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ABSTRACT 

 

Ability to contaminate ready-to-eat, highly processed, cold-stored food products, 

relatively high fatality rate and environmental adaptations define .Listeria monocytogenes as a 

challenging foodborne pathogen of high public health significance. Listeria’s adaptations and 

prolonged persistence in food processing facilities are a key link to contamination of foods. 

In recent years, bacterial multidrug resistance has been recognized as an emerging 

health challenge. Exposure to antimicrobials (antibiotics, disinfectants or environmentally 

ubiquitous heavy metals), may provide selective pressures for resistance with accompanying 

cross-resistance and increase in environmental fitness.  

In this work I addressed some of the possible mechanisms of adaptations that may 

contribute to persistence of L. monocytogenes in the environment as well as to survival and 

growth in different foods. This includes adaptations to heavy metals such as cadmium, 

disinfectants such as benzalkonium chloride (BC), selected antibiotics (e.g. the 

fluoroquinolone ciprofloxacin) and other toxic compounds (e.g. tetraphenyl-phosponium, 

often used as an anti-carcinogenic and efflux pump substrate). In order to characterize the 

impact of multidrug resistance on survival and growth of L. monocytogenes in different foods, 

we tested mutants adapted to higher concentrations of antibiotic ciprofloxacin and disinfectant 

benzalkonium chloride. By screening of the mariner-based mutant librarie of L 

monocytogenes 10403S we detected tetR-like mutants with increase in the resistance to 

tetraphenyl-phosponium. Lastly, we tested selected mariner-based mutants with the change in 

the response to number of different stresses (cold sensitive, non-hemolytic, resistance to 

phage in epidemic clone II strains) deletion mutants of wap and region18, as well as selected 

food and clinical isolates.   

Selection of several L. monocytogenes strains on either ciprofloxacin (2 μg/ml) or the 

BC(10 μg/ml) led to derivatives with increased MICs not only to these agents but also to 

several other compounds, including the antibiotic gentamicin, the dye ethidium bromide, and 

the chemotherapeutic drug tetraphenyl - phosphonium chloride. The spectrum of compounds 



 

 

to which these derivatives exhibited reduced susceptibility was the same regardless of 

whether they were selected on ciprofloxacin or on BC. Strains harboring the large, cadmium 

and BC resistance plasmid pLM80 (identified in the epidemic clone II strain H7858) did not 

differ in MICs to ciprofloxacin and gentamicin from plasmid-cured strains. However, 

ciprofloxacin-selected derivatives of pLM80-harboring strains had higher MICs than those 

derived from the plasmid-cured strains. Partially restored susceptibility to the antimicrobials 

in the presence of the potent efflux inhibitor reserpine suggests that mutations in efflux 

systems are responsible for the multidrug resistance phenotype of strains selected on 

ciprofloxacin or BC.  

Adaptive responses of bacteria to unstable environments are mediated by 

transcriptional regulators. A family of transcriptional regulators that is well represented and 

widely distributed among bacteria is the TetR family. These transcriptional repressors control 

genes whose products are involved in multidrug resistance, enzymes implicated in different 

catabolic pathways, biosynthesis of antibiotics, osmotic stress, and pathogenicity. We found a 

tetR::Tn917 mutant with an insertion in the tetR repressor (next to the MDR transporter mdrT) 

to have pronounced (8-fold) increase in TPP (tetraphenylphosponium) resistance compared to 

the parental L. monocytogenes strain 10403S.  Such data suggest that the observed stimulation 

of TPP resistance of the mutant involves increased expression of MDR transporter(s) other 

than mdrT, but also repressed by tetR. To test our hypothesis we screened a mariner-based 

mutant library of L. monocytogenes strains 10403S and F2365 for the mutants with the 

decrease and increase in TPP resistance.(960 mutants of each strain, 10403S and F2365, 

respectively, were screened). We failed to isolate mutants with decreased resistance to TPP, 

but 5 mutants highly resistant to TPP were isolated. One of these tetR-like mutants had 

insertion in tetR gene. Mutants harbored single transposon insertion and one characterized had 

transposon integrated in LMRG_01858 (sucrose phosphorylase).  

As previously mentioned, BC resistance in L. monocytogenes  is commonly associated 

with a plasmid-borne disinfectant resistance cassette (bcrABC).We investigated  conjugative 

transfer of resistance to BC and to cadmium from nonpathogenic Listeria spp. to other 

nonpathogenic Listeria, as well as to L. monocytogenes.  BC-resistant L. welshimeri and L. 

innocua harboring bcrABC, along with the cadmium resistance determinant cadA2, were able 

http://www.ncbi.nlm.nih.gov/pubmed/15944459


 

 

to transfer resistance to other nonpathogenic listeriae as well as to L. monocytogenes of 

diverse serotypes, including strains from the latest major 2011 cantaloupe outbreak. Transfer 

among nonpathogenic Listeria spp. was noticeably higher at 25°C than at 37°C, whereas 

acquisition of resistance by L. monocytogenes was equally efficient at 25 and 37°C. When the 

nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium 

resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection 

between these resistance attributes. 

Non-pathogenic Listeria spp. such as L. innocua and L. welshimeri are commonly 

used as an indicator of L. monocytogenes due to their higher prevalence and co-existence with 

L. monocytogenes in the plant ecosystem. We have analyzed the prevalence of cadmium, 

arsenic and bezalkonium chloride (BC) resistance among non-pathogenic Listeria isolates 

from different turkey processing plants in the United States. The aim was to elucidate the role 

of non-pathogenic Listeria spp. as resistance gene reservoirs and   their gene transfer potential 

that may contribute to the dissemination of disinfectant resistance genes in L. monocytogenes. 

Results obtained indicate high prevalence of resistance to BC and cadmium, and of the 

bcrABC (plasmid-borne disinfectant resistance cassette), cadA1 and cadA2 determinants 

(cadAC efflux systems associated with cadmium resistance). Resistance to cadmium was 

highly prevalent, exceeding 90% regardless of species. Resistance to BC, while also highly 

prevalent in both species, was more common in L. welshimeri (83%) than L. innocua (73%). 

In contrast, arsenic resistance was relatively uncommon (<10%) in either species. Noteworthy 

is that Pulsed field gel electrophoresis (PFGE) profiles of isolates were largely  plant-specific 

Epidemiological trends in recent years suggest that L. monocytogenes -contaminated 

produce is associated with higher outbreak occurrence than previously recognized. In 2011 a 

multistate outbreak of listeriosis in the United States involved cantaloupe and resulted in 33 

deaths and 147 illnesses. This outbreak highlighted the need for further efforts to understand 

the ability of L monocytogenes to survive and grow on cantaloupe and other produce. One of 

my   objectives was to assess survival and growth of outbreak strains of L. monocytogenes on 

the outer surface of cantaloupe (rind) compared to inner surface (flesh) or in freshly extracted 

juice at various incubation temperatures. Three L. monocytogenes strains implicated in the 

http://en.wikipedia.org/wiki/Pulsed_field_gel_electrophoresis


 

 

2011 multistate outbreak in cantaloupe were employed in this study. Two strains were of 

serotype 1 /2a and the third of serotype 1/2b. L. monocytogenes populations increased by 

approximately 10 fold following 21 days incubation at 4 or 8° C, and by approximately 100 

fold following 7 days incubation at   25°C. After 24 hours at 25°C L. monocytogenes 

populations increased by approximately 10 fold. Interestingly, increases were higher on the 

rind than on the flesh or in the juice, with statistically significant differences after 7 days of 

incubation at 4°C and 72 hr at 25°C.  No significant differences were noted among the three 

different strains. Rinsing of inoculated fragments with water prior to the incubation revealed 

initial decreases of L monocytogenes followed by subsequent growth. After the initial 

decrease cells grew at the same level as cells from   fragments without water rinses, with 

exception of those incubated at the temperature of 25ºC  that grew to higher levels . The 

results of this study suggest that L. monocytogenes can not only survive on the surface of 

cantaloupe but that it also has temperature and time-dependent potential for growth.  Results 

also revealed that water treatment of the surface does not prevent growth of L. 

monocytogenes. These data will be valuable in design of controls to limit persistence and 

growth of this pathogen on cantaloupe and other produce. 

Further analysis of survival and growth on the surface of cantaloupe included mutants 

with changes in certain phenotypes (increased resistance to the antibiotic ciprofloxacin, cold 

sensitivity, loss of hemolytic activity, phage susceptibility) as well as deletion mutants of 

wall-associated protein (wap) and a specific genomic region (region-18). The protein encoded 

by wap belongs to a super-family of surface-associated proteins involved in various cellular 

processes, including surface hydrophobicity, wall metabolism, secretion, pathogenicity, 

immunogenicity and cell adhesion. A genomic region (region-18) appeared to be markedly 

divergent in ECII strains but conserved among other serotype 4b strains. L. monocytogenes 

strains of other serotypes lack region-18, or wap. The results suggest no significant difference 

in growth between mutants and parental strains. As expected, the cold sensitive mutant of the 

strain F2365 failed to grow at 4ºC, whereas other mutants along with the parental strains after 

initial decrease grew for up to 1.3 log units over 7 days at 4C.  

Milk and dairy products along with processed meats are still considered major 

vehicles for L. monocytogenes involved in food related outbreaks. Eighteen L. monocytogenes 



 

 

strains of different serotypes involved in food-related outbreaks as well as human and animal 

clinical isolates were tested for growth in raw and pasteurized milk over 10 days at 8C. 

Included in study were also ciprofloxacin adapted mutants of two wild type strains. The goal 

was to assess possible difference in survival and growth between wild types and antibiotic 

adapted mutants, across serotypes and between two types of milk. Isolates of serotype 4b 

assigned to three epidemic clonal groups (ECI, ECIa and ECII) have been analyzed for 

difference between clonal groups as well as types of milk. Populations increased significantly 

over the 10 days of incubation at 8C (p<0.0001) Results obtained also indicate overall better 

growth of L. monocytogenes in pasteurized over raw milk. Wild type strains did not 

significantly differ from ciprofloxacin- adapted mutants. Comparison across serotypes 

showed no significant differences between serotypes or between types of milk. Significant 

difference, however, has been noted between clonal groups composed of serotype 4b. ECI 

grew significantly better in both raw (p=0.0166) and pasteurized ( p=0.0433) milk compared 

to ECIa. Both ECI and ECIa had higher population increases then ECII with significant 

difference between ECI and ECII in pasteurized milk (p=0.0358) and ECIa and ECII in raw 

milk (p=0.0026). Interestingly, population increases of ECI in pasteurized milk were 

significantly higher compared to raw milk (p=0.0001), whereas such difference between milk 

types was not noticed for ECIa and ECII. Results of present study confirmed good 

adaptability and growth of L. monocytogenes in milk.  

In efforts to elucidate possible sources of L monocytogenes resistance to different 

antimicrobials, in this thesis we provided evidence of gene transfer potential of non-

pathogenic Listeria spp., their role as resistance gene reservoirs and ability to  contribute, 

trough conjugative transfer to the dissemination of disinfectant resistance genes in  L. 

monocytogenes. We also confirmed that mutations in efflux systems are responsible for the 

multidrug resistance phenotype of strains selected on antibiotics and disinfectants. By 

employing mariner-based transposon mutant library we screened for mutants with changes in 

certain phenotypes (increased resistance to the antibiotic ciprofloxacin, cold sensitivity, loss 

of hemolytic activity, phage susceptibility). These mutants along with mutants adapted to 

antimicrobials and deletion mutants of wap and region-18 were used to assess survival and 

growth of L monocytogenes in different foods. However, further studies are necessary in order 



 

 

to better understand the distribution of epidemic clones of L. monocytogenes, their 

transmission characteristics and ability to cause foodborne disease.  
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KRATAK SADRŽAJ 

 

Sposobnost da kontaminira hranu pripremljenu za konzum, visoko prerađene proizvode i 

proizvode skladištene na niskim temperaturama kao i relativno visok stepen smrtnosti i 

izrazita sosobnost adaptacije na uslove okoline svrstavaju Listeria monocytogenes u grupu 

patogenih mikroorganizama prenosivih hranom koji predstavljaju jedan od najvećih izazova u 

oblasti  javnog zdravlja. Adaptacija L.  monocytogenes  na uslove sredine i sposobnost 

dugotrajnog opstanka u objektima za proizvodnju i preradu hrane ključni su razlozi za 

kontaminaciju različitih  proizvoda. 

Poslednjih godina, višestruka rezistencija bakterija na različita antimikrobna sredstva 

nametnula se kao jedna od najznačajnijih tema u oblasti zdravstva. Izlaganje brojnim 

antimikrobnim sredstvima (antibiotici, dezinficijensi kao i sveprisutni teški metali) 

omogucava selektivni pritisak za razvoj rezistencije uz  propratnu unakrsnu rezistenciju i 

doprinosi  povećanju vitalnosti bakterija u sredini u kojoj se nalaze.   

U ovom radu prikazani su neki od mogućih mehanizama adaptacije koji mogu doprineti i 

doprinose opstanku L. monocytogenes u sredini kao i sposobnost rasta ovog patogena u 

različitim tipovima hrane. Prikaz uključuje i mehanizme adaptacije na teške metale kao što je 

kadmijum, dezinficijense kao bezalkonijum hlorid (BC), odabrane antibiotike (fluorokvinolon 

ciprofloksacin, na primer) i druge toksične supstance (tetrafenil-fosfonijum, koji se često 

koristi kao anti-kancerogeno sredstvo ali i substrat efluks pumpe).  U cilju karakterizacije 

uticaja višestruke rezistencije na preživljavanje i rast L. monocytogenes u razlicitim tipovima 

hrane, testirali smo mutante adaptirane na visoke koncentracije antibiotika ciprofloksacina i 

dezinficijensa bezalkonijum hlorida. Ispitivanjem kolekcije mutanata roditeljskog soja L.  

monocytogenes 10403S sa umetnutim mariner-transpozonom, registrovali smo mutante sa 

karakteristikama tetR mutanta sa povecanom rezistencijom na tetrafenil-fosfonijum. Konacno, 

testirali smo i odabrane mutante sa transpozonom koji su u toku eksperimenta iskazali 

promene u fenotipu nastale kao posledica odgovora organizama na razlicite uslove stresa 

(osetljivost na niske temperature, ne-hemoliticne sojeve, sojeve koje pripadaju epidemskom 

klonu II a osetljive na dejstvo faga ), mutante nastale kao posledica genetskog brisanja 

proteina wap i genetskog regiona 18, kao i odabrane  kliničke izolate i izolate iz hrane.    



 

 

Selekcija nekoliko sojeva L. monocytogenes na ciprofloksacinu (2 μg/ml) ili BC (10 μg/ml) 

rezultirala je porasnom minimalnih inhibitornih koncentracija (MIC) ne samo na agense 

korišćene pri izolaciji već i na nekoliko drugih supstanci, ukljucujuci antibiotik gentamicin, 

boju etidium bromid i hemoterapeutski lek I supstrat efluks pumpe tetrafenil-fosfonijum 

hlorid. Spektar supstanci prema kojima su derivati ispoljili smanjenu osetljivost bio je isti bez 

obzira da li su originalno izolovani na ciprofloksacinu ili bezalkonijum-hloridu. Sojevi sa 

velikim plazmidom pLM80, na kome su smešteni geni za rezistenciju na kadmijum I BC 

(identifikovan u soju H7550 iz epidemskog klona II) nisu se razlikovali po MIC od derivate u 

kojima je plasmid uklonjen eksperimentalnom metodom. Derivati izolovani na 

ciprofloksacinu sa plazmidom pLM80, međutim, pokazali su veće vrednosti za MIC od onih 

bez plazmida. Delimicno oporavnjena osetljivost na antimikrobna sredstva u prisustvu 

snažnog efluks inhibitora rezerpina sugeriše da su promene u efluks sistemu odgovorne za 

promenu fenotipa u smeru višestruke rezistencije kod sojeva izolovanih na ciprofloksacinu ili 

BC.  

Adaptivni odgovor bakterija na nestabilne uslove sredine često su posredovani regulatorima 

transkripcije. Familija TetR je jedna od  najznacajnije zastupljenih I široko rasprostranjenih 

među regulatorima transkricije. Ovi represori kontrolišu gene čiji su proizvodi uključeni u 

razvoj višestruke rezistencije, enzime uključene u različite kataboličke puteve, biosintezu 

antibiotika, osmotski stres i patogenost.  Mi smo utvrdili da tetR::Tn917 mutant sa insercijom 

u  tetR represoru (smeštenom pored  MDR transportera mdrT) ima izraženi  (8-puta) porast u 

rezistenciji na  TPP (tetraphenylphosponium) u poređenju sa roditeljskim sojem  L.  

monocytogenes 10403S.  Ovaj podatak sugeriše da primećena stimulacija rezistencije na TPP 

kod testiranog mutiranog soja uključuje i pojačanu ekspresiju drugih MDR transportera pored 

mdrT,  koji su, međutim,  regulisani represorom tetR. U cilju provere naše hipoteze testirali 

smo kolekciju transpozon mutanata  L.  monocytogenes sojeva 10403S i F2365 u potrazi za 

mutantima sa smanjenom ili povecanom rezistencijom na TPP (testirano je po  960 mutanata 

od svakog soja pojedinačno). Tokom eksperimena nismo uspeli da izolujemo mutante sa 

smanjenom rezistencijom na TPP, ali smo izolovali pet visoko rezistentnih mutanata. Utvrdili 

smo zatim da je  jedan od pomenutih mutanata, nalik na tetR, sa insercijom u tetR genu. 

Mutanti su posedovali po jednu inserciju u transpozonu. Nakon karakterizacije jednog od 



 

 

izolovanih mutanata utvrdili smo da je transpozon integrisan u LMRG_01858 gen (sucrose 

phosphorylase).  

Kao što je ranjie pomenuto, rezistencija L.  monocytogenes  na BC je najčesće 

posledica prisustva kasete za rezistenciju (bcrABC) umetnute u plazmid. Eksperimentom u 

okviru ove Disertacije smo ispitivali mogućnost konjugativnog transfera rezistencije na BC i 

teški metal kadmijum sa ne-patogenih rezistentnih sojeva roda Listeria na druge, osetljive ne-

patogene sojeve kao i na L.  monocytogenes.  BC-rezistentne L. welshimeri i L. innocua sa 

bcrABC kasetom, zajedno sa determinantom rezistencije na kadmijum cadA2, pokazale su 

sposobnost transfera rezistencije na druge ne-patogene sojeve I L.  monocytogenes različitih 

serotipova, uključujući i sojeve izolovane tokom poslednje velike epidemije listerioze u 

Sjedinjenim Drzavama 2011.,  izazvane patogenima prisutnim u dinji. Transfer među ne-

patogenim  Listeria spp. bio je značajno viši na  25°C nego na 37°C, dok je prenos 

rezistencije na L.  monocytogenes bio jednako efikasan na 25 i 37°C. Kada su ne-patogeni 

davaoci bili rezistentni na obadve supstance BCi kadmijum, prenos rezistencije na kadmijum 

se pokazao kao efikasan surogat za transfer rezistencije na BC, sugerišući koselekciju između 

determinati rezistencije.  

Ne-patogene  Listeria spp. kao sto su L. innocua i  L. welshimeri često se uzimaju kao 

indikatori prisustva L.  monocytogenes obzirom na višu prevalenciju i suživot sa  L.  

monocytogenes u ekosistemu objekata za proizvodnju i  preradu hrane. Jedan od predmeta 

interesovanja u toku izrade Disertacije bila je i analiza prevalencije rezistencije na kadmijum, 

arsenik i bezalkonijum hlorid među ne-patogenim sojevima iz roda Listeria izolovanih u 

različitim objektima za preradu živine (ćuraka) u nekoliko država u Sjedinjenim Državama. 

Ovu analizu smo uradili sa ciljem da rasvetlimo ulogu ne-patogenih Listeria spp. kao 

rezervoara gena rezistencije i njihov potencijal za transfer ovih gena koji može dorineti 

širenju rezistencije na teške metale i dezinficijense među L.  monocytogenes. Dobijeni 

rezultati ukazuju na visoku prevalenciju rezistencije na BC i kadmijum, kao i značajno 

prisustvo bcrABC (kasete odgovorne za rezistenciju na BC locirane na plazmidu) i cadA1 i 

cadA2 determinanti (cadAC efluks sistem uključen u rezistenciju na kadmijum). Rezistencija 

na kadmijum je bila značajna, sa preko 90% bez obzira na vrstu. Rezistancija na BC, iako 

visoko zastupljena među obadve vrste, češće je registrovana medju L. welshimeri (83%) nego 



 

 

L. innocua (73%). Na suprot ovom nalazu, rezistencija na arsenik je bila retka (<10%) kod 

obe vrste. Veoma je važno napomenuti da su PFGE profili  u značajnoj meri bili specifični za 

objekat.  

Epidemiološki trend poslednjih godina ukazuje da su slučajevi izazvani prisustvom L.  

monocytogenes  u svežem voću i povrću mnogo češći nego što se ranije predpostavljalo.  

Poslednji značajan slučaj iz 2011. izazvan je prisustvom patogena u dinjama i rezultirao je sa 

147 obolelih I 33 smrtna slučaja. Ova epidemija naglasila je potrebu za daljim istraživanjima 

sa ciljem da se bolje razume sposobnost L. monocytogenes da preživi i raste na dinjama i 

drugim sirovim  proizvodima. Jedan od ciljeva u okviru ove Disertacije bio je da se utvrdi 

sosobnost preživljavanja i rasta sojeva izolovanih tokom poslednje epidemije listerioze 2011. 

i drugih sojeva povezanih sa eidemijama ili pojedinačnim slučajevima na površini dinje (kori) 

u poređenju sa unutrašnjom jestivom površinom (srž) ili u svežem ekstraktu pri različitim 

temperaturama inkubacije. Sojevi izolovani tokom epidemije 2011. pripadaju serotipu 1/2a i 

1/2b i različitih su PFGE profila. Sojevi iz drugih eidemija (serotip 1/2a i 4b) su takođe 

testirani. Kora, srž i ekstrakt dinje su inokulisani svakim od sojeva pojedinačno tako da 

konačna koncentracija bakterija u matriksu iznosi 10
5
cfu /fragmentu ili ml).  Opstanak i rast 

su praćeni brojanjem kolonija tokom 21 dana inkubacije na 4 i 8°C i sedam dana inkubacije 

na 25°C. Dobijeni podatci su statistički obradjeni korišćenjem softvera SAS i linearnog miks 

efekt modela. Populacije  L.  monocytogenes uvećane su za približno 10 puta tokom 21 dana 

inkubacije na  4 ili 8° C i približno 100 puta nakon 7 dana inkubacije na 25°C. Nakon 24h na 

25°C populacija L.  monocytogenes uvećana je približno 10 puta. Interesantno je naglasiti da 

je uvećanje populacije bilo veće na kori nego u jestivom delu dinje ili u ekstraktu sa statistički 

značajnom razlikom (P>0.0001) zabeleženom nakon 7 dana inkubacije na 4°C i 72 h na 25°C.  

Sojevi izolovani tokom epidemije izazvane kontaminiranim dinjama nisu ispoljili statistički 

značajne razlike u rastu, dok je medju preostalim testiranim sojevima takva razlika uočena. 

Ispiranje fragmenata dinje u sterilnoj destilovanoj vodi pre inkubacije na 8 i 25°C rezultiralo 

je redukcijom populacije za približno 100 puta, ali su se patogeni mikroorganizmi oporavili i 

rasli na nivou patogena na netretiranim fragmentima. Rezultati ovog ispitivanja ukazuju da L.  

monocytogenes ne samo da preživljava na spoljašnoj površini dinje, već ima i potencijal da 

raste različitim intenzitetom direktno zavisnim od temperature i vremena inkubacije. Rezultati 



 

 

sugerišu i limitiranu efikasnost tretmana sirovih proizvoda vodom obzirom da takav tretman 

ne zaustavlja rast L. monocytogenes. Dobijeni podatci mogu biti od velike važnosti u kreiranju 

mera kontrole u cilju limitiranog opstanka i rasta patogena na dinjama i drugim sirovim 

proizvodima.  

U dalje analize opstanka i rasta patogena na površini dinje uvršćeni su mutanti sa izvesnim 

promenama u fenotipu (uvećana rezistencija na antibiotik ciprofloksacin, osetljivost na niske 

temperature, gubitak hemolitičke aktivnosti, osetljivost na delovanje faga) i genotipu ( 

uklanjanje wap (protein u ćelijskom zidu) kao i specifičnog genetskog regiona – region 18). 

Protein kodiran wap pripada super-familiji proteina na površini bakterijske ćelije koji su 

uključeni u različite ćelijske procese, uključujući hidrofobnost površine, metabolizam 

ćelijskog zida, sekreciju, patogenost, imunogenost i ćelijsku adheziju. Genetski region (region 

18) pokazao se kao značajno različit kod sojeva klonalne grupe ECII u odnosu na ostale 

sojeve serotipa 4b. Sojevi L.  monocytogenes drugih serotipova ne poseduju region-18, ni 

wap. Rezultati eksperimenta ukazuju na nedostatak značajne razlike u rastu između 

roditeljskih sojeva i mutanata. Očekivano, mutant roditeljskog soja F2365, osetljiv na niske 

temperature nije rastao na 4ºC, dok su populacije ostalih mutanata  i roditeljskih sojeva, 

nakon početnog pada, uvecane za  1,3 logaritamskih jedinica tokom  7 dana na  4°C.  

Mleko i proizvodi od mleka uz proizvode od mesa se i dalje smatraju najznačajnijim 

vektorom   L. monocytogenes odgovornu za epidemije povezane sa konzumiranjem hrane. 

Osamnaest sojeva L. monocytogenes različitog serotipa izolovanih iz hrane tokom epidemija, 

kao i humanih i životinjskih kliničkih izolata testirani su na rast u sirovom i pasterizovanom 

mleku tokom 10 dana na temperaturi od 8°C. U test su uključeni i mutant adaptirani na 

antibiotik ciprofloksacin uz roditeljski soj. Cilj je bio da se utvrde moguće razlike u 

preživljavanju i rastu između roditeljskih sojeva i mutanata, između različitih serotipova i 

različitih tipova mleka. Sojevi koji pripadaju serotipu 4b dodatno su analizirani kako bi se 

utvrdila potencijalna razlika izmedju klonalnih grupa (ECI, ECIa i ECII) u okviru navedenog 

serotipa.  Utvrđeno je značajno (p<0.0001) uvećanje populacija tokom 10 dana inkubacije na 

8°C. Dobijeni rezultati ukazuju i na generalno bolji rast  L.  monocytogenes u pasterizovanom 

u odnosu na sirovo mleko. Roditeljski soj nije se po rastu razlikovao od mutant adaptiranog 

na ciprofloksacin. Poređenje serotipova međusobno kao i u odnosu na tip mleka nije 



 

 

rezultiralo značajnim razlikama. Statistički značajna razlika, međutim, uočena je među 

klonalnim grupama u okviru serotipa 4b. ECI sojevi su rasli značajno bolje kako u sirovom 

(p=0.0166), tako i u pasterizovanom ( p=0.0433) mleku u poređenju sa klonalnom grupom 

ECIa. Obadve klonalne grupe, ECI i ECIa iskazale su veći porast populacija nego  ECII sa 

značajnom razlikom između ECI i ECII u pasterizovanom mleku (p=0.0358) i ECIa i ECII u 

sirovom mleku (p=0.0026). Interesantno je naglasiti da je porast poulacije ECI u 

pasterizovanom mleku bio značajno viši u poređenju sa sirovim mlekom (p=0.0001), dok 

ovakva razlika nije zabeležena među klonalnim grupama ECIa i ECII. Rezultati ovog 

istraživanja potvrdili su dobru adaptabilnost i rast L. monocytogenes u mleku.  

