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Optička i mehanička svojstva hibridnih kompozitnih svetlovodnih 
vlakana 

Rezime 

U uvodu istaknut je značaj istraživanja u oblasti nanokompozitnih materijali na 
bazi oksida aktiviranih jonima lantanida koji imaju veoma značajnu primenu za izradu 
lasera, laserskih i LED dioda, luminescentnih lampi, displeja, optičkih vlakana, 
biomedicinskih markera itd. Za primenu posebno su od interesa emisije uskog 
energetskog opsega, dugo vreme života pobuđenih elektronskih stanja (fosforescencija) 
i fotohemijska stabilnost. U zavisnosti od načina pobuđivanja, luminescencija se može 
podeliti na: a) fotoluminescenciju (PL) – posledica apsorpcije elektromagnetnog 
zračenja, b) elektroluminescencija – posledica apsorpcije električnog polja, c) 
radioluminescencija – posledica jonizujućeg zračenja, d) katodoluminescencija – 
posledica interakcije snopa elektrona velike brzine sa tankim slojem fluorescentne 
supstance, e) hemiluminescencija – posledica pretvaranja hemijske energije u svetlosnu, 
f) bioluminescencija. Predmet ove doktorske disertacije su luminiscentni materijali. 
Kada se fosforescentna čestica izloži dejstvu eksitacionog izvora, kao što je 
ultraljubičasta (UV) ili vacuum-UV (VUV) svetlost, ona prolazi kroz proces apsorpcije, 
relaksacije i emisije. Svetlost se apsorbuje od strane materijala domaćina i apsorbovana 
energija se prenosi sa materijala domaćina na aktivator (luminescentni centar). 
Aktivator na kraju emituje vidjivu svetlost preko mehanizma prenosa energije. 
Fotoekscitacija na određenoj talasnoj dužini u bliskoj infracrvenoj oblasti koja je 
praćena luminiscencijom na kraćim talasnim dužinama u vidljivoj svetlosti se naziva 
prelaz iz bliske infracrvene u vidljivu oblast. To je veoma neobična pojava jer se fotoni 
niže energije „pretvaraju“ u fotone sa višom energijom. Najmanje dva fotona u 
infracrvenoj oblasti su potrebna za generisanje jednog fotona u vidljivoj oblasti. 
Upkonverzija se uglavnom dešava u materijalima u kojima procesi relaksacije više 
fotona ne dominiraju, što omogućava više od jednog metastabilnog stanja. U 
jedinjenjima retkih zemalja, elektroni 4f i 5f su efikasno zaštićeni i samim tim nisu 
značajnije vezani- metal-ligand. Kao posledica toga, spoj elektron-fonon na f-f 
prelazima se smanjuje, a proces otpuštanja više fonona je manje konkurentan. Fenomen 
upkonverzije je zbog toga najčešće proučavan na materijalima koji sadrže jone 
lantanida. Kada neki medijum (na primer laser) emituje fosforescenciju kao posledicu 
ekscitacije sa upadnom svetlošću, talasna dužina je duža od ekscitovane svetlosti. To 
znači da se smanjuje energija fotona. Međutim, pod izvesnim okolnostima može doći do 
upkonverzije fluorescencije gde je talasna dužina emitovane svetlosti kraća. To je 
moguće putem ekscitacionih mehanizama koji uključuju više od jednog apsorbovanog 
fotona. Upconverzija fluorescencije se može potisnuti kada imamo mnogo prelaza 
fotona, jer oni mogu smanjiti život metastabilnih nivoa. Vlakna sa niskom 
maksimalnom energijom fotona, kao što su neka fluoridna vlakna, imaju mnogo slabije, 
više fononske procese, pa stoga i jači upkonverziju.  

 U drugom poglavlju dat je prikaz luminiscentnih materijala. Luminescentni 
materijali, zvani fosfori konvertuju neki tip energije u elektromagnetno zračenje, 
najčešće u vidljivoj oblasti, mada se može javiti i u ultraljubičastoj i infracrvenoj 
oblasti. Ovi materijali su uglavnom neorganska jedinjenja u formi prahova ili tankih 
filmova, koji sadrže odgovarajuće jone, odnosno aktivatore. Aktivator apsorbuje 
pobuđujuće zračenje, prelazi u pobuđeno stanje, nakon čega se vraća u osnovno stanje 
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na dva konkurentna načina: radijativnom emisijom ili neradijativnim procesima. Da bi 
fosfor bio efikasan potrebno je neradijativne procese svesti na minimum. Ponekad se u 
matricu fosfora dodaju i joni koji poboljšavaju luminescenciju na taj način što apsorbuju 
zračenje, zatim ga u procesu transfera energije predaju jonu aktivatora koji dalje vrši 
emisiju. Bitne karakteristike fosfora su spektralna distribucija energije emisije (emisioni 
spektar) i pobuđivanja (ekscitacioni spektar), kao i odnos brzina radijativnih i 
neradijativnih prelaza u osnovno stanje. Tipični aktivatori fosfornih materijala su joni 
retkih zemalja i prelaznih metala, kao i molekularni anjoni, kao što su volframatne i 
vanadatne grupe. Joni retkih zemalja i prelaznih metala se dodaju u veoma maloj 
količini, reda veličine nekoliko atomskih procenata, pa je samim tim međusobna 
interakcija tih jona zanemarljiva. Joni prelaznih metala se formiraju kada se uklone 
elektroni iz spoljašnjih 4s orbitala neutralnih atoma. Na taj način se formiraju joni 3d 
konfiguracije, gde su 3d orbitale velikih radijusa i izložene su uticaju okolnih atoma 
matrice. Joni retkih zemalja se formiraju uklanjanjem 6s elektrona, ostavljajući optički 
aktivne 4f orbitale unutar popunjenih 5s i 5p ljuski. To znači da su one malog radijusa i 
da su delom zaštićene od spoljašnjeg uticaja matrice. Zato se može reći da optičke 
karakteristike jona prelaznih metala umnogome zavise od kristalne strukture matričnog 
materijala i značajno se razlikuju u odnosu na slobodne jone. Nasuprot tome, joni retkih 
zemalja zadržavaju slične optičke karakteristike i u kristalnoj rešetki različitih matričnih 
materijala. Zbog svega navedenog emisioni spektri fosfora dopiranih jonima retkih 
zemalja se sastoje od uskih, oštrih traka, dok fosfori dopirani jonima prelaznih metala 
daju spektre širokih traka. Itrijum-oksid je jedan od najznačajnijih materijala u koji se 
ugrađuju joni retkih zemalja radi dobijanja efikasnih svetlosnih izvora. Poseduje 
hemijsku i visokotemperatursku stabilnost (temperatura topljenja 2430 ºC), veliki 
energetski procep (Eg=5,8 eV) u koji se lako smeštaju osnovni i pobuđeni elektronski 
nivoi jona retkih zemalja, transparentan je u opsegu talasnih dužina od 280 nm do 8 μm 
i poseduje veliku toplotnu provodnost. Kada je dopiran trovalentnim jonima Eu i Tb 
efikasno emituje crvenu i zelenu svetlost pod pobudom visokoenergetskog zračenja 
(gama, X ili ultraljubičasti zraci), dok dopiran dvovalentnim jonima Eu emituje plavu 
svetlost. U slučaju dopiranja trovalentnim jonima Er, Ho, Nd i Tm moguće je ostvariti 
emisiju u bliskoj infracrvenoj oblasti. Sa istim jonima moguće je i dobiti emisiju u 
ultraljubičastoj, plavoj, zelenoj i crvenoj oblasti spektra nakon pobude u bliskom 
infracrvenom delu spektra. Ova ,,up-converted“ emisija, odnosno emisija fotona veće 
energije od energije pobudnih fotona, ima danas primene za izgradnju lasera i detektora 
zračenja. 

U trećem poglavlju dat je literaturni pregled stanja luminiscentnih 
nanokompozitnih materijala. Mnoge aplikacije luminescentnih materijala zahtevaju 
visoku čvrstoću i homogenost raspodele aktivatora, kao i čestice nanometarskih 
dimenzija. Primena nanostrukturnih materijala se zasniva na veoma velikoj specifičnoj 
površini i činjenici da male čestice nude dodatne mogućnosti za manipulaciju i prostor 
za dopiranje aktivatorima. Izazovi u vezi sa sintezom luminescentnih nanomaterijala 
potiču najpre od zahteva za malom veličinom čestica, zatim za uniformnom raspodelom 
čestica, identičnim oblikom i morfologijom, istim hemijskim sastavom i kristalnom 
strukturom. Dalje, od izvanredne je važnosti uniformno i homogeno distribuirati aktivne 
primese u materijalu. Svi ovi zahtevi vode do toga da se traže nove metode sinteze u 
cilju poboljšanja karakteristika i performansi fosfora. Usled brzog napretka u 
nanotehnologijama, a posebno zbog razvoja novih metoda za sintezu nanomaterijala, 
raste interes za istraživanje svojstava i primenu nanostrukturnih materijala dopiranih 
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jonima retkih zemalja. Poseban značaj istraživanjima daje moguća primena za izgradnju 
visokorezolucionih displeja i bioloških markera. Nanomaterijali imaju mnoga svojstva 
koja uzrokuju da joni retkih zemalja ugrađeni u njih imaju drugačiju emisiju svetlosti u 
poređenju sa istim materijalom mikrometarskih dimenzija. Na primer, odnos površine 
prema zapremini nanočestica je značajno veći nego kod mikrometarskih čestica, pa se 
veliki broj dopantskih jona nalazi blizu površine. U takvom asimetričnom kristalnom 
okruženju njihova emisija se razlikuje od emisije iz regularnih kristalografskih položaja. 
Kvantizirajući efekat se javlja kada su dimenzije čestica iste veličine ili manje od nekih 
,,karakterističnih dužina“ kao što su talasna dužina fonona. Efekti kvantnog konfiniranja 
menjaju preklapanja talasnih funkcija dopantskih jona i jona materijala u koje su 
ugradjeni, što često dovodi do mnogo efikasnijih interakcija između tih jona. Na primer, 
u nanokristalnom Gd2O3 (Eu3+) efikasnost emisije raste proporcionalno sa kvadratom 
smanjenja čestice. Nanokristalni monoklinični Y2O3 ima duže vreme emisije nego što je 
primećeno u makro kristalu. Ustanovljeno je da nanočestice imaju veću kvantnu 
efikasnost emisije, kao i drugačiji odnos boja emitovane svetlosti pri upkonverziji. Osim 
toga, nove metode sinteze omogućavaju dobijanje specifičnih morfologija čestica 
(nanocevi, nanodiskovi), kao i „core-shell” čestica sa unapređenim optičkim svojstvima.  

U četvrtom poglavlju dat je literaturni pregled najnovijih modifikacija kod 
polimernih optičkih vlakana (POV) koji se koriste za izradu svetlovoda. Ključne 
prednosti POV tehnologije u odnosu na druga kablovska rešenja mreža za pristup sastoji 
se u jednostavnosti izrade instalacije, kabl ima mali prečnik, malu gustinu, fleksibilan 
je, potpuno je imun na EMI, otporan je na vlagu, koroziju i prašinu. Rad sa POV 
vlaknima je potpuno bezbedan, za prenos se može koristiti svetlosni signal u vidljivom 
spektru koji je bezopasan za vid, a provera veza je izuzetno jednostavna pošto je signal 
vidljiv i golim okom. Medutim, da bi POV vlakna zauzela svoje mesto u mrežama za 
pristup najnovije generacije potreban je dalji rad na: usavršavanje optoelektronskih 
komponenti primopredajnika za rad pri brzinama od nekoliko Gb/s uz poboljšanje 
linearnosti, propusnog opsega i pouzdanosti; razvoj lasera i fotodioda za montažu na 
štampanim pločicama, pogodnih za višežilne POV kablove; razvoj višežilnih (ribbon) 
POV kablova; razvoj za rukovanje i instalisanje veoma jednostavnih konektora i 
kablova, čime bi se obezbedila niska cena instalisanja i pružila mogucnost za izradu 
instalacije po principu uradi sam; proširenje propusnog opsega primenom novih 
tehnologija i usavrsenih modulacionih postupaka. U novije vreme za izradu jezgra POV 
vlakna koriste se deuterirani PMMA i perfluorirani polimeri, kojima se značajno 
smanjuje slabljenje i povećava propusni opseg vlakana. Slabljenje deuteriranih polimera 
povezano je sa samom tehnologijom izrade vlakna, ali je tipično za red veličine manje 
od slabljenja kod PMMA polimera. Do sada su najbolji rezultati po pitanju slabljenja 
vlakna postignuti sa materijalom CYTOP (Cyclic Transparent Optical Polymer) sa 
kojim je ostvareno slabljenje reda 10 dB/km na talasnim dužinama od 1300 nm. Može 
se očekivati da će vlakna izrađena korišcenjem CYTOP materijala imati slabljenje 
manje od 1 dB/km. S obzirom da se kod vlakana od perfluoriranih polimera prenos vrši 
unutar spektra od 650 nm do 1300 nm, sa ovim vlaknima se mogu koristiti komponente 
razvijene za staklena vlakna koje rade na talasnim dužinama od 850 nm do 1300 nm. Na 
osnovu izvršenih analiza i prikazanih rezultata može se zakljuciti da nova polimerna 
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optička vlakna, pružaju znacajne prednosti u odnosu na druge kablovske strukture. Na 
ovom mestu je potrebno istaći da šira primena optičkih vlakana u realizaciji mreža za 
pristup i kućnih lokalnih mreža ne isključuje buduću primenu bežičnih tehnologija u 
ovim segmentima komunikacionog sistema. Bežicni prenos, koji se odvija pri brzinama 
reda 100 Mb/s, ostaje prisutan unutar objekata korisnika, ali se podrazumeva da kičmu 
ovog sistema čini optička kablovska struktura koja dozvoljava prenos pri brzinama od 
nekoliko Gb/s. 

U petom poglavlju dat je prikaz mogućnosti dinamičko-mehaničke anlize 
(DMA) kod polimernih materijala. DMA je opšti naziv metode za dinamičko-
mehaničko deformisanje uzorka i merenje odziva materijala. Deformacija može imati 
sinusoidnu, stepenastu, konstantnu vremensku zavisnost ili da raste unapred zadatom 
brzinom. Odziv materijala na deformaciju se može pratitu kao funkcija temperature, ili 
vremena. Dinamičkom- mehaničkom analizom dobijaju se informacije o: a) 
mehaničkim svojstvima materijala (moduli absorbovane i izgubljene energije 
viskoelastičnih materijala tokom vremena i pri različitim temperaturama), b) pomeranja 
na molekularnom nivou i c) zavisnosti svojstvo-struktura ili morfologija. Mehanička 
svojstva polimera proističu iz hemijskog sastava polimera (diktira koja od mehaničkih 
svojstava će se promeniti) i molekularne strukture polimera (diktira način na koji će se 
promeniti mehanička svojstva). Kod amorfnog polimera imamo nasumičnu rasporelu 
polimernih lanaca kroz matricu, bez prisustva pravilnih struktura koje srećemo kod 
kristaliničnih i delimično kristaliničnih polimera. Zbog ove činjenice imamo kretanje 
molekula amorfnog polimara ispod tačke topljenja takvog kristalita. Sa povećanjem 
kretanja molekula u amorfnom polimeru, uzorak prolazi od staklaste, kroz gumoliku do 
tečne faze. Polimer prolazeći kroz različite faze, menja fizička svojstva pa samim tim 
može se analizirati mogućnost njegove primene. Zbog toga bitno je ispitati na koji način 
kretanje molekula amorfnog polimera, utiče na njegova fizička svojstva. Ova kretanja 
molekula zovu se relaksacija. Dinamičko-mehanička analiza daje karakterizaciju 
sledećih svojstava polimernih materijala: staklasti prelaz, sekundarni prelaz, 
kristaliničnost, nadmolekulsko strukturno-poprečno povezivanje, fazno razdvajanje 
(polimerne smeše, kopolimeri .....), kompoziti, starenje (fizičko i hemijsko), 
vulkanizacija mreža, orjentacija kao i efekte aditiva. Dinamičko-mehanička analiza 
(DMA) je jedna od najefikasnijih metoda za proučavanje ponašanja plastičnih i 
polimernih kompozitnih materijala i potencijalno može biti veoma korisna za simulaciju 
ponašanja polimernih optičkih vlakana (POV) u realnim primenama. 

U šestom poglavlju dati su eksperimentalni rezultati istraživanja ponašanja 
optičkih vlakana pod dinamičkim neizotermnim uslovima odnosno simultano merenje 
optičkih i dinamičko-mehaničkih svojstava polimernih optičkih vlakana. Mogućnost 
istovremenog merenja nekih optičkih svojstava za vreme DMA može značajno da 
unapredi proučavanje POV, samih ili ugrađenih u neki materijal. U ovom radu je 
opisano i diskutovano merenje mehaničkih svojstava POV pomoću 'single cantilever' 
DMA koje je izvršeno istovremeno sa merenjem intenziteta propuštene svetlosti kroz 
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POV. Kako bi se uporedili rezultati DMA koji su dobijeni za pravougaone i cilindrične 
uzorke od istog materijala, ista vrsta ispitivanja vršena je i na pravougaonim pločicama 
dobijenim topljenjem POV. U radu je pokazano da promene intenziteta optičkih signala 
odgovaraju promenama modula sačuvane energije POV za vreme DMA, a da dobijene 
maksimalne vrednosti optičkih signala označavaju početak procesa prelaza u staklasto 
stanje u materijalu od koga je napravljeno optičko vlakno. 

