Tehnološko-metalurški fakultet Univerzitet u Beogradu

Darka D. Marković

Multifunkcionalna svojstva tekstilnih materijala modifikovanih nanočesticama titan-dioksida

Doktorska disertacija

Beograd, 2011.

Mentor:

dr Maja Radetić, vand. prof. Tehnološko-metalurški fakultet, Beograd

Članovi komisije:

dr Zoran Šaponjić, viši naučni saradnik Institut za nuklearne nauke "Vinča"

dr Petar Jovančić, red. prof. Tehnološko-metalurški fakultet, Beograd

dr Suzana Dimitrijević, docent Tehnološko-metalurški fakultet, Beograd

Datum odbrane doktorske disertacije:

Multifunkcionalna svojstva tekstilnih materijala modifikovanih nanočesticama titan-dioksida

APSTRAKT

U teorijskom delu teze predstavljene su mogućnosti modifikovanja tekstilnih materijala različitim nanočesticama. Dat je pregled literature o primeni nanočestica TiO_2 na tekstilne materijale, kao i o mogućnostima modifikovanja tekstilnih materijala u cilju boljeg vezivanja nanočestica TiO_2 . Objašnjeni su mehanizmi dejstva nanočestica TiO_2 na mikroorganizme, obojene nečistoće i efekat UV zaštite. Takođe je objašnjeno dejstvo nanočestica srebra na fotokatalitičku aktivnost nanočestica TiO_2 . Opisani su do sada korišćeni postupci za sintezu koloidnih nanočestica TiO_2 različitih oblika i kristaliničnosti.

U eksperimentalnom delu teze, ispitana je mogućnost modifikovanja poliestrskih (PES) i pamučnih (Co) tkanina koloidnim nanočesticama TiO_2 u cilju dobijanja nanokompozitnih tekstilnih materijala sa multifunkcionalnim svojstvima. Da bi se poboljšala efikasnost vezivanja hidrofilnih koloidnih nanočestica TiO_2 za PES i Co vlakna, površine ovih tkanina su prethodno aktivirane korona pražnjenjem na atmosferskom pritisku i RF plazmom na niskom pritisku. Funkcionalizacija površine PES vlakna je vršena i biopolimerom alginatom i poliakrilnom kiselinom. Ispitani su i efekti koji se na PES i Co tkaninama postižu kombinovanom obradom koloidnim nanočesticama TiO_2 i srebra.

Antibakterijska aktivnost PES i Co tkanina modifikovanih koloidnim nanočesticama TiO_2 je ispitana prema Gram-negativnoj bakteriji *Escherichia coli*. Antimikrobna efikasnost materijala modifikovanih koloidnim nanočesticama TiO_2 i srebra je ispitana prema Gram-negativnoj bakteriji *E. coli*, Gram-pozitivnoj bakteriji *Staphylococcus aureus* i kvascu *Candida albicans*. Odlična i na pranje postojana baktericidna efikasnost je postignuta kod PES i Co tkanina koje su pre obrade nanočesticama TiO_2 modifikovane koronom ili RF plazmom. Takođe je utvrđeno da prethodna aktivacija površine PES tkanina alginatom i poliakrilnom kiselinom utiče na poboljšanje antibakterijske aktivnosti tkanina modifikovanih nanočesticama TiO_2 . Ustanovljeno je da se obradom PES i Co tkanina TiO_2 i srebra obezbeđuju izuzetna antimikrobna svojstva.

PES i Co tkanine modifikovane nanočesticama TiO_2 postižu maksimalan nivo UV zaštite koji se zadržava i nakon pet ciklusa pranja. Odlična svojstva samočišćenja obojenog zaprljanja od soka od borovnice su uočena kod tkanina koje su pre obrade nanočesticama TiO_2 modifikovane koronom ili plazmom. Ustanovljeno je da nanočestice TiO_2 deponovane na PES i Co tkaninama pokazuju izuzetnu fotokatalitičku aktivnost i nakon tri ciklusa fotodegradacije vodenog rastvora boje metilensko plavo.

Poboljšanje antimikrobnih efekata, UV zaštite i fotokatalitičke aktivnosti nakon prethodnog modifikovanja tkanina je direktna posledica povećane efikasnosti vezivanja nanočestica srebra na aktiviranoj površini PES i Co vlakana što je utvrđeno XPS i AAS analizom.

Ključne reči: poliestar, pamuk, korona pražnjenje, RF plazma, koloidne nanočestice TiO₂, koloidne nanočestice srebra, antimikrobna svojstva, UV zaštita, samočišćenje, fotokatalitička aktivnost.

Multifunctional properties of textile materials modified with titanium dioxide nanoparticles

ABSTRACT

In the theoretical part of this thesis, the potentials of different nanoparticles to modify the textile materials are discussed. A review of possible applications of TiO_2 nanoparticles onto textile materials is given. Potential modifications of textile materials in order to enhance the binding efficiency of TiO_2 nanoparticles are described in detail. The mechanisms of TiO_2 action on microorganisms, coloured stains and UV protection effect are discussed. Additionally, the influence of silver nanoparticles on photocatalytic activity of TiO_2 nanoparticles was considered. Special emphasis has been given to developed routes for the synthesis of colloidal TiO_2 nanoparticles of different shapes and crystallinities.

In the experimental part of this thesis, the possibility of modification of polyester (PES) and cotton (Co) fabrics with colloidal TiO_2 nanoparticles in order to develop the nanocomposite textile materials with multifunctional properties was studied. In order to enhance the binding efficiency of hydrophilic colloidal TiO_2 nanoparticles to PES and Co fibres, the surface of these fabrics was activated by corona at atmospheric pressure and RF plasma at low pressures. PES fibres were also functionalized with biopolymer alginate and polyacrylic acid. The effects of combined treatment of PES and Co fabrics with TiO_2 and silver nanoparticles were examined.

Antibacterial activity of PES and Co fabrics modified with colloidal TiO₂ nanoparticles was tested against Gram-negative bacterium *Escherichia Coli*. Antimicrobial activity of PES and Co fabrics modified with colloidal TiO₂ and silver nanoparticles was tested against Gram-negative bacterium *Escherichia Coli*, Gram-positive bacterium *Staphylococus Aureus* and fungus *Candida Albicans*. It was found that PES and Co fabrics modified by corona and RF plasma prior to loading of colloidal TiO₂ nanoparticles exhibited excellent antimicrobial properties and adequate laundering durability. PES fabrics treated with alginate and polyacrylic acid and subsequently loaded with colloidal TiO₂ nanoparticles also provided desirable level of antibacterial activity.

PES and Co fabrics modified with TiO_2 nanoparticles reached the maximum level of UV protection that was preserved after five washing cycles. The self-cleaning effects tested on blueberry juice stains and photodegradation of methylene blue in aqueous solution confirmed the excellent photocatalytic activity of TiO_2 nanoparticles deposited onto fibre surface.

The results indicated that corona and RF plasma treatment of PES and Co fabrics prior to loading of TiO_2 nanoparticles provided enhanced antibacterial, UV protective, selfcleaning and photocatalytic properties. This was due to improved binding efficiency of TiO_2 nanoparticles which was proved by XPS and AAS a

Key words: polyester, cotton, corona discharge, RF plasma, colloidal TiO₂ nanoparticles colloidal silver nanoparticles, antimicrobial efficiency, UV protection, self-cleaning, photocatalytic activity.

SADRŽAJ

UVOD		1
------	--	---

Teorijski deo

1. PRIMENA NANOČESTICA NA TEKSTILNE MATERIJALE	6
1.1. Nanočestice metala	7
1.2. Nanočestice oksida metala	
1.3. Nanočestice silicijum dioksida	
1.4. Uglienične nanotube	
2. PRIMENA NANOČESTICA TiO ₂ NA TEKSTILNE MATERIJALE	
2.1. Modifikovanje vlakana u cilju boljeg vezivanja nanočestica TiO ₂	17
2.1.2. Hemijsko modifikovanje vlakana	
3. SINTEZA NĂNOČESTICA ŤiO ₂	
3.1. Sinteza nanočestica TiO ₂ iz tečne faze	
3.1.1. Sol-gel metoda	
3.1.2. Emulziona metoda	
3.1.3. Sol metoda	
3.1.4. Solvotermalna metoda	
3.2. Sinteza nanočestica iz gasovite faze	
3.2.2. Fizičko naparavanje	
3.3. Ostale metode sinteze nanočestica TiO ₂	
3.3.1 Elektrodepozicija	
3.3.2. Ultrazvučna metoda	
3.3.3. Sinteza nanočestica TiO ₂ dejstvom mikrotalasa	
4. MEHANIZAM UV ZAŠTITE, SAMOČIŠĆENJA I BIOCIDNA AKTIVNO	DST
TEKSTILNOG MATERIJALA U PRISUSTVU NANOČESTICA TiO2	
4.1 Mehanizam dejstva TiO ₂	
4.2. Mehanizam samočišćenja tekstilnog materijala u prisustvu TiO ₂	
4.3. Dejstvo TiO ₂ na UV zaštitu tekstilnog materijala	
4.4. Hipoteze o biocidnom dejstvu TiO ₂	
4.5. Mehanizam dejstva nanočestica srebra na fotokatalitičku efikasnost	
nanočestica TiO ₂	

Eksperimentalni deo

42
42
43
44
44
44
45
45
46
47
47
48
48

8. METODE	49
8.1. Karakterizacija nanočestica TiO ₂ i tekstilnog materijala	49
8.1.1. TEM analiza	49
8.1.2. Ramanska spektrometrija	49
8.1.3. SEM analiza	49
8.1.4. XPS analiza	50
8.1.5. Atomska apsorpciona spektrometrija	50
8.2. Ispitivanje antimikrobnih svojstava tekstilnog materijala	50
8.3. Ispitivanje efekata UV zaštite	51
8.4. Ispitivanje postojanosti obrade na pranje	52
8.5. Ispitivanje sposobnosti samočišćenja tekstilnog materijala	52
8.6. Ispitivanje fotokatalitičke aktivnosti tekstilnog materijala	53
9. REZULTATI I DISKUSIJA	54
9.1. Karakterizacija nanočestica TiO ₂	54
9.2 Karakterizacija nanočestica srebra	57
9.3. Efekti prisustva nanočestica TiO ₂ na PES tkanini	58
9.3.1. PES tekstilni materijal obrađen nanočesticama TiO ₂ (koloid I)	58
9.3.1.1. Morfološka svojstva nemodifikovanih i koronom	
modifikovanih PES vlakana	58
9.3.1.2. Promene u hemijskom sastavu površine PES i CPES vlakana	60
9.3.1.3. Promena u hemijskom sastavu PES i CPES vlakana obrađenih	
nanočesticama TiO ₂	62
9.3.1.4. Efikasnost UV zaštite PES i CPES tkanina obrađenih	
nanočesticama TiO ₂	65
9.3.1.5. Sposobnost samočišćenia PES i CPES tkanina obrađenih	
nanočesticama TiO ₂	66
9.3.1.6. Fotokatalitička aktivnost nanočestica TiO ₂ deponovanih na PES i CPES	
tkaninama u vodenom rastvoru boje metilensko plavo	68
9 3 1 7 Antibakteriiska svoistva PES i CPES tkanina obrađenih	
nanočesticama TiO ₂	70
9 3 2 PES tekstilni materijal obrađen nanočesticama TiO ₂ (koloid II)	71
9 3 2 1 Morfološka svojstva PES vlakana modifikovanih RF plazmom	
alginatom i poliakrilnom kiselinom	71
9 3 2 2 Promene u hemijskom sastavu površine PES vlakana modifikovanih	, 1
koronom i RF nlazmom	74
9323 Promene u hemijskom sastavu površine PES CPES AIRPES O ₂ PES j	/ .
ArPES vlakana obrađenih nanočesticama TiO	76
9.3.2.4 Antibakteriiska svoistva PFS tkanina obrađenih nanočesticama TiO_2	
9.3.2.5. Efikasnost LIV zaštite PES uzoraka obrađenih nanočesticama TiO ₂	
9.3.2.6. Snosohnost samočišćenia PES tkanina obrađenih nanočesticama TiO ₂	05
9.3.2.7. Fotokatalitička aktivnost nanočestica TiO ₂ denonovanih	00
na PES tkaninama u vodenom rastvoru boje metilensko plavo	88
9.3.3 PES tekstilni materijal obrađen nanočesticama Ti Ω_2 (koloid II) i srebra	93
9.3.3.1 Morfološka svojstva PES vlakana obrađenih nanočesticama TiO ₂ i srebra	
9.3.3.2 Promene u hemijskom sastavu površine PES vlakana obrađenih) 5
nanočesticama TiO ₂ i srebra	95
9333 Promena obojenja PFS tkanina obrađenih nanočesticama TiO ₂ i srebra	95
9334 Antimikrohna svojstva PES tkanina obrađenih nanočesticama	, , , ,
7.5.5.7. The ministroom a syngetical test training obtained in the indecession of a strain	97
9335 Snosohnost IIV zaštite PES tkanina obrađenih nanočesticama)
7.5.5.5. Sposoonost o v Zastie i ES tkanna obradenin nanoeesteania	

TiO ₂ i srebra	100
9.3.3.6. Fotokatalitička aktivnost PES tkanina obrađenih nanočesticama	
TiO ₂ i srebra	102
9.4. Efekti prisustva nanočestica TiO ₂ na Co tkanini	105
9.4.1. Co tekstilni materijal obrađen nanočesticama TiO ₂ (koloid II)	105
9.4.1.2. Hemijske promene nemodifikovanih i Co vlakana	
modifikovanih koronom ili RF plazmom i nanočesticama TiO ₂	107
9.4.1.3. Antibakterijska svojstva nemodifikovanih i koronom ili RF plazmom	
modifikovanih Co tkanina obrađenih nanočesticama TiO ₂	120
9.4.1.4. Efikasnost UV zaštite nemodifikovanih i koronom ili RF plazmom	
modifikovanih Co tkanina obrađenih nanočesticama TiO ₂	122
9.4.1.5. Sposobnost samočišćenja nemodifikovanih i koronom ili RF plazmom	
modifikovanih Co tkanina obrađenih nanočesticama TiO ₂	124
9.4.1.6. Fotokatalitička aktivnost nemodifikovanih i koronom ili RF plazmom	
modifikovanih Co tkanina obrađenih nanočesticama TiO2	127
9.4.2. Obrada Co tkanina nanočesticama TiO ₂ (koloid II) i srebra	132
9.4.2.1. Morfološka svojstva Co vlakana obrađenih nanočesticama TiO ₂ i srebra.	132
9.4.2.2. Promene u hemijskom sastavu Co vlakana obrađenih nanočesticama	
TiO ₂ i srebra	133
9.4.2.3. Promena obojenja Co tkanina obrađenih nanočesticama TiO ₂ i srebra	133
9.4.2.4. Antimikrobna svojstva Co tkanina obrađenih nanočesticama	
TiO ₂ i srebra	135
9.4.2.5. Efikasnost UV zaštite Co tkanina obrađenih nanočesticama TiO ₂ i srebra	136
9.4.2.6. Fotokatalitička aktivnost Co tkanina obrađenih nanočesticama	
TiO ₂ i srebra	138
10. ZAKLJUČAK	141
	145
11. LITEKATUKA	145

UVOD

Poslednja decenija je obeležena intenzivnim razvojem novih materijala baziranih na primeni nanotehnologija. Mnogi nanomaterijali se već komercijalno proizvode i primenjuju u različitim oblastima. Savremeni zahtevi tržišta u pogledu kreiranja novih multifunkcionalnih tekstilnih materijala su takođe nametnuli potrebu za uvođenjem nanotehnologija i u tekstilnu industriju. Nanočestice metala i metalnih oksida u mnogim slučajevima mogu uspešno zameniti organska, neorganska i biološki aktivna jedinjenja koja se konvencionalno koriste u oplemenjivanju tekstilnog materijala. Zahvaljujući malim dimenzijama i velikom odnosu površine i zapremine, a time i velikoj reaktivnosti nanočestice predstavljaju odlično rešenje za oplemenjivanje tekstilnog materijala. Njihovom upotrebom se delimično mogu prevazići glavni nedostaci konvencionalnog modifikovanja tekstilnih materijala kao što su loša postojanost obrade i narušen opip materijala. Istraživanja su pokazala da se primenom nanočestica srebra, zlata, bakra, bakaroksida, titan-dioksida, cink-oksida ili silicijum-dioksida mogu dobiti tekstilni materijali sa antimikrobnim svojstvima, sposobnošću UV zaštite i samočišćenja, električnom provodljivošću itd.

Zbog visokog indeksa prelamanja svetlosti i bele boje titan-dioksid (TiO₂) se početkom XX veka koristio kao pigment u proizvodnji boja, pasta, krema, naočara itd. Od 1972. godine, kada je otkriveno da pod dejstvom UV svetlosti TiO₂ pokazuje odlična (foto)katalitička svojstva polje njegove primene je znatno prošireno. Sintezom čestica TiO₂ nanometarskih dimenzija poboljšana su njegova fotokatalitička svojstva. Zahvaljujući fotokatalitičkoj aktivnosti pod dejstvom UV svetlosti nanočestice TiO₂ su sposobne da razgrade veliki broj organskih jedinjenja i da biocidno deluju na široki spektar mikroorganizama. Stoga na tržištu već postoje proizvodi na bazi nanočestica TiO₂ kao što su samočisteća stakla, stakla koja ne magle, sterilne pločice i površine, uređaji za prečišćavanje vazduha i vode itd. Razvoj metoda za sintezu nanočestica TiO₂ visoke kristaliničnosti na niskim temperaturama je proširio i njegovu primenu na termički osetljive materijale kao što su papir, tekstil i polimeri. Istraživanja sprovedena poslednjih godina su pokazala da se modifikovanjem tekstilnih materijala nanočesticama TiO₂ mogu dobiti nova upotrebna svojstva (antimikrobna i UV zaštita, fotokatalitička aktivnost i sposobnost samočišćenja).

U okviru ove teze ispitana je mogućnost primene sintetisanih koloidnih nanočestica TiO₂, definisanih dimenzija i kristaliničnosti, na tekstilne materijale. Zbog velike komercijalne upotrebe poliestarske i pamučne tkanine su izabrane kao supstrati za ovo istraživanje. Da bi se pospešilo vezivanje hidrofilnih nanočestica TiO_2 za hidrofobno poliestarsko vlakno vršena je aktivacija površine tkanine koronom na atmosferskom pritisku i RF plazmom (vazdušna, kiseonična i argonska) na niskom pritisku. Modifikovanjem površine tekstilnog materijala koronom ili plazmom dolazi do promene u morfološkim i hemijskim svojstvima površine vlakana pri čemu svojstva u unutrašnjosti vlakana ostaju nepromenjena. Topografija vlakana se menja u pravcu povećanja hrapavosti tj. specifične površine dok se uvođenjem polarnih grupa povećava hidrofilnost vlakna. Ove promene pozitivno utiču na efikasnost daljeg vezivanja nanočestica TiO_2 . Modifikovanje površine poliestarskih vlakana je vršeno i biopolimerom alginatom i poliakrilnom kiselinom u cilju uvođenja novih grupa na površinu vlakna koje bi predstavljale potencijalna mesta za vezivanje nanočestica TiO_2 . Da bi se poboljšala efikasnost vezivanja nanočestica TiO_2 za pamučno vlakno takođe je vršena prethodna aktivacija površine koronom na atmosferskom pritisku i RF plazmom na niskom pritisku.

Na poliestarskoj i pamučnoj tkanini je dodatno ispitana mogućnost primene kombinovane obrade koloidnim nanočesticama TiO₂ i srebra. Pored toga što tkanini obezbeđuju odlična antimikrobna svojstva u mraku i na dnevnom svetlu, nanočestice srebra pozitivno utiču i na fotokatalitičku aktivnost nanočestica TiO₂. Ovako modifikovan nanokompozitni tekstilni materijal pruža odlična antimikrobna svojstva i UV zaštitu dok pod dejstvom UV svetlosti pokazuje i veoma dobru fotokatalitičku aktivnost.

Za karakterizaciju koloidnih nanočestica TiO_2 je korišćena transmisiona elektronska mikroskopija (TEM) i ramanska spektroskopija. Karakterizacija koloidnih nanočestica srebra je vršena UV-VIS spektrofotometrijom. Morfološka svojstva površine nemodifikovanih i koronom ili RF plazmom modifikovanih vlakana su praćena skenirajućom elektronskom mikroskopijom (SEM), a promene u hemijskom sastavu rendgen fotoelektronskom spektroskopijom (XPS) i SEM analizom u EDX modu. Za utvrđivanje ukupne količine deponovanih nanočestica TiO₂ na tekstilnom materijalu korišćena je atomska apsorpciona spektroskopija (AAS). Promena nastala u obojenju tkanina nakon obrade nanočesticama TiO₂ i srebra je određena refleksionom spektrofotometrijom.

Antibakterijska aktivnost tkanina modifikovanih nanočesticama TiO_2 je ispitana prema Gram-negativnoj bakteriji *Escherichia coli*. Antimikrobna aktivnost tkanina modifikovanih nanočesticama TiO_2 i srebra je ispitana prema patogenim mikroorganizmima: Gramnegativnoj bakteriji *Escherichia coli*, Gram-pozitivnoj bakteriji *Staphylococcus aureus* i kvascu *Candida albicans*. Takođe je ispitana i postojanost antimikrobne obrade na pranje.

Efikasnost UV zaštite je ocenjena korišćenjem UV/VIS spektrofotometra opremljenog "Starteck" software-om koji na osnovu izmerenih vrednosti intenziteta propuštanja UV zraka kroz tkanine direktno određuje nivo UV zaštite. Efikasnost UV zaštite tkanina je ispitana i nakon pet ciklusa pranja.

Praćenjem obezbojavanja zaprljanja od soka od borovnice tokom 24 h osvetljavanja UV lampom, ocenjena je sposobnost samočišćenja modifikovanih tkanina.

Fotokatalitička aktivnost nanočestica TiO₂ deponovanih na tkaninama je ispitana u vodenom rastvoru boje metilensko plavo. Ispitana su tri ciklusa fotodegradacije. Boja metilensko plavo je izabrana zbog dobre postojanosti na UV svetlost.

Doktorska disertacija je urađena u laboratorijama Katedre za tekstilno inženjerstvo, Katedre za biohemijsko inženjerstvo i biotehnologiju Tehnološko-metalurškog fakulteta u Beogradu, Instituta za nuklearne nauke "Vinča" u Beogradu, Instituta za fiziku u Zemunu, Instituta za hemiju, tehnologiju i metalurgiju u Beogradu, Consejo Superior de Investigaciones Cientificas (CSIC) u Barseloni i Thermo Fisher Scientific u Velikoj Britaniji.

Iskreno se zahvaljujem

Mentoru, dr Maji Radetić van. prof. TMF-a, na nesebičnoj podršci i pomoći pri izboru teme i izrade doktorske disertacije, korisnim savetima tokom eksperimentalnog rada i tokom finalizacije doktorske disertacije, kao i prikupljanju dragocene literature

Komentoru dr Zoranu Šaponjiću višem naučnom saradniku Instituta za nuklearne nauke "Vinča", na nesebičnoj podršci i pomoći pri izboru teme, korisnim savetima tokom eksperimentalnog rada i tokom finalizacije doktorske disertacije.

dr Petru Jovančiću red. prof TMF-a, na korisnim savetima i neprocenjivoj podršci tokom izrade i finalizacije doktorske disertacije

dr Suzani Dimitrijević docentu TMF-a, na korisnim savetima prilikom izrade i finalizacije doktorske disertacije

dr Vesni Lazić, naučnom saradniku inovacionog centra TMF-a, na pomoći i podršci tokom izrade doktorske disertacije

Mariji Radoičić dipl. inž., istraživaču saradniku Instituta za nuklearne nauke "Vinča" na pomoći pri sintezi koloidnog rastvora nanočestica TiO_2

dr Vesni Vodnik naučnom saradniku Instituta za nuklearne nauke "Vinča", na pomoći pri sintezi koloidnog rastvora nanočestica srebra

Saši Lazoviću, dipl. fiz., istraživaču saradniku Instituta za fiziku, na pomoći pri obradi materijala RF plazmom

dr Neveni Puač, naučnom saradniku Instituta za fiziku na pomoći pri obradi materijala RF plazmom

dr Tamari Radetić, na izradi TEM analize uzoraka

Branislavu Potkonjaku dipl. fiz. hem. IHTM-a, na pomoći pri radu na atomskom apsorpcionom spektrofotometru

Milošu Bokorovu sa Univerziteta u Novom Sadu, na pomoći prilikom SEM analize uzoraka

dr Ricardu Molini sa instituta CSIC u Barseloni i dr Christopher Baily-u iz Thermo Fisher Scientific-a u Velikoj Britaniji, na izradi XPS analize uzoraka tekstilnih materijala dr. Zorani Dohčević-Mitrović, višem naučnom saradniku Instituta za fiziku, na izradi Ramanske analize uzoraka

Draganu Pešiću dipl. inž. preduzeća Mile Dragić iz Zrenjanina, na obezbeđenim tekstilnim materijalima potrebnim za ovo istraživanje

Zahvaljujem se kolegama sa Katedre za tekstilno inženjerstvo i Katedre za biohemijsko inženjerstvo i biotehnologiju na pomoći i podršci tokom izrade disertacije.

Konačno, zahvaljujem se suprugu, roditeljima, sestri i prijateljima na svesrdnoj podršci, razumevanju i trudu koji su uložili u mene i bez kojih bi sve bilo mnogo teže.

Doktorsku disertaciju posvećujem dragoj baki Dari.

1. PRIMENA NANOČESTICA NA TEKSTILNE MATERIJALE

Čovek u svakodnevnom životu koristi tekstilne materijale da bi se zaštitio od spoljašnjih uticaja. Postoje podaci da su prve tkanine od konoplje, pamuka i svile nastale jos u 3 milenijumu pre nove ere dok se pojava modifikovanja i bojenja tkanina vezuje za staru Kinu i Egipat (Mahltig et al., 2005). Do početka XX veka u upotrebi su bili tekstilni materijali od prirodnih sirovina kao što su pamuk, konoplja, vuna, svila itd (Mahltig i Textor, 2008). Pojavom sintetskih vlakana ona preuzimaju primat u tekstilnoj industriji. Povećane potrebe stanovništva za tekstilnim materijalima određenih upotrebnih svojstava uslovile su razvoj i proizvodnju vlakana specijalne namene. Međutim, usled ekonomske neisplativosti, proizvodnja mnogih vlakana sa specifičnim upotrebnim svojstvima biva napuštena. Da bi odgovorili na savremene zahteve tržišta, a istovremeno ostali u granicama ekonomske isplativosti sve više istraživanja je stoga usmereno ka pronalažanju adekvatnih postupaka za modifikovanje već postojećih tekstilnih materijala. Površinskim modifikovanjem tekstilnih materijala dobijaju se nova upotrebna svojstva. Savremeni modifikovanja tekstilnog materijala kreću se trendovi u pravcu postizanja multifunkcionalnosti. Multifunkcionalni tekstilni materijali bi trebalo da poseduju mehaničku, hemijsku, fotohemijsku i termičku stabilnost, sposobnost samočišćenja, kao i da pružaju odgovarajuću UV i antimikrobnu zaštitu. Multifunkcionalnost tekstilnog materijala se može postići modifikovanjem određenim organskim, neorganskim i biološki aktivnim jedinjenjima, polimerima i biopolimerima, česticama metala ili senzorima. Prilikom modifikovanja tekstilnog materijala neophodno je obezbediti dobru postojanost efekata na mokre obrade, a da se pri tome zadrže pozitivna svojstva materijala (opip, poroznost, mehanička svojstva).

Intenzivan razvoj nanotehnologija koji je zabeležen u protekloj deceniji otvorio je nove mogućnosti u pogledu modifikovanja tekstilnog materijala. Zahvaljujući izuzetno malim dimenzijama tj. velikom odnosu površine prema zapremini kao i selektivnoj reaktivnosti nanočestice predstavljaju odlično rešenje za modifikovanje tekstilnog materijala. Efekti koji se na tekstilnom materijalu mogu postići obradom nanočesticama su prikazani u Tabeli 1.

Efekat na tekstilnom materijalu	Vrsta nanočestice
UV zaštita	ZnO, TiO_2
Antibakterijska aktivnost	ZnO, TiO ₂ , Ag, Au, Cu,ugljenične nanotube
Apsorpcija mirisa	β ciklodekstrini, lipozomi
Vodootpornost	TiO ₂ , SiO ₂
Termoizolacija	Temperaturno osetljive čestice
Zaštita protiv zapaljivosti	Ugljenične nanotube
Antistatičnost	Ag, Au, modifikovani SiO ₂ , ugljenične nanotube

Tabela 1. Efekti na tekstilnim materijalima koji se postižu obradom nanočesticama
(Dawson, 2008; Dastjerdi i Montazer, 2010)

1.1. Nanočestice metala

Antimikrobna svojstva srebra poznata su još od antičkog doba (Rai et al., 2009). Vekovima se srebro koristilo za lečenje opekotina, hroničnih rana i drugih infekcija. Pronalaskom penicilina 1940 godine upotreba srebra kao antimikrobnog sredstva biva umanjena. Vremenom je otkriveno da mnoge bakterije postaju rezistentne na penicilin i druge antibiotike pa se srebro vraća u upotrebu već 1960. godine. Poslednjih godina velika pažnja istraživača je usmerena na ispitivanje antimikrobnih svojstava nanočestica srebra (Dastjerdi i Montazer, 2010). Stoga su razvijene brojne metode za sintezu nanočestica srebra kao što su: fotokatalitička redukcija (Chang et al., 2006), hemijska redukcija (Yu et al., 2007), foto-redukcija (Courrol et al., 2007), ultrazvučna metoda (Nersisyan et al., 2003) i biološke metode (Sathishkumar et al., 2009; Kalishwaralal et al., 2010).

Pretpostavlja se da su joni srebra zaslužni za antimikrobnu aktivnost srebra. Jedan od ponuđenih mehanizama baktericidnog dejstva srebra se bazira na pretpostavci da se pozitivno naelektrisani joni srebra elektostatičkim silama vezuju za negativno naelektrisani zid ćelije čime se on oštećuje i omogućava da joni srebra difunduju unutar ćelije gde se vezuju za –SH grupe celularnih enzima (Dastjerdi i Montazer, 2010). Narušena enzimska aktivnost uzrokuje promene u metabolizmu i sprečava dalji rast ćelije što vodi njenom odumiranju. Joni srebra takođe katalizuju proizvodnju atomskog kiseonika koji je sposoban da oksiduje molekulsku strukturu bakterije.

Zahvaljujući odličnim antimikrobnim svojstvima srebro je u proizvodnji medicinskog tekstila zamenilo dugo korišćene organske biocide. Odeća i drugi tekstilni materijali naročito ako su proizvedeni od prirodnih vlakana (pamuk, vuna) predstavljaju pogodnu podlogu za rast i razvoj mikroorganizama kao što su *Escherichia coli, Staphylococcus*

aureus, Pseudomonas aeruginosa i Candida albicans (Mahltig et al., 2005; Kim et al, 2010; Lazić, 2010). Razvoju mikroorganizama pogoduje sposobnost tekstilnog materijala da zadržava vlagu i kiseonik, izuzetno razvijena površina tekstilnog materijala kao i temperatura koja se ostvaruje u kontaktu sa ljudskim telom. Osim što oštećuju boju i sam tekstilni materijal, mikroorganizmi razgrađuju i ljudski znoj proizvodeći neprijatne mirise. Nanošenje nanočestica srebra na tekstilni materijal sprečava rast i razmnožavanje mikroorganizama kao i prelazak mikroorganizama sa materijala na telo.

Dosadašnja istraživanja su pokazala da tekstilni materijal obrađen nanočesticama srebra pokazuje izuzetno dobra antibakterijska (*E. coli, S. aureus, K. pneumoniae*) i antifungalna svojstva (*C. albicans, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata*) (Lei Jeong, 2005; Hipler et al., 2005). Antimikrobna aktivnost nanočestica srebra je dokazana na pamučnom, poliestarskom, poliamidnom, vunenom i polipropilenskom tekstilnom materijlu (Lee et al, 2004; Jeong et al., 2005; Lee i Jeong, 2005; Yuranova et al., 2006 a; Duran et al., 2007; Kelly et al, 2007; Perelshtein et al., 2008; Lazić, 2010).

Nanočestice srebra ulaze u sastav mnogih nanokompozitnih materijala. Wang i saradnici su ispitivali antibakterijsku sposobnost vunenog materijala na koji su nanesene nanokompozitne čestice srebra i silicijum-dioksida (Ag/SiO₂) (Wang et al., 2007). Oh i saradnici su takođe pokazali da Ag/SiO₂ nanokompoziti poseduju antibakterijsku i antifungalnu aktivnost (Oh et al., 2006). Utvrđeno je da nanokompozitne čestice srebra i sumpora (Ag/S) poseduju bolju antibakterijsku aktivnost od samih nanočestica srebra (Jeong et al. 2005).

Zahvaljujući svojstvima kao što su antimikrobna aktivnost, električna provodljivost i postojanost na visokim temperaturama nanočestice bakra su poslednjih godina postale čest gradivni element nanokompozitnih materijala (Wei et al., 2008). Antibakterijska aktivnost nanočestica bakra koje sastavni deo sepiolita (magnezijum-filosilikat su Mg₈Si₁₂O₃₀(OH)₄(H₂O)₄×8H₂O) se može porediti sa antibakterijskom aktivnošću konvencionalnog baktericida triklosana (Cubillo et al., 2006). Antimikrobno dejstvo nanočestica bakra se zasniva na otpuštanju Cu²⁺- jona koji zahvaljujući malim dimenzijama lako stupaju u kontakt sa mikroorganizmima pri čemu narušavaju kompaktnost ćelijske membrane. Povećana permeabilnost membrane i izmenjena pH vrednost i provodljivost sredine omogućava ulazak Cu^{2+} - jona unutar ćelije pri čemu dolazi do inaktivacije enzimske aktivnosti (Ren et al., 2009).

Ispitujući uticaj nanočestica metala (Cu, Zn, Ag, Al) na sposobnost UV zaštite pamučnih pletenina Ibrahim i saradnici su pokazali da se sa nanočesticama bakra postiže

najbolja UV zaštita (Ibrahim, et al., 2009). Takođe je utvrđeno da nanočestice bakra pamučnoj pletenini obezbeđuju i solidna antimikrobna svojstva. Wei i saradnici su dokazali da nanočestice bakra na polipropilenskoj tkanini znatno poboljšavaju njenu električnu provodljivost (Wei et al., 2010). Pokazano je da nanočestice bakra vezane za komercijalno dostupni polimerni matriks (polivinilmetilketon, polivinilhlorid i polivinildifluorid) obezbeđuju odlična antifungalna svojstva (Cioffi et al., 2005).