U nameri da rasvetlimo moguće uzroke rezistencije  L. monocytogenes na različita 

antimikrobna sredstva, u ovoj Disertaciji smo dokazali potencijal ne-patogenih  Listeria spp 

za transfer različitih gena, njihovu ulogu rezervoara gena rezistencije i sposobnost da 

doprinesu, putem konjugacije, širenju gena rezistencije na dezinficijense medju   L.  

monocytogenes. Takodje smo potvrdili da su mutacije u efluks sistemu odgovorne za 

visestruku rezistenciju sojeva adaptiranih na antibiotike I dezinficijense. Korišćenjem 

kolekcije mutanata sa transpozonom izolovani su sojevi sa fenotipskim promenama (povećana 

rezistencija na antibiotik ciprofloksacin, osetljivost na niske temperature, gubitak hemoliticke 

sposobnosti kao I osetljivost na fage).  Navedeni mutant, kao i mutant bez wap i regiona-18 

korisceni su kako bi se testirala sposobnost L. monocytogenes  da se adaptira i raste u 

razlicitim tipovima hrane. Dalja ispitivanja su, medjutim,  neophodna kako bi se bolje 

razumela distribucija epidemskih klonova L.  monocytogenes, njihove karakteristike i 

sposobnost da i zazovu oboljenja putem hrane.   
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2.0 LITERATURE REVIEW  

2.1. Antimicrobial resistance of Listeria spp. 

Among the ten known species of the Listeria bacterial genus, Listeria monocytogenes 

remains the primary cause of food born infection in humans.  As ubiquitous organisms, 

Listeria species are widely distributed in the environment. From the food safety viewpoint, 

most troubling is their persistence in food processing operations and facilities, given that 

some of the strains have been involved in major outbreaks of listeriosis (115). Recent 

epidemiologic data indicate declined incidence of listeriosis in the US, hence, L. 

monocytogenes still produce the highest mortality (16-19%) and hospitalization rate (94%) 

among food-borne pathogens (193). In Europe, and Canada increasing number of outbreaks 

and sporadic cases have been reported until 2010 (2, 55), but latest reports are encouraging 

and indicate a decline (3.1 % decrease in 2010 compared with 2009) (euro surveillance 2012). 

However, several major outbreaks that occurred recently worldwide require further prevention 

and food safety awareness. One of  these outbreaks, a multinational 2009/2010 listeriosis 

outbreak caused by two different L. monocytogenes serotype 1/2a strains isolated from 

Quargel (a sour milk curd cheese) in Austria, Germany, Czech Republic, Poland and Slovakia 

accounted for 34 clinical cases and eight deaths (79). A 2011 major outbreak of Listeriosis 

associated with Jensen Farms cantaloupe-United States (32) revealed quite a few unusual and 

unique characteristics. Mortality rate was extremely high with 33 deaths and 147 illnesses 

(32). Along with being the first outbreak of Listeriosis reported to be caused by cantaloupe, L 

monocytogenes strains involved were of multiple serotypes and genotypes (122). Serotype 

1/2a and 1/2 b strains from this outbreak were significantly distinct from strains of same 

serotype involved in previous outbreaks or sporadic cases of Listeriosis (122). Even though 

outbreaks attract more attention it is worthy to note that most of L monocytogenes infections 

occurred as sporadic cases and not-associated to major outbreaks (222).  

In the entire L. monocytogenes research community, all strains are not of equal public 

health concern. Strains of the serotypes 1/2a, 1/2b, and 4b are especially problematic since 

they are most frequently associated with human illness. Of high importance are also strains 

that have the potential to colonize in the food processing facility environment, and to persist 

there as well as strains resistant to different antimicrobials. 
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Bacterial pathogens are often exposed to sub-lethal levels of different antimicrobial agents 

(i.e. disinfectants in food processing plants, antibiotics in the health environment). Such exposure is 

considered the main reason for the increase in L. monocytogenes antimicrobial resistance.  

Resistance to antibiotics. Although the occurrence of antibiotic resistance in L. monocytogenesis is 

still low, its presence in food, environment, and clinical settings are well documented (38, 39, 48, 97, 

153, 176, 177, 225). This pathogen is still highly susceptible to a wide range of antibiotics, including 

β-lactams (e.g. ampicillin) and aminoglycosides (e.g. gentamicin), which are drugs of choice for 

listeriosis. Emerging, however is identification of clinical isolates with enhanced resistance to 

fluoroquinolone ciprofloxacin which were found to also have increased resistance to EthBr and 

acridine orange (86). Strains selected on ciprofloxacin can have enhanced resistance not only to the 

antibiotic itself, but to a range of other antimicrobial compounds, including antibiotic gentamicin and 

the disinfectant quaternary ammonium compound benzalkonium chloride (BC) (182). Even though 

multi-resistant strains are not frequently isolated, evidence of their presence is available (204). Given 

the current wide use of antibiotics in food production and clinics, isolation of L. monocytogenes with 

reduced antibiotic susceptibility is expected to grow.   

Ever since the first antibiotic-resistant strain was described in France in1988 (176), the antibiotic-

resistant L monocytogenes have been found in foods with increasing frequency (225, 228, 230). Such 

resistance is frequently acquired from the commensal organisms in food or food processing 

environments. Another possible source are non-pathogenic Listeria species, primarily L welshimeri 

and L innocua, often more abundant in processing plants them L monocytogenes. A comparison of 

antimicrobial susceptibility between species revealed that L. welshimeri was resistant to more of the 

tested antimicrobials than the other two Listeria, and L. monocytogenes was the least resistant among 

the tested species (48). In response to this increase in antibiotic resistance in food borne pathogens, 

the European Union has banned the use of antibiotics as animal feed additives (with the exception of 

coccidiostats) as of January 2006 (27). 

 

Antibiotic resistance in L. monocytogenes is mostly due three mobile genetic elements: self-

transferable plasmids, mobilizable plasmids, and conjugative transposons (37, 40, 97, 176, 177). 

Efflux pumps have also been reported to be present in Listeria (86). 
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Resistance mediated by conjugation First evidence of conjugative transfer of antibiotic resistance to L 

monocytogenes involved a broad host range plasmid pIP501 in Streptococcus agalactiae (67). Few 

more broad-host-range plasmids with ability of conjugative transfer of resistance to L monocytogenes 

such as pAMb1 of Enterococcus faecalis and pIP823 have been reported (37, 75).  

A broad host range conjugative transposon Tn916 with tetM tetracycline resistance gene, and 

Tn916-related transposon, Tn1545 both found in E. faecalis (35, 77, 177) demonstrated the transfer 

by conjugation to L monocytogenes. 

Resistance mediated by efflux pumps Efflux pumps, characterized as proteins responsible for the 

removal of different substrates, including antibiotics from bacterial cells (both Gram positive and 

Gram negative) (218), may be specific to a substrate or may acquire multiple drug resistance (227). 

Various studies provided substantial evidence for the importance of efflux pumps in disinfectant 

resistance (156). Thus far, 26 Major Facilitator Super family (MFS) transporter proteins are 

recognized in the genome of L. monocytogenes EGD-e (http://www.membranetransport.org/). First 

efflux mechanism described in Listeria spp has been implicated for tetracycline resistance (36, 70). 

Two more efflux pumps have been characterized in L. monocytogenes, MdrL and Lde. MdrL 

regulating transfer of macrolide antibiotics, heavy metals and ethidium bromide and 

fluoroquinolones, DNA intercalating dyes acridine orange and ethidium bromide (86, 144).  

Quaternary ammonium compound bezalkonium chloride (BC).  The ability of L monocytogenes 

to persist in the food processing environment is highly associated with resistance to commonly used 

disinfectants ( 64, 118, 120). Different studies are suggesting variable incidence of resistance to the 

quaternary ammonium compound bezalkonium chloride (BC) among L monocytogenes isolates from 

foods and food processing plants. While Mullapudi et al. (154) and Soumet et al. (203) reported 

incidence of over 40% in turkey and fish-processing plants, respectively, Aase et al (1) suggested an 

incidence of 10% BC resistant L monocytogenes strains from fish processing plants and poultry 

slaughter houses.   

Selective pressure has been hypothesized to contribute to the increase in L monocytogenes 

resistance as BC has been extensively used in food processing and health care environments in the 

US (124, 146, 151, 190). Furthermore, a number of studies have suggested cross-resistance between 

BC and antibiotics (182, 187, 216).  
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Mechanisms of resistance are various and include change in cell membrane permeability, efflux and 

ability to or degrade the biocide and induction of the cellular stress response.    

Change in cell membrane permeability Alterations in surface teichoic acid and fatty acid are 

associated with increase in BC resistance of originally resistant strains upon the exposure to the sub-

lethal concentrations of this disinfectant (216). Such alterations cause morphological and 

physicochemical changes in the cell surface and change the minimal inhibitory concentrations of BC 

MIC in L monocytogenes (138, 216). The precise nature of changes in cell surface still remains 

unclear. 

 Plasmid based BC resistance mechanisms are reported by the various studies (131, 186, 187). A 

plasmid-associated gene cassette encoding an efflux system (bcrABC) is found to be crucial for the 

resistance of L monocytogenes to BC (64). It was of importance finding  the presence of the bcrABC 

cassette in strains associated to multistate outbreaks of listeriosis, in the 1998-99 hot dog outbreaks 

(29) and the 2000 turkey deli meat outbreak (31). Interestingly, the strain involved in 1998-99 hot 

dog outbreaks was the first reported strain resistant to both cadmium and BC (186). The efflux gene 

is harbored on a large (ca. 80 kb), pLM80 plasmid and transferred to L monocytogenes by 

conjugation. The same plasmid (pLM80) along with a three-gene cassette responsible for BC 

resistance harbors a cadmium resistance cassette cadA2cadC2 (53; www.broad.mit.edu). A study by 

Katharios-Lanwermeyer et al (117) suggests nonpathogenic Listeria spp. as potential reservoirs for 

disinfectant and heavy metal resistance genes for other Listeriae, including the pathogenic species L. 

monocytogenes since both bcrABC, and the cadmium resistance determinant cadA2, were transferred 

to other nonpathogenic Listeriae as well as to L monocytogenes. 

Chromosomal gene(s) appear to be another source of the resistance of L monocytogenes to BC (150, 

186). Upon the adaptation of the L monocytogenes BC-sensitive strains to sub-lethal levels of BC 

increase in the transcript levels of chromosomal MFS transporters (MdrL, Lde) on MFS transporters 

(MdrL, Lde) (187). Their regulation and mechanisms of work, however, remain to be elucidated.  

http://www.broad.mit.edu/
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Cross resistance between disinfectant and antibiotics is important from the food safety viewpoint 

given that such adaptation may contribute to the persistence of the pathogen in the food processing 

environment. Thus, far numerous studies provided evidence for cross resistance between antibiotics, 

disinfectants and other compounds. Strains of L monocytogenes resistant to fluoroquinolones 

(e.g.ciprofloxacin), also expressed resistance to aminoglycoside gentamicin, dyes such as ethidium 

bromide, and disinfectants such as QACs (1,86, 138182, 187). Godreuil et al (86) presented evidence 

of MFS transporter Lde involvement in cross resistance between fluoroquinolone, ethidium bromide 

and acridine orange in L monocytogenes. Cross resistance between different disinfectants upon 

adaptation to QAC has been reported by Lunden et al. (138) 

Resistance to heavy metals 

Cadmium: Abundant presence of heavy metals, specifically cadmium and arsenic in the environment 

resulted in adaptation and resistance of Listeria spp, including L monocytogenes, to these toxic 

compounds. This lead to the high prevalence of a especially cadmium resistant Listeria spp in food 

processing environments (154, Rakic Martinez et al. unpublished data). From the food safety 

viewpoint it is noteworthy that several major outbreaks of listeriosis have involved cadmium-resistant 

strains (64, 116, 121, 156). The prevalence of the resistance to these heavy metals varies among 

different serotypes of L. monocytogenes (127, 128, 129, 147, 155). 

Efflux system responsible for the, cadmium resistance in gram-positive bacteria consists of two 

adjacent genes (cadA and cadC) (200). The Cadmium resistance mechanism in L monocytogenes is 

diverse with four distinct cadAC energy-dependent efflux systems identified to date. The first, 

cadA1cassette is harbored on plasmids associated with a transposon (Tn5422) (121, 127, 129). 

Second, cadA2 was identified in the strain H7858, implicated in the 1998–1999 hot dog outbreaks. 

This cassette is also harbored on plasmid (pLM80), part of a putative composite transposon. CadA2 

determinant shares this plasmid with BC – resistance genes (18, 36, 156 ). 

The third determinant identified on the chromosome of L monocytogenes EGDe as a component of 

integrative conjugative element (ICE) (22, 83). Briers et al (19) indentified in L. monocytogenes 

Scott A novel putative cadmium resistance determinant cadA4. Presence of the determinants cadA1 

and cadA2 alone or together seem to be most prevalent among L monocytogenes resistant to 

cadmium (155). Similar results are obtained after testing non-pathogenic L welshimeri and L 

innocua isolates from poultry processing plants across the US (Rakic Martinez, unpublished data). 

http://en.wikipedia.org/wiki/Aminoglycoside
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Several studies confirmed correlation between resistance to cadmium and BC in strains harboring 

cadA2 alone or with cadA1 (155, Rakic Martinez unpublished data). Such strains also harbored BC 

resistant determinant bcrABC. All tested BC resistant strains were also cadmium resistant, however, 

the opposite was not true (155, Rakic Martinez unpublished data). Mullapudi et al also reported 

serotype specific distribution of cadA determinants (155). Resistance to cadmium in L 

monocytogenes might be acquired from non pathogenic Listeriae such as L. welshimeri and L. 

innocua harboring bcrABC, along with the cadmium resistant determinant cadA2, were able to 

transfer resistance to other L.monocytogenes of diverse serotypes (117).  

Arsenic: Since none of the Listeria strains sequenced to date apparently harbor arsenic resistance, 

the responsible genes are not yet indentified.A putative arsenic resistance cassette was identified on 

pLI100, and harbored by L innocua CLIP 11262 (83, 121). Lee et al (130) recently indentified an 

extended arsenic resistance cassette, which includes arsR1D2R2A2B1B2 and two additional 

upstream genes (arsD1A1), were recently identified on the Scott A chromosome, where it is part of a 

35-kb genomic Island. Generally, however, arsenic resistance determinants are highly homologous 

among different bacteria (162, 202).   

The use of antimicrobials in both animals and humans can select for resistant bacterial 

populations. In food animals, antimicrobials are used for the control and treatment of bacteria 

associated with infectious diseases as well as for growth promotion purposes (169). Apart from the 

European Union (EU) ban of certain antibiotics that are used, or related to those used, in human 

medicine (66). An undesired consequence of antimicrobial use is the potential development of 

antimicrobial-resistant food borne bacterial pathogens and subsequent transmission to humans as 

food contaminants (62). In addition, spontaneous mutation in food borne bacteria or the spread of 

resistant bacteria in the absence of selective pressure may also contribute to the antimicrobial 

resistance burden in food (63). In fact, emerging antimicrobial resistance phenotypes have been 

recognized among multiple pathogens including Listeria monocytogenes (228). 

Taken together the adaptability potential and persistence of L monocytogenes, along with 

other Listeria spp in the food processing environment calls for targeted interventions in order to 

maintain food safety at the highest possible level. Ability to propose and create such interventions 

require a better understanding of the mechanisms involved in L monocytogenes ability to colonize 
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food or food-processing, health care facilities, and persist and acquire resistance to antimicrobials 

commonly used in such environments.    

2.2. Adaptation of Listeria monocytogenes to Ciprofloxacin or to the Disinfectant 

Benzalkonium Chloride Results in Reduced Susceptibility to Ciprofloxacin, Gentamicin 

Benzalkonium Chloride and Other Toxic Compounds 

Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, an 

illness that remains a leading cause of mortality and morbidity associated with foodborne 

infections in the United States and other industrialized nations (119, 149, 193). At risk are 

primarily pregnant women and their fetuses, the elderly, and those in immunocompromised 

states, including patients undergoing kidney dialysis or chemotherapy.  Symptoms can be 

severe (septicemia, meningitis, stillbirths) and fatality rate is estimated at 16% (60, 163, 193). 

L. monocytogenes is usually susceptible to a wide range of antibiotics, except 

cephalosporins and fosfomycin (102, 103, 153), and multidrug-resistant clinical isolates 

appear to be rare (97, 176, 180, 208). The treatment of choice for listeriosis consists of a β-

lactam antibiotic (e.g.  Ampicillin), alone or in combination with an aminoglycoside (e.g. 

gentamicin), and clinical isolates of L. monocytogenes generally remain susceptible to these 

antibiotics (102, 153).  However, trends towards reduced susceptibility to tetracyclines and 

fluoroquinolones have been noted (153).  Even though these antibiotics are not typically used 

for treatment of listeriosis, their extensive use in empirical therapy and treatment of other 

infections could create selective pressure for L. monocytogenes mutants with reduced 

susceptibility. Fluoroquinolone-resistant isolates of L. monocytogenes from clinical cases 

were found to have enhanced transcription of lde, encoding a drug efflux transporter of the 

major facilitator superfamily (MFS) (86, 153). However, limited information is available on 

mutants obtained upon exposure of L. monocytogenes to fluoroquinolones. 

 In addition to antibiotic-related exposures, L. monocytogenes is expected to be frequently 

subjected to selection pressures associated with the extensive use of disinfectants such as 

quaternary ammonium compounds in food processing plants and healthcare settings. Limited 

information is currently available on possible cross-resistance following exposure to 

antibiotics such as ciprofloxacin and disinfectants such as the quaternary ammonium 

compound benzalkonium chloride (BC), extensively used in the food processing industry 
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(146, 151). Similarly, exposure to BC may result in variants with reduced susceptibility to BC 

but also reduced susceptibility to antibiotics. Indeed, exposure of L monocytogenes to 

progressively increasing concentrations of this disinfectant resulted in BC-resistant mutants 

that also exhibited reduced susceptibility to gentamicin and kanamycin (187, 207).  However, 

cross-resistance to fluoroquinolones (e.g. ciprofloxacin) was not reported. The potential for 

co-selection of antibiotic and disinfectant resistance upon exposure of L.monocytogenes to 

antimicrobial agents has important food safety and public health implications and needs to be 

further investigated.  

In this study we determined the extent to which adaptation of L. monocytogenes to 

ciprofloxacin and to BC altered susceptibility to a panel of antimicrobial agents, including 

several antibiotics, BC and other toxic compounds.  Outbreak-derived strains harboring a 

large plasmid (pLM80) and their cured derivatives were included, to assess possible impact of 

the plasmid on the susceptibility profiles of the adapted strains.  

2.3. Identification of L.monocytogenes antibiotic resistance genes under control of tetR 

repressors 

In their natural settings bacteria are constantly exposed to various environmental 

fluxes, including severe nutrient limitation, fluctuations in temperature, and changes in 

oxidative and osmotic tensions. In order to survive adverse environmental conditions, bacteria 

developed a wide range of rapid and adaptive responses. These responses are generally 

mediated by regulatory proteins, which modulate transcription, translation, or other events in 

gene expression so that the physiological responses are appropriate to the environmental 

changes. 

Exposure to toxic compounds (e.g. quaternary ammonium disinfectants and the antibiotic 

ciprofloxacin) selects for mutants with multidrug resistance (MDR) (86, 182, 187). Frequent 

occurrence of such MDRs in food processing plants potentially leads to food contamination 

followed by human infection with strains that have reduced susceptibility to antibiotics; such  

resistant mutants in healthcare settings where disinfectants are frequently in use (hospitals, 

nursing homes), would result in infections with impaired response to antibiotic treatment. In 

our previous report, exposure of Listeria to quaternary ammonium disinfectants benzalkonium 

chloride (BC) or to the antibiotic ciprofloxacin (cipro) selects for mutants with multidrug 
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resistance (MDR) to a range of drugs, including not only BC and cipro but also toxic dyes 

(e.g. ethidium bromide), other antibiotics (e.g. gentamicin), and the anticancer drug 

tetraphenylphosphonium (TPP) (86, 182, 186). Determined reduced resistance of such 

mutants in the presence of the efflux inhibitor reserpine (182) suggests that increased efflux is 

involved in the resistance, e.g. through inactivation of repressors for MDR transporters.  

Recent genetic and biochemical studies have identified two L. monocytogenes major 

facilitator superfamily multidrug resistance (MDR) efflux pumps as necessary for the 

induction of host IFN-β involving the second messenger c-di-AMP (46, 227).   

The tetracycline repressor (TetR) family transcriptional regulators constitute the third 

most frequently occurring transcriptional regulator family found in bacteria (164). The TetR 

family is named after the transcriptional regulators that control the expression of the tetR 

genes, whose product confers resistance to tetracycline (186). However, TetR family proteins 

are also involved in various other important biological processes, such as biofilm formation, 

biosynthesis of antibiotics, catabolic pathways, multidrug resistance, nitrogen fixation, stress 

responses, and the pathogenicity of Gram-negative and Gram-positive bacteria (32) 

Inactivation of the tetR repressor (next to the MDR transporter mdrT) in Listeria strain 

10403S caused a dramatic increase in IFN- ction by infected macrophages (46) 

suggesting involvement of more currently unidentified MDR transporters (besides mdrT) 

under control by the tetR repressor. TetR is a negative regulator of mdrT (lmo2588), a gene 

encoding an MDR transporter that participates in the secretion of cyclic di-AMP, which is a 

potent IFN-β-inducing agent. In strain 10403S inactivation of tetR resulted in the largest 

noted increase in IFN- -di-AMP in infected macrophages, but deletion of 

the adjacent MDR transporter mdrT had no effect (46, 227).  Furthermore, transcription of 

mdrT was not induced following treatment with TPP (46).  On the other hand, we found that 

the tetR::Tn917 mutant had pronounced (8-fold) increase in TPP resistance.  Such data 

suggest that the observed TPP resistance of the tetR::Tn917 mutant involve increased 

expression of MDR transporter(s) other than mdrT, but also repressed by tetR.   

We speculate that the unidentified gene (repressed by tetR) is responsible for the 

observed TPP resistance of the tetR::Tn917 mutant. By screening a mariner-based mutant 
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library of selected L monocytogenes strains for new mutants with impaired or enhanced 

resistance to TPP we aim to identify this gene. 

2.4. Co-selection of cadmium and benzalkonium chloride resistance in conjugative 

transfers from non-pathogenic Listeria spp. to other listeriae 

Listeria spp. are Gram-positive bacteria commonly found in the environment. The 

single human pathogen in this genus, Listeria monocytogenes, continues to be associated with 

significant disease burden due to its high morbidity and mortality towards vulnerable 

populations such as the elderly, pregnant women and their fetuses, neonates and 

immunocompromised patients (54, 115, 163, 193).  L. monocytogenes remains largely 

susceptible to antibiotics, with a common course for treatment being a combination of 

ampicillin and gentamicin. However, reported cases of listeriosis involving strains with multi-

drug resistance (39, 97, 176, 180, 208) suggest the potential for enhanced resistance through 

horizontal gene transfer with accompanying increases in public health concerns associated 

with this pathogen.    

Colonization of the processing plant environment by Listeria spp. is a major contributor to 

contamination of processed, ready to eat foods (120, 220).  Exposure to disinfectants 

commonly used in food processing plants, such as the quaternary ammonium compound 

benzalkonium chloride (BC), may provide selective pressures for disinfectant resistance with 

an accompanying increase in fitness within the processing plant environment. Several studies 

have investigated prevalence and mechanisms of BC resistance in L. monocytogenes (64, 154, 

186, 202); however, less is known about the behavior and response of non-pathogenic Listeria 

spp. to selection pressures in food processing plants and other environments.  

The processing plant environment may present many opportunities for non-pathogenic 

Listeria spp. to interact with L. monocytogenes. Non-pathogenic species such as L. innocua 

and L. welshimeri have been found to be more common than L. monocytogenes in food 

processing environments and in foods, and to grow faster than L. monocytogenes in foods and 

other media (8, 47, 104, 140, 168, 197, 201, 221). They are also more likely than L. 

monocytogenes to exhibit antibiotic resistance and to harbor plasmids (4, 39, 48, 69, 70, 167, 

184, 189). Taken together, such findings suggest the potential for horizontal gene transfer 
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among listeriae, with non-pathogenic strains serving as reservoirs for resistance determinants, 

potentially altering the fitness of the pathogenic species, L. monocytogenes. 

In L. monocytogenes the efflux system encoded by bcrABC has been shown to confer 

high-level resistance to BC and other quaternary ammonium compounds (64).  The bcrABC 

cassette was first identified on a large plasmid (pLM80) harbored by strains implicated in the 

1998-1999 hotdog outbreak of listeriosis, and was subsequently also identified on a similar 

plasmid from a different strain, responsible for another multistate outbreak.   The cassette on 

these plasmids appears to be part of a composite transposon that also includes genes 

conferring resistance to cadmium (64, 121,156).  

Further evidence for the association between BC resistance and resistance to cadmium 

was obtained from characterization of L. monocytogenes from turkey processing plants.  All 

BC- resistant strains were found to be also resistant to cadmium (though the reverse was not 

the case; ca. 30% of the cadmium-resistant isolates lacked resistance to BC) (154).  This led 

to the speculation that BC resistance determinants (e.g. bcrABC) were acquired by plasmids 

that already harbored cadmium resistance determinants (154, 155).   

Such findings suggest the need to characterize horizontal transfer of bcrABC in 

Listeria spp., including transfer from non-pathogenic species that may act as reservoirs.  

