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3axBaJHHIA
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BE3W MOje JIUCepTaIlHje.

KonauHo, 3axBanuo 6ux ce cB0joj cynpys3u Tamianu 3a cBy beHY JbyOaB M IMOJPILKY,
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O0yayhoj neru. OHU cy MOja MOTHBallMja M HajBeha HHCTIMpanyja.
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Ancrpakr

Hamnpenak y HeJIMHEapHO] ONTHIM YMHOTOME 3aBHCH O]] Hallle CrocoOHOCTH J1a Haljemo
HOBa pelleka pa3HUX TUPEPCHIHMjaTHUX jeHAYMHAa KOje c€ MPUPOTHO jaBIbajy y
CHCTEeMHMa IJIe CBETJIOCT MHTEparyje ca HellmHeapHoM cpeqrHoM. Mako cy pekpenpame
OBHX CHCTEMa KpO3 €KCIICPUMEHT M KOMIIjyTepcka CUMYyJaiija cucrema jaBa Hajuenrha
U IUIOJOTBOPHA MPHUCTYIA, KPajibu IMJb OCTaje Ja ce Hal)y ersakTHa peliemha OBHX

CHCTEMA.

[Muss oBe Te3e je Ja KOMOWHYje paHMje TEXHUKE HalaKema er3akTHUX pellemha
mudepeHInjaTHuX jeJHaYMHa W TPUMEHM WX Ha HenuHeapHy LlpenuHrepoBy
mudpepennujanny jennaunny (HILIJLJ). KomkperHno, Hactao je HemaBHO mpo0oj y
npuMeHaMa ojpeheHuX TexXHHKa eKCHaH3Wje y HaJaxemwy oapeheHuX ersakTHuxX
pemewsa HII/IJ. Yopkoc orpanndeny y KOMOMHOBamwY peliemha 300T HEIMHEAPHOCTH
cHUCTeMa M 4YMIbEHHIIE Jla HE MOTY OIIITa peliema jaa ce Haly, cama unmeHHna Ja
MOXEMO HICHTH()HUKOBATH HEKa €r3akTHA pPelIea je O] BEJIHKOTr 3Hadaja 3a 00IacT,

moceOHO KO €Balyhnpama KaKBE Cy nojaBe Moryhe Y TaKBUM CUCTEMUMA.

OBa T1e3a he ce ¢okycupatu Ha mpumeHy TexHuke @-ekcmanzuje kxopucrtehu ce
JakoOujeBuM enuntuynuM ¢yHkiujama (JED) na 6u ce pemune pazue popme HILIJJ
ca menuHeapHoihy tpeher crenena. HILIJIJ ca nenuneapunomthy tpeher cremnena je of
dbyHIaMEHTaJIHE BaXXHOCTH 3a 00JIaCT HEJIMHEapHE ONTHUKE jep OIKCYje IyTOBaHmE
CBETJIOCTM  Kpo3  Matepujan ca KepoBom  HenuHeapHowmhy.  OnpeheHum
Monudukamnujama TexHuke P-ekcmaH3uje MokeMo Hahu er3akTHa peliema 3a HIHPOKY

KJIaCy CucCTeMa.

Cucremu Koje ja mpe3eHTyjeM y Te3u uMajy ojpeheH ckym 3ajeHndYkux ocoduHa. Cee
jeAHaYrHe UMajy jeHY JIOHTUTYAUHAIHY IPOMEUBY, WIH IPOCTOPHY HIIM BPEMEHCKY,
300r MapakcHjajHe anpoKCUMallHje, U 10 Tpu TpaHchep3aaHe TUMEH3Hje, Takohe Uiu

POCPOTHE MITH BPEMEHCKE MOHA0C00. AKO Cy CBe TpaHCchep3aiHe Bapradiie MPOCTOPHE

Vi



OHJIa CYMY H-MXOBHX JIPYTrUX M3BOJIa MHOKUM ca KOepHUIMjeHTOM nudpaknuje f, a ako
je Heka ox Bapujabau  TeMIopaiHa, OHJAa TOBOPUM O  KoeduuujeHty
nudpakiuje/mucnep3uje. Ta qa koeduiyjenta (audpakiyja u qucrep3rja) MOry Jia ce
HOpMaJIM3Y]y Yy jedaH 10 Ha 3HaK. Y CiIy4ajy aHOMaJHE IucIep3uje KoehUIIHjeHTH
UMajy MCTH 3HAK, a y CJIy4ajy HOpMaJIHE TUCHep3uje cymporaH 3Hak. OcuM oBa JBa
Koe(uIlMjeHTa peayKOBaHA y jelaH, uMamo Takohe u KoeuIHjeHT y Koju oxapehyje
jauynHy HEJMHEApHOCTH Tpeher cremeHa, W KoepUIMjeHT Y Koju oxapehyje mooutak (3a

MO3UTHBHO Y) WJIM T'yOMTaK CHT'HAJA y HAIlIeM CHCTEMY.

[TpBu cucreM koju hy mpoyuutu y cBojoj Te3u je crangapana HIIJIJ ca xyOuunom
HellmHeapHouhy ¥ y aHOMallHO] M 'y HOPMaJHOj JUCHEp3Uju. Y Cilydajy HOpMajHe
JHCTIep3uje, MUMETpHja u3Mel)y MPOCTOpPHUX W BpEMEHCKe Bapujabie je pa3OmjeHa.
Jobujam ma ce pemema JBa CHUCTEMa CIMYHO TMOHAmajy. AKO c€ KOe(UTHjeHTH
mubpakiyje/aucnep3ruje 1 HeTUHEapHOCTH MOAUGUKY]y a Oyay CHHYCOHIATHU OHJA

ce MOXe JI0OUTH CTAaOUITHU COJIMTOHCKU U MyTyjyhu Tamacu.

[TpBu cucreM koju hy mpoyuutu y cBojoj Te3u je cranmapana HIIJIJ ca xyOuunom
HelmHeapHouhy ¥ y aHOMallHO] M 'y HOPMalHOj JUCHEp3uju. Y Cilydajy HOpMajHe
aucrepsuje, nuMeTpuja u3Mely NpocTOpHMX M BpEMEHCKe Bapujabie je pazOujeHa.
JloOujam na ce pemewma JBa CHCTEMa CJIMYHO MOHamajy. AKO ce Koe(pHUrujeHTH
mudpakiyje/aucnep3uje 1 HeMUHEapHOCTH MOJUUKY]y a Oyay CHHYCOHIATHU OHJA

ce MOJK€ I0OUTH CTaOMIIHU COJIMTOHCKHU U MyTyjyhu Tanacu.

3atum hy npumenutu @-ekcnaH3ujy Ha CUCTEME ca HelMHeapHoIIhy BHIIEr CTereHa,
CHelMjaTHO Ha CUCTeMe ca KyOMYHO-KBUHTHUYHOM HeJIMHeapHOIIhy M ca CeNnTHYHOM
HenuHeapHouthy. [Ipe3eHTyjeM, KOJMKO MM je MO3HaTo, IpBa €r3akTHa M cTaOuiIHa

peui€mka 3a OBE CUCTEME.

Hakon tora hy mnpumenutu wmetony Ha jeaHauuHy ['poc-Tluraesckor (I'TI).

[Tpumespyjyhu wMetony Ha jeanaumny [Tl cycpehem ce ca PukarujeBom

Vii



JTUTEPEHIINjATHOM jeIHAYMHOM KOja HEMa OIIITe pelielmhe 3a MHOore cucreme. Mnak,
Mpe3eHTYjeM MIMPOKY KiIacy peliema 3a OHE CHCTeMe KOJ Kojux ce PukarmjeBa
jeHaYMHAa MOKE PEUIMTH. 32 KOHCTAHTHY jauMHY EKCTEPHOT IM0Jba M KOSHUIIMjCHTA
nudpakiyje pemema ce pacnanajy, Te je morpedaH eKCTepHU JT0OMTaK Ja O peliemna
3apiKajla MHTEH3UTET, aJld 32 CHHYCOMAAaH OONuKe JaBe (YHKIMje MOTY ce JOOHTH
crabunHa pemema. JlogaTHa pemnema ce MOTy JOOUTH 32 KOMILJICKCHUje 00JIMKe jaunHe

€KCTEpPHOT I10Jba U KoeduiujeHTa qudpakimje.

Takohe y Ttesm hy amanmsupatu edexar numHeapHor mnoreHnujama Ha HIIJJ ca
HenuHeapHomhy Tpeher cremena. [lojaTak JMHeapHOr IMOTEHNHWjala je AETabHO

IMMPOYYCH U HOBA pCUICHA CY HaljeHa 3a OBaj CHCTCM.

Ha kpajy hy ananusuparu crabuiHocT qoOujeHux peuiema. Jlobuja ce na cy y Behunu

cnyqaja peuicwka MOAYJIallUOHO crabuiHa Kaa €€ KOPHUCTH MCHAKHUPAKC ,Z[I/ICHep?»I/Ije.
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Abstract

The progress of the field of non-linear optics greatly depends on our ability to find
solutions of various differential equations that naturally occur in the systems where light
interacts with nonlinear media. Though re-creating the systems through experiment and
performing computer simulations are the two most common and fruitful approaches, the

ultimate goal remains to find exact solutions of these systems.

The goal of this Thesis is to combine the work done in the field of finding exact
solutions to certain classes of non-linear differential Schrédinger equations (NLSE).
Most notably, there has been a breakthrough as of late in applying various expansion
techniques in finding certain exact solutions to various NLSE. Despite the limitations of
combining said solutions due to the non-linear nature of the solutions and the fact that
not all solutions can be found using these techniques, the very fact that we can identify
certain exact solutions is of tremendous importance to the field, especially when it
comes to evaluating the kinds of functions and behavior that are possible within such
systems.

This Thesis will focus primarily on applying the F-expansion technique using the Jacobi
elliptic functions (JEFs) to solve various forms of the NLSE with the cubic nonlinearity.
The NLSE with a cubic nonlinearity is one of fundamental importance in the field of
nonlinear optics because it describes the travelling of a light wave through a medium
with a Kerr-like nonlinearity. Through certain modification of the technique we can find

exact solutions in a very large class of systems.

The systems | present in this Thesis will share a certain set of common properties. All of
the equations | will tackle have a single longitudinal variable, either temporal or spatial,
due to the application of the paraxial wave approximation, and up to three transverse

dimensions, again both temporal and spatial. If all the transverse variables are spatial |



assign to the sum of their second derivatives a diffraction coefficient g whereas if one of
them is temporal, | speak of the diffraction/dispersion coefficient. The two coefficients
can be normalized into one, up to their sign. In the case of anomalous dispersion, the
two coefficients have the same sign. In the case of normal dispersion, the two
coefficients have the opposite signs. Apart from these terms which are present in the
ordinary wave equation of linear optics, we also have the third order nonlinearity whose
strength is determined by a parameter y and we also have the term y which describes the

gain of loss of the signal inside our system.

The first system | will tackle in the Thesis is the NLSE with a cubic nonlinearity, for
both the anomalous and normal dispersion. In the case of the normal dispersion, the
symmetry between the temporal and other transverse variables is broken, and a
previously unknown ansatz had to be used. | obtained that the solutions for the two
systems behave similarly. If one modifies the diffraction and nonlinearity sinusoidally,

one can obtain stable solitary and traveling wave solutions.

Then I will apply the F-expansion technique to obtain solutions for systems with higher-
order nonlinearities, most notably the Cubic-Quintic (CQ) and Septic nonlinearities. |
present, to the best of my knowledge, the first exact and stable solutions for these

system.

I then expand our method to include solutions for the Gross-Pitaevskii (GP) equation. In
applying the F-expansion technique for this equation | encounter the Ricatti equation
which cannot in general be solved for many systems. | present a large class of systems
for which there are solutions to the Ricatti equation and from these solutions construct a
large class of exact solutions for the GP equations. For constant strength of the external
quadratic potential our solutions decay and we need an external gain to maintain these
solutions, but for a sinusoidal form of the potential strength, one can obtain stable
solutions. Additional solutions can be found for more complex forms of the diffraction

coefficient and potential strength.



| then study the effect of a linear potential on a NLSE with a cubic nonlinearity. The
addition of the potential is studied in great detail and new solutions are obtained for this

system.

Finally, 1 analyze the stability of the aforementioned solutions. It is established that in
most circumstances the obtained solutions are modulationally stable when dispersion

management is used.

Keywords

Jacobi elliptic function nonlinear Schrodinger equation Gross-Pitaevskii
Field

Nonlinear optics

Specialized Field

Mathematical physics applied to nonlinear optics

UDK number: 535.58 (043.3)

Xi



Contents

1 Introduction 1
1.1 Motivation and aims . . . . . . .. ..o 1
1.2 Historical development of nonlinear optics . . . . .. ... ... ... 2
1.3 Nature of the problem and theoretical methods employed . . . . . . . 4

1.3.1 Derivation of the Nonlinear Schréodinger Equation (NLSE) . 5
1.3.2 Terms of the NLSE . . . . . . .. .. ... .. ... ... ... 9
1.4 Development of soliton solutions . . . . . . .. ... ... ... ... .. 11
1.4.1 Vortex solitons . . . . . . .. ..o 13
1.5 Methods of finding soliton solutions . . . . . . . .. ... ... .... 14
1.5.1 Inverse-Scattering theory . . . . . . . . . ... ... ... ... 15
1.5.2  Self-similar method . . . . . . . . .. ... o0 19
1.5.3 Hirota’s method . . . . . . . . ... ... L. 20
1.5.4  The Jacobi elliptic function expansion method . . . . . . . .. 21
1.6 Properties of Jacobi elliptic functions . . . . . . . .. .. .. ... .. 24
1.7 Scope and structure of the Thesis . . . . . . ... ... ... ... .. 27
1.8 Published papers . . . . . .. .. 28

2 F-expansion technique and its application to the general third-

order NLSE 30

xii



2.1 Introduction . . . . . . . . . 30

2.2 F-expansion technique . . . . . .. .. .. ... L. 32
2.3 Application of the F-expansion technique . . . . . . . ... ... ... 36
2.3.1 Results for (341)-D NLSE with anomalous dispersion . . . . . 36
2.3.1.1 Case 1: Arbitrary f(z) and y(2) . . ... ... ... 38

2.3.1.2  Case 2: Arbitrary f(z) and x(z) . . ... ... ... 51

2.3.2 Results for (I+1)D NLSE . . . . .. .. ... ... ... .. 53
2.3.3 Results for (2+1)D NLSE . . . . ... ... ... ... ..., 54
2.3.4 Results for (3+1)-D NLSE with normal dispersion . . . . . . . 55

2.4 Adaptation of the F-expansion technique for higher order nonlinearities 61
24.1 Resultsforn=1landn=2 ... ... ... ... . ...... 67

24.2 Resultsforn =3 . . . . . . . . 68

Application of the F-expansion technique to the Gross-Pitaevskii

equation 70
3.1 Imtroduction . . . . . . ... 70
3.2 Application of the F-expansion technique . . . . . . . ... ... ... 71
3.3 Solutions for proportional c« and 8 . . . . . .. ... ... 73
3.3.1 Solutions for constant o and 8. . . . . .. ... ... ... .. 75
3.3.1.1 Case 1: a and § of the same sign . . . . .. ... .. 75

3.3.1.2 Case 2: a and (8 of opposite sign . . . . .. ... .. 80

3.3.2  Solutions for sinusoidal ¢ and g . . . . . . ... ... ... .. 84
3.3.2.1 Case 1: ap and Sy of the same sign . . . . .. .. .. 84

3.3.2.2 Case 2: ag and [y of the opposite sign . . . . . . .. 89

3.4 Other systems with solvable Ricatti equations . . . . . .. .. .. .. 90

xiil



3.4.1 Solution method . . . . . ... ... ... ...

3.4.2 Application of the solution method . . . . . . .

3422 Example 2: =" 8.7 L.

3423 Example 3: § =5 (1- 525

4 Application of the F-expansion technique to the NLSE in a linear

electric field

4.1 Introduction . . . . . . . .. ..o
4.2 Method . . . . .. ..
43 Results. . . ... ..
4.3.1 Case 1: Constant eand g . . . . .. ... ...
4.3.2 Case 2: Constant € and = SycosQt . . . . ..
4.3.3 Case 3: Constant § and € = egcosQt . . . . . .

4.3.4 Case 4: = [ycosQt and € = egcosQt . . . ..

5 Two-component systems

5.1 Introduction . . . . . . . . . . . ...

5.2 Nonlinear Coupling . . . . . ... ... ... ... ...

5.2.1 Application of the F-expansion technique

522 Casel: fi=*dgand fo==4¢g;. . . . . .. ...
523 Case2:c=1. ... .. ... .. ... ...

524 Results. . . . . ...

6 Stability Analysis

104

X1v



6.1 Introduction . . . . . . . . . 125

6.1.1 Modulational Instability . . . . . .. ... ... .. ... ... 127

6.2 Nonlinear Schrodinger equation and its transformation . . . . . . .. 128
6.3 Variational approach of the modulation stability . . . . . .. ... .. 130
6.3.1 Case without chirp . . . . . .. ... ... 132

6.3.2 Casewithchirp . . . . . .. ... ... 135

6.4 Numerical simulations . . . . . . ... ... 0 Lo 136
6.4.1 Split-step fast Fourier method . . . . . . . ... .. ... ... 136

6.42 Results. . . . ... . 139

6.5 Analysis of stability for the Gross-Pitaevskii equation . . . . . . . .. 141

7 Conclusion 146

XV



List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

Jacobi elliptic functions as a function of u and M: (a) sn, (b) cn, (c)

dn, (d) Jacobian amplitude am. . . . . . .. ...

Periodic traveling wave solutions as functions of the propagation dis-
tance, for ag = 0 (without chirp) and € = 0. Intensity |u|? for: (a)
F = sn and (b) F' = ¢n, presented as functions of kyx + lyy +met and
z. Coefficients: ((z) = cos(z), v(2) = 70 = 0, M = 0.9999, by = 1,

60:0,k0:l0:m0:1,wO:0. ....................

Periodic traveling wave solutions with the chirp, as functions of the

propagation distance. The setup and parameters are the same as in

Fig. (2.1), except for ap =0.1. . . . . . ... ...

Combined intensity distributions of the periodic waves 1 and 4 from
Table (1.1) (F' = sn and F' = ns), as functions of the propagation
distance, with e = 1 for: (a) ap = 0 (no chirp) and (b) ap = 0.1 (with

chirp). Other parameters are the same as in Fig. (2.1). . . ... ...

Periodic traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in

Fig. (2.1)(a), except for: (a) M = 0.999, (b) M =0.99, (c) M = 0.9

and (d) M =0.5. . . ..o

Solitary wave solutions without chirp. The setup and parameters are

as in Fig. (2.1), except for M =1.. . . . .. ... ... .. ... ...

Solitary wave solutions with chirp. Setup is the same as in Fig. (2.5),

except for ag=0.1. . . . . . . ..

XVl

40

41

43



2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Combined intensity distributions of the solitary wave solitons 1 and

4 (F = snand F = ns). The setup is as in Fig. (2.3) except for M = 1. 43

Solitary traveling wave solutions, as functions of the propagation dis-
tance. The setup and parameters are the same as in Fig. (2.5), except
for ' =cnand: (a) 8(t) =1, by = 0.1, ag = 0, (b) 5(t) =1, by = 0.1,
ap =0.02 (c) 5(t) = —1,b9 = 0.1, ap = 0 and (d) 5(t) = —1, by = 0.1,

ao=0.02. . . .

The nonlinearity streingth given the integrability condition, as a func-
tion of the the propagation distance z and the initial chirp ag. The

parameters are the same as in Fig. (2.5), except for F' = cn and: (a)

N=1land (b) N=3. . ... ... ..

Solitary traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in

Fig. (2.5), except for: (a) F' =sn, ap = 0.2 (b) F' = cn, ay = 0.2, (¢)

F=sn,a=-0land (d) F=cn,ap=-01. ... ... .. .. ...

Solitary traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in

Fig. (2.5), except for F' = cn and: (a) by =0 (b) by = 0, ag = 0.1, (¢)

bop=0b5and (d)bp=—1.. . . .. ...

Solitary wave solutions without chirp. The intensities |u|? are plotted
of solutions: (a) 1 (F = sn), (b) 2 (F =c¢n), (¢) 7 (F = sc), (d) 8
(F =cs), (e) 4 (FF =ns) and (f) 5 (F = nc). The parameters are

otherwise the same as in Fig. (2.1), except M =1 and 7(z) = —0.05.

Traveling wave soliton solutions without chirp. The parameters are

the same as in Fig. (2.12), except M =0.9999. . . . ... ... ...

Solitary and travelling wave soliton solutions with chirp. The param-
eters in (a) and (b) are the same as in Fig. 2.12 (a) and (b), and the

parameters in (c) and (d) are the same as in 2.13 (a) and (b), except

apg = 0.1, o e

Xvil

46

48



2.15

2.16

217

2.18

2.19

2.20

2.21

Phase of the solutions B as functions of the propagation distance and
one transverse variable, assuming y =t = (. The parameters are the
same as in Fig. (2.5), except for F' = cn and: (a) ag = 0, and (b)
ao=0.1. . . . .

Solitary wave solutions for 3(z) = 1 +sin(z), fo =1, by = 1, g = 0,
ko =1lp =mo =1, wy = 0, ¢ = 0. The remaining parameters are: (a)
ap =0, F =sn and x(z) =1, (b) ap =0, F' = cn and x(z2) = —1,
(¢) ap = 0.02, F' =sn and x(z) =1, and (d) ap = 0.02, F' = cn and

Solitary wave solutions for 5(z) = 1, x(z) = —(2+sin(z)) and F' = cn.
Other parameters are the same as in Fig. (2.16), except for: (a) ag = 0

and (b) ag=10.02. . . . . .. L

Values of (z) needed to achieve solution, as given in Eq. (2.59).
Parameters in (a) are the same as given in Fig. (2.16), whereas the
parameters in (b) are the same as given in Fig. (2.17). In both graphs
ag = 0 for the lower plot and ag = 1 for the upper plot. . . . . . . ..

Solutions for a sinusoidal chirp of the (241)-D NSLE. The parameters
are: az) =sin(z), y(z) =sin(z), fo=1,bo=1,e0 =0, kg =lp = 1,
wp=0,e=0and: (a) M =1, F =sn, (b) M =1, F = cn, (c)
M =0.999, F=snand (d) M =0.999, F=cn. . ... ... .....

Solutions for B(z) = —m, v(z) = cos(2)/2, F = sn, M = 1.
Other parameters are the same as in Fig. (2.19) except for: (a) a =0

and (b) a =142z . . ...

Solitary wave solutions as functions of the propagation distance, for
ag = 0 (without chirp) and € = 0. Intensity |u|? of: (a) solution 1 and
(b) solution 2 from Table (1.1), presented as functions of koz + loy +
mot and z. Other parameters are: (z) = cos(z), y(z) = v = —0.05,
M=1,bg=1,e0=0,kg=lo=mog=1,wo=0.. .. ... ... ...

Xviil

51

o4

56



2.22

2.23

2.24

2.25

2.26

2.27

3.1

3.2

3.3

Solitary wave solutions with the chirp, as functions of the propagation
distance. The setup and parameters are the same as in Fig. (2.21),

except for ag =0.1. . . . . . ... L

Traveling wave solutions without chirp. The setup and parameters

are as in Fig. (2.21), except for M =0.9999. . . . . .. ... .. ...

Traveling wave solutions with chirp. Setup is the same as in Fig.

(2.23), except for ag =0.1. . . . . . . ...

Soliton solutions for the cubic-quintic model n = 2 as a function
of the propagation distance, for: (a) ap = 0 (without chirp) and
(b) ag = 0.1 (with chirp) for the F' = sech solution. Intensity |u|?
presented as a function of kox + loy — 2ot and z. Other parameters

are: 3(z) = cos(z), v(z) =7 = —0.05, M =1, by =1, ¢ =0, e =0,

Soliton solutions for the septic model as functions of the propagation
distance. The setup and parameters are the same as in Fig. (2.25),

except forn =3, F=tanhande=1.. . .. ... ... ... .....

Periodic traveling wave solutions for the septic model as functions of
the propagation distance. The setup and parameters are the same as

in Fig. (2.26), except for M =099 and F=sn. . . .. ... .. ...

Decaying bent solitary wave solutions to GPE as functions of time, for
bo = 1. Intensity |u|? for: (a) F' = tanh and (b) F = sech presented
as functions of kgz + loy + moz and t. Other parameters are: § =1,

a=1,7v(t)=-0.05a=0,e0=0,kg=lp=my=1,wy =0, e=0.

Decaying straight soliton solutions to GPE as functions of time. The

setup and parameters are the same as in Fig. (3.1) except for by = 0.

Decaying traveling wave solutions, given in terms of JEFs for: (a)
F = sn and (b) F' = cn. The setup and parameters are the same as

in Fig. (3.2), except for M =0.99. . . .. .. ... ... ... ....

XixX

60

61

76

77



3.4

3.5

3.6

3.7

3.8

3.9

3.10

Bent soliton solutions as functions of time for: (a) F' = sn and (b)
F = cn. The setup and parameters are the same as in Fig. (3.1),

except for v(t) = 3/4/2, the critical value of v. . . . . . .. ... ...

Straight soliton solutions as functions of time. The parameters are

the same as in Fig. (3.4) except for by =0. . . . . .. ... ... ...

Traveling wave solutions in terms of JEFs. The parameters are the

same as in Fig. (3.5), except for M = 0.99. (a) F'=sn and (b) F' =cn. 79

Solitary wave solutions to GPE as functions of time. Values of pa-
rameters are: J = 1, « = —1, v(t) = —0.05, ap = 0, eg = 0,
ko =1lp=mg =1, wy =0, ¢ = 0. Intensity |u|® for (a) F' = tanh,
by = 2 and for the remaining graphs F' = sech with: (b) by = 2, (c)
bop = 0 and (d) by = —2 presented as functions of kox + lopy + mez and
t, where ¢ is shown from 0 to 7/4 —0.01. . . . . ... ... ... ...

Solitary wave solutions to the GPE as functions of kqx+Ilyy+mgz and
t, where t is shown from 0 to 7'/2 — 0.01. The setup and parameters
are the same as in Fig. (3.7)(d) except for: (a) ap = 0.1, (b) ag = 0.5,
(c)ag=1land (d) ag=2. . . . . . ...

Traveling wave solutions to the GPE as functions of kox + loy + mgz
and t, where t is shown from 0 to 7'/2 — 0.01. The setup and param-
eters are the same as in Fig. (3.7) except for M = 0.99, ag = 1 and:
(a) FF=sn, by =0, (b) F=cn, by=0, (c) FF=sn, by = 10 and (d)

Soliton solutions to Gross-Pitaevskii equation as functions of time,
for the sine case: a(t) = agsin(Qt), B(t) = Bysin(Qt). Intensity |ul?
presented as functions of kgz + lyy + mez and ¢ for: (a) F' = tanh,
bp =0, (b) F' = sech, by =0, (c) F = tanh, by = 1 and (d) F' = sech
by = 1. Other parameters are: ag = 1, fo = 1, Q = 1, y(t) = —0.05,

CLQIO,(EO:O,k’ozlo:mo:l,WQIO,EIO. ............

XX



3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

Soliton solutions to Gross-Pitaevskii equation as functions of time
for the cosine case: «(t) = agcos(Q), B(t) = Pocos(2t). Other

parameters are the same as in Fig. (3.10) . . . . . . ... ... .. ..

Traveling wave solutions to Gross-Pitaevskii solutions in terms of
JEFs for the sine and the cosine case. The parameters for (a) and
(b) are the same as in Fig. (3.10) (a) and (b), and the parameters
in (c) and (d) are the same as in Fig. (3.11) (a) and (b), except for
M = 0.99. For figures (a) and (c) we have F' = sn and for figures (b)

and (d) wehave F'=cn. . . . . ... ... . ... ...

Soliton solutions to Gross-Pitaevskii equation as functions of time
for the cosine case: «(t) = agcos(Q), 5(t) = Pocos(2t). Other
parameters for figures (a) and (b) are the same as in figures Fig.

(3.10)(c) and (d), respectively, except for by = —by = 1. . . .. ...

Graphs of parameters for Example 1: (a) «(t), (b) a(t) for ap = 0
and (c) a(t) for ag = 1, for 6 = 0.01,0.1, 1,10 (top to bottom).

Intensity distribution |u|?> for the solution of Example 1. (a): no
gain/loss. (b): v = —0.05. Here F' = sech. Other parameters are:

ao=fo=ko=lpo=mog=wy=1,bp=e=0and d=5. . .. .. ...

Graphs of parameters for Example 2: (a) a(t), (b) a(t) for ag = 0,
and (c) a(t) for ap = 1. Parameters: N =0,1,2,3,4 (top to bottom
at t = 0.5 for «, bottom to top at t =3 for a), B, =1. . .. ... ..

Graphs of parameters for 5(t) = cos(Qt): (a) a(t), (b) a(t) for ag =0
and (c) a(t) for agp = 1. Here Q = 6,7,8,9,10. Curves with higher

peaks correspond to lower valuesof Q. . . . . ... ... ... ...

Intensity distribution in Example 2, with by = 0 (left), and by = 5
(right). Here F' = sech. In both cases, 2 = 8. Other parameters:

ap=fo=ko=lpy=mog=wo=1,v=e=0. . .. ... ... .. ...

Intensity distribution in case 3, with no gain/loss (7 = 0). Here,
I = sech. Other parameters D = 10, By = —1, ag = B1 = fo = wy =

eozk‘o:lg:mo:ﬂ:l,andbon. .................

xx1

88

99

103



4.1

4.2

4.3

4.4

4.5

:Soliton solutions for # and e constant as functions of time. Intensity
|u|* for F = sn in Figures (a), (c¢) and (e) (F = tanh for M = 1)
and F' = cn in Figures (b), (d) and (f) (£ = sech for M = 1) is
presented as a function of kox + loy + mez and t. Other parameters
are: M =1,0=1,00=0,e0=0,kg=Ilg=mog=1,wy=0,e=0.2,
= 0. Figures (a) and (b) are with no chirp or gain: ag = 0, v(¢) = 0,
Figures (c¢) and (d) with chirp: ap = 0.1, v(¢) = 0 and Figures (e)
and (f) are with chirp and gain: ag = 0.5, y(t) =3/(2¢). . . . . . . ..

Traveling wave solutions for 8 and e constant as functions of time.

The parameters are the same as in Fig. (4.1) except for M = 0.995.

Soliton and traveling wave solutions for 8 = [y cos 2t and € constant.
Intensity |u|? for F' = sn in Figures (a), (¢) and (e) (F = tanh for
M =1) and F = cn in Figures (b), (d) and (f) (F = sech for M = 1)
presented as a function of kgx + loy +mpz and t. Coefficients: Sy = 1,
V() =0,bp=1,e0=0,ky=lpo=mg=1,wy=0,e=01Q=1,
v(t) =0, 6 = 0. Figures (a), (b) depict solitary waves with no chirp:
ap = 0, M =1, Figs. (c
M = 1, and Figs. (e),

M =0.99999. . . . ..