Fine čestice soli srebra, zlata i bakra su se vekovima koristile za bojenje keramike i stakla (Dawson, 2008). Još 1857. godine Michael Faraday je istraživao načine sinteze i bojenja koloidnim rastvorom zlata. Danas je poznato da obradom tekstilnog materijala nanočesticama zlata različitih veličina i oblika može da se dobije široki spektar boja (Richardson i Johnston, 2007). Sferne nanočestice zlata dimenzija 7-20 nm boje tekstilni materijal u crveno, dok je tekstilni materijal obrađen većim nanočesticama plavo obojen. Richardson i Johnston su pokazali da se nanočestice zlata (modifikovane polietilaminom) sa uspehom mogu vezati za vuneno vlakno dajući vuni crveno i plavo obojenje (Richardson i Johnston, 2007).

Zahvaljujući antibakterijskoj efikasnosti, nanočestice zlata su danas našle široku primenu i u biomedicini (Dastjerdi i Montazer, 2010). Naročito se koriste u proizvodnji sapuna i kozmetičkoj industriji. Zhang i saradnici su pokazli da nanočestice zlata sintetizovane u prisustvu polimernih stabilizatora poseduju veoma dobra antibakterijska svojstva prema širokom spektru Gram-pozitivnih i Gram-negativnih bakterija (Zhang et al., 2008). Nanočestice zlata se mogu deponovati na pamučni materijal u cilju dobijanja medicinskog tekstila (Dong i Hinestroza, 2009). Nanošenjem nanočestica zlata na beljeni pamučni materijal dolazi do promene boje u purpurnu što je posledica postojanja čestica nanometarskih dimenzija. Dong i Hinestroza su uočili da se obradom protonovanog pamučnog materijala koloidnim rastvorom nanočestica zlata stabilizovanih citratima, na površini vlakna formiraju nanočestice dimenzija 2-5 nm. *In situ* sintezom nanočestica zlata (bez stabilizatora) postiže se veća pokrivenost površine vlakna ali su nanočestice većih dimenzija.

1.2. Nanočestice oksida metala

Nanočestice titan-dioksida (TiO₂) i cink-oksida (ZnO) su poluprovodnici n tipa. Jedino ova dva poluprovodnika iz grupe 3d prelaznih metala poseduju dovoljnu stabilnost u fotoekscitovanom stanju (Vigneshwaran et al., 2006). Poznato je da nanočestice poluprovodničkih oksida (TiO₂, ZnO) pod dejstvom UV svetlosti stvaraju parove elektona (e) i šupljina (h⁺) koji u kontaktu sa vodom i kiseonikom iz vazduha stvaraju niz reaktivnih čestica koje su sposobne da razgrade veliki broj organskih jednjenja do CO₂ i H_2O (Fuishima et al., 2008). Takođe je utvrđeno da nakon fotoekscitacije ove nanočestice štetno deluju na bakterije, gljivice i viruse sprečavajući njihov dalji rast. Stoga se nanočestice TiO₂ i ZnO danas nalaze u mnogim sistemima za dezinfekciju vode, vazduha i raznih površina. Poslednjih godina su mnoga istraživanja fokusirana na ispitivanje mogućnosti primene nanočestica TiO₂ i ZnO za dobijanje multifunkcionalnih tekstilnih materijala. Dosadašnja istraživanja su pokazala da tekstilni materijali modifikovani nanočesticama TiO₂ pod dejstvom UV svetlosti pokazuju odlična i veoma postojana antimikrobna svojstva, sposobnost UV zaštite i samočišćenja (Bozzi et al., 2005; Yuranova et al., 2007; Uddin et al., 2007; Daoud et al. 2008). Nanokompozitni tekstilni materijali koji uključuju nanočestice TiO₂ će biti detaljnije analizirani u narednom poglavlju.

U odnosu na nanočestice srebra nanočestice ZnO imaju nekoliko prednosti kao što su niska cena, bela boja i sposobnost UV zaštite (Vigneshwaran et al., 2006; Becheri et al., 2007). Wang i saradnici su ispitali mogućnost nanošenja nanoštapića ZnO na pamuk (Wang et al., 2004). Rezultati ispitivanja su pokazali da se nanoštapići ZnO dobro vezuju za pamučno vlakno obezbeđujući odličnu UV zaštitu. Do istog zaključka su došli Becheri i saradnici analizirajući sposobnost UV zaštite pamučnih i vunenih vlakana modifikovanih nanočesticama ZnO (Vigneshwaran et al., 2006; Yadav et al., 2006; Becheri et al., 2008). Pored UV zaštite pamučni tekstilni materijal modifikovan nanočesticama ZnO pokazuje dobra baktericidna svojstva (Li et al., 2007). Li i saradnici su ispitali postojanost antibakterijske obrade na neutralni, alkalni i kiseli veštački znoj. Utvrđeno je da nanočestice ZnO pokazuju bolju stabilnost u neutralnom i alkalnom nego u kiselom veštačkom znoju.

Istraživanja su pokazala da se nanočestice ZnO u kombinaciji sa skrobom mogu koristiti za ojačavanje polipropilena (Chandramouleeswaran et al., 2007). Polimerni nanokompoziti na bazi ZnO pokazuju dobru UV zaštitu kao i antibakterijska svojstva. Xu i saradnici su ustanovili da se dodatkom nanočestica ZnO u akrilnu smolu može dobiti

nanokompozitni materijal sa antielektrostatičkim i antibakterijskim svojstvima (Xu i Xi, 2003). Takođe je utvrđeno da na antielektrostatička svojstva utiče i oblik nanočestice tako da su nanočestice ZnO zvezdastog oblika pokazale bolja anti-elektrostatička svojstva od klasičnih nanočestica sfernog oblika.

Veoma dobra postojanost antibakterijske obrade na pranje (20 ciklusa pranja) je postignuta nanošenjem nanočestica bakar (II)-oksida (CuO) na pamučni tekstilni materijal (Abramov et al., 2009). Ovi istraživači su razvili poluindustrijsko postrojenje za kontinualno nanošenje nanočestica CuO na tekstilni materijal čiji se pincip rada zasniva na prolasku tekstilnog materijala kroz deo postrojenja u kome se ultrazvučnom metodom vrši *in situ* sinteza nanočestica CuO. Ren i saradnici su ispitali antibakterijska svojstva nanočestica CuO u cilju dobijanja antimikrobnih površina, odeće, posteljine i medicinske opreme (Ren et al., 2009).

1.3. Nanočestice silicijum dioksida

Multifunkcionalnost tekstilnih materijala se može postići i površinskom modifikacijom nanočesticama silicijum-dioksida (SiO₂) (Mahtlig et al., 2005). Obradom tekstilnog materijala nanočesticama SiO₂ prethodno modifikovanim jedinjenjima fluora ili površinski aktivnim materijama koje sadrže fluor, mogu se dobiti uljo- i vodoodbojni tekstilni materijali. Pamučni i poliestarski tekstilni materijali obrađeni nanočesticama SiO₂ koje su prethodno modifikovane kvaternernim amonijum solima, organskim biocidima, srebrom ili hitozanom pokazuju odlična i postojana antimikrobna svojstva. Antimikrobne tkanine obrađene modifikovanim nanočesticama SiO₂ su na tržištu dostupne pod imenom Microban[®]. Nepoželjno naelektrisanje koje se javlja naročito kod veštačkih tekstilnih materijala se može izbeći dodavanjem antielektrostatičkih aditiva u nanočestice silana.

Mahtlig i saradnici smatraju da mnogi UV filteri nisu sposobni da tekstilnom materijalu obezbede potpunu UV zaštitu već samo blokiraju određeni spektar talasnih dužina (Mahtlig et al., 2005). Potpuna UV zaštita se obezbeđuje ukoliko se tekstilni materijal obradi nanočesticama SiO₂ koje su prethodno modifikovane nekim organskim UV apsorberom. Ukoliko se tekstilni materijal obradi nanočesticama silana za koje je vezan insekticid (N,N-dietil-m-toulamid) dobijaju se veoma postojana insekticidna svojstva. Isti slučaj je i sa tekstilnim materijalom obrađenim nanočesticama silana u koje je imobilisan parfem. Imobilizacija parfema u nanočestici obezbeđuje postepeno otpuštanje parfema u toku vremena tj. postojaniji efekat na materijalu.

1.4. Ugljenične nanotube

Zbog neobične strukture i veličine ugljenični nanomaterijali kao što su fuleren i ugljenične nanotube poseduju specifična optička, električna, magnetna, toplotna, hemijska i mehanička svojstva (Kang et al., 2007). Zahvaljujući fizičkim i hemijskim svojstvima ugljenični nanomaterijali su našli široku primenu u proizvodnji poluprovodnika, optičkih uređaja, senzora, ćelija, uređaja za čuvanje energije itd. Takođe je utvrđeno da ugljenične nanotube poseduju i antimikrobna svojstva.

Postoje mnogi radovi o primeni ugljeničnih nanotuba na polimerne materijale u cilju poboljšanja mehaničkih i električnih svojstava (Hecht et al., 2007; Kim et al., 2007). Električna svojstva tekstilnih materijala se takođe mogu poboljšati primenom ugljeničnih nanotuba (Panhuis et al., 2007). Iako se za povećanje provodljivosti tekstilnog materijala često koriste razni polimeri, upotreba ugljeničnih nanotuba se pokazala veoma uspešnom i sa aspekta očuvanja svojstava tekstilnog materijala (opip, sposobnost drapiranja itd.). Panhuis i saradnici su pokazali da se primenom ugljeničnih nanotuba na vuneni tekstilni materijal može smanjiti elektična otpornost za četiri reda veličine (sa 40 M Ω na 7,8k Ω) tj. povećava se električna provodljivost materijala. Utvrđeno je da se porast električne provodljivosti materijala postiže i sa samo 0,001 vol% ugljeničnih nanotuba. Takođe je uočen porast kapacitivnosti za više od dva reda veličine.

Ispitujući nanokompozitni materijal na bazi tekstila i ugljeničnih nanotuba, Hecht i saradnici su otkrili da je došlo do poboljšanja mehaničkih svojstava kao i električne provodljivosti kompozitnog materijala u odnosu na sam tekstilni materijal. Takođe je uočeno da je električna provodljivost nanokompozitnog tekstilnog materijala manja u odnosu na električnu provodljivost filma od ugljeničnih nanotuba. Razlog ovakvom ponašanju leži u činjenici da hrapavost površine tekstilnog materijala otežava kontakt između ugljeničnih nanotuba što negativno utiče na električna svojstva materijala.

Da se ugljenične nanotube mogu koristiti i za povećanje nivoa zaštite protiv zapaljivosti tekstilnog materijala, pokazali su Schartel i saradnici (Schartel et al., 2005). Nanošenje ugljeničnih nanotuba na pamučnu tkaninu znatno utiče na porast nivoa UV zaštite (Mondal i Hu., 2006). Ukoliko se pre obrade pamuka nanotube disperguju u hidrofilnom poliuretanu postiže se veoma dobra propustljivost vazduha nanokompozitnog tekstilnog materijala.

2. PRIMENA NANOČESTICA TIO2 NA TEKSTILNE MATERIJALE

Zahvaljujući odličnim fotokatalitičkim svojstvima, netoksičnosti, niskoj ceni, sposobnosti apsorpcije UV zračenja i velikom indeksu prelamanja svetlosti nanočestice TiO₂ se primenjuju u proizvodnji stakla, keramike, filtera, boja, krema, vlakana itd. Stakla koja poseduju sposobnost samočišćenja, ogledala koja ne magle, antimikrobne pločice, antimikrobni delovi medicinskih uređaja, filteri za prečišćavanje vazduha i vode su samo neki na tržištu već dostupni proizvodi koji sadrže nanočestice TiO₂. Razvojem metoda za sintezu nanočestica TiO₂ visoke kristaliničnosti na nižim temperaturama postalo je moguće ispitati i njihovu primenu na termički osetljivim materijalima kao što su tekstil i polimeri.

Koliodni rastvor nanočestica TiO₂ dobijen postupkom kisele hidrolize titantetraizopropoksida je korišćen za obradu pamučnog tekstilnog materijala (Daoud i Xin, 2004 a, Xin et al., 2004). Termička obrada pamuka na 150 °C (5 min) je primenjena u cilju postizanja bolje kristaliničnosti nanočestica. Ustanovljeno je da ovako obrađen pamučni materijal (Slika 1) poseduje veoma dobra antibakterijska svojstva i visok nivo UV zaštite. Isti naučnici su na pamučnom materijalu sol-gel metodom sintetizovali nanočestice TiO₂ (35-50 nm) sa anatas kristalnom strukturom (Daoud i Xin, 2004 b). Kristalizacija je pospešeno hidrotermalnim tretmanom na 180 °C u vremenu od 180 min.

Slika 1. SEM mikrofotografija pamučnog vlakna: (a) neobrađenog, (b) obrađenog nanočesticama TiO₂, (c) sloj nanočestica TiO₂ veličine 100 nm, (d) izgled nanočestica TiO₂ na vlaknu (Daoud i Xin, 2004 a)

Uddin i saradnici su takođe sol-gel metodom iz titan-izopropoksida sintetizovali nanočestice TiO_2 (Uddin et al., 2007). Hidrotermalni tretman u vremenu od 3 h je primenjen da bi se pospešila kristalizacija nanočestica (anatas kristalna struktura) na pamučnom materijalu. Na površini vlakana je potvrđeno prisustvo nanočestica veličine 3-5 nm (Slika 2). Pokazano je da fotokatalitička aktivnost nanočestica TiO_2 na pamuku ne opada ni nakon 3 ciklusa fotodegradacije boje metilensko plavo. Čak je uočen blagi porast efikasnosti degradacije sa povećanjem broja ciklusa (Slika 3).

Slika 2. TEM mikrofotografije dela vlakna obrađenog nanočesticama TiO₂ snimljene pri različitim uvećanjima (Uddin et al, 2007)

Slika 3. Fotodegradacija vodenog rastvora boje metilensko plavo nanočesticama TiO₂ deponovanim na pamučnim vlaknima (Uddin et al., 2007)

Wu i saradnici su ispitali mogućnost nanošenja nanočestica TiO_2 na pamučni tekstilni materijal (Wu et al., 2009). Na površini pamučnog vlakna su uočene nanočestice TiO_2 veličine 3-5 nm. Dokazano je da se fotokatalitička aktivnost nanočestica veoma malo menja posle pranja i da ostaje neizmenjena nakon 3 ciklusa fotodegradacije boje. Pretpostavlja se da je veoma dobra postojanost nanočestica na površini posledica afiniteta nanočestica prema hidroksilnim grupama celuloze. Takođe je uočeno i dobro baktericidno dejstvo ispitivanog pamučnog materijala.

Do sličnog zapažanja su došli i Abidi i saradnici (Abidi et al., 2009). Oni su uočili da sa povećanjem broja ciklusa pranja vrednost faktora UV zaštite pamuka obrađenog nanočesticama TiO_2 u početku raste, a potom opada na početnu vrednost. Pamuk obrađen nanočesticama TiO_2 koje su sintetisane postupkom kisele hidrolize tetrabutil-ortotitanata pokazuje odlična svojstva samočišćenja i fotokatalitičke degradacije (Cibacron Red).

Böttcher i saradnici smatraju da je porast fotokatalitičke sposobnosti tekstilnog materijala nakon prvog ciklusa pranja posledica povećanja kristaliničnosti nanočestica TiO₂ usled dejstva povišene temperature tokom pranja (Böttcher et al., 2010).

Xu i saradnici su potvrdili da pamučni tekstilni materijal obrađen koloidnim rastvorom nanočestica TiO_2 (sol-gel metoda) pokazuje veoma dobra i na pranje postojana (50 ciklusa) baktericidna svojstva prema Gram-negativnoj bakteriji *E. coli* i Gram-pozitivnoj *S. aureus* (Xu et al., 2006). Takođe su uočili da faktor UV zaštite tkanine opada posle 50 ciklusa pranja, ali da tkanina i dalje obezbeđuje maksimalan nivo UV zaštite (50+).

Veoma dobra antibakterijska svojstva i UV zaštitu pokazuju pamučni i poliestarski materijali obrađeni komercijalno dostupnim nanočesticama TiO₂ (Tytanpol R-003) (Ledakowitz et al., 2008; Ledakowitz et al., 2009). Vohra i saradnici su ukazali da poliestarska tkanina obrađena komercijalno dostupnim nanočesticama TiO₂ (Degusa, P25) takođe poseduje antibakterijska svojstva (Vohra et al., 2005). Dokazano je da pamučni tekstilni materijal obrađen nanočesticama TiO₂ (Degusa, P25) može da razgradi amonijak iz vazduha. Utvrđeno je da nanočestice TiO₂ pokazuju istu fotokatalitičku aktivnost i na obojenom pamučnom materijalu (Dong et al., 2005).

Tung i Daoud su ispitivali ponašanje vunenog materijala obrađenog nanočesticama TiO_2 (Tung i Daoud, 2008). Ispitane su dve vrste koloidnog rastvora sintetisane sol-gel postupkom korišćenjem titan-tetraizopropoksida kao prekursora. Jedan koloid je nakon hidrolize prekursora tretiran na 60 °C u vremenu od 2 h dok je vreme termičke obrade drugog iznosilo 16 h. Ustanovljeno je da duže vreme pripreme koloida utiče na smanjenje transparentnosti rastvora što je direktna posledica stvaranja većih nanočestica. Pokazano je da sintetisane nanočestice TiO_2 imaju anatas kristalnu strukturu. Kada se osvetli (UV svetlo) vuneni materijal obrađen sa obe vrste koloidnih rastvora nanočestica pokazuje odličnu sposobnost samočišćenja (kafa i crno vino) materijala, UV apsorpcije i fotokatalitičke degradacije (metilensko plavo). Nakon obrade se ne menja jačina na kidanje i propustljivost vazduha dok se jačina na probijanje smanjuje. Pretpostavlja se da obrada

nanočesticama utiče na veću hrapavost materijala pa time i na porast frikcije između vlakna što dovodi do lakšeg probijanja.

Isti istraživači su ispitivali uticaj vrste katalizatora (HCl i HNO₃), korišćenog u sintezi (sol-gel metoda) koloidnog rastvora nanočestica TiO₂, na fotokatalitičku sposobnost i mehanička svojstva materijala (Tung i Daoud, 2009 a). Utvrđeno je da vuneni materijal obrađen sa obe vrste nanočestica TiO₂ pokazuje dobru fotokatalitičku sposobnost na vazduhu (fotodegradacija zaprljanja od kafe i crnog vina) i u rastvoru (fotodegradacija boje metilensko plavo). Žućenje vunenog materijala koje vremenom nastaje kao posledica dejstva svetlosti, kiseonika i vlage iz vazduha nije uočeno kod uzorka koji je obrađen nanočesticama TiO₂ za čiju sintezu je kao katalizator hidrolize prekursora korišćena HCl. Zbog velike oksidacione sposobnosti, prisustvo HNO₃ u nanočesticama TiO₂ utiče na pojačano žućenje materijala (Slika 4) što rezultira pogoršanjem mehaničkih svojstava. Vuneni materijal obrađen nanočesticama TiO₂ koje su sintetisane sol-gel metodom (postupak kiselo katalizovane hidrolize prekursora) ne pokazuje citotoksična svojstva (Tung et al., 2009).

Slika 4. Uticaj svetlosti na promenu boje vunenog materijala (a) neobrađen, (b) obrađen nanočesticama (HNO₃ katalizator), (c) obađen nanočesticama TiO₂ (HCl katalizator) (Tung i Daoud, 2009 a).

Izlaganje svetlosti u dužem vremenskom periodu može negativno uticati na jačinu i kad su u pitanju vlakna velike jačine kao što su aramidna vlakna (Liu et al., 2008). U cilju poboljšanja fotostabilnosti aramidna vlakna (Kevlar[®], Zylon[®], Kermel[®]) su modifikovana koloidnim rastvorom TiO₂ sintetisanim sol-gel metodom. Nakon 168 h osvetljavanja kod vlakana koja su obrađena nanočesticma TiO₂ uočeno je znatno manje oštećenje u odnosu na neobrađena vlakna. Ovo ukazuje na pozitivan uticaj nanočestica TiO₂ na fotostabilnost vlakana.

2.1. Modifikovanje vlakana u cilju boljeg vezivanja nanočestica TiO₂

2.1.1. Modifikovanje vlakana plazmom

Da bi efekti koji se postižu obradom površine vlakana nanočesticama TiO_2 bili postojani potrebno je obezbediti njihovo vezivanje za površinu vlakna. Negativno naelektrisane grupe (hidroksilne, karbonilne i karboksilne) predstavljaju aktivna mesta za vezivanje nanočestica TiO_2 (Wu et al., 2009). U cilju obezbeđivanja dovoljnog broja aktivnih mesta često je potrebno izvršiti modifikovanje tekstilnog materijala. Zahvaljujući ekološkoj prihvatljivosti, odsustvu upotrebe hemikalija, jednostavnom modifikovanju materijala koji poseduju veliku hemijsku inertnost, obrada plazmom se pokazala kao idealno rešenje za modifikovanje tekstilnog materijala (Radetić i Petrović, 2004). Prednost obrade plazmom u odnosu na hemijske obrade je i u tome što ona deluje samo na površinski sloj (10-30 nm) materijala ostavljajući unutrašnjost vlakna nepromenjenu.

Plazma se u užem smislu može definisati kao kvazi neutralan gas koga čine neutralne i naelektrisane čestice (Radetić i Petrović, 2004). Regulisanjem električnog polja, pritiska, protoka gasa kao i drugih parametara pražnjenja moguće je postići uslove pri kojima se obrazuje niskotemperaturna ili neravnotežna plazma. Niskotemperaturne plazme koje se koriste za modifikovanje tekstilnih materijala su: tinjavo pražnjenje na niskom pritisku, korona i dielektrično barijerno pražnjenje na atmosferskom pritisku. Veoma se često primenjuje i mikrotalasna plazma.

Zahvaljujući velikom broju čestica (elektroni, joni, atomi, molekuli, slobodni radikali, metastabili, UV fotoni itd.) koje se nalaze u plazmi očekuje se i značajan broj plazma hemijskih reakcija (Radetić i Petrović, 2004). Reakcije koje se u plazmi odvijaju između čestica u gasu nazivaju se homogene reakcije dok su reakcije između čestica plazme i čvrste površine heterogene reakcije.

Ukoliko čestice plazme koje bombarduju materijal poseduju veću energiju od energija veza u materijalu doći će do raskidanja postojećih veza na vlaknu (Radetić i Petrović, 2004). Raskidanjem veza na vlaknu mogu nastati slobodni radikali koji su sposobni da dalje reaguju sa česticama iz plazme. Stoga su efekti koji se žele postići na materijalu uslovljeni vrstom gasa i uslovima obrade plazmom.

Za tekstilne i polimerne materijale je od značaja mogućnost nagrizanja i funkcionalizacije površine plazmom (Radetić i Petrović, 2004). Nagrizanjem površine povećava se hrapavost materijala, a time i specifična površina. Pod funkcionalizacijom

površine tekstilnih polimernih materijala se podrazumeva uvođenje odgovarajućih funkcionalnih grupa na površini. Aktiviranjem površine se postiže poboljšanje adhezionih svojstva materijala, sposobnosti kvašenja, svojstava bojenja i štampanja itd.

Promene na površini tekstilnog materijala kao što su veća specifična površina, nove funkcionalne grupe, poboljšana adheziona svojstva i sposobnost kvašenja omogućavaju znatno lakšu obradu tekstilnog materijala hidrofilnim nanočesticama. Stoga su se mnoge istraživačke grupe bavile ispitivanjem dejstva različitih vrsta plazmi na tekstilne materijale u cilju boljeg vezivanja nanočestica TiO₂.

Da bi obezbedili bolje vezivanje nanočestica TiO₂ Bozzi i saradnici su pamučnu tkaninu modifikovali radio-frekventnom (RF) plazmom, mikrotalasnom (MW) plazmom i vakuum-UV (V-UV) zračenjem (Bozzi et al., 2005 a). Aktivne čestice plazme (${}^{1}O_{2}$, O, O', O⁺) reaguju sa površinom pamučnog vlakna pri čemu se na površini stvaraju funkcionalne grupe C=O, -O-C=O, -COH, -COOH, CH₂-OH koje predstavljaju nova aktivna mesta za vezivanje nanočestica TiO₂. Za razliku od plazme kod energetski nižeg V-UV zračenja ne dolazi do formiranja pozitivnih i negativno naelektrisanih aktivnih čestica već se aktivacija površine vlakna odigrava dejstvom atomskog i ekscitovanog kiseonika što vodi uniformnijoj modifikaciji. Ispitivanjem sposobnosti samočišćenja uočeno je da samo uzorci čija je površina modifikovana plazmom i V-UV zračenjem pre obrade nanočesticama TiO₂ (koloidni rastvor i Degussa P25) pokazuju sposobnost degradacije zaprljanja od vina, kafe i masnoće (Slika 5).

Slika 5. Mineralizacija zaprljanja od vina pod dejstvom svetlosti (50 mW/cm²) na pamučnom materijalu (a) neobrađeni pamuk, (b) neobrađeni pamuk+vino, (c) pamuk modifikovan V-UV zračenjem i obrađen nanočesticama TiO₂+vino (Bozzi et al., 2005 a)

Uticaj aktivacije površine pamučnog vlakna plazmom i V-UV zračenjem na sposobnost vezivanja nanočestica TiO₂ (Degussa P25) su ispitivali i Yuranova i saradnici (Yuranova et al., 2007). Takođe je ispitivana i mogućnost aktivacije površine tkanina na bazi veštačkih vlakana (poliestar i poliamid/vuna) u cilju vezivanja nanočestica TiO₂ (sintetisani koloid i (Degussa P25). Zahvaljujući negativnim grupama (-COO⁻, -O-O⁻) koje na površini vlakna nastaju modifikovanjem plazmom i V-UV zračenjem omogućeno je efikasnije vezivanje pozitivno naelektrisanog Ti⁴⁺ iz nanočestice TiO₂. Uočeno je da najbolju sposobnost samočišćenja pokazuju poliestarska tkanina i tkanina od mešavine vlakna poliamid/vuna koje su obrađene prvo koloidnim nanočesticama TiO₂, a potom Degussom P25. Do istih zapažanja su došli Bozzi i saradnici (Bozzi et al., 2005 b). Veoma male nanočestice TiO₂ utiču na povećanje aktivne površine čime je olakšano dalje vezivanje većih nanočestica Degusse P25. Nešto bolja fotodegradacija fleke je uočena kod tkanine od mešavine vlakana poliamid/vuna u odnosu na poliestarsku tkaninu. Zaprljanje od vina se razgrađuje mnogo brže nego zaprljanje od kafe. Izuzetno dobru sposobnost degradacije pokazuje pamučni tekstilni materijal modifikovan V-UV zračenjem i obrađen nanočesticama Degussa P25).

Ispitivanjem mogućnosti modifikovanja pamučnog vlakna vazdušnom plazmom (u vakuumu i na atmosferskom pritisku) i UV zračenjem (u vakuumu i na atmosferskom pritisku) u cilju boljeg vezivanja nanočestica TiO₂ (Degussa P25) bavili su se i Mejia i saradnici (Mejia et al., 2009). Već je pomenuto da se dejstvom aktivnih čestica iz plazme na površini tekstilnog materijala stvaraju nove funkcionalne grupe (COO⁻, -O-O⁻ itd.) koje predstavljaju aktivna mesta za vezivanje nanočestica TiO₂. Mejia i saradnici smatraju da obradom pamučnog materijala vazdušnom ili kiseoničnom plazmom na atmosferskom pritisku dolazi do zagrevanja vlakna što vodi kidanju intermolekulskih vodoničnih veza celuloze čime se na površinu uvode nove funkcionalne grupe (C-O-, -OOH, -O-C=O, -COH, -COOH). Isto kao Yuranova i saradnici, i ova grupa istraživača je došla do zaključka da zbog odsustva katjonskih i anjonskih čestica dejstvo UV zračenja (u vakuumu ili na atmosferskom pritisku) na površinu vlakana rezultira uniformnijom raspodelom novih funkcionalnih grupa što dalje utiče na ravnomerniju raspodelu nanočestica TiO₂ na površini vlakana. Uočeno je da uzorci pamuka modifikovani plazmom ili UV zračenjem, a potom obrađeni nanočesticama TiO₂ pokazuju dobra svojstva samočišćenja zaprljanja od vina (Slika 7 i 8).

Slika 7. Fotodegradacija zaprljanja od vina na pamučnoj tkanini modifikovanoj RF plazmom i obrađenoj nanočesticama TiO₂ (a) pre, (b) posle osvetljavanja; tkanina modifikovana V-UV zračenjem i obrađena nanočesticama TiO₂ (c) pre, (d) posle osvetljavanja (Mejia et al., 2009)

Slika 8. Mineralizacija zaprljanja od vina u procesu samočišćenja uzoraka modifikovanih RF plazmom na atmosferskom pritisku (a) neobrađeni pamuk, (b) pamuk+vino, (c) pamuk+TiO₂, (d) pamuk (nije modifikovan plazmom)+vino, (e-g) pamuk+TiO₂+vino (Mejia et al., 2009)

Zbog svoje hidrofobnosti, veštačka vlakna kao što su poliestar i poliamid nisu sposobna da reaguju sa hidrofilnim česticama TiO₂. Poliestarsko (PES) vlakno na svojoj površini ne sadrži funkcionalne grupe koje bi mogle da budu mesta za vezivanje nanočestica TiO₂. Da bi povećali hidrofilnost PES vlakna i omogućili vezivanje nanočestica TiO₂, Qi i saradnici su primenili kiseoničnu RF plazmu (Qi et al., 2007). Zahvaljujući hidrofilnim grupama koje na površini nastaju kao posledica obrade plazmom PES vlakno je sposobno da veže nanočestice TiO₂ (Slika 9). Rendgen fotoelektronskom spektroskopijom (XPS) je dokazano da PES vlakno modifikovano plazmom na svojoj površini sadrži više titana u odnosu na vlakno koje nije modifikovano. Pokazano je da PES tekstilni materijal modifikovan kiseoničnom plazmom i obrađen nanočesticama TiO₂ pruža odličnu UV zaštitu, sposobnost samočišćenja (zaprljanje od crnog vina i kafe) i fotokatalitičke degradacije boja (Neolan Blue 2G). Takođe je uočeno da ovako obrađena

tkanina pokazuje odlična antibakterijska svojstva prema Gram-pozitivnoj bakteriji S. aureus.

Slika 9. SEM mikrofotografija (a) neobrađeno PES vlakno, (b) PES vlakno modifikovano kiseoničnom plazmom, (c) PES vlakno modifikovano kiseoničnom plazmom i obrađeno nanočesticama TiO₂ i (d) PES vlakno modifikovano kiseoničnom plazmom i obrađeno nanočesticama TiO₂- veća rezolucija (Qi et al., 2007)

2.1.2. Hemijsko modifikovanje vlakana

Yuranova i saradnici su ispitivali mogućnost aktivacije površine pamučnog vlakna hemijskim putem (Yuranova et al., 2007). Dikarbonske kiseline su predstavljene kao najbolje rešenje za uvođenje karboksilnih grupa na površinu vlakana (Slika 10).

Slika 10. Mehanizam hemijskog modifikovanja površine pamučnog vlakna pomoću polikarboksilnih kiselina (Yuranova et al., 2007).

Jedna karboksilna grupa kiseline se vezuje za hidroksilnu grupu pamuka (esterifikacija) dok druga karboksilna grupa ostaje slobodna za vezivanje nanočestica TiO₂. Esterifikacija hidroksilnih grupa pamuka je dokazana infracrvenom spektroskopijom u ATR modu (*engl*. Attenuated total reflectance-Infrared Spectroscopy- ATR-IR).

Yuranova i saradnici su pokazali da pamučni tekstilni materijal obrađen koloidnim rastvorom SiO₂, a potom nanočesticama TiO₂ poseduje sposobnost samočišćenja (Yuranova et al., 2006 b). SiO₂ je upotrebljen kao sredstvo za vezivanje nanočestica TiO₂ zbog svoje otpornosti na dejstvo elektrona iz nanočestica TiO₂.

Veronovski i saradnici su pokazali da se SiO₂ kao sredstvo za modifikovanje vlakna u cilju boljeg vezivanja nanočestica TiO₂ sa uspehom može koristiti i kod veštačkih celuloznih vlakana (Veronovski et al., 2010). Ovi istraživači smatraju da SiO₂ osim što poboljšava vezivanje nanočestica TiO₂ za tekstilni materijal čini i zaštitnu barijeru između materijala i nanočestica. Ovim se sprečava moguće oštećenje tekstilnog materijala elektronima iz nanočestica.

Do sličnog zaključka došli su i Gonclaves i saradnici (Gonclaves et al., 2009). Oni su uočili da pamučni materijal obrađen modifikovanim silanima, a potom nanočesticama TiO₂, pokazuje bolju fotostabilnost (pri osvetljavanju zadržava belu boju) u odnosu na pamuk obrađen samo nanočesticama TiO₂. Dobra fotostabilnost ukazuje da dejstvom svetlosti nije došlo do oštećenja vlakna. Sloj silana koji se nalazi između vlakna i nanočestice TiO_2 onemogućava prodiranje elektrona iz nanočestice TiO_2 do površine vlakna čime se sprečava njegovo oštećenje.

Modifikovanjem ćilibarnom kiselinom na površini vlakna se formiraju nove karboksilne grupe čime se povećava broj aktivnih mesta za vezivanje nanočestica TiO_2 (Daoud et al., 2008). XPS analizom je dokazano da se na površini vunenog vlakna prethodno obrađenog ćilibarnom kiselinom, a potom nanočesticama TiO_2 nalazi 40% više titan dioksida u odnosu na vlakno koje nije prethodno modifikovano ćilibarnom kiselinom. Pokazano je da vuneni materijal modifikovan ćilibarnom kiselinom i obrađen nanočesticama TiO_2 poseduje odličnu sposobnost samočišćenja i fotokatalitičke degradacije (Slika 11).

Slika 11. Fotodegradacija zaprljanja od vina na: neobrađenoj vunenoj tkanini- PO, vunenoj tkanini obrađenoj nanočesticama TiO₂- TO i vunenoj tkanini obrađenoj ćilibarnom kiselinom i nanočesticama TiO₂ (Daoud et al., 2008).

Ispitivanjem ponašanja vunenog vlakna nakon obrade nanočesticama TiO_2 Tung i saradnici su uočili da dolazi do slabljenja mehaničkih svojstava vlakna (Tung i Daoud., 2009 a). Kako se koloidni rastvor nanočestica TiO_2 najčešće sintetiše po postupku kisele hidrolize prekursora (sol-gel metoda) pretpostavlja se da kiselina iz koloida oštećuje vuneno vlakno. U procesu naknadne obrade vune silikonom koji je modifikovan aminima dolazi do oblaganja nanočestice TiO_2 čime se sprečava oštećenje vlakna (Tung i Daoud, 2009 b). Nije uočen nikakav uticaj naknadne obrade silikonom na fotokatalitičku aktivnost nanočestica na vuni.