However, efforts to assess conjugative transfer of BC resistance in Listeria spp. can be 

thwarted by the frequent occurrence of spontaneous mutants exhibiting high-level resistance 

to BC; such mutants can be readily obtained from several strains of L. monocytogenes and 

other Listeria spp. (182, 207, M. Rakic-Martinez and S. Kathariou, unpublished findings).   

On the other hand, spontaneous mutants with high levels of resistance to cadmium are 

extremely rare and in fact have never been identified in our laboratory (S. Katharios-

Lanwermeyer and M. Rakic-Martinez, unpublished findings).  Therefore, in this study we 

hypothesized that BC-resistant, cadmium-resistant strains of L. innocua and L. welshimeri 

harbored the corresponding resistance determinants on plasmids (similarly to L. 

monocytogenes strains with pLM80 and related plasmids, described above), and we used 

cadmium resistance transfer as a surrogate for assessments of conjugative transfer of BC 

resistance.    We examined transfer of such resistance among L. innocua and L. welshimeri as 

well as from these non-pathogenic species to L. monocytogenes. 
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2.5. Resistance gene distribution among non-pathogenenic Listeriae from different 

poultry processing plants 

 Listeria monocytogenes has unparalleled potential to readily demonstrate 

combinations of environmental and host-related adaptive attributes. From the food safety 

point of view, populations of Listeria within specific food processing plants are of special 

interest:  the individual processing plant (“plant”) ecosystem creates selective pressures for 

adaptive features relevant to environmental persistence and subsequent contamination of 

product.  Well recognized adaptations include biofilm forming potential and tolerance to cold, 

disinfectants and Listeriaphage.  Less clearly understood in terms of its fitness contributions, 

but nonetheless consistently exhibited, is Listeria’s heavy metal resistance (cadmium, arsenic) 

(115, 118, 154, 155). 

Non-pathogenic Listeria spp. such as L. innocua and L. welshimeri are often more abundant 

than L. monocytogenes in the plant ecosystem while sharing the same niche, and may thus  

represent excellent models  for plant-specific environmental selective pressures impacting 

Listeria (104, 105, 168, 197). We recently provided evidence suggesting that non-pathogenic 

Listeriae may constitute reservoirs for resistance to the quaternary ammonium disinfectant 

benzalkonium chloride (BC), being able to conjugatively disseminate resistance to BC to 

other Listeriae, including L. monocytogenes (117).  Cadmium resistance  that was also 

exhibited  by the BC-resistant non-pathogenic strains was found to be a useful marker for 

assessing transfer potential, and cadmium-resistant transconjugants harbored the 

corresponding resistance determinant (cadA1 or cadA2)  (117).     

Only sparse information is currently available on population structure and resistance gene 

distribution among non-pathogenic Listeriae from the processing plant environment.  Such 

information is needed to assess gene transfer potential and to further elucidate the molecular 

ecology of Listeria in the context of the ecosystem of specific plants.  In this study, we 

analyzed resistance prevalence and determinants a panel of non-pathogenic Listeria from 

different processing plants.   

2.6. Survival and growth of outbreak and other strains of Listeria monocytogenes on 

cantaloupe. The facultative intracellular bacterium L. monocytogenes remains a leading 
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cause of severe illness and death due to foodborne disease in the United States (193). Its 

ubiquitous nature and persistence in the environment and equipment in food processing 

plants, often for years, create important food safety and public health challenges (115, 120). 

The disease primarily affects the elderly, pregnant women, newborns, patients undergoing 

chemotherapy and other immunosuppressed individuals (60, 163).  

Even though several high-profile outbreaks of listeriosis have involved deli meats and soft 

cheeses (28, 29,82, 149), epidemiological trends suggest that L. monocytogenes -

contaminated produce is associated with higher disease outcome than previously recognized. 

The first produce-related listeriosis outbreak involved contaminated coleslaw (cabbage); it 

took place in  1981 in the Maritime Provinces (Canada) and was also noteworthy in providing 

the   first demonstration of foodborne transmission of L. monocytogenes (194).  Subsequent 

produce-associated outbreak occurred among hospitalized patients in Boston and was 

epidemiologically attributed to contaminated celery, lettuce and tomato.  This outbreak was 

followed by multistate outbreak associated with soybean sprouts (2008-09), and 2010 Texas 

outbreak connected to chopped celery with surprisingly high mortality (10 cases, five 

deaths)(123, http://www.cspinet.org/foodsafety/outbreak_report.html)].  

 L. monocytogenes has been isolated from numerous types of untreated produce, imported as 

well as domestic, including several that would be considered ready-to-eat such as cucumbers, 

lettuce, cabbage, salad greens, prepared salads, radishes, tomatoes, and others (10, 101). 

Produce can become contaminated pre-harvest as well as during the processing.  In addition to 

their potential to be directly implicated in disease, Lm-contaminated produce can be a source 

of the organism for produce processing facilities and equipment. Cantaloupe has been 

implicated in numerous outbreaks of food-borne illnesses, primarily involving Salmonella.  

An estimated 13 out of 82 foodborne illness outbreaks associated with produce between 1996 

and 2008 involved contaminated melon, resulting in 507 illnesses and 2 deaths. In recent 

years, numerous cases of Salmonella infections linked to cantaloupe had been reported 

including latest 2012 Multistate Outbreak of Salmonella Typhimurium and Salmonella 

Newport (CDC Salmonella Web Page). However, the 2011 multi state outbreak provided first 

evidence for cantaloupe as a vehicle for listeriosis.  This outbreak had additional unusual 

characteristics.  It had the highest mortality rate of any foodborne outbreak in the U.S. since a 
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listeriosis outbreak in 1998 (33). It was also one of the few common-source listeriosis 

outbreaks involving strains of multiple serotypes and genotypes (122). Further analysis 

revealed significant distinction between 1/2a and 1/2b strains involved in this outbreak and 

same serotypes strains associated with previously reported outbreaks and sporadic cases.  

Colonization of the outer rind of melon by pathogenic microorganisms, potential for 

biofilm formation and efficacy  of washing treatments and other interventions in pathogen 

reduction have been investigated  (209, 210, 214, 215). Few studies provided evidence for 

transfer of bacteria by cutting from the outer fruit surfaces to the edible parts (211) and 

potential of contamination  of cut melon due to improper handling and cross-contamination 

(214).  Thus far, however, data on L. monocytogenes potential to grow on cantaloupe are 

limited.  Ukuku at al (2002) reported survival, but no growth on fresh-cut peaces of 

cantaloupe at 4°C. However, increasing temperature to 8 and 20°C, respectively, led to the L. 

monocytogenes population increase of 1 log unit (211). A significant increase (6 log units) in 

L monocytogenes population in melon pulps stored at 10 and 20ºC, respectively, had been 

noted by Penteado and Leita˜o (166). Using limited strain panels, previous studies lacked 

reports on strain specific behavior of L monocytogenes on the surface of cantaloupe. Further 

more tested strains did not include isolates from 2011 cantaloupe associated listeriosis 

outbreak.  By employing individual strains involved in food related cases and outbreaks of 

Listeriosis, (including strains from the 2011 cantaloupe outbreak a), the goal of the current 

study was to determine strain-specific differences in survival and growth of L monocytogenes 

on cantaloupe.  Focus was also on the location-specific differences in L monocytogenes 

survival and growth on the outer surface, inner surface and extract of cantaloupe at various 

incubation temperatures as well as efficiency of water treatment in prevention of pathogen 

growth.   

2.7. Change in phenotype and genotype as an asset for L. monocytogenes growth on 

cantaloupe. Listeria monocytogenes remains, globally, one of the leading food-born 

pathogens responsible for severe illness and death associated with infection, in spite of 

effective antibiotic treatments. High hospitalization rate (94%) with a mean of approx. 16% of 

listeriosis cases fatal  cause L. monocytogenes  to be a third major contributor to deaths due to 

food-borne deseases in the United States (163, 193).  
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  According to the recent epidemiological data contribution of produce to human 

listeriosis is much higher than previously recognized (34). Various produce are accounted as a 

cause of multistate outbreaks including  contaminated soybean sprouts in  2008-2009, 

chopped celery in 2010 as well as cantaloupes involved in 2011 listeriosis outbreak. Both 

2010 and 2011 outbreaks had unusually high fatality rate (82). L monocytogenes has also been 

isolated from numerous types of untreated produce, including several that would be 

considered ready-to-eat such as cucumbers, lettuce, cabbage, salad greens, prepared salads, 

radishes, tomatoes, and others (10, 11, 101).  

A number of special attributes (e.g. biofilm-forming potential, ability to grow in the cold, 

resistance to phage and disinfectants) make L monocytogenes a persistent, highly problematic 

contaminant of the environment and equipment in food processing plants (14, 118, 120, 154, 

158).  Persistent colonization of the processing plant environment is considered to be a major 

factor for contamination of processed, ready-to-eat foods with this pathogen, and thus 

contributes to the burden of human listeriosis (118, 120). A substantial amount of the 

information on mechanisms mediating adherence and fitness of Listeria on different produce 

has been provided (88, 89, 90, 91). However, our understanding of the basic mechanisms of 

adherence and fitness of L. monocytogenes on the surface of cantaloupe is currently minimal.   

Significant number of outbreaks caused by L. monocytogenes had been associated with one 

clonal group, Epidemic clone one (115, 118). Sequencing one of the strains belonging to this 

group (F2365) revealed several unique genes and gene cassettes.  Strain F2365 was 

implicated in the California outbreak of 1985 (156, 231). Interestingly, characterization of the 

strain involved in 1998-99, multistate outbreak of listeriosis connected to contaminated hot 

dogs, associated this strain with a novel epidemic clone ECII and revealed an unusual 

diversification in a serotype 4b specific genomic region known as “region 18” (28, 149). 

Interestingly, this region is flanked on one side by a large gene encoding a putative cell-wall 

associated protein (wap) and on the other side by a well-known virulence gene, inlA, 

encoding Internalin. In further analysis, deletion of region-18 had no effect on hemolytic 

ability, phage susceptibility, cell shape, or colony size, in either ECI strain F2365 or ECII 

strain H7550.  However, it led to a defect in the utilization of certain carbon sources in ECI 

strain as well as enhanced death  rate during post-stationary phase at 42 ºC in ECII. 
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In effort to better understand ability of L. monocytogenes to colonize and grow on cantaloupe 

we have employed the mariner-based transposon to construct mutant libraries of strains F2365 

and H7550. Through screenings of these libraries we have isolated various mutants including 

non-hemolytic mutant, a mutant with altered phage susceptibility profile, and mutants in a 

putative biosynthesis locus that exhibited impaired growth on blood agar. Additionally, we 

employed deletion mutants of wap and genomic region 18, along with corresponding parental 

strains.  Lastly, mutants of L. monocytogenes adapted to antibiotic ciprofloxacin described in 

the previous study (182) were also tested. 

2.8. Assessment of L. monocytogenes growth in raw and pasteurised milk. Presence of 

Listeria monocytogenes in variety of foods, particularly milk and dairy products, animal 

products, ready-to-eat foods, fruit and vegetables has been well documented (26, 32, 52, 57, 

98, 137, 152, 192, 196, 206).In USA and Canada, widespread presence and high prevalence of 

L monocytogenes in bulk tank raw milk samples with incidence variations from 4 - 12.6% has 

been reported in a number of studies (74, 108, 217) 

Such a presence has raised concerns about L. monocytogenes survival and persistence in food 

processing facilities as a result of poor sanitation practices or ability of Lm to grow under 

abusive conditions. Persistent presence of this microorganism could lead to biofilm formation 

and possible cross contamination at the farm, plant or during the transport and storage 

whether the milk is pasteurized or not (5, 145, 159).  

Ubiquitous and highly adaptable nature of   L. monocytogenes including ability to grow in a 

wide range of temperatures and pH enables growth in refrigerated raw milk and animal feed at 

pH as low as 4.5 (45). Even dough milk and milk products depend on refrigeration for 

ensuring post-pasteurization microbial safety, refrigerated storage is not adequate for 

inhibiting the growth of L. monocytogenes in fluid milk as it can multiply at temeperatures as 

low as 4C (109, 142, 159, 175). Extended periods of refrigerated storage (up to 12 days for 

pasteurized milk) and improper compliance of temperature regulations during transportation 

and storage at retail stores (59) can allow even a few L. monocytogenes cells, weather they 

survived pasteurization or were introduced as post pasteurization contamination, to attain 

populations high enough to pose serious health risks (10
2
 CFU/ ml or above) (115). 
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L. monocytogenes can cause neurological disease, abortion, or asymptomatic 

infections in cattle. Healthy, but infected animals, shed Listeria in feces and fecal 

contamination of pastures or vegetables has been implicated as a source of contamination for 

humans and ruminants. Mastitis in cows caused by L. monocytogenes could result with a 

transfer of the pathogen in milk (16, 109, 226). Further more, if bacterial concentration is high 

enough, Listeria can survive minimum HTST pasteurization, as reported by Bunning et 

al.(21). Consumption of such contaminated raw milk or raw milk products or ingestion of 

processed food cross-contaminated with pathogens present in the food processing plant 

environment (93) leads to human infection. Susceptible are especially certain groups of 

population including immunocompromised patients, pregnant woman, children and elderly. In 

recent years few serious outbreaks of listeriosis connected to the consumption of milk and 

milk products occurred worldwide. In 2005 case of contamination of cheese made from raw 

goat's milk occurred in Belgia (52). In Spain, two cases of pregnancy-related listeriosis 

associated with the Latin-style fresh cheese made from pasteurized milk in Portugal were 

reported by V de Castro et al. (50).  Multinational 2009/2010 listeriosis outbreak caused by 

two different L. monocytogenes serotype 1/2a strains isolated from ‘Quargel’, a sour milk 

curd cheese, in Austria, Germany, the Czech Republic, Poland and Slovakia accounted for 34 

clinical cases and eight deaths (79). An outbreak in California in 1985 was shown to be due to 

the consumption of Mexican-style fresh cheese (136). Following investigation of the outbreak 

suggested either mixed raw and pasteurized milk or post pasteurization contamination (199).  

In the entire L. monocytogenes population, 13 different serotypes, only strains belonging to 

serotypes 4b, 1/2a and 1/2b are connected to the majority of sporadic cases and outbreaks of 

listeriosis. Even dough reported outbreaks were geographically and temporally distinct, 

involved strains were closely related (51). Based on comparative study of above mentioned 

outbreaks, Kathariou and al. (115, 134) defined four different epidemic clones (ECI, ECIa, 

ECII and ECIII). Clonal groups ECI and ECIa composed mostly of serotype 4b strains were 

involved in worldwide distributed major outbreaks connected to food sources (134). These 

two clonal groups are overrepresented among sporadic cases of listeriosis in humans and 

animals occurred in early 30s 40s and 50 of the last century. ECII clonal group is relatively 

new, observed in the connection with 1998-1999 hot-dog outbreak by Kathariou et al (134).  
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Employing diversity of food and clinical isolate of L. monocytogenes involved in older 

sporadic cases as well as recent major outbreaks of listeriosis we aimed to assess optimum 

growth rate of L. monocytogenes in raw and pasteurized milk over 10 days of storage at the  

refrigeration temperature. The objective was also to determine possible serotype and clonal 

associated difference in L. monocytogenes survival and growth in raw versus pasteurized milk 

stored at 8C.  
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3.0. TASKS AND REASEARCH 

 

3.1. Adaptation of Listeria monocytogenes to Ciprofloxacin or to the Disinfectant 

Benzalkonium Chloride Results in Reduced Susceptibility to Ciprofloxacin, Gentamicin 

Benzalkonium Chloride and Other Toxic Compounds 

3.1.1. Bacterial strains and growth conditions. L. monocytogenes strains employed in this 

study are listed in Table 3.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Table 3.1.1. L. monocytogenes strains employed in this study 

Strain Resistance
1
  

Cd      BC
 

Characteristics Source 

(reference) 

H7550 Cd
R

 + + Serotype 4b strain from  1998-1999 hot dog outbreak     (64) 

H7550 Cd
R
 C1 + + Ciprofloxacin-selected mutant of H7550 Cd

R
 This study 

H7550 Cd
R 

C2 + + Ciprofloxacin-selected mutant of H7550 Cd
R
 This study 

H7550 Cd
S
 - - Plasmid-cured derivative of H7550 Cd

R
 (64)  

H7550 Cd
S
 C1 - + Ciprofloxacin-selected mutant of H7550 Cd

S
 This study 

H7550 Cd
S
 C2 - + Ciprofloxacin-selected mutant of H7550 Cd

S
 This study 

H7550Cd
S
BC1 - + BC-selected  mutant of H7550 Cd

S
 This study 

H7550Cd
S
BC2 - + BC-selected mutant of H7550 Cd

S
 This study 

SK 2802 + - Serotype4bstrain, sporadic case of isteriosis, USA, 2005. CDC 

SK 2802 C1 + + Ciprofloxacin-selected mutant of SK 2802 This study 

SK 2802 C2 + + Ciprofloxacin-selected mutant of SK 2802 This study 

SK 2802 BC1 + + BC-selected mutant of SK 2802 This study 

SK 2802 BC2 + + BC-selected mutant SK 2802 This study 

J0161 Cd
R
 + + Serotype 1/2a strain from turkey deli meats outbreak, 

2001 

 (161) 

J0161 Cd
R
 C1 + + Ciprofloxacin-selected mutant of J0161 Cd

R
 This study 

J0161 Cd
R 

C2 + + Ciprofloxacin-selected mutant of J0161 Cd
R
 This study 

J0161 Cd
S 

+ + Plasmid-cured derivative of J0161 Cd
R
 This study 

J0161 Cd
S
 C1 - + Ciprofloxacin-selected mutant of J0161 Cd

S
 This study 

J0161 Cd
S
 C2 - + Ciprofloxacin-selected mutant of J0161 Cd

S
 This study 

J0161Cd
S
 BC1 - + BC-selected mutant of J0161 Cd

S
 This study 

J0161Cd
S
 BC2 - + BC-selected mutant of J0161 Cd

S
 This study 

 

1
 For Cd, + indicates confluent growth on isosensitest agar containing 70 µg/ml cadmium 

chloride anhydrous; for BC, + indicates confluent growth  on media containing  10 µg/ml BC, 

prepared as described in Materials and Methods; - indicates absence of growth. 
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 The serotype 4b strain H7550 was resistant to cadmium (Cd
R
) and BC and was 

associated with the 1998-1999 hot dog-related multistate outbreak (64); it harbored pLM80 

(ca. 80 kb), with genes for resistance to cadmium (cadAC) and to BC (bcrABC) (64, 156).  L. 

monocytogenes J0161
 
was a serotype 1/2a strain associated with a listeriosis outbreak in 2001, 

linked to consumption of turkey deli meats (161). It is also resistant to cadmium and BC and 

harbors a large plasmid highly similar to pLM80 (15).  L. monocytogenes SK2802 was from a 

sporadic case of listeriosis in 2005; this strain was resistant to cadmium and sodium arsenite 

but was susceptible to BC and lacked bcrABC.  H7550 cadmium sensitive (Cd
S
) and J0161 

Cd
S  

 were plasmid-cured derivatives of strain H7550 Cd
R
 and J0161 Cd

 R
, respectively; these 

derivatives were obtained following repeated passages of the bacteria at 42°C and were 

susceptible both to cadmium and to BC (64).   Unless otherwise indicated,  bacteria were  

grown at 37°C for 36 h on blood agar plates containing 5% sheep blood (Remel, Lenexa, KS), 

and long-term storage was done at - 80°C in brain heart infusion broth (BHI, Becton 

Dickinson and Co., Sparks, MD) with 20% glycerol (Fisher Scientific, Fairlawn, NJ). 

3.1.2. Isolation of mutants selected on ciprofloxacin or BC. Bacteria were grown overnight 

in BHI (Becton Dickinson and Co.) at 37°C and spotted (3µl) on Mueller-Hinton agar (MHA) 

(Mueller Hinton broth [Becton Dickinson and Co.] with 1.2% Bacto agar [Becton Dickinson 

and Co.]) containing 2 µg/ml ciprofloxacin (Sigma Chemical Co., St Louis, MO). Colonies 

growing following 48h of incubation at 37°C were purified on the same medium. Overnight 

cultures of the BC-susceptible strains H7550 Cd
S
, J0161 Cd

S
 and SK2802 were also spotted 

(3µl) on plates containing 10µg/ml BC (Acros, NJ) and 2% defibrinated sheep blood (Becton 

Dickinson and Co.) (154). Single colonies obtained following incubation at 37°C for 48h 

were subcultured on the same medium for purification.  

3.1.3. Antimicrobial agents, susceptibility testing and MIC determinations.  Antibiotics 

used in this study are listed in Table 3.1.2.  
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Table3.1.2. Antibiotics employed in this study 

 

Antibiotic 

 

Drug class 

Concentration 

range (µg/ml) 

MIC 

(µg/ml) 

Ampicillin ß-Lactam 0.125-2.0 ≤ 1.0 

Ciprofloxacin Fluoroquinolone 0.5-16.0 2.0-8.0
1 

Moxifloxacin Fluoroquinolone 5.0 ND
2 

Erythromycin Macrolide 0.25-8.0 0.5 

Gentamicin 

Kanamycin 

Streptomycin 

Aminoglycoside 

Aminoglycoside 

Aminoglycoside 

0.5-4.0 

1.0-20.0 

6.25-400.0 

≤ 4.0 

2.5 

25.0 

Rifampin Rifamycin 0.5-4.0 0.5 

Tetracycline Tetracycline 1.0-10.0 2.5 

Trimethoprim Dihydrofolate reductase 0.5-4.0 0.5 

Fosfomycin Phosphonic acid 

derivative 

64.0-2048.0 ≥ 2048.0 

1
MIC for ciprofloxacin was 2µg/ml for all wildtype strains, except for SK 2808 (MIC, 8µg/ml).  

2
ND, not determined; Moxifloxacin susceptibility was assessed by the disk diffusion method as described in 

Materials and Methods. 

 

They represented major antibiotic classes and included those used for treatment of listeriosis 

as well as others commonly used in human and veterinary medicine. Ampicillin, 

ciprofloxacin, rifampin, tetracycline, fosfomycin and trimethoprim were purchased from 

Sigma; gentamicin, moxifloxacin and kanamycin from Fisher Scientific; erythromycin and 

streptomycin from MP Biomedicals, Inc. (Solon, NJ). The isolates were tested for antibiotic 

susceptibility by agar dilution on MHA.  The range of concentrations used for antibiotic MIC 

determinations are indicated in Table 2.  Susceptibility to moxifloxacin was determined by the 

disk diffusion method using disks with 5 µg moxifloxacin (Fisher Scientific) on MHA. The 

diameter of the zone of inhibition was measured to the nearest whole millimeter. 
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Ethidium bromide (EthBr) (Fisher Scientific) resistance was determined using agar dilutions 

on MHA as previously described (86). Concentrations for EthBr MIC determinations were 20, 

25, 50, 100, and 200µg/ml.  Resistance to BC, cadmium chloride (Cd) (Sigma) and sodium 

arsenite (As) (Fluka, Buchs, Steinheim, Germany) was determined as described (154).   The 

plates were incubated at 37°C for 48 h, and growth on the test plates was compared with that 

on the control Isosensitest agar (Oxoid, Basingstoke, England). Concentrations used for 

determinations of MIC values were 5, 10, 20, 35, 70 and 140µg/ml for Cd, and 5, 10, 20, 30 

and 40µg/ml for BC. Tetraphenylphosphonium chloride (TPP) (Sigma) was used at 50, 100, 

200, 400 and 800µM for MIC determinations. Agar dilution on MHA was used for TPP MIC 

determination. 

 The efflux inhibitor reserpine (Sigma) was used at 10µg/ml as described (86). When MICs 

were determined in the presence of the efflux inhibitor reserpine, MICs in the absence of 

reserpine were always determined as control.  

3.1.4. Determination of tolerance to bile salts, triclosan and sodium dodecyl sulfate.  

Tolerance to bile salts was assessed by screening for growth on BHI agar plates (BHI [Becton 

Dickinson and Co.] with 1.2% Bacto agar [Becton Dickinson and Co.]) supplemented with 

0.01-1% bile salts (mixture of sodium cholate and sodium deoxycholate; Sigma).The plates 

were incubated at 37°C for 48h under anaerobic conditions using BBL anaerobic jars (Becton 

Dickinson and Co.) and the Merck Anaerocult A Gas Pak system (Becton Dickinson and Co.) 

Susceptibility to triclosan (Sigma) and to sodium dodecyl sulfate (SDS, Fisher) was 

determined by spotting 3µl (0.125-64µg/ml for triclosan, and 100, 150, 200 and 250µg/ml for 

SDS) on MHA plates supplemented with 5% sheep blood (Becton Dickinson and Co.) and 

assessing growth following incubation at  37ºC for 24h.   

3.1.5. RNA extraction and reverse-transcription PCR (RT-PCR). Expression of selected 

MDR genes (mdrL, mdrM, mdrT, lde) was assessed by using RT-PCR analysis.  H7550 Cd
S
 

and J0161 Cd
R
 , and their  BC-selected derivatives H7550 Cd

S
 BC1  and J0161 Cd

R
 C1, 

respectively, were grown to logarithmic phase in BHI at 30ºC, RNA was extracted and RT-

PCR was performed as described (64). Primers employed are listed in Table 4.1.3.  
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Table 3.1.3.Primers used in this study 

Primer              Sequence (5’ to 3’) Reference 

s1 ATTACAGATGTGAGATTACGACG  (64) 

s2 ACGTTTACTTGGCATAGCTAC  (64) 

mdrL_ F CTCC ACT CGT TAC ACT TCT This study 

mdrL_ R CAG ACAAGGAAAT GAACAC This study 

mdrM _F GTACATCAGTGAAGCGTAACG This study 

mdrM_ R CTAGAACACAAGCGACTACAG This study 

mdrT_ F CGGCCCGTTGATGTTAACG This study 

mdrT_ R CATTCCGTCCAAACTAGCATC This study 

ldeF GAA GAA GAA TTT GTA TGT TGTC This study 

ldeR TCTCTCCATG CATTTTTCGG This study 

 

 PCR was carried out   using the Takara Ex Taq kit (Takara, Madison, WI) and a T1 thermal 

cycler (Biometra, Goettingen, Germany) as described (64).   The housekeeping gene spoVG 

was used as internal control in the RT-PCR reactions, as described (64).   RT-PCR for each 

gene was done in at least two independent trials. 