), (d) solitary waves with chirp: ag = 0.1,
(f) traveling waves with chirp: ap = 0.1,
Soliton and traveling wave solutions for 5 constant and e = ¢ cos §2t.
Intensity |u|? for ' = sn in Figures (a), (¢) and (e) (F = tanh for
M =1) and F = cn in Figures (b), (d) and (f) (F' = sech for M = 1)
presented as a function of kgx + lopy + moz and t. Other parameters
are: B =1,79(t) =0,a0=0,e0 =0, kg =1lp=mg =1, wy =0,
¢ =10=1,0=0. Figures (a), (b) depict solitary waves with no
bo: M =1, by = 0, Figures (c), (d) solitary waves with by: M = 1,

by = 1, and Figures (e), (f) traveling waves with by: M = 0.99, by = 1.

Soliton and traveling wave solutions for § constant and € = ¢; cos 2t
with chirp and gain. The parameters are the same as in Fig. (4.4)

except for ag = 0.5, y(t) =3/(2t). . . . . . ..

xxil

. 110

113



4.6

5.1

5.2

9.3

6.1

Soliton and traveling wave solutions for g = [y cos 2t and € = ¢ cos (2t
as functions of time. Intensity |u|? for F' = sn in Figures (a), (c) and
(e) (F = tanh for M = 1) and F' = cn in Figures (b), (d) and (f)
(F = sech for M = 1) presented as a function of kox + loy + moz
and t. Coefficients: fy = 1, y(t) = 0, ag = 0, by = 1, g = 0,
ko =1lpo=mp=1wp=0,¢ =3, Q=1,90 =0. Figures (a), (b)
depict solitary waves with no chirp: ag = 0, M = 1, Figures (c) and
(d) depict solitary waves with chirp: ap = 0.1, M = 1 and Figures
(e) and (f) depict traveling waves with chirp: ag = 0.1, M = 0.999 .

Traveling wave solutions for /' = dn and G = nd constant as functions
of time. Intensities: (a) |ui|?> and (b) |uz|? are presented as a function
of kox and z for (z) = fycosQz. Other parameters are: M = 0.99,
bp=0,e0=0,kg=lo=mg=1,wo=0, Q=1 =1, v =0,
e=¢=1landd=—1. . . .. ... ...

Traveling wave solutions as functions of time. The parameters are

the same as in Fig. (5.1) except for ap =0.1. . . . . . . ... ... ..

Traveling wave solutions as functions of time. The parameters are

the same as in Fig. (5.1) except for F =snand G =de. . ... ...

Numerical simulation of the light bullet from Fig. (2.5)(b). Initial
data from Eq. (2.56) are propagated according to Eq. (2.30) for
90 diffraction lengths along the z axis. Only the dependence on t is
shown. The initial profile is noted by open circles. The curves to the
left present intensity profiles at the left turning point, the curves to
the right the profiles at the right turning point. The curves at the
center are snapshots of the profiles passing approximately through
the point t = 0 (i.e., the frames closest to t = 0 are recorded). Three
sets of 15 profiles are overlapped at different z points, to show that

no instabilities develop. . . . . . . . ..o 0oL

xxiil

. 116

124



6.2

6.3

6.4

6.5

6.6

6.7

(a) Nonlinearity parameter d for solutions cn and sn. (b) The growth
rate parameter v for dark an bright solitons as a function of K for the
case 00, = 1. Modulational instability occurs for values of K depicted
on the respective graphs. The solid lines represent the theoretical
calculation of K using Eq. (6.33), and the square and circle dots are
values of v measured using numerical simulations, in which the dark
and bright solitons, respectively, were perturbed by a small wave of

the given wave number K. . . . . . . . . ..o

(a) Theoretical values of log|U/Uy| based on Eqs. (6.25)-(6.26) for
ap = 0. (b) Theoretical values of |U/Uy| based on Eqs. (6.25)-(6.26)

forag=0.1. . . . .

Maximum amplitude of oscillations plotted against €2 and K. Param-
eters used: By =0, f1 =1, d = 8/3, (a) ag = 0, (b) ap = 0.02, (c)
ap = 0.1 and (d) ap = 0.3. The contour boundaries, starting from the

color purple are: 1, 2, 5, 10, 20, 50. . . . . . . . ... ... ... ...

Development of modulational instability for the bright soliton for
three different values of z. Here, x is the direction of perturbation, y
is the direction of the soliton and ¢ is the remaining transverse direc-
tion. Lower-wavelength colors (i.e. towards the color red) indicate a

higher value of [ul?. . . . . . ... ...

Development of modulational instability for the dark soliton for three
different values of z. Here, x is the direction of perturbation, y is the
direction of the soliton and ¢ is the remaining transverse direction.

Lower-wavelength colors (i.e. towards the color red) indicate a higher

Evolution of the modulus of the perturbation amplitude |U| of bright
solitons in time for different values of 2: a) 2 =1, b) Q = 8. In both
figures ap = 0.3. Other parameters: K = 1, oy = 0.3 [black, (upper)
solid line]; K = 1, oy = 0.1 [black, (upper) dashed line]; K = 4,
ap = 0.3 [red, (lower) solid line] and K = 4, ap = 0.1 [red, (lower)
dashed line|. . . . . . ..o

132



6.8 Maximum amplitude of oscillations plotted against €2 and K. Pa-
rameters used: Sy = 0, f; = 1, d = 8/3, (a) ap = 0.5, ag = 0,
(b) ap = 0.05, ag = 0 and (c) ap = 0.05, ap = 0.15. The contour
boundaries, starting from the color purple, are: 2, 5, 10, 20, 50, 100. . 145

XXV



List of Tables

1.1 Jacobi elliptic functions . . . . . . . . . ... ... 25
2.1 Values of r-parameters . . . . . . . . . .. ... ... 65
5.1 Possible choicesof Fand G . . . . . . .. ... ... ... ..., 122
6.1 Stability cases . . . . . . ... 135

XXV1



Chapter 1

Introduction

1.1 Motivation and aims

The field of nonlinear optics (NLO) has made very important advances in the last
50 years and has yielded important theoretical and practical contributions to a di-
verse range of fields: medicine, chemistry, engineering, telecommunications, biology,

optics, as well as other branches of physics (1; 2).

The biggest challenge in nonlinear optics is finding solutions to the nonlinear
partial differential equations that naturally occur in the systems studied (3; 4). In
particular, localized solutions to nonlinear equations that exhibit no change of form
and which remain unperturbed are called solitons and have important applications

in telecommunications, more specifically in the utilization of optic fibers.

The field of finding exact solutions to nonlinear patrial differential equations
(PDEs) is huge and many sophisticated methods have been devised to find them.
Among the most prominent are: the inverse scattering technique (5; 6), the self-
similar method (7), Hirota’s method (8), the Wronskian technique (9), the Back-
lund transformation (10), the truncated Painlevé expansion (11) and the function

expansion method (12).

The advent of powerful symbolic computation systems, such as Mathematica,
has made new methods of finding direct solutions feasible. In particular, it became

possible to effectively implement function expansions of the solutions in terms of



various functions, most notably the exponential functions, including the hyperbolic
functions, and various elliptic integrals and functions, such as the Weierstrass elliptic

functions and also the Jacobi elliptic functions (JEFs).

The term F-expansion technique unless indicated otherwise will be used in this
Thesis to refer to the expansion of solutions in terms of Jacobi elliptic functions.
The functions themselves have properties which make them suitable for solving, with
some modification, a large array of nonlinear partial differential equations. The main
goal of this Thesis will be to expand the applicability of the F-expansion method
to several important forms of the Nonlinear Schrédinger Equation (NLSE) and the
Gross-Pitaevskii (GP) Equation.

1.2 Historical development of nonlinear optics

Following (2), we will give a brief outline of the historical development of the field

of nonlinear optics.

The field of nonlinear optics began in the 19th century when John Kerr discov-
ered the first instance of a quadratic electro-optic effect (13). Kerr observed the
dependence of the index of refraction on the application of the electric field, a phe-
nomenon that is now referred to as the DC Kerr effect. This is not to be confused
with the optical Kerr effect, also known as the AC Kerr effect, where the change
of the index of refraction comes purely from the light itself, though we shall for
brevity sake refer to it as the Kerr effect in subsequent sections, as we will not be
dealing with the DC Kerr effect in this Thesis. The discovery of the DC Kerr effect
was immediately followed by the discovery of the linear electro-optic effect, i.e. the

Pockels effect, named after its discoverer, Friedrich Pockels (14).

Unfortunately, the field of nonlinear optics did not take off upon the discoveries
of the Kerr and Pockels effects. Though the connection between light and electricity
was well known, the theoretical basis for nonlinear effects in optics were still a
mystery. However, with the advent of modern atomic theory in the early 20th
century, i.e. the discovery of the true structure of the atom, it became possible

through the effect of atomic polarization to develop he theoretical basis that would



explain these nonlinear effects.

The first theoretical basis for a nonlinear optics phenomenon that did not in-
volve an external electric field, the two-photon absorption, was developed by Maria
Goppert-Mayer in her Ph.D. Thesis (15). Goppert-Mayer discovered that it is the-
oretically possible for an atom to simultaneously absorb two photons leading to an
energy excitation equal to the combined energies of the two photons. Like the Kerr
effect, this effect depends on the intensity of light. Subsequently, Buckingham for-
mulated the theory of molecular orientation in a strong magnetic field leading to a
description of the optical Kerr effect (16) and then Piekara and Kielich developed

the first theoretical formulation of the principles of nonlinear optics (17).

Due to the high intensities of light required to observe the nonlinear effects,
most nonlinear optics effects remain unobserved. This changed with the advent of
the laser (18), allowing scientists to produce high-intensity coherent beams of light,
after which the field of nonlinear optics underwent a period of rapid development.
In particular, the field of experimental nonlinear optics was established with the first
nonlinear effect observed, namely the second harmonic generation (SHG) (19). Var-
ious other nonlinear optical effects were also very quickly observed: third harmonic
generation (THG) (20), sum and difference frequency generation (SFG and DFG)
(21), optical rectification (OR) (22), two-photon absorption (TPA) (23; 24), light-
induced rotation (25; 26), stimulated Raman scattering (SRS) (27), the AC Kerr
effect (28), self-phase modulation (SPM) (29; 30), cross-phase modulation (XPM)
(31) and four-wave mixing (FWM) (32; 33).

The discovery of these nonlinear effects has led to numerous practical applica-
tion. One of the earliest was the so-called frequency doubling, as a result of SHG.
This has allowed the construction of lasers emitting light in the visible range whose
natural frequency, i.e. the difference in energy levels, would otherwise be somewhere
in the infrared range (34; 35). Additionally, the effect of optical phase conjugation
is used in holographic technology (36) and data encryption (37). NLO also has the
prospect of being useful in the development of quantum computers, since the inter-
action of two beams of light in a nonlinear medium has the possibility of producing

a control-NOT gate, vital for the creation of a quantum computer (38).



One of the key applications of NLO is in telecommunication (2). Relatively
quickly after the discovery of the first nonlinear effects, it was realized that optical
wave-guides could be used to carry signals over a long range of distances (39).
Gradually, through the improvement in the quality of the optical fibers (40; 41), the
loss of signal was gradually reduced to levels where the use of fiber-optical cables

for long-distance communication became feasible (42).

The challenges today in NLO involve finding new materials that exhibit unique
optical properties. Recently, a whole new class of materials, called metamaterials,
was developed (43; 44). These materials exhibit striking properties such as a negative
index of refraction (45; 46). As will be elaborated later on, these materials will
allow us to produce stable solitary wave solutions for various physical systems, most

notably the Nonlinear Schrodinger Equation (47).

1.3 Nature of the problem and theoretical meth-

ods employed

The Nonlinear Schrédinger Equation (NLSE) is one of the most prominent equations
in nonlinear optics (48). It naturally arises in the study of the Kerr effect. Finding
and classifying exact solutions to the equation remains an ongoing and active area
of research within the field of NLO (49; 50). In systems governed by the NLSE,
the index of refraction depends on the intensity of light this produces self-focusing,
which, if balanced by the effects of diffraction or dispersion, can produce spatial
or temporal soliton solutions to the NLSE, respectively (4). The solutions of the
NLSE we obtain in this Thesis can most accurately be classified as spatio-temporal
travelling wave and solitary wave solutions, though we will often refer to the solitary

solutions as solitons.

In this section, we will attempt to give a brief overview of the derivation of
the equations which occur in this Thesis. All of the equations we will be dealing
with ultimately stem from the NLSE. The derivation of the NLSE is a standard
derivation in the field of nonlinear optics and here we will present a brief summary

of this derivation, following (3), (4) and (51).



1.3.1 Derivation of the Nonlinear Schrodinger Equation

(NLSE)

The standard Maxwell’s Equations in differential form in the absence of external

charge and current (in SI units) are:

vXﬁ:-EE (1.1)

ot '’

oD

v.-D = o (1.3)
v.-B = (1.4)

where ﬁ, ﬁ, B, § are, respectively, the electric field, the magnetic field, the
electric displacement and the magnetic induction and V = %2 + a%j + %fc is the
gradient operator. The relationship between the magnetic field and the magnetic

induction is:

B = po(H + 1), (1.5)

while relationship between the electric field and the electric displacement is:
D=cF+P, (1.6)

%
where M is the magnetic moment, which we assume to be equal to 0, and ? is
the polarization response of the material. Here, ¢y and pg are coefficients of electric

permittivity and magnetic permeability of vacuum, respectively.

The polarization response ? can be given in the form of the following tensor:

) k
k
Pi(rt) =0 xip g ] B (17)
k=1 =1

where 14, j1, ..., jr are indices representing one of the three spatial directions, x, y
or z, and P; is the polarization response in the ¢ direction, which we will separate
into the linear B®) (k =1) and the nonlinear P (k > 1) responses. Assuming
only the diagonal terms x,, to be present and mutually equal for all directions due
to symmetry, we obtain ?(L) = eoxmﬁ. Plugging Egs. (1.5)-(1.6) into Egs. (1.1)-
(1.4), then combining Equations (1.1)-(1.4) by applying the curl operator to Eq.

(1.1) and plugging Eq. (1.2) into the RHS of Eq. (1.1), we obtain the standard
)



wave differential equation:

2 B n2 82 - 82 (NL)

Here we have used the well-known identity:
VXVxE=V.(V-E)-VE (1.9)

and assumed V - E = (), which is only approximately true in the nonlinear regime.
In practice, this approximation amounts to ignoring the longitudinal components
of E and P (3). The parameter n given in the equation is the index of refraction
defined by the formula n? = 1 + y,,. If all terms in ? vanish except x!), then ﬁ
and D are proportional, PO — 0 and one obtains all the results of standard linear
optics. If, however, higher order terms exist, then one enters the field of so-called
nonlinear optics. The primary difficulties that these higher order terms introduce
is that they make the wave equations that are derived from Maxwell’s equations

nonlinear.

It can be shown, however, that in the presence of inversion symmetry many
terms vanish, most notably the second-order terms (3). Of the third order terms
of great interest is the term Y,;., which produces the so-called Kerr nonlinearity,
which, as a result, makes the effective index of refraction dependant on the intensity

of light.

We now assume that the only term that exists is Y.z and we assume that this
term is real, i.e. we assume there is no nonlinear gain in our system. Switching
to the frequency domain, we also assume the solution of the equation to be a wave

envelope of the following form:
1 )
E _ 5 <X($,y, Z,t)GZ(kOZ_th) + C.C.) , (110)

where 7c.c.” stands for the complex conjugate of the previous expression, wy is the
central frequency and kg = k(wp) is the corresponding wave-number. The dispersion
relation between parameters k and w is k = wn/c. The polarization term has the
similar form, i.e:

P =

% (P (,y, 2, t)e'ho=m0D 4 ce ). (1.11)



Plugging Eq. (1.10) into the third order term of Eq. (1.7) and neglecting third-

harmonic generation we obtain
3
?(NL) ZEOchxx|A‘ZZ (112)

Applying the Fourier transform to Eq. (1.8) and taking into account the dispersion

relation we obtain the following equation:
(V2 1+ k(W) E (@) = — o PVD (). (1.13)
Plugging in Eqgs. (1.10)-(1.11) into Eq. (1.13) we obtain:

82 82 62 a
(@ o T T2k, ko + kQ(W) A2, ylw) = —poe? PP (w), (1.14)

where X(w, y|w) is the Fourier transform of X(x, y,t). We now make the assumption

that k is a slowly varying function of w around wy and hence that we can write:

= Z —J (w — wp)’ (1.15)
=0

1

. . . 2
where kg = nowo/c, ki = j—ﬂwo = ;I8 the inverse group velocity and ky = 4%

dw? |W0

is the second order coefficient known as the group velocity-dispersion parameter
(4). This term will be crucial in counteracting the Kerr effect and producing stable
solitons. We will ignore terms higher than this order. Plugging in the truncated

expression of Eq. (1.15) into Eq. (1.14) and applying the inverse Fourier transform,

we obtain
0? o? 02 0 2 20 kO
<@+a—y2+@+2’lk0$_ko+ <k0+lkla 2 at2> > Z(:’U?th)

a 2
= —1 <w0+z§) TN (1.16)

We now apply the paraxial approximation which states that the envelope A of
our beam is slowly varying in the longitudinal direction, in our case the z direc-

tion. In other words, the following assumption hold on the derivatives of the wave

2A dA| |24 dQZ‘

22 dz dx? dy?

amplitude A:
< 2ik

Y

(1.17)

We also make a similar assumption for time, i.e. that the amplitude varies slowly

in time. In practice, this will mean neglecting time derivatives higher than 2 on the
7



LHS and 1 on the RHS. We will also assume that Z maintains polarization and,
as mentioned before, that its longitudinal component is negligible, in which case we
can switch to the scalar form of our equations and drop the vector signs. Applying
all these approximations, and plugging in Eq. (1.12), we obtain:

P*A  PA PPA . 0A . 0A D*A 3
2 + ayQ + 022 + 22]605 + 21]@'0’{31@ — (k?% + kgkg)ﬁ = _ZMOWSEOX$JJZ’Z‘|A|2A’
(1.18)

We now introduce the following change of variables: 7 =t — kyz. This is time in
the frame moving with the group velocity of the pulse. The slowly-varying-in-time

approximation for the amplitude means that:

ki

0A
— k 1.1
87" < Fo (1.19)

and, in accordance with the chain rule, the derivatives in the 7 and z directions now

become:
0 0 0
02 o2 089 L0
0 0
— —. 1.22
ot or (1.22)

Combining Eq. (1.17) and Egs. (1.19)-(1.29) into Eq. (1.18) and dividing the
expression by 2k, we obtain

2 2 2 2
z’aa—‘j + 2%0 @7’3 + %) - %27‘3 - ——3“OW%Z)OX“” |A]2A. (1.23)
We can now perform a re-scaling of 7 to align it with the other transverse variables:
7" = 7(y/|koks]). From now on, we will for simplicity write 7/ as ¢ (we will not
be using the original “real” time anymore in our Thesis). We will also re-scale the
amplitude of the beam so that the integral squared is equal to the power of the

beam, rather than the intensity, by introducing a new variable: u = Ay/Scs¢, where

Sers is the effective area of the beam.

After re-scaling Eq. (1.23), we finally obtain:

Ou  Bz) (Pu  Pu  Pu 2
52 T2 (8372 Tor Tt ) T X(2)ul*u = iy(2)u, . (1.24)

This equation is known as the the time-dependent Nonlinear Schrodinger Equation

(NLSE) with cubic nonlinearity (the order of w in the nonlinear term). Unless
8



otherwise indicated, we will assume all our NLSEs to have cubic nonlinearity. The
form of the NLSE given in Eq. (1.24) will serve as the basis of the remainder of this
Thesis. Here,

Bz) = - (1.25)
0
is the diffraction/dispersion parameter,
3#05‘}3 €oXzzax
= 0 P ATee 1.26
(z) = i (120
is the strength of nonlinearity and s = —sgn(koks) is the sign parameter which
describes whether the dispersion is normal s = —1 or anomalous s = 1. We have

also introduced a new parameter 7(z) which will describe the external gain (for
positive 7) or loss (negative «y) given to the system. Another thing to note about
Eq. (1.24) is that we have purposely chosen all our parameters to be dependent
on the longitudinal variable z. Furthermore, we allow all our parameters, especially
[, to be both positive and negative. It is possible for 5 to be negative when the
index of refraction is negative, which has been achieved for various types of meta-
materials (44). Our goal is to use the variability of these parameters, especially
the regimes where 3 oscillates between positive and negative values, to obtain novel

spatio-temporal travelling wave solutions to the multidimensional NLSE.

1.3.2 Terms of the NLSE

In this subsection we examine the appearance of various nonlinear terms in the

NLSE which will be used throughout this Thesis.

An important fact about Eq. (1.24) is that it is extremely versatile and can
be adapted for a whole range of systems. We have already seen that the equation
covers both the normal and anomalous dispersion for s = —1 and s = 1, respectively.
However, we can also obtain the time-independent NLSE that ignores the effect of
temporal dispersion if we put s = 0. In addition, we can place our beam within
waveguides that support only a single mode, i.e. the fundamental mode, depending
only on a given transverse direction. In this case, we can factorize the dependence
of w along that direction out of our NLSE, and in this case Eq. (1.24) no longer

contains the selected transverse derivative (4). We can thus write the most general

9



form of the NLSE as follows:
B
. 2 2 .
i0,u + - ;_0 50, u + x(2)|u v = iy(2)u, (1.27)

where z( is time and x;, ¢ > 0, are the spatial transverse variables. Here sy =
—1, 0, 1, depending on whether we are looking at the case of normal dispersion, the
time-independent equation, or anomalous dispersion, respectively, and s; = 0, 1 for
1 > 0 depending on whether there is a waveguide perpendicular to the x; direction
or not, respectively. Obviously, N = 1,2. Note that in Eq. (1.27) the partial
derivatives are written as indices, a notation we will frequently use. We will also
generalize the NLSE to higher-order nonlinearities. Instead of looking at only the

third-order nonlinearity, we will make the following substitution in Eq. (1.24):

X|u|2u—>xl|u|2u—l—x2 |u|4u+---+xn |u|2"u. (1.28)

We now turn to the other terms that can be added to our equation. The first term
that we will add to Eq. (1.24) is the external potential V' (x,y, z, t)u. The potential is
typically added for equations in which the time t is the longitudinal variable and all
the spatial variables are transverse. In other words, ¢ and z exchange roles. In that
case, it is convenient to study potentials of the form V (x,y, z,t) = f(t)(a? +y? 4 27),
where f is some function of time. For p = 2 one obtains the Gross-Pitaevskii
equation in the standard harmonic potential, and for p = 1, one obtains the NLSE

in a linear potential. Both of these cases will be covered in this Thesis.

Finally, we will also examine the additional optical effects. In our derivation
of Eq. (1.24) we assumed only the term X,... exists, which leads to the optical
effect known as self-phase modulation (SPM) that is accounted for in Eq. (1.24).
However, other terms may also exist if the beam is not linearly polarized or is indeed
itself a combination of two co- or counter-propagating beams. In this case, other
components of the x® can then cause the two beam components to interact with
each other and, as a result, we can in many cases observe the effects of cross-phase
modulation (XPM) and four-wave mixing (FWM). Accounting for these effects in
a more general calculation than one done in Sec. 1.3.1, we obtain an equation in

which the following substitution is done with respect to Eq. (1.24):

|u2|u—> !uz‘u+c|v2}u+fv2u*, (1.29)
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where:
2 (X(z:;)yy(WS w,w, _W) + Xﬂ(c:gl)yﬂC(W; W _w7w> + X:g/)‘ty(W; W, W, _w)>
. 5 ,(1.30)
3X:p:m:x<wy w, w, —(.O)

3 3 3
Fo= chﬂc)yy(‘fd;_wawaw)+X§6?}yw(w3wvwv_w)+X§ry)wy(°~’;w>—w7w)

. (1.31)
SX:S;?})m(w;w,w, —w)

v is the second component and u* is the complex conjugate of u (3). Here we have
used the standard notation in NLO for the frequency, (w;ws,...,ws), signifying
that the nonlinearity coefficient y corresponds to a wave of frequency w = w; +
-+ wy, generated by waves with frequencies wy, ..., wy, where negative frequencies
correspond to the complex conjugate terms. The coefficients ¢ and f correspond
respectively to XPM and FWM. A symmetric equation can also be written for v,

thus giving us a system of two equations with two unknowns.

In our Thesis we will neglect the effects of FWM, i.e. we will have f = 0 in all
our systems. This occurs when the mechanism through which nonlinearity occurs
is slow, e.g. through photorefractive effect or the change of the temperature of
the material (3). On the other hand, the CPM coefficient ¢ can have a range of
values, both arbitrarily large (52) and even negative (3; 53). For ¢ = 1 we have the
so-called Manakov system, which occurs for two mutually incoherent beams (54),
whereas ¢ = 2 occurs for coherent polarized beams in highly birefringent media
(54; 55). In Sec. 5 we will obtain solutions for the two-component system when

c=3.

1.4 Development of soliton solutions

In this section we will give a brief historical overview of the development of soli-
tary wave, i.e. soliton, solutions to nonlinear partial differential equations, as well
as methods developed for finding such solutions. It is typical in most literature
on nonlinear optics to refer to all solitary wave solutions as solitons (4) and, as

mentioned before, we will employ this terminology in this Thesis.

Solitary waves were originally observed by John Scott Russell on the Union
Canal at Hermiston in Edinburgh (56). Observing solitary waves travelling along the

narrow canal Russell postulated that these solitary waves display many properties
11



of a classical particle. It is only in the middle of the 20th century that his discovery
began to be developed.

In the paper by Fermi, Pasta and Ulam (57) evidence first emerged that vibrating
modes on an anharmonic lattice exhibit quasi-periodic behavior. Further research
by Zabusky and Kruskal confirmed this (58). In their study of a variant of the
Korteweg-de-Vries (KdV) equation, it became clear that several distinct waves form
in the waves which seem to retain their identity even after colliding and interacting
with the other waves. This led to the coining of the term “soliton” emphasizing
the particle-like nature of these waves. Other systems in which such behavior was

analyzed were the NLSE and the sine-Gordon (SG) equation.

Solitons can be classified based on their shape as either bright solitons, where
a signal of light travels on a dark background, dark solitons where a dark signal
(absence of light) travels against a background of light, and so-called gray solitons,
which are similar to dark solitons except that the intensity of light never drops to 0

as is the case of dark solitons (4).

The first optical pulses in fibres, i.e. temporal solitons, for systems with Kerr
nonlinearity were theoretically constructed by Hasegawa and Tappert and then ver-
ified using computer simulations (59; 60). They proved that the dispersion term
which causes pulses to widen could be balanced by the nonlinear Kerr effect which
causes pulses to contract, giving us stable soliton solutions to the NLSE (61). This
was experimentally verified by Mollenauer (62) and the transmission of dark solitons
was verified by Emplit and his group (63). Since then, optical pulses have been ex-
tensively used in telecommunication for transferring clear signals that do not decay

in time and also do not mix and interfere with each other (42; 64).

The first evidence of spatial solitons in nonlinear optics was demonstrated by
Bjorkholm and Ashkin (65), who used a dye laser passing through a chamber filled
with sodium vapor to achieve this. Soon, spatial solitons were observed in other
kinds of media (66), most notably within a semi-conductor wave-guide (67). A
novel medium in which spatial solitons have been achieved are nematic crystals
(68) and the solitons produced there are known as nematicons (69). The most

attractive feature of nematicons is that due to the reorentational nonlinearity of

12



nematic crystals they can be generated at a relatively low power (70). The study of

the propagation of light inside nematic crystals remains an active area of research

(71; 72).

Of all forms of solitons, the most complex form are the so-called vector solitons
(73). They can be viewed as solitons which are elliptically polarized. These types
of solitons typically arise in systems governed by Manakov equations (54). The two
components may be either dark or bright, and indeed it is even possible to form
a bright-dark soliton (74). The first experimental evidence of vector solitons was
given by Cundiff and his group (75), while so-called phase-locked vector solitons
were discovered by Tang (76).

1.4.1 Vortex solitons

A subclass of solitons of particular interest are the so-called vortex solitons (77).
These solitons arise naturally in media with cylindrical symmetry. The solution to

such systems is proposed to be of the form:
u(r,0) = U(r)e®®, (1.32)

where r = /22 + y? is the transverse radius, U the amplitude and # the azimuthal

phase. The quantity:
1
S=— j{ do (1.33)
2m

is called the topological charge of the vortex, and is necessarily an integer. Typically,
we have ¢ = mf, in which case S = m. For § = +1 one can obtain stable
vortex solitons, while those with |S| > 1 are typically unstable and break-up into
components. Vortex solitons arise when there is a singularity in the phase at the
origin, i.e when S # (0. This means that the amplitude U must also be equal to 0

at the center of the vortex.

Fundamentally, there are two different types of vortex solitons: those arising in
self-focusing media that support bright solitons, and those arising in self-defocusing
media that support dark solitons. In the case of vortex solitons in self-focusing media
one obtains a doughnut-shape vortex soliton. These are usually highly unstable and

split up into components due to azimuthal instability (78), and these components
13



subsequently fly away from each other (79). Several proposals have been made for
stabilizing vortex solitons in self-focusing media, most prominent being to introduce
competing nonlinearities such as in the cubic-quintic model (80) and to introduce a
non-local nonlinear response (81). Stable solitons were observed for the first time in
(79) where partially incoherent light was used to dampen azimuthal instability and

the theory the existence of this stability was developed in (82).

In the case of dark solitons one obtains a topologically charged hole on a uniform
background. Such solitons were first observed by Swartzlander and Law (83) and
subsequently observed by Ref. (84) when dark soliton stripes undergo break-up due
to transverse modulational instability. One can factor out the background from the

self-defocusing NLSE with a suitable transformation (77) to obtain:

Ou 1_, 9
—+ = 1-— =0. 1.34
zaz+2Vu+( lul*)u =0 (1.34)

Assuming the form of the solution to be as given in Eq. (1.32) with ¢ = m#, one

obtains the following amplitude equation:

’U 10U m? 9
a7 P~ El tA-UU =0 (1.35)

with boundary conditions U(0) = 0 and U(oco) = 1. Though no analytical solutions

to this equation exist, it can be solved numerically (85).

The study of vortex solitons remains a very active area of nonlinear optics that
has branched out in several directions. In particular, modulation in the azimuthal
direction began to be considered with the establishment of azimuthons (86; 87; 88).
These structures proved very suitable for the study of vortices on lattices, both
square (89) and hexagonal (90). Another approach has been the study of interaction
of vortices with ordinary beams (91) and in general combining two beams to obtain
rotating structures (92). Particularly useful has been the study of the interaction
between two counter-propagating beams (93; 94; 95) where a range of stable rotating

dipoles, tripoles, quadrupoles and other structures have been discovered (96).

1.5 Methods of finding soliton solutions

A range of general techniques were developed for finding exact soliton solutions for

large classes of partial nonlinear differential equations. Each technique has its own
14



scope and range of applicability. Also, some techniques do not give exact solutions,
but merely approximations of solutions. Here we will only give a brief review of

some of the most important techniques.