U sedmom poglavlju dati su rezultati eksperimentalnih istraživanja optičkih i 
mehaničkih svojstava PMMA-Y2O3 (Eu3+) nanokompozita. U okviru ovog rada 
prezentirano je istraživanje procesiranja i karakterizacije nanokompozitnog materijala 
PMMA-Y2O3 (Eu3+). Uzorci sa različitim sadržajem nanofosfora Y2O3 dopiranog sa Eu-
jonima procesirani su u laboratorijskom uređaju za umešavanje termoplastičnih 
polimera. Ispitivan je uticaj udela nanočestica na optička i dinamičko-mehanička 
svojstva kompozita. Intenzitet luminiscentnog emisionog spektra kompozita raste sa 
udelom nanofosfora. Rezultati DMA pokazuju da modul absorbovane energije, modul 
gubitaka i temperatura transformacije rastu sa povećanjem udela nanočestica. 
Mikrotvrdoća kompozita takođe raste sa povećanjem udela nanočestica u kompozitu i 
pokazuje skoro linearnu zavisnost sa temperaturom transformacije (Tg). 

U osmom poglavlju dati su rezultati istraživanja optičkih i mehaničkih svojstava 
PMMA-Gd2O3 (Eu3+) nanokompozita. U okviru ovog rada prezentirano je istraživanje 
procesiranja i karakterizacije nanokompozitnog materijala PMMA-Gd2O3 (Eu3+). 
Poseban značaj ovih istraživanja je u tome što je za dobijanje nanokompozita korišćena 
metoda elektropredenja što prema detaljnom literaturnom pregledu do sada nije 
objavljeno u literaturi. 

U devetom poglavlju dati su zaključci postignutih rezultata istraživanja koji 
odgovaraju zadatim ciljevima disertacije. Na kraju je dat spisak korišćene literature. 

Ključne reči:  Polimerna optička vlakna, Dinamičko mehanička analiza, 
Nanokompoziti, Luminiscencija, Mehanička svojstva, Mikrotvrdoća, nanofosfori, 
Elektropredenje, Nanoindentacija 

Naučna oblast: Hemija i hemijska tehnologija 

 

Uža naučna oblast: Nauka o materijalima i inženjerstvo materijala 
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OPTICAL AND MECHANICAL PROPERTIES OF HYBRID 
NANOCOMPOSITE LIGHT GUIDE FIBERS 

Abstract 

Dynamic Mechanical Analysis (DMA) is one of the most powerful tools to study the 

behavior of plastic and polymer composite materials and it is potentially very useful 

tool to simulate behavior of plastic optic fibers (POF) in real applications. Possibility of 

simultaneous measurements of some optical properties during DMA would significantly 

upgrade investigations of POF alone or embedded in some materials. In this work, 

single cantilever DMA of the POFs that was done simultaneously with measuring the 

transmitted optical signal intensity is described and discussed.  In order to compare 

mechanical results of the same material for cylindrical and rectangular specimens, 

rectangular plates were prepared by melting POFs and the same kind of tests were 

performed. It is shown that changing the optical signal intensity corresponds to the 

changes of storage modulus of the POF during DMA, and the maximums in optical 

signals intensity indicate the beginning of glass transition processes in the POF material. 

The results of a study related to the processing and characterization of PMMA-Y2O3 

(Eu3+) nanocomposites are presented herein. The nanocomposite samples were 

prepared using a laboratory mixing molder with different contents of Eu-ion doped 

Y2O3 nanophosphor powder. The influence of particle content on the optical and 

dynamic mechanical properties of the nanocomposites was investigated. The intensity 

of the luminescence emission spectra increased as the nanophosphor content in the 

composite increased. The results of dynamic mechanical analysis revealed that the 

storage modulus, loss modulus and glass transition temperature (Tg) of the polymer 

composites increased with increasing content of the nanophosphor powder. The 

microhardness data also confirmed that the hardness number increased with 

nanoparticles concentration in the PMMA nanocomposites. The obtained results 

revealed a relatively linear relationship between Tg and the Vickers hardness. 

This study reports research related to different preparation methods and characterization 

of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 

nanophosphor powder with different nanoparticle content was embedded in the matrix 

of PMMA. Preparation was carried out by mixing molding (bulk), electrospinning 
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(nanofibers) and solution casting (thin films) with neat particles and particles coated 

with AMEO silane. Among the pros and cons for proposed methods, the mixing 

molding enables to avoid solvent use while the best deagglomeration and nanoparticle 

distribution is gained using the electrospinning method.  The results of dynamic 

mechanical analysis (DMA) and nanoindentation revealed that the storage modulus of 

the composites was higher than that of pure PMMA and increased with nanophosphor 

content. Surface modification of particles improved the mechanical properties of 

nanocomposites. 

Keywords: Plastic optical fibers, Dynamic Mechanical Analysis, Nanocomposites, 

Luminescence, Mechanical properties, Microhardness., Nanophosphors, 

Electrospinning,  Nanoindentation 
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1. INTRODUCTION 
 

Nanostructure science and technology is a broad area of research and development 

activity that has been growing explosively worldwide in the past decades. It has the 

potential for revolutionizing the ways in which materials and products are syntheiszed 

and the range and nature of functionalities that can be accessed. It is already having a 

significant commercial effect, which will assuredly increase in the future. 

Of particular interest to materials scientists is the fact that nanostructure materials have 

higher surface areas than do normal materials. The effect of nanostructure on the 

properties of high surface area materials is an area of increasing importance to 

understanding, synthesing, and improving materials for wide applications. 

Nanocomposites are a distinct form of composite materials, which involve embedding 

nano- or molecular domain-sized particles into organic polymer, metal or ceramic 

matrix materials.1,2. The intimate inclusion of nanoparticles in these matrices can greatly 

change the mechanical, electrical, optical or magnetic properties of these materials. The 

reason for this is that with such small inclusions, a large amount of interfacial phase 

material exists in the bulk of these nanocomposites.  

This thesis is related to the processing and characterization of polymer–nanophosphor 

composites, as promising materials for the production of nanocomposite fibers. Plastic 

optical fibers (POF) can be used for a number of applications, such as light transmission 

for signs and illumination, sensors and data communication3,4,5. Signal attenuation of 

commercial polymer fibers is much higher than that of glass fibers. In order to improve 

POF optical efficiency, research and processing are being developed in the direction of 

nanocomposite POF doped with dyes, and fluorescent or phosphorescent nanopowder6 . 

The optical properties of nano-sized phosphors are significantly improved in 

comparison to bulk materials (stronger luminescence emission and modified radiative 

lifetime)7,8,9,10. Poly(methyl methacrylate), PMMA, nanocomposites containing Y2O3  

and Gd2O3 doped with rare earths (RE) ions have been investigated11,12 and it was 

suggest that doped Y2O3 nanocrystals embedded in PMMA would have potential for 
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various photonic applications, including laser systems and optical communication 

devices13. Nanocomposites PMMA-Y2O3:RE were successfully prepared by mixing 

Y2O3:Er3+, Yb3+ or Y2O3:Er3+ with PMMA for infrared cards14. The Eu-ion doped 

nanophosphor is useful for nanocomposite POF light guides because the luminescence 

wavelength of the Eu-ion (611 nm) is in the visible range of spectrum. It is very 

important to preserve their optical properties for a synergetic effect in functional 

nanocomposites. 

Nanotechnologies are now poised to revolutionize the electronic, chemical and 

biotechnology industries and biomedical fields. There are many interesting areas in 

nanotechnology. One of the most important aspects of this field is the preparation and 

development of nanomaterials, such as nanoparticles. There have been a variety of 

techniques for preparing different types of nanoparticles.  

 The perception of everyday world around us is generally biased. Most people never 

give a thought to size dependence of the fundamental properties of a material and, if 

they do, they tend to think that they are size independent. 

Size effect is already known for a decades. The pioneer was none other than the great 

Faraday who, in 1856, first started to study the size dependence of the physical 

properties of material. He used gold, which he started with very small pieces of gold 

(nanocrystalline gold) in solution and, by pressing them together, made bigger pieces of 

gold .Faraday distingushed that the colour of a metal can become size dependent below 

a certain critical size. What this critical size was, and why it was different for the 

different metals that he investigated, was something that Faraday did not understand, 

and could not have understood.  

Many years later, the first experiments were published that proved that this size 

dependence of material properties also applied to semiconductors. It was found that 

both the absorption and the emission of CdS shifted to shorter wavelengths for smaller 

crystal sizes. Again, a qualitative explanation was sought in terms of the reduced size of 

the CdS crystal. So, it had been experimentally proven that the fundamental properties 

of a material can become strongly dependent on the size of the material below a certain 

threshold size. It would take understanding of the structure of metals, the discovery of 
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the electron and the advent of quantum mechanics before, in the second half of the 20th 

century, a quantitative explanation was found.  

The explanation is: When a semiconductor crystal is illuminated with photons of 

sufficiently high energy then the light can be absorbed by the material. The absorption 

of light by the semiconductor usually results in the promotion of an electron from the 

valence band to the conduction band. Another way to describe this process, is to say that 

the absorption of light by the semiconductor results in the excitation of the 

semiconductor and the formation of an electron (in the conduction band) - hole (in the 

valence band) pair. Such an electron-hole pair is usually denoted by the term ‘exciton’ 

(Figure 1.1). 

 

Figure 1.1. Schematic presentation of excitation of semiconductor structure and 

creation of electron-hole pair (exciton)6. 

However, because of the potential step present at the surface of the crystal, the exciton 

wave function cannot extend beyond the edge of the crystal without a severe energetic 

‘penalty’. As a result, the total exciton wave function will have to be squeezed to fit into 

the crystal. This results in an increase in the kinetic energy of the exciton, usually called 

the “confinement energy”. When this happens there will be a change in the band 

structure of the semiconductor. This change is quite significant and consists of effects, 

which often referred to as “quantum size effects” 
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Nanoparticles are made out of metallic, semiconductor or insulating materials that are 

much smaller than the wavelength of light. In the last decades there has been much 

interest on nanoparticles made out of semiconductor materials, especially on II-VI 

semiconductor types, e.g. CdSe, CdTe, CdS, ZnS, etc., and III-V, e.g. GaAs 15,16,17.   

That was the first time that researcher became aware of the quantum confinement 

effects produced by the change of bulk semiconductor electronic properties with 

decreasing size. This effect occurs when the nanostructures themselves become smaller 

than a fundamental scale intrinsic to the substance. It was later proven that the exciton 

Bohr radius could determine this intrinsic scale. Since this effect is determined by 

hydrogen atom model of the exciton Bohr radius they were named ‘quantum dots’ or 

‘artificial atoms’. Quantum dots belong to the category of zero dimensional structures. 

They are made of few thousand atoms that keep the structural features of the bulk solid 

but particularly different electronic properties as a function of their size. 

With the advent of modern synthesis techniques, scientists have acquired the ability to 

create structures with dimensions on the nanometre scale. One major point in these 

developments has been the reduction of the dimension of particles from three-

dimensional bulk systems to two-dimensional, to one-dimensional, and finally to zero-

dimensional systems. When the size of all these particles becomes comparable with the 

de Broglie wavelength, a consequence of the wave nature of electrons, electrons 

confined in these particles shows quantum effects. 

The new electronic and optical properties of these reduced-dimensional particles, which 

can be controlled to a certain extent t, make these particles promising candidates for a 

variety of future applications that include improved semiconductor lasers and 

microelectronics. Quantum dots represent the ultimate reduction in the dimensionality 

of a semiconductor system. In these systems, electrons are confined in all directions. 

Therefore they have no kinetic energy (except the ubiquitous zero-point energy) and as 

a result they occupy spectrally sharp energy levels like those found in atoms. 

These zero-dimensional quantum confined particles are useful for considering the 

fundamental concepts of nanostructures as well as for its potential to act at the level of a 

single electron, certainly the ultimate limit for an electronic device. With a good 
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knowledge of their electrical and optical properties, scientists have now focused their 

attention on devices based on quantum dots. Some of the best examples are QD 

photodetectors, QD lasers and QD memory devices. Quantum dots have also found 

applications in fluorescence markers, exciton storage, a step toward smart pixels, 

quantum computing and quantum cryptography18,19,20 . 

Quantum size effects that are very well known by the box model can be also observed in 

absorption spectroscopy. The absorption bands shift to higher energies with decreasing 

quantum dot sizes, “blue shift”. It was proved that the optical band gap is blue shifting 

dramatically from the bulk size amount to the quantum sizes. Bellow exciton Bohr 

radius the absorption spectra shows a fine structure. Appearance of a fine absorption 

spectrum is due to the presence of discrete energy levels. Since the exciton levels 

become delocalized over the whole quantum dot the absorption spectra of this quantum 

dots will be affected by the exciton transitions 21.   

The emission spectra of most of the quantum dots consists of a single-broad emission 

band, which is symmetric and comes from states that fall in the quantum dot’s band gap. 

These states are not clear in absorption spectra. Photoluminescence spectroscopy may 

help distinguish the sub-structures that are present in the absorption spectra. However, 

the explanation of the emission spectra is more difficult to interpret than for the 

absorption spectra. The emission in CdSe quantum dots has an unusual long 

recombination lifetime of around 1 µs compared to that in the bulk of few nanoseconds. 

Moreover trapping of an exciton by the surface state defects may lead to nonradiative 

recombination pathways and therefore fluorescence quenching. Coating the quantum 

dot with a higher band gap material has been shown to improve the photoluminescence 

quantum yields by passivating the nonradiative recombination sites, e.g. CdSe/ZnS 

core-shell quantum dots. Quantum yield of the photoluminescence increased from about 

5% to 30-50% for this particular case. In very homogenous high quality QDs samples it 

has been observed that the fluorescence band exhibits a blue shift with decreasing size 

and they can be tuned from 470 to 625 nm, covering most of the visible spectra. This is 

a very important property for application of the quantum dots in biological 

application22. 
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Nanosize materials have become the focus of intensive fundamental and applied 

research. The strong interest on these materials arises from the viability on designing 

and building structures that exhibit outstanding electrical, mechanical, chemical, optical 

and magnetic properties compared to the bulk materials. This feature of nanosize 

materials allows the achievement of unique properties enabling them to be considered 

for a wide range of markets, including medicine, plastics, energy, electronics, and 

aerospace. In addition, nanocrystals are increasingly used in various medical systems, 

such as drug targeting, magnetic fluid hyperthermia, and magnetic resonance imaging 

(MRI), among others. In this regard, nanosize rare earth (RE)-doped phosphors become 

a very promising type of material in terms of both their fundamental and potential 

applications including solid state lasers, lighting and luminescence systems. In RE-

doped nanoparticles, emission lifetime, luminescence quantum efficiency, and 

concentration quenching can be affected by particle size23. 

Hybrid nanocomposites. In this thesis, the organic/inorganic optical nanocomposite is 

defined as a composite which consists of an organic host material and inorganic 

inclusions with a diameter of nanometer range (nano-inclusions). The essence of the 

research can be concisely described as follows: The important prerequisite is that the 

inorganic nano-inclusions are randomly dispersed in the organic host material without 

aggregation to form a heterogeneous composite structure as schematically drawn in 

Figure-1.2 

 

Figure 1.2. Schematic drawing of heterogeneous nanocomposite structure. 
 

When the nano-inclusions are randomly dispersed, the scattering arisen from the 

interaction between propagating light and nano-inclusions is substantially expressed by 
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the Rayleigh scattering theory. For this reason, high transparency could be maintained 

when the diameter of the nano-inclusion is optimized by taking into account the ratio of 

the refractive index of the nano-inclusion to that of the host material. The dielectric 

property of the nano-inclusions, as that of molecular assembly reflecting its structural 

characteristics such as molecular symmetry, chemical bonding property and electron 

distribution, appear in the effective dielectric property of the nanocomposite. This 

suggests that it would be possible to design and control the optical property of the  

nanocomposite by designing and controlling the nano-inclusion, which will finally 

appear in the average optical property of the nanocomposite. When amplifying this 

consideration, it is expected that one could create a novel material exhibiting an optical 

property, which cannot be exhibited by organic materials alone, while maintaining 

preferable transparency24. 

From an optical property control of view, the group of rare earth (RE) is a bonanza of 

optical phenomena, so to speak, for investigating on the development of a novel 

nanocomposite. During more than a hundred years of history, REs have occupied the 

attention of a huge variety of photonic applications; for example, phosphors for a 

variety of photonic devices such as lighting devices, color TVs, lasers, fiber optical 

amplifiers, and scintillators. Versatile optical processes in terms of light-matter 

interaction peculiar to REs are generally ascribed to the local-environmental 

characteristics of RE ions. 