 

3.2. Identification of L monocytogenes antibiotic resistance genes under control of tetR 

repressors 

3.2.1. Bacterial strains and growth conditions  

L. monocytogenes strains employed in this study are lister in Table 3.2.1.  
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Table3.2.1. L. monocytogenes strains employed in this study 

Strain Characteristics Reference 

10403S serotype 1/2a strain streptomycin resistant derivative of a 

human skin lesion isolate 

(61) 

F2365 Serotype 4b strain cheese isolate of the California outbreak (156) 

LmDP-L5396 tetR::Tn917 10403S mutant with an insertion in the tetR repressor  (46) 

MRMT1 Mutant in 10403S mariner-based mutant library with 

enhanced resistance to TPP 

This study 

MRMT2 Mutant in 10403S mariner-based mutant library with 

enhanced resistance to TPP 

This study 

MRMT3 Mutant in 10403S mariner-based mutant library with 

enhanced resistance to TPP 

This study 

MRMT4 Mutant in 10403S mariner-based mutant library with 

enhanced resistance to TPP 

This study 

MRMT5 Mutant in 10403S mariner-based mutant library with 

enhanced resistance to TPP 

This study 

 

Mutant libraries were constructed in the serotype 4b strain F2365 (cheese isolate of the 

California outbreak) (156) and in the serotype 1/2a strain 10403S (streptomycin resistant 

derivative of a human skin lesion isolate) (61). Bacteria were grown in brain heart infusion 

broth (BHI, Difco, Sparks, MD), at 37oC for 36 hours, and stored at –80oC in the presence of 

20% glycerol.Following the construction of mutant libraries (see below) mutants that grew on 

brain heart infusion agar with 5 μg/ml erythromycin (BHI-Em) but not on BHI with10μg/ml 

(BHI-Km) were inoculated individually with sterile toothpicks in fresh BHI and grown at 

37oC for 36 hours. Mutant libraries were stored in 96-well microtiter plates at –80oC. 

3.2.2. Construction of mutant libraries 

In the construction of mutant library of F2365 and 10403S, plasmid pMC38 carrying a 

mariner-based transposon system (TC1/mariner) (24) was used. The pMC38 plasmid DNA 
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was kindly provided by Dr. Marquis (Cornell University). Construction of mutant library was 

done as previously described (24).  

3.2.3. Mutant library screening procedures 

Mutant libraries were screened as described below for the impaired or enhanced resistance to 

tetraphenylphosphonium chloride (TPP) (Sigma). For the change resistance, 960 mutants of 

F2365 and 960 mutants of 10403S were screened. The mutants grown in BHI on 96-well 

microtiter plates were spotted on BHI supplemented with10, 20, 40, 60,100,150, 200, 

400µM/ml, respectively, using a sterile 48-pin replicator. The plates were air-dried and 

incubated at 37oC for 2 days. 

3.2.4. Southern blots and determination of transposon insertion sites 

The number of transposon insertion for selected mutants were determined by Southern blots 

as previously described (6). Primers used to obtaine a mariner-based transposon probe are 

listed in Table 2. The PCR products were labeled with digoxigenin (Genius kit; Roche, 

Indianapolis, IN). The labeled DNA was stored at –20oC. The genomic DNA of selected 

mutants was isolated by using DNeasy kit (Qiagen, Valencia, CA). The genomic DNAs were 

digested by restriction enzyme, Hind III (New England Biolabs, Waverly, MA). X-ray film 

(Fuji) was exposed to the chemiluminescent light resulting from hybridization of DNA 

fragments labeled with the probe. Transposon insertion site was determined by sequencing 

DNA fragments amplified by arbitrary PCR as previously described by Cao et al. (24). The 

arbitrary primers are listed in Table 3.2.2.  

    Table 3.2.2.Primers used in this study 

Primer              Sequence (5’ to 3’) Reference 

Maq205 GGT ATA GCA TAT GAATCG CAT CCG ATT GCA G (6) 

Maq254 TGT CAG ACA TAT GGG CAC ACG AAA AAC AAG T (6) 

Marq207 GGC CAC GCG TCG ACT AGT ACG TAA T (24) 

Marq208 GGC CAC GCG TCG ACT AGTAC (24) 

Marq255 CAG TAC AAT CTGCTC TGA TGC CGC ATA GTT (24) 

Marq269 CTAGAACACAAGCGACTACAG (24) 

Marq256 TAG TTA AGC CAG CCC CGA CAC CCG CCA ACA (24) 

Marq270 TGT GAA ATA CCG CAC AGA TGC GAA GGG CGA (24) 
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After purification of the PCR products by QIAquick® PCR Purification Kit (Qiagen, MA), 

they were sequenced using Marq257 and Marq271 for the left and right end of the transposon, 

respectively. The sequencing of the PCR products was performed at Genomic Science 

Laboratory at North Carolina StateUniversity (Raleigh, NC) and at Genewiz, Inc. (South 

Plainfield, NJ). 

3.3. Co-selection of cadmium and benzalkonium chloride resistance in conjugative 

transfers from non-pathogenic Listeria spp. to other listeriae 

3.3.1. Bacterial strains and growth conditions.  Listeria spp. strains employed in this study 

are listed in Table 3.3.1. 
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Table 3.3.1.Bacterial strains employed in this study 

 

 

 

With the exception of the reference strain L. innocua CLIP 11262 (83), the non-pathogenic 

Listeria spp. strains (L. innocua and L. welshimeri) were isolated from the environment of 

turkey processing plants in the United States between 2003 and 2005. Isolation and 

characterization of Listeria spp. from these processing plants will be described elsewhere.  

Non-pathogenic Listeria spp. used as recipients was streptomycin-resistant derivatives of L. 

welshimeri and L. innocua (Table 4.3.1).  Spontaneous mutants with resistance to 

streptomycin (MIC> 600 μg/ml) were isolated on brain heart infusion agar plates  (BHIA) 

(BHI broth [BHI; Becton, Dickinson and Co. Sparks, MD] and 1.2% Bacto agar [Becton, 

Dickinson and Co.] with streptomycin sulfate (600 μg/ml; Sigma, St Louis, MO).  In addition, 
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five L. monocytogenes strains were used as potential recipients.  These included the 

streptomycin-resistant serotype 1/2a strains 1/2a3 and 10403S which have been extensively 

used in laboratory investigations (114, 126, 175) and the serotype 4b strain 2381L, a 

streptomycin-resistant derivative of a strain from the 1985 California outbreak (178). In 

addition, we employed strains 2857S and 2858S, streptomycin-resistant derivatives of the 

serotype 1/2a strain 2011L-2857 and the serotype 1/2b strain 2011L-2858, implicated in the 

2011 cantaloupe outbreak (32).  These streptomycin-resistant derivatives (streptomycin MIC> 

600 μg/ml) were obtained as described above.   Bacteria were grown in BHI or on BHIA and 

preserved at -80C as described (64).    

3.3.2. Cadmium and BC susceptibility and determinations of MIC. BC and cadmium 

susceptibility assessments were done as described (154).    Strains were considered resistant to 

cadmium when they yielded confluent growth in the presence of 35 μg/ml cadmium chloride 

anhydrous (Sigma) following incubation at 37C for 48 h.  For cadmium MIC determinations, 

10 μl of an overnight culture was spotted on BHIA plates with variable concentrations of 

cadmium chloride (2.5, 5, 10, 20, 35, 70, 140 and 200μg/ml), the plates were incubated at 

25C and observed daily for 5 days. The MIC was defined as the lowest concentration of 

cadmium which prevented visible growth.  MIC of benzalkonium chloride (BC; Acros, New 

Jersey) was determined as described (31) using variable concentrations of BC (0.1, 0.5, 2.5, 5, 

10, 20, 35 and 40 μg/ml) and following incubation of the plates at 37C for 48 h.   

3.3.3. Conjugations.  Cultures of recipient and donor strains were grown overnight (18 h) at 

37C and mixed in a 1:10 donor to recipient ratio for conjugations. Filter matings were done 

as described (114).  Briefly, the mixture (100 μl donor and 900 μl recipient) was centrifuged 

(6000 rpm, 3 min) and resuspended in 100 μl BHI which was then spotted onto sterile 

membrane filters (0.45μm; Millipore Corp., Bedford, MA) and incubated at the indicated 

temperature for 24 h. Agar matings employed the same 1:10 donor to recipient ratio; 

following centrifugation and resuspension in BHI (100 μl) the mixture was spotted (50 μl) on 

BHIA and incubated at the indicated temperature for 24 h. To isolate transconjugants, mating 

mixtures were rinsed off the membrane filter or, for agar matings,  removed off the surface of 

the agar plates with a sterile glass rod and plated on double selective medium (BHIA with  

600 μg/ml  streptomycin and 35 μg/ml cadmium chloride), incubated at 25C, and  observed 
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for up to 96 h.  Controls included each of the parental strains plated on the double-selective 

medium and incubated similarly.  Conjugation frequency was determined as the ratio of the 

number of transconjugants over CFUs of the recipient strain at the end of the conjugation 

period; CFUs were determined by plating dilutions on BHIA with streptomycin (600μg/ml) 

and incubation at 37C for 36 h.  Experiments were done in duplicate and in at least three 

independent trials. 

3.3.4. Polymerase chain reaction (PCR).  Primers used for PCR are listed in Table 3.3.2.   
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Identification of the three different cadA determinants used primers cadA-Tn5422F 

and cadA-Tn5422R for cadA1, associated with Tn5422; cadA-pLM80F and cadA-pLM80R 

for cadA2, harbored on pLM80; cadA-EGDeF and cadA-EGDeR for cadA3, harbored by 

EGDe (155).  Primers BcF and BcR were used to produce a PCR fragment containing the 

entire bcrABC cassette along with the ca. 800-nucleotide upstream intergenic region (64).  

PCR for hly, encoding the L. monocytogenes virulence determinant Listeriolysin O employed 

primers hlyAF and hlyAR (15) (Table 2).  L. welshimeri was differentiated from L. innocua 

using primers Lw_0908_F and Lw_0908_R (L. welshimeri-specific) as well as primers 

Li_0558_F and Li_0558_R (L. innocua-specific) (Table 4.3.2), derived from genome 

sequences specific to the corresponding species (83, 99).  Besides cadA2 and bcrABC 

(harbored on pLM80), we employed a panel of several additional primer pairs to screen for 

other pLM80 ORFs representing diverse locations on both fragments of the plasmid (Table 

4.3.2) (33).  PCR was done as previously described (64, 154) using the Takara Ex Taq kit 

(Takara, Madison, WI).  

3.4. Resistance gene distribution among non-pathogenenic Listeriae from different 

poultry processing plants 

3.4.1. Bacterial strains and growth conditions. The nonpathogenic Listeria spp strains used 

in this study are listed in Tables 3.4.1a and 3.4.1b.  
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Table 3.4.1a. L. innocua isolates used in this study 

L.innocua Resistance State Date 

Plant 

code Source cadA bcrABC APAI ASCI 

250a-1 Cd, BC ND 10/12/2004 F Enviroment 1 +     

#4MI21 

Cd, BC, 

As MI 12/16/2004 C Enviroment 1 +     

244a-1 Cd, BC ND 10/12/2004 F Enviroment 1 +   + 

282b-1 Cd, BC NC 6/15/2004 A Enviroment 1 +   + 

#8MI21 

Cd, BC, 

As MI 11/29/2005 C Enviroment 1 +     

#1MI1 Cd MI 4/27/2004 C Enviroment 1 +   + 

297b-1 Cd, BC ND 11/2/2004 F Enviroment 1 +     

306a-1 Cd, BC ND 11/2/2004 F Enviroment 1 +   + 

45-1b Cd, BC ND 11/10/2003 F Enviroment 1 +     

45-1a Cd, BC ND 11/10/2003 F Enviroment 1 +   + 

#1MI2 Cd MI 4/27/2004 C Enviroment 1 -     

2#MI32 Cd, BC MI 4/27/2004 C Enviroment 1 +     

#4MI40 Cd, As MI 12/16/2004 C Food 1 -     

L1219 

Cd, BC, 

As VA 1/18/2005 B Enviroment 1 + + + 

L1306a Cd VA 2/28/2005 B Enviroment 1 - + + 

L1507 Cd, BC VA 3/9/2005 E Enviroment 1 + + + 

L1814b Cd, BC VA 6/7/2005 E Enviroment 1 +     

#5MI10 Cd, BC MI 4/12/2005 C Enviroment 1 +     

#6MI12 

Cd, BC, 

As MI 6/15/2005 C Enviroment 1 +     

#7MI18 Cd, BC MI 9/13/2005 C Enviroment 1 +   + 

#1MI11 Cd, BC MI 4/27/2004 C Enviroment 1 +     

LO921 Cd, BC VA 8/19/2004 B Enviroment 1 + + + 

L1310 Cd, BC VA 4/5/2005 B Enviroment 1 + + + 

L1312 Cd, BC VA 4/5/2005 B Enviroment 1 + + + 

L1306b Cd VA 4/5/2005 B Enviroment 1 - + + 

L1201a Cd, BC VA 4/5/2005 B Enviroment 1 + + + 

L1214b Cd, BC VA 4/5/2005 B Enviroment 1 + + + 

L1206 Cd VA 4/5/2005 B Enviroment 1 - + + 

L1501 Cd VA 4/5/2005 E Enviroment 1 - + + 

L1307a Cd VA 4/5/2005 B Enviroment 1 - + + 

L1307b Cd, BC VA 4/5/2005 B Enviroment 1 + + + 
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L1223 Cd VA 4/5/2005 B Enviroment 1 - + + 

L1310 Cd, BC VA 4/5/2005 B Enviroment 1 + + + 

L1333b Cd VA 4/5/2005 B Enviroment 1 - + + 

230a-1 Cd, BC NC 8/23/2004 A Enviroment 1, 2 +     

LO901 Cd, BC VA 8/19/2004 B Enviroment 1, 2 + + + 

210b-2 Cd, BC NC 6/15/2004 A Enviroment 1, 2 +     

141a-1 Cd, BC NC 2/10/2004 A Enviroment 1, 2 + +   

#4MI12 Cd, BC MI 12/16/2004 C Enviroment 1, 2 +     

L1816a Cd VA 6/7/2005 E Enviroment 1, 2 -   + 

10-1a Cd, BC NC 9/24/2003 A Enviroment 2 +     

10-1b Cd, BC NC 9/24/2003 A Enviroment 2 +     

104b-1 Cd, BC NC 12/3/2003 A Enviroment 2 +     

128a-1 Cd, BC NC 2/10/2004 A Enviroment 2 +     

138a-1 Cd, BC NC 2/10/2004 A Enviroment 2 +     

158a-1 Cd, BC NC 4/13/2004 A Enviroment 2 +     

176a-3 Cd, BC NC 4/13/2004 A Enviroment 2 +     

231b-3 Cd, BC NC 8/23/2004 A Enviroment 2 +     

240a-1 Cd, BC NC 8/23/2004 A Enviroment 2 +     

275a-1 Cd, BC NC 10/21/2004 A Enviroment 2 +     

283a-5 Cd, BC NC 10/21/2004 A Enviroment 2 +     

34-1a Cd, BC NC 9/24/2003 A Enviroment 2 + + + 

367a-2 Cd, BC NC 4/5/2005 A Enviroment 2 +     

82a-1 Cd NC 12/3/2003 A Enviroment 2 -     

L1624a-1 Cd, BC VA 5/18/2005 B Food 2 +     

L1628a-1 Cd, BC VA 5/18/2005 B Enviroment 2 +     

L1916a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

L1930b-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

L1935a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

L1939b-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

453a-1 Cd, BC ND 10/26/2005 F Enviroment 2 +     

L1606a-1 Cd, BC VA 5/18/2005 B Enviroment 2 +     

#2MI17 Cd, BC MI 7/27/2004 C Enviroment 2 +     

L1333a Cd VA 2/28/2005 B Enviroment 2 - + + 

L1712b Cd VA 6/6/2005 D Enviroment 2 - + + 

#7MI11 Cd, BC MI 9/13/2005 C Enviroment 2 +     
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290b-1 Cd, BC ND 11/2/2004 F Enviroment 2 +     

204 b-1  BC, As NC 6/15/2004 A Enviroment 2 +     

L1921a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

452a-1 Cd, BC ND 10/26/2005 F Enviroment 2 +     

240b-1 Cd, BC NC 8/23/2004 A Enviroment 2 + + + 

L1221 

Cd, BC, 

As VA 1/18/2005 B Enviroment 2 + + + 

Table 4.4.1a. continuing 

L1724a Cd, BC NC 6/6/2005 A Enviroment 2 +     

L0909 Cd VA 12/9/2004 B Enviroment 2   + + 

L0910 Cd VA 12/9/2004 B Enviroment 2 - + + 

L0923 Cd VA 12/9/2004 B Enviroment 2 - + + 

L0924 Cd VA 12/9/2004 B Enviroment 2 - + + 

L0919 Cd VA 12/9/2004 B Food 2 - + + 

232a-1 Cd, BC NC 8/23/2004 A Enviroment 4 +     

223a-5 Cd, BC NC 8/23/2004 A Enviroment ND +     

22-1a Cd NC 9/24/2003 A Enviroment ND -     

206b-1 Cd, BC NC 6/15/2004 A Enviroment ND +     

174a-1 Cd, BC NC 4/13/2004 A Enviroment ND +     

248a-1   ND 10/12/2004 F Enviroment ND -     

43-1a BC ND 11/10/2003 F Enviroment ND +     

206 a-1 Cd, BC NC 6/15/2004 A Enviroment ND +     

172a-1 BC NC 4/13/2004 A Enviroment ND +     

285a-1 BC ND 11/2/2004 F Enviroment ND +     

L1604b-1 - VA 5/18/2005 B Enviroment ND -     

L1318b BC VA 4/5/2005 B Enviroment ND + + + 

LO713 Cd VA 5/18/2004 B Enviroment ND -     

LO907 Cd VA 8/19/2004 B Enviroment ND - + + 

L1601b Cd, BC VA 5/18/2005 B Enviroment ND +     

L1210a Cd, BC VA 4/5/2005 B Enviroment ND + + + 

L0913 - VA 12/9/2004 B Enviroment ND - + + 

L1328a BC VA 4/5/2005 B Enviroment ND + + + 
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Table 3.4.1.b L. welshimeri isolates used in this study 

L. 

welshimeri 

Resistance State Date Plant 

code 

Source cadA bcrABC APAI ASCI 

110b-1 Cd, As NC 2/10/2004 A Enviroment 1 -     

117pa-1 Cd NC 2/10/2004 A Enviroment 1 -     

192a-2 Cd NC 6/15/2004 A Enviroment 1 -     

254a-1 Cd, BC ND 10/12/2004 F Enviroment 1 +     

290a-1 Cd, BC ND 11/2/2004 F Enviroment 1 +     

297a-1 Cd, BC ND 11/2/2004 F Enviroment 1 +     

312a-1 Cd, BC ND 11/2/2004 F Enviroment 1 +     

50-1a Cd, BC ND 11/10/2003 F Enviroment 1 +   + 

L1905a-1 Cd VA 9/8/2005 B Enviroment 1 -     

414a-2 Cd, BC ND 10/13/2005 F Enviroment 1 +     

425b-1 Cd, BC ND 10/13/2005 F Enviroment 1 +     

428a-1 Cd, BC ND 10/13/2005 F Enviroment 1 +     

475a-1 Cd, BC ND 11/9/2005 F Enviroment 1 +     

LO903 Cd, BC VA 8/19/2004 B Enviroment 1 + + + 

139a-1 Cd, BC NC 2/10/2004 A Enviroment 1, 2 + +   

143a-1 Cd NC 2/10/2004 A Enviroment 1, 2 - +   

230b-2 Cd, BC NC 8/23/2004 A Enviroment 1, 2 + +   

#1MI19 Cd, BC MI 4/27/2004 C Enviroment 1, 2 + +   

313b-1 Cd, As ND 11/2/2004 F Enviroment 1, 2 -     

231a-4 Cd, BC NC 8/23/2004 A Enviroment 2 +     

268a-1 Cd, BC NC 10/21/2004 A Enviroment 2 +     

209b-1 Cd, BC NC 6/15/2004 A Enviroment 2 +     

102a-1 Cd, BC NC 12/3/2003 A Enviroment 2 + + + 

105a-1 Cd, BC NC 12/3/2003 A Enviroment 2 +     

61-1b Cd, BC ND 11/10/2003 F Enviroment 2 + + + 

L1601a-1 Cd, As VA 5/18/2005 B Enviroment 2 -   + 

L1606b-1 Cd70, BC VA 5/18/2005 B Enviroment 2 +     

L1625b-1 Cd, BC VA 5/18/2005 B Food 2 +   + 

L1908a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     
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L1916a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

L1921b-1 Cd, BC VA 9/8/2005 B Enviroment 2 +   + 

L1936a-1 Cd, BC VA 9/8/2005 B Enviroment 2 +     

Table 4.4.1b. continuing 

439a-1 Cd, BC ND 10/26/2005 F Enviroment 2 + + + 

487a-2 Cd, As, 

BC 

NC 3/29/2006 A Enviroment 2 +   + 

#104 Cd, BC NC 12/3/2003 A Enviroment 2 +     

#34 Cd, BC NC 9/24/2003 A Enviroment 2 +     

LO725 Cd, BC VA 5/18/2004 B Food 2 + + + 

LO926 Cd, BC VA 12/9/2004 B Food 2 + + + 

L1228a Cd, BC VA 1/18/2005 B Food 2 + + + 

L1625a Cd, BC VA 5/18/2005 B Food 2 +     

L1730 Cd, BC VA 6/6/2005 D Enviroment 2 +     

#6MI19 Cd, BC MI 2/28/2005 C Enviroment 2 +   + 

#6MI26 Cd, BC, 

As 

MI 6/15/2005 C Enviroment 2 +   + 

L1208 Cd, BC VA 4/5/2005 B Enviroment 2 + + + 

L1225 Cd, BC VA 4/5/2005 B Enviroment 2 + + + 

L1228b Cd, BC VA 4/5/2005 B Food 2 + + + 

L1325 Cd, BC VA 4/5/2005 B Enviroment 2 + + + 

L0914 Cd, BC VA 12/9/2004 B Enviroment 2 + + + 

L0918 Cd, BC VA 12/9/2004 B Food 2 + + + 

L0926 Cd, BC VA 12/9/2004 B Food 2 + + + 

L0922 Cd, BC VA 12/9/2004 B Enviroment 2 + + + 

202a-1 Cd, BC NC 6/15/2004 A Enviroment ND + + + 

342a Cd, BC NC 12/14/2004 A Enviroment ND + + + 

361a-1 Cd, BC NC 4/5/2005 A Enviroment ND +     

405a-1  Cd ND 10/13/2005 F Enviroment ND -     

430a-1 Cd ND 10/26/2005 F Enviroment ND -     

232b-2 BC NC 8/23/2004 A Enviroment ND +     

L1203 Cd, BC VA 1/18/2005 B Enviroment ND + + + 

L1316 - VA 2/28/2005 B Enviroment ND - + + 
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 The nonpathogenic strains (n=162) were primarily contributed by four plants (A, B, C, and 

F): most strains were L. innocua and L. welshimeri (Table 4.4.2).  

 

       Table 3.4.2.Plant-specific distribution of the strains used in this study  

Plant¹ Species 

 L.welshimeri L. innocua 

A (n=50) 22 28 

B (n=64 ) 26 38 

C (n= 16 ) 3 13 

D (n= 5 ) 1 4 

E (n= 4 ) 0 4 

F (n=25  ) 

Total (n=162) 

14 

66 

11 

96 

 

¹In addition to the 162 isolates, 8 isolates (4 from plant A and 1 each from B, C, D, and F) 

 were unidentified Listeria spp. 

 

Listeriae were routinely grown in brain heart infusion broth (BHI; Difco, Sparks, MD), BHI 

supplemented with 1.2% agar (Difco), or Trypticase soy broth with 0.6% yeast extract 

(TSBYE; Becton, Dickinson and Co., Sparks, MD) at 37°C.   

3.4.2. Determination of susceptibility to cadmium, sodium arsenite and BC. Resistance to 

cadmium, arsenic, and BC was assessed as described previously (154). Isolates were 

considered resistant to cadmium and arsenic if they yielded confluent growth on Iso-Sensitest 

L1604a-1 Cd,BC, As VA 5/18/2005 B Enviroment ND +     

L1315  BC VA 2/28/2005 B Enviroment ND + + + 

#138 Cd, BC NC 2/10/2004 A Enviroment ND + + + 

210a-1 Cd, BC NC 6/15/2004 A Enviroment ND + +   

223b-5 Cd, BC NC 8/23/2004 A Enviroment ND + + + 

239a-3 Cd, BC NC 8/23/2004 A Enviroment ND + + + 

L0927 - VA 12/9/2004 B Enviroment ND - + + 
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agar (ISA) (Oxoid, Hampshire, England) supplemented with 70µg/ml cadmium chloride 

anhydrous (Sigma, St. Louis, MO) or 500ug/ml sodium arsenite (Fluka, Steinheim, 

Germany), respectively, following incubation at 37°C for 48 h. BC resistance was assessed on 

Mueller-Hinton agar (MHA) (Mueller-Hinton broth with 1.2% Bacto agar [Becton, Dickinson 

and Co.]) supplemented with 10 ug/ml of benzalkonium chloride (Acros, Morris Plains, NJ) 

and 2% sheep blood (BBL, Sparks, MD). The plates were incubated at 37°C for 48 h.  

Confluent growth at 10ug/ml BC determined strains as resistant to this compound.      

3.4.3. DNA extrection. DNA was extracted as described previously (64),   and PCRs were 

performed using the ExTaq kit (Takara, Madison, WI) and a T1 thermal cycler (Biometra, 

Goettingen, Germany). Primers used in present study (3, 12) were purchased from Eurofin 

MWG Operon (Huntsville, AL)  

3.4.4. PCR. Species designations for L. welshimeri and L. innocua were confirmed 

using primers listed in Table 3.4.3.  
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Table 3.4.3.Primers used in this study 

Gene PCR primer sequence (5’ – 3’) 
Target gene and protein 

function 

GeneBank 

accession no. 
Ref 

CadA – 

Tn5422F 

CAGAGCACTTTACTGACCATCAA

TCGTT 

Tn5422-associated 

cadA(cadA1) 
L28104 155 

CadA – 

Tn5422R 

CTTCTTCATTTAACGTTCCAGCA

AAAA 

Tn5422-associated 

cadA(cadA1) 
 155 

CadA – 

pLM80F 

ACAAGTTAGATCAAAAGAGTCTT

TTATT 

cadA(LMOh7858_pLM80_00

83) on pLM80 (cadA2) 
 155 

CadA – 

pLM80R 

ATCTTCTTCATTTAGTGTTCCTG

CAAAT 

cadA(LMOh7858_pLM80_00

83) on pLM80 (cadA2) 
AADR01000058 155 

CadA - 

EGDeF 

TGGTAATTTCTTTAAGTCATCTC

CCATT 

cadA(lmo1100) in EGD-e 

(cadA3) 
 155 

CadA - 

EGDeR 

GCGATGATTGATAATGTCGATTA

CAAAT 

cadA(lmo1100) in EGD-e 

(cadA3) 
AL591977 155 

LMOSA_23

30F 
GCATACGTACGAACCAGAAG 

cadA(LMOSA_2330) on the 

chromosome of Scott A 

(cadA4) 

 130 

LMOSA_22

30R 
CAGTGTTTCTGCTTTTGCTCC 

cadA(LMOSA_2330) on the 

chromosome of Scott A 

(cadA4) 

AFGI01000005.1 130 

BcF 
GAATGGATCCTTCAATTAGATCG

AGGCACG 
bcrABC AADR01000058 130 

BcR 
GTATGAATTCGTATAATCCGGAT

GCTGCCC 
bcrABC  130 

Lw_0908_F 
CTTCTCTTTCAGTAGACAGTGAA

GC 

L. welshimeri-

specific sequence 
NC_008555 117 

Lw_0908_R CCATCCTTGTTTCGCCCTTCTTC 
L. welshimeri-

specific sequence 
NC_008555 117 

Li_0558_F 
GGTGTCTACTTTGTAACGGCCA

C 
L. innocua-specific sequence NC_003212. 117 

Li_0558_R 
CGGTAGCTTTTGTTAGCATCCCT

G 
L. innocua-specific sequence NC_003212. 117 
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 Detection of the four different cadA determinants used primers cadA-Tn5422F and cadA-

Tn5422R for cadA1; cadA-pLM80F and cadA-pLM80R for cadA2; cadA-EGDeF and cadA-

EGDeR for cadA3 and primers LMOSA_2330F and LMOSA_2230R for cadA4 (130, 155).  