1.5.1 Inverse-Scattering theory

The inverse scattering theory (IST) is a powerful technique whose primary goal is to
obtain multi-soliton solutions for an arbitrary initial condition, using the formalism

of quantum mechanics.

The primary goal of the IST is to re-cast the given nonlinear (NL) equation into

a linear Schrodinger equation (SE):

02 + (A —u)h =0, (1.36)
where the solution to the NL equation u appears as the potential of the SE. The
solutions therefore are to satisfy the Faddeev condition:

/OO<1 lu(@))|u()|dz < oo, (1.37)

o0
which is stronger than the normalization condition. Solving the SE, i.e. the so-
called direct scattering problem, one obtains a number of parameters called the
scattering data. Among these the most fundamental are the transmission 7'(t) and
two reflection coefficients R(t) and L(t) (right and left) that arise out of considering
the behavior at +0o0 and —oo of the continuous spectrum of eigenfunctions with
positive eigenvalues, in particular of the so-called Jost solutions (97). As for the
negative eigenvalues, one obtains a discrete spectrum of N eigenvalues, each with
two normalization coefficients defines through the two Jost solutions. However, it
turns out these two coefficients are related for each eigenvalue and we can thus only

consider one set of coefficients ¢,,.

The IST needs to satisfy a range of conditions in order to work. The most
important criterion is that of integrability. This means that the system must be
chosen so that the eigenvalues of the SE remain constant (98). The criterion for

determining integrability was devised by Lax (99). Lax formalism proposes a set of
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equations satisfying:

LYy = N\, (1.38)
My = O, (1.39)

where £ and M are operators known as the Lax pair and indexes denote partial
derivatives. It is then possible to combine the two expressions under the condition

that 0,A = 0 to obtain the following equation:
WL+ [L,M] =0, (1.40)

where brackets denote the commutator of two operators. Thus, if the differential
equation can be written in this form for some two operators £ and M, then the
eigenvalues of the system governed by £ remain constant. In the standard IST L is

taken to be the linear Schrodinger equation:
L=-0+u. (1.41)

The disadvantage of this method is that there is no systematic way to identify
whether a Lax pair exists for a differential equation, indeed it is even possible to
find multiple pairs for a single equation. Another complicating feature is that the
operators need not be scalar. They can be matrix operators of arbitrary rank which

extends the usefulness of the IST to the Nonlinear Schrodinger equation.

In the next step, one allows the scattering data to vary across time. The formulas
that can be derived are usually straightforward provided that the eigenvalues do not

change with time (98).

Finally, one obtains the value of the potential to the SE u(z,t) at this new point
in time, based on the scattering data, i.e. one solves the inverse scattering problem.
In other words, the goal is to reconstruct the new form of the potential based
on the new scattering data. This is achieved by solving the so-called Marchenko
equation, also known as the Gel’fand-Levitan-Marchenko (GLM) equation. The
GLM equation typically contains €2, the so-called Marchenko kernel, obtained from
the scattering data, and the unknown parameter of the equation K is directly related
to u. It is worth noting that in general the GLM equation cannot be solved in closed

form. However, when the form of F' is separable, which occurs when the potential
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is reflectionless, then solutions of arbitrary order can be found. This occurs when
u(0,2) = Asechz. For A = N(N + 1) for some positive integer N one obtains an
exact solution of NV solitons, while for (N 4+ 1)(N +2) > A > N(N + 1) one obtains

in addition a travelling wave in the —x direction (98).

In a paper by Zakharov and Shabat, the inverse scattering method was used
to derive a general solution for the (1+1)D NLSE (100). This scheme was later
generalized and refined by Ablowitz, Kaup, Newell and Segur (101) and is now
known as the ZS-AKNS scheme. Zakharov and Manakov determined that the NLSE
in (14+1)D is integrable (100). Instead of scalar operators, matrices were used along

with two coupled differential equations. Zakharov and Shabat used the following

system:
U, = LU, (1.42)
v, = MV, (1.43)
where:
vy
U o= , (1.44)
Wy
—i( u
L = ¢ , (1.45)
—u ¢
—2iC* +ilul*  2Cu+ iu,
M = , (1.46)
—2Cu +iu,  —2iC? + i|u?

the overline denotes the complex conjugate, ( is called the spectral parameter, and
the function u satisfies the compatibility condition u,; = us, only if u is a solution
to the (1+1)D NLSE:

ity + Uyy + 2|ul?u = 0. (1.47)

A similar set of formulas to Eqs. (1.45)-(1.46) for the equation iu; — t, — 2|ul?*u = 0
can be found in Ref. (98). The matrices £ and M satisfy the so-called AKNS
condition:

Li— M, +[L,M] =0, (1.48)

which is similar to the condition given in Eq. (1.40). The standard method of

discovering the form of M in the AKNS scheme is to assume that each entry in
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M is an arbitrary polynomial in ¢ and obtain a system of differential equations
by plugging in this form into M (102). The system is underdetermined due to
symmetry and therefore one may impose the condition of the NLSE to be solved for

u (98).

The key complication in the application of the ZS-AKNS scheme for the NLSE
is that bound-state eigenvalues are complex (with a positive imaginary value) as
opposed to purely imaginary (103). Indeed, the term ¢ corresponds to VA in Eq.
(1.36). Also, the bound-state eigenvalues can have a multiplicity larger than 1 thus

we obtain n; coefficients ¢;;, 0 <1 < n; — 1 for each (; € C* (103).

We summarize here the most basic results obtained for the NLSE, following
(103) and (97). The scattering coefficients acquire the following dependance for the
NLSE:

T(t) = T(0), (1.49)
R(t) = R(0)e*™, (1.50)
L(t) = L(0)e ¥, (1.51)
ci(t) = ¢;(0)e 4, (1.52)
where:
) = | eao1glt) noaglt) oo coslt) | (1.53)
and: ) i
0 -1 0 0
00 —1 0
Aji=10 0 0 =1 " | —iGl (1.54)
00 0 0

is an n; x n;-sized matrix (104). For n; = 1, one obtains for the lone normalization
coefficient:

co (1) = ¢;(t) = ¢;(0)e¥". (1.55)

The Marchenko equation for the NLSE has the following form:

K(z,y,t) — Qx4+ y,t) + / dz/ dsK (z,s,6)Q(s + 2,)Q(z + y,t) =0, (1.56)
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where the formula for the Marchenko kernel is given as:

N nj—l

1 > i 'CEZ iCnx
Qa,t) = /Oo dCR(C e +> ) e e (1.57)

j=1 j=0
Finally, after solving the Marchenko equation for K one obtains the solution u via
the following formula:

u(z,t) = =2K(z,z,t). (1.58)
As was mentioned before, for R = 0 the problem becomes analytically solvable.

The primary solutions obtained using the IST have been the N soliton solutions
with the reflectionless potential as the initial condition by Ref. (6). These solutions
are valid for a set of N distinct eigenvalues and are generalized to the case of

eigenvalues of multiplicity larger than 1 in Ref. (97).

1.5.2 Self-similar method

Self-similarity is an important phenomenon common in nature. It is also routinely
studied in mathematics, most importantly in fractals, which occur in a wide range

of physical contexts, including solitons (105).

In the context of differential equations, the so-called self-similar method involves
the reduction of variables of a nonlinear partial differential equation (7). This is
achieved by utilizing a group of transformations that leaves the partial differential
equation invariant (106). For example, for the 1D nonlinear Schrédinger given in

Equation (1.47) the transform leaving the equation invariant is:
u(z,t) — eu(ex, t). (1.59)
Therefore, the self-similar form of the solution will be:

(e, t) = %U( ) (1.60)

x
Vi
The variable X = %, in this example, is called the self-similar variable. A well-
known special case of self-similar solutions are the so-called travelling-wave solutions,
where the similarity variable is taken to be of the form X = kx + wt for some non-

zero k and w. This can easily be generalized to a higher number of variables, which

is what we will do in this Thesis.
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One of the most practical applications of the self-similar method lies in trans-
forming nonlinear partial differential equations (NLPDESs) with multiple transverse
variables into NLPDEs with just a single transverse variable. In (107) and (108),
self-similar solutions to the NLSE were found using Hermite polynomials. In (109),
self-similar solutions are obtained for a NLSE with an arbitrary streingth of nonlin-
earity and external potential quadratic with respect to the transverse variable. In
(110), a generalization of the solutions found in (111) for the higher order nonlinear
Schrédinger equation is provided using the self-similar method. An example of a
chirped self-similar soliton to the generalized cubic-quintic NLSE is given in (112),

although these solutions are only valid for the constant value of the chirp.

1.5.3 Hirota’s method

Hirota’s method is an ingenious method for obtaining exact multi-soliton solutions
to large classes of differential equations (8). The main idea of Hirota’s method is
to reduce the differential equation to one or two dependent variables, traditionally
labelled F' and G, such that the differential equation becomes quadratic. For the
NLSE, the proper choice is:

= — 1.61
Uu F’ ( )

where, without loss of generality, G is complex and F' is real. The newly obtained
equation also has to be expressible via the so-called bilinear form. The definition of

the bilinear form or two functions is:

o oN' /o oaN /o oa\"
rTYyTE G (833 893’) (83/ 83/) (82 82’) (1.62)
8 a " / / / /
(a B %) F(x7y7 Z,t)G(JZ’ Y2 7t) |96:I',Z/:y/7zzzlvt:tl :

The form resembles the product rule for derivatives, except that it is anti-symmetric.
Occasionally, as is the case with the NLSE, this requirement splits the equation into
a system of two or more equations, due to the fact that one has to group the anti-
symmetric terms together with certain common factors that may differ for each

group. For example, for the 1D-NLSE with constant coefficients,
. u 2
i— + — + x|ul*u =0, (1.63)
x
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one obtains plugging in Eq. (1.61) the following pair of equations:

(iD; + DG -F = 0, (1.64)
D*F-F = x|G|* (1.65)

Care needs to be taken for the obtained system of equations not to be overdetermined

(113).

After obtaining a set of differential equations using Hirota’s bilinear form, one
then takes the solutions to be of the form where F = 32V fie!, G = SN gi¢ and
€ is some small parameter. For the NLSE, one can neglect the odd terms for G and
even terms for F. Plugging in this form of the solution into the equation, expanding
it, taking care to multiply out all the fractions, and collecting the terms according
to the order of €, we obtain a series of differential equations, one for each order of e.
The convenient form of an ansatz for functions f; and g; is the sum of exponentials.
By determining where the series truncate, one can obtain soliton solutions of an

arbitrary order. The parameter € is then taken to be 1.

Hirota’s method has been extensively applied to find multi-soliton solutions in
various systems: the NLSE (114), the Gross-Pitaevskii equation (115) and others
(116).

1.5.4 The Jacobi elliptic function expansion method

The functional expansion (F-expansion) method is probably one of the simplest
methods conceptually for solving nonlinear PDEs and the approach we will be using
in this Thesis. The idea is to assume a solution of a form involving the sum of
certain convenient set of functions called the expansion functions multiplied by a set
of variables, i.e. coefficients, which have to be determined from the equation. Well-
known examples include the polynomial expansion and the exponential function
expansion. Once the form of the solution is plugged into the equation, the terms can
be grouped by the expansion functions themselves. Since the expansion functions are
non-zero, the sum of terms in each group has to be 0. This condition yields a set of
algebraic or ordinary differential equations involving the unknown coefficients which
can hopefully be solved. Frequently, due to the complexity of obtained systems,
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Wu'’s elimination method is applied (117; 118). Extensive algebraic calculations are
usually performed with the aid of a symbolic computation package such as Maple
or Mathematica. In this Thesis, we shall exclusively use Mathematica for such

computations, and also for the plotting of all graphs.

The drawbacks of the F-expansion method are obvious. The effectiveness of
the method largely rests on the choice of expansion functions. A poor choice of
expansion functions will result in a self-contradictory system, or one possessing only
the trivial solution wherein all the coefficients are equal to 0. Also, even in the
process of obtaining solutions one will seldom obtain the most general solutions,
but instead will obtain one or more constraints that the coefficients of the nonlinear
PDE must satisfy. Still, if the expansion functions and the general form of the
solution are suitably chosen, one will obtain large classes of exact solutions that can

subsequently be studied in experiments or in computer simulations.

The Jacobi elliptic functions (JEFs) are a particularly convenient choice for
the F-expansion technique. The JEFs are a generalization of the trigonometric
functions that satisfy a second order NL differential equation in which the cube of
the original function appears, a form particularly convenient for the standard third-
order NLSE that we will be studying in this Thesis. In the appropriate limits the
JEFs converge to both the elliptic and hyperbolic trigonometric functions allowing

us to simultaneously find both travelling wave and solitary solutions.

The JEF expansion method was first fully developed in Ref. (12). In this paper,
the JEF expansion method was proposed as a generalization of the tanh-expansion
method (119). It was applied to the modified KAV (mKdV) equation and the
nonlinear Klein-Gordon equation and, as a result, exact solutions to these equations
were obtained. A key concept developed in the paper was to use the form of the
differential equation for the JEFs to match the highest order of the derivative terms
with the term containing the nonlinearity. The JEF expansion method was further
developed in (120) where a modified ansatz was used to find the solutions of the

mKdV equation and a system of variant Boussinesq equations.

Once developed, the JEF expansion method was extensively used for a vari-

ety of systems. In particular, in a paper by Yan (121) an extensive theory is
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developed for both travelling and non-travelling wave solutions and solutions are
obtained for the general KdV-mKdV equation (encompassing both equations as
special cases), the modified Kadomtsev-Petviashvili (mKP) equaton, the coupled
Davey-Stewartson (DS) equation and the modified Boussinesq equation. The JEF
expansion method has also been applied to the Benjamin-Bona-Mahoney (BBM)
equation (122), the Witham-Boer-Kaup equation (123), the coupled KdV equations
(124), Klein-Gordon-Schrédinger (KGS) equation (125), the higher-order nonlinear
Schrodinger equation (126), the dispersive long wave equation (127; 128; 129), as
well as many other systems (130; 131; 132; 133; 134; 135).

The JEF expansion method has also been applied extensively to the Nonlinear
Schrodinger equation. In (136), the NLSE emerges as a special case of a coupled
system whose solutions were found using the JEF expansion technique. Solutions
to the NLSE have also been given in Ref. (137) and Ref. (138) for a (1+1)-D NLSE
with constant coefficients. In (139), a novel approach is taken in that the solution
to the (2+1)-D NLSE is decomposed via its real and imaginary parts, rather than
the amplitude and phase. The coefficients of the NLSE, except for the gain/loss

coefficient, are also assumed to be constant in that paper.

The solutions to the NLSE using the JEF expansion technique all had several
drawbacks in common before the work done in this Thesis. All of them were usually
solutions to the NLSE with constant coefficients instead of distributed coefficients.
As mentioned before, with the invention of metamaterials there is considerable in-
terest in nonlinear systems that are more general than the NLSE with constant
coefficients. The second big disadvantage is that none of the obtained solutions ad-
dress the problem of chirp. The phenomenon of chirp was given extensive treatment
for the first time in (140) with regards to the NLSE and it is of considerable interest
to include those results in the framework of the JEF expansion method. The final
limitation concerned the dimensions of the solved NLSEs. A simple approach was
needed that would produce solutions for the (2+1)-D and (3+1)-D NLSEs. The
goal of this Thesis will be to provide a general ansatz for the JEF expansion method

that surpasses these limitations and can be generalized to a wide range of systems.
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1.6 Properties of Jacobi elliptic functions

In this section a brief overview of Jacobi elliptic functions is given. The standard

reference for the Jacobi elliptic function is Ref. (141).

Jacobi elliptic functions (JEFs) can be viewed as generalization of the trigono-
metric functions. The trigonometric functions are defined on a unit circle, defined
by the equation 2% + y? = 1, as the (x,y) coordinates of the point which is at an

angle 6 away from the point (1,0), i.e. sinf =y and cosf = .

In the case of the Jacobi elliptic functions, however, we will use the ellipse
whose equation is z? + g—z = 1, where a > 1. The eccentricity of the ellipse is given
ask=e=,/1— a% When a = 1, the eccentricity is 0 and in this case the ellipse
becomes a unit circle. Given polar coordinates, the argument of the ellipse will be
defined as u = foe rdf. Tt is important to note that the argument is not equal to
the arc length in general, as it doesn’t take into account the change in radius of the
ellipse. Nevertheless, for a = 1 the radius r is constant and the argument reduces

to the angle . The JEFs sn, cn and dn are defined as follows:

sn(ulm) = % (1.66)
en(ulm) =z, (1.67)
dn(zm) = 2 (1.68)

where m = k? is the parameter of the Jacobi elliptic function. In this Thesis the
parameter will be denoted as M, to avoid confusion with another parameter that
will be labelled m. In the subsequent formulas for the Jacobi elliptic functions the

parameter will be implicit.

The relationships between the JEF's are:

sn? +cn? = 1, (1.69)

m-sn® +dn® = 1. (1.70)

When m = 0, the JEF's sn, cn and dn reduce to sin, cos and 1 respectively, whereas

when m = 1 the JEFs sn, cn and dn reduce to tanh, sech and sech, respectively.

2—%, ns = = and so on to obtain a total of 12 Jacobi

One can then define sc = sn
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Table 1.1: Jacobi elliptic functions

Co Co Cq FIM=0|M=1
1 1 —(1+M)| M |sn| sin tanh
2 |1-M| 2M -1 —M | cn cos sech
3 | M-1 2—-M —1 dn 1 sech
4 M | —(1+ M) 1 ns | cosec | coth
5 -M 2M -1 |1—M | nc sec cosh
6 —1 2—M M—1|nd 1 cosh
7 1 2—-M 1—M | sc tan sinh
8 |1-M| 2—-M 1 cs cot cosech
9 1 —(1+ M) M cd | cos 1
10| M |—-(1+M) 1 de | sec 1

elliptic functions: sn, cn, dn, ns, nc, nd, sc, cs, sd, ds, cd and dc. The first three

JEFs will be called basic JEFs, and the last 9 will be called derived JEFS.

The differential equations satisfied by the JEFs are:

ds;iw — cn(u) - dn(u), (1.71)
dcgi“) —  —sn(u) - dn(u), (1.72)
ds:lliu) = m-sn(u) - cn(u). (1.73)

These properties combined with Egs. (1.69)-(1.70) give the following form of the

differential equation for all 12 Jacobi elliptic functions:

(%)2 = o+ o F% + ey F*. (1.74)
The coefficients ¢g, ¢o and ¢4 are given in 1.1 as a function of the elliptic parameter
M. The 2 JEFs that are not listed in the table, sd and ds, are not suitable for
finding the derived solutions and have hence been omitted. A more extensive list is
given in (137) containing 46 different combinations of Jacobi elliptic satisfying an

equation of the form given in (1.74), though we will not be using these forms in this

Thesis.

The forms of the three basic JEFs are given in Fig. (1.1). An incorrect form

of Fig. (1.1) was given in (142) and several subsequent papers, that contained
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formulas for the elliptic modulus, rather than the elliptic parameter, i.e it contained
M? everywhere instead of M. The difference was important only in cases where
we combined two different solutions and even in those cases there were only minor
quantitative differences with respect to the correct solution, considering that we
used values very close to M = 1. All solutions drawn in this Thesis have had this

mistake corrected.

In Fig. (1.1) we see that the periodicity of each JEF (with the exception of dn
at 0) steadily increases as M goes from 0 to 1, diverging to infinity as M approaches
1. The periodicity of JEFs is given as 4K (M), where K is the complete elliptic
integral of the first kind.

Figure 1.1: Jacobi elliptic functions as a function of u and M: (a) sn, (b) cn, (c)

dn, (d) Jacobian amplitude am.
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1.7 Scope and structure of the Thesis

Below I will give a short description of the contents of the various parts of this thesis.

In Chapter 2 I present the basics of the F-expansion technique (FET) and the
Principle of Harmonic Balance. I then apply the FET to the Nonlinear Schrodinger
Equation (NLSE) with a third-order nonlinearity to obtain exact spatiotemporal
solitary and travelling wave solutions in (34+1) dimensions ((34+1)D). By modifying
the method I also obtain similar solutions for the normal dispersion. Finally, I

modify the method to obtain solutions for the NLSE with higher-order nonlinearities.

In Chapter 3 I apply the FET to the Gross-Pitaevskii (GP) equation. I find
that the application of this method depends on solving a Ricatti equation. For sev-
eral important systems with a solvable Ricatti equation I obtain numerous solutions.
I also describe the methods to obtain novel systems for which the Ricatti equation

can be solved.

In Chapter 4 I examine the effect of a linear spatial potential on the NLSE.
Solutions are obtained for various situations of interest, namely for constant and

sinusoidal diffraction and potential as a function of time.

In Chapter 5 I explore the application of the FET to new physical systems. Of
particular interest are two-component systems such as Manakov systems. I present

my results for the case of co-propagating (CO) and counter-propagating (CP) waves.

In Chapter 6 I examine the stability of the aforementioned solutions. I apply
the standard linear perturbation theory on the NLSE solutions and the GP solu-
tions to obtain stability thresholds. The main conclusion is that using dispersion
management one can obtain modulationally stable solutions to the NLSE and GP

equations.

In Chapter 7 I give the main conclusions of my work.

27



1.8 Published papers

This section contains a list of all the published research this Thesis was based on,

as well as an additional paper still in the process of being finalized:

Chapter 2 is based on the following papers:

e Wei-Ping Zhong, Rui-Hua Xie, Milivoj Beli¢, Nikola Z. Petrovi¢, Goong Chen
and Lin Yi, "Exact spatial soliton solutions of the two-dimensional generalized
nonlinear Schrodinger equation with distributed coefficients,” Phys. Rev. A

78, 023821 (2008), Reference (143).

e Milivoj Beli¢, Nikola Z. Petrovi¢, Wei-Ping Zhong, Rui-Hua Xie and Goong
Chen, ” Analytical light bullet solutions to the generalized (3+1)-dimensional
nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 0123904 (2008),
Reference (142).

e Nikola Z. Petrovié¢, Milivoj Beli¢, Wei-Ping Zhong, Rui-Hua Xie and Goong
Chen, "Exact spatiotemporal wave and soliton solutions to the generalized
(341)-dimensional nonlinear Schrédinger equation for both normal and anoma-

lous dispersion,” Opt. Lett. 34, 1609 (2009), Reference (144).

e Nikola Z. Petrovi¢, Milivoj Beli¢ and Wei-Ping Zhong, " Exact traveling wave
and spatiotemporal soliton solutions to the generalized (3+1)-dimensional

Schrédinger equation with polynomial nonlinearity of arbitrary order,” Phys.

Rev. E 83, 026604 (2011), Reference (111).
Chapter 3 is based on the following papers:

e Nikola Z. Petrovi¢, Milivoj Beli¢ and Wei-Ping Zhong, ”Exact spatiotempo-
ral wave and soliton solutions to the generalized (3+1)-dimensional Gross-

Pitaevskii equation,” Phys. Rev. E 81, 016610 (2010), Reference (145).

e Nikola Z. Petrovi¢, Najdan Aleksi¢, Anas Al Bastami and Milivoj Beli¢, ” Ana-
lytical traveling-wave and solitary solutions to the generalized Gross-Pitaevskii

equation with sinusoidal time-varying diffraction and potential”, Phys. Rev.

E 83, 036609 (2011), Reference (146).
28



e Anas Al Bastami, Nikola Z. Petrovi¢, and Milivoj Beli¢, ”Special solutions

of the Riccati equation with applications to the Gross-Pitaevskii nonlinear

PDE,” Electron. J. Diff. Eqgs., Vol. 2010, No. 66, 1 (2010), Reference (147).

e Anas Al Bastami, Milivoj Beli¢, Danijela Milovi¢ and Nikola Z. Petrovié,” An-
alytical chirped solutions to the (3 + 1)-dimensional Gross-Pitaevskii equation
for various diffraction and potential functions,” Phys. Rev. E 84, 016606
(2011), Reference (148).

Chapter 4 is based on the following paper:

e Nikola Z. Petrovi¢, Hussein Zahreddine and Milivoj Beli¢, ” Exact spatiotempo-
ral wave and soliton solutions to the generalized (3+1)-dimensional nonlinear
Schrodinger equation with linear potential”, Phys. Ser. 83, 065001 (2011),
Reference (149).

Chapter 5 is based on the following paper:

e Nikola Z. Petrovi¢ and Hussein Zahreddine, ”"Exact traveling wave solutions
to coupled generalized nonlinear Schrodinger equations”, Phys. Scr. T149,

014039 (2012), Reference (150).

Chapter 6 is based on Ref. (146) and the following paper to be published:

e Najdan Aleksi¢, Nikola Z. Petrovi¢ and Milivoj Beli¢, ” General stability anal-
ysis of the exact soliton solutions to the generalized nonlinear Schrédinger

equation and the Gross-Pitaevskii equation”, to be published.

29



Chapter 2

F-expansion technique and its

application to the general

third-order NLSE

2.1 Introduction

The F-expansion technique (FET) is a very well know and common technique for
finding solutions to various partial differential equations (PDEs). The main idea is
to express the solution of your equation in terms of a polynomial of a certain well-
chosen function F. Since we typically deal with nonlinear (NL) partial differential
equations of the second order, the well chosen functions will be the solution to a NL

differential equation of the form:

dF 2 N 4
(@) = ZC,L'FZ, (21)
=0

where 6 is a parameter that relates to the original variables of the PDE, typically
x, Yy, z and t. One also obtains using chain derivation the following important

relationship for F"

o N S,
1=0

A famous class of functions often used in solving PDEs are the Weierstrass functions,

for which N = 3 and ¢y = 0.
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We will for the most part restrict ourselves in the Thesis to the use of the
Jacobi Elliptic Functions (JEFs) for which N =4 and ¢; = ¢35 = 0. The remaining
parameters cg, ¢o and ¢4 depend on the parameter M (in standard literature labeled

m) as listed in (1.1). A relation between ¢, ¢z, and ¢4 holds:

co + ¢4 = *£eo. (2.3)

Once the form of F'is plugged into the solution one obtains a polynomial equa-
tion of the form p(F') = 0, where p is some polynomial function, such that coefficients
next to each degree of F' can be set to 0. For each degree of F' we thus obtain a
series of algebraic or ordinary differential equations (ODEs). This is known as the
Principle of Homogeneous Balance (PHB). If the form of the solution is well chosen,
we obtain novel solutions to the PDE we started from. If the form of the solution
was poorly chosen, we obtain mutually contradictory equations or at best the trivial

solutions.

The system to which we will apply the FET is the general Nonlinear Schrodinger
equation (NLSE). The general form of the NLSE is:

N
i0,u + @ Z $i07 w4 V(xy,. .., x,)u+ x(2)|ul*u = iy(z)u, (2.4)
i=1

where u is the wave function, z is the longitudinal coordinate (which can be either
spatial or temporal), N is the number of transverse dimensions, z; are the trans-
verse coordinates, s; = 1, V' is the external potential, which we will usually take to
depend only on the transverse variables, x is the strength of the Kerr nonlinearity
and v is the term for signal gain if positive and signal loss if negative. Here, s; = 1
for spatial coordinates and for the temporal coordinate ¢ in the case of the anoma-
lous dispersion, while s; = —1 for the temporal coordinate in the case of normal
dispersion. We will denote in this section (z1,...,xy), the set of all transverse vari-
ables, as x. This system describes evolution of a slowly-varying wavepacket envelope
u(z,z) in a diffractive nonlinear Kerr medium in the paraxial approximation for a
wide range of circumstances. The JEFs are suitable functions to utilize in finding
exact solutions to the NLSE because from (2.2) one can conclude that the second

derivative of the JEF is related to the cube of the original function.

When the coefficients are constant, the behavior of solutions to NLSE strongly
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depends on the dimensionality of the problem. In (1+41)D, as mentioned, one can
observe stable localized wavepackets. However, in (241)D for the self-focusing non-
linearity all localized solutions either spread out with propagation (for input powers
less than a critical value) or collapse at a finite distance (for powers above the critical
value) (48). This behavior is an example of weak collapse. In (34+1)D one observes
the strong collapse: wavepackets collapse at any power, i.e. no power threshold

exists.

The NLSE is one of the most useful generic mathematical models (151) in many
fields of physics. The major scientific interest in this model comes from the fact
that in various systems in nonlinear optics and related fields these equations appear
naturally. Major interest in the NLSE is piqued by the discovery of solitary wave
solutions (6; 4). Stable exact soliton solutions to the NLSE are known only in
(1+1)-dimensions ((1+1)D), for the simple reason that the inverse scattering theory
(6), responsible for the existence and stability of 1D solitons, only works in (141)D.
There are no known exact stable solitons in (2+1)D or (3+1)D.

Recently, great interest has been generated when it was suggested that the
(241)D generalized NLSE with varying coefficients may lead to stable 2D solitons
(80). The stabilizing mechanism has been the sign-alternating Kerr nonlinearity in
a layered medium. A vigorous search for the stabilized periodic solutions of (2+1)D
NLSE has been launched (152; 153; 154; 155), however, out of necessity, it has been
numerical. In this Thesis, analytical periodic traveling wave and soliton solutions

to the NLSE in (3+1)D and several other systems will be presented.

2.2 F-expansion technique

We will now apply the general FET (124; 136) and the PHB (119; 123) to find
analytical periodic traveling wave solutions to (2.4), for V' = 0. We define the

complex field u of (2.4) in terms of its amplitude and phase (156):
u(z, ) = Az, 2) exp (iB(z, ) (25

where A and B are real functions. Plugging this form of u into (2.4), cancelling out

e’ and taking the real and imaginary part of the equation separately, we find the
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following coupled equations for A and B:

N
1
0.4+ 3 (Zsz (20,,A0,, B + AD> B )> = A (2.6)

=1

N
—A0.B + %5 (Z si (024 — A(0,,B) )) +xA* = 0, (2.7)

=1

where we have adopted the convention of using indices for partial derivatives, i.e.

We apply the balance principle with modifications to account for the opposite
sign of the time derivative. We seek the traveling wave solutions to (2.6) and (2.7),

and assume the functions to be of the form:

Alz,z) = fl() (0) + fol2) (D), (2.8)
0 = Zkz 2)x; + w(z (2.9)

B(z,z) = a(z) (Z sle) + b(z) (Z xl> + e(z), (2.10)

where fi, fa, ki, w, a, b, e are parameter functions to be determined, and F'is a JEF
satisfying (2.2). The function a is known as the chirp function. The name comes
from the applications involving frequency domain. In the spatial domain the chirp
functions relates to the curvature of the wave front. The choice of signs s; next to
a was an important breakthrough that allowed the treatment of normal dispersion
within this framework (144). This will be discussed in greater detain in Section

(2.3.4).

Plugging in Egs.(2.8)-(2.10) into Eqgs.(2.6)-(2.7) and applying diF = coF +
2¢,F3, derived from (2.2), and the corresponding formula for F~!, d2F ! = co F 7! +

2coF 3, we obtain two complex equations which are polynomial (including negative

degrees) with respect to F', dgF' = \/co + coF? + ¢, F* and the transverse variables
z;. One should also note that dyFF~' = —dpF/F?. Requiring that the equation
must hold for arbitrary z,x1, ..., xy it follows that the equations must also hold for
arbitrary F', since the JEFs cover a wide range of parameters. Therefore, the ex-

pressions next to each term of the form FJ(dyF)oaxl" ..

