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Наслов дисертациjе: Метахеуристичке методе вишекритериjумске оптими-
зациjе и примене на дискретне локациjске проблеме

Резиме: У овоj дисертациjи разматрана су два дискретна локациjска про-
блема и њихове двокритериjумске вариjанте. Разматран jе проблем максимал-
ног покривања локациjа са преференциjама корисника и ограничењима буџета
за отварање обjеката. Ова вариjанта проблема максималног покривања ниjе до
сада разматрана у литератури. За разлику од класичног проблема максимал-
ног покривања, проблем разматран у овоj дисертациjи укључуjе преференциjе
корисника ка локациjама, при чему се сваки корисник додељуjе локациjи коjу
наjвише преферира, а коjа има отворен обjекат. Поред тога, различите локациjе
имаjу различите цене постављања обjеката, а расположиви буџет jе ограничен.
Оваj проблем jе решаван методом променљивих околина, а добиjени резултати
су упоређени са резултатима егзактног решавача на модификованим инстан-
цама из литературе. Додатно, решавана jе и постоjећа вариjанта проблема
максималног покривања коjа уместо ограниченог буџета укључуjе ограничења
на броj обjеката коjе треба отворити.

Разматран jе и проблем постављања регенератора у оптичким мрежама.
Код оптичких мрежа квалитет сигнала опада са растоjањем, те jе потребно по-
ставити скупе уређаjе коjи ће опоравити сигнал. У овоj дисертациjи разматран
jе постоjећи модел, где jе скуп локациjа за постављање регенератора и скуп
корисничких чворова различит и проблем се назива уопштеним. Уопштени
проблем постављања регенератора у оптичким мрежама jе такође решаван ме-
тодом променљивих околина, а резултати су упоређени са наjбољим доступним
из литературе.

Дефинисане су и двокритериjумске вариjанте наведених проблема. Код про-
блема максималног покривања локациjа, преференциjе корисника су укључене
као тежински фактори у укупноj покривеноj потражњи, што чини прву функ-
циjу циља. Друга функциjа представља броj непокривених корисника и тежи
да оствари правичност у моделу. Код проблема постављања регенератора у
оптичким мрежама, претпоставка jе да, услед ограниченог буџета, ниjе могуће
обезбедити несметану комуникациjу између свих парова корисничких чворова.
Сваки пар има додељену тежину, а сума тежина повезаних парова чини прву
функциjу циља. Друга функциjа циља jе цена постављања регенератора. Дво-
критериjумске вариjанте су решаване прилагођеном вишекритеириjумском ва-



риjантом методе променљивих околина, а приказани су резултати поређења са
уопштеним еволутивним алгоритмима.
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Dissertation title: Metaheuristic methods for multi-objective optimization and
applications to discrete location problems

Abstract: This dissertation examines two discrete location problems and their bi-
objective variants. The first problem under consideration is the maximal covering
location problem with user preferences and budget constraints imposed on facility
opening. This variant of the maximal covering problem has not been previously
studied in the literature. Unlike the classical maximal covering problem, the variant
proposed in this dissertation includes user preferences for locations, where users are
assigned to the location with opened facility that they prefer the most. Additionally,
different locations have different costs for establishing facilities, and the available
budget for opening facilities is limited. This problem is solved using the Variable
Neighborhood Search (VNS) method, and the results were compared with the ones
obtained by an exact solver on modified instances from the literature. Furthermore,
an existing variant of the maximal covering problem is also addressed, which imposes
the limit on the number of opened facilities instead of limiting the budget for opening
facilities.

The second problem examined is the regenerator placement in optical networks.
In optical networks, signal quality degrades with distance, necessitating the place-
ment of costly devices to restore the signal. This dissertation studies an existing
model where the set of possible regenerator locations and the set of user nodes are
different, defining the problem as generalized. The generalized regenerator place-
ment problem in optical networks is also solved using the Variable Neighborhood
Search method, with results compared to the best available solutions from the lit-
erature.

Bi-objective variants of these problems are defined as well. For the maximal
covering location problem, user preferences are included as weighted factors in the
total covered demand, forming the first objective function. The second objective
function represents the number of uncovered users and aims to ensure fairness in
the model. In the regenerator placement problem for optical networks, it is assumed
that, due to budget constraints, uninterrupted communication between all pairs of
user nodes may not be feasible. Each pair is assigned a weight, and the sum of the
weights of connected pairs constitutes the first objective function, while the second
objective function represents the cost of placing regenerators. These bi-objective
variants are solved using an adapted multi-objective version of the Variable Neigh-



borhood Search method, and the results are compared with general evolutionary
algorithms.
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Глава 1

Увод

У многим реалним ситуациjама потребно jе оптимизовати више (потенци-
jално супростављених) функциjа циља истовремено. Како ниjе могуће добити
jедно оптимално решење, циљ jе пронаћи скуп решења коjа представљаjу наj-
бољи компромис између свих функциjа циља и таква решења се називаjу Па-
рето оптимална. Код Парето оптималних решења ниjе могуће побољшати jедну
од функциjа циља, а да се не погорша нека друга. Скуп свих Парето оптимал-
них решења неког проблема назива се Парето скуп (ако посматрамо простор
решења) или Парето фронт (ако посматрамо простор функциjа циља) [100].

Jедноставни начин за решавање проблема вишекритериjумске оптимизациjе
представља свођење на jеднокритериjумску оптимизациjу. На пример, може се
оптимизовати линеарна комбинациjа функциjа циља са тежинским коефици-
jентима. Код ове методе корисник треба да одреди коjе ће тежине поставити.
Променом тежина могу се добити различита компромисна решења, али овакав
начин може пропустити нека решења из Парето скупа. Jош jедна могућност jе
и употреба хиjерархиjског приступа, где корисник мора да одреди приоритет
функциjама циља. Већина постоjећих егзактних решавача нуди овакве начине
решавања (GUROBI, CPLEX). Код оба наведена начина, корисник мора уна-
пред да дефинише коjа му jе функциjа приоритетна или да рангира функциjе
циља по приоритетима, а да му jош нису познате све опциjе, тj. сва компроми-
сна решења. Како би особа коjа доноси одлуке имала потпуне информациjе о
могућим компромисним решењима потребно jе пронаћи скуп свих Парето опти-
малних решења. Тада се може изабрати jедно или више компромисних решења
у зависности од примене и приоритета особе коjа одлучуjе.

Проналажење скупа свих Парето оптималних решења може бити временски
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веома захтевно. У случаjу НП-тешких проблема и инстанци великих димензиjа,
егзактна решења се често не могу добити у прихватљивом времену. Метахеури-
стички алгоритми могу ефикасно пронаћи апроксимативни скуп решења коjи у
реалним ситуациjама може да се користи уместо правог Парето скупа. У лите-
ратури се често користе еволутивни алгоритми за решавање вишекритериjум-
ских проблема, jер популациjа решења таквих алгоритама природно одговара
апроксимативном скупу решења [23,175,186]. Ови алгоритми су постали и део
оквира за развоj софвера и библиотека за различите програмске jезике [20,80].
Међутим, у новиjим радовима се jављаjу и вишекритериjумске вариjанте алго-
ритама коjи су засновани на локалноj претрази, као што су метода променљивих
околина (енгл. Variable Neighborhood Search, VNS) и насумично похлепна адап-
тивна претрага (енгл. Greedy Randomized Adaptive Search Procedure, GRASP).
Ове методе даjу добре резултате на jеднокритериjумским вариjантама многих
дискретних локациjских проблема, па њихова примена на вишекритериjумске
вариjанте може потенциjално побољшати решења постоjећих еволутивних ал-
горитама.

У оквиру ове дисертациjе разматрана су два локациjска проблема и њихове
вишекритериjумске вариjанте: Проблем максималног покривања локациjа са
преференциjама корисника (енгл. Maximal Covering Loacation Problem with
Customer Preferences, MCLP) и уопштени проблем постављања регенератора у
оптичким мрежама (енгл. Generalized Regenerator Location Problem, GRLP).

MCLP представља локациjски проблем чиjи jе циљ наћи оптималне лока-
циjе p обjеката, тако да се максимизуjе покривена потражња корисника [37].
Корисници су покривени ако се налазе на растоjању мањем од унапред за-
датог r > 0 коjи се назива полупречник покривања. У вариjанти проблема
са преференциjама корисника, сваки корисник има преференциjу ка одређеноj
локациjи. Функциjа циља jе сума покривене потражње корисника коjу треба
максимизовати, с тим што jе претпоставка да већ постоjе постављени обjекти
конкуренциjе, а корисници бираjу обjекат на локациjи коjу више преферираjу.
У овоj дисертациjи разматрана jе вариjанта MCLP коjа боље одсликава реалне
ситуациjе. Уместо фиксног броjа p нових обjеката коjи се постављаjу нова вари-
jанта укључуjе ограничени буџет и различите цене постављања на различитим
локациjама.