To obtain PCR fragment with the entire bcrABC cassette along with the 800-nt upstream 

intergenic region we used primers BcF and BcR (64) (Table 4.4.3.).   

3.4.5. Pulsed-field gel electrophoresis (PFGE). Pulsed-field gel electrophoresis (PFGE) was 

performed following PulseNet protocol with AscI (New England BioLabs, Ipswich, MA) and 

ApaI (Roche, Indianapolis, IN) (47) For normalization, analysis and matching of PFGE 

profiles BioNumerics (Applied Maths, Austin, TX) was employed. A dendrogram was 

generated from AscI and ApaI of 32 L. innocua and 24 L. welshimeri isolates with 1.5% 

tolerance window.  

3.4.6. Statistical Analysis.  Fisher’s exact test was carried out to determine if distribution of 

Cd and BC resistance genes is constant across the processing plants. In case when there was 

evidence of plant to plant variability, pairwise comparisons among plants were made by 

fitting logistic regression models for each frequency variable. Significant difference (p < 0.04) 

was determined using the SAS program Version 9.1 (Cary, NC).  

3.5. Survival and growth of outbreak and other strains of Listeria monocytogenes on 

cantaloupe  

3.5.5. Bacterial strains and growing conditions Strains used in the study are listed in Table 

3.5.1. 

Table 3.5.1.  Listeria monocytogenes strains used in this study 

Strains Genotype and features Serotype Source/ reference 

2011L-2857 Food, cantaloupe outbreak, 2011 1/2a CDC 

2011L-2858 Food, cantaloupe 2011 outbreak 1/2b CDC 

2011L-2875 Food, cantaloupe 2011 outbreak 1/2a CDC 

2010L-1723 Celery outbreak  (TX) 2010 1/2a Gaul, L.K, 

H7550 Hot dog outbreak , 1998-1999 4b CDC 

J0161 Turkey deli meats outbreak, 2001 1/2a CDC 

F8027 Food, celery 4b Lang,  M 
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Each bacterial culture was grown overnight at 37°C in brain heart infusion broth (BHI; 

Becton Dickinson and Co., Sparks, MD) and centrifuged  at 7000×g (Rotor JA-14, Beckman, 

Palo Alto, CA, USA) for 10 min. Cells were washed twice in sterile dH20 and re-suspended in 

10ml of sterile de-ionized water.  

3.5.2. Cantaloupe preparation and inoculations. For each experiment, conventionally 

grown cantaloupes (grown in the USA), were purchased at retail and stored at 4° C until used.   

Cantaloupes were tested for Listeria prior to inoculation.  Briefly, 12.5gr of fragments 

containing  rind (obtained as described below) were pre-enriched by re-suspending in 112.5 

ml Half Frazer Broth (Oxoid LTD, Basingstoke, Hampshire, England)) and incubated at 37ºC 

for 48 h followed by plating 100ul on the MOX and incubation of 48h at 37ºC.   Cantaloupes 

were cut by a flame-sterilized knife in pieces (2x2x1.0cm each), with the outer surface intact, 

inner surface (1cm under the rind), respectively, and the rest of flesh was extracted in to a 

juice using a Juice Extractor (Hamilton Beach Health Smart Juice Extractor, Southern Pines, 

NC, USA). Fragments were placed on sterile aluminum foil in a  biosafety cabinet, pre-wetted 

with sterile water by spraying, left for 30 minutes to dry, followed by inoculation with 

different L monocytogenes strains, respectively. 

Inoculum was prepared by diluting the washed cells in sterile water.  A spot-inoculation 

method was used to inoculate bacteria (approx.10
5 

cfu/fragment) on the rind and on the flesh 

of cantaloupe fragments, as previously described (147). The inoculum (100µl) was deposited 

as of a series of drops on the surface (rind or flesh).  After air drying for 1 hour in the 

biosafety cabinet at room temperature the inoculated fragments were placed in polystyrene 

petri dishes sealed with parafilm, followed by incubation at 4, 8 and 25ºC. 10ml aliquots of  

freshly extracted cantaloupe juice was inoculated for a final concentration of 10
5 

cfu/ml. 

Survival and growth were assessed at 4, 24, 168, 336 and 504 hours at 4 and 8°C; and 4, 8, 

24, 72, 168 hours at 25°C. Longer incubations at 25°C were not pursued due to the visible 

spoilage of the product.  At each time point, cantaloupe fragments (two each with inoculums 

on the rind and on the flesh respectively), were submerged in 10ml of sterile de-ionized water 

in the sterile 50ml it polypropylene conical tubes (Becton Dickinson and Company, Franklin 

Lakes, NJ, US) followed by vortexing at high speed for 2 minutes. Serial dilutions were 

plated on brain heart infusion agar (BHIA; Becton Dickinson and Co., Sparks, MD) for the 
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enumeration of total aerobes and on Modified Oxford Agar (MOX), (EMD Chemicals Inc., 

Gibbstown, NJ 08027, USA) supplemented with Modified Oxford Antimicrobic Supplement 

(Becton,Dickinson and Company, Sparks, MD 21152, USA) for enumeration of  L. 

monocytogenes. Serial dilutions from cantaloupe juice were plated for enumeration as 

described above.  Plates were incubated for 48 hours at 37°C   and results presented as 

log CFU / fragment.  Experiments were done in duplicate and in at least three independent 

trials.  

3.5.3. Cantaloupe treatment with water: Fragments of cantaloupe were prepared and 

inoculated with L. monocytogenes strains F8027 and 2011L-2858, respectively, as previously 

described. After 1 hour two fragment of each inoculated strain were washed by submerging 

sterile dH2O for 2 minutes with agitation. Fragments were then placed in polystyrene 50ml 

tubes with 10ml of sterile dH2O followed by 2 minutes of vortexing at high speed. 

Enumerations were made as described above immediately after washing and following 72 

hours at 4, 8 and 25ºC. Fragments inoculated with the same strain but not washed were 

included as a control.   

3.5.4. Statistical analysis Data were analyzed by The Statistical Analysis System (SAS 

Institute Inc., Cary, N.C.) using linear mixed effects model. Fixed effects of four factors were 

included, along with all possible interactions among them: strain (3 levels), location (3 levels) 

time and temperature, which had 16 combinations of levels, visible in the tables below. The 

experimental design was a randomized complete block with three complete replications of all 

144 treatment combinations of the four factors. For each treatment and block (\trial") 

combination, duplicate measurements were taken, and these are considered subsamples for the 

purposes of the statistical analysis. Accordingly, random effects were included in the model 

for block and block-by-treatment interaction. 

3.6. Change in phenotype and genotype as an asset for L. monocytogenes growth on 

cantaloupe 

3.6.1. Bacterial strains and growing conditions. L. monocytogenes strains employed in this 

study are listed in Table 3.6.1. 
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Table 3.6.1: Listeria monocytogenes strains used in this study 

Strains Genotype and features Source/ 

reference 

F2365 Cheese isolate from California outbreak 6, 7 

H7550 Clinical isolate from hot dog outbreak (1998-1999) 68 

J0161 Serotype 1/2a strain from turkey deli meats outbreak, 2001 182 

J0161C1 Ciprofloxacin-selected mutant of J0161 Cd
R
 31 

ROA4 Transposon mutant of F2365 LMO f2365_1746 (helicase 

domain protein) cold sensitive 

6, 7 

ROA14 Transposon mutant of F2365purA::transposon (pMC38), EmR 

KmS, blood agar sensitive 

6, 7 

J22F Transposon mutant of H7550-Cds,purB::transposon (pMC39), 

EmR KmS, blood agar sensitive 

6, 7 

J29H Transposon mutant of H7550-Cds,hly::transposon (pMC39), 

EmR KmS, nonhemolytic 

118 

J46C Transposon mutant of H7550-Cds,ORF2753::transposon 

(pMC39), EmR KmS, phage-susceptible at low temperature 

118 

F2365∆wap F2365 with deletion of wap 42, 43 

F2365∆18R F2365 with deletion of the gene cassette flanking by wap and 

inlA 

42, 43 

ECII∆18R H7550 with deletion of the gene cassette flanking by wap and 

inlA 

42, 43 

 

Each bacterial culture was grown overnight at 37°C in brain heart infusion broth (BHI; 

Becton Dickinson and Co., Sparks, MD) and centrifuged  at 7000×g (Rotor JA-14, Beckman, 

Palo Alto, CA, USA) for 10 min. The supernatant was discarded and the cell pellets were 

washed twice and resuspended in 10ml of sterile de-ionized water, followed by serial 

dilutions in sterile de-ionized water to the final inoculum concentration of 10
5
cfu/fragment on 

the cantaloupe rind. 
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3.6.2. Isolation of mutants adapted on ciprofloxacin: Ciprofloxacin-adapted mutants of 

parental strain J0161 (serotype1/2 a strain involved in turkey deli meats outbreak, 2001) were 

obtained as previously described (182).  

3.6.3. Mutant library constructions and genetic characterizations. The mariner-based 

transposon (24) have been employed to construct mutant libraries of strains F2365 (epidemic 

clone I, serotype 4b) and H7550 (epidemic clone II, serotype 4b) (1, 2, 23). All analyzed 

mutants harbored single transposon insertions.  Through screenings of the mariner-based 

mutant libraries various mutants have been isolated. A cold-sensitive mutant, with an 

insertion in a gene encoding a DEAD family RNA helicase (6), and ROA14 with transposon 

integrated in LMOf2365_0065 (purA, adenylosuccinate synthetase), both mutants of strain 

F2365, and mutants of strain H7550- non-hemolytic mutant (J29H) harboring the transposon 

into ORF 0222 (hly, listeriolysin O) and blood sensitive mutant J22F with the transposon 

localized into ORF 1898 (purB, adenylosuccinate lyase). Non-hemolytic mutant was not able 

to lyse blood cells on blood agar plates (Tryptic Soy Broth supplemented with 5% of sheep 

blood, Remel Inc.) and blood-sensitive mutant barely grew on the tryptic soy agar with sheep 

blood (Remel) but grew well on other agar media, including Tryptic Soy Agar.  

3.6.4. Identification of phage-susceptible mutant. One colony of strain H7550, designated 

J46C, was detected to be a phage susceptible on the spot assay following growth at 25°C. The 

phage susceptibility was confirmed individually by standard plaque assays.  

3.6.5. Construction of deletion mutant of wap in F2365 Deletion mutants of wap and 

genomic region 18 were previously constructed in our laboratory as described (42, 43, 

unpublished).   

3.6.6. Preparation of cantaloupe and inoculation of surface. Cantaloupe preparation and 

inoculation of L. monocytogenes on the surface were done using a spot-inoculation method 

described in the previous chapter.  

3.6.7. Cantaloupe treatment with water: Upon the inoculation with selected mutants and 

parental strains, respectively, fragments of cantaloupe were treated with sterile d-H20 as 

described in the previous chapter. Fragments inoculated with cold-sensitive mutant (ROA4) 

were incubated for 504 hours at 4C. At each time point (0, 72, 168 for all strains and 336 and 
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504 for ROA4 at 4C) two fragments were pull out for plate count on BHI and MOX, in 

duplicates. Results presented are average between two trials each conducted in duplicate. 

3.7. Assessment of L. monocytogenes growth in raw and pasteurised milk 

3.7.1. Bacterial strains and growing conditions.  L. monocytogenes strains used in this 

study are presented in Table 3.7.1. 
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 Table 3.7.1.L monocytogenes strains employed in this study 

 

Set of 18 strains were chosen by the serotype and source. Six of strains were involved in food 

related outbreaks. 12 were clinical isolates connected to sporadic cases occurred in early 20
th

 

century. Each bacterial culture was grown overnight at 37°C in brain heart infusion broth 

(BHI;  Becton Dickinson and Co., Sparks, MD) and centrifuged  at 7000×g (Rotor JA-14, 

Beckman, Palo Alto, CA, USA) for 10 min. The supernatant was discarded and the cell pellets 
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were washed twice and resuspended in 10ml of sterile de-ionized water, followed by serial 

dilutions in sterile de-ionized water to the final concentration of 10
5
cfu/ml, in raw and 

pasteurized milk, respectively. 

3.7.2. Milk: Fresh whole raw and pasteurized milk was obtained from North Carolina State 

University’sDairy Plant. For each experiment, the raw and pasteurized milk were from the 

same batch, consisting of bulk tank milk collected from various herds in North Carolina and 

transported to the dairy plant. Prior to each test milk was screened and confirmed to be free of 

L. monocytogenes by enriching 25ml in 25ml of Fraser broth (Oxoid) at 37°C for 48 hrs. 

3.7.3. Survival and growth determinations: Aliquots (10ml) of raw and pasteurized milk 

were inoculated with 100µl of each L. monocytogenes strain, respectively, for the final 

concentration of 10
5 

cfu/ml. Milk was stored at 8C and samples tested each 24 hours over the 

10 days of experiment. Serial dilutions were prepared in sterile deionized water and aliquots 

(0.1ml) plated on BHIA for the enumeration of total aerobes and MOX for L. monocytogenes 

enumeration. Plates were incubated for 48 hours at 37°C and results presented as log CFU/ml. 

An uninoculated control, in duplicate, at each time point, was used to determine presence of 

background microflora. Results present average between two independent trials each done in 

duplicate. 

3.7.4. Statistical Analysis. Both trials were performed in duplicate, and the data presented as 

the standard deviations obtained for the replications. Statistical analysis was performed for 

multiple comparisons of the means and standard deviations for different variables. Analysis of 

variance (ANOVA) was carried out to determine the significant difference (p < 0.04) using 

the SAS program Version 9.1 (Cary, NC).  
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4.0. RESULTS 

4.1. Adaptation of Listeria monocytogenes to Ciprofloxacin or to the Disinfectant 

Benzalkonium Chloride Results in Reduced Susceptibility to Ciprofloxacin, Gentamicin 

Benzalkonium Chloride and Other Toxic Compounds 

4.1.1. Presence of pLM80 does not impact MICs to antibiotics.  L. monocytogenes H7550 

Cd
R
 harbors the 80 kb plasmid (pLM80), which contains a cadmium resistance cassette as 

well as a cassette (bcrABC) mediating resistance to BC (4, 24).  As expected, MICs to Cd and 

BC were markedly reduced in the cured derivatives, from 140 to 10µg/ml and from 40 to 

10µg/ml, respectively.  However, the cured derivatives exhibited the same MICs to the panel 

of antibiotics, EthBr and to TPP as the parental strains (data not shown).   Similar data were 

obtained with the plasmid-cured derivative of the serotype 1/2a strain J0161, which harbors a 

pLM80-like plasmid that confers resistance to Cd and BC (15).   The findings indicated that 

these plasmids conferred resistance to Cd and BC, but did not influence MICs to the other 

antimicrobial agents that were tested.    

4.1.2. L. monocytogenes mutants selected on ciprofloxacin also exhibit reduced 

susceptibility to gentamicin.   Colonies growing at inhibitory concentrations of ciprofloxacin 

were selected for further characterization, using two independent ciprofloxacin-selected 

mutants (C 1  and C 2 ) for strains H7550, J0161 and SK2802, respectively. Mutants selected on 

ciprofloxacin exhibited reduced susceptibility to this antibiotic, with four to 32 fold (8 to 

64µg/ml) increases in MICs, depending on the strain (Fig.4.1.1A and B); independent mutants 

of the same strain exhibited similar increases in MIC values (data not shown).   
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Fig.4.1.1.Mutants selected on ciprofloxacin also exhibit reduced susceptibility to 

gentamicin and BC. MICs for ciprofloxacin (cipro), gentamicin (G) and benzalkonium 

chloride (BC) were determined for: A, plasmid-harboring strain J0161 Cd
R
 (white columns) 

and its ciprofloxacin-selected mutant J0161 Cd
R 

C1 (gray), as well as for the plasmid-cured 

strain J0161 Cd
S
 (black) and its ciprofloxacin-selected mutant J0161 Cd

S
 C1 (stippled);  B,  

plasmid-harboring   strain H7550 Cd
R
 (white) and its ciprofloxacin-selected mutant H7550 

Cd
R 

C1 (gray), as well as for the plasmid-cured strain H7550 Cd
S
 (black) and its 

ciprofloxacin-selected mutant H7550 Cd
S 

C1 (stippled);  C. strain SK 2802 (white) and its 

ciprofloxacin-selected mutant SK 2802 C1 (gray).   MICs were determined as described in 

Materials and Methods. 
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Interestingly, even though as described above the presence of the plasmid in H7550 

Cd
R
 and J0161 Cd

R
 did not impact MICs to any of the tested antibiotics, ciprofloxacin-

selected mutants of the plasmid-harboring strains consistently exhibited higher MICs to 

ciprofloxacin than ciprofloxacin-selected mutants of the corresponding plasmid-cured strains 

(Fig. 4.1.1A and B).  This was especially pronounced with ciprofloxacin-selected mutants of 

strain J0161 Cd
R
, which exhibited a 32 fold increase in MIC, in contrast to the 8 fold increase 

in MIC observed with ciprofloxacin-selected mutants of J0161 Cd
S
 (Fig.4.1.1A).   

Mutants selected on ciprofloxacin exhibited no change in their susceptibility to ampicillin, 

rifampin, streptomycin, trimethoprim, erythromycin, tetracycline, fosfomycin or kanamycin 

(data not shown).  However, susceptibility to gentamicin was consistently reduced in all tested 

ciprofloxacin-selected mutants. As observed with ciprofloxacin MICs, ciprofloxacin-selected 

mutants of plasmid-harboring strains exhibited higher MICs to gentamicin than mutants of 

their plasmid-cured counterparts (Fig.4.1.1A and B). This difference was again especially 

noticeable with J0161 Cd
R
 C 1 , which exhibited a 32 fold increase in MIC to gentamicin in 

comparison to J0161 Cd
R
, whereas J0161 Cd

S
 C 1  exhibited 8 fold increase in MIC in 

comparison to J0161 Cd
S
 (Fig. 4.1.1A). The same trend was observed with independently 

isolated mutants of the same strain (data not shown). Increases in both ciprofloxacin and 

gentamicin MICs were also observed with ciprofloxacin-selected mutants of strain SK2802 

(Fig.4.1.1C).   

4.1.3. L. monocytogenes mutants selected for increased resistance to ciprofloxacin also 

exhibit markedly reduced susceptibility to BC, EthBr and TPP. As discussed above, the 

plasmid-cured derivatives H7550 Cd
S
 and J0161 Cd

S
 exhibited reduced tolerance to BC 

(MIC, 10µg/ml).  However, BC susceptibility determinations of ciprofloxacin-selected 

mutants H7550 Cd
S
 C1 and J0161 Cd

S
 C1 revealed that the mutants had markedly increased 

MIC (30µg/ml) for BC (Fig.4.1.1A and B); identical results were obtained with H7550 Cd
S
 

C2 and J0161 Cd
S
 C2 (data not shown).   MICs were not altered in ciprofloxacin-selected 

mutants of the plasmid-harboring strains (Fig. 1A and B). Ciprofloxacin-selected mutants of 

SK 2802, which lacks resistance to BC, also exhibited increases in MIC to BC (Fig. 4.1.1C). 
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Resistance to ciprofloxacin was also accompanied by reduced susceptibility to EthBr and the 

toxic compound TPP, both of which are MDR efflux substrates.  EthBr MICs increased from 

20µg/ml in the parental strains to 200µg/ml in the ciprofloxacin-selected mutants, regardless 

of whether the strains harbored plasmids or not (data not shown).  A 4 fold increase in MIC 

was also observed with TPP (from 100µM in the parental strains to 400µM in the 

ciprofloxacin-selected mutants (data not shown). However, no impact was detected on MICs 

of Cd or sodium arsenite (data not shown).  

4.1.4. L. monocytogenes mutants selected for increased resistance to BC also exhibit 

markedly reduced susceptibility to ciprofloxacin, gentamicin, EthBr and TPP. 

 The plasmid-cured derivatives H7550 Cd
S
 and J0161 Cd

S
 as well as strain SK 2802 lack the 

BC resistance cassette bcrABC and exhibited relatively low tolerance to BC (MIC 10µg/ml).   

At least two independent mutants from each strain were isolated on media with BC and 

designated BC1 and BC2.  BC-selected mutants of all strains exhibited increases in their MIC 

for BC (from 10 to 30µg/ml) (Fig. 4.1.2, and data not shown).  
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Fig. 4.1.2.Mutants selected on BC also exhibit reduced susceptibility to ciprofloxacin and 

gentamicin.  Antimicrobial susceptibility to ciprofloxacin (cipro), gentamicin (G) and 

benzalkonium chloride (BC) were determined for plasmid-cured strain H7550 Cd
S
 (white) 

and its BC-selected mutant H7550 Cd
S 

BC1 (gray); plasmid-cured strain J0161 Cd
S
 (black) 

and its BC-selected mutant J0161 Cd
S
 BC1 (stippled); strain SK 2802 (dashed horizontal) and 

its BC-selected mutant SK 2802 BC1 (diagonal).  MICs were determined as described in 

Materials and Methods. 

 

However, these mutants also exhibited 4 to 8 fold increase in resistance to 

ciprofloxacin and 2 fold to 8 fold increase in resistance to gentamicin (Fig.4.1.2).  In addition, 

these BC-selected mutants exhibited higher tolerance to EthBr and TPP, with the increases in 

MICs being identical to those described above with ciprofloxacin-selected mutants (MICs 

increasing from 20 to 200µg/ml for EthBr and from 100 to 400µM for TPP) (data not shown).  

There was no impact on MICs to the other antibiotics in the panel, or to Cd and sodium 

arsenite (data not shown).  
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4.1.5. Antimicrobial agent MICs of ciprofloxacin-selected and BC-selected mutants of L. 

monocytogenes are reduced in the presence of the efflux pump inhibitor reserpine.   

Ciprofloxacin MICs for all ciprofloxacin-selected mutants were reduced at least  4 fold in the 

presence of the efflux inhibitor reserpine; the extent of reduction was more pronounced in 

mutants with high MICs (32µg/ml  or 64µg/ml), for which 8 fold MIC reductions were 

observed in the presence of reserpine  (Fig. 4.1.3A and data not shown).  
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Fig. 4.1.3.Ciprofloxacin-selected mutants of L. monocytogenes exhibit reduced MICs to 

ciprofloxacin, gentamicin, benzalkonium chloride and ethidium bromide in the presence 

of the efflux inhibitor reserpine.   A.   Susceptibility to ciprofloxacin (cipro) and gentamicin 

(G) was determined in the presence and absence of reserpine (R).  Strains are as indicated in 

Table 1 and in legends to Fig. 1 and Fig. 2.  MICs for ciprofloxacin were determined in the 

absence (white) and presence (gray) of reserpine.  MICs for gentamicin were also determined 

in the absence (black) and presence (stippled) of reserpine.  B.  MICs for benzalkonium 

chloride (BC) in the absence (white) and presence (black) of reserpine (R).  C.  MICs for 

ethidium bromide (EthBr) in the absence (white) and presence (black) of reserpine (R).  MICs 

were determined as described in Materials and Methods. 
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 MICs to gentamicin also declined in the presence of reserpine (e.g. from 16 to 2µg/ml in the 

case of SK 2802 C1) (Fig. 4.1.3A).  Ciprofloxacin and gentamicin MICs of the wildtype 

parental strains were also reduced (one to two-fold) in the presence of reserpine (data not 

shown). 

In the presence of reserpine, the ciprofloxacin-selected mutants had increased susceptibility to 

BC (Fig. 4.1.3B), EthBr (Fig. 4.1.3C) and TPP (data not shown).  MIC reductions for BC and 

EthBr were also noticed for the parental strains that were free of the plasmid, whereas no 

impact was noted in the plasmid-harboring strains H7550 Cd
R
 and J0161 Cd

R
 (Fig.4.1.3B and 

3C).  Mutants obtained following exposure to BC showed similar trends of reduction of MICs 

for ciprofloxacin, gentamicin, BC, EthBr and TPP in the presence of reserpine (Fig.4.1. 4A, B 

and data not shown).   
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Fig.4.1.4.Benzalkonium chloride-selected mutants exhibit reduced MICs to ciprofloxacin 

and gentamicin in the presence of the efflux inhibitor reserpine. (A) MICs of mutants 

selected on BC were determined for ciprofloxacin (cipro) and gentamicin (G) (A and B, 

respectively).  MICs were determined in the absence (white) and presence (gray) of reserpine 

(R).  Strains are as indicated in Table 5.1.1 and in legends to Fig. 5.1.1 and Fig. 5.1.2. MICs 

were determined as described in Materials and Methods. 
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The disk diffusion method was employed to assess susceptibility of the ciprofloxacin- or BC-

selected mutants to moxifloxacin, a fluoroquinolone that is not a substrate for drug efflux 

systems (6).  None of the mutants exhibited significant changes in their susceptibility to 

moxifloxacin, and MICs were also not significantly affected by reserpine (Table 4.1.4 and 

data not shown).   

 

  Table 4.1.4.Moxifloxacin susceptibility of ciprofloxacin and BC-selected mutants of  L. 

monocytogenes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ciprofloxacin- and BC-selected mutants of L. monocytogenes exhibited no change in their 

susceptibility to bile salts, triclosan, or SDS.  MICs for bile salts, triclosan, and SDS were 

0.1%, 64µg/ml, and 250µg/ml, respectively, both for the parental strains and for the mutants 

selected on ciprofloxacin or BC.   

 

Strain 

 

       Inhibition zone diameter (mm)
1 

Reserpine present Reserpine absent 

J0161Cd
R
 25 26 

J0161Cd
R
 C1 25 26 

J0161Cd
S
 26 27 

J0161Cd
S 

C1 27 29 

J0161Cd
S
 BC1 26 26 

H7550Cd
R
 26 27 

H7550Cd
R
 C1 25 26 

H7550Cd
S
 25 27 

H7550Cd
S 

 C1 27 28 

H7550Cd
S
  BC1 26 26 
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4.1.6. Expression of MDR transporter lde was enhanced in mutant obtained following 

exposure to BC. Expression of lde was enhanced in BC-selected mutant H7550 Cd
S
 BC1 in 

comparison to the parental strain H7550 Cd
S
 (Fig. 4.1.5B).  We failed to obtain evidence for 

expression of other chromosomal MFS transporters including mdrL, mdrM or mdrT in either 

the wildtype parental strains or their BC-selected and ciprofloxacin-selected derivatives (Fig. 

4.1.5C and data not shown). 

 

Figure 5.

A. spoVG RT-PCR
M      1      2      3        4

B. lde RT-PCR

M      1      2      3        4

C. mdrL RT-PCR

M       1      2      3        4

 

 

Fig.4.1.5.Benzalkonium chloride-selected mutant exhibits enhanced transcription of lde 

in comparison to parental strain.  RT-PCR was employed to assess expression of the 

housekeeping gene spoVG, used as control (A), lde (B) and mdrL (C).  Lanes: 1, H7550 Cd
S
; 

2,  H7550Cd
S 

BC1 ; 3,  H7550 Cd
S
 genomic DNA; 4,  H7550 Cd

S
  RNA (to confirm absence 

of genomic DNA in the RNA used for RT-PCR); M, 100 - 2,686 bp DNA molecular marker 

XIV (Roche). Arrows indicate the size of the expected PCR product.  RT-PCR was done as 

described in Materials and Methods.  
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4.2. Identification of L monocytogenes antibiotic resistance genes under control of tetR 

repressors 

4.2.1. Listeria MDR that may emerge in healthcare settings and food processing plants is of 

clear public health relevance, but its molecular basis remains uncharacterized.  Previous 

studies focused on two genes, mdrL (and its repressor ladR) (106, 107, 144, 186, 187) and lde 

(86, 187).  The transporters identified in the searches by Crimmins et al (2008) belonged to 

the Major Facilitator Superfamily. However, resistance of the mutants to toxic compounds 

known to be substrates for MDR transporters was not reported. Our analysis of these mutants 

(kindly provided by D. Portnoy) revealed that the tetR::Tn917 mutant had pronounced 

increase in resistance to TPP (an anticancer drug commonly used as MDR substrate [95, 96]), 

and resistance was reduced in the presence of the efflux inhibitor reserpine (Fig. 1; reserpine 

treated cells indicated as “tetR: Tn917+R”). However, deletion of mdrT did not affect 

tolerance levels to TPP (Fig. 4.2.1).  
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Fig.4.2.1. Resistance of L monocytogenes 10403S and selected mutants to TPP. 

TetR::Tn917 mutant had pronounced increase in resistance to TPP (an anticancer drug 

commonly used as MDR substrate), and resistance was reduced in the presence of the efflux 

inhibitor reserpine. Mutant MRMT1 isolated from mariner-based mutant library of the strain 

10403S also exhibited high resistance level 

This finding was in agreement with the earlier observed failure of TPP exposure to 

induce expression of mdrT (46). Resistance of the tetR::Tn917 mutant could be mediated by 
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increased expression of MDR transporter(s) other than mdrT, but also repressed by tetR. 

Screening mutant libraries of two L. monocytogenes strains, F2365 (serotype 4b), and 10403S 

(serotype 1/2a), with the mariner-based transposon plasmid pMC38 (Figure 4.2.2) 

  

 

 (6, 24) in attempt to indentify such transporter(s) failed to isolate mutants with inpared 

resistance to TPP. However, five mutants of strain 10403S with significant increase in TPP 

resistance were indentified. Minimal inhibitory concentration (MIC) of TPP for isolated 

mutants was 400uM/ml, whereas parental strain 10403S had MIC of 70uM/ml and 

tetR::Tn917 200uM/ml (Fig. 4.2.3). 

 

Fig. 4.2.2. Map of the mariner-based 

delivery vector pMc38/39 (modified 

from Cao et al. 2007). 
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Fig. 4.2.3.MIC of TPP for LmDP-L5396 tetR::Tn917 and mariner mutant.At the 

concentration of 150uM TPP both tetR::Tn917 and mariner-based mutant grew equally, but at 

the concentration of 200uM/ml tetR tetR::Tn917 failed to grow.  

Further genetic characterization of mutants revealed that one of these tetR-like mutants had 

insertion in tetR gene. All mutants harbored single transposon insertion and one characterized 

had transposon integrated in LMRG_01858 (sucrose phosphorylase) (Fig. 5.2.4).  

 

                    

 

Fig. 4.2.4. LMRG_01858 (sucrose phosphorylase) 

In this study we provided evidence of mutant libraries as a significant genetic tool in 

screening for changes in phenotype and genotype. Even though we failed to isolate mutants 

with inpaired resistance to TPP, tetR::Tn917 mutants with pronounced (8-fold) increase in 

TPP resistance   have been isolated. One of these mutants had insertion in tetR gene.  
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Characterization of such mutant revealed   transposon integrated in LMRG_01858 (sucrose 

phosphorylase).  Such data suggest that the observed TPP resistance of the tetR::Tn917 

mutant involve increased expression of MDR transporter(s) other than mdrT, but also 

repressed by tetR.  

4.3. Co-selection of cadmium and benzalkonium chloride resistance in conjugative 

transfers from non-pathogenic Listeria spp. to other listeriae 

4.3.1. Bacterial strains used in this study. Five BC-resistant strains of non-pathogenic 

Listeria spp. (four strains of L. welshimeri and L. innocua L1221) were used as potential 

donors of BC resistance to other non-pathogenic listeriae (L. welshimeri L1316S, L. 

welshimeri L0927S and L. innocua L1206S).    All BC-resistant donor strains were also 

resistant to cadmium (Table 4.3.1).   To further assess conjugative transfer of resistance we 

used as potential donors of cadmium resistance six L. innocua strains resistant to cadmium but 

susceptible to BC (Table 4.3.1).   
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PCR analysis of the strains employed as donors revealed that all BC-resistant strains, 

regardless of species (L. welshimeri or L. innocua) harbored bcrABC as well as the plasmid-

associated cadmium resistance determinant cadA2; cadA2 was also harbored by L. innocua 

1333a and L. innocua CLIP 11262, which were resistant to cadmium but susceptible to BC 

and lacking bcrABC.  Three strains of L. innocua harbored an alternative plasmid-associated 

cadmium resistance determinant, cadA1, and one cadmium-resistant strain (L. innocua L0910) 

was found to be negative for both cadA1 and cadA2 (Fig.4.3.1 and Table 4.3.1).  

 

Table 4.3.1. Bacterial strains employed in this study 
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Fig.4.3.1 Presence of cadA1, cadA2 and bcrABC in nonpathogenic donor strains.   

(A)  PCR-based detection of cadA1 using primers cadA-Tn5422F and cadA-Tn5422R.  Lanes 

1, 2, 3 and 4, L. innocua strains L0910, L0921, L1214B and L1306A, respectively. M, DNA 

molecular marker XIV (Roche, Indianapolis, IN). Arrow points to the expected cadA1 PCR 

product.  (B)  PCR-based detection of cadA2 using primers cadA-pLM90F and cadA-

pLM90R.  Lanes  1, 2, 3 and 4,  L. innocua strains L0910, L0921, L1214B and  L1306A, 

respectively;    lanes 5, 10 and 11, L. innocua strains CLIP 11262, L1221 and  L1333a,   

respectively; lanes 6, 7, 8 and 9,  L. welshimeri strains L0725, L1325, L0918 and L0926, 

respectively. Lane 12, L. monocytogenes H7550, used as positive control (12).  M, as in panel 

A.  Arrow points to the expected cadA2 PCR product.  (C)  PCR of bcrABC using primers 

BcF and BcR.  Lanes are as in panel B.   With the exception of L. innocua strains CLIP 11262 

and L1333a in lanes 5 and 11, respectively, all donors harboring cadA2 also contained 

bcrABC.   M, as in panel A.  Arrow points to the expected bcrABC product.  

 None of the strains harbored the chromosomal cadmium resistance determinant cadA3 (data 

not shown).  Strains used as recipients in the conjugations (L. welshimeri L1316S, L. 

welshimeri L0927S and L. innocua L1206S) were susceptible to BC and cadmium and lacked 

bcrABC, cadA1, cadA2 or cadA3 (Table 4.3.1).  

A 

B 

C 
1,310bp 

 

592bp 

 

2,686bp 
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M     1       2      3     4 

   M     1        2      3       4      5       6        7      8       9     10    11    12 



69 

 

 

4.3.2. L. welshimeri and L. innocua harboring cadA2 can readily transfer cadmium 

resistance to other non-pathogenic listeriae.   Results from matings performed at 25C on 

filter membranes and on agar were comparable but frequency of transfer was generally higher 

and more consistent for the latter (data not shown).  When transconjugants were obtained, 

transfer frequency averaged at 10
-7

 to 10
-8

 (Table 4.3.3) confirming that they were derivatives 

of the recipient strain and not spontaneous streptomycin-resistant mutants of the donor. 

Plating of the strains employed as recipients on medium with both cadmium and streptomycin 

failed to identify any spontaneous cadmium-resistant mutants (data not shown). 

   Selected putative L. welshimeri transconjugants obtained using L. innocua as donors were 

evaluated with PCR using species-specific primers.  The putative transconjugants were 

positive with the L. welshimeri-specific primers but negative for those specific for L. innocua 

(Fig. 4.3.2 and data not shown),  

 

Table 4.3.3. Transfer frequency resistance in conjugations between indicated donor and recipient strains
1
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Fig.4.3.2 Identification of L. welshimeri transconjugants from conjugations between L. 

welshimeri as recipient and L. innocua as donor.  PCR employed L. welshimeri-specific 

primers Lw_0908_F and Lw_0908_R.  Lanes 1 and 2, L. welshimeri strains L0725 and 

L1316S , respectively; lanes 3 and 4,  L. innocua strains L1221 and L1333a, respectively; 

lanes 5, 6, 7 and 8,  transconjugants from conjugations of L. welshimeri L1316S  as recipient 

with  donors L. innocua 1221  (lanes 5 and 6) and L. innocua 1333a (lanes 7 and 8).  Arrow 

points to the expected PCR product. 

Efficiency of conjugative transfer depended markedly on the strains employed as donors as 

well as recipients.  Few or no transconjugants were obtained from certain L. innocua donors 

(L. innocua strains L0910, L1214B, L1306A and L0921), regardless of the strain that was 

employed as potential recipient.  Furthermore, one of the strains employed as recipient, L. 

innocua L1206S, failed to yield transconjugants with any of the donors (Table 4.3.3). 

Based on PCR analysis of the resistance determinants, all donor strains that could efficiently 

transfer resistance harbored cadA2.With the exception of L. innocua strains 1333a and CLIP 

11262, these strains were also resistant to BC and harbored bcrABC (Tables 4.3.1 and 4.3.3).  

In contrast, of the four other potential donors that failed to yield transconjugants three 

harbored cadA1, and one (L. innocua L0910) lacked cadA1 or cadA2 (Tables 4.3.1 and 4.3.3).    

4.3.3. BC resistance determinant bcrABC is co-transferred with the cadmium resistance 

determinant cadA2. As mentioned above, most (five of seven) of the cadA2-harboring 

cadmium-resistant strains employed as donors also harbored the BC resistance cassette 

506bp 
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bcrABC.   PCR analysis of selected transconjugants obtained using these strains as donors 

revealed that, in addition to cadA2, they also harbored bcrABC (Fig. 4.3.3A and 4.3.3C).  

 

 

 

Fig.4.3.3 Presence of cadA2 and bcrABC in L.welshimeri and L.monocytogenes 

transconjugants.  (A) PCR-based detection of cadA2 using primers cadA-pLM90F and 

cadA-pLM90R.  Lanes 1, 4, 6 and 8,  strains used as recipients (L. welshimeri strains L0927S  

and L1316S  [lanes 1 and 4, respectively],  L. monocytogenes 1/2a3 and L. innocua L1206  

[lanes 6 and 8, respectively]);  Lanes 2, 3 and 5, transconjugants from conjugations between 

L. welshimeri L0927S  and L. innocua L1221 (lane 2), L. welshimeri  L1316S  and L. 

welshimeri L0918 (lane 3), L1316S  with L. innocua L1221 (lane 5);  lane 7, transconjugant 

from conjugation  between L. monocytogenes 1/2a3 (recipient) and L. welshimeri L1325 

(donor).  Lane 9, L. monocytogenes H7550, used as positive control (12). M,DNA molecular 

marker XIV (Roche, Indianapolis, IN).   Arrow points to the expected cadA2 PCR product. 

(B) PCR-based detection of cadA2 in transconjugants from conjugations between L. 
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monocytogenes 2381L (recipient) and L. welshimeri L1325 (donor).  M, as in panel A. Arrow 

points to the expected cadA2 PCR product.  (C)  PCR-based detection   of bcrABC using BcF 

and BcR primers. Lanes 1, 3, 6 and 8 strains used as recipients (L. welshimeri strains L0927S 

and L1316S  [lanes 1 and 3, respectively, with unspecific PCR product in lane 3] and L. 

monocytogenes strains 1/2a3 and L. innocua L1206 [lanes 6 and 8, respectively]); Lanes 2, 4 

and 5, transconjugants from conjugations between L. welshimeri L1316S (recipient) and L. 

welshimeri L1325 (donor); lane 7, transconjugant from conjugation between L. 

monocytogenes 1/2a3 (recipient) and L. welshimeri L1325 (donor); lane 9, L. monocytogenes 

H7550, used as positive control (12); M as in panel A.  Arrow points to the expected bcrABC 

PCR product. Weak band in lane 3 is unspecific PCR product. (D)    PCR-based detection   of 

hly in L. monocytogenes transconjugants using primers hlyAF and hlyAR.  Lanes 1 and 2, 

transconjugants from conjugations between L. monocytogenes 1/2a with L. innocua L1221 

(lane 1) and L. innocua L1333a (lane 2); lanes 3-7, transconjugants from conjugations 

between L. monocytogenes 2381L with L. welshimeri strains L0725 (lane 3), L1325 (lane 4) 

and L0926 (lane 5) and with L. innocua strains L1221 (lane 6), and L1333a (lane 7); lane 8 is 

L. monocytogenes 2381L.  M, as in panel A. Arrow points to the expected hly PCR product.   

The transconjugants exhibited elevated MICs not only for cadmium (200 μg/ml) but also for 

BC (35-40 μg /ml), similar to cadmium and BC MICs for the donor strains; in contrast, the 

strains used as recipients had MIC values of 10 μg/ml both for cadmium and for BC.   

4.3.4. Non-pathogenic Listeria spp. strains can effectively mediate conjugative co-

transfer of BC and cadmium resistance to L. monocytogenes.  To assess the ability of non-

pathogenic Listeria spp. to serve as donors of BC resistance to L. monocytogenes, we 

employed as potential recipients five L. monocytogenes strains of the three serotypes 

predominant in human listeriosis (1/2a, 1/2b and 4b). The strains included laboratory 

reference strains (10403S and  1/2a3), a streptomycin-resistant derivative of a strain from the 

1985 California outbreak (2381L) as well as streptomycin-resistant derivatives of two strains 

from the  2011 cantaloupe outbreak (L. monocytogenes 2857S and  2858S of serotype 1/2a 

and 1/2b, respectively) (Table 4.3.1). All L. monocytogenes strains employed as potential 

recipients were susceptible to cadmium and BC (MICs 10 μg /ml for both compounds) (Table 

4.3.1).   
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 Regardless of the serotype of the L. monocytogenes strains used as recipients, 

conjugative transfer of resistance from non-pathogenic listeriae to L. monocytogenes generally 

exhibited the same dependence on donor strains that was observed with conjugations among 

non-pathogenic listeriae.  With the exception of CLIP 11262, those L. innocua strains that 

failed to donate cadmium resistance to other non-pathogenic listeriae also failed to transfer 

such resistance to L. monocytogenes (Table 4.3.3).   On the other hand, those non-pathogenic 

Listeria spp. donor strains that efficiently transferred BC and cadmium resistance in matings 

with other non-pathogenic listeriae were found to also transfer the resistance determinants to 

L. monocytogenes.  When these strains were used as donors transconjugants were readily 

obtained from all L. monocytogenes strains in the panel, including the two strains associated 

with the recent cantaloupe outbreak (Table 4.3.3).    

Acquisition of cadA2 by L. monocytogenes was confirmed by PCR (Fig. 4.3.3A, B and data 

not shown).  Furthermore, when the donors also harbored bcrABC, this cassette was detected 

in the cadmium-resistant transconjugants as well (Fig.4.3.3C and data not shown).  

Transconjugants were also tested for hemolytic activity on blood agar plates and by PCR with 

primers specific for hly, encoding the L. monocytogenes virulence determinant Listeriolysin O 

and absent from L. innocua or L. welshimeri.  All tested transconjugants were hemolytic and 

produced the hly amplicon (Fig. 4.3.3D and data not shown), confirming that they were 

derived from the L. monocytogenes recipients and were not spontaneous streptomycin-

resistant derivatives of the donors.  As noted above with transconjugants from conjugations 

between non-pathogenic Listeria spp., the L. monocytogenes transconjugants exhibited 

elevated MICs for cadmium and BC (200 and 35-40 μg/ml, respectively), similar to those of 

the donor strains.  

4.3.5. Temperature affects transfer of BC and cadmium resistance to non-pathogenic 

listeriae while transfer to L. monocytogenes is equally efficient at 25 and 37C.  Non-

pathogenic Listeria spp. donor-recipient combinations that failed to yield transconjugants at 

25C were similarly negative at 37C (data not shown).  However, for the other combinations 

the frequency of transfer of BC and cadmium resistance among non-pathogenic listeriae was 

higher when conjugations were done at 25 than at 37C.  The impact of temperature was 
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dependent on the recipient strain, being noticeably stronger for L. welshimeri L0927S than for 

L. welshimeri L1316S (Fig.4.3. 4 A, B).  

 

A.  

 

 

 

 

 

B.  

 

 

 

 

 

 

 

 

Fig. 4.3.4 Impact of conjugation temperature (25C vs. 37C) on frequency of transfer of 

cadmium resistance in conjugations among non-pathogenic Listeria spp.  (A)  A, B, C 

and D, transfer frequency from conjugations between L. welshimeri L0927S as recipient and 

L. welshimeri strains L0725, L1325, L0918 and L0926, respectively, as donors.  (B)  A, B, C 

and D, transfer frequency from conjugations between L. welshimeri L1316S as recipient and 

L. welshimeri strains L0725, L1325, L0918 and L0926, respectively, as donors.    

Conjugations were done on agar plates at 25C (gray bars) or 37C (white bars) and transfer 

frequency was determined as described in Materials and Methods.  Results are from one 

representative experiment and experiments were done in at least three independent trials.  

Interestingly, efficiency of transfer of resistance from these same donors to L. monocytogenes 

was not affected by temperature. Transfer was equally efficient at 25 and 37°C for all L. 

monocytogenes strains in the panel, regardless of serotype (data not shown).     
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4.3.6. Evidence of pLM80-like plasmids in BC and cadmium-resistant non-pathogenic 

donors. To determine whether the L. innocua and L. welshimeri strains employed as donors 

harbored plasmids similar to pLM80, these strains were tested by PCR with primers derived 

from a panel of  ORFS at different sites of pLM80 (Table 4.3.2).   

 

 

 

The findings suggested that strains positive for bcrABC as well as cadA2 (L. innocua 1221 

and all four L. welshimeri donors) harbored plasmids highly similar to pLM80, with all primer 

pairs in the panel yielding the expected amplicons.  In contrast, strains harboring cadA2 but 

Table 4.3.2. Primers used in this study 
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lacking bcrABC (L. innocua strains 1333a and CLIP 11262) failed to produce several of the 

expected amplicons (Fig. 4.3.5).  

 

Fig. 4.3.5 Detection of pLM80 genes in non-pathogenic Listeria spp. used as donors.  

Black and white boxes indicate presence or absence, respectively, of the expected PCR 

product.  LW, LI and LM in strain (species) designations refer to L. welshimeri, L. innocua 

and L. monocytogenes, respectively.  L. monocytogenes H7858 harbors pLM80 (33) and is 

included as positive control.  PCR-based detection of the indicated genes was done employing 

the pLM80-derived primes listed in Table 2, as described in Materials and Methods.  
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  Strains harboring cadA1 yielded amplicons with only three primer pairs in the panel, 

two of which  were derived from plasmid replication-associated genes, while no amplicons 

were obtained using L. innocua L0910 (cadmium-resistant but lacking cadA1 or cadA2) (Fig. 

4.3.5).  It is noteworthy that all donors consistently involved in high efficiency transfer (L. 

welshimeri L0725, L1225, L0918 and L0926; L. innocua L1333a and L1221) harbored 

LMOh7858_pLM80_0022, encoding a putative TraG/TraD family protein that may be 

involved in facilitating plasmid transfer (Fig. 4.3.5).   

4.4. Resistance gene distribution among non-pathogenenic Listeriae from different 

poultry processing plants 

4.4.1. Heavy metal and BC resistance in non-pathogenic Listeria spp.  Resistance to 

cadmium was highly prevalent, exceeding 90% for both L. welshimeri and L. innocua.  

Resistance to BC, while also highly prevalent in both species, was more common in L. 

welshimeri (83%) than L. innocua (73%) but difference was not statistically significant.  In 

contrast, arsenic resistance was relatively uncommon (<10%) in either species (Fig. 4.4.1).  

 

 

 

 

 

 

 

 

Fig. 4.4.1. Heavy metal and BC resistance in non-pathogenic Listeriae spp. Resistance to 

cadmium was highly prevalent, exceeding 90% for both L. welshimeri and L. innocua. 

Resistance to BC, while also highly prevalent in both species, was more common in L. 

welshimeri (83%) than L. innocua (73%). In contrast, arsenic resistance was relatively 

uncommon (<10%) in either specie 
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4.4.2. cadA distribution in non-pathogenic Listeria spp.  The majority of the isolates 

harbored cadA2 (43%), followed by cadA1 (30%).  Isolates with both cadA1 and cadA2 were 

relatively uncommon (7%); only a single isolate harbored cadA4 and cadA3 was not detected. 

  A subset (12%) of cadmium-resistant isolates lacked any of the known cadA genes.  

Cadmium-susceptible isolates also lacked the known cadA genes (Fig. 4.4.2).   

 

 

 

 

 

 

 

 

Fig. 4.4. 2. cadA distribution in non-pathogenic Listeriae spp. The majority of the isolates 

harbored cadA2 (43%), followed by cadA1 (30%). Isolates with both cadA1 and cadA2 were 

relatively uncommon (7%) and only single isolate harbored cadA4. A fraction (12%) of 

cadmium resistant isolates lacked any of the known cadA genes. Cadmium susceptible 

isolates also lacked the known cadA genes  

4.4.3. cadA distribution in L. welshimeri  and L. innocua: cadA1 and cadA2 were similarly 

common in L. welshimeri (A) and L. innocua (B).  Isolates harboring both cadA1 and cadA2 

also were similarly prevalent in the two species (6-8%).   Cadmium-resistant isolates lacking 

known cadA genes were more common among L. welshimeri (16%) than L. innocua (9%) 

(Fig. 4.4.3) 
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Fig. 4.4.3. cadA distribution in L. welshimeri and L. innocua. Both cadA1 and cadA2 were 

similarly common in L. welshimeri (A) and L. innocua (B). Distribution of isolates harboring 

both cadA1 and cadA2 genes seem to be slightly higher in L. welshimeri (8%) then L. innocua 

(6%). Cadmium-resistant isolates lacking known cadA genes were more common among L. 

welshimeri (16% ) then L.innocua ( 9%) 

4.4.4. Plant-specific prevalence of cadA genes in L. welshimeri:  For L. welshimeri, plant-

specific differences were noted in cadA2 prevalence, which was higher in isolates from plant 

B (73%) than A (36%) or F (14%). Comparisons among this three plants revealed significant 

difference in cadA2 prevalence between B and F (p=0.0035).  In contrast, cadA1 was more 

prevalent in isolates from F (64%) than A (14%) or B (8%) with difference statistically 

significant between plants A and F (p=0.0036) and between B and F (p=0.0003).  Cadmium-

resistant isolates lacking the known cadA genes were identified in all plants with >10 isolates 

and were more common in plant A (32%) than B (8%) or F (14%) with no significant 

difference among plants (Fig. 4.4.4). 
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Fig. 4.4.4. Plant – specific prevalence of cadA genes in L. welshimeri: Plant-specific 

differences were noted in cadA2 prevalence, which was higher in isolates from plant B (36%) 

or F (14%). In contrast, cadA1 was more prevalent in isolates from plant F (64%) than A 

(14%) or B (8%). Cadmium- resistant isolates lacking the known cadA genes were identified 

in all plants with >10% isolates and were more common in plant A (32%) than B (8%) or F 

(14%) 

4.4.5. Plant-specific prevalence of cadA genes in L. innocua: cadA1 was markedly 

more prevalent in three plants, C (77%), F (55%) and B (37%) than in A (6%). Comparisons 

of cadA1 prevalence in plant A with plants B, C and F revealed that difference was 

statistically significant (p=0.0102, 0.0002, 0.0049, respectively).On the other hand, cadA2 

was more prevalent  in A (61%) and B (40%) than C (15%) or F (18%), with statistically 

significant difference between plants A and C (p=0.0129).  Cadmium-resistant isolates 
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lacking any of the known cadA genes were detected in A (14%) and B (11%) with no 

significant difference among the plants, but not in C or F (Fig. 4.4.5).    

 

 

 

 

 

 

 

Fig. 4.4.5. Plant – specific prevalence of cadA genes in L. innocua: cadA1 was markedly 

more prevalent in three plants C (77%), F (55%) and B (37%) than in A (6%). On the other 

hand, cadA2 was more prevalent in A (61%) and B (40%) than C (15%) or F (18%). 

Cadmium-resistant isolates lacking any of the known cadA genes were detected in A (14%) 

and B (11%) but not in C or F.  