3. SINTEZA NANOČESTICA TiO₂

Veličina, oblik, kristalna struktura i specifična površina određuju fotokatalitičku aktivnost nanočestica TiO_2 , a time i njegovu funkcionalnost. Navedene fizičke karakteristike nanočestica zavise od načina njihove sinteze. Nanočestice TiO_2 se mogu dobiti sintezom iz tečne ili gasovite faze (Carp et al., 2004).

3.1. Sinteza nanočestica TiO₂ iz tečne faze

Prednost sinteze nanočestica iz tečne faze je pre svega u mogućnosti stehiometrijske kontrole reakcije kao i mogućnosti dobijanja kompozitnih i homogenih materijala (Carp et al., 2004). Glavni nedostatak sinteze nanočestica TiO₂ iz tečne faze ogleda se u dužini trajanja sinteze i potrebi za skupim reaktantima. Sinteza nanočestica iz tečne faze obuhvata: sol-gel, emulzionu, sol, solvotermalnu i oksidacionu metodu.

3.1.1. Sol-gel metoda

Tipična sol-gel metoda se zasniva na hidrolizi i umrežavanju (kondenzaciji) prekursora metala tj. titana. Prekursori su obično soli i alkoholati titana (Chen i Mao, 2007). Postupak dobijanja koloida polazeći od soli (hloridi, nitati, acetati karbonati itd.) zahteva naknadno uklanjanje neorganskog anjona iz rastvora tako da se za sintezu koloidnog rastvora češće koristi hidroliza alkoholata titana (Carp et al., 2004). Hidrolizom alkoholata titana stvaraju se odgovarajući hidroksidi koji u većim koncentracijama nisu stabilni tako da dolazi do njihove kondenzacije koja vodi stvaranju nanočestica. Uslovi u kojima se odvija sinteza (pH vrednost rastvora, temperatura, koncentracija, rastvarač) utiču na razvoj i veličinu nanočestica. Formiranje Ti-O-Ti lanaca je favorizovano sporijom hidrolizom, manjim sadržajem vode i prisustvom alkoholata titana u višku (Chen i Mao, 2007). Ukoliko je hidroliza prekursora brza dolazi do stvaranja Ti(OH)₄ što ometa formiranje pravilne kristalne rešetke. Za razliku od procesa hidrolize u toku polimerizacije Ti-O-Ti lanaca potreban je veliki višak vode. U cilju bolje kontrole sinteze poželjno je odvojiti reakciju hidrolize titan alkoholata i reakciju kondenzacije (Carp et al., 2004). Ovo se može postići kiselo/bazno katalizovanom hidrolizom ili vezivanjem alkoholata za jedinjenja koja sporije hidrolizuju kao što su karboksilati ili β-diketoni. U kiselo katalizovanoj reakciji hidrolize dolazi do potpune hidrolize reaktanata pri čemu se dobijaju nanočestice visoke kristaliničnosti. Baznom katalizom ne dolazi do potpune hidrolize reaktanata čime se stvara amorfna struktura nanočestica. Veća kristaliničnost nanočestica TiO_2 se može postići daljom termičkom obradom. Nanočestice TiO_2 različite veličine i oblika mogu se dobiti hidrolizom i polikondenzacijom titanium-alkoholata u prisustvu trimetilamonijum-hidroksida (Chemseddine et al.). Posle termičke obrade na temperaturama 170 i 200 °C nanočestice TiO_2 imaju anatas kristalnu strukturu (Slika 12).

Slika 12. TEM mikrofotografije nanočestica TiO₂ dobijenih hidrolizom Ti(OR)₄ u prisustvu tetrametilamonijum hidroksida (Chemseddine, 1999)

Miao i saradnici su pokazali da se sol-gel metodom mogu sintetisati i TiO₂ nanoštapići (Miao et al., 2004). U tipičnom postupku aluminijumska membrana se drži određeno vreme u ključalom rastvoru TiO₂, a potom suši i termički obrađuje na 400 °C. Kontrolom temperature termičke obrade utiče se na oblik kristalne rešetke TiO₂. Na nižim temperaturama obrade dolazi do stvaranja anatas kristalne strukture dok će na višim temperaturama iskristalisati rutil.

Poslednjih godina su razvijene sol-gel metode za sintezu nanočestica TiO_2 na temperaturama nižim od 100 °C (Daoud et al., 2004; Uddin et al; 2007; Hoda, 2009). Ovakvom sintezom nanočestica TiO_2 proširuje se mogućnost njihove primene i na materijale koji su termički osetljivi kao sto su papir, tekstil, razni polimerni materijali itd.

3.1.2. Emulziona metoda

Emulziona metoda se bazira na sol-gel metodi samo što se u reakcionoj smeši osim prekursora (titan-alkoholat) i rastvarača (voda ili organski rastvarač) nalazi još i površinski aktivna materija (PAM). PAM ispoljavaju sposobnost da u vodenim i nevodenim rastvorima grade agregate različitih veličina koji se nazivaju micele. Ukoliko se sinteza nanočestica odvija u vodenoj sredini rast Ti-O-Ti lanca se odigrava u miceli (Kim et al., 2005) odnosno u inverznoj miceli ukoliko se sinteza odvija u organskom rastvaraču (Zhang et al, 2002). Na Slici 13 je prikazana TEM mikrofotografija nanočestica TiO₂ dobijenih kiselom hidrolizom titan-tetrabutoksida u organskom rastvaraču (Zhang et al, 2002). Oblik, veličina i kristaliničnost čestica zavise od: vrste i koncentracije kiseline upotrebljene za podešavanje pH vrednosti, vremena reakcije i odnosa voda/organski rastvaraču.

Slika 13. TEM mikrofotografija TiO₂ nanočestica dobijenih u prisustvu: (a) azotne i (b) sumporne kiseline (Zhang et al, 2002)

Nanočestice TiO_2 sintetisane emulzionom metodom su obično amorfne strukture tako da je za povećanje njihove kristaliničnosti potrebna dalja termička obrada (Chen i Mao, 2007).

3.1.3. Sol metoda

Sol metoda je u osnovi sol-gel metoda kod koje je izostavljen stupanj hidrolize prekursora. Zasniva se na reakciji između halogenida titana i nekog elektron donorskog molekula kao što je alkoholat metala (reakcija 1) ili organski etar (reakcija 2) (Chen i Mao, 2007).

$TiX_4 + Ti(OR)_4 \rightarrow 2 TiO_2 + 4 RX$	(1)
$TiX_4 + 2 ROR \rightarrow TiO_2 + 4 RX$	(2)

U reakciji između Ti-X i Ti-OR stvaraju se Ti-O-Ti lanci. Pokazano je da veličina ugljovodoničnog lanca R nema uticaja na veličinu nanočestica TiO₂ dok se sa porastom ugljovodoničnog lanca reakcija znatno ubrzava. (Trentler et al., 1999). Veličina sintetisanih nanočestica TiO₂ zavisi od veličine halogenog jona. Nanočestice TiO₂ su manje ukoliko je veličina halogenog jona veća. Veličina nanočestice kreće se u intervalu od 3,8 nm ukoliko je reaktant TiI₄ odnosno 9,2 nm za TiF₄ (Chen i Mao, 2007). Sinteza nanočestica se može vršiti i u prisustvu PAM-a.

3.1.4. Solvotermalna metoda

Sinteza nanočestica TiO₂ se odvija u vodi (hidrotermalna metoda) ili u organskom rastvaraču kao što su metanol, toluen, 1,4 butanol (solvotermalana metoda) (Carp et al, 2004). Kod hidrotermalne metode sinteza nanočestica TiO₂ se odigrava na nižim temperaturama (ispod 250 °C). Kao reaktanti kod hidrotermalne sinteze se koriste TiOSO₄ (Hirano et al., 2003; Kolenko et al., 2003), H₂TiO(C₂O₄)₂ (Kolenko et al., 2004), TiCl₄ u kiselom rastvoru (Furlong et al., 1978) itd.

Ukoliko se sinteza odvija u organskom rastvaraču može se odabirom rastvarača, pritiska, temperature ili aditiva uticati na veličinu, oblik i stepen kristaliničnosti nanočestica TiO₂ (Chen i Mao, 2007). Prednost solvotermalne metode u odnosu na hidrotermalnu je u mogućnosti bolje kontrole reakcije u smislu veličine i kristaliničnosti nanočestica.

3.1.5. Oksidaciona metoda

Nanočestice TiO_2 različitih oblika se mogu dobiti i oksidacijom titanskih ploča pomoću oksidacionih sredstava ili anodiziranjem istih. Oksidacijom titanskih ploča pomoću vodonik-peroksida mogu se dobiti nanoštapići (Wu et al., 2005). Na visokim temperaturama aceton se pokazao kao dobar izvor kiseonika u toku sinteze TiO_2 nanoštapića (Peng et al., 2004). Anodnom oksidacijom titanskih folija mogu da se dobiju TiO_2 nanotube (Gong, 2001, Varghese et al., 2003).

3.2. Sinteza nanočestica iz gasovite faze

3.2.1. Hemijsko naparavnje

Hemijsko naparavanje je proces koji se često koristi u industriji za oblaganje različitih materijala u cilju poboljšanja mehaničke, termičke, optičke i korozione otpornosti (Chen i Mao, 2007). U tipičnom procesu naparavanja supstrat je izožen pari prekursora titana koji hemijski reaguju i/ili se razlažu na površini supstrata formirajući tanki film. Nanočestice TiO₂ veličine 10 nm ili TiO₂ filmovi debljine manje od 30 nm mogu se dobiti pirolizom titan-tetraizopropoksida u atmosferi helijuma i kiseonika (Seifred et al., 2000). Ukoliko se naparavanje odvija na nižoj temperaturi od 90 °C dobijaju se nanočestice amorfne strukture koje je potrebno dalje termički obrađivati (Pradhan et al., 2002). Naparavanje se može odvijati u plazma reaktoru koristeći titan-tetrahlorid kao prekursor u atmosferi argona i kiseonika (Szymanowski, 2005). Wu i saradnici su metodom hemijskog naparavanja na temperaturama od 500 do 700 °C sintetisali TiO₂ nanoštapiće na staklu (Slika 14) (Wu et al., 2004).

Slika 14. SEM mikrofotografija TiO₂ nanoštapića dobijenih metodom hemijskog naparavnja na 560 °C (Wu et al., 2004)

3.2.2. Fizičko naparavanje

Fizičko naparavanje je još jedan način sinteze tankih filmova na čvrstom supstratu. U odnosu na hemijsko naparavanje gde prekursor metala (titan) hemijski reaguje na površini supstrata stvarajući tanak film, fizičko naparavanje se odlikuje odsustvom hemijske reakcije. Najčešće korišćena tehnika nanošenja prekursora titana na supstrat je termička depozicija. Dejstvom visokih temperatura dolazi do isparavanja prekursora koji se strujom

određenog gasa vodi do supstrata gde se vezuje. Često se naparavanje odvija pod sniženim pritiskom da bi se izbegli sudari u gasovitoj fazi. SEM mikrofotografija TiO₂ nanožica sintetisanih postupkom fizičkog naparavanja prikazana je na Slici 15 (Wu et al., 2005).

Slika 15. SEM mikrofotografija TiO₂ nanožica sintetisanih metodom fizičkog naparavanja (Wu et al., 2005)

3.3. Ostale metode sinteze nanočestica TiO₂

3.3.1 Elektrodepozicija

Elektrodepozicija je često korišćena metoda za dobijanje filmova metala na čvrstom supstratu (Chen i Mao, 2007). Supstrat koji ujedno predstavlja i katodu se uroni u rastvor soli metala. Na katodi se joni metala redukuju stvarajući tanak film. Ova metoda se koristi za dobijanje TiO₂ nanožica pomoću porozne aluminijumske membrane (Lei et al., 2001; Liu et al, 2004). U tipičnoj sintezi se kao prekursor koristi titan-tetrahlorid koji se u kiselom rastvoru deponuje u pore na aluminijumskoj membrani. Nakon zagrevanja na temperaturi od 500 °C i uklanjanja aluminijumske membrane dobijaju se TiO₂ nanožice anatas kristalne strukture (Slika 16).

Slika 16. SEM mikrofotografija TiO₂ nanožica dobijenih elektrodepozicijom na aluminijumskoj membrani (Liu et al., 2004)

3.3.2. Ultrazvučna metoda

Ultrazvuk se upotrebljava prilikom sinteze mnogih nanostrukturnih materijala (Chen i Mao, 2007). Dejstvom ultrazvuka u rastvoru se stvaraju mehurići koji dovode do zagrevanja (5000 K) i porasta pritiska (1000 atm) u rastvoru. Hidrolizom titantetraizopropoksida u čistoj vodi ili smeši rastvora etanola u vodi pod dejstvom ultrazvuka mogu se dobiti fotoaktivne nanočestice TiO₂ različitih kristalnih struktura (Yu et al., 2001).

3.3.3. Sinteza nanočestica TiO₂ dejstvom mikrotalasa

Sintezom nanočestica dejstvom mikrotalasa se mogu prevazići glavni nedostatci sol-gel metoda kao što su dugo vreme sinteze i pojava nečistoća u nanočesticama (Gressel et al., 2005). Poznato je da je za sintezu visoko kristaliničnih nanočestica TiO₂ potreban višečasovni termički tretman. Zagrevanjem koloidnog rastvora dejstvom mikrotalasa mogu se dobiti nanočestice visoke kristaliničnosti u veoma kratkom vremenskom intervalu (30 min). Gressel i saradnici su pokazali da je dovoljno samo polučasovno dejstvo mikrotalasa na vođeni rastvor titan-tetrahlorida i hlorovodonične kiseline da bi se dobio koloidni rastvor nanočestica TiO₂. Film TiO₂ se može dobiti samo kratkotrajnim potapanjem supstrata u dobijeni koloidni rastvor. Dalji termički tretman filma ne utiče na kristaliničnost nanočestica (Slika 17). Zahvaljujući sintezi na nižim temperaturama ova metoda je pogodna za dobijanje TiO₂ filmova na termički osetljivim supstratima (papir, polimeri, tekstil itd.).

Slika 17. SEM mikrofotografije nanočestica TiO₂ u zavisnosti od termičke obrade (a) 150 °C, (b) 250 °C, (c) 350 °C i (d) 400 °C (Gressel et al., 2005)

Konvencionalnom hidrotermalnom metodom mogu se dobiti nanočestice TiO_2 u vremenskom intervalu od 8 do12 časova dok se nanočestice TiO_2 istih karakteristika mogu dobiti kombinovanjem hidrotermalne metode i mikrotalasa u vremenu od 30 minuta do jednog časa (Corradi et al., 2005).

4. MEHANIZAM UV ZAŠTITE, SAMOČIŠĆENJA I BIOCIDNA AKTIVNOST TEKSTILNOG MATERIJALA U PRISUSTVU NANOČESTICA TiO₂

4.1 Mehanizam dejstva TiO₂

Ukoliko poluprovodnička nanočestica TiO₂ apsorbuje svetlost čija je energija veća ili jednaka energiji energetskog procepa ($E_g(anatas) \ge 3,2 \text{ eV}$; $E_g(rutil) \ge 3,0 \text{ eV}$), dolazi do formiranja parova naelektrisanja: elektrona i šupljina. Elektroni su ekscitovani iz valentne oblasti u nepopunjene nivoe provodne oblasti (e_{cb}), dok u valentnoj oblasti ostaju pozitivno naelektrisane šupljine (h_{vb}^+) (jednačina 3). Proces razdvajanja naelektrisanja nakon apsorpcije svetlosti se odvija u veoma kratkom vremenskom intervalu, reda veličine femtosekunde (Fujishima et al., 2008). Nakon ekscitacije fotostvoreni nosioci naelektrisanja (e_{cb}^- , h_{vb}^+) se mogu međusobno radijativno i neradijativno rekombinovati ili učestvovati u redoks reakcijama na površini čestice (Hoffmann et al., 1995).

Na svom putu do površine čestice elektroni i šupljine mogu biti trapovani u nekom od defekata kristalne rešetke (nedostatak atoma kiseonika ili titana) na površini čestice ili u njenoj unutrašnjosti. EPR spektroskopijom je utvrđeno da šupljine mogu biti trapovane kao kiseonični radikali kovalentno vezani za površinske atome titana dok elektroni mogu biti trapovani kao Ti(III) centri u unutrašnjosti čestice (reakcije 4 i 5). Ukoliko je elektron trapovan na defektima koji, energetski posmatrano, imaju poziciju neposredno ispod provodne zone (reakcija 5) postoji mogućnost da dodatnim dovođenjem energije on ipak pređe u provodnu zonu, dok se elektron trapovan u zabranjenoj zoni brzo rekombinuje.

Elektroni koji stignu do provodne zone mogu da budu trapovani na samoj površini nanočestice (e tr) ako na njoj postoji neki defekt (nekoordinisani Ti atom) ili da egzistiraju vrlo kratko vreme kao slobodni elektroni (reakcija 6) dok ne uđu u reakciju sa elektron-akceptorskom vrstom prisutnom na površini čestice ili O₂. Najveći deo elektrona i šupljina se ipak međusobno rekombinuju (jednačine 7, 8, 9 i 10). U reakcijama između slobodnih elektrona provodne zone, elektrona trapovanih na površini nanočestice ili šupljina valentne zone i okolnih molekula, pre svega vode i kiseonika, nastaju izuzetno reaktivne čestice (reakcije 11, 12, 13, 14 i 15) koje su inicijatori fotokatalitičkih procesa (Fujishima et al., 2008). Šematski prikaz reakcija koje se odigravaju unutar i na površini nanočestice TiO₂ je dat na Slici 18 (Gaya et al., 2008; Fujishima et al., 2008).

Mehanizam UV zaštite, samočišćenja i biocidna aktivnost tekstilnog materijala u prisustvu nanočestica TiO_2

Primarne reakcije TiO ₂ + hv \rightarrow e _{cb} + h _{vb} ⁺	Karakteristično vreme (fs)	(3)
$\begin{array}{l} h^{+}_{vb} + Ti^{IV}OH \rightarrow Ti^{IV}OH^{+} \\ e^{-}_{cb} + Ti^{IV}OH \leftrightarrow Ti^{III}OH \end{array}$	(10 ns) (100 ps)	(4) (5)
$e_{cb}^{-} + Ti^{IV}OH \rightarrow Ti^{III}$	(10 ns)	(6)
$e_{cb}^{-} + Ti^{IV}OH^{+} \rightarrow Ti^{IV}OH$ $h_{vb}^{+} + Ti^{III}OH \rightarrow Ti^{IV}OH$ $Ti^{IV}OH^{+} + Red \rightarrow Ti^{IV}OH + Red^{+}$ $e_{tr}^{-} + Ox \rightarrow Ti^{IV}OH + Ox^{-}$	(100 ns) (10 ns) (100 ns) (ms)	(7) (8) (9) (10)
Sekundarne reakcije $h^+_{vb} + H_2O \rightarrow OH^{\cdot} + H^+$ $e^{cb} + O_2 \rightarrow O_2^{}$ $2e^{cb} + O_2 + 2H^+ \rightarrow H_2O_2$ $e^{cb} + H_2O_2 \rightarrow OH^{\cdot} + OH^-$ $h^+_{vb} + O_2^{} \rightarrow {}^1O_2 + H^+$		 (11) (12) (13) (14) (15)

Slika 18. Šematski prikaz glavnih procesa koji se dešavaju u unutrašnjosti i na površini nanočestice TiO₂ posle apsorpcije svetlosti (p) stvaranje elektrona i šupljina, (q) rekombinacija naelektrisanja na površini, (r) rekombinacija u unutrašnjosti, (s) redukcija elektron akceptora A na površini, (t) oksidacija elektron donora D na površini (Gaya et al., 2008; Fujishima et al., 2008)

Za efikasno odvijanje fotokatalitičkih procesa je veoma bitno da se rekombinacija elektrona i šupljina odigrava sporije u odnosu na proces oksidacije i redukcije (Mills et al., 2002). Svaki defekt u kristalnoj rešetki nanočestice negativno utiče na fotokatalizu

Mehanizam UV zaštite, samočišćenja i biocidna aktivnost tekstilnog materijala u prisustvu nanočestica TiO_2

favorizujući rekombinaciju naelektrisanja. Amorfne nanočestice TiO_2 pokazuju lošija fotokatalitička svojstva. Stoga je u procesu sinteze nanočestice (poglavlje 3) veoma bitno postići što veći stepen kristaliničnosti. Anatas i rutil su kristalne modifikacije TiO_2 koje se koriste u procesima fotokatalize.

4.2. Mehanizam samočišćenja tekstilnog materijala u prisustvu TiO2

Sposobnost nanočestica TiO₂ da pod dejstvom svetlosti ($hv \ge E_g$) razgrađuju okolne molekule je iskorišćena za dobijanje nanokompozitnog tekstilnog materijala sa svojstvom samočišćenja. Mehanizam fotodegradacije obojenog zaprljanja (kafa, vino, sok, karmin itd.) koje je naneto na tekstilni materijal modifikovan nanočesticama TiO₂ prikazan je na Slici 19.

Slika 19. Mehanizam fotodegradacije organskog zaprljanja (Bozzi et al., 2005 a)

Dejstvom svetlosti dolazi do pobuđivanja elektrona iz organskog molekula zaprljanja i njegovog prelaska u provodnu zonu nanočestice TiO₂ (Yuranova et al., 2007). Elektroni iz provodne zone redukuju kiseonik stvarajući reaktivne superoksidne radikale (O_2^{-}) koji u sadejstvu sa drugim izuzetno reaktivnim radikalima (HO_2^{-} , OH', RO', RO') razgrađuju zaprljanje. Zaprljanje se razgrađuje i direktnim dejstvom pozitivnih šupljina TiO₂ (16 i 17). Izdvajanje CO₂ je proporcionalno degradaciji zaprljanja.

 $R^* + h^+ \rightarrow R^+ \rightarrow intermedijer razgradnje \rightarrow proizvodi razgradnje (16)$ $RCOO^+ + h^+ \rightarrow R^+ + CO_2$ (17)

Na osnovu Slika 18 i 19 može se zaključiti da je za uspešan proces fotodegradacije neophodno prisustvo svetlosti, kiseonika i vode ili vodene pare (Gaya et al., 2008). Po

opisanom mehanizmu odigrava se i fotodegradacija organskih boja u vodenom rastvoru. Pokazano je da nanočestice TiO_2 pod dejstvom svetlosti mogu da razgrade širok spektar sintetskih boja do CO_2 i H₂O (Hu et. al., 2003; Stylidi et al., 2003; Bouras et al., 2004). Na Slici 20 prikazan je mehanizam fotodegradacije boje metilensko plavo u vodi.

Slika 20. Pretpostavljeni mehanizam fotodegradacije boje metilensko plavo (Robertson et al., 2005)

4.3. Dejstvo TiO2 na UV zaštitu tekstilnog materijala

Tačan mehanizam dejstva neorganskih materijala kao UV filtera još uvek nije razjašnjen do kraja (Yang et al., 2004). Kada su u pitanju konkretno nanočestice TiO₂ postoji nekoliko objašnjenja mehanizma dejstva kao UV filtera: jedan pristup ukazuje da su dobra svojstva TiO₂ kao UV filtera posledica njegovog visokog indeksa refrakcije za obe kristalne forme (n=3,87 za rutil i n=2,5-3 za anatas) zbog čega dolazi do efikasne refleksije i/ili rasejanja UV zraka. Drugo mišljenje zastupa stav da poluprovodničke karakteristike TiO₂ i pojava nastajanja velikog broja elektrona i šupljina usled apsorpcije UV zračenja omogućavaju efikasnu UV zaštitu. (Yang et al., 2004; Montazer i Pakdel, 2010). I na kraju treba pomenuti mišljenje o uticaju veličine čestica TiO_2 praha na efikasnost apsorpcije UV zraka, prema kojem samo čestice nanometarskih dimenzija pokazuju to svojstvo dok čestice submikrometarskih i mikrometarskih dimenzija apsorbuju vrlo malo (Yang et al., 2004).

4.4. Hipoteze o biocidnom dejstvu TiO₂

Dosadašnja istraživanja su pokazala da TiO₂ štetno deluje na bakterije (Gram-pozitivne i Gram-negativne), viruse, gljivice, alge, protozoe, spore i toksine (Robertson et al., 2005). Tačan mehanizam dejstva TiO₂ na mikroorganizme još nije utvrđen.

Jednu od prvih pretpostavki o biocidnom dejstvu TiO_2 su još 1988. godine izneli Matsunaga i saradnici (Matsunaga et al., 1988). Tadašnja istraživanja su ukazivala da u prisustvu TiO_2 (h⁺) dolazi do direktne fotohemijske oksidacije koenzima A (intercelularni enzim) u njegov dimerički oblik što utiče na smanjenje respiratorne funkcije *E. coli* i dalje vodi njenom odumiranju.

Ispitujući uticaj TiO₂ na *Streptoccocus sobrinus AHT*, Saito i saradnici su došli do zaključka da u fotohemijskoj reakciji TiO₂ i bakterije dolazi do oštećenja ćelijske membrane i zida što izaziva odumiranje bakterije (Saito et al., 1992).

Sunada i saradnici su pokazali da OH radikali nastali u procesu oksidacije vode šupljinama iz nanočestice TiO₂, prvo razgrađuju spoljašnju membranu *E. coli* čime se remeti permeabilnost membrane i omogućava prodiranje aktivnih radikala u unutrašnjost bakterije (Sunada et al., 2003). Dejstvom aktivnih radikala na unutrašnju (citoplazmatičnu) membranu dolazi do peroksidacije viših masnih kiselina iz membrane što vodi njenoj razgradnji, a time i odumiranju bakterije (Slika 21). Isti autori su uočili da su nanočestice TiO₂ sposobne da razgrade endotoksin koji se prilikom oštećenja spoljašnje membrane izlučuje iz bakterije (Sunada et al., 1998). Endotoksin ili lipopolisaharidni sloj (LPS) spoljašnje membrane je zaslužan za toksično dejstvo bakterije i ukoliko se ne razgradi pokazuje toksičnost i nakon odumiranja bakterije. Mehanizam UV zaštite, samočišćenja i biocidna aktivnost tekstilnog materijala u prisustvu nanočestica TiO_2

Slika 21. Šematski prikaz dejstva TiO₂ na *E. coli* (Sunada et al., 2003)

Maness i saradnici smatraju da je odumiranje *E. coli* posledica peroksidacije lipida koji se nalaze u spoljašnjoj membrani (Maness et al., 1999). Radikali koji potiču iz nanočestice TiO_2 napadaju fosfolipide, lipoproteine i nukleinske kiseline koje se nalaze u membrani izazivajući njihovu oksidaciju čime biva narušena permeabilnost membrane i omogućen prodor aktivnih radikala u citoplazmu. Razgradnjom spoljašnje membrane bakterija gubi i respiratornu aktivnost što dalje vodi njenom odumiranju.

Do sličnog zaključka su došli Kiwi i Nadtochenko (Kiwi i Nadtochenko, 2005). Prateći dejstvo TiO₂ na *E. coli* uočili su da istovremeno sa razgradnjom spoljašnje membrane dolazi do stvaranja aldehida, ketona i karboksilnih kiselina što je ukazalo na mogući proces oksidacije lipida spoljašnje memebrane. Pretpostavlja se da je oksidacija lipida membrane posledica dejstva šupljina iz nanočestice TiO₂. Veća permeabilnost i smanjena respiratorna aktivnost su posledice promene strukture spoljašnje membrane koje vode odumiranju bakterije.

Na osnovu rezultata dobijenih ispitivanjem dejstva TiO_2 na *E. coli* Lu i saradnici su zaključili da prvo dolazi do razgradnje LPS sloja spoljašnje membrane bakterije zatim peptidoglikana, i unutrašnje membrane (Lu et al., 2003). Nastale promene u strukturi menjaju permeabilnost ćelijskog zida i omogućavaju izlučivanje citoplazme. Na Slici 22 je prikazan izgled topografije *E. coli*. Može se primetiti da do oštećenja ćelijskog zida (pojava rascepa) dolazi još u prvim minutama dejstva TiO_2 i svetla (Slika 22E i 22F). Već nakon 10 min nestaju mnoge izbočine sa površine što ukazuje na razgradnju spoljašnje membrane dok se nakon 20 i 40 min (Slika 22 I-L) uočava oštećenje i unutrašnje

Mehanizam UV zaštite, samočišćenja i biocidna aktivnost tekstilnog materijala u prisustvu nanočestica TiO_2

membrane. Nakon 60 min dejstva TiO_2 membrana je veoma oštećena, a oblik bakterije promenjen iz štapićastog u elipsoidni (Slika 22M i 22N). Kod bakterije koja je osvetljena bez prisustva TiO_2 (Slika 22C i 22D) u vremenu od 40 min nisu uočene značajne promene u strukturi.

Slika 22. AFM fotografija *E. coli* osvetljene UV svetlom pri prisustvu TiO₂ u različitim vremenskim intervalima. Izgled cele bakterije (A, C, E, G, I, K, M) i uvećan segment ćelijskog zida (B, D, F, H, J, L, N). Vreme dejstva u min: (A) 0, (E) 5, (G) 10, (I) 20, (K) 40 i (M) 60. (C) *E. coli* osvetljena u vremenu od 40 min bez prisustva TiO₂ (Lu et al., 2003)

4.5. Mehanizam dejstva nanočestica srebra na fotokatalitičku efikasnost nanočestica TiO₂

Fotokatalitička aktivnost nanočestica TiO₂ je (zbog širine energetskog procepa) moguća jedino pod dejstvom UV svetlosti. Iako su pojedini istraživači mišljenja da je procenat UV zraka u sunčevom spektru sasvim dovoljan za aktivaciju nanomaterijala na bazi TiO₂ mnoge istraživačke grupe se upravo bave rešavanjem problema potrebe za UV aktivacijom. Istraživanja koja su poslednje decenije sprovedena na ovu temu su pokazala da se dopiranjem nanočestica TiO₂ metalima ili nemetalima kao što su platina, zlato, srebro, azot, ugljenik može prevazići potreba za UV aktivacijom (Liu et al., 2003; Sung-Suh et al., 2004; Robertson, 2005; Tran et al., 2006). Takođe je dokazano da se deponovanjem pomenutih metala ili nemetala na površinu nanočestice ili ugradnjom u nanočesticu TiO₂ može uticati na smanjenje energetskog procepa čime se sposobnost aktivacije pomera u vidljivi deo spektra (Sung-Sun et al., 2004). Ovakvim modifikovanjem nanočestice TiO₂ se postiže i razdvajanje naelektrisanja (e^{-} , h^{+}) tj. smanjuje se njihova rekombinacija što direktno utiče na porast fotokatalitičke efikasnosti. Deponovanje nanočestica plemenitih metala na nanočesticu TiO₂ takođe utiče i na povećanje specifične površine nanočestice čime se na još jedan način unapređuje fotokatalitička efikasnost. Zahvaljujući antimikrobnim svojstvima, nanočestice srebra se veoma često koriste u kombinaciji sa nanočesticama TiO₂ (Liu et al., 2003). Na Slici 23 je šematski prikazana uloga nanočestica srebra u procesu fotokatalize.

Slika 23. Uloga nanočestica srebra deponovanih na nanočestice TiO₂ u procesu fotokatalize (Sung-Suh et al., 2004)

Mehanizam UV zaštite, samočišćenja i biocidna aktivnost tekstilnog materijala u prisustvu nanočestica TiO_2

Nanočestice srebra deluju kao hvatala elektrona koje dalje sprovode do okolnih molekula. Ovakvim razdvajanjem naelektrisanja nanočestice srebra utiču na bolja fotokatalitička svojstva nanočestica TiO₂.

Sung-Suh i saradnici su ispitivali uticaj nanočestica srebra na fotokatalitičku sposobnost nanočestica TiO_2 (Degusa P25) u vodenom rastvoru boje Rodamin B (Sung-Suh et al., 2004). Njihovi rezultati pokazuju da je kombinacijom nanočestica srebra i TiO_2 poboljšana sposobnost fotodegradacije boje za 30% na dnevnoj svetlosti. Takođe je uočeno da prvo dolazi do adsorpcije boje na nanočestici pa onda do njene fotodegradacije.

Ispitujući fotokatalitičku sposobnost nanokompozitnih filmova Ag/TiO₂ u vodenom rastvoru boje metil oranž Arabatzis, i saradnici su došli do zaključka da je fotokatalitička efikasnost nanokompozitnog filma znatno unapređena u odnosu na fotokatalitičku efikasnost filma TiO₂ (Arabatzis et al., 2003). Potpuna fotodegradacija boje pod dejstvom UV svetlosti se postiže u vremenu od 5 h ukoliko se koristi film TiO₂ dok potrebno vreme za potpunu fotodegradaciju kod nanokompozitnog filma iznosi samo 2 h. Ovakvo ponašanje nanokompozitnog filma je objašnjeno ulogom jona srebra čijim se dejstvom postiže bolje razdvajanje naelektrisanja.

Deponovanjem srebra na nanočesticu TiO_2 (Degusa P25) dolazi do pomeranja apsorpcije svetlosti u vidljivi deo spektra čime je omogućena fotokatalitička aktivnost TiO_2 na dnevnoj svetlosti (Kim et al., 2006).

Nanokompzitne čestice Ag/TiO₂ pokazuju veoma dobra antibakterijska svojstva bez dejstva UV svetlosti tj. na dnevnom svetlu (Martínez et al., 2008; Zhang i Chen, 2009). Martinez i saranici su ispitali dve vrste nanočestica TiO₂ (Du Point i Degusa P25) i dva molarna odnosa. Pokazano je da bolju antibakterijsku aktivnost pokazuju nanokompozitne čestice Ag/TiO₂ sa manjim sadržajem srebra. Nanočestice Ag/TiO₂ sa manjim sadržajem srebra su i manjih dimenzija pa zato pokazuju i bolja antibakterijska svojstva.

Nanokompozitni pamučni tekstilni materijal na čijoj površini se nalaze nanočestice TiO₂ i srebra je pokazao veoma dobra i postojana antibakterijska svojstva i na dnevnom svetlu (Yang et al., 2009). U cilju boljeg vezivanja nanočestica za pamučni tekstilni materijal vršeno je prethodno modifikovanje pamuka hemijskim agensom koji je bogat hidroksilnim grupama (dimetiloldihidroksietilureom). Nanokompozitne čestice Ag/TiO₂ su funkcionalizovane karboksilnom kiselinom (3-(3,4-dihidroksilfenil)propionska kiselina) u cilju dobijanja karbksilnih grupa koje su sposobne da se estarskim vezama vežu za hidroksilne grupe modifikovanog pamuka.

Yuranova i saradnici su takođe pokazali da pamučni tekstilni materijal obrađen prvo nanočesticama TiO_2 (Degusa P25), a potom nanočesticama srebra pokazuje dobra antibakterijska svojstva čak i u mraku (Yuranova et al., 2006 a).