У оквиру ове дисертациjе, дефинисана jе и нова вишекритериjумска вари-
jанта проблема. Мотивациjа jе налажење компромиса између покривене по-

2



тражње корисника са тежинским коефициjентима пропорционалним преферен-
циjама корисника и броjа непокривених корисника. Идеjа jе да се што више
задовоље преференциjе корисника са великом потражњом и оствари што већа
укупна задовољена потражња, а дa се води рачуна и о покривености осталих
корисника, тj. да се узме у обзир и правичност при одлучивању.

Проблем оптималног постављања регенератора (RLP) представља локациj-
ски проблем коjи потиче из дизаjна оптичких мрежа [35]. У оптичким мрежама,
после неког растоjања, квалитет сигнала нагло опада, те jе потребно инстали-
рати скупе уређаjе - регенераторе, чиjи jе задатак да опораве квалитет сигнала.
Код основне вариjанте проблема (RLP) скуп потенциjалних локациjа за реге-
нераторе и скуп локациjа краjњих корисника су исти, док су код уопштене
вариjанте (GRLP) различити [34]. Код обе вариjанте (RLP и GRLP), циљ jе
смањити броj регенератора, а при томе очувати несметану комуникациjу између
свих задатих парова краjњих корисника мреже. Тежинска вариjанта проблема
(WGRLP) укључуjе различите цене инсталациjе регенератора у зависности од
локациjе што више одговара реалним ситуациjама.

У случаjу ограниченог буџета, ниjе увек могуће остварити несметану ко-
муникациjу између свих краjњих корисника путем оптичке мреже. Стога jе
у овоj дисертациjи дефинисан двокритериjумски модел коjи узима у обзир и
трошкове инсталациjе (тj. трошкове постављања регенератора) и могућност
комуникациjе парова краjњих корисника. Како сви парови у пракси не мораjу
да имаjу исти приоритет, за другу функциjу циља узима се збир тежинских
коефициjената парова.

Наведени проблеми су НП-тешки, а у реалним ситуациjама се jавља велики
броj потенциjалних локациjа, тако да егзактни решавачи не могу у прихватљи-
вом времену да добиjу оптимална решења или не могу дати чак ни допустиво
решење усред мемориjског ограничења. Поред тога, проблеми вишекритери-
jумске оптимизациjе су jош захтевниjи jер треба пронаћи скуп свих Парето оп-
тималних решења. Стога, хеуристичке и метахеуристичке методе представљаjу
ефикасне начине решавања ових проблема у пракси.

Остатак дисертациjе jе организован на следећи начин. У оквиру уводне
главе дати су основни поjмови и дефинициjе у математичкоj оптимизациjи, за-
тим jе дат кратак опис и преглед локациjских проблема, као и метода оптимиза-
циjе за њихово решавање. Глава 2 се бави проблемом максималног покривања
локациjа са ограниченим буџетом и преференциjама корисника, док се у глави 3
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разматра двокритериjумска вариjанта овог проблема. У глави 4 jе предложена
метода за решавање уопштеног проблема постављања регенератора у оптичким
мрежама, док се у глави 5 дефинише и решава двокритериjумска вариjанта овог
проблема. Закључак ове дисертациjе приказан jе у оквиру главе 6.

1.1 Математичка оптимизациjа

У многим областима, доносиоци одлука имаjу задатак да нађу оптимално
решење неког проблема из датог скупа допустивих решења. Мотивациjа jе
доношење одлука коjе ће побољшати ефикасност система, смањити трошкове
или унапредити перформансе. Математичка оптимизациjа jе област примењене
математике коjа се бави проналажењем наjбољег решења (jедног или више) из
скупа допустивих решења [166]. Следећи поjмови су кључни за дефинициjу
проблема математичке оптимизациjе:

• Функциjа циља: Функциjа f(x) коjу треба оптимизовати (било мини-
мизовати или максимизовати).

• Променљиве одлучивања: Променљиве, представљене вектором x, у
зависности од коjих се мења вредност функциjе циља.

• Ограничења: Ограничења променљивих одлучивања коjа дефинишу про-
стор допустивих решења S.

На основу дефинисаних поjмова општа форма проблема математичке опти-
мизациjе jе:

Минимизовати (или максимизовати) f(x) (1.1)

при ограничењима: gi(x) ≤ bi, i = 1, . . . ,m (1.2)

hj(x) = dj, j = 1, . . . , p (1.3)

У наведеноj форми, f(x) представља функциjу циља коjу оптимизуjемо.
Вектор x jе вектор променљивих одлучивања, чиjе вредности можемо изабрати.
Простор допустивих решења jе дефинисан ограничењима (1.2) и (1.3), где су
gi(x) ограничења неjеднакости, док су hj(x) ограничења jеднакости. Решење
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проблема jе представљено одређеним избором вредности за променљиве одлу-
чивања. Решење из допустивог скупа решења коjе даjе наjмању (или наjвећу)
вредност функциjе циља представља оптимално решење проблема.

Проблеми оптимизациjе се могу класификовати у зависности од особина
функциjе циља и ограничења. Функциjа коjа се оптимизуjе може бити конвек-
сна или неконвексна. Затим, променљиве одлучивања могу узимати реалне
вредности (континуална оптимизациjа) или вредности из преброjивог скупа
(дискретна оптимизациjа). У случаjу да су ограничења и функциjа циља лине-
арне комбинациjе променљивих одлучивања имамо проблем линеарног програ-
мирања, док у случаjу квадратне функциjе циља проблем се назива квадратно
програмирање. Проблеми решавани у овоj дисертациjи су проблеми дискретне,
тj. комбинаторне оптимизациjе, тако да ће ова класа проблема, као и методе
њиховог решавања бити детаљниjе размотрени у наредним одељцима.

За формалну дефинициjу комплексности решавања проблема комбинаторне
оптимизациjе користе се следећи поjмови. У класу НП проблема спадаjу они
проблеми за чиjе се задато решење може утврдити у полиномиjалном времену
да ли jе то решење допустиво. Проблем A се може свести на проблем Б у
полиномиjалном времену ако постоjи алгоритам коjи трансформише било коjу
инстанцу проблема А у инстанцу проблема Б, тако да решење проблема Б ре-
шава и проблем А. Проблем А jе НП-тежак ако за сваки проблем Б из НП
класе постоjи свођење проблема Б на проблем А у полиномиjалном времену.
Проблем jе НП-комплетан ако jе и НП и НП-тежак проблем.

Вишекритериjумска оптимизациjа

Проблеми из праксе често укључуjу више циљева (критериjума), коjи могу
бити супростављени. На пример, побољшање вредности jедне функциjе циља
може довести до погоршања вредности неке друге функциjе циља. Доносиоци
одлука тада траже решења коjа представљаjу компромисе између различитих
функциjа циља. Овакав вид оптимизациjе се назива вишекритериjумска оп-
тимизациjа. У случаjу да постоjе тачно два супростављена циља, проблем се
назива двокритериjумским. Слично као и код проблема са jедном функциjом
циља, у зависности од могућих вредности за променљиве одлучивања, можемо
имати проблеме комбинаторне (дискретне) и непрекидне (континуалне) опти-
мизациjе [41].
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Методе за решавање проблема вишекритериjумске оптимизациjе могу да се
поделе у три групе на основу тога да ли се и како информациjа о преференци-
jама доносиоца одлука укључуjе у процес оптимизациjе: априори, апостериори
и интерактивне методе. Код априори метода, као резултат методе добиjамо
jедно решење коjе одговара преференциjама доносиоца одлука. На пример,
функциjама циља се могу доделити тежине и онда оптимизовати тежинска
сума. Код апостериори метода, циљ jе пронаћи сва компромисна решења и по-
нудити их доносиоцу одлука коjи онда на основу неке друге методе (на пример
методама из теориjе одлучивања) бира решење коjе му наjвише одговара. Ин-
терактивне методе укључуjу доносиоца одлука у сам процес оптимизациjе и пре-
траге за компромисним решењима [23]. Даље, као и за оптимизациjу са jедном
функциjом циља, могу се користити егзактне методе или (мета)хеуристичке.
У овоj дисертациjи, фокус jе на двокритериjумским проблемима комбинаторне
оптимизациjе, а за њихово решавање користе се апостериори метахеуристичке
методе.