4.4.6. Plant-specific comparisons between species:  

Plant A:  cadA1 was relatively uncommon, regardless of species (14 and 6% of L. welshimeri 

and L. innocua, respectively), while cadA2 was frequent, regardless of species (36 and 61% of 

L. welshimeri and L. innocua, respectively).  

Plant F:    cadA1 was predominant, regardless of species (64 and 55% for L. welshimeri and 

L. innocua, respectively).  

Plant B: cadA1 was noticeably more common for L. innocua (37%) than L. welshimeri (8%), 

while the reverse was found for cadA2 (73% of L. welshimeri vs. 40% of L. innocua).   
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Isolates lacking known cadA genes appear to be generally more common in L. welshimeri 

than L. innocua, primarily due to data from plants A and F, whereas distribution of Cd 

susceptible isolates was equal among the species. 

4.4.7. BC resistance:  Resistance to BC was highly prevalent (79-82%) among L. welshimeri 

isolates from all plants with >10 isolates (A, B, F).  BC resistance prevalence was 58% in L. 

innocua from plant B, but markedly higher   (85-93%) in L. innocua from plants A, C and 

F. Difference was significant between plants A and B (p=0.0052). Lower prevalence in plant 

B isolates was the reason for the overall lower prevalence of BC resistance in L. innocua 

(73%) than L. welshimeri (83%).  All BC-resistant isolates harbored the bcrABC resistance 

cassette earlier found to be transferrable from non-pathogenic Listeriae to other Listeria (4).  

(Fig. 4.4.6) 
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Fig. 4.4.6. Plant-specific BC resistance: Resistance to BC was highly prevalent (79-82%) 

among L. welshimeri isolates from all plants with >10 isolates (A, B, F). BC resistance 

prevalence was 58% in L. innocua from plant B, but markedly higher (85-93%) in L. innocua 

from plants A, C and F. Lower prevalence in plant B isolates was the reason for the overall 

lower prevalence of BC resistance in L. innocua (73%) than L. welshimeri (83%). All BC- 

resistant isolates harbored the bcrABC resistance cassette. All BC-resistant isolates were also 

resistant to cadmium, but the reverse was not the case. An estimated 14% L. welshimeri and 

23% L. innocua isolates were resistant to cadmium but susceptible to BC. Most of these 

isolates harbored cadA1 (45%), followed by cadA2 (29%), with 16% lacking any of the 

known cadA genes. 

All BC-resistant isolates were also resistant to cadmium, but the reverse was not the 

case. An estimated 14% L. welshimeri and 23% of L. innocua isolates were resistant to 

cadmium but susceptible to BC.  Most of these isolates harbored cadA1 (45%), followed by 

cadA2 (29%), with 16% lacking any of the known cadA genes.  Among isolates harboring 

cadA1 determinant highly prevalent were BC resistant (p=0.0003). Similarly high prevalence 

of BC resistance was observed among isolates harboring cadA2 cassette (p˂0.0001).  
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4.4.8. PFGE. Clusters of isolates with indistinguishable or closely related PFGE profiles were 

identified both in L. innocua and L. welshimeri.  Most clusters were plant-specific, and 

included isolates from different sites in the plant and isolation dates, suggesting strains that 

were persistent and disseminated in the plant.  Isolates in the same cluster frequently exhibited 

the same resistance profiles and cadA-bcrABC genotype.  However, several exceptions were 

also noted, suggesting local gene acquisition or loss events (Fig. 4.4.7).    



85 

 



86 

 

Fig.4.4.7. PFGE.   Clusters of isolates with indistinguishable or closely related PFGE profiles 

were identified both in L. welshimeri and L. innocua. Most clusters were plant-specific, and 

included isolates from different sites in the plant and isolation dates, suggesting strains that 

were persistent and disseminated in the plant.  Isolates in the same cluster frequently exhibited 

the same resistance profiles and cadA-bcrABC genotype.  However, several exceptions were 

also noted, suggesting local gene acquisition or loss events 
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4.5. Survival and growth of outbreak and other strains of Listeria monocytogenes on 

cantaloupe  

4.5.1. Growth and survival of L. monocytogenes on cantaloupe: L. monocytogenes was not 

isolated before inoculation from the surface of any of the whole cantaloupes used in the study.  

APCs on the outer surfaces were approximately 10
4
cfu/g (Fig.4.5.1) while on the flesh they 

were approximately10
2
 CFU/g (date not shown). 
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Fig.4.5.1. Growth of  L. monocytogenes on cantaloupe rind A. L. monocytogenes 2011L-2875, 2011L-

2858 and 2011L-2857, derived from the 2011 cantaloupe outbreak were tested for their ability to survive 

and grow  on the cantaloupe rind during A,  21 days at 4ºC; B. B, 21 days at 8ºC; C, 7 days at 25ºC. 

Results represent average of three independent trials, each done in duplicate.  Inoculations and 

enumerations were done as described in Materials and Methods. 
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Our results indicate that L monocytogenes survived and grew on cantaloupe fragments 

during incubation at 4 and 8ºC (monitored for up to 21 days) (Fig. 1A and 1B) and at 25ºC, 

monitored for up to 7 days (Fig. 1C).  In all cases significant increase in the population during 

the incubation period was noted (p<0.0001). At 4ºC populations on the rind  increased by an  

average of 1.0 to 1.2 log units during the 21 day of incubation, with no significant difference 

among  strains (Fig. 4.5.1A).   Similar trends were observed for bacteria inoculated on the 

flesh with slightly lower growth (0.8 log units) in the extract (data not shown).  

L. monocytogenes grew significantly more on the rind then on the flesh or in the extract in 

certain temperature- time combinations. Specifically, after seven days at 4°C all tested strains 

grew more on the rind  than on the flesh or in the extract (p=0.02) (Fig.4.5.2A and 3B). 
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Fig. 4.5. 2. Comparative growth of L. monocytogenes 2011L-2875 on cantaloupe rind, flesh 

and extract after 24 and 72 hours at 25°C. 
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Fig. 4.5.3. Growth of L. monocytogenes on cantaloupe rind flesh and extract.  Sample inoculations and 

bacterial enumerations were as described in Materials and Methods.  Data indicate population increases 

after (A) 7 days of incubation at 4ºC and (B) 72 hours at 25ºC (B)  

 

Increase in population (aprox.  1.7 log units) was observed at 8°C over the incubation period 

of 21 days with no statistically significant difference between rind, flesh and extract (Fig. 1B 

and 2B).  Colony enumeration at 25°C showed increase in population of up to 2.1, 1.9 and 2.0 

log units average, for rind flesh and extract, respectively, over the incubation period of 7 days.  

Noticeably more growth on the rind than on either the flesh or extract was recorded following 

incubation at 25°C for 72 h (p<.0001) (Fig. 4.5. 1C, 4.5. 2C and 4.5.3B);  APCs on the 
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over the entire incubation period) (Fig.4.5.1).  Similar increases were noted on the peeled 

fragments and in the extract, even though initial APC levels were lower (data not shown).   

4.5.2. Assessment of other L monocytogenes strains on cantaloupe. Testing of other L. 

monocytogenes strains of serotype 4b (H7550 and F8027) and 1/2a (2010L-1723) revealed 

similar location-dependent trend of growth as cantaloupe outbreak strains. Significant 

difference in growth (p<.0001) between rind, flesh and extract occurred after 7 days at 4°C as 

well as after 72 h at 25°C (Fig. 4.5. 4). 
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Fig.  4.5.4. Assessment of survival and growth of other L. monocytogenes strains on 

cantaloupe rind at 4 and 25°C.    
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Unlike strains from cantaloupe outbreak, evidence of a strain effect has been noted among this 

panel. Strain F8027 expressed significantly higher growth (p<.0001) on the cantaloupe rind 

after 24 hours and 21 days at 4°C, respectively, compared to the strain H7550 (data not 

shown).    

4.5.3. Growth and survival of L. monocytogenes on cantaloupe rind after water 

treatment: 

Right after washings decrease in L. monocytogenes population on the cantaloupe rind 

averaged 2 log units (Fig. 4.5.5 and 4.5.6).  
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Fig.4.5.5. Growth and survival of L monocytogenes on the cantaloupe rind after rinsing with 

water: Growth and survival of L monocytogenes 2011L-2858 over 72 hours of incubation at 8 and 

25ºC, Growth and survival of L monocytogenes 2011l-2858 on the fragment washed with water after 

inoculation, followed by incubation at 4, 8 and 25ºC. Presented results are average of two independent 

trials done in duplicate. 
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Fig. 4.5.6. Growth and survival of L monocytogenes on the cantaloupe rind after rinsing with 

water:  Change in population of L monocytogenes F2087 over 72 hours of incubation at 8°C and 25°C 

before and after rinsing with water. Presented results are average of two independent trials done in 

duplicate. 

 

Washed fragments were stored at 4, 8 and 25°C, respectively, over 72 hours. After 24 
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4.6. Change in phenotype and genotype as an asset for L.monocytogenes growth on 

cantaloupe 

4.6.1. Growth and survival of L monocytogenes J0161 and ciprofloxacin adapted mutant 

on the surface of cantaloupe. L. monocytogenes J0161, a serotype 1/2a strain associated with 

a listeriosis outbreak in 2001, linked to consumption of turkey deli meats (Olsen) and mutant 

obtained upon the adaptation to antibiotic ciprofloxacin both expressed increase in population 

over the incubation period of 21 day on the cantaloupe surface. Increase ranged from 1.7 log 

units at 4ºC, and 3log units at 8ºC over the 21 days of incubation and 2.7log units at 25ºC over 

the seven days (Fig. 4.6.1A, B and C).  Difference in growth between parental strain and 

mutant had not been observed.  
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Fig. 4.6.1. Growth and survival of L monocytogenes J0161 and ciprofloxacin adapted 

mutant on the surface of cantaloupe. Growth at 4°C (A), 8°C (B) over the 3 weeks of 

incubation; and at 25°C (C) over the 7 days of incubation. Results presented are average of 

two trials 
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4.6.2. A comparison of behavior on the cantaloupe surface between L monocytogenes 

F2365 along with transposon mutant F2365purA and H7550Cds with mutant H7550-Cds 

purB  

Strain H7550Cds and  purB mutant and mutant, both grew at 4, 8 and 25 ºC, respectively (Fig. 

4.6.2A and data not shown). Average increase in population of 2.2 log units at 8ºC had been 

noted with no significant difference between parental strain and mutant. Strain F2365and 

mutant ROA14, however, did not express significant growth in first 72 hours of incubation at 

8ºC, but after this time point trough the end of the incubation period population increased 2.2 

log units. There was no significant difference between parental strain and mutant. Washing of 

cantaloupe fragments after inoculation and before incubation at different temperatures 

resulted in initial 2-3 log units decrease in population for both parental strains and designated 

mutants (Fig. 4.6.2B and data not shown). Over the incubation period of 7 days, strains 

recovered and grew (3-4 log units). Final population on the treated fragments did not differ 

from the population of L monocytogenes on the untreated ones (Fig. 4.6. 2A and B). 
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Fig. 4.6.2. A comparison of behavior on the cantaloupe surface between L. 

monocytogenes F2365 along with transposon mutant F2365purA and H7550Cds with 

mutant H7550-Cds purB Survival and growth at 8ºC over the seven days of incubation 

without (A) and with treatment with sterile d-H2O (B). Presented results are average of two 

independent trials done in duplicate  
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of 3log units. Interestingly, in first 72 hours of incubation, both strains grew with increase of 2 

logs, followed by further growth of the parental strain and stagnation of mutant ROA4 (Fig. 

4.6.3B).  
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Fig. 4.6. 3.Comparison of L. monocytogenes F2365 and cold sensitive mutant F2365 

LMOf2365_1746 Survival and growth at 4ºC over the seven days of incubation without (A) and 

with treatment with sterile d-H2O (B). Change in L monocytogenes population over the incubation 

period (C). 
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decreased approximately 0.4 log unit. After initial decrease strains recovered and grew 1 log 

unit average, over the 7 days of incubation (Fig. 4.6.4 A1). Same trend had been noted in the 

population of L monocytogenes on the washed fragments (Fig. 4.6.4 A2) with initial decrease 

of approximately 2.0 log units. At 25 ºC both parental strains and deletion mutants grew 

approximately 1.3 – 2.3 log units after 72 and 168 hours, respectively, independent of weather 

fragments were treated with ater or not. 
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Fig. 4.6.4.Deletion of the genomic region 18 in L monocytogenes strains F2365 and 

H7550 and performance on the cantaloupe surface. Growth at 8°C before (A1) and after 

water treatment (A2) and 25°C before (B1) and after water treatment (B2) over the 7 days of 

incubation. Results presented are average of two independent trials. 
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Deletion of the cell-wall associated protein (wap) in strain F2365 did not reveal any 

significant difference between parental strain and mutant (data not shown).  

4.7. Assessment of L. monocytogenes growth in raw and pasteurised milk 

4.7.1. Survival and growth of L. monocytogenes in raw and pasteurized milk. The 

inoculated milk samples were monitored over a 10 days period in 24 hour intervals up to 

seven days and at 10
th

 day of incubation. All eighteen tested isolates were able to not only 

survive but also grow in both raw and pasteurized milk (Fig. 4.7.1 A and B and data not 

shown). L.monocytogenes population increased up to 3.5 log cfu/ml in raw and up to 

4logcfu/ml in pasteurized milk over the 10 days of incubation at 8°C. As expected, increase in 

population was statistically significant over the time (p < 0.0001). No statistically significant 

difference was observed among strains. Growth appeared to be higher in pasteurized than in 

raw milk (Fig. 4.7. 1 A and B and data not shown). Our analysis indicate that differences in 

growth rate between milk types may depend on strain with most strains growing significantly 

better in pasteurized milk (p < 0.0003). 
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Fig. 4.7.1.Survival and growth of L monocytogenes in raw and pasteurized milk. A. 

Growth of L monocytogenes strains involved in 2011 listeriosis outbreak associated with 

cantaloupe (2011L-2857, 2011L-2858, and 2001L-2875) and 2010 celery associated outbreak 

(2010-1723) in raw (A1) and pasteurized (A2) milk at 8 º C over 10days;  
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B. Growth of L monocytogenes strains involved in sporadic cases of Listeriosis in the period 

1930-1990 (4b1, OLM121, OLM144 and OLM10) and 1983 dairy associated outbreak 

(SCOTT A) in raw (B1) and pasteurized (B2) milk at 8º C over 10days ; 

4.7.2. Serotype comparison in raw and pasteurized milk: Isolates were compared across 

serotypes (1/2a, 1/2b and 4b) with no significant difference noticed (data not showed).   

4.7.3. Wild type and ciprofloxacin adapted mutants in raw and pasteurized milk: 

Comparison between wild type strain H7550CdR and ciprofloxacin adapted mutant 

H7550CdRC showed no significant difference in growth between strains or milk type 

(Fig.4.7. 2 A1 and A2). Strain J0161CdR, wild type, grew better in raw milk compared to 

ciprofloxacin adapted mutant J0161CdRC, whereas adapted mutants expressed higher 

population increase in pasteurized milk (Fig. 4.7.2 B1 and B2).  
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A1.                                                                                A2. 
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Fig. 4.7.2.Comparison of growth in raw and pasteurized milk between L monocytogenes 

parental strains and ciprofloxacin adapted mutants. A. Increase in population of L 

monocytogenes parental strain H7550 and ciprofloxacin adapted mutant in raw (A1) and 

pasteurized (A2) milk at 8º C over 10days; B. Increase in population of L monocytogenes parental 

strain J0161 and ciprofloxacin adapted mutant in raw (A1) and pasteurized (A2) milk at 8º C over 

10days. 
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4.7.4. Difference between clonal groups: Further analysis revealed significantly better 

growth of isolates belonging to ECI clonal group in both pasteurized and  raw milk compared 

to group ECIa (p=0.0433 and 0.0166, respectively)( Fig. 4.7. 3A and B) and in pasteurized 

milk compared to group ECII (p=0.0358) (Fig. 4.7.3.A1 and A2). ECIa associated isolates 

expressed significantly better growth compared to ECII group in raw milk (p=0.0026) (data 

not shown) with no difference in pasteurized milk. Overall ECI associated isolates grew 

significantly better in pasteurized then in raw milk (p=0.0001), whereas among isolates ECIa 

and ECII this difference was not noticed.  
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A1.                                                                                  A2.   
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Fig.4.7.3. Comparison of growth between L monocytogenes strains associated with 

different clonal groups. Population of L monocytogenes strains belonging to ECI clonal 

group in both raw (A1) and pasteurized (B1) milk increased more compared to group ECIa in 

raw (A2) and pasteurized (B2) milk (p=0.0433 and 0.0166, respectively). 
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A.                                                                                B.  

 

 

 

  

 

 

 

 

 

 

 

 

Fig.4.7.4. Comparison of growth between L monocytogenes strains associated with 

different clonal groups. Population of L monocytogenes strains belonging to ECI clonal 

group (A) increased more compared to group ECII in (B) in pasteurized milk (p=0.0358) 

 

L. monocytogenes strains of serotype 1/2a and 1/2b involved in 2010 Texas outbreak 

associated with celery in  chicken salad (2010-1723) and 2011 multistate outbreak connected 

to Jensen farm cantaloupe (2011L-2857, 2011L-2858 and 2011L-2875) survived and  grew in 

raw and pasteurized milk. Population increase averaged from 3 log cfu/ml in raw and 4 

logcfu/milk in pasteurized milk over the 10 days of incubation at 8°C (Fig. 4.7.1A1 and A2). 

Significant difference in growth between milk types has not been noticed. Growth of L 

monocytogenes strains associated with 2011 cantaloupe outbreak in milk both, raw and 

pasteurized was notably higher compared to growth of the same strains inoculated on the rind 

or the flash of cantaloupe, respectively (Fig. 4.7.5). 
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Fig. 4.7.5.Difference in L monocytogenes population increase in milk and on the 

cantaloupe surfaces.  Growth of L monocytogenes strains (2011L-2857, 2011L-2858, and 

2001L-2875) associated with 2011 cantaloupe outbreak in milk, both raw (A1) and 

pasteurized (A2), was notably higher compared to growth of the same strains inoculated on 

the rind (B1) or the flash (B2) of cantaloupe, respectively.  
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5.0. DISCUSSION  

5.1. Adaptation of Listeria monocytogenes to Ciprofloxacin or to the Disinfectant 

Benzalkonium Chloride Results in Reduced Susceptibility to Ciprofloxacin, Gentamicin 

Benzalkonium Chloride and Other Toxic Compounds. In this study, selection of several L. 

monocytogenes strains on either ciprofloxacin or BC led to mutants with increased MICs not 

only to the agents employed in the selection but to several additional toxic compounds.  The 

spectrum of compounds to which the mutants exhibited reduced susceptibility was the same 

regardless of whether selection was on ciprofloxacin or on BC. This multidrug resistance 

phenotype suggested that the mutants had increased expression of MDR efflux system(s).  In 

accord with this notion, the ciprofloxacin and BC- selected mutants exhibited higher MICs to 

EthBr and TPP, which are known to serve as substrates for MDR efflux systems (95, 96).  

Moreover, at least 4fold reductions in MICs were observed in the presence of the potent 

efflux inhibitor reserpine.  In contrast, the mutants did not have significant increases in  MICs 

for the fourth generation fluoroquinolone moxifloxacin, which does not serve as a substrate 

for efflux systems; our finding that  moxifloxacin MICs were not impacted by reserpine and 

were not enhanced in the mutants were similar to earlier observations with  ciprofloxacin-

resistant clinical isolates (86).  Taken together, these data suggest that MDR efflux system 

mutations are likely responsible for the phenotype of the mutants in the current study.  

Enhanced efflux has also been implicated in multidrug resistance phenotypes of other bacteria 

(e.g. Escherichia coli, Salmonella, and Pseudomonas) following exposure to disinfectants, 

although other mechanisms (e.g. envelope changes) have also been implicated (18, 100, 112, 

181, 205).   

In previous studies, mutants of L. monocytogenes strains selected on BC had phenotypes 

partially overlapping with those of the mutants in our study.  Such mutants had reduced 

susceptibility to BC, EthBr, gentamicin and, in several cases, kanamycin, but changes in 

ciprofloxacin MICs were not reported (187, 207).  Additionally, these mutants exhibited 

increased transcription of mdrL (but not lde) and their phenotype was attributed to increased 

levels of the mdrL transporter (187).  Inactivation of mdrL in L. monocytogenes LO28 

resulted in increased susceptibility to macrolides, cefotaxime and certain metals (zinc, cobalt 

and chromium) (144).   The different resistance phenotype of our mutants, which did not have 
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increased MICs to erythromycin (a macrolide) or kanamycin, suggests that mdrL is likely not 

involved in the multidrug resistance profile that we observed. Further support for this is 

provided by the fact that we failed to detect increased expression of mdrL in either the 

ciprofloxacin-selected or the BC-selected mutants.   One cannot exclude the possibility that 

different transporters will contribute to the multidrug resistance phenotype of BC-selected 

mutants in different studies, depending on strain background and experimental conditions 

employed for the selection.   

Mutants of L. monocytogenes selected on ciprofloxacin have not been reported.  However, 

clinical isolates with enhanced resistance to ciprofloxacin have been identified as mentioned 

above, and were found to also have increased resistance to EthBr and acridine orange, as well 

as increased expression of the lde transporter (86).  Insertional inactivation of lde resulted in 

reduced MICs to ciprofloxacin, EthBr and acridine orange, suggesting that this transporter 

mediated the observed resistance phenotype.  However, susceptibility of the clinical isolates 

or the lde mutant to gentamicin or BC was not described (86). Our data showing increased 

expression of lde in the mutants also provide tentative evidence for involvement of this 

transporter, although involvement of additional transporters cannot be excluded.   In addition 

to mdrL and lde, the Listeria genome harbors several other genes for putative MDR 

transporters (83, 156), some of which may contribute to the phenotype of mutants described 

here.  Two new transporters of the major facilitator superfamily, mdrT and mdrM, were 

identified during a screen for genes impacting the elicitation of the innate immune response in 

macrophages infected with L. monocytogenes 10403S, and transcript levels of mdrM were 

markedly enhanced in the presence of rhodamine 6G and TPP (46). However, we failed to 

obtain evidence or increased expression of either mdrT or mdrM in the ciprofloxacin- or BC-

selected mutants, suggesting that these transporters are likely not involved in the phenotype of 

the mutants.  Further studies (e.g. comparative analysis of transciptome profiles) would be 

valuable in the effort to identify other transporters that may be expressed at higher levels in 

the mutants than in the parental strains, and to characterize the impact of exposure to 

antibiotics, disinfectant or other toxic compounds such as TPP on expression of the genes.  

Strains H7550 Cd
R
 and J0161 Cd

R
 harbor large and closely related plasmids (121, 133, 156).  

Even though MICs to ciprofloxacin and gentamicin did not differ between the parental and 
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plasmid-cured strains, ciprofloxacin-selected mutants had higher MICs for either 

ciprofloxacin or gentamicin than mutants derived from the plasmid-cured derivatives of either 

strain.  These findings were consistently obtained and were specific to MICs for these 

antibiotics; they were not observed in MICs to EthBr or TPP.  Further studies are needed to 

determine whether the apparent impact of the plasmid is specific to pLM80 and closely 

related plasmids and to clarify the underlying mechanism. It is possible that a pLM80-

associated efflux system for ciprofloxacin and gentamicin (but not for EthBr or TPP) was 

activated in the pLM80-harboring mutants, along with chromosomal transporters such as lde.   

Comparative transcriptome analyses would be valuable in assessing the validity of this 

hypothesis.    

As has been discussed for other pathogens (100, 133), mutants such as described in the 

current study have a number of clinical or environmental implications.  Exposure to 

ciprofloxacin (e.g. during empirical treatment, or in the course of treatment for other 

infections) may lead to L. monocytogenes mutants with decreased susceptibility to 

gentamicin, currently one of the drugs of choice for treatment of listeriosis.  Such mutants 

may have enhanced ability to persist in the environment, as they also exhibit enhanced 

tolerance to disinfectants such as BC.  Similarly, BC and other quaternary ammonium 

disinfectants are extensively used in healthcare settings as well as in the food processing 

industry. Mutants obtained during selection on BC can have enhanced resistance not only to 

BC but to a range of other antimicrobial compounds, including antibiotics such as 

ciprofloxacin and gentamicin.  

Lastly, it is conceivable that in such mutants additional phenotypes of public health and food 

safety relevance may be impacted. There is increasing evidence that MDR transporters in 

bacterial pathogens can mediate not only resistance to antimicrobials but a number of other 

processes as well (95, 96, 135, 170).   In the case of L. monocytogenes, the study by Crimmins 

et al. (46) has provided clear evidence that MDR transporter systems may be involved in 

processes of fundamental importance to host-pathogen interactions, such as elicitation of the 

innate immune response.  Furthermore, L. monocytogenes virulence genes prfA and inlA were 

shown to be upregulated in response to sub-lethal concentrations of quaternary ammonium 
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compounds (113).   It will be important to determine whether BC- or ciprofloxacin-selected 

mutants are also impacted in their virulence in cell culture or animal models, and whether 

attributes such as ability to persist in biofilms and persist in the environment may also be 

altered in such mutants.  

5.2. Co-selection of cadmium and benzalkonium chloride resistance in conjugative 

transfers from non-pathogenic Listeria spp. to other listeriae. In this work we provide 

evidence that BC resistance mediated by bcrABC can be effectively transferred among certain 

strains of non-pathogenic Listeria spp. that harbored both bcrABC and the cadmium resistance 

determinant cadA2.  We also showed that resistance could be transferred from non-pathogenic 

Listeria spp. to L. monocytogenes strains of all three serotypes primarily associated with 

human listeriosis (1/2a, 1/2b and 4b).  The findings indicated that cadmium resistance transfer 

can be effectively used as a surrogate for transfer of resistance to BC, since transconjugants 

selected on cadmium were resistant to both cadmium and to BC.   

Transfer of resistance was not indiscriminate: even though all tested L. monocytogenes strains 

yielded transconjugants with at least some of the non-pathogenic donors, one of the non-

pathogenic strains employed as recipient failed to yield any transconjugants.  Furthermore, 

transconjugants were produced with markedly higher frequency when non-pathogenic donors 

harbored cadA2 (often while also harboring bcrABC) than when they harbored the alternative 

cadmium resistance determinant cadA1.   

Non-pathogenic Listeria spp. have potential to serve as reservoirs for resistance genes and 

transfer them among themselves as well as to L. monocytogenes inhabiting the same 

environments, but data on such transfers remain scarce.  Thus far only one study reported 

conjugative transfer of disinfectant resistance attributes among Listeria spp. (131).  However, 

only two strains of non-pathogenic Listeria spp. (L. innocua in both cases) were tested as 

donors; furthermore, the donors in that study exhibited resistance to the dye ethidium bromide 

but not to cadmium (131).  In contrast, strains employed as donors in the current study were 

resistant to cadmium but susceptible to ethidium bromide (M. Rakic-Martinez, unpublished 

findings).  Thus, it is hard to compare data from this earlier study with the current findings.   