Pamučni tekstilni materijal obrađen nanočesticama TiO_2 , a potom nanočesticama srebra pokazuje multihromatsko ponašanje pod vidljivom i UV svetlošću (Uddin et al., 2008). Pamuk je sivo obojen pod vidljivom svetlošću dok je njegova boja tamno braon pod dejstvom UV svetla. Uddin i saradnici su pokazali da se na pamučnom vlaknu formira film od nanočestica TiO_2 i srebra koji ostaje i nakon spaljivanja vlakna.

5. MATERIJAL

5.1. Tekstilni materijal

U radu je kao supstrat korišćena:

- odskrobljena i beljena poliestarska tkanina (PES, 115 g/m²);
- iskuvana, odskrobljena i beljena pamučna tkanina (Co, 168 g/m²).

Nečistoće sa PES i Co tkanina su uklonjenje u 0,5 % rastvoru nejonskog sredstva za pranje Felosan RG-N pri odnosu kupatila 1:50. Nakon 15 min pranja na temperaturi od 50 °C tkanine su ispirane jedanput (3 min) u destilovanoj vodi temperature 50 °C i tri puta po 3 min u hladnoj vodi. Tkanine su nakon ispiranja sušene na sobnoj temperaturi.

Strukturne formule polietilen tereftalata (PET) koji gradi PES vlakno i celuloze koja je gradivni polimer pamuka su prikazane na Slikama 24 i 25.

Slika 24. Strukturna formula polietilen tereftalata

Slika 25. Strukturna formula celuloze

5.2. Hemikalije

- Felosan RG-N (Bezema, Švajcarska) je korišćen za pranje tkanina.
- Titanium-tetrahlorid TiCl₄ (Fluka, Nemačka), p.a. čistoće je korišćen za sintezu koloidnog rastvora nanočestica titan dioksida.
- Sumporna kiselina H₂SO₄ (Lach-Ner, Česka) je korišćena za određivanje koncentacije koloidnog rastvora nanočestica titan dioksida.
- Srebro-nitrat AgNO₃ (Kemika, Hrvatska), p.a. čistoće je korišćen za sintezu koloidnog rastvora nanočestica srebra.
- Natrijum-borhidrid NaBH₄ (Fluka, Nemačka), p.a. čistoće je korišćen za sintezu koloidnog rastvora srebra
- Natrijum-alginat CHT-alginat NVS (Bezema, Švajcarska) je korišćen za modifikovanje PES i Co tkanina.
- Poliakrilna kiselina (Merch, SAD) je korišćena za modifikovanje PES tkanine
- Azotna kiselina HNO₃ (POCH, Poljska), 65% rastvor, je korišćena za pripremu uzoraka za analizu na atomskom apsorpcionom spektrofotometru.
- Tripton soja bujon (Torlak, Srbija) je korišćen za pripremu hranjive podloge za rast mikroorganizama.
- Ekstrakt kvasca (Torlak, Srbija) je korišćen za pripremu hranljive podloge za rast mikroorganizama.
- Agar (Torlak, Srbija) je korišćen za očvršćavanje hranljive podloge za rast mikroorganizama.
- Natrijum-hlorid NaCl (Hemos, Srbija) je korišćen za pripremu fziološkog rastvora.
- Boja metilensko plavo (Centrohem, Srbija) je korišćena za ispitivanje fotokatalitičke sposobnosti ispitivanih tkanina.
- Sok od borovnice (Knjaz Miloš, Srbija) je korišćen za ispitivanje sposobnosti samočišćenja ispitivanih tkanina.

6. SINTEZA NANOČESTICA

6.1. Sinteza nanočestica TiO₂

U toku istraživanja za obradu teksilnog materijala korišćena su dva koloidna rastvora čestica TiO_2 nanometarskih dimenzija (koloid I i koloid II). Oba koloidna rastvora nanočestica TiO_2 su sintetisana u procesu kisele hidrolize $TiCl_4$ (Raih et al., 1996).

Rastvor TiCl₄ koji je ohlađen na -20 °C je ukapavan u dejonizovanu vodu temperature 4 °C. Rastvor se intenzivno mešao na temperaturi od 4°C u vremenu od 3 h. U zavisnosti od koncentracije TiCl₄ pH vrednost rastvora se kretala u intervalu od 0 do 1. Spor rast čestica je postignut dijalizom na 4 °C sve dok pH vrednost rastvora nije dostigla 3,5. Koncentracija koloidnog rastvora TiO₂ je određena preko vrednosti koncentracije peroksidnog kompleksa sa titanom koji se formira nakon rastvaranja nanočestica TiO₂ u koncentrovanoj H₂SO₄ (Thompson, 1984).

Koloidni rastvor nanočestica TiO₂, dobijen po opisanom postupku (koloid I) je dalje termički tretiran na 60 °C u trajanju od 16 h kada je dobijen koloidni rastvor II.

6.2. Sinteza nanočestica srebra

Sinteza nanočestica srebra sfernog oblika se zasniva na redukciji vodenog rastvora AgNO₃ pomoću jakog redukcionog sredstva NaBH₄ u inertnoj atmosferi (Vuković i Nedeljković, 1993, Šaponjić et al., 2003).

1,7 mg AgNO₃ je rastvoreno u 100 ml dejonizovane vode koja je zasićena argonom u vremenu od 30 min. Tokom intenzivnog mešanja dodato je 10 mg NaBH₄ i rastvor je ostavljen u atmosferi argona 1 h. Nakon dodavanja redukcionog sredstva trenutno nastao je transparentni žuto obojeni koloidni rastvor čestica srebra nanometarskih dimenzija. Usled hidrolize viška NaBH₄, pH rastvora je rasla do vrednosti 9,8. Rastvor je stabilan nekoliko sati u atmosferi argona. Opisanom metodom je sintetisan koloidni rastvor nanočestica srebra koncentracije 10 mg/l. U skladu sa opisanim postupkom sintetisan je i koloidni rastvor srebra koncentracije 50 mg/l. Količina od 8,50 mg AgNO₃ je rastvorena u 250 ml dejonizovane vode koja je zasićena argonom u trajanju od 30 min. Uz neprestano mešanje dodato je 125 mg NaBH₄ i rastvor je ostavljen u atmosferi argona 1 h. Nastao je transparentni intenzivno žuto obojeni koloidni rastvor srebra, čija pH vrednost iznosila 9,8.

7. POSTUPCI OBRADE TEKSTILNOG MATERIJALA

7.1. Obrada tekstilnog materijala koronom na atmosferskom pritisku

Obrada PES i Co tkanina koronom na atmosferskom pritisku vršena je na uređaju Vetaphone CP-Lab MK II (Slika 26). Uzorak je postavljen na silikonom presvučenu elektrodu u obliku valjka koja tokom rada rotira ogovarajućom brzinom. Druga elektroda (PF 9) se nalazi iznad uzorka na rastojanju koje se podešava u zavisnosti od vrste i debljine materijala koji se obrađuje. Korona pražnjenje se obrazuje između ove dve elektrode. Brojem prolaza materijala kroz polje pražnjenja reguliše se stepen obrade. U toku obrade PES i Co tkanina rastojanje između elektroda je iznosilo 2 mm, snaga 900 W, a brzina kretanja tkanine (rotitranja valjka) 4 m/min. Broj prolaza tkanine je bio podešen na 30.

Slika 26. Uređaj za obradu tekstilnih materijala korona pražnjenjem

7.2. Obrada tekstilnog materijala niskotemperaturnom plazmom

Obrada PES i Co uzoraka niskotemperaturnom plazmom urađena je u plazma reaktoru koji je prikazan na Slici 27a. Plazma reaktor se sastoji iz cilindrične komore (prečnik 37 cm, dužina 50 cm) koja je priključena na RF izvor struje (13,5 MHz) i povezana sa vakuum pumpom i meračem pritiska. RF izvor struje je povezan sa kolom za prilagođavanje impedance. Plazma pražnjenje se formira između zida komore koji je uzemljen i centralne elektrode koja je smeštena u komori (Slika 27b). Nakon stavljanja uzoraka u komoru, vrši se vakuumiranje komore do željenog pritiska. Zatim se u komoru uvodi odabrani gas pri čemu se vodi računa da pritisak u komori ostane konstantan. Nakon uključivanja RF izvora struje i podešavanja snage počinje električno pražnjenje i od tog momenta se meri vreme obrade. Kad je obrada završena isključi se vakuum pumpa i uvodi vazduh u komoru. Za obradu PES i Co tkanina korišćeni su vazduh, kiseonik i argon kao gasovi. U toku obrade pritisak je iznosio 0,21 mbar, snaga 100 W, a vreme obrade 2,5 min. Protok gasa je bio podešen na 150 sccm.

(a) (b) Slika 27. RF plazma reaktor: (a) spoljašnji izgled, (b) komora reaktora

7.3. Obrada tekstilnog materijala alginatom

1,00 g natrijum alginata (Slika 28) je uz stalno mešanje (30 min) rastvoren u 1000 ml destilovane vode. Ovako pripremljen 0,1% rastvor alginata odmah je dalje korišćen za obradu PES tkanina. PES uzorci mase 1,00 g su potapani u 50 ml 0,1% rastvora alginata u trajanju od 10 min. Nakon ceđenja na fulardu uzorci su termički obrađeni na 100 °C u vremenu od 10 min, a zatim isprani dva puta (5 min) u destilovanoj vodi i osušeni na sobnoj temperaturi.

Slika 28. Strukturna formula natrijum alginata

7.4. Obrada tekstilnog materijala poliakrilnom kiselinom

Uzorci tkanine određene mase preneti su u balon zapremine 1000 ml sa rastvorom akrilne kiseline koncentracije 30 vol% koji je prethodno zasićen argonom u vremenu od 30 min. Kalemljenje (*engl.* grafting) PES tkanine akrilnom kiselinom (Slika 29) vršeno je pri odnosu kupatila 1:50 u vremenu od 2 h na 50 °C. Da bi se uklonili nevezani monomeri i homopolimeri, tkanine su pri istom odnosu kupatila tretirane u ključaloj vodi u vremenu od 4,5 h, a zatim ispirane pet puta u dejonizovanoj vodi. Tkanine su potom sušene na sobnoj temperaturi.

Slika 29. Strukturna formula poliakrilne kiseline

7.5. Obrada tekstilnog materijala nanočesticama TiO₂

Određena masa PES i Co tkanina je potapana u koloidni rastvor TiO_2 (0,1 M) pri odnosu kupatila 1:20 u trajanju od 5 min. Nakon sušenja na sobnoj temperaturi uzorci su termički tretirani na 100 °C (30 min), a zatim ispirani dva puta (5 min) u dejonizovanoj vodi i sušeni na sobnoj temperaturi. U slučaju dvostruke obrade opisani postupak je ponovljen još jednom nakon prve obrade.

7.6. Obrada tekstilnog materijala nanočesticama srebra i TiO2

Nanočestice srebra su na uzorke PES i Co tkanina nanošene pre ili posle obrade nanočesticama TiO₂. Nezavisno od redosleda nanošenja nanočestica postupak obrade u koloidnom rastvoru srebra koncentracija 10 i 50 mg/l je isti. Jedan gram Co tkanine je potapan u 45 ml dok je jedan gram PES tkanine potapan u 65 ml koloidnog rastvora srebra u trajanju od 5 min. Posle sušenja na sobnoj temperaturi uzorci su termički tretirani na 100 °C (5 min) i nakon toga ispirani dva puta (5 min) u dejonizovanoj vodi pa sušeni na sobnoj temperaturi.

8. METODE

8.1. Karakterizacija nanočestica TiO2 i tekstilnog materijala

8.1.1. TEM analiza

Oblik i veličina sintetisanih nanočestica TiO_2 i srebra su okarakterisani konvencionalnim transmisionim elektronskim mikroskopm (TEM, JEOL 100 CX). Priprema uzorka je urađena tako što je kap koloidnog rastvora srebra ili TiO_2 stavljena na standardnu bakarnu mrežicu. Posle otparavanja rastvarača, uzorak je snimljen pri naponu od 100 kV.

Za karakterizaciju nanočestica TiO₂ korišćen je još i elektronski mikroskop visoke rezolucije (*engl.* High Resolution Electron Microscopy- HREM, Philips CM 200 sa FEG 200 kV).

8.1.2. Ramanska spektrometrija

Mikro-Ramanski spektri su mereni koristeći Jobin Yvon T64000 spektrometar pri čemu je snimanje spektara vršeno na sobnoj temperaturi u konfiguraciji tzv. pozadinskog rasejanja. Argonski (Ar⁺) laser sa talasnom dužinom λ >>514,5 nm je korišćen kao izvor pobuđivanja pri čemu je snaga lasera bila manja od 10 mW u cilju sprečavanja zagrevanja uzoraka.

8.1.3. SEM analiza

Morfologija površine vlakana pre i posle različitih obrada je ispitana korišćenjem skenirajućeg elektronskog mikroskopa (SEM, JEOL JSM 6460 LV). EDX mod (*engl.* Energy Dispersive X-ray- EDX) je primenjen za određivanje elementarnog sastava površine. Uzorci su pre analize naparavani tankim slojem zlata.

8.1.4. XPS analiza

Promena u hemijskom sastavu površine pre i posle obrade plazmom i nanočesticama TiO_2 je praćena pomoću rendgen fotoelektronske spektroskopije (*engl.* X-ray Photoelectron Spectroscopy- XPS). Uzorci su analizirani pomoću XPS uređaja, PHI Model 5500 Multitechnique System (Perkin Elmer, SAD) i K-Alfa (Thermo Scientific, UK) sa Al K α monohromatskim izvorom X-zračenja snage 350 W. Merenja su izvršena pri ulaznom uglu od 45 °. Opseg merenja je bio 0-1100 eV, sa energijom prolaza od 187,85 eV. Dobijeni su spektri visoke rezolucije koji uključuju C_{1s} , O_{1s} , Ti_{2p} fotoelektronske pikove. Karakteristična energija vezivanja od 285,0 eV za C-C i C-H grupe je merena u odnosu na referentni C_{1s} fotoelektronski pik. Hemijski sastav površine materijala je utvrđen iz površine različitih fotoelektronskih pikova koji su modifikovani određenim faktorima osetljivosti samog instrumenta (Briggs i Seah, 1983).

8.1.5. Atomska apsorpciona spektrometrija

Ukupna količina titana i srebra u ispitivanim uzorcima je određena pomoću atomskog apsorpcionog spektrofotometra (AAS, Perkin Elmer 403). Pre analize uzorci tkanine su spaljeni, a potom je taj pepeo rastvoren u koncentrovanoj azotnoj kiselini i kao takav analiziran.

8.2. Ispitivanje antimikrobnih svojstava tekstilnog materijala

Za uzorke PES i Co tkanina koji su obrađeni nanočesticama TiO₂ ispitana su antibakterijska svojstva primenom indikatorske Gram-negativne bakterije *Escherichia coli* ATCC 25922. Antimikrobna svojstva PES i Co tkanina obrađenih nanočesticama TiO₂ i nanočesticama Ag su ispitana korišćenjem indikatorske bakterije *Escherichia coli* ATCC 25922, *Staphylococcus aureus* (Gram-pozitivna) ATCC 25923 i kvasca *Candida albicans* ATCC 24433.

Za ispitivanje je korišćen standardni (1%) inokulum prekonoćne kulture (16-18 h). Tečna podloga tripton soja bujon (TSB), obogaćena sa 0,6% kvaščevog ekstrakta pripremana po uputstvu proizvođača je korišćena za pripremu inokuluma. Tečna podloga je pre upotrebe sterilisana u autoklavu (Sutjeska, Srbija) na temperaturi od 120 °C u vremenu od 30 min i pri pritisku od 1,5 bar. Broj mikroorganizama u inokulumu je određen metodom decimalnog razblaženja. 0,1 ml rastvora je zasejavan u sterilne Petri šolje na čvrstoj podlozi tripton soja agar (TSA). Podloga TSA je pripremana prema uputstvu proizvođača korišćenjem TSA obogaćenog sa 0,6% kvaščevog ekstrakta. Podloga je sterilisana u autoklavu na temperaturi od 120 °C u vremenu od 30 min i pri pritisku od 1,5 bar.

U prethodno sterilisane staklene čaše (400 ml) stavi se 70 ml sterilnog fiziološkog rastvora i 700 μ l inokuluma. 1,00 g ispitivane tkanine (sterilne) iseckane na parčiće (1×1 cm) dodavan je u smešu fiziološkog rastvora i mikroorganizma. Čaša je preklopljena kvarcnim staklom i prenesena u vodeno kupatilo WNE 14 (Memert, Nemačka) na 37 °C gde je vršeno mešanje u vremenu od 2 h. Od početka mešanja sistem je osvetljavan UV lampom TL-D, 18 W (Philips). Opisani postupak je primenjen za ispitivanje antibakterijske efikasnosti PES i Co tkanina koje su obrađene nanočesticama TiO₂. Za ispitivanje antimikrobnih svojstava PES i Co tkanina obrađenih nanočesticama TiO₂ i srebra su umesto čaša korišćeni erlenmajeri zapremine 300 ml i sistem tokom mešanja nije osvetljavan. Posle 2 h mešanja (nezavisno od postupka ispitivanja) je uziman 1 ml uzorka, koji je razblažen sterilnim fiziološkim rastvorom u odnosu 1:10 i 1:100. 0,1 ml uzorka je zasejavan na podlogu tripton soja agar u sterilne Petri šolje, a zatim termostatiran 24 h.

Procenat mikrobne redukcije (R, %) se izračunava prema jednačini 18:

$$R = \frac{C_0 - C}{C_0} \times 100$$
 (18)

gde je: C_0 - broj kolonija mikroorganizama izraslih posle kontakta sa kontrolnim uzorkom (neobrađena PES ili Co tkanina), a C– broj kolonija mikroorganizama izraslih posle kontakta sa uzorcima koji su obrađeni nanočesticama TiO₂ ili TiO₂ i Ag (Lee et al., 2003; Jeong et al., 2005a; Ki et al., 2007).

8.3. Ispitivanje efekata UV zaštite

Za procenu nivoa UV zaštite koji se postiže obradom PES i Co tkanina nanočesticama TiO₂ korišćen je UV/VIS spektrofotometar Cary 100 Scan (Varian) opremljen Startek softverom (Startek Technology version 3.0) za izračunavanje UV zaštite tkanina. Na osnovu podataka dobijenih merenjem propustljivosti svetlosti tkanine za spektar UV zračenja 280-400 nm u skladu sa jednačinom (19) automatski je izračunat UV faktor zaštite (*engl. Ultraviolet Protecting Factor-* UPF). Nivo UV zaštite (Tabela 2) i UPF vrednost su utvrđeni u skladu sa Australijsko/Novozelandskim standardom AS/NZS 4399:196.

$$UPF = \frac{\int_{290}^{400} E_{\lambda} \times S_{\lambda} d\lambda}{\int_{290}^{400} E_{\lambda} \times S_{\lambda} \times \tau_{\lambda} d\lambda}$$
(19)

gde je: λ - talasna dužina (nm), E_{λ} - relativna eritemska efikasnost (osetljivost ljudske kože na zračenje), S_{λ} - intenzitet sunčevog zračenja ($W \times m^{-2} \times nm^{-1}$), τ - deo spektra zračenja koji prolazi kror uzorak, d λ - priraštaj talasnih dužina.

Kategorija UV nivoa zaštite	UPF vrednost		
Nedovoljan	<10		
Srednji	10-19		
Visok	20-29		
Veoma visok	30-49		
Maksimalan	≥50		

Tabela 2. Klasifikacija UV nivoa zaštite (Varian)

8.4. Ispitivanje postojanosti obrade na pranje

Pranje tkanina je vršeno u 0,5 % rastvoru Felosana RG-N pri odnosu kupatila 1:40 u laboratorijskom uređaju za bojenje Polycolor (Werner Mathis AG, Švajcarska) pri 45 o/min. Pranje uzoraka Co tkanine je vršeno na 95 °C dok je pranje uzoraka PES tkanine vršeno na 40 °C. Nakon 30 min pranja uzorci su ispirani jedanput (3 min) vodom temperature 95 °C u slučaju Co tkanine i 40 °C u slučaju PES tkanine, a potom tri puta po 3 min hladnom vodom. Posle šušenja uzoraka postupak pranja je ponovljen pet puta. Nakon pet ciklusa pranja ispitana su antimikrobna svojstva i sposobnost UV zaštite uzoraka prema opisanim procedurama.

8.5. Ispitivanje sposobnosti samočišćenja tekstilnog materijala

Sposobnost samočišćenja PES i Co tkanina obrađenih nanočesticama TiO_2 je ispitana praćenjem promene boje zaprljanja od soka od borovnice u vremenu od 24 h. Uzorci tkanine (5×5 cm) na koje je naneseno 50 µl soka su u vremenu od 24 h osvetljavani

lampom (Ultra-Vitaluks 300 W, Osram) koja simulira sunčevo zračenje. Za određivanje boje zaprljanja korišćen je Datacolor SF 300 spektrofotometar (D_{65} izvor svetlosti) pri uglu posmatrača od 10 °. Nakon 2, 4, 6 i 24 h osvetljavanja merene su koordinate boje (CIE L*, a*, b*) zaprljanja od soka. Na osnovu izmerenih vrednosti koordinata boje određena je razlika u obojenju (ΔE^*) u skladu sa jednačinom (20):

$$\Delta E^* = \sqrt{\left(\Delta a^*\right)^2 + \left(\Delta b^*\right)^2 + \left(\Delta L^*\right)^2} \tag{20}$$

gde je: ΔL^* - razlika u svetlini između obrađenog (PES i Co tkanina obrađena nanočesticama TiO₂) i kontrolnog uzorka (neobrađena PES i Co tkanina); Δa^* - razlika u vrednosti crveno/zeleno koordinate boje između obrađenog i kontrolnog uzorka; Δb^* - razlika u vrednosti žuto/plavo koordinate boje između obrađenog i kontrolnog uzorka.

8.6. Ispitivanje fotokatalitičke aktivnosti tekstilnog materijala

Fotokatalitička aktivnost nanočestica TiO₂ vezanih za površinu PES i Co tkanina je ispitana u vodenom rastvoru boje metilensko plavo (MP). U 25 ml rastvora MP koncentracije 10 mg/l (pH 5,81) stavljeno je 0,5 g tkanine iseckane na parčiće (1×1 cm). Rastvor je prenesen u vodeno kupatilo (sobna temperatura) gde je nakon osvetljavanja lampom (Ultra-Vitaluks 300 W, Osram) započelo mešanje. Degradacija boje MP je praćena preko promene obojenja rastvora tj. promene koncentracije boje u rastvoru. Koncentracija boje je merena na UV/VIS spektrofotometru (Cary 100 Scan, Varian) nakon 2, 4, 6, 8 i 24 h osvetljavanja. Svaki uzorak je podvrgnut osvetljavanju tri puta. Nakon svakog ciklusa osvetljavanja uzorak je sušen na sobnoj temperaturi i ponovo korišćen u narednom ciklusu fotodegradacije.

9. REZULTATI I DISKUSIJA

9.1 Karakterizacija nanočestica TiO₂

Na Slici 30 je prikazana TEM mikrofotografija koloidnog rastvora nanočestica TiO_2 (koloid I). Pored individualnih nanočestica veličine 5-10 nm uočava se i prisustvo aglomerata TiO_2 . Na osnovu merenja elektronske difrakcije utvrđeno je da su nanočestice TiO_2 amorfne strukture.

Na osnovu ramanskog spektra koloidnog rastvora nanočestica TiO_2 (Slika 31) takođe se može govoriti o amorfnoj strukturi nanočestica. Slab intenzitet pikova koji odgovaraju talasnim brojevima od 154, 406, 515 i 637 cm⁻¹, karakterističnim za anatas kristalnu strukturu nanočestice, ukazuje na činjenicu da su nanočestice pretežno amorfne strukture sa malim udelom kristalne faze (Uddin et al., 2007).

Slika 30. (a) TEM mikrofotografija nanočestica TiO₂ (koloid I) i (b) energetski filtrirana TEM slika dobijena ekscitacijom Ti L_{2.3} linije

Slika 31. Ramanski spektar nanočestica TiO₂ (koloid I)

TEM mikrofotografija termički obrađenog koloidnog rastvora nanočestica TiO₂ (koloid II) sa prosečnom dimenzijom čestice od 6 nm je prikazana na Slici 32a. Prisutna je tendencija da je mikrostruktura nanočestica monokristalna mada je takođe zapažena mikrostruktura tzv. riblje kosti prouzrokovana višestrukim dvojnikovanjem (Slika 32b). Elektronska difrakciona slika prikazana na Slici 32c je karakteristična za anatas kristalnu strukturu. Postojanje anatas kristalne strukture je dokazano i Ramanskom spektroskopijom. (Slika 33). Na spektru se mogu uočiti jasni pikovi na 154, 406, 515 i 637 cm⁻¹ koji odgovaraju anatas kristalnoj strukturi (Uddin et al, 2007).

Slika 32. Karakterizacija nanočestica TiO₂ (koloid II): (a) TEM mikrofotografija, (b) HREM mikrofotografija i (c) difrakciona slika

Ukoliko se uporedi struktura nanočestica TiO_2 koloidnog rastvora I i II može se zapaziti da koloidni rastvor II sadrži kristalne čestice za razliku od koloidnog rastvora I koga karakteriše amorfna struktura čestica. Do porasta kristaliničnosti nanočestica koloida II došlo je zahvaljujući termičkoj obradi koloida.

Slika 33. Ramanski spektar nanočestica TiO₂ (koloid II)

9.2. Karakterizacija nanočestica srebra

UV-VIS apsorpcioni spektar koloidnog rastvora nanočestica srebra je prikazan na Slici 34. Spektar ukazuje na postojanje intenzivne apsorpcione trake površinskog plazmona, sa maksimumom na 380 nm koja je nastala usled ekscitacije elektronskog gasa u česticama metala.

Postojanje uzane simetrične trake površinskog plazmona ukazuje na usku raspodelu veličine čestica i odsustvo neželjene agregacije.

TEM mikrofotografija nanočestica srebra prikazna kao isečak na Slici 34 potvrđuje da su čestice prečnika oko 10 nm približno sfernog oblika.

Slika 34. Apsorpcioni spektar nanočestica srebra u vodenom rastvoru, isečak: TEM mikrofotografija nanočestica srebra

9.3. Efekti prisustva nanočestica TiO2 na PES tkanini

9.3.1. PES tekstilni materijal obrađen nanočesticama TiO₂ (koloid I)

Na osnovu pregleda literature prikazanom u poglavlju 2 došlo se do zaključka da tekstilni materijal obrađen nanočesticama TiO₂ poseduje izuzetna antimikrobna svojstva, UV zaštitu i sposobnost samočišćenja. Imajući u vidu literaturne podatke o sintezi i primeni nanočestica TiO₂ na tekstilne materijale za potrebe ovog istraživanja razvijena je metoda za sintezu koloidnih nanočestica TiO₂ na niskim temperaturama. Stoga je jedan od ciljeva ove teze bio da se ispita sposobnost vezivanja sintetisanih nanočestica TiO₂ za tekstilni materijal da bi se postigla željena multifunkcionalnost. Zbog velikog udela poliestarskih vlakana (PES) u ukupnoj svetskoj proizvodnji vlakana preliminarna ispitivanja su urađena upravo na PES tkaninama.

Vezivanje hidrofilnih nanočestica TiO₂ za PES vlakna koja su hidrofobna i izuzetno male specifične površine je znatno otežano. Da bi obezbedili bolju interakciju između hidrofobnih PES vlakana i hidrofilnih nanočestica TiO₂ vršena je prethodna modifikacija tkanine koronom na atmosferskom pritisku. Iako RF plazma na niskom pritisku pruža bolju kontrolu uslova obrade, veću stabilnost i uniformnost dobijenih efekata, zbog nedostataka kao što su upotreba skupih vakuum pumpi i otežana manipulacija tekstilnim materijalom, za preliminarna ispitivanja u ovoj tezi je korišćena korona na atmosferskom pritisku.

9.3.1.1. Morfološka svojstva nemodifikovanih i koronom modifikovanih PES vlakana

Promena morfoloških svojstava PES vlakana nastala kao posledica obrade koronom na atmosferskom pritisku praćena je SEM analizom. Na Slici 35 su prikazane SEM mikrofotografije neobrađenog PES vlakna (PES) i vlakna obrađenog koronom (CPES). Na Slici 35a se može primetiti da neobrađeno PES vlakno ima glatku i ravnu površinu dok je površina CPES vlakna znatno hrapavija (Slici 35b). Dejstvom korone na površini vlakna se stvaraju neravnine koje ostavljaju utisak grozdaste ili granularne strukture. Brzeziński i saradnici smatraju da su izbočine koje se javljaju na površini PES vlakna nakon obrade koronom oligomeri nastali kidanjem polimernih lanaca PES-a (Slika 24) usled interakcije sa česticama korone (Brzeziński et al., 2010). Iako je primećeno da nakon pranja u mešavini voda-alkohol većina oligomera nestaje struktura površine i dalje nije ista kao kod nemodifikovanog vlakna. Grozdasta struktura površine je zapažena nakon obrade PET filmova dielektričnim barijernim pražnjenjem na atmosferskom pritisku (Topala et al., 2008).

(b) Slika 35. SEM mikrofotografije: (a) PES i (b) CPES vlakana

Izražena reljefnost površine CPES vlakna koja se javlja kao posledica obrade koronom čini specifičnu površinu vlakna većom (Leroux et al., 2006). Veća specifična površina je poželjna radi dalje obrade nanočesticama TiO₂. Vezivanje nanočestica TiO₂ za vlakno svakako je uspešnije ukoliko je površina vlakna razvijenija (Topala et. al., 2008).

9.3.1.2. Promene u hemijskom sastavu površine PES i CPES vlakana

Promene u hemijskom sastavu površine nastale nakon modifikovanja PES vlakna koronom analizirane su XPS metodom. Rezultati elementarne analize PES i CPES vlakana prikazani su u Tabeli 3. Očigledno je da obrada koronom utiče na povećanje atomskog odnosa O/C za 36 %. Porast O/C vrednosti ukazuje da je došlo do formiranja novih funkcionalnih grupa koje u svom sastavu sadrže kiseonik (De Geyter et al., 2006). Uočeno smanjenje sadržaja ugljenika je karakteristično za obrade polimera plazmom. Dejstvom aktivnih čestica iz korone dolazi do cepanja polimernih lanaca usled čega se smanjuje sadržaj ugljenika (Pappas et al., 2006). Smatra se da je porast sadržaja kiseonika posledica prisustva atomskog kiseonika koji u koroni nastaje usled disocijacije molekulskog kiseonika iz vazduha (O₂). Porast sadržaja kiseonika nakon obrade koronom može biti i posledica izlaganja aktivirane površine dejstvu čestica iz vazduha kada se odigravaju tzv. post-plazma hemijske reakcije (Pappas et al., 2006). Iako koronu sačinjavaju i druge aktivne čestice (ozon, azot, oksidi radikali itd.) smatra se da je atomski kiseonik najzaslužniji za hemijske reakcije koje se dešavaju na površini vlakna (Dai et al., 1995; Geyter et al., 2006). Ekscitacija i disocijacija molekula azota takođe mogu izazvati različite plazma hemijske reakcije koje mogu inicirati stvaranje atomskog kiseonika (De Geyter et al., 2006; De Geyter et al., 2008).

Uzorak	C (atom %)	O (atom %)	O/C (atom%)
PES	76,3	23,7	31,0
CPES	70,3	29,7	42,2

Tabela 3. Elementarna analiza PES i CPES vlakana

U cilju preciznijeg ispitivanja promena nastalih na površini PES vlakana posle obrade koronom analiziran je C_{1s} spektar visoke rezolucije (Slika 36). Dekonvolucijom C_{1s} spektra visoke rezolucije otkriveno je postojanje tri različite komponente (Tabela 4). Pik na 285,0 eV se odnosi na C-C i C-H grupe dok se pikovi na 286,6 eV i 289,3 eV pripisuju postojanju C-O i O-C=O funkcionalnih grupa.

Slika 36. C_{1s} spektri visoke rezolucije za PES i CPES vlakna

Rezultati prikazani u Tabeli 4 ukazuju na činjenicu da nakon obrade koronom na površini PES vlakna opada sadržaj C-C, C-H i O-C=O grupa istovremeno sa porastom sadržaja C-O grupe. Takođe se može uočiti da C_{1s} spektar visoke rezolucije za CPES uzorak sadrži dodatni pik na 288,3 eV koji se ne javlja kod PES uzorka (Slika 36). Ovaj pik odgovara slobodnoj karbonilnoj grupi (C=O) i karakteristična je pojava nakon obrada CO₂ plazmom i koronom na atmosferskom pritisku (Lee et al., 1994; Amor et al., 2009).

	Atomski sadržaj (%)			
Uzorak	С-С, С-Н 285,0 eV	C-O 286,6 eV	C=O 288,3 eV	O-C=O 289,3 eV
PES	72,4	16,3	0,0	11,3
CPES	65,0	18,5	5,8	10,7

Tabela 4. Atomski sadržaj određen na osnovu normalizovanih intenziteta pikova u C_{1s} spektru posle izvršene dekonvolucije za PES i CPES vlakna

Porast sadržaja funkcionalnih grupa koje sadrže kiseonik utiče na povećanje hidrofilnosti vlakna (Radetić et al., 2008). Hidrofilnija površina PES vlakna postaje pristupačnija za vezivanje nanočestica TiO₂.

9.3.1.3. Promene u hemijskom sastavu PES i CPES vlakana obrađenih nanočesticama TiO₂

Prisustvo nanočestica TiO₂ na površini PES i CPES vlakna je potvrđeno EDX analizom. EDX spektar PES vlakna obrađenog nanočesticama TiO₂ (PES+TiO₂) i CPES vlakna obrađenog nanočesticama TiO₂ (CPES+TiO₂) prikazan je na Slici 37. Titan pronađen na površini PES i CPES vlakana potiče od prisustva nanočestica TiO₂. Na oba spektra mogu se zapaziti i pikovi na 2,2 i 9,7 keV koji se javljaju zbog prisustva zlata na površini vlakna. Naime svaki uzorak je pre EDX analize naparen tankim slojem zlata pa je njegovo prisustvo u spektru očekivano.

Slika 37. SEM mikrofotografija dela vlakana na kome je izmeren EDX spektar: (a) PES+TiO₂ i (b) CPES+TiO₂ vlakana

Da bi se potvrdilo prisustvo i utvrdila količina nanočestica TiO₂ na površini PES+TiO₂ i CPES+TiO₂ vlakana urađena je i XPS analiza. Rezultati XPS elementarne analize prikazani u Tabeli 5 pokazuju da uzorak CPES+TiO₂ sadrži više Ti u odnosu na PES+TiO₂ uzorak.

Uzorak	C (atom %)	O (atom %)	Ti (atom%)
PES+TiO ₂	55,0	37,1	7,9
CPES+TiO ₂	52,5	37,9	9,6

Tabela 5. Elementarna analiza PES+TiO₂ i CPES+TiO₂ vlakana

Pozitivno naelektrisani Ti⁴⁺ iz nanočestice TiO₂ se za vlakno vezuje prevashodno preko hidrofilnih grupa kao što su karboksilne ili karbonilne grupe (Bozzi et al., 2005; Kiwi, 2006; Qi et al, 2007). Obradom koronom PES vlakno postaje bogatije hidrofilnim grupama (Tabela 4) čime je olakšano vezivanje nanočestica TiO₂ za površinu CPES vlakana. Sadržaj Ti na uzorku koji je prethodno modifikovan koronom je za 22 % veći u odnosu na isti sadržaj na nemodifikovanom vlaknu. Poređenja radi Qi i saradnici su uočili da nakon obrade kiseoničnom RF plazmom sadržaj Ti raste za 10,2 % (Qi et al., 2007). XPS Ti_{2p} spektar visoke rezolucije za PES+TiO₂ i CPES+TiO₂ vlakna prikazan je na Slici 38. Jasno se može uočiti da je površina ispod fotoelektronskih pikova Ti_{2p1/2} i Ti_{2p3/2} koji se javljaju na 464,2 i 458,6 eV veća u slučaju CPES+TiO₂ vlakna u odnosu na PES+TiO₂.

Slika 38. Ti_{2p} spektar visoke rezolucije za PES+TiO₂ i CPES+TiO₂ vlakna

Na Slici 39 prikazan je XPS O_{1s} spektar visoke rezolucije za PES+Ti O_2 i CPES+Ti O_2 uzorke. U cilju detaljnije analize grupa koje sadrže kiseonik urađena je dekonvolucija O_{1s} spektra. Dekonvolucijom O_{1s} spektra otkrivene su tri različite komponente (Tabela 6). Pikovi koji se javljaju na 529,8, 531,6 i 532,9 eV redom odgovaraju Ti O_2 , C=O i C-O grupama. Postojanje pika na 529,8 eV jasno pokazuje prisustvo nanočestica TiO_2 na površini vlakna.

Slika 39. O_{1s} spektri visoke rezolucije za PES+Ti O_2 i CPES+Ti O_2 vlakna

Fabela 6 . Atomski sadržaj određen na osnovu normalizovanih intenziteta pikova u O_1
spektru posle izvršene dekonvolucije za PES+TiO ₂ i CPES+TiO ₂ vlakna

	Atomski sadržaj (%)			
Uzorak	TiO ₂ 529,8 eV	C-O 532,9 eV	C=O 531,6 eV	
PES+TiO ₂	52,7	27,0	20,3	
CPES+TiO ₂	62,9	20,1	17,0	

Ukupna količina Ti na PES+TiO₂ i CPES+TiO₂ uzorcima je određena AAS analizom. Pronađeno je da uzorci PES+TiO₂ i CPES+TiO₂ sadrže 10,1 mg i 12,2 mg Ti. Uočeni porast sadržaja Ti za 20 % kod CPES+TiO₂ uzorka u odnosu na PES+TiO₂ uzorak se slaže sa rezultatima dobijenim XPS analizom.

9.3.1.4. Efikasnost UV zaštite PES i CPES tkanina obrađenih nanočesticama TiO₂

U cilju ispitivanja efikasnosti UV zaštite PES tkanina obrađenih nanočesticama TiO₂ izmeren je procenat propuštenih UV zraka (transmisije) iz UVB (280-315 nm) i UVA (315-400) oblasti spektra. Na Slici 40 prikazane su krive transmisije izmerene za PES, PES+TiO₂ i CPES+TiO₂ tkanine. Kod uzoraka obrađenih nanočesticama TiO₂ uočen je pad transmisije UV zraka u odnosu na neobrađeni uzorak. Zahvaljujući sposobnosti da apsorbuje UV zrake nanočestice TiO₂ sprečavaju njihovo prodiranje kroz tkaninu. Na Slici 40 se takođe može uočiti da su vrednosti transmisije za CPES+TiO₂ uzorak manje u odnosu na vrednosti za PES+TiO₂ uzorak. Kako uzorak CPES+TiO₂ sadrži više Ti (Tabela 5) u odnosu na uzorak PES+TiO₂ može se zaključiti da količina Ti direktno utiče na sposobnost apsorpcije UV zraka tj. sposobnost UV zaštite. (Daoud i Xin, 2004a; Qi et al., 2007). Krive transmisije PES+TiO₂ i CPES+TiO₂ ostale vezane za površinu oba uzorka.

Slika 40. Krive transmisije za PES+TiO₂ i CPES+TiO₂ tkanine pre i posle pranja

Kao mera sposobnosti UV zaštite određena je i UPF vrednost (Tabela 7). Na osnovu izmerenih UPF vrednosti utvrđen je i nivo UV zaštite u skladu sa Australijsko/Novozelanskim standardom. Pregledom rezultata prikazanih u Tableli 7 može se zaključiti da svaki uzorak obrađen nanočesticama TiO₂ obezbeđuje maksimalnu vrednost UV zaštite (50+). PES tkanina koja nije obrađena nanočesticama TiO₂ takođe
pruža zadovoljavajući nivo UV zaštite (UPF>40) verovatno zbog uticaja prepletaja tkanine (Xin et al., 2004). Kao što je bilo očekivano CPES+TiO₂ tkanina poseduje najveću UPF vrednost. Nakon 5 ciklusa pranja CPES+TiO₂ i PES+TiO₂ uzoraka izmerena UPF vrednost je nešto niža ali se i dalje obezbeđuje maksimalan nivo UV zaštite.

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
PES	43	40
PES+TiO ₂	90	50+
CPES+TiO ₂	113	50+
PES+TiO ₂ posle pranja	83	50+
CPES+TiO ₂ posle pranja	99	50+

Tabela 7. UV zaštita PES tkanina obrađenih nanočesticama TiO₂

9.3.1.5. Sposobnost samočišćenja PES i CPES tkanina obrađenih nanočesticama TiO₂

Sposobnost samočišćenja PES i CPES tkanina obrađenih nanočesticama TiO₂ je praćena preko promene obojenja zaprljanja od soka od borovnice. Uzorci PES tkanina na koje je naneseno zaprljanje od soka od borovnice su snimljeni pre (0 h) i posle (24 h) osvetljavanja UV lampom (Slika 41). Razlika u obojenju zaprljanja na neobrađenoj tkanini i tkanini obrađenoj nanočesticama TiO₂ prisutna je odmah nakon nanošenja zaprljanja.

Takođe se može uočiti da je kod uzoraka koji nisu modifikovani koronom (PES i PES+TiO₂) oblik zaprljanja definisan dok je kod CPES+TiO₂ uzorka zaprljanje više razliveno. Ovakva pojava je posledica porasta hidrofilnosti PES vlakna koje se javlja nakon obrade površine vlakna koronom.

Promena u obojenju zaprljanja je praćena i merenjem CIE L^{*} a^{*} b^{*} koordinata boje nakon 0, 2, 4, 6 i 24 h osvetljavanja. Razlika u obojenju između neobrađene PES tkanine i PES tkanina obrađenih nanočesticama TiO₂ (PES+TiO₂ i CPES+TiO₂) je izražena preko ΔE^* , ΔL^* , Δa^* i Δb^* vrednosti (Tabela 8). Tokom prva 4 h osvetljavanja oba uzorka prate isti trend degradacije zaprljanja. Uzorci postaju svetliji, manje crveni i manje plavi. Nakon 6 h osvetljavanja uzorci postaju svetliji, manje crveni i žuti. Isti trend obezbojavanja zaprljanja se nastavlja i u narednih 18 h osvetljavanja. Očigledno je da uzorak CPES+TiO₂ pokazuje bolju sposobnost degradacije zaprljanja od soka od borovnice od PES+TiO₂ uzorka jer sadrži i veću količinu nanočestica TiO₂.

Slika 41. Efekat samočišćenja zaprljanja od soka od borovnice na PES, PES+TiO₂ i CPES+TiO₂ tkaninama pre i posle osvetljavanja lampom

Vreme, h	Uzorak	ΔΕ*	ΔL*	∆a*	Δb*	Opis
0	PES+TiO ₂	6,59	0,53	-6,44	1,26	Svetlije, manje crveno, manje plavo
Ū	CPES+TiO ₂	8,93	4,48	-7,53	1,74	Svetlije, manje crveno, manje plavo
	PES+TiO ₂	11,01	2,90	-8,10	6,87	Svetlije, manje crveno, manje plavo
2	CPES+TiO ₂	12,41	5,79	-8,77	6,61	Svetlije, manje crveno, manje plavo
	PES+TiO ₂	13,52	3,15	-8,95	9,64	Svetlije, manje crveno, manje plavo
4	CPES+TiO ₂	12,57	5,78	-9,14	6,40	Svetlije, manje crveno, manje plavo
6	PES+TiO ₂	12,08	3,64	-8,21	8,09	Svetlije, manje crveno, žuto
0	CPES+TiO ₂	13,05	5,40	-8,85	7,92	Svetlije, manje crveno, žuto
24	PES+TiO ₂	11,35	4,30	-8,15	6,62	Svetlije, manje crveno, žuto
24	CPES+TiO ₂	12,12	7,04	-9,04	3,97	Svetlije, manje crveno, žuto

Tabela 8. Promene obojenja zaprljanja od soka od borovnice na PES+TiO₂ i CPES+TiO₂ tkaninama nakon 2, 4, 6, 8 i 24 h osvetljavanja

Slična zapažanja su objavili Majia i saradnici prateći degradaciju zaprljanja od crvenog vina na uzorku pamučne tkanine modifikovane kiseoničnom RF plazmom i nanočesticama TiO_2 (Mejia et al., 2009). Nakon 24 h osvetljavanja uzoraka u XPS spektru je uočeno pomeranje $Ti_{2p3/2}$ ka nižim vrednostima energije vezivanja što ukazuje da je u toku obezbojavanja fleke došlo do redukcije Ti^{4+}/Ti^{3+} .

9.3.1.6. Fotokatalitička aktivnost nanočestica TiO_2 deponovanih na PES i CPES tkaninama u vodenom rastvoru boje metilensko plavo

Fotokatalitička aktivnost uzoraka PES tkanine obrađenih nanočesticama TiO_2 je ispitana u vodenom rastvoru boje metilensko plavo (MP). Boja MP je izabrana zbog dokazane postojanosti na UV zračenje. Fotodegradacija boje MP je praćena merenjem koncentracije boje u rastvoru nakon 2, 4, 6, 8 i 24 h osvetljavanja. Utvrđeno je da neobrađen PES uzorak ne pokazuje fotokatalitička svojstva (Liuxue et al., 2007). Nakon 24

h PES uzorak je plavo obojen što ukazuje da je došlo do sorpcije boje na uzorku. Upravo zahvaljujući sorpciji boje na PES uzorku može se objasniti i pojava pada koncentracije boje u rastvoru za 13,4 % uočena u toku prvih 6 h osvetljavanja.

Na Slici 42 su prikazane krive zavisnosti promene koncentracije boje MP u rastvoru od vremena osvetljavanja za PES+TiO₂ i CPES+TiO₂ uzorke. Fotografije PES uzoraka snimljene nakon trećeg ciklusa osvetljavanja su prikazane na Slici 43.

Na Slici 42a se može videti da je u toku prvog ciklusa osvetljavanja došlo do fotodegradacije boje MP u rastvoru. Iako je boja MP potpuno uklonjena iz rastvora, plava boja PES+TiO₂ uzorka ukazuje na odsustvo potpune fotodegradacije boje na uzorku. Ova pojava dolazi do izražaja u sledećim ciklusima osvetljavanja jer osim boje u rastvoru trebalo bi da fotodegradira i boja na uzorku. Takođe se može uočiti da je svaki sledeći ciklus osvetljavanja lošiji od prethodnog upravo zbog sve veće sorpcije boje na uzorku (Slika 43).

Znatno bolju sposobnost fotodegradacije boje je pokazao uzorak CPES+TiO₂ (Slika 42b). Nakon 24 h osvetljavanja dolazi do potpunog uklanjanja boje iz rastvora. Bela boja tkanine ukazuje na činjenicu da se osim u rastvoru, fotodegradacija boje odigrala i na tkanini (Slika 43). Znatno brža fotodegradacija boje (96,5-99 %) uočena je u toku drugog, trećeg i četvrtog ciklusa osvetljavanja. Sličan trend fotodegradacije su primetili Uddin i saradnici (Uddin et al., 2007). Smatra se da je u toku prvog ciklusa došlo do uklanjanja nečistoća sa površine nanočestica TiO₂, pa su postale pristupačnije za molekule boje.

Slika 42. Promena koncentracije C/C₀ boje MP u zavisnosti od vremena osvetljavanja za: (a) PES+TiO₂ i (b) CPES+TiO₂ uzorke

PESPES+TiO2CPES+TiO2Slika 43. Izgled PES uzoraka obrađenih nanočesticama TiO2 nakon 4 ciklusa osvetljavanja

9.3.1.7. Antibakterijska svojstva PES i CPES tkanina obrađenih nanočesticama TiO_2

U cilju ispitivanja antibakterijskih svojstava PES i CPES tkanina obrađenih nanočesticama TiO₂ korišćena je indikatorska bakterija *E. coli* (ATCC 25922). Rezultati antibakterijskog testa su pokazali da uzorci PES+TiO₂ i CPES+TiO₂ ne poseduju željena antibakterijska svojstva.

Nedovoljna antibakterijska aktivnost nanočestica TiO_2 iz koloidnog rastvora I je najverovatnije posledica pretežno amorfne strukture nanočestica (Slika 30) pa se javila potreba za modifikovanjem nanočestica TiO_2 u smislu povećanja kristaliničnosti, a time i efikasnosti procesa razdvajanja naelektrisanja.

9.3.2. PES tekstilni materijal obrađen nanočesticama TiO₂ (koloid II)

9.3.2.1. Morfološka svojstva PES vlakana modifikovanih RF plazmom, alginatom i poliakrilnom kiselinom

Promena morfoloških svojstava PES vlakana nastala kao posledica modifikovanja RF plazmom, alginatom i poliakrilnom kiselinom praćena je SEM analizom. O dejstvu korone na PES vlakno diskutovano je u poglavlju 9.3.1.1. Na Slici 44 su prikazane SEM mikrofotografije vlakana obrađenih vazdušnom (AIRPES), kiseoničnom (O₂PES) i argonskom RF plazmom (ArPES). Površina AIRPES vlakna (Slika 44a) je znatno hrapavija u odnosu na površinu neobrađenog PES vlakna (Slika 35a). Dejstvom plazme došlo je do nagrizanja površinskog sloja vlakna usled čega su nastale duboke brazde i veće izbočine. Ove neravnomernosti utiču na povećanje reljefnosti površine (Wong et al, 2000; Yang et al., 2009; Zhang et al., 2009). Usled obrade kiseoničnom plazmom na površini vlakna nastaju tanke brazde paralelne osi vlakna (Slika 44b). Takođe se može uočiti pojava sitnih rupica i mestimično raspoređenih manjih izbočina na površini koje su rezultat plazma nagrizanja (Wei et al., 2007). Površina AIRPES vlakna je znatno hrapavija u odnosu na O₂PES vlakna. Najveće promene na površini uočene su kod vlakna obrađenog argonskom plazmom (Slika 44c). Površina ArPES vlakana je izrazito izbrazdana, a primetno je postojanje mikrošupljina i nabora. Izgled površine ArPES vlakna podseća na površinu kore drveta.

Na osnovu mikrofotografija prikazanih na Slikama 35 i 44 može se zaključiti da je površina PES vlakana modifikovanih koronom i plazmom znatno hrapavija u odnosu na površinu PES vlakna koje nije modifikovano. Hrapavost nastaje usled nagrizanja površine vlakna dejstvom plazme ili korone i direktno utiče na povećanje njegove specifične površine. Veća specifična površina je poželjna da bi se pospešila dalja obrada PES vlakana nanočesticama TiO₂. Na prikazanim mikrofotografijama (Slika 35 i Slika 44) takođe se može uočiti da je površina vlakna modifikovanog koronom različita od površine vlakana modifikovanih plazmom. Površina CPES vlakna (Slika 35b) ima karakterističnu grozdastu strukturu dok je površina AIRPES, O₂PES i ArPES vlakana (Slika 44) izbrazdana.

(c) Slika 44. SEM mikrofotografije: (a) AIRPES, (b) O₂PES i (c) ArPES vlakana

SEM mikrofotografije PES vlakana modifikovanih poliakrilnom kiselinom (PES+PAA) i biopolimerom alginatom (PES+alg) su prikazane na Slici 45. Kao što se može videti sa Slike 45a modifikovanje PES vlakna poliakrilnom kiselinom nema značajnog uticaja na morfološka svojstva površine. Na Slici 45b se može uočiti da sloj alginata prosečne debljine oko 330 nm prekriva glatku površinu PES vlakna čineći je znatno reljefnijom. Razvijena površina PES vlakna obrađenog alginatom kao i prisustvo velikog broja karboksilnih grupa (Slika 28) pospešilo je dalje vezivanje nanočestica TiO₂ (Slika 46).

(b) Slika 45. SEM mikrofotografije: (a) PES+PAA i (b) PES+alg vlakana

(b) Slika 46. SEM mikrofotografije PES vlakna modifikovanog alginatom i nanočesticama TiO₂ pri uvećanju: (a) ×3000 i (b) ×50000

9.3.2.2. Promene u hemijskom sastavu površine PES vlakana modifikovanih koronom i RF plazmom

Rezultati elementarne analize PES, CPES, AIRPES, O₂PES i ArPES vlakna dobijeni XPS analizom su prikazani u Tabeli 9. Dejstvom korone ili plazme na površini dolazi do kidanja C-C lanaca čime se atomski procenat ugljenika smanjuje. Usled kidanja lanaca stvaraju se radikali koji reaguju sa aktivnim česticama plazme formirajući nove polarne grupe i time povećavajući atomski procenat kiseonika. Atomski odnos O/C utvrđen za CPES vlakna je za 67 %, a za O₂PES vlakna ovaj odnos je promenjen za 46 % u odnosu na PES vlakna. Takođe se može uočiti (Tabela 9) da ArPES vlakna sadrže nešto veći procenat

kiseonika u odnosu na AIRPES vlakno. Uzrok ovakvom ponašanju leži u činjenici da se za obradu argonskom plazmom koristio tehnički argon koji sadrži tragove kiseonika i vazduha kao i u post-plazma hemijskim reakcijama sa česticama iz vazduha u okruženju.

Uzorak	C (atom %)	O (atom %)	O/C (atom %)
PES	80,6	19,4	24,1
CPES	71,3	28,7	40,2
AIRPES	78,8	21,2	26,9
O ₂ PES	74,1	25,9	35,0
ArPES	78,0	22,0	28,2

Tabela 9. Elementarna analiza PES, CPES, AIRPES, O₂PES i ArPES vlakana

U cilju preciznijeg određivanja hemijskih promena na površini koje su rezultat obrade koronom i plazmom urađena je dekonvolucija C_{1s} spekra visoke rezolucije. Na Slici 47 se mogu videti C_{1s} spektri visoke rezolucije za PES, CPES, AIRPES, O_2 PES i ArPES vlakna.

Slika 47. C_{1s} spektri visoke rezolucije za: PES, CPES, AIRPES, O₂PES i ArPES vlakna

Dekonvolucijom C_{1s} spektra ustanovljeno je postojanje 3 komponente za PES vlakno odnosno 4 komponente za CPES, AIRPES, O₂PES i ArPES vlakna (Tabela 10). Pik na 285,0 eV odnosi se na ugljenikov atom u benzenovom prstenu tj. na C-C i C-H grupe, dok pikovi na 286,6 eV i 289,1 eV potiču od ugljenika jednostruko vezanog za kiseonik (C-O) i ugljenika iz estarske O-C=O grupe (Slika 24) (Morent et al., 2007a; Morent et al., 2007b; Amoe et al., 2009). Pik na 288,3 eV koji se javlja kod CPES, AIRPES, O₂PES i ArPES vlakana odgovara slobodnoj karbonilnoj grupi C=O. Za sve modifikovane uzorke je karakterističan pad sadržaja C-C grupe nastao usled kidanja polimernog lanca. Smanjenje sadržaja O-C=O grupe se vezuje za pojavu nove karbonilne C=O grupe. Postojanje većeg broja polarnih funkcionalnih grupa utiče na povećanje hidrofilnosti vlakna čime vlakno postaje pristupačnije za bolje vezivanje nanočestica TiO₂.

Uzorak	C-C 285,0 eV	C-O 286,6 eV	C=O 288,3 eV	O-C=O 289,1 eV	
PES	77,4	13,1	0,00	9,51	
CPES	58,2	16,2	17,6	7,90	
AIRPES	72,0	15,0	7,45	5,71	
O ₂ PES	63,6	21,0	8,30	7,07	
ArPES	70,4	14,2	10,3	5,10	

Tabela 10. Normalizovani intenziteti pikova u C_{1s} spektru posle izvršene dekonvolucije za: PES, CPES, O₂PES, AIRPES i ArPES vlakna

Da bi ispitali prisustvo Ti na površini nemodifikovanih i prethodno modifikovanih PES vlakana obrađenih nanočesticama TiO₂ urađena je EDX analiza. Na Slici 48 a-e su prikazani EDX spektri za: PES, CPES, AIRPES, O₂PES i ArPES vlakna obrađena nanočesticama TiO₂ (PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂). U svakom EDX spektru se mogu uočiti pikovi na 0,5, 4,5 i 5 keV koji ukazuju na prisustvo Ti na površini vlakana. Iako je prisustvo nanočestica TiO₂ na PES vlaknu modifikovanom alginatom i nanočesticama TiO₂ (PES+alg+TiO₂) već dokazano SEM analizom (Slika 46) urađena je i analiza u EDX modu. U spektru prikazanom na Slici 48f jasno se mogu videti pikovi koji potiču od prisustva Ti. Da su nanočestice TiO₂ prisutne na površini vlakna modifikovanog poliakrilnom kiselinom (PES+PAA+TiO₂) dokazuje EDX spektar prikazan na Slici 48g.

^{9.3.2.3.} Promene u hemijskom sastavu površine PES, CPES, AIRPES, O₂PES i ArPES vlakana obrađenih nanočesticama TiO₂

(c)

Slika 48. SEM mikrofotografije delova vlakana na kojima je izmeren EDX spektar: (a) PES+TiO₂, (b) CPES+TiO₂, (c) AIRPES+TiO₂, (d) O₂PES+TiO₂, (e) ArPES+TiO₂, (f) PES+alg+TiO₂ i (g) PES+PAA+TiO₂ vlakana

Za PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ uzorke urađena je uporedo i XPS analiza. Rezultati elementarne XPS analize PES vlakana modifikovanih koronom ili plazmom i obrađenih nanočesticama TiO₂ su prikazani u Tabeli 11. Očigledno je da vlakna obrađena koronom ili plazmom sadrže 5-7 puta veću količinu nanočestica TiO₂ na svojoj površini. Zahvaljujući morfološkim (povećanje specifične površine) i hemijskim promenama (uvođenje novih polarnih grupa) površine PES vlakana usled obrade koronom ili plazmom omogućeno je bolje vezivanje nanočestica TiO₂ (Qi et al., 2007). Ukoliko se uporede rezultati XPS analize dobijeni za PES i CPES vlakna obrađena koloidnim rastvorom I (Tabela 5) sa istim rezultatima za PES i CPES vlakna obrađena kolidnim rastvorom II može se zaključiti da se nanočestice TiO₂ koloidnog rastvora I znatno bolje vezuju od nanočestica TiO₂ koloidnog rastvora I se lakše vezuju za površinu vlakna nego izuzetno kristalne čestice koloidnog rastvora II.

Tabela 11. Elementarna analiza PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ vlakana

Uzorak	C _{1s} (atom %)	O _{1s} (atom %)	Ti (atom %)
PES+TiO ₂	78,99	19,67	1,34
CPES+TiO ₂	66,43	26,34	7,23
AIRPES+TiO ₂	60,51	30,58	8,91
O ₂ PES+TiO ₂	59,03	31,84	9,12
ArPES+TiO ₂	56,75	37,13	6,12

Na Slici 49 je prikazan XPS Ti_{2p} spektar visoke rezolucije za PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ vlakna. Jasno izraženi pikovi na 464,2 i 458,6 eV odgovaraju Ti_{2p1/2} i Ti_{2p3/2} spinovima elektrona. O_{1s} spektar visoke rezolucije je prikazan na Slici 50. Dekonvolucijom O_{1s} spektra utvrđeno je postojanje 3 komponente (Tabela 12). Pikovi na 529,8, 531,6 i 532,9 eV odgovaraju kiseoniku vezanom za titan (TiO₂), kiseoniku dvostruko vezanom za ugljenik (C=O) i kiseoniku jednostruko vezanom za na površini vlakna.

Slika 49. Ti_{2p} spektar visoke rezolucije za: PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ vlakna

Slika 50. O_{1s} spektar visoke rezolucije za: PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ vlakna

Uzorak	TiO ₂ 529,8 eV	O-C 531,6 eV	O=C 532,9 eV
PES+TiO ₂	18,5	44,5	36,9
CPES+TiO ₂	66,5	23,7	9,8
AIRPES+TiO ₂	76,2	18,8	5,0
O ₂ PES+TiO ₂	70,4	15,8	13,8
ArPES+TiO ₂	42,0	22,2	35,8

Tabele 12. Normalizovani intenzitet pikova na O_{1s} spektru posle izvršene dekonvolucije za: PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ vlakna

Ukupan sadržaj TiO₂ u uzorcima PES tkanine obrađene nanočesticama TiO₂ određen je AAS metodom (Tabela 13). Veći sadržaj nanočestica TiO₂ na prethodno aktiviranim vlaknima ukazuju na pozitivan doprinos modifikovanja vlakana u daljem vezivanju nanočestica TiO₂. Prethodna aktivacija vlakna koronom ili plazmom je prvenstveno uticala na povećanje specifične površine vlakana i sadržaja polarnih grupa što je prouzrokovalo povećanje hidrofilnosti modifikovanih vlakana i olakšalo dalje vezivanje nanočestica TiO₂. Modifikovanjem PES vlakana biopolimerom alginatom i poliakrilnom kiselinom na površinu su uvedene karboksilne grupe (Slika 28 i 29) koje postaju novi centri vezivanja nanočestica TiO₂.

Uzorak	TiO ₂ , %
PES+TiO ₂	1,53
CPES+TiO ₂	1,60
AIRPES+TiO ₂	2,42
O ₂ PES+TiO ₂	2,55
ArPES+TiO ₂	1,80
PES+alg+TiO ₂	2,12
PES+PAA+TiO ₂	2,08

Tabela 13. Sadržaj titana u PES tkaninama obrađenim nanočesticama TiO₂

9.3.2.4. Antibakterijska svojstva PES tkanina obrađenih nanočesticama TiO₂

Antibakterijska svojstva PES tkanina obrađenih nanočesticama TiO_2 ispitana su prema indikatorskoj Gram-negativnoj bakteriji *E.coli*. Vrednosti procenta bakterijske redukcije za tkanine modifikovane koronom, plazmom, alginatom i PAA, a potom obrađene nanočesticama TiO_2 su date u Tabeli 14. Rastojanje UV lampe od uzoraka je podešeno tako da UV svetlost ne ubija bakterije. Na osnovu rezultata prikazanih u Tabeli 14 može se zaključiti da jedino uzorak PES+TiO₂ nije pokazao zadovoljavajuća antibakterijska svojstva. Očigledno je da količina nanočestica TiO₂ deponovanih na ovom uzorku nije dovoljna da bi obezbedila potrebnu antibakterijsku aktivnost. Uzorci CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂, ArPES+TiO₂ i PES+alg+TiO₂ obezbeđuju maksimum bakterijske redukcije. Nešto lošija antibakterijska svojstva je pokazao PES+PAA+TiO₂ uzorak. Iako je sadržaj TiO₂ određen AAS analizom za PES+PAA+TiO₂ uzorak veći u odnosu na CPES+TiO₂, PES+PAA+TiO₂ uzorak ne obezbeđuje maksimum bakterijske redukcije. Antibakterijska svojstva tkanine određuju nanočestice koje se nalaze na površini vlakana jer su one sposobne da stupe u kontakt sa bakterijama iz okolne sredine. Kako AAS analiza prikazuje ukupan sadržaj nanočestica na tkanini pretpostavlja se da su nanočestice TiO₂ kod PES+PAA tkanine većim delom raspoređene u unutrašnjosti pa je zbog toga i njihova antibakterijska aktivnost manja.

Uzorak	Početni broj kolonija bakterije <i>E. coli</i> (CFU)	Broj kolonija bakterije <i>E. coli</i> na uzorku (CFU)	R, %
PES	3.7×10^5	$1,5 \times 10^{5}$	
PES+TiO ₂	5,7210	1,3×10 ⁴	91,3
PES	1.8×10^{5}	$1,4 \times 10^{5}$	
CPES+TiO ₂	1,0^10	<10	99,9
PES	2.0×10^{5}	$1,2 \times 10^{5}$	
AIRPES+TiO ₂	5,9~10	<10	99,9
PES	4.2×10^{5}	9,0×10 ⁴	
O ₂ PES+TiO ₂	4,2^10	<10	99,9
PES	2.6×10^5	$1,2 \times 10^{5}$	
ArPES+TiO ₂	5,0~10	<10	99,9
PES	5.7×10^{5}	$1,3 \times 10^{5}$	
PES+alginat+TiO ₂	5,7×10	$1,6 \times 10^{2}$	99,9
PES	2.5×10^5	$1,9 \times 10^{5}$	
PES+PAA+TiO ₂	5,5×10	$1,6 \times 10^{3}$	99,4

Tabela 14. Antibakterijska svojstva PES tkanina obrađenih nanočesticama TiO₂

U cilju ispitivanja postojanosti obrade na pranje određena su antibakterijska svojstva tkanina nakon 5 ciklusa pranja (Tabela 15). CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i PES+alg+TiO₂ tkanine su pokazale maksimum bakterijske redukcije i nakon 5 ciklusa pranja. Izmereni procenat bakterijske redukcije posle pranja je nešto niži za ArPES+TiO₂ uzorak ali se i dalje može smatrati da tkanina pokazuje odlična antibakterijska svojstva.

Iako je opšte mišljenje da se nanočestice TiO_2 elektrostatičkim silama vezuju za negativno naelektrisano vlakno (Bozzi et al., 2005; Qi et al., 2007) izuzetno dobra

postojanost nanočestica na vlaknu može da ukazuje i na mogućnost uspostavljanja kovalentne hemijske veze (Liuxue et al., 2006; Xu et al., 2006; Uddin et al., 2007).

Uzorak	Početni broj kolonija bakterije <i>E. coli</i> (CFU)	Broj kolonija bakterije <i>E. coli</i> na uzorku (CFU)	R, %		
PES	1.9×10^{5}	$1,1 \times 10^{5}$			
CPES+TiO ₂	1,7/10	65	99,9		
PES	5.6×10 ⁵	$1,0 \times 10^5$			
AIRPES+TiO ₂	5,0~10	50	99,9		
PES	2.6×10^{5}	$1,2 \times 10^{5}$			
O ₂ PES+TiO ₂	2,0×10	<10	99,9		
PES	6.5×10^{5}	$1,9 \times 10^{4}$			
ArPES+TiO ₂	0,3~10	$3,6 \times 10^2$	98,1		
PES	7.5×10^{5}	$1,1 \times 10^{5}$			
PES+alginat+TiO ₂	7,5^10	$2,0 \times 10^{2}$	99,8		

Tabela 15. Antibakterijska svojstva PES tkanina obrađenih nanočesticama TiO₂ posle pranja

9.3.2.5. Efikasnost UV zaštite PES uzoraka obrađenih nanočesticama TiO₂

Za ocenu sposobnosti UV zaštite tkanina obrađenih nanočesticama TiO₂ izmeren je procenat propuštanja (transmisije) UV zraka (280-400 nm) kroz tkaninu. Dobijene krive transmisije za ispitivane tkanine su prikazane na Slici 51. Kao što je očekivano prisustvo nanočestica TiO₂ na površini tkanine utiče na smanjenje propuštanja UV zraka. Na osnovu krivih transmisije prikazanih na Slici 51 se može zaključiti da su uzorci prethodno modifikovani plazmom pokazali znatno manji procenat propuštenja UV zraka u odnosu na uzorak koji pre obrade nanočesticama TiO₂ nije modifikovan. Takođe se uočava da se vrednosti krivih trnsmisije za CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂, ArPES+TiO₂ i PES+alg+TiO₂ uzorke najmanje razlikuju u oblasti talasnih dužina između 350 i 370 nm dok razlike postaju uočljive između 380 i 400 nm.

Na Slici 52 se može uočiti da su svi modifikovani uzorci obrađeni nanočesticama TiO₂ pokazali odličnu postojanost obrade tj. njihova sposobnost blokiranja UV zraka je zadržana i nakon pranja što ukazuje da su se nanočestice TiO₂ efikasno vezale za površinu vlakana.

Slika 51. Krive transmisije za PES tkanine obrađene nanočesticama TiO₂

Slika 52. Krive transmisije za PES tkanine obrađene nanočesticama TiO₂ posle pranja

Efikasnost UV zaštite tkanina je kvantitativno ocenjena preko UPF vrednosti. U Tabeli 16 su prikazane UPF vrednosti PES, PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂, ArPES+TiO₂, PES+alg+TiO₂ i PES+PAA+TiO₂ uzoraka. Imajući u vidu da je minimalna UPF vrednost preporučena za tekstilne materijale 40 može se zaključiti da PES tkanina pruža potrebnu, ali ne i maksimalnu UV zaštitu. Modifikovanje PES tkanine alginatom ne utiče na postojeću UPF vrednost dok modifikovanje poliakrilnom kiselinom povećava UPF vrednost PES tkanine za 21,5 %. Međutim, obrada nanočesticama TiO₂ znatno utiče na porast UPF vrednosti do makismalnog nivoa UV zaštite (50+). Značajno veća UPF vrednost je izmerena kod uzoraka CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂, ArPES+TiO₂, PES+alg+TiO₂ i PES+PAA+TiO₂ potvrđujući da prethodno modifikovanje tekstilnog materijala bitno utiče na količinu vezanih nanočestica TiO₂. Ukoliko se za površinu tekstilnog materijala veže više nanočestica TiO₂ apsorbovaće se i veći procenat UV zračenja čime se obezbeđuje bolja UV zaštita. Nešto bolju UV zaštitu pružaju uzorci modifikovani polimerima u odnosu na uzorke modifikovane plazmom.