Како би се формално дефинисао поjам компромисног решења, уводи се Па-
рето 1 оптималност (ефикасност) као фундаментални концепт вишекритериjум-
ске оптимизациjе. Решење jе Парето оптимално ако побољшање jедне функциjе
циља доводи до погоршања друге функциjе циља, што значи да не можемо више
побољшати jедну или више функциjа циља, а да не покваримо неку другу функ-
циjу. Другим речима, не постоjи решење коjе jе боље од тог решења по свим
функциjама циља истовремено.

Формално, за вектор функциjа циља f = (f1, f2, . . . , fM) и њихову миними-
зациjу, допустиво решење x jе Парето оптимално ако важи:

∄x′ тако да ∀i : fi(x′) ≤ fi(x) и ∃j : fj(x′) < fj(x),

где fi(x) представља вредности функциjе циља fi коjе одговараjу решењу x.
У циљу описивања метода решавања вишекритериjумских проблема опти-

мизациjе уводи се поjам Парето доминантности. Прецизниjе, у случаjу да важи
∀i : fi(x) ≤ fi(x

′) и ∃j : fj(x) < fj(x
′), онда се са x′ ≺ x значава да решење x

доминира над решењем x′.
За разлику од оптимизациjе са jедном функциjом циља, као решење ви-

шекритериjумског проблема се добиjа скуп, а не само jедно решење. Парето
1Вилфредо Парето (1848-1923) jе био италиjански инжењер, социолог, економиста и фи-

лозоф.
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оптималан скуп jе скуп свих Парето оптималних решења неког проблема. Ова-
кав скуп се jош назива и Парето фронт. Решење x∗ jе Парето оптимално у
односу на скуп S ако не постоjи неко друго решење x ∈ S тако да x Парето
доминира над x∗. Формално, Парето оптималан скуп P се дефинише као:

P = {x∗ ∈ S |̸ ∃x ∈ S тако да x ≺ x∗}

Проналажење Парето фронта или његове апроксимациjе jе основни задатак
вишекритериjумске оптимизациjе.

Разматра се вишекритериjумски проблем са M функциjа циља, где се врши
минимизациjа функциjа и постоjи n променљивих одлучивања, а допустиви
регион простора решења jе дефинисан скупом ограничења. У општем случаjу
проблем вишекритериjумске оптимизациjе може бити дефинисан на следећи
начин:

Минимизовати f(x)

при ограничењима g(x) ≤ 0

h(x) = 0,

где су:

• x = (x1, x2, . . . , xn) вектор променљивих одлучивања.

• f(x) = (f1(x), f2(x), . . . , fM(x)) вектор функциjа циља коjе треба оптими-
зовати.

• g(x) ≤ 0 ограничења типа неjеднакости, g(x) = (g1(x), . . . , gk(x)).

• h(x) = 0 ограничења типа jеднакости, h(x) = (h1(x), . . . , hp(x)).

У литератури се могу наћи различите априори методе. Тежинске методе су
оне где се унапред одређуjу тежине коjе се користе за комбиновање више функ-
циjа циља у jедну, где jе наjпознатиjа метода тежинске суме (енгл. weighted-
sum) [61]. Лексикографске методе даjу приоритет функциjама циља, тако што
се прво оптимизуjу оне са вишим приоритетом [118]. Методе засноване на ци-
љевима, као што jе метода циљаног програмирања (енгл. goal programming),
настоjе да смање нежељено одступање од унапред задатих циљних вредности за
сваку од функциjа циља [174]. Методе засновна не референтним тачкама (енгл.
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reference-point) усмераваjу претрагу ка одређеном делу Парето фронта [100].
Методе засноване на функциjи корисности (енгл. utility function) користе ову
функциjу како би се представиле преференциjе доносиоца одлука [183]. Фази
методе укључуjу фази логику како би се урачунала и непоузданост у префе-
ренциjама доносиоца одлука [100].

Слично, у литератури се могу наћи и различити апостериори приступи.
Jедна од познатих метода jе метода епсилон ограничења (енгл. epsilon-constraint),
где се jедна функциjа циља оптимизуjе, а остале претвараjу у ограничења [118].
Нормализована вариjанта методе нормалних ограничења (енгл. Normalized
normal constraint method) укључуjе нормализовање функциjа циља како би се
избегли проблеми са различитим величинама и примену нормалних ограни-
чења. Изменама нормалних ограничења могу се генерисати Парето решења
коjа су равномерно распоређена на фронту [128]. У литератури се могу наћи и
вишекритериjумске вариjанте класичних егзактних метода оптимизациjе, као
што су линеарно програмирање [111] и метода гранања и ограничавања [146].
Поред тога, примењуjу се и алгоритми засновани на динамичком програмирању
[74]. Метода нормaлног пресека граница (енгл. Normal boundary intersection)
представља алтернативу методи епсилон ограничења где се применом скалари-
зациjе генерише равномерно распоређен фронт [164]. Код сукцесивне Парето
оптимизациjе (енгл. successive Pareto optimization), решења се генеришу корак
по корак на основу претходних решења [141].

У овоj дисертациjи коришћене су апостериори метахеуристичке методе коjе
проналазе довољно добру апроксимациjу правог Парето фронта у разумном
времену. Ово омогућава доносиоцу одлука да ефикасно добиjе разноврстан
скуп компромисних решења од коjих може изабрати оно коjе му наjвише одго-
вара у датоj ситуациjи. Развоj и примене оваквих метода представљаjу активну
област истраживања, а у релевантноj литератури су посебно заступљени ево-
лутивни алгоритми [110].

1.2 Локациjски проблеми

Доносиоци одлука користе различите доступне информациjе како би донели
одлуке у складу са неким циљем. У случаjу да су информациjе при одлучи-
вању просторне (географске), добиjамо локациjске проблеме, где jе потребно
одредити оптималне локациjе за неке обjекте. Различити поjмови се односе на

8



1.2. ЛОКАЦИJСКИ ПРОБЛЕМИ

ову област, као што су локациjски проблеми, локациjски модели и локациjска
анализа или теориjа. Овакви проблеми се често jављаjу у области операционих
истраживања и науке о управљању. Како овакви проблеми у суштини предста-
вљаjу математичке проблеме, њихова дефинициjа, анализа и решавање спадаjу
и у област примењене математике, математичког моделирања и оптимизациjе.
Поред тога, решавање оваквих проблема у реалним ситуациjама jе комплек-
сно и временски захтевно, тако да развоj различитих алгоритама за ефикасно
решавање овкавих проблема представља активну област рачунарства.

Локациjски проблеми су и пре више векова били део истраживања из разних
области, као што су географиjа, економиjа и транспорт. Међутим, као први
проблем локациjске анализе као посебне области наводи се Веберов проблем
коjи jе дефинисао Алфред Вебер 1909. године. У овом проблему треба наћи
оптималну локациjу jедног обjекта, тако да тежинска сума удаљености од свих
корисника до тог обjекта буде минимална [57].

Основни елементи локациjских проблема су локациjе, обjекти и корисници
(потрошачи). У погледу топографиjе простора, локациjске проблеме можемо
поделити на континуалне, дискретне и мрежне. Код континуалних простор где
се врши лоцирање неких обjеката jе описан континуалним променљивим, тj. ко-
ординатама. Код оваквих проблема не постоjи листа коначног броjа локациjа
кандидата, већ jе саме кандидате потребно пронаћи, али тако да они буду део
допустивог региона простора. Код дискретних, циљ jе изабрати локациjе за
нове обjекте из коначног скупа потенциjалних локациjа. Мрежни локациjски
проблеми представљаjу посебну класу проблема где jе позната мрежа, тj. по-
тенциjалне локациjе за постављање обjеката и локациjе корисника су чворови
графа. Овакви проблеми могу да укључе дискретне променљиве коjе одгова-
раjу чворовима графа, као и континуалне коjе одговараjу ивицама графа.

Код локациjских проблема кључно jе дефинисати метрику растоjања, често
jе то jедноставно Еуклидско растоjање. Функциjе циља у том случаjу укључуjу
растоjања било између постављених обjеката или између корисника и обjеката.
На пример, циљ може бити минимизациjа укупних растоjања или максимал-
ног растоjања између обjеката и корисника, у циљу ефикасног снабдевања. Са
друге стране, циљ може бити максимизациjа растоjања између различитих обjе-
ката, ово може бити захтев у случаjу одређивања локациjа опасних построjења
или складишта опасних материjа (на пример хемиjских или нуклеарних) коjи
не смеjу бити близу.
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Даље, на основу броjа обjеката коjе треба успоставити као параметра, про-
блеми се могу поделити на ендогене и егзогене. Код ендогених се оваj параметар
одређуjе у самом процесу оптимизациjе, док jе код егзогених он унапред задат.
Проблеми могу бити неограничених капацитета или са ограничењима капаци-
тета. На пример, може се задати максимални капацитет обjеката или гране
коjом се транспортуjе проток између обjеката и корисника. Проблеми могу
укључити трошкове успостављања обjеката и трошкове везе између обjекта и
корисника. Трошкови успостављања обjеката могу бити фиксни, коjи не зависе
од тога колико се обjекат користи, или променљиви, коjи зависе од нивоа кори-
шћења обjекта. Слично томе, трошкови везе између обjекта и корисника могу
бити фиксни, коjи се jављаjу jеднократно приликом успостављања везе, или
променљиви, коjи зависе од нивоа употребе везе, на пример количине протока.