In the case of non-pathogenic recipients transfer was found to be more efficient at 25 than at 

37C, suggesting that it may represent an environmental adaptation.  In contrast, no difference 
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in transfer frequency between 25 and 37C was noted for L. monocytogenes, regardless of 

serotype, suggesting the potential for such transfers to be taking place not only in the 

environment but in vivo as well, e.g. in the mammalian gastrointestinal tract.   

In the current study conjugations were on agar or on membrane filters overlaid on solid 

media. Only limited information is currently available on horizontal gene transfer in listeriae 

in foods and other complex systems such as the gastrointestinal tract (39, 56).   Further studies 

are needed to determine whether conjugative transfer frequency is impacted by the presence 

of the conjugation partners on surfaces relevant to food processing environments (e.g. 

stainless steel, food) and within polymicrobial biofilms. 

   While direct evidence of nonpathogenic Listeria spp. behaving as resistance gene reservoirs 

for L. monocytogenes is still lacking, co-selection and disinfectant resistance gene distribution 

in other pathogens perhaps illustrate analogous processes at work.   For instance, Ciric et al. 

have shown the presence of a Streptococcus oralis Tn916-like conjugative transposon, 

Tn6087 that confers resistance to cetrimide bromide, a disinfectant in the quaternary 

ammonium compound (QAC) family, as well as tetracyclines, potentially providing a 

mechanism for co-selection of disinfectant and antibiotic resistance (44).  In food-derived 

staphylococci, the presence of BC resistance genes linked to antibiotic resistance genes 

suggested the potential for similar co-selection (198).  Bjorland et al. demonstrated the 

widespread distribution of QAC resistance genes in bovine and equine coagulase-negative 

staphylococci (13).  The wide distribution of such genes and the potential of increased fitness 

through co-selection have important public health implications (191).  

L. monocytogenes plasmids (e.g. pLM80) harboring both bcrABC and cadA2 have been 

characterized in the course of genome sequencing investigations (64, 121, 156).  Genome 

sequence data of the non-pathogenic listeriae employed as donors in the current study are 

currently not available.   Nonetheless, when donors harbored both bcrABC and cadA2 the 

transconjugants acquired both of these determinants even though selection was only for 

cadmium resistance, suggesting plasmid-associated resistance genes similar to those harbored 

by pLM80.  Further supportive evidence for pLM80-like plasmids was provided by detection 

of all other tested pLM80-associated genes in these donor strains.  Though these PCR-based 

assessments involved only a subset of pLM80-associated genes, the data provide compelling 
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reasons to further elucidate the sequence content of the plasmids of these L. welshimeri and L. 

innocua donor strains harboring bcrABC and cadA2.   

Our PCR data suggest that different plasmids were harbored by strains containing cadA1.  

However, it was intriguing that such strains failed to serve as efficient donors to other 

listeriae.  Plasmids harboring cadA1 have been extensively described in L. monocytogenes 

(25, 121, 127, 128) and conjugative transfer of one such plasmid was demonstrated in an 

earlier study.  A single donor-recipient strain combination was examined in that study, and 

non-pathogenic strains were not included (129). Further studies are needed to determine 

whether our findings reflect differences in the plasmids or in the types of strains employed in 

the conjugations.   

In conclusion, we have demonstrated the potential for resistance to BC and to cadmium to be 

conjugatively transferred among non-pathogenic listeriae and from these strains to L. 

monocytogenes of diverse serotypes.  Our findings also demonstrate co-selection of resistance 

to BC and cadmium when the non-pathogenic Listeria spp. donors were resistant to both of 

these agents:  transconjugants selected in the presence of cadmium were also resistant to BC.  

Co-selection between cadmium resistance and BC resistance has not been documented before 

in Listeria or other bacteria.  Future work should examine additional factors in food 

processing and other dynamic environments that may affect efficacy of resistance transfer, 

such as varied growth surfaces and the presence of mixed and single-species biofilms. Further 

study of conjugative dissemination of BC and cadmium resistance in Listeria spp. would 

provide the opportunity to assess impact on fitness in disinfectant-abundant environments 

such as food processing plants and healthcare settings.  Data from such studies would be 

needed to characterize potential impacts of such resistance determinant acquisitions on 

additional attributes, including those associated with virulence.  

5.3. Resistance gene distribution among non-pathogenenic Listeriae from different 

poultry processing plants.We previously reported that non-pathogenic Listeria spp. could 

serve as donors of resistance to disinfectant (BC) and to the heavy metal cadmium to other 

Listeriae, including diverse serotypes of the pathogenic species, L. monocytogenes.   

Transconjugants acquired the resistance determinants bcrABC (BC resistance) and cadA1 or 

cadA2 (resistance to cadmium) harbored by the donor strains (117).  The current population 
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based analysis of non-pathogenic Listeria spp. from processing plants revealed high 

prevalence of resistance to BC and cadmium, and of the bcrABC, cadA1 and cadA2 

determinants, thus providing further support for the role of non-pathogenic Listeria spp. as 

resistance gene reservoirs for pathogenic L. monocytogenes. The observed high prevalence of 

resistance may reflect responses to selective pressure stemming from exposure to disinfectant.  

Since all BC-resistant strains were also resistant to cadmium, cadmium resistance may have 

been co-selected upon exposure to BC, as observed during in vitro conjugative transfers 

(117).  However, we also identified strains that were cadmium-resistant but BC-susceptible. 

Such strains may reflect recent introductions from sources outside of the processing plant, or 

derivatives that either have lost or have not yet acquired bcrABC and corresponding 

resistance to BC. Strains unable to serve as recipients were indeed identified earlier (117). 

An unexpected finding was that even though cadA1 and cadA2 were similarly common in L. 

welshimeri and L. innocua, plant-specific differences in prevalence of these resistance genes 

were noted for each these species.  For instance, in plant A cadA2 was relatively common 

regardless of species, while in F cadA1 was predominant in both species.   On the other hand, 

in plant B prevalence of cadA1 and cadA2 differed between L. innocua and L. welshimeri.  

Such findings may reflect the outcome of colonization of the plant with certain strains (e.g. 

cadA2-harboring strains in plant A) and subsequent dissemination of the resistance 

determinant by intra- and inter-species gene transfer within the individual plant’s ecosystem.  

This was supported by the detection of different cadA genes or resistance phenotypes among 

strains with closely related or indistinguishable PFGE profiles.  PFGE profiles of L. 

welshimeri or L. innocua were largely plant-specific, with strain clusters suggesting the 

presence of certain strains disseminated and persistent in specific plants.   

Non-pathogenic Listeriae employed in this study were isolated from the same plants as L 

monocytogenesstrains described by Mullapudu et al (154, 155). This group reported high 

prevalence (57%) of BC- resistance among isolates of serotype 1/2a and 1/2b. Prevalence of 

BC resistance was markedly lower in isolates of serotype 4b (12%). All BC resistant isolated 

harbored bcrABC cassette and were also resistant to cadmium. These findings significantly 

correlate with current study implying similar distribution of resistance determinants among 
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non-pathogenic Listeriae and L monocytogenes strains of serotype 1/2a and 1/2b. Among 

Cd
r
 BC

r   
L monocytogenes strains most predominant was cadA2 determinant either alone or 

together with cadA1 (64%), whereas 42% of non-pathogenic isolates harbored cadA2. In 

contrast, most strains resistant to cadmium but susceptible to BC (Cd
r
 BC

s
) possessed cadA1 

(74%) of L monocytogenes and 60% of non-pathogenic Listeriae). Interestingly, plant specific 

distribution of Cd resistance determinants differs between L monocytogenes and Listeriae 

isolates. Most of the L monocytogenes isolates tested by Mullapudi et al. (155) originated 

from the plant A with predominance of cadA2 (~50%). In contrast, cadA1 was most frequent 

among non-pathogenic Listeriae isolated from the plant A (47%).  Possible explanation of 

such a difference could be in horizontal gene transfer of cadmium resistance genes between 

non-pathogenic Listeriae and L. monocytogenes (117). Recent findings reported by Katharios-

Lanwermeyer et al. (117) revealed that all donor strains that could efficiently transfer 

resistance harbored cadA2. Given that the BC resistance determinant bcrABC is co- 

transferred with the cadmium resistance determinant cadA2 (117), adaptation of strains in the 

processing plants to BC may contribute to the higher prevalence of cadA2. 

Findings in this study strengthen evidence that non-pathogenic Listeria spp. serve as 

reservoirs for disinfectant and cadmium resistance genes in the processing plant environment. 

Predominant cadmium resistance determinants vary by plant and species, possibly reflecting 

intra- and inter-species dissemination of the determinants within the ecosystem of individual 

plants. 

5.4. Growth and survival of L. monocytogenes on cantaloupe. The results of this study 

provided further evidence of minimally processed fresh fruits as a good media for growth of 

microorganisms as previously suggested by various authors (166, 211, 212). Assessment of L. 

monocytogenes growth oh the outer surface at 4°C revealed 1.0 log increase in population 

with no significant difference among strains. Bacteria reached this increase within 7 day and 

survived at 4°C at the same level throughout the incubation period of 21 days. Our findings 

differ from a previous report that L monocytogenes survived but did not grow on fresh-cut 

cantaloupe pieces stored at 4°C (211).   Possible reasons include differences in methodology, 

e.g. submerging for 10 minutes in the mixed bacterial inoculum in the earlier study (211) vs. 

spot inoculation of individual strains in the current one. Furthermore, in the previous study 
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time left for attachment of cells (2hours at room temperature) differed from current one (1 

hour at room temperature). The strains employed also differed between the two studies.  

Similar reasons may account for the greater (approximately 10fold) increases on inoculated 

fragments observed at 8 and 25 º C in this study than in the earlier report  (211).   Population 

growth on the cantaloupe surface at 8º C obtained in this study is in agreement with increase 

in L. innocua population at the same temperature reported by Behrsing et al. (9).  

Interestingly, in current study we observed that  growth on the cantaloupe surface was higher 

then growth in the extract or on the cantaloupe flesh with statistically significant difference at 

25°C after 72 hours (p<0001) and 4°C after 7 days of incubation (p=0.0007). This could be 

explained by the characteristics of rind surface that allows better attachment of the bacteria, 

combined with protective role of extensive netting (209, 210, 212). Lower growth in the 

extract could be explained by metabolism of the melon fruit. Biais et al. (12) reported strong 

decrease in ATP and ADP ratios and the adenylate energy charge from the periphery to the 

center of the fruit.  From the periphery (rind) to the center of fruit there was also significant 

increase of ethanol concentration and other markers of hypoxia in plants which could be 

explanation of lower increase in Listeria population in the cantaloupe extract. Washing of 

inoculated fragments with sterile deionized water prior to the incubation resulted with initial 

decreases of L monocytogenes of approximately 2 log units followed by subsequent growth. 

However, washing decreases LM counts temporarily (hence consuming product immediately 

after washing -at least within 24h, would enhance safety), but Lm grows to the same levels as 

on unwashed samples within 48 h—hence, washing may not confer any benefit after 48h. In 

contrast to this finding Ukuku et al (215) did not observed significant reductions in L. 

monocytogenes populations after washing inoculated whole melons at day 0.  

The results of this study suggest that L. monocytogenes can not only survive on the surface of 

cantaloupe but that it also has temperature and time-dependent potential for growth.  Results 

also revealed that water treatment of the surface does not prevent growth of L. 

monocytogenes. These data will be valuable in design of controls to limit persistence and 

growth of this pathogen on cantaloupe and other produce. 
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5.5. Change in phenotype and genotype as an asset for L. monocytogenes growth on 

cantaloupe. Limited information is available on mechanisms that L monocytogenes employs 

for adherence, survival and persistence or growth on produce.  Previous studies reported 

colonization and persistence of various pathogens such as E. coli O157:H7, Salmonella ans L 

monocytogenes on the surface of the plants (219, 224). Strain variability in interactions with 

plants has been noted in other foodborn pathogens (14, 118). Assessment of different L. 

monocytogenes strains revealed that one of them, F8027 associated with celery had higher 

potential of growth on lettuce then others .  In current study, by employing various strains and 

selected mutants of interest we are providing evidence of L monocytogenes ability to colonize 

surface of cantaloupe, survive and grow under different conditions (various incubation 

temperatures, treatment with water).  

Antibiotic-resistant  L. monocytogenes have been found in foods with increasing frequency 

(39, 48, 228). In our previous study we isolated mutant of the L. monocytogenes J0161 

adapted to higher concentrations of antibiotic ciprofloxacine (182). Characterization of this 

mutant revealed increased resistance to other antimicrobials (e.g. disinfectant bezalkonium 

chloride and antibiotic gentamicin). Such mutants with enhanced resistance present a burden 

for the food processing environment.  Comparison of growth ability between parental strain 

J0161 and ciprofloxacin adapted mutant revealed no significant difference at any of the tested 

incubation temperatures (4, 8 or 25 ºC). 

Using the mariner-based transposon (8) to construct mutant libraries presents powerful 

genetic tool for identification genes responsible for different changes in phenotype. Through 

screening of libraries of L monocytogenes strains F2365 and H7550 numerous mutants have 

been isolated in our laboratory. Analysis of such mutants revealed that they harbored single 

transposon insertions.  Through screenings of these libraries cold-sensitive mutant with an 

insertion in a gene encoding a DEAD family RNA helicase have been isolated as well as 

nonhemolytic H7550-Cds,hly mutant, transposon mutant of F2365purA, transposon mutant of 

H7550-Cds,purB (6, 7, 118). Testing ability of these mutants to survive and grow on the 

surface of cantaloupe revealed no significant difference in comparison with parental strain. As 

expected, difference was notable between strain F2365 and cold sensitive mutant ROA4 

which expressed decrease in population throughout the incubation period. 
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Most outbreaks of Listeriosis involved serotype 4b strains. These strains are associated with 

two major clonal groups. Epidemic Clone I (EC I) involved in numerous outbreaks 

worldwide, whereas Epidemic clone II (ECII) represents a novel epidemic clone indentified 

during the 1998-99 multistate outbreak in the United States. Previous studies described a 

genomic region (region-18) with unusual diversifications in ECII, and specific and conserved 

among other serotype 4b strains (68). This region was flanked on one side by a large (ca. 6.6 

kb) gene encoding a putative cell wall-associated protein (wap) in ECII and other serotype 4b 

strains. On the other side, the region was flanked 119 by inlA and inlB, implicated in 

virulence of L. monocytogenes (23). Wap has been identified as a serotype 4b specific with 

possible role in sensing environmental changes (20, 81). The protein encoded by wapA 

belongs to a super-family of surface-associated proteins involved in various cellular 

processes, including surface hydrophobicity, wall metabolism, secretion, pathogenicity, 

immunogenicity and cell adhesion (83). In current study, deletion mutants of region 18 in L. 

monocytogenes F2365 and H7550 and wap in F2365 did not impact ability to survive and 

grow on the cantaloupe surface. After initial decrease at low temperatures (4 and 8 ºC) cells 

recovered and population increased trough out the incubation period. 

Taken together, screening of mutant libraries and construction of different deletion mutants 

served as a valuable tool in the assessment of Lmonocytogenes survival and growth on the 

surface of produce. Even though growth ability of tested mutants did not differ significantly 

from parental strains further testing and characterization of mutants could help in better 

understanding of the mechanisms involved in such ability.  Of great importance is finding that 

water treatment of inoculated surfaces does not prevent further growth of bacteria. Such 

finding may help in creating new strategies in food safety.  

5.6. Assessment of L. monocytogenes growth in raw and pasteurized milk. According to 

our results L. monocytogenes grew generally better and with fewer variations in pasteurized 

than in raw milk at 8C. Similar findings were reported in cow milk by Northolt et al. (157) 

and in goat’s milk by Leuchner et al (132).  This is suggestive of potential impact of 

microbiota in raw milk, as well as inhibitory effects of antibacterial substances such as 

lactoperoxidase and lysozyme present in raw milk (157, 171, 229). Unlike results of these 

studies that indicates L monocytogenes population decrease over the first two days of 
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incubation due to the presence of antibacterial substances in raw milk, such decrease was not 

observed in our study. Our results are in agreement with those reported by Farber et al (71) 

and show increase in population over the incubation period of 10 days.  

Serotype 4b has been the most common serotype connected to listeriosis outbreaks. However, 

serotype 4b highly represented in clinical isolates is not the most common serotype in food 

isolates (138). Even thou relation between serotype and virulence has not been established 

(115); increased virulence could be the reason for higher number of reported clinical cases of 

listeriosis caused by serotype 4b.  Comparisons across serotypes indicate neither significant 

difference between serotypes nor difference in growth of strais of one serotype between two 

milk types. Wide geographical distribution of different L. monocytogenes serotypes and high 

adaptability to variety of environmental conditions and food composition may be explanation 

for the lack of difference in growth between serotypes.  

Two wild type strains of L. monocytogenes (H7550CdR and J0161CdR) employed in this 

study displayed no significant difference in growth compared to their ciprofloxacin adapted 

mutants (H7550CdRC and J0161CdRC) in raw or pasteurized milk. This finding suggests that 

adaptation to antibiotics does not change growth potential of L. monocytogenes.  

 Recent epidemiological data suggest that produce and fruit contribute to listeriosis more then 

previously recognized. Therefore, we analyzed   possible difference in L. monocytogenes 

growth in milk and on cantaloupe. For the purpose of analysis we used unpublished data on 

Listeria growth on cantaloupe, obtained in our lab.  L. monocytogenes strains of serotype 1/2a 

and 1/2b involved in 2011 multistate outbreak connected to cantaloupes expressed high 

increase in population in both raw and pasteurized milk. Increase in population was much 

lower when same strains were tested on cantaloupe. These findings suggesting better nutritive 

composition of milk as a growth medium for L. monocytogenes. As reported by Donnely and 

Brigs (58) (milk fat content might be related to listerial lipase produced by hemolytic L. 

monocytogenes strains and this could be the reason for faster growth of such strains in milk. 

Explanation of results could also be in the fact that glucose concentration decrease from the 

surface to the center of cantaloupe fruit due to conversion of glucose to sucrose (12) and 

glucose tend to be one of the major substrates for growth of Listeria in milk (157, 188).  
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Eleven strains of serotype 4b assigned to three epidemic clonal groups (ECI, ECIa and ECII) 

were employed in this study. Epidemic clones ECIa and ECI are composed of older human 

and animal clinical isolates from outbreaks and sporadic cases occurred in the first half of 20
th

 

century. ECII isolate was involved in Food Hotdog Outbreak (1998-99). Clonal groups were 

compared for possible difference in growth in raw and pasteurized milk over the 10 days of 

incubation at 8C. Statistical analysis of results obtained indicate that ECI grows better in raw 

(p=0.01660) and pasteurized milk (p=0.0433) compared to ECIa. ECI represents widely 

distributed clonal group associated with multiple outbreaks in Europe and North America 

(194, 134). General presence across different environments indicates high adaptability of ECI, 

which may be one of the explanations for enhanced growth in milk compared to ECIa. 

Answer could also be better adaptation to inhibitory lactoperoxidase and lysozyme present in 

raw milk as well as unique virulence characteristics.  

Compared to both ECI and ECIa lower increase in population raw and pasteurized milk, 

respectively, has been observed for ECII isolate. As reported by Kathariou et al (115) this 

clonal group was first observed in food hot dog outbreak (1998-1999). Ability of ECII to 

transmit among meat processing plants was discussed by various authors (41, 92). We 

speculate that this epidemic clone might be better adapted to meat and meat processing 

environment which would justify lower population increase in milk. 

Demographical changes such as increase in population of elderly and immunocompromissed 

person, as well as changes in food consumption patterns, might highly contributed to a change 

in epidemiological profile of human Listeriosis. Mayor food-born listeriosis outbreaks 

reported recently are connected to processed meats, produce or fruit. As reported by Public 

Health Service/Food and Drug Administration (179) less than 1% of total food-borne disease 

outbreaks are currently linked to milk and milk products, with a few large outbreaks occurred 

in last few decades (3, 15, 79 ). According to the same report in 1938 milk was cause of 25% 

of food related outbreaks. This observation and ability of old clinical isolates of  L. 

monocytogenes to grow relatively high  in raw and pasteurized milk reported in this study 

emphasized major historical role of milk as a vehicle for this pathogen. Low consumption of 

processed meats and still not well implemented pasteurization in first half of 20
th

 century lead 
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to a speculation that raw milk was involved in most of human cases including ones presented 

in this study. 

6.0. CONCLUSIONS: 

1. Recent epidemiologic data indicate declined incidence of listeriosis in the US, hence, L. 

monocytogenes still produce the highest mortality (16-19%) and hospitalization rate (94%) among 

food-borne pathogens. 

2. Bacterial pathogens are often exposed to sub-lethal levels of different antimicrobial agents (i.e. 

disinfectants in food processing plants, antibiotics in the health environment). Such exposure is 

considered the main reason for the increase in L. monocytogenes antimicrobial resistance.  

3. Selection of L monocytogenes to antimicrobials such as antibiotic ciprofloxacin or 

disinfectant bezalkonium chloride (BC) led to the emergence of mutants with increased MICs 

not only to antimicrobial agents used in the selection process, but also a few additional toxic 

substances. The spectrum of agents to which they have developed resistance mutations did not 

differ regardless of whether the chosen selection of ciprofloxacin or BC. The change in the 

direction of multiresistance phenotype presented in this thesis suggests overexpress MDR 

efflux systems and leads to the conclusion that this system is responsible for the occurring 

change. 

4. Screening of a mariner-based mutant library of selected L monocytogenes strains failed to 

isolate mutants with   impaired resistance to TPP. However, tetR::Tn917 mutants with 

pronounced (8-fold) increase in TPP resistance   have been isolated. One of these mutants had 

insertion in tetR gene.  Characterization of such mutant revealed   transposon integrated in 

LMRG_01858 (sucrose phosphorylase).  Such data suggest that the observed TPP resistance 

of the tetR::Tn917 mutant involve increased expression of MDR transporter(s) other than 

mdrT, but also repressed by tetR.   

5.  Broad resistance to the tested agents confirms the hypothesis that non-pathogenic strains 

Listeriae spp could be reservoir of resistance genes for L monocytogenes. Resistance to 

disinfectant BC mediated by gene cassette bcrABC can be effectively transferred among 

certain strains of non-pathogenic Listeria spp. that harbored both bcrABC and the cadmium 

resistance determinant cadA2.  Resistance could also be transferred from non-pathogenic 
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Listeria spp. to L. monocytogenes strains of all three serotypes primarily associated with 

human listeriosis (1/2a, 1/2b and 4b).  The findings presented in this Dissertation indicated 

that cadmium resistance transfer can be effectively used as a surrogate for transfer of 

resistance to BC, since transconjugants selected on cadmium were resistant to both cadmium 

and to BC.   

6. Analysis of non-pathogenic Listeria spp. from processing plants revealed high prevalence 

of resistance to BC and cadmium, and of the bcrABC, cadA1 and cadA2 determinants, 

providing further support for the role of non-pathogenic Listeria spp. as resistance gene 

reservoirs. The observed high prevalence of resistance may reflect responses to selective 

pressure stemming from exposure to disinfectant. The outcome of colonization of the plant 

with certain strains could result with dissemination of the resistance determinant by intra- and 

inter-species gene transfer within the individual plant’s ecosystem.  This hypothesis was 

supported by the detection of different cadA genes or resistance phenotypes among strains 

with closely related or indistinguishable PFGE profiles.  PFGE profiles of L. welshimeri or L. 

innocua were largely plant-specific, with strain clusters suggesting the presence of certain 

strains disseminated and persistent in specific plants 

7. Strains from the 2011 cantaloupe outbreak grew on cantaloupe. Generally growth was more 

pronounced on rind than on flesh or in cantaloupe extract. Differences were significant under 

certain time-temperature combinations (7 days at 4C and 72h at 25C). 

•No significant difference was noted among the three tested cantaloupe outbreak strains, 

which differed in serotypes and PFGE profiles. 

•Experiments with unrelated strains from outbreaks involving other vehicles (hot dogs, turkey 

deli meats, soft cheese, and celery) revealed trends similar to those with the 2011 cantaloupe 

outbreak strains. Growth was generally more pronounced on rind than flesh or extract. 

•Growth on rind at 4C was consistently observed (ca. 1 log increase after 7 days at 4C), 

differing from previous reports (Ukuku 2002). 

•Growth on rind and flesh at 8 and 25C, while consistently observed, was less than reported 

(Ukuku 2002, 2012; Brazil study ). Differences in strains and inoculation method may 

account for the differing results. 
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•Washing with water decreased L. monocytogenes populations by ca. 2 logs but bacteria grew 

back, with numbers at 24h approximating those of the original inoculum. 

•A cold sensitive (helicase) mutant failed to grow on cantaloupe rind at 4C, but grew at 

room temperature. Mutants that fail to grow on cantaloupe at room temperature 

8. By employing various strains and selected mutants of interest we provided evidences of L 

monocytogenes ability to colonize surface of cantaloupe, survive and grow under different 

conditions (various incubation temperatures, treatment with water).  Screening of mutant 

libraries and construction of different deletion mutants served as a valuable tool in the 

assessment of L. monocytogenes survival and growth on the surface of produce. Even though 

growth ability of tested mutants did not differ significantly from parental strains further 

testing and characterization of mutants could help in better understanding of the mechanisms 

involved in such ability.  Of great importance is finding that water treatment of inoculated 

surfaces does not prevent further growth of bacteria. Such finding may help in creating new 

strategies in food safety.  

9. Milk and dairy products along with processed meats are still considered major vehicles for 

L. monocytogenes involved in food related outbreaks. Eighteen L. monocytogenes strains of 

different serotypes involved in food-related outbreaks as well as human and animal clinical 

isolates were tested for growth in raw and pasteurized milk. Isolates of serotype 4b assigned 

to three epidemic clonal groups (ECI, ECIa and ECII) have been analyzed for such a 

difference between clonal groups as well as types of milk. Population expectedly, increased 

significantly over the 10 days of incubation at 8C (p<0.0001). Results obtained indicate 

overall better growth of L. monocytogenes in pasteurized over raw milk. Comparison across 

serotypes showed no significant differences between serotypes or individual serotype between 

types of milk. Significant difference, however, has been noted between clonal groups 

composed of serotype 4b. Results of present study confirmed good adaptability and growth of 

L. monocytopgenes in milk. However, further studies are necessary in order to understand 

better distribution of epidemic clones, their transmission characteristics and ability to cause 

foodborne disease 
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