2 N, where j is an arbitrary
integer and j;, © = 0,1,..., N, are arbitrary non-negative integers, all have to be

equal to 0. We thus obtain a system of ordinary differential equations (ODEs) and
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algebraic equations:

d
dfj + NaBf; —~f; = 0, (2.11)
dk;
- = 0, (2.12)
N
—+B(Zsk>b = 0, (2.13)
1=1
da s
a+25a = 0, (2.14)
db
E—i—?ﬁab = 0, (2.15)

%Jrg ((Z‘S) (ZS >C2> = 3xfife = 0, (2.16)
> sik )C4+xf1) = 0, (2.17)

dge
< <i8 )Co+xf2) = 0. (2.18)

We consider the most generic case, in which f; and f; are assumed non-zero
and (z) and ~y(z) are arbitrary. An alternative case, one where 5(z) and x(z) are
arbitrary, but v(z) is not, will be considered in Sec. 2.3.1.2. Given arbitrary ((z)

and v(z), the following set of exact solutions is found:

filz) = (a)N/2f10 exp (/OZ vdz) , (2.19)
fo(2) = 6\/§Zf17 (2.20)
ki(z) = akip, (2.21)
w(z) = wo—« <Z S; kl()) / Bdz, (2.22)
a(z) = aay, (2.23)
b(z) = aby, (2.24)
e(z) = e+ — ((Z sik > ¢y — 6ey/cocy) (Z sl) 62) / pdz,(2.25)

where € = +1 and:

alz) = (1 + 2a0 /0 ) de) B (2.26)

is the normalized chirp function. The subscript ‘0’ denotes the value of the given

function at z = 0.
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One should note the universal influence of the chirp function a on the solutions.
In the case when there is no chirp, ap = 0 and o = 1, the parameters k; and b are
all constant. In the presence of chirp they all acquire the prescribed z dependence.
The chirp also influences the form of the amplitude A through the dependence of
fi, fo and 6 on a. Note that the chirp function figures in the amplitude raised to
power N /2, which we term the degree of the chirp.

It should also be noted that x is not arbitrary, but depends on «, 3, and ~:

N
X(2) = —Besa®™ (Z k) foe 2, (2.27)
=1

Hence, in a lossy medium for the nonlinearity coefficient y will grow exponentially.
For N = 2 and no gain or loss (7 = 0), x stays constant with or without the chirp,

while for NV # 2 the presence of chirp affects x even without loss or gain.

Incorporating (2.19)-(2.25) back into (2.5), we obtain the general periodic trav-

eling wave solutions to the generalized NLSE:

u = (a)N?fyelo (F(Q) + E\/?Z%@))
(el ) )

N N z
i=1 0

: (2.28)

where:

i=1

Apart from the solutions given in Eqgs. (2.19)-(2.25) one can alternatively assume
that fo = 0, in which case one obtains the exact same equations to which Egs.

(2.19)-(2.25) would reduce for ¢ = 0. Thus, the parameter € in Eq. (2.20) can

assume three values: +1 and 0.

As long as one chooses the constants according to the relations listed in Table
(1.1) and substitutes the appropriate F'(¢) into Eq. (2.8), one obtains exact periodic
traveling wave solutions to the generalized (34+1)D NLSE. The parameter M varies
between 0 and 1. When M — 0, JEFs degenerate into trigonometric functions, i.e.
sn(f) — sin(0), cn(f) — cos(f), dn(d) — 1, etc., and the periodic traveling wave so-
lutions become the periodic trigonometric solutions. When M — 1, JEFs degenerate
into hyperbolic functions, i.e. sn(f) — tanh(#), cn(f) — sech(d), dn(f) — sech(9),

etc., and the periodic traveling wave solutions become solitary wave solutions. As
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long as 0 < M < 1 there is no problem with the periodic solutions; one can choose
any of the listed functions. However, when M = 0 or M = 1 only some of the

functions may be utilized, because of the developing singularities.

2.3 Application of the F-expansion technique

We now proceed to apply the results of the previous section to several problems
relevant to nonlinear optics. Many of the results for specific equations emerge as
special cases of the general equation. We will first study the (3+1)D NLSE with
anomalous dispersion to ascertain the general behavior of our solutions. We will then
look at the special cases of the (14+1)D and (24+1)D NLSEs. The solutions applied
to the (1+1)D NLSE have already been proposed in earlier work so we will only
briefly comment on them, while for the (24+1)D NLSEs we will only cover solutions
that have no straightforward analogue to the (34+1)D case. We will then consider
the case of the (3+1)D NLSE with normal dispersion.

2.3.1 Results for (341)-D NLSE with anomalous dispersion

The first example of the applications of the FET to the (3+1)D NLSE were published
in (142). In this paper the solutions were ambitiously identified as “light bullets”,
despite having an obvious extention along the Zf\il s;kiox; axis. Alternative methods
such as the use of Hirota’s method, or a different form of # have the potential of

producing true light bullet solutions.

In this section we cover the generalized NLSE in (3+1)D with distributed coef-
ficients (157):
i0,u + @(ALU + 02u) + x(2)[ulu = iy(2)u, (2.30)

which describes evolution of a slowly-varying wavepacket envelope u(z,y, z,t) in a
diffractive nonlinear Kerr medium with anomalous dispersion, in the paraxial ap-
proximation. Here z is the propagation (i.e. longitudinal) coordinate, A = 92 + 85
represents the transverse Laplacian, and t is the reduced time. The functions [,
X, and v stand for the diffraction/dispersion, nonlinearity, and gain coefficients, re-

spectively. All coordinates are made dimensionless by the choice of coefficients. The
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generalized NLSE is of considerable importance, as it describes the full spatiotem-

poral optical solitons, called light bullets, in (3+1)D.

It is evident that Eq. (2.30) is a special case of Eq. (2.4) for V. =0, N = 3,
Ty =2, T =y, x3 =t and s; = s, = s3 = 1. Thus we take the following form for

the solution u that describes traveling waves:

u(z,x,y,t) = Az, z,y,t) exp (iB(z, x,y,1)), (2.31)
where:
A = R)F0)+ h()F0), (2.32)
= k(2)x+1(2)y+ m(2)t + w(2), (2.33)
B = a(2)(@®+ >+ 1) +b(2)(x +y+1t) +e(z) (2.34)

Here we have denoted ky = k, ks = [ and k3 = m.

We consider the most generic case, in which f; and f; are assumed non-zero.
When we apply the FET as described in 2.2 we obtain the following coupled equa-

tions:
0.A+ %5(2 (0,40, B + 8,A9,B + 8,A0,B)
+A02 + D2 + af)B) — A, (2.35)
_AQ.B + %ﬁ((ag + 02+ 07)A
~A((0.B) +(9,B)" + (AB)’)) + xA® = 0. (2.36)

Then, plugging in the forms for A and B given in Eqs. (2.32)-(2.34) we obtain:

df.
dk;
7 +2kaff = 0, (2.38)
dw
E+B(k+l+m)b = 0, (2.39)
da
T 2Ba®> = 0, (2.40)
db 2Bab = 0 2.41
E + 5@ - ’ ( . )
% + § (30" — (K> + 1P +m?) o) = 3xfifa = O, (2.42)
ABE+P+mY)a+xfl) = 0, (2.43)
fo (B (k2 + 12+ mQ) co + Xf22) = 0. (2.44)
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We will now proceed to solve Eq. (2.30) for two cases. In the first case we assume
that 5(z) and (z) are arbitrary functions and x(z) is ultimately determined to have
a specific form as an integrability condition. In the second case, 5(z) and x(z) are
arbitrary and v(z) is determined. The case of v(z) and x(z) being arbitrary has not

been solved, due to the dependence of most equations on 3(z).

2.3.1.1 Case 1: Arbitrary 5(z) and 7(z)

We will first consider the case where 3(z) and «y(z) are arbitrary. In this case, we

obtain the solutions to Eqgs. (2.37)-(2.44) as follows:

fi(z) = ()**fyexp ( /O z’ydz), (2.45)

fo(z) = 6\/§Zf1, (2.46)
k(z) = ok, (2.47)
I(2) = al, (2.48)
m(z) = amo, (2.49)
w(z) = wg—a(ko—i-lo—i—mo)bo/zﬁdz, (2.50)
a(z) = aa, O (2.51)
bz) — abo, (2.52)
e(z) = cot 5 (R + B+ md)es — ey/aem) - 3h) /0 “Bdx, (2.53)

where € = &1 and: )
az) = (1 + 2a0/ de) (2.54)
0

is the normalized chirp function. The subscript '0’ denotes the value of the given
function at z = 0 and fy is defined to be f1y. The Jacobi functions one may use in
this solution, as well as the corresponding ¢y, ¢ and ¢4 are given in Table (1.1). In
order to avoid singularities when f is the cosine function, we must have the condition
on the initial value of the chirp |ag| < 1/2. The integrability condition for x reduces

to:
X = —Bea(kZ + 12 +ml) f2e 2% a, (2.55)
As in Sec. 2.2, one obtains assuming fo = 0 the exact same equations to which

Eqgs. (2.45)-(2.53) would reduce for e = 0. Thus, the parameter € in Eq. (2.20) can

assume three values: +1 and 0.
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Incorporating Eqgs. (2.45)-(2.53) solutions back into (2.31), we obtain the general

periodic traveling wave solutions to the generalized NLSE:

u = ()2 fyelo 142 (F(@) +e E—Z%) cexpi (a(z® +y* + ) + bz +y+t)+e),
(2.56)

where:
0:wo+kx+ly+mt—(k+l+m)bo/ozﬁdz. (2.57)

We should note that for M = 1 the solution described by Eq. (2.56) describes
spatially extended spatio-temporal (ST) solitons. Even though the amplitude A as
a function of the transverse variable 6 is localized, it is not when viewed in the plane
of transverse coordinates x and y. This is easily seen if one rotates the x and y
axes about the z axis for some angle «, to arrive at a set of new coordinates ' and
y'. By choosing the angle as tan(a) = —k/I, the variable 6 will not contain y’, and
by choosing tan(«) = k/l, it will not contain 2’. Thus the amplitude A will not
explicitly depend on ¢ (or ) and the soliton will be extended along the 3’ (or )
axis. Hence, the solutions obtained with the present method cannot be of the light

bullet type (142).

As an example, we present some of the periodic wave and light bullet soliton solu-
tions, taking the diffraction/dispersion coefficient /3 to be of the form § = 3y cos (ky2)
and the gain/loss coefficient v to be a small constant. This choice leads to alternat-
ing regions of positive and negative values of both  and y, which is required for an

eventual stability of soliton solutions. We will typically take k, = 1.

In Figs. (2.1)-(2.2), we depict the periodic wave solutions made up from the
single F' functions, F' = sn and F' = c¢n, functions 1 and 2 from Table (1.1). In
Figure (2.1) there is no chirp (ag = 0), while in Figure (2.2) there is chirp (ag = 0.1).
For both figures e = 0. We see that in the absence of chirp the function is periodic
in the transverse direction, while in the case of the chirp there is stretching in the
transverse direction. Also, the amplitude of the function is affected by the chirp.
These effects grow stronger with the increase of chirp. An important feature that
distinguishes our solutions from the others reported in the literature (157; 140),
apart from the dimensionality, is this appearance of the general spatiotemporal

chirp function in both phase and amplitude.
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Figure 2.1: Periodic traveling wave solutions as functions of the propagation dis-
tance, for ag = 0 (without chirp) and € = 0. Intensity |u|? for: (a) F' = sn and (b)
F = cn, presented as functions of kg + loy +mot and z. Coeflicients: [(z) = cos(z),

’Y(Z):’YOZO,MZO.9999,b0:1,60:0,k():lo:mo:]_,W():O.

0 "
10 =9
kox+lyy+myt 20

Figure 2.2: Periodic traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in Fig. (2.1),

except for ag = 0.1.
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Figure 2.3: Combined intensity distributions of the periodic waves 1 and 4 from
Table (1.1) (F = sn and F = ns), as functions of the propagation distance, with
e =1 for: (a) ap = 0 (no chirp) and (b) ap = 0.1 (with chirp). Other parameters

are the same as in Fig. (2.1).

Figure (2.3) shows the periodic wave solution made from the combination of the
F functions 1 and 4 for € = 1, also without and with the chirp. As can be seen, the

presence of € significantly changes the nature of solutions.

The parameter M significantly affects the periodicity of the solutions. In Figure
(2.4) we see the effect of parameter M on the solutions. We can clearly see that
as M decreases, so does the periodicity of our travelling waves. It should be noted
that the Jacobi elliptic function also changes shape with the change of M. On the
other hand, as M approaches 1 the period of the JEF stretches to infinity and one

obtains solitary waves.

Figures (2.5)-(2.7) repeat the same sequence of plots as Figs. (2.1)-(2.3), but
show the light bullet soliton solutions instead. The soliton solution is similar to a

single period of the periodic wave solutions for M close to 1.

The obtained solutions are dependent on a number of parameters and it is
instructive to see how the form of the solution changes with the change of various
parameters. The key parameter is the form of the diffraction/dispersion coefficient
£. When ( is constant the chirp function a converges to 0 or to infinity. We see in
Fig. (2.8) that based on the signs of ay and /3, that the chirp will either attenuate or
dissipate the solution. Also, these solutions tend to be unstable. This is why recent

research has focused on periodic forms of 5, and as a consequence of (2.55) also of
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Figure 2.4: Periodic traveling wave solutions with the chirp, as functions of the

propagation distance. The setup and parameters are the same as in Fig. (2.1)(a),

except for: (a) M =0.999, (b) M =0.99, (¢c) M =0.9 and (d) M = 0.5.

kox+lyy+myt 0 kox+lyy+myt 0

Figure 2.5: Solitary wave solutions without chirp. The setup and parameters are as

in Fig. (2.1), except for M = 1.
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Figure 2.6: Solitary wave solutions with chirp. Setup is the same as in Fig. (2.5),

except for ag = 0.1.

kgx+loy+m0t

Figure 2.7: Combined intensity distributions of the solitary wave solitons 1 and 4

(F = sn and F' = ns). The setup is as in Fig. (2.3) except for M = 1.
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kox+lyy +moi ' 0

Figure 2.8: Solitary traveling wave solutions, as functions of the propagation dis-
tance. The setup and parameters are the same as in Fig. (2.5), except for F' = cn
and: (a) B(t) =1,09=0.1, a9 =0, (b) B(t) =1, by = 0.1, ay = 0.02 (c) B(t) = —1,
bo = 01, ag = 0 and (d) ﬁ(t) = —1, bo = 01, ag = 0.02.
x. Making 8 and x periodic is known as the dispersion management.

In Fig. (2.9), the graph of the integrability condition is given for a sinusoidal
B. We see that for N =1 and N = 3 the form of x is deformed due to the presence
of chirp. However, the deformation is not significant enough to produce practical

difficulties in constructing x. For N = 2, the integrability condition is not affected

by the chirp and the graph of x remains sinusoidal for all values of ay.

In Fig. (2.10) the effect of the chirp is shown. It is evident that as the chirp
increases the solitary wave increases on one side and decreases on the other. The

two sides are determined by the sign of the initial value of chirp ay.

In Fig. (2.11) we see the effect of parameter by on the form of the solutions.
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Figure 2.9: The nonlinearity streingth given the integrability condition, as a function
of the the propagation distance z and the initial chirp ag. The parameters are the

same as in Fig. (2.5), except for F' = cn and: (a) N =1 and (b) N = 3.

Roughly, the parameter b determines the intensity with which § will be expressed
in the final form of the solutions. As can be seen from Eq. (2.50), when by = 0 w
will be constant regardless of the form of # and will ultimately lead to the solitary
wave moving in a straight line. We see from Fig. (2.11)(b) that the effect of chirp,

i.e. the change of amplitude is maintained.

In Figure (2.12), we see the effects of the presence of loss in the system v =
—0.05. As we can see, the solutions roughly maintain their shape while their am-
plitude decays. We also see that solutions other than 1 and 2 entail singularities,

hence they are not of as much interest to us.

In Figure (2.13), we see the same effects for travelling wave solutions. The
singularities occur in two sets of alternating regions, corresponding to whether sn
or cn is in the denominator. In Figure (2.14) we see the effects of chirp on decaying

functions for F' = sn and F' = cn in Fig. (2.12) and Fig. (2.13).

Finally, in Fig. (2.15) we see the graphs of the phase of our solutions, with and
without chirp.
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Figure 2.10: Solitary traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in Fig. (2.5),

except for: (a) F' =sn, ag = 0.2 (b) F = cn, ap = 0.2, (¢) F = sn, ay = —0.1 and
(d) F =cn, ap=—0.1.
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Figure 2.11: Solitary traveling wave solutions with the chirp, as functions of the
propagation distance. The setup and parameters are the same as in Fig. (2.5),

except for I = cn and: (a) by =0 (b) bp =0, ag = 0.1, (c¢) by = 0.5 and (d) by = —1.
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Figure 2.12: Solitary wave solutions without chirp. The intensities |u|* are plotted
of solutions: (a) 1 (F' = sn), (b) 2 (F = c¢n), (¢) 7 (F = sc), (d) 8 (F = ¢s), (e)
4 (F =ns) and (f) 5 (F = nc). The parameters are otherwise the same as in Fig.
(2.1), except M =1 and ~(z) = —0.05.
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Figure 2.13: Traveling wave soliton solutions without chirp. The parameters are the

same as in Fig. (2.12), except M = 0.9999.
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Figure 2.14: Solitary and travelling wave soliton solutions with chirp. The parame-
ters in (a) and (b) are the same as in Fig. 2.12 (a) and (b), and the parameters in

(c) and (d) are the same as in 2.13 (a) and (b), except ap = 0.1.
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(a) (b)

Figure 2.15: Phase of the solutions B as functions of the propagation distance and
one transverse variable, assuming y = ¢ = 0. The parameters are the same as in

Fig. (2.5), except for F' = cn and: (a) ap = 0, and (b) ap = 0.1.
2.3.1.2 Case 2: Arbitrary 5(z) and x(z)
We now assume that §(z) and x(z) are arbitrary functions and proceed to solve

Eqgs. (2.37)-(2.44). Parameters fo, a, b, k, [, m, w and e have the same form, as
given in Egs. (2.46)-(2.53). Parameters f;, and v have the following values:

— B(z) 10 1o m2)e

fi = \/—X(z)(k0+l0+ 2)ea, (2.58)
dfy

v(z) = 3G(Z)5(Z)+%, (2.59)

where « is the chirp function given in Eq. (2.54). Given that ¢4 = M for F' = sn
and ¢4, = —M for F' = cn, it follows that £(z)/x(z) must be positive in the case
of dark solitons and negative in the case of bright solitons. This set of solutions
is significant in that, given adequate gain or loss, one can produce a wide range of

solutions.

For constant or proportional 5 and y one obtains solutions similar to those in
Sec. 2.3.1.1 except that the degree of chirp is 1 instead of 3/2. Still, the two sets of
solutions nevertheless appear very similar qualitatively. The integer degree of chirp
makes even solutions with negative chirp possible, which will be discussed in Sec.

2.3.3.

It is, however, possible to introduce sinusoidal modifications in either S or x

giving us an oscillation of amplitude even in the complete absence of chirp. In Fig.
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Figure 2.16: Solitary wave solutions for f(z) = 1 +sin(z), fo =1, by = 1, ¢y = 0,
ko =1lo =mo=1,wy =0, ¢ =0. The remaining parameters are: (a) ag =0, F' = sn
and x(z) =1, (b) ap = 0, F = cn and x(z) = —1, (¢) ap = 0.02, F = sn and
X(z) =1, and (d) ap = 0.02, F' = cn and x(z) = —1.

(2.16) we see the effect of a shifted sinusoidal value of /3 for a constant y. The solitary
wave keeps travelling to one side, due to the function v required to maintain this
motion being similar to the cot function, and it doesn’t vary too much as a function
of chirp, as shown in plot (a) of Fig. (2.18). The travelling waves are not shown,
but they exhibit the same trends as solutions in Sec. 2.3.1.1: waves travel in parallel

without chirp and spread out with chirp.

In Fig. (2.17) we see the effects of varying x while keeping 5 constant. In
order to avoid singularities, we took x(z) = 2 + sin(z) for the dark soliton and

Xx(z) = —(2 + sin(z)) for the bright soliton in our research. The key difference
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Figure 2.17: Solitary wave solutions for 8(z) =1, x(z) = —(2+sin(z)) and F' = cn.
Other parameters are the same as in Fig. (2.16), except for: (a) ag = 0 and (b)
ap = 0.02.

between the solitons in Fig. (2.17) and those in Fig. (2.16) is that solitons in Fig.
(2.17) travel in perfectly straight lines. We show only the bright solitary waves, with
and without chirp.

Finally, in Fig. (2.18) we show the values of v needed to achieve both regimes.
For the first case (Fig. (2.16)) the value of 7 is sharply discontinuous at points
where fy reached 0, whereas for the second case (Fig. (2.17)) there is a periodic
dependance. The values of v are given for the cases of ay = 0 and ag = 1 and not

much difference is seen at higher values of z in both cases.

2.3.2 Results for (1+1)D NLSE

We will now cover a few other special cases of the general system given in Sec. 2.2.
The formulas for the (1+1)D equation can be obtained from Equations (2.19)-(2.25)
by taking N = 1 and s; = 1. Note that the degree of the chirp function is 1/2 in

the expression for f; and f; given in Eq. (2.19).

It turns out that Kruglov et al. first found solutions to the (14+1)D NLSE that
use the Jacobi elliptic functions in Ref. (140). In this paper, the authors postulated
the existence of the quadratic term in the phase of the solution, though they assumed

that the linear term, i.e. b(z) in our notation, was 0. The authors recognized the
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Figure 2.18: Values of v(z) needed to achieve solution, as given in Eq. (2.59).
Parameters in (a) are the same as given in Fig. (2.16), whereas the parameters in
(b) are the same as given in Fig. (2.17). In both graphs ay = 0 for the lower plot
and ag = 1 for the upper plot.

significance of the Jacobi elliptic functions in finding solutions to the (14+1)D NLSE
and they list several solutions that utilize the different JEFs. The solutions given in
(140) match our solutions for the (1+1)D NLSE, including the degree of chirp. In
the appendix, these authors use the so-called autonomous principle to argue why it
is not possible to include phase coefficients of degree higher than 2 with respect to

the transverse variables for the (14+1)D NLSE with Kerr nonlinearity.

2.3.3 Results for (241)D NLSE

The (2+1)D case was extensively covered in (143), which preceded the publication
of (142) and the other papers covered in this Thesis. We will summarize here all
the results not covered in Sec. 2.3.1. The formulas for the (241)D equation can be

obtained from Egs. (2.19)-(2.25) by taking N = 2 and s; = 59 = 1.

In (143), the formula for the chirp as a function of (z) was not explicitly stated.
Instead, the chirped and the unchirped cases were treated separately, wherein for
the chirped case the function a(z) was simply postulated, and the formula for g was

derived via the relationship:

1 da

B(z) = o2 de (2.60)

The order of the chirp function in Eq. (2.19) is 1. Since the formula doesn’t contain
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the square root, it is possible for the chirp function to be negative, unlike in the
cases of the (1+1)D and (3+1)D NLSE. If the chirp function crosses the x-axis
it is evident from Eq. (2.60) that there is a singularity in 5. However, the only
parameters in which 8 appears, w and e, can be rewritten as follows:

w(z) = wo— (ko +1o)bog, (2.61)

1
e(z) = e+ B ((kg + 15 +mg)(ca — 6ey/coca) — 3b7) g, (2.62)

where from Eq. (2.26) one obtains:

]_—Oé(Z) 1 - ap

=« /Ozﬁ(z)dz = = . (2.63)

2@0 2@0

This parameter ¢ that is common to w and e will prove important in Chapter 3.

In Fig. (2.19) we see novel solution obtained when the chirp is of the sinusoidal
form. As expected, the pattern for a solitary-wave solution is repeated and stretched
out due to the effect of chirp. Figures (b) and (d) were presented for the first time
in (143), although here they are shown on a wider scale. Note that we cannot begin
integration at 0, but must do so at a point without singularity, for example z = /2.
Thus the index '0" represents the values of the given parameter at z = /2, and

hence ay will stand in this case for the amplitude of the chirp at that point.

In Fig. (2.20) we see the effects of chirp on the amplitude for f(z) = —m.
If ap = 0 then there is no chirp, but if ay = 1 the chirp becomes a(z) = 1 + 2.
Thus, since the square of the chirp factors in the form of the amplitude, in figure (b)
we see the quadratic increase of amplitude in both 42 and —z directions compared

against a sinusoidal form of the gain function y(z). The figures in this graph were

also presented for the first time in (143) albeit over a much smaller range.

2.3.4 Results for (34+1)-D NLSE with normal dispersion

We now consider the same NLSE in (34+1)D but with normal dispersion, instead of

the anomalous dispersion:

i0,u + @(ALU — %) + x(2)|u|*u = iy(2)u. (2.64)

All of the quantities in this equation are the same as described in 2.3.1. This equation

is a special case of (24) for V=0, N =3, 21 =z, 20 =y, 13 =1, 5y = S = 1 and
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Figure 2.19: Solutions for a sinusoidal chirp of the (241)-D NSLE. The parameters
are: a(z) =sin(z), v(z) =sin(z), fo=1,bp=1,e0=0,ky=lp =1, wy =0, =0
and: (a) M =1, F =sn, (b) M =1, F = cn, (¢) M = 0.999, F' = sn and (d)
M =0.999, F = cn.
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Figure 2.20: Solutions for 3(2) = — 57, 7(2) = cos(z)/2, F =sn, M = 1. Other

2(1+2)2°

parameters are the same as in Fig. (2.19) except for: (a) a =0 and (b) a =1+ .

s3 = —1. The generalization described in Sec. 2.2 that allowed the treatment of the

(34+1)-D NLSE was first described in (144).

Applying the solution form for u, as in (2.31), we assume the form of A and B

as follows:

A = hHRFO)+ f2(2) FH(0), (2.65)
= k(z)z+1(2)y +m(2)t + w(z), (2.66)
B = a(2)(x®*+y* =) +b(2)(x +y+1) +e(2), (2.67)

where f, g, k, [, m, w, a, b, e are parameter functions to be determined, and F' is
a Jacobi elliptic function (JEF). As in (2.3.1) ky = k, ko = [ and k3 = m. These
equations are a special case of Egs. (2.8)-(2.10) and differ from Eqgs. (2.32)-(2.34)
only in the sign next to ¢* in (2.67).

As in (2.3.1), we consider the most generic case, in which f and g are assumed
non-zero and 3(z) and v(z) are arbitrary. We also assume k?+1%2—m? # 0, otherwise

the only solution for non-zero x is f = g = 0. When we apply the FET as described
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in 2.2 we obtain the following solutions:

filz) = () foexp </OZ Wdz), (2.68)

faz) = € Z—Zfl, (2.69)
k(z) = ok, (2.70)
I(z) = aly, (2.71)
m(z) = amy, (2.72)
w(z) = wo—a(kg+lg—m0)bo/ Bdz, (2.73)
a(z) = aay, (2.74)
b(z) = aby, (2.75)
oz) = ot ((B+1—md)(er — bey/ae) — 1Y) /0 Bdz  (2.76)

where a = (1 + 2aq [, fdz)~" is the normalized chirp function. The subscript ‘0’
denotes the value of the given function at z = 0 and f; is defined to be fi5. The
constants cg, o, and ¢4 are related to the elliptic modulus of JEFs. A parameter ¢ =

+1 is introduced in Eqs. (2.68)-(2.76), to distinguish the two present possibilities.

One should note the universal influence of the chirp function « on the solutions,
similar to the influence of chirp in the case of normal dispersion. In the case when
there is no chirp, ap = 0 and a = 1, the parameters k, [, m and b are all constant.
In the presence of chirp they all acquire the prescribed z dependence that also
influences the form of the amplitude A through the dependence of f, g, and # on a.
As in the case for the anomalous dispersion, x is not arbitrary, but depends on «,
5, and ~:

X = —Bes(k + 12 —m2) fy2e 200 7% /q, (2.77)

Incorporating these solutions back into Egs. (2.65)-(2.67), we obtain the general

periodic traveling wave solutions to the generalized NLSE:

u = () fyedo 142 (F(@) + e@%) expi(a(z®+y* —t?)+b(z+y+t)+e), (2.78)

where:

92w0+k:1:+ly+mt—(k+l—m)b0/ pdz. (2.79)
0

As in Sections 2.2 and 2.3.1, assuming f; = 0, one obtains ¢ = 0. Thus, the
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parameter € in Eq. (2.78) can assume three values: £1 and 0. As in Sec. 2.3.1 we

can choose the form of the solutions from Table (1.1).

We present some of the travelling wave and solitary solutions, taking the diffrac-
tion/dispersion coefficient 5 to be of the form 5 = [,cos (kyz) and the gain/loss

coefficient v to be a small negative constant.

In Figs. (2.21)-(2.22) we depict the solitary wave solutions made up from the
single F' functions 1 and 2 from the table, without and with the chirp, for ¢ = 0. For
the same values of kg, [; and mg the overall profile is narrower in the case of normal
dispersion, due to a change of sign in myg, but the overall nature of the solutions is
not changed. It is worth noting that for my = k¢ + ly, the profile of the solitary
wave is straight even for nonzero by, i.e. it resembles Fig. (2.11)(a) and (b). For
mo > ko + o the profile oscillates in the other direction, resembling Fig. (2.11)(d)

for the case without chirp.

2 , e 2
e Rmm
1 e T s
o - -
Fé < EERadl e
5 0 5 0
k0x+l_0y+mgt kgx+lgy+m0t

Figure 2.21: Solitary wave solutions as functions of the propagation distance, for
ap = 0 (without chirp) and € = 0. Intensity |u|? of: (a) solution 1 and (b) solution 2
from Table (1.1), presented as functions of kox + loy + mot and z. Other parameters
are: B(z) = cos(z), v(z) = v = —0.05, M =1, by =1, ¢g = 0, ko = lyp = mp = 1,

CL)O:O.

Figures (2.23)-(2.24) repeat the same sequence of plots as Figures (2.21)-(2.22),
but show the traveling wave solutions instead. The soliton solution is similar to a

single period of the periodic wave solutions for M close to 1.

The most striking feature of the solutions for the normal dispersion is their
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Figure 2.22: Solitary wave solutions with the chirp, as functions of the propagation
distance. The setup and parameters are the same as in Fig. (2.21), except for

apgp = 0.1.
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Figure 2.23: Traveling wave solutions without chirp. The setup and parameters are

as in Fig. (2.21), except for M = 0.9999.

60



it e 0 VR T o g
e aiesices

3 —10 =20
ho 10 0o —10
k0x+lgy+m0t k0x+lgy+m0t

Figure 2.24: Traveling wave solutions with chirp. Setup is the same as in Fig. (2.23),

except for ag = 0.1.

similarity to those for the anomalous dispersion. With the modifications of only a
few parameters, the solutions for this fundamentally different system from that of

the NLSE with anomalous dispersion were obtained.