Међу првим применама локациjских проблема у операционим истражива-
њима су распоређивање обjеката jавног или приватног сектора, на пример
школа, болница или продавница. Последњих година, овакви проблеми налазе
jош различитих примена коjе се односе на реаговање у ванредним ситуациjама,
природним непогодама, акцидентима, као и примене фокусиране на очување
животне средине, управљање отпадом, уштедом енергиjе и генерално смањи-
вањем загађења.

Неки од наjпознатиjих и наjвише изучаваних локациjских проблема из ли-
тературе су:

• Локациjски проблем без капацитета (енгл. Uncapacitated facility location
problem - UFLP): Циљ jе наћи оптималне локациjе фиксног броjа обjеката
тако да се минимизуjу трошкови транспорта до потрошача.

• Проблем p-центра (енгл. p-center problem): Поставити p обjеката и притом
минимизовати максималну удаљеност потрошача од наjближег обjекта.

• Проблем p-медиjане (енгл. p-median problem): Поставити p обjеката и при-
том минимизовати укупно тежинско растоjање између сваког потрошача
и његовог наjближег обjекта (тj. обjекта коjем jе он додељен). Тежине
одговараjу потражњи потрошача.

• Хаб-локациjски проблем (енгл. Hub-location problem): Постоjе специjални
обjекти између коjих jе транспорт jефтиниjи. Циљ jе успостављањем ха-
бова на оптималним локациjама смањити укупне трошкове транспорта.
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• Проблем покривања скупа (енгл. Set covering problem): Потребно jе про-
наћи минималан броj обjеката коjи ће покрити све потрошаче.

• Проблем максималног покривања локациjа (енгл. Maximal covering location
problem): Поставити наjвише p обjеката тако да се максимизуjе укупна
покривена потражања потрошача.

Преглед локациjских проблема и метода за њихово решавање може се наћи
у радовима [14,30,66,153,165].

Локациjски проблеми са више функциjа циља

У применама из реалног света, доносиоци одлука желе да оптимизуjу више
функциjа циља како би ефикасно искористили ресурсе и постигли различите
циљеве. Како неки циљеви могу бити супростављени добиjамо вишекритери-
jумске вариjанте локациjских проблема. Често се као супростављени циљеви
jављаjу трошкови постављања обjеката на локациjе и трошкови функционисања
тих обjеката после постављања, а са друге стране профит коjи они доносе, на
пример количина покривене потражње корисника. Ово углавном важи за слу-
чаj где су доносиоци одлука приватне компаниjе, док jавни сектор тежи да
оптимизуjе заjедничке интересе свих корисника, где се jављаjу и друге функ-
циjе циља поред профита, на пример равноправно пружање услуга [99].

У радовима коjи се баве локациjским проблемима са више функциjа циља,
могу се наћи функциjе циља коjе укључуjу неке од следећих вредности: укупну
цену постављања, цену годишњег рада или одржавања, удаљеност од посто-
jећих обjеката, броj обjеката, време одзива обjекта, покривену потражњу ко-
рисника, удаљеност корисника обjекта (просечна, максиманлна). У последње
време, jављаjу се и циљеви коjи се односе на очување животне средине, као
што су смањење потрошње енергиjе и загађења. Наравно, за све ове циљеве,
тj. критериjуме, основни проблем jе како их измерити [68].

Jедан од првих радова коjи се бави вишекритериjумским локациjским про-
блемима jе [143], где су дефинисане вишекритериjумске вариjанте оригиналног
Веберовог проблема. У литератури постоjе различите вишекритериjумске ва-
риjанте познатих локациjских проблема, а неке од њих су:

• Двокритериjумски проблем p-медиjане са опасним обjектима: Треба по-
ставити тачно p обjеката што даље од корисника, а у исто време и што
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даље jедне од других [42,159].

• Проблем k-балансираног центра: Задатак jе отворити тачно k обjеката са
циљем да се минимизуjе максимално растоjање између било коjег кори-
сника и његовог наjближег обjекта, а да се при томе оствари максимални
баланс између обjеката [49].

• Вишекритериjумски локациjски проблем без капацитета: Прва функциjа
циља jе укупна или просечна удаљеност корисника од обjеката, друга
функциjа jе укупан броj покривених корисника, док трећа представља
максимално растоjање између корисника и обjеката. Прву и трећу функ-
циjу циља треба минимизовати, док другу треба максимизовати. Проблем
jе погодан за примене код лоцирања обjеката хитних служби [99].

• Вишекритериjумски проблем покривања скупа: Свака функциjа циља
има посебне коефициjенте придружене локациjама. Све функциjе циља
укључуjу укупну суму коефициjената локациjа са отвореним обjектима
коjу треба минимизовати [72,95] .

Вишекритериjумски локациjски проблеми налазе броjне примене у реша-
вању проблема реалног света, на пример: распоређивање привремених локациjа
за складиштење отпада у случаjу катастрофа и ванредних ситуациjа [145], ра-
споређивање возила хитне помоћи [7], постављање обjеката уз смањење утицаjа
на животну средину [88], постављање различитих медицинских ресурса у току
епидемиjе [64]. Преглед вишекритериjумских локациjских проблема и метода
за њихово решавање може се наћи у раду [68].

1.3 Егзактне методе оптимизациjе

Теориjски, егзактне методе оптимизациjе се реализуjу кроз коначан броj
итерациjа (корака) и даjу решење чиjа jе оптималност загарантована. Међутим,
у пракси се може десити да егзактна метода не пронађе оптимално решење
услед ограниченог времена извршавања или недостатка мемориjских ресурса.
Технике решавања, односно кораци егзактне методе, зависе од типа проблема
оптимизациjе коjи се разматра.

Развиjање нових и унапређење постоjећих егзактних метода jе активна област.
Егзактне методе и алгоритми описани у овом одељку, као они примењени за
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решевање проблема ове дисертациjе могу се користити у оквиру комерциjал-
них решавача, као што су IBM ILOG CPLEX, LINGO, FICO Xpress, Gurobi и
други. Овакви софтвери пружаjу могућност ефикасног решавања различитих
проблема комбинаторне и континуалне оптимизациjе и често се користе у ли-
тератури за испитивање перформанси и квалитета решења апроксимативних
алгоритама.

Симплекс метод представља основну технику за решавање проблема ли-
неарног програмирања у случаjу континуалне (глобалне) оптимизациjе [163].
Основна идеjа jе да се кроз више итерациjа истражуjу ивице простора решења
и да се у сваком кораку побољшава вредност функциjе циља. Међутим, ова
техника не може да се примени на проблеме комбинаторне оптимизациjе, где
jе потребно претражити дискретан простор решења.

Метода гранања и ограничавања (енгл. branch-and-bound) се користи
за решавање проблема целоброjног програмирања. Основна идеjа ове методе
jе подела проблема на мање потпроблеме коjи су jедноставниjи за решавање.
Простор решења се претражуjе систематски, где се гране коjе не могу дове-
сти до побољшања решења елиминишу. Ограничења се рачунаjу на основу
решавања релаксираног проблема, тj. проблема где се дозвољава да вредности
променљивих не буду целоброjне [182].

Метода гранања и одсецања (енгл. branch-and-cut) представља побољ-
шање методе гранања и ограничавања, тако што се на основу особина допу-
стивог простора решења уводе равни одсецања коjе представљаjу нова огра-
ничења [182]. Идеjа jе да се сузи простор решења релаксираног проблема це-
лоброjног линеарног програмирања. Ова метода се често користи у оквиру
комерциjалних егзактних решавача.

