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O DELITELJIMA NULE, INVERTIBILNOSTI I RANGU MATRICA
NAD KOMUTATIVNIM POLUPRSTENIMA

REZIME

Poluprsten sa nulom i jedinicom je algebarska struktura, koja generaliSe prsten. Naime,
dok prsten u odnosu na sabiranje ¢ini grupu, poluprsten ¢ini samo monoid. Nedostatak
oduzimanja ¢ini ovu strukturu znatno tezom za istraZzivanje od prstena.

Predmet izuCavanja u ovoj tezi predstavljaju matrice nad komutativnim poluprstenima
(sa nulom i jedinicom). Motivacija za istraZivanje je sadrzana u pokusaju da se ispita
koje se osobine za matrice nad komutativnim prstenima mogu prosSiriti na matrice nad
komutativnim poluprstenima, a takodje, $to je tesno povezano sa ovim pitanjem, kako se
svojstva modula nad prstenima prenose na polumodule nad poluprstenima.

Izdvajaju se tri tipa dobijenih rezultata.

Najpre se proSiruju poznati rezultati, koji se tiu dimenzije prostora n-torki eleme-
nata iz nekog poluprstena na drugu klasu poluprstena od do sada poznatih i ispravljaju
neke greSke u radu drugih autora. Ovo je pitanje u tesnoj vezi sa pitanjem invertibilnosti
matrica nad poluprstenima.

Drugi tip rezultata se tiCe ispitivanja delitelja nule u poluprstenu svih matrica nad ko-
mutativnim poluprstenima i to posebno za klasu inverznih poluprstena (to su poluprsteni
u kojima postoji neka vrste uopshtenog inverza u odnosu na sabiranje). Zbog neposto-
janja oduzimanja, ne moZe se koristiti determinanta, kao $to je to u slu¢aju matrica nad
komutativnim prstenima, ali, zbog Cinjenice da su u pitanju inverzni poluprsteni, moguce
je definisati neku vrstu determinante u ovom slucaju, Sto omoguéava formulaciju odgovo-
rajucih rezultata u ovom slucaju. Zanimljivo je da se za klase matrica za koje se dobijaju
rezultati, levi i desni delitelji nule mogu razlikovati, Sto nije slucaj za komutativne prstene.

Tredi tip rezultata tice se pitanja uvodjenja novog ranga za matrice nad komutativnim



poluprstenima. Za ovakve matrice ve¢ postoji niz funkcija ranga, koje generaliSu pos-
tojecu funkciju ranga za matrice nad poljima. U ovoj tezi je predloZena nova funkcija
ranga, koja je bazirana na permanenti, koju je moguce definisati i za poluprstene, za raz-

liku od determinante, a koja ima dovoljno dobra svojstva da se tako definishe rang.

Kljucne reéi: komutativni prsteni, poluprsteni, pozitivna determinanta, delitelji nule, in-

vertibilnost, rang, matrice

Naucna oblast: Matematika

UZa naucna oblast: Algebra

UDK broj: 512.558(043.3)



ON ZERO DIVISORS, INVERTIBILITY AND RANK OF MATRICES
OVER COMMUTATIVE SEMIRINGS

ABSTRACT

Semiring with zero and identity is an algebraic structure which generalizes a ring. Namely,
while a ring under addition is a group, a semiring is only a monoid. The lack of substrac-
tion makes this structure far more difficult for investigation than a ring.

The subject of investigation in this thesis are matrices over commutative semirings
(wiht zero and identity). Motivation for this study is contained in an attempt to determine
which properties for matrices over commutative rings may be extended to matrices over
commutative semirings, and, also, which is closely connected to this question, how can
the properties of modules over rings be extended to semimodules over semirings.

One may distinguish three types of the obtained results.

First, the known results concerning dimension of spaces of n-tuples of elements from
a semiring are extended to a new class of semirings from the known ones until now, and
some errors from a paper by other authors are corrected. This question is closely related
to the question of invertibility of matrices over semirings.

Second type of results concerns investigation of zero divisors in a semiring of all
matrices over commutative semirings, in particular for a class of inverse semirings (which
are those semirings for which there exists some sort of a generalized inverse with respect
to addition). Because of the lack of substraction, one cannot use the determinant, as in the
case of matrices over commutative semirings, but, because of the fact that the semirings
in question are inverse semirings, it is possible to define some sort of determinant in this
case, which allows the formulation of corresponding results in this case. It is interesting
that for a class of matrices for which the results are obtained, left and right zero divisors
may differ, which is not the case for commutative rings.

The third type of results is about the question of introducing a new rank for matrices



over commutative semirings. For such matrices, there already exists a number of rank
functions, generalizing the rank function for matrices over fields. In this thesis, a new
rank function is proposed, which is based on the permanent, which is possible to define
for semirings, unlike the determinant, and which has good enough properties to allow a

definition of rank in such a way.

Keywords: commutative rings, semirings, positive determinant, zero divisors, invertibil-

ity, rank, matrices
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Chapter 1

Introduction

In 1894, Dedekind introduced the modernistic definition of the ideal of a ring. He took the
family of all the ideals of a ring R, Id(R), and defined on it the sum (+), and the product
(+). He found that the system (/d(R), +, -) satisfies most of the rules that the system (R, +, -)
satisfied, but the algebraic system (/d(R), +, -) was not a ring, because it was not a group
(under addition), it was only a commutative monoid. The system (/d(R), +, -) had all the
properties of an important algebraic structure, which was called later a semiring.

In 1934, H. S. Vandiver published a paper about algebraic system consisted of a
nonempty set.S with two binary operations, addition (+) and multiplication (-), such that §
was a semigroup under an addition (+) and a multiplication (-). The system (S, +, -) obey
both distributive laws but it did not obeyed the cancelation law of addition. This system
was ring-like but it was not a ring. Vandiver called this system a semiring. But Vandiver
was later informed by R. Brauer that Dedekind introduced this concept, but it was not by
the same name semiring. Vandiver observed in his papers, that there are semirings can be
embedded into rings.

The structure of semirings was later investigated by many authors in the 1950’s. These
authors have investigated various aspects of the algebraic theory of semirings including
embedding of semirings into richer semirings, and other details. In recent years, semir-

ings proved to be an important tool in many areas of applied mathematics and Computer



Science. A semiring is similar to a ring, where the difference between semirings and rings
is that there are no additive inverses in semirings. Therefore, all rings are semirings. For
examples of semirings which are not rings are the non-negative reals R, , the non-negative
rationals Q,, and the non-negative integers Z, with usual addition and multiplication.

Matrix theory over various semirings is an important subject, so it has attracted the
attention of many researchers working both in theoretical and applied mathematics during
the last decades.

This thesis is organized as follows.

Some basic definitions and examples of semirings and related notions (linear indepen-
dence, semilinear spaces, ideals, annihilators) are given in Chapter 2.

Chapter 3 is devoted to the discussion of the cardinality of bases in semilinear spaces
of n-dimensional vectors over commutative zerosumfree semirings. It is not generally
true that every basis has n elements. Some examples are given and the correct condition
that any basis for this type of semirings has n elements is presented. Results from this
chapter were published in [9].

In Chapter 4, we investigate zero divisors for matrices over commutative additively
inverse semirings with zero 0 and identity 1. It is known that a matrix over a commutative
ring is a zero divisor if and only if its determinant is a zero divisor. Since determinant is
impossible to define for matrices over semirings, one needs to make some changes. It is
possible to define a function similar to the determinant for matrices over additively inverse
semirings. For matrices satisfying an additional condition on its elements this function
allows us to determine whether a matrix is a zero divisor. It is interesting that in the case
of commutative semirings it is not true that a square matrix is a left zero divisor if and
only if it is a right zero divisor, which is true for commutative rings. These results are
contained in [10].

Finally, Chapter 5 introduces a new type of rank, which we call the permanent rank of
matrices over commutative semirings. Namely, for semirings there are a number of rank

functions already defined, generalizing various aspects of the rank function for matrices



over a field. The permanent of a matrix is possible to define for matrices over commutative
semirings and it has good enough properties to establish some results analogous to those

for matrices over rings. Some examples are given to illustrate these results.



Chapter 2

Preliminaries on semirings

In this chapter we give some basic definitions concerning semirings and matrices over
semirings. For more information about these (and other) notions, we refer the reader to

[3,4,5,6,7,11,12, 1, 13, 17].

Definition 1. A semiring with zero 0 and identity 1, L = (L,+,-,0,1) is an algebraic

structure satisfying the following axioms:
(i) (L,+,0) is a commutative monoid,
(ii) (L,-, 1) is a monoid;
(iii) forallr,s,te L: r-(s+t)=r-s+r-tand(s+t)-r=s-r+t-r;
(iv) forallre L: r-0=0=0"r;
(v) 1#0.
Definition 2. A semiring L is commutative if (L, -, 1) is a commutative monoid.

Definition 3. A semiring L is called zerosumfree (or antinegative) if from a + b = 0, for

a,b € L, it follows that a = b = 0.



Example 1. ([0, 1], +, ), where [0, 1] is the unit interval of real numbers, is a semiring,
where:

a+ b = max{a, b}, a - b = min{a, b},

or

a+ b = min{a, b}, a - b = max{a, b},

or even

a + b = max{a, b}, and - = usual product of real numbers.

Example 2. £ = (R U {—-o0}, +,-,{—00},0) is a semiring, where R is the set of all real
numbers, a+b = max{a, b}, and a- b stands for the usual addition in R for a, b € RU{—c0}.
This semiring £ = (R U {—o0}, +, -, {—00}, 0) is usually called a max-plus algebra or a

schedule algebra.

Example 3. For any nonempty set X, the system (P(X), U, N) consisting of the power
set P(X) of X under the binary operations of U and N is a semiring, in particular it is a
commutative zerosumfree semiring, where for A, B € P(X), A U B may be considered as
an addition on P(X) and A N B as a multiplication on P(X). The system (P(X), N, V) also
is a commutative semiring but it is not zerosumfree semiring, because if A N B = () does

notimply A =0 and B = 0.

Example 4. Let S be a nonempty set. Defineon S, +bya+b =band-bya-b = afor

alla,b € S. Then (S, +, -) is a semiring which is not commutative.

Example 5. The set of non-negative integers Z,, non-negative rational numbers Q,., non-
negative real numbers R, under the usual addition and multiplication are familiar exam-

ples of commutative zerosumfree semirings. Note that none of them is a ring.

Example 6. For each positive integer n, the set M,,(S ) of all nXn matrices over a semiring

S 1s a semiring under the usual operations of matrix addition and multiplication.

Definition 4. A semiring (S, +, -) is called additively inverse if (S, +) is an inverse semi-

group, ie., for each x € S there is a unique X' € S such that x = x + X' + x and

5



X' =X + x+ X. An additively inverse commutative semiring with zero and identity is a

generalization of a commutative ring with identity.

Definition 5. Let A = (A, +4,04) be a commutative monoid and L = (L,+,-,0,1) is a

commutative semiring. If an external multiplication ®: L X A — A such that:
(i) forallr,seL,ac A: (r-s)ea=re(sea);
(ii) orallre L,abe A: re(a+,b)=rea+,reb;
(iii) forallr,se L,ac A: (r+s)ea=rea+,sea;
(iv) forallae A: 1 ea =a;
(v) forallre L,ac A: Oea=re(04 =0,
is defined, then A is called a left L-semimodule.
One can analogously define the notion of right £-semimodules.

Definition 6. Let L = (L, +,-,0, 1) be a commutative semiring. Then a semimodule over
L is called an L-semilinear space. The elements of a semilinear space will be called

vectors and elements of L scalars.

Example 7. Let £ = (L, +,-,0, 1) be a commutative semiring, X # @ and A = L* = {f|f :
X — L}. Then for all £, g € L* we define:

(f +4 ) = f(x) + g(x),

(forxe X,reL)(re f)(x)=r- f(x).

We also define the zero element 04 as the function O4 : x — 0. Then A = (L, +4,0,4) is

an L-semilinear space.

Definition 7. Let A be an L-semilinear space. For Ay,...,4, € L, ay,...,a, € A, the

element l1a, + - - - + A,a, € A is called a linear combination of vectors ay, . ..,a, € A.



Definition 8. Let A be an L-semilinear space. Vectors ay,...,a, € A, where n > 2
are called linearly independent if none of these vectors can be expressed as a linear
combination of others. Otherwise, we say that vectors ay, . .., a, are linearly dependent.
A single non-zero vector is linearly independent.
An infinite set of vectors is linearly independent if any finite subset of it is linearly

independent.

Example 8. Let A = L" be the £-semilinear space of n-dimensional vectors over a com-
mutative semiring £, where L = (L, +,-,0,1) = ([0, 1], +,-,0, 1), where a+b = max{a, b},
a-b = min{a, b}.

(a) The following vectors are linearly independent:

1 0 0
0 1 0
er=| |, e=| |, ... ,e-=
0 0 1
To show that, we suppose
1 0 0
0 1 0
(Jer, 25005001 €10, 1D = c| [+ . t+eur-
0 0 1
1 0 0
0 min{c;, 1} 0
= + ...+
0 0 min{c,_;, 1}




we note that

1 0
0 min{cy, 1}
+
0 min{c,_;, 1}
because 1 # 0. We do the same work for other vectors e», es, ..., e, , we find that none of
them can be expressed as a linear combination of others. Hence, the vectors ey, e;, ..., e,
are linearly independent.
(b) The following vectors:
0 1 1
1 0 1
fi=111|, =111 d,=1 1
1 1 0

are linearly independent. To show that we suppose

0 1 1

1 0 1
(Jer, 050561 €10, 1D = | |+ 0 Fouars

1 1 0




0 min{cy, 1} min{c,_1, 1}
1 0 min{c,_;, 1}
= + +
1 min{cy, 1} 0
1 Cn-1
0 Cn-1
= + +
cy 0
max{cy,...,Cn1}
max{c,...,Cn1}

max{cy, cp—2}

0 = max{cy,...,ch1} @ ¢c1 = -+ = ¢,-1 = 0, but we see that 1 = max{c,...,c,—1}
and this means that one of c¢,...,c,_; 1s equal to 1. So, this is contradiction because
we found ¢; = -+ = ¢,-1 = 0. So, fi can not be expressed as a linear combination

of fi,..., f,. We apply the same work for other vectors f,,..., f, we find that none of
them can be expressed as a linear combination of others. Hence the vectors fi, ..., f, are

linearly independent.

Example 9. Let (S, +, -) = ([0, 1], max, min) be a semiring, where [0, 1] is the unit interval

of real numbers, and a + b = max{a, b}, a - b = min{a, b}. The vectors from [0, 1]" :



where a € (0, 1), are linearly independent (it is easy to see that). But the vectors
Ay sy Opits
where a,.1 = (a,a,...,0) are linearly dependent since a,,; = a; + a,.
We need notions of a generating set and a basis.

Definition 9. A nonempty subset B of vectors from A is called a generating set if every

vector from A is a linear combination of vectors from B.
Definition 10. A linearly independent generating set is called a basis.

The notion of an invertible matrix for matrices over commutative semirings is com-

pletely analogous to the notion of invertible matrices for commutative rings.

Definition 11. Let S be a semiring. A matrix A in M, (S) is right invertible (resp. left
invertible) if AB = I, (resp. BA = I,,) for some B € M,(S). In this case the matrix B is
called a right inverse (resp. left inverse) of A in M,(S). The matrix A in M,(S) is called

invertible if it is both right and left invertible.
Definition 12. We define the set U(L) of (multiplicatively) invertible elements from L by:
UL):={acLl@bel)@-b=b-a=1)}.

Definition 13. An element r € L is additively irreducible if from r = a + b, it follows that

r=aorr=h.

The notion of an ideal and its annihilator is important for the study of permanent rank

in the last chapter.

Definition 14. A subset I of a semiring S is a right (resp. left) ideal of S if for a,b € I
and s € S,a+belandar €l (resp. ra € 1); I is an ideal if it is both a right and a left
ideal.

10



Definition 15. Let S be a commutative semiring, and let I be an ideal of S. The annihi-
lator of an ideal I, denoted by Anng (), is the set of all elements x in S such that for each
vinl, x-y=0, ie.,

Anng(l) ={xe S|(Vyel)x-y=0}.

It is clear that annihilator is also an ideal of S'.

11



Chapter 3

Cardinality of bases in semilinear

spaces over zerosumfree semirings

3.1 Definitions and previous results

We begin this chapter with an example.

Example 10. Let £ = (L,+,-,0,1) be a commutative semiring. For each n > 1, let
V(L) :={(r1,...,r)" :r; € L,1 <i < n}. Then, V,(L) becomes a L-semilinear space if

the operations are defined as follows:
T T T.
(riyeeosrn)” +(S1,00008)" = (S, + 5075

T T
re(ri,....r,) =(r-ry,...,r-r),

forall r,r;,s; € L. We denote this semilinear space by ‘V,, and we call it the semilinear

space of n-dimensional vectors over L.

The following question naturally arises: if a semilinear space has a basis, is it true that
all bases have the same cardinality? For the discussion of the problem for a particular
class of semirings (join-semirings), see [19]. In general, this is not true, as the following

example shows.

12



Example 11. Let £ = (L,®,0,0, 1) be a commutative zerosumfree semiring, where L is
the non-negative integers Z,, and @, © are defined as: fora and b in L, a ® b = gcdla, b}
and a®©b = lcm{a, b}, and gcd(resp. lcm) denotes the greatest common divisor (resp. least

common multiple) of a and . We also put a ©0 = 0. Then in £L-semilinear space V>, the

vectors
1 0
o 1)
the vectors
2 3 0 0
o] lo] |2 3]
and the vectors
2 3 0
O b O b 1 b

are bases of ‘V,, but they have not the same number of elements — the first basis has two

elements, the second basis has four elements, and the third basis has three elements. We

1 0
show that these vectors form bases. We have the first basis {[ ], [ ]} We will
0 1

show that set is linearly independent, so suppose

1 0
(AmeZ,) = mQ®

0 1

1 _ m®0 0

0 mo1 m

‘We note that

also

13



Hence the vectors

L))

are linearly independent. Now, we will show that vectors span “V,: note that for any

X
vector €V,
y

so, the vectors

0 1
vectors is linearly independent and generating set, so it is a basis of V,. Now, will show

L) GFEFG)

are linearly independent: suppose that

1 0
span V, , that means that the set {[ ], [ ]} is a generating set. Since that set of

that these vectors

2 3 0 0
@m,n,peZ,) = mQ® dno DpoO

0 0 2 3

2 mQo 3

0 ne2e&poO3

this mean that 2 = Icm{m, 3}, but this is impossible for any m € Z, since 3 { 2. By the
same way, we find that none of other vectors can be represented by a linear combination

of the others. So they are linearly independent. To show that these vectors span V, note

L)

that
2

0

3
0

14



and

0 0 0
= o
1 2 3
So
2 3 0 0
ol Lol 2] |3

span (generate) every vector in V, . Since that vectors are linearly independent and span

V, , then it form a basis of V, . By the same way, we can find that the vectors

2 3 0
0 0 1

form a basis of V, .

Let us concentrate our attention to the case of the space of n-dimensional vectors
V,. In [14], the authors claim that the following result is true: In L-semilinear space
V,, where L is a zerosumfree semiring, each basis has the same number of elements if
and only if 1 is an additive irreducible element (see Theorem 3.1 in that paper). Alas,
this result is not true. For example, in the case when £ = Q, (by Q, we denote the
non-negative rational numbers with the usual addition and multiplication, as mentioned
before), all bases in V,, have n elements, while 1 obviously is not an additive irreducible
element. We show how to correct this result and we point out that everything depends on

the 1-dimensional case.

3.2 Cardinality of bases in V,

We assume that a semiring £ is zerosumfree. In this section we prove the main result in

the following theorem.

Theorem 1. For every n > 1, every basis in V, has n elements if and only if every basis

in Vi has 1 element.

15



Of course, one only needs to prove the non-trivial part. We begin with the following

lemma.

Lemma 1. Suppose that every basis in V| has one element. Then, if ay,...,a, € L are

such that ay + - - - + a,, = 1, it follows that at least one of a; is invertible.

Proof. We prove this by induction on m.
The claim is true for m = 1. Suppose that it is true for m(> 1); we prove it for m + 1.
So, suppose that

aj+---+au =1. (3.2.1)

Then {ay,...,a,+1} 1s a generating set for V;. Since every basis for V; has 1 element,
this set is not a basis. So, at least one of the elements is a linear combination of others.

Suppose, for example, that a,,,; is a linear combination of others, so

Ape1 = 1ay + -+ + Aam, (322)
for some A4, ..., 4, € L. Substituting this expression for a,,,; into equation (3.2.1) we get
I+A)a;+---+0+A)a, =1. (3.2.3)

By induction hypothesis, at least one of (1+4;)a; 1s invertible. It follows that g; is invertible

also, and we are done. O

Proof of Theorem 1. We assume that every basis of V; has 1 element. Suppose that

Ai,...,A, 1s a basis for V, with

Lllj

azj

Clnj

for aij € L.

16



We have the canonical basis for V,: ey, ..., e, given by

1 0 0
0 1 0
Gqi=1 . ©e= | - &=

0 0 1
Since Ay, ..., A, is also a basis, the vectors from the canonical basis may be expressed as
linear combinations of Ay, ...,A,. As in ordinary linear algebra, this may be expressed
as a product of matrices:

A-B=1,

where vectors Ay, ..., A, are columns of the matrix A, and I, is the identity matrix of
order n whose columns are exactly vectors e, ..., e,.

From this equation, by looking at the first column of the product, we get

anby +apby + - +ayb, = 1
an by +anby + - +ayby = 0

[
@

anlbll + an2b21 +---+ anmbml

From Lemma 1, it follows that at least one of a0y is invertible. We may assume without
loss of generality that it is a;by; that is invertible. Since L is zerosumfree, we conclude
that

axby =---=ay,b;, =0.

Since by, € U(L), it follows that ay =---=a, =0.So0,A; =ae.

We proceed to the second column of the product of matrices A and B.

17



ayby +apby+---+ayby = 0

anby +---+ayb,, = 1

As before, from Lemma 1, it follows that axby, € U(L) for some k. For simplicity

of notation, let us assume that axb,, € U(L). So, as in the previous case, we get that

Az = dnne,.
We perform this process for Ay,...,A;, where [ = min{m,n} and we get that, for
some injective function 7 : {1,...,l} — {1,...,n}, Ay = drprwerw for 1 < k < [ and

Ar(kynky € U(L).

1. If m < n, then [ = m and let s be an element of {1, ..., n} which is not in the image of 7
(in this case 7 cannot be onto). It is clear that e, is not a linear combination of A, ..., A,,,

so these vectors cannot form a basis. Therefore, m > n.

2. If m > n, we obtain that Ay,...,A, already form a basis. Therefore, we must have

m =n. O

3.3 Additional remarks

We have proved that is enough to assume that every basis in V; has 1 element in order
to conclude that for any n every basis in ‘V,, has n elements. One may express the fact
that every basis in V, has 1 element in various equivalent ways and one of them is the
following: every basis in V; has 1 element if and only if from a + b = 1, where a,b € L
it follows that @ € U(L), or b € U(L). Instead of using this condition as a necessary

and sufficient condition that the cardinality of every basis of V, is n, we have decided to

18



present the result in the form of Theorem 1 in order to emphasize that everything depends

on V;.
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Chapter 4

Z.ero divisors for matrices over

commutative semirings

It is known that a square matrix A over a commutative ring R with identity is a left (right)
zero divisor in M, (R) if and only if the determinant of A is a zero divisor in R (see [2]).
Additively inverse commutative semirings with zero O and identity 1 are a generalization
of commutative rings with identity. In this chapter, we present some results for matrices
over this type of semirings which generalize the above result for matrices over commuta-
tive rings. For the results concerning invertibility of matrices over semirings, we refer the

reader to [13, 15, 16, 18].

4.1 Preliminaries

In this section, we collect only the necessary notions for the presentation of the main

result in the last section.

Definition 16. An element x of a semiring (S, +, -) with zero 0 (identity 1) is said to be
additively (multiplicatively) invertible if x +y = y+x =0 (x-y =y-x = 1) for some

unique y € S.
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Definition 17. A square matrix A over a commutative semiring S is called a left zero
divisor in M,,(S) if AB = O for some nonzero matrix B € M, (S). Similarly, A is called a

right zero divisor in M,(S) if CA = O for some nonzero matrix C € M, (S).

Definition 18. [/5] Let S,, be the symmetric group of degree n > 2, ‘A, the alternating
group of degree n, and 8, = S,\‘A,, that is,

A, ={0 €S8, : o isan even permutation},

B, ={o €S8, : oisan odd permutation}.

For A € M,(S), the positive determinant and the negative determinant of A are defined

respectively, as follows:

det™A = Z [ﬁ aio—(i))a

oeA, \ i=1

det™A = (]_[ a,-(r(,-)).

oeB, \i=1
We can see that A, = {07! 1 0 € A, and B, = (o' : 0 € B,}, det'], = 1 and
det™, = 0 and for A € M,,(S), det" A’ = det* A, det” A’ = det” A(see [6]).

Proofs of the following lemma may be found in [15].

Lemma 2. For distinct i, j € {1,...,n},0 +— (0(i),0(j))o is a bijection from A, onto

B,.
We also need the following propositions.
Proposition 1. If (S, +, ) is an additively inverse semiring, then for all x,y € §,
(i) (X') =x
(i) (x+y) =y +x,
(iii) (xy) = x'y = xy’,
(iv) X'y’ = xy.
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Proposition 2. If (S, +, ) is an additively inverse semiring with zero 0 and x,y € S are

/

such that x +y =0, theny = x'.
Proposition 3. (i) (x') = x,
(i) (x+y) =y +x,
(iii) (xy)' =x'y = xy',
(iv) X'y’ = xy.

Proposition 4. If (S, +, ) is an additively inverse semiring with zero 0 and x,y € S are

such that x+y =0, theny = x'.

It is known that a commutative semiring S may be embedded into a ring if and only if

it satisfies the additive cancellation law: if a + x = b + x, it follows that x = y.

Example 12. There are additively inverse semirings which cannot be embedded into a
ring. For example, let (S,+,-) = ([0,1],®,0), where [0,1] = {x e R : 0 < x < 1},
x®y := max{x,y} and x © y := min{x, y}. We know that this is an inverse semiring (see,
e.g. [15]). However, since 1/2+ 1 =1=1/3+ 1, and 1/2 # 1/3, this semiring does not

satisfy additive cancellation law, so it cannot be embedded into a ring.

4.2 Auxiliary results

In the following, all semirings will be inverse semirings with zero 0 and identity 1. In
particular, in M, (S) there is the identity matrix 7,, all of whose diagonal elements equal
to 1, and all non-diagonal elements equal to 0. It is clear that A - I, = I, - A = A for every
A e M,(S).

Let S be an additively semiring, a € S and n > 0, a non-negative integer. We define

a™ as follows:

a, ifniseven

’

a’, ifnisodd.
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It is easy to check that (™)™ = g™ and that a™a™ = a"*™.
Using this notation, we define the determinant for matrices over additively inverse

semirings.

Definition 19. Let S be an additively inverse semiring and A € M,(S). Then, we define
cﬂlgt(A) as follows:
(Flgt(A) :=det™(A) + (det (A))'.

Note that, if we put sgn(o) = 0, for even pertumations, and sgn(o) = 1, for odd permuta-

tions, we have that

n sgn(o)
&Et(A) = Z (1_[ aio-(i)] >

oeS, \ i=1

which is completely analogous to the usual expansion of the determinant.

We can also define the adjoint matrix of a given matrix in M,(S) as follows.

Definition 20. Let S be an additively inverse semiring and A € M,(S). For i,j €
{1,...,n}, let M;j(A) € M,_(S) be a matrix obtained from the matrix A by deleting
the ith row and jth column from this matrix. Then éElj(A) € M,(S) is defined as:

adj(A);; = (det(M;i(4)) .

This definition is, as in the case of cFIEt(A), completely analogous to the usual definition
of the adjoint matrix. It is easy to see that the Laplace expansion with respect to any row
holds in our case for det (the proof is completely analogous to the usual case, so we omit
it).

Theorem 2. If S is an additively inverse semiring, A € M, (S) andi € {1,...,n}, one has:
det(A) = ) ayi(det(M;;(4))).
=1
Example 13. Let us assume that ab is additively invertible and let A € M,(S) be the

)

Then det(A) = ab + ba’ = ab + (ab)’ = 0.

matrix

23



Keeping this example in mind, one should not be surprised that the following theorem

holds.

Theorem 3. Let S be an additively inverse semiring and A € M,(S) be a square matrix
such that for all i, j, k, j # k the elements a;ja;. are additively invertible. If, in addition to

that, A has two equal rows, then cia(A) =0.

Proof. In addition to the simplest Laplace expansion mentioned in 2, the more general
expansion with respect to any k rows also holds. We use this expansion with respect to
the two equal rows, and since any 2 X 2 submatrix formed from these two rows has zero
determinant (see the previous example), we conclude that all the terms in the expansion
are zero, therefore cE(A) =0.

Alternatively, if the equal rows are rth and sth row, we can first expand det(A) with
respect to the rth row, and then expand all the terms with respect to the sth row. Then all
the terms in this final expansion can be collected into pairs which cancel each other, since

these two rows are equal and the corresponding elements are additively invertible. O

Example 14. It is not necessarily the case that the determinant of a matrix with two equal
rows is zero. For example, let (S, +, ) = ([0, 1], ®, ©®), the semiring from Example 1. Then

for
1 1

11

A=

wehavedet(A)=1-1+1-1"=1+1=1.
The following theorem is vital for our main results.

Theorem 4. Let S be an additively inverse semiring, A € M,(S) is such that a;;a; are

additively invertible for all i, j, k, such that j # k. Then
A - adj(A) = det(A)I,,
where I, € M, (S) is the identity matrix.
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Proof. The proof is standard. The (7, k)th component of the product is:
(A - adj(A))x = Z aijadj(A)) s = Z aij(det( My (A)) 4.
=1 =1
If i = k, we have:
(A - adj(A)); = Z ajadj(A)) ;i = Z ai;(det( M (A = det(A).
=1 =1
If i # k then we also have an expansion of the determinant of a matrix, but in this case

this matrix has equal ith and kth row. So, from Theorem 3, we conclude that this sum is

equal to zero. O

Remark 1. One can check that the equality A - aﬂlaj(A) = cia(A)In need not be true for all

matrices A € M, (S). One can check the same matrix as in Example 3.

4.3 Main results

In this section we prove the main results.

Theorem 5. Let S be an additively inverse semiring with zero 0 and identity 1 and A €
M,(S) is such that a;jay is additively invertible for all i, j,k, j # k. If A is a right zero

divisor, then (Figt(A) is a zero divisor.

Proof. Since A is a right zero divisor, there exists a non-zero matrix B € M,(S) such that

B - A = O. If we multiply this equality on the right by :gaﬁ(A), we get
B-A-adjd) =0,
and taking into account results from Theorem 4, we get
Bdet(A) = O.

Since B # O, there is a component b;; # 0, such that b; ch(A) =0, so (’E:}(A) is a zero

divisor. O
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Theorem 6. Let S be an additively inverse semiring with zero 0 and identity 1 and A €
M, (S) is such that a;;a; is additively invertible for all i, j,k, j # k. U(E(A) is a zero

divisor, then A is a left zero divisor.

Proof. Since (E(A) is a zero divisor, there exists x € S such that (E(A) -x =0 If
a;j-x = 0forall i, j, then A - (xI,) = O and we are done.

So, let us assume that there exist 7, j such that a;; - x # 0. Since cigt(A) -x = 0,
there must exist maximal r such that 1 < r < n — 1 and x annihilates all determinants
of submatrices of A of order r + 1, while there exists a submatrix C of order r of A such
that det(C) - x # 0. We may assume without loss of generality (and in order to simplify
notation) that it is the submatrix formed by the first » rows and columns of matrix A. Let

us denote by B, the submatrix of A formed by the first r + 1 rows and columns of A. We

claim that the following product is equal to zero.

+2
an  ap A Qi o dig (Mys11(B) ™ Px
+3
Ay ayp o Ay Ayt Aop (My12(B) ™ x
. 2r+2
ayl ap o Ay Arrel o Arp (Mr+1,r+1(B))( " )X
Ari1,1 Are12 0 Qeely Qrelg+l "0 Qrylp 0
Ani an2 o Anr Anr+l o Ann 0

If 1 <i<rwehave
r+1

D @M (BT =0,

=1
since this is just the determinant of a matrix of order r + 1 having the same ith and r + 1st
row (we replace r + 1st row of matrix B with its ith row).

Fori =r+ 1, we have

r+1
D a1 (Mo j(B)" P x = det(B)x = 0,

J=1
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since x annihilates all determinants of submatrices of A of order larger than . The same
conclusion holds for i > r + 1, since the corresponding sum is just determinant (or deter-
minant’) of a submatrix of order larger than r of matrix A.

On the hand, (M4 1,41(B))¥*?x = det(C)x # 0 by assumption, so this column is not
equal to zero. If we add n — 1 zero columns to this one, we obtain a matrix D # O, such

that A - D # O and we conclude that A is a left zero divisor. O

Corollary 1. Let A € M, (S) be a matrix with entries in an additively inverse semiring S,
such that a;jay is additively invertible for all i, j, k, i # j. Then, if A is a right zero divisor,

then A is a left zero divisor.

Proof. The proof follows directly from previous theorems. Namely, if A is a right zero
divisor, then by Theorem 35, cEt(A) is a zero divisor, so, by Theorem 6 A, is a left zero

divisor. O

Remark 2. The set of left zero divisors in M, (S) may differ from the set of right zero
divisors, even if the conditions concerning its components as in previous theorems hold.

This is shown in the following example.
Example 15. Let (S, +,-) = ([0, 1], ®, ©®), the semiring from Example 1. The matrix

10
1 0

is a left zero divisor, but it is not a right zero divisor. Namely,

I 0110 O 00

1 0) |1 1 00

so A is a left zero divisor. Let us show that A is not a right zero divisor. Suppose that

B e M,(S)issuchthat B-A = O. So, if
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we get

x yl |1 O 00
z ) (1 o] o o]
It follows that max{x,y} = x® y = 0 and max{z,t} = z&t = 0. We conclude that

x=y=z=1t=0.So, B=0 and A is not a right zero divisor.
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Chapter 5

The Permanent Rank of Matrices over

Commutative Semirings

5.1 Rank functions

There are many essentially different rank functions for matrices over semirings. All the
rank functions coincide for matrices over fields, but they are essentially different for ma-
trices over semirings. Also, these ranks do not coincide with the usual rank function even
if a semiring S is a field. We collect well-known concepts of them. For more detailed

exposition, see [8].

Definition 21. The factor rank of the matrix A € M,,x,(S), A # O is the smallest positive
integer k such that there exist matrices B € M, (S ), and C € M, (S) such that A = BC.
The factor rank of A is denoted by rank(A). The factor rank of the zero matrix O is

assumed to be 0.

Definition 22. The term rank of the matrix A € M,,x,(S) is the minimum number of lines
(rows or columns) needed to include all nonzero elements of A. The term rank of A is

denoted by t(A).
Definition 23. The zero-term rank of A € M,,»,,(S) is the minimum number of lines (rows
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or columns) needed to include all zero elements of A. The zero-term rank of A is denoted

by z(A).

Definition 24. The row (resp. column) rank of A € M,,5,(S) is the dimension of the linear

span of the rows (resp. columns) of A. The row (resp. column) rank of A is denoted by

r(A) (resp. c(A)).

Definition 25. The spanning row (resp. column) rank of A € M,x,(S) is the minimum
number of rows (resp. columns) that span all rows (resp. columns) of A. The spanning

row (resp. spanning column) rank of A is denoted by sr(A) (resp. sc(A)).

Definition 26. The matrix A € M, (S) has maximal raw (resp. column) rank k if it has
k linearly independent rows (resp. columns) and any (k + 1) rows (resp. columns) are

linearly dependent. The maximal row (resp. column) rank of A is denoted by mr(A) (resp.

mc(A)).
Now, we can define the usual rank of a matrix A over a field F as following:

Definition 27. The rank of a matrix A € M,,x,(F) is the number of linearly independent

rows or columns of A.
Example 16. Let (S, +,-) = (Z,,+, '), and

340
A=10 0 3 |€MsS)
003

Then, the term rank of A is equal to two (#(A) = 2), because the minimum number of
lines needed to include all nonzero elements of A is equal to two.

The zero-term rank of A is equal to three (z(A)=3), because the minimum number of
lines needed to include all zero elements of A is equal to three.

Now, to find the factor rank of A, we need to work a little. The factor rank of A is not
equal to one, because we can not write A as product of two matrices, B € M3,;(Z,) and

C € M x3(Z,). We can explane that in the following steps.
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Suppose we can write A as product of that matrices B € M3x(Z,) and C € M,,3(Z.)

as follows:

340 X
003=y'(abc)
0 0 3 Z

ax bx c¢x
=| ay by cy
az bz cz

This corresponds to the system of equations:

ax = 3 (5.1.1)
bx = 4 (5.1.2)
cx = 0 (5.1.3)
ay = 0 (5.1.4)
by = 0 (5.1.5)
cy =3 (5.1.6)
az = 0 (5.1.7)
bz = 0 (5.1.8)
cz = 3 (5.1.9)

Since cx = 0, this implies ¢ = 0 or x = 0. But we can not take ¢ = 0 because that does
not satisfies the equations (5.1.6) and (5.1.9). Also, we can not take x = 0, because that
does not satisfies the equations (5.1.1) and (5.1.2). We conclude that there is no solution
to these equations, hence we cannot write A as product of two matrices, B € M3.(Z,)
and C € My,3(Z,). So, the factor rank of A is not equal to one.

Now, is the factor rank of A is equal to two or not? Let us try to find two matrices

B € M3,,(Z,) and C € M»,3(Z,) such that A = BC.
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340 X1 X2
00 3|=[m »
003 21 2

ax; + b]X2 arx; + b2X2

=| aiyr + by, axy + by,
a1 +bizn axzy + b

This corresponds to the system of equations:

aix; +bix, =
arx) + byxy =
azx; + bsx, =
a1 + by, =
ay, + by, =
asyy + by, =
aizy +bizp =
a7 +byzy =

azzy + bz =

-[

a a; as
by by bs
aszx) + b3X2

asy; + bzy,

aszz; + bsz

(5.1.10)
(5.1.11)
(5.1.12)
(5.1.13)
(5.1.14)
(5.1.15)
(5.1.16)
(5.1.17)
(5.1.18)

From (5.1.13), we have a;y; = 0 which implies a; = 0 or y; = 0. Suppose that a; = 0.

By substitution a; = 0 in (5.1.10) we get b;x, = 3 which implies b; # 0 and x, # 0.

From (5.1.16), we have b;z, = 0 which implies z; = 0. From (5.1.17) we have a,z; = 0,

this implies a, = 0 or z; = 0. Suppose that a, = 0.

By substitution a; = 0in (5.1.11) we get b, x, = 4, this means that b, # 0 and x, # 0.

From (5.1.18) we have azz; = 3, this means that a; # 0 and z; # 0. From (5.1.12) we

have azx; = 0 and bsx, = 0, since x, # 0 so by = 0, and since a3 # 0 so x; = 0. From

(5.1.10) we have b;x, = 3 this means b; = 1 and x, = 3, or b; = 3 and x, = 1, but from

(5.1.11) we have byx, = 4, if by = 1 and x, = 3 in (5.1.10) then this does not satisfy
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(5.1.11), because brx, = 4, so it must to be by = 3 and x, = 1, hence b, = 4 in (5.1.11).

From equations (5.1.15) and (5.1.18), we have asy; = 3 and asz; = 3 respectively, these

imply a; =3,y =z1 =1loraz = 1,y; = z; = 3. Suppose that a; = 1,y; = z; = 3. Now,

we have
340 0 1
A=10 0 3|=|13 0
0 0 3 30

Hence, the factor rank of A is equal to two, rank(A) = 2.

Let us determine the column rank of A (c(A)).

Is c(A) = 27

Lol 0.3 |=

Suppose that

3 4

m-{ 0 |+n-| 0 |+p-
0 0

3m+4n

3p m,n,p e’

3p

a d

b and e

c f

3

m,n,p e’

form a generating set for this space, for some a, b, c,d,e, f € Z,. So,

for some r, s € Z,. It follows that

a

3
Ol=r| b |+
0

c

ra + sd
rb + se

rc+sf

d

e

f

(5.1.19)
(5.1.20)
(5.1.21)
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So,rb =se=rc=sf=0.

I.If r#0and s # 0, we getb = e = ¢ = f = 0. So, our vectors would be

a d
0 and 0
0 0
It is clear that
0 a d
3 1¢Z4] 0|, )
3 0 0

so this case is impossible.

2.Ifr=0, s # 0, we get that 3 = sd and e = f = 0. Our vectors would be

a d
b and 01,
c 0

where sd = 3 for some s € Z,. So,d € {1,3}. If d = 1, we would get

1 3m+4n
0|€ 3p m,n,pEly.
0 3p

So, 1 = 3m + 4n for some m,n € Z,. This is clearly impossible and we conclude that

d = 3. So the generating vectors would be

a 3
b | and [0 [,
c 0
So,
0 a 3
3 |=¢t b |+tul 0],
3 c 0
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for some s,1,€ Z,. We get

ta+3u = 0 (5.1.22)
th = 3 (5.1.23)
tc = 3. (5.1.24)

From (5.1.23) it follows that  # 0 and from that and (5.1.22) it follows that @ = 0. From
(5.1.23) and (5.1.24) it follows that b = c. Our generating vectors would be

0 3
b and 0
b 0
So,
4 0 3
Ol=vlb|+w]O
0 b 0

for some v,w € Z,. It follows that 4 = 3w, so 3 | 4 which is not true. So, we get a
contradiction.
3. The case r # 0, s = 0 is analogous to this case — it is also impossible.
4. r =0, s = 0is also impossible, since 3 # 0.
We conclude that ¢(A) = 3.
Similar discussion shows that the row rank of A, r(A) is equal to 3.

Let us determine the spanning column rank of A (sc(A)). Is sc(A) = 1?7 We note that

3 4
VmeZ,)m-1 0 |#] 0
0 0

because

(Ym e Z,)3m + 4,
so, sc(A) # 1.
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Is sc(A) = 2?7 We note that

3 4 0
~Mm,neZ,)m-1 0 |+n-] 0 |#]| 3
0 0 3
If
3 0 4
Am,neZ)m-1 0 |+n-| 3 |1=| 0|,
0 3 0

we get 3 | 4. The other case is similar to this; so, sc(A) # 2. Hence, the spanning column
rank of A is equal to 3, i.e., sc(A) = 3.

In the same way we can find the spanning row rank of A (sr(A)) and sr(A) = 2.
Namely,

(VmeZ+)m-(3 4 0)¢(O 0 3)

so, sr(A) # 1. So, it is clear that sr(A) = 2.

The maximal column rank of A (mc(A)). We can check as before that all the columns
are linearly independent (we have practically done that in the discussion of the column

rank), so mc(A) = 3. Similarly, for maximal row rank we have mr(A) = 2.

Example 17. In this example we will work over the ring R = Z, i.e., (R, +,*) = (Z, +, ),

on the same last matrix, to find all the ranks. We have

340
A=10 0 3
00 3
We find the same results that we get in the semiring Z, about: #(A), z(A), rank(A), r(A),
sc(A), sr(A), mc(A) and mr(A), where t(A) = 2, z(A) = 3, rank(A) = 2, r(A) = 2,
sr(A) =2, mc(A) = 2, and mr(A) = 2. But ¢(A) # 3 as in the semiring Z,. Note that

1 4 3
0O1=(0]—-10
0 0 0
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and we get that the basis for the column space is

1 0
0 1.1 3 |¢-
0 3

hence, c(A) = 2.
Example 18. Let (S,+,:) = (Z,,9,®) be a commutative semiring, where a @ b :=

gcdla,byand a ® b := Icm{a, b} ,foraand bin Z,. Let

340
A= 0 0 3 |€Ms(S)
003

We find out that all the ranks of A, (#(A), z(A), rank(A), mc(A), mr(A) ) are as in the exam-

ple (Z., +,-), but the difference is in the column rank of A. To show that in the following:

The column rank (c(A)): It is easy to see that the linear span of the columns of A is

3 4 0 1 0
Zoflofl3 =<4 0[] 3
0 0 3 0 3

Namely, 3® 4 = 1. So the column rank of A is equal to two, i.e., c(A) = 2.

The spanning column rank of A (sc(A)). Note that

3 4 0
0|¢ZL4q 0|3
0 0 3
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Namely, if

3 4 0
0] = mOlO |&nO| 3
0 0 3
mO4dno0
= moO0en©3
moO0dnO3
3 lem{m, 4}
0 = lem{3, n}
0 lem{3, n}

But, 3 # lcm{m, 4} because 4 1 3 . Similarly,

S B
R
N
oS W
w O

0 0 3
0 4 3 1
3(eZf o]0 =240 |
3 0 0 0

hence sc(A) = 3.

5.2 Permanent rank

In this section we introduce a new rank for matrices over semirings, based on permanents.

Recall that for A € M,,(S), the permanent of A, denoted by per(A) is defined by

per(A) := Z A1e()A20(2) * * * Ano(n)-

€S,
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Definition 28. Let A € M, (S). For each k = 1,...,n, I;(A) will denote the ideal in S

generated by all permanents of k X k submatrices of A.

Thus, to compute [;(A), calculate the permanents of all k X k submatrices of A and
then find the ideal of S these permanents generate. Laplace expansion, which also holds
for semirings, implies that permanents of (k + 1) X (k + 1) submatrices of A lie in I;(A).

Thus, we have the following chain of ideals in S:
(A CI,1(A)C---Ch(A) CLi(A)CIh(A)=S.

It will be notationally convenient to extend the definition of /;(A) to all values of k € Z

as follows:

©0), ifk>n
Ii(A) =
S, ifk <0.
Then we have

(0) = L1 (A) S 1(A) € --- S [)(A) € Ip(A) = S.

We can now consider this sequence of ideals. Computing the annihilator of each ideal in

this sequence, we get the following chain of ideals.
(0) = Anng(S) € Anng(/;(A)) € Anng(/>(A)) C--- € Anng(/,(A)) € Anng(/,,1(A)) = S.

Notice that if Anng(/(A)) # (0), then Anng(/,(A)) # (0) for all » > k. Thus, the

following definition makes perfectly good sense.

Definition 29. The permanent rank of a matrix A € M,(S), denoted by permrank(A), is
the maximum integer k such that the annihilator of the ideal generated by all permanents

of k X k submatrices of A is zero, i.e.,
permrank(A) = max{k : Anng(/;(A)) = (0)}

Basic properties of this rank function are determined in the following theorem.
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Theorem 7. Let A € M, (S).

(a) 0 < permrank(A) < n.

(b) permrank(A) = permrank(A’).

(c) permrank(A) = O if and only if Anng(I;(A)) # (0).

(d) permrank(A) < n if and only if per(A) € Z(S), the set of all zero divisors in S

Proof. (a) Ip(A) = S, and Anng(S) = (0). Thus, permrank(A) > 0. On the other hand, if
k > n, then I;(A) = (0) and Anng((0)) = S. Therefore, permrank(A) < n.

(b) Since we have I,(A) = I,(A") for all @« € Z, then Anng(/,(A)) = Anng(I,(A")),
hence permrank(A) = permrank(A’).

(¢) Suppose permrank(A) = 0. That means max{k : Anng(/;(A)) = (0)} = 0. So
k = 0 is maximum of all k such that Anng(/;(A)) = (0).That means for all £k > 0 we have
Anng (/;(A)) # (0). Hence Anng(/;(A)) # (0). Conversely, assume that Anng (1;(A)) # (0).
Since Anng(/;(A)) € Anng(/>(A)) C --- € Anng([,(A)) € Anng(Z,,1(A)) = Anng((0)) =
S, then for all k > 1, Anng(I;(A)) # 0, but Anng(/y(A)) = (0). Hence permrank(A) = 0.

(d) Suppose per(A) € Z(S). So, there exists s € S such that, per(A) - s = 0. There-
fore, s € Anng(l,(A)) and Anng(l,(A)) # 0. It follows that permrank(A) < n. Con-
versely, assume that permrank(A) < n. That means max{k : Anng(/;(A)) = (0)} < n, i.e.,
Anng(1,(A)) # 0. It follows that there exists s € Anng(Z,(A))\{0}. So, s - per(A) = 0 and
per(A) € Z(S). |

Corollary 2. Let A € M,(S). Then if per(A) € U(S) then permrank(A) = n.

Proof. Suppose per(A) € U(S), so per(A) ¢ Z(S). From (e) in last theorem this implies
that permrank(A) = n. O

We will discuss examples of the permrank for matrices over commutative semirings
with lots of zero divisors. Let X be any nonempty set. We use the commutative semiring

(S, +,:) = (P(X),U,N). So, in the following, a, b, c, d are subsets of X. Let

A= € My(S),
c d
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such that a, b, c,d € X . We will compute I;(A),k =0,1,2. IH)(A) = S, 11(A) = {a,b,c,d),
I, (A) = (ad + bc) (we denote by (ay,...,a,) the ideal in S generated by the elements
Ay .., qy.

We have {ad+bc) C {a,b,c,d),i.e.,L(A) C I,(A), and Anng({a, b, ¢, d)) C Anng({ad+
bc)) . Note that, z € Anng({a, b, ¢, d)) if and only if

za = 0©zNna=0
z-b = 0ezNnb=10
z:¢c = 0oznNncec=0

zod = 0ezNnd=0

If there is z # 0 satisfying these conditions, then aUbUcUd # X. Namely, If aUbUcUd =

X, then, since z C X,

z = zNX
= zN(@UubuUcUd)
= (zNna)U@ENnb)U(izNc)(zNd)

= QuouOuD

0.

So, Anng({a, b, c,d)) # {0} © aubUcUd # X. Also, Anng({ad +bc)) # {0} © ad+bc +
X.SoifaubUcud # X, permrank(A) =0. faUbUcUd = X, and ad + bc # X, then
permrank(A)) = 1. Finally if ad + bc = X, permrank(A) = 2.

We discussed the permrank for matrices in M,(S) , and we will discuss the permrank

for some matrices in M5(S). Let

a b c
A= b a b | M),

c b a
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where (S, +, ) = (P(X),U,N), X is any set, and a,b,c C X . We will compute [;(A),k =
0,1,2,3. Iy(A) = §, I,(A) ={a, b, ),

IL,(A) ={a+b,ab+bc,b+ac,ab+bc,a+c,ab+bc, b+ac, ba+cb, a+b) = {(a+b,a+c, b+ac),

L(A) ={a+ bc +cb+ac+ ba+ ab) = {a+ bc + ac + ab) = {a + bc).

We explain how to compute /3(A) in the following:

a b c
a b b b b a
per| b a b . + b - per + ¢ - per
b a c a c b

c b a

Il
Q
=
<}
=2

a-(a2+b2)+b-(ba+bc)+c-(b2+ac)
= a+ab+ab+ bc+ bc+ ac,
sinceac=aNcCa,anda+ac =aVU (anc)=athen Iz3(A) = (a + bc). We have
(a+bc)C(a+b,a+c,b+ac)C(a,b,c),
i.e., 5(A) € I,(A) C I;(A), and

Anng({a, b, c)) C Anng({a + b,a + ¢, b + ac)) C Anng({a + bc)).

We have
Anng({a,b,c)) #{0} @ aUbUc+X
Note,
z€ Anng({a,b,c)) ©z-a = 0
z:b = 0
z-¢c = 0.

IfaubUc # X, then there exists x € X\ (aUbUc). We take z = {x}, thenzNa =
0,zNnb=0,zNnc=0.IfaUbUc =X, then Anng({a, b, c)) = {0}. Also,

ze Anng({a+b,a+c,b+ac)) & z-(a+b)=0
z-(a+¢c)=0

z-(b+ac)=0.
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Anng({a+ b,a+c,b+ac)) #{0} o (a+b)+(a+c)+(b+ac)+#X
a+b+c+ac+X

a+b+c+X

Anng({a + bc)) # {0} © a + bc # X.

Now, we apply that on a numerical example.

Example 19. Let X = {1,2,3,4,5}, a = {1,2,3}, b = {3,4}, ¢ = {4,5}. We see that
aUbUc = X = Anng({a, b, c)) = {0}, Anng({a+b, a+c, b+ac)) = {0}, but Anng({a+bc)) #
{0}, because a U (bNc) = {1,2,3} U {4} # X, so there is z € Anng({a + bc)) such that
ze€ X\ (@UbuUc),ie., z = {5} so Anng({a + bc)) # {0}, i.e., 5(A) # {0}. Hence,
permrank(A) = 2.

Example 20. Let S =7Z/6Z = {0, 1,2,3,4,5}.
(a) Suppose

2 2
A= € M,(S)

Clearly A is a nonzero matrix, and every entry in A is a zero divisor in S. L(A) =
4y =4S, I,(A) = (0,2) = 25, and Anng(/5(A)) = Anng(4S) = 3S # (0), Anng(/;(A)) =
Anng(2S) = 3§ # (0). Thus, permrank(A) = 0 (by using (c) of the theorem).

(b) Let
2 0
B=
[O 3

Every entry in B is a zero divisor in S. Since per(B) = (0), (d) implies permrank(B) <

2. Since I;(B) = (0,2,3) = 25 + 35S = S, Anng(/;(B)) = Anng(S) = (0), so from (d)

€ M,(S)

permrank(B) # 0. Therefore permrank(B) = 1.
(c) Suppose
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1 2
C:[ ]EM,,(S)
35

We have per(C) =5 € U(S). Then permrank(C) = 2 by Corollary 2.
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Mpunor 1.

W3jaBa o aytopcTBy

[NoTnucanu Asmaa Kanan

Bpoj nHgekca 2056/2009

M3jaBmyjem
fla je JOKTOpCKa gucepTaLyja nos HacnoBom

O deliteljima nule, invertibilnosti i rangu matrica nad komutativnim poluprstenima

®  Pe3yrTaTt COnCTBEHOr NCTRa1BaYKor paga,

° [Ja npepanoxeHa guceprauujay UernvuHi HY y AenoBrma Huje Buna npeanoxera
3a pobujare OWMO Koje Aunnome npema CTYAMCKUM Mporpamuma apyrix
BUCOKOLLKOMICKMX YCTaHOoBa,

e [HOa Cy pe3yntatu KOPeKTHO HaBedeHW A

° [Ja HuCam Kplmo/na ayTtopcka npasa WU KOPUCTUO WHTEReKTyarHy CBOjUHY
APYrux nuua.

Motnuc gokrTopaHaa

Y beorpagy, _ 14.11.2013
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Mpunor 2.

M3jaBa o0 ucTOBETHOCTHU WITaMNaHe U eNIeKTPOHCKe
Bep3uje NOKTOPCKOr paga

me n npesume aytopa Asmaa Kanan
Bpoj nHaoekca 2056/2009
CTyaujckn nporpam Matematika

Hacnoe paga O deliteliima nule, invertibilnosti i rangu matrica nad komutativnim
poluprstenima

MeHTOp Zoran Petrovi¢

MNoTnucaHu/a Asmaa Kanan

MsjaBrbyjem na je LTamMnaHa sBepsuja MOr [JOKTOPCKOr paja WCTOBETHA ereKTPOHCKO)]
BEp3uju Kojy cam npefao/na 3a objasrbuBarbe Ha noprany  HAururandor
penosutopujyma YHuBepsuteta y Georpaay.

Hossorbasam na ce objaBe Moju nu4HW nogaun BesaHy 3a gobujarse akagemckor
3Barba [OKTOpa Hayka, Kao LUTO Cy UMe 1 npesrme, roAanHa U MecTo pohersa 1 gatym
onbpaHe papna.

OBM nuuHM nojgauu mory ce ofjaBuUTh Ha MPEeXHUM CcTpaHuuama OuruTanHe
BubnmoTteke, y enekTpoHCKOM kaTarory 1 y nybnukauujama YHusepauteTa y Beorpaay.

MoTnuc pokrTopaHga

Y Beorpagy, 14.11.2013. P




MNpwnor 3.

WsjaBa o kopuwhetsy

Oenawhyjem YHusepsutetcky Gubmnoteky ,CBetosap Mapkosuh® aa y [durutanHu
penosuTopujym YHuBepsuteta y Beorpagy yHece Mojy AOKTOPCKY AucepTauujy nog
HacnoBoMm:

O deliteljima nule, invertibilnosti i rangu matrica nad komutativnim poluprstenima

Koja je moje ayTopcKo Aero.

AvcepTalujy ca CBUM NpuUnos1ma npesao/na cam y enekTpoHCKoM hopMaTy NoroAHOM
3a TpajHO apxvBupaH-e.

Mojy AokTopcKy AucepTaumjy noxpareHy y JurutanHu penosutopujym YHuUBepauTeTa
y beorpasy mory fa kopucTe CBU koju nowTyjy ogpeate cagpxare y ogabpaHom Tumy
nuueHue Kpeatushe 3ajegrunue (Creative Commons) 3a Kojy cam ce oany4duo/na.

(1)AyTopcreo

2. AYyTOPCTBO - HEKOMEpPLMjanHo

3. AyTopCcTBO — HekoMepumjanHo — 6ea npepane

4. AyTOPCTBO — HEKOMEPLMjarnHo — AENUTU MO UCTUM YCRoBUMA
5. Aytopcteo — 6e3 npepane

6. AyTOpcTBO — AENUTU NOA UCTUM YCrioBuMa

(Monumo [fa 3aokpyxute camo jeaHy oA LUeCT MOHYREeHWX NULEHLM, KpaTak onuc
NWUEeHLK aaT je Ha nonefuHu nucta).

lMoTnuc gokTopaHaa

Y beorpagy, 14.11.2013.




1. AytopcTBo - [JosBosbasarte yMHOXaBar-e, AUCTPUBYLM)Y U jaBHO CaomiLTABake
Aena, u npepaje, ako ce HaBeJe uMe ayTopa Ha HauMH ogpefeH of cTpaHe ayTopa
wnu gaeaoua nuileHue, Yak u y komepuumjante cepxe. OBo je HajcnoGogHuja of cBUX
ILeHLu.

2. AyTopcTBO — HekomepuujasnHo. [Jo3sorbarate yMHOXaBarke, AUCTPUBYLIM)Y 1 jaBHO
caonwitaeatbe fena, u npepaje, ako ce Haeede VMe ayTopa Ha HauuH ogpefeH of
CTpaHe ayTopa unu Jasaoua nuueHue. OBa nuueHUa He J03BOrbasa KomepLyjanHy
yrnoTpeby fena.

3. AyTOpCTBO - HekomepuujanHo — Ge3 npepage. [lossorbaBate YMHOXABaHE,
AncTpudyumnjy 1 jaBHO caoriwiTasakwe Aena, 6es npomeHa, NpeoBruKoBaka Wn
ynotpebe Aena y CBOM [Jeny, ako ce HaBefe MMe ayTopa Ha HauuH ogpeheH of
cTpaHe ayTtopa wnu Aasaoua nuueHue. OBa NuueHLa He [O3BOrbaBa KoMepumjanHy
ynoTpeby aena. Y ofHOCY Ha cBe ocTane NULEeHLe, OBOM NMULIEHLIOM Ce OrpaHuYaBa
Hajsehun obum npasa kopuwheksa gena.

4. AyTOpCTBO - HekoMepuujanHo — [enuTi nod WCTUM ycrosuma. [JossosbasaTe
yMHOXaBarbe, ANCTPUBYLMjY 1 jaBHO caonluTaBare Aena, u npepane, ako ce Haseae
nMe ayTopa Ha HauuH oapeleH of CTpaHe ayTopa WnK AaBaolia MULEHUE U ako ce
npepaga AuCTpuOyMpa noA WCTOM WNKM CRAKMYHOM fuueHuoM. OBa MUUEHUA He
[03BOSbaBa komepuyjanty ynotpeby fena v npepaga.

9. AytopcTBo — 6e3 npepage. [ossorbaBaTe yMHOXaBak-e, AUCTPUBYLIM)Y U jaBHO
caoniirtasarbe fena, 6es npomera, npeobrinkoBarba UK ynotpebe aenay ceom aeny,
ako ce HaBeJe MMe ayTopa Ha HayuH oApeheH of cTpaHe ayTopa wnu gaBaola
nuueHue. OBa nuueHLa fo3BorbaBa koMmepLmjanty ynotpeby aena.

6. AyTopcTBO - [AEnMTU MOA MCTUM ycnoBuma. [lo3BOrbaBaTe YMHOXABakbe,
AMCTpUBYLIMjY 1 jaBHO caoniuTaBarwe Aena, v Npepage, ako ce HaBede VMe ayTopa Ha
Ha4yMH ofpefleH of cTpaHe ayTopa WnM [asBaola JMUEHUE M ako ce npepaga
AvcTpubyupa nop MCTOM WM CRMYHOM nuueHuom. OBa NuUUeHUa [03B0rbasa
KomepUujanHy ynotpeby fena u npepapa. CrnvdHa je codTBepckMM nuuUEHLama,
OLHOCHO FMLEHLamMa OTBOPEHOT Koga.