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
PES	43,0	40
PES+alg	42	40
PES+PAA	54,8	50
PES+TiO ₂	91,6	50+
CPES+TiO ₂	112,6	50+
AIRPES+TiO ₂	112,3	50+
O ₂ PES+TiO ₂	111,3	50+
ArPES+TiO ₂	105,9	50+
PES+alg+TiO ₂	119,8	50+
PES+PAA+TiO ₂	133,5	50+

Tabela 16. Efikasnost UV zaštite PES tkanina obrađenih nanočesticama TiO₂

Rezultati UPF vrednosti izmereni posle pranja su prikazani u Tabeli 17. Najveći pad UPF vrednosti (28 %) je uočen kod PES+TiO₂ uzorka dok se UPF vrednost PES+alg+TiO₂ uzorka posle pranja smanjila za samo 7 %. Kod CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ uzoraka je u proseku za 10 % smanjena UPF vrednost posle pranja. Iako je došlo do promene UPF vrednosti zadržan je makismalni nivo UV zaštite.

Tabela 17. Efikasnost UV zaštite PES tkanina obrađenih nanočesticamaTiO2 posle pranja

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
PES+TiO ₂	66,2	50
CPES+TiO ₂	101,8	50+
AIRPES+TiO ₂	97,4	50+
O ₂ PES+TiO ₂	98,2	50+
ArPES+TiO ₂	95,6	50+
PES+alg+TiO ₂	111,6	50+
PES+PAA+TiO ₂	127,7	50+

9.3.2.6. Sposobnost samočišćenja PES tkanina obrađenih nanočesticama TiO₂

Da bi se ispitala sposobnost samočišćenja PES tkanina obrađenih nanočesticam TiO₂ na tkaninu je naneto zaprljanje od soka od borovnice i praćena je fotodegradacija u vremenu od 24 h. Uzorci PES tkanina na koje je naneto zaprljanje od soka od borovnice su snimljeni pre (0 h) i posle (24 h) osvetljavanja UV lampom koja simulira sunčevo zračenje (Slika 53). Odmah se može uočiti da je kod neobrađenog PES uzorka i PES+TiO₂ uzorka oblik zaprljanja mnogo više definisan u odnosu na uzorke koji su pre obrade nanočesticama TiO₂ modifikovani koronom ili plazmom. Uzorci prethodno modifikovani koronom ili plazmom su zahvaljujući uvođenju polarnih grupa postali hidrofilni uzrokujući trenutno razlivanje soka na tkanini. Kao što se može videti sa Slike 53 osvetljavanje neobrađenog PES uzorka nije imalo uticaj na degradaciju zaprljanja od borovnice. Osvetljavanje u vremenu od 24 h PES+TiO₂ uzorka je dovelo do promene obojenja zaprljanja ali ne i do njegove fotodegradacije. Slično ponašanje je uočeno i kod PES+alg+TiO₂ i PES+PAA+TiO₂ uzoraka. Na CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ uzorcima je nakon osvetljavanja došlo do obezbojavanja zaprljanja. Do sličnih zapažanja za različite tekstilne materijale su došle i druge istraživačkie grupe (Bozi et al., 2005; Yuranova et al., 2007; Mejìa et al., 2009).

Slika 53. Efekat samočišćenja: zaprljanje od soka od borovnice na neobrađenoj PES tkanini i PES tkaninama obrađenim nanočesticama TiO₂ pre (0 h) i posle (24 h) osvetljavanja UV lampom

Razlika u obojenju zaprljanja od soka od borovnice na obrađenom PES uzorku i na uzorcima obrađenim nanočesticama TiO₂ izražena je preko ΔE^* , ΔL^* , Δa^* i Δb^* vrednosti (Tabela 18). Odmah nakon nanošenja zaprljanja može se uočiti razlika u obojenju između uzoraka obrađenih nanočesticama TiO₂ i neobrađenog PES uzorka. Vizuelno zapažanje je potvrđeno izmerenim vrednostima razlike u obojenju ΔE^* koje pokazuju da kod PES+TiO₂ uzorka nije došlo do uklanjanja zaprljanja. Znatno veća ΔL^* vrednost je izmerena kod CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ uzoraka nakon 24 h osvetljavanja. Drugim rečima zaprljanje od soka od borovnice je na ovim uzorcima postalo svetlije u odnosu na zaprljanje na PES uzorku tj. došlo je do njegove fotodegradacije.

Vreme, h	Uzorak	ΔE*	ΔL*	∆a*	Δb*	Opis
	PES+TiO ₂	12,10	-6,24	-10,36	-0,54	Tamnije, manje crveno, plavlje
	CPES+TiO ₂	10,42	-7,28	-7,42	0,59	Svetlije, manje crveno, manje plavo
0	AIRPES+TiO ₂	5,65	-1,00	-4,54	3,23	Tamnije, manje crveno, manje plavo
	O ₂ PES+TiO ₂	4,29	1,86	-3,48	1,68	Svetlije, manje crveno, manje plavo
	ArPES+TiO ₂	5,80	1,84	-4,66	2,91	Svetlije, manje crveno, manje plavo
	PES+TiO ₂	21,51	-0,61	-10,61	18,70	Tamnije, manje crveno, plavlje
	CPES+TiO ₂	17,41	3,05	-11,40	12,81	Svetlije, manje crveno, manje plavo
24	AIRPES+TiO ₂	8,41	5,07	-6,46	1,82	Svetlije, manje crveno, žuto
24	O ₂ PES+TiO ₂	5,48	3,20	-3,95	2,05	Svetlije, manje crveno, žuto
	ArPES+TiO ₂	7,90	5,17	-5,93	0,71	Svetlije, manje crveno, žuto

Tabela 18. Promena obojenja zaprljanja od soka od borovnice na PES+TiO₂, CPES+TiO₂, AIRPES+TiO₂, O₂PES+TiO₂ i ArPES+TiO₂ tkaninama nakon 24 h osvetljavanja

9.3.2.7. Fotokatalitička aktivnost nanočestica TiO₂ deponovanih na PES tkaninama u vodenom rastvoru boje metilensko plavo

Fotokatalitička aktivnost nanočestica TiO₂ deponovanih na PES tkanine je ispitana i u vodenom rastvoru boje metilensko plavo (MP). Urađena su tri ciklusa osvetljavanja. Zavisnost promene koncentracije od vremena osvetljavanja za sva tri ciklusa prikazana je na Slici 54. Fotografije PES uzoraka snimljene nakon trećeg ciklusa osvetljavanja su prikazane na Slici 55. Ispitivanjem ponašanja neobrađene PES tkanine u rastvoru boje MP nije uočena značajna promena koncentracije boje. Uzorak PES tkanine na kraju ciklusa postaje plavo obojen tako da se mali pad koncentracije boje koji je uočen na početku osvetljavanja pripisuje sorpciji boje na tkanini (Slika 55). Potpuna fotodegradacija boje nije uočena kod PES+TiO₂ uzorka. Na Slici 54 se može videti da je došlo do značajnog

obezbojavanja rastvora MP, ali ne i do obezbojavanja PES+TiO₂ uzorka. Nakon prvog ciklusa uzorak postaje plavo obojen što govori da je i ovde došlo do pojave sorpcije boje na tkanini. U drugom i trećem ciklusu osvetljavanja ovaj uzorak je pokazao bolju sposobnost degradacije boje u rastvoru ali i dalje ne pokazuje sposobnost degradacije boje koja se adsorbovala na tkanini (Slika 54 i 55). Potpuno obezbojavanje rastvora boje MP je uočeno nakon 24 h kod svih uzoraka koji su pre obrade nanočesticma modifikovani koronom, plazmom, alginatom ili PAA (Slika 54). Ovi uzorci su nakon svakog ciklusa zadržali belu boju što ukazuje da je došlo do potpune fotodegradacije boje (Slika 55). Ovim se još jednom dokazuje pozitivan uticaj prethodnog modifikovanja površine u cilju boljeg vezivanja nanočestica TiO₂. Veća količina nanočestica na površini tkanine obezbeđuje bolju fotokatalitičku aktivnost. Kao što je uočeno kod PES+TiO₂ uzorka i kod CPES+TiO₂, AIRPES+TiO₂ O₂PES+TiO₂, ArPES+TiO₂, PES+alg+TiO₂ i PES+PAA+TiO₂ uzoraka je došlo do porasta fotokatalitičke sposobnosti u drugom i trećem ciklusu osvetljavanja (Uddin et. al., 2007). Smatra se da u toku prvog ciklusa osvetljavanja dolazi do uklanjanja nečistoća sa nanočestica pa je u svakom sledećem ciklusu fotokatalitička aktivnost nanočestica TiO2 usmerena samo na molekule boje. Kao što se može videti na Slici 54, kod CPES+TiO₂, AIRPES+TiO₂ i O₂PES+TiO₂ uzoraka je uočeno potpuno obezbojavanje rastvora MP nakon samo 8 h osvetljavanja (treći ciklus).

(g)

Slika 54. Zavisnost C/C₀ od vremena osvetljavanja za: (a) PES+TiO₂, (b) CPES+TiO₂, (c) AIRPES+TiO₂, (d) O₂PES+TiO₂, (e) ArPES+TiO₂, (f) PES+alg+TiO₂ i (g) PES+PAA+TiO₂ tkanine

O2PES+TiO2ArPES+TiO2PES+alg+TiO2PES+PAA+TiO2Slika 55. Izgled PES tkanina obrađenih nanočesticama TiO2 nakon tri ciklusa osvetljavanja

9.3.3. PES tekstilni materijal obrađen nanočesticama TiO2 (koloid II) i srebra

Kombinovana obrada PES tkanina nanočesticama TiO_2 i srebra je imala za cilj da se istovremeno iskoriste antimikrobna svojstva nanočestica srebra i fotokatalitička aktivnost nanočestica TiO_2 . Za ovu svrhu je korišćen koloidni rastvor nanočestica srebra srednje dimenzije čestica 10 nm koji je sintetisan bez prisustva stabilizatora i koloidni rastvor II nanočestica TiO_2 . Ispitan je uticaj koncentracije koloidnog rastvora srebra (10 i 50 mg/l) kao i redosled obrada nanočesticama srebra i TiO_2 na efikasnost obrade PES tkanina.

9.3.3.1. Morfološka svojstva PES vlakana obrađenih nanočesticama TiO₂ i srebra

Promene u morfologiji površine PES vlakana obrađenih nanočesticama srebra koncentracije 10 i 50 mg/l, a potom nanočesticama TiO₂ (PES+Ag10+TiO₂, PES+Ag50+TiO₂) kao i vlakna obrađenih obrnutim redosledom (PES+TiO₂+Ag10, PES+TiO₂+Ag50) su prikazane na Slici 56. Na površini PES+Ag10+TiO₂ i PES+TiO₂+Ag10 vlakana se može uočiti nekoliko nepravilno raspoređenih aglomerata nanočestica (Slika 56a i 56b). Na SEM mikrofotografijama prikazanim na Slici 56c i 56d jasno se može uočiti znatno veći broj ravnomerno raspoređenih nanočestica na površini PES+Ag50+TiO₂ i PES+TiO₂+Ag50 vlakana. Na osnovu prikazanih mikrofotografija može se zaključiti da porast koncentracije koloidnog rastvora srebra znatno utiče na količinu deponovanih nanočestica.

Slika 56. SEM mikrofotografije: (a) PES+Ag10+TiO₂, (b) PES+TiO₂+Ag10, (c) PES+Ag50+TiO₂ i (d) PES+TiO₂+Ag50 vlakana

9.3.3.2. Promene u hemijskom sastavu površine PES vlakana obrađenih nanočesticama TiO₂ i srebra

U cilju ispitivanja promena u hemijskom sastavu površine nastale usled obrade nanočesticama TiO₂ i srebra urađena je AAS analiza (Tabela 19). Kod uzoraka obrađenih rastvorom srebra koncentracije 50 mg/l izmeren je 6 puta veći saržaj srebra u odnosu na uzorke obrađene koloidnim rastvorom srebra koncentracije 10 mg/l. Kod uzoraka obrađenih nanočesticama srebra, a zatim nanočesticama TiO₂ izmeren je duplo manji sadržaj srebra u odnosu na uzorke obrađene obrnutim redosledom. Isto zapažanje je uočeno za obe koncentracije koloida srebra. Takođe je utvrđeno da sadržaj TiO₂ zavisi od koncentracije koloidnog rastvora srebra kao i od redosleda obrada. Sadržaj TiO₂ je za 25 % veći kod uzoraka koji su nakon obrade nanočesticama srebra (10 ili 50 mg/l) obrađeni nanočesticama TiO₂. Ovo se može objasniti većim afinitetom nanočestice TiO₂ prema nanočesticama srebra deponovanim na PES tkanini nego prema površini PES vlakna. Veći sadržaj TiO₂ (20 %) je izmeren na uzorcima koji su obrađeni većom koncentracijom koloidnog rastvora srebra nezavisno od redosleda obrade.

Uzorak	Ag, μg/g	TiO ₂ , mg/g		
PES+Ag10+TiO ₂	3,4	23,2		
PES+TiO ₂ +Ag10	6,8	17,4		
PES+Ag50+TiO ₂	18,5	29,5		
PES+TiO2+Ag50	39,4	21,7		

Tabela 19. Sadržaj srebra i TiO₂ određen AAS analizom

9.3.3.3. Promena obojenja PES tkanina obrađenih nanočesticama Ti O_2 i srebra

Dosadašnja istraživanja su pokazala da obrada PES tkanina nanočesticama srebra dovodi do promene obojenja tkanine (Radetić et al., 2008; Lazić, 2010). Promena obojenja PES tkanine nastala nakon nanošenja nanočestica srebra i TiO₂ je praćena merenjem refleksije u intervalu talasnih dužina od 400 do 700 nm. Krive refleksije za ispitivane uzorke su prikazane na Slici 57. Najveća vrednost refleksije je izmerena za PES tkaninu. Obrada nanočesticama TiO₂ utiče na obojenje tkanine samo u intervalu talasnih dužina od 400 do 525 nm dok nanošenje nanočestica srebra koncentracije 10 mg/l pomera refleksiju ka nižim vrednostima u odnosu na PES i PES+TiO₂ tkanine. Vrednosti refleksije za PES+Ag10+TiO₂ i PES+TiO₂+Ag10 uzorke su manje od vrednosti refleksije za PES+TiO₂ uzorak ali veće u odnosu na vrednost refleksije PES+Ag10 uzorka. Prisustvo nanočestica TiO₂ na tkanini utiče na pomeranje refleksije ka većim vrednostima pri čemu se delimično umanjuje negativan uticaj koji nanočestice srebra iz koloidnog rastvora koncentracije 10 mg/l imaju na refleksiju tkanine. Nanočestice srebra koncentracije 50 mg/l znatno smanjuju refleksiju PES tkanine. Veća vrednost refleksije je izmerena za PES+Ag50+TiO₂ i PES+TiO₂+Ag50 uzorke u odnosu na PES+Ag50 uzorak. Uzorci obrađeni prvo nanočesticama srebra (10 ili 50 mg/l), a potom nanočesticama TiO₂ su pokazali veći intenzitet refleksije u odnosu na uzorke obrađene suprotnim redoslednom. Manja refleksija izmerena kod uzoraka obrađenih nanočesticama srebra koncentracije 50 mg/l u odnosu na refleksiju uzoraka obrađenih nanočesticama srebra koncentracije 10 mg/l je posledica većeg sadržaja nanočestica srebra na površini PES tkanine (Slika 56, Tabela 19). Na Slici 57 se može uočiti da je kod uzoraka obrađenih koloidnim rastvorom nanočestica srebra koncentracije 50 mg/l, a posebno kod PES+Ag50 uzorka, došlo do promene oblika krivih refleksije u odnosu na PES, PES+TiO₂, PES+Ag10, PES+Ag10+TiO₂ i PES+TiO₂+Ag10 uzorke. Promene oblika krivih refleksije su posebno izražene u oblasti visokih energija i posledica su prisustva trake površinskog plazmona nanočestica srebra. Pomeranje položaja trake površinskog plazmona ka većim talasnim dužinama (415 nm) u odnosu na njen položaj u početnom koloidnom rastvoru neaglomerisanih čestica (380 nm) (Slika 34), može se pripisati većoj dielektričnoj konstanti sredine koja okružuje česticu, izazvanoj aglomeracijom nanočestica srebra na površini tkanine (Šaponjić et al., 2003).

Slika 57. Krive refleksije za PES tkanine obrađene nanočesticama srebra i TiO₂

Promena obojenja PES takanina nastala kao posledica obrade nanočesticama TiO₂ i srebra je praćena i preko CIE L^{*} a^{*} b^{*} koordinata boje. Razlike u obojenju uzoraka obrađenih nanočesticama srebra i/ili TiO2 u odnosu na PES tkaninu prikazane su u Tabeli 20. Uzorak obrađen nanočesticama TiO₂ postaje zeleniji i žut, a njegova svetlina odgovara svetlini PES uzorka. Nakon obrade nanočesticama srebra iz koloidnog rastvora koncentracije 10 mg/l uzorak postaje tamniji i žući dok je nešto manja promena obojenja i svetline uočena kod uzoraka obrađenih nanočesticama srebra (10 mg/l) i TiO₂. Najveća promena u obojenju tkanine je uočena nakon obrade nanočesticama srebra iz koloidnog rastvora koncentracije 50 mg/l ($\Delta E^* = 10,7$). U skladu sa tim i uzorci obrađeni nanočesticama srebra (50 mg/l) i nanočesticama TiO2 su tamniji u odnosu na neobrađeni uzorak i uzorke obrađene nanočesticama TiO₂ i srebra (10 mg/l). Rezultati prikazani u Tabeli 20 takođe ukazuju da je razlika u obojenju i svetlini manja kod uzoraka obrađenih nanočesticama srebra (50 ili 10 mg/l),a potom nanočesticama TiO₂ $(\Delta E^{*}(PES+Ag10+TiO_{2})=1,11; \Delta E^{*}(PES+Ag50+TiO_{2})=4,74)$ u odnosu na uzorke obrađene suprotnim redosledom ($\Delta E^*(PES+TiO_2+Ag10)=2,05$; $\Delta E^*(PES+TiO_2+Ag50)=7,38$).

Uzorak	$\Delta \mathbf{E}^{*}$	ΔL^*	Δa^*	$\Delta \mathbf{b}^*$	Opis
PES+TiO ₂	2,30	-0,01	-0,51	2,24	Zelenije, žuto
PES+Ag10	2,35	-1,35	0,01	1,93	Tamnije, žuto
PES+Ag10+TiO ₂	1,11	-0,52	-0,17	0,97	Tamnije, zelenije, žuto
PES+TiO ₂ +Ag10	2,05	-0,72	-0,12	1,92	Tamnije, zelenije, žuto
PES+Ag50	10,7	-4,70	0,15	9,57	Tamnije, manje zeleno, žuto
PES+Ag50+TiO ₂	4,78	-2,54	1,28	3,84	Tamnije, manje zeleno, žuto
PES+TiO ₂ +Ag50	7,38	-4,83	0,42	5,57	Tamnije, manje zeleno, žuto

Tabela 20. Promena obojenja PES tkanina obrađenih nanočesticama TiO₂ i srebra

9.3.3.4. Antimikrobna svojstva PES tkanina obrađenih nanočesticama TiO₂ i srebra

Antimikrobna efikasnost PES tkanina obrađenih koloidnim rastvorom srebra (10 i 50 mg/l) i TiO₂ je ispitana prema Gram-negativnoj bakteriji *E. coli*, Gram-pozitivnoj bakteriji *S. aureus* i kvascu *C. albicans*. U Tabeli 21 su prikazani rezultati ispitivanja antimikrobnih svojstava PES uzoraka obrađenih koloidnim rastvorom srebra 10 mg/l i nanočesticama TiO₂ u zavisnosti od redosleda obrada.

Uzorak	Mikroorganizam	Početni broj kolonija mikroorganizma (CFU)	Broj kolonija mikroorganizma na uzorku (CFU)	R, %
PES	E. coli	2.3×10^5	$2,0 \times 10^5$	
PES+Ag10+TiO ₂		2,5~10	$7,4 \times 10^{4}$	63,0
PES		1.9×10^{5}	$1,8 \times 10^5$	
PES+TiO ₂ +Ag10		1,8×10	<10	99,9
PES		2.0×10^5	1,3×10 ⁵	
PES+Ag10+TiO ₂	S. aureus	3,9×10	$1,2 \times 10^{5}$	7,7
PES		2.2×10^5	$1,2 \times 10^5$	
PES+TiO ₂ +Ag10		3,2×10	60	99,9
PES	C. albicans	2.5×10^5	1,9×10 ⁵	
PES+Ag10+TiO ₂		2,3×10	$1,0 \times 10^5$	47,4
PES		1.7×10^5	$1,2 \times 10^{5}$	
PES+TiO ₂ +Ag10		1,/×10	$4,8 \times 10^2$	99,6

Tabela 21. Antimikrobna svojstva PES tkanina obrađenih nanočesticama srebra iz
koloidnog rastvora koncentracije 10 mg/l i TiO2

Maksimum bakterijske redukcije se postiže kod uzoraka koji su prvo obrađeni nanočesticama TiO₂, a potom nanočesticama srebra, dok se obrnutim redosledom obrade ne postiže željena antibakterijska efikasnost. Isto ponašanje je zapaženo i ispitivanjem antifungalnih svojstava. PES+Ag10+TiO₂ uzorak nije pokazao dovoljnu antifungalnu efikasnost za razliku od PES+TiO₂+Ag10 uzorka koji pokazuje dobra antifungalna svojstva (Tabela 21). Interesantno je da PES tkanina obrađena samo nanočesticma srebra (10 mg/l) ne pokazuje zadovoljavajuća antimikrobna svojstva (Radetić et. al. 2008). Takođe je pokazano da PES tkanina obrađena samo nanočesticama TiO₂ ne pokazuje antibakterijska svojstva. Dobra antimikrobna svojstva se postižu samo njihovim sinergijskim dejstvom. Već je rečeno da nanošenje jedne vrste nanočestica pre druge vrste umnogome povećava specifičnu površinu vlakna čime se olakšava dalje vezivanje nanočestica. Takođe je dokazano da dopovanje nanočestica TiO₂ plemenitim metalima kao što su platina, srebro, zlato itd. utiče na smanjenje energetskog procepa TiO₂ što omogućava pobuđivanje elektrona TiO₂ i na dnevnom svetlu (Robertson et al., 2005). Nanočestice srebra imaju ulogu i akceptora elektrona čime se smanjuje neželjena rekombinacija elektrona i šupljina, a povećava fotokatalitičko dejstvo TiO₂ (Beydoun et al., 1999; Robertson et al., 2005).

PES tkanina obrađena koloidnim rastvorom srebra 50 mg/l i koloidnim rastvorom TiO₂ je pokazala izuzetna antimikrobna i antifungalna svojstva nezavisno od redosleda obrade (Tabela 22).

Uzorak	Mikroorganizam	Početni broj kolonija mikroorganizma (CFU)	Broj kolonija mikroorganizma na uzorku (CFU)	R, %
PES	E. coli	5.3×10^5	$1,3 \times 10^{5}$	
PES+Ag50+TiO ₂		5,5~10	25	99,9
PES		8.0×10^{5}	$1,2 \times 10^{5}$	
PES+TiO ₂ +Ag50		8,0×10	<10	99,9
PES		5.4×10^{5}	$2,0 \times 10^5$	
PES+Ag50+TiO ₂	S. aureus	3,4×10	<10	99,9
PES		4.4×10^{5}	$1,1 \times 10^5$	
PES+TiO ₂ +Ag50		4,4×10	<10	99,9
PES	C. albicans	2.0×10^5	$2,1 \times 10^5$	
PES+Ag50+TiO ₂		2,0×10	<10	99,9
PES		2.0×10^5	$1,7 \times 10^{5}$	
PES+TiO ₂ +Ag50		2,0×10	<10	99,9

Tabela 22. Antimikrobna svojstva PES tkanina obrađenih nanočesticama srebra iz koloidnog rastvora koncentracije 50 mg/l i TiO₂

Uticaj redosleda obrade dolazi do izražaja nakon ispitivanja postojanosti obrade tj. nakon pranja tkanina (Tabela 23).

Tabela 23. Antimikrobna svojstva PES tkanina obrađenih nanočesticama srebra iz
koloidnog rastvora koncentracije 50 mg/l i TiO2 posle pranja

Uzorak	Mikroorganizam	Početni broj kolonija mikroorganizma (CFU)	Broj kolonija mikroorganizma na uzorku (CFU)	R, %
PES	E. coli	8.0×10^5	$2,0 \times 10^{5}$	
PES+Ag50+TiO ₂		0,0 10	$1,2 \times 10^{5}$	40,0
PES		2.6×10^{5}	$1,4 \times 10^{5}$	
PES+TiO ₂ +Ag50		5,0~10	<10	99,9
PES		2.5×10^5	$4,9 \times 10^4$	
PES+Ag50+TiO ₂	S. aureus	2,5×10	$3,3 \times 10^4$	32,7
PES		2.7×10^5	9,8×10 ⁴	
PES+TiO ₂ +Ag50		2,7×10	<10	99,9
PES	C. albicans	2.1×10^5	3,2×10 ⁵	
PES+Ag50+TiO ₂		3,1×10	$1,1 \times 10^{5}$	65,6
PES		1.2×10^5	$2,0 \times 10^4$	
PES+TiO ₂ +Ag50		1,2×10	<10	99,9

Maksimalnu antimikrobnu aktivnost je pokazao PES+TiO₂+Ag50 uzorak dok antimikrobna aktivnost uzorka obrađenog obrnutim redosledom nije zadovoljavajuća.

Uzorci obrađeni koloidnim rastvorom koncentracije 10 mg/l nakon pranja nisu pokazali željenu antimikrobnu efikasnost.

Ukoliko nije potrebno postići postojana antimikrobna svojstva PES tkanina poželjno je koristiti nanočestice srebra iz koloidnog rastvora koncentracije 10 mg/l i to nakon obrade nanočesticama TiO₂. Ovakvom kombinacijom nanočestica postižu se zadovoljavajuća antimikrobna svojstva dok se refleksija tkanine veoma malo menja što je povoljno i sa estetskog aspekta. Međutim ukoliko je cilj obrade postići postojana antimikrobna svojstva tkanine, a nije bitan estetski efekat potrebno je tkaninu prvo obraditi nanočesticama TiO₂, a potom nanočesticama srebra iz koloidnog rastvora koncentracije 50 mg/l.

9.3.3.5. Sposobnost UV zaštite PES tkanina obrađenih nanočesticama TiO₂ i srebra

Krive transmisije za uzorke obrađene nanočesticama TiO₂ i srebra prikazane su na Slici 58. Preliminarnim ispitivanjima je utvrđeno da same nanočestice srebra (10 i 50 mg/l) ne utiču na sposobnost UV zaštite tekstilnog materijala. Uzorci obrađeni nanočesticama TiO₂ i srebra su pokazali bolju sposobnost UV zaštite u odnosu na PES+TiO₂ uzorak (Slika 58). Na Slici 58 se može uočiti da uzorci obrađeni koloidnim rastvorom srebra koncentracije 50 mg/l bolje blokiraju UV zrake u odnosu na uzorke obrađene koloidnim rastvorom srebra koncentracije 10 mg/l. Ovi rezultati su u skladu sa izmerenim sadržajem TiO₂ (Tabela 19). Interesantno je zapaziti da je u intervalu talasnih dužina 320-370 nm manji procenat transmisije zabeležen kod PES+Ag10+TiO₂ uzorka u odnosu na PES+TiO₂+Ag50 uzorak. Suprotno ponašanje je uočeno u intervalu talasnih dužina 370-400 nm. Na Slici 59 je prikazane krive transmisije posle pranja za PES+Ag10+TiO₂, PES+TiO₂+Ag10, PES+Ag50+TiO₂ i PES+TiO₂+Ag50 uzorke.

Slika 58. Krive transmisije za PES tkanine obrađene nanočesticama TiO_2 i srebra

Slika 59. Krive transmisije za PES tkanine obrađene nanočesticama TiO₂ i srebra posle pranja

UPF vrednosti za ispitivane uzorke su prikazane u Tabeli 24. Svi uzorci pružaju maksimalni nivo UV zaštite. UPF vrednost PES+Ag10+TiO₂ uzorka je ista dok je UPF vrednost PES+TiO₂+Ag10 uzorka manja u odnosu na UPF vrednost PES+TiO₂ uzorka (Tabela 16). Kod PES+Ag50+TiO₂ i PES+TiO₂+Ag50 uzoraka zabeležen je porast UPF
vrednosti za 23 % u odnosu na UPF vrednost PES+TiO₂ uzorka. Veći sadržaj nanočestica TiO₂ na PES+Ag50+TiO₂ i PES+TiO₂+Ag50 uzorcima u odnosu na PES+Ag10+TiO₂ i PES+TiO₂+Ag10 uzorke utiče i na bolju UV zaštitu. Nakon ispitivanja postojanosti obrade na pranje nije uočen veći pad UPF vrednosti što ukazuje da su nanočestice TiO₂ vezane za površinu PES vlakana (Tabela 25).

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
PES+Ag10	41,4	40
PES+Ag10+TiO ₂	91,6	50+
PES+TiO ₂ +Ag10	76,1	50+
PES+Ag50	48,1	40
PES+Ag50+TiO ₂	118,6	50+
PES+TiO ₂ +Ag50	112,0	50+

Tabela 24. Efikasnost UV zaštite PES tkanina obrađenih nanočesticama TiO₂ i srebra

 Tabela 25. Efikasnost UV zaštite PES tkanina obrađenih nanočesticama TiO2 i srebra posle pranja

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
PES+Ag10+TiO ₂	85,4	50+
PES+TiO ₂ +Ag10	72,7	50+
PES+Ag50+TiO ₂	113,4	50+
PES+TiO ₂ +Ag50	102,3	50+

9.3.3.6. Fotokatalitička aktivnost PES tkanina obrađenih nanočesticama TiO₂ i srebra

Kao i kod PES tkanina obrađenih nanočesticama TiO₂ i u slučaju PES tkanina koje su obrađene nanočesticama TiO₂ i srebra ispitana je fotokatalitička aktivnost deponovanih nanočestica TiO₂. Fotokatalitička aktivnost tkanina ispitana je u vodenom rastvoru boje MP. Praćena je promena obojenja rastvora u vremenu od 24 h osvetljavanja UV lampom (Slika 60). Svi ispitivani uzorci su pokazali sposobnost fotokatalitičke degradacije boje MP. Ukoliko se vratimo na Sliku 54a možemo videti da PES+TiO₂ uzorak nije obezbedio fotokatalitičku degradaciju boje MP. Nanočestice srebra ne poseduju fotokatalitičku sposobnost. Još jednom dolazi do izražaja sinergijsko dejstvo obe nanočestice. Delujući kao elektron akceptori nanočestice srebra u direktnom kontaktu sa nanočesticama TiO₂ pomažu razdvajanje naelektrisanja čime se povećava fotokatalitička aktivnost nanočestica TiO₂. Znatno brže obezbojavanje rastvora je uočeno kod uzoraka obrađenih koloidnim rastvorom srebra koncentracije 50 mg/l. Razlog ovakvom ponašanju leži u činjenici da

PES+Ag50+TiO i PES+TiO₂+Ag50 uzorci sadrže za oko 20 % više nanočestica TiO₂ (Tabela 19). Što je više nanočestica TiO₂ na površini tkanine, bolja je fotokatalitička aktivnost tkanine. Fotokatalitička aktivnost nanočestica TiO₂ vezanih za tkaninu ne opada ni u toku drugog i trećeg ciklusa osvetljavanja. Sa povećanjem broja ciklusa uočen je porast fotokatalitičke sposobnosti PES+Ag10+TiO₂, PES+TiO₂+Ag10, PES+Ag50+TiO₂ i PES+TiO₂+Ag50 uzoraka. Isto ponašanje je već uočeno kod uzoraka prethodno modifikovanih koronom, plazmom, alginatom i PAA, a potom obrađenih nanočesticama TiO₂ (Slika 54). Na Slici 61 su prikazane fotografije PES tkanina obrađenih nanočesticama srebra (10 ili 50 mg/l) i nanočesticama TiO₂ nakon tri ciklusa osvetljavanja. Jasno se može uočiti da su svi ispitani uzorci zadržali belu boju što ukazuje da se fotodegradacija boje osim u rastvoru odigrala i na tkanini.

Slika 60. Zavisnost C/C₀ od vremena osvetljavanja za: (a) PES+Ag10+TiO₂, (b) PES+TiO₂+Ag10, (c) PES+Ag50+TiO₂ i (d) PES+TiO₂+Ag50 tkanine

PES+Ag10+TiO2PES+TiO2+Ag10PES+Ag50+TiO2PES+TiO2+Ag50Slika 61. Izgled PES tkanina obrađenih nanočesticama TiO2 i srebra nakon 3 ciklusa
osvetljavanjaOutput

9.4. Efekti prisustva nanočestica TiO2 na Co tkanini

9.4.1. Co tekstilni materijal obrađen nanočesticama TiO2 (koloid II)

9.4.1.1. Morfološka svojstva nemodifikovanih i koronom ili RF plazmom modifikovanih Co vlakana

Promene u morfološkim svojstvima pamučnih vlakana nastale nakon obrade koronom ili RF plazmom su praćene SEM analizom. Na Slici 62 su prikazane SEM mikrofotografije nemodifikovanog Co vlakna (Co) i Co vlakana modifikovanih koronom (CCo), vazdušnom plazmom (AIRCo), kiseoničnom plazmom (O₂Co) i argonskom plazmom (ArCo). Površinu Co vlakna karakteriše postojanje brazdi paralelnih uzdužnoj osi vlakna što daje utisak blago talasaste strukture. Dejstvom korone brazde postaju znatno oštrije sa sitnim izbočinama na površini koje ostavljaju utisak grozdaste strukture (Slika 62b). Analogna struktura (bez pukotina i brazdi) je uočena i kod CPES vlakna (Slika 35b). Takođe se može uočiti i pojava pukotina mestimično raspoređenih po površini. Na Slici 62c se jasno može videti da su brazde kod AIRCo vlakna znatno dublje nego kod Co vlakna, sa karakterističnim rupicama po površini nastalim usled nagrizanja vazdušnom plazmom. Dejstvom kiseonične plazme dolazi do erozije brazdi koje su karakteristične za površinu pamuka (Slika 62d). Na površini se uočavaju sitne rupice koje ukazuju na pojavu plazma nagrizanja površine (Sun and Stylios, 2006; Yuen and Kan, 2007, Radetić et al., 2009). Brazde na površini Co vlakna postaju znatno izražajnije nakon obrade argonskom plazmom (Slika 62e). Sve uočene promene na površini vlakna idu u prilog povećanju hrapavosti, a time i specifične površine vlakana što pospešuje dalje vezivanje nanočestica TiO₂.

(c)

Slika 62. SEM mikrofotografije: (a) Co, (b) CCo, (c) AIRCo, (d) O₂Co i (e) ArCo vlakana

9.4.1.2. Hemijske promene nemodifikovanih i Co vlakana modifikovanih koronom ili RF plazmom i nanočesticama TiO₂

Da bi dokazali postojanje nanočestica TiO₂ na površini Co vlakana urađena je SEM analiza u EDX modu. Na Slici 63 su prikazani EDX spektri za: Co vlakno obrađeno nanočesticama TiO₂ (Co+TiO₂), CCo, AIRCo, O₂Co i ArCo vlakna obrađena nanočesticama TiO₂ (Cco+TiO₂, AIRCo+TiO₂, O₂Co+TiO₂ i ArCo+TiO₂). Na svim dobijenim spektrima mogu se uočiti karakteristični pikovi na 0,5, 4,5 i 5 keV koji ukazuju na prisustvo Ti. Jedini izvor Ti na površini mogu biti nanočestice TiO₂ čime se ujedno dokazuje da je došlo do njihovog deponovanja na Co vlakna.

(d)

Slika 63. SEM mikrofotografije dela vlakana na kome je izmeren EDX spektar: (a) Co+TiO₂, (b) CCo+TiO₂, (c) AIRCo+TiO₂, (d) O₂Co+TiO₂, (e) ArCo+TiO₂ vlakana

Promene u hemijskoj strukturi Co, Co+TiO₂, CCo+TiO₂ i AIRCo+TiO₂ vlakana praćene su i XPS analizom. Odgovarajući XPS spektri su prikazani na Slici 64. Pronađeno je da atomski odnos O/C za Co vlakno iznosi 0,45 što je znatno manje od teorijski izračunate vrednosti od 0,83 (Slika 25). Razlika u vrednosti atomskog odnosa O/C ukazuje da spoljašnji sloj Co vlakna nije izgrađen od čiste celuloze (Tourrette et al., 2009). Poznato je da je pamučno vlakno izgrađeno od α-celuloze (88,0-96,5 %) i neceluloznih komponenata kao što su voskovi, pektini, proteini i neorganske materije. Proteini, neorganske soli i obojene materije su smeštene u lumenu dok su ostale necelulozne komponente smeštene u kutikuli i primarnom zidu tj. spoljašnjem sloju pamučnog vlakna (Topalović et al., 2007). Voskovi predstavljaju mešavine ugljovodonika, alkohola, estara i slobodnih kiselina sa dugim ugljovodoničnim lancima čime se objašnjava i prisustvo ugljenikovih atoma koji nisu vezani za atome kiseonika (Chung et al., 2004; Fras et al., 2005). Na Slici 64a se može primetiti da su osim C_{1s} i O_{1s} pikova detektovani i brojni pikovi (Si_{2p}, N_{1s}, Cu_{2p}, Ca_{2p}, Cl_{2p}) koji su posledica postojanja nečistoća na Co vlaknu.

Nakon obrade nanočesticama TiO_2 u XPS spektru se jasno uočava pojava novog pika koji odgovara postojanju titana (Slika 64 b-d). Usled prisustva nanočestica TiO_2 došlo je i do porasta atomskog odnosa O/C.

Slika 64. XPS spektri: (a) Co, (b) Co+TiO₂, (c) CCo+TiO₂ i (d) AIRCo+TiO₂ tkanine. Isečak: mesto na tkanini koje je analizirano

U cilju preciznijeg analiziranja sadržaja funkcionalnih grupa na površini Co, Co+TiO₂, CCo+TiO₂ i AIRCo+TiO₂ vlakna određeni su C_{1s}, O_{1s} i Ti_{2p} spektri visoke rezolucije. Na Slici 65 su prikazani odgovarajući C_{1s} spektri visoke rezolucije.

(b)

AIRCo+TiO₂ tkanine

Dekonvolucijom je utvrđeno da se C_{1s} spektar sastoji iz četiri komponente (Tabela 26). Poznato je da se C_{1s} spektar čiste celuloze može razložiti na tri komponente: C-OH, O-C-O i C-O-C. Dodatni pik koji se javlja na prikazanim C_{1s} spektrima (Slika 65) odgovara postojanju C-C/C-H grupe koja je sastavni deo organskih nečistoća (voskova) pamuka. Usled adsorpcije ugljenika iz vazduha javlja se grupa C-C/C-H. Intenzitet C-C/C-H pika zavisi i od uslova pripreme uzorka kao i od vrste uređaja (Kontturi et al., 2004). Pik koji se javlja na 289 nm odgovara prisustvu O-C-O grupe koja je sastavni deo pektinskih supstanci. Slična zapažanja se mogu naći i u literaturi (Chung et al., 2004; Topalović et al., 2007; Tourette et al., 2009). Na Slici 65 se takođe može zapaziti i pik na 286 eV koji se odnosi na postojanje C-OH grupe. Jasno se uočava da je intenzitet ovog pika kod Co uzorka znatno veći u odnosu na Co+TiO₂ i CCo+TiO₂ uzorke. Smanjenje sadržaja hidroksilnih grupa je posledica vezivanja nanočestica TiO₂ za hidroksilne grupe. Poznato je da su upravo negativno naelektrisane hidroksilne grupe centri vezivanja pozitivno naelektrisanog Ti iz nanočestica TiO₂ za pamučno vlakno. Kod AIRCo+TiO₂ uzorka je izmeren znatno veći sadržaj Ti u odnosu na Co+TiO₂ i CCo+TiO₂ uzorke. Ovakvo ponašanje AIRCo+TiO₂ uzorka je neočekivano ako se ima u vidu izrazito razvijena površina vlakna (Slika 62c) kao i postojanje aktivnih centara za vezivanje nanočestica TiO₂.

		Atomski sadržaj, %					
	Co	Co+TiO ₂	CCo+TiO ₂	AIRCo+TiO ₂			
Si _{2p} (organski)	0,5	0,5	0,3	0,5			
S_{2p} (sulfate)	0,0	0,4	0,2	0,1			
Cl2p	0,1	0,2	0,2	0,2			
C_{1s} (C-C/C-H)	24,8	29,1	27,2	26,2			
C_{1s} (C-OH)	35,8	12,2	13,8	20,5			
$C_{1s}(C-O-C)$	6,0	4,3	2,9	4,2			
$C_{1s}(O-C-O)$	5,8	3,0	3,3	4,1			
$Ca_{2p3/2}$	0,2	0,0	0,0	0,1			
N _{1s} (organski)	0.4	0.5	0.5	0.4			
$Ti_{2p3/2}$ (TiO ₂)	0,0	10,2	9,3	4,1			
O_{1s} (TiO ₂)	0,0	20,7	23,9	14,0			
$O_{1s}(O-C)$	26,2	19,1	18,4	25,5			
Cu _{2p}	0,1	0,0	0,0	0,1			

Tabela 26. Elementarna analiza za Co, Co+TiO₂, CCo+TiO₂ i AIRCo+TiO₂ vlakna

 O_{1s} i Ti_{2p} spektri visoke rezolucije za Co+TiO₂, CCo+TiO₂ i AIRCo+TiO₂ vlakna su prikazani na Slikama 66 i 67. Dekonvolucijom O_{1s} spektra otkriveno je postojanje dve komponente koje odgovaraju TiO₂ i C-O grupama (Tabela 26). Pik na 529,8 eV koji se može uočiti u O_{1s} spektrima (Slika 66) ukazuje na prisustvo TiO₂ na površini vlakana. Pikovi koji se javljaju na 464,2 eV i 458,5 eV odgovaraju Ti_{2p1/2} i Ti_{2p3/2} spinovima

elektrona (Slika 67). Rezultati prikazani u Tabeli 26 ukazuju da je isti sadržaj Ti izmeren na Co+TiO₂ i CCo+TiO₂ uzimajući u obzir grešku merenja od \pm 10 %.

Slika 66. O_{1s} spektar viskoke rezolucije za: (a) Co+TiO₂, (b) CCo+TiO₂ i (c) AIRCo+TiO₂ uzorke

uzorke

Na Co+TiO₂, CCo+TiO₂ i AIRCo+TiO₂ uzorcima veličine 7×6, 8×6,5 i 9,5×7 mm² sa korakom od 200 μ m mereni su C_{1s}, O_{1s} i Ti_{2p3/2} odzivi. Na osnovu dobijenih signala izračunat je procentualni sadržaj nanočestica TiO₂ i određena raspodela nanočestica na posmatranoj površini uzorka (Slika 68). Nanočestice TiO₂ su ravnomerno raspoređene po

površini Co+TiO₂ i CCo+TiO₂ uzoraka (Slika 68a i 68b). Na Slici 68c se uočava izrazito neravnomeran raspored nanočestica TiO₂ na površini AIRCo+TiO₂ uzorka. Na prikaznom uzorku su nanočestice TiO₂ koncentrisane u gornjem desnom uglu. Ovakava neravnomerna raspodela nanočestica na površini koja je ispitivana XPS analizom objašnjava mali sadržaj nanočestica TiO₂ izmeren na ovom uzorku.

Slika 68. Raspored nanočestica TiO₂ na površini (Ti mapiranje): (a) Co+TiO₂, (b) CCo+TiO₂ i (c) AIRCo+TiO₂ uzoraka

U cilju kvantitativnog određivanja sadržaja nanočestica TiO_2 vezanih za Co vlakna urađena je AAS analiza. Rezultati AAS analize su prikazani u Tabeli 27. Najmanji sadržaj TiO_2 je izmeren kod Co+TiO_2 uzorka dok je za 73 % više TiO_2 pronađeno kod Co uzorka dvostruko obrađenog nanočesticama TiO_2 (Co+TiO₂×2). Uzorci prethodno modifikovani koronom ili plazmom sadrže za oko 30 % više TiO_2 u odnosu na Co+TiO₂ uzorak. Ovakav rezultat još jednom potvrđuje pozitivan uticaj modifikovanja koronom i plazmom na sposobnost vezivanja nanočestica TiO_2 .

Uzorak	TiO ₂ , %
Co+TiO ₂	1,30
$Co+TiO_2 \times 2$	2,25
CCo+TiO ₂	1,67
AIRCo+TiO ₂	1,70
O ₂ Co+TiO ₂	1.84
ArCo+TiO ₂	1.70

Tabela 27. Sadržaj TiO₂ u Co tkaninama obrađenim nanočesticama TiO₂

Očigledno je da se rezultati dobijeni AAS analizom ne poklapaju sa rezultatima dobijenim XPS analizom. Rezultati prikazani u Tabeli 27 predstavljaju ukupnu količinu TiO₂ u uzorku dok rezultati prikazani u Tabeli 26 odgovaraju sadržaju TiO₂ na određenoj površini uzorka. Mada X-zraci prodiru duboko u uzorak, emitovani fotoelektroni

intereaguju sa čvrstim uzorkom. Uobičajeno je da oni mogu putovati oko 10 nm pre nego što izgube previše energije da bi bili detektovani. Stoga se detektuju signali koji se odnose na površinske slojeve vlakana debljine oko 10 nm. Pomenuto je da veličina nanočestica TiO_2 u koloidnom rastvoru iznosi 6 nm (Slika 32) dok su pri promeni sredine nanočestice često sklone aglomerisanju tako da je njihova veličina na tekstilnom materijalu obično veća. Stoga se veruje da se XPS analizom mogu dobiti podaci koji se odnose na spoljašnju površinu aglomerisanih nanočestica. U tom smislu ne može se dobiti realna slika o sadržaju TiO_2 na površini vlakna.

9.4.1.3. Antibakterijska svojstva nemodifikovanih i koronom ili RF plazmom modifikovanih Co tkanina obrađenih nanočesticama TiO₂

U cilju ispitivanja antibakterijskih svojstva Co tkanine obrađene nanočesticama TiO₂ korišćena je Gram-negativna bakterija *E. coli.* Rezultati ispitivanja antibakterijske aktivnosti su prikazani u Tabeli 28. Jedino Co+TiO₂ uzorak nije pokazao zadovoljavajuća antibakterijska svojstva. Međutim dvostrukom obradom nemodifikovane Co tkanine nanočesticama TiO₂ (Co+TiO₂×2) postiže se željeni nivo antibakterijske aktivnosti. Poboljšanje antibakterijske aktivnosti Co+TiO₂×2 uzorka pripisuje se značajnom povećanju sadržaja TiO₂ u uzorku (Tabela 27). Uzorci čija je površina pre obrade nanočesticama aktivirana koronom ili plazmom postižu maksimum bakterijske redukcije. Očigledno je da veći sadržaj TiO₂ na ovim uzorcima utiče na njihovo bolje baktericidno dejstvo.

Takođe je ispitana postojanost antibakterijske obrade na pranje (Tabela 29). Dobijeni rezultati su pokazali da su svi ispitani uzorci (Co+TiO₂×2, CCo+TiO₂, AIRCo+TiO₂, $O_2Co+TiO_2$ i ArCo+TiO₂) i nakon pranja zadržali maksimum bakterijske redukcije. Odlična antibakterijska efikasnost postignuta nakon pranja ukazuje na činjenicu da su se nanočestice TiO₂ verovatno vezale za površinu pamuka.

Uzorak	Početni broj kolonija bakterije <i>E.</i> <i>coli</i> (CFU)	Broj kolonija bakterije <i>E. coli</i> na uzorku (CFU)	R, %
Со	3.6×10^5	8,7×10 ⁴	
Co+TiO ₂	-,	1,6×10 ⁵	
Со	2.1×10^5	9,6×10 ⁴	
Co+TiO ₂ ×2	2,1~10	90	99,9
Со	1.0×10^{5}	$1,4 \times 10^{5}$	
CCo+TiO ₂	1,0^10	20	99,9
Со	2.0×10^5	$7,4 \times 10^{5}$	
AIRCo+TiO ₂	5,0~10	10	99,9
Со	4.0×10^{5}	$1,4 \times 10^{5}$	
O ₂ Co+TiO ₂	4,9×10	80	99,9
Со	4.0×10^{5}	$1,4 \times 10^{5}$	
ArCo+TiO ₂	4,9×10	35	99,9
Со	2.0×10^5	1,6×10 ⁴	
Co+alginat+TiO ₂ ×2	3,9×10	$1,4 \times 10^{2}$	99,9
Со	6.0×10^{5}	$7,4 \times 10^4$	
Co+PAA+TiO ₂ ×2	0,0×10	20	99,9

Tabela 28. Antibakterijska svojstva Co tkanina obrađenih nanočesticama TiO₂

Tabela 29. Antibakterijska svojstva Co tkanina obrađenih nanočesticama TiO₂ posle pranja

Uzorak	Početni broj kolonija bakterije <i>E.</i> <i>coli</i> (CFU)	Broj kolonija bakterije <i>E. coli</i> na uzorku (CFU)	R, %
Со	$4,5 \times 10^{5}$	1,6×10 ⁵	
$Co+TiO_2 \times 2$		55	99,9
Со	1.4×10^{5}	1,8×10 ⁵	
CCo+TiO ₂	1,4^10	65	99,9
Со	2.7×10^5	$1,8 \times 10^5$	
AIRCo+TiO ₂	5,7~10	30	99,9
Со	2.1×10^{5}	$2,0 \times 10^5$	
O ₂ Co+TiO ₂	3,1×10	$1,0 \times 10^{2}$	99,9
Со	2.1×10^{5}	$2,0 \times 10^5$	
ArCo+TiO ₂	5,1×10	20	99,9

9.4.1.4. Efikasnost UV zaštite nemodifikovanih i koronom ili RF plazmom modifikovanih Co tkanina obrađenih nanočesticama TiO₂

Da bi se ocenila efikasnost UV zaštite Co tkanina obrađenih nanočesticama TiO₂ izmereno je propuštanje UV zraka kroz tkanine (Slika 69). Na Slici 69 se jasno vidi da Co tkanina koja nije obrađena nanočesticama TiO₂ ne blokira UV zrake. Tkanine obrađene nanočesticama TiO₂ su pokazale sposobnost potpune blokade UV zraka u UVB oblasti talasnih dužina (280-315 nm). U oblasti talasnih dužina od 340-380 nm dolaze do izražaja razlike u obradama Co tkanina. Najlošiju efikasnost UV zaštite je pokazao Co+TiO₂ uzorak. Gotovo identične krive transmisije su izmerene za ArCo+TiO₂ i AIRCo+TiO₂ uzorke što se objašnjava ekvivalentnim sadržajem nanočestica TiO₂ na tkaninama (Tabela 27). Iako ne sadrži najveći procenat nanočestica TiO₂, CCo+TiO₂ uzorak pruža efikasniju UV zaštitu. Ovakvo ponašanje CCo+TiO₂ se može objasniti ravnomernijom raspodelom nanočestica po površini uzorka (Slika 68).

Slika 69. Krive transmisije za Co tkanine obrađene nanočesticama TiO₂

Na Slici 70 su prikazane krive transmisije za Co tkanine obrađene nanočesticama TiO_2 posle pet ciklusa pranja. Opet je najveći procenat transmisije izmeren kod Co+ TiO_2 uzorka. Gotovo iste krive transmisije su se javile kod uzoraka prethodno modifikovanih koronom ili plazmom i nanočesticama TiO_2 . Najbolju postojanost obrade na pranje je pokazao Co+ $TiO_2 \times 2$ uzorak. Kao što se može videti u Tabeli 27 sadržaj nanočestica TiO_2 na ovom uzorku je u proseku za 25 % veći u odnosu na ostale uzorke obrađene nanočesticama TiO_2 pa je zato pokazao i najbolju postojanost obrade na pranje.

Slika 70. Krive transmisije za Co tkanine obrađene nanočesticama TiO₂ posle pranja

Kvantitativna ocena efikasnosti UV zaštite je izražena preko UPF vrednosti (Tabela 30). Neobrađena Co tkanina ne pruža UV zaštitu. Obrada nanočesticama TiO₂ obezbeđuje potrebnu UV zaštitu i maksimalan nivo UV zaštite. Znatno veća UPF vrednost je izmerena na uzorcima koji su pre obrade nanočesticama TiO₂ modifikovani koronom ili plazmom u odnosu na uzorak koji nije prethodno modifikovan. Veoma dobra UV zaštita se postiže i dvostrukom obradom nanočesticama TiO₂.

Uzorak	UPF vrednost	UPF nivo
Со	7,3	5
Co+TiO ₂	134,3	50+
$Co+TiO_2 \times 2$	208,3	50+
CCo+TiO ₂	230,8	50+
AIRCo+TiO ₂	173,2	50+
O ₂ Co+TiO ₂	217,2	50+
ArCo+TiO ₂	163,2	50+

Tabela 30. Efikasnost UV zaštite Co uzoraka obrađenih nanočesticama TiO₂

Maksimalan nivo UV zaštite je zadržan i posle pranja što ukazuje na veoma dobru postojanost obrade na pranje (Tabela 31). Nešto veća UPF vrednost Co+TiO₂×2 uzorka izmerena posle pranja je posledica velike standardne devijacije merenja.

Uzorak	UPF vrednost	UPF nivo
Co+TiO ₂	100,0	50+
Co+TiO ₂ ×2	236,8	50+
CCo+TiO ₂	164,0	50+
AIRCo+TiO ₂	147,1	50+
O ₂ Co+TiO ₂	188,9	50+
ArCo+TiO ₂	159,7	50+

Tabela 31. Efikasnost UV zaštite Co uzoraka obrađenih nanočesticama TiO₂

9.4.1.5. Sposobnost samočišćenja nemodifikovanih i koronom ili RF plazmom modifikovanih Co tkanina obrađenih nanočesticama TiO₂

U cilju ispitivanja sposobnosti samočišćenja Co tkanina obrađenih nanočesticama TiO₂ uzorci su zaprljani sokom od borovnice i praćena je fotodegradacija zaprljanja u vremenu od 24 h. Za aktivaciju nanočestica TiO₂ upotrebljena je lampa koja simulira sunčevo zračenje. Na Slici 71 su prikazani uzorci Co tkanina na koje je naneseno zaprljanje od soka od borovnice snimljeno pre (0 h) i posle (24 h) osvetljavanja. Kao što se može videti na Slici 71 osvetljavanje neobrađene Co tkanine nije imalo uticaja na degradaciju zaprljanja od borovnice. Kod Co+TiO₂ uzorka došlo je do promene obojenja zaprljanja ali ne i do njegove potpune degradacije. Nakon 24 h osvetljavanja Co+TiO₂×2, CCo+TiO₂, AIRCo+TiO₂, O₂Co+TiO₂ i CCo+TiO₂ uzoraka zaprljanje od borovnice je skoro potpuno obezbojeno. Potpuna degradacija zaprljanja od soka od borovnice ukazuje da nanočestice TiO₂ vezane za Co tkaninu pokazuju odličnu fotokatalitičku aktivnost čime je tkaninama obezbeđeno svojstvo samočišćenja.

AIRCo+TiO₂

AIRCo+TiO₂

ArCo+11O₂ **Slika 71**. Efekat samočišćenja zaprljanja od soka od borovnice na Co, Co+TiO₂, Co+TiO₂×2, CCo+TiO₂, AIRCo+TiO₂, O₂Co+TiO₂ i ArCo+TiO₂ tkaninama pre (0 h) i posle osvetljavanja (24 h) UV lampom

U tabeli 32 su prikazane CIE $L^* a^* b^*$ koordinate boje zaprljanja od soka od borovnice pre i posle osvetljavanja. Jasno se uočava da svi uzorci obrađeni nanočesticama TiO₂ postaju svetliji, manje crveni i manje žuti što je u skladu sa fotografijama prikazanim na Slici 71.

Vreme, h	Uzorak	ΔE*	ΔL*	∆a*	Δb*	Opis
	Co+TiO ₂	7,54	-4,49	-5,30	2,95	Tamnije, manje crveno, manje plavo
	Co+TiO ₂ ×2	7,54	-3,11	-5,29	4,38	Tamnije, manje crveno, manje plavo
	CCo+TiO ₂	8,95	-5,39	-5,91	4,02	Tamnije, manje crveno, manje plavo
0	AIRCo+TiO ₂	3,47	-1,53	-1,66	2,64	Tamnije, manje crveno, manje plavo
	O ₂ Co+TiO ₂	4,19	-0,81	-2,39	3,34	Tamnije, manje crveno, manje plavo
	ArCo+TiO ₂	4,49	-1,56	-1,73	3,83	Tamnije, manje crveno, manje plavo
	Co+TiO ₂	4,12	0,85	-0,34	-4,01	Svetlije, manje crveno, manje plavo
	Co+TiO ₂ ×2	5,18	3,46	-3,73	-1,00	Svetlije, manje crveno, manje plavo
	CCo+TiO ₂	6,98	3,70	-2,55	-5,33	Svetlije, manje crveno, manje plavo
24	AIRCo+TiO ₂	6,80	4,54	-2,75	-4,25	Svetlije, manje crveno, manje žuto
	O ₂ Co+TiO ₂	4,49	2,89	-2,06	-2,75	Svetlije, manje crveno, manje žuto
	ArCo+TiO ₂	6,07	4,13	-2,24	-3,84	Svetlije, manje crveno, manje žuto

Tabela 32. Promena obojenja zaprljanja od soka od borovnice na Co+TiO₂, Co+TiO₂×2, CCo+TiO₂, AIRCo+TiO₂, O₂Co+TiO₂ i ArCo+TiO₂ tkaninama nakon 24 h osvetljavanja

9.4.1.6. Fotokatalitička aktivnost nemodifikovanih i koronom ili RF plazmom modifikovanih Co tkanina obrađenih nanočesticama TiO₂

Fotokatalitička sposobnost Co tkanina obrađenih nanočesticama TiO₂ je ispitana u vodenom rasvoru boje metilensko plavo. U vremenu od 24 h osvetljavanja praćena je promena koncentracije boje u rastvoru (Slika 72). Ispitana su tri ciklusa osvetljavanja. Na Slici 73 prikazane su fotografije ispitivanih Co uzoraka nakon prvog, drugog i trećeg ciklusa osvetljavanja. Nakon 24 h osvetljavanja, uzorak Co tkanine je plavo obojen, što ukazuje da je uočeno obezbojavanje rastvora isključivo posledica sorpcije boje na tkanini (Slika 73). Na osnovu krivih prikazanih na Slici 72 se može zaključiti da su svi uzorci obrađeni nanočesticama TiO₂ nakon 24 h potpuno obezbojili rastvor MP. Takođe je uočeno da nakon prvog ciklusa Co+TiO₂ uzorak postaje svetlo plav što ukazuje da nije

došlo do potpune fotodegradacije boje koja je sorbovana na tkanini (Slika 73). $CCo+TiO_2$, AIRCo+TiO₂, O₂Co+TiO₂ i ArCo+TiO₂ uzorci su i nakon tri ciklusa fotodegradacije zadržali belu boju (Slika 73). Isto kao što je uočeno kod PES tkanina obrađenih nanočesticama TiO₂ i ovde se pokazalo da se fotodegradacija boje odvija brže u drugom i trećem ciklusu osvetljavanja (Uddin et al., 2007).

Slika 72. Zavisnost C/C₀ od vremena osvetljavanja za: (a) Co+TiO₂, (b) Co+TiO₂×2, (c) CCo+TiO₂, (d) AIRCo+TiO₂, (e) O₂Co+TiO₂, (f) ArCo+TiO₂ tkanine

Co+TiO₂x2

CCo+TiO₂

AIRCo+TiO₂

O₂Co+TiO₂

ArCo+TiO₂ Slika 73. Izgled Co tkanina modifikovanih nanočesticama TiO₂ nakon tri ciklusa osvetljavanja

9.4.2. Obrada Co tkanina nanočesticama TiO2 (koloid II) i srebra

9.4.2.1. Morfološka svojstva Co vlakana obrađenih nanočesticama Ti O_2 i srebra

Promene na površini Co vlakana nastale nakon obrade u koloidnim rastvorima nanočestica srebra koncentracija 10 i 50 mg/l i koloidnom rastvoru II nanočestica TiO₂ su praćene SEM analizom. SEM analizom nisu mogle da se uoče promene na površini Co vlakana koja su obrađena koloidnim rastvorom nanočestica srebra koncentracije 10 mg/l, a potom nanočesticama TiO₂ (Co+Ag10+TiO₂), kao ni na površini vlakana obrađenih obrnutim redosledom (Co+TiO₂+Ag10). Nije bilo moguće uočiti ni promene na površini Co vlakana koja su prvo obrađena u koloidnom rastvoru srebra koncentracije 50 mg/l, a potom u koloidnom rastvoru nanočestica TiO₂ (Co+Ag50+TiO₂). Kao što se može videti sa Slike 74 nanočestice su primećene jedino na površini Co vlakana koja su obrađena prvo u koloidnom rastvoru nanočestica TiO₂, a potom u koloidnom rastvoru srebra koncentracije 50 mg/l (Co+TiO₂+Ag50).

Slika 74. SEM mikrofotografija Co+TiO₂+Ag50 vlakna

9.4.2.2. Promene u hemijskom sastavu Co vlakana obrađenih nanočesticama Ti O_2 i srebra

U cilju određivanja promena u hemijskom sastavu Co vlakana modifikovanih nanočesticama srebra i TiO₂ urađena je AAS analiza (Tabela 33). Sadržaj nanočestica TiO₂ je gotovo isti kod svih ispitanih uzoraka i ekvivalentan je sadržaju nanočestica TiO₂ u Co+TiO₂ uzorku (Tabela 27). Kao što je zapaženo da kod PES tkanina modifikovanih nanočesticama TiO₂ i srebra sadržaj nanočestica srebra deponovanih na tkanini zavisi od koncentracije koloidnog rastvora srebra (Tabela 19) i kod Co tkanina je primećen sličan trend. Rezultati prikazani u Tabeli 33 pokazuju da količina nanočestica srebra deponovanih na tkanini zavisi i od redosleda obrada. Dvostruko veći sadržaj srebra je izmeren kod Co+TiO₂+Ag10 i Co +TiO₂+Ag50 uzoraka u odnosu na uzorake obrađene obrnutim redosledom (Co+Ag10+TiO₂ i Co+Ag50+TiO₂). Nanošenjem nanočestica TiO₂ pre nanočestica srebra povećana. Isto zapažanje je uočeno i kod PES vlakana obrađenih nanočesticama srebra i TiO₂ (Tabela 33).

Uzorak	Ag, μg/g	TiO ₂ , mg/g
Co+Ag10+TiO ₂	11,6	13,3
Co+TiO ₂ +Ag10	26,6	13,2
Co+Ag50+TiO ₂	26,2	12,5
Co+TiO2+Ag50	55,5	12,7

Tabela 33. Sadržaj TiO₂ i srebra određen AAS analizom

9.4.2.3. Promena obojenja Co tkanina obrađenih nanočesticama TiO₂ i srebra

Da bi se ispitao uticaj obrade nanočesticama TiO₂ i srebra na obojenje Co tkanina izmerena je refleksija tkanina u intervalu talasnih dužina od 400 do 700 nm. Krive refleksije Co tkanina obrađenih nanočesticama srebra i TiO₂ su prikazane na Slici 75. Kao što se može videti sa Slike 75 prisustvo nanočestica TiO₂ utiče na povećanje refleksije dok nanočestice srebra iz koloidnog rastvora koncentracije 10 i 50 mg/l utiču na smanjenje refleksije Co tkanine. Dok je kod PES tkanina kombinovana obrada nanočesticama TiO₂ i srebra manje uticala na promenu refleksije u odnosu na obradu nanočesticama srebra kod Co tkanina je uočeno suprotno. Kombinovana obrada nanočesticama TiO₂ i srebra (10 ili 50 mg/l) više utiče na promenu refleksije tkanine nego obrada samo nanočesticama srebra.

Slika 75. Krive refleksije za uzorke obrađene nanočesticama TiO_2 i/ili nanočesticama srebra iz koloidnog rastvora koncentracije 10 i 50 mg/l

CIE L^{*}, a^{*}, b^{*} razlike u obojenju Co tkanine i Co tkanina obrađenih nanočesticama TiO₂ i srebra su prikazane u Tabeli 34. Vizuelno se ne mogu uočiti promene u obojenju tkanine ukoliko je razlika u obojenju $\Delta E^* < 1$ što je slučaj kod Co+TiO₂ i Co+Ag10 uzorka. Nešto veće promene u obojenju su uočene kod uzoraka obrađenih koloidnim rastvorom nanočestica srebra koncentracije 50 mg/l i nanočesticama TiO₂.

Uzorak	$\Delta \mathbf{E}^{*}$	ΔL^*	Δa^*	$\Delta \mathbf{b}^{*}$	Opis
Co+TiO ₂	0,67	0,17	0,05	-0,65	Svetlije, manje žuto
Co+Ag10	0,67	-0,35	0,03	0,56	Tamnije, žuto
Co+Ag10+TiO ₂	1,34	-0,43	-0,23	1,25	Tamnije, zelenije, žuto
Co+TiO ₂ +Ag10	1,67	-0,71	0,10	1,50	Tamnije, žuto
Co+Ag50	2,41	-2,03	0,33	1,25	Tamnije, manje zeleno, žuto
Co+Ag50+TiO ₂	4,78	-3,16	-0,112	3,58	Tamnije, zelenije, žuto
Co+TiO ₂ +Ag50	4,86	-3,54	0,35	3,32	Tamnije, manje zeleno, žuto

Tabela 34. Promena obojenja Co tkanina obrađenih nanočesticama TiO₂ i srebra

9.4.2.4. Antimikrobna svojstva Co tkanina obrađenih nanočesticama Ti O_2 i srebra

Antimikrobna svojstva Co tkanina obrađenih nanočesticama TiO₂ i srebra su testirana na bakterije *E. coli* i *S. aureus* i kvasac *C. albicans*. Co tkanine obrađene koloidnim rastvorom nanočestica srebra koncentracije 10 mg/l i nanočesticama TiO₂ nisu pokazale željena antimikrobna svojstva. Procenti mikrobne redukcije Co tkanina obrađenih nanočesticama srebra iz koloidnog rastvora koncentracije 50 mg/l, a potom nanočesticama TiO₂ kao i tkanina obrađenih obrnutim redosledom su prikazani u Tabeli 35. Očigledno je da svi ispitani uzorci obezbeđuju maksimum mikrobne redukcije čime Co tkanine dobijaju odlična antimikrobna svojstva. Ispitivanjem postojanosti antimikrobne obrade utvrđeno je da nakon pet ciklusa pranja ove tkanine ne poseduju antimikrobna svojstva.

Uzorak	Mikroorganizam	Početni broj kolonija mikroorganizma (CFU)	Broj kolonija mikroorganizma (CFU)	R, %
Со		$2,2 \times 10^5$	$1,1 \times 10^4$	
Co+Ag50+TiO ₂	E coli		50	99,9
Со	E. Con	$1,4 \times 10^{5}$	3,0×10 ⁴	
Co+TiO ₂ +Ag50			25	99,9
Со		$5,4 \times 10^{5}$	$4,5 \times 10^{5}$	
Co+Ag50+TiO ₂	C autous		25	99,9
Со	S. aureus	4,9×10 ⁵	6,9×10 ⁴	
Co+TiO ₂ +Ag50			<10	99,9
Со		3,2×10 ⁵	$1,8 \times 10^5$	
Co+Ag50+TiO ₂	C albiagua		<10	99,9
Со	C. albicans	9,0×10 ⁴	$4,4 \times 10^{4}$	
Co+TiO ₂ +Ag50			<10	99,9

Tabela 35. Antimikrobna svojstva Co tkanina obrađenih koloidnim rastvorom nanočesticasrebra koncentracije 50 mg/l i TiO2

9.4.2.5. Efikasnost UV zaštite Co tkanina obrađenih nanočesticama Ti O_2 i srebra

Merenjem propustljivosti tkanina obrađenih nanočesticama TiO₂ i srebra, za deo spektra UV zračenja (280-400 nm) dobijene su krive prikazane na Slici 76. Sa Slike 76 se može zaključiti da Co tkanina obrađena koloidnim rastvorom nanočestica srebra koncentracije 10 mg/l (Co+Ag10) ili koloidnim rastvorom nanočestica srebra koncentracije 50 mg/l (Co+Ag50) ne pokazuje sposobnost blokiranja UV zraka. Dakle, Co tkanine obrađene nanočesticama srebra ne pružaju UV zaštitu. Kombinovanom obradom Co tkanina nanočesticama TiO₂ i srebra se znatno poboljšava efikasnost UV zaštite. Iako je sadržaj nanočestica TiO₂ na svim uzorcima isti primećene su male razlike u efikasnosti UV zaštite.

Slika 76. Krive transmisije za Co tkanine obrađene nanočesticama TiO₂ i srebra

Na Slici 77 su prikazane krive transmisije za $Co+Ag10+TiO_2$, $Co+TiO_2+Ag10$, $Co+Ag50+TiO_2$ i $Co+TiO_2+Ag50$ uzorke nakon pet ciklusa pranja. Svi ispitani uzorci su i nakon pranja zadržali dobru efikasnost UV zaštite što ukazuje da su se nanočestice TiO_2 zadržale na tkanini i nakon pranja. Postojanost obrade je moguća jedino ako su se nanočestice TiO_2 hemijskim vezama (kovalentna veza) vezale za tkaninu (Xu et al., 2006).

