload included monitoring, conflict and coordination 

workload. Opposite to previously mentioned studies on network flows, the 

authors assumed non-segmented origin-destination flows as equity constraint. 

They used genetic algorithm to solve this complex problem. Tosic et al. in [Tosic et 

al., 1995] proposed a discrete model of ATFMP with en-route capacities 

formulated as Binary Integer Programming with ground delays as decision 

variables. The model was classified as multi-element, multi-period, deterministic 

and static. Emphasized by authors, proposed model stays linear even when delay 

cost is not linear, because nonlinear dependence is expressed through the objective 

function. Several heuristic algorithms based on lexicographic approach have been 

developed. The idea was to set as many flights without delay, then sequentially 

                                                 

8
 CPlex Mixed Integer Optimizer was developed by CPLEX Optimization Inc. and offered commercially 

starting in 1988. Today it is actively developed under IBM named IBM ILOG CPLEX Optimization Studio. 
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maximize the number of the remaining flights served with 1, 2 …Dmax periods of 

delay. Same authors proposed extension of the model to a spatial solution in 

[Tosic et al., 1997] using the set of alternative routes. This was one of the first 

studies that consider horizontal rerouting of flights. The objective was to minimize 

delay cost to the customers incurred both on the ground and in the air (alternative 

route). Delahaye and Odoni in [Delahaye and Odoni, 1997] proposed stochastic 

optimization model of general time-route assignment problem with the objective 

to significantly reduce the peak of workload in the most congested sectors and in 

the most congested airports. The model has ability to manage constraint of the 

airlines in a microscopic way (at the flight scale e.g. flight prioritization) and to 

take into account the connexion9 between flights. Promising results of hypothetical 

example were reported. Oussedik and Delahaye in [Oussedik and Delahaye, 1998] 

proposed similar GAs based model as previously reported by Delahaye and 

Odoni. The model was tested on real day traffic data across French airspace. The 

computation time was reported as the weak point of this model.  

First of the models reported by Bertsimas and Stock Patterson in [Bertsimas 

and Stock Patterson, 1998] was variant of Time Assignment model reported by 

[Lindsay, et. al., 1993]. Although decision variables in both models represent the 

times at which aircraft are to be at selected fixes in their routes, the difference lies 

in the formulation of decision variable. Binary decision variable in latter model 

equal to 1 if flight arrived in the sector by the given time i.e. at or before a given 

time. Such decision variable makes Binary Integer Programming formulation of 

the problem very efficient. Therefore the solution of the LP relaxation of this 

problem is almost always integer as reported by the authors10. This statement is 

not proved but it is confirmed by numerous experiments. As a result, the model is 

capable of solving large, realistic size problems in a reasonable amount of time. 

Most authors gave a credit that this is the model with the best performance among 

existing ones. Bertsimas and Stock Patterson examine several variations of the 

model taking into account: interdependency between arrival and departure 

capacities at airports, hubbing effect, multiple presequent flights11 and flight 

                                                 

9
 Connected flights from the perspective of the passengers. Therefore one departure flight may be connected 

to many arrival flights. 

10
 Polyhedral structure of problem formulation was examine by the authors 

11
 At hub airports many airplanes are capable of performing any one of multiple consecutive flights. 
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rerouting. They show two possible approaches to model rerouting decision: “path 

approach” and “sector approach”. In the path approach, a set of possible routes 

that a flight may fly is defined. Decision variable is further extended and consider 

arrival of the flight at the sector by the time along the specified route. In the sector 

approach, route is defined on the run i.e. at each sector in its route it is decided 

which sector to enter next. Therefore, set of sectors that flight can enter after a 

given sector is defined and decision variable consider arrival time of the flight at 

the sector from specified sector. Although no extensive study was performed to 

determine which approach gives a better solution in terms of integer solution, it is 

clear that sector approach formulation result in more variables. In [Bertsimas et al., 

2008] and [Bertsimas et al., 2011] sector approach is further studied with the scope 

of strengthening the formulation. Key achievement is that authors included 

rerouting decision without requiring any additional variable compared to 

[Bertsimas and Stock Patterson, 1998] model but include additional inequalities. 

Realistic problem instances of NAS level were solved in short computational time. 

Bertsimas and Stock Patterson in [Bertsimas and Stock Patterson, 2000] examine a 

problem of dynamical rerouting. They presented an aggregated model (dealing 

with flows) that was formulated as a dynamic, multi-commodity integer network 

flow problem. The network model is a mixture of the ones proposed in [Bianco 

and Bielli, 1992] and [Helme, 1992] however it is not transformed into static multi-

period problem as the previous author did and therefore involves complicated 

side constraints. The commodities in the network are defined as origin-destination 

pairs of airports operated by an airline. With such definition issue of fairness 

become even more important as it is possible to assign all delay to a single airline. 

To find near-optimal solution, the authors proposed iterative algorithm were in a 

first step, Lagrangian relaxation of the problem is solved by LP giving objective 

lower bound, then randomized rounding heuristic is performed to round variables 

and decompose flows into routes, finally routes are packed into capacitated 

airspace system solving integer packing problem and upper bound is then 

updated. The procedure is repeated until upper and lower bound reaches desired 

accuracy. The computational results suggested that this approach is capable of 

efficiently solving real life problems. Leal de Matos et al. in [Matos et al., 2001] 

examine several optimization models for flight rerouting applicable to European 

flow management authority. According to current practice alternative routes are 

allocated on flight flows and not on an individual flight basis. The problem was 

solved in two stages: (1) route problem, where acceptable alternative routes for 



19 

 

each flow is identified, and (2) assignment problem, where the route is assigned to 

each flow so that the total cost of rerouting and congestion is minimized. They 

take congestion into consideration: using penalties whenever demand exceeds 

capacity of a sector, or constraining the demand. Three IP models are presented 

depending how congestion is modeled. The smallest and fastest model considers 

congestion penalties and only rerouting decision while two others consider 

limited sector capacities and ground-delay decision variable at different 

aggregation level. The work presents a nice overview of modeling approaches in 

relation to current practice and their usability but lacks of innovation. In 

[Dell’Olmo and Lulli, 2003] two-level hierarchical architecture for ATFMP is 

proposed: network airways system and single airway. At the system level 

dynamic multi-commodity (each flight represents commodity) network flow 

problem with side constraints was formulated and solved. Analyzing the network, 

the flight sequence for each way point is outputted.  Then optimization of the 

lower level model is carried out on those arcs of the network where the flows 

exceed capacity. As a result of this model, the flight paths in the free flight 

scenario are obtained. Although authors considered ATM as a network, there were 

no fix routes i.e. a flight could follow any link of the network considering arrival 

time as the only constraint. The objective function was to minimize a cost function 

including: late and early arrival and deviation from its preferred speed. Due to 

nonlinearity, the computational time was very high, even when constraints such 

as sectors capacity, continued flights, etc. are not considered. The model is also 

validated using heuristic techniques. Lulli and Odoni in [Lulli and Odoni, 2007] 

presented an approximate, low-level-of detail deterministic model for the EU 

ATFM environment in order to highlight the critical characteristics of the system: 

(a) the intrinsic complexity of optimal ground and airborne holding strategies; (b) 

the fundamental conflict that may arise between the objectives of efficiency and 

equity. The model takes into consideration airport and en-route capacity 

constraints and assigns both ground and airborne delays (holding in terminal 

area) to flights with the objective to minimize total delay costs. The model can be 

viewed as macroscopic in that it omits certain details making assumptions such as: 

equal speed of travel, no rerouting, no consecutive flights, etc. The authors noted 

that even with perfect knowledge of future capacity (deterministic case), in many 

cases, the total delay cost can be reduced significantly by assigning more 

expensive airborne holding delays to selected flights (instead of ground delays). 

This is in sharp contrast to the situation in which only airport capacity constraints 
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exist. Richard, Constans and Fondacci in [Richard at al., 2011] proposed a MIP 

model of ATFMP. They consider dynamic search of routes during the sliding 

horizon loop process taking all flight characteristics into account. The problem 

was solved using branch-and-price and column generation techniques. On master 

level restricted problem with only a small subset of variables is solved and then 

this subset iteratively enlarged by adding some variables with negative reduced 

cost. In this context, columns to be generated correspond to feasible trajectories. 

Interesting columns are characterized by a negative reduced cost on the basis of 

the last optimal relaxed solution. Recently [Gupta and Bertsimas, 2011] and 

[Agustin et al., 2012] proposed the first models that deals with airspace 

uncertainty. 

1.2.2.4. Conclusion 

Transportation network represents a well-adapted modeling framework for 

most processes that might be encountered in reality. Unfortunately, some of these 

problems are so complex that no transportation network algorithms are available 

to solve them [Delahaye, Puechmorel, 2013], neither they take account of equity 

between users.  

Dynamic and linear programming models have been proved to be efficient 

on simplified formulations but with more realistic formulation (route, slot and 

speed allocation, arrival, departure and space capacity, etc.) their use could be 

limited only to small-scale networks. 

Heuristic approaches are shown most suitable for solving large-scale 

problems. Moreover, the multi-objective approach could be used to identify 

several potential solutions, which can then be assessed by an expert. 

Nevertheless, none of the reviewed models are adapted for trajectory 

design (shape planning), that will be the corner-stone of the future ATM system as 

it will elaborated in the chapter 1.3. 

1.2.3. Operational tools used in EU ATFM 

EUROCONTROL Central Flow Management Unit (CFMU) is mandated to 

provide Air Traffic Flow and Capacity Management services within the area of 

responsibility of participating European States. It was founded on behalf of 

Transport Ministers of the European Civil Aviation Conference (ECAC) States in 
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October 1988. The CFMU is based on the ICAO Centralised Traffic Management 

Organisation (CTMO) [ICAO 4444] concept and integrates Flow Management 

Positions (FMPs) in each Area Control Centre (ACC). From January 2011 with 

EUROCONTROL’s new organization, CFMU Directorate was integrated into a 

wider EUROCONTROL unit the Directorate Network Management (DNM) and 

has been renamed to CFMU Network Operations.  

When an imbalance between demand and available capacity is detected, 

CFMU NM in close cooperation with concerning ANSP's may develop a number 

of procedures to avoid congestion such as: the reconfiguration of some sectors, the 

activation of mandatory routes for certain trajectories, and the creation of slot 

allocation regulations [Matos and Omerod, 2000]. CFMU Network Operations has 

the following objectives: 

 To develop and maintain the highest level of quality of ATFCM service 

on behalf of both its ATS and AO users, as principal objective. It includes: 

- For ATS - The provision of flight plan data, the best utilization of 

available capacity, the smoothing of traffic flows and the assurance 

of protection against overloads. 

- For AOs - The provision of advice and assistance in flight planning 

and the minimization of penalties due to congestion. 

 Maintain and improve the cost effectiveness of its operations. 

 Adapt its procedures and systems to the evolution of its operational 

environment (Single European Sky (SES) initiative). 

 Provide reports and statistics on ATFCM operations and delay situation. 

The role of the CFMU Network Operations Unit can be illustrated by the 

main processes for exchanging operational information across the Network, as 

described in Figure 5. 
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Figure 5: Operational Structure with CFMU Network Operations Unit [Eurocontrol, 2011] 

Air Traffic Flow and Capacity Management is a service that is enhancing 

ATFM with the objective of managing the balance of demand and capacity by 

optimizing the use of available resources in order to enhance the quality of service 

and the performance of the ATM system. It consists of three activities as shown on 

Figure 6: 

 Strategic Flow and Capacity Planning; 

 Optimised Capacity Management; 

 Tactical Flow and Capacity Management. 

 

Figure 6: ATFCM Activities [Eurocontrol, 2004] 

In the strategic phase, based on traffic and capacity forecast, bottlenecks are 

identified and modifications of traffic flows are considered to adapt ATC capacity 

to demand. During pre-tactical phase, rerouting scenarios are examined in order 
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to achieve a global decrease of delays by spreading traffic. They can be in a form of 

advices or mandatory instructions when there is a risk of major imbalance 

between demand and capacity. On the day of operation when regulations are 

activated, the slot allocation procedures are applied. It includes the calculation of 

Calculated Take-Off Time (CTOT) for each flight passing thought the restricted 

area. Delays are carefully monitored and possible flights that would benefit from 

reroute are identified. Alternative route can be proposed automatically by 

Enhanced Tactical Flow Management System (ETFMS) or rerouting can be 

initiated by Aircraft Operators (AOs). 

Computer Assisted Slot Allocation (CASA) is the tool used at 

EUROCONTROL to calculate CTOT based on allocated slot. It is based on a 

heuristic model for solving GTFMP. Priority of flights is given according the “First 

Planned – First Served” principle, meaning that flights are sequenced in the order 

they arrive at a regulated point in the absence of any restriction. In the interest of 

fairness, CASA also reserves a portion of available capacity for short-haul flights 

and/or flights that may file a flight plan shortly before their intended departure. 

The slot allocation process can be described as follows: 

 Slot Allocation List (SAL) – First, for each regulated point (point on the 

route, sector or airport) the list of available slots are built based on the basic rate as 

a measure of capacity. For example, a basic rate of 30 flights per hour would result 

in the SAL with slots separated from one another by 2 minutes. 

 Pre-Allocation Stage – In this stage, traffic demand is evaluated based on 

most precise data available (Repetitive Flight Plan, Filed Flight Plan, 

Amendments, etc.). For each flight, provisional slot based on the order of their 

Estimated Time Over restricted location (ETO) is given. CASA automatically 

updates its solutions every few minutes, trying to improve slot allocation. When 

new flight data is received it is more likely that provisional slots would be 

changed. It’s not rare that initial change leads to chain reaction because flights 

whose slot has been taken tries to recover another slot by taking already reserved 

one, etc. Situation is reversed when a flight is canceled, which may improve slots 

given to other flights. 

 Allocation Stage – At fixed time before Estimated Off-Block Time (EOBT) 

of each pre-allocated flight, Slot Issue Time (SIT) is allocated to the flight and 

CTOT is calculated. It’s confirmed by sending Slot Allocation Massage (SAM) to 
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AO and ATC responsible of flight departure airport. Once confirmed, an allocated 

slot cannot be taken by another flight. If flight is subject to several regulations it is 

given delay of the most penalizing regulation. 

 Revision Process – Even after SAM is sent, CASA attempts to improve 

slot allocated depending on AO flight status. If the flight is in the RFI status 

(Request For Improvement), which is the default status, when an improvement is 

possible it immediately receives a Slot Revision Message (SRM). If flight status is 

set to SWM (SIP Wanted Message), then AO receives Slot Improvement Proposal 

(SIP) message which may be accepted or refused by sending appropriate response. 

There is no doubt that CASA is efficient tool capable of solving European 

level size problem within minutes. The unknown is the quality of the solution. 

Experimental results reported in [Vranas, 1996] shows that the total delays 

assigned by CASA were roughly 40% above optimum given by an exact IP 

algorithm. However CASA only needed half of minute to solve problems 

involving around 3000 flights and 25 sectors, while optimal solutions were found 

in approximately one hour. 

1.3. Future ATM 

Historically, growth of air traffic has not been coupled with an adequate 

increase in capacity (airport and airspace). As consequence, rising presence of 

delays in the European ATM system has adverse effects on the economics of air 

transport [Jovanovic, 2011]. It is envisioned that incremental changes in 

technology and procedures are no longer sufficient to keep up with the growth in 

traffic [Neal et al., 2011]. ICAO Global Operational Concept proposes significant 

changes to the organization and delivery ATM services in the next 15 years [ICAO 

9854]. Major systems development programs are underway around the world 

including the Next Generation Air Transportation System (NextGen) program in 

the United States [FAA, 2012], and the Single European Sky ATM Research 

(SESAR) program in Europe [SESAR, 2013]. One of the cornerstones of both 

programs is the Trajectory Based Operations (TBO) which implies moving from 

Airspace to 4D trajectory management.  

A major challenge in the design of future TFM systems is to design an 

adaptive system that can handle both variations in the magnitude and distribution 

of traffic. The system must be able: to handle two to three times current traffic, 
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new types of vehicles like very light jets and unmanned air vehicles, and to make 

good decisions in the presence of uncertainty. 

Elements of the future operational concept include changes to the 

organization and management of the airspace design to improve access and 

utilization, dynamic management of capacity to meet demand and respond to 

uncontrollable events (e.g., weather and emergencies), dynamic and flexible 

management of trajectories and traffic synchronization to improve safety and 

efficiency, and conflict management (Figure 7). 

 

Figure 7: General functions in future ATM [Neal et al., 2011] 

The primary means by which the priorities such as safety, efficiency, and 

cost-effectiveness are to be achieved is through trajectory management. Trajectory 

management and traffic synchronization, together with the other ATM 

components, will contribute to the efficient handling of traffic from gate to gate. 

There will be dynamic 4-D trajectory control and negotiated conflict-free 

trajectories. The ICAO proposes that airspace users should retain primary 

responsibility for the provision of ATM services. However, the Operational 

Concept also states that the allocation of responsibilities is subject to the design of 

the ATM system. Delegation of maintenance of spacing to the flight deck aims to 

increase traffic throughput while reducing ground system workload [ICAO 9854], 

[Dwyer and Landry, 2009]. 

Through trajectory management shown in Figure 8, 4D trajectory will 

evolve from preferred trajectory published by airspace user (Business 

Development Trajectory - BDT) to Reference Business Trajectory - RBT that 

airspace user agrees to fly and airspace service provider (ANSP, airport) agrees to 

facilitate. RBT constitutes an agreement between stakeholders for the whole 

airborne trajectory to destination [SESAR, 2013]. The trajectory management 

process starts with the collection of all BDTs and then is shared with ATM 

partners. These trajectories are then modified as necessary using a layered 

Collaborative Decision Making (CDM) planning process which takes account of 

identified constraints. The ATM planning process is one of continuous refinement 
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as better data become available. The output of CDM just before flight execution is 

the final trajectory called the Reference Business Trajectory (RBT) with related 

tolerance windows (time windows).  

 

Figure 8: The Business Trajectory Lifecycle [SESAR, 2013] 

TBO concept restore flexibility to an air transportation system by freeing 

aircraft from “the old highways in the sky” that are dependent on ground-based 

beacons [FAA, 2012]. TBO enables more direct, fuel efficient routes and provides 

alternatives for routing around disruptions or unexpected congestion. The 

introduction and implementation of TBO concept have to be followed by the 

development of new types of displays (cockpit and controller’s), decision support 

tools and management system (SWIM), communication, navigation and 

surveillance technologies, and evolution of meteorological service.  

Trajectory management concerns trajectory planning as an optimization 

problem equivalent to the traffic assignment problem with the current system. The 

objective of this type of planning is to determine an optimal trajectory shape (3D), 

departure time and speed profile that optimizes a given criterion [Delahaye and 

Puechmorel, 2013]. Methods used to manipulate trajectories, which are of infinite 

dimension, are examined in following section. 

1.3.1. Trajectory modeling 

Trajectories are objects belonging to spaces with infinite dimensions. They 

are described as mappings from a time interval [   ] to a state space  , having   

either    or    depending on whether speed is assumed to be part of the state. In 

order to manipulate such objects with algorithms, one must reduce the dimension 

of the search space. Survey of mathematical models for aircraft trajectory design is 

given in [Delahaye et al., 2013]. 
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Some dimension reduction tricks include: 

 Piecewise Linear Interpolation – Trajectory is characterized by way 

points (WP) and straight line segments between those points. The number of WP 

highly depends on trajectory curvature. If one wants to approximate trajectory 

with many shape turns, the number of way points needs to be increased in order 

to reduce the error between the model and the real trajectory. To improve concept 

performance, Lagrange and Hermite interpolation might be used to adjust 

polynomial function to a given set of way points. However, due to Runge’s 

phenomenom these interpolations induce oscillations between interpolation points 

(Figure 9). 

 

 

Figure 9: Lagrange interpolation result for a set of aligned points [Delahaye et al., 2013] 

 Piecewise Quadratic and Cubic Interpolation – Piecewise quadratic 

interpolation considers   quadratic curves on the intervals [       ]        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

each connecting two points is space. On each point, derivative of the previous 

curve has to be equal to the derivative of the next one, which cause the change of 

the interpolating curve whenever any point moves. The piecewise cubic 

interpolation avoids this drawback but do not insure that trajectory curvature is 

continuous. 

 Spline interpolation - also called natural spline because it represents the 

curve of a metal spline constrained to interpolate some given points. Spline 

interpolation is preferred over polynomial interpolation because the interpolation 

error can be made small even using low degree polynomials for the spline. Cubic 

spline represents a good approximation for aircraft trajectories [Delahaye et al., 

2013]. 

 Bezier Approximation Curve - A Bezier curve is defined by a set of n 

control points, with n represents curve order (n = 1 for linear, 2 for quadratic, etc.). 

The first and last control points are always the end points of the curve; however, 

the intermediate control points (if any) generally do not lie on the curve (Figure 

10). When interpolation is not a hard constraint, one can use control points to 
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change the shape of a given trajectory without forcing trajectory to go through 

every single control point. 

 

Figure 10: Cubic Bezier curve [Delahaye et al., 2013] 

 Principal Component Analysis - When trajectories samples are available 

(for instance radar data), one can build a dedicated base which will minimize the 

number of coefficients (principal components) for trajectory reconstruction.  

Another approach for trajectory design is based on the wavefront 

propagation principle. It is a well-known fact in physics that waves of high 

frequencies tend to propagate along the minimum time trajectory. The principle of 

the wavefront propagation algorithms is to simulate such physical propagation 

model in order to find geodesic trajectory based on a criterion that has to be 

optimized (Figure 11). Some of existing methods are: Fast Marching algorithm 

[Sethian,1999], Ordered Upwind algorithm [Sethian and Vladimirsk, 2003], Light 

Propagation algorithm [Dougui et al., 2010], etc. 

 

Figure 11: Lunching rays – Light Propagation algorithm [Dougui et al., 2010] 

Path-planning is a term commonly used in the robotics to refer to the 

problem of generating an obstacle-free path to be followed by a vehicle in a two or 

three dimensional space containing obstacles [LaValle, 2006]. Because the vehicle 
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dynamics are not taken into account in these path-planning, resulting path cannot 

be followed exactly or even close by the vehicle. One way to ensure that the 

resulting paths correspond to feasible trajectories, satisfying the vehicle dynamics, 

is to use optimal control theory. The objective of optimal control theory is to 

determine the control input(s) that will cause a process (i.e., the response of a 

dynamical system) to satisfy the physical constraints, while, at the same time, 

minimize (or maximize) some performance criterion. First method that was 

possible to handle complicated differential equality constraints was proposed by 

Soviet mathematician L.S. Pontryagin (indirect method). Unfortunately, closed 

form solution to the previous problem is difficult [Delahaye et al., 2013]. In recent 

years, direct methods have become increasingly popular as they do not require 

closed form expression for the necessary conditions [Jain and Tsiotras, 2008]. The 

main idea behind direct methods is to discretize the states and controls of the 

original continuous-time optimal control problem in order to obtain a finite-

dimensional nonlinear programming problem (NLP). A major issue with almost 

all current trajectory optimization solvers (direct or indirect) is the fact that their 

computational complexity is very high [Delahaye et al., 2013]. 

1.3.2. Previous research on Trajectory management  

In the SESAR framework [SESAR, 2013] the need to increase capacity of air 

transportation system motivates 4D trajectory management. It concerns the 

generation of the trajectory from origin to destination taking into account several 

objectives: minimization of trajectory length and travel time while avoiding 

obstacles (fixed and moving). In literature such problem usually refers to finding 

conflict-free trajectories while minimizing given objective. Several classes of 

methods are used to address this problem. 

One class of models uses different optimization techniques for conflict 

resolution. One of the earliest approaches is based on genetic algorithms (GA). 

This optimization method is based on the evolution theory and uses basic 

operators: selection, mutation and crossover for generating new population of 

aircraft trajectories. The state space is a set of finite maneuvers in the horizontal 

plane (straight line, turning point and offset), as well as vertical maneuvers such 

as level-off. Those maneuvers are used currently by ATCo. GA generates 

trajectories with feasible operational maneuvers and maintains velocities within 

acceptable range [Durand and Alliot, 1997]. However, these techniques have not 
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been tested yet with curved trajectories [Delahaye et al. 2010]. The first approach 

for conflict resolution using stochastic optimization algorithms was done by Alliot 

et al. in [Alliot et al., 1993]. They consider horizontal airspace where every aircraft 

enters and leaves the airspace at the same time. All aircraft fly at the same speed 

and the only possible maneuvers are heading change (left or right by 30 degrees) 

at discretized time steps. The objective was to minimize the distance of the last 

point of the computed trajectory to the theoretic exit point. A second model 

proposed by the authors included speed changes and fuel cost in the objective 

function. The results of the model are compared to the classical graph search such 

as A*.  A* needed a long time to compute the solution, while GA was able to 

calculate a good solution within a few seconds. In order to get closer to real ATC 

system Durand and Alliot in [Durand and Alliot, 1997] and [Durand et al., 1996] 

considered finding conflict free trajectories simultaneously by minimizing delay 

due to deviation imposed on aircraft, number of maneuvers and their duration. 

They take into account speed uncertainty and real aircraft performance model. 

The decision variable considers horizontal and vertical maneuvers. The model is 

tested on real problem over France airspace.  

Particle Swarm Optimization (PSO) techniques to perform two- and three-

dimensional flight path optimizations using primitive maneuvers, compliant with 

operational constraints, is presented in [Blasi et al., 2011]. In this approach, flight 

paths are divided into a finite number of segments each associated with an 

elementary maneuver: straight flight, turn right, turn left, and alignment to the 

target. Sequence of maneuvers is controlled by the PSO. 

Prandini et al. in [Prandini et al., 1999] proposed probabilistic framework of 

conflict detection and resolution for a pair of aircraft flying at the same altitude 

thus allowing uncertainty in aircraft position to be explicitly taken into account. 

Another probabilistic framework (random wind disturbance) for the conflict 

resolution problem, where multiple aircraft in a specific region are required to 

reach a different target zone at the minimum expected time, while maintaining 

safe separation is presented in [Kantas et al., 2010]. Optimal policy, that 

automatically generates optimal and safe maneuvers for each aircraft, is computed 

using a sequential Monte Carlo approach. In [Eele and Richards, 2010] optimal 

trajectory for one aircraft constrained to avoid fixed obstacle is proposed. Novel 

rapid updating techniques for use with nonlinear branch and bound algorithm is 



31 

 

presented. The key feature of the model is the ability of finding a global optimal 

solution whilst retaining the full nonlinear dynamics model of the aircraft.  

Another class of methods uses a force field to generate a solution to a 

conflict. With this approach each aircraft is treated as a charged particle and 

electrostatic equations are used to generate resolution maneuvers. Each aircraft is 

attracted to its destination (positive charge) and the repulsive forces (negative 

charge) between aircraft or aircraft and obstacle provide maneuvers that avoid 

collisions. This enables automatic generation of conflict-free trajectories (Figure 

12), with a mathematical proof. The major drawback of a force field method is a 

continuous aircraft maneuver in response to the changing force field [Kurchar and 

Yang, 2000]. Additionally, obtained solution does not respect ATM constraints 

such as speed limits or trajectory smoothness [Delahaye et al., 2010] and 

completely neglects objective optimization [Durand and Alliot, 1997]. However, 

several implementations of force field methods resolve these problems and shown 

that force field resolution can be effective when properly applied. A force field 

formulation based on the closest point of approach that follows the principle of 

increasing the minimum distance between mobiles (aircraft) is addressed in 

[Zeghal, 1998]. Control of multiple non-holonomic air vehicles using model 

predictive control and decentralized navigation functions was proposed in 

[Roussos et al., 2008] and [Roussos et al., 2009]. 

 

Figure 12: Principle of force field repulsive force [Delahaye et al., 2010] 

In [Delahaye et al., 2010] new methodology for trajectory planning using B-

spline is presented. Aircraft conflict resolution is formulated as an optimization 

problem whose decision variables are the spline control points. B-splines are 

parameterized curves generalizing the Bezier curve concept and are an efficient 

approximation tool. This problem was solved using GA for which primary 

objective was to minimize the number of conflicts and the second one was to 
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minimize the total extra flown distance. Another trajectory dimension reduction 

technique using linear piecewise interpolation is presented in [Chaimatanan et al., 

2012] and [Chaimatanan et al., 2013]. The problem addressed in this work is 

termed strategic de-confliction of aircraft trajectories where the objective is to 

minimize the number of conflicts by route and slot allocation. The proposed 

methodology for alternative trajectory design considers rerouting in the horizontal 

plane while keeping optimum speed and vertical flight profile. Therefore it does 

not only comply with aircraft performance but also gives trajectories that are close 

to optimal one chosen by the airline. Hybrid-metaheuristic algorithm based on 

Simulated Annealing (SA) has been developed to address this problem. Proposed 

optimization model is tested on air traffic data over the European airspace and is 

able to address more than 30.000 flights. 

Another method for generating conflict free 4D trajectory is presented in 

[Dougui et al., 2010]. Trajectory planning algorithm is based on the principle of 

least action: “The path of the light ray connecting two points is the one which time 

of transit, not the length, is minimum.”, and is able to compute smooth geodesic12 

trajectories avoiding obstacles modeled by high-index areas. Light propagation 

algorithm (LPA) belongs to the wavefront propagation class algorithms, as any 

point on a wavefront can be considered as the source of tiny wavelets that 

propagate forward. Propagation is discretized in space and time and a branch-

and-bound algorithm is used to solve the associated optimization problem. Two 

implementations with static and dynamic obstacles are considered and solved. 

Model extension to account for uncertainties in trajectory prediction is presented 

in [Dougui et al., 2012] by the same authors. 

In recent years, problem of trajectory planning becomes increasingly 

popular. Many new techniques for trajectory design have been proposed. 

However presented methods hardly take aircraft position uncertainty into 

account. In the next chapter an alternative approach, dealing with aircraft position 

uncertainty and unplanned situation, called robust trajectory planning is 

presented. 

                                                 

12
 In geometry, a geodesic is a generalization of the notion of a “straight line” to “curved spaces”, and 

represent the shortest path between points in the space.  
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2. ROBUST TRAJECTORY PLANNING: PROBLEM AND 

METHOD DEFINITION 

2.1. Problem statement 

The foundation of the future ATM Concept is a trajectory based operations 

– TBO [SESAR, 2013]. ATFM will shift into trajectory management, concept trough 

which 4D trajectory will evolve from preferred trajectory published by airspace 

users (Business Development Trajectory - BDT) to Reference Business Trajectory - 

RBT that airspace user agrees to fly and airspace service provided (ANSP, airport) 

agree to facilitate. RBT constitutes an agreement between stakeholders for the 

whole airborne trajectory to destination [SESAR, 2013]. The trajectory 

management process starts with the collection of all BDTs. These trajectories are 

then modified (if necessary) through CDM process taking into account identified 

system constraints. Outputs of planning process are RBTs and related tolerance 

windows (time windows). Inability to meet a tolerance window requires 

reassessment of the situation. When the tolerance window is not reachable or in 

the case of unplanned, crisis or contingency situation trajectory revision should be 

considered. This is the last option (back-up) as new trajectory might not be 

acceptable to the airspace user due to operational constraints and is generally a 

more expensive option. 

While there has been some work (chapter 1.2.2), which deal with ATFMP 

under capacity uncertainty, only few papers deals with aircraft position 

uncertainty. In strategic de-confliction model presented in [Chaimatanan et al., 

2013] aircraft are separated taking into account “freedom margin” that is slightly 

higher than the separation norm (6 NM). At the tactical level, [Dougui, 2012] 

considered the longitudinal uncertainty of aircraft position and showed that the 

number of conflicts detected is 50% higher even using uncertainty reduction 

techniques such as Required Time of Arrival (RTA)13. Conflict solver, defined in 

[Durand and Alliot, 1997], assumed uncertainty in the aircraft future position 

(caused by error in ground speed and vertical speed prediction) but becomes 

saturated very fast. Finally, [Barnier and Allignol, 2012] take uncertainty with 

                                                 

13
 As presented in the work, this mode enables to impose the aircraft to arrive at a given point of its trajectory 

at given time RTA with a tolerance of ±10 seconds. 
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respect to departure time. Takeoffs are randomly shifted by a bounded amount of 

time. It was shown, even small uncertainty of ±2 minutes generated a tremendous 

amount of ground delays as it was the only decision variable considered. It is clear 

that a novel approach to the problem is needed in order to cope with aircraft 

position uncertainty. 

An alternative approach, dealing with uncertainty in aircraft position 

(inability to cope with BT) and unplanned situation, is through building a more 

robust flight plan (robust flight trajectories) at a pre-tactical level. In this way, 

flight plan itself becomes unaffected by such disturbances reducing the need for 

tactical actions. The concept, proposed in this thesis, aims to find a set of robust 4D 

trajectories from origin to destination points minimizing total additional costs 

(including fuel, time...) caused by deviations from the user preferred trajectory 

(UPT) on pre-tactical level. Robustness includes both reducing the likelihood of 

disruption and increasing the number of options to recover from a disruption 

easily. This will affect the tactical controller workload alleviating conflict 

resolution task and traffic management at the tactical level as the primary target of 

future ATM [ICAO 9854]. Further, adding robustness to flight plan might result in 

higher airline planned costs, but disruption costs (cost of management actions 

taken to resolve conflict on tactical level due to disruptions) will be reduced due to 

reduced need for tactical interventions, finally leading to reduction in airline real 

operating costs. 

ICAO Global Operational Concept [ICAO 9854] envisioned that the control 

process for trajectory management needs to be adaptive, as it must respond to 

changes in anticipated demand and unforeseen events (weather, emergencies, etc.) 

One way to adapt is by adjusting decision criteria: safety, efficiency (from a single-

flight perspective), and cost-effectiveness (of ATM system as whole). In current 

ATM system, the subjective importance of efficiency and cost-effectiveness to the 

air traffic controller will decrease as the anticipated level of workload increases 

[Leroux, 2000]. It is expected that a similar process will operate in the future ATM 

system, although the way that decision maker trade-off among decision criteria 

will vary. 

Therefore, problem termed Robust Trajectory Planning – RTP addresses 

how to optimally generate a set of 4D trajectories from origin to destination points 

in order to manage the two confronted objectives: 
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 maximizing total robustness, 

 minimizing total additional costs caused by deviations from UPT.  

Generation of 4D trajectory assumes assignment of: route (3D trajectory 

shape), slot of departure and possibly speed profile. Origin and destination points 

could be ground fix (airport) or airborne fix (entering point of observed airspace). 

RTP aims to find system optimum (SO), a solution that is optimal from a 

viewpoint of a system as a whole, minimizing some aggregated indicators. On the 

other hand every user wants to use its optimal trajectory and thus issue of fairness, 

fair distribution of delay and/or route extension among airlines, flights, etc. has to 

be taken into account, as far as possible. Each individual user may have different 

optimality criteria: shortest distance, shortest time, minimum fuel burned, etc. 

RTP may be further constrained, by introducing ATS capacities e.g. 

arrival/departure airport capacity, including no-fly zones (severe weather cells, 

restricted or prohibited zones, etc.) that flights should avoid. Consecutive flight 

phenomena (daily sequences of flights operated by an aircraft) might also be taken 

into account, as a delay of the preceding flight usually cause a take-off delay of 

successor flights (delay propagation). 

The rest of the chapter is organized as follows. First, in the section 2.2, 

robustness is defined and some metrics that can be used to evaluate robustness of 

the solution are presented. Section 2.3 examines possible trajectory management 

actions and system search space. Description of the homotopy route generation 

model is presented in the section 2.4, followed by elaboration of the objective 

function in the section 2.5. Finally, key model assumptions, mathematical 

formulation of optimization model, and size of formulation are presented in the 

sections 2.6, 2.7 and 2.8 respectively. 

2.2. Robustness and Flight interaction 

Future ATM might become more vulnerable to unforeseen disturbances 

because of the fact that the traffic level keeps growing and it is more difficult to 

control less structured networks. Building more robust flight schedule at pre-

tactical level might help fight against such disturbances. To increase robustness, 

one must first define what “robustness” is? Which disturbances have to be taken 

into account? What are the indicators that quantify robustness? [Snelder et al., 

2012] 
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Robustness definition is usually problem dependent [Lan, 2003]. Building 

robust (flight) plan that minimize some cost function (as RTP does) usually 

intends to find optimal solution that is not sensitive to small variation of the 

design variables or environmental parameters. However, ATM is a safety critical 

system and its main task is to provide a safe flow of air traffic before making it 

punctual and expeditious. Therefore, robustness is considered as "the ability of a 

system to resist changes without adapting its initial stable configuration" [Wieland 

and Wallenburg, 2012]. Increased robustness of the planning will reduce the 

probability of conflicts to occur and the need for tactical actions, finally leading in 

reduction of airline operating costs on average. 

Various indicators may be used to characterize the robustness in the context 

of trajectory planning. An alternative way of quantifying the solution robustness is 

to measure its vulnerability to environmental change as opposite indicator. While 

the robustness describes the strength of a solution, the vulnerability describes its 

weakness [Snelder et al., 2012]. In this thesis, flight interaction is chosen as a 

measure of solution vulnerability and indirect measure of solution robustness 

(higher flight interactions is, lower solution robustness).  

2.2.1. Flight interaction  

Interaction between two flights may be defined as a situation where flights 

compete for the same point in 4D space. Interaction and conflict are not the same. 

The conflict is a real situation that might happen during flight evolution. Having 

fixed boundaries, the conflict occurs when two aircrafts are separated less than 

5NM horizontally and 1000ft vertically (current standards). Conflicts are 

forbidden in normal operations as they jeopardize flight safety, thus many safety 

barriers exist to prevent them from happening [Netjasov et al., 2013].  

On the other hand interactions are situations existing at the planning level 

and take into account the uncertainty propagation (deviations from the RBT).  

Maximum interaction is reached if 4D position (space + time) of the two aircraft 

equals on planning level, i.e. situation when both aircraft came into same point at 

the same time, and decrease with distance in 4D space. In the presence of 

uncertainty, minimizing interactions between flights at planning level will 

minimize conflict probability in reality and thus maximize robustness of the 

solution. 
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When flights’ 4D positions (including nominal and all alternative routes for 

a flight) are separated, there is no interaction between those flights no matter what 

action is taken by each individual flight (assumed that actions are bounded e.g. 

maximum rerouting, maximum delay, etc.). In such situations trajectory planning 

for each flight can be treated independently14. Two cases may happen: 

 Temporal separation – if the first flight (flight that departs earlier) arrives 

at the destination point before the second flight departs. This is the situation 

where aircraft operating those flights are not airborne at the same time (Figure 13). 

 

Figure 13: Flights fully separated in time 

 Spatial separation – if 3D position spaces of flights do not intersect. This 

means that aircraft operating those flights cannot occupy the same space (Figure 

14). More specifically spatial separation may be viewed in horizontal plane and 

thus guarantee interaction free route not depending on vertical profile, departure 

time, etc. (Figure 15).  

 
 

Figure 14: Aircraft 3D position spaces Figure 15: Full 2D separation 

2.2.2. Flight interaction metrics 

There are many uncertainty sources that can deflect an aircraft from its 

intended position (initial delay, wind, atmospheric temperature, actual aircraft 

                                                 

14
 This is necessary condition to apply decomposition methods when solving trajectory planning problem. 
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Latitude 

Longitude 
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weight, etc.). Difference between aircraft actual position and planned position may 

happen in space and/or time. Taking into account that advanced future avionics15 

will enable full compliance with given route (as acknowledge by WP6 

“Technological Enablers” of Episode 3 project in [Eurocontrol, 2009a]) time 

uncertainty remains the main cause of disruption (in general) and is therefore 

mainly considered in the thesis (Figure 16). 

 

Figure 16: Position time uncertainty 

Therefore in this thesis, flight interaction is defined as a function of time 

separation i.e. difference between times of arrival at intersecting point. Flight 

trajectories do not always intersect and might be close parallel. In that situation 

points of closest approach (CPAs) are determined representing points on flight 

trajectories where distance between two aircrafts reaches its minimum value 

[Netjasov et al., 2011, 2013]. If horizontal distance between CPAs is less than given 

norm, there is interaction between those two flights and flight interaction is 

calculated in the same manner as for intersecting trajectories. Taking into account 

that flight trajectories are curves in 3D space, it might be possible that two 

trajectories intersect more than once or have multiple CPAs. Then, interaction 

between two flights is computed as a sum of interaction between all intersection 

point and CPAs.  

Time interaction and time separation are inversely proportional as time 

interaction decrease when time separation increases. If       represent time 

separation that gives no interaction (e.g. 10, 15 minutes) and        is the exact 

time separation between points    and    of flights    and    respectively, then a 

measure of interaction at those points is defined as follows: 

      {
 (             )              

              
 

 The function f  may be constant, linear, polynomial, exponential, etc. 

Constant function represents interaction counter as any separation less than given 

threshold maxTS  will be equally treated. To take into account magnitude of the time 

                                                 

15
 Current advanced flight management system (FMS) gives accuracy equal to or better than +/- 1NM for 

about 95% of flight time (closed loop with feedback). Advance required navigation performance (A-RNP) 

concept is developed in order to enable further improvements. [Eurocontrol, 2010]  
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separation, linear function could be used. Finally non-linear function may be used 

in order to penalize larger flight interactions (Figure 17).  

 

Figure 17: Flight interaction functions 

Although space uncertainty is not considered in this work, several metrics 

that takes it into account and that could be used to compute flight interactions are 

elaborated in following paragraphs. 

Presented time interaction metric accounts for time uncertainty and might 

also implicitly account for small space uncertainty. To take aircraft position 

relation into account, traffic density metrics have to be used. One very simple 

traffic density metric is represented by the number of aircraft in airspace blocks 

(cells) during certain time period. By measuring number of flights that are in each 

cell during each time period, one can build a congestion map showing regions 

with high operational congestion. Although highly correlated with flight 

interaction this metric does not take account of the orientation of traffic and 

considers geometrically structured and disordered traffic in the same manner.  

To take density and disorder of traffic explicitly more sophisticated 

measures such as complexity metrics has to be used. In the literature, traffic 

complexity is used as a measure of controller’s workload as it represents traffic 

closeness in space and time. Although controller workload is not considered in the 

trajectory planning models, due to analogy, many factors identified affecting 

controller performance might be used. 

Based on interviews and survey techniques with ATCo performed at NASA 

ARC number of factors has been identified as significant contributors to the 

workload [Sridhar et al., 1998]. A proposed measure of complexity, dynamic 

density (DD), is calculated as a weighted sum of those factors. Some of the factors 
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are: number of aircraft with 3D Euclidean distance between 0-5NM, 5-10NM, and 

a number of aircraft with a lateral distance between 0-25NM, 25-40NM and 40-

70NM where vertical separation is less than standard norm, measured during a 

sample interval of time (one minute). 

In [Delahaye and Puechmorel, 2000] geometric approach is used to capture 

intrinsic traffic disorder that is highly related to the complexity. Metric is 

calculated as a combination of two indicators: proximity indicator that quantifies 

the level of aggregation in relation to a given volume, and convergence indicator 

that quantifies the geometric structure of the speed vectors of airplanes presented 

in a zone (Figure 18).  

 

Figure 18: Proximity/convergence referential for traffic complexity measure 

Another metric developed by the same authors based on dynamic systems 

is presented in [Puechmorel and Delahaye, 2009]. In this approach, air traffic is 

modelled by a dynamic system and complexity value in the airspace is assessed by 

the associated Lyapunov exponent. Lyapunov exponent is a measure of sensitivity 

to initial conditions of the underlying dynamical system. A small value of the 

Lyapunov exponent means that the future is highly predictable as the trajectory of 

a point of the dynamic system is not sensitive to small disturbance of the initial 

position (distance between the initial trajectory and the trajectory under 

disturbance is very small). As a result complexity at the point is low. On contrary 

high values of Lyapunov exponents represent zones of disordered traffic with 
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high complexity. Calculation of Lyapunov exponents is a difficult task mainly as it 

involves regression of the non-linear dynamic system, and its application in 

optimization models is very limited. 

2.3. System boundaries and search space 

System boundaries are the physical boundaries of airspace: sector, region or 

whole national airspace, FAB or Europe as a whole, in which RTP problem is 

considered and solved within a chosen time horizon. Origin and destination 

points of each flight entering and exiting the system may be ground fixes 

(airports) or airborne fixes (entering points of observed airspace). This has an 

influence on search space such that flights entering the system at airborne fix 

cannot be assigned a slot of departure e.g. cannot be delayed. Both ground and 

airborne fixes are given as input and cannot be changed. 

To reduce interaction between flights, trajectories of involved flights might 

be separated in any of the four dimensions within the system boundaries. Possible 

management actions include change in:  

 slot of departure, 

 horizontal route, 

 vertical profile, and 

 speed. 

The effects of the management actions (one action is taken at the time) are 

illustrated on a very simple toy example with two flights with intersecting routes 

(Figure 19). Only cruise phase is considered, with constant speed. Flights operate 

at the same altitude. Departure time of the first flight is t1 and it arrives at the 

intersecting point at ti1, which is at the distance of d1 from departure point. 

Accordingly departure time, time of arrival at intersecting point and distance of 

the intersecting point of second flight are t2, ti2 and d2.  
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Figure 19: Aircraft encounter on 

intersecting routes 

Figure 20: Time evolution of flights 

Figure 20 illustrate the time evolution of flights along route. Assuming that 

maximum acceptable interaction is represented with minimum time separation at 

intersecting point tmin, the problem is to speed up the first flight or to delay the 

second flight in order to arrive at the intersecting point in ti1’ or ti2’ respectively. 

Alternative departure time Changing departure time of a flight result only in time 

shift at each position resulting in the so called temporal solution. This approach is 

based on the assumption that each flight will follow a single initially chosen 

optimal 3D trajectory and therefore not induce more fuel consumption while 

airborne. The range of time shift depends on the planning level (strategic, pre-

tactical, and tactical) at which the action is conducted. At the strategic level, when 

desired trajectories are designed by airspace users, there is no precise plan what 

flights will be carried by what plane (Daily Operational Plans) and therefore there 

is more freedom in changing slots. Hence, the departure time of each flight can be 

shifted by a positive or a negative time shift. Although technically feasible, large 

shifts are not desirable as departure times is strongly influenced by traffic demand 

and these changes might reduce attractiveness of a flight and affect such demand. 

At pre-tactical level, room for maneuver is reduced as delay of one flight leads to 

delay of all subsequent flights performed by the same aircraft. Furthermore, for 

operational reasons (passengers that are scheduled for a flight) positive shifts are 

only allowable and known in the literature as ground holds (tactical level). 

Solution of the toy example with departure slot change is illustrated in , 

which depict situation where second flight is delayed for tmin - t time units 

(green line). Delay of departure cannot be greater than the given T denoted by the 
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red line in the figure (constraint). As slot of departure cannot be moved earlier in 

time17 changing slot of the first flight would not solve the problem. 

 

Figure 21: Flight delay 

Alternative horizontal route With the increase of traffic volume, large amount of 

ground holds might be required to overcome the flight interaction problem. In 

such situation, flights have to be separated in spatial dimension, assigning 

alternative route to some flights. Although longer than the original one, this new 

route might be more acceptable as a result of less ground holds assigned to the 

flights and consequently less delay at destination. Deviation of alternative route 

compared to nominal one is limited by delay it produces at destination and 

additional cost due to more fuel burned. 

By changing flight route, one could try to manage intersection point, such 

that the time difference between arrivals of first and second flight at the point 

become greater than tmin, or even remove it (usually not possible or too 

expensive). Figure 22 shows solution of the toy example where second flight is 

assigned to the new route. Although the 4D trajectory of the first flight remains 

unchanged, arrival time at the intersecting point of both flights (ti1, ti2) is changing 

as a result of intersecting point relocation. Route change of the second flight has 

impact on its route length that is increased denoted by red extension line at the 

Figure 22. Longer route also results in late arrival at destination point of the 

second flight (without change of the speed). Another solution to the problem 

might be to change the route of the first flight in the same manner. 

                                                 

17
 as explained, at pre-tactical and tactical planning level flight may only be delay for operational reasons 

(passenger may lose their flights) 
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Figure 22: Flight rerouting 

 Alternative vertical profile Cruise level, climb and descent profile are designed 

by flight engineers in order to best utilize aircraft performance. Although any 

deviation from the optimal vertical generates additional costs, in operations, 

controllers often require a change of flight level to resolve potential conflicts 

(mainly in TMA). Change of flight level results in more fuel burns than pre-

planned profile at same cruise level due to deviation from optimum profile. 

Therefore several alternative vertical profiles might be planned for each flight 

consisting of a “primary” profile preferred by the carrier and “alternative” 

profiles. 

An altitude change of one flight in the toy example is the simplest solution 

as there are only two flights in the system. However this might be a more 

expensive solution than the other alternatives. The applicability of this solution 

depends on other traffic that is omitted in this example. 

Speed management Similarly to vertical profile, nominal speed profile for a flight 

is designed based on flight level and weight. Although increase of cruising speed 

will result in more fuel burn, often in operation it is used by airline to compensate 

flight delay. Opposite speed reduction may lead to flight delay but additional cost 

could be partially compensated by fuel savings. Small variance of the nominal 

cruising speed (-6%, +3%) are considered acceptable as impose no significant 

increase in perceived controller workload [Averty et al., 2007]. Currently speed 

management is mainly used as a tactical measure of resolving potential conflicts 

(ERASMUS project)  [Weber et al., 2007], but it is suggested that it could be used 

as tool to manage flight delay costs [Cook et al., 2007].  

Figure 23 shows a possible outcome of aircraft speed change applied to the 

toy example. Speed change limits are denoted by red lines in the figure (operating 

speed range). To solve the problem each flight could be either slowed down or 
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speeded up. For instance, speed decrease of the second flight will result in late 

arrival at the intersecting point (ti2’) although its departure time is not changed 

(Figure 23a). Another possibility is to increase speed of the second flight so it 

arrives at the intersecting point tmin time unit before first aircraft. However 

required speed is out of operational range. Figure 23b shows another acceptable 

solution of the problem where speed of the first flight is increased in order to 

arrive earlier than planned at the intersecting point (ti1’).  

 

a) 
 

b) 

Figure 23: Speed management 

2.4. Route generation model 

As it was shown in the review of the existing models for the ATFMP 

(chapter 1.2.2), current rerouting is viewed as allocation of a route from a pre-

defined set of alternative routes. Given that each flight in the current ATM follows 

airways and beacons (routes usually given as a sequence of sectors crossed by 

flight), a small number of alternative routes (two-three) is completely reasonable 

and does not affect optimal solution (provided those alternatives are different 

enough from each other). Last statement does not hold for the future ATM that 

will enable more direct, fuel efficient routes using satellite positioning and 

advance navigation technologies. It will free airspace from the “old highways in 

the sky” [FAA, 2012]. As a matter of fact, each direct route corresponds to a link in 

a fully connected graph. If trajectory optimization takes into account other 

objectives (obstacles avoidance, congestion reduction) or considers wind effect 

then infinitive number of alternatives exists with curve shape trajectories. 

Consequently, the set of possible curve routes is infinitely large. Curves are objects 

belonging to spaces with infinite dimensions, and in order to manipulate such 

objects it is necessary to reduce the dimension of the search space [Delahaye et al., 
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2013]. In this thesis homotopy is used as dimension reduction technique. It was 

observed that homotopic feature of continuous functions may be used to easily 

map large continuous spaces using only small number of parameters. This feature 

is exploited in the route generation model to design the shape of the horizontal 

route (alternative horizontal route) that is matched with vertical profile to produce 

3D route. Finally, 3D shapes are completed with time dimension in order to create 

trajectories. 

2.4.1. Homotopy 

In topology, two continuous functions are called homotopic (Greek ὁμός 

(homós) = same, similar, and τόπος (tópos) = place) if one can be "continuously 

deformed" into the other. Such a deformation is called a homotopy between the 

two functions. Formally, a homotopy between two continuous functions f  and g  

from a topological space X  to a topological space Y  is defined to be a continuous 

function   YXH  1,0:  from the product of the space X  with the unit interval 

[0,1] to Y  such that, if Xx  then    xfxH 0,  and    xgxH 1,  [Katok and 

Sossinsky, 2006]. 

Reference curves (two solid lines in Figure 24) given by functions  t0  and 

 t1  are homotopic relative to their endpoints because there is homotopy  ,tH  

that continuously deform  t0  into  t1 . 

       tttH 10 1,    

Dashed lines in the Figure 24 represent iso-contours of this homotopy 

computed as a weighted sum (convex combination) of the reference functions for 

different values of the parameter  . Homotopy  ,tH  maps space between 

reference functions using only one real number   ([   ]       ). 

 

Figure 24: Example of two homotopic functions 

 
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In route generation model, homotopy is used as tool for horizontal route 

generation. The model performance heavily depends on the choice of reference 

functions as iso-contours of homotopy replicate their pattern. Further, for many 

nonholonomic18 systems, such aircraft [Roussos et al., 2008], the route geometry 

has critical influence on the feasibility and performance of route tracking. The 

following list represents general criteria that must be satisfied for a function to be 

a candidate for reference functions: 

 The reference function domain is enclosed by origin and destination 

point given on the axes passing through these two points (direct route). 

Function codomain (range) has a width of    , where   is length of the 

direct route. These two criteria ensure that an alternative route will not 

deviate too much from nominal direct route restricting route search space 

(Figure 25). It has to be noted that width of search space from the figure 

represent two times     because two (symmetric) reference function are 

used for every homotopy.  

 

Figure 25: Route search space 

 Reference functions should be symmetric with a direct route as the axis of 

symmetry. This enables the direct route to be a result of homotopy for 

certain values of parameter   (     ). This is required because the 

direct route is taken as nominal (initial) route; 

 Reference function should be a single-valued function, which means that, 

the image of an element of the domain is always a single element of the 

codomain. This restriction ensures that the aircraft is moving always 

towards the destination point, never away from it (Figure 26); 

                                                 

18
 A system that is described by a set of parameters subject to differential constraints. Its state evolves along a 

path in its parameter space that is continuous. In robotics system is nonholonomic or anholonomic if the 

controllable degrees of freedom are less than the total degrees of freedom. [LaValle, 2006] 

D 

D/4 
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Figure 26: Vertical line test for a function 

 Reference function should belong to higher order differentiability class 

i.e. has a high order of continuity. Hence, function must be continuous 

and should have derivatives of k-first orders that are continuous too. A 

discontinuity in the derivative of the route may correspond to a sudden 

change of the speed vector, which would get the route infeasible. Besides, 

for two routes with the same length, and the same initial and final 

positions, better tracking performance can usually be achieved with the 

smoother route [Yiming, 2012]. 

2.4.2. Mathematical formulation 

This sections examines computation of horizontal route as symmetric 

homotopy with respect to reference (primitive) function  ( ), and as multiple 

homotopy of symmetric homotopies .  

Figure 27 shows one pair of symmetric reference functions  ( ) and   ( ), 

and symmetric homotopy with respect to those reference functions. Any points of 

function  ( ) may be represented as vectors in Cartesian coordinate system, and 

for given value of  , two point on reference functions are specified by    (   ) 

and    (    ), where    ( ). 

 

Figure 27: Symmetric homotopy with respect to reference function  ( )  
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As previously defined, homotopy is a convex combination of reference 

functions and hence point   at iso-contour for certain values of   may be 

represented as a convex combination of points    and   .  

       (   )     

       (   )      

       (   )  (  )  (    )  

  (  (    ) ( )) 

For any given symmetric homotopy with respect to reference functions 

  ( )   ( )  etc. point are calculated in the same manner and expressed as 

function of    and  .  

    (    )  (  (     )  ( ))

    (    )  (  (     )  ( ))

 

 

Multiple homotopy of symmetric homotopies   (    ),   (    ), etc. with 

respect to reference functions   ( ),   ( ), etc. is calculated as a weighted 

arithmetic mean i.e. a weighted average of all points given by corresponding 

symmetric homotopies. The value 
2

1  of the parameter   is taken as ‘identity 

element’ because the resulting iso-contour for any symmetric homotopy is direct 

(nominal) route. Weights are thus calculated as deviation of parameter   from 
2

1  

in absolute value 
2

1 . Finally, multiple homotopy  ( ) is computed as: 
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2.4.3. Alternative route design 

Respecting given vertical profile, the route generation model is only 

focused on modifying the shape of a horizontal route. Taking into account that 

areas around airports – TMA will remain controlled19, horizontal route shape is 

only modified in the en-route segment (Figure 28).  

 

Figure 28: Alternative horizontal route 

To unify shape design process for all possible cases (all flights and all 

origin-destination pairs) and simplify route manipulation (length calculation, 

extension, etc.), new horizontal route shape is designed in horizontal rectangle 

[   ]  [    ] (Figure 29) using previously defined model. Coordinates of the 

origin and destination point are (   ) and (   ) in this coordinate system 

respectively. Final route shape (horizontal route) is decoded by a scaling, rotation 

and translation for given real coordinates of origin and destination point.  

                                                 

19
 Airports are physically constrained by the number of runways and their configurations, and it is assumed 

that traffic in the vicinity of airports must remain structured and to be operationally managed – sequenced. 

Today more mentioned eco-policies for noise and CO2 emission reduction further limit operations in 

terminal. Even SESAR and NextGEN foreseen that terminal area will remain controlled based on those 

reasons. TMA dependencies on ATM system could be modeled through its capacity. 
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Figure 29: Horizontal route shape design and decoding 

Length of the alternative horizontal route is always larger than the length of 

nominal direct route. Therefore, direct mapping between given vertical profile and 

new horizontal route is not possible. One solution is to re-simulate flight using 

aircraft performance model, which is time consuming, or to extend the vertical 

profile to match the new route length. [Chaimatanan et al, 2013] has shown that a 

more efficient approach is to extend the vertical profile at the top of descent in the 

cruise phase of flight. The result is an acceptable approximation of the profile that 

respects optimal climb and descent profile as well as speed profile (Figure 30 

bottom). Based on the original trajectory samples, the new shape given by 

homotopy route generation model is converted into trajectory by putting the 

former samples (produced by simulation) on this new shape (Figure 30). 

Procedure of alternative route design can be summarized in following 

steps: 

 step 1 – For given set of symmetric homotopies respect to reference 

functions   ( ) and given set of parameters controlling homotopies   , find new 

en-route horizontal route shape in rectangle [   ]  [    ]. 

 step 2 – Based on start and end point of en-route segment scale, rotate 

and translate given shape to decode it to real coordinate system. 

 step 3 – Calculate en-route extension and extend given speed and vertical 

profile by prolonging cruise phase of flight. This is done by multiplying (adding) 

flight segments at the top of descent as many times as necessary to make the 

length of such profile equal to the length of new horizontal shape. 

 step 4 – Match trajectory samples of the newly generated profiles (speed 

and vertical) with new horizontal shape (horizontal coordinates). This result in set 

of 4D points of new trajectory. 
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 step 5 – for a given delay (if any), increase time dimension of each 4D 

points of new trajectory.  

 

Figure 30: Matching new route shape and given vertical profile 

2.5. Objective function 

Opposite to the conventional models that minimize planned costs, objective 

of RTP model is the minimization of the total operating costs of the ATM users 

which is the sum of the planned costs and the cost of disruptions. Adding 

robustness to the schedule will certainly increase the planned costs but at the same 

time it will reduce costs of disruptions and finally the operating costs. Therefore, 

the aim of RTP model is to minimize total ATM user costs and total flight 

interactions as two confronted objectives. Minimum cost is obtained when each 

flight uses its nominal trajectory (nominal flight route, departure time, vertical and 

speed profile). Due to interaction problem, the nominal trajectory of some flights 

might not be available and alternative trajectories have to be used. Every 

alternative trajectory incurs additional costs. Choice of alternative trajectory 

represents a trade-off between efficiency (additional costs) and robustness 

(interaction reduction) of solution. Furthermore, control actions taken to solve 

interaction problem at one place may raise a new problem at other locations 

involving other flights (interdependent decisions). Consequently, it may be 
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impossible to find single, ideal solution that is both optimal and robust and one of 

Pareto optimal solutions has to be chosen. 

RTP is represented as a multi-objective optimization (MOO) problem 

involving more than one objective function to be optimized simultaneously. The 

most common and straightforward approach to MOO is to sum different 

objectives into a single scalar value. This is so called Weighted Aggregation 

method.  

   ( )  ∑     ( )

 

 

where   are objectives and    are weight coefficients. 

When using this method, only one Pareto optimal solution can be obtained. 

Although easy to use, it requires a priori knowledge to determine weights that is 

sometimes hard and tricky to get. Instead of using general weights, as a measure 

of the importance of each objective, it might be possible to express objectives in the 

same measurement unit. Since total costs as the first objective represent monetary 

value expressing total flight interaction, as second objective, into a monetary unit 

would solve the problem. The question to answer is: What is the financial benefit 

of flight interaction reduction i.e. what the additional cost is acceptable to achieve 

a certain level of robustness? If Ic  stand for financial benefit to reduce total flight 

interaction by one unit, then aggregated objective function is defined as follows: 

CIcF I   

wher I represents the total flight interactions and C the total flight costs. 

However, the value of robustness is hard to quantify. 

A further question is how to aggregate individual flight interaction values 

into a single measure. This is closely related to the definition of the robustness. If 

the general definition of robustness is considered: “the ability of a system to resist 

change without adapting its initial stable configuration”, then individual (flight in 

this case) with smallest robustness (poorest individual) is representative of the 

system. In the context of trajectory planning, however, two solutions that have 

equal values of the poorest individual are not identical as robustness of other 

individuals and quantity of poorest individuals matters too. Therefore, total 

interaction is calculated as the sum of all individual interactions where larger 

interactions are penalized using non-linear function. 
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In the academic test example (chapter 4) another approach is also examined 

where MOO problem is reduced to the SOO problem by choosing the single most 

important objective function. All other objective functions are used to form 

additional constraints setting lower and upper bounds for the objectives. This 

method is known as a Bounded objective function method. The idea is to set an 

upper limit for flight interaction while trying to minimize total cost. As a result, 

minimal cost required for certain level of robustness may be obtained. Choosing 

different levels of robustness will give a range of problem solutions as alternative 

scenarios for decision making process. 

2.5.1. Cost of actions 

Management actions that alleviate interactions always incur additional 

costs. The cost may represent a number of modified flights, delay time, additional 

flight miles, etc. depending on possible actions (search space). When actions of 

different types are taken together, the more general cost metric must be 

considered. The most general metric (unit) is money. Therefore the cost function 

consists of: 

 delay cost – It is calculated as cost of flight delay at the destination point 

(time difference between new scheduled and nominal time of arrival). It consists 

of ground delay and airborne delay.  Ground delay is generated at the origin 

airport by assignment of new slot of departure. Airborne delay is accumulated 

during flight evolution due to rerouting and speed decrease. On the other hand, 

the speed increase recovers already generated delay. Theoretically, it is possible 

that new scheduled time is before the nominal time of arrival, having then a 

negative delay. Negative delay is not taken into account i.e. it’ll not decrease total 

cost, or it could be even forbidden with the existence of the slot allocation policy at 

destination airport. Opposite to ground and airborne delay defined by 

EUROCONTROL in [Eurocontrol, 2012b], that have different costs20 as former 

includes fuel and other operating costs, in the context of the thesis both delays 

include only time cost and are hence treated jointly. 

 fuel cost – It is calculated as the cost of additional fuel burn due to longer 

route taken and/or speed increase/decrease and/or change of vertical profile 

                                                 

20
 One minute of airborne delay cost three times more than one minute on the ground 
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(cruise altitude). If the direct route (as shortest one) is taken initially then a change 

of horizontal route will induce additional fuel burn due to longer route. It should 

be noted that shortest route is not always the one with the lowest operating costs 

considering other influencing factors: wind, route charges, etc. Since it is not 

possible to model all factors, direct routes are considered preferable by the airlines 

in this thesis. Speed change will always result in additional fuel burn if nominal 

speed is VMR21 (Figure 31). However, in real operation, positive CI22 is usually 

chosen denoted with speed V0 on Figure 31. Speed V0 that is higher than VMR gives 

lower specific range SR0. If V0 is nominal speed, speed increase will have the same 

effect as in ‘VMR case’ i.e. more fuel will be needed for the same distance. On the 

other hand, speed decrease will result in lower fuel burn but will increase delay 

cost. 

 

Figure 31: Specific Range relative to cruise speed [Delgado and Prats, 2009] 

Figure 32 shows SR evolution with cruising speed for different altitudes. 

One can note that SRmax and corresponding VMR increase with altitude. Maximum 

SRmax gives the optimal cruising altitude, and further altitude increase (until the 

ceiling) will result in lower SRmax. If optimal cruising altitude is initially chosen, 

then any altitude change will result in more fuel burned. 

                                                 

21
 speed that maximize specific range SRmax. It is the optimal speed from consumption per NM point of view. 

22
 Cost Index - express the ratio between the cost of the fuel and the cost of the time 
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Figure 32: Specific Range in function of cruise speed and altitude [Delgado and Prats, 2009] 

2.6. Key model assumptions 

Based upon previous discussion, this chapter lists the key model 

assumptions that have been used in the model. 

 Fixed demand. One of the first assumptions is that the number of flights 

which operate in the airspace at a given time period is fixed, and 

cancellation decision is not modeled. As flight cancellation is usually driven 

by excessive delay or rerouting, both are limited to ensure an acceptable 

solution. 

 Heterogeneous demand. The proposed model belongs to the multiclass-

user traffic assignment model [Jovanovic, 2011]. It takes into account the 

heterogeneity of demand in terms of different aircraft types and 

consequently different users will have different cost functions. 

 Direct route is considered nominal. Beside route length, other factors such 

as: wind, ANS charges, etc. influence choice of the flight route in 

operations. However these factors are not considered in the model and 

shortest (direct) route is assumed to be the one with the lowest operating 

cost. 

 Finite set of alternative vertical profiles. This means that each flight can be 

assigned to different flight level if the nominal one is unattainable for any 

reason (congestion, etc.). Each alternative vertical profile is attached with 

initial cost due to additional fuel burn and/or late arrival at destination. 

 Nominal speed profile is preserved. Speed change has big influence on 

operating costs and is not considered in the model. Speed management is 
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mainly used as a tactical measure for solving conflicts, and by airline to 

compensate flight delay. 

 Airline operating costs are taken into account. The model only takes into 

account delay and fuel costs. Passenger compensation costs and other costs 

are not considered. 

 Cost functions are known. Fuel burn rate, fuel and delay cost are attached 

to each flight based on aircraft type that operate a given flight. Cost of flight 

interaction is also known and chosen by the decision maker.  

 No secondary flights. Departures can take off from origin airports as 

planned and no consideration is given to the delay propagation from earlier 

flights. This simplification is typically made in models at strategic level 

(until day of operation the set of flights for an aircraft is not known). This 

can be further justified by the fact that it is no longer obvious which aircraft 

will fly a subsequent flight in the hub network since many airplanes are 

capable of performing any one of multiple consecutive flights [Bertsimas 

and Stock Paterson, 1998].  

 En-route part of the flight is considered. As deregulation will only 

consider en-route airspace as perceived by [SESAR, 2013] takeoff and 

landing part of trajectories are truncated around airports within a given 

radius as the traffic is considered handled with specific procedures by the 

TMA control service in these zones [Barnier and Allignol, 2012] This is in 

accordance with the EUROCONTROL definition of en-route part of flight 

for flight efficiency calculation [PRC, 2013]. 

2.7. Mathematical formulation 

Nomenclature. 

  the length of considered time horizon; 

  the set of arrival and departure points (airports, waypoints); 

  total number of flights i.e. cardinality of a set  ; 

  the set of flights  ; 

  
    nominal departure time of flight  ,    ; 

  
    nominal arrival time of flight  ,    ; 
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      flight interaction between flights    and   ,     ,        ; 

        flight interaction between points     and    ,       ,       ,     , 

       ; 

  steepness of the interaction exponential function; 

         exact time separation between points    and    ,       ,       , 

    ,        ; 

      minimal time separation between points without interaction;  

   flight interaction unit cost; 

  
  delay unit cost of flight  ,    ; 

   fuel price per kilo; 

  the number of symmetrical homotopies determining the shape of  

horizontal flight route; 

   reference function of symmetric homotopy  ,   {    }, where 

    [   ]  [    ]; 

  
  decision variable controlling homotopy   for flight  ,   {    },    ; 

   the set of indices of alternative vertical profiles for flight  ,    ; 

    jth alternative profile for flight  ,    ,     ; 

    initial costs of alternative vertical profile jth for flight  ,    ,     ; 

      [kg/min] fuel burn rate for flight   using jth vertical profile,    , 

    ; 

    0-1 decision variable; equals to 1 if flight   chooses alternative 

vertical profile j, and 0 otherwise,    ,     ; 

   decision variable representing (ground) delay of flight  ,    ; 

     maximum ground delay allowed; 

 set of possible ground delays; 

  
    actual departure time of flight  ,    ; 

  
    actual arrival time of flight  ,    ; 
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Decision variables. The decision variable for flight   can be represented by a 

triple (        ). To separate trajectories in temporal space, a departure delay 

     is associated to each flight  . Actual departure time of flight   is calculated 

as a sum of nominal departure time and assigned delay:   
      

      . The 

nominal departure time of flight   is respected when     . Spatial separation of 

trajectories is done by association of (     ) for each flight in order to control its 

3D trajectories. Vertical profile    is selected from the set of alternative vertical 

profiles for flight  . Vector    (  
     

 ) controls the shape of the horizontal 

route, and consist of M parameter   
  that controls multiple homotopy   . Based 

on vector    and set of symmetric homotopies respect to functions   , point of the 

horizontal route shape is given by (    ) where: 

     (    )  ∑
 |  

    ⁄ |  (  
    ⁄ )   

 ( )

∑ |  
 
   ⁄ |

 
   

 

   

 

Given horizontal route shape in rectangle [   ]  [    ] is then decoded by 

scaling, rotating and translating based on coordinates of origin and destination 

point. Alternative profile    is extended based on calculated extension of new 

horizontal route, and trajectory samples of newly generated profile are then 

matched with new horizontal route resulting in set of 4D point of new trajectory. 

Finally, time dimension of each 4D point is increased based on flight delay   . 

Actual arrival time of flight   is computed in route generation model. Based 

on computed value of actual arrival time, value of nominal arrival time and 

departure delay, airborne delay of a flight   is calculated as: [(  
      

   )    ]. 

Flight interaction between two flights       is computed as a sum of 

interaction between all “conflicting” points (intersection point and CPAs),     and 

   , of those flights. Interaction between conflicting points         is calculated as a 

function of time separation between them (        ), and exponentially increases 

with decrease of time separation. Given      , that is input parameter, and 

        , that is obtained by simulation as it depends on decision variables, 

interaction is expressed by following formula: 

        {
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Constraints. In practice, flow control deals with a time interval divided into 

a finite number of periods rather than with a continuous time variable. Therefore 

departure delay can be treated as discrete by dividing considered maximum 

allowed delay      into   periods of equal length   (        ). Then, the set of 

possible ground delays is:  {       ( - )        }. An important feature of the 

homotopy route generation model is that the shape and length of an alternative 

horizontal route are bounded by the reference functions. The only restriction is 

that the values of parameters controlling homotopy are between 0 and 1. Finally, 

the choice of vertical profile is limited to a pre-defined finite set of possible 

alternative profiles for each flight. Set      also contains an index of  the nominal 

vertical profile    for which initial costs equals to zero (      ).  

Objective function. The Robust Trajectory Planning problem is formulated 

as an assignment of a vertical profile   , a vector of parameters    that controls 

homotopy   (  ) and a delay    for each flight  , such that the objective function 

consisting of the total additional costs to network user and the total cost of flight 

interaction is minimized. The total flight interaction is calculated as the sum of 

flight interactions between all pairs of flights. Total additional costs to network 

users, due to deviation from UPTs, are calculated as sum of: 

 cost of alternative vertical profile – due to additional fuel burn and 

possible late arrival at destination. It is an input parameter for every 

given alternative profile, and equals zero when a nominal vertical profile 

is used, 

 cost of delay – due to late arrival at destination point, and 

 cost of fuel – due to a longer alternative horizontal route. It is calculated 

based on additional time that each flight spends in the air (the airborne 

delay). 

Then, the associated mathematical model is given as follows: 

   
(        )   F

∑ ∑        
  A   F

 ∑  
  (  

      
   )

  F

  

    ∑[(  
      

   )    ]  ∑          
  A   F

    ∑ ∑      
   F      F

 
(1)  

subject to constraints:  

∑               {   }              (2)  
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      (3)  

    
      {    }   (4)  

The first sum in the objective function (1) represents a total initial cost due 

to alternative vertical profiles. The second sum is the total delay cost due to late 

arrivals at destination. The third sum is the total cost of additional fuel burned due 

to a longer routes. Finally last sum represent total cost of flight interactions. 

The constraint (2) ensures that each flight can be only assigned to one 

vertical profile from its pre-defined set of profiles. The constraint (3) ensures that 

every flight delay takes a value from a given set of possible ground delays. Finally, 

the constraint (4) ensures that parameter controlling homotopy takes value 

between 0 and 1. 

2.8.  Complexity and Size of formulation 

It is shown in the literature of related problems (chapters 1.2.2 and 1.3.2) 

that RTP problem is NP_HARD. However the problem complexity will be briefly 

studied in the following paragraphs. The same nomenclature is considered. 

Let   
 , continious decision variable controlling homotopy i of flight f, be 

discretized and let   
  denote the set of possible values. The number of alternative 

horizontal routes R  for flight f is then: 

R  ∏|  
 |

M

   

 

   and    are previously defined as a set of possible slots of departure and 

a set of alternative route for flight f respectively, then number of possible 

trajectories for flight f is: 

   R  |  |  |  | 

where | |denote cardinality of the set. 

Then it is possible to express the number of decision variable combinations 

for all flights: 

|     |  ∏  

N
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If the number of trajectories is the same for every flight          , then 

the cardinality of the state domain becomes: 

|     |     

Moreover, those decision variables are not independent due to the 

connexion induced by flight interaction23, so decomposition methods cannot be 

applied [Delahaye and Odoni, 1997]. This formulation induces high combinatory 

in a huge space, and stochastic optimization has been used to solve it. Next 

chapter gives insight of optimization technique used in this thesis. 

                                                 

23
 Although flight interaction is not constrained, since it is constituted in the objective function flights cannot 

be treated separately. 
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3. OPTIMIZATION TECHNIQUE 

The problem defined in the chapter 2 is known to be NP_HARD problem 

with non-separable state variables as shown in chapter 2.8. In addition, the value 

of the objective function is obtained by simulation. To solve real instances of 

problem involving high combinatory in huge state space, one must use stochastic 

optimization techniques. Genetic and other evolutionary algorithms (EA), ant 

colony optimization, simulated annealing etc. are known to be able to provide 

good solutions for this type of problem. 

Having in mind that RTP is basically multi-objective problem, using 

evolutionary algorithms to solve such problem would be rational choice. However 

one point in the state space needs a lot of memory. This is due to representation of 

flight trajectory as a sequence of route points each containing time, position and 

velocities vectors. On average, each flight contains 500 points (2hr flight sampled 

every 15 seconds). If one consider full day European traffic with 30.000 flights it is 

easy to calculate that each point in state space require about 1Gb of memory. This 

limit possible population size to the point that EA are no longer efficient. Then, 

Simulated Annealing as local search metaheuristic approach (new solutions are 

generated by modifying the only existing solution with local move) has been 

selected to address this problem based on the fact it needs less memory (only 

current solution is kept in the memory). 

3.1. Simulated annealing 

Simulated annealing is a probabilistic method proposed by Kirkpatrick, 

Gelett and Vecchi in [Kirkpatrick et al., 1983] for finding the global minimum of a 

cost function that may possess several local minima. It is inspired by an annealing 

process in metallurgy. Solid is brought to a high energy state then it is slowly 

cooled-down so that eventually its structure is “frozen” when a minimum energy 

configuration is reached. In the optimization algorithm the objective function is 

equivalent to the energy of the physical system while control parameter T plays 

the role of the temperature. To escape local minima trap, optimization method is 

allowed to move to a worse solution with a given probability that decreases with 

parameter T. 



64 

 

The algorithm starts at random state    ( ) for which neighbor states  ( ) 

are generated. With probability    24 it select a neighbor    ( ). Once   is chosen, 

the next state  (   ) is determined as follows: 

 If  ( )   ( ) then  (   )   . 

 If  ( )   ( ) then: 

 (   )    with probability  ( ( )  ( )  ( ))25 

 (   )    otherwise. 

where   is objective function or energy of given state.  

At each step, the temperature parameter T is decreased according to a pre-

defined schedule and such process is repeated until termination criteria are 

satisfied (when minimum temperature or global minimum if known are reached, 

etc.). 

3.2. Application to our problem 

The simulated annealing algorithm is very sensitive to the choice of 

parameters and most of them are problem specific. There are, however, some 

general rules that have to be followed when designing experiments. Thus, initial 

temperature has to be high enough for the final solution to be independent of 

initial one. In the optimization model for RTP it is determined through a heating 

procedure where an arbitrary number of states are randomly generated and initial 

temperature is then selected so it allows moves between generated states with 

desired probability. Cooling is done with a geometric scheme for which  (   )  

   ( ). The cooling rate   is constant in the experiment and set to 0.99 (low 

cooling rate) allowing better exploration of the search space. The number of 

iterations at each temperature level (i.e. temperature length) is controlled by 

temperature and it is increased with drop of temperature (allowing intensification 

of the search as system comes to slid state). As the objective value of global 

optimum is not known, the minimum temperature level is chosen as stopping 

criterion and set to four-hundredth part of initial temperature (empirical value).  

                                                 

24
 In general algorithm each neighbor is chosen with equal probability (uniform distribution). However this 

probability might be controlled by heuristic method that is problem specific enabling better solution 

convergence and shorter computational time. 

25
 Acceptance probability function depends on energies of two states and on temperature. 
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Two different acceptance probability functions have been considered and 

tested. The first one is governed by the Metropolis probability [Metropolis et al., 

1953]:    
 
 ( )  ( )

 ( ) , where probability to accept worse solutions decrease with 

temperature. The second one is similar to Metropolis probability (the only one that 

have mathematical proof of convergence) but incorporate additional parameters 

that are controllable and specific to the problem:                      . Base 

probability takes temperature influence into account and decreases with 

temperature. The multiplier is a function of energy difference and decreases when 

the energy difference increases. The idea behind is to increase acceptance 

probability of higher energy states at the high temperature to be able to effectively 

search rugged terrains of the objective function. Figure 33 presents an acceptance 

probability as a function of energy difference for three different temperature 

levels: high, medium and low.  

 

Figure 33: Acceptance probability function 

Set of neighborhood states and new state from this set are generated using 

heuristic approach. Heuristic favors neighbor with a higher interaction level when 

selecting a next state. At each iteration neighborhood is selected from those 

governed by completely random rule (pure simulated annealing) or local search 

heuristic, based on probability that changes with temperature (earlier stage – more 

random and vice versa). 
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3.3. Flight interaction calculation 

Although the shape of flight trajectory represents a curve in 3D space, it is 

not possible to use standard curve intersection methods26 to calculate the 

interaction between two trajectories. First, because time dimension has to be taken 

into account (however there is a workaround for this issue), and second, two 

trajectories can interact even if they do not intersect.  

Classical approach implies that trajectory is expressed as an order list of 

samples (position vectors) in 4D space (Figure 34). Then, a pairwise comparison of 

aircraft position could be used. However, this rough approach is time consuming 

and not suitable for a problem that involves a large number of trajectory samples. 

Calculation of the total interaction requires checking of all pairs of trajectories (  ) 

and therefore exponentially increasing with the number of trajectories ( ).   

 

Figure 34: Classical trajectory representation [Delahaye et al., 2013] 

In order to use position vector comparison on the large scale, a grid-based 

scheme is used [Chaimatanan et al., 2013]. First, the airspace is discretized using a 

four dimension grid as illustrated in Figure 35. Each cell in the grid has a unique 

location (address). Every position vector is associated with the address of the cell 

in the grid it belongs to. Now it is possible to calculate the interaction of a single 

trajectory position with the rest of the world only by checking grid cell that it 

belongs to and surrounding cells. If they are occupied by different trajectories, 

precise comparisons between pairs of aircraft position need to be performed. This 

is a very efficient method to compute the total interaction as its computational 

time depends linearly on the number of trajectories. 

                                                 

26
 Methods that address the problem of computing the points at which two curves intersect. Predominant 

approaches are [Sederberg, 2009]: Bézier subdivision, interval subdivision, Bézier clipping. 
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Figure 35: Four dimension space-time grid [Chaimatanan et al., 2013] 

  Using described grid-based scheme it is possible to identify all flight 

points that are separated less than given norms in space and time (e.g. 5 NM 

horizontally, 1000ft vertically and 10 minutes temporal) called “conflicting” 

points. Based on identified “conflicting” points, the total flight interactions could 

be measured using different metrics. 
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4. RESULTS AND DISCUSSION 

Method and model developed in previous chapters are first tested on a 

small hypothetical example, illustrating the basic idea of robust trajectory 

planning providing some valuable initial insights for the algorithm. The model 

will be then applied to a large scale real-life example. 

4.1. General model settings and input data 

In addition to traffic data (flight plans) and specific flight data (operating an 

aircraft, priorities, etc.) given by the airline that differ from examples and 

scenarios, there are other general data necessary to make run the model. General 

model settings such as: reference function of symmetric homotopies that are used 

in these examples and methodology for flight interaction calculation are presented 

here. 

4.1.1. Fuel Burn Rate 

Fuel Burn Rate (FBR) represents aircraft fuel consumption [kg] per time 

unit [min] in the cruise phase of flight. Although it depends on many factors such 

as engine type and model, number of engines, actual aircraft weight, speed and 

flight level, meteorological conditions, etc. it is not relevant to include them all in 

the model as this would increase its complexity, furthermore most of them are 

unknown at strategic level. In order to simplify the use of FBR, the following 

assumptions are made: 

 meteorology is completely disregarded and ISA atmospheric conditions 

are used, 

 wind effects are not taken into account, 

 aircraft of the same type are considered unique concerning power plants, 

 nominal aircraft weight27 and nominal speed28 are used. 

                                                 

27
 BADA defined reference mass is roughly 70% of the way between the minimum (OEW) and maximum 

(MTOW) mass while corresponding to one of the mass values that are available in the reference trajectory 

data. [Eurocontrol, 2009b] 

28
 the most preferable speed for given flight level 
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Finally, FBR is given by a matrix which depends on aircraft type and flight 

level (Figure 36). FBR data were extracted from EUROCONTROL’s Advanced 

Emission Model – AEM that are based on BADA (Base of Aircraft Data) datasets.  

 

Figure 36: Aircraft Fuel Burn Rates 

4.1.2. Flight cost category 

Cost category is assigned to each flight based on aircraft type. There are 

four aircraft categories considered: Low, Medium, High and Jumbo, with respect 

to operating costs. All operating costs: fleet, crew, maintenance, except fuel costs 

are considered. Although the two sometimes match, the above categorization is 

not directly related to ICAO Wake-turbulence categorization. The resulting cost 

category is later used to determine flight delay cost using unit cost29 for particular 

categories.  

Aircraft categorization is based on a study done by the Department of 

Transport Studies, University of Westminster in 2004 and updated in 2010 

[Westminster, 2011] for PRU30, EUROCONTROL. The study considers cost 

estimate for twelve core aircraft: B733, B734, B735, B738, B752, A319, A320, A321, 

AT43, AT72, B744 and B763. These aircrafts were grouped into four cost 

categories. As RTP model contains wider aircraft database, aircraft not included in 

the study were given category based on similarity in weight, engines and number 

of passengers with identified (categorized) aircraft. 

4.1.3. Homotopy functions 

In chapter 2.4 basic criteria for reference functions was defined and route 

generation model and its mathematical formulation were presented. It has been 

studied that trigonometric and power functions best fit criteria for reference 

functions: both are continuous and single-valued functions defined for all real 

                                                 

29
 specific to each scenario 

30
 Performance Review Unit 

 

FL 

AC_TYPE 
30 40 60 80 100 120 140 160 180 200 220 240 260 280 290 310 330 350 370 390 410 430 450 

A320 29.8 29.9 33.9 34 34.2 34.4 47.1 47.3 47.5 47.7 47.8 48 48.2 47.9 46.5 43.7 41.4 39.3 37.7 36.5 - - - 

…
                        

AT45 7.4 7.5 12 12.1 10.3 10.4 10.5 10.6 10.7 10.3 9.7 9.2 8.9 - - - - - - - - - - 

…
                        

B744 122.9 123.3 128.6 129.5 130.3 131.2 183.3 184.1 184.8 185.6 186.3 187 187.6 184.1 179.4 170.9 163.7 158 153.8 151.3 150.2 150.5 152.2 
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numbers and belongs to a higher order differentiability class. In addition, 

trigonometric functions (sine function is used) are smooth function (they belong to 

differentiability class   ); the range of the function is always [    ]make it very 

easy to implementation in the model. Based on those remarks, three pairs of 

symmetric reference functions have been selected (Figure 37,  1,0x ).  

   

  xxf I sin
 

  xxf II 2sin
 

  xxf III 2sin2
 

Figure 37: Boundary curves 

Each homotopy is controlled by independent parameter   (Figure 38). 

Weighted average of all homotopies gives resulting function – horizontal route 

(weighted line on Figure 39). 

   

Figure 38: One possible homotopy 

 

Figure 39: Resulting horizontal route 

Such route generation model offers a lot of freedom and flexibility in the 

choice of the route with a reasonable increase of problem complexity. 

Nevertheless, it is possible to reduce or increase the number of parameters, or to 

choose different reference functions. 

1 = 0.65 2 = 0.60 3 = 0.52
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4.1.4. Flight interaction calculation 

In the context of the following examples, flight interaction is calculated as a 

function of time separation. Interaction is computed for every pair of “conflicting” 

points identified using grid-based scheme described in chapter 3.3. (point that are 

separated in 3D less than given norms). There is no interaction between 

“conflicting” points if their time separation is larger than a given maximum 

separation       and the interaction exponentially increases with decrease of time 

separation. The following function expresses the magnitude of interaction: 

       
 {

 
        

            
      

          
      

 

             

                

Parameter   controls steepness of the exponential function (penalization of 

larger interaction) and       bounds flight interaction. Both parameters might 

vary depending on the scenario.  

According to the definition, there could be multiple conflicting points 

between two flights and all are taken into account. This is reasonable to take into 

account as flight paths are curves that could intersect multiple times or be closely 

parallel. A number of conflicting points quantifies interactions between those two 

flights. 

Total flight interaction depends on both magnitude and quantity of 

interaction between flight points. 

4.2. An academic test example 

In order to demonstrate the proposed RTP model, a simplistic academic test 

example was constructed. This model is solved using an exact optimization 

method (total enumeration search) which requires discretization of continuous 

search space. Due to high combinatoric, the model used in the hypothetical 

example is simplified from the one detailed in the chapter 2.7. The following are 

the main differences between the models: 

 no flight level change i.e. the model is tested in 2 space (horizontal 

flight); 
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 high decision variable discretization steps (delay step to 2 minutes, 

homotopy coefficient to 0.1); 

 one symmetric homotopy in the route generation model – as the result, a 

set of possible trajectories is strongly reduced thus reducing model 

application only to the academic test example not real world problems; 

 linear cost function. 

4.2.1. Traffic data – Demand 

Although simplified, model CPU running time still represents a limiting 

factor of the problem size. Therefore, test problem considers one air traffic control 

sector with four flights (Figure 40).  

 

Figure 40: Academic test example 

It is assumed that all flights have equal departure time, flight speed (450kts) 

and altitude level (FL350). Aircraft are initially located (departure point) on a 

circle of radius 150NM converging towards the circle center and flying to the 

diametrically opposed point (destination point). Length of preferable (initial) flight 

routes is 300NM. 

Although hardly ever expected, such challenging situation with high 

interaction between all flights is often seen in literature to test the capabilities of a 

model [Durand et al., 1996], [Dougui et al., 2013], [Delahaye et al., 2010], [Roussos 

et al., 2008]. This problem is known as a roundabout test problem because solution 

to this problem results in a roundabout like pattern on a circle center. To illustrate, 

space solution of the RTP model for eight flights test example is shown on Figure 

41.  
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Figure 41: Roundabout test problem 

Elementary time period of 15 seconds is assumed. Each flight is represented 

as a sequence of “route points” sampled every 15 seconds from origin to 

destination. Each point contains information about flight attributes including 4D 

coordinates (latitude, longitude, FL and time) of a point, current speeds, flight 

status (climb, descent or cruise) and flight intentions. Two successive points define 

flight segment as a direct portion of flight. 

4.2.2. Test scenarios and numerical results of academic test example 

This section presents numerical results and discussion of several scenarios. 

Scenarios are carefully designed to illustrate insight model behavior depending on 

delay, fuel and interaction unit cost, aircraft type that operates certain flights, etc. 

4.2.2.1. Base scenario 

In the base scenario all flights are operated by aircraft of the same type 

(A320).       is set to 10 minutes. Delay unit cost of 30 EUR/min for the aircraft of 

“medium” cost category is assumed and total arrival delay at destination point is 

calculated. Fuel cost of 0.6 EUR/kg is assumed. For base scenario, a very high 

interaction unit cost of 500 EUR/unit is chosen resulting in no interaction and 

maximum robustness of the solution. It is important to note, although flight 

interaction is not constrained, for this specific example with lots of ‘free’ space for 

flight rerouting and due to high interaction unit cost it is cheaper to modify flight’s 

trajectory (change route and departure time) than have interaction between flights. 
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However, the value of interaction unit cost that gives no interaction will be 

different for different traffic demand.  

The results of model optimization for base scenario are given in Table 1. 

Table shows ground delay, alternative horizontal route extension compared to 

nominal one, total delay and total cost of actions applied for every flight. Since 

there were no interaction between flights, value of the objective function equals to 

the total cost of actions (EUR 1,100) taken to resolve initial flight interactions. A 

reference initial value of objective function, when all flights take nominal direct 

routes, is evaluated to EUR 167,000. This is due to high flight interaction and high 

flight interaction unit cost and does not represent real costs to airspace users.  

Table 1: Base scenario results 

 

Ground 

delay 

[min] 

Route extension 
Total delay 

[min] 

Total cost of actions 

[EUR] [NM] [% of route length] 

Flight 1 10 1.84 0.61 10.25 313.39 

Flight 2 1 16.02 5.34 3.25 150.56 

Flight 3 10 41.95 13.98 15.75 608.08 

Flight 4 0 7.27 2.42 1.00 53.58 
      

Total 21 67.08 - 30.25 1125.61 

Average 5.25 16.77 5.59 7.56 281.40 

 

Table 1 and Figure 42 represent one possible solution of the problem, 

although due to the symmetry of the problem and linear cost function several 

optimal solutions exist. 

 

Figure 42: Base scenario - optimized trajectory in 2D 
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Another consequence of linear cost function is that some flights are 

penalized more than another. Flight 3 alone bears more than half of the total cost 

of actions applied to all flights. A more even distribution of cost among flights 

could be achieved using nonlinear cost function.  

4.2.2.2. Low interaction cost scenarios 

Solution of base scenario represents only one Pareto optimum of this multi-

objective problem. Change in weight coefficients of individual objective functions 

will possibly result in a different Pareto optimal solution. Since interaction cost is 

very hard to perceive and not possible to measure, providing decision makers 

with a set of different solutions rather than one solution is very encouraging. 

Therefore several optimizations of model are performed varying  interaction unit 

cost. Except value of interaction unit cost, other parameters are not changed 

compared to base scenario.  

Table 2 shows optimal solution for all considered values of interaction unit 

cost. Every solution is represented by remaining flight interactions and associated 

costs; total delay, route extension and total costs of actions taken to resolve initial 

interaction problem. Last column represent value of the objective function for the 

solution and it is the sum of total cost of interaction and actions. Interaction is 

calculated as the number of “conflicting” pair of flight points divided into five 

interaction categories: (0-2], (2-4], (4-6], (6-8], (8-10) minutes of time separation. 

Table 2: Low interaction cost scenario results 

S
ce

n
ar

io
 

Interaction 

unit cost 

Pareto optimum 

Interaction 
Total cost of 

interaction 
Delay 

[min] 

Route 

ext. 

[NM] 

Total cost 

of actions 

Objective 

function 
0-2 2-4 4-6 6-8 8-10 Real Indicat. 

1 50 0 0 0 0 0 0.00 0 18 81.26 1142.77 1142.77 

2 40 0 0 0 0 0 0.00 0 18 81.26 1142.77 1142.77 

3 30 0 0 0 0 10 81.2 130 20 61.59 1055.43 1136.63 

4 20 0 0 0 0 21 113.69 273 20 52.84 988.45 1102.14 

5 10 0 0 12 28 29 314.05 1437 10 38.66 581.30 895.35 

6 5 0 0 37 23 14 206.39 2057 10 26.97 500.92 707.31 

7 4 0 10 27 54 32 259.02 3213 7 21.54 400.74 659.76 

8 3 0 34 21 36 34 245.89 4085 8 12.79 333.76 579.65 

9 2 11 102 14 15 8 329.78 8274 0 18.22 133.95 463.73 

10 1 69 52 28 2 23 175.22 11451 0 7.36 107.16 282.38 

11 0.5 125 21 23 3 0 146.87 14698 0 1.84 13.39 160.26 

12 0.25 167 0 0 0 0 83.50 16700 0 0.00 0.00 83.50 

13 0.1 167 0 0 0 0 33.40 16700 0 0.00 0.00 33.40 



76 

 

As expected, high interaction unit cost results in no or little total interaction 

while interaction increases with decrease in unit cost. Although total flight 

interaction is increasing (see number of conflicting point in the table), the cost of 

total interaction does not, since unit cost is decreasing in parallel. To compare 

different scenarios and help in perceiving interaction level of given scenario, 

indicative value of total interaction is shown in the table, in addition to its real 

value. Indicative value of total interaction cost is calculated using unique unit cost 

for all scenarios no matter what real unit cost is used in optimization. Contrary, 

total cost of actions, taken to resolve flight interaction, decrease with the decrease 

in interaction unit cost. 

Figure 43 shows Pareto frontier of possible solutions of considered 

academic test example. Each point in the graph represents a single scenario from 

Table 2. Choice of “best” solution is left to decision maker based on information 

provided. From the figure, it is possible to conclude what is the minimal price 

needed to be paid if maximum robustness (minimum interaction) is required, 

what is the lower limit of action cost needed to be applied for desired robustness, 

as well as trade-off between solution robustness and its costs. 

 

Figure 43: Pareto frontier 

From the Figure 43, one can note that Pareto front is very steep for high 

values of solution robustness (left part of the graph). This implies that the total 

cost of actions is decreasing far faster than solution robustness, and it is possible to 

drastically reduce costs of the solution slightly sacrificing solution robustness. 

Scenario 5 that is emphasized in Table 2 and marked at the Figure 43 is a good 
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candidate for “best” solution. In this scenario, at the expense of the small 

interaction increase, it is possible to reduce cost of the solution by half. All flights 

in this scenario are separated more than 5 minutes, thus not significantly affecting 

the solution robustness. 

Table 3 shows resulting solution for scenario 5. Total delay at the 

destination airport (including ground and airborne delay) of all flights is 15.25 

minutes in scenario 5 compared to base scenario that was 30.25 minutes (Table 1) 

giving 50% reduction. There is less but still significant decrease in route extension 

(38.66 NM compared to 67.08 NM).  

Table 3: Low interaction cost – Scenario 5 results 

 

Ground 

delay 

[min] 

Route extension 
Total delay 

[min] 

Total cost of actions 

[EUR] [NM] [% of route length] 

Flight 1 0 27.71 9.24 3.75 200.94 

Flight 2 0 7.27 2.42 1.00 53.58 

Flight 3 0 1.84 0.61 0.25 13.39 

Flight 4 10 1.84 0.61 10.25 313.39 
      

Total 10 38.66 - 15.25 581.30 

Average 2.5 9.66 3.22 3.81 145.32 

 

Information of total flight interaction in the Table 2 is given by a single aggregated 

indicator for all flights (total interaction cost). This value is used as an objective in 

the optimization. However, more detailed representation using a number of 

conflicting points per interaction category is easier perceived by humans, even if it 

is sometimes not sufficient to judge how robust some solutions are. Additional 

information such as: minimal time separation, geographical distribution of 

interactions, number of interaction zones and involved flights, etc. may help 

perceiving the whole picture.  

Figure 44 shows resulting solution of scenario 5. Interaction categories in 

the figure are graduated by line color and thickness. Red thick line depicts 

interaction category of (4-6] minutes separation, while lighter colors represent 

larger time separations. It is noticeable that most interactions involve flight 2 in 

combination with other flights. This gives very high solution robustness, since the 

most of the disturbances on the day of operation will mainly affect flight number 2 

and small tactical actions on the very same flight could solve potential problems. 
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Figure 44: Scenario 5 - optimized trajectory in 2D 

4.2.2.3. Constrained interaction scenarios 

This scenario represents another way to control tradeoff between solution 

cost and robustness. It considers changes of interaction limit, parameter      , 

that controls the minimum time separation between two route points such that 

there is no interaction between them. The lower       means lower time 

separation, resulting in a less robust solution in general. Opposite to previous 

scenarios, flight interaction is constrained to ensure that a given minimum time 

separation is maintained for all flights. This helps decision makers to perceive the 

level of robustness of each solution and to choose one that best suit the current 

situation. 

Table 4 shows optimum solutions of the problem for different values of 

     . Scenario 0 is equivalent to Base scenario as the same value of       is 

considered. When       is decreasing the total interaction of all flight taking 

nominal trajectories is decreasing too, that requires less action to solve interaction 

problem. Hence, the total delay at destination airport, as well as the total cost of 

actions, is decreasing with      . So, the largest robustness is given for scenario 0 

when maximum value of       is considered, resulting in the highest cost of the 

solution. On the other hand, scenario 10 gives no robustness but require no 

additional costs either.  
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Table 4: Constrained interaction scenario results 

Scen. 
      

[min] 

Pareto optimum 

Ground 

delay 

[min] 

Route extension 
Total delay 

[min] 

Total cost of 

actions [EUR] [NM] [% of route length] 

0 10 18 81.26 6.77 29.25 1142.77 

1 9 18 52.84 4.41 25.25 928.45 

2 8 18 33.88 2.82 22.75 794.51 

3 7 12 45.25 3.52 17.75 668.08 

4 6 8 45.63 3.80 14.25 574.87 

5 5 6 34.98 2.92 10.75 434.50 

6 4 6 23.29 1.94 9.25 354.13 

7 3 4 17.86 1.49 6.50 253.95 

8 2 0 23.65 1.97 3.25 174.13 

9 1 0 7.36 0.61 1.00 53.58 

10 0 0 0.00 0.00 0.00 0.00 

 

Results of scenarios are presented in the Figure 45. Horizontal axis denotes 

solution robustness with the given value of      . Vertical axis denotes solution 

costs. Each point in the graph represents one scenario. In the Figure 45 we see an 

almost linear relation between solution cost and robustness for this particular 

example. Although it is not by the nature, the graph may be interpreted as a 

Pareto frontier showing minimum cost of action for a certain level of required 

solution robustness.  

 

Figure 45: Set of solutions depending on required robustness 
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4.2.2.4. Different aircraft type scenario 

Here, we compare solutions of two scenarios: first where all flights are 

operated by aircraft of the same type (A320 as in the case of base scenario) and 

second where one flight (Flight 1 in the example) is operated by larger (jumbo-jet) 

aircraft Boeing 747-400 and all others use a base aircraft A320. Boeing 747-400 

belongs to “jumbo” flight cost category with delay unit cost assumed to be 80 

EUR/min. According to BADA (BADA code B744), FBR equals 158 kg/min. In 

comparison, delay unit cost of the A320 is assumed to be 30 EUR/min (“medium” 

cost category) and FBR is 39.3 kg/min.       is set to 9 minutes, meaning that 

separation of 9 minutes between intersecting point of two flight is needed such 

that there is no interaction between them. The interaction unit cost is again set to 

high value (500 EUR/unit) resulting in no interaction between flights after 

optimization.  

In the discussion of base scenario it was concluded that, due to the use of 

linear cost function, actions applied and their costs are not evenly distributed 

across all flights. This implies that some flights are penalized more than others. 

When using different unit cost, one can expect that this difference will become 

even larger.  

Table 5 shows the results of these scenarios: Table 5a with all same aircraft, 

and Table 5b where flight number 1 is operated with B744. The first thing to note 

is that the total cost of actions taken to resolve the interaction problem is larger in 

the second scenario. This is expected, even if same actions are taken in both 

scenarios, because of the change in unit costs of one flight in the second scenario. 

Table 5: Different aircraft type scenario results 

 

Ground 

delay 

[min] 

Route 

extension 

[NM] 

Total 

delay 

[min] 

Total 

cost of 

actions 

[EUR] 

Flight 1 0 16.02 2.25 120.55 

Flight 2 8 1.84 8.25 253.39 

Flight 3 0 7.27 1.00 53.58 

Flight 4 10 27.71 13.75 500.92 
     

Total 18 52.84 25.25 928.45 

Average 4.5 13.21 6.31 232.11 
 

 

Ground 

delay 

[min] 

Route 

extension 

[NM] 

Total 

delay 

[min] 

Total 

cost of 

actions 

[EUR] 

Flight 1 0 1.84 0.25 43.70 

Flight 2 8 1.84 8.25 253.39 

Flight 3 0 27.71 3.75 200.92 

Flight 4 10 27.71 13.75 500.92 
     

Total 18 59.10 26.00 998.94 

Average 4.5 14.77 6.50 249.73 
 

a) same aircrafts A320 b) flight 1 – B744, others A320 
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More important is the fact that actions taken to resolve interaction are also 

changed. This is influenced by higher unit cost of the flight 1 in scenario 2 

resulting in less action applied to that flight. Flight 1 in scenario 2 receives only 

small rerouting resulting in 1.84 NM route extension and 0.25 minute delay at the 

destination, compared to flight 3 in scenario 1 (flight that received the minimum 

actions) that has 7.27 NM route extension and 1 minute of ground delay. 

Reduction of actions applied to flight 1 in scenario 2 is at the expense of other 

flights. Therefore we have seen an increase in total route extension and total delay 

of all flights in scenario 2. Total route extension is 59.10 NM and total delay is 26 

minutes in scenario 2 compared to 52.84 NM and 25.25 minutes respectively in 

scenario 1.  

4.3. Real-world test example – French airspace 

Having illustrated basic idea of the proposed model for small hypothetical 

example, the next step is to test the model on large scale problem to see its 

capabilities. 

4.3.1. Experimental setup 

4.3.1.1. Traffic sample 

Traffic data included traffic in French Metropolitan airspace, more precisely 

flights that originate and/or are destined from/to an airport in French airspace and 

flights that overfly French airspace. August is chosen as one of the busiest months 

in the year and specific date (17.08.2008) has been chosen based on flight data 

availability. On given date there were 8845 flights in French airspace. To make the 

problem size manageable but still realistic three hour period (9h – 12h) from 

morning peak are selected. Traffic sample has 1755 flights in the French airspace of 

which: 172 (about 10%) were domestic flights, 700 (about 40%) were international 

flights (having either departure or arrival at French airports) while 883 or about 

50% of all flights were overflights. Departures and arrivals from/to French airports 

amount to approximately 500 each, of which Paris Charles de Gaulle (LFPG) had 

the biggest share (in total about 300 operations). Flights were operated by 50 

different aircraft types. Distribution of flight cost categories based on aircraft type 

is shown on Figure 46.  
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Figure 46: Distribution of flight cost categories 

Departure time (or the time when flight enters French airspace), departure 

and arrival points for each flight are extracted from real traffic data after flights 

were simulated using direct flight routes. Initial direct flight routes are shown on 

Figure 47. 

 

Figure 47: Input traffic data – French airspace 

4.3.1.2. Traffic data source and format 

Data were obtained from the ENAC Traffic Simulator (CATS). The core of 

the CATS system is an en-route traffic simulation engine that uses a tabulated 

model of aircraft based on the BADA Eurocontrol performance model. Beside, 

CATS contains lots of different modules including conflict detection and 

resolution modules. It is lightweight and well suited for fast-time simulations as it 

takes only 15-30 minutes to simulate one day of European traffic [Alliot et al., 

1997]. As an input it can use data from the French CAUTRA system, the CFMU 

European database (DDR) and many others. 
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The flight data were provided in “.cats” file format (Figure 48). As CATS is 

discrete model, each flight is represented as a sequence of “route points” sampled 

every 15 seconds from origin to destination. Each point contains the 4D position 

and velocities of aircraft with aircraft intention. Two successive points define flight 

segment as a direct portion of flight. 

Mini flight plan 

Number of point 

$ 1000 27:20:00 28:26:15 330 458 BIE2504 A321 LFPG GCFV 1000 

NbPlots:  266 

Flight points 

27:20:00 -650  176169 -134 -329  125  2491  1 

27:20:15 -686  176087 -135 -332  132  2445  1 

27:20:30 -723  176005 -136 -335  138  2399  1 

Figure 48: CATS file format 

Flight coordinates are given in Lambert conformal conic projection usually 

used for aeronautical charts because a straight line approximates an orthodrome 

(great-circle route). 

4.3.1.3. Solution space 

Each flight is attached five vertical profiles corresponding to different flight 

levels. One nominal profile for nominal flight level and four alternative profiles: 

two at lower and two at higher flight level. For given flight levels flight is re-

simulated and optimal vertical profiles are kept as inputs. Figure 49 shows five 

vertical profiles for one flight. Each profile has unique Top of climb (TOC), Top of 

descend (TOD) and different time of arrival to destination point that is same in all 

cases. The last is due to fact that climb and descent performance are respected and 

taken into account.  

 

Figure 49: Alternative vertical profiles for one flight 
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Although every alternative profile is optimal from the aircraft performance 

point of view (respect climbing and descending rates), only one profile can be 

optimal for specific origin-destination pair and given speed. Therefore other 

profiles incur additional cost to the aircraft operator. For each of the available 

alternative routes the cost was calculated as a sum of additional operating cost and 

additional fuel cost. Having in mind that aircraft operating cost is approximately a 

linear function of flight duration, for a given aircraft type [Swan and Adler, 2006], 

additional operating cost is computed by multiplying the additional flight 

duration (compared to flight length using the nominal profile) by the unit 

operating cost33 for the considered aircraft type. Additional fuel cost includes cost 

of additional fuel burned due to use of different flight level. Fuel burns rates were 

extracted from EUROCONTROL’s Advanced Emission Model – AEM that are 

based on BADA (Base of Aircraft Data) datasets as explained in chapter 4.1.1. 

Although both additional operating and fuel cost can be negative (not at the same 

time), the additional cost of the alternative route is always positive as it is assumed 

(and chosen in that manner) that nominal profile corresponds to the optimal flight 

level for that specific flight. The calculated initial cost of an alternative profile is 

stored as an input parameter attached to each profile. 

The horizontal route design is based on route generation model controlled 

by homotopy as explained in chapter 2.4 and using three symmetric homotopy 

functions respect to reference functions that are set in chapter 4.1.3. For this 

particular example maximum horizontal route offset from direct route is limited to 

20 percent of direct route length. Ground delay is set to maximum 30 minutes. 

4.3.1.4. Interaction parameters settings 

Due to the size of the problem, flight interaction is bounded to 3 minutes 

(     ), meaning that flights separated more than 3 minutes in time will not be in 

the interaction even if their 3D routes (not taking time into account) are not 

spatially separated. Flight interaction is calculated for the en-route phase only. 

Route points above 10.000ft or FL100 are considered to belong to en-route phase. 

This assumption is imposed for several reasons. First, as mentioned by [SESAR, 

2013], deregulation will only consider en-route part of the airspace while traffic 

will remain structured in the vicinity of airports (terminal areas – TMA’s). Second, 

                                                 

33
 Unit costs are taken from [Eurocontrol, 2012b] that are based on ICAO Base-line Aircraft Operating Costs 
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since all arriving flights for a single airport join at that airport runway or metering 

point and all departing flights disperse from it, reserving       e.g. 3 minutes for 

each flight is operationally unfeasible neither preferred as it will significantly 

reduce airport throughput. Third, taking into account that departure and arrival 

points are static and given as input for all flights, spatial solution of the interaction 

problem by horizontal route and/or vertical profile change is only effective in en-

route phase. Consequently interaction at departure airport and arrival airport 

and/or point (airborne fix) may only be resolved in time. Situation at departure 

airport is further restricted as interaction can be alleviated by controlling 

departure slot only, while there is no means to resolve interaction at departure 

point without collaboration with neighbor control centers.  

 

Figure 50: Flight interaction for initial (nominal) routes  

All “conflicting” points are further divided into six interaction categories 

depending on time separation (width of interaction equals to half minutes). In 

Figure 50 flight interaction categories are depicted using different colors grading 

from dark-red for highest interaction value to yellow for lowest interaction. Blue 

color represents part of the flight where no interaction with other flights is 

experienced.  

RTP is formulated as an unconstrained optimization problem since the 

static penalty method is used to control the interaction of the solution. If penalties 

are large enough, then the global minimum to the unconstrained problem is the 

solution to the original problem with constrained interaction. The use of large 

penalties, however, leads to rugged search terrains and deep local minima, 

making it difficult for global-search methods to escape from it [Bertsekas, 1982]. 
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Although RTP does not intend to constrain interaction but rather to find the best 

tradeoff between solution robustness and costs, selecting a suitable penalty 

imposes the same difficulties. A nonlinear interaction cost function is used as 

explained in chapter 4.1.4. Parameter   controlling steepness of the exponential 

function is set to 0.9 far penalizing high interaction classes. The interaction unit 

cost is set to 1.000 EUR/unit. This value is experimentally chosen. If higher unit 

cost is selected one might expect greater robustness of the solution and higher 

operational cost of the solution. Using given parameters, nominal routes results in 

EUR 92.66 million of total initial interaction. This is just value of the objective 

function and it is not relate to the real cost of airspace users. 