 

In the past few decades significant interest has been shown in polymer-based sensing 

materials, which exhibit a change of their absorption and/or fluorescence characteristics 

in response to an external stimulus. Some examples of these stimuli include heat25,26, 

deformation27,28, chemicals29,30 light31,32, and others33,34, which make the sensors useful 

for a wide range of technologies35,36. 
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2. LUMINESCENT MATERIALS 

2.1 PHOSPHOR QUANTUM DOTS 
 

The word ‘phosphor’ comes from the Greek language. It means ‘light bearer’, to 

describe light-emitting or luminescent materials; barium sulfide is one of the earlier 

known naturally occurring phosphors37. A phosphor is luminescent, that is, it emits 

energy from an excited electron as light. The excitation of the electron is caused by 

absorption of energy from an external source such as another electron, a photon or an 

electric field. An excited electron occupies a quantum state whose energy is above the 

minimum energy ground state. In semiconductors and insulators, the electronic ground 

state is commonly referred to electrons in the valence band, which is completely filled 

with these electrons. The excited quantum state often lies in the conduction band, which 

is empty and is separated from the valence band by an energy gap called the band gap, 

∆Eg (Figure 2.1).  

 

Figure 2.1 Schematic band-energy diagrams for: (a) direct band gap; and (b) indirect 

band gap semiconductors38 

Therefore, unlike metallic materials, small continuous changes in electron energy within 

the band are not possible. Instead a minimum energy equal to the band gap is necessary 

to excite an electron in a semiconductor or insulator, and the energy released by 

deexcitation is often nearly equal to the band gap. The band gap of a semiconductor 
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material is such that at room temperature very few electrons are promoted from the 

valence band to the conduction band leaving holes in the valence band. 

Figure 2.1 (a) shows an energy band diagram (plot of allowed quantum state energy vs. 

wave vector magnitude k) for a direct band gap semiconductor. In the direct band gap 

semi-conductors, the positions of the highest energy state of the valence band (HOMO-

highest occupied molecular orbital) and the lowest energy state of the largely 

unoccupied conduction band (LUMO-lowest unoccupied molecular orbital) are at the 

same k resulting in a high prob-ability of emitting light. The case of an indirect band 

gap semiconductor is shown in Figure 2.1 (b), and has the valence band maximum and 

conduction band minimum at different values of k. Therefore, electrons need to undergo 

a change of k-value followed by a change in energy. Therefore, the transition requires a 

change in both energy and momentum. In other words, an indirect transition requires 

energy excitation of an electron simultaneous with an electron-phonon interaction to 

give the required momentum change. Therefore, the absorption and recombination eff 

ciency of direct band gap materials is about four orders of magnitude larger than that of 

indirect material. Zinc sulfoselenide (ZnS1-xSex) and gallium phosphide (GaP) are 

examples of direct and indirect band gap compound semiconductors, respectively. As 

discussed above, luminescence from phosphors can be observed by exciting the 

electrons to higher energy states, for example, into the conduction band. There are 

several approaches that provide this excitation, such as: 

• photoluminescence (PL) 

• electroluminescence (EL) 

• cathodoluminescence (CL) 

• mechanoluminescence 

• chemiluminescence 

• thermoluminescence. 

In this chapter, only PL, EL and CL (Figure 2.2) will be discussed, with most emphasis 

on PL and EL. 
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Figure 2.2 Schematic illustrations of: (a) photoluminescence; (b) electroluminescence; 

and (c) cathodoluminescence38 

When an insulator or semiconductor absorbs electromagnetic radiation (i.e. a photon) an 

electron may be excited to a higher energy quantum state. If the excited electron returns 

(relaxes) to a lower energy quantum state by radiating a photon, the process is called 

photoluminescence (PL). Some of the quantum state relaxation transitions are not 

allowed, based on the spin and Laporte selection rules39. The PL intensity depends on 

the measured temperature and the energy of the exciting light (known as 

photoluminescence excitation or PLE spectrum). In general, peaks in the PLE spectrum 

are higher in energy than those in the PL spectrum. Figure 2.2 (a) schematically 

illustrates the excitation and emission processes of PL. 

When a material emits electromagnetic radiation as a result of the application of an 

electric field, the process is called electroluminescence (EL). The photon emitted results 

from radiative recombination of electrons and holes created in the phosphor by the 

voltage between the two electrodes (Figure 2.2 (b)). One of the electrodes is transparent 

to the wavelength of the light emitted by the device. The first report of an EL device 

was in 190740, when Henry Joseph Round observed that light was emitted from silicon 

carbide under application of a high voltage. As discussed below, there is signifcant 
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interest in inorganic nanophosphors combined with conducting organic materials to 

produce EL devices, because of their potentially high efficiencies. Other advantages for 

EL devices in comparison to conventional lighting systems also include small to large 

size, f exible substrates and shapes, high brightness, long device lifetimes, lower 

operating temperatures, non-directionality and antiglare lighting. Depending on the 

applied bias, thin-film electroluminescence (TFEL) device can be categorized as either 

DC or AC (ACTFEL) devices. 

Cathodoluminescence (CL) is emission of light from a material that is excited by ener-

getic electrons. The exciting primary electrons can be focused into a beam and scanned 

across the surface (as in a scanning electron microscope), resulting in high spatial 

resolution CL. The CL process is shown schematically in Figure 2.2 (c), along with 

other phenomena that result from primary electron–material interactions, for example, 

X-ray and various electron emissions. 

2.2 NANOSTRUCTURED MATERIALS 
 

Nanostructured materials, by definition, can exist as individual particles or clusters of 

nanoparticles of various shapes and sizes41. Research has shown that nanostructured 

materials generally exhibit geometries that reflect the atomistic bonding analogous to 

the bulk structure. The nanomaterials are of interest because they can bridge the gap 

between the bulk and molecular levels and lead to entirely new avenues for application. 

Nanostructured materials have a high surface-to-volume ratio compared to their bulk 

counterparts. Therefore, a large fraction of atoms is present on the surface, which makes 

them possess different thermodynamic properties. During the last two decades, a great 

deal of attention has been focused on the optoelectronic properties of nanostructured 

semiconductors with an emphasis on fabrication of the smallest possible particles. The 

research has revealed that many fundamental properties are size-dependent in the 

nanometer range. For example, the density of states (DOS), that is the number of 

quantum states vs. energy for periodic materi-als with three, two or one dimension, is 

shown in Figure 2.342. If the extent of the material is on the order of one to ten 

nanometers in all three directions, the material is said to be a quantum dots (Qdots). A 

Qdot is zero-dimensional relative to the bulk, and the DOS depends upon whether or not 
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the Qdots have aggregated (Figure 2.3). The DOS for a molecule and an atom are also 

shown in Figure 2.3. 

 

Figure 2.3 Schematic illustration of the changes of the density of quantum states (DOS) 

with changes in the number of atoms in materials (see text for detailed explanation). 

AO: atomic orbital, MO: molecular orbital38 

The density of electrons in a three-dimensional bulk crystal is so large that the energy of 

the quantum states becomes nearly continuous (Figure 2.3). However, the limited 

number of electrons results in discrete quantized energies in the DOS for two, one and 

zero-dimensional structures (Figure 2.3). The presence of one electronic charge in the 

Qdots repels the addition of another charge and leads to a staircase-like I-V curve and 

DOS. The step size of the staircase is proportional to the reciprocal of the radius of the 

Qdots. The boundaries as to when a material has the properties of bulk, Qdot or atoms, 

are dependent upon the composition and crystal structure of the compound or elemental 

solid. When a solid exhibits a distinct variation of optical and electronic properties with 

a variation of size, it can be called a nanostructure, and is categorized as: 

• two-dimensional, e.g. thin films or quantum wells; 

• one-dimensional, e.g. quantum wires; or 

• zero-dimensional, e.g. Qdots. 
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Although each of these categories shows interesting optical properties, our discussion 

will be focused on quantum dots, or Qdots. An enormous range of fundamental 

properties can be realized by changing the size at a constant composition. In the 

following sections, we  will discuss the history, structure and properties relationships, 

and the optical properties of Qdots. 

2.3 QUANTUM DOTS 
 

Nanostructured semiconductors or insulators have dimensions and numbers of atoms 

between the atomic-molecular level and bulk material with a band gap that depends in a 

complicated fashion upon a number of factors, including the bond type and strength 

with the nearest neighbors. For isolated atoms, there is no nearest-neighbor interaction. 

Therefore, sharp and narrow luminescent emission peaks are observed. A molecule 

consists of only a few atoms and therefore exhibits emission similar to that of an atom. 

However, a nanoparticle is composed of approximately 100–10000 atoms, and has 

optical properties distinct from its bulk counterpart. Nanoparticles with dimensions in 

the range of 1–30 nm are called quantum dots (Qdots). Zero-dimensional Qdots are 

often described as artificial atoms due to their d-function-like density of states, which 

can lead to narrow optical line spectra. 

A signif cant amount of current research is aimed at using the unique optical properties 

of Qdots in devices, such as light-emitting diodes (LEDs), solar cells and biological 

markers. Qdots are of interest in biology for several reasons: 

 • higher extinction coeff cients; 

• higher quantum yields; 

• less photobleaching; 

• absorbance and emissions can be tuned with size; 

• generally broad excitation window but narrow emission peaks; 

• multiple Qdots can be used in the same assay with minimal interference with 
each other; 

• toxicity may be less than conventional organic dyes; and 

• the Qdots may be functionalized with different bio-active agents43,44. 
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The inorganic Qdots are more photostable under ultraviolet excitation than organic mol-

ecules, and their f uorescence is more saturated. The ability to synthesize Qdots with 

narrow size distributions with high quantum yields has made them an attractive 

alternative to organic molecules in hybrid light-emitting devices and solar cells. 

 2.4 RARE EARTH IONS AS OPTICAL DOPANTS  

Due to their very distinct chemical and optical properties, RE-bearing compounds are 

extensively used in a large number of applications, such as superconductors, optical 

fibers, data storage, nuclear technology, high-power laser systems, magnetostrictive 

alloys, magnetic refrigeration, paint and coatings, permanent magnets, catalysts, etc. As 

explained before, because of the identical configuration of the outermost (6s) shell, all 

RE elements are chemically very similar. This strong chemical affinity makes any 

selective separation process between RE species a very difficult task; therefore, rare-

earth compounds usually containing minor proportions of other RE species. Since the 4f 

electrons of the RE are shielded from perturbations with the lattice by the outer 5s and 

5p electrons, the 4f orbitals retain their hydrogenic character, resulting in sharp 

transitions between the 4f levels. Consequently, RE species will exhibit temperature 

stable and sharp spectroscopic emission lines largely independently of the type of the 

host material45. This is a major advantage since the wavelength required for a specific 

application can be matched with the energy of transitions in the 4f-shell of the RE atoms 

to effectively select an appropriate emitter.  

Rare earths (RE) form a group of chemically similar elements which have in common 

an open 4f shell. In neutral state, these elements posses the electron configuration 

4fn6s2, except for Gadolinium, which shows the configuration 4fn5d6s2, where the 

number of f electrons ‘n’ ranges from 2 for Cerium to 14 for Ytterbium. Unlike the 

corresponding 3d transition series, the 4f electrons of the RE generally remain highly 

localized in the solid, and they have almost no contribution to the chemical valence, 

therefore the atom can easily lose the 6s and 5d electrons and also one electron from the 

4f shell, so they are most stable as trivalent ions, although 2+ or 4+ are frequently found 

in some compounds. The series is conveniently divided at the point of a half-filled 4f 

shell into light (La-Eu) and heavy (Gd-Lu) groups.  
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The filling of the of the 4f shell can be explained by Hund’s rules, which predict that the 

term with the highest quantum number S has the lowest energy and if there are several 

terms with the same S, the one with the highest angular momentum quantum number L 

has the lowest energy. Furthermore, due to spin-orbit coupling, the terms 2S+L are split 

into levels J=L+S, L+S-1, . . . , |L-S|, where for less than half-filled shells, the term with 

the smallest J has the lowest energy. The optical and magnetic properties of the RE ions 

are determined by the 4f electrons, which are well shielded from the environment by the 

outer 5s and 5p electrons.    

On the other hand, the general tendency toward trivalent state is clearly related to the 

increasing localization of the f electrons with atomic number. The highly directional f -

orbitals are only partially able to screen each other from the attractive force of the 

nucleus, which leads to the well-known lanthanide contraction. This interesting property 

of the lanthanide series consist in the decrease in both the ionic and covalent radii 

(Figure 2.4) and the increase in Pauling’s electronegativity by increasing nuclear 

charge. This effect is the main reason for differences found in compounds throughout 

the lanthanide series.   

 

Figure 2.4 Effective ionic radius (Ǻ) for some common cations (CN: coordination 

number)46. 
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As was before indicated, Rare earths species exist as 3+, or occasionally 2+ ions when 

incorporated in a solid host. The trivalent ions exhibit intense narrow-band intra-4f 

luminescence in a wide variety of hosts, whereas the shielding provided by the 5s2 and 

5p6 electrons causes that rare-earth radiative transitions in solid hosts resemble those of 

the free ions and, as a consequence, the electron–phonon coupling becomes weak.    

In principle the rare earth ions can be classified in three groups47,48  according to their 

strength of luminescence:  

a) Tb3+, Dy3+, Eu3+ and Sm3+ are the strongest emitters, which all have 

fluorescence in the visible region. (Tb3+: 545nm, 5D4→7F4; Dy3+: 573nm, 

4F9/2→6H13/2; Eu3+: 611nm, 5D0→7F2; Sm3+: 643nm, 4G5/2→6H11/2).   

b) Er3+, Pr3+, Nd3+, Ho3+, Tm3+ and Yb3+ are weak emitters in the near infrared 

region. The weakness of their luminescence is based on the fact that these ions 

have closely spaced energy levels, making the non-radiative transition easy. For 

the erbium ion there are, besides some other very weak spin forbidden lines (e.g. 

4fn-15d → 4fn), two characteristic transitions: one in the visible region at about 

550 nm (4S3/2→4I15/2) and the other, the most important one for commercial use, 

at 1.55μm (4I13/2→4I15/2).   

c) La3+, Gd3+ and Lu3+ exhibit no ion fluorescence because the lowest-lying 

resonance level lies far above the triplet level of any of the commonly used 

ligands.    

Like other RE-ions, the luminescence attributed to trivalent Eu is characterized by sharp 

peaks attributed to the intra-4f shell transitions 5D0→7Fj (see Figure 2.5)49 . After 

excitation with energy of at least 2.18 eV the energy state 5D0 is populated and, by 

recombination to the 7Fj states, red light is emitted. The spectral positions are 

independent of the embedding matrix but their intensities may vary50.  Moreover, due to 

crystal field, the individual j-levels (except j = 0) are splitted up, and the crystal-field 

splitting appears as fine structure and provides information about the symmetry of the 

rare-earth site and the shape of the coordination polyhedron. The intensities of spectral 

transitions reflect also the interaction between the RE ion and its environment.  
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 A number of excitation pathways are available for rare-earth luminescence in solid 

hosts, which can be broadly classified as either direct or indirect excitation mechanisms. 

For instance, in the Eu3+-doped Gd2O3 system the different sensitization processes of 

Eu3+ are the following: the host Gd2O3 absorption, O-Eu charge transfer, the Gd3+ ion 

absorption and the Eu3+ ion self-excitation. After Ch. Liu, et al49 the excitations from 

the host band and charge transfer band for the 5D0→5F2 transition of Eu3+ ions, in 

nanocrystalline, are almost equal for the bulk Gd2O3. 

 

Figure 2.5 Energy level diagram of the optical transitions within Eu3+ ions51.  

The excitation residing in an ion can migrate to another of the same species in the 

ground state as a result of resonant energy transfer promoted by the shortening of the 

inter-ionic distance. Energy migration processes increase the probability to optical 

excitation be trapped at defects or impurity sites, enhancing non-radiative relaxation. 

This non-radiative relaxation will be enhanced by increasing the concentration of the 

RE species leading to concentration quenching. Also, the energy transfer between 

different ion species can take place when they have closely matched energy levels. 

Then, the energy transfer from the host crystal to luminescent dopants leads to host-

excited luminescence. Therefore, the energy transfer process will result either in the 

enhancement or in the quenching of emission.   In order to demonstrate the occurrence 

of energy transfer, various methods have been proposed51. One of them is based on the 

measurement of the excitation spectrum of the emission from the luminescent dopant. If 
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the excitation spectrum of the dopant emission shows the excitation band of the host in 

addition to those of dopant, this indicates energy transfer from the host to luminescent 

dopant. This fact would indicate that the actual incorporation of dopant in the host 

structure was accomplishment, and therefore a phosphor material is obtained.   

In general, functional doping of a nanomaterial requires that the dopant ions substitute 

metal ions of the host lattice, i.e., that they occupy lattice sites of the host metal ions. 

Similar to electrical doping, the term optical doping is used to describe the incorporation 

of centers in a host material to enhance and/or tailor its optical properties. A well known 

example of optical doping is the phosphor technology that is used in a large number of 

lighting and display applications. Optical doping is also very important in 

optoelectronics, a technology that forms the basis for components such as 

semiconductor lasers, optical discs, image sensors, or optical fibers. With optical doping 

it is possible to enhance both the emission and absorption characteristics of a material. 

As was above mentioned, in cubic Eu3+-doped Gd2O3, Eu3+ ions occupy two kinds of 

lattice sites after substituting the Gd3+ ions (Figure 2.6).  

 

Figure 2.6 Schematic presentation of the RE3+ coordination in the S6 and C2 sites of 

cubic (C-type) sesquioxide. 

These sites are sixfold coordinated distinctly non equivalent with C2 and S6 point 

symmetry, and which differ from each other in the position of RE3+ ion relative to the 

vacancy oxygen, as was described above. It has been established52 that the presence of 

inversion symmetry in the RE3+ site drastically affects the luminescence spectra of the 

RE3+-doped materials  

On the other hand, due to nearly identical radii ions, 0.94Ǻ for Gd3+ and 0.95Ǻ for Eu3+, 

the lattice distortion in Eu3+-doped Gd2O3 is insignificant53 and, unlike in Y2O3, where 
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pairs of neighboring Eu3+ ions leads to slight distortions in crystal field, in Gd2O3 the 

mutual proximity of the Eu3+ ions has no effect54, since Eu3+ and Gd3+ have nearly the 

same size, which allows an unambiguous analysis of the transfer process.   

In this chapter, some previous works on properties of  Eu3+-Gd2O3 nanostructures, 

which are matter of study in this thesis, are briefly reviewed. 

 

  

 2.5 THE Eu3+-Gd2O3 SYSTEM   
 

Using the sol-gel method, Lin et al.55 prepared nanocrystalline powders of Eu-doped 

Gd2O3 with concentrations of Eu in the 3-15 mol% range. From GdCl3 and EuCl3, as 

precursor salts, while water D.I. and NH4OH were used as solvent and chelating agent, 

respectively. The mixture of Gd and Eu hydroxides obtained was calcinated between 

800ºC and 1100ºC for 2h. In this work, the effect of Eu/Gd composition ratio and 

calcination temperature on the structure and luminescent properties were investigated. 

From their XRD measurements the authors report that pure crystalline phase Gd2O3 can 

be formed at temperatures above 900ºC, while at 800ºC both phases GdO2 and Gd2O3 

coexisted. The crystallite sizes were 12, 21, 34 and 24nm for calcinations temperatures 

of 800, 900, 1000 and 1100ºC, respectively. TEM analyses revealed the following 

particle size distributions for different calcinations temperatures: 50-120nm (800ºC), 

80-140nm (900ºC), 80-180nm (1000ºC) and 90-200nm (1100ºC). The discrepancy 

between estimated XRD crystallite sizes and TEM size was attributed to aggregation of 

particles. Regarding the luminescent properties, the authors found that, monitoring the 

emission at 612nm, and after calcining the intermediates at temperatures above 800oC 

the excitation spectra exhibited a wide band about 254nm, assigned to O2+→Eu3+ 

Charge Transfer Band (CTB). The intensity of the excitation peak was increased by 

increasing the calcination temperature up to 1000ºC. A further increase in the 

temperature was conducive to the drop in the corresponding peak intensity. This fact 

was not discussed by the authors. Also, a weak and broad peak at 312nm, related to 

Gd3+ transitions, was observed. These transitions were caused by the Gd3+→Eu3+ energy 
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transfer mechanism. In the emission spectra, the maximum intensity was shown in those 

samples treated at 1000ºC and was attributed to the enhanced crystallinity achieved at 

such temperature. The effect of the concentration of Eu3+ ion was investigated in 

powders calcined at 1000ºC; the optimum doping level was determined as 7% w/w. The 

decreasing in the PL emission intensity, for higher concentrations, was attributed to the 

concentration quenching phenomena, which was described in the earlier section of this 

thesis.   

M. Pires et al.56 produced Eu-doped Gadolinium oxide by the precipitation method. The 

influence of Eu3+ concentration on optical and morphological properties was 

investigated. Non crystalline monohydrate gadolinium basic carbonate bare and doped 

with 1 to 5 at.% of europium were obtained as precursor. The precursors were annealed 

at 750ºC for 4h, under argon continuous flow. Although the authors claimed the cubic 

phase was obtained, no evidence on crystallinity quality and lattice parameter values 

were discussed within the paper. SEM analyses revealed the presence of particles with 

an average diameter in the 110-150nm range, irrespective of the concentration of the 

dopant species. The same reference proposed that doping species should have been 

located on the particle surface inhibiting particle growth after nucleation. Luminescence 

spectroscopy measurements showed a pronounced CTB centered around 250nm was 

observed. The intensity of this CTB was found to increase by rising the Eu3+ 

concentration. It was also observed weak peaks up to 330nm, related to internal Gd3+ f-f 

transitions. These peaks became noticeable because of the Gd3+→Eu3+ energy transfer. 

Similar trend on the luminescence intensity was observed at higher fractions of Eu, 

indicating the absence of concentration quenching at least for the considered interval of 

concentrations, which was explained for the authors, considering that the doping ion 

distribution in the surface of oxide samples does not achieved the minimum distance 

necessary to cause energy transfer between emission centers.   

G. Liu, et al57., prepared spherical and submicrometer-sized hollow Gd2O3 (Eu3+) 

phosphors by homogeneous precipitation and hydrothermal crystallization techniques. 

The report considered the variation of dopant concentration and modification of the 

synthesis conditions as follows: in the precipitation step, spherical nucleus were formed 

and allowed to grow. In the subsequent hydrothermal step, large particles were 
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crystallized. Gd2O3(Eu3+) phosphors were obtained by annealing those products from 

the hydrothermal stage at different temperatures (550-850ºC) for 2h in air. It was found 

that the crystals morphology was strongly dependent on the reactants concentration and 

aging time. Depending on those conditions, rods and solid or hollow spheres were 

obtained. The XRD pattern for the precursor showed the presence of sharp peaks that 

were atributed to Gd2(CO3)3 x H2O. Moreover, the authors claimed that the samples 

annealed at 600ºC exhibited the pure cubic phase. The diffraction peaks became sharper 

when the solids were produced at higher annealing temperatures. However, from their 

FT-IR results, in addition to Gd-O bond peak (553cm-1), the presence of -OH group 

(3410cm-1) and CO3
2- anion (1508 and 1429cm-1) bands were evident, which suggested 

an incomplete conversion of the precursors into the anhydrous oxide phase. The 

corresponding luminescence measurements (the excitation spectra were monitored by 

using the 610nm line) revealed an intense band at 260nm that was attributed to the CTB 

and whose intensity increases as the annealing temperature increases. Furthermore, the 

weak lines observed at 279nm and 310nm were related to internal Gd3+ f-f transitions 

(8S-6I) and (8S-6P) indicating an effective energy transfer from Gd3+ to Eu3+. The 

authors reported that the obtained spherical Gd2O3(Eu3+) phosphors had better red 

luminescence properties, and that the relative luminescence intensity and the lifetime 

increased with increasing annealing temperatures (Figure 2.7). Moreover, they 

considered that, because with the increasing the annealing temperature, the crystallinity 

becomes better, and the impurities such as -OH, CO3
2- decrease, the quenching of the 

luminescence of Eu3+ by the vibrations of these impurities decreases, resulting in the 

increase of the lifetime of Eu3+. 

.  
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Figure 2.7 Excitation (a) and emission (b) spectra of samples calcined at different 

temperatures57. 

In the same work, the excitation spectra shown in Figure 2.7-b, for 611nm emission, 

consisted of a large band with a maximum at 254nm. This band was assigned to CTB. 

In these spectra, the maximum intensity was observed for the 10wt% Eu-doped Gd2O3. 

The CTB was shifted towards longer wavelengths (265nm) for the 15wt% Eu-doped 

Gd2O3 phosphor. Typical peaks for internal Gd3+ f-f transitions were no mentioned 

within the 

Ch.S. Park, et al.58, synthesized nanoparticles of Gd2O3 (Eu3+) by a liquid-phase reaction 

method using hydrated acetate as the precursor salts. They investigated the influence of 

Eu3+ content (in the range of 5-15wt%,) on the optical properties of phosphors. After 

synthesized, the precursors were treated at 600ºC for one hour and under oxygen 

atmosphere (2l/min). The XRD analyses reported that, regardless of the europium 

content, all solids crystallized in the cubic Gd2O3 structure even at a temperature as low 

as 600ºC. The average crystallite size was estimated in the range 21-41 nm. The largest 

sizes corresponded to the phosphor with 10wt% Eu3+. The apparent relationship 

between composition and average crystallite size was not discussed by the authors.  

 

Figure 2.8 (a) Emission (excitation at 254nm) and (b) excitation (monitoring 611nm) 

spectra of Gd2O3 (Eu3+) + phosphors having different concentrations58 

In the same work, the excitation spectra shown in figure 2.8, for 611nm emission, 

consisted of a large band with a maximum at 254nm. This band was assigned to CTB. 

In these spectra, the maximum intensity was observed for the 10wt% Eu-doped Gd2O3. 

The CTB was shifted towards longer wavelengths (265nm) for the 15wt% Eu-doped 
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Gd2O3 phosphor. Typical peaks for internal Gd3+ f-f transitions were no mentioned 

within the manuscript. Similarly, when the phosphors were excited by UV light of 

254nm (CTB), only the main emission peak (detected at 611nm) was reported. The 

authors found that the phosphors showed an initial increase in luminescence and then a 

subsequent decrease with further doping (above 10wt%), which was attributed to the 

previously discussed concentration quenching effect.    

Phosphor particles of Eu-Gd2O3 were synthesized by Y.C. Kang, et al.59, by a 

continuous spray pyrolysis method. The effects of process temperature (800-1600ºC) 

and Eu content (2-12at.%) on PL, morphology and crystallinity of the products, were 

investigated. Unlike normal spray pyrolysis methods, no milling was applied to 

powders. The mean size of the particles increased from 0.35 to 1.2 mm when the 

solution concentration was increased from 0.02 to 1M. The particles prepared at 800ºC 

exhibited sharp XRD peaks corresponding to cubic Gd2O3. The crystallinity of the cubic 

phase was increased by rising the process temperature up to 1400ºC. A transition from 

highly crystalline cubic to poorly crystalline monoclinic phase was observed at 1600ºC, 

which was higher than the 1250ºC previously reported for Gd2O3
60 . This discrepancy 

with expected transition temperature was explained in terms of the short residence time 

of the particles inside the hot wall reactor. The average size of the particles increased 

from 0.35 to 1.2mm when the solution concentration was increased from 0.02 to 1M; 

nevertheless, the effect of process temperature on crystal nor particle size was no 

reported. The Eu-Gd2O3 particles absorbed excitation energy in the range between 220 

nm and 300 nm, with a maximum excitation wavelength around 255nm. The optimum 

brightness was obtained at a doping concentration of 10at.%, while the maximum PL 

intensity was observed in the sample annealed at 1400ºC, (the main peak emission was 

at 612nm in both cases.) In turn, the particles prepared at 1600ºC, showed two main 

emission peaks at 615 and 624nm and much lower intensity than for other samples 

synthesized at lower temperatures (between 1000 and 1400ºC), as shown figure 2.9.   
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Figure 2.9 Excitation (a) and emission (b) spectra of Gd2O3 (Eu3+) particles at different 

doping concentrations, prepared at 900ºC59 . 

 

On the other hand, A. Garcia-Murillo, et al.61  synthesized Eu3+-doped Gd2O3 thin films 

by sol-gel method. In this work, used Gd (III) isopropoxide and Eu (III) nitrate 

pentahydrate were used as precursors. The solution was prepared under argon flux and 

deposited on pure silica substrate by di-coating in a glove box under argon controlled 

atmosphere. The authors found that films present waveguiding properties and the 

crystallization in the cubic phase occurs at 700ºC, but no preferential orientation was 

observed. Also, after annealing at 1000ºC very dense films were obtained with a 

refractive index of 1.88 at 632.8nm. Their PL studies reveled that the thin films 

synthesized have the same sharp emission bands as Eu3+-doped Gd2O3 powders 

produced by solid state reaction method, corresponding to the 5D0→7FJ (J=0 to 4). After 

the authors, these bands of cubic phase appear at 700ºC by sol-gel process although with 

conventional method they become visible only after 900ºC, but explain this fact.   

It is evident from the reviewed literature that, due to the potential applications in various 

fields, the study of Eu3+-doped Gd2O3 nanostructured is matter of intense research, in 

order to search up its better properties. However, nevertheless the actual incorporation 

of Eu ions into Gd2O3 structure has been demonstrated, phenomena like the 

concentration quenching are strongly dependent of the methods and conditions of 

synthesis. In addition, it is clear that the luminescent properties of this material are 

strongly dependent on method and condition synthesis. Therefore, in this work, the 

effect of Eu3+ content and annealing temperature on the structural, luminescent and 
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magnetic properties of Gd2O3 nanoparticles; and the effect of Eu3+ on structural, optical 

and luminescent properties of Gd2O3 thin films are studied. 
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3. POLYMER NANOCOMPOSITES FOR OPTICAL 
APPLICATIONS 

Composite materials are well known, and generally comprise two or more materials 

each offering its own set of properties or characteristics. The two or more materials may 

be joined together to form a system that exhibits properties derived from each of the 

materials. A common form of a composite is one with a body of a first material (a host 

matrix) with a second material distributed in the host matrix. 

One class of composite materials includes nanoparticles distributed within a host matrix 

material. Nanoparticles are particles of a material that have a size measured on a 

nanometer scale. Generally, nanoparticles are larger than a cluster (which might be only 

a few hundred atoms in some cases), but with a relatively large surface area-to-bulk 

volume ratio. While most nanoparticles have a size from about 10 nm to about 500 nm, 

the term nanoparticles can cover particles having sizes that fall outside of this range. For 

example, particles having a size as small as about 1 nm and as large as about 1x103 nm 

could still be considered nanoparticles. Nanoparticles can be made from a wide array of 

materials. Among these materials examples include, transition metals, rare-earth metals, 

group VA elements, polymers, dyes, semiconductors, alkaline earth metals, alkali 

metals, group IIIA elements, and group IVA elements. 

Further, nanoparticles themselves may be considered a nanoparticle composite, which 

may comprise a wide array of materials, single elements, mixtures of elements, 

stoichiometric or non-stoichiometric compounds. The materials may be crystalline, 

amorphous, or mixtures, or combinations of such structures. 

The host matrix may comprise a random glassy matrix such an amorphous organic 

polymer. Organic polymers may include typical hydrocarbon polymers and halogenated 

polymers. It is generally desirable that in an optical component, such as a planar optical 

waveguide, an optical fiber, an optical film, or a bulk optical component, e.g., an optical 

lens or prism, the total optical loss be kept at a minimum. For example, in the case of a 

planar optical wavegide, the total loss should be approximately equal to, or less than, 

0.5 dB/cm in magnitude, and such as less than 0.2 dB/cm. For a highly transparent 
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optical medium to be used as the optical material, a fundamental requirement is that the 

medium exhibits little, or no, absorption and scattering losses. 

Intrinsic absorption losses commonly result from the presence of fundamental 

excitations that are electronic, vibrational, or coupled electronic-vibrational modes in 

origin. Further, the device operating wavelength of the optical component should 

remain largely different from the fundamental, or overtone, wavelengths for these 

excitations, especially in the case of the telecommunication wavelengths of 850, 1310, 

and 1550 nm located in the low loss optical window of a standard silica glass optical 

fiber, or waveguide. Further, these absorptive overtones can cause the hydrocarbon 

polymers to physically or chemically degrade, thereby leading to additional and often 

times permanent increase in signal attenuation in the optical fibers or waveguides 

Material scattering losses occur when the signal wave encounters abrupt changes in 

refractive index of the otherwise homogeneous uniform optical medium. These 

discontinuities can result from the presence of composition inhomogenieties, 

crystallites, nanoporous structures, voids, fractures, stresses, faults, or even foreign 

impurities such as dust or other particulates. 

Among the various mechanisms of optical scattering loss, an important factor is the 

porosity of the optical material. As a result of the interplay between various material 

characteristics, e.g., surface energy, solubility, glass transition temperature, entropy, 

etc., and processing conditions, e.g. temperature, pressure, atmosphere, etc., optical 

materials, such as amorphous perfluoropolymers can exhibit a large amount of 

nanoporous structures under normal processing conditions. Such nanoporous structures 

can cause optical scattering loss and should be eliminated, or converted to smaller sizes, 

in order to satisfy a certain low optical loss device performance requirement. The 

smaller sized pores are called nanopores. Nanopores are pores in a material that have a 

size measured on a nanometer scale. Generally, nanopores are larger than the size of an 

atom but smaller than 1000 nm. While most nanopores have a size from about 1 nm to 

about 500 nm, the term nanopores can cover pores having sizes that fall outside of this 

range. For example, pores having a size as small as about 0.5 nm and as large as about 

1x103 nm could still be considered nanopores. By introducing nanoparticles into 
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optically transparent host matrix , the absorption and scattering losses due to the 

nanoparticles may add to the optical loss. In order to keep the optical loss to a 

minimum, in addition to controlling the loss contribution from the host matrix, it is 

essential to control the absorption and scattering loss from the nanoparticles doped into 

the host matrix for optical applications. 

For discrete nanoparticles that are approximately spherical in shape and doped into the 

host matrix, the scattering loss α, in dB per unit length, resulting from the presence of 

the particles is dependent on the particle diameter d, the refractive index ratio of the 

nanoparticles and the waveguide core m=npar/ncore, and the volume fraction of the 

nanoparticles in the host waveguide core Vp. The nanoparticle induced scattering loss 

can be calculated by: 

 
 
where λ is the vacuum propagation wavelength of the light guided inside the waveguide. 

As an example, when m=2, Vp=10%, λ=1550nm, d=10 nm, the calculated scattering 

loss α is 0.07dB/cm. To fabricate a certain waveguide device with a set loss 

specification, and therefore a nanoparticle induced waveguide loss budget of α, the 

nanoparticle diameter d must satisfy the following equation relationships: 

 
 
where λ is the vacuum propagation wavelength of the light guided inside the waveguide, 

m=npa/ncore the refractive index ratio of the nanoparticles and the core, and Vp the 

volume fraction of the nanoparticles in the host waveguide core. For example, following 

Equation 2, with a nanoparticle loss budget of α = 0.5dB/cm, when m=2, Vp=10%, 

λ=1550nm, the nanoparticle diameter d must be smaller than 19 nm. In general, the 

diameter of the nanoparticles must be smaller than about 50nm, and more preferably, 

20nm. 

The description for nanoparticle loss also can be applied to nanopore contributions to 

propagation loss by representing the nanopores as equivalent nanoparticles with 

refractive index of 1. 
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Composite materials including nanoparticles distributed within a host matrix material 

have been used in optical applications. The nanoparticles increase the index of 

refraction of the host matrix material to create a packaging material that is more 

compatible with the relatively high refractive index of the LED chip disposed within the 

packaging material. Because the nanoparticles do not interact with light passing through 

the packaging material, the packaging material remains substantially transparent to the 

light emitted from the LED. 

 

4. PLASTIC OPTICAL FIBER  
 

Specifically, the well-known plastic optical fibers with PMMA core were introduced in 

the 1960s, although the first optical fibers that were used as a communications channel 

were made of glass. In the past several decades, concurrent with the successive 

improvements in glass fibers, POFs have become increasingly popular, owing to their 

growing utility.  

Table 4.1  The historical evolutions of the important landmark 

 

The historical evolutions of the important landmark are listed in Table I-462. The 

first POF was manufactured by Dupont at the late sixties. Due to the incomplete 

purification of the source materials used, attenuation was still in the vicinity of 1,000 

dB/km. During the seventies it became possible to reduce losses nearly to the theoretical 
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limit of approximate 125 dB/km at a wavelength of 650 nm. At that point in time glass 

fibers with losses significantly below 1 dB/km at 1,300 nm / 1,550 nm were already 

available in large quantities and at low prices. Digital transmission systems with a high 

bit rate were then almost exclusively used in telecommunications for long-range 

transmissions. The field of local computer networks was dominated by copper cables 

(either twisted-pair or coaxial) that were completely satisfactory for the typical data 

rates of up to 10 Mbit/s commonly used then. There was hardly any demand for an 

optical medium for high data rates and small distances so that the development of the 

polymer optical fiber was slowed down for many years. A significant indicator for this 

development is the history of the International Conference for Polymer Fibers and 

Applications which has been taking place annually since 1992 and represents the most 

significant scientific event in this specialized field. Nowadays, with the PMMA-core 

optical fibers, transmissions at 156 Mbit/s over distances up to 100 m can be carried 

out63 , and transmission speeds of 500 Mbit/s over 50 m can be reached64. To achieve 

higher transmission speeds graded index POFs can be used65. In addition, a special type 

of POF made from an amorphous fluorinated polymer called CYTOP and developed by 

Koike and Asahi Glass is available in the market66. This new fiber presents a 

considerably lower attenuation than the common POFs (30 dB/km), which allows the 

transmission distance to be increased up to 1 km for a transmission speed of 1.2 

Gbit/s⋅km. Today, a multitude of different variants are available for widely differing 

areas of application. There is a choice of parameters such as diameter, bandwidth and 

temperature range as well as mechanical properties and the coating material67. 

All of these examples demonstrate that completely new markets for digital 

transmission systems are being developed for short-range applications. Polymer optical 

fibers can meet many of these requirements to an optimum degree and are therefore and 

are therefore increasingly of interest.  

4.1 THE STRUCTURE OF THE POF 

POFs used for optical communications are highly flexible waveguides composed 

of nearly transparent dielectric materials. The cross-section of these fibers is circular 

and, generally, divisible into three layers called the core, cladding, and jacket (a 

protective cover) which carries out a function of mechanical protection for the optical 
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fiber, providing robustness made of polyethylene, polyvinylchloride, and chlorinated 

polyethylene. Within the core, the refractive-index profile can be uniform (step-index 

fibers, SI) or graded (graded-index fibers, GI), while the cladding index is typically 

uniform. As shown in Figure. 4.1, the GI-POF which has high transmission speed 

without modal dispersion can be used for the large data transmission, while SI-one can 

be used only in image guide and small data transmission68.  

 
Figure 4.1 Comparison of the SI-POF and GI-POF68. 

 

 

 

 

4.2 THE FACTORS AFFECTING THE ATTENUATION LOSS 
LEVEL OF THE POF 

The factors affecting the attenuation loss level of the POF are listed in Table 4.2. There 

are inherent and external factors. Inherent factors could be divided in an absorption term 

and a scattering term of light passing through the fiber which stem from the intrinsic 

chemical nature of POF materials. In most cases, the external factors might come from 

impurities which are not fully removed during purification process and bubbles or 

imperfections which are created during manufacturing and drawing process.  
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Table 4.2. Factors affecting attenuation loss of the POF 

 Inherent Factor External Factor 

Absorption 

 Higher harmonic 
of C-H vibration 

 Electronic 
transition 

 Transition metals 

 Organic contaminants 

 OH group 

Scattering  Rayleigh 
Scattering 

 Dust & Micro-void 

 Disturbance at 
core/cladding interface 

 Fluctuation of core 
diameter 

 Micro-
bending/Birefringence due 

to orientation 

 

The basic attenuation mechanisms in a POF can be classified into two main groups: 

intrinsic and extrinsic. Among the intrinsic losses, we have the absorption of the 

constituent material and the Rayleigh scattering. Both contributions depend on the 

composition of the optical fiber and, therefore, they cannot be eliminated. They 

represent the ultimate transmission loss limit. Basically, they are caused by the 

molecular vibrational absorption of the groups C-H, N-H, and O-H, by the absorption 

due to electronic transitions between different energy levels within molecular bonds and 

by the scattering arising from composition, orientation, and density fluctuations. 

Regarding the group of extrinsic losses, this is composed of those losses that would not 

appear in an ideal fiber. Among them, we find the absorption caused by both metallic 

and organic pollutants and the dispersion provoked by dust particles, microfractures, 

bubbles, and other structural imperfections in the POF. Besides, there are also radiation 

losses, originated by perturbations both microscopic and macroscopic in the fiber 

geometry. Whenever the POF is bent with a finite curvature radius, radiation losses 

occur, although they are not significant unless this radius is small enough, e.g., only ten 

times as long as the fiber diameter.  
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In a straight optical fiber, the power decreases exponentially with the distance z, as 

shown in the following expression: 

    10/10)0()( zPzP α−=             (4.1) 

The value of α is called the attenuation coefficient of the optical fiber, and it 

expresses the value of the attenuation as a function of the fiber length. The expression 

for the attenuation in decibels (dB/km) is given by: 
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The spectral attenuation of two different materials used for the POF’s core is shown 

in Figure 4.269. For the PMMA POF two absolute minima of attenuation can be 

observed, both of 70 dB/km, located at 522 and 570 nm green, although there is a 

relative minimum around 650 nm red. The polystyrene (PS) POF (n=1.59) has similar 

applications to those of the PMMA POF, but its minimum of attenuation is located in 

the red region. From a mechanical point of view, these fibers are better than those made 

of PMMA, although they have a higher attenuation. While their core is PS, their 

cladding is usually PMMA. Another fiber is the polycarbonate PC POF n=1.5~1.59 

which is a high-temperature-resistant fiber. Its minimum of attenuation is found to be 

600 dB/km and it is located at 770 nm. This kind of fiber can be used in industrial 

applications where the temperature is an important parameter. 

The large diameter and high numerical aperture of polymer optical fibers facilitate 

fiber coupling and interfacing to other components. Moreover, coupling requires 

optically smooth surfaces at both ends of the fiber, and polishing of the surfaces of 

POF’s is relatively easy compared to inorganic optical fibers. Consequently, the 

installation and overall systems cost are low. POF’s are, therefore, potentially an 

excellent alternative for inorganic optical fibers especially in short and medium range 

applications which require many junctions and connections. 
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Figure 4.2 Attenuation loss spectra for POF with PMMA and PS core69. 

These attenuation loss values, however, cannot be achieved in real application due 

to extrinsic factors exist: Microbubbles and core-clad imperfection during POF drawing  

and scattering by density fluctuation and unreacted monomers in the glassy polymer 

matrix70. The lowest attenuation loss of methacrylate polymers reported is about 120 

dB/km in real application71. 

Especially, future applications of polymer optical fibers in local area networks and 

fiber optics to and in the home as shown in Figure 4.3 have attracted attention recently. 

However, the step-index characteristics of commercial POF’s result in modal dispersion 

and a bandwidth that is too low (<10 MHz.km) for these applications72. A large research 

and development effort was therefore devoted, especially in the Far East, to the 

production of graded-index polymer optical fibers with a strongly enhanced bandwidth73 

[13,14]. 
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Figure 4.3 Polymer Optical Fibers for Data Communication 

The large diameter and high numerical aperture of polymer optical fibers facilitate 

fiber coupling and interfacing to other components. Moreover, coupling requires 

optically smooth surfaces at both ends of the fiber, and polishing of the surfaces of 

POF’s is relatively easy compared to inorganic optical fibers. Consequently, the 

installation and overall systems cost are low. POF’s are, therefore, potentially an 

excellent alternative for inorganic optical fibers especially in short and medium range 

applications which require many junctions and connections. 
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5. DYNAMIC MECHANICAL ANALYSIS (DMA)  
 

Dynamic mechanical analysis (DMA)-is a thermal analysis technique  that measures the 

properties of materials as they are deformed under periodic stress. Specifically, in DMA 

a variable sinusoidal stress is applied, and the resultant sinusoidal strain is measured. If 

the material being evaluated is purely elastic, the phase difference between the stress 

and strain sine waves is 0° (i.e., they are in phase). If the material is purely viscous, the 

phase difference is 90°. However, most real-world materials including polymers are 

viscoelastic and exhibit a phase difference between those extremes. This phase 

difference, together with the amplitudes of the stress and strain waves, is used to 

determine a variety of fundamental material parameters, including storage and loss 

modulus, tan d, complex and dynamic viscosity, storage and loss compliance, transition 

temperatures, creep, and stress relaxation, as well as related performance attributes such 

as rate and degree of cure, sound absorption and impact resistance, and morphology. 

The diagram in Figure 5.1 shows the relationship between several of these parameters. 

 

Figure 5.1 Viscoelasticity and complex modulus 

 

Most DMA measurements are made using a single frequency and constant deformation 

(strain) amplitude while varying temperature. Measurements, where the amplitude of 

deformation is varied or where multiple frequencies are used, provide 
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further information. 

5.1 INSTRUMENTAL CONSIDERATIONS  
 

There are several components that are critical to the design and resultant performance of 

a dynamic mechanical analyzer. Those components are the drive motor (which supplies 

the sinusoidal deformation force to the sample material), the drive shaft support and 

guidance system (which transfers the force from the drive motor to the clamps that hold 

the sample), the displacement sensor (which measures the sample deformation that 

occurs under the applied force), the temperature control system (furnace), and the 

sample clamps. The DMA Q800 dynamic mechanical analyzer (TA Instruments, Inc., 

New Castle, DE) , Figure 5.2 is based on a patentpending design that optimizes the 

combination of these critical components.  

 

Figure 5. 2 DMA Q800 

Specifically, the analyzer incorporates a noncontact direct drive motor to deliver 

reproducible  forces (stresses) over a wide dynamic range of 0.001–18 N; an air bearing 

shaft support and guidance system to provide frictionless continuous travel over 25 mm 

for evaluating large samples (e.g., fibers as long as 30 mm) or for evaluating polymers 

at large oscillation amplitudes (±0.5–10,000 mm); an optical encoder displacement 

sensor to provide high resolution (one part in 25 million) of oscillation amplitude, which 

results in excellent modulus precision (±1%) and tan d sensitivity (0.0001); and a 

bifilar-wound furnace complemented by a gas cooling accessory to allow a broad 

temperature range (–150 to 600 °C) to be covered. The DMA Q800 also features a 
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variety of clamping configurations to accommodate rigid bars, fibers, thin films, and 

viscous liquids (e.g., thermosets) in bending, compression, shear, and tension modes of 

deformation. 

5.2 APPLICATIONS 

5.2.1 MATERIAL SELECTION FOR SPECIFIC END-USE 
APPLICATIONS  
 

The task of evaluating new materials and projecting their performance for specific 

applications is a challenging one for engineers and designers. Often, materials are 

supplied with short-term test information such as deflection temperature under load 

(DTUL), which is used to project long-term, high-temperature performance. However, 

because of factors such as polymer structure, filler loading and type, oxidative stability, 

part geometry, and molded-in stresses, the actual maximum long-term use temperatures 

may be as much as 150 °C below or above the DTUL. DMA, on the other hand, 

continuously monitors material modulus with temperature and, hence, provides a better 

indication of long-term, elevated temperature performance. Figure 5.3 shows the DMA 

modulus curves for three resins with nearly identical DTULs but very different moduli 

at the DTUL and, more importantly, very different modulus trends beyond the DTUL. 

 

 

Figure 5.3 DMA comparison of materials with similar DTULs. 
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The polyethylene terephthalate (PET) in this example represents a semicrystalline 

material, and its modulus begins to decrease rapidly at 60 °C as the material enters its 

glass transition. The amorphous component in the polymer achieves an increased degree 

of freedom, and at the end of the glass transition, the modulus of the material has 

declined by about 50% from room temperature values. Because of its crystalline 

component, the material then exhibits a region of relative stability before the modulus 

again drops rapidly as the crystalline structure approaches the melting point. The actual 

modulus of a resin of this type at the DTUL is only 10–30% of the room temperature 

value. The DTULs of highly filled systems based on this resin are more closely related 

to the melting point than to the significant structural changes associated with the glass 

transition temperature (Tg).  

The polyethersulfone (PES)-in Figure 5.3 is a high-performance amorphous resin. 

Amorphous materials exhibit higher Tgs than their semicrystalline counterparts and 

maintain a high percentage of their room temperature properties up to that point. 

However, with the onset of the glass transition, the loss in properties is sudden and 

complete, even for highly reinforced grades.  

The DTULs of these systems are closely associated with the Tg, but almost always fall 

on the steeply sloped part of the modulus curve. Thus, the DTUL occurs in a region of 

great structural instability, and the actual maximum temperature for reliable 

performance under load is 15–30 °C below the DTUL. Finally, the epoxy is a cross-

linked system with a well-defined Tg. The temperature dependency of the modulus in 

such materials is related to the cross-link density. The relationship of the DTUL 

modulus is similar to that observed for PET. However, in this case, the crosslinked 

system provides an extended region of stability well beyond the Tg and the DTUL. 

Thus, while both thermoplastic systems are no longer solid above 250 °C, the epoxy has 

structural integrity and virtually the same modulus at 300 °C as it has at 250 °C. It is 

therefore still serviceable for short-term excursions above the DTUL and may prove 

useful for extended periods under reduced loads, providing that it possesses good 

thermal and oxidative stability.  
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5.2.2 PROJECTION OF MATERIAL BEHAVIOR USING 
SUPERPOSITIONING  
 

Polymeric materials, because of their viscoelastic nature, exhibit behavior during 

deformation and flow that is both temperature and time (frequency) dependent. For 

example, if a polymer is subjected to a constant load, the deformation or strain 

(compliance) exhibited by the material will increase over a period of time. This occurs 

because the material under a load undergoes molecular rearrangement in an attempt to 

minimize localized stresses. Hence, compliance and modulus measurements performed 

over a short time span result in lower and higher values, respectively, than longer-term 

measurements. This time-dependent behavior would seem to imply that the only way to 

accurately evaluate material performance for a specific application is to test the material 

under the actual temperature and time conditions the material will see in the application. 

This implication, if true, would present real difficulties for the material scientist because 

the range of temperature and/or frequencies covered by a specific instrument might not 

be adequate or, at best, might result in extremely long and tedious experiments. 

Fortunately, however, there is a treatment of the data, designated as  the method of 

reduced variables or time–temperature superposition (TTS), which overcomes the 

difficulty of extrapolating limited laboratory tests at shorter times to longer-term, more 

real-world conditions. This TTS-treatment is well grounded in theory and can be 

applied to the data obtained from DMA multifrequency experiments. The underlying 

bases for TTS are that the processes involved in molecular relaxation or rearrangements 

in viscoelastic materials occur at accelerated rates at higher temperatures and that there 

is a direct equivalency between time (the frequency of measurement) and temperature. 

Hence, the time over which these processes occur can be reduced by conducting the 

measurement at elevated temperatures and transposing (shifting) the resultant data to 

lower temperatures. 
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Figure 5.4 Epoxy fiberglass composite-stepwise isothermal frequency sweeps 

The result of this shifting is a master curve where the material property of interest at a 

specific enduse temperature can be predicted over a broad time scale. Figures 5.4 and 

5.5 show TTS results for an epoxy composite. Figure 5.4 shows the DMA 

multifrequency curves obtained over four decades (0.1–100-Hz). The ability of the 

DMA Q800 to obtain data at 100 Hz and above shortens the experimental time required 

to obtain the four decades of frequency required for good TTS extrapolations. Figure 

5.5 shows the master curve obtained by combining the multifrequency experiments. 

Note that the behavior of the epoxy (at 148 °C) can be projected over 15 decades of 

frequency, which is well beyond the four decades used in the experiment. Further 

evaluation of the data indicates that the behavior of this material around the glass 

transition follows the William-Landel-Ferry (WLF) equation. 

 

 
Figure 5.5 TTS of epoxy fiberglass results 
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5.2.3 DETERMINATION OF CURING BEHAVIOR 
 

Thermosetting liquids such as prepregs, adhesives, and paints/coatings can be evaluated 

in DMA (dual-cantilever mode) using a supporting structure such as fiberglass braid. In 

these experiments, information about the curing properties (e.g., onset of cure, gel point, 

vitrification) can be obtained as the material progresses from a liquid to a rigid solid. 

Figure 5.6 illustrates the results for a latex paint. The large change in modulus at about 

12 min reflects the onset of drying and curing. 

 
Figure 5.6 Latex curing on fiberglass braid 

 

The use of log (time) as the x axis accentuates the weak tan δ peak associated with final 

vitrification. Although not shown in this figure, a related plot of E' and E'' versus time is 

often used to detect gel point as the point where those curves intersect. 

5.2.4 FILM AND FIBER STRESS/STRAIN MEASUREMENTS 
 

Stress/strain measurements are widely used to characterize films and fibers over a broad 

range of viscoelastic behavior. Although conventional physical testing devices can 

accommodate thin films and singlefilament fibers, the results are difficult to obtain, and 

the accuracy is doubtful since the mass and inertia of the grips are much greater than the 

tensile strength of the material being evaluated. The clamping arrangements and force 

range of DMA are more suitable for examining these materials. Curves like that shown 

in Figure 5.7 for a polyethylene film can be obtained by ramping the force (stress). In 

this case, the broad range of travel for the DMA Q800 (25 mm) allows the behavior of 

this 4-mm long film to be completely characterized through breaking. 
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Figure 5.7 Stress–strain evaluation of polyethylene film 

 

DMA is a versatile technique that complements the information provided by the 

more traditional thermal analysis techniques (DSC, TGA [thermogravimetric analysis], 

and TMA [thermomechanical analysis]). Hence, it is rapidly becoming a necessary 

component of a laboratory interested in characterizing the properties of polymers. 
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6. OPTICAL AND DYNAMIC MECHANICAL PROPERTIES 
OF PLASTIC OPTICAL FIBERS 
  

6.1 INTRODUCTION 
 

Plastic optical fibers (POF) have various applications: in home and local area networks 

(LAN), lighting technology, for fiberoptic sensors and sensors networks, for fiber light 

amplifiers and as scintillating fibers74. They have some great advantages over glass 

multimode optical fibers such as: easy installation owing to large diameter, efficient 

light coupling owing to large numerical aperture (NA) (typically 0.5), high ductility or 

low modulus, resistance to impact and vibrations and low cost. The main disadvantage 

is higher optical loss 75. During their applications POF are exposed to different kinds of 

static and dynamic stresses and environmental conditions. It is of great importance that 

they keep their optical properties unchanged when they are exposed to different 

influences in LAN and lighting applications, but on other hand in sensors applications 

they should have significant, regular and repetitive change of some optical property.  

The most important property of POF is the optical transmission which mainly depends 

on core materials, drawing process and the conditions employed in the manufacturing 

process. The poly(methyl methacrylate) (PMMA), polystyrene (PS) and polycarbonate 

(PC) are the most used polymers as core materials in commercially available multimode 

step and graded index POF. PMMA has the highest transparency among them76. The 

major source  of optical loss in POF are intrinsic factors such as absorption (higher 

harmonics of C-H absorption and electronic transitions absorption) and Rayleigh 

scattering. During their practical operations environmental factors and mechanical 

stresses bring both physical and chemical changes of core material and  cause change in 

optical transmission77,78,79. 

 Dynamic Mechanical Analysis (DMA) is one of the most powerful tools to study the 

behavior of plastic and polymer composite materials by applying an oscillating force to 

a sample and analyzing the material deformation response as a function of frequency, 
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time or temperature80,81. It is potentially very useful tool to simulate behavior of POF in 

case of versatility of mechanical and environmental conditions, although DMA of 

cylindrical rods and fibers is up today not very common compared to other 

geometries82. Possibility of simultaneous measurements of some optical properties 

during DMA would significantly upgrade investigations of POF alone or embedded in 

some materials. 

In this work, DMA of the POF that was done simultaneously with measuring the 

transmitted optical signal intensity is described. In order to compare mechanical results 

of the same material for cylindrical and rectangular specimens, rectangular specimens, 

with optimal dimensions for single cantilever DMA, were prepared by melting POFs 

and the same kind of tests were repeated with them. 

6.2 EXPERIMENTAL   
 

Two kinds of DMA were performed on POF: single cantilever tests with constant 

amplitude and frequency and on constant temperature and the dynamic temperature scan 

tests. During both tests the storage modulus (E’) was determined. At the same time light 

was launched into the POF under test and the output light intensity (I) was measured in 

real time. 

The experimental set up consisted of two parts, mechanical and optical. The DMA 

instrument (TA Instruments Q800) and its personal computer (PC) were used for 

mechanical measurements and data acquisition. The investigated POF (ESKA™ GK-

40) with output diameter 1mm (core diameter 0.98 mm) was clamped inside the DMA 

instrument between the movable and stationary fixtures and enclosed in the thermal 

chamber. The length of a fiber between clamps was 18.14 mm, but the whole length of a 

fiber was about 2.5 meters. The clamped parts of the optical fiber were protected with 

Teflon sleeves in order to prevent its damage during testing. The ends of the POF were 

carefully brought out from the temperature chamber of the DMA instrument through a 

hole on its top. Those two outlet ends were connected to light source and the 

photodetector (PD), the optical parts of the experimental set up. Light source was light 

emitting diode (LED), with peak wavelengths 840 nm or 650 nm. The PD was 
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phototransistor based circuit. The light from the LED was launched to the POF and the 

intensity of the propagated light was measured by PD. The output signal from the PD 

was connected to acquisition system (USB type A/D converter (A/D) and personal 

computer (PC)). The schematic view of the experimental set-up is presented in Figure 

6.1. 

 

Figure  6.1. The experimental set up 

Single cantilever test was performed at constant frequency of 3Hz, constant amplitude 

of 30 µm and at constant temperature. The number of the oscillation at one temperature 

was about 6400. Each test lasted from 35-40 min because the time for temperature 

stabilization was not the same at each temperature and that is why the net number of 

oscillation for the same biased parameters except temperature varied a little from one to 

another temperature. This kind of DMA was performed successively on 50, 60, 70, 80 

and 90 ºC on the same POF without opening the temperature chamber. So, set of five 

successive single cantilever tests on five temperatures could be considered as an 

accelerated fatigue test, and the POF is considered as fatigued after those tests.  

The dynamic temperature scan test was performed approximately from 40-120 ºC at one 

fixed POF. The experiment was done in standard single cantilever mode using a 

ramping rate of 3 ºC/min, with an oscillation frequency of 1 Hz and amplitude of 20 µm   

A set of tests was performed with the launched light at one wavelength. First of them 

was dynamic temperature test at one POF considered as not fatigued. Than that POF 

was removed from the instrument and new POF of the same type was fixed. The five 

successive single cantilevered tests were performed at five constant temperatures, and 
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then the dynamic temperature test on the same POF, considered as fatigued, without 

opening the temperature chamber. 

The performed single cantilever tests are originally provided for the rectangular 

specimens. In order to investigate their applicability to fibers the comparison of 

mechanical results on the same material for cylindrical and rectangular specimens was 

done. The rectangular plates dimensions 3x12x30mm were prepared by melting the 

POFs and the same set of mechanical measurements as for the POFs was performed on 

them with the DMA instrument. 

6.3 RESULTS AND DISCUSSION  
    

6.3.1 MEASUREMENTS WITH POF-SINGLE CANTILEVER TESTS 
 

Before all mechanical tests, the transmission spectral characteristic of the investigated 

POF was measured with spectrometer (Carl Zeiss Jena 384824), and it is presented in 

Figure 6.2. Two wavelengths 650 nm and 840 nm are chosen for further measurements. 

From the spectral characteristics, it is obvious that 650 nm is in the middle of the near 

constant part of spectral characteristics with maximum transmission and other chosen 

wavelength, 840 nm, is at the near infrared descending slope and transmission is about 

half compared to the maximum. Those both wavelengths are frequently used in fiber 

optic applications. 
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Figure 6.2.  The transmission spectra of POF 

 

 

The first set of measurements was at wavelength 840 nm, and the second at 650 nm. 

The number of performed oscillations on each temperature and at each wavelength is 

presented in Table 6.1.   

Table 6.1. Number of performed oscillations, N, during single cantilever test on 5 

different temperatures, and at two different wavelengths of launched light 

 

The measured results for single cantilever tests with optical signal wavelength 840 nm 

are presented in Figure 6.3. and Figure 6.4.  
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Figure 6. 3. The changes of E’ versus time of POF during single cantilever tests 

(wavelength 840 nm) 
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Figure 6.4. The change of I/I0 of  POF versus time during single cantilever tests 

(wavelength 840 nm) 

The changes of E’ of POF versus time are presented in Figure 6.3. for five constant 

temperatures. The measured changes in optical signal intensity during the same tests are 

presented by normalized signal intensities (I/I0) versus time in Figure 6.4. Parameter I is 

the measured signal on the PD, and I0 is the measured signal on the PD at the beginning 

of the single cantilever test at that measuring temperature. Comparing graphs in Figure 
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6. 3. and Figure 6.4. it is obvious that after some period of temperature stabilization the 

E’ is slightly rising, while I/I0 is descending during single cantilever tests.  The most 

significant changes of E’  and I/I0 has occured at 90 ºC 

In order to quantify and compare changes in E’, and I, their relative changes are 

calculated and presented in Table 6.2. The relative changes of E’  denoted as ∆E’/E’, 

and of optical normalized signal intensity denoted as ∆I/I0 are obtained from the values 

of E’ and I/I0 at t1=15 min and t2=35min after temperature stabilization.  

The similar graphs of E’ and I/I0  versus time, but for wavelength 650 nm are presented 

in Figure 6.5. and Figure 6.6. The calculated values of ∆E’/E’ and ∆I/I0 for 

measurements on 650 nm are also presented in Table 6.2. During the tests at 80 ºC and 

90 ºC the measurements were disturbed before t=35min which could be seen from 

irregular changes of E’  in Figure 6.5, as well as, from the change of slope of optical 

signals in Figure 6.6. So, the relative changes ∆E’/E’, and ∆I/I0, for 80 ºC were 

calculated from the values at t1*=15min, and t2*=32min, and for 90 ºC at t1**=5.65min, 

and t2**=13.25min. That irregular behavior was emphasized in the Table 6.2. with 

values that have superscripts * and **. 

 

Figure 6.5. The changes of E’ of POF versus time during single cantilever tests 

(wavelength 650 nm) 

 



 65

 

Figure 6.6. The change of I/I0 of POF versus time during single cantilever tests 

(wavelength 650 nm)   
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Table 6.2. Relative changes ∆E’/E’  and ∆I/I0 for POFs and ∆E’/E’  for rectangular 

specimen after  single cantilever tests at various temperatures 

 

The measurements at both wavelengths show similar relative changes of E’ and I/I0 and 

the most significant changes were at 90 ºC.   

6.3.2   DYNAMIC TEMPERATURE SCAN TEST   
 

Two POFs were examined at each wavelength, one not fatigued and the other was 

fatigued. The changes of E’ versus temperature of the both POFs with launched light 

wavelength 840 nm are presented in Figure 6. 7. The E’ descended linearly from 40 ºC 

to 80 ºC for both fatigued and not fatigued POF. Nonlinear behavior started at 

temperatures higher than 80 ºC. The values of I/I0 for the not fatigued and fatigued POF 

at 840 nm are presented in Figure 6.8. The intensity of optical signal was almost 

constant from 40 ºC to 50 ºC, and ascended almost linearly from 50 to 80 ºC. At 

temperatures higher than 80 ºC the dependence of I/I0 versus temperature had non linear 

behavior, reached their maximums and then constantly descended. The maximum I/I0 

for not fatigued POF was at 89 ºC and for fatigued was at 104 ºC    
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Figure 6.7. The changes of E’ versus temperature for fatigued and not fatigued POF 

(wavelength 840 nm) 

 

Figure 6.8. The changes of I/I0 versus temperature for fatigued and not fatigued POF 

(wavelength 840 nm) 

 Similar changes in E’ and I/I0 had occurred during the measurements at wavelength 650 

nm. The changes of E’ versus temperature are presented at Figure 6.9, and the changes 

of I/I0 are presented at Figure 6.10 both for fatigued and not fatigued POFs. The 
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maximum I/I0 of not fatigued POF was at 88 ºC. For fatigued POF the maximum I/I0 

was between 95 ºC and 105 ºC, The relative changes ∆E’/E’ and ∆I/I0 at 650 nm are 

presented in Table 6.3. 

The relative changes ∆E’/E’ and ∆I/I0 for fatigued and not fatigued POFs at both 

wavelengths are presented in Table 6.3. Two kinds of relative changes were calculated: 

one for the temperature range from 40-80 ºC, and the other from 40 ºC to the 

temperatures at which I/I0 was maximum. 

 

Figure 6. 9.  The changes of E’ versus temperature for fatigued and not fatigued POF 

(wavelength 650 nm) 

 

Figure 6.10. The changes of I/I0 versus temperature for fatigued and not fatigued POF 

(wavelength 650 nm) 
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Table 6. 3. Relative change of I/I0 and E’ of POFs and ∆E’/ E of rectangular specimens 

in dynamic temperature scan tests 

 

The changes of I/I0 versus temperature for not fatigued POFs are bigger than for not 

fatigued. This is more significant for signals at 840 nm.  Maximums of I/I0 for not 

fatigued POF are almost at the same temperature (88-89 ºC) for both wavelengths as 

well as for the fatigued pof (104 ºC).   

 6.3.3 MEASUREMENTS ON RECTANGULAR SPECIMENS  
 

Single cantilever test mode used for described measurements is originally provided for 

rectangular specimens. The calculated values of E’ obtained by DMA are based on 

expressions for rectangular specimens divided by π. In order to compare results of 

mechanical characteristics on the same material for cylindrical and rectangular 

specimens, two rectangular specimens, are prepared by melting POFs.  The dynamic 

temperature scan test was performed on the first one in order to compare E’ of not 

fatigued POF with it. Then, the single cantilever tests on five temperatures and the 

dynamic temperature test were performed on the second rectangular one.   

The single cantilever test . The curves representing storage modulus versus time at five 

constant temperatures are presented in Figure 6.11. The  ∆E’/ E  for single cantilever 

tests are presented in Table 6.2 From those results it is obvious that they are of the same 

order for temperatures from 50-80 ºC and for 90 ºC the value is higher than for the other 

temperatures. 
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Figure 6.11. The changes E’ of the rectangular specimen versus time for single 

cantilever tests on five constant temperatures 

The dynamic temperature scan test The results of dynamic temperature scan tests for 

the not fatigued, and the fatigued rectangular specimen are presented in Figure 6.12. 

The curves represent the change of E’ , the loss modulus (E”) and the loss factor (tanθ) 

versus temperature. From these curves glass transition temperature (Tg) was derived 

and it is 118.7 ºC for fatigued and 121.6 ºC for not fatigued plate.  

 

Figure 6.12.  Changes of  E’, E”  and tanθ  versus temperature for the rectangular 

specimens during single cantilever temperature scan test  
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The values of E’ at 40, 80, 90 and 104 ºC were obtained from the curves in Figure 6. 11. 

and ∆E’/ E for fatigued and not fatigued specimen from 40-80 ºC, from 40-90 ºC and 

from 40-104 ºC were calculated and presented in Table 6.3. 
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7. OPTICAL AND MECHANICAL PROPERTIES PMMA-
Y2O3 (Eu3+) NANOCOMPOSITES  

 

7.1 INTRODUCTION 
 

Nanocomposites are a distinct form of composite materials, which involve embedding 

nano- or molecular domain-sized particles into organic polymer, metal or ceramic 

matrix materials83,84. The intimate inclusion of nanoparticles in these matrices can 

greatly change the mechanical, electrical, optical or magnetic properties of these 

materials. The reason for this is that with such small inclusions, a large amount of 

interfacial phase material exists in the bulk of these nanocomposites.  

This paper is related to the processing and characterization of polymer–nanophosphor 

composites, as promising materials for the production of nanocomposite fibers. Plastic 

optical fibers (POF) can be used for a number of applications, such as light transmission 

for signs and illumination, sensors and data communication85,86,87. Signal attenuation of 

commercial polymer fibers is much higher than that of glass fibers. In order to improve 

POF optical efficiency, research and processing are being developed in the direction of 

nanocomposite POF doped with dyes, and fluorescent or phosphorescent nanopowder88. 

The optical properties of nano-sized phosphors are significantly improved in 

comparison to bulk materials (stronger luminescence emission and modified radiative 

lifetime)89, 90, 91. Poly(methyl methacrylate), PMMA, nanocomposites containing Y2O3 

doped with rare earths (RE) ions have been investigated and it was suggested that doped 

Y2O3 nanocrystals embedded in PMMA would have potential for various photonic 

applications, including laser systems and optical communication devices92,93. 

Nanocomposites PMMA-Y2O3:RE were successfully prepared by mixing Y2O3:Er3+, 

Yb3+ or Y2O3:Er3+ with PMMA for infrared cards. The Eu-ion doped Y2O3 

nanophosphor is useful for nanocomposite POF light guides because the luminescence 

wavelength of the Eu-ion (611 nm) is in the visible range of spectrum. It is very 

important to preserve their optical properties for a synergetic effect in functional 

nanocomposites. 
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In this work, Eu-ion doped Y2O3 nanophosphor powder was dispersed in PMMA as the 

host. The influence of the content of nanopowder on the optical properties, dynamic 

mechanical properties, transition temperature, Tg, and microhardness of the 

nanocomposites was investigated. 

When an amorphous polymer is heated, it undergoes a phase transition from the glassy 

state to the rubbery state at the Tg, when abrupt jumps in the thermal expansion and 

heat capacity occur. The temperature coefficients of the molar volume, free volume and 

enthalpy change of the glass–rubber transition are closely related to the cohesive energy 

density of the polymer. The glass transition temperature, Tg is linearly related to the 

cohesive energy density (CED) by the following equation94: 

                                                  ( )g C 12T E m R C= +                                                (7.1) 

where EC is the CED, Tg is the glass transition temperature (in K), m a parameter that 

describes the internal mobility of the groups in a single chain, R is the gas constant and 

C1 is a constant. The CED is also the main factor determining hardness, H, which 

results in an almost linear relationship between Tg and H for a number of amorphous 

glassy polymers95,96,97 

                                                            gH kT C= +                                                   (7.2) 

where C and k are experimental fitting parameters. 

The nanoparticles penetrate into the polymer matrix and establish cohesive forces 

between the polymer chains and decrease the segmental mobility thereby increasing the 

Tg value98. Therefore, it is to be expected that the microhardness will also be increased. 

The expression for the Vickers hardness (HV) is: 

2854.1 −⋅⋅= dPHV                                                   (7.3) 

where P is the applied load and d is the mean diagonal length of the diamond-shaped 

indent. 

Dynamic mechanical analysis (DMA) is a sensitive technique that characterizes the 

mechanical response of materials by monitoring property change with respect to the 
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temperature and frequency of an applied sinusoidal stress. This technique separates the 

dynamic response of materials in to two distinct parts: an elastic part (E′) - storage 

modulus and a viscous component (E″) - loss modulus. The loss factor, Tan Delta (tan 

δ) is the ratio of the energy dissipated to the energy stored. The transition temperature 

(Tg) of a polymer is associated with the onset of the storage modulus - Tg(E'); the loss 

modulus peak - Tg(E") and the tan δ peak- Tg(tanδ). The onset of E’ occurs first at the 

lowest temperature and relates to mechanical failure. The E” peak occurs next and is 

associated with the Tg as the temperature of the onset of segmental motion. The tan δ 

peak occurs at the highest temperature and represents a good measure of the “leather 

like” midpoint between the glassy and rubbery state99,100. 

7.2 EXPERIMENTAL 
 

The nanopowder was synthesized by a complex polymer solution method (PCS), 

employing poly(ethylene glycol) (PEG) fuel. The particle size was about 30–40 nm10130 

The nanocomposites were prepared by melt compounding in a Laboratory Mixing 

Molder (Atlas, USA), at a working temperature of 250 °C and a rotor speed of 180 rpm 

for 20 minutes. The polymer component of the composite was extrusion grade PMMA 

pellets, Acryrex® CM-205, Chi Mei Corporation, Taiwan. Samples with different 

contents of Y2O3 (Eu3+) powder: 0.1 %; 0.5 %; 1.0 % and 1.5 % by weight were 

processed.  

The infrared (IR) spectra of the powder, pure PMMA and the composites were obtained 

by Fourier transform infrared (FTIR) spectroscopy (Hartmann & Braun, MB-series) in 

KBr discs. The scanning range was between 4000 and 400 cm−1 with a resolution of 4 

cm−1. 

The emission spectra of the PMMA-Y2O3 (Eu3+) nanocomposites were collected at 

room temperature after excitation into the 7F0 → 5D2 absorption band. The excitation 

source was an Optical Parametric Oscillator (O.P.O.) pumped by the third harmonic of 

an Nd:YAG laser. The emission was analyzed using an HR250 monochromator (Jobin-

Yvon) and then detected by an ICCD camera (Princeton Instrument). 
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The microhardness measurements were performed at the room temperature using a 

Vickers microhardness tester Leitz, Kleinharteprufer Durimet I. The Vickers 

microhardness test uses a square based pyramidal indenter with an apex of α = 136°, 

producing a diamond-shaped indent on the surface. A press load of 490 mN, a press 

time of 15 s, and a holding time of 5 s after completing the indentation were used. 

Individual Vickers microhardness values (HV) were calculated as the mean value of at 

least five indentations.  

A dynamic mechanical analysis (DMA) instrument (TA Instruments Q800) was used to 

determine the dynamic mechanical properties of the samples. The experiments were 

realized in the single-cantilever mode over a temperature range from 25 °C to 160 °C at 

a fixed frequency of 1 Hz. The heating ramp rate was 3 °C min–1. The temperature 

dependence of the storage modulus, loss modulus and tan δ were obtained.  

7.3 RESULTS AND DISCUSSION 
 

The FTIR transmission spectra of the powder, PMMA and composites are illustrated in 

Figure 7.1. The peaks at 2946 cm–1 and 1735 cm–1 are assigned to C–H and C=O 

stretching vibrations in PMMA, respectively. The absorption bands of PMMA (1439, 

840, 750 and 440 cm–1), and the vibration bands of PMMA (3458, 1385, 1133 and 974 

cm–1), were observed in the spectra. In the spectrum of Y2O3 (Eu3+), the transmission 

band centered at 560 cm–1 is attributed to Y–O lattice vibrations. This peak also 

appeared in all the spectra of all the composites. 
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Figure 7. 1. FTIR spectra of Y2O3 (Eu3+), PMMA and the composites with different 

contents of Y2O3 (Eu3+). 

The emission luminescence spectra of nanocomposite are presented in Figure 7.2. The 

spectra exhibit groups of distinctive emission peaks in the 580–711 nm range. These 

emission peaks can be related to each of the 5D0 → 7FJ (J = 0,1,2,3 and 4) transitions of 

Eu3+, which are characteristic for Eu3+ ions within a crystallized cubic phase. The 

strongest emission peak at 611 nm is caused by the electron dipole transition of Eu3+ 
(5D0 → 7F2), corresponding to the red luminescence. The intensity of the emission peak 

increased with increasing powder content in composite. It is very important that the 

nano-phosphors maintain their optical properties in the composites. The strongest 

emission peak at 611 nm was obtained in the range of wavelengths where the maximum 

signal attenuation of PMMA optical fiber is expected to be found. This feature will 

improve the transmission properties of POF and will prolong the length of a light guide. 

 

Figure 7.2. Emission spectra of the PMMA – Y2O3 (Eu3+) nanocomposites at room 

temperature. 

Investigations of the dynamic mechanical properties of the samples provided 

information on the transitions occurring in the materials (Figure 7.3). The DMA results 

revealed that the storage modulus of the all the composite samples were higher than that 

of a pure PMMA at 30 °C (Table 7.1). The increase of nanopowder content up to 1 % 
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increased the storage modulus of composite by 15.5 % compared to that of pure 

PMMA. With 1.5 % of the nanophosphor, the storage modulus of the composite was 

only 5.1 % higher than that of PMMA, because of agglomeration of the nanoparticles. 

The corresponding loss moduli were between 175 and 200 MPa and obviously increased 

with increasing content of nanopowder in the same manner as the storage modulus. The 

Tg values of the PMMA–Y2O3 (Eu3+) composites were also higher than that of PMMA 

and increased with increasing content of the nanoparticles. The results suggested that 

the nanoparticles did not disperse individually but as aggregates; however, notable 

increases in the glass transition temperature in the order of 2 to 8 °C were evidenced. 

a) 
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b) 

c) 

Figure 7.3 Temperature dependence of a) the storage modulus, b) the loss modulus and 

c) tan δ for composites with different contents of Y2O3 (Eu3+). 
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Table 7. I  Results of DMA: E′ and E′′ at 30 °C, values of Tg obtained by E′ onset, E′′ 

maximum, tan δ maximum and microhardness (HV) 

c Y2O3/ 

% 

E`/ 

MPa 

ΔE`/ 

% 

E``/ 

MPa 

Tg(E') / 

°C, 

Tg(E" ) / 

°C, 

Tg(tan δ ) / 

°C 

HV/ 

MPa 

0 2147  156.9 100.68 112.70 126.40 254.87 

0.1 2199 2.4 175.0 102.05 111.33 125.48 259.256 

0.5 2352 9.5 184.6 103.29 111.84 126.20 269.812 

1.0 2481 15.5 200.6 105.71 114.44 127.60 276.631 

1.5 2256 5.1 189.0 108.47 116.73 129.70 280.139 

 

The hardness (H) of a material is a measure of its resistance to shear stresses under local 

volume compression. The hardness number increased with Y2O3 (Eu3+) concentration in 

the PMMA nanocomposites. The increased resistance to surface deformation of the 

PMMA nanocomposites may be due to a decrease in the free volume of the matrix 

associated with the formation of apparent physical cross linking and entanglements. The 

Tg is linearly related to the microhardness according to Eq. (2). The correlations 

between HV and the Tg derived from the DMA curves by the E' onset, by the E'' peak 

and by the tan δ peak are presented in Figure 7.4. The fitting coefficients of these 

correlations, C, k and R2 are presented in Table 7.1 for all three lines. The value of R2 of 

the linear correlation between HV and Tg(E') is the highest. This means that the E' onset 

is the most sensitive to local shear stresses and it exhibits the best linearity with 

microhardness.  
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Figure 7. 4. Linear correlations of HV and Tg obtained from the DMA results - Tg (E’), 

Tg (E”) and Tg(tan δ). 

 

Table 7.2. Fitting parameters of the Tg–HV correlations 

 

 

 

 

 

 

The optical and mechanical properties of PMMA-Y2O3 (Eu3+) nanocomposites were 

investigated. The luminescence spectra of the nanocomposites revealed that the 

phosphorescence of the powder remained on compositing and the emission intensity 

was enhanced as the content of the powder in the composites increased. The results 

obtained from the DMA showed that on the addition of nanopowder, the Tg of the 

PMMA increased, but only by a few degrees; this also suggests that the nanoparticles 

Fitting parameters HV – Tg(E'), HV – Tg(E") HV – Tg(tan δ ) 

C / MPa –969.28  –1272.6 –1773.6  

k / MPa K–1 3.2825 3.9911 5.108 

R2 0.9166 0.8199 0.8786 
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did not disperse individually but as aggregates. The microhardness number increased 

with increasing Y2O3 (Eu3+) content in the PMMA nanocomposites. A nearly linear 

correlation between Tg and microhardness was obtained, because both properties are 

closely related to the cohesive energy density. This result is in accordance with 

previously reported results for amorphous glassy polymers, and now this linear 

correlation is applicable to similar composite configurations. 
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8. OPTICAL AND MECHANICAL PROPERTIES PMMA- 
Gd2O3 (Eu3+) NANOCOMPOSITES  
 

8.1 INTRODUCTION 
 

Rare-earth-based nanoparticles are highly photostable and exhibit long luminescence 

lifetimes and narrow emission bands with similar properties as those of quantum dots102. 

They possess excellent luminescent properties of inorganic phosphors which lead to 

promising applications of polymer–nanophosphor composites. Among the inorganic 

oxides, Gd2O3
103,104,105,106  was widely employed as ideal host materials for the rare 

earth ions (RE) ion down- or up-conversion emission because of their low-phonon 

energy, high chemical- and photo stability, and efficient sensitization (host-to- RE 

energy transfer). 

Thermoplastic polymer nanocomposites doped with the rare earth ions such as Tb, Eu, 

Yb and Er have attracted considerable interest due to energy transfer, up-conversion 

effects and broad application possibilities. They have a wide range of applications in 

photonic devices, signal links in medical devices, illuminating systems, fiber optic 

sensors and amplifiers107,108,109,110,111. Recently, polymer optical fibers have found new 

applications in bio-sensors, bio-analytics and even clinical imaging diagnostics. 

Poly (methyl methacrylate) (PMMA) is known as an optical plastic with excellent 

transparency and good processability, but with relatively poor mechanical properties. 

For improvement of mechanical properties of the transparent PMMA, techniques are 

used such as polymer blending and nanoparticles or continuous fiber 

reinforcement112,113,114,115. As a consequence, the transmittance of the composites 

decreased significantly due to the difference between refractive indices of the PMMA 

and the reinforcement materials. An imperfect interface also contributes to the 

composite opacity. To resolve these problems, a potential method is to reduce the 

diameter of the reinforcing fibers to a size smaller than the wave-length of a visible 

light, so that the visible light does not reflect or refract while travelling through the 

composite116. Selected nanophosphors satisfy the prerequisites for presented hypothesis 
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in that the size of particles in optical composites should be less than the wavelength of 

light because of light scattering and the appropriate deagglomeration of nanoparticles in 

composite preparation could lead to the increase of mechanical properties. The optical 

effectiveness of the Gd2O3 (Eu3+) in PMMA has already been reported117, 118. 

The melt mixing molding is quite extensive composite processing technique, with the 

pros and cons in that there is no need for other chemicals as for solution methods, but 

the deagglomeration and dispersion degree, especially in nano dimension, is rather low 

in comparison to other processing routes. 

Solution casting method is usually utilized for processing of polymer nanocomposites 

because of the wide possibilities in mixing and deagglomeration of nanoparticles in 

solution. Potential drawbacks emerge with forming films after casting, with their 

thickness and particle distribution uniformity. Some of them could be resolved using the 

spin coating method.  

Electrospinning is a versatile and effective technique to produce long, continuous fibers, 

and it is applicable to a diversity of materials, including not only polymers119,120, but 

also bio-molecules121,122, as well as inorganic/polymer composites123,124,125. It is an 

electrostatically induced assembly process for generating ultrathin fibers with nanoscale 

diameters.  

Thermo-mechanical properties of nanocomposites in form of bulk, films or nanofibers 

were measured by DMA because this technique is able to detect short range motion 

before the glass transition range is attained and thus identify the onset of main chain 

motion. Thus, the DMA method is more sensitive to detection of temperature transition 

than DSC because the mechanical changes are more dramatic than changes in the heat 

capacity126,127. In addition, the nanomechanical properties of composite films were 

measured in order to point the effects of silanization of nanoparticles. 

8.2 EXPERIMENTAL 
 

Commercially available PMMA Acryrex® CM205 (Chi Mei Corp.) pellets were used as 

a matrix for preparing samples (Mw≈90400 g/mol). The Gd2O3 doped with 3 at. % Eu3+ 

nanopowder was synthesized using the combustion reaction based on polyethylene 
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glycol (PEG) fuel. The particle size of the Gd2O3 (Eu3+) sample was determined by 

transmission electron microscopy-TEM (Phillips CM100 instrument operating at 60 

kV). The silane coupling agent used for modification of particles was γ-

Aminopropyltriethoxysilane- AMEO, Dynasylan® Evonik-Degussa128. In the present 

study, the grafting reaction was carried out in a 95 wt% ethanol - 5 wt% water mixture 

to yield a 2 wt% final concentration of silane. The required amount of AMEO silane 

was calculated assuming 1 mol of AMEO per mol of Gd2O3 (Eu3+). After silane 

addition the dispersion was refluxed with intensive stirring for 48 h at 80 °C, 

centrifuged and washed with ethanol in order to remove the residual silane and dried at 

110 °C in a vacuum oven. Bulk nanocomposites were produced using Laboratory 

mixing molder, Dynisco. The sample contents were processed with different Gd2O3 

(Eu3+) powder: 0.5 wt%; 1.0 wt%: and 3 wt%. Nanocomposite films and nanofibers 

were processed with content of 3 wt% of unmodified and modified particles. Three 

solutions with fixed polymer concentration at 22 wt% were made using 

dimethylformamide (DMF, Uvasol® for spectroscopy, Merck-Alkaloid, Skopje) as 

solvent. The first solution was used for preparation of film and electrospun nanofibers 

of pure PMMA. The second solution consisted of polymer and Gd2O3 (Eu3+) particles 

and the third contained polymer and AMEO modified Gd2O3 (Eu3+) particles. 

Concentration of particles was set as 3 wt% related to polymer. One part of solution was 

used for electrospinning and the other was for solution casting. Electrospinning process 

(Electrospinner CH-01, Linari Engineering, Italy.) was setup: a 20 ml plastic syringe 

with a metallic needle of 1 mm inner diameter was set vertically on the syringe pump 

(R-100E, RAZEL Scientific Instruments); the high-voltage power supply (Spellman 

High Voltage Electronics Corporation, Model: PCM50P120) was set to the voltage of 

28 kV. The flow rate of polymer solution was constant at 0.5 ml/h. Distance from the 

needle tip and collector was 14 cm. For the solution casting the solutions were poured 

into flat-bottomed Petri dishes to form film with a thickness of 500 μm. The infrared 

(IR) spectra of samples in KBr discs were obtained by transmission Fourier transform 

infrared (FTIR) spectroscopy (Hartmann & Braun, MB-series). The FTIR spectra were 

recorded between 4000 and 400 cm−1 with a resolution of 4 cm−1. An insight of 

dispersion and deagglomeration of nanoparticles was performed using FESEM 

(TESCAN MIRA 3) with fracture surfaces sputtered with gold. The measuring of 
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electrospun nanofibers diameter was performed by Image Pro Plus 4.0. A dynamic 

mechanical analyzer DMA Q800 (TA Instruments) was used in the dual cantilever 

mode over a temperature range from 25 °C to 160 °C at a fixed frequency of 1 Hz. The 

heating ramp rate was 3 °C/min. DMA of fibers and thin films was established with the 

stainless steel sample holder  loaded in the DMA Q800 (TA Instruments) using a dual 

cantilever mode, with temperature ramp 3 °C/min from 30 °C to 160 °C, and at a fixed 

frequency of 1 Hz. Because of the architecture of electrospun nanofibers, the modified 

DMA tests were performed with specific stainless steel sample holder with the 60 

mm×13 mm×1 mm dimensions.  

Nanoindentation tests on the polymer and composite film samples were done using the 

Hysitron Triboindenter with a Berkovich diamond tip and in-situ imaging scan mode. 

The hardness and reduced elastic modulus were calculated from the curves using the 

Oliver and Pharr method129. The indentation maximum load was set to be 2 mN for all 

tested samples. The loading and unloading times as well as the hold time at the peak 

force were set to 25 s each. 

8.3 RESULTS AND DISCUSSION 
 

Morphology and particle sizes of powder were checked with TEM. It is revealed 

that Gd2O3 (Eu3+) nanopowders in the form of particle agglomerates with dimensions of 

individual particles of about 40 nm, as shown in Figure 8.1. 

 

Figure 8.1. TEM image of Gd2O3 (Eu3+) powder 
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FESEM photos of the composite fracture surfaces of bulk samples and films with 

unmodified (a) and modified (b) particles are presented in Figures 8.2 and 8.3. FESEM 

analysis reveals that the better dispersion of nanoparticles is achieved with modified 

particles. The silanization of particles leads to better deaglomeration of particles. 

 

 

a) b) 

Figure 8.2. FESEM of bulk samples: a) PMMA-Gd2O3 (Eu3+) (3 wt %); b) PMMA- 

Gd2O3 (Eu3+)-AMEO (3 wt %) 

 

a) b) 

Figure 8.3 FESEM of films: a) PMMA- Gd2O3 (Eu3+) (3 wt %); b) PMMA-Gd2O3 

(Eu3+) AMEO (3 wt %) 

 

SEM photos of the electrospun nanofibers are presented in Figure 8.4. Image analysis 

revealed that nanofibers were in mean diameter of 200-500 nm of PMMA, 400-600 nm 

of PMMA- Gd2O3 (Eu3+) and 300-550 nm of PMMA- Gd2O3 (Eu3+)-AMEO 

nanocomposites, respectively. A favorable dispersion of particles in nanofibers was 

achieved and a better deaglomeration of modified particles was obtained.  
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a) b) c) 

Figure 8. 4. FESEM photo of electrospun nanofibers: a) PMMA; b) PMMA- Gd2O3 

(Eu3+) (3 wt%); c) PMMA- Gd2O3 (Eu3+)-AMEO (3 wt %) 

The FTIR spectrum of unmodified, modified Gd2O3 (Eu3+)nanoparticles and AMEO 

silane is presented in Figure 8.5. The IR spectrum of unmodified Gd2O3 (Eu3+) shows 

the characteristic bands observed at 1017, 1397 and 1506 cm-1 of nitrate and carbonate 

as consequence of combustion method130. The presence of adsorbed water molecules 

was assigned to the bands δ(H2O) at 1635 cm−1 and ν(H2O) at 3434 cm−1. The 

characteristic band for Gd-O bond was observed at 542 cm-1. The FTIR spectrum of the 

amino modified gadolinium particles (Figure 8.5 (b)), shows the band originating from 

Si-O-Si vibrations at 1064 cm−1, and the weak bands at 2924 cm−1 and 2846 cm−1, 

which were assigned to the asymmetric, νas, and symmetric, νs, stretching modes of CH2 

groups. In the FTIR spectrum of the amino modified gadolinium particles, Figure 8.5 

(b), can be seen the band originating from Si-O-Si vibrations at 1064 cm−1, the weak 

bands at 2924 cm–1 and 2846 cm–1 were assigned to the asymmetric, νas, and symmetric, 

νs, stretching modes of CH2 groups. The band at 1128 cm−1 could also be due to Si-O-

Gd groups, the weak band at 1541 cm–1 may be attributed to δ(NH2) deformation 

vibrations of the NH2 groups, respectively, which is in agreement with the data reported 

in the literature128. The broadening of the signal centered at about 3434 cm–1 was also 
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assigned to the presence of adsorbed water molecules and overlapped with signals of 

ν(H2O) of the adsorbed water, silanol and ν(NH2) group vibrations. This indicates that 

the chemical modification on Gd2O3 (Eu3+) surface was achieved. 

 

Figure 8.5 The FTIR spectrum of a) neat Gd2O3 (Eu3+), b) modified Gd2O3 (Eu3+) and 

c) AMEO silane 

Further investigation on the optimal composite configuration for appropriate mechanical 

properties was undertaken by DMA, as presented in Figure 8.6. The results of DMA for 

bulk samples with different nanophosphors are presented in Figure 8.6 (a). The glass 

transition temperature (Tg) of a polymer increased after the addition of inorganic fillers 

and the storage modulus composites are changed correspondingly131. It is obvious that 

even in the absence of specific interactions with the polymer, the particles behaved as 

functional physical crosslink and thus reducing the overall mobility of the polymer 

chains, as was already reported132,133. After adding the modified particles, the storage 

modulus increased considerably and Tg increased slightly (Figure 8.6 (b)). So, the 

modification of interface particle-matrix improved the mechanical properties of 

nanocomposite.  
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a) b) 

 
c) d) 

Figure 8.6. DMA- a) Storage modulus of pure PMMA and nanocomposites - Bulk 

samples; b) Storage modulus of pure PMMA and nanocomposites with 3 wt% 

unmodified and 3 wt% modified nanoparticles; c) Complex modulus, E*, of electrospun 

nanofibers; d) Complex modulus, E*, of different films 

Table 8.1. The glass transition temperature (Tg) 

Sample Tg/° C 

Bulk samples

Tg/° C 

Nanofibers

Tg/° C 

Films 

PMMA 101.18 97.47 60.02 °C 

PMMA- Gd2O3 (Eu3+) 101.76 102.89 62.31 °C 

PMMA- Gd2O3 (Eu3+) -AMEO 102.12 107.68 64.12 °C 
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The using of stainless steel holder enabled the characterization of the Tg with 

temperature change by observing the signal change of the calculated normalized 

complex modulus, E*134,135,136. The magnitudes of the storage modulus and the loss 

modulus are only qualitative. This complex modulus, E*, presents the ratio of the 

complex modulus within a sample set to the value of the maximum modulus in the same 

data set. The DMA results for nanofibers (Figure 8.6 (c)) clearly display that the glass 

transition temperature is accompanied by significant loss (onset point) of the normalized 

complex modulus, E*. Better thermal stability was achieved for nanocomposite with 

modified particles with respect to nanocomposite with unmodified particles and pure 

PMMA. The shift of Tg for nanofibers is more remarkable than that for bulk samples. 

This indicates that the distribution of nanoprticles is much better in electrospun 

nanofibers. DMA results for films with modified and unmodified particles obtained by 

steel sample holder are presented in Figure 8.6 (d). The results show that the onset 

point, corresponding to the α-transition (glass transition), is shifted towards the lower 

temperatures, as compared with the bulk polymer obtained by molding, without any 

solvent. The effect of the solvent contained in the film decreases the glass transition 

temperature (Tg) of the polymer and composites137,138. But the results show the same 

trend as a bulk and nanofibers in that the value of Tg raised in the order PMMA, 

PMMA- Gd2O3 (Eu3+) and PMMA- Gd2O3 (Eu3+) -AMEO. 

Figure 8.7 (a) shows typical force–depth curves obtained in the nanoindentation tests for 

neat PMMA film and composites with Gd2O3 (Eu3+) and AMEO silane treated Gd2O3 

(Eu3+). The curves appear to be with continuity and without pop in or pop out in both 

loading and unloading phases. Figure 8.7 (b) displays the plastic imprint of the indent 

for the sample with AMEO silane treated particles with the scan trace in the vicinity of 

the indent.  
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a) b) 

Figure 8.7 a) Load–displacement curves of neat PMMA and nanocomposite films; b) 

Indent plastic imprint with scan trace of the PMMA- Gd2O3 (Eu3+)-AMEO sample 

In-situ imaging mode used for scanning the surface trace reveals the absence of cracks 

and fractures around the indent. Line trace shows small piling-up along the edges but in 

addition to the film surface roughness (adequate but not ideal); these scans (only one is 

displayed) raise the confidence that nanoindentation tests captured actual material 

properties139. The results of reduced elastic modulus and hardness for neat polymer and 

composites with 3 wt% of nanoparticles are presented in Table 8.2.  

Table 8.2. The results of reduced elastic modulus and hardness for neat polymer and 

composites 

Sample Er /GPa Standard 
deviation/GPa

H/GPa Standard 
deviation/GPa  

PMMA 4.278 ± 0.3 0.263 ± 0.2 

PMMA- Gd2O3 (Eu3+) 4.817 ± 1.6 0.268 ± 0.15 

PMMA- Gd2O3 (Eu3+) 
AMEO 

5.597 ± 1.0 0.293 ± 0.15 
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The reduced modulus for composite with untreated particles increases for 12.6% while 

the hardness remains similar in comparison to the neat PMMA films. For composites 

with AMEO silane treated particles the modulus increases for about 30% and hardness 

increase is about 11%. For composites with silane treated particles, results are 

comparable to those with other nanoparticle composites which achieved favorable 

dispersion and particle matrix bonding140, 141. Previous work reported the use of PEG 

silane, TEOS or grafting method for the silanization of Gd2O3 and RE:Gd2O3 

nanoparticles142,143 this study presents the first report on the modification of Gd2O3 

(Eu3+) with AMEO silane adhesion promoter. The modification routes using PEG 

silane, TEOS or grafting methods leads to the appropriate nanoparticle deagglomeration 

in solvents (but not in polymer composites), as proven by electron microscopy and 

optical characterization of modified particles. This study presents the first attempt of 

establishing relations between the modification methods of Gd2O3 (Eu3+)particles with 

the nanocomposite mechanical properties.  
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9. CONCLUSIONS  
 

Single cantilever tests on POFs at constant frequency and amplitude and on five 

constant temperatures showed that E’ slightly increased with number of performed 

oscillations at each temperature. Relative changes of E’ are similar for temperatures 

from 50-80 ºC and significantly bigger at 90 ºC. During those tests considered as kind 

of fatigue tests the values of I/I0 was decreasing and ∆I/I0 are similar at both 

wavelengths of the optical signal. The biggest relative decreasing of optical 

transmission is at 90 ºC which corresponded to the most significant change in E’. 

For dynamic temperature scan test two kinds of comparison were done: one between not 

fatigued and fatigued POFs, and second for the same measurements at two wavelengths 

840 and 650 nm. In general the storage modulus of POF is decreasing significantly with 

rising temperature from 40-110 ºC. From 40-80 ºC the decrease of storage modulus is 

linear versus temperature, and for higher temperature the behavior is nonlinear. The 

optical signals are almost constant from 40-50 ºC, and in the temperature interval from 

50-80 ºC the transmission of POF is increasing linearly versus temperature. At higher 

temperatures the optical signal is ascending, reaching its maximum and than descending 

on both wavelengths. Optical transmission change versus temperature at 840 nm is 

significantly higher for not fatigued fiber than for fatigued. Measurements at 650 nm 

showed that transmission changes versus temperatures for fatigued and not fatigued 

POFs are less different.  

The maximum intensity of optical signals are almost at same temperatures at both 

wavelengths ( 88-89 ºC for not fatigued and 104 ºC for fatigued POF).    

Comparing the dependence of E’ and E” versus temperature of rectangular specimens 

with the optical signals of POF during temperature scan tests it is obvious that 

maximums in optical signals transmission of POFs are at temperatures close to loss 

modulus minimums. They are lower than Tg, both for fatigued and not fatigued POF. 

So, optical signal changes in POF could indicate the beginning of glass transition 

process, but not the Tg.   
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It is showed that simultaneous DMA and optical signal intensity measurements could be 

done on POF. In the temperature interval from 40-80 ºC the relative changes in storage 

modulus are opposite to the change of the intensity of optical signal, i.e. its 

transmission. It is possible to choose optical wavelengths with higher and lower 

sensitivity to temperature, and in general fatigue of the POF decrease its temperature 

sensitivity. The measuring modes for rectangular specimens could be used for POF, but 

the calculations should be multiplied with appropriate factor.   

The DMA of POF is potentially useful for fiber optic sensors development, especially 

for their temperature sensitivity investigations during various types of mechanical 

measurements.    

The optical and mechanical properties of PMMA-Y2O3 (Eu3+) nanocomposites were 

investigated. The luminescence spectra of the nanocomposites revealed that the 

phosphorescence of the powder remained on compositing and the emission intensity 

was enhanced as the content of the powder in the composites increased. The results 

obtained from the DMA showed that on the addition of nanopowder, the Tg of the 

PMMA increased, but only by a few degrees; this also suggests that the nanoparticles 

did not disperse individually but as aggregates. The microhardness number increased 

with increasing Y2O3 (Eu3+) content in the PMMA nanocomposites. A nearly linear 

correlation between Tg and microhardness was obtained, because both properties are 

closely related to the cohesive energy density. This result is in accordance with 

previously reported results for amorphous glassy polymers, and now this linear 

correlation is applicable to similar composite configurations. 

This study reports the preparation of composites with PMMA matrix reinforced with 

Gd2O3 (Eu3+) nanophosphor powder with enhanced mechanical properties utilizing the 

quasi-industrial melt-mixing technique (bulk nanocomposite), solution casting (thin 

films) and electrospinnig (nanofiber). The three processing methods have different 

possibilities for the particle dispersion efficiency. The modification of the nanoparticles 

with the silane adhesion promotor enabled their dispersion and deagglomeration in all 

three cases (bulk, film and nanofibers) and yielded enhanced mechanical properties of 
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the composite materials. The DMA results revealed that electrospinnig could be used 

for increased uniformity of nanoparticle distribution in polymer composites and that the 

relaxation temperatures associated with the glass transition (Tg) of the nanofibers were 

greater than those of the bulk and films nanocomposite samples. As shown by 

nanoindentation tests, incorporation of 3 wt% of silanized nanoparticles increased the 

reduced modulus and hardness of PMMA composite for 30% and 11% , respectively. 
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