Činjenica da postojanost antimikrobnih svojstava (pet ciklusa pranja) tkanine nije postignuta dok je sposobnost UV zaštite prisutna i nakon pet ciklusa pranja razgraničava ulogu nanočestica srebra i nanočestica TiO_2 na tkanini. Nanočestice srebra su zaslužne za antimikrobna svojstva tkanine u mraku dok nanočestice TiO_2 obezbeđuju UV zaštitu.

Slika 77. Krive transmisije za Co tkanine obrađene nanočesticama TiO₂ i srebra posle pranja

U Tabeli 36 su prikazane UPF vrednosti Co tkanina obrađenih nanočesticama TiO_2 i srebra. Co+Ag10 i Co+Ag50 uzorci ne pružaju UV zaštitu. Nezavisno od koncentracije koloidnog rastvora nanočestica srebra ili od redosleda obrada, uzorci obrađeni nanočesticama srebra i TiO_2 obezbeđuju maksimalan nivo UV zaštite koji se zadržava i nakon pet ciklusa pranja (Tabela 37).

Uzorak	Srednja UPF vrednost	Nivo UV zaštite
Co+Ag10	7,3	5
Co+TiO ₂ +Ag10	115,4	50+
Co+Ag10+TiO ₂	122,7	50+
Co+Ag50	7,8	5
Co+TiO ₂ +Ag50	111,7	50+
Co+Ag50+TiO ₂	189,5	50+

Tabela 36. Efikasnost UV zaštite Co tkanina obrađenih nanočesticama TiO2 i srebra
Uzorak	Srednja UPF vrednost	Nivo UV zaštite
Co+TiO ₂ +Ag10	105,6	50+
Co+Ag10+TiO ₂	109,5	50+
Co+TiO ₂ +Ag50	117,9	50+
Co+Ag50+TiO ₂	158,8	50+

 Tabela 37. Efikasnost UV zaštite Co tkanina obrađenih nanočesticama TiO2 i srebra posle pranja

9.4.2.6. Fotokatalitička aktivnost Co tkanina obrađenih nanočesticama TiO_2 i srebra

Fotokatalitička aktivnost Co tkanina modifikovanih nanočesticama TiO₂ i srebra je ispitana u vodenom rastvoru boje MP. Na Slici 78 su prikazane krive zavisnosti promene koncentracije MP od vremena osvetljavanja UV lampom. Odličnu fotokatalitičku aktivnost su pokazali svi ispitani uzorci. Rastvor boje MP je obezbojen i nakon tri ciklusa osvetljavanja ukazujući da u toku prvog i drugog ciklusa osvetljavanja nije došlo do desorpcije nanočestica TiO₂ sa Co vlakana. Nešto brža fotodegradacija je uočena kod uzoraka koji su prvo obrađeni nanočesticama TiO₂, a potom nanočesticama srebra nezavisno od koncentracije koloidnog rastvora (Slika 78b i 78d). Bolja fotokatalitička aktivnost ovih uzorka u odnosu na uzorke obrađene obnutim redosledom se može pripisati većem sadržaju nanočestica srebra (Tabela 33). Već je objašnjeno da nanočestice srebra pozitivno deluju na fotokatalitičku aktivnost nanočestica TiO₂. Međutim, kod ovih uzoraka nije došlo do potpune fotodegradacije boje MP na tkaninama. Kao što se može videti sa Slike 79 Co+TiO₂+Ag10 i Co+TiO₂+Ag50 uzorci su ostali plavičasti nakon trećeg ciklusa osvetljavanja. Potpuna fotodegradacija boje i sa rastvora i sa tkanine je postignuta kod Co+Ag50+TiO₂ i Co+TiO₂+Ag10 uzoraka (Slika 78 c i Slika 79).

(d)

Slika 78. Zavisnost C/C₀ od vremena osvetljavanja za: (a) Co+Ag10+TiO₂, (b) Co+TiO₂+Ag10, (c) Co+Ag50+TiO₂ i (d) Co+TiO₂+Ag50 tkanine

Co+Ag10+TiO2Co+TiO2+Ag10Co+Ag50+TiO2Co+TiO2+Ag50Slika 79. Izgled Co tkanina modifikovanih nanočesticama TiO2 i srebra nakon tri ciklusa
osvetljavanjaosvetljavanja

10. ZAKLJUČAK

U cilju dobijanja multifunkcionalnih svojstava, poliestarske (PES) i pamučne (Co) tkanine su modifikovane koloidnim nanočesticama TiO₂. Iste tkanine su podvrgnute i kombinovanoj obradi koloidnim nanočesticama TiO₂ i srebra. Na osnovu dobijenih rezultata došlo se do sledećih zaključaka:

Nanočestice TiO₂ iz koloidnog rastvora koji nije termički tretiran, PES tkanini obezbeđuju UV zaštitu, sposobnost samočišćenja i fotokatalitičku aktivnost. Utvrđeno je da prethodna aktivacija površine tkanine koronom na atmosferskom pritisku pospešuje efikasnost vezivanja nanočestica za vlakno. XPS analizom je utvrđeno da se obradom koronom na površini PES vlakna uvode nove funkcionalne grupe (OH, CO) koje su zaslužne za povećanje hidrofilnosti površine vlakna. SEM analizom je utvrđeno da obradom koronom dolazi do stvaranja grozdaste strukture na površini vlakana. Povećanjem hidrofilnosti i hrapavosti površine, PES vlakna postaju pristupačnija za hidrofilne nanočestice TiO₂. PES tkanina prethodno aktivirana koronom, a potom obrađena nanočesticama TiO₂ sadrži za 20 % više Ti u odnosu na nemodifikovanu PES tkaninu.

Zahvaljujući većoj količini prisutnih nanočestica TiO_2 , PES tkanina prethodno modifikovana koronom pokazuje odlična svojstva UV zaštite i samočišćenja (zaprljanje od soka od borovnice). Takođe, ovako obrađena tkanina ima odlična fotokatalitička svojstva koja su utvrđena ispitivanjem fotodegradacije vodenog rastvora boje metilensko plavo osvetljavanjem UV lampom. Međutim, ispitivanjem antibakterijske aktivnosti prema Gramnegativnoj bakteriji <u>E. coli</u> je ustanovljeno da nanočestice TiO_2 ne pružaju željenu baktericidnu aktivnost.

Da bi se poboljšala efikasnost nanočestica TiO_2 koloidni rastvor je termički obrađen čime su dobijene nanočestice anatas kristalne strukture. U cilju poboljšanja efikasnosti vezivanja ovih nanočestica TiO_2 za vlakna, PES tkanina je prethodno modifikovana hemijskim i fizičko-hemijskim postupcima. Rezultati SEM analize su pokazali da se modifikovanjem vlakana koronom, RF plazmom (vazdušna, kiseonična i argonska) na niskom pritisku i biopolimerom alginatom menja topografija vlakna u pravcu povećavanja hrapavosti površine. Rezultati XPS i AAS analize su ukazali da se za vlakna prethodno modifikovana plazmom vezuje više nanočestca TiO_2 u odnosu na nemodifikovana vlakna. Nove anjonske grupe koje se formiraju na površini vlakana usled obrade tkanina koronom ili plazmom kao i karboksilne grupe nastale obradom tkanina biopolimerom alginatom i poliakrilnom kiselinom, predstavljaju potencijalna mesta za vezivanje nanočestica TiO_2 .

Ispitivanje antibakterijskih svojstava prema <u>E. coli</u> je pokazalo da gotovo svi prethodno modifikovani uzorci obezbeđuju maksimum bakterijske redukcije. PES tkanina prethodno modifikovana poliakrilnom kiselinom ne pruža maksimum bakterijske redukcije ali je prihvatljiv nivo antibakteriske aktivnosti ipak postignut. PES tkanina obrađena samo nanočesticama TiO₂ ne poseduje zadovoljavajuća antibakterijska svojstva usled manjeg sadržaja deponovanih nanočestica TiO₂.

Maksimalan nivo UV zaštite postignut obradom nanočesticama TiO_2 je zadržan i posle pet ciklusa pranja što ukazuje da su nanočestice TiO_2 efikasno vezane za tekstilni materijal. PES tkanina obrađena samo nanočesticama TiO_2 ne obezbeđuje maksimalan nivo UV zaštite posle pranja.

PES tkanine koje su pre obrade nanočesticama TiO₂ modifikovane plazmom ili koronom su pokazale dobru sposobnost fotokatalitičke degradacije zaprljanja od soka od borovnice. Odlična fotokatalitička aktivnost ovih uzoraka je potvrđena i ispitivanjem fotodegradacije vodenog rastvora boje metilensko plavo. Pokazano je da se u vremenu od 24 h osvetljavanja UV lampom postiže potpuno obezbojavanje rastvora pri čemu tkanina zadržava početnu belu boju. Utvrđeno je da se efikasnost fotodegradacije boje povećava u drugom i trećem ciklusu osvetljavanja.

Da bi iskoristili antimikrobna svojstva nanočestica srebra i fotokatalitička svojstva nanočestica TiO_2 vršena je kombinovana obrada PES tkanina obema vrstama koloidnih nanočestica. Veoma dobra antimikrobna svojstva (dnevno svetlo) su postignuta obradom PES tkanina nanočesticama TiO_2 i nanočesticama srebra iz koloidnog rastvora koncentracije 10 i 50 mg/l. Antimikrobna aktivnost je ispitana prema Gram-negativnoj bakteriji <u>E.coli</u>, Gram-pozitivnoj bakteriji <u>S. aureus</u> i kvascu <u>C. albicans</u>. Rezultati pokazuju da antimikrobna svojstva zavise od koncentracije koloidnog rastvora srebra, ali i od redosleda obrada. Uzorci obrađeni nanočesticama TiO_2 , a potom nanočesticama srebra (10 mg/l) postižu maksimum mikrobne redukcije za raziliku od uzoraka koji su obrađeni obrnutim redosledom obrade. Uzorci obrađeni nanočesticama srebra (50 mg/l) i nanočesticama TiO_2 su pokazali odlična antimikrobna svojstva nezavisno od redosleda obrada. Ispitujući postojanost antimikrobne aktivnosti na mokre obrade utvrđeno je da maksimum mikrobne redukcije obezbeđuje nakon pet ciklusa pranja jedino uzorak obrađen nanočesticama TiO_2 , a potom nanočesticama srebra koncentracije 50 mg/l. Maksimalan nivo UV zaštite je postignut kod svih ispitivanih uzoraka. Potpuna fotodegradacija boje metilensko plavo je postignuta nakon 24 h osvetljavanja UV lampom na uzorcima obrađenim nanočesticama TiO_2 i nanočesticama srebra iz koloidnog rastvora koncentracije 10 mg/l dok je u prisustvu uzoraka obrađenih nanočesticama TiO_2 i nanočesticama srebra iz koloidnog rastvora koncentracije 50 mg/l potrebno vreme degradacije iznosilo samo 8 h. Nakon tri ciklusa osvetljavanja fotokatalitička aktivnost tkanina nije promenjena.

Izuzetna antibakterijska svojstva, sposobnost UV zaštite i fotokatalitičku efikasnost je pokazala i Co tkanina obrađena nanočesticama TiO₂ iz koloidnog rastvora koji je termički tretiran. Promene u topografiji vlakana nakon obrada koronom i RF plazmom (vazdušna, kiseonična, argonska) utvrđene SEM analizom ukazuju na povećanje hrapavosti površine. AAS analizom je pronađeno da prethodno modifikovane Co tkanine sadrže veću količinu nanočestica TiO₂ u odnosu na nemodifikovanu Co tkaninu što ukazuje na pozitivan doprinos modifikovanja vlakana u cilju efikasnijeg vezivanja nanočestica. Prisustvo nanočestica TiO₂ na površini Co tkanine obrađene samo nanočesticama TiO₂, Co tkanine modifikovane koronom ili vazdušnom plazmom i nanočesticama TiO₂ je dokazano i XPS analizom.

Na osnovu rezultata antibakterijske analize (<u>E. coli</u>) može se zaključiti da jedino Co tkanina jednostruko obrađena nanočesticama TiO₂ ne obezbeđuje zadovoljavajuću antibakterijsku aktivnost. Maksimum bakterijske redukcije je ostvaren kod Co tkanine dvostruko obrađene nanočesticama TiO₂ kao i kod Co tkanina prethodno modifikovanih koronom ili plazmom i nanočesticama TiO₂. Ove tkanine su zadržale odlična antibakterijska svojstva i nakon pet ciklusa pranja. Sve Co tkanine obrađene nanočesticama TiO₂ pružaju maksimalan nivo UV zaštite (50+) čak i nakon pranja. Ove tkanine su pod dejstvom UV svetlosti pokazale sposobnost fotodegradacije obojenih zaprljanja od soka od borovnice. Fotokatalitička aktivnost nanočestica TiO₂ deponovanih na Co tkaninama je potvrđena i u vodenom rastvoru boje metilensko plavo. Rastvor boje je potpuno obezbojen dok su uzorci obrađeni nanočesticama TiO₂ ostali beli i nakon tri ciklusa fotodegradacije.

Co tkanine obrađene nanočesticama TiO_2 i srebra su pokazale različito ponašanje u odnosu na PES tkanine obrađene istim nanočesticama. Utvrđeno je da Co tkanine obrađene nanočesticama TiO_2 i nanočesticama srebra iz koloidnog rastvora koncentracije 10 ili 50 mg/l sadrže gotovo istu količinu nanočestica TiO_2 nezavisno od koncentracije koloidnog rastvora srebra i od redosleda obrada. Sadržaj nanočestica srebra na tkaninama zavisi od koncentracije koloidnog rastvora ali znatno više od redosleda obrada. Veći sadržaj srebra je određen kod uzoraka koji su nakon nanošenja nanočestica TiO_2 obrađeni nanočesticama srebra. Promena obojenja tkanina je manje izražena ukoliko se za obradu koristi koloidni rastvor nanočestica srebra manje koncentracije.

Kombinovanom obradom Co tkanina nanočesticama TiO₂ i srebra koncentracije koloidnog rastvora 50 mg/l se postižu odlična antimikrobna svojstva (<u>E.coli</u>, <u>S. aureus</u>, <u>C.albicans</u>). Nedostatak kombinovane obrade se ogleda u lošoj postojanosti na pranje. Za razliku od antimikrobne zaštite, maksimalan nivo UV zaštite tkanina (50+) je postignut i nakon pet ciklusa pranja. Dobra postojanost nanočestica TiO₂ na tkaninama je utvrđena i ispitvanjem njihove fotokatalitičke aktivnosti u vodenom rastvoru boje metilensko plavo. Svi uzorci su pokazali odličnu fotokatalitičku aktivnost i nakon tri ciklusa fotodegradacije.

11. LITERATURA

- Abidi, N., Cabrales, L., Hequet, E., ACS Appl. Mater. Inter. 1 (2009) 2141.
- Abramov, O.V., Gedanken, A., Koltypin, Y., Perkas, N., Perelshtein, I., Joyce, E., Mason, T.J., *Surf. Coat. Technol.* **204** (2009) 718.
- Amor, S.B., Jacques, M., Fioux, P., Nardin, M., Appl. Surf. Sci. 255 (2009) 255.
- Arabatzis, I.M., Stergiopoulos, T., Bernard, M.C., Labou, D., Neophytides, S.G., Falaras,
- P., Appl. Catal. B- Environ. 42 (2003) 187.
- Arroyo, Y., Lavanchy, J.C., Kiwi, J., Appl. Catal. B- Environ. 91 (2009) 481.
- Becheri, A., Dürr, M., Nostro, P.L., Baglioni, P., J. Nanopart. Res. 10 (2008) 679.
- Bozzi, A., Yuranova, T., Guasaquillo, I., Laub, D., Kiwi, J., *J. Photoch. Photobio. A*, **174** (2005 a) 156.
- Bozzi, A., Yuranova, T., Kiwi, J., J. Photoch. Photobio. A 172 (2005 b) 24.
- Bouras, P., Stathatos, E., Lianos, P., Tsakiroglou, C., *J., Appl. Catal. B- Environ* **51** (2004) 275.
- Boydoun, D., Amal, R., Low, G., McEvoy, S., J. Nanopart. Res. 1 (1999) 439.
- Böttcher, H., Mahltig, B., Sarsour, J., Stegmaier, T., J. Sol-Gel Sci Technol. 55 (2010) 177.
- Brzeziński, S., Tracz, A., Polowiński, S., Kowalczyk, D., J. Appl. Polym. Sci. 116 (2010) 3659.
- Carp, O., Huisman, C.L., Reller, A., Prog. Solid State Ch. 32 (2004) 33.
- Chandramouleeswaran, S., Mhaske, S.T., Kathe, A.A., Varadarajan P.V., Prasad, V., Vigneshwaran, N., *Nanotechnology* **18** (2007) 385702.
- Chang, C.C., Lin, C.K., Chan, C.C., Hsu, C.S., Chen, C.Y., *Thin Solid Films* **494** (2006) 274.
- Chemseddine, A., Moritz, T., Eur. J. Inorg. Chem. (1999) 235.
- Chen, X., Mao, S.S., Chem. Rev. 107 (2007) 2891.
- Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Belve-Zahero, Z., D'Alessio, M., Zambonin, P.G., Traversa, E., *Chem. Mater.* **17** (2005) 5255.
- Corradi, A.B., Bondioli, F., Focher, B., Ferrari, A.M., Grippo, C., Mariani, E., Villa, C., J. Am. Ceram. Soc. 88 (2005) 2639.
- Courrol, L.C., Silva, F.R.D.O., Gomes, L., Colloid. Surface A 305 (2007) 54.
- Cubillo, E. A., Pecharromá, C., Aguilar, E., Santarén, J., Moya, J.S., J. Mater. Sci. 41 (2006) 5208.
- Cung, C., Lee, M., Kyung, C., Carbohyd Polym. 58 (2004) 417.

- Dai, X.J., Hamberger, S.M., Bean, R.A., Aust. J. Phys. 48 (1995) 939.
- Daoud, W.A., Leung, S.K., Tung, W.S., Xin, J.H., Cheuk, K., Qi, K., Chem. Mater. 20 (2008) 1242.
- Daoud, W.A., Xin, J.H., J. Sol-Gel Sci. Techn. 29 (2004 a) 25.
- Daoud, W.A., Xin, J.H., J. Am. Ceram. Soc. 87 (2004 b) 953.
- Dastjerdi, R., Montazer, M., Colloid. Surface B 79 (2010) 5.
- Dawson, T.L., Color. Technol. 124 (2008) 261.
- DeGeyter, N., Morent, R., Leys, C., Plasma Sources Sci. Technol. 15 (2006) 78.
- DeGeyter, N., Morent, R., Leys, C., Gengembre, L., Payen, E., Van Vlieberghe, Schacht, E., Surf. Coat. Tech. 202 (2008) 3000.
- Dong, H., Hinestroza, J.P., ACS Appl. Mater. Inter. 1 (2009) 797.
- Dong, Y., Bai, Z., Zhang, L., Liu, R., Zhu, T., J. Appl. Polym. Sci. 99 (2006) 286.
- Duran, N., Marcato, P.D., De Souza, G.I.H., Alves, O.S., Esposito, E., J. Biomed. Nanotechnol. 3 (2007) 203.
- Fras, L., Johansson, L.S., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., *Colloid. Surface* A. **260** (2005) 101.
- Fuishima, A., Zhanog, X., Tryk, D.A., Surf. Sci. Rep. 63 (2008) 515.
- Furlong, D.N., Parfitt, C. D., J. Colloid. Interface. Sci. 65 (1978) 548.
- Gaya, U. M., Abdullah, A.H., J. Photoch. Photobio. C 9 (2008) 1.
- Gonclaves, G., Mariques, P.A.A.P., Pinto, R.J.B., Trindade, T., Neto, C.P., Compos. Sci. Technol. 69 (2009) 1051.
- Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey. E.C., J. Mater. Res. 16 (2001) 3331
- Gouda, M., Hebeish, A., J. Ind. Text. 39 (2010) 203.
- Gressel-Michel, E., Chaumont, D., Stuerga, D., J. Colloid Interface Sci. 285 (2005) 674.
- Hecht, D.S., Hu, L., Grüner, G., Curr. Appl. Phys. 7 (2007) 60.
- Hipler, U.C., Elsner, P., Fluhr, J.W., J. Biomed. Mater. Res. B 77 (2005) 156.
- Hirano, M., Nakahara, C., Ota, H., Tanaike, O., Inagaki, M., J. Solid State Chem. 170 (2003) 39.
- Hoda, S., H., Mater. Lett. 63 (2009) 1471.
- Hofmann, M.R., Martin, S.T., Choi, W., Banhnemann, D.W., Chem. Rev. 95 (1995) 69.
- Hu, C., Yu, J.C., Hao, Z., Wong, P.K., J. Appl. Catal. B- Environ. 42 (2003) 47.
- Hu, Z., Chan, W.L., Szeto, Y.S., J. Appl. Polym. Sci. 108 (2008) 52.
- Jeong, S.H., Hwang, Y.H., Yi, S.C., J. Mater. Sci. 40 (2005) 5413.

- Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S., *Colloid. Surface B* **77** (2010) 257.
- Kang, S., Pinault, M., Pfefferle, L.D., Elimelech, M., Langmuir 23 (2007) 8670.
- Kelly, F.M., Johanson, J.H., Richardson, M.J., "Proc. 7th AUTEX Conference", Tampere, Finland (2007), CD-ROM.
- Kim, H.S., Park, B.H., Yoon, J.S., Jin, H.J., Polym. Int. 56 (2007) 1035.
- Kim, K.D., Han, D.N., Lee, J.B., Kim, H.T., Scripta Mater. 54 (2006) 143.
- Kim, K.D., Kim, S.H., Kim, H.T., Colloids Surf. A 254 (2005) 99.
- Kiwi, J., J. Photochem. Photobio. A. 181 (2006) 363.
- Kiwi, J., Nadtochenko, V., Langmuir 21 (2005) 4631.
- Kolen'ko, Y.V, Burukhin, A. A., Churagulov, B.R., Oleynikov, N.N., *Mater. Lett.* 57 (2003) 1124.
- Kolen'ko, Y.V, Maximov, V.D., Garshev, A.V., Meskin, P.E., Oleynikov, N.N., Chragulov, B.R., *Chem. Phys. Lett.* **388** (2004) 411.
- Kontturi, E., Thüne, P.C., Niemantsverdriet, J.W., Polymer 44 (2003) 3621.
- Ledakowitz, J.S., Lewartowska, J., Kudzin, M., Jesionowski, T., Stefanska, K.S., Krysztafkiewicz, A., *Fibres Text. East. Eur.* **16** (2008) 112.
- Ledakowitz, J.S., Lewartowska, J., Kudzin, M., Jesionowski, T., Stefanska, K.S., Krysztafkiewicz, A., *J. Mater. Sci.* 44 (2009) 3852.
- Lazić, V., Doktorska Disertacija, TMF, Beograd (2010).
- Lee, H.J., Jeong, S.H., Text. Res. J. 75 (2005) 551.
- Lee, H.J., Yeo, S.Y., Jeong, S.H., J. Mater. Sci. 38 (2003) 2199.
- Lee, Q.T., Pireaux, J.J., Verbist, J.J., Surf. Interface. Anal. 22 (1994) 224.
- Lei, Y., Zhang, L.D., Fan, J.C., Chem. Phys. Lett. 338 (2001) 231.
- Leroux, F., Perwuelz, A., Campagne, C., Behary, N., J. Adhesion. Sci. Technol. 20 (2006) 939.
- Li, Q., Chen, S.L., Jiang, W.C., J. Appl. Polym. Sci. 103 (2007) 412.
- Liu, S., Huang, K., Sol. Energy Mater. Sol. Cells 85 (2004) 125.
- Liu, Y., Liu, C., Rong, Q., Zhang, Z., Appl. Polym. Sci. 220 (2003) 7.
- Liu, X., Yu, W., Xu, P., Fiber. Polym. 9 (2008) 455.
- Liuxue, Z., Xiulian, L., Peng, L., Zhixing, S., Surf. Coat. Technol. 201 (2007) 7607.
- Lu, Z.X., Zhou, L., Zhang, Z.L., Shi, W.L., Xie, Z.X., Xie, H.Y., Pang, D.W., Shen, P., *Langmuir* **19** (2003) 8765.
- Mahltig, B., Heufe, H., Böttcher, H., J. Mater. Chem. 15 (2005) 4385.

- Mahltig, B., Textor, T., "Nanosols and Textiles", World Scientific Publishing Co. Pte. Ltd. (2008)
- Maness, P.C., Smolinski, S., Blake, D.M., Huang, Y., Wolfrum, E.J., Jacoby, W.A., *Appl. Environ. Microb.* **65** (1999) 4094.
- Martínez, N.N., Martínez-Castañón, G.A., Aragón-Piña, A., Martínez-Gutierrez, F., Martínez-Mendoza, J.R., Ruiz, F., *Nanotechnology* **19** (2008) 1.
- Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T., Appl. Environ. Microb. 54 (1988) 1330.
- Mejia, M.I., Marin, J.M., Restrepo, G., Pulgarin, C., Mielczarski, E., Mielczarski, J., Mielczarski, Arroyo, Y, Lavanchy J.C., Kiwi, J., *Appl. Catal. B- Environ.* 91 (2009) 481.
- Miao, L., Tanemura, S., Toh, S., Kaneko, K., Tanemura, M., J. Cryst. Growth 264 (2004) 246.
- Mills, A., Lee, S.K., J. Photoch. Photobio. A 152 (2002) 233.
- Mills, A., Le Hunte, S., J. Photochem. Photobil. A. 14 (1992) 369.
- Mondal, S., Hu, J.L., J. Appl. Sci. 103 (2007) 3370.
- Montazer, M., Pakdel, E., Photochem. Photobio. 86 (2010) 255.
- Morent, R., De Geyter, N., Leys, C., Gengembre, L., Payen, E., Surf. Coat. Technol. 201 (2007a) 7847.
- Morent, R., De Geyter, N., Leys, C., Gengembre, L., Payen, E., Text. Res. J. 77 (2007b) 471.
- Nersisyan, H.H., Lee, J.H., Son, H.T., Won, C.W., Maeng, D.Y., *Mater. Res. Bull.* 38 (2003) 949.
- Panhuis, M., Wu, J., Ashraf, S.A., Wallace, G.G., Synthetic Met. 157 (2007) 358.
- Pappas, D., Bujanda, A., Demaree, J.D., Hirvonen, J.K., Kosik, W., Jensen, R., McKnight, S., Surf. Coat. Tech. 201 (2006) 4384.
- Pavlikova, S., Thomann, R., Reichert, P., Mulhaupt, R., Marcincin, A., Borsig, E., J. Appl. Polym. Sci. 89 (2003) 604.
- Paul, R., Bautista, L., Varga, M., Botet, J.M., Casals, E., Puntes, V., Marsal, F., *Text. Res. J.* 80 (2010) 444.
- Peng, X., Chen, A., J. Mater. Chem. 14 (2004) 2542.
- Perelshtein, I., Applerot, G., Perkas, N., Guibert, G., Mikhailov, S., Gerdanken, A., *Nanotechnology* **19** (2008) 1.
- Pradhan, S.K., Reucroft, P.J., Yang, F., Dozier, A., J. Cryst. Growth 256 (2003) 83.
- Qi, K., Xin, J.H., Daoud, W.A., Mak, C.L., Int. J. Appl. Ceram. Technol. 4 (2007) 554.

Rai, M., Yadav, A., Gade, A., Biotechnol. Adv. 27 (2009) 76.

- Raih, T., Ostafin, A.E., Mićić, O.I., Tiede, D.M., Thurnauer, M.C., J. Phys. Chem. 100 (1996) 4538.
- Radetić M., Ilić, V., Vodnik, V., Dimitrijević, S., Jovančić, P., Šaponjić, Z., Nedeljković, J.M., Polym. Adv. Technol. 19 (2008) 1816.
- Radetić M., Petrović, Z., Hem. Ind. 58 (2004) 55.
- Ren, G., Hu, D., Cheng, E.W.C., Vargas-Reus, M.A., Reip, P., Allaker, R.P., Int. Antimicrob. 33 (2009) 587.
- Richardson, M.J., Johnson, J.H., J. Colloid Interf. Sci. 310 (2007) 425.
- Robertson, P.K.J., Bahnemann, D.W., Robertson, J.M.C., Wood, F., *Hdb. Env. Chem.* **2** (2005) 367.
- Saito, T., Iwase, Z., Morioka, T., J. Photochem. Photobiol. B. Biol. 14 (1992) 369.
- Sathishkumar, M., Sneha, K., Won, S.W., Cho, C.W., Kim, S., Zun, Z.S., *Colloid. Surface B* **73** (2009) 332.
- Scartel, B., Pötschke, P., Knoll, U., Abdel-Goad, M.A., Eur. Polym. J. 41 (2005) 1061.
- Seifried, S., Winterer, M., Hahn, H., Chem. Vap. Deposition 6 (2000) 239.
- Stylidi, M., Kondarides, D.I., Verykios, X.E., J., Appl. Catal. B- Enviro. 40 (2003) 271.
- Sun, D., Stylios, G.K., J. Mater. Process. Tech. 74 (2006) 172.
- Sunada, K., Watanabe, T., Hashimoto, K., J. Photoch. Photobio. A 156 (2003) 227.
- Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A., *Environ. Sci. Technol.* **32** (1998) 726.
- Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M., Bae, Y.C., *J. Photoch. Photobio. A* **163** (2004) 37.
- Šaponjić, Z.V., Csencsits, R., Raih, T., Dimitrijević, N., Chem. Mater. 15 (2003) 4521.
- Thompson, R.C. Inorganic. Chem. 23 (1984) 1794.
- Topalović, T., Nierstrasz, V.A., Bautista, L., Jocić, D., Navaro, A., Warmoeskerken, M.M.C.G., *Colloid. Surface A* **296** (2007) 76.
- Topola, I., Dumitrascu, N., Pohoata, V., Plasma Chem. Plasma Process. 28 (2008) 535.
- Tourrette, O., De Geyterb, N., Jocić, D., Morent, R., Warmoeskerken, M.M.C.G., Leyes, C., Colloid. Surface A 352 (2009) 126.
- Tran, H., Scott, J., Chiang, K., Amal, R., J. Photoch. Photobio. A 183 (2006) 41.
- Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L., *J. Am. Chem. Soc.* **121** (1999) 1613.
- Tung, S.Z., Daoud, W.A., J. Colloid. Interface. Sci. 326 (2008) 283.

- Tung, S.W., Daoud, W.A., Leung K.S., J. Colloid Interface Sci. 339 (2009) 424.
- Tung, W.S., Daoud, W.A., Acta Biomater. 5 (2009 a) 50.
- Tung, W.S., Daoud, W.A., J. Appl. Polym. Sci. 112 (2009 b) 235.
- Uddin, M.J., Cesano, F., Bertarione, S., Bonino, F., Bordiga, Scarano, D., Zecchina, A., J. *Photoch. Photobio. A* **196** (2008) 165.
- Uddin, M.J., Cesano, F., Bonino, F., Bordiga, S., Spoto, G., Scarano, D., Zecchina, A., J. *Photoch. Photobio. A* **189** (2007) 286.
- Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C., *J. Mater. Res.* 18 (2003) 156.
- Veronovski, N., Smole, M.S., Viota, J.L., Text. Res. J. 80 (2010) 55.
- Vohra, A., Goswami, D.Y., Deshpande, D.A., Block, S.S., J. Ind. Microbiol. Biotechnol. 32 (2005) 364.
- Wang, R., Xin, J.H., Tao, X.M., Daoud, W.A., Chem. Phys. Lett. 398 (2004) 250.
- Wei, Q., Liu, Y., Hou, D., Huanh, F., J. Mater. Process. Tech. 194 (2007) 89.
- Wei, Q., Yu, L., Wu, N., Hong, S., J. Ind. Text. 37 (2008) 275.
- Wong W., Chan, K., Yeung, K.W., Tsang, Y.M., Lau, K.S., J. Mater. Process. Tech. 103 (2000) 225.
- Wu, D., Long, M., Zhou, J., Cai, W., Zhu, X., Chen, C., Wu, Y., Surf. Coat. Tech. 203 (2009) 3728.
- Wu, J.M., Zhang, T.W., Zeng, Y.W., Hayakawa, S., Tsuru, K., Osaka, A., *Langmuir* 21 (2005) 6995.
- Xin, J.H., Daoud, W.A., Kong, Y.Y., Text. Res. J. 74 (2004) 97.
- Xu, P., Liu, X., Wang, W., Chen, S., J. Appl. Polym. Sci. 102 (2006) 1478.
- Xu, T., Xie, C.S., Prog. Org. Coat. 46 (2003) 297.
- Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D., Sundaramoorthy, C., Vigneshwaran, *Bull. Mater. Sci.* **29** (2006) 641.
- Yang, H., Zhu, S., Pan, N., J. Appl. Polym., Sci. 92 (2004) 3201.
- Yang, L., Chen, J., Guo, Y., Yheng, Y., Appl. Surf. Sci. 255 (2009) 4446.
- Yu, D.G., Colloid. Surface B 59 (2007) 171.
- Yu, J.C., Yu, J., Ho, W., Zhang, L., Chem. Commun. (2001) 1942.
- Yuen, C.W.M., Kan, C.W., J. Appl. Polym. Sci. 104 (2007) 3214.
- Yuranova, T., Laub, D., Kiwi, J. Catal. Today 122 (2007) 109.
- Yuranova, T., Mosteo, R., Bandara, J., Laub, D., Kiwi, J., *J. Mol. Catal. A- Chem.*,244 (2006 b) 160.

- Yuranova, T., Ricon, A.G., Pulgarin, C., Laub, D., Xantopoulos, N., Mathieu, H.J., Kiwi, J., J. Photoch. Photobio. A. 181 (2006 a) 363.
- Zhang, C., Fang, K., Surf. Coat. Tech. 203 (2009) 2058.
- Zhang, D., Qi, L., Ma, J., Cheng, H., J. Mater. Chem. 12 (2002) 3677.
- Zhang, H. i Chen, G., Environ. Sci. Technol. 43 (2009) 2905.
- Zhang, Y., Peng, H., Huang, W., Zhou, Y., Yan, D., J. Colloid Interf. Sci 325 (2008) 371.

Прилог 1.

Изјава о ауторству

Изјављујем да је докторска дисертација под насловом

Multifunkcionalna svojstva tekstilnih materijala modifikovanih

nanočesticama titan-dioksida

- резултат сопственог истраживачког рада,
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис

У Београду, ____11. 04. 2014. _____

Japia Maprobit

Прилог 2.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Multifunkcionalna svojstva tekstilnih materijala modifikovanih

nanočesticama titan-dioksida

која је моје ауторско дело.

Сагласан/на сам да електронска верзија моје дисертације буде доступна у отвореном приступу.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

3. Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство - делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци дат је на следећој страници.)

Потпис Гария Марковичу

У Београду, ____11.04.2014._____

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.