Метода гранања и оцењивања (енгл. branch-and-price) представља ва-
риjанту методе гранања и ограничавања где се у сваком чвору линеарна релак-
сациjа решава методом генерисања колона (енгл. column generation) [13]. Ова
метода jе погодна за решавање комплексних проблема чиjа структура се може
искористити за декомпозициjу проблема на мање потпроблеме. У случаjу да се
код ове методе користе и равни одсецања, добиjа се метода гранања оцењивања
и одсецања (енгл. branch-price-and-cut).
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Егзактне методе за вишекритериjумску оптимизациjу

Егзактно решавање проблема оптимизациjе са више функциjа циља jе jош
комплексниjе у односу у односу на случаj проблема jеднокритериjумске опти-
мизациjе. За овакве вишекритериjумске проблеме постоjе различите егзактне
методе предложене у литератури, а развоj нових метода и унапређивање посто-
jећих jе активна област истраживања [46, 122]. Егзактне методе за вишекри-
териjумску оптимизациjу наjчешће користе егзактне методе за оптимизациjу
проблема са jедном функциjом циља како би решили проблем са више функ-
циjа циља [100]. Две наjпознатиjе технике су метода тежинске суме и метода
ε-ограничења.

Метода суме са тежинама додељуjе свакоj функциjи циља одређену тежину
и затим сабира вредности свих функциjа циља помножених одговораjућим те-
жинама. При томе сви циљеви треба да буду истог типа, тj. минимизациjа
или максимизациjа. На таj начин се проблем вишекритериjумске оптимизациjе
своди на проблем са jедном функциjом циља. Тежине се могу бирати на основу
преференци доносиоца одлука, а могуће jе и мењати тежине у више покретања
алгоритма и тако генерасати различита Парето решења. На пример, ако су fi

функциjе циља коjе треба минимизовати, а wi тежине, тада jе нова функциjа
коjу треба минимизовати:

F (x) =
M∑
i=1

wifi(x),

где jе M броj функциjа циља, wi тежина додељена функциjи циља fi, а fi(x)

вредност функциjе циља i.
Метода ε-ограничења претвара изабране функциjе циља у ограничења, док

се jедна од функциjа циља оптимизуjе [121]. Овим се проблем своди на про-
блем са jедном функциjом циља. Општи облик проблема коjи се решава овом
методом:

минимизовати f1(x)

при ограничењима fi(x) ≤ εi, i = 2, 3, . . . ,M,

Вредности εi се могу мењати и на таj начин добити различита Парето оп-
тимална решења. Основни проблеми код примене ове методе су како изабрати
коjа функциjа се оптимизуjе и како изабрати на коjе вредности ограничити
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остале функциjе циља. Преглед и детаљниjи опис егзактних метода за више-
критериjумску оптимизациjу може се наћи у књизи [41].

1.4 Метахеуристичке методе

Овакве методе не могу да гарантуjу оптималност, тако да се могу сврстати у
групу апроксимативних метода. Међутим, за разлику од апроксимативних ал-
горитама коjи гарантуjу да добиjено решење неће одступати од оптималног за
неки фактор, метахеуристике не даjу никакву гаранциjу за квалитет решења.
У односу на хеуристике чиjи су кораци креирани према карактеристикама jед-
ног конкретног проблема коjи се решава, метахеуристике представљаjу опште
оквире за решавање проблема оптимизациjе. Метахеуристике могу укључити
хеуристике као помоћне кораке у решавању проблема. Основна идеjа метахеу-
ристика jе добити довољно добро решење за прихватљиво време. Коjе решење
jе довољно добро и колико рачунарског времена jе прихватљиво за решавање
зависи од конкретних проблема и примена.

За успешну имплементациjу метахеуристике, неопходно jе обезбедити ба-
ланс између експлорациjе и експлоатациjе простора решења, као и механизам
за избегавање локалних оптимума. Први радови у коjима jе коришћен концепт
метахеуристика укључуjу истраживања из стохастичке оптимизациjе [155], ево-
лутивних процеса [150] и случаjне претраге [149]. Jедан од кључних момената
за развоj и популаризациjу ове области jесте увођење генетских алгоритама [90].

Метахеуристичке методе се примењуjу на комплексне проблеме оптимиза-
циjе у разним доменима, посебно када су проблеми НП-тешки, где су егзактне
методе рачунарски веома захтевне или када саме функциjе циља немаjу погодан
облик за примену егзактних метода [22].

Метахеуристике су нашле своjе примене у разним областима, на пример:
решавање основних проблема комбинаторне оптимизациjе као што jе проблем
трговачког путника [63], проблема операционих истраживања, разних инже-
њерских проблема [184], а у скориjе време и проблема из области вештачке ин-
телигенциjе, као што jе подешавање хиперпараметара модела машинског учења
или селекциjа атрибута или самих модела [144].

До сада су у литератури предложене броjне метахеуристике у областима
комбинаторне и глобалне оптимизациjе. Метахеуристике могу бити класифи-
коване у групе према различитим карактеристикама. Основна подела метахеу-
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ристика jе на методе са jедним решењем (енгл. single-solution based) и методе са
популациjом решења (енгл. population based) [173]. Метахеуристике се такође
могу класификовати и на основу других критериjума, на пример: детерми-
нистичке или стохастичке, биолошки инспирисане или математички засноване,
итеративне или конструктивне, са употребом мемориjе или без памћења/учења.

Метахеуристике засновне на побољшању jедног решења се нази-
ваjу и методе са путањом, тj. траjекториjом. Овакве методе креираjу jедно
почетно решење коjе се онда итеративно побољшава док се не дође до оптимал-
ног или приближног решења коjе jе прихватљиво или док се не достигне неки
други критериjум заустављања (максимално време извршавања, максималан
броj итерациjа, максималан броj итерациjа без побољшања наjбољег решења
итд). Итеративни процес се обично заснива на истраживању суседних решења
и преласку у та решења у случаjу побољшања функциjе циља. [22]. Наjпозна-
тиjе метахеуристике из ове групе су:

• Итеративна локална претрага (енгл. Iterated Local Search - ILS) [113]:
Ова метода представља општи оквир за комбиновање фазе локалне пре-
траге и фазе стохастичке промене решења. Почетно решење се генерише
на случаjан начин или неком хеуристиком, а затим се примењуjе локална
претрага. Овако добиjено решење, тj. локални минимум се мења сто-
хастичком процедуром, тj. врши се пертурбациjа решења након чега се
поново покреће локална претрага из измењеног решења. Ново решење се
може прихватити или одбацити, у зависности од дефинисаног критери-
jума. Оваj поступак се понавља док се не испуни неки од критериjума
заустављања. Основни проблем jе како изабрати добру пертурбациjу ре-
шења, тако да се претрага не заглави у локланом оптимуму, а да се про-
мена решења не сведе на скроз ново насумично решење.

• Симулирано каљење (енгл. Simulated Annealing - SA) [103]: Ова метода
jе инспирисана процесом у металургиjи, где се метали загреваjу, а затим
постепено хладе како би се постигле жељене карактеристике метала. Ал-
горитам са одређеном вероватноћом прихвата и лошиjа решења, где се та
вероватноћа временом смањуjе. Вероватноћа зависи од степена деграда-
циjе лошиjег решења у односу на текуће, као и од тренутне температуре,
тj. броjа итерациjа. На пример, ако jе циљ минимизациjа функциjе f(x)

и ако са T означимо тренутну температуру, а са ∆E = f(x′) − f(x) ра-
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злику вредности функциjа циља новог x′ и текућег решења x, онда се
вероватноћа прихватања рачуна на следећи начин:

P (∆E, T ) =

1 ако jе ∆E < 0

e−∆E/T ако jе ∆E ≥ 0

• Табу претрага (енгл. Tabu Search - TS) [76]: Основна идеjа ове методе jе
чување решења (или његових елемената, тj. атрибута) у табу листи, како
би се избегло понављање, тj. циклуси и истражили нови делови простора
решења. Решења или њихови елементи се чуваjу у листи одређени броj
итерациjа, што представља jедан од параметара методе. Дужина табу
листе може бити jош jедан параметар методе или се може мењати дина-
мички током претраге. Може се дефинисати и аспирациjска функциjа,
коjе дефинише критериjум на основу коjег се прихватаjу и табу решења,
на пример ако jе решење боље од тренутно наjбољег, оно се прихвата.
Поред тога, могу се користити и различите стратегиjе за усмеравање пре-
траге, коjе користе средњорочну или дугорочну мемориjу. На пример,
чување елемената решења коjи се често поjављуjу током претраге или
чување елемената решења високог квалитета.

• Похлепна стохастичко-адаптивна метода претраге (енгл. Greedy
Randomized Adaptive Search Procedure - GRASP) [70]: Свака итерациjа
GRASP методе састоjи се од две фазе: фазе конструкциjе решења и фазе
локалног претраживања. Основна идеjа прве фазе jе комбиновање слу-
чаjности и похлепности код конструкциjе решења. Уместо да се у сва-
ком кораку конструкциjе решења додаjе наjбољи елемент, тj. елемент
коjи наjвише доприноси функциjи циља, елемент се бира на случаjан на-
чин из редуковане листе кандидата. Ова листа садржи подскуп канди-
дата (елементе решења) коjи су изабрани у односу на допринос функциjи
циља. Случаjним избором елемента решења из редуковане листе канди-
дата, обезбеђуjе се баланс између похлепности и насумичности конструк-
циjе решења. У другоj фази, решење конструисано у првоj фази се даље
побољшава процедуром заснованом на локалном претраживању. Излаз из
ове фазе jе решење jедне итерациjе GRASP-а, а наjбоље решење добиjено
током свих итерациjа jе резултат GRASP методе.
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• Метода променљивих околина (енгл. Variable Neighborhood Search
- VNS) [131]: Ова метода систематски мења околине решења приликом
претраге. Дефинисање околина, њихових величина, као и редоследа њи-
хове употребе представља први корак пре извршавања алгоритма. То-
ком извршавања, итеративно се комбинуjу две фазе, фаза размрдавања
и фаза локалне претраге заjедно са кораком одлучивања о промени око-
лине. Прва фаза случаjним избором решења из околине текућег решења
има улогу диверсификациjе, чиме се смањуjе могућност да алгоритам за-
врши у локалном оптимуму. Почевши од тако изабраног решења, приме-
њуjе се друга фаза коjа покушава да побољша тренутно решење. Уколико
jе дошло до побољшања решења, тренутно решење се ажурира новим, а
претрага се наставља у првоj околини. У супротном, претрага се наставља
у следећоj околини. Како jе метода променљивих околина коришћена у
овоj дисертациjи, детаљниjи опис ове методе и њених вариjанти дат jе у
наставку.

Метахеуристике засноване на популациjи решења раде над скупом
тренутних решења коjи се назива популациjа. Ове метахеуристике су обично
инспирисане понашањем jединки у популациjи, процесима у природи, начи-
ном функционисања живих организама и слично. Свака jединка у популациjи
одговара решењу у простору претраге и њен квалитет се мери коришћењем
функциjе прилагођености (то може бити функциjа циља или нека друга функ-
циjа коjа адекватно одсликава квалитет решења). Овакав приступ решавању
проблема може довести до повећане експлорациjе простора решења и повећати
степен диверсификациjе претраге што повећава шансе за избегавање локалних
оптимума [173].

У наставку jе наведен кратак преглед често коришћених популационих ме-
тахеуристика из литературе.

• Генетски алгоритми (енгл. Genetic Algorithms - GA): Алгоритам jе ин-
спирисан процесом биолошке еволуциjе. Jединка се представља генетским
кодом коjи одговара jедном решењу. Скуп jединки се назива популациjа.
У jедноj итерациjи, применом оператора селекциjе, мутациjе и укрштања
на jединке тренутне популациjе, добиjа се нова популациjа (генерациjа)
jединки. Оператором селекциjе се бираjу jединке из тренутне попула-
циjе коjе ће учествовати у креирању jединки нове популациjе. Селекциjа
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jе стохастичка, где jе већа вероватноћа да буду изабране боље jединке.
Мутациjа представља мале промене генетског кода jединке са неком ве-
роватноћом. Оператор укрштања врши комбиновање генетског кода две
jединке како би се добила нова jединка. Укрштање jе инспирисано при-
родним комбиновањем генетског материjала родитеља. Основна примена
jе за дискретну оптимизациjу, али се може прилагодити и непрекидноj,
уз различите начине кодирања решења [89]. Како су неки од алгоритама
коришћених у овоj дисертациjи засновани на генетском алгоритму, оваj
алгоритам ће бити детаљниjе описан у наставку.

• Оптимизациjа роjем честица (енгл. Particle Swarm Optimization -
PSO): Метода jе инспирисана понашањем роjева jединки као што су птице
или инсекти. Свака jединка jе идентификована као jедна честица у роjу
(популациjи) и носи следеће информациjе: положаj честице (коjи одго-
вара решењу проблема), наjбољи положаj честице током процеса претраге
(компонента сопственог искуства) и наjбољи положаj свих честица или
неке околине дате честице (социjална компонента). У току претраге, че-
стице се крећу кроз простор решења, где свака честица мења своjу лока-
циjу на основу сопственог или искуства целог роjа, као и инерциjе (правца
кретања под претпоставком да нема других утицаjа). Кретање честице
представља промену тог решења. Метода укључуjе различите параметре
(три основна су тежина инерциjе, когнитивни коефициjент и социjални
коефициjент) чиjе вредности могу значаjно да утичу на ефикасност пре-
траге и квалитет решења. Оригинално, ова метода jе предложена за про-
блеме континуалне оптимизациjе, али се може прилагодити и за решавање
дискретних проблема [101].

• Еволутивне стратегиjе (енгл. Evolutionary Strategies - ES): Jош jедан
алгоритам инспирисан еволуциjом, где jе фокус на мутациjи, док jе укр-
штање опционо. Параметар jачине мутациjе jе адаптиван и мења се током
извршавања алгоритма. Селекциjа jе детерминистичка и елитистичка где
наjбоља решења пролазе у следећу итерациjу. Основна примена jе за не-
прекидну оптимизациjу. [18]

• Диференциjална еволуциjа (енгл. Differential Evolution - DE): Алгори-
там инспиран природним процесом еволуциjе jединки у популациjи, где се
за креирање нове популациjе jединки користе тежинске разлике вектора
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решења тренутне популациjе у свакоj итерациjи. Наjвише се користи за
континуалну оптимизациjу [171].

• Оптимизациjа мрављим колониjама (енгл. Ant Colony Optimization
- ACO): Метода инспирисана понашањем мрава у потрази за храном.
Мрави током потраге остављаjу трагове феромона на своjим путањама
коjе онда остале jединке могу да прате. Метода jе погодна за дискретне
проблеме, посебно за проблеме на графовима. Решења се граде инкремен-
тално додавањем нових елемената у решење, где на избор утиче искуство
мрава (феромони) у грађењу претходних решења. У случаjу да jе из-
грађено решење добро, поjачава се феромон за избор његових елемената,
тj. вероватноћа да ће се ти елементи изабрати приликом изградње новог
решења. [55]

• Оптимизациjа колониjом пчела (енгл. Bee Colony Optimization - BCO):
Метода je инспирасана понашањем колониjе пчела током потраге за хра-
ном. Слично као код оптимизациjе мрављим колониjама, решења се граде
инкрементално, а искуство одређених пчела може утицати на избор елеме-
ната приликом конструкциjе решења осталих пчела. Након конструкциjе
(парциjалних) решења и њихове евалуациjе, свака пчела одлучуjе да ли
ће остати лоjална, тj. задржати (парциjално) решење коjе jе конструи-
сала или не. Пчеле коjе задржаваjу своjе решење постаjу регрутери и
њихово решење могу да преузму неопредељене пчеле, тj. оне коjе нису
остале лоjалне свом решењу. Бољи квалитет (парциjалног) решења значи
већу вероватноћу да ће пчела остати лоjална свом решењу. За разлику
од основне верзиjе где се решења граде инкрементално, код вариjанте са
побољшањем (BCOi) jединке на почетку добиjаjу комплетна решења коjа
побољшаваjу кроз итерациjе [48].

У последње време приметан jе пораст радова коjи уводе нове метахеуристике
засноване на понашању организама, на пример китова, лисица, сова, коjота, али
и људи, њихових послова и односа и других поjава и процеса у природи. Овакви
радови су такође критиковани од стране неких аутора због непотребне употребе
метафора из реалног света, као и понављања истих идеjа само описаних на
различите начине или уз минималне измене [6].
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Метода променљивих околина и њене вариjанте

Метода променљивих околина jе заснована на следеће три чињенице [131]:

• Локални оптимум у односу на jедну структуру околине ниjе нужно ло-
кални оптимум за неку другу структуру околине.

• Глобални оптимум jе локални оптимум у односу на све структуре околина.

• За многе проблеме, локални оптимуми у односу нa jедну или више околинa
су релативно близу jедни другима.

Стога, променом околина током претраге могу се избећи локални оптимуми и
евентуално достићи глобални. Ова метода jе нашла различите примене због
своjе jедноставности и ефикасности [24,84].

Алгоритам почиње од почетног генерисаног решења и затим комбинаци-
jом размрдавања и локалне претраге у различитим околинама покушава да
побољша тренутно наjбоље решење. Основни корак код примене ове методе
на конкретан проблем jесте дефинисање околина Nk, k = 1, ..., kmax. Основна
вариjанта методе може се представити Алгоритмом 1.

Алгоритам 1 Основна метода променљивих околина
1: Input: x0, kmax

2: Output: x
3: x← x0

4: while stopping criteria not met do
5: k ← 1
6: while k < kmax do
7: x′ ← Shake(x, k)
8: x′′ ← LocalSearch(x′)
9: if f(x′′) < f(x) then

10: x← x′′

11: k ← 1
12: else
13: k ← k + 1

Почетно решење се може генерисати на случаjан начин или применом неке
похлепне хеуристике у складу са карактеристикама решаваног проблема. Фаза
размрдавања (означена са Shake) представља случаjан избор новог решења из
околине тренутног решења Nk(x). Локална претрага (означена са LocalSearch)
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се може вршити на различите начине, на пример стратегиjом првог или наjбо-
љег побољшања. Локална претрага може да се врши у произвољноj околини
N(x), независно од околина за фазу размрдавања. Локална претрага почиње
од решења добиjеног из фазе размрдавања. Корак локалне претраге се може
имплементирати као Алгоритам 2, где се користи стратегиjа првог побољшања
решења или као Алгоритам 3, где се користи стратегиjа наjбољег побољшања.

Алгоритам 2 Локална претрага са првим побољшањем
1: procedure LocalSearch(x)
2: improvement← true
3: while improvement do
4: improvement← false
5: for x′ ∈ N(x) do
6: if f(x′) < f(x) then
7: x← x′

8: improvement← true
9: break

10: return x

Алгоритам 3 Локална претрага са наjбољим побољшањем
1: procedure LocalSearch(x)
2: improvement← true
3: while improvement do
4: improvement← false
5: best_neighbor ← x
6: for x′ ∈ N(x) do
7: if f(x′) < f(best_neighbor) then
8: best_neighbor ← x′

9: improvement← true
10: x← best_neighbor

11: return x

Поред основне, постоjе и друге вариjанте методе променљивих околина. Ре-
дукована вариjанта (енгл. Reduced VNS) се добиjа избацивањем локалне пре-
траге из основне (брисање линиjе 6 из Алгоритма 1). Код адаптивне вариjанте
(енгл. Skewed VNS) врши се прихватање и лошиjег решења чиjа jе вредност
функциjе циља близу вредности функциjе циља тренутног решења, ако jе то
решење далеко од тренутног у простору решења. Ова вариjанта jе приказана
као Алгоритам 4, где jе d(x, x′′) растоjање између решења x и x′′, а α параметар
методе коjи одређуjе колико то растоjање утиче на функциjу циља.
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Алгоритам 4 Адаптивна метода променљивих околина
1: Input: x0, kmax, α
2: Output: xbest

3: x← x0

4: xbest ← x0

5: while stopping criteria not met do
6: k ← 1
7: while k < kmax do
8: x′ ← Shake(x, k)
9: x′′ ← LocalSearch(x′)

10: if f(x′′) < f(xbest) then
11: xbest ← x′′

12: if f(x′′)− α · d(x, x′′) < f(x) then
13: x← x′′

14: k ← 1
15: else
16: k ← k + 1

17: return xbest

Локална претрага коjа користи различите околине током извршавања на-
зива се метода променљивог спуста (енгл. Variable Neighborhood Descend) и
приказана jе као Алгоритам 5. Уопштена вариjанта методе променљивих око-
лина (енгл. General VNS) има исту структуру као и Алгоритам 1, али користи
методу променљивог спуста уместо обичне локалне претраге (линиjа 6). За
имплементациjу ове вариjанте потребно jе дефинисати околине за методу про-
менљивог спуста Nl, l = 1, ..., lmax, коjе могу бити различите од околина дефи-
нисаних за фазу размрдавања.

Алгоритам 5 Метода променљивог спуста
1: Input: lmax, x
2: Output: x
3: l← 1
4: while l < lmax do
5: x′ ← best solution from Nl(x)
6: if f(x′) < f(x) then
7: x← x′

8: l← 1
9: else

10: l← l + 1

11: return x
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Методе засноване на VNS-у су успешно примењене на различите локациjске
проблеме [43,53,94,115,161], укључуjући и проблеме сличне MCLP [44,47,129].
Детаљан опис различитих вариjанти методе променљивих околина, као и њи-
хове примене могу се наћи у радовима [84] и [86].

Генетски алгоритам

Решење проблема се кодира на начин коjи зависи од проблема коjи се ре-
шава (на пример као бинарни низ), а код решења се назива jединка (хромозом).
Функциjа прилагођености одређуjе колико jе нека jединка добра и обично од-
говара функциjи циља или њеноj модификациjи. Алгоритам почиње од иници-
jалне популациjе (скупа jединки) коjа се обично генерише стохастички, затим
се кроз имитациjу процеса еволуциjе, операторима селекциjе, укрштања и мута-
циjе добиjаjу нове популациjе у нади да ће се међу њима наћи све боље jединке,
тj. решења коjа ће довести до оптималних. Основни кораци ове методе су
приказани као Алгоритам 6 [78].

Алгоритам 6 Генетски алгоритам
1: Input: initial population of individuals
2: Output: best fitted individual
3: while stopping criteria not met do
4: Select parents based on their fitness
5: Perform crossover
6: Perform mutation
7: Evaluate the population
8: Select individuals for the next iteration (replacement)

Оператор селекциjе бира jединке коjе ће учествовати у креирању нове попу-
лациjе, односно пренети своj генетски материjал у наредну итерациjу. Над се-
лектованим jединкама се примењуjу остали оператори и тако добиjаjу решења
коjа учествуjу у формирању нове популациjе. У литератури су предложени
различити оператори селекциjе, међу коjима се наjчешће користе рулетска и
турнирска селекциjа.

Код рулетске селекциjе вероватноћа избора jединке jе пропорционална функ-
циjи прилагођености те jединке. Нека jе P = {p1, p2, ..., pn} популациjа n jе-
динки. Ако jе функциjа прилагођености jединке i jеднака f(pi), онда се веро-
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ватноћа Pr(pi) избора jединке i може израчунати на следећи начин:

Pr(pi) =
f(pi)∑n
j=1 f(pj)

Код турнирске селекциjе се на случаjан начин бира k jединки из популациjе,
а наjбоља од њих у односу на функциjу прилагођености пролази даље. Пара-
метром k се на оваj начин може одређивати jачина, тj. притисак селекциjе
коjи утиче на ефикасност решавања. Повећањем величине турнира се смањуjе
шанса да слабиjа решења учествуjу у процесу репродукциjе, тj. генерисања
нове популациjе. Фино градирана вариjанта турнирске селекциjе укључуjе из-
вршавање турнира различитих величина током jедне селекциjе. Уводи се нови
параметар уместо величине турнира коjи представља жељену просечну вели-
чину турнира и коjи узима реалне вредности [65].

Код селекциjе засноване на рангу, jединкама се додељуjе ранг (тj. jединке
се сортираjу) на основу функциjе прилагођености. Jединке се бираjу на основу
додељеног ранга, а не директно на основу вредности функциjе прилагођености,
што доводи до боље диверсификациjе претраге jер даjе више шансе и слабиjим
jединкама.

Оператор укрштања комбинуjе два решења у ново решење. Имплементациjа
овог оператора зависи од начина кодирања решења. У литератури, као и код
проблема ове дисертациjе, често jе то бинарни низ па се користи jеднопозиционо
укрштање. Ако су дата два вектора коjи представљаjу родитеље r1 и r2, док
се тачка укрштања k бира случаjно, онда се два потомка o1 and o2 креираjу на
следећи начин:

o1 = {r1,1, r1,2, ..., r1,k, r2,k+1, ..., r2,L},

o2 = {r2,1, r2,2, ..., r2,k, r1,k+1, ..., r1,L}

Могуће jе користити и укрштање са две или више позициjа, као и друге
начине, на пример униформно укрштање где се за сваки бит одређуjе од коjег
родитеља се узима.

Оператор мутациjе има за циљ да доведе до мањих измена новог решења
на случаjан начин. Ако jе кодирање бинарно, где jе решење, тj. хромозом
c = {g1, g2, ..., gL}, мутира се сваки ген, тj. бит gi са вероватноћом pm. Код
бинарног кодирања мутирање гена представља инвертовање вредности. На
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оваj начин се добиjа ново решење c′ = {g′1, g′2, ..., g′L}, где jе:

g′i =

¬gi, са вероватноћом pm

gi, иначе

Jош jедан елемент и битан корак генетских алгоритам представља замену
старих решења новогенерисаним. На оваj начин се бираjу jединке коjе чине
наредну генерациjу, односно нову популациjу jединки. Политика замене гене-
рациjа може значаjно утицати на ефикасност алгоритма, тj. његову конвер-
генциjу. Постоjе различити начини за имплементациjу овог корака, на пример
замена целе генерациjе новим решењима, замена само неколико наjслабиjих
решења, примена елитизма, где се одређени броj решења преноси у следећу ге-
нерациjу без промена, замена наjсличниjих (у односу на неку метрику) решења
уместо наjслабиjих, вероватноћа замене пропорционална функциjи прилагође-
ности и слично [130]. Посебан проблем представља одржавање допустивости
решења, jедна од начина jе поправка новог решења до допустивог.

Метахеуристичке методе за вишекритериjумску

оптимизациjу

Ове методе настоjе да у jедном покретању даjу као резултат добру апрок-
симациjу Парето оптималног скупа решења. Циљ jе што више приближити ре-
шења правом Парето оптималном скупу и одржати разноликост скупа решења,
тj. пронаћи што више недоминираних решења коjа су равномерно распоређена
по фронту [39]. Овакве методе спадаjу у апостериори технике за решавање про-
блема вишекритериjумске оптимизациjе, jер пружаjу различита компромисна
решења, где се онда неком другом техником бира решење коjе наjвише одговара
доносиоцу одлука, тj. конкретноj ситуациjи.

Jедан од првих радова коjи се бави решавањем проблема вишекритериjумске
оптимизациjе применом метахеуристика jесте докторска дисертациjа из 1984.
године [160], где jе генетски алгоритам проширен и измењен тако да ради са
више функциjа циља. Тренутно наjпопуларниjе метахеуристичке методе за ре-
шавање проблема вишекритериjумске оптимизациjе у литератури су вишекри-
териjумски еволутивни алгоритми (енгл. Multi-objective evolutionary algorithms
- MOEAs), [2, 110,175,179,186].

Генерално, еволутивни алгоритми за решавање проблема вишекритериjум-
ске оптимизациjе имаjу следеће основне кораке:
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1. инициjализациjа,

2. селекциjа,

3. укрштање и мутациjа,

4. евалуациjа,

5. ажурирање популациjе (и архиве).

Кораци 2-5 се понављаjу све док се не испуни критериjум заустављања и
као резултат се враћа популациjа недоминираних решења. Основна разлика
између ових метода jе у начину избора решења за следећу итерациjу (попу-
лациjу решења) и начину рачунања прилагођености решења. У наставку ове
главе описани су неки од еволутивних алгоритама познатих у литератури коjи
су у оквиру ове дисертациjе прилагођени за решавање разматраних проблема и
упоређени са решењима добиjеним развиjеном методом променљивих околина.

NSGA-II [51] - Представља унапређену верзиjу NSGA (Non-dominated Sorting
Genetic Algorithm) алгоритма [168] и користи елитизам као и ефикасно недоми-
нираjуће сортирање. NSGA-II превазилази проблеме оригиналног алгоритма
као што су временска комплексност и употреба дељеног параметра. Код деље-
ног параматера рачуна се растоjање између два решења и уколико jе оно мање
од задате вредности параметра, решења се означаваjу као слична. Таквим ре-
шењима се смањуjе функциjа прилагођености. Већи дељени параметар значи
да се тежи да се решења боље распореде по фронту, да не буду збиjена. Решења
популациjе се ефикасно сортираjу по недоминираjућим фронтовима и додељуjе
им се ранг у зависности коjем фронту припадаjу. Сортирање се врши тако што
се у први ранг убаце сва недоминирана решења из популациjе. Затим се та ре-
шења бришу и сва недоминирана решења нове популациjе прелазе у други ранг.
Оваj поступак се понавља све док има решења коjа су доминирана. Приликом
селекциjе, решења се пореде по рангу и метрици гомилања (енгл. crowding
distance). Циљ коришћења ове метрике jе очување разноврсности решења, тj.
њихово равномерно распоређивање по фронту.

За дато решење i, метрика (растоjање) гомилања di се рачуна на следећи
начин:

di =
M∑

m=1

(
fm(i+ 1)− fm(i− 1)

fmax
m − fmin

m

)
,

где jе:
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• M броj функциjа циља.

• fm(i) вредност функциjе циља fm за решење i.

• fm(i+ 1) и fm(i− 1) су вредности функциjе циља fm за решења испред и
иза решења i у листи решења сортираноj на основу функциjе циља fm.

• fmax
m и fmin

m су максималне и минималне вредности функциjе циља fm на
целоj популациjи.

Решења за коjе нека од функциjа циља има минималну или максималну
вредност се називаjу граничним решењима. За ова решења, вредност метрике
гомилања се поставља на бесконачно како би увек била изабрана у следећу
генерациjу.

SPEA-II [187] - У односу на оригинални SPEA (Strength Pareto Evolutionary
Algorithm) алгоритам [188], у SPEA-II укључуjу се додатни елементи: фина
стратегиjа за рачунање функциjе прилагођености, техника за естимациjу гу-
стине решења, као и побољшана верзиjа методе за одбацивање решења из ар-
хиве. Решење се оцењуjе на основу тога над колико других решења доминира
и колико других решења доминира над њим. Поред тога, користи се и инфор-
мациjа о густини суседних решења како би се одржала разноврсност решења.
Густина се процењуjе на основу удаљености од k-тог наjближег решења, где jе
k параметар методе, и рачуна се на следећи начин:

D(i) =
1

σ2
i,k + 2

,

где jе σi,k Еуклидово растоjање од решења i до његовог k-ог наjближег суседа
у простору функциjа циља. Димензиjе овог простора одговараjу функциjама
циља, док jе свако решење представљено као тачка чиjе су координате вредно-
сти функциjа циља тог решења.

SMS-EMOA (S-Metric Selection Evolutionary Multiobjective Optimization
Algorithm) [17] - Код овог алгоритма се директно оптимизуjе хиперзапремина
решења (енгл. hypervolume - HV ). Оператор селекциjе комбинуjе HV и кон-
цепт недоминираjућег сортирања. Приликом селекциjе користи се допринос
jединке вредности HV, коjи се дефинише као разлика између вредности HV са
и без тог решења у скупу. Такође, SMS-EMOA користи стратегиjу стабилног
стања (енгл. steady-state), где се jедна jединка брише из популациjе, а jедна
нова додаjе, како би се смањио броj рачунања вредности HV. Прво се додаjе
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нова jединка у популациjу, креирана применом оператора укрштања и мута-
циjе, а затим се све jединке сортираjу по не-доминираjућим фронтовима као и
код NSGA-II и на краjу се уклања jединка из последњег фронта коjа наjмање
доприноси вредности HV. Проверава се да ли jе вредност HV нове популациjе
већа или jеднака претходноj. На овакав начин се обезбеђуjе да вредност HV
никад не опада у новоj генерациjи.

ε-MOEA [50] - Метода jе заснована на концепту ε-доминантности из рада
[105]. Ова метода одржава ε-архиву решења коjа се користи заjедно са тре-
нутном популациjом за примену оператора селекциjе и укрштања. У архиви
се чуваjу недоминирана решења. Прво се бира jедно решење из тренутне по-
пулациjе и jедно решење из архиве, а затим се креира ново решење за коjе се
одређуjе да ли ће бити укључено у популациjу и архиву. Посебне процедуре се
примењуjу за селектовање и укључивање како у популациjу, тако и у архиву.
Приликом селекциjе користи се бинарна турнирска селекциjа прилагођена за
више функциjа циља. Случаjно се бираjу две jединке и ако jедна доминира над
другом, jединка коjа доминира пролази даље. У супротном, врши се случаjан
избор између посматране две jединке. Jединка из архиве се бира на случаjан
начин. Приликом укључивања решења x у архиву, ново решење се пореди са
сваким решењем архиве по критериjуму ε-доминантности. Сваком решењу x се
придружуjе вектор решења A чиjе су координате вредности функциjе циља за
посматрано решење, тj. A = (f1(x), f2(x), . . . , fM(x)), где jе M броj функциjа
циља. Затим се вектор решења A мења новим B = (B1, B2, . . . , BM)T , где jе
сваки елемент вектора B дефинисан на следећи начин:

Bj(f) =

⌊(fj − fmin
j )/εj⌋, за минимизациjу fj,

⌈(fj − fmin
j )/εj⌉, за максимизациjу fj,

где jе fmin
j наjмања вредност функциjе циља j, а εj jе дозвољена толеранциjа

за вредност функциjе циља j.
Овако добиjени нови вектори пореде се на основу принципа обичне доми-

нантности. Ако ново решење ε-доминира над неким решењем из архиве, онда
се решење из архиве брише, тj. замењуjе новим решењем. Уколико неко од
решења из архиве доминира над новим решењем, онда се ново решење не при-
хвата. Овакав начин поређења решења омогућава да се постигне добра раши-
реност решења архиве, jер се не дозвољава да решања буду укључена у архиву
уколико су близу постоjећих.
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Описани еволутивни алгоритми су такође успешