
UNIVERZITET U BEOGRADU 

MATEMATI ČKI FAKULTET 

 

 

 

 

 

 

Slaviša R. Milisavljević 

 

 

FUNKCIJA RASTOJANJA MALIH 
PLANETA I RA ČUN PROKSIMITETA  

 

 

 

 

 

Doktorska disertacija 

 

 

 

 

 

 

 

 

 

 

Beograd, 2012. 



UNIVERSITY OF BELGRADE 

FACULTY OF MATHEMATICS 

 

 

 

 

 

 

Slaviša R. Milisavljević 

 

 

DISTANCE FUNCTION OF MINOR 
PLANETS AND PROXIMITY 

CALCULATION  

 

 

 

 

Doctoral Dissertation 

 

 

 

 

 

 

 

 

 

 

Belgrade, 2012. 



 

 

FUNKCIJA RASTOJANJA MALIH PLANETA I 
RAČUN PROKSIMITETA  

 

 

 

Disertacija odobrena na Matematičkom 
fakultetu Univerziteta u Beogradu 
18.11.2011. godine. 

 

Mentor:  

prof. dr Stevo Šegan, Matematički fakultet, 
Beograd 

 

Komisija za odbranu: 

prof. dr Stevo Šegan, Matematički fakultet, 
Beograd   

prof. dr Mike Kuzmanoski, Matematički 
fakultet, Beograd 

dopisni član SANU dr Zoran Knežević, 
Astronomska opservatorija, Beograd 

 



 

 

 

Zahvalnost 
 
Ova doktorska disertacija je nastala kao prirodni nastavak istraživanja u oblasti 
proksimiteta malih planeta i usavršavanja metoda razvijenih u mom magistarskom radu. 
Posle višegodišnje pauze zahvaljujući sugestijama prof. dr. Mikea Kuzmanoskog i posle 
konsultacija sa prof. dr. Stevom Šeganom pomenuti problem bio je na dohvat i ja sam se 
ponovo uhvatio u koštac sa njim. U tom smislu zahvaljujem se svom mentoru prof. dr. 
Stevi Šeganu na podršci i savetima u rešavanju problema obuhvaćenih doktorskom 
disertacijom. Veliku pomoć u uspostavljanju veza sa svetom i upoznavanja savremenog 
stanja u izučavanju teme ove disertacije pružili su mi dopisni član SANU dr. Zoran 
Knežević i prof. dr. Mike Kuzmanoski, kojima se ovom prilikom srdačno zahvaljujem. 
Susrevši se sa problemima ozbiljnih programskih i programerskih zahvata u rešavanju 
nekih analitičkih i numeričkih problema veliku pomoć sam imao od strane kolege 
Dušana Marčete. Zahvaljujem se ostalim kolegama i poznanicima koji su mi nesebično 
pomogli u izradi ove disertacije. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Narodna izreka: ’Dete si onoliko dugo koliko su ti roditelji živi’.   

Ovu doktorsku disertaciju posvećujem mojim dragim roditeljima, ocu Radoju i majci 
Radi, kao zahvalnost za detinjstvo koje mi pružaju, sa željom da ono što duže traje … 



 

FUNKCIJA RASTOJANJA MALIH PLANETA I RA ČUN 
PROKSIMITETA 

Rezime 

Problem najmanjih meñusobnih rastojanja dve konfokalne eliptične orbite (lokalni 
minimumi), u literaturi poznat kao račun proksimiteta malih planeta,  u novije vreme 
prepoznat pod pojmom Minimal Orbit Intersection Distance – MOID zauzima veoma 
značajno mesto u astronomskim studijama, ne samo zbog predikcije mogućih sudara 
asteroida i drugih nebeskih tela, već i zbog činjenice da se analizom ponašanja asteroida 
pri bliskim prilazima mogu odrediti njihove mase, promene orbitalnih elemenata i neke 
druge važne karakteristike. Baveći se tim problemom u ovoj disertaciji vršili smo 
analizu funkcije rastojanja dve eliptične konfokalne putanje malih planeta primenjujući 
kombinovane, analitičko-numeričke metode računanja proksimiteta.  

Pregledom svih važnijih rezultata u ovoj oblasti od sredine XIX veka pa do današnjih 
dana vidimo da se problem transformisao od rešavanja dve transcedentne jednačine, 
raznim metodama i dugotrajnim aproksimacijama, do efikasnih i brzih rešenja 
vektorskih jednačina sistema koji opisuje problem. U tezi je razvijen, izložen i 
primenjen jednostavan i efikasan analitičko – numerički metod, koji pronalazi sve 
minimume i maksimume funkcije rastojanja, a posredno omogućava da se odrede i 
prevojne tačke. Metoda je idejno zasnovana na grafičkoj interpretaciji Simovljevića 
(1974) i na transcedentnim jednačinama koje je razvio Lazović (1993). Testiranje 
metode smo obavili na blizu 3 miliona parova realnih eliptičnih asteroidskih orbita i 
njene mogućnosti i rezultate računa uporedili sa algebarskim rešenjima koja je dao 
Gronki (Gronchi, 2005). Slučaj para konfokalnih orbita sa četiri proksimiteta, koji je 
metodom slučajnih uzoraka i posle brojnih simulacija sa različitim vrednostima 
putanjskih elemenata pronašao  Gronki (Gronchi, 2002), bio je motiv da pokušamo da 
pronadjemo takav par medju realnim parovima asteroidskih putanja. Zahvaljujući 
efikasnosti metode koju smo razvili takva dva para su pronadjena i njihovi parametri su 
prikazani u ovoj disertaciji. 

Osim ovog, dalja analiza funkcije rastojanja kroz simulacije sa preko 20 miliona 
različitih parova asteroidskih putanja, dala je još nekoliko interesantnih  rešenja funkcije 
rastojanja.  Rezultati takve simulacije dati su u obliku tabelarnih i grafičkih prikaza 
raznovrsnosti rešenja funkcije rastojanja.  

Klju čne reči: Male planete, Asteroidi, Funkcija rastojanja, Proksimiteti, MOID.  

Naučna oblast: Astronomija. 

Uža naučna oblast: Nebeska Mehanika. 

UDK broj:  523.44(043.3) 



 

THE DISTANCE FUNCTION FOR MINOR PLANETS AND 
PROXIMITY CALCULATION 

Abstract 
The problem of the minimal mutual distances for two confocal elliptical orbits (local 
minima), in the literature known as the proximity calculation for minor planets and 
recognised recently as Minimal Orbit Intersection Distance – MOID, occupies a very 
important place in astronomical studies, not only because of the prediction of possible 
collisions of asteroids and other celestial bodies, but also because of the fact that by 
analysing the behaviour of asteroids during their encounters it is possible to determine 
their masses, changes of orbital elements and other important characteristics. Dealing 
with this problem in this thesis the author has analysed the distance function for two 
elliptical confocal orbits of minor planets combining analytical and numerical methods 
for proximity calculation.   

A survey of all relevant results in this field from the middle of the XIX century till our 
days indicates that the problem has been transformed from looking for a solution of two 
transcendental equations by applying various methods and approximations of long 
duration towards efficient and rapid solutions of vector equations of the system which 
describes the problem. In the thesis a simple and efficient analytic-numerical method 
has been developed, presented and applied. It finds out all the minima and maxima in 
the distance function and, indirectly, makes it possible to determine also the inflection 
points. The method is essentially based on Simovljević’s (1974)  graphical 
interpretation and on transcendental equations developed by Lazović (1993). The 
present method has been examined on almost three million pairs of real elliptical 
asteroid orbits and its possibilities and the computation results have been compared to 
the algebraic solutions given by Gronchi (2005). The case of a pair of confocal orbits 
with four proximities found by Gronchi (2002), who applied the method of random 
samples and carried out numerous simulations with different values of orbital elements, 
gave the motivation to try here to find out such a pair among the real pairs of asteroid 
orbits. Thanks to the efficacy of the method developed in the thesis two such pairs have 
been found and their parameters are presented.   

In addition to the one meantioned above a further analysis of distance function through 
simulations including more than 20 million different pairs of asteroid orbits has resulted 
in several additional interesting solutions of the distance function. The results are given 
in the form of tables and plots showing the diversity of solutions for the distance 
function.      

Key words: Minor planets, Asteroids, Distance function, Proximities, MOID. 

Branch of Science: Astronomy. 

Field: Celestial Mechanics. 

UDC number: 523.44(043.3) 
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PREDGOVOR 

Radeći pod rukovodstvom prof. dr. Mikea Kuzmanoskog magistarski rad upoznao sam 
se sa problemom proksimiteta. Problemom proksimiteta u prethodna dva stoleća bavili 
su se mnogi svetski stručnjaci doprinoseći njegovom upoznavanju u manjoj ili većoj 
meri. Medju njima prof. Dr. Mike Kuzmanoski i prof. dr Jovan Lazović su veći deo 
svog naučnog opusa posvetili ovoj temi objavivši veći broj radova. Osim njih i 
značajnih rezultata koje su oni postigli problemu proksimiteta dosta pažnje posvetili su i 
prof. dr. Vojislav Mišković pre njih i prof. dr. Jovan Simovljević zajedno sa njima. 
Jedna od ideja prof. dr. Jovana Simovljevića u problemu rešavanja proksimiteta 
iskorišćena je kao osnov za izradu magistarskog rada. Kada je Đovani Gronki objavio 
rad  ‘ON THE STATIONARY POINTS OF THE SQUARED DISTANCE BETWEEN 
TWO ELLIPSES WITH A COMMON FOCUS’, (2002), u kojem eksplicitno analitički 
rešava navedeni problem izgledalo je da o tom pitanju zaista nema šta više da se kaže. 
Meñutim, vrativši se pre nekoliko godina ovoj temi video sam da je u meñuvremenu 
objavljeno više naučnih radova u kojima su se pojavili neki novi aspekti rešavanja 
problema proksimiteta uopšte, MOID-a posebno, jer se pokazalo da postoji neslaganje 
teorijskih i praktičnih rešenja, posebno sa stanovišta broja stacionarnih tačaka funkcije 
rastojanja. To je značilo da problem proksimiteta nije izgubio aktuelnost i zato smo se u 
ovoj disertaciji pozabavili tim problemom.  

U disertaciji je generisan i upotrebljen kombinovani metod računa proksimiteta koji 
omogućava veću efikasnost izračunavanja. Posledica je bila i znatno veći broj uporednih 
analiza i kompletnija slika osobina funkcije rastojanja.  
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1. UVOD 

 

Pre svega treba istaći činjenicu da u astronomiji nisu tako česti slučajevi da neki 
problem traje skoro dva veka i da pored mnogih njegovih rešenja i rezultata on još uvek 
privlači pažnju kako astronoma tako i ostalih naučnika iz različitih oblasti. Upravo je to 
slučaj sa problemom proksimiteta, pri čemu hronološki gledajući sa ove vremenske 
distance, stiče se utisak da se njegovo rešavanje odvijalo nekako prirodno tj. postepeno, 
upravo onim tempom kako su i dolazila nova saznanja bilo da su ona astronomska ili 
matematička. Od rešavanja problema dve transcedentne jednačine sukcesivnim 
aproksimacijama bilo da su u pitanju prave ili ekscentrične anomalije, preko raznih 
pojednostavljenja funkcije rastojanja, do primene složenog matematičkog aparata i 
diferencijalne geometrije.  

U tom smislu, vratimo se nakratko dva veka unazad, tj. na činjenicu tada opšteg 
uvažavanja Ticijus-Bodeovog pravila. Iz tih razloga, a posle otkrića Urana, postojala je 
sve veća verovatnoća da na udaljenosti od oko 2.8 AJ mora postojati planeta. To se 
zaista i obistinilo 1. Januara 1801. kada je italijanski astronom Pjaci (Piaci) to uočio. 
Meñutim, dimenzije tog nebeskog tela bile su mnogo manje od očekivanih i ta prva 
mala planeta – asteroid dobila je ime Ceres. Od tada, počinje stalno otkrivanje novih 
sličnih nebeskih tela tako da ih sredinom XIX veka ima već oko petnaestak.  

Ovde želim da istaknem da su do prve polovine XX veka i astronomi sa ovih prostora  
imali odredjeni doprinos izučavanju asteroida. Tako je Milorad B. Protić otkrio 
tridesetak asteroida a jednom od njih otkrivenom 15. Oktobra 1936. godine u glavnom 
asteroidskom prstenu, dao je ime Srbija. Pero Djurković otkrio je dva asteroida koji su 
dobili imena po Milutinu Milankoviću i Zvezdari. Svakako treba naglasiti i da je prof. 
dr. Vojislav Mišković u svojim Godišnjacima Našeg Neba koje je sa saradnicima 
objavljivao na Astronomskoj opservatoriji u Beogradu u periodu od 1930. godine do 
1962. godine iscrpno izveštavao o svakom pronalasku novih planetoida kako ih je on 
tada zvao i davao odgovarajuća stručna objašnjenja.   

U drugoj polovini XX veka bilo je numerisano već oko 1500 asteroida; početkom 
osamdesetih njihov broj raste na preko 2000,  dok je veći skok usledio krajem 
devedesetih, kada je bilo numerisano 13 000 asteroida. S obzirom na neverovatan razvoj 
tehnike poslednjih decenija, broj numerisanih asteroida raste iz dana u dan, tako da ih 
trenutno ima preko tristo hiljada, a najveći deo je otkriven i registrovan poslednjih 
desetak godina.  

Kada govorimo o njihovim kinematičkim karakteristikama treba reći da je njihovo 
kretanje u direktnom smeru a najveći broj ima putanje izmeñu Marsa i Jupitera 
(asteroidski pojas). U toj oblasti je njihova najveća koncentracija jer se tu nalazi preko 
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99% svih do sada numerisanih objekata. Ipak, veliki razvoj posmatračkih tehnika  
poslednjih decenija omogućava njihovo sve češće otkrivanje i van ove oblasti pa čak i 
van Sunčevog sistema. Veliki broj asteroida, bliskost pojedinih putanja asteroida pa čak 
i mogućnost sudara meñu njima su glavni razlozi što problem najmanjih meñusobnih 
rastojanja tj. proksimiteta i njegova analiza u svim aspektima od njegove prve pojave 
sredinom 19. veka, pa do današnjih dana, ne gubi na aktuelnosti. Takodje u novije doba 
te analize vrlo često imaju za cilj izbegavanje sudara kosmičkih letilica sa sve većom 
koncentracijom svemirskog otpada. Ako tome dodamo da sličnim metodama 
izračunavamo i udaljenosti izmeñu Zemlje i asteroida, kao i da se na osnovu ponašanja 
asteroida u proksimitetu (bliskim prilazima) vrši izračunavanje njihovih masa, ne čudi 
što su se poslednjih dvadesetak i više godina u ovoj oblasti već ustalili termini kao što 
su: Near Earth Asteroids (NEAs), Near Earth Object (NEO), Minimal Orbit Intersection 
Distance (MOID), Potentially Hazardous Asteroids (PHAs) i Virtual Asteroids (VAs). 

Može se primetiti iz gore navedenih naziva i njihovih skraćenica, da se danas, u eri 
velikog tehnološkog napretka, kako u oblasti posmatranja tako i računskih tehnika, 
problem proksimiteta transformisao i sve češće dve transcedentne jednačine koje 
opisuju problem zamenjuju odredjena analitička rešenja i razni oblici funkcije 
rastojanja. Velike mogućnosti računara i programskih paketa omogućavaju nam 
raznovrsne pristupe i različite analize problema proksimiteta. Near Earth Asteroids 
(NEAs) i Near Earth Objects (NEOs), su oblasti u kojima se matematički modeli i 
programski paketi za izračunavanje proksimiteta koriste isključivo za pronalaženje 
asteroida i drugih nebeskih tela čije su putanje u pojedinim njihovim delovima izuzetno 
bliske Zemljinoj. Potentially Hazardous Asteroids (PHAs) su, uslovno rečeno, ona 
podgrupa gore navedenih asteroida čije kretanje tj. mala vrednost proksimiteta sa 
Zemljom predstavlja realnu opasnost za eventualno ukrštanje putanja i mogući sudar. 
Virtual Asteroids (VAs) su nastali kao produkt različitih matematičkih modela za 
simulaciju asteroidskih kretanja a sa ciljem da se na osnovu njihovih putanjskih 
elemenata još preciznije i bolje definiše funkcija rastojanja sa svim njenim stacionarnim 
tačkama. S obzirom da pojedini proksimiteti mogu imati veće vrednosti od prevojnih 
tačaka funkcije rastojanja, uveden je i pojam Minimal Orbit Intersection Distance 
(MOID) koji se koristi za procenu rizika sudara izmeñu dva nebeska tela, a definisan je 
kao rastojanje izmeñu najbližih tačaka oskulatornih orbita ta dva nebeska tela. 

Imajući sve to u vidu cilj našeg rada je da na osnovu postojećih analitičkih i drugih 
rešenja i metoda za nalaženje proksimiteta nebeskih tela, posebno tela Sunčevog 
sistema, napravimo proceduru i eventualno izgradimo metod za pronalaženje svih 
stacionarnih tačaka dve konfokalne orbite uz pokušaj da iscrpemo sva teorijski moguća 
rešenja i slučajeve, a što do sada nije uradjeno.  