2.4 Adaptation of the F-expansion technique for

higher order nonlinearities

We now turn to the question of generalizing these results to higher order nonlin-
earities, i.e. we present analytical periodic traveling wave and soliton solutions for
the Kerr nonlinearity of arbitrary high order. Solitons involving higher orders of
nonlinearity were first developed in (158) and finding solutions to the higher order
NLSESs, especially the Cubic-Quintic equation and the Septic equation, remains an

ongoing area of research. The results in this section were first developed in (111).

We are interested in the generalized NLSE in (3+1)D with distributed coeffi-
cients (157):

Ozt @A“ +xa(@)ul e+ 4 xa (@) |ulu = iy (2)u, (2.80)

which describes evolution of a slowly-varying envelope u(z, y, t, z) in a diffractive and

dispersive nonlinear medium, with an arbitrarily large order of nonlinearity. Here z

is the propagation coordinate and A = 92 + (‘93 + s0? represents the generalized 3D
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transverse Laplacean, in which x and y are the transverse spatial coordinates, and ¢ is
the reduced time. As in the previous systems, all coordinates are made dimensionless
by the choice of coefficients and functions 5 and 7 stand for the diffraction/dispersion
and gain coefficients, respectively. In this section we assume s = 1, i.e. the case
of anomalous dispersion, although the results are easily generalizable to the case
of normal dispersion as well. The functions x,, for m = 1,2,...,n stand for the
nonlinearities of orders up to 2n+1. For n = 1 one has the simple Kerr nonlinearity,

for n = 2 the cubic-quintic, for n = 3 the septic, and so on.

Apart from the study of cubic-quintic and septic systems, another motivation to
look into exact solutions of the generalized NLSE with high-order Kerr nonlinearity
comes from the fact that such a nonlinearity is an excellent approximation to the

saturable nonlinearity:

1
1+ s]

~1—sl+ (sI)* = (sI)*+ ..., (2.81)
which is an important generic model, but for which there are no known exact solu-

tions.

Following the standard procedure as described in Sec. 2.2, we write the complex
field u of (2.80) in terms of its amplitude and phase:
/U/(Z7 x? y7 t) = A(Z7 :E, y? t) eXp (ZB(Z7 :L., y? t)) N (2'82)
Substituting u into Eq. (2.80), the following coupled equations are obtained:
1
0. A + EB(Q@AQCB + 20,A0,B + 20,A0,B+
AAB) = ~A, (2.83)
1
—A0.B + 5 (AA - A(8,B)* — A(8,B)” — A(8,B)*) +
1A%+, AT = 0. (2.84)
As in previous sections, we apply the balance principle (119; 123) and the F-
expansion technique (124; 136), as developed in (156), with modifications to ac-

count for the higher order nonlinearities. We seek the traveling wave solutions to

Eqgs. (2.83)-(2.84), and assume the A and B functions to be of the form:

A = [()F(0)+ fal2)F(0), (2.85)
0 = k(z)x+1(2)y —Q=2)t+ ¢(2), (2.86)
B = a(2)(@®+ > +12) +b(2)(x +y+1t)+e(z), (2.87)

62



where f1, fo, k, [, €2, ¢, a, b, e are parameter functions to be determined, and F' is
a Jacobi elliptic function (JEF). In this section we will use 2 = —m instead of m in
order to obtain travelling waves in the positive direction. These solutions resemble
the solutions used in the original F-expansion technique (Eqs. (2.32)-(2.34)), except
for the power of the function F', which is now 1/n instead of 1. The change in
the power is crucial, allowing the higher order nonlinearities to be accounted for.
The power has to be such that the highest-order term from Laplacean matches the

highest-order nonlinearity.

We substitute Eqgs. (2.85)-(2.87) into Egs. (2.83)-(2.84) and in accordance
2p—1 .
HF

with the F-expansion technique require that 27 F QPT_I, Ve e

w,(1=0,1,2,

p=-n,...,n+1)and v/co + coF2 + ¢, F'* of each term be separately equal to zero.
The constants ¢y, ¢, and ¢4 are related to the elliptic modulus M of JEFs as given
in Table (1.1). After multiplying the expressions and factoring out common factors
of fi and f5, a system of first-order ordinary differential equations is obtained for

the parameter functions:

Vi s sapty—vs; = 0 (2.88)

Z_i +2ka = 0, (2.89)

% +2laB = 0, (2.90)

g +20a8 = 0, (2.91)

D Bkri-p = 0, (2.92)

% +2Ba®> = 0, (2.93)

% +28ab = 0, (2.94)

_% _ gﬁbz +ges + zi;x—(iljll) _— (2.95)

where j = 1,2, ¢ = W, and by definition X, = xm f1"f3, m=1,...,n. A

number of algebraic relations involving ,, is also obtained:

~_ (2i+1
Xi| - = 0, 2.96
> <@+p> (2.96)
X1+ (2n+1)x, — (n—1)gquw = 0, (2.97)
Xn+(n+1)gw = 0, (2.98)
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where w = ¢q (%) = (%) ,and p = 2,...,n — 1. Indeed, Equations (2.95),
(2.97) and (2.98) are obtained from the terms next to Fw, F2~% and F**u, respec-
tively. Note that Eq. (2.97) appears only for n > 1 and Eq. (2.96) only for n > 2.

The binomial coefficient (Qifpl) is defined to be 0 for ¢ +p > 2i + 1.

Equations (2.88)-(2.98) resemble Eqgs. (2.11)-(2.18), the corresponding equations
in Sec. 2.2 for the special case of N = 3and V' = 0, except that the equations for e(z)
and x,(z) have now been generalized. By solving these equations self-consistently,
one obtains a set of conditions on the coefficients and parameters, necessary for Eq.
(2.80) to have exact traveling wave solutions. We consider the most generic case, in

which f(z) and ~(z) are arbitrary.

We first solve Eqs. (2.88)-(2.94), to obtain expressions for fi, fa, k, [, ., ¢, a
and b. From the condition on w it follows fo = €f; %/ 2—2 and so w = €",/cocy, Where
e = £1. We then proceed to solve for ,, recurrently starting from m = n and

ending at m = 1. We easily obtain:

Xm = T'mqW (2.99)
and:
. 2i+1
Xi| . = ; 2.100
;X (Z N 1) rqu (2.100)
where the r-parameters r, ry, ..., r, are integer functions of n. Although it is
difficult to find generic formulas for r, r1, ..., r,, in principle it is easy to calculate

these parameters recursively for any given n:

= —nt1) (2.101)
o1 = (n—1)—2n+1)r, =2n(n+2), (2.102)
- 2i' +1
P = —'Z ri/<m+i/+1>,m:1,...,n—2, (2.103)
i'=m+1

S (2i+1
_ i _ 2.104
" ;r <i+ 1) (2.104)
The values of coefficients r and rq,...,r, are given in Table (2.1). In the end, the

64



Table 2.1: Values of r-parameters

no|r T T r3 T4 s T'e r7

1 | -6 -2

2 |18 16 -3

3 |-38 -66 30 -4

4 | 66 192 -156 48 -

5 | -102 |-450 | 570 -300 70 -6

6 | 146 912 -1659 | 1312 -510 96 -7

7 | -198 | -1666 | 4116 -4536 | 2590 -798 126 -8

8 | 258 2816 | -9072 | 13248 | -10340 | 4608 -1176 | 160
9 |-326 |-4482 | 18252 | -34056 | 34650 -20826 | 7602 -1656
10 | 402 6800 | -34155 | 79200 | -101530 | 78624 | -38325 | 11840
n T8 T9 710

8 |-9

9 | 198 -10

10 | -2250 | 240 -11
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following set of exact solutions is found:

fl p _ (Q)S/Qfoefoz'ydz7
I

k(z
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l(z) = alg,

()
()
(2)
()
Qz) = afy,
(2)
()
()
(2)

o(z) = ¢o— alke+lo— Qo)bo /z Bdz, 2.110
alz) = aay, i 2.111
b(z) = aby, 2.112
e(z) = e+a (W(cz + re"\/cocy) — 37193) /OZ Bdz. (2.113

As for previous systems, a(z) = (1+ 2ay [, Sdz)~" denotes the normalized chirp
function, subscript 0 denotes the value of the given function at z = 0 and fy = fio.
Since A has to be real, for even n we must have F' > 0 at all times, so that F/"
is real. This restricts the range of allowed solutions in terms of JEFs. Another
restriction involves the nonlinearity coefficients, which by the solution procedure

are found related to 8 and ~:

€n+mrmﬁa2—3m 2\/—’_7 ( z >
Xom = — /ey ey exp —2m/ vdz |, (2.114)
2n2f3 ! 0 0

where m = 1,2,...,n. This relation should be understood as an integrability con-

dition on Eq. (2.80), similar to the formula for x obtained in Eq. (2.27) for the
system studied in Sec. 2.2. Note that the nonlinearity coefficients x,, are directly
proportional to the r,, parameters, while the only parameter to explicitly appear in

the solutions is r, which appears in Eq. (2.113).

We consider separately the case fo = 0. In this case the solutions are given in
terms of single JEFs. We then have one negative exponent of F' in the term AA
of Eq. (2.83), namely (n — 1)ficoF*t%. However, all other terms in (2.83) will
be with a positive degree of F', hence for n # 1 we must have ¢g = 0. Then one
finds x, = —q(n + 1)caf; " and all other x,,, =0, m = 1,...,n — 1. The correct
expressions are still obtained from Egs. (2.105)-(2.113), provided one takes ¢ = 0.
The case n = 1 was covered in Sec. 2.3.1; the expression for y Eq. (2.55) remains

unchanged, ¢y need not be 0, and the correct expressions are again contained in Eqgs.
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(2.105)-(2.113), as long as one takes ¢ = 0. All of these restrictions do not bode
well for the application of the present solution method to the saturable Kerr-like
nonlinearity, which was one of our original aims. For the time being, this important

model remains nonintegrable (159).

2.4.1 Resultsforn=1and n =2

We now apply the results obtained to a few specific cases. For n = 1 we have
rp = —2 and 7 = —6. Hence, Eqs. (2.105)-(2.113) reduce to the corresponding
equations (2.45)-(2.53) obtained in Sec. 2.3.1.

For n = 2, corresponding to the cubic-quintic model, we obtain r; = 16, r, = —3
and r = 18. The only soliton solution found so far which satisfies both F' > 0 and
co = 0 for fo = 0 is the bright soliton solution with M = 1 and F' = sech. This

solution is presented in Fig. (2.25).

(b)

Figure 2.25: Soliton solutions for the cubic-quintic model n = 2 as a function of the
propagation distance, for: (a) ag = 0 (without chirp) and (b) ag = 0.1 (with chirp)
for the F' = sech solution. Intensity |u|* presented as a function of kox + loy — Qot
and z. Other parameters are: [(z) = cos(z), 7(2) = v = —0.05, M =1, by = 1,
e0=0,e=0,ky=1lp=—-Q=1, ¢ =0.
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2.4.2 Results for n =3

For n = 3, corresponding to the septic model, we have r; = —66, ro = 30, r3 = —4
and r = —38. We obtain the bright soliton solution for f; = 0, which looks very
much like the solution seen in Fig. (2.25). The only noticeable difference is the
transverse stretching of the wave. This is due to the fact that the function F % falls
less rapidly as the argument decreases for larger n. For the septic model we also
obtain solutions for ¢ = 1. These correspond to the dark solitons, with F' = tanh.

Since ¢y = 0 is no longer required, one can find both solitary (M = 1) and periodic

(M < 1) traveling wave solutions. These solutions are shown in Figs. (2.26)-(2.27).

(b)

10" ¢ T2
4 '
k0x+loy—.00t

Figure 2.26: Soliton solutions for the septic model as functions of the propagation
distance. The setup and parameters are the same as in Fig. (2.25), except for n = 3,

F = tanh and e = 1.
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Figure 2.27: Periodic traveling wave solutions for the septic model as functions of
the propagation distance. The setup and parameters are the same as in Fig. (2.26),

except for M = 0.99 and F = sn.
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Chapter 3

Application of the F-expansion
technique to the Gross-Pitaevskii

equation

3.1 Introduction

Gross-Pitaevskii equation (GPE) is of tremendous importance in Bose-Einstein con-
densation (BEC), where it describes the behavior of the condensate wavefunction
(160; 161). It has been introduced independently by Gross (162; 163) and Pitaevskii
(164; 165) for an unrelated problem, but has since been found of great use in BEC.
In addition, it has been used in the studies of superfluidity in liquid He II, as well

as pulse propagation in nonlinear (NL) optics (4).

The GPE emerges in the study of the BEC from analyzing the interaction of
N bosons in a pseudo-potential, which is applicable in the dilute limit, where the
average spacing between the particles is much greater than the scattering length
(166). The interaction between the two particles is represented by a Dirac delta
function ultimately leading to a third-order nonlinearity in the GP equation. The

external potential is typically taken to be quadratic in all spatial directions.

Solutions to GPE are of great interest because they can be applied to a diverse

array of quantum systems. Among other, solitary wave solutions (151; 167; 4) have
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been discovered in GPE. Various, mostly numerical (168; 169), solutions to GPE
have been found, prominently including localized wave solutions (170; 171). How-
ever, just as in the case of the ordinary nonlinear Schrodinger equation (NLSE),
stable exact soliton solutions to GPE exist only in (1+1)-dimensions ((1+1)D)
(172; 173) and there are no known exact stable solitons in higher dimensions. In a
variational and numerical treatment, Adhikari has shown that the 3D spatiotempo-
ral (ST) optical solitons can be stabilized by a rapidly oscillating scattering length

or the dispersion coefficient in a Kerr medium with cubic nonlinearity (174; 175).

Here we present analytical traveling wave and soliton solutions to the GPE in
(34+1)D, i.e. in 3 spatial dimensions and time, that were found applying the F-
expansion technoique (FET). The work in this chapter was done in (145), (146),
(147) and (148) . The solutions we find depict the way in which an initial traveling
wave packet obeying GPE changes in time. Such solutions are necessarily transient
in nature. This is the consequence of not only the equation being of the time-
dependent Schrodinger type, but also of the fact that the coefficients in the equation
are time-dependent, which is typical of BEC. Hence the solutions might diminish
in time, or blow up, or oscillate, or converge to a specific spatial form. We are
most interested in those solutions which oscillate or converge. The stability of these

solutions will be adressed in Chapter 6.

3.2 Application of the F-expansion technique

We consider GPE in (3+1)D with distributed coefficients (151):

B(t)

i0pu + TAU + x(O)|uPu + a(t)r*u = iy(t)u. (3.1)

Here ¢ is time, A = 8%—1—55—#33 is the 3D Laplacian, r = \/m is the position
coordinate, and «(t) stands for the strength of the quadratic potential as a function
of time. It is strictly assumed that «(t) # 0, otherwise the equation is reduced
to the generalized nonlinear Schrodinger equation (NLSE), which has already been
discussed in Secs. 2.2-2.3.4 and in (142; 156). The functions f3, x, and v stand for
the diffraction, nonlinearity, and gain coefficients, respectively. All coordinates in

Eq. (3.1) are made dimensionless by the choice of coefficients. The key difference
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between this system and that of 2.3.1 apart from the quadratic potential is that the
longitudinal variable is now t instead of z, and the three spatial variables are now

transverse.

We apply the same form to the solution u as in Eq. (2.31), taking into account
the change of longitudinal variables (i.e. putting the longitudinal variable as the

first argument):
u(t,z,y,z) = A(t,z,y, z) exp (iB(t, 2, y, 2)). (3.2)
Substituting u into Eq. (3.1), two coupled equations for A and B are obtained:

B A + %5(2@14@3 +20,A0,B + 20. A0, B+
AAB) = ~A,  (3.3)
1
—A0,B + 5B (AA — A((0.B)* + (8,B)* + (0.B)%)) +

YA +ar’A = 0. (3.4)

The key change from Eqs. (2.35)-(2.36) is the presence of the extra term in Eq.

(3.4) coming from the quadratic potential.

To these equations we apply the balance principle and the F-expansion tech-
nique, as described in 2.2. We seek the traveling wave solutions to Eqs. (3.3)-(3.4).
We assume the same form for the amplitude A and the phase B as in Eqgs. (2.32)-
(2.34), again noting the change of the longitudinal variable:

A = ROFO)+ LOF0) (3.5)
0 = k(t)x+1t)y+m(t)z+ w(t), (3.6)
B = a(t)r* +b(t)(x +y+ 2) +et), (3.7)

where f, g, k, [, m, w, a, b, e are parameter functions to be determined, and F' is

a Jacobi elliptic function (JEF). Using the FET as described in 2.2, we obtain the
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following system of algebraic or first-order ordinary differential equations:

df.

Vi s sapr;—vp; = 0 (3.8)

dk

dl
d—t+2la/8 = 0, (3.10)

dm
%4‘27’@@6 = 0, (3'11)
% +28a®> —a = 0, (3.12)

db
D 4 26ab = 0 (3.19)
(fl—j+ﬂ(k+l+m)b = 0, (3.14)

de f8 2 2 2 2

ABE P +m)e+xf) = 0, (3.16)
B+ 1P +m”)e+xf3) = 0, (3.17)

where j = 1,2. The constants co, ¢z, ¢4 in Egs. (3.8)-(3.17) are related to the elliptic
modulus M of JEFs (see Table (1.1)).

By solving Eqs. (3.8)-(3.17) self-consistently, one obtains a set of conditions on
the coefficients and parameters, necessary for Eq. (3.1) to have exact traveling wave

and soliton solutions (142).

The existence of the coefficient «(t) makes the solution of Eq. (3.12) for the
chirp significantly more difficult than that of the corresponding equation in the case
of the generalized NLSE (142; 156). Since the solution of a(t) also determines the
solutions of all other parameters, the solutions obtained here are markedly different
from those in (142) and (156). Indeed, Eq. (3.12) is of the Riccati equation type,
which has no analytical solutions for the general functions a(t) and g(t), although
its numerical solution entails little difficulty. However, for certain choices of «(t)

and ((t) it is possible to obtain exact solutions.

3.3 Solutions for proportional o and

In this section we will focus on the solutions obtained when the functions o and

are proportional. In other words, we assume «a(t) = agg(t) and 5(t) = Bog(t), where
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ap and [y are initial values of « and 3 respectively, i.e. constants, and ¢(t) is some
function in time. In making these assumptions the Riccati equation given in (3.12)

becomes separable, and therefore solvable. The final solutions to Egs. (3.8)-(3.17)

A = e ([ sa) (315)
fot) = € ?fh (3.19)
k(t) = pko,4 (3.20)
(t) = plo, (3.21)
m(t) = pmo, (3.22)
w(t) = wo— (ko + lo + mo)bog, (3.23)
b(t) = pbo, (3.24)
o) = ot (B +B+md)er — Geyiamm) — 38)a,  (3.29)

where p(t) and ¢(t) are parameters to be determined, as well as function a(t). One

can then obtain the final solution:
fop®? / Lt F(O) + e, ]2 ! (3.26)
T ex — - .
RV Ve F @
expi(a(a? +y* + 2°) + b(z +y + 2) +e),

where:

0 = wo + (k‘o$ + loy + moz)p — (k’o + lo + mo)boq. (327)

The parameter € can take the values 0,4+1. As a consequence of Eqs. (3.16)-(3.17),

our solution method imposes an integrability condition on the coefficients:
t
) = =50 + B+ ) i o (<2 [ ar). s2s)
0

Equations (3.18)-(3.28) hold for arbitrary forms of o and /3, although in general
a, p and ¢ cannot be found. However, for a(t) = agg(t) and 5(t) = PBog(t) we obtain:

p(t) = /ao_a—;a%)ﬁosech (r(t)) (3.29)

_ Voo __aob
q(t) = V(a0 — 20250 tanh (7(t)) P T (3.30)

alt) = /% tanh (7(1)), (3.31)
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where: .
_ /250
7(t) = arctanh (ao a_> + V2050 /g(t)dt. (3.32)
0
0

In (146) there was a minor error in the corresponding formula for (3.32), in that
instead of ¢(t), 5(t) was erroneously written. However, since we always used 3y = 1,
this produced no additional errors. The form of the auxiliary function 7(¢) naturally
depends on the form of g. The parameter functions p and ¢ place the following
restriction on the solutions: «g > 2a2 3y, which for positive o and 3y implies |ag| <

35+ though alternate formulas can be found for |ao| > | /52".

We will now study the solutions obtained for two characteristic cases: constant o
and [, i.e. g(t) = 1, and sinusoidal o and 5, i.e. g(t) = cos (2t) and g(t) = sin (2t).
In the final case oy and By obviously refer to the amplitude of the functions, and

not the initial values.

3.3.1 Solutions for constant o and f

We now consider the special case when « and (§ are constants, i.e. g(t) = 1. Two
distinct situations arise: either o and (8 are of the same sign, or they are of the

opposite sign.

3.3.1.1 Case 1: a and f of the same sign

We will first cover the case when « and [ are of the same sign. The work in this
section was done in (145). By plugging in ¢ = 1 into Eqgs. (3.29)-(3.31), we obtain

the following forms for a, p and ¢:

est/2(1 + O)

p(t) = 1L Cer (3.33)
- (1+C)(et —1)
q(t) = SAtCen (3.34)

[a Cet —1

% + ag
oY (3.36)

\/28 ~ %

where:
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and s = 24/2a. When « and (8 are of the same sign, both C' and s are real. The
subscript 0 denotes the value of the given function at ¢t = 0. Equations (3.34)-
(3.35) hold for ag # /%. When ay = /% one obtains the appropriate solution

expressions by taking the limit C' — oo. The final solution for u becomes:

w o= fy (%)mem (/Ot»ydt> (F(9)+e E—Zﬁ) (3.37)

cexp (i(ar® + b(z +y + 2) + ¢)),

where

(1+C)(e —1)
s(1+ Cest)

0 = Wy +kw+ly+mz —ﬂ(ko‘f—lo +m0)bo (338)

There are few key differences between the solutions obtained here and the ones
obtained in (142). Most notably, there is no meaningful distinction in the sense of
chirp vs. no chirp, i.e. between the solutions with ag # 0 and ay = 0. The value
of ag = 0 does not entail any special status. Instead, it is the value of \/% that
is of some importance. For ay > — %, a converges to \/% as t increases, while
for ay = i\/% it stays constant and for ay < —\/% there are singularities in the
parameter a. For ag > —\/% the functions k, [, m and b all converge to 0 and w

and e converge to constant values that depend on ay.

2
0.0 o\ Ju
0.5 TR 10
¢ 1.0 ot 1 0.5
- [
1.5 TR ()0
2.0 ) 0 —72 -4
kox+lyy+myz kox+lyy+myz

Figure 3.1: Decaying bent solitary wave solutions to GPE as functions of time, for
bo = 1. Intensity |u|? for: (a) F = tanh and (b) F = sech presented as functions of
kox + loy + moz and t. Other parameters are: =1, a = 1, y(t) = —0.05, ag = 0,
eo=0,ky=lp=mog=1,wg=0,e=0.
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Figure 3.2: Decaying straight soliton solutions to GPE as functions of time. The

setup and parameters are the same as in Fig. (3.1) except for by = 0.

kox+lyy+myz

Figure 3.3: Decaying traveling wave solutions, given in terms of JEFs for: (a) F' = sn

and (b) F' = ¢n. The setup and parameters are the same as in Fig. (3.2), except for

M = 0.99.
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By inspecting Eq. (3.42) one can see that the long-time behavior of the general
solution crucially depends on the coefficient v(¢). Although ~(t) is described as the
linear gain or loss in the system, the value of v = 0 does not exert any special
bearing on the solutions, similar to the value of ag = 0 for chirp. Figures (3.1)-(3.3)
depict decaying solutions for a small negative value of . The solutions for v = 0

are also decaying and are practically identical to those in Fig. (3.1).

The critical value of v for the appearance of solitons or waves as ¢ increases is
v = 3p/4. Thus, if v is constant, only for v = 3p/4 can one see stable solitons or
waves evolving as t — oo. If v > 3p/4, the solutions blow up, while if v < 3p/4,
the solutions diminish. Hence, to observe stable solitons asymptotically, one needs
gain in the system. To see periodically changing, i.e. breathing, solitons in the case
of constant o and 3, one needs v in the form of y(t) = 3p/4 + ~1(t), where ~,(t) is

some periodic sign-changing real function.

T F 0 8
S S

-20_
10 10 200.0
kox+lyy+myz kox+lyy+myz

Figure 3.4: Bent soliton solutions as functions of time for: (a) F' = sn and (b)
F = ¢n. The setup and parameters are the same as in Fig. (3.1), except for

v(t) = 3//2, the critical value of .

The caveat to the analysis just presented is contained in Eq. (3.28), which
explicitly connects x(t) with (¢). Thus, the long-time behavior of the nonlinearity
coefficient x is also tied to y(t). For constant -, the critical value now is v = p/4.
If v < p/4, x(t) diminishes with time, if v > p/4, it blows up. Taken together with
the result of the previous paragraph, it appears that the most interesting interval
of  for the long-time behavior is p/4 < ~(t) < 3p/4. There, the solutions decrease

in time, while the nonlinearity coefficient increases. This statement reflects the
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kox+lyy+myz kox+lyy+myz

Figure 3.5: Straight soliton solutions as functions of time. The parameters are the

same as in Fig. (3.4) except for by = 0.

kox+lyy+myz kox+lyy+myz

Figure 3.6: Traveling wave solutions in terms of JEFs. The parameters are the same

as in Fig. (3.5), except for M = 0.99. (a) F' =sn and (b) F' = cn.
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difficulties in obtaining stable solitons in the multidimensional GP equation with
constant coefficients. It is another reflection of the known difficulties with the wave
stability and collapse in multidimensional NL. Schrédinger equation (48). Hence, to

observe long-lived solitons, a delicate engineering in the form of ~(¢) is necessary.

As in the case of the NLSE, the solutions introduced by Eqs. (3.26)-(3.7) describe

spatially extended spatio-temporal solitons for M = 1.

3.3.1.2 Case 2: a and [ of opposite sign

The case where o and [ are of opposite sign is of much interest to the scientists
studying the GP equation because in this case the solutions simulate an attractive
quadratic potential, which is of a much larger relevance for experiments done on
Bose-Einstein condensates, whereas when « and [ of the same sign, the solutions

simulate the effect of a repulsive quadratic potential. We define o/ = —a..

After solving Eqgs. (3.8)-(3.17), one obtains the following solutions for a, p and

p(t) = ! (3.39)

COS (\/20/525) + ao\/%sin (\/20/525) ’

24
W) = B+ ot (V3aTTT) (3.40)

o) = \/z ap — \/g—étan (v2a/Bt) 3.41)
26 \/% + ag tan (v/2a/P)

The final solution for u is then:

3/2

o

8

awvZaB + o cot (vzagy) | P (/Ot W) |
(F(Q) +e\/gﬁ) exp (i(ar? + b(z +y+2) +e),  (3.42)

)

u = fo

where:

o

28

bo apV/ 20/ 3 + o cot (\/20/&) '

Unlike the solutions in Case 1, which dissipate in time, the solutions in Case

0 =wo+ kx+ly+mz— B(ko+ lo+mp) (3.43)

2 tend to converge and blow up. In this case, however, no amount of loss will
80



rescue the solutions from collapsing as parameter p, on which the amplitude of the
solutions depends, inevitably reaches 0. For ag = 0, The solutions blow up at time
T/4, where T = 27/(y/2¢/3). To avoid singularities we show all graphs to almost,
but not including, the time at which the singularity is achieved. In Fig. (3.7) we
see see the form of the solutions for both the bright and dark solitary waves and
the effect of parameter by on the bright solitary waves. The parameter by ultimately
determines the direction of the solitary wave. Unlike the case of the NLSE where
the wave is uniformly travelling in one direction for constant [, here the wave travels

sinusoidally, but blows up after only a quarter of a period.

(a) (b)

‘6"”‘7\.\“ S ! |
kox+lyy+myz \\,g-*b.O

kox+lyy+mpz -

Figure 3.7: Solitary wave solutions to GPE as functions of time. Values of param-
eters are: § =1, a = —1, y(t) = —=0.05, ag = 0, g = 0, kg = lp = my = 1,
wo = 0, € = 0. Intensity |u|? for (a) F' = tanh, by = 2 and for the remaining graphs
F = sech with: (b) by = 2, (¢) by = 0 and (d) by = —2 presented as functions of
kox + loy + moz and t, where ¢ is shown from 0 to 7'/4 — 0.01.

The effects of chirp are similar to Case 1. There is no qualitative change in the
81



form of the solutions, and the presence of ag does not prevent the solution from
blowing up. As ag increases and the sin term in the denominator of p becomes more
prominent, the time at which the solutions blow up converges to 7'/2. In addition,
the presence of ag causes a decrease in amplitude with respect to the starting point.
We see these effects in Fig. (3.8). Unlike in Case 1, or indeed in the case of the
NLSE described in Sec. 2.3.1, the initial value of the chirp ag can be made as large

as desired without running into (new) singularities.

(a) (b)

(c) (d)

Figure 3.8: Solitary wave solutions to the GPE as functions of kgx + loy + mgz and
t, where t is shown from 0 to 7'/2 — 0.01. The setup and parameters are the same

as in Fig. (3.7)(d) except for: (a) ag = 0.1, (b) ag = 0.5, (¢) ap = 1 and (d) ag = 2.

In Fig. (3.9) we see the travelling wave solutions for Case 2. As in Case 1, the
solutions are not periodic with respect to the transverse variable. Unlike Case 2,

the travelling waves converge to a single point, whose location depends on by.
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40°-0

Figure 3.9: Traveling wave solutions to the GPE as functions of kox + loy +mpz and
t, where t is shown from 0 to 7'/2 — 0.01. The setup and parameters are the same
as in Fig. (3.7) except for M = 0.99, ap = 1 and: (a) F' =sn, by = 0, (b) F' = cn,
bp =0, (c) F =sn, by = 10 and (d) F' = cn, by = 10.
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3.3.2 Solutions for sinusoidal o and [

We now present and analyze the solutions to GPE when both the diffraction and
the quadratic potential are sinusoidal functions of time. As in Sec. 3.3.1, there will
be two distinct cases: either ag and [, are of the same sign, in which case the two
functions «(t) and B(t) are in phase, or o and fy are of the opposite sign, in which
case the two functions «(t) and () have a phase difference of 180°. We attempted
to solve other cases, but unsuccessfully. If arbitrary phase shifts are added to o and
B, ie. a(t) = agsin(QU + ¢1) and B(t) = [y sin(Qt + ¢9), very different solutions are
found, often without a closed analytical form. Indeed, Equation (3.12) is separable
only for ¢; = 0 and ¢, = 7. If one parameter is a sine function and the other is a

constant, the solutions collapse rapidly.

The GP equation will be solved in each case Eq. (3.1) for two sub-cases:
a(t) = apsin(Qt), B(t) = Bosin(Q) (g(t) = sin(Q2)) and a(t) = agcos(2t),
B(t) = Bo cos(Qt) (g(t) = cos(€2t)).

3.3.2.1 Case 1: o and [, of the same sign

We first consider that oy and (, are of the same sign. This case was analyzed for
the first time in (146). The form of parameter functions p and ¢, as well as the
solution for a, differ in the two sub-cases. For the first case, a(t) = agsin(t),

B(t) = Bosin(Qt), we have:

a = 250 —— tanh (arctanh (am/ B()()) + /2005 W)’ (3.44)

p = sech <arctanh ( jo> + /2005 M) . (3.45)

0 Q
V oo — 2%50
g = tanh (arctanh( 60) + v/ 2005 w> . (3.46)
Qg

04050 aoBo

V2(ap — 2a2By) o — 2a3fo’
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For the second case, a(t) = o cos(Qt), B(t) = By cos(2t), we have:

B o /25, sin ()
a = /2ﬁ0 tanh (arctanh <a0 ” > + v/ 2008 0 ; (3.47)
a /9 sin (Qt
p = ao——;a%ﬁoseCh (arctanh (ao o%) + v/ 20059 §(2 )> . (3.48)

Vo /28 in (€2t)
q = \/§(aoa—o 2(;(2)50) tanh (arctanh (ao a_()0> + 2005 st ) (3.49)

o aofo
Qo — 2@860

We present in this section a few typical examples of solutions for both sub-cases,
a(t) = apsin(Qt), B(t) = Posin(Qt) and at) = o cos(QUt), B(t) = By cos(§2t). The
initial conditions (sin0 = 0, cosO0 = 1) produce a crucial difference in the chirp
parameter a, which in turn affects both p and ¢. Another important point to note
is that while the traveling wave solutions are periodic in time, they are not periodic
along the transverse variable kqx + loy + moz, in contrast to the solutions found in
Sec. 2.3.1. Like in Sec. 3.3.1, the initial value of the chirp is not of much importance,
i.e the solutions remain qualitatively the same. The only major change is a shift of
all parameters a, p and ¢, which causes a shift in the graphs along the transverse
variable, and a decrease in the magnitude (for positive ag) which causes a narrowing

of the peaks.

Figure (3.10) presents the sine case and Fig. (3.10) the cosine sub-case of the
solitary wave. Figure (3.12) presents the traveling wave solutions for both the sine
and the cosine sub-case. For a better perspective, a small loss (y = —0.05) is
included in all the figures. Without it, the waves still breathe, the amplitude remains

constant. Note the influence of the parameter by, which causes the solitons to wiggle.

Despite the apparent complexity of these solutions they yield relatively straight-
forward and elegant spatiotemporal breathing soliton solutions for both /' = sn and
F = cn, i.e. both dark and bright solitons, without any need for v. In other words,
unlike the solutions in Sec. 3.3.1 which required a positive value of gain to form soli-
tary waves, the signals here stay at the same peak intensity for v = 0, but breathe.
This is apparent from the fact that p and ¢, as well as a, the parameter functions

on which all other variables in the final solution depend, are periodic functions of
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k0x+lgy+mgz k0x+lgy+moz

Figure 3.10: Soliton solutions to Gross-Pitaevskii equation as functions of time,
for the sine case: a(t) = agsin(Q2), B(t) = Bysin(Qt). Intensity |u|? presented as
functions of ko + lyy + moz and ¢ for: (a) F' = tanh, by = 0, (b) F' = sech, by = 0,
(c) F' = tanh, by = 1 and (d) F' = sech by = 1. Other parameters are: oy = 1,
Bo=1,Q2=1,7(t) =—=0.05a0=0,e0 =0, kg =lp =mog =1, wy =0, e = 0.
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(c) (d)

kgx+loy+m0z k0x+lgy+m0z

Figure 3.11: Soliton solutions to Gross-Pitaevskii equation as functions of time for
the cosine case: «(t) = agcos(§t), B(t) = Bocos(Qt). Other parameters are the
same as in Fig. (3.10)
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(©) (d)

kox+lyy+myz kox+lyy+myz

Figure 3.12: Traveling wave solutions to Gross-Pitaevskii solutions in terms of JEFs
for the sine and the cosine case. The parameters for (a) and (b) are the same as in
Fig. (3.10) (a) and (b), and the parameters in (c¢) and (d) are the same as in Fig.
(3.11) (a) and (b), except for M = 0.99. For figures (a) and (c¢) we have F' = sn and
for figures (b) and (d) we have F' = cn.
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time in both cases. Note also that the width of the solitary solutions in Sec. 3.3.1

was increasing in time, because of the positive value of ~.

3.3.2.2 Case 2: oy and [, of the opposite sign

In Case 2, we cover solutions in which g and 3 of the opposite sign. The formulas
for f1, fa, b, k, I, m, w and e are the same as in Eqgs. (3.18)-(3.25). The forms for a
and parameters p and ¢ for the case a(t) = agsin(Qt), B(t) = Bysin(Qt), are:

a = 25 % tan (arctan (am/ 60) — V2005 O_L(;(Qt))) (3.50)
p = msec (arctan (am / ) oﬁo C;S (Qt))> ,(3.51)
g = tan (arctan <a0~ / ZB()> V2005 (1 — cos (Qt))> (3.52)

\V 04050 i aoﬁé

V2( +2a36)) a0+ 2035

where ) = —fy. For the second case, a(t) = g cos(t), 5(t) = Po cos(§2t), we have:

a = 2,80 % tan (arctan (aow 2(55) — V2003 sin (Qt)), (3.53)
P o= /a0+a—§a%ﬁésec (arctan (aO\ f 25(?) — V200 sin (Qt)> . (3.54)

B VB 23 sin (Qt)
qg = \/§(a0+2a856) tan | arctan | ag aoo - 050 (3-55)

aoﬁ()
oo + 2a35)

o~

Here we present the results for just the case a(t) = ag cos(§2t), B(t) = By cos(Qt).
Apart from the shape of the peaks and their ultimately large value for the same set
of parameters, as seen in Fig. (3.13), the results for Case 2 are very similar to those
in Case 1. The results for the o and /3 being sine functions are also similar, though
singularities occur for different sets of values of oy and ). For example, for the

same set of parameters as those in Fig. (3.13) singularity occurs in the sine case.
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k0x+loy+m0t kgx+lgy+m0t

Figure 3.13: Soliton solutions to Gross-Pitaevskii equation as functions of time for
the cosine case: a(t) = agcos(2t), B(t) = Focos(2t). Other parameters for figures
(a) and (b) are the same as in figures Fig. (3.10)(c) and (d), respectively, except for
by = —by = 1.

3.4 Other systems with solvable Ricatti equations

We now turn to solving other systems for which one can solve the corresponding
Ricatti equation (3.12). The solution procedure employed here is different from
the procedure in (145) and (146). The procedure there requires that «(t) and 5(t)
be of the same signs, whereas here they have to be of the opposite sign. Also,
the notation introduced in Sec. 3.4.1, for simplicity’s sake, differs somewhat from

notation elsewhere in the Thesis, and thus the two should not be confused.

3.4.1 Solution method

The Riccati equation (RE) has the following form:
Y = P(x) + Qx)y + R(z)y?, (3.56)

which can be considered as the lowest order nonlinear approximation to the deriva-
tive of a function in terms of the function itself (176). It is assumed that y, P, @
and R are real functions of the real argument x. It is well known that the general so-

lution to the Riccati equation is not available, and only special cases can be treated
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(177; 178; 179; 180; 181; 182). Even though the equation is nonlinear, similar to the
second order inhomogeneous linear ODEs, one only needs a particular solution to

find the general solution.

In a standard manner Riccati equation can be reduced to a second-order linear
ODE (177) or to a Schrédinger equation (SE) of quantum mechanics (183). In fact,
Riccati equation naturally arises in many fields of quantum mechanics, in particular,
in quantum chemistry (184), in the use of the Wentzel-Kramers-Brillouin (WKB)
approximation (185) and in SUSY theories (187). Recently, methods for solving
the Gross-Pitaevskii equation (GPE) arising in Bose-Einstein condensates (BECs)
(172; 173) based on the Riccati equation were introduced. Our objective is to
find new solutions of Riccati equation by utilizing relations between the coefficient
functions P(z), Q(z) and R(z) for which the above equation can be solved in closed

form.

It is well known that any equation of the Riccati type can always be reduced to

the second order linear ODE:

u” — (Q(x) + Z((;;))) ' + P(z)R(x)u =0 (3.57)
by a substitution:
y:—%? (3.58)

It is also known that if one can find a particular solution y, to the original equation,

then the general solution can, in a well-known procedure, be written as (147):
1
y=ypt o (3.59)
where w is the general solution of an associated linear ODE:
w' 4+ (Q(x) + 2R(x)y,) w+ R(x) =0 (3.60)
which does not contain P(x). Solving this equation we get (147):

w = wee ) — e_¢(’”)/ R(£)e?® de, (3.61)
zo

where:

b(z) = / (QUE) + 2R(©)y,) de. (3.62)

91



1
Yo—Ypo

It is clearly seen from the relation above that wy = The general solution is

therefore given by (147):

T -1
y:yp+e¢<f>( L / R(g)e¢<f>d§) : (3.63)

Yo — Ypo o

Equation (3.56) cannot be solved in closed form for arbitrary functions P(z),
Q(z) and R(x). However, if certain relations exist between these functions, then the
above equation can be transformed into a second order linear ODE, which can be

easily solved in certain special cases, which we will cover.

For the sake of making our calculations clearer, we make the following two

substitutions:
R
= - - 64
a(x) <Q+R), (3.64)
and:

b(x) = P(x)R(x). (3.65)

Parameters a(z) and b(x), which we will use only in this section, should not be con-
fused with the chirp function a(t) and with the function b(¢), both used extensively

elsewhere in the Thesis. Equation (3.57) can thus be re-written as:

du du
@ + a(m)a + b(ZL‘)u = 0. (3.66)

We consider an arbitrary function of z, z = f(z), which we choose to be a new
independent variable. The substitution looks arbitrary, but it will be made more
specific later in the text. We compute the first and second derivatives of u with

respect to x, but now in terms of the new independent variable z:

du dudz
= T (3.67)
d*u  d*z du dz\? d*u
2 drd (@) P (3.68)
We plug the last results into the Equation (3.66), to get:
dz\? d*u d?z dz\ du

Finally, dividing by (%)2, we obtain (147):

Pu (L ra@)E du [ bx)
@—F (W %—l— (d_z)2 u=20 (3.70)
dx
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provided dz/dx is not equal to 0. Hence, we define parameters A and B as follows:

21275 + a(x)j—;

A = 200 (3.71)
2 (%)
b

B = (x)Q, (3.72)
(%)
dx

to obtain:

d*u du

— +2A— + Bu = )

dz2+ 7 + Bu =0, (3.73)

The obtained equation can easily be solved in closed form if A and B are either
constants (147) or if they are some special functions for which the closed-form so-
lutions to (3.73) are known. In this Thesis we consider only the two special cases,
namely when A and B are positive constants, or when A = 0 and B is an arbitrary
function B(z). The constants A and B should not be confused with the amplitude

and phase of u given in Eq. (2.5) and elsewhere.

If b(z) is positive, by considering the coefficient of u we define z to be the

r=20+s /Fd{ (3.74)

where s = +1. The requirement that b(x) is positive is equivalent to the condition

following function:

that the product P(z)R(x) is positive. To simplify bookkeeping, let ¢ = b/B. In

that case, we have the following relations:

d
d—; = sc1/?, (3.75)

d?z c

E — —230_1/2 . (376)

From (3.75) it is clear that dz/dx cannot be equal to 0. Now we compare the
coefficients of du/dz and use relations (3.75) and (3.76) to get:

C/

2scl/?

(%) + 2 (%) — 4As (%)3/2 = 0. (3.78)

At this point it is more convenient to consider the two cases separately.

+asc/? —2A¢ =0, (3.77)

or
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3.4.1.1 Case 1: A and B are constants

If (3.73) has constant coefficients 24 and B, then it is easily solvable in closed form.
This means:

4sA
Y+ 2ab — —=p*? =0, 3.79
VB (8.79)

V(z)+ 2a(z)b(x) 4sA
GO )

Substituting back the original expressions for a(x

)
(Pl)R)) = 2(Q() + R@)/R(@) PaRE) _4sA oo

(P(x)R(x))*/? VB

Note that only if the condition (3.81) is satisfied, can the general solution be found

in other words:

and b(z), we get the final result:

using this method. On the other hand, when the condition is not satisfied, this does
not mean that the general solution cannot be found. In fact, most of the special
cases of Riccati equation with known solutions do not satisfy the relation obtained

(182). Also note that even though Eq. (3.79) is nonlinear, it can readily be solved.

Now we proceed to solve Eq. (3.73). The general solution is given by:
u(z) = c1eM* 4 cpe™, (3.82)

where z is the function defined in (3.74), ¢; and ¢y are some initial values, and A\

and )\, are the roots of the characteristic polynomial A\? + 2A\ + B = 0, given by:

)\172 = —A :i: V A2 - B (383)

We assume first that A2 > B > 0, so that both lambdas are real and negative. We
need only a particular solution of (3.73), so we consider only u, = ¢**, where X is

any of the roots to the polynomial.

From the substitution done in (3.57), namely y = —u'/(uR(x)), we find the
particular solution to be:

s\ [P(x)

T VB Ry

Finally, we plug v, into the expression for the general solution of Riccati equation,

to find:

(3.84)

-1
== +
YT UB\ R@) TS

(3.85)

0+f\/ zﬁ
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Note that we have substituted y,o by its value. To recapitulate, here A and B
are two arbitrary constants satisfying A2 > B > 0, X is one of the roots of the

characteristic polynomial, yq is the value for y at zy, and:

o) = [ (Q(&)—% P(é“)R(é)) ¢ (3.50)

is the integrating exponent.

In the case of A?> < B we obtain trigonometric solutions with damping. The
general solution for u is:

—Az(

u(z) = e *(c1 coswz + o sinwz), (3.87)

where w = VB — A2, Taking ¢; = 1 and ¢, = 0, since we only need a particular

solution, we obtain:
_ A P(z)
"B R(x)’

Note that an explicit dependence of y, on z occurs, unlike in the case A> > B > 0.

(1 —wtanwz) (3.88)

Bearing in mind the dependence of z on z given in Eq. (3.74) and the dependence
of ¢ on y, given in Eq. (3.62), the final formula for y for the case A% < B becomes
prohibitively complex, involving a double integral where the inner one is embedded
inside a trigonometric function. In this Thesis we will only cover the results for
A? > B > 0. Below we apply the general results of this section to some specific

examples.

3.4.1.2 Case 2: A=0 and B = B(x)

When A = 0, (3.77) reduces to the simple equation ¢ = —2ac. Solving for ¢, and

taking into account that ¢ = b/ B, we get the simple relation:

b b v
5= (E)Oexp (—2 /xo ad:c> : (3.89)
where a(x) and b(z) are defined in Eqgs. (3.64)-(3.65), and B(z) is still an arbitrary

function. Note that (3.73) now becomes:

d*u
where z is given by (3.74). When B(z) is chosen as B(z) = By+ Bi(z), then the last

equation becomes equivalent to the Schrodinger equation of quantum mechanics:

W+ 2}1—?(]5 V) =0, (3.91)
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describing the wave function ¥ = u(z) of a particle of mass m moving in a potential:

h’B
V=- 27;@ (3.92)
with an energy eigenvalue:
h% By
E = 5 (3.93)

(186). There are many specific potentials V' for which the solutions ¢, and the
energies F, in the above equation are known, where n denotes some set of quantum
numbers. Therefore, one can choose B(z) such that the solutions w,(z) can be found.
If u,(z) are known, and hence u,(x), then the solutions y,, to Riccati equation can

be easily written down from the substitution

Yn(z) = _unr}% (3.94)

mentioned above. This in fact gives rise to various solutions of the various special

cases of Riccati equation.

3.4.2 Application of the solution method

We now apply the results of the previous section to the GPE, as given in Eq.
(3.1). The solution to the system is given by Eqgs. (3.18)-(3.25). The key challenge
is finding the solution for the chirp function a(t) as well as parameters p and ¢,
although for by = 0 the parameter ¢ is not needed for plotting |u|?>. Again, the
functions a(t) and b(t) given in Eq. (3.31) and Eq. (3.24) respectively should not
be confused with the functions a(z) and b(z) defined in Eqgs. (3.64)-(3.65). The
equation for a(t), (3.31), will be restated here:

da 9 -
- 28t —a(t) =0. (3.95)

To this equation we apply the method developed in Sec. 3.4.1. We take parameters

A and B to be constant, i.e. we only cover Case 1 in this Thesis.

Put in the form of the original Riccati equation, the coefficients are:

P(t) = «ft), (3.96)
Qi) = 0, (3.97)
R(t) = —20(¢). (3.98)
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We write down relation (3.81) between v and 3 for which (3.95) is solvable in closed

form:
af —ao'f 425 A
(—ap)?? VB’

The prime is now the derivative with respect to t. Equation (3.99) can be manipu-

(3.99)

lated to become a simple differential equation for —a/p:

((_;?25 - 4\\//_25’4. (3.100)

B

Solving this equation, one finds:

@ - \/Ti_z_ 2\525/1 /Otﬁdt. (3.101)

Now one can write down the solution for a(t) from (3.85), provided the above con-

dition is satisfied:

-1

‘Odr |, (3.102)

SA a(t) e 1

a(t) = _ﬁ —% a0+\5/—’\§ —_2&700 +2/0 B(r)e

where:
o(t) = —2\/§sA/O v/ —a(r)B(r) dr /VB. (3.103)

Note that the negative sign in the square root indicates that a and [ have to be
of the opposite signs, which is consistent with the requirement that the original
function b(z) is positive. Hence, as long as the ratio of the diffraction coefficient to
the strength of the parabolic potential can be made to satisfy (3.100), one can write
down the exact solutions to GPE. It should be mentioned that these functions are

the material parameters in BECs that are accessible to experimental manipulation.

Our solution method for the GPE requires that § be proportional to y, and
X in turn be proportional to the s-wave scattering length (188). To validate our
proposed solution method, we present a couple of examples in which 3, and hence
the scattering length, are given by some representative functions of time. In all the
examples we determine the corresponding chirp functions a(t), from which one can
write down the exact solutions of the GPEs in question (145). To avoid singularities
that are likely to appear in «(t) and a(t) we choose s to be —1. Note that the
appearance of singularities is not detrimental to our method or to the theory of

BECs based on GPE, because that model is known to be valid only on a limited
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time interval. In the subsequent examples, the calculations and graphs for «, ¢
and a(t) were done in (147), whereas the remaining work, including the graphs for
u, was done in (148). The three examples we will cover are possible to implement
in real physical systems and, as far as we know, are new solutions which were not

mentioned in the literature before.

3.4.2.1 Example 1: §=1(e % +1)

We consider first the case when f is an exponential function of time, 5(t) = %(e“% +
1), where ¢ is some arbitrary parameter. This function describes a smooth change

in S(t) from 1 to 1/2. First, (3.101) is solved for «, to obtain:

oty = Are (3.104)

2 (1 + _ﬁ(le-“ﬂ%))z

0

Then one finds ¢:

0
t) =0t +1In . 3.105
#0) —V2+ e (V24 6 + V20t) (3:105)
Taking ap = —1, A = B = 1, and performing the calculations, we obtain the
following solution for a:
= 5v/2e%
alt) V2e (3.106)

T 22 £ VB5 120 (V2 e (V24 0+ V2t8)) ((t)

where
) B 2
—V2+ e (V2+5+V2t0)|  1+V2a

Although this solution looks complicated, it allows simple expressions in the limit

((t) =0t +1n

d — 0, when 8 becomes constant. Figure (3.14) presents some representative cases
of a and a functions for different values of §. Finally, the parameter p is calculated

by solving Eq. (3.24) for Eq. (3.106):

et [ (V)
2 : (3.107)

5
—V2+edt (V2 +5+/2t6) (V2 + 2a0)

p e
—2v/2 + V/2t6 + 2tdag + In

Figure (3.15) shows how the solution of GPE looks like for this case. One may
note that after an initial rapid change, the pulse settles into a slowly evolving bright

solitary solution. Similarly to solutions in Sec. 3.3.1 there is a continuous reshaping
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(a) (b) (c)

Figure 3.14: Graphs of parameters for Example 1: (a) a(t), (b) a(t) for ag = 0 and
(¢) a(t) for ag =1, for 6 = 0.01,0.1,1,10 (top to bottom).

Figure 3.15: Intensity distribution |u|* for the solution of Example 1. (a): no
gain/loss. (b): v = —0.05. Here F' = sech. Other parameters are: ay = fy = ko =
lo=mg=wy=1,bg=e=0and ) =5.

of the wave, which is relatively mild in this example and Example 3, but far more

dramatic in Example 2.

For Example 1, it can be inferred that the intensity linearly grows with time,
even when there is no gain imposed on the system. To prevent the intensity from be-
coming arbitrarily large, some loss should be added to the system. In Fig. (3.15)(b)
this is achieved by choosing v = —0.05.

3.4.2.2 Example 2: § = Zflv:o Bt™

) . . N
Next we consider the case when (3 is some power series of the form ) " 8,t", where

Bo # 0. We go through the same procedure and solve (3.101) for a, to get:

S0 Bul”
N
N n+1
(1+2v250 0 8255 )

alt) = — (3.108)
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Then we find ¢ to be:
| 1
=In —.
1+2v2 30 Bty

Again, taking ap = —1, A = B = 1, and performing the calculations, we arrive at

(1) (3.109)

the following closed-form solution:

2v2a0 — (a2 + 1) In |1 +2v2 YN 6,05

a(t) = -
(1+2V2 X0 ul23) (2v2 + (200 +v2) In |1 + 22 S0, A )
(3.110)

These solutions for a and a are plotted in Fig. (3.16). Note that by choosing
different parameters (3, and letting N — 0o one can obtain closed-form expressions

for different functions (). Figure (3.17) presents the case with § = cos(2t).
(a) (b) ()

Figure 3.16: Graphs of parameters for Example 2: (a) a(t), (b) a(t) for ap = 0, and
(c) a(t) for ap = 1. Parameters: N = 0,1,2,3,4 (top to bottom at ¢ = 0.5 for «,
bottom to top at ¢t = 3 for a), 5, = 1.

(a) (b) (©)

Figure 3.17: Graphs of parameters for 5(t) = cos(2t): (a) a(t), (b) a(t) for ag =0
and (c) a(t) for ap = 1. Here 2 =6,7,8,9,10. Curves with higher peaks correspond

to lower values of (2.

We now study the special case:
N
b= Z (2n)!

n=0

(Qt)* = cos(t), (3.111)
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which was covered in (148). We find « to be:
cos(Qt)

— - : . 3.112)
sin(Qt) | 2 (
(1+ 2y/2 22)
The chirp function then has the following form (147):
2v/2ay — (\/§a0 + 1) In ‘w + 1‘
(3.113)

a(t) = <w L 1) ((an +12)In

The expression for D becomes:
/ 44/2sin(Q

p= ; .
2\/54—11]‘14— Qﬁsgzn(ﬂt)

2\/§ssizn(ﬂt) 1 1’ N 2\/5) .

(V2 +200)

Next, we find ¢(t):

_ < (29 ((2a0 + v2) In (&(8) +2v2) Ei (2In (&(t) — ) — e 7" (1))
02 ((ao (2a0 (V2a0 + 3) + 3v2) + 1) In (&(1)) + 4ao (ao + v2) +2)

+ §3(t)7
(3.115)

q

where:

() = 8(vV2ay+ 1)Qsin(Qt) — 4(2ag + V/2) cos(20t) + (3.116)

(2a0 + V2)(Q? + 4),
2/2 sin ()

&t) = —q — *1L (3.117)
4R () 4 V2ap + 1
fg(t) — © 1<\/§a0+1> 5 @0 7 (3.118)
V2 (\/an + 1)
- 1 (3.119)

B \/50/0 + 1 7
and Ei(z) = ffoo et—t dt is the exponential integral. Note that here a proper choice of

() had to be made, to ensure that the solutions do not blow up.

Figure (3.18) displays the behavior of the solution. The obtained solutions
greatly resemble those in Sec. 3.3.2. The choice of periodic # produces a breathing
localized solution, i.e. a breather. The solution looks like a regular breather when
the parameter function b of the solution is equal to 0, but wiggles back and forth
keeping an asymmetric profile when b # 0. Such solutions propagate stably, with a
periodic change in the profile. It can be clearly observed that the addition of the
parameter by causes the periodic change in the soliton’s direction and shape. The
amplitude of the soliton does not change when there is no gain or loss added to the

system.
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A / =

g "o0X +lyy +myz

Figure 3.18: Intensity distribution in Example 2, with by = 0 (left), and by = 5
(right). Here F' = sech. In both cases, Q2 = 8. Other parameters: ag = fo = ko =

lo=mg=wy=1,v=€e=0.

3.4.2.3 Example 3: 3 =0 (1 — ﬁ)

Finally, we consider the case when (3 is of the form: § = 3 <1 — ﬁ). This form

is dictated by the dependance of the scattering length on the magnetic field near
the Feshbach resonance of cold BEC atoms (188). The magnetic field B(t) = Bit,
not to be confused with the function B(x) from Sec. 3.4.1, is assumed to be linearly
ramped in time near the resonance field By. The parameter D stands for the width
of the resonance. Such a dependence is relevant not only for for theoretical physics

(188), but also, most importantly, experimental physics (189).

The closed-form solution is again readily obtained. However, this time it includes
integrals that cannot be evaluated in terms of elementary functions. The results for

a, ¢, and a are as follows:

_ 1__D
olt) = =B i , (3.120)
(L—2v25t + 2320 In | Brzba )
vig [l '~ 5B
o) = 2v25 _ Birhy dr, (3.121)
1
0= s a0 (BBl (3.122)
V2 = 25t + 12 I | BB
()
V2 5[t D e
aox/§2—1 +206 fo (1 - BlT,BO)e‘f’( ) d1

The parameter p unfortunately cannot be found in terms of simple elementary func-

tions. As a consequence, numerical evaluation of p, in the absence of a closed
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Figure 3.19: Intensity distribution in case 3, with no gain/loss (y = 0). Here,
F' = sech. Other parameters D = 10, By = —1, ap = By = fo = wy = ey = ko =

l():m():ﬂ:]_, andbgzO.
formula, had to be used in our calculations.

We will not deal with the singularities that result from the resonance form of f.
Therefore, we will choose parameters By and By such that the denominator remains
finite. This can be accomplished, for example, if we choose B; = 1, and By = —1.
We choose to keep the closed-form solutions in integral form, and visualize these
solutions instead. The behavior of the solution is shown in Fig. (3.19). Notice that
the parameter values are properly chosen such that the solution does not blow up.
The solution starts from small initial values, but rapidly grows and then continuously
attenuates, the reason being the presence of resonance in the diffraction coefficient.
For other values of parameters the solution might collapse. If the parameter by were
chosen different from 0, the same solitary wave would curve and change direction.
However, the wave would not wiggle back and forth in this case, as in Example 2,

because the diffraction function is not periodic in time.
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Chapter 4

Application of the F-expansion
technique to the NLSE in a linear
electric field

4.1 Introduction

The NLSE with a cubic nonlinearity and linear potential has also been of great
interest to various fields of physics. The topic was first covered in (190), where
detailed solutions were offered for the (141)D case for constant diffraction and
constant linear potential in time. Then in (114) and (115) Hirota method was used
to find both one- and two-soliton solutions in (1+1)D. Finally, in (191), (1+1)D
solutions without chirp for time-dependent linear potentials are developed using
the F-expansion technique. Here we present analytical traveling wave and soliton
solutions to the NLSE in (3+1)D with cubic nonlinearity and time-dependent linear
external potential. The work in this chapter was originally published in (149).
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4.2 Method

In this section we consider the NLSE with distributed coefficients in (34+1)D, with
a linear potential of the form (4):

p(t)

i0pu + TAU + x®)|ulPu+ et)(z + y + 2)u = iy(t)u. (4.1)

Here ¢ is time, A = @f—i—@;—k@g is the 3D Laplacian, r = \/m is the position
coordinate, and €(t) stands for the strength of the linear potential as a function of
time. The strength of the linear potential is related to the strength of the electric
field established in the medium. Hence, we will often use the term “electric field” to
refer to €. The direction of the electric field is purposely chosen to symmetrize the
three coordinates, though other choices are possible. We assume €(t) # 0, otherwise
the solutions reduce to those in Sec. 2.3.1. The functions 5(¢), x(t), and y(¢) stand

for the diffraction, nonlinearity, and gain/loss coefficients, respectively.

As in the previous chapters, we search for the solution of Eq. (4.1) in the form

(145):

u(z,y, z,t) = Alx,y, 2, t) exp (1B(x, y, 2, 1)), (4.2)
where:
A = ROFE)+ LOF0) (43)
0 = k() +1t)y+m(t)z+ w(t), (4.4)
B = at)(@*+y*+22) +bt)(z +y+2) +e(t). (4.5)

As in the previous chapters, fi, fo, k, [, m, w, a, b, e are parameter functions
to be determined, and F' is one of the Jacobi elliptic functions (JEFs). When
Eqgs. (4.3)-(4.5) are plugged into Eq. (4.1) and the F-expansion technique (FET) is

applied (143), the following set of differential equations for the parameter functions

105



is obtained:

dfy

—-t3aBhi—9h =0, (4.6)

%Jr?)aﬂﬁ—vfg = 0, (4.7)

% +2kaB = 0, (4.8)

% +2laB = 0, (4.9)

CZ—? +2mafB = 0, (4.10)

% L9842 — 0, (4.11)

% +2Bab—¢ = 0, (4.12)

Z—j+ﬁ(k+l+m)b = 0, (4.13)

de + s (30" — (K> + P+ m*)cs) — 3xf1f = 0. (4.14)
dt 2

In addition, we obtain two algebraic equations connecting functions f; and f, with

the coefficients of the Jacobi equation:

fi (/3(k2+l2+m2)c4+xf12) = 0, (4.15)

fo (B(E*+ P+ m®)co+ xf3) = 0. (4.16)

The major change from the system in Sec. 3.3.1 is that equations (4.11) and (4.12)
are different. These differences will produce a significant change in the form of
solutions. Additionally, one should remark that for by = 0 the waves travel in a
straight line for both constant § and § = [, cos{2t. For constant § and by = 1,
the solution is linear as a function of the longitudinal variable, unlike the case

B = Bocos Qt depicted in Fig. (2.5) where the solution oscillates sinusoidally.
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4.3 Results

Since Eqs. (4.6)-(4.10) and Eqgs. (4.15)-(4.16) are the same as in (142), i.e. Sec.

2.3.1, the solutions to all parameters except for b, w and e are the same:

filt) = (a)3/2f0 exp /OZ vdz, (4.17)

Co
- 6 _f17
Cy

= Qayp,

) (4.18)
) (4.19)
) = Olk’o, (420)
) = alo, ( )
) = amg, (4.22)

where a = (1 + 2aqy fot fdt)~! is the normalized chirp function and § = 0,+1 and
the subscript 0 denotes the value of the given function at ¢ = 0. The integrability

condition for y is also the same:
X = —Bea(ky + 13 + TrL(QJ)fO_Qe_”f;5 74t /gy, (4.23)

Equations (4.17)-(4.23) hold for arbitrary §(t) and e(?).