4.3.1.5. TMA modelling 

As explained, traffic remains structured in the TMAs and controllers will 

remain responsible for aircraft separation. Each controller can safely manage a 

limited number of flights and traffic in TMA should remain lower than TMA 

capacity at all time. In the RTP TMA is modelled as airspace with a given radius 

around the airport up to FL100 (Figure 51). Capacity of TMA is defined as the 

maximum number of flights that can simultaneously be in TMA in one hour. 

Although it is similar to the general definition of airspace capacity, the capacity of 

TMA in RTP takes into account airport runway system capacity.  

 

Figure 51: TMA airspace 

Capacity constraints are modeled through capacity violation costs, similar 

to approach for controlling flight interactions, and a static penalty is assigned to 

each violation of TMA’s capacity. 

For illustrative purpose, only one TMA is considered in this example, 

namely Paris TMA. It is centered on Paris Charles de Gaulle (LFPG) airport with 

20NM in radius. TMA’s hourly capacity is considered constant over time and set 

to 110 flights. Capacity violation unit cost is set to EUR 10.000. Very high unit cost 

is chosen in order to constrain TMA capacity violations. 

ap R 

FL100 
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Figure 52 presents the initial demand for a Paris TMA when all flights use 

nominal routes. There is one period when traffic demand exceeds TMA capacity, 

and another one that is close to capacity level. This capacity violation accounts for 

an additional EUR 10.000 in costs. Objective function of initial (nominal) routes 

equals to EUR 92.67 million and it is the sum of total initial interaction and total 

capacity violation costs as no additional costs are experienced when nominal 

routes are used. 

 

Figure 52: Initial traffic demand at Paris TMA 

4.3.1.6. Scenarios settings 

In this work two main scenarios are defined and tested on the given traffic 

over French airspace. First, the base scenario was tested for finding a robust 

solution as a balance between solution interaction and additional flight costs. 

Following unit costs are used in addition to unit cost of interaction and capacity 

violation that are set previously. Delay unit costs of light, medium, heavy and 

jumbo aircraft are assumed to be 15, 30, 60 and 80 EUR/min respectively; and fuel 

cost is set to 0.6 EUR/kg34.  

Then, one additional scenario is designed in order to evaluate robustness of 

the solution. Second scenario aims to find conflict-free solution not taking into 

account solution robustness i.e. interaction boundary is set to zero meaning that it 

is sufficient that flight are separated in space or in time. 

                                                 

34
 This value is taken as long term average price. Data are collected from IATA jet fuel price monitor 

(http://www.iata.org/publications/economics/fuel-monitor/) that is sourced by leading energy information 

provider Platts. 

http://www.iata.org/publications/economics/fuel-monitor/
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4.3.2. Experimental results 

4.3.2.1. Conflict-free scenario 

Considering the conflicts only, the general problem is relaxed and solution 

to the problem is easier to find. The initial number of conflicting points between 

nominal flight trajectories using direct routes was 18.268. In addition there was 

one capacity violation in the Paris TMA, resulting in total initial cost of EUR 18,278 

million. 

The algorithm was able to find conflict-free solution and the best found 

solution had the value of the objective function equal to EUR 29.984. The best 

solution found without conflicts is presented in Figure 53. This solution resulted in 

no capacity violation in the Paris TMA as shown in Figure 54.  

 

Figure 53: Conflict-free trajectories 

 

Figure 54: Traffic demand at Paris TMA for 

conflict-free trajectories 

In the proposed solution 45% of all flights were modified. Most of the 

flights had their horizontal route changed (40%), about 15% received ground 

delays and around 35 flights or 2% are required to change their nominal flight 

level. The total route length extension was 0.25% with an average of 0.58% per 

modified flight. This results in 250 minutes of total en-route delay caused by flight 

rerouting. As a reference, today best value of annual flight inefficiency achieved 

was around 3.5% as shown in chapter 1.1. The total ground delay was 342 minutes 

with maximum ground delay of 22 minutes and average of 1.4 minutes per 

delayed flight. In addition some flights received a change of the flight level. 

Average flight level change received was 1.19 per affected flight meaning that the 
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majority of flights changed their nominal flight level by one level (±1 FL) and only 

few received change of ±2 FL (that was maximum level change possible). 

Total additional operating costs were EUR 29.984, giving an average of EUR 

17 per flight. Most flights (1051) had not been modified and their initial nominal 

trajectories remained unchanged. Other flights received additional costs ranging 

up to EUR 680 with an average of EUR 41.5. Distribution of additional operating 

costs is shown on Figure 55. 90% of flights are in the range of ±50 EUR from the 

average cost. One might say that the rest 10% of flights are penalized as they 

receives an unfair portion of costs compared to other flights. 

 

Figure 55: Distribution of flight additional operating costs – Conflict-free scenario 

For this scenario the best solution of the problem is obtained in 18 hours of 

CPU time on the Intel Pentium Dual-Core 2.9GHz with 4Gb of RAM. As the 

number of iterations at each next step is increased, for better local search 

performance, the solution is slowly converging as shown at Figure 56. The 

solution with objective value in the range of 10% of the objective of the best known 

solution was found in less than 200 steps in 7 hours of CPU time. For the reference, 

if flight operating costs are excluded from the objective, and only number of 

conflict is counted, conflict-free solution is found in less than half of minute. 
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Figure 56: Objective function convergence – Conflict-free scenario 

4.3.2.2. Base scenario 

In the search for the best robust solution, optimization algorithm was able 

to reduce the value of the objective function starting from initial 92.67 to 0.19 

million of EUR. Not all flight interactions are solved meaning that some flight 

which are not separated in space37 were separated with less than 3 minutes (value 

of      ). Remaining interactions result in EUR 4 thousand of costs in the 

objective value. Those “conflicting” points are located near Paris TMA where the 

densest traffic was experienced (marked in Figure 57) and include interaction 

between 20 flights in two locations. However, all except few flight points were 

separated more than 2 minutes. Change of unit costs will possibly result in 

different balance between cost of interaction and flight operational cost, and it is a 

way to adjust required solution robustness. 

                                                 

37
 Separation minima are set to 5nm horizontal and 1000ft vertical distance as explained in 0.  
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Figure 57: Robust flight trajectories 

 

Figure 58: Traffic demand at Paris TMA after 

optimization 

No capacity violations are experienced in the Paris TMA after optimization 

as shown at Figure 58. By comparing initial traffic demand (Figure 52) and traffic 

demand after optimization (Figure 58) in the Paris TMA, one could note that the 

total traffic differs (337 compared to 338). This is due to the fact that TMA traffic 

includes overflights – flights that depart/arrive from/to nearby airports (Orly - 

LFPO in this case). With a choice of horizontal route, those flights could fly 

through or to be rerouted around TMA, increasing or reducing total TMA’s traffic. 

It is interesting to note that the total traffic in TMA was increased in this example. 

Taking into account that interactions close to Paris TMA and capacity violation of 

the TMA represent the greatest problem in the example this is opposite than one 

could expect. 

To find robust solution, as it was expected, many flights need to change 

their nominal trajectories (87% of all flights). Horizontal route change has been 

used far to alleviate flight interaction (more than 85% of all flights affected). 

Around 30% and 23% of flights receive ground delay and vertical profile change 

respectively. The total route length extension was 0.8% with maximum flight 

extension of 8%. This results in 781 minutes of additional flight time due to flight 

rerouting. In addition total ground delay was 2743 minutes with maximum 

ground delay of 27 minutes and an average of 5 minutes per delayed flight. 

Taking into account all sources of delay, average delay at the destination 

compared to nominal schedule (flight plan) is less than 2 minutes per flight. This is 

a very promising result considering that no additional disruptions are likely to 

happen because of solution robustness. Average flight level change was close to 
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1.5 (precisely 1.34) meaning that half of flights were altered to vertical profiles that 

are ±1 flight level from nominal level, and half to one that are ±2 flight levels. 

Total additional operating costs of the solution were EUR 192.417 with 

average of EUR 108 per flight. 363 flights remained unchanged and received no 

additional costs. More than half of all modified flights had a cost that was less than 

EUR 100. Average cost received was EUR 138 per modified flight with maximum 

of EUR 1288. Distribution of additional operating costs is shown on Figure 59. 

Almost 90% of flights had cost in the range (0-300] that is ±150 EUR from the 

average cost. The rest 10% of flights receive an “unfair” portion of costs compared 

to other flights. 

  

Figure 59: Distribution of flight additional operating costs – Base scenario 

Searching for robust solution was a very challenging task. Although in both 

scenarios (conflict-free and base) objective value of the optimal solution was not 

known, some initial estimation are possible in the conflict-free scenario exploiting 

the fact that optimal solution has to be conflict free and without terminal capacity 

violations. However the base scenario aims to find a balance between interaction 

and operating cost and as it depends on many factors, such as: traffic level and 

density, unit costs, state space, etc. it is not possible to estimate the optimal level of 

interaction in the solution. Once more stopping criterion for optimization process 

was temperature level.  

The best solution was obtained in 28 hours of CPU time, on the Intel 

Pentium Dual-Core 2.9GHz with 4Gb of RAM, in two stages. First stage (marked 

in black on Figure 60) that last 20 hours represents simulated annealing 
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optimization process. To further improve solution heuristics based on greedy 

search was run in the second stage and last additional 8 hours (marked in gray on 

Figure 60).  Greedy algorithm only accepts better solution allowing intensification 

around local minimum. The solution with objective value in the range of 15% of 

the objective of the best known solution was found in less than 400 steps in 10 

hours of CPU time. Excluding flight operating costs from the objective, it is 

possible to find a robust solution in one hour on average.  

 

Figure 60: Objective function convergence – Base scenario 

4.3.3. Solution robustness testing 

To test robustness, solutions obtained in conflict-free and base scenarios are 

imposed for additional flight delays, and effects of these disturbances are 

measured and compared with congestion problems they produce to the system. 

The magnitude of the congestion problem is measured by the number of 

conflicting points it produces and the number of flights included in the conflicts.  

Numbers of scenario are defined taking conflict-free and robust trajectories 

as input. Number of delayed flights and delay magnitude varies from scenarios, 

and ranges from small to big disturbances. Taking into account that only portion 

of flights during a given day is considered, imposing long delays to some flights 

does not always yield worse congestion problem, as it might rescheduled these 

flights to the period with low traffic. Therefore, only small delays are considered 

(1.5 minutes) and size of the disturbance is controlled by the number of affected 

flights (Table 6). 
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Table 6: Test scenarios settings 

Scenario 
Number of 

affected flights 
Delay 

1 20 1.5 minutes 

2 50 1.5 minutes 

3 100 1.5 minutes 

4 500 1.5 minutes 

5 (chaos) 1000 1.5 minutes 

 

The resulting congestion problem is very sensitive to the selected flights, 

the ones affected by the delay. Delaying a flight, not having interaction with other 

flights, will certainly not cause additional problems. For this reason, several 

groups of affected flights are identified for each scenario, then minimum, 

maximum and average value of the conflicting points and the conflicting flights 

are recorded.  

Table 7 shows the result of robustness tests based on the number of 

conflicting points, while Table 8 shows results based on the number of conflicting 

flight. Both tables clearly show that robust trajectories are less affected by the 

disturbances and therefore cause less congestion problems. Newly generated 

congestion problems are easy to solve at tactical level compared to one that 

resulting from the usage of conflict-free trajectories.  

Table 7: Resulting congestion problem – conflicting points 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

C
o

n
fl

ic
t 

fr
ee

 

min. 120 302 588 3624 6000 

max. 428 828 1328 4525 6966 

avr. 217.2 473.2 1000.8 4064.4 6511.6 

R
o

b
u

st
 min. 0 22 106 924 1830 

max. 132 202 254 1556 2494 

avr. 38 81.2 176 1230.8 2182 

 

Table 8: Resulting congestion problem – conflicting flights 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

C
o

n
fl

ic
t 

fr
ee

 

min. 20 52 85 388 571 

max. 331 65 127 417 605 

avr. 87 57.2 107.4 400.4 584.2 

R
o

b
u

st
 min. 0 7 23 127 206 

max. 12 21 37 155 256 

avr. 5.4 12.2 28 138.2 231.8 
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Distribution of average number of conflicting points and flights over 

scenarios are illustrated in the Figure 61. Both figures show almost the same ratio 

between conflicting points and flights. 

         

Figure 61: Distribution of conflicting points and flights 

Figure 62 illustrates one congestion problem for the scenario 5. Left image 

shows congestion caused by disturbance of the conflict-free trajectories, and right 

of the robust trajectories. Conflicting points are marked by red color in the figure. 

Mentioned conclusions are more than obvious in the figure.  

 

Figure 62: Resulting congestion problem 
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5. CONCLUSIONS 

This thesis investigates the potential of robust trajectory planning – RTP 

(considered as an additional demand management action) at pre-tactical level as a 

mean to alleviate the en-route congestion in airspace. The most of existing 

trajectory planning models consider finding of conflict-free trajectories without 

taking into account uncertainty of trajectory prediction. It is shown in the thesis 

that in the case of traffic disturbances, it is better to have a robust solution 

otherwise newly generated congestion problems would be hard and costly to 

solve. RTP puts forward trajectory planning involving generation of congestion-

free trajectories with minimum operating cost taking into account uncertainty of 

trajectory prediction and unforeseen event. Although planned cost could be higher 

than of conventional models, the underlying rationale is to reduce cost of 

disruptions adding robustness to schedules. As consequence, this might lead to 

reductions in operating cost. 

This thesis introduces a novel approach for route generation (3D trajectory) 

based on homotopic feature of continuous functions. This approach is capable of 

generating a large number of routes of different shape with a reasonable number 

of decision variables. Those routes are then coupled with time dimension in order 

to create 4D trajectories. RTP problem is modeled as a mixed-variable 

optimization problem and it is solved using stochastic optimization technique 

(Simulated Annealing). 

Application of developed optimization model is illustrated in the two 

examples: academic and real-life. Results show that the model is able to solve real 

instances of the problem, with computation time which corresponds to the 

intended use of the model (strategic, pre-tactical level). Further the results indicate 

that, under certain conditions, solution robustness could be considerably increased 

at the relative small expenses of solution costs providing a good alternative to the 

solutions developed by existing conflict-free trajectory planning models. 

 A principal conclusion arising from the performed experiments is that the 

homotopy route generation model is very efficient because it provides large 

freedom in the route generation by controlling only few real value parameters. 

However, a performance of the model highly depends on the choice of reference 

(primitive) functions and additional research (improvement) could be done in the 
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future. Although it increases problem complexity, flight rerouting in the vertical 

dimension was found to be very effective in reducing flight delay and horizontal 

route extension. Finally, introduction of operating costs into objective function 

significantly increases problem complexity. The results of the optimization model 

are very sensitive to the choice of the static penalty assigned to traffic interaction. 

The use of large penalties leads to rugged search terrains and deep local minima, 

making it difficult for global-search methods to escape from it. However, it was 

shown that it is possible to find robust flight trajectories, reducing flight 

interaction, and keeping cost induced to the user to an acceptable level.  

Due to high combinatoric and the rugged shape of the objective function in 

the search space, slow exploration of the search space is inevitable. This influences 

computation time that should be further improved in order to address larger 

problem instances. Furthermore, a feature of the homotopy route generation 

model, that horizontal route is controlled by real value parameters, could be more 

exploited in future research using field congestion metrics. It is foreseen that in 

such a case, it would be possible to represent congestion metrics as a function of 

parameters that controls each homotopy, and not to calculate its value throughout 

the simulation. 
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