Svi rezultati analize proksimiteta i funkcije rastojanja, kao i ostalih kritičnih tačaka, biće 
dati na osnovu putanjskih elemenata, koji su pored ostalih podataka sastavni deo 
osnovne liste asteroida. 
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2. PREGLED VAŽNIJIH REZULTATA U OBLASTI 
PROKSIMITETA 

2.1. Prvi radovi u oblasti proksimiteta i njihovi rezultati 

Sredinom XIX veka, kada je bilo otkriveno oko petnaestak asteroida, američki, 
astronom B. A. Guld. (B. A. Gould) i nemački astronom H. A. Darest (H. A. d'Arest) 
bili su prvi koji su počeli da se bave ovom problematikom. Znajući meñusobne položaje 
putanja asteroida, oni su pretpostavili da se proksimiteti izmeñu dve planetoidske 
putanje mogu očekivati u okolini relativnih čvorova. 

S obzirom da je proksimitet najmanje rastojanje izmeñu dve asteroidske putanje, 
smatralo se da on može biti od većeg značaja za izučavanje kretanja asteroida. Direktor 
bečke opservatorije K. V. Litrov (K. V. Littrow) prvi je ukazao na mogućnost da se dva 
asteroida nañu istovremeno (ili bar približno u isto vreme) u tom položaju. On je tvrdio 
da bi asteroidi imali uticaja jedni na druge ako bi se nalazili dosta blizu, pod uslovom  
da svi ostali poremećaji (od velikih planeta), budu što tačnije izračunati i da bi se na 
osnovu tih uticaja mogle izračunati mase asteroida.  

To je naročito bilo moguće kod asteroida koji su se dugo kretali "jedan pored drugog" 
oko proksimiteta, skoro "paralelno". Bez obzira što je Litrov ukazao na to, tek će se E. 
Stromgren (E. Strömgrem), direktor opservatorije u Kopenhagenu, pozabaviti time. On 
je smatrao da proksimiteti asteroida od "samo" nekoliko stotih delova AJ nisu dovoljni 
da proizvedu merljive poremećaje na osnovu kojih bi se mogle izračunati, bar približno, 
neke od masa asteroida. Kasnije se ispostavilo sasvim suprotno, tj. da upravo 
izračunavanjem meñusobnih gravitcionih uticaja možemo dobiti najpouzdanije 
vrednosti masa asteroida. Važno je napomenuti da je još 1802. godine (odmah posle 
otkrića Palasa), Gaus (Gaus) dao sugestiju da se mase asteroida mogu dobiti na osnovu 
meñusobnih gravitacionih efekata. Meñutim, zbog problema koji proističu iz činjenice 
da su asteroidi veoma malih masa, Gausova nada ostvarila se tek posle 172. godine, 
kada su mase Ceresa i Palasa prvi put odreñene upravo po njegovoj zamisli. 

Prvo izračunavanje proksimiteta daje nemački astronom Grunert (Grunert) i to preko 
opštih izraza za odreñivanje tačaka ukrštanja dvaju konusnih preseka u prostoru. Izrazi 
su suviše komplikovani, tako da su u praksi bili skoro neupotrebljivi.  Pored sugestija 
koje je dao za meñusobne uticaje asteroida, Litrov takoñe daje i jednačine koje su imale 
konkretnu primenu u rešavanju problema proksimiteta. Promenljive veličine u njima su 
ekscentrične anomalije (E i E1) i to je prvi put da se proksimiteti predstavljaju preko 
njih. 

Jednačine koje je on izveo imaju oblik: 

.0sin)''sin(''cos)'sin('2sin)sin(

,0sin)''sin(''cos)'sin('2sin)sin(

111
2
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  (2.1) 
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U ovim jednačinama a i a1, su velike poluose, e i e1, ekscentričnosti dotičnih putanja, a 

veličine α , α ’, α ", β , β ’, β ", B, B’, B", C, C’ i C" funkcije putanjskih elemenata 
uočenih planetoida. 

Litrov je zbog nemogućnosti da na jednostavan i brz način lako doñe do parova 
asteroida gde postoje proksimiteti, pribegao pravljenju modela asteroidskih putanja od 
žice. Na taj način prvo bi otkrio kod kojih parova se putanje dovoljno približavaju, pa 
tek onda pristupao izračunavanju. 

Interesantno je da je ovakav postupak ujedno omogućavao da nañe i približne vrednosti 
heliocentričnih longituda položaja proksimiteta. Ako se ovako nañena vrednost 
longitude nije mnogo razlikovala od longitude relativnog čvora, Litrov je za približnu 
vrednost longitude položaja proksimiteta uzimao nañenu vrednost longitude. Tačniju 
vrednost položaja proksimiteta odreñivao je sukcesivnim aproksimacijama. 

Linser (Linsser) je bio sledeći astronom koji se bavio ovim problemom. Njegov 
postupak se svodio na izračunavanje  heliocentričnih longituda, heliocentričnih latituda i 
potega uočenih asteroida u ekvidistantnim razmacima. Uporeñivanjem izračunatih 
potega i latituda i izdvajanjem onih parova za koje su razlike ovih vrednosti padale 
ispod usvojenih granica, odreñivao je vrednosti longituda proksimiteta. Litrov i Linser 
su za najmanje meñusobno rastojanje usvojili iznos od 0.1 AJ. 

Sin astronoma Galea (Galle) (koji je otkrio Neptun), A. Gale (A. Galle), u svojoj 
doktorskoj disertaciji formirao je jednačine za minimalno rastojanje izmeñu putanja u 
obliku: 

).'sin('2sinsin
2

)'sin('

),sin(2sinsin
2

)sin(

112
21

2

1
1

AEE
a

a
E

AEE
a

a
E

++=Λ+

++=Λ+

αϕλ

αϕλ
                                 (2.2) 

Veličine λ , 'λ , Λ , 'Λ , α , 'α , A, A’ mogu se predstaviti preko glomaznih i 
komplikovanih izraza dobijenih posle niza smena i transformacija. Galle je, kao i 
njegovi prethodnici, nepoznate E i E1 izračunavao sukcesivnim aproksimacijama, 
uzimajući za polazne vrednosti ekscentričnih anomalija one dobijene pomoću relativnih 
čvorova. 

Ilustracije radi, tada je broj otkrivenih planetoida bio 232, a Galle je konkretne rezultate 
za neki od parova radio logaritmima na četiri decimale.  

Direktor opservatorije u Nici G. Fajet (G. Fayet) je sa svojim saradnicima odredio  
uzajamne proksimitete za 800 asteroidskih putanja i proksimitete za periodične komete i 
velike planete. 

On je rešavao problem takoñe sukcesivnim aproksimacijama, a polazio je od toga da su 
kod proksimiteta izmeñu dva asteroida heliocentrične longitude jednake (što ne mora 
uvek da bude tačno), i ograničavao se na parove kod kojih je minimalna udaljenost 
izmeñu putanja manja od 0.01 AJ. Postupak kojim se služio je ideja engleskog 
astronoma A. Mart-a (A. Marth) izložena još 60 godina ranije, koja u stvari predstavlja 
konstruisanje i nanošenje na milimetarsku hartiju intersekata asteroida. Iz njih je 
dobijao približne položaje proksimiteta, a nakon izračunavanja i udaljenosti tačaka 
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proksimiteta. Inače intersekt asteroida je zatvorena kriva linija, koja se dobija kao 
projekcija stvarne asteroidske putanje na poluravan koja je normalna na ekliptiku. 

Tačnost Fajeovog postupka iznosila je od 0.5o-1o za vrednost longitude a ±0.003 AJ za 
udaljenost proksimiteta.  

Rezultati njegovog rada su oko 320 000 parova intersekata, meñu kojima je pronašao 
šest parova kod kojih u položaju proksimiteta udaljenost izmeñu asteroida nije veća od 
0.0004 AJ, tj. 60 000 km. 

 

2.2. Radovi naših naučnika u oblasti proksimiteta 

Opširan istorijski pregled najznačajnijih radova na ovu temu dao je V.V.Mišković 
(1974.). Uglavnom su to bile analize dotadašnjih radova nemačkih astronoma. On je 
obradu ograničavao na slučajeve asteroida koji su se kretali u istoj ravni. Drugim 
rečima, slučajeve asteroida sa približno jednakim čvorovima i nagibima putanja. 
Ovakve parove ili grupe asteroida nazvao je kvazikomplanarnim asteroidima.  

Svakako da je najkompletniju metodu za izračunavanje proksimiteta asteroidskih 
putanja dao  J. P. Lazović (1964) u svojoj doktorskoj disertaciji "Važnije osobenosti u 
kretanju kvazikomplanarnih planetoida''. Ova metoda je najviše primenjivana, a sa 
odreñenim dopunama u upotrebi je i danas. Odreñivanje proksimiteta pomoću izraza u 
kojima figurišu prave anomalije kao promenljive je takoñe dao Lazović (1967), pri 
čemu je korišćen isti postupak,  sa tom razlikom što su krajnja rešenja položaja i 
veličine proksimiteta izražena preko pravih anomalija.  

U prvom slučaju on polazi od uslovnih jednačina: 

0
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ρ
, 0
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∂

∂
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ρ
,                                                                                    (2.3) 

pri čemu je kvadrat rastojanja izražen preko ekscentričnih anomalija E1 i E2,  odnosno 
2

2211
2

2211
2

2211
2 ))()(())()(())()(( EfEfEfEfEfEf zzyyxx −+−+−=ρ .          (2.4) 

Posle niza smena, sreñivanja i rešavanja dobija jednačine u obliku: 

.0cossincossin),(

,0cossincossin),(

222212121

111121221

=−+≡
=−+≡

EEZEYEXEEg

EEZEYEXEEf
                           (2.5) 

gde su veličine X2, Y2, Z1, X1, Y1 i Z2 odgovarajući koeficijenti koji zavise od 
putanjskih elemenata. 

Ovo su jednačine transcendentnog tipa i on ih rešava sukcesivnim aproksimacijama, pri 
čemu odreñuje uzastopne i to sve manje i manje popravke ∆E10, ∆E20, ∆E11, ∆E21, 
...,∆E1(k-1), ∆E2(k-1) dok ne odredi za svaki sistem, tj. za svako ukrštanje putanja 
vrednosti 

)1(1)1(11 −− ∆+= kkk EEE  i )1(2)1(22 −− ∆+= kkk EEE ,                                                (2.6) 

koje zadovoljavaju polazne jednačine sa tačnošću sa kojom se to želi. 
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Prve popravke ∆E10 i ∆E20  mogu se odrediti  iz jednačina oblika 
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pri čemu se dobijaju nove vrednosti E11 = E10 + ∆E10  i  E21 = E20 + ∆E20 .  

Sve dalje popravke dobijaju se  na analogan način, a vrednosti približnih popravki zbog 
učinjenih zanemarivanja kod razvijanja u red imaju oblik:  
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Lazović je ovu metodu potpuno kompletirao 1993. godine. 

Kod rešavanja problema preko pravih anomalija, Lazović polazi od uslova  da 

heliocentrični vektori položaja 21 rir
rr

 prve i druge eliptične putanje budu izraženi 

preko pravih anomalija ( 21,υυ ) u obliku, 

,sincos
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                                                                          (2.9) 

a da je vektor relativnog položaja jednak 21 rr
rrr −=ρ . Kvadrat rastojanja će isto biti u 

funkciji pravih anomalija, a uslovne jednačine za postojanje ekstremuma imaće sledeći 
oblik:  
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                                                             (2.10) 

Posle rešavanja i sreñivanja ponovo dobija izraze oblika 

0),( 21 =υυf , 0),( 21 =υυg                                                                          (2.11) 

tj. transcedentni sistem jednačina, ali sada izražen preko pravih anomalija,  koje takoñe 
rešava sukcesivnim aproksimacijama dok ne nañe vrednosti, 
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                                                                         (2.12) 

koje zadovoljavaju polazni sistem jednačina, sa potrebnim stepenom tačnosti. 

Sledeće popravke u nizu dobijaju se na analogan način, čime se može dobiti još tačnija 
vrednost pravih anomalija 

.

,

212121202022
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υυυνυυ
υυυνυυ
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                                                             (2.13) 

Dalje popravke dobijaju se razvojem funkcija 0),( 21 =υυf  i 0),( 21 =υυg  u Tejlorov 
red i zanemarivanjem članova sa stepenima većim od jedan. Prve od njih dobijaju se iz 
jednačina 
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gde su: 
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a posle rešavanja sistema one su 
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Razmatrajući razne aspekte i mogućnosti odreñivanja proksimiteta Lazović radi i na 
numeričko-grafičkim metodama. U jednoj takvoj metodi Lazović (1974) dolazi do 
jednačina pravih u kojima kao parametar figuriše prava anomalija čija se vrednost 
očitava predstavljanjem pravih na jedinstvenom grafiku. 

Razvojem računarske tehnike, naročito u poslednje četiri decenije, numeričke metode su 
u potpunosti potisnule grafičke, ali su to u principu bile prilagoñene metode Lazovića 
(1976,1978). Isti autor (Lazović 1970,1971), daje analizu i vrši izračunavanje 
poremećaja  parova kvazikomplanarnih planetoida u kretanju, dok su u proksimitetu.  

Dobijeni rezultati pokazuju i potvrñuju da meñusobni gravitacioni uticaj malih planeta, 
kada se istovremeno nalaze u proksimitetu ili u njegovoj blizini, uopšte nije 
zanemarljiv. Lazović i M. Kuzmanoski (1974,1976) daju odreñene rezultate u vezi 
trajanja proksimiteta, kao i promena meñusobnih rastojanja zbog promena njihovih 
putanjskih elemenata .  

Izračunavanjem proksimiteta izmeñu putanja najvećih malih planeta (Ceres, Palas, Juno, 
Vesta) i drugih numerisanih malih planeta, Lazović i Kuzmanoski (1983) su  dobili 
proksimitet od samo 0,0000154 AJ, tj. svega 2300 km i to izmeñu (2) Palas i (1193) 
Afrika. 

J. Simovljević (1977) daje vrednosti početnih uslova, tj. ekscentričnih anomalija, za 
izračunavanje proksimiteta metodom sukcesivnih aproksimacija. Simovljević (1979) 
daje proračune, tj. analitičke izraze poremećajnih efekata planetoidskih putanja tokom 
trajanja proksimiteta. Takoñe, kao što je u predgovoru već pomenuto, on iznosi jednu 
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interesantnu ideju za rešavanje proksimiteta koja je u stvari i jedan od osnova ovoga 
rada. 

M. Kuzmanoski i Z. Knežević (1993) objavljuju zajednički rad pod naslovom ’Close 
Encounteres with Large Asteroids in the Next 50 Years’. Ovde je opisana i primenjena 
kombinovana metoda za detekciju bliskih susreta meñu najvećim asteroidima (većim od 
100 km u prečniku), u periodu od 50 godina počev od 1991. godine. Metod se sastoji od 
višestepene selekcije, a tačna numerička integracija daje parametre bliskih susreta sa 
visokom pouzdanošću. Rezultat je lista od 208 bliskih susreta na rastojanjima manjim 
od 0.01 AJ. 

2.3.  Pregled značajnijih radova u oblasti proksimiteta od druge polovine 
XX veka do danas 

Nećemo pogrešiti ako kažemo da je rad iz 1968. godine (Sitarski, 1968), G. Sitarskog 
’Approaches of the Parabolic Comets to the Outer Planets’ jedan od najcitiranijih u 
oblasti proksimiteta, ne samo zato što ima preko 40 godina kako je objavljen, već zbog 
činjenice da autor u drugom poglavlju ’Minimal Distances between Two Orbits’, na 
vrlo jednostavan način, definiše problem. Naime, on preko kvadrata razlike vektora 
položaja izraženih preko putanjskih elemenata i definisanja funkcije rastojanja i njenih 
prvih i drugih izvoda po dve nezavisno promenjive veličine dobija jednačine pomoću 
kojih može da odredi položaje na orbitama gde su minimalne vrednosti funkcije 
rastojanja tj. proksimiteti. Ovde treba naglasiti da je sličan metod za izračunavanje 
proksimiteta razvijen od strane Lazovića (1967), što je već pomenuto u prethodnom 
poglavlju.  

Ne mnogo manje citiran rad je iz 1975. godine  (Bernstain, 1975), D. N. Bernštajna 
’Broj korena sistema jednačina’. Zbog činjenice da je problem proksimiteta u osnovi 
matematički (sistem dve transcedentne jednačine koje se mogu transformisati u 
jednačine četvrtog stepena), autor korišćenjem Lorenovih polinoma na mnogostrukosti i 
zadovoljenja uslova mešovite zapremine Minkovskog preko dokaza dve teoreme 
definiše broj korena sistema jednačina.  

Kratak, ali vrlo često citiran rad iz 1978. godine (Vassiiliev, 1978) N. N. Vasiljeva 
’Determining of critical points of distance function between points of two Keplerian 
orbits’, osim jednostavnosti i već manje više očekivanog načina definisanja problema 
preko niza smena i funkcije rastojanja ima i konkretne rezultate za slučaj orbita Plutona 
i Neptuna. U tom smislu su matematički model, program i rezultati Vasiljeva 
proveravani, i uporeñivani sa rezultatima koji su dobijeni korišćenjem kombinovane 
metode koja će biti predstavljena u ovom radu u poglavlju 4. 

1986. godine  (Dybczinski at al.,1986) P. A. Dubčinski, T. J. Jopek, R. A. Serafin u 
svom radu ’On the minimum distance between two Keplerian orbits with a common 
focus’ generalizuju problem proksimiteta tako da pored eliptičnih putanja svoj metod 
prilagoñavaju paraboličnim i hiperboličnim putanjama.  Oni ukazuju na neke praktične 
nedostatke kompjuterskog izračunavanja nekoliko autora koji su se ranije bavili istom 
problematikom (Lazović 1967, 1981, Murray 1980, neophodnost odgovarajućih 
početnih vrednosti i Dubyago 1949, Sitarski 1968, Babañanov 1980, ograničenja u 
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primenjivosti metode). Svoj metod, koji je suštinski sličan prethodnima, numerički 
testiraju pomoću četiri metode: 

NL-Njutnov metod (Lazović, 1967) 

NL-Njutnov metod (Hoosts et al., 1984) 

SM-metod skeniranja 

AM-naizmenični iterativni metod 

1999. godine  (Kholshevnikov and Vassiiliev, 1999)  K. V. Holševnikov i N. N. 
Vasiljev u radu ’On the distance function between points of two Keplerian orbits’ 
uspevaju da odreñenim smenama uproste funkciju rastojanja i problem praktično svode 
na odreñivanje svih realnih korena trigonometrijskog polinoma reda 8, pri čemu su 
koeficijenti polinoma racionalne funkcije putanjskih elemenata. Upotrebom računarske 
algebre pokazuju da polinom manjeg stepena sa takvim svojstvima ne postoji. 

’On the stationary points of the squared distance between two with a common focus’ iz 
2002. godine autora (Gronchi, 2002) G. F. Gronkija je, svakako, najcitiraniji rad, ako 
uzmemo u obzir da je objavljen pre skoro 10 godina. U svom radu on formira kvadrat 
funkcije rastojanja u obliku: 

2'2'2'2 )()()( zzyyxxd −+−+−=  

pri čemu je parametrizacija elipsi data izrazima u zagradama i to: 

)]sin()'sin(1)))(cos([cos( '2'''''' ueeuax ωω −−−=  

)]sin()'cos(1)))(cos([sin( '2'''''' ueeuay ωω −+−=  

0' =z  

)]sin(1)sin()))(cos([cos( 2 ueeuax −−−= ωω  

)cos()]sin(1)cos()))(cos([sin( 2 Iueeuay −+−= ωω  

)sin()]sin(1)cos()))(cos([sin( 2 Iueeuaz −+−= ωω  

Parametri ω , ω ’ i I imaju orijentaciju kao na slici 1. 
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Slika 2.1: Skica Gronkijevog referentnog sistema dve elipse u prostoru sa najmanjim 
brojem parametara, Gronchi (2002). 

Kao što se može videti, gornji izrazi su dati preko putanjskih elemenata i pravih 
anomalija pri čemu veličina I predstavlja meñusobni nagib ravni u kojima se nalaze 
elipse. Pored ovoga i odnos velikih poluosa je uzet tako da jedna od njih ima vrednost 1, 
a sve u smislu definisanja problema sa što manjim brojem parametara. Kritične tačke 
funkcije rastojanja moraju zadovoljavati uslove: 
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gde se posle još nekoliko pojednostavljenja i poznatih trigonometrijskih smena dobija 
sistem polinoma u obliku: 

0)()()(),( 2 =++= tstststp γβα  

0)()()()(),( 34 =−++= tAstDstBstAstq  

Koristeći Bernštajnovu teoremu iz prethodno navedenog rada i sumu Minkovskog 
Gronki rešava problem i dokazuje da je najveći mogući broj rešenja tj. stacionarnih 
tačaka 16. Njegov algoritam je baziran na Brzoj Furijeovoj transformaciji gde nakon 
velikog broja numeričkih eksperimenata, približno sa oko milion različitih parametara 
elipsi, daje tabelu zavisnosti ekscentričnosti i broja stacionarnih tačaka u obliku: 

Tabela 2.1: Zavisnost broja stacionarnih tačaka od ekscentričnosti prve i druge 
eliptične putanje, Gronchi (2002). 

ekscentričn
ost 

prve 
putanje 

ekscentričn
ost 

druge 
putanje 

broj 

stacionar
nih 

tačaka 

0≠e  0'≠e  12 

0≠e  0'=e  10 

0=e  0'≠e  10 

0=e  0'=e  8 

 

U sledećem radu iz 2005. godine (Gronchi, 2005) G. F. Gronki ’An algebraic method to 
compute the critical points of the distance function between two Keplerian orbits’ on 
daje algebarski metod za izračunavanjem kritičnih tačaka funkcije rastojanja izmeñu 
dve  

Keplerove orbite zasnovane na teoriji eliminacije. Efikasan algoritam izračunava 
kritične tačke ne samo kod eliptičnih putanja već i kod paraboličnih i hiperboličnih koje 
imaju zajedničku žižu. Na kraju daje odreñene komentare u vezi nekih degerativnih 
slučajeva koji se mogu pojaviti kada je u pitanju kretanje asteroida. 

Tih godina  (Baluyev and Kholshevnikov, 2004) Baljujev R. i Holševnikov K. rade na 
problemu neporemećenih orbitalnih razdaljina i objavljuju rad pod nazivom: ’Distance 
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between two arbitrary unperturbed orbits’. Oni utvrñuju sve realne korene 
trigonometrijskih polinoma stepena osam i potvrñuju da kod neporemećenih putanja 
polinom nižeg stepena ne postoji. Takoñe, oni izloženi postupak pored eliptičnih 
putanja primenjuju i na hiperbolične i parabolične putanje. 

2006. godine (Murison and Munteanu, 2006) M. A. Murison i A. Munteanu  ’On the 
Distance Function between Two Confocal Keplerian orbits’ rade na analitičkim i 
numeričkim istraživanjima problema minimalnog rastojanja preko ekscentričnih 

anomalija i konstatuju opšte rešenje u obliku polinoma stepena 8 izraženih preko 1cosE  

i 2cosE . Numerički rešavajući Keplerovu jednačinu i jednostavnim algoritmom za 
pretragu, moguće je odrediti vreme bliskih prilaza dva asteroida. Takav brzi filter služi 
za selektovanje mogućih proksimiteta bez potrebe za numeričkom integracijom 
diferencijalnih jednačina kretanja. Kao i kod Gronki-ja (2002) (gde teorija kaže da je 
gornja granica 16 stacionarnih tačaka) i ovde su numerička istraživanja ukazala da je 
gornja granica broja stacionarnih tačaka 12. 

2006. godine (Gronchi at al., 2006) G. F. Gronki, G. Tomei i A. Milani objavljuju rad 
’Mutual geometry of confocal Keplerian orbits: uncertainty of the MOID and search for 
virtual PHAs’. U ovom radu uvodi se ranije navedeni pojam MOID – Minimum Orbit 
Intersection Distance koji su prvi upotrebili Bowell i Muinonen (1994) kao korisno 
sredstvo za ustanovljavanje da li se dva nebeska tela sudaraju ili prolaze veoma blizu. 
Ovde su dati odreñeni rezultati u vezi broja lokalnih minimuma kao i njihov položaj u 
odnosu na uzlazni i izlazni čvor. Takoñe koristeći ovaj pristup autori su tražili virtuelne 
PHA – Potentially Hazardous Asteroids i pronašli objekte čije orbite su različite od onih 
kakve imaju NEA – Near Earth Asteroids. 

2010. godine (Armellin at al., 2010) R. Armelin, P. Di Lizia, M. Berc i  K. Makino 
objavljuju rad ‘Computing the critical points of the distance function between two 
Keplerian orbits via rigorous global optimization’. Metod koji je ovde predstavljen 
globalno je optimizovan i zasniva se na Tejlorovom modelu. Posle dobijanja 
stacionarnih tačaka odredjene sposobnosti modela se koriste za analizu uticaja 
nezavisnih orbitalnih parametara na položaj stacionarnih tačaka.  

U testovima su korišćene jednostavne orbite i Aphophis asteroid a globalni optimizator 
je bio COSY-GO. Metod takoñe omogućava klasifikaciju novootkrivenih nebeskih tela 
a opseg procena svih MOID-a je baziran na Monte Carlo algoritmu.  

Vidimo dakle da je odreñivanje proksimiteta u modernim tokovima astronomskih 
istraživanja dobilo jednu drugačiju formu  i da je on i dalje zastupljen astronomski 
problem, iako datira od sredine XIX veka. Zbog činjenice da se njegova rešenja mogu 
koristiti i za druga izračunavanja, on ima uvek odreñenu aktuelnost i značaj. To najbolje 
potvrñuju upravo u uvodnom delu navedeni naslovi pojedinih oblasti koje su se 
definisale poslednjih decenija. Sve zajedno to su sigurno opravdani razlozi za stalno 
traženje novih načina prilaženja problemu proksimiteta, bilo da je reč o njegovom 
izračunavanju, odreñivanju uslova za njegovo postojanje ili definisanje problema u 
celini. 
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3. PROKSIMITETI I KRITI ČNE TAČKE FUNKCIJE 
RASTOJANJA 

3.1 Broj proksimiteta i uslovi njihovog postojanja 

Kada govorimo o uslovima postojanja proksimiteta prvo što treba da imamo na umu je 
činjenica da je ovo prostorni problem i da je neophodno prvo definisati šta se dogaña u 
ravni kada imamo dve konfokalne elipse. U tom smislu, dokaz da izmeñu dve elipse u 
ravni sa jednom zajedničkom žižom, ne može postojati više od dve presečne tačke 
(Milisavljevic, 2002), treba uzeti u obzir. Ono što se kasnije dogaña kada jednoj od 
elipsi počnemo da menjamo pored geometrijskih parametara (velike poluose i 
ekscentričnosti) i ostale parametre tj. putanjske elemente (nagib, argument uzlaznog 
čvora i argument perihela), u najkraćem se može opisati na sledeći način:  

Jedan proksimitet uvek postoji. Sama priroda problema  na to ukazuje, tj. poznato je da 
izmeñu bilo koje dve zatvorene krive linije u prostoru mora postojati makar jedno 
minimalno rastojanje. Zbog toga se o nekim posebnim uslovima koji moraju biti 
ispunjeni, ovde ne mora ni govoriti, jer je to jasno samo po sebi (videti primer na  sl. 
3.1.) 

 

 

Slika 3.1: Projekcija putanja para malih planeta (4 – 638)  na ravan prve putanje tj. XY 
ravan 

Dva proksimiteta mogu postojati i to je praktično najčešći slučaj. Oni se obično nalaze u 
blizini relativnih čvorova, ili kada se radi o kvazikomplamarnim putanjama, u okolini 
njihovih projekcijskih preseka. S obzirom na relativno mali meñusobni nagib svih 
prikazanih primera,  njihove projekcije na XY ravan daju dosta realnu sliku stvarnog 
stanja. Ipak, zbog tačnog izražavanja uveli smo termin projekcijski presek, jer se te 
tačke ne moraju uvek nalaziti u blizini relativnih čvorova. Da bi  slučaj sa dva 
proksimiteta bio ispunjen, dovoljno je da izmeñu ravni u kojima se nalaze putanje 
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postoji odreñeni nagib, ili da se, gledajući njihovu projekciju na XY ravan, stiče utisak 
kao da se seku u dve tačke.  Slike 3.2 a i 3.2 b u principu odgovaraju svim mogućim 
slučajevima u stvarnosti.  

 

a) 
 

b) 

Slika 3.2: a)Projekcija putanja para malih planeta (1 – 3468) na XY ravan. b) 
Projekcija putanja para malih planeta (6 – 16) na XY ravan. 

Tri proksimiteta mogu postojati, ali se  taj slučaj, kada su u pitanju putanje malih 
planeta, sreće mnogo reñe. Proksimiteti kod ovog slučaja obično su rasporeñeni tako da 
su dva u okolini projekcijskih preseka putanja (reñe u blizini čvorova), dok je treći uvek 
skoro simetrično u sredini naspram njih. Uslovi za postojanje ovakvog slučaja obično 
proističu iz specijalnih položaja prethodnog slučaja. Sa slika 3.3 a i 3.3 b to se može 
jasno videti (napomena: položaj žiže na slici 3.3a prilično odstupa od realnog jer je u 
pitanju veliki medjusobni nagib elipsi)   

 

a) 

 

b) 

Slika 3.3: a )Projekcija putanja para malih planeta (1943 – 3200) na XY ravan. b) 
Projekcija putanja para malih planeta (287 – 486) na XY ravan. 

Četiri proksimiteta takoñe mogu postojati, sa tom razlikom što ih je u stvarnosti veoma 
teško pronaći. Primer sa sl. 3.4 je simulirani model koji imamo u radu Gronkija (2002), 
i on upravo pokazuje da je slučaj sa četiri proksimiteta teorijski moguć. 
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Slika 3.4: Projekcija putanja simuliranog modela para malih planeta M1 i M2  na ravan 
prve putanje tj. XY ravan  

Postavlja se pitanje šta je to što je realno moguće i što se stvarno može dogoditi u ravni 
izmeñu dve elipse sa jednom zajedničkom žižom, a što bi pri maloj promeni 
meñusobnog nagiba, tj. u prostornom slučaju, uslovilo pojavu tri proksimiteta?! To bi 
bio slučaj kada imamo dve presečne tačke i treću koja je veoma bliska dodiru, kao što je 
prikazano na slici 3.5 

U tom trećem karakterističnom položaju (na slici 3.5 obeležen sa M3) može se nalaziti 
jedno minimalno rastojanje izmeñu dve elipse, a ono je najmanje kada je SP1=SP2 tj. 
kada su perihelske daljine jednake. 

Ipak, nikada se ne može dogoditi da se to minimalno rastojanje degeneriše u tačku 
(Milisavljević, 2002). 

 

Slika 3.5: Šematski prikaz položaja dve konfokalne eliptične putanje za postojanje 3 
proksimiteta 

Kada se ispune dati uslovi i doñe do situacije kao na sl. 3.5 (obično je karakteristično 
mesto "dodira" u blizini perihela one elipse koja se pomera), dobijamo model koji u 
prostornom slučaju (kada izmeñu ravni u kojima se elipse nalaze postoji odreñeni 
nagib), ima tri proksimiteta. Od ta tri proksimiteta, dva su, kao i obično, u okolini 
projekcijskih preseka putanja M1 i M2, dok je treći  u okolini karakterističnog  položaja 
M3. 



 18 

Kada govorimo o slučaju sa četiri proksimiteta on bi se mogao shvatiti kao specijalni 
slučaj prethodnog prikazanog na sl. 3.5. Postavimo elipse sa te slike u položaj sa dve 
presečne tačke, ali sada sa meñusobnom razlikom u poziciji perihela od približno 180º 
(videti sl. 3.6). 

 

Slika 3.6: Šematski prikaz položaja dve konfokalne eliptične putanje za postojanje 4 
proksimiteta 

Na prvi pogled vidimo da je to već razmatrani slučaj dva proksimiteta sa sl. 3.2a 
Meñutim, iz ovakve ravanske postavke u prostornom slučaju, pri dovoljno velikoj 
razlici u nagibima ravni u kojima se elipse nalaze, dolazi upravo do pojave još dva 
proksimiteta i to u zonama M3 i M4. Ovi proksimiteti su skoro simetrično rasporeñeni u 
odnosu na pravac maksimalnog rastojanja izmeñu ovih elipsi. Njihovo postojanje 
(egzistencija) je zasnovana na dve činjenice: Prva je položaj elipsi kao “karike u lancu”  
(periheli su na suprotnim stranama), tako da pozicija M3 sa sl. 3.5, koju smo uslovno 
zvali tačka dodira, ovde ne postoji. Naprotiv, imajući u vidu da se pozicija M3 nalazila u 
pravcu perihela, ona se pri ovakvom meñusobnom položaju elipsi prosto gubi i postaje 
jedno od najvećih rastojanja (sivi osenčeni deo sl. 3.6).Tako imamo situaciju u kojoj 
ostajemo ’samo’ na dva proksimiteta, kao što je već prikazano na sl. 3.2. 

Meñutim, postepenim povećavanjem meñusobnog nagiba ravni u kojima se nalaze 
elipse, dolazi do pojave  trećeg proksimiteta, a kasnije oko “kritičnog ugla” (u 
prikazanom primeru njegova vrednost je 79º-81º), i do pojave četvrtog proksimiteta. 
Oba ova proksimiteta upravo se nalaze u zonama M3 i M4. Svakako da dovoljno veliki 
meñusobni nagib dve elipse, gde imamo četiri proksimiteta, neće biti isti kod svih 
primera ovog tipa, ali se slobodno može reći da je upravo to drugi razlog za postojanje 
četiri proksimiteta. Svi ostali mogući položaji (bez obzira na vrednosti putanjskih 
elemenata, a naročito na uzajamni nagib), ne mogu dati ni jedan koji bi se principijelno 
razlikovao od ovde prikazanih primera i modela. 
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3.2 Kritične tačke funkcije rastojanja i zavisnost od putanjskih elemenata  

S obzirom na kompleksnost funkcije rastojanja i na ogroman broj njenih oblika kao i na 
činjenicu da zastupljenost kritičnih tačaka prevashodno zavisi od oblika tj. geometrije 
putanja, metodu koju ćemo kasnije objasniti koristili smo u nekoliko etapa. Prva ideja je 
bila da se od svih postojećih registrovanih asteroida 
(http://www.minorplanetcenter.net/iau/MPEph/MPEph.html) pronañu parovi sa četiri 
proksimiteta jer do sada takav rezultat nije bio objavljen. U tom cilju odabrano je 2449 

asteroida sa poznatim ’dijametrom’ i nagibom većim od 
°45 (Gronkijev simulirani 

model sa 4 proksimiteta je bio razlog takvog odabira). Njihovim meñusobnim 
kombinacijama napravljena je baza od 2997576 parova asteroida za koje se, po 
dosadašnjim pretpostavkama, moglo očekivati da se takav rezultat dobije. 

Sledeća etapa je bila da se sa malo prilagoñenom gore pomenutom metodom pronañu 
svi mogući parovi rešenja (broj min i broj max) kod simuliranih parova asteroidskih 
putanja zbog što celovitije analize funkcije rastojanja. Zbog ogromnog broja mogućih 
kombinacija, koje se mogu simulirati, pribeglo se odreñenim ograničenjima tako da su 
putanjski elementi prve elipse bili fiksni a1=1, i1=1, ω1=10, Ω1=10 dok su putanjski 
elementi druge elipse i e1 varirani po sledećem modelu: i2=1:89;2, ω2=5:355;25,  
Ω2=5:355;25, e2=0:0.9;0.01, a2=0.05:0.95;0.15, e1=0:0.9;0.1. (ω predstavlja argument 
perihela). Posle još nekih dodatnih provera i  višestrukih pokušaja rešavanja, jedini 
način da se funkcija rastojanja što celovitije definiše bio je da se pre početka sledeće 
etape izvrše dodatne korekcije u pogledu variranja putanjskih elementa. 

 

3.3 Kritične tačke funkcije rastojanja i zavisnost od oblika putanja 

Poslednja etapa tj. korak koji je urañen, kao što je u prethodnom poglavlju već 
nagovešteno, bila je uslovna klasifikacija mogućih parova konfokalnih elispi tj. 
eliptičnih putanja asteroida. U tom smislu, formirane su tri grupe i u svakoj po nekoliko 
tipova kako bi kasnije simulacije funkcije rastojanja mogle da nam daju još celovitiju 
sliku o tome šta se zapravo dogaña tokom simulacija; tj. pri promeni odreñenih 
parametara i naravno što preciznije rezultate. Njihovi oblici i geometrijske 
karakteristike su: 

 

Grupa I  

Ovde su uzeti u razmatranje tri para istih elipsi pri čemu par a) ima najmanju 
ekscentričnost (elipse su jako bliske kružnicama), par b) ima ekscentričnost koja 
uslovljava da je velika poluosa dva puta duža od male poluose, i par c) gde je 
ekscentričnost izuzetno velika što uslovljava da je odnos velike i male poluose približno 
1:20 (degenerativni slučajevi ipak mogući u realnosti).  
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Ia)  a1=1, a2=1, e1=0.01, e2=0.01    

(dve identične eliptične putanje jako malih ekscentričnosti - bliske kružnici) 

 

 

 

 

 

 

 

 

 

 

 

Ib)  a1=1, a2=1, e1=0.866, e2=0.866 

(dve identične eliptične putanje kod kojih mala i velika poluosa imaju razmeru 1:2) 

 

 

 

 

 

 

Ic)  a1=1, a2=1, e1=0.99, e2=0.99  

(dve identične eliptične putanje kod  kojih mala i velika poluosa imaju približnu 
razmeru 1:20) 

 

 

 

 

Grupa II  

Ideja za formiranje grupa II i III proistekla je iz činjenice da sva tri para elipsi iz prve 
grupe (ili one srazmerne tj. proporcionalne njima) mogu imati ili nemati presečnih 
tačaka kada su u istoj ravni. Druga grupa, upravo predstavlja odreñene karakteristične 
slučajeve u ravni kada se ove elipse i njima slične ne seku.   

 

IIa)  a1=0.5, a2=1, e1=0.01, e2=0.01 
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(dve slične eliptične putanje jako malih ekscentričnosti – bliske kružnici, pri čemu  
jedna ima duplo manju veliku poluosu od druge) 

 

 

 

 

 

 

 

 

 

 

 

IIb)  a1=0.01, a2=1, e1=0.01, e2=0.99 

(kombinacija eliptičnih putanja Ic-Ia po ekscentričnosti, pri čemu se one u ravni ne 
seku, tj. druga ima jako male obe poluose i praktično se nalazi unutar prve) 

 

 

 

 

IIc)  a1=1, a2=0.49, e1=0.01, e2=0.99 

(suprotno prethodnom tipu tj. sada se eliptična putanja sa ekstremnom ekscentričnošću 
nalazi unutar druge, koja ima veoma malu ekscentričnost, blisku kružnici i duplo veću 
veliku poluosu) 
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IId)  a1=0.5, a2=1, e1=0.866, e2=0.866 

(dve slične eliptične putanje čije poluose stoje u razmeri 1:2 pri čemu je jedna ima 
duplo manju veliku poluosu od druge tj. nalazi se unutar nje) 

 

 

 

 

 

 

IIe)  a1=0.5, a2=1, e1=0.99, e2=0.99 

(dve slične eliptične putanje velikih ekscentričnosti, čije poluose stoje u odnosu 
približno 1:20, pri čemu je jedna ima duplo manju veliku poluosu od druge t.j nalazi se 
unutar nje) 

 

 

 

 

Grupa III 

Treća grupa predstavalja odreñene karakteristične slučajeve u ravni kada se ove elipse (i 
njima slične) seku.  

 

IIIa)  a1=1, a2=0.97, e1=0.01, e2=0.03 

(dve slične eliptične putanje malih ekscentričnosti koje se seku kada su u istoj ravni) 

 

 

 

 

 

 

 

 

 

 

IIIb)  a1=0.011, a2=1, e1=0.01, e2=0.99 
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(kombinacija eliptičnih putanja Ic-Ia pri čemu se one u ravni seku iako druga ima 
veoma male obe poluose) 

 

 

 

 

 

IIIc)  a1=1, a2=0.51, e1=0.01, e2=0.99 

(eliptična putanja ekstremne ekscentričnosti nalazi se unutar eliptične putanje jako male 
ekscentričnosti bliske kružnici koja ima duplo veću veliku poluosu pri čemu se one seku 
kada su u istoj ravni) 

 

 

 

 

 

 

 

 

 

 

 

IIId)  a1=0.5, a2=1, e1=0.01, e2=0.99 

(predstavlja presek jedne eliptične putanje male ekscentričnosti i druge velike 
ekscentričnosti, pri čemu druga ima duplo veću poluosu od prve, a seku se kada su u 
istoj ravni) 

 

 

 

 

 

 

 

IIIe)  a1=0.5, a2=1, e1=0.01, e2=0.866 
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(kombinacija jedne eliptične putanje male ekscentričnosti i druge sa srednjom 
ekscentričnosti, odnos poluosa 1:2, pri čemu je prva ima duplo manju veliku poluosu od 
druge a seku se kada su u istoj ravni) 

 

 

 

 

 

 

 

IIIf)  a1=1, a2=0.5, e1=0.99, e2=0.96 

(dve slične eliptične putanje velikih ekscentričnosti-odnos poluosa približno 1:20, pri 
čemu jedna ima duplo manju veliku poluosu od druge, t.j nalazi se unutar nje, ali se 
seku kad su u istoj ravni) 

 

 

 

 

 

Ono što je važno naglasiti je da, kao što smo se u prvoj grupi opredelili za ‘samo’ tri 
karakteristične elipse, tj. asteroidske putanje, tako se i u ostale dve grupe nismo vodili 
idejom da ‘ukrstimo svaku sa svakom’, tj. simuliramo sve parove elipsi. Razlog je u 
činjenici da su rezultati prethodne dve etape pokazali da se broj teorijski mogućih 
rešenja (14 i 16) sistema transcedentih jednačina koje definišu funkciju rastojanja a koja 
nisu do sada pronañena mogu očekivati kod parova elipsi (gore prikazanih oblika) i, 
naravno, njima sličnim. Sve simulacije su imale iste fiksne parametre tj. putanjske 
elemente ω1=1, Ω1=1, i1=1 i iste varijacije ostalih, ω2=5: 355; 3.125, Ω2=5:355;3.125, 
i2=1:89;1, (sve vrednosti su date u stepenima). Ovakvim pristupom je moguće da za 
svaki tip iz sve tri gore navedene grupe parova putanja izvršiti izračunavanje 
minimalnih i maksimalnih rastojanja za preko milion njihovih različitih meñusobnih 
položaja.   

 

3.4 Geometrijski i analitički prikaz rešavanja problema proksimiteta   

Metoda za izračunavanje proksimiteta prikazana u magistarskom radu ‘Jedan postupak 
za odreñivanje proksimiteta izmeñu putanja malih planeta’ (S. Milisavljević, 2002) bila 
je osnov za postupak koji je korišćen u ovom radu i koji će sada biti izložen. Ako 

pogledamo sliku 3.7 vidimo da relativni vektor položaja ρ
r

, osim što predstavlja razliku 

prvog i drugog vektora položaja 1r
r

 i 2r
r

 (u zavisnosti od njegove orjentacije može biti i 
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obrnuto), uvek je normalan na tangentu u tački dodira putanje na koju dolazi tj. u 
njegovom kraju.  

Ovde možemo reći da se funkcija rastojanja kao matematička interpretacija može 

nazvati merom dužine vektora  ρr , odnosno dužinom orbitalnog preseka (DOP). Dakle 
naš cilj je nalaženje kritičnih tačaka funkcije rastojanja dve tačke konfokalnih orbita i, 
naravno, kada su u pitanju ekstremne tačke, nalaženje minimuma, tj. proksimiteta. 
Očekujemo da usputni rezultat bude i nalaženje najmanjeg medju njima, odnosno 
nalaženje najmanje dužine orbitalnog preseka (NDOP, engleski MOID). 

 

Slika 3.7: Šematski prikaz grafičke metode odreñivanja proksimiteta 

Dakle poštujući ranije date uslove, (slike 3.7), vidimo da naizmeničnim ’odlaženjem’ i 

’dolaženjem’ sa jedne na drugu eliptičnu putanju vektora ρ
r

, pri čemu je početak 
sledećeg uvek u tački gde je kraj prethodnog, on, zapravo, konvergira u tačku gde će 
njegov intenzitet biti najmanji. To suštinski znači da je upravo u toj tački najmanje 
rastojanje izmeñu dve eliptične putanje tj. proksimitet. Ova činjenica je osnova 
postupka koji je prikazan u gore pomenutom magistarskom radu.  

S obzirom da je osnovni cilj ovog rada pronalaženje svih mogućih rešenja sistema 
jednačina koje opisuju problem proksimiteta tj. svih kritičnih tačaka funkcije rastojanja 
gore opisana metoda bila je kao takva neadekvatna. Ona, osim što je bila suviše spora, 
nije pružala ni mogućnost pronalaženja maksimalnih rastojanja.  

Kao, što je poznato, maksimalna rastojanja zajedno sa minimalnim rastojanjima i 
prevojima predstavljaju kritične tačke funkcije rastojanja. U tom smislu, u postupku koji 
će biti izložen i na osnovu koga je napravljen algoritam i program za izračunavanje 
kritičnih tačaka funkcije rastojanja iskorišćen je samo analitički deo gore pomenutog 
postupka. U najkraćem, on izgleda ovako: 

Opšte je poznato da dve vektorske jednačine: 
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Vrr
                                                                                           (3.1) 

definišu problem i one nisu ništa drugo neko matematička interpretacija onoga što je 
prethodno rečeno o karakteru relativnog vektora položaja. Ovaj sistem vektorskih 
jednačina je transcedentnog tipa, a da bismo se prilagodili prethodno izloženom 
geometrijskom postupku, uzmimo da su vektori položaja malih planeta izraženi preko 
ekscentričnih anomalija E1 i E2, (Simovljević, 1976), odnosno: 
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Imajući u vidu da je 
→

→

= V
dt

rd i  koristeći vezu 
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rd
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= , (Milanković, 1935, 1995), 

jednačine (3.1) možemo napisati u obliku: 
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S obzirom da za primenu ove metode nije neophodno rešavanje sistema ove dve 
vektorske jednačine mi ćemo pristupiti reašavanju samo jedne od njih. Uzmimo 

proizvoljnu vrednost za E1 (npr. E1=0) ubacimo je i zamenimo  vrednosti za 21,
→→
rr  i 

2

→
V  u drugu jednačinu sistema (3.1) i podelimo je sa dt

dE2
. Posle pregrupisavanja 

članova dobijamo izraz: 
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Prethodnu jednačinu možemo napisati u obliku: 
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sin =++ EECEBEA ,                                                 (3.5) 

jer su izrazi u zagradama konstantne veličine, pri čemu su: 
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      (3.6)  

Ako sada jednačinu (3.5) podelimo sa koeficijentom B (vodeći računa da je B različito 
od nule) dobija se: 

0
2

cos
2

sin
2

cos
2

sin =++ EENEEM ,                                                           (3.7)  
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gde su sa M i N označeni količnici B

A
 i B

C
, respektivno. 

Koristeći trigonometrijske jednakosti )]
2

tan1/(
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tan2[sin 2 EE
E +=  i 
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tan1[cos 22 EE
E +−=  pa primenjujući smenu za tangens ugla t
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njenom zamenom u jednačinu (3.7), dobijamo: 
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Pomnožimo li, sada,  prethodnu jednačinu sa (1+t2) posle odreñenih sreñivanja dolazi se 
do jednačine četvrtog stepena oblika: 

00
1

1
2

2
3

3
4

4 =++++ atatatata ,                                                        (3.9)  

pri čemu je 

10 −=a ,   )(21 NMa +−= ,   02 =a ,   )(23 NMa −−= ,   14 =a .     (3.10)  

Ono što je kod ove jednačine karakteristično je da ona, sobzirom na oblik i problem koji 
opisuje, mora imati uvek 2 ili 4 realna rešenja. 

Samo jedno od moguća četiri rešenja je ono koje je odgovarajuće, a kriterijum  za  
njegovo  odreñivanje je najmanja vrednost od svih mogućih razlika intenziteta vektora 

2r
r

 i 1r
r

. Naime, nakon rešavanja jednačine (3.9) i posle vraćanja prethodnih smena, 
nalazimo odgovarajuće ekscentrične anomalije, a  samim tim i intenzitete vektora 
položaja.  

Oduzimanjem od svakog intenzitet vektora 1r
r

, dobijamo četiri intenziteta vektora 
→
ρ  i 

uporeñujemo ih meñusobno da bi pronašli najmanji. Ona ekscentrična anomalija (od 
najviše mogućih četiri koje figurišu kao rešenja) koja odgovara najmanjoj vrednosti 

vektora ρ
r

, je traženo rešenje jednačine. 

S obzirom da je dobijena vrednost ekscentrične anomalije druge eliptične putanje 2E  
ona koja odgovara najmanjem relativnom vektoru položaja iz tačke na prvoj eliptičnoj 

putanji sa vrednošću ekscentrične anomalije  01 =E , ceo postupak moramo ponoviti za 
11 =E , 21 =E , 31 =E ...... 3591 =E  ili sa manjim ili većim korakom, zavisno od 

karakteristika eliptičnih putanja, kako bi dobili isto toliko vrednosti za 2E . Kada tako 

dobijene vrednosti ekscentričnih anomalija 1E  i 2E i njihovih odgovarajućih najmanjih 
vektora položaja meñusobno uporedimo one koje su najmanje su naši potencijalni 
proksimiteti. Sada se ceo postupak ponavlja sa druge na prvu eliptičnu putanju, pri 

čemu su sada polazne vrednosti 02 =E , 12 =E , 22 =E ...... 3592 =E . Uporeñivanjem 
i kombinacijom ovakve dve grupe rezultata mi rešavamo preblem proksimiteta tj. 
izračunavamo njihov tačan broj, veličinu i poziciju. 
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Slika 3.8: Šematski prikaz metode odreñivanja proksimiteta kada jednačina 3.9 ima dva 
rešenja 

Sa slike 3.8 može se videti kako se postupak tj. izračunavanje izvodi kada jednačina 
(3.9) ima dva rešenja a sa slike 3.9 kada ona ima četiri rešenja. Podebljani relativni 
vektori položaja su naša prolazna rešanja. 

 

 

Slika 3.9: Šematski prikaz metode odreñivanja proksimiteta kada jednačina 3.9 ima 
četiri rešenja 

Imajući u vidu činjenicu da i maksimalna rastojanja izmeñu dve eliptične putanje 
zadovoljavaju uslov ortogonalnosti na tangente u  tačkama dodira odnosno da i za njih 
važi vektorski sistem jednačina (3.1), gore opisani postupak (uz uslov poreñenja 
najvećih relativnih vektora položaja), takoñe primenjujemo za izračunavanje 
maksimuma tj. njihovog broja, veličine i pozicije. 
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4. ALGORITAM ZA ODRE ĐIVANJE EKSTREMNIH 
VREDNOSTI FUNKCIJE RASTOJANJA I PROGRAM 

4.1 Algoritamska blok šema 

 

Kompletan analitički postupak odreñivanja tj. izračunavanja minimalnih i maksimalnih 
rastojanja dve konfokalne eliptičene putanje, objašnjen u prethodnoj glavi, iskorišćen je 
za formiranje algoritma i pisanje računarskog programa za izračunavanje lokalnih 
minimuma i maksimuma funkcije rastojanja i njihovih odgovarajućih ekscentričnih 
anomalija. 

 

 

Slika 4.1: Blok šema algoritma za izračunavanje lokalnih minimuma i maksimuma 
funkcije rastojanja i njihovih odgovarajućih ekscentričnih anomalija. 
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Blok šema tog algoritma je prikazana je na slici 4.1. S obzirom da je blok šema 

simetrična u odnosu na ulazne veličine 1E  i 2E  na slici 4.1 dat je primer kada su ulazne 

veličine ekscentrične anomalije prve eliptične putanje 1E  tj. kada izračunavamo lokalne 

minimume, maksimume i njihove odgovarajuće ekscentrične anomalije 2E  na drugoj 

eliptičnoj putanji. Postupak izračunavanja i algoritam su isti  kada promenjive 1E  i 2E  
zamene mesta stom razlikom što se tada koristi prva jednačina sistema 3.3. Parametri u 
ulaznom modulu algoritma su putanjski elementi prve i druge eliptične putanje: velike 
poluose, ekscentričnosti, longitude uzlaznog čvora, longitude perihela i nagibi. Kada 
smo isti algoritam i njemu prilagoñeni program koristili za izračunavanje broja 

stacionarnih tačaka i njihovih vrednosti za ρ
r

,  1E  i  2E  kod simuliranih parova, kao 
što je već u prethodnom poglavlju pomenuto, obično je jedna putanja imala fiksne 
putanjske elemente na ulazu dok su putanjski elementi druge putanje varirali tj. njihova 
varijacija je programski generisana. U tom smislu se i ulazni modul algoritma za 
simulacije neznatno razlikuje.  

 

4.1.1 Modul za sortiranje rezultata 

S obzirom da, kao što smo već rekli, jednačina četvrtog stepena može imati četiri ili dva 
realna rešenja i da za svaki par asteroida, bilo da su oni realni ili simulirani, treba ‘obići’ 
obe eliptične putanje sa odgovarajućim korakom, očigledno je da u postupku 
izračunavanja imamo mnogo prolaznih rešenja. Iz tog razloga u algoritmu postoji petlja, 
a formiran je i poseban modul za sortiranje rezultata. U modulu za sortiranje se 
odbacuju sva tekuća rešenja koja programski nisu zahtevana i praktično se formiraju 

dve funkcije rastojanja ),( 11 Ef ρ  i ),( 22 Ef ρ  koje se kasnije uporeñuju. U zavisnosti od 
vrste ekstremuma koji se traži (minimum ili maksimum) u funkciji rastojanja figurišu 

minρ ili maxρ . Izlazni modul je fleksibilan u smislu da se može predvideti i znatno veći 
broj  izlaznih podataka nego što je to dato u blok šemi na slici 4.1. 

 

4.2 Opis rada programa  

Iako će kompletan program, koji je formiran i korišćen kako u računu stacionarnih 
tačaka eliptičnih putanja realnih asteroidskih parova, tako i simuliranih parova, biti dat 
u prilogu, u ovom poglavlju će biti objašnjeni neki njegovi glavni delovi. Prvo što treba 
reći je da je program napisan u programskom jeziku Matlab 7.0 i da se on kao takav 
pokazao prilično pogodan za zahtevana izračunavanja. Takoñe je važna činjenica da 
osim što je izloženi postupak odreñivanja proksimiteta brži od sličnog (Milisavljević, 
2002) i programski jezik Matlab 7.0 je operativniji od svog prethodnika pre deset 
godina. Ako tome dodamo i znatno veće hardverske mogućnosti danas, jasno je kako je 
uspešno obrañeno preko 20 miliona što realnih što simulirnih parova eliptičnih putanja.  

Na samom početku programa definisan je zajednički korak za promene (varijacije) 1E  i 

2E , a odmah zatim se zadaje i preciznost Njutnove metode. Posle unošenja putanjskih 

elemenata obe asteroidske putanje na osnovu njih se prvo generišu jedinični vektori P
r

 i 
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Q
r

 tj. njihove koordinatne algebarske vrednosti. U segmentima ’pomoćni parametri’ 
posle višestrukih smena formira se jednačina četvrtog stepena i nakon toga se pristupa 
njenom rešavanju. Zatim slede segmenti ’prekidanje’ gde se odvajaju realna od 
imaginarnih rešenja, zatim se nalaze rešenja u okolini perihela i afela i tek onda 
program računa rastojanja.  

Prvi korak u celom postupku, bilo da se izračunavaju minimumi ili maksimumi za 1E  

jeste provera da li postoji minimum ili maksimum u tački 01 =E . Isti postupak se 

ponavlja i za 2E . Na kraju program sortira sve minimume i maksimume i bira najmanji 
medju minimumima. Podatke o minimumima i maksimumima na izlazu prate podaci o 

odgovarajućim vrednostima 1E  i  2E  koji su dati u stepenima, a odgovarajući minimum 
ili maksimum funkcije rastojanja izraženi su u astronomskim jedinicama. Ovo je suština 
rada programa. Primena Njutnove metode u rešavanju jednačine četvrtog stepena 
omogućava višestruko ubrzanje računskog postupka u odnosu na brzinu rada 
odgovarajućeg modula programskog jezika  Matlab 7.0. Pored navedenih izlaznih 
podataka program daje i broj kombinacija minimuma i maksimuma za svaki set 
simulacija ili realnih parova jer je za analizu fukcije rastojanja taj podatak od značaja.  

 

4.3 Još neke karakteristike programa  

Rekli smo da program može da generiše više vrsta izlaznih podataka u skladu sa 
zahtevima analize funkcije rastojanja. Važno je istaći da program omogućava, posredno, 
iscrtavanjem grafika funkcije rastojanja, odredjivanje njenih prevojnih tačaka. U slučaju 
primene metode (Milisavljević 2002), koja je odreñivala samo minimume tj. 
proksimitete, da bi se očuvala kontinualnost u obilaženju i da neki od mogućih 
proksimiteta ne bi bio preskočen, a zbog problema stalnog smenjivanja minimalnih 
rastojanja i prevoja funkcije rastojanja dve putanje, morali smo stalno "gurati" odlazeći 
vektor uvek na novu početnu poziciju, sve dok ne prestane da se vraća unazad na već 
izračunati proksimitet (slika 4.2).  

Naime, ako sa l1 obeležimo prvu eliptičnu putanju i nju položimo u XY ravan, druga 
eliptična putanja l2, bi u tom slučaju, zauzimala položaj kao na slici 4.2. Slika 4.2 
prikazuje projekciju ove dve eliptične putanje na XZ ili YZ ravan, što zavisi od ostalih 
parametara. U svakom slučaju, usled meñusobnog nagiba ravni u kojima se ove dve 
putanje nalaze i zakrivljenosti elipse kao geometrijskog oblika, imamo smenjivanje užih 
i širih oblasti najmanjih rastojanja ovih (ili bilo kojih) asteroidskih putanja. Zato smo 
koristili mogućnost  "dodavanja" vrednosti ekscentrične anomalije svakoj sledećoj 

ulaznoj veličini, jer tek kada vektor relativnog položaja ρr  proñe prevoj, tj. najširu 
oblast (šrafirani deo sl. 4.2) on, kao što smo rekli, ulazi u zonu proksimiteta i potreba za 
ovakvim dodavanjem vrednosti više ne postoji do nailaska na sledeći prevoj. 
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Slika 4.2: Šematski prikaz ranije metode prevazilaženja prevojne oblasti na funkciji 
rastojanja  

U novoj metodi to nije neophodno jer, kao što je već rečeno, program izabranim 
korakom ulazne vrednosti za ekscentričnu anomaliju prvo ’obiñe’ kompletnu jednu pa 
drugu eliptičnu putanju, formira dve funkcije rastojanja, uporedi njihove lokalne 
minimume i maksimume i samim tim rešava problem tj. daje kompletnu sliku funkcije 
rastojanja.  

 

Slika 4.3: Grafički prikaz funkcije rastojanja za proizvoljan par eliptičnih putanja 
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Na slici 4.3 se vidi da se u preseku punih i isprekidanih crvenih linija nalaze minimumi 
a da se u preseku punih i isprekidanih plavih linija nalaze maksimumi. Prevoji se nalaze 
u preseku plavih i crvenih linija.  Zahvaljujući izlaznim rezultatima imamo da su: 

prox_min =    12       92.031      0.41445 

prox_max = 185       83.084       1.5832 

pri čemu su vrednosti u prvoj i drugoj koloni E1 i E2 respektivno, dok je u trećoj 
rastojanje izraženo u AJ. Sa grafika se vidi da su prevojne tačke u centru sedla i to 
prevoj koji odgovara maksimumu u narandžastoj oblasti, a prevoj koji odgovara 
minimumu u svetloplavoj oblasti. Njihove vrednosti možemo očitati sa grafika i u 
konkretnom slučaju: to su dve vrednosti (ukupan broj min i max jednak je broju 
prevojnih tačaka), a koordinate su im približno: 

prev_1: ≈  (170 260)   prev_2: ≈ (355 250) ;   

naravno sve su vrednosti izražene u stepenima. Svakako da se položaji prevojnih tačaka 
mogu odrediti i znatno preciznije ali to nije bio primarni cilj analize funkcije rastojanja.  

Na kraju ovog poglavlja treba podsetiti da su se tačne pozicije maksimalnih rastojanja i 
prevoja ranije računale aproksimativnim postupkom J. Lazovića (opisanom u poglavlju 
2) i da transcedentni sistem jednačina 2.5, u zavisnosti od vrednosti odgovarajućih 
parcijalnih izvoda, ima rešenja koja su minimumi, maksimumi ili prevojne tačke. 

Znajući da je  

)()( 1212
2 rrrr

rrrr −⋅−=ρ ,                                                                                    (4.1) 

parcijalni izvod po E1 možemo napisati u obliku: 
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a parcijalni izvod po E2, 
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Ako ponovo prvu diferenciramo po E1, a drugu po E2, dobijamo izraze u obliku: 
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Mešovite parcijalne izvode dobijamo kada jednačinu (4.2) diferenciramo po E2, ili  
jednačinu (4.3) po E1. Tako dolazimo do:      
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Uslov za postojanje ekstremuma je  



 34 

0
2

21

22

2
2

22

2
1

22

>








∂∂
∂−

∂
∂⋅

∂
∂

EEEE

ρρρ
,                                                                         (4.7) 

za vrednosti odgovarajućih rešenja. Ako je to ispunjeno, ekstremum u toj tački zaista 

postoji i to ako je 02
1

22

>
∂
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ρ
on je minimum, a ako je 02
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∂
∂

E

ρ
 on je maksimum. Ostala 

rešenja sistema (3.1) su prevojne tačke. 
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5. REZULTATI ANALIZE FUNKCIJE RASTOJANJA 

5.1 Simulirani parovi putanja 

5.1.1 Parovi putanja kada je jedna od njih sa fiksnim svim putanjskim 

elementima osim ekscentričnosti  

U tabeli 5.1 prikazani su rezultati simulacije parova putanja za sedam različitih 
vrednosti velike poluose druge eliptične putanje, koja je varirana od a2=0.05 do a2=0.95 
sa korakom od 0.15 u jedinicama velike poluose prve orbite. Na ovaj način dobijeno je 
5740875 parova i isto toliko rezultata tj. parova kombinacija broja minimuma i broja 
maksimuma funkcije rastojanja.  

Tabela 5.1: Rezultati simulacija 

Min 
- 
Max 

Vrednosti fiksnih i promenljivih elemenata svih 7 simulacija 

a1=1, i1=1, ω=10, Ω=10, e1=0,0.9;0.1 

i2=1,89;2, ω=5,355;25, Ω=5,355;25, e2=0,0.9;0.1 

% 

 Velika poluosa druge eliptične putanje a2 u jedinicama a1 Ukupno  

0.05 0.2 0.35 0.5 0.65 0.8 0.95  

1-1 792339 573310 371174 219418 104890 41885 21773 2124789 37,0115 

1-2 72 13561 28039 25420 17190 8651 4569 97502 1,6983 

1-3 1 2 2 7 42 95 213 362 0,0063 

1-4 0 0 0 0 0 0 0 0 0 

2-1 24232 190520 334288 444554 532145 577138 586249 2689126 46,8417 

2-2 2222 41849 84372 123855 149686 160991 163018 725991 12,6459 

2-3 28 10 2 9 94 328 624 1095 0,0190 

2-4 0 0 0 0 0 0 0 0 0 

3-1 1178 822 1384 2692 5460 11633 18759 41928 0,7303 

3-2 3 39 854 4153 10584 19374 24765 59772 1,0411 

3-3 1 0 1 0 12 0 0 14 0.0002 

3-4 0 0 0 0 0 0 0 0 0 

4-1 50 11 9 13 5 21 57 166 0,0028 

4-2 0 0 0 4 17 9 98 128 0,0022 

4-3 0 0 0 0 0 0 0 0 0 

4-4 0 0 0 0 0 0 0 0 0 
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Kao što se može videti iz tabele 5.1 parovi sa 14 i 16 stacionarnih se ne pojavljuju pa je 
očigledno da nema ni parova sa 4 maksimuma, (u daljem tekstu prva cifra će označavati 
broj minimuma a druga cifra broj maksimuma). Vidimo da postoji 166  parova 4 - 1, za 
koje je Gronki (2002) iz svojih simulacija takoñe dobio potvrdan rezultat. 

Pronañeni parovi 4 - 2 u našim simulacijama pokazuju da funkcija rastojanja sa 12 
stacionarnih tačaka zaista postoji. Zastupljenost ostalih parova data je dijagramima na 
slici 5.1 (a-b). Na tim dijagramima vrednosti na apscisi predstavljaju dužinu velike 
poluose druge orbite u jedinicama velike poluose prve orbite, dok je na ordinati dat broj 
asteroida. Jasno je, da na taj način, apscisa predstavlja osu poreñenja dimenzija dve 
orbite. 

  

Slika 5.1: a) Dijagram zastupljenosti parova 1-1, 2-1, 2-2 i 1-2 i b) Dijagram 
zastupljenosti parova  1-1  i zbirni 2-1, 2-2 i 1-2 . Na ordinati je broj parova a na 
apscisi je relativna (normalizovana) velika polusa. 

Na dijagramu a) slike 5.1 plava linija predstavlja parove 1-1, zelena parove 2-1, 
ljubičasta linija predstavlja parove 2-2 dok crvena linija parove 1-2.  Vidimo da sa 
povećanjem velike poluose druge orbite broj parova 1-1 stalno opada, dok broj parova 
2-1 i 2-2 stalno raste. Što se tiče parova 1-2 kod njih broj spočetka raste počev od nule, 
a kasnije opada do nule. Na dijagramu b) slike 5.1, možemo videti da je zbir parova 2-1, 
2-2 i 1-2 komplementaran sa brojem parova 1-1 na celom intervalu promene velike 
poluose. Ovo ukazuje na činjenicu da se od situacije sa jednim proksimitetom do 
situacije sa više proksimiteta ’najbrže dolazi’ geometrijskim izjednačavanjem 
asteroidskih putanja.  

Takvu pretpostavku bi kasnije simulacije trebalo i da potvrde. Zastupljenost parova 1-3 
i 2-3 je jako mala u odnosu zastupljenost ostalih parova ali je i u njihovom slučaju 
primetan rast broja tih parova sa rastom velike poluose.  

Dijagram a) slike 5.2 prikazuje broj parova 3-1 (plava linija) i broj parova 3-2 (crvena 
linija): vidi se da ti brojevi imaju tendenciju rasta sa rastom velike poluose, tj. sa 
geometrijskim izjednačavanjem putanja. Dijagram b) slike 5.2 predstavlja broj parova  4 
-1 (plava linija) i broj parova 4-2 (crvena linija), gde možemo videti izvesno oscilovanje 
ovakvih, specifičnih, parova asteroida.   
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Slika 5.2: a) Dijagram zastupljenosti parova sa 3-1, 3-2 i b) 4-1, 4-2.  Na ordinati je 
broj parova a na apscisi veličina velike poluose. 

Dijagram a) slike 5.3 prikazuje broj parova 1-3 (plava linija) i broj parova 2-3 (crvena 
linija). Može se videti da i ti brojevi imaju tendenciju rasta sa izjednačavanjem putanja.  

  

Slika 5.3: a) Dijagram zastupljenosti parova sa 1-3 i 2-3 maksimuma u zavisnosti od 
dužine jedne od velikih poluosa i b) Logaritam procentualne zastupljenosti svih 16 
teoretski mogućih simuliranih parova putanja 

Dakle, vidimo da ovaj tip simulacija ukazuje na porast složenosti funkcije rastojanja sa 
izjednačavanjem putanja po dimenziji. Ovu konstataciju uslovno bi trebalo da potvrde i 
neki drugi tipovi simulacija.  

 

5.1.2 Parovi putanja kod kojih se variraju samo ω 2, Ω 2 i e 2. 

Za svaki od 14 različitih parova (tipova) konfokalnih eliptičnih putanja prikazanih u 
poglavlju 3.3, urañeno je 1136441 simulacija. Dobijeni rezultati su analizirani sa 
stanovišta ‘evolucije’ funkcije rastojanja i njene promene sa promenom putanjskih 
elementa koji su varirani.  

Poñimo redom: 

Kod tipa Ia fukcija rastojanja ima 6 i 8 stacionarnih tačaka. Pojavljuju se samo parovi 2-
1 i parovi 2-2 sa zastupljenošću 13% i 87% redom. Karakteristično je da se parovi 2-1 
javljaju za relativno male vrednosti medjusobnog nagiba manje od 15°.   
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Kod tipa Ib funkcija rastojanja je složenija, ima 10 i 12 stacionarnih tačaka tj. pojavljuju 
se parovi 2-3, 3-3 i 4-2. Najzastupljeniji parovi su 2-1, 53%, 2-2, 30% i 1-1, 11%. 
Parovi 2-3, su zastupljeni 3%, dok se ostali pojavljuju u zanemarljivom broju. Ovde nije 
primetna neka kontinualnija zavisnost funkcije rastojanja u odnosu na relativni nagib. 

Suštinska razlika tipa Ic i Ib je u tome što se kod tipa Ic ne pojavljuje nijedan par 3-3. 
Ostale karakteristike su vrlo slične. 

Kod tipa IIa pojavljuju se prvi put relativno jasne oscilacije složenosti fuknkcije 
rastojanja sa rastom nagiba. Parovi 1-1 pojavljuju se za vrednosti relativnog nagiba od 
0°  do 6°, parovi 2-1 od 7° do 14°, i parovi 2-2 za vrednosti od 15° do 89°. Navedene 
oblasti nagiba blago variraju u zavisnosti od vrednosti ostala dva putanjska elementa.  

Tip IIb verovatno zaslužuje posebnu pažnju jer funkcija rastojanja za male vrednosti 
longitude uzlaznog čvora i longitude perihela u intervalu nagiba od 0° do 45°, ima 6 
stacionarnih tačaka (pojavljuju se parovi 2-1),  u intervalu nagiba od 46° do 58°, ima 8 
stacionarnih tačaka (parovi 3-1) i intervalu nagiba od  58° do 88° ima 10 stacionarnih 
tačaka (pojavljuju se parovi 3-2). Sa primicanjem nagiba vrednosti od 90°, pojavljuju se 
parovi 4-1 i 4-2, tj. funkcija rastojanja ima 10 i 12 stacionarnih tačaka. Sa druge strane, 
povećanje longitude uzlaznog čvora i longitude perihela znatno menja ovakvu 
raspodelu.   

Što se tiče tipa IIc funkcija rastojanja sa povećanjem longitude uzlaznog čvora i 
longitude perihela varira i po prvi put, imamo skokovite prelaze sa 2-2 na 1-1 i obrnuto. 
Za veće vrednosti ova dva putanjska elementa pojavljuju se parovi 3-1, 3-2, 3-3 pa i 
nekoliko parova 4-2.   

Funkcija rastojanja za tip IId za interval relativnog nagiba od  0° do 56°, ima 6 
stacionarnih tačaka (parovi 1-2), a za interval nagiba  od  57° do 87°, ima 8 stacionarnih 
tačaka (parovi 2-2). Interesantno je da se u intervalu od  76° do 77° nagiba pojavljuju 
parovi 2-3 da bi se oko kritičnog ugla od  88° do 89° pojavili parovi  3-2. 

Kod tipa IIe funkcija rastojanja sa porastom nagiba postaje jednostavnija. Sreću se 
parovi 3-2 za nagib od  0° do 7°, parovi 2-2 za nagib od  8° do 71° i parovi 1-2  za nagib 
od  72° do 88°. Tek u oblasti graničnog ugla, tj. medjusobni nagib od 89° pojavljuju se 
parovi 4-1.  

Tip IIIa ima funkciju rastojanja vrlo sličnu tipu Ia. 

Tip IIIb ima slične karakteristike funkcije rastojanja kao tip IIb. 

Kod tipa IIIc najzastupljeniji su parovi 1-2, a funkcija rastojanja ima 10 stacionarnih 
tačaka (pojavlju se parovi 3-2), za vrlo male vrednosti manje od 10° medjusobnog 
nagiba što je u skladu sa ranijim komentarom u vezi pojave 3 minimuma (poglavlje 
3.1).  

Tip IIId ima funkciju rastojanja sa 10 stacionarnih tačaka za male vrednosti longitude 
uzlaznog čvora i longitude perihela u intervalu nagiba od 0° do 88°. Sa povećanjem 
vrednosti ovih parametara pojavljuju se parovi 2-1 za interval nagiba od 0° do 12° i 
parovi 3-2 od 13° do 88°. 

Kod tipa IIIe pojavljuju se parovi 2-1 u intervalu nagiba od 0° do 39°, parovi 3-1 u 
intervalu nagiba od 40° do 57° i parovi 3-2 za nagibe od 58° do 88°. 

Tip IIIf ima veliku sličnost sa tipom IIe. 
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5.2 Realne asteroidske putanje 

U prethodnim poglavljima izložen postupak je korišćen i kod realnih asteroidskih 
putanja sa neznatnim izmenama u modulu generisanja ulaznih podataka. Takoñe ispitani 
su minimumi i maksimumi funkcije rastojanja za 2449 asteroida (tj. 2997576 parova) sa 

poznatim poluprečnicima i nagibima većim od o45 . Svi orbitalni (putanjski) elementi 
uzeti su iz dostupne baze podataka IAU Minor Planet Center 
(http://www.minorplanetcenter.net/iau/MPEph/MPEph.html). Rezultati su prikazani u 
tabeli 5.2 i pored ostalog odmah se može primetiti da kao i u tabeli 5.1 gde smo imali 
prikazane rezultate za simulirane asteroidske parove ni ovde nema parova sa 14 i 16 
stacionarnih tačaka tj. parova 3-4, 4-3 i 4-4. Takoñe nema parova sa 4 maksimuma kao i 
parova sa 3-3 koji su, iako u jako malom broju, ipak pronañeni kod simuliranih 
asteroidskih parova putanja. Kada se pogleda zastupljenost ostalih parova reklo bi se da 
nema velike razlike od simuliranih i kao što je očekivano najviše ima parova sa 2 
minimuma što je i ranije utvrñeno (slika 5.4).  

Tabela 5.2: Rezultati realnih asteroidskih parova 

Broj 
minimuma  
- 
maksimuma 

Broj 
Parova 

Vrednost 
najmanjeg 
proksimiteta u 
[AJ] 

Procenat (%) u 
odnosu na sve 
testirane asteroide 

Redni broj 
kombinacije 

minimum - 
maksimum 

1 – 1 64762 1.549545e-04 21.61 1 

1 – 2 5244 5.184364e-04 0.174 2 

1 – 3 2 4.376694e-01 0.000066 3 

1 – 4 0 - - 4 

2 – 1 2052908 1.396222e-05 68.49 5 

2 – 2 280654 1.605368e-04 9.36 6 

2 – 3 3 2.177545e-01 0.0001 7 

2 – 4 0 - - 8 

3 – 1 5540 3.297258e-03 0.185 9 

3 – 2 5461 4.325793e-03 0.182 10 

3 – 3 0 - - 11 

3 – 4 0 - - 12 

4 – 1 1 1.485550 0.000033 13 

4 – 2 1 2.070808 0.000033 14 

4 – 3 0 - - 15 

4 – 4 0 - - 16 
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Slika 5.4: Logaritam procentualne zastupljenosti svih 16 teoretski mogućih parova 
putanja u svim kombinacijama izabranih asteroida. 

Analizirajući sve dobijene rezultate moguće je dati neke komentare:  

Kod najvećeg broja parova sa jednim proksimitetom bez obzira na broj maksimuma 
bliske vrednosti njihovih nagiba putanja su evidentne tako da se može slobodno reći da 
je uslov kvazikomplanarnosti kod ovih parova u većini slučajeva zadovoljen.  

Parovi sa dva minimuma naročito oni sa jednim maksimumom su najzastupljeniji. 
Takoñe mogućnost tj. verovatnoća za postojanje ovakvih parova u slučaju 
komplanarnosti je najveća.  

Parovi sa tri minimuma su generalno mnogo manje zastupljeni i veoma ih je teško naći 
meñu kvazikomplanarnim asteroidima. Jedan od minimuma je skoro uvek blizu jednog 
od perihela dok su druga dva u nešto široj okolini čvorne linije.  

Parovi sa četiri minimuma su se pojavili samo dva puta od skoro tri miliona 
analiziranih. Prvi pronañeni par ima četiri minimuma, dva maksimuma i šest prevojnih 
tačaka, a drugi četiri miminuma, jedan maksimum i pet prevojnih tačaka. U oba slučaja, 
evidentna je veliki medjusobni nagib. Na slikama 5.5 i 5.7 prikazane su orbite tih 
asteroidskih parova sa njihovim projekcijama na nebesku sferu i kada ih uporedimo sa 
odgovarajućom slikom 5.9 Gronkijevog simuliranog modela, odmah se uočava velika 
sličnost. To naravno potvrñuju i prostorni i ravanski dijagram funkcije rastojanja dati na 
slikama 5.6 i 5.8. 
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Slika 5.5: Orbite asteroidskog para 2010 CA55–2010 JN33, (slučaj 4-1) i njihove 
projekcije na nebesku sferu. 

 

 

Slika 5.6: Prostorni i ravanski dijagram funkcije rastojanja ),( 21 EEρ za asteroidski 
par 2010 CA55–2010 JN33 (slučaj 4-1). 
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Slika 5.7: Orbite asteroidskog para 2001 OK17–2001 XN88, (slučaj 4-2) i njihove 
projekcije na nebesku sferu. 

 

Slika 5.8: Prostorni i ravanski dijagram funkcije rastojanja ),( 21 EEρ za asteroidski 
par 2001 OK17–2001 XN88 (slučaj 4-2). 
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Slika 5.9: Orbite Gronkijevog (Gronchi, 2002) simuliranog para MP1- MP2 (slučaj 4-
1) i njihove projekcije na nebesku sferu. 

 

5.3 Analiza funkcije rastojanja 

Iako vrednosti ekscentričnih anomalija u pozicijama minimuma, maksimuma kao i 
prevojnih tačaka u okviru istog slučaja, mogu biti prilično različite, njihove funkcije 
rastojanja ipak imaju vrlo slične oblike. U tom smislu, na slikama dole dati su 3d i 2d 
dijagrami za svaki od mogućih parova asteroidskih putanja (klasifikovanih po broju 
minimum-maksimum). Tabela sa njihovim imenima data je u prilogu 2. 

Na slici 5.10 a-b su prikazani odgovarajući dijagrami za slučaj kad je funkcija rastojanja 
1-1, što zajedno sa dva prevoja ukupno, daje 4 stacionarne tačke i samim tim predstavlja 
slučaj kad je ona najprostija. U zavisnosti od vrednosti putanjskih elemenata i minimum 

i maksimum mogu zauzimati najrazličitije pozicije tj. imati odgovarajuće vrednosti 1E  i 

2E .  

Na svim 3d dijagramima koji su prikazani na Z osi su vrednosti relativnog vektora 

položaja ρ
r

tj. veličina funkcije rastojanja izražena u AJ. Prevojne tačke su uvek u 
centru sedla i u centrima oblasti prelaska iz jedne minimalne ili maksimalne vrednosti u 
drugu njoj najbližu. 
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prox_min = 64      186.18     0.00015495               prox_max =  211     144.89       6.5808 

Slika 5.10 a-b: 3D i 2D dijagram funkcije rastojanja za par 1-1. 

 

Slučaj 1-2 je po karakteristikama sličan prethodnom osim naravno što ima jedan 
maksimum više, pa samim tim i 3 prevoja tj. ukupno 6 stacionarnih tačaka funkcije 
rastojanja. 

 

 

prox_min = 354       219.68     0.78758 

 

 

prox_max =  174       211.77       4.5648 

                      355       37.911       2.7715 

Slika 5.11 a-b: 3D i 2D dijagram funkcije rastojanja za par 1-2. 
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prox_min = 13       351.74      0.43771 

 

prox_max =  11       178.78       3.1107 

                    179       210.22       4.0411                                                                                                                        

                   182.11   325             4.0119 

Slika 5.12 a-b: 3D i 2D dijagram funkcije rastojanja za par 1-3. 

Iako su parovi koji imaju 1 minimum po zastupljenosti odmah iza parova sa 2 
minimuma, slučaj 1-3 je izuzetno redak i jako ga je teško pronaći, kako kod realnih tako 
i kod simuliranih asteroidskih parova putanja. Funkcija rastojanja sada ima 8 
stacionarnih tačaka. 

 

prox_min =  109       95.597       0.2202 

 

prox_max =  5    179.33             5.9418 

                  310    309.76    1.3962e-005 

Slika 5.13 a-b: 3D i 2D dijagram funkcije rastojanja za par 2-1. 

 

Svakako da su parovi 2-1 najzastupljeniji bilo da je reč o simuliranim ili realnim 
parovima asteroidskih putanja, i ono što je u ovom slučaju evidentno je da su im 
pozicije minimuma obično sa ujednačenim razlikama odgovarajućih ekscentričnih 
anomalija tj. u široj okolini linije čvorova kako je već ranije pomenuto.  
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prox_min = 14     15.668   0.00016054 

                  199     200.55   0.069757  

 

prox_max=  184       5.6783       4.4953 

                     351     172.63       4.4272 

Slika 5.14 a-b: 3D i 2D dijagram funkcije rastojanja za par 2-2. 

Slučaj 2-2 je karakterističan kao najčešće zastupljen kada je relativni nagib velik (blizak 
90°).  Simuliranje tj. promena ostalih putanjskih elemenata (longitude perihela i 
longitude uzlaznog čvora), u tim uslovima, najčešće dovodi do pojave još jednog ili više 
minimuma ili još jednog maksimuma. 

 

prox_min =  23       21.304      0.37099 

                   328       321.56      0.21789 

 

prox_max= 33       184.93       4.2263 

                 157       193.42       4.4858 

              179.09       351           4.3052 

Slika 5.15 a-b: 3D i 2D dijagram funkcije rastojanja za par 2-3. 

Slučaj 2-3 je upravo direktna posledica prethodno komentara o parovima 2-2 I, takoñe, 
kao i parovi sa 1-3 je jako retko zastupljen.  Sada funkcija rastojanja ima 5 prevoja tj. 10 
stacionarnih tačaka.  
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prox_min = 18        19.192        2.1732 

                   186       255.15    0.0032973 

                 143.31          109         2.1201 

 

prox_max = 348       183.91       7.1919 

 

Slika 5.16 a-b: 3D i 2D dijagram funkcije rastojanja za par 3-1. 

Iako ne mnogo zastupljeni svi slučajevi 3-1 imaju prilične meñusobne sličnosti kada su 
položaji minimuma i maksimuma u pitanju. To nedvosmisleno ukazuje da su raniji 
stavovi kada je bilo reči o parovima sa 3 minimuma bili ispravni tj. da se minimumi i 
maksimumi nalaze upravo na očekivanim mestima, kako je to već prikazano u poglavlju 
3.1.  

 

prox_min = 134       99.542    0.0045304 

                    347      353.36      1.3932 

                    162.58    248       2.0882 

 

prox_max = 172       354.63       3.3656 

                    334       176.67       6.3586 

Slika 5.17 a-b: 3D i 2D dijagram funkcije rastojanja za par 3-2. 

Može se reći da je par 3-2 karakterističan slučaj prethodnog 3-1 I, osim što je još reñe 
zastupljen od njega, njegova funkcija rastojanja je meñu najkomplesnijima jer kao i par 
2-3 ima pet prevoja tj. ukupno 10 stacionarnih tačaka. Ovde je takoñe karakteristično da 
se drugi maksimum obično pojavljuje na oko 180° od prvog (na priloženom dijagramu 
na slici 5.17 b i iz vrednosti ekscentričnih anomalija za maksimume to se može videti). 
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prox_min =  17       6.0837     0.073164 

                    279       80.995      0.61863 

                     354       343.12     0.073082 

 

prox_max = 33       183.66       2.0309 

                 136       224.65        1.919 

                 176       326.91        2.031 

Slika 5.18 a-b: 3D i 2D dijagram funkcije rastojanja za par 3-3. 

Slučaj 3-3 je najreñi od svih, pa čak i od onih sa 4 minimum, izgled njegovih 3d i 2d 
dijagrama funkcije rastojanja to jasno pokazuje. Takoñe, to je još jedna potvrda da je 
smena minimuma, maksimuma i njihovih odgovarajućih prevoja na obilaženju, po 
orbitama, zaista jedan složen postupak. Sada funkcija rastojanja ima maksimalnih 12 
stacionarnih tačaka.  

 

prox_min = 10       265.91       1.5424 

                   45       335.66       1.4856 

                 323       41.877       1.5776 

                 348       99.614        1.554 

 

prox_max = 179       181.24      7.8719 

Slika 5.19 a-b: 3D i 2D dijagram funkcije rastojanja za par 4-1. 

Slučajevi sa četiri minimuma bez obzira da li imaju 1 ili 2 maksimuma, takoñe su 
izuzetno retki bilo da je reč o realnim ili simuliranim parovima asteroidskih putanja 
(samo tri pronañena od skoro tri miliona parova kod realnih i zanemarljivi procenat kod 
simuliranih to jasno potvrñuju). Analizirajući pozicije sva četiri minimum, stiče se 
utisak da su oni nekako pravilno rasporeñeni unakrsno po eliptičnoj putanji (na 2d 
dijagramu su obično u sva četiri ugla). Jedan maksimum je obično u sredini 2d 
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dijagrama tj. sa vrednostima ekscentričnih anomalija oko 180°, dok je drugi ako postoji 
u jednom od uglova 2d dijagrama pa je i njegova veličina neznatno veća od njemu 
susednog minimuma. Ipak, zbog malog uzorka tj. pronañenih parova o nekoj većoj 
generalizaciji ovde se ne može govoriti osim, kao što je više puta pomenuto, da je kod 
ovakvih parova medjusobni nagib blizak 90°.   

 

prox_min =     1        257.4       2.0709 

                      55       14.096       2.6607 

                    299       355.25       2.4535 

                   5.5428       111         2.3585 

 

prox_max=    9       8.5423       2.7427 

                  182       184.08       8.8626 

Slika 5.20 a-b: 3D i 2D dijagram funkcije rastojanja za par 4-2. 

Tabela 5.3 Vrednosti putanjskih elemenata karakterističnih parova asteroida čiji su 2d i 
3d dijagrami funkcije rastojanja prikazani u poglavlju 5.3 

Min - 
Max ω[°] Ω[°] i [°] e a [AJ] 

1-1 132.281269 45.522674 18.681453 0.15134733 3.23990973 

 27.024027 37.320218 14.340210 0.16700712 2.59426748 

1-2 248.128542 169.911193 12.982126 0.25506017 2.67048425 

 132.18943 56.572203 63.460828 0.26643638 1.00686863 

1-3 262.852693 165.372567 65.533781 0.97710700 1.90355258 

 280.485689 309.975292 46.041624 0.73550991 1.77708360 

2-1 125.024081 307.898145 6.419848 0.11848675 2.69487397 

 82.945156 356.590639 16.535383 0.23064606 2.92042212 

2-2 5.442021 62.505725 7.982340 0.13714720 2.24800198 

 23.590632 42.583744 4.414988 0.12392857 2.21303649 

2-3 185.075073 185.459505 56.067896 0.79678925 2.33972020 

 164.648147 256.898547 70.922738 0.89724060 2.06601764 

3-1 337.072218 167.373232 1.018258 0.06452355 2.88539236 

 331.807638 150.336242 53.250673 0.81316168 2.53967653 
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3-2 291.324685 97.424668 24.223534 0.30047538 2.38294391 

 356.691413 7.095813 60.542807 0.88223092 2.51151353 

3-3 

simulacija 

1 1 1 0.866 1 

 292.5 111.25 31 0.866 1 

4-1 305.374159 106.551914 56.891819 0.78611989 3.12940206 

 59.344843 200.577800 55.145393 0.33872023 1.70703838 

4-2 158.824199 122.113353 49.223350 0.56541673 3.24433387 

 190.782840 279.623991 47.061014 0.48404983 2.55926808 

 

5.4 Pojam proksimiteta i pojam MOID-a 

Ceo ovaj rad je, u krajnjoj liniji, nastao kao produžetak jednog specifičnog napora u 
istraživanju meñusobnih bliskih prilaza malih planeta, pri čemu taj napor možemo da 
identifikujemo kao značajan deo beogradske škole astronomije, deo koji će uskoro da 
navrši stoleće posmatračkih i nešto manje od stoleća teorijskih rezultata. Poštujući 
svetsku praksu tvorci te škole i njihovi sledbenici su koristili pojam proksimiteta da bi 
označili situacije kada dolazi do bliskih prilaza malih planeta. Meñutim, rast zahteva da 
se iz znatno bogatije populacije malih planeta nañu one male planete koje mogu da 
dovedu do medjusobnog sudara, posebno zahtev da se razmotre i istorijski i budući 
bliski prolazi tih tela i Zemlje, dakle, sve to je dovelo da se ti i takvi prolazi i položaji 
počnu nazivati najmanjim. U engleskom govornom području za najmanji od 
proksimiteta dva nebeska tela upotrebljen je naziv MOID (Minimal Orbital Intersection 
Distance)  

Smatrajući da smo u ovom radu dali dosta dokaza o učešću srpskih astronoma u razvoju 
teorije proksimiteta, da su mnogi danas vodeći stručnjaci u toj oblasti deo svojih znanja 
crpeli i iz naše škole, ovde sebi dozvoljavamo da pojam MOID pretvorimo u pojam 
NDOP, tj. u pojam Najmanja Dužina Orbitalnih Preseka. Ovim ukazujemo na nekoliko 
stvari: prvo, radi se o odreñivanju svih minimuma funkcije rastojanja dve tačke 
konfokalnih putanja malih planeta, tj. o odredjivanju svih proksimiteta; dalje, radi se o 
nalaženju najmanjeg medju njima; treće, radi se o funkciji rastojanja, tj. o presecima 
dveju konfokalnih eliptičnih putanja, a to znači da se radi o specifičnoj vektorskoj 
funkciji. Bez obzira što u ovom radu nije bio cilj ’potraga’ za najmanjim proksimitetom 
tj. njegovo izračunavanje (kao što je to većinom slučaj u radovima novije generacije) 
treba naglasiti da je ta 'potraga' ovde bila uspešna. U tom smislu na slici 5.21 je dat 
položaj NDOP za dve proizvoljne orbite sa svim pratećim parametrima tj. njihovim 
projekcijama na nebesku sferu, koji se najčešće ne mogu sresti u literaturi i radovima na 
temu proksimiteta i analize funkcije rastojanja. 

 



 51 

 

Slika 5.21: Projekcije svih relevantnih parametara MOID-a na nebesku sferu. 

Sa slike 5.21 vidimo da je položaj NDOP-a najčešće dat preko pravih anomalija 
(ugaonih udaljenosti od perihela), prve i druge orbite i njihovih argumenata perihela 
(ugaonih udaljenosti od uzlaznog čvora). Znajući vezu prave i ekscentrične anomalije 
lako se prelazi sa jedne na drugu tako da, sa stanovišta izračunavanja proksimiteta, to i 
nema nekog posebnog značaja. Oba pristupa su skoro ravnomerno zastupljena u 
literaturi. 

U odnosu na NDOP naše simulacije i izračunavanja za realne orbite daju sledeće: 

Najmanja vrednost NDOP-a koju smo izračunali je za par asteroida 131 (Vala) – 134 
(Ivet) i iznosi od 0,00001396 AJ, što je oko trećine Zemljinog radijusa; 

Najveći broj NDOP-a nañe se u blizini čvorova; 

Veća je verovatnoća da se NDOP nañe u blizini perihela nego u blizini afela; 

Koncentracija NDOP-a ka perihelu je srazmerna srednjem ekscentricitetu orbita tj. što je 
veća ekscentričnost veća je šansa da se NDOP nañe u blizini perihelia; 
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6. ZAKLJU ČAK 

 

Ponavljamo: problem najmanjih uzajamnih rastojanja dveju konfokalnih eliptičnih 
orbita, tj. problem lokalnih minimuma,  koji je, po pravilu, poznat u istoriji astronomije 
kao problem proksimiteta, i problem pronalaženja najmanjeg meñu njima, što je u 
literaturi poznato pod gore uvedenim nazivom MOID, ima izuzetno važnu ulogu u 
astronomskim istraživanjima. Šta više, ponašanje asteroida u okolini proksimiteta otvara 
i specifične mogućnosti daljih istraživanja.   

U tom smislu raniji postupak (Milisavljević 2002, 2010) jeste posledica radova 
Lazovića (1964, 1967, 1976, 1978, 1981) i Simovljevića (1977), pri čemu se izbegavaju 
aproksimacije i proksimiteti nalaze naizmeničnim rešavanjem jedne, pa druge, 
vektorske jednačine sistema 3.1. Tako se došlo u priliku da se razvije metoda 
odreñivanja svih kritičnih tačaka - minimuma, maksimuma i prevojnih tačaka. 

Postupak izložen u ovoj disertaciji je značajno poboljšan i zahvaljujući primeni 
programskih alata prilagoñen, tako da je prerastao u postupak koji omogućava 
izračunavanje ne samo minimuma, kao prethodni, već i maksimuma, a posredno je 
moguće odrediti i  prevojne tačke.  

Sve te mogućnosti su programski implementirane i iskorišćene u obradi kako realnih 
tako i simuliranih parova asteroidskih putanja. U odnosu na aktuelne i ranije postupke i 
metode naš postupak je znatno brži, a izbor i korišćenje Njutnove metode za rešavanje 
jednačine četvrtog stepena, umesto gotovih rešenja koja nudi Matlab 7.0,  još nekoliko 
puta je ubrzalo proces izračunavanja.  

Kada se govori o stvarnim brzinama izračunavanja ili o broju izabranih parova za koje 
je račun obavljen pokazalo se da rezultujuća brzina, odnosno efikasnost računa, zavisi 
od više parametara od kojih je svakako najznačajniji izbor metode, pa tek onda dolaze 
do izražaja vrste simulacija, izbor operativne programske platforme, hardverskih 
potencijala računarskog sistema, ... Na srednje brzim personalnim računarima (godina 
2010, 2011 – pentium IV, ...) ovakvim postupkom moguće je obraditi preko milion 
parova asteroidskih putanja za 24 časa.  

Zahvaljujući ovakvom pristupu formirano je analitičko i programsko okruženje koje je 
omogućilo znatno veći broj izračunavanja funkcija rastojanja malih planeta u cilju 
izdvajanja karakterističnih parova asteroidskih putanja. U tom smislu kroz analizu 
rezultata za 3 miliona realnih i preko 20 miliona simuliranih parova asteroidskih putanja  
otišli smo korak dalje u izučavanju funkcije rastojanja malih planeta, što je i bio jedan 
od ciljeva ovog rada. U tom smislu metoda koja je razvijena i primenjena u ovoj 
disertaciji pokazala se izuzetno efikasnom jer:  

Omogućava značajno bržu obradu velikog skupa nebeskih tela i njihovih putanja kako u 
realnim tako i u simuliranim uslovima 

Uslovno oscilatorni karakter metode doprineo je kvalitetno novom rezultatu, a to je 
povećanje selektivnosti i uklanjanje opasnosti da se neka stacionarna tačka previdi 
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Odredjene provere metode na tri grupe asteroida Aten, Apollo i Amor, su pokazale da 
navedeni metod takodje može da se primeni i u situacijama koje su posebno 
interesantne kada se radi o bliskim prilazima nebeskih tela zemlji 

Pokazalo se da su, nezavisno od toga da li se radi o realnim ili simuliranim parovima, 
najzastupljeniji parovi  2-1 i 1-1. To ukazuje na činjenicu da u većini slučajeva funkcija 
rastojanja ima jedan ili dva minumuma kod kvazikomplanarnih realnih asteroida i da 
zadržava slične karakteristike i kada kvazikomplanarnosti više nema, tj. kada 
medjusobni nagib postane znatno veći od nekoliko stepeni.  

Analiza simulacije Ia - specifičan slučaj kada su dve eliptične putanje identične i sa jako 
malom ekscentričnošću - pokazala je da i za sve ostale vrednosti medjusobnog nagiba 
do 89° funkcija rastojanja ima slične karakteristike. 

Kod parova asteroidskih putanja sa jednim minimumom taj minimum je MOID, a kod 
ostalih parova gde imamo više minimuma, jedan od njih je MOID pri čemu se MOID 
uvek nalazi u neposrednoj blizini perihela. Ova činjenica je demonstrirana na slikama 
5.10, 5.11 i 5.12 koje se odnose na  prikaz podataka za nalaženje kritičnih tačaka parova 
kod kojih smo dobili 1-1, 1-2 i 1-3.  

Grupa simulacija data tabelom 2 pokazuje da broj parova sa složenijom funkcijom 
rastojanja (broj stacionarnih tačaka) raste sa izjednačavanjem orbita po dimenziji. 
Promene argumenta perihela i longitude uzlaznog čvora nisu imale većeg uticaja.  

U opštem slučaju  funkcija rastojanja evoluira u složeniju sa povećanjem medjusobnog 
nagiba i najčešće se broj minimuma i broj maksimuma povećava da bi oko kritičnih 
uglova od 80° do 90° njihov broj bio najveći. I u ovom slučaju promena argumenta 
perihela i longitude uzlaznog čvora nisu imale većeg uticaja.  

Pokazalo se da parovi asteroidskih putanja sa tri minimuma ipak postoje i kod realnih i 
kod simuliranih parova. Jedan od njihovih minimuma je u blizini perihela,  a ako to nije 
slučaj onda su dva od tri u okolini linije čvorova.  

Važna je činjenica da slučaj 3-3 postoji kod simuliranih  putanja. Kod realnih nije 
pronañen. Sa druge strane parovi sa četiri minimuma su znatno brojniji. To ukazuje na 
moguću vezu sa  složenošću funkcije rastojanja jer u slučaju 3-3 i 4-2 imamo  12 
stacionarnih tačaka. 

I pored velikog broja simulacija par sa 4 maksimuma nije pronañen. Teorija ukazuje, 
Bernstajn (1975) i  Gronki (2002),  na maksimalnih 16 stacionarnih tačaka ali, iz nekih 
analiza karakteristčnih parova eliptičnih putanja, čini se da četvrti maksimum pri 
variranju putanjskih elemenata nekako ‘sklizne’ u prevoj.  

Takoñe, simulacije po grupama i tipovima  (poglavlje 3.3)  pored ostalog pokazuju da 
uslov da dve eliptične putanje imaju ili nemaju presečnih tačaka kada su u istoj ravni 
nema skoro nikakvog značaja kada je u pitanju izgled njihove funkcije rastojanja tj. broj 
stacionarnih tačaka.  

Važan rezultat ovog rada je činjenica da su prethodno izloženim postupkom uspešno 
pronañeni parovi sa 4-1 i 4-2 kod realnih asteroidskih putanja,  što je i bio jedan od 
glavnih motiva i ciljeva.  

Pokazala se ispravnom odluka da se eventualni realni parovi sa četiri minimuma traže 
kod onih čiji je nagib veći od 45°; date slike i dijagrami ukazuju na njihovu veliku 
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sličnost sa simuliranim modelom (Gronchi 2002). Ostali simulirani parovi sa četiri 
minimuma pokazuju da su vrednosti parametara putanja bliske vrednostima u 
Gronkijevom modelu, pa je uslov za postojanje 4 minimuma funkcije rastojanja: (i) 
postojanje velikog medjusobnog nagiba 75°-90°, (ii) bliske vrednosti longitude perihela 
obe eliptične putanje, najčešće sa razlikom do 10°, (iii) suprotne pozicije longitude 
uzlaznog čvora odnosno sa približnom razlikom njihovih vrednosti od oko 180°.  

Bez obzira što nismo pronašli parove sa četiri maksimuma, kao ni parove 4-3, ne 
možemo tvrditi da ih nema. Dakle, gornja granica, maksimalni broj, stacionarnih tačaka 
funkcije rastojanja dve konfokalne eliptične putanje koji smo ovde našli je 12.  

Osim toga, potvrdili smo ranije dobijenih 8 rešenja i dopunili ih sa 3 nova rešenja:  3-3, 
4-1 i 4-2.  
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PRILOG 1 

 

Program za izračunavanje minimuma i maksimuma funkcije rastojanja kod 
simuliranih asteroidskih parova putanja 

 
clear 

clc 

format short  g  

rad=pi/180;  

%                           ZADAVANJE PRECIZNOSTI  

korak=1*rad; %korak za E1 i E2  

korak1=1*rad; %korak za E1 i E2 unutar osnovnih petlji(za pr. res enja)  

preciznost_Newton=10^-5; %preciznost za Njutnovu metodu 

%                   KOMBINACIJE MINIMUMA I MAKSIMUM A 

KOMBINACIJE=[1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

             1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4]';  

%                            PREALLOCATIONS  

broj_kombinacija=[1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

                  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

                  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]' ;  

%                  OSNOVNA PETLJA (KOMBINACIJE ASTE ROIDA) 

a1=1;a2=1;e1=0.866;e2=0.866;o1=1*rad;O1=1*rad;i1=1* rad; 

broj_kombinacije=0;  

for  o2=5*rad:3.125*rad:355*rad  

for  O2=5*rad:3.125*rad:355*rad  

for  i2=1*rad:1*rad:89*rad 

broj_kombinacije=broj_kombinacije+1;  

if  mod(broj_kombinacije,100)==0 

broj_kombinacije  

end  

%                         ME•USOBNA INKLINACIJA  

N1x=sin(i1)*sin(O1);N1y=-sin(i1)*cos(O1);N1z=cos(i1 ); 

N2x=sin(i2)*sin(O2);N2y=-sin(i2)*cos(O2);N2z=cos(i2 );  

% DOT 

kosinus=N1x*N2x+N1y*N2y+N1z*N2z;  

% CROS 

X=N1y*N2z-N1z*N2y;Y=N1z*N2x-N1x*N2z;Z=N1x*N2y-N1y*N 2x; 

sinus=sqrt(X^2+Y^2+Z^2);  

% KVADRANTI 
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if  sinus>0 

    rel_inkl=acos(kosinus);  

else  

    rel_inkl=2*pi-acos(kosinus);  

end  

rel_inkl=rel_inkl/rad;  

%                              Male poluose  

b1=a1*sqrt(1-e1^2);b2=a2*sqrt(1-e2^2);  

%                           Pomocni parametri  

P1=cos(O1)*cos(o1)-sin(O1)*sin(o1)*cos(i1); 

P2=sin(O1)*cos(o1)+cos(O1)*sin(o1)*cos(i1);P3=sin(o 1)*sin(i1); 

P4=cos(O2)*cos(o2)-sin(O2)*sin(o2)*cos(i2); 

P5=sin(O2)*cos(o2)+cos(O2)*sin(o2)*cos(i2);P6=sin(o 2)*sin(i2); 

Q1=-cos(O1)*sin(o1)-sin(O1)*cos(o1)*cos(i1); 

Q2=-sin(O1)*sin(o1)+cos(O1)*cos(o1)*cos(i1);Q3=cos( o1)*sin(i1); 

Q4=-cos(O2)*sin(o2)-sin(O2)*cos(o2)*cos(i2); 

Q5=-sin(O2)*sin(o2)+cos(O2)*cos(o2)*cos(i2);Q6=cos( o2)*sin(i2); 

T1=P4*Q1+P5*Q2+P6*Q3;T2=Q4*P1+Q5*P2+Q6*P3;U1=Q4*P1+ Q5*P2+Q6*P3; 

U2=P4*Q1+P5*Q2+P6*Q3;S=P1*P4+P2*P5+P3*P6;V=Q1*Q4+Q2 *Q5+Q3*Q6;  

%                             PONISTAVANJE  

prox_min_E1=[];prox_max_E1=[];prox_min_E2=[];prox_m ax_E2=[]; 

provera_min_M=[];provera_max_M=[];koraci_E1=zeros(3 60*rad/korak,3); 

koraci_E1_max=zeros(360*rad/korak,3);koraci_E2=zero s(360*rad/korak,3); 

koraci_E2_max=zeros(360*rad/korak,3);f_E1=zeros(1,3 60*rad/korak1); 

f_E2=zeros(1,360*rad/korak1);pr=zeros(1,360*rad/kor ak1);  

%                              PETLJA ZA E1  

br=0;  

for  E1=0:korak:2*pi-korak 

br=br+1;  

%                              Ponistavanje  

EE2=[];x2=[];y2=[];z2=[];r=[];priblizno_resenje=[];  

pr=zeros(1,360*rad/korak1); 

AA=a2^2*e2+a1*a2*cos(E1)*S-a1*a2*e1*S+b1*a2*sin(E1) *T1; 

BB=a1*e1*b2*U1-b1*b2*sin(E1)*V-a1*b2*cos(E1)*U1;CC= b2^2-a2^2;M=AA/BB; 

N=CC/BB;  

%                           PRIBLIZNA RESENJA  

br1=0;  

for  E2=0:korak1:2*pi-korak1 

    br1=br1+1; 

    pr(br1)=E2; %priblizno resenje  

    f_E2(br1)=M*sin(E2)+cos(E2)+N*sin(E2)*cos(E2);   

end  

broj_resenja=0;  

if  f_E2(1)/f_E2(numel(f_E2))<0 

        broj_resenja=1; 



 60 

        priblizno_resenje(1)=0;  

end     

for  i=1:br1-1 

    if  f_E2(i)/f_E2(i+1)<0  

        broj_resenja=broj_resenja+1; 

        priblizno_resenje(broj_resenja)=pr(i); 

    end      

end  

%                            NJUTNOVA METODA 

%PRVO RESENJE 

A=100; 

X=priblizno_resenje(1);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE2(1)=X;  

%DRUGO RESENJE 

A=100; 

X=priblizno_resenje(2);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE2(2)=X;  

%TRECE RESENJE 

if  broj_resenja>2 

A=100; 

X=priblizno_resenje(3);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE2(3)=X;  

%CETVRTO RESENJE 

A=100; 

X=priblizno_resenje(4);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  
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EE2(4)=X;  

end  

%                          RACUNANJE RASTOJANJA  

x1=a1*(cos(E1)-e1)*P1+b1*sin(E1)*Q1; 

y1=a1*(cos(E1)-e1)*P2+b1*sin(E1)*Q2; 

z1=a1*(cos(E1)-e1)*P3+b1*sin(E1)*Q3;  

for  j=1:broj_resenja 

x2=a2*(cos(EE2(j))-e2)*P4+b2*sin(EE2(j))*Q4; 

y2=a2*(cos(EE2(j))-e2)*P5+b2*sin(EE2(j))*Q5; 

z2=a2*(cos(EE2(j))-e2)*P6+b2*sin(EE2(j))*Q6; 

r(j)=sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2);  

end  

%                   ODRE•IVANJE MIN I MAX RASTOJANJ A 

index_min=find(r==min(r));index_max=find(r==max(r)) ;  

if  numel(index_min)>1 

   index_min=index_min(1);  

end 

if  numel(index_max)>1 

   index_max=index_max(1);  

end  

min_ro=min(r);max_ro=max(r);  

%                      FUNKCIJE ro_min(E1) i ro_max (E1)  

koraci_E1(br,:)=[E1/rad EE2(index_min)/rad min_ro];  

koraci_E1_max(br,:)=[E1/rad EE2(index_max)/rad max_ ro];  

end  %kraj petlje za E1 

%                               PETLJA ZA E2  

br=0;  

for  E2=0:korak:2*pi-korak 

br=br+1;  

%                              Ponistavanje  

EE1=[];x2=[];y2=[];z2=[];r=[];priblizno_resenje=[];  

pr=zeros(1,360*rad/korak1); 

AA=a1^2*e1+a2*a1*cos(E2)*S-a2*a1*e2*S+b2*a1*sin(E2) *T2; 

BB=a2*e2*b1*U2-b2*b1*sin(E2)*V-a2*b1*cos(E2)*U2;CC= b1^2-a1^2; 

M=AA/BB;N=CC/BB;  

%                           PRIBLIZNA RESENJA  

br1=0;  

for  E1=0:korak1:2*pi-korak1 

    br1=br1+1; 

    pr(br1)=E1; %priblizno resenje  

    f_E1(br1)=M*sin(E1)+cos(E1)+N*sin(E1)*cos(E1);   

end  

broj_resenja=0;  

if  f_E1(1)/f_E1(numel(f_E1))<0 

        broj_resenja=1; 
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        priblizno_resenje(1)=0;  

end 

for  i=1:br1-1 

    if  f_E1(i)/f_E1(i+1)<0 

        broj_resenja=broj_resenja+1; 

        priblizno_resenje(broj_resenja)=pr(i); 

    end      

end  

%                            NJUTNOVA METODA 

%PRVO RESENJE 

A=100; 

X=priblizno_resenje(1);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE1(1)=X;  

%DRUGO RESENJE 

A=100; 

X=priblizno_resenje(2);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE1(2)=X;  

%TRECE RESENJE 

if  broj_resenja>2 

A=100; 

X=priblizno_resenje(3);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  

EE1(3)=X;  

%CETVRTO RESENJE 

A=100; 

X=priblizno_resenje(4);  

while  abs(A)>preciznost_Newton 

    A=M*sin(X)+cos(X)+N*sin(X)*cos(X); 

    A_prim=M*cos(X)-sin(X)+N*(cos(X)^2-sin(X)^2); 

    X=mod(X-A/A_prim,2*pi);  

end  
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EE1(4)=X;  

End 

%                          RACUNANJE RASTOJANJA  

x1=a2*(cos(E2)-e2)*P4+b2*sin(E2)*Q4; 

y1=a2*(cos(E2)-e2)*P5+b2*sin(E2)*Q5; 

z1=a2*(cos(E2)-e2)*P6+b2*sin(E2)*Q6;  

for  j=1:broj_resenja 

x2=a1*(cos(EE1(j))-e1)*P1+b1*sin(EE1(j))*Q1; 

y2=a1*(cos(EE1(j))-e1)*P2+b1*sin(EE1(j))*Q2; 

z2=a1*(cos(EE1(j))-e1)*P3+b1*sin(EE1(j))*Q3; 

r(j)=sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2);  

end  

%                   ODRE•IVANJE MIN I MAX RASTOJANJ A 

index_min=find(r==min(r)); 

index_max=find(r==max(r));  

if  numel(index_min)>1 

   index_min=index_min(1);  

end 

if  numel(index_max)>1 

   index_max=index_max(1);  

end  

min_ro=min(r); 

max_ro=max(r);  

%                      FUNKCIJE ro_min(E2) i ro_max (E2)  

koraci_E2(br,:)=[EE1(index_min)/rad E2/rad min_ro];  

koraci_E2_max(br,:)=[EE1(index_max)/rad E2/rad max_ ro];  

end  %kraj petlje za E1 

%                  ODRE•IVANJE BROJA MIN I MAX ZA E 1 

%                            MINIMUMI ZA E1  

broj_minimuma_E1=0;  

%                   PROVERA DA LI JE NA NULI MINIMU M 

if  koraci_E1(1,3)<koraci_E1(2,3) && koraci_E1(br,3)<k oraci_E1(br-1,3) 

    broj_minimuma_E1=1; 

    if  koraci_E1(1,3)<koraci_E1(br,3) 

    prox_min_E1(1,:)=koraci_E1(1,:); 

    else  

    prox_min_E1(1,:)=koraci_E1(br,:);    

    end 

end  

%                            OSTALI MINIMUMI  

for  j=2:br-1 

    if  koraci_E1(j,3)<koraci_E1(j-1,3) && koraci_E1(j,3)< koraci_E1(j+1,3) 

        broj_minimuma_E1=broj_minimuma_E1+1;  

        prox_min_E1(broj_minimuma_E1,:)=koraci_E1(j ,1:3); 

    end    
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end 

if  numel(prox_min_E1)>0  

for  i=1:numel(prox_min_E1) 

    if  prox_min_E1(i)<0 

        prox_min_E1(i)=prox_min_E1(i)+360; 

    end     

end 

end  

%                            MAKSIMUMI ZA E1  

broj_maksimuma_E1=0;  

%                   PROVERA DA LI JE NA NULI MAKSIM UM 

if  koraci_E1_max(1,3)>koraci_E1_max(2,3) && 
koraci_E1_max(br,3)>koraci_E1_max(br-1,3) 

    broj_maksimuma_E1=1; 

    if  koraci_E1_max(1,3)>koraci_E1_max(br,3) 

    prox_max_E1(1,:)=koraci_E1_max(1,:); 

    else  

    prox_max_E1(1,:)=koraci_E1_max(br,:); 

    end 

end  

%                            OSTALI MAKSIMUMI  

for  j=2:br-1 

    if  koraci_E1_max(j,3)>koraci_E1_max(j-1,3) && 
koraci_E1_max(j,3)>koraci_E1_max(j+1,3) 

        broj_maksimuma_E1=broj_maksimuma_E1+1;  

        prox_max_E1(broj_maksimuma_E1,:)=koraci_E1_ max(j,1:3); 

    end    

end 

if  numel(prox_max_E1)>0  

for  i=1:numel(prox_max_E1) 

    if  prox_max_E1(i)<0 

        prox_max_E1(i)=prox_max_E1(i)+360; 

    end     

end 

end  

%                  ODRE•IVANJE BROJA MIN I MAX ZA E 2 

%                            MINIMUMI ZA E2  

broj_minimuma_E2=0;  

%                   PROVERA DA LI JE NA NULI MINIMU M 

if  koraci_E2(1,3)<koraci_E2(2,3) && koraci_E2(br,3)<k oraci_E2(br-1,3) 

    broj_minimuma_E2=1; 

    if  koraci_E2(1,3)<koraci_E2(br,3) 

    prox_min_E2(1,:)=koraci_E2(1,:); 

    else  

    prox_min_E2(1,:)=koraci_E2(br,:);    
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    end 

end  

%                            OSTALI MINIMUMI  

for  j=2:br-1 

    if  koraci_E2(j,3)<koraci_E2(j-1,3) && koraci_E2(j,3)< koraci_E2(j+1,3) 

        broj_minimuma_E2=broj_minimuma_E2+1;  

        prox_min_E2(broj_minimuma_E2,:)=koraci_E2(j ,1:3); 

    end    

end 

if  numel(prox_min_E2)>0  

for  i=1:numel(prox_min_E2) 

    if  prox_min_E2(i)<0 

        prox_min_E2(i)=prox_min_E2(i)+360; 

    end     

end 

end  

%                            MAKSIMUMI ZA E2  

broj_maksimuma_E2=0;  

%                   PROVERA DA LI JE NA NULI MAKSIM UM 

if  koraci_E2_max(1,3)>koraci_E2_max(2,3) && 
koraci_E2_max(br,3)>koraci_E2_max(br-1,3) 

    broj_maksimuma_E2=1; 

    if  koraci_E2_max(1,3)>koraci_E2_max(br,3) 

    prox_max_E2(1,:)=koraci_E2_max(1,:); 

    else  

    prox_max_E2(1,:)=koraci_E2_max(br,:); 

    end 

end  

%                            OSTALI MAKSIMUMI  

for  j=2:br-1 

    if  koraci_E2_max(j,3)>koraci_E2_max(j-1,3) && 
koraci_E2_max(j,3)>koraci_E2_max(j+1,3) 

        broj_maksimuma_E2=broj_maksimuma_E2+1;  

        prox_max_E2(broj_maksimuma_E2,:)=koraci_E2_ max(j,1:3); 

    end    

end 

if  numel(prox_max_E2)>0  

for  i=1:numel(prox_max_E2) 

    if  prox_max_E2(i)<0 

        prox_max_E2(i)=prox_max_E2(i)+360; 

    end     

end 

end  

%                  UPORE•IVANJE FUNKCIJA ZA E1 I E2  

%                          PROVERA ZA MINIMUME  
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br_provera=0;  

for  i=1:numel(prox_min_E2)/3 

    provera_min=0; 

    for  j=1:numel(prox_min_E1)/3 

        if  abs(prox_min_E2(i,2)-prox_min_E1(j,2))<2*korak/rad  || 
abs(prox_min_E2(i,2)-prox_min_E1(j,2))>360-2*korak/ rad 

            provera_min=1; 

        end   

    end  

    if  provera_min==0 

    br_provera=br_provera+1; 

    provera_min_M(br_provera,:)=prox_min_E2(i,:); 

    end 

end  

prox_min=[prox_min_E1 

    provera_min_M];  

%                          PROVERA ZA MAKSIMUME  

br_provera=0;  

for  i=1:numel(prox_max_E2)/3 

    provera_max=0; 

    for  j=1:numel(prox_max_E1)/3 

        if  abs(prox_max_E2(i,2)-prox_max_E1(j,2))<2*korak/rad  || 
abs(prox_max_E2(i,2)-prox_max_E1(j,2))>360-2*korak/ rad 

            provera_max=1; 

        end   

    end  

    if  provera_max==0 

    br_provera=br_provera+1; 

    provera_max_M(br_provera,:)=prox_max_E2(i,:); 

    end 

end  

prox_max=[prox_max_E1 

    provera_max_M];  

%                        BROJ MINIMUMA I MAKSIMUMA  

broj_minimuma=numel(prox_min)/3; 

broj_maksimuma=numel(prox_max)/3;  

%                          BROJANJE KOMBINACIJA  

COMB=[broj_minimuma broj_maksimuma];  

for  i=1:16 

    if  COMB==KOMBINACIJE(i,1:2) 

        broj_kombinacija(i,3)=broj_kombinacija(i,3) +1; 

    end 

end  

%                            REZULTAT I ZAPIS  

REZULTAT_1=[rel_inkl broj_minimuma broj_maksimuma];  
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dlmwrite( 'Rezultat_simulacija.txt' , REZULTAT_1, 'delimiter' , ' ' , '-
append' , 'precision' , 2)  

end 

end 

end  

dlmwrite( 'Simulacija.txt' , broj_kombinacija, 'delimiter' , ' ' ) 

prox_min 

prox_max  

%                               STAMPANJE  

plot3(koraci_E1(:,1),koraci_E1(:,2),koraci_E1(:,3), 'r' , 'linewidth' ,2) 

hold on 

plot3(koraci_E2(:,1),koraci_E2(:,2),koraci_E2(:,3), '--r' , 'linewidth' ,2) 

grid on 

plot3(koraci_E1_max(:,1),koraci_E1_max(:,2),koraci_ E1_max(:,3), 'b' , 'linewidth'
,2) 

hold on 

plot3(koraci_E2_max(:,1),koraci_E2_max(:,2),koraci_ E2_max(:,3), '--
b' , 'linewidth' ,2) 

grid on 

korak=1; 

[E1,E2]=meshgrid(0:korak*rad:2*pi);x1=a1*(cos(E1)-e 1)*P1+b1*sin(E1)*Q1; 

y1=a1*(cos(E1)-e1)*P2+b1*sin(E1)*Q2;z1=a1*(cos(E1)- e1)*P3+b1*sin(E1)*Q3; 

x2=a2*(cos(E2)-e2)*P4+b2*sin(E2)*Q4;y2=a2*(cos(E2)- e2)*P5+b2*sin(E2)*Q5; 

z2=a2*(cos(E2)-e2)*P6+b2*sin(E2)*Q6;r=((x1-x2).^2+( y1-y2).^2+(z1-z2).^2).^0.5; 

hSurf = 
surf(E1/rad,E2/rad,r, 'EdgeColor' , 'none' , 'LineStyle' , 'none' , 'FaceLighting' , 'pho
ng' ); 

xlabel( 'E_1' , 'FontSize' ,15) 

ylabel( 'E_2' , 'FontSize' ,15) 

zlabel( '\rho' , 'FontSize' ,15) 

set(gca, 'TickDir' , 'out' ) 

set(gca, 'XTick' ,[0:60:360]) 

set(gca, 'YTick' ,[0:60:360]) 

set(gca, 'FontSize' ,15) 

axis([0 360 0 360 0 max(max(r))]) 

grid off  
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PRILOG 2 

 

Tabela realnih parova asteroida čiji su putanjski elementi dati u tabeli 5.3, a 
analize funkcije rastojanja njihovih orbita prikaza ne u poglavlju 5.3 

Prvi  asteroid Drugi  asteroid Min-Max 

1323 Tugela 2337 Boubin 1-1 

3 Juno 10563 Izhdubar 1-2 

2004 NN8 2009 AE16 1-3 

123 Brunhild 1116 Catriona 2-1 

963 Iduberga 1219 Britta 2-2 

159459 200 KB 2004 LG 2-3 

2987 Sarabhai 2007 PH25 3-1 

323 Brucia 2010 KY127 3-2 

2010 CA55 2010 JN33 4-1 

2001 OK17 2001 XN88 4-2 
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Odlazi u Englesku 2004. godine na Cranfield University prvo kao student u viziti, a 
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