We now proceed to solve the remaining equations for four distinct cases: constant
€ and [; constant €, § = [ycost; constant 3, € = egcosQt; and S = [y cos i,
€ = ¢g cos 2t. We note that in all four subsequent cases the solutions reduce to those

found in Sec. 2.3.1 for e = 0.

4.3.1 Case 1: Constant ¢ and

For the case of constant € and S we obtain:

b = a(by + et + apBet?), (4.24)
t2
W = Wy — Oéﬁ(ko + lo + mo) (bot + %) s (425)
t 2t3
e = e+ % (q — (363 + 3boet + €% + %)) : (4.26)

where the normalized chirp function is now a = (1+ 2agft)"! and ¢ = (k3 + 5 +

m3)(ca — 60+/CoCy).
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In Fig. (4.1) (a), (b) we see the effect of adding the electric field on a solitary
wave, when the elliptic modulus M of JEFs equals 1. The solution moves away
parabolically from the center. The effect of chirp can be seen in Fig. (4.1) (c), (d).
As a consequence of the chirp the solution decays. The same will be true for the
third case: constant § and € = ¢y cos2t. Both of these effects can be mitigated by
setting the value of v to be v(t) = 3/(2¢t). In this way the expression for the chirp
will cancel out in the formula for f and g. This idea is first used in (145), and is in
detail described in this Thesis in Sec. 3.3. The value to which the strength of the
signal converges is 1/(2ay3)®/?. Dark and bright soliton solutions with chirp and
gain are given in Fig. (4.1) (e), (f). Naturally, when gain is present, the power will

increase with time.

In Fig. (4.2) we see the same solutions as in Fig. (4.1) except that traveling
waves are shown, i.e. M = 0.995 < 1. We see by comparing Fig. (4.2) (a), (b)
with Fig. (4.2) (c), (d) that the effect of the chirp is not only to reduce intensity
but also to broaden the waves. In Fig. (4.2) (e), (f) we see once again the effect of
adding gain. Note that the picture is not symmetrical with respect to the transverse
variable, but that the central crest curls to the right (towards positive values of the

transverse variable), and along with it all the other crests.

4.3.2 Case 2: Constant ¢ and 3 = 3, cos

For the case of constant € and 3 = 3, cos {2t we obtain:

2
b = « (b(] + et + agogoe(l — cos Qt)) : (4.27)
w = wqy+ Oéﬂg(ko + lo + mo) : (428)

(e(1 — cos Qt) — Q(by + et) sin Q1) /Q?,

e = e+ g—gi ((((q — 308)2% + 362 + 12a0 8ot + 6bye?’ (4.29)

—320%%) sin Ut + 662Q* — 12a0Boe> — 6byef2?) cos Ot

—3agfoe” cos(20t) + 15a0[e* + 6ber2>,
where o = (1 + 2a08y sin Qt/Q) ™! is the normalized chirp function.

In Case 2, we see the effect of a sinusoidal form of 3, analyzed in great detail

in Sec. 2.3.1, in the presence of a constant electric field. In Fig. (4.3) (a), (b)
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(c) (d)

) (f)

k0x+lgy+m0z k0x+loy+m0z

Figure 4.1: :Soliton solutions for 3 and € constant as functions of time. Intensity |u|?
for F' = sn in Figures (a), (¢) and (e) (F = tanh for M = 1) and F' = cn in Figures
(b), (d) and (f) (F' = sech for M = 1) is presented as a function of kox + loy + moz
and t. Other parameters are: M =1, B =1,00=0,e9 =0, kg =lp = myg = 1,
wo =0, e =02, 6 =0. Figures (a) and (b) are with no chirp or gain: ag = 0,
v(t) = 0, Figures (c) and (d) with chirp: ay = 0.1, v(¢) = 0 and Figures (e) and (f)

are with chirp and gain: ag = 0.5, y(t) = 3/(2t).
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(c) (d)

8 8
kgx+lgy+m0z k0x+lgy+m0z

Figure 4.2: Traveling wave solutions for 5 and € constant as functions of time. The

parameters are the same as in Fig. (4.1) except for M = 0.995.
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we see that the effect of the electric field is to widen the amplitude of the soliton.
This widening effect happens even in the absence of by. For by = 0 without the
electric field, the solution obtained is that of a signal moving in a straight line. In
Fig. (4.3) (c), (d) we see the effect of adding chirp, which roughly corresponds to
what was obtained in (142). Since 5 has the form of a sine function the chirp does
not cause the signal to decay, given sufficiently low ag to avoid singularities, but
rather the amplitude of the signal oscillates. As in Sec. 2.3.1 there is the effect of
stretching along the transverse variable, i.e. the solution is no longer periodic with
respect to the transverse variable. In Fig. (4.3) (e), (f) we see the same effect for

the corresponding traveling wave.

4.3.3 Case 3: Constant § and ¢ = ¢y cos 2t

For the case of constant 5 and € = ¢; cos 2t we obtain:

in Q¢ 2
b = « (bo Nt (1 + 2apft) + Ggozg% (cos Ot — 1)) : (4.30)
w = wy— af(k+lo+mo) (bot + e(1 — cos Q) /), (4.31)
e = e+ g‘—gg ((q — 3b2)QM + 36apBel — 24Bpe0Q* — 66203t (4.32)

—12a B30 4 (24byeQ? — 48apBel) cos Ut + 12a0Be; cos(20t)

+(36592 + 6agBegt) sin(29t)> :

where o = (1 + 2agft)~! is the appropriate normalized chirp function.

We now analyze the results for Case 3. In the absence of by the solutions oscillate
as a sine wave, as in Fig. (4.4) (a) and (b). However, if by # 0, then the solution
veers toward positive values of the transverse variable, as in Fig. (4.4) (¢) and (d).
In Fig. (4.4) (e) and (f) we see the traveling wave solutions for by # 0. The presence
of chirp causes the solutions to decay, as in the first case. However, the same trick
can be applied as in Case 1: adding the right amount of gain to counteract the loss

of signal due to chirp. We see this done in Fig. (4.5).
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kox+lyy+myz kox+lyy+myz

Figure 4.3: Soliton and traveling wave solutions for § = [, cos 2t and e constant.
Intensity |u|? for F' = sn in Figures (a), (c) and (e) (F = tanh for M = 1) and
F = cn in Figures (b), (d) and (f) (F = sech for M = 1) presented as a function of
kox + loy +moz and t. Coefficients: Sy =1, y(t) =0,by =1, e =0, kg = lp = mo =
1, wg=0,e=01 Q=1 ~(t) =0, 0 =0. Figures (a), (b) depict solitary waves
with no chirp: a9 = 0, M = 1, Figs. (c), (d) solitary waves with chirp: ag = 0.1,

M =1, and Figs. (e), (f) traveling waves with chirp: ag = 0.1, M = 0.99999.
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(d)

o,
S
et

(¢) )

k0x+lgy+m0z k0x+loy+m0z

Figure 4.4: Soliton and traveling wave solutions for [ constant and € = ¢, cos {2t.
Intensity |u|? for F' = sn in Figures (a), (c) and (e) (F = tanh for M = 1) and
F = cn in Figures (b), (d) and (f) (F = sech for M = 1) presented as a function
of kox + loy + moz and t. Other parameters are: 5 =1, v(t) = 0, ap = 0, g = 0,
ko=1l=my=1,wp=0,6 =1, Q2=1,5 =0. Figures (a), (b) depict solitary
waves with no by: M =1, by = 0, Figures (c), (d) solitary waves with by: M = 1,

by = 1, and Figures (e), (f) traveling waves with by: M = 0.99, by = 1.
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Figure 4.5: Soliton and traveling wave solutions for 5 constant and € = ¢, cos {2t with

chirp and gain. The parameters are the same as in Fig. (4.4) except for ay = 0.5,

(1) = 3/(2t).
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4.3.4 Case 4: 3 = [ycost and € = ¢, cos it

Finally, for the case of f = [y cosQt and € = ¢ cos (2t we obtain:

b = (bo + ﬁstH dofio¢ 020 (sin? Qt)) : (4.33)
Q
W = Wy — aﬁg(kig + l() + 7’I’L0)SH;2 t (bg + % sin Qt) (434)
in Q)
e = e+ %(8((] — 302)Q% — 463 — 3eg(aoPoco + 8be§2?) sin 1t (4.35)
+(1060€(2) sm(3Qt)),

where o = (1 + 2a08y sin Q¢/Q)~! again is the normalized chirp function.

In this case the oscillation of 5 and e combine, as shown in Fig. (4.6). In Fig.
(4.6) (c) and (d) we see the effect of adding chirp. As can be seen, chirp warps the
amplitude of the signal in surprising ways. Finally, in Fig. (4.6) (e) and (f) we see
the same results as in Fig. (4.6) (c¢) and (d) but for the traveling waves.
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k0x+lgy+m0z k0x+loy+m0z

Figure 4.6: Soliton and traveling wave solutions for 8 = S, cos 2t and € = ¢q cos (2t
as functions of time. Intensity |u|*> for F' = sn in Figures (a), (c) and (e) (F = tanh
for M =1) and F = cn in Figures (b), (d) and (f) (# = sech for M = 1) presented
as a function of kox + loy +moz and t. Coefficients: 5y = 1, y(t) =0, ag = 0, by = 1,
eo=0,ky=lp=my=1,wo=0,€6 =3, Q2=1,6 =0. Figures (a), (b) depict
solitary waves with no chirp: ay = 0, M = 1, Figures (c¢) and (d) depict solitary
waves with chirp: ag = 0.1, M = 1 and Figures (e) and (f) depict traveling waves

with chirp: ag = 0.1, M = 0.999 116



Chapter 5

Two-component systems

5.1 Introduction

In this section the results on two-component systems will be covered (150). Of
particular interest is to extend the validity of these exact solutions to a wide range
of systems. A system of great interest is the case of two co- and counter-propagating
beams coupling with each other through the Kerr nonlinearity (192). The interaction
of two beams produces various forms of instability and bifurcation into more chaotic
regimes. Also, the case of linearly coupled beams has been extensively studied by
Malomed and cases of spontaneous symmetry breaking have been uncovered. In this
Thesis, however, we will only concern ourselves with finding novel exact solutions,
while the stability of these solutions will be the topic of subsequent research. For

simplicity’s sake, we consider only the time-independent (141)D case.

5.2 Nonlinear Coupling

For the case of two linearly coupled beams, we consider the standard two component

nonlinear Schrodinger equation with cross-phase modulation in (1+1)-D:

10Uy + @aﬁul +x(2) (Ju]* + clue?) ur = iv(2)u, (5.1)
$10,u9 + @@%m +x(2) (Ju]® + clu]?) ua = siy(z)us, (5.2)
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which describes a system of two interacting light beams, u; and us, in a medium
with Kerr nonlinearity. The functions, as in the previous chapters, 3, x, and v stand
for the diffraction/dispersion, nonlinearity, and gain coefficients, respectively. The
coefficient s determines whether the two beams are co-propagating in which case
s = 1 or counter-propagating in which case s = —1. It is not to be confused with
the coefficient determining whether the dispersion is normal or anomalous used in
other chapters. As in the previous chapters, we will separate each of the two beams

into the amplitude and phase.

5.2.1 Application of the F-expansion technique

We will assume a general ansatz of the following form:

u(z,x) = Ai(z,2)exp (iBi(z, 1)), (5.3)
ug(z,x) = As(z,x)exp (iBa(z,2)). (5.4)

The forms of Ay, Ay, By and B; are assumed to be:

Ar = [(2F0) + f(2)G(0), (5.5)
Ay = qi1(2)G(0) + g2(2) F(0), (5.6)
0 = k(z)r+ w(z), (5.7)
By = ai(2)2” +bi(2)z + e1(2), (5.8)

(5.9)

By = ay(2)2® + by(2)x + ea(2),

where I and GG are two suitable Jacobi elliptic functions, to be determined, satisfying

the following differential equations:
dF\? 2 4
0 = ¢yt cF* + g F7, (5.10)

2
(%) = dy + dyG* + d,G*. (5.11)

By applying the F-expansion method and using the principle of harmonic bal-

ance as described in Sec. 2.3.1, we obtain the following equations for fi, fa, g1, g2,
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w and k:

% +affi—~f; = 0, (5.12)
S% +azfg; —svg; = 0, (5.13)
z—i +2%ka 3 = 0, (5.14)

Sfl_i + 2kasf = 0, (5.15)

2—‘5 +Bkby = 0, (5.16)

sj—j 4 Bkby = 0, (5.17)

where j = 1,2. The key difference is that we now treat the equations as polynomials

in two JEFs, F' and G, instead of one.

From Equations (5.14) and (5.15) one obtains a; = say = a and from (5.16) and
(5.17) one obtains by = sby = b. Hence, we ultimately have just two equations for

the four parameters a1, as, by and bs:

%Jrzﬁcﬂ = 0, (5.18)
%—I—Zﬁab - 0. (5.19)

Note that the chirp functions o; = (1 + 2a, foz de)_l and asp = (1 + 25a9 foz 5dz)_1

are identical for the two parameters a; and as, i.e. @ = ay = a.

We thus obtain the solutions for f;, g;, k, w, a; and b;, where j = 1, 2:

A = (@) fexp ( / ZW) (5.20)
A = (@) fexp ( / dez), (5.21)
0(z) = (@)Y 2gmexp ( / dez), (5.22)
0(2) = (@) gmexp ( / Zvdz), (5.23)
k(z) = aky, (5.24)
w(z) = wo—ak‘obo/ozﬁdz, (5.25)
ai(z) = sas(z) = a(z) = aay, (5.26)
bi(z) = sba(z) = b(z) aby, (5.27)
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where j = 1,2 and oy = (1 + 2a19 foz ﬁdz)_1 is the chirp function. When f; =
g1 = g2 = 0 Egs. (5.20)-(5.27) reduce to Egs. (2.19)-(2.24) for the case of a single

one-dimensional beam (N = 1) with € = 0.

Obviously, the work here is not complete. One needs to find the relationship
between f19, f20, 910, and gog, as well as he formula for e. This is determined from
equations which are analogous to Equations (2.16)-(2.18). In the case of the co- and
counter-propagating beams these equations will induce constraints on the forms of
F and GG that we can use, as well as the associated parameters cg, o, ¢4, dy, dy and

dy.

For the equation analogous to Eq. (2.16) we obtain:

g (k) =0, (5.28)
% + g (0? — kdy) = 0, (5.29)
5% + g (0* —kex) = 0, (5.30)
s% + g (b* — kdy) = 0, (5.31)

from which it follows that ¢y = ds. Ultimately, one obtains:
1 z
e1(z) = e+ 5(@1{8 - bg)a/ pdz, (5.32)
0

1 4
ea(z) = e +s§(62k§ — bg)a/ Bdz. (5.33)
0

The equations analogous to Eqgs. (2.17)-(2.18) are:

fi (Beak® + xfi +exgz) = 0, (5.34)
fa (Bdak® + X f3 + cxgi) = 0, (5.35)
g1 (Bdak® + x91 + exf3) = 0, (5.36)
92 (Besk® + x93 + exfi) = 0. (5.37)
Also, an additional set of constraints emerges:
3XSif2+ 2exfignga + exfogs = O, 5.38

3Xfaf1+ 2exfogige + ex frgi = 0,
3X9ig2 + 2cxqr fifa + exgafy = 0,

3xg5g1 + 2cxgafife + exaifi = 0.
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From Egs. (5.34)-(5.37) one obtains:

(c=1ff = (c—1gs, (5.42)

(c=1f; = (c—1Dgi, (5.43)

from which: f; = 4+g9 and fo = +g;, or ¢ = 1. We analyze these two cases

separately:

5.2.2 Case 1: f; = +g, and f; = +g¢;.

Let us assume g = 0f; and fy = €gy, where €, 6 = £1. We then obtain from Egs.
(5.38)-(5.41):

(B4+c)e+2cd = 0 (5.44)
B+c)d+2¢ = 0 (5.45)
3+c+2e8 = 0. (5.46)

The only solution to this system of equations given the initial constraints on ¢ and

0 are:

e = =9, (5.47)

¢c = 3 (5.48)

Hence, we have ultimately obtained spatio-temporal travelling wave solutions, but

only for ¢ = 3. An additional constraint also emerges:

h

h_ ¢\E (5.49)

where ¢ = +1. If ¢4 = dy4, i.e. combined with ¢, = dy we have F' = G, then one
obtains either f; = —fs, or gy = —go, i.e. either Ay = 0 or Ay = 0, which merely
reduces to the (1+1)D NLSE. Hence, suitable pairs of JEFs F' and G must satisfy
co = do, ¢4 # d4 and in addition c4dy > 0 for the ratio in the square root appearing

in Eq. (5.49) to be positive.

The combinations of allowable forms of F' and G (excluding those that are
symmetrical) are given in Table (5.1). In cases 1, 2, 3 and 4 we must have M # 1,

while in cases 5 and 6 we must have M # 0.
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Table 5.1: Possible choices of ' and G

F |G
1| sn | ns
2 | sn | dc
3|cd| ns
4| cd | dc
5| dn | nd
6 | sc | cs

Finally, the integrability condition on y is found to be:

- Bacakd exp (=2 [ vdz)
T (c+1)f ' (5:50)

5.2.3 Case 2: ¢c=1.

Let us now, on the other hand, assume ¢ = 1. Setting go = § f; and fy = €g;, where

e and 0 are real parameters not necessarily equal to +1, one obtains the following

equations:
3¢+ 20+ e8> = 0, (5.51)
30 +2+€e25 = 0, (5.52)
3¢ +20+1 = 0, (5.53)
30° +25+1 = 0. (5.54)

By equating the right-hand side (RHS) of Eq. (5.53) with the RHS of Eq. (5.54),
one obtains § = +e, and then from Eqgs. (5.53)-(5.54) one obtains either 56 + 1 or
€24+ 1 = 0. Since neither of these two equations has a real solution, it follows that
solutions of the form given in Eqs. (5.5)-(5.9) are not possible for ¢ = 1. Hence, the

present method does not provide solutions for the Manakov system of equations.

5.2.4 Results

We have thus found from our analysis in Sec. 5.2.1 that only for ¢ = 3 one obtains

the traveling wave solutions of the form given in Equations (5.5)-(5.9) by the present
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method. This, of course, does not preclude the existence of solutions for other values
of c. For example, the value of ¢ = 1 corresponds to the simple Manakov model. It is
known that the Manakov model is integrable by the inverse scattering method (54).
As for the feasibility of constructing materials for which ¢ = 3, in (52) it has been
obtained that by using periodically poled photorefractive media one can eliminate
SPM, and since this process can be graded a full range of real values of ¢ can be

achieved.

We now present the traveling wave solutions obtained. Of most interest are
solutions in case 5 since for M # 1 functions dn and nd do not have singularities.
We present the results in Fig. (5.1). The general form of the solutions is the same for
both co- and counter-propagating beams. We see that the solution remain periodic

and do not decay in the absence of loss.

Figure 5.1: Traveling wave solutions for F' = dn and G = nd constant as functions
of time. Intensities: (a) |ui|? and (b) |us|? are presented as a function of kox
and z for f(z) = fycosQz. Other parameters are: M = 0.99, by = 0, ¢y = 0,
kh=lo=mg=1,w=0,Q=1,6=1,y=0,e=¢p=1and 6 = —1.

In Fig. (5.2) we see the effects of chirp on the solutions. The effects are similar
to those described in (142) for one-component system, namely a modulation of

amplitude and deformation along the kyx axis.

Finally, in Fig. (5.3) we see the combination of two different types of functions

giving us novel solutions to the coupled NLSE, albeit with a singularity.
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Figure 5.2: Traveling wave solutions as functions of time. The parameters are the

same as in Fig. (5.1) except for ap = 0.1.

Figure 5.3: Traveling wave solutions as functions of time. The parameters are the

same as in Fig. (5.1) except for F' =sn and G = dc.
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Chapter 6

Stability Analysis

6.1 Introduction

In this section the stability of the solutions obtained in the previous chapters will
be investigated, most notably the solutions to the Nonlinear Schrodinger equation
(NLSE) in Sec. 2.3.1 and the solutions to the Gross-Pitaevskii (GP) equations in
Sec. 3.3.

The stablity of exact soliton solutions to the NLSE is a very important question
to be answered (193). In (141) dimensions, bright and dark soliton solutions of the
NLSE in Kerr medium with cubic nonlinearity are unconditionally stable for the,
respectively, self-focusing and self-defocusing nonlinearity (4). However, in homoge-
nous bulk media with a self-focusing cubic Kerr nonlinearity one cannot have un-
conditionally stable two and three dimensional solutions of the NLSE. Nevertheless,
great interest has been generated when it was suggested that the two dimensional
generalized NLSE with varying coefficients may lead to stable 2D solitons (80). The
stabilizing mechanism has been the sign-alternating Kerr nonlinearity in a layered
medium. In this Thesis, the solutions obtained frequently utilized relationships for
the nonlinearity term x that resulted in the alternating sign of the Kerr nonlinearity
(2.27) and therefore it is worth investigating whether the solutions obtained in this

thesis are stable.

Initial work on stability analysis was done in (142) and the results are shown
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Figure 6.1: Numerical simulation of the light bullet from Fig. (2.5)(b). Initial data
from Eq. (2.56) are propagated according to Eq. (2.30) for 90 diffraction lengths
along the z axis. Only the dependence on t is shown. The initial profile is noted
by open circles. The curves to the left present intensity profiles at the left turning
point, the curves to the right the profiles at the right turning point. The curves
at the center are snapshots of the profiles passing approximately through the point
t = 0 (i.e., the frames closest to t = 0 are recorded). Three sets of 15 profiles are

overlapped at different z points, to show that no instabilities develop.

in Fig. (6.1). We showed that the bright soliton solutions remain stable for a very
long time. The solutions for the bright soliton were run in a computer simulation
of the propagation according to Eq. (2.30) and showed no sign of blowing up after
90 diffraction lengths. However, numerical solutions are limited in their power to
conclusively determine the stability of a solution, therefore analytical methods must

be used to ascertain the stability of the obtained solutions.

We will use standard techniques to explore the modulational instability of the
solitary wave solutions obtained in Sec. 2.3.1 and Sec. 3.3, using a variational
approach. Localized two- and three-dimensional solutions of the cubic nonlinear
Schrodinger equation in the works (143; 142; 144) are extended one dimensional
solutions. Namely, the intensity |u| of solutions from the are homogenous in one (or
two) out of two (or three) dimensions. It is in this direction (or plane), due to the
nonlinearity, that modulation instability can develop. For this reason, particular

interest is the analysis of modulation (in)stability of solution in the direction of
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homogeneity of |u].

6.1.1 Modulational Instability

In this subsection we will develop the basic theory of modulational instability (MI).
The main idea of the study of MI is to introduce perturbations in the solutions
of the given partial differential equation (PDE), plug in the perturbed solution
into the PDE, keeping only the first order terms, and determine the spatial and
temporal evolution of the said perturbation. If the amplitude of the perturbation
grows exponentially, or even linearly, then this is an indication of MI. Conversely,
in the case of modulational stability (MS), the amplitude of the perturbation will
typically oscillate periodically. Even if the amplitude reaches a very high value, as
long as it is periodical, the solution to the PDE is said have MS. While other types of
instability are not necessarily excluded, modulational instability remains a powerful
tool for analyzing PDEs, as well as ascertaining the feasibility of finding the given

class of solutions.

As an example, let us consider the nonlinear Schrdodinger equation (NLSE) of

the following form:
Z@EO 4 ﬁ(Z) 82E0 32E0 + 882E0
0z 2 Ox? oy? ot?
where Ej is the unperturbed solution to Eq. (6.1). Adding now a perturbation to

) () BB =0, (6.)

the solution v, we now plug in the perturbed solution:
E = E() —|— v, (62)

into the equation and keeping only the first order terms in v, we obtain the following

equation:

o0 BE) (0 o o
"0z 2 \0x* 0Oy? “or

where v* is the complex conjugate of v. Equation (6.3) is typically split into real

+ x(2) (2| Eo[*v + Egv*) =0, (6.3)

and imaginary parts by assuming v = v, 4+ tv;. The obtained system of equations

becomes:

v B(z) (OPv, D%, D, 2, N,
"o T2 (8:):2 oz T ) TXG) 2Bl + Eg)v, = 0, (64)
ov, N B(z) [(0*v;  O?vy N 0%v;
9- 2 \oz2 " oy o

)—l—x(z) (2|1Eol> — Ej)v; = 0. (6.5)



If exact solutions cannot be found to the coupled system of differential equations,

numerical techniques are typically employed.

6.2 Nonlinear Schrodinger equation and its trans-

formation

We confine our analysis to the (2+1) and (3+1)-dimensional NLSEs considered
in (143; 142; 144), and use the notation introduced there and in this Thesis. We
consider the generalized NLSE with Kerr nonlinearity developed in Secs. 2.3.1-2.3.4:

Ou  PBz) (Pu  Pu  Pu 2 .
(PR <a;p2 Tar o +x(2) |ul”u = iy(z)u. (6.6)

Our goal will be to verify whether the solutions to Eq. (6.6) developed in Secs.
2.3.1-2.3.4 are MS or with MI. Here, in Eq. (6.6), s = —1 for the normal dispersion
and s = 1 for the anomalous dispersion. For s = 0 we have the two-dimensional
time independent NSLE which will also be covered in our stability analysis. The

coefficient of nonlinearity x is given as

w(2) = —e 2 (-2 [ a), (6.7
@Jo 0
where we define:
xo = (kg + 1§ + smg) (6.8)
and « is the chirp function as defined in Eq. (2.26). The parameters a, b, k, [, and
m are as defined in Eqgs. (2.45)-(2.53) and Egs. (2.68)-(2.76) for the anomalous and
normal dispersions, respectively. For convenience, we will rewrite the parameter e

as follows:

e=(a/2) (c— (2+s)bp) /Ozﬂdz:eg—i—%/ozﬁdz:eo—i—g/:ﬁa%z, (6.9)

with eg defined accordingly (not as the starting value which we have assumed to be
0), and where we define ¢ = ¢y — 6¢,/cocs. We will limit our attention to the cases

where € = 0, hence ¢ = cs.

We now make the following substitution:

G = uexp (— /OZ 7dz> exp (—i(a(z? +y* + st?) + b(z +y + 1) + o)) /(foa*/?)
(6.10)
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to reduce the equation Eq. (6.6) to a more manageable form. In addition, we

perform a gauge transformation on the coordinates:

/

r — 2 =alr—y), (6.11)
y = ¥ =aly—9), (6.12)
t — t'=at—sc), (6.13)

ah 2dz, 6.14
z — oz /0 af“dz ( )

where ¢(2) = by foz fdz. By plugging in all the new variables into Eq. (6.6) we obtain

the following equation:

0G 1 (0°G  0*G loale 9
Equation (6.15) is much more suitable for our stability analysis than Eq. (6.6)
because all the coefficients next to G and its derivatives are constant. Also, the

wave propagation now necessarily happens on a straight line, unlike in solutions

shown in (142; 144).

The stationary solutions:

F =Gexp (—z’cg /Z ﬂa2dz/2), (6.16)
0

where G is the solution of Eq. (6.15), contain the whole range of solutions from
(142) and (144), for different values of ¢y and ¢4, in the direction (ko,ly, mp). Since
e = 0, F will be equal to some JEF. Without loss of generality, we can put fo =1
and also kg = 0, [p = 0, mg = 1, for temporal and kg = 0, Iy = 1, myg = 0,
for spatial solutions. Adjusting parameters (ko, lo, mg) to these values corresponds
to the rotation and re-scaling of the coordinate system (z’,%/,¢'). We note that
in this case, xo = 1 for spatial solitons, whereas yo, = s for temporal solitons.
For both the spatial and temporal solitons 2’ will be chosen to be the direction of
modulation, as a perpendicular direction is needed for study (any will suffice) and z’
is perpendicular to both, given the conventions we have chosen. Also, if the soliton
is spatial, perturbations along the temporal axis t' are also possible. In that case,
to unify our results, we will consider the 2’ and ¢’ to be swapped, so that 2’ always

denotes our axis of perturbation.
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6.3 Variational approach of the modulation sta-
bility

We will now use the variational approach to examine MI, following (194). We will
analyze two periodic planar solutions: F' = sn (dark soliton) F' = cn (bright soliton)
which reduce in the limit of M = 1 to tanh and cosh™', respectively. We will
study spatial and temporal periodic solutions for both cases: the normal and the

anomalous dispersion.

The idea of the variational approach is to introduce a perturbation in our solu-

tions. In other words, we assume:
G =Gy (14 (Uy(2) +iU;(2)) cos (Kx)), (6.17)

where G is the unperturbed solution of Eq. (6.15), K is the wave number of the
perturbation and x is the direction in which the perturbation occurs, as described
in the previous section. We then construct, according to standard procedure, the

Lagrangian corresponding to Equation (6.15):

I - —
0z 0z

5 (GaG ¢

1
) + 9 IVG|* + caxo |G, (6.18)

where G* is the complex conjugate of G, and |VG|* = |0G/dz'|* + |0G/dy'|> +
s|0G /0t'|*. We now perform an averaging of the Lagrangian over all three transverse

coordinates to obtain:

o 1
w-= [ (1 (G‘%’ - G@) +3IVGE + e |G|4) de'dy' dt.  (6.19)

2 0z 0z

Note that the Lagrangian has been averaged over one period of perturbation in the
direction of perturbation and for all other transverse directions it has been averaged
from —2K (M) to 2K (M) for F = cn and from —K (M) to 3K (M) for F' = sn (these
boundaries converge to —oo and oo for M = 1, i.e. for the solitary waves). Here
K(M) = DW/2(1 — M sin?t)~1/2dt is the complete elliptic integral of the first kind.

The total action is now defined as:

A= /OO< Lydz. (6.20)

It remains invariant in the transformation of coordinates from w to G.
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Substituting the new formula for G into Eq. (6.60) into the effective Lagrangian
given in Eq. (6.20), we vary U, and U; in the standard procedure (194) to obtain
the Euler-Lagrange ordinary differential equations for U, = U,(z) and U; = U;(z),

as follows:
B% (al,) — %KQ (aoT), (6.21)
2z
% (aclU;) = —% (K? — 00,da®) (aU,), (6.22)

where 7 = —xoc4, 0, = sgn(n),

J— dOn _ 8 (2M — 1)(E(M) — E(am(5K (M)|M)|M))—2(2 — 5M + SM*)K(M)
o 3 E(M)— E(am(bK(M)|M)|M)) —4(M — 1)K (M)) " 23)’

for F' = en(-|M), and

an S(M 4+ 1)E(am(4K (M)|M)|M) — 2(2 + M)K (M)
d=dg) = 3 (E(am(4K (M)|M)|M) — 4K (M)) ’ (6.24)

for F' = sn(-|M). Here, M is the parameter of the JEF, K(M) = F(mx/2|M) and
E(M) = E(n/2|M) are the complete elliptic integrals of the first and second kind,
respectively, F(u|M) = ['(1 — M sin®t)~"/2dt and E(u|M) = ['(1 — M sin®t)"/?dt

are the incomplete elliptic integrals of the first and second kind, respectively, and
am(u, M) = F~'(u, M) is the amplitude of Jacobi elliptic functions. The parameter
o is defined as follows: ¢ = 1 for the perturbations along the spatial coordinates
(spatial perturbations) and o = s for the temporal perturbation of spatial solitons.
The dependence of coefficients d™ and dgﬁl), on the elliptic modulus of the JEF M
(0 < M < 1) is shown in Fig. (6.2)(a). For bright solitons d5'=" = 8/3 and for

dark solitons dg%il) = 4.

Equations (6.21)-(6.22) are ODEs which can be solved using standard methods.
The solution to Egs. (6.21)-(6.22) can now be written as:

U, = 04(’5 (ClMo,l,(iKQ/ana(z)) + CQWgyy(iK2/2a0a(z))) , (6.25)
20 0
A z Ur )
Ck(z)K2 Baz (a( ) )

(6.26)

where a.) = (14 2a0 [, fdz)" = (1 + 2ap€)~" > 0 is the chirp function, My, (z)
and Wy, (z) are Whittaker functions:

1 N oo,K%d

27
2 4at (6.27)
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Figure 6.2: (a) Nonlinearity parameter d for solutions cn and sn. (b) The growth
rate parameter 7 for dark an bright solitons as a function of K for the case oo, = 1.
Modulational instability occurs for values of K depicted on the respective graphs.
The solid lines represent the theoretical calculation of K using Eq. (6.33), and
the square and circle dots are values of v measured using numerical simulations, in
which the dark and bright solitons, respectively, were perturbed by a small wave of

the given wave number K.

and constants C7 and Cy, in the case of initial conditions U,.(z = 0) = U, and
Ui(z = 0) = 0, become:
—Uoﬁ .19 2&0
Cl - m <W07V<ZK /20,0) — QWMGV(ZK /2&0)) s (628)
Uoﬁ .79 2(10 R
CQ m <M07V(ZK /2@0) -+ @(1 + QI/)ML,/(ZK /2@0) (629)

For small values of £ = foz fdz << 1, the modulus of the perturbation amplitude

can be approximated to within second order of £ to be:

\U| = Uy (1 + 2a¢€ — (00,d/8) (K* — 00,d) £*) . (6.30)

6.3.1 Case without chirp

In the case of without chirp, i.e. ag = 0, solutions to Egs. (6.21)-(6.22) become

U, Up cosh (7€) ,
(v€) -

(6.31)

2
U = Uy—Lsinh

= (6.32)
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Here, 7 is the MI gain:
v = Ky/oo,d — K?/2, (6.33)

also known as the growth rate parameter, and is not to be confused with with
the gain/loss parameter of the NLSE, which will not be used subsequently in this

Chapter. The dynamics of the overall evolution of the total perturbation:
U=U, +iU; (6.34)

are determined by the the MI gain (4) and the function $(z). For oo, = —1 the
growth rate parameter v = 5 = iK\/K2 + d/2 is imaginary for all values of K,
and, consequently, the solutions G are modultionally unconditionally stable for any
function f(z). This case occurs for temporal cn-solitons with normal dispersion
(s = —1) and temporal sn-solitons for s = 1 in the self-defocusing media. For
example, if we take the function of § to be 5(z) = By + fi1sin(2wz/Z), where Z
is a constant representing the wavelength of 5, then the amplitude of the spatial

perturbation satisfies the condition:
(1+d/K>) > U0, > 1, (6.35)

for any values of the parameters 5; and fy # 0, and:

1/2

(14 (d/K?) sin®(36:.2/m)) " > |UJU| > 1, (6.36)

for By = 0. In this case, 0o, = —1, the solutions are unconditionally stable.

In the opposite case, oo, = 1, which holds for temporal or spatial cn-solutions for
anomalous dispersion s = 1 or temporal sn-solutions if s = —1 in the focusing media,
more interesting dynamics of perturbations occur. For the spatial perturbation with
wavenumber K > v/d the growth rate is zero (since v = 77 is imaginary) and the

perturbation amplitude has an oscillatory solution in the following range:

1/2

(1— (d/K?)sin®*(y6:Z/7)) "~ < |U/Uo| < 1. (6.37)

If K < v/d, then |U| grows exponentially at a rate 7/3,, exhibiting either oscillations

(if 51 # 0) or monotony (if 51 = 0), as seen in Fig. (6.3)(a). Consequently, if

Bo # 0, the solution is unstable. In Fig. (6.2)(b) we plot v as a function of the

wavenumber K for bright (d = 8/3) and dark (d = 4) solitons in the case without
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Figure 6.3: (a) Theoretical values of log|U/Uy| based on Egs. (6.25)-(6.26) for
ag = 0. (b) Theoretical values of |U/Uy| based on Eqs. (6.25)-(6.26) for ag = 0.1.

dispersion management: (z) = fy = 1. Numerical simulations of Eq. (6.6) confirm
the analitical prediction of the growth rate of 7. Thus, the amplitude of |U| can
be made to be stable if the mean value of the management function is zero 5y = 0,
and the period of oscillations of 5 is small (i.e. Z << 1). The variation of the

perturbation amplitude in this case is:

1/2

\U/Us| < (1 + (d/K?) sinh*(y5,Z/)) (6.38)

The entire stability analysis is presented in Table (6.1). We see that depending
on the choice of s, 0, and whether the soliton is spatial or temporal, we have
eight distinct cases for examining the stability of our solutions. In the case of
spatial solitons, perturbations can occur in both the spatial and temporal directions,
whereas in the case of temporal solitons they can only occur in the spatial directions.
For a soliton to be stable we must have oo, = —1 in all directions of perturbation,
otherwise it is conditionally stable, i.e. only for 8y = 0. A soliton is dark if the
direction of the soliton and the nonlinear term, i.e. o,, are of the opposite sign,
otherwise the soliton is bright. In the 2D time-independent case we no longer need

to consider temporal solitons and distortions.
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Table 6.1: Stability cases

) stability stability
s | oy soliton pert. o type
(3D) (2D)
) S 1 CS-Conditionally

1| 1 1 S-spatial cn CS
T 1 Stable

21 1 | T-temporal | S 1 cn CS -
S 1

31 |-1 S sn S-stable S
T 1

4 1 | -1 T S 1 sn S -
S 1

5| -1 1 S cn CS CS
T -1

6| —-1] 1 T S 1 sn CS —
S 1

71 -1 -1 S sn CS S
T -1

8| —-1| -1 T S 1 cn S -

6.3.2 Case with chirp

In the case where ay # 0 we analyze the propagation of Eqs. (6.25)-(6.26) as a
function of z, with C; and Cy defined in Eqs. (6.28)-(6.29). The behavior is similar
to the case without chirp and Table (6.1) is also applicable in this case; however,
there are a handful of distinctive features. Typical behavior of Eq. (6.34) is presented
in Fig. (6.3b), for different values of parameters. If §y # 0 we have averaged, i.e.
linear, growth of the perturbation amplitude for all values of wave number K. In the
case [y = 0, the perturbation amplitude has oscillatory behavior with a maximum

variation that depends on the period Z of management function .

Therefore, if the mean of management function is different from zero, the mod-
ulation instability grows linearly and the soliton is unstable. Stabilization can be
achieved by reducing the period of the management functions and by satisfying the

condition fy = 0.

Finally, we summarize all our findings in Fig. (6.4) for the conditionally stable

case. The plots depict the maximum value of the amplitude U in units of Uy. The
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purple region is where U never ascends above its initial value, Uy. In the case where
In Fig. (6.4)(a) we see that the modes above /8/3 ~ 1.63 are all stable and do
not increase the amplitude of our function, while for lower values of K the intensity
of the perturbation depends on 2 = 27/Z, the angular frequency of the oscillation
of 5. For large values of {2 the intensity of the oscillations is low, while for small
values of €2 it blows up, as predicted in our analysis in Sec. 6.3.1. With the addition
of chirp we see that the general trends as the magnitude of chirp a increases are
that the amplitude of oscillations increases for values of K above \/8/_3 and also for
higher values of €2 when K < \/%

6.4 Numerical simulations

We will use the split-step fast Fourier transform (SSFFT) method in numerically
simulating our solutions. The goal of our computer simulations is to verify the rate
of modulational instability growth predicted by the value of parameter v given in

Eq. (6.33).

6.4.1 Split-step fast Fourier method

The split-step fast Fourier method was designed to simulate the evolution of PDEs
that combine a linear and nonlinear operator (99). It is extensively used in the
computer simulations of the NLSE (195; 196) and GP equations (197). The main
goal of the split step method is to reduce the accumulation of error in the standard

application of the Fast Fourier Trasform (FFT).

If we wish to simulate the evolution of a nonlinear partial differential equation
along the direction of propagation, we will usually be dealing with both a linear and

a nonlinear term in the equation:

ou .
5= i(L+ N)u, (6.39)

where £ is a linear operator on u and N is a nonlinear operator on u. Typically,
L(u) = gA for the NLSE equation and L(u) = §A + V(r) for the GP equation,

where A is the transverse Laplacian and V' is a potential function of the transverse
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Figure 6.4: Maximum amplitude of oscillations plotted against €2 and K. Parameters
used: By =0, 1 =1, d =8/3, (a) ag = 0, (b) ap = 0.02, (¢) ap = 0.1 and (d)
ap = 0.3. The contour boundaries, starting from the color purple are: 1, 2, 5, 10,

20, 50.
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radius 7. In both cases we will have N = y|ul?.

Using the standard operator formalism we can write a formal solution of Eq.
(6.39) as:
u(z) = e ENIEy 20). (6.40)

Since we will only be taking a small step from z to z+ A z we can assume the values
of the operators to be roughly constant and utilize the Baker-Hausdorf theorem to
write:

u(z4 A 2) = e By(2) & B2 4eiB/2y (2), (6.41)
where A = L A z and B = N A z. This approximation is valid up to the third

degree of A z. Higher order approximations can also be found in the literature (198).

We now consider the following two differential equations:

ou i i 5

ou

— = ilu. 4
P iLu (6.43)

We note that the two equations correspond to the application of e®/? and e'4

respectively for small steps. From Eq. (6.42) and its conjugate it follows that:

COu 0wt O(Juf)
O—gu + 5 Y= g, (6.44)

In other words, |u| = const., and hence N' = const., which significantly simplifies
the treatment of Eq. (6.42). As for Eq. (6.43) we apply the FT to transform the

equation into the frequency domain:

du B o
5, = Tigh (6.45)

where k = /K2 + k2 + k7 is the overall wave number. Thus, combining all these
results the new formula for u is equal to:
u(zt B 2) = X8/ 2P (o migR A (giXuA2/2y 1)), (6.46)

where

FT(u)(Ky, Ky, ke, 2) = /// u(x,y,t, z)e” e tro et do dy dt (6.47)

P (@) (2,1, 2) — (Zi)3 / / /_ Zn(nx,ﬂy,m,z)- (6.48)

et Ry ER) o dr, dsy.
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In order to apply Eq. (6.46) in a computer simulation we will, following (198),
perform a discretization of both the physical space and the momentum space. We
will, for convenience restrict ourselves to the interval of 0 to 27 for each spatial and
temporal coordinate and separate the physical space in the interval into N discrete
pieces, where N is an even number, forming the grid points x;, z;, t; = 2mi/N, where
i=0,1,..., N—1. Hence, U,y (2) = u(zp, yq, tr, 2) are going to be the approximate
values of u on the grid points. For the momentum space we will separate the grid into
the region from —N/2 to N/2+1, i.e. k;,l;,m; =i, where i = —N/2, —=N/2+1, ...,
N/2+ 1, while the Fourier transform will be evaluated as: U,y (2) = u(ky, ly, My, 2).
Taking into account the normalization of the coefficients, the formulas for the Fourier

transform now become:

N-1
— 1 )
UPQT(Z) = m Z Ustv(Z)e_Z(kpxs+lqyt+mTtv)7 (649)
s,t,u=0
N/2
qur(Z) = Z Ustv(Z)ei(ksxp+ltyq+mvtr)- (650)
s,t,v=—N/2

The computation is significantly speeded up when applying FFT, which can be
implemented when N = 2*, for some integer k. The most common algorithm used
for computing the FFT is the Cooley-Turkey algorithm (199), originally invented by
Gauss, which establishes recurrent relationships between FFTs of composite order

N = N; Ny, assuming the FFT computation for N; and N is known.

The basic formulas developed in this section clearly describe how FFT is imple-

mented in simulations of many different nonlinear partial differential equations.

6.4.2 Results

We now use Eq. (6.46) to perform computer simulations of the behavior of our
solutions when a small perturbation is introduced. Observing the rate of change
of the amplitude of G in our simulations, we can then measure the value of ~
and compare it with the theoretical expectation given in Eq. (6.33). Our FFT
simulations gave us the points on the plot of Fig. (6.2b) which agree well with
theoretical expectations denoted by the continuous line. Most importantly, the

solutions cease to exponentially increase at precisely the values predicted by the

theory of MI.
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Figure 6.5: Development of modulational instability for the bright soliton for three
different values of z. Here, x is the direction of perturbation, y is the direction of
the soliton and ¢ is the remaining transverse direction. Lower-wavelength colors (i.e.

towards the color red) indicate a higher value of |u|?.

Figure 6.6: Development of modulational instability for the dark soliton for three
different values of z. Here, x is the direction of perturbation, y is the direction of
the soliton and ¢ is the remaining transverse direction. Lower-wavelength colors (i.e.

towards the color red) indicate a higher value of |u|*.
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We see in Figs. (6.5)-(6.6) the main results of our simulations in scenarios
involving instability. After initially being unnoticeable (Fig. (a)), we can see the
perturbation rapidly increase and ultimately completely abandon the original form
of the solution (Figs. (b) and (c)). Figure (6.5) depicts the time evolution of a
bright soliton, while Figure (6.6) depicts the time evolution of a dark soliton. Due
to the difficulty that arises in the boundary conditions for the dark soliton due to
a change of sign of © we have instead run a simulation of two dark solitons with

periodic boundary conditions, as is standard practice.

6.5 Analysis of stability for the Gross-Pitaevskii

equation

In this section we will apply the results and methods of Sec. 6.2 to the solutions to
provide a stability analysis of our solutions to the Gross-Pitaevskii (GP) equation

obtained in Sec. 3.3. We now examine Eq. (3.1), i.e.:

?:atu +

t) (02 0? 0?
B (5 5+ 58 ) FXOPu e+ + = (0. (651)

The parameter a in this case refers to the strength of the quadratic potential and
not the chirp function, as in the previous sections. The main part of our analysis

will be to transform the starting Eq. (6.51) into a form more amenable to stability

analysis (200).

The key differences between Eq. (6.51) and Eq. (6.1), apart from the addition
of the quadratic potential, is the change in the longitudinal direction from z to t.
Hence, there is no longer a distinction between normal and anomalous dispersion.
This greatly simplifies the stability analysis. We will restrict out attention to solitons
found in Sec. 3.3.2, as the solutions found in Sec. 3.3.1 do not have a stable
amplitude when they are not artificially maintained with a nonzero gain. Formula

(6.7) now becomes:

z
x(z) = —04&2)(0 exp(—2/ ~vdz), (6.52)
PJo 0
where x2 = k2 + I2 + m? and p is defined in Eq. (3.29). For convenience we set
xo =1, fo =1 and [y = 1, where 3 is the amplitude of 5. Our equation for e now
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becomes:

c
e = (q/2) (c — 302) ::eo-+»%;, (6.53)
where ¢ is given in Eq. (3.30) and ¢ = ¢y —6€,/cocy. Again, for € = 0 we have ¢ = c.

We now define:

G = uexp (— /OZ fydz) exp (—i(a(z® + y* + st®) + b(z +y + t) + eo))/(f0p3/2)

(6.54)
and employ similar changes of coordinates as in Sec. 6.2:
r — 2 =plxr-—g) (6.55)
y = y=ply—9) (6.56)
t — t'=p(t—s) (6.57)
z = 2= /Z pBdz, (6.58)
0

where p is defined in Eq. (3.29) and ¢'(t) = B(t)(2a(t)s(t) + bop(t)). The form of
the function ¢() in the transformation is of no immediate interest, other than the
fact that it depends on p(t) and 7(¢) which are given in Eq. (3.29) and Eq. (3.32),

respectively. The transformation gives us the following equation for G:

0G PG 0°G 9*°G 9

Z%‘i‘ (8:75’2 + ay,Q + 82/2) — C4 |G| G =0. (659)
Qualitatively, this is the same equation as Eq. (6.15), except for the exchange of
the longitudinal variable from z to t. The new variable ¢/, which only depends on

t, involves an integral over 8 that can change sign. This will be important in the

analysis of Eq. (6.59).

Equation (6.59) is the usual (3+1)D nonlinear Schriodinger equation with con-
stant coefficients, which is prone to instabilities and the wavefunction collapse. In-
stabilities in G translate into instabilities of the general solution u. This would bode
disaster for the stability of exact traveling wave and solitary solutions found, were
it not for the possibility of diffraction and nonlinearity management (153) in Eq.
(6.59), thanks to the form of the primed variables. We find that, for the choice
of coefficients «a(t) and ((t) made in Sec. 3.3.2, the typical extended soliton solu-
tions of Eq. (6.59) do not collapse when perturbed, but keep oscillating in a typical

breathing behavior.
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Without loss of generality we place the 2z’ axis in the direction of inhomogeneity
of our extended solitary solutions. In this manner the 2z’ variable takes the role of the
@ variable. The intensity |G| is homogenous in two of the three spatial dimensions
(i.e. in the plane perpendicular to the direction (ko, [, mg) of inhomogeneity.) It is
in this plane that, owing to nonlinearity, the modulational instability can develop.
For this reason, of particular interest is the analysis of MI of perturbations in the

plane of homogeneity of |G].

We consider the perturbation of G in this plane for the two fundamental solu-
tions, the dark F' = sn and the bright F' = cn solitons, where F' = G exp (—igcy/2)
in the form:

G =Gy (1+ (U, +iU;) cos(Kx)), (6.60)

where U(t) = U,(t) + iU;(t) is the complex amplitude, and K is the wavenumber of
the perturbation in the direction perpendicular to z’. In a standard linear stability
analysis, as was already done for the NLSE in Sec. 6.2, the perturbation is substi-
tuted into Eq. (6.59) and linear first-order differential equations for U, and U; are
obtained, which are then solved to analytically to yield:

U,.(t) = (CyP*(tanh(7)) + CoQ"(tanh(7))) p~*, (6.61)
24200 9 [pU,]
Uilt) = =t g (6.62)

where P! and )% are the associated Legendre functions, with:

y——1/2 (1 — /1 dE?/2 (00— 2ag)) , (6.63)

and pu = 1K?/2y/2ay. The solutions of Egs. (6.61) and (6.62) determine the dy-
namics of the modulational instability. The constants C; and C5 are determined by
the initial conditions for U, and U;, U,.(0) = Uy and U;(0) = 0. Also, d = —4 for
the dark soliton and d = 8/3 for the bright soliton for M = 1. In fact, a similar
analysis as in Sec. 6.3.1 can be performed in this case, and one obtains a much
more simplified analysis with respect to Table (6.1) since there is no case s = 1, and
there are no temporal perturbations. One obtains that the dark solitons are always

stable, and the bright solitons are always conditionally stable.

We now restrict our attention to the bright solitons. Figure (6.7) depicts a

typical evolution of the modulus of the perturbation amplitude |U| for different
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Figure 6.7: Evolution of the modulus of the perturbation amplitude |U| of bright
solitons in time for different values of Q: a) Q@ = 1, b) @ = 8. In both figures
ap = 0.3. Other parameters: K = 1, ap = 0.3 [black, (upper) solid line]; K = 1,
ap = 0.1 [black, (upper) dashed line|; K = 4, ay = 0.3 [red, (lower) solid line] and
K =4, a9 = 0.1 [red, (lower) dashed line].

values of the parameters. In all the cases, we have a periodic dependence in time,
with the period 27/, where € is the frequency of the modulation of « and . For
large K we see a superposition of two oscillations, one with the frequency {2 and
the other with the frequency ~ K+/K2 —d/2. For small €, independent of the
value of K, the amplitude of the perturbation may, for a period equal to m/2€2,
grow for several orders of magnitude compared to the initial value. This is expected
since the generalized GPE should display sensitivity to low-frequency (long period)
perturbations. Such perturbations of the coefficients bring GPE closer to the limit of

NLSE with constant coefficients, which naturally is prone to instability and collapse.

In contrast to this case, for large €2 the variation of the perturbation amplitude
is much smaller. In addition, a decrease in the initial chirp ay and an increase in the
strength of the potential g cause a reduction in the variation of the perturbation
amplitude. These two trends are clearly seen in Fig. (6.8). In fact, for large
Q > 2qg and small chirp ay > 2a the maximum variation of the perturbation

amplitude |U| in the lowest approximation can be expressed as:
max ||U/U,| — 1] < 2|d* — dK* + 8ay| /97, (6.64)

and by increasing ) can be made arbitrarily small. In all of this the crucial point
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Figure 6.8: Maximum amplitude of oscillations plotted against 2 and K. Parameters
used: fp =0, 1 =1,d=28/3, (a) ag = 0.5, ag = 0, (b) g = 0.05, ap = 0 and (c)
ap = 0.05, ag = 0.15. The contour boundaries, starting from the color purple, are:

2, 5, 10, 20, 50, 100.

is that the amplitude, while oscillating, remains finite. Hence, no collapse of the
solitons in this case occurs. The solitons are modulationally stable against the

perturbations considered.
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Chapter 7

Conclusion

Here we will give a brief summary of the results obtained in this Thesis.

In Chapter 2, using a new ansatz developed in (143) we construct to the best of
our knowledge the first exact spatiotemporal travelling wave and soliton solutions for
the (24+1)D and (3+1)D nonlinear Schrodinger equations. For the first time, the role
of chirp has been clearly displayed for multidimensional NLSEs. We obtain solutions
to the (3+1)D NLSE both with and without chirp. The Jacobi elliptic function
allows a continuous transformation of periodic solutions into solitary solution with

the variation of parameter M.

We then generalized our method to obtain for the first time solutions for the
case of normal dispersion. The method is generalized further to cover nonlinearities
of arbitrarily high order, although additional limitations are placed on our solutions

so only for a handful of very specific parameters are solutions obtained.

In Chapter 3, we use the ansatz developed in Chapter 2 to find exact solutions
of the Gross-Pitaevskii equation. One discovers that finding exact solutions using
our method is connected to finding the solution of the Ricatti equation. Assuming
constant strength of field and diffraction /dispersion coefficient, one obtains solutions
that either decay or blow up, remaining stable only for a critical value of gain.
However, for the strength of quadratic field and diffraction/dispersion coefficient
of sinusoidal form one obtains stable spatiotemporal travelling wave and soliton

solutions.
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Additional solutions are also found through a detailed exploration of the Ricatti
equation. A general method of obtaining a wide class of solutions to the Ricatti
equation is developed. These results are used to construct solutions for several new

systems including those with Feschbach resonance.

In Chapter 4, we obtain solutions for the related system of the NLSE within
a linear potential. One obtains various solutions including ones that combine two
periodic sine functions when the strength of linear field and diffraction/dispersion

coefficient are of sinusoidal form.

In Chapter 5, we apply our ansatz in a generalized form to the case of two
co- or counter-propagating beams. We obtain novel solutions for the case where the
coupling constant is equal to ¢ = 3 both with and without chirp. The use of the

Jacobi dn function produces solutions which don’t have any singularities.

Finally, in Chapter 6 we analyze the stability of solutions given in Chapter 2
for the (34+-1)D NLSE with normal or anomalous dispersion and the (241)D time-
independent NLSE. For the (2+1)D solutions, we obtain stability for dark solitons
and conditional stability for bright solitons, meaning we need to apply dispersion
management to keep the solitons stable, i.e. the diffraction/dispersion coefficient
must oscillate around 0. The management function dynamically stabilizes the non-
linear structure of the transversal perturbation of the soliton if its mean value is
zero. Reducing the period of the management function can be achieved by arbitrary
limitations of the perturbation level. If, however, the mean value is different from
zero, the amplitude modulation perturbation exponentially increases in the case of
a solution without chirp and linearly in the case with chirp. In both cases we have

the Lyapunov instability.

For the (3+1)D case we obtain stability for the temporal bright solitons for
normal dispersion and dark solitons for anomalous dispersion. All other types of
solitons are conditionally stable. For the Gross-Pitaevskii equation we obtain that
dark solitons are always stable and bright solitons are always conditionally stable.

The obtained results are verified using computer simulations.

The results obtained in this Thesis are in general amendable to further general-

izations and applications to novel systems. Of particular interest is to generalize the

147



techniques used in this Thesis to other functions, for example the Weierstrass elliptic
function. The stability of the solutions establishes the possibility of experimental

verification sometime in the future.
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buorpaduja

Hukona ITerpouh je pohen 12. 03. 1980. rogune y beorpany.

3apmmo je Marematnuky ['mmHaszujy 1999. rogmHe Kao ydeHUK TEHepaluje ca

npocekoMm 5.00.

Junnomupao je pusuky u MmareMatuky y jyHy 2003. rogune Ha MacauyceTc HHCTUTYTY
3a texnosorujy (Massachusetts Institute of Technology) ca mpocexom 4.5 (Ha ckanu ox
0 mo 5). Jlurmomcku pajn je Mo Ha TeMy KOJOBa 3a HCIIPaBJbabe TPEIlaka Y KBAHTHUM
xkomijyrepuma: “Constructing an Infinite Class of Perfect Codes”, ca ouexom b (9).

MenTop My je 6uo npod. Mcak Uyanr (Isaac Chuang).

O6jaBuo je ca jour Tpu koaytopa kmury “The IMO Compendium”, ca cBum 3aaiuma
npeioxkeHuM Ha MehyHapogaum MaTematnukuM oiumnujagama (Crnpunrep-Bepiar,

bepaun, 2006).

[TpujaBuo ce 2004. ronuae Ha beorpajcku YHUBEP3UTET HA MarucTapcke CTyauje, a
2008. mpemiao ca MarucTapckux Ha JokTopcke ctyauje. [lonoxuo je cBe ucnure u3
U300pHUX TpeaMeTa Ha JOKTOPCKUM CTydaujama ca mnpocedHoMm omeHom 10. Ha
cennui Hayuno-nactaBHor Beha oapxkanoj 7.12.2009. roaune je onoOpeHa u3paja

ETOBE JIOKTOPCKE TUCepTalyje.

Opn 2004. ronune Hukomna [lerpoBuh je y pannom onHocy ca MHctuTyToM 3a OU3UKY y
beorpany. Bberos craryc je 3amp3Hyr ox asrycra 2005. roauHe Kajga oJyla3M Ha
Texcamku A&M ynuBepsuret y Karapy (Texas A&M University at Qatar) rae je 6uo
3arocyeH Kao J1abopaTOPHjCKU KOOPJIUHATOP U Ppaio Takole Kao aCUCTEHT CBE J0 jyJia
2012. ronune xana ce Bpaha y Muctutyt 3a ®usnky. Y cenrembpy 2012. je n3zabpan y
3Bame UCTpaXHBaya capajgHuka. Jlo TpeyHTka on0pane qucepTanyje myonukosao je 13

panoBa y Mel)yHapoTHUM YacOMHCHMA.

OxemeH je cynpyrom Tamanom [lerpoBuh u uma cuna bopuca.
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H3jasa o ayTopcTBY

Normucarm-a__ HW KONA NETPORUR
Opoj ynuca DQ%/ZOOR

Hsjamyjem

Ia je JOKTOpCKa JIucepTantja NoA HaClOBOM:

®  pe3ylITaTt CONCTBEHOI UCTPAKUBAYKOI pana,

® Ja NpeljioKeHa AMCepTallja y LeNHHH HU Y JelOBHMa HHje Ouna TpemioxkeHa 3a
modujame OuNO  KOje JIMIUIOME TpeMa  CTYAMjCKMM MpOrpaMHMa  IpyTHX
BUCOKOQIUKONCKHUX yCTaHoBa,

® [a Cy pe3yTaTH KOPCKTHO HABEOCHH M

® 7@ HACAM KPIIMO/JA ayTOPCKA NPABA M KOPUCTHO WHTENEKTYANHY CBOJUHY APYIHMX
LTITER

IoTnuc KoKTOpaHaa %WM TM

VY beorpany, /l% / 0 6/ 201 3
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HM3jaBa 0 HCTOBETHOCTH INTAMIAHE H eJIEKTPOHCKE Bep3Hje
AOKTOPCKOr paja

Wme 1 ipesuve ayropa __ HIAK ONIA  NETPORUR
bpoj ynwca P2 9/ 200%

Crynujexm nporpam K NACUMHA , KRALTHA W MATEMATINKA CPVI?MKA

Hacnos paga JAHHA TATACHA | COMMTORCKA PEWEWA TENMEPATMUCAHE
WPERNUTEP ORE  JE BHAMUME

Mewnrop hPod. MUAWURO] BFEMVIR

[Mornucanu HNKONA NETPORKNK

M3jaBJBYJEM JIa je INTaMMaHa BEP3Hja MOT JOKTOPCKOr paja WCTOBETHA eNEeKTPOHCKO]
Bep3HjH KOjy cam 1pemao/na 3a objaBpuBame Ha mnoprany JlaraTanHor
penosuTopHjymMa YHuBep3nTeTa y Beorpany.

Ho3Bomagam f1a ce objae MOju THYHE MOJAIM Be3aHu 3a H0OHjamke akaTeMCKOT 3Barma
JOKTOpa HayKa, Kao IITO Cy UME H IPe3UMeE, TOJNHA H MecTo poliema u natym onbpaune
pasa.

OBH &HYHH WOJAUM MOrYy ce OOjaBHTH Ha MpEKHUM CTpaHHIAMA JIAFHTAJHE

Oubnuoteke, y eNeKTPOHCKOM KaTaiory W y mybnukanujama YHHBepsuTeTa Yy
Beorpany.

HoTnuc foxTOpanxa (}")L’WM WMW

V beorpany, 19 :/ 06 / 2013
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Hsjasa o kopumhemny

Oenamihiyjem Yuusepsurercky Ombmworeky ,,Cperozap Mapkoeuh™ ma y JIHrATanau
penosuTopujyM Yuusepsurtera y Beorpany yHece Mojy HOKTOPCKY AMCEPTaLMjy noj
HACIOBOM:

TAYHA TAJACHA U COJTMTOHCKA PEIIEILA HEJTUMHEAPHE
HIPETHHI'EPOBE JEAHAYHHE

KOja je Moje ayTopcKo aeno.

Jucepranujy ca cRuM NpHUIO3MMA NPEAao/Na caM Y eNeKTpOHCKoM (JOpMaTy TIOFOHOM
32 TPajHO APXMBHPAE.

Mojy nOKTOPCKY AucepTanujy noxpambeny y JMruTanuy penosuropujym Y HuBep3uTeTa
y beorpany mory na KopucTe CBM KOjH nowTyjy onpeade caapxkane y oqabpanom TUmy
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AyTopcTBo — HexkoMepLujanHuo — Oe3 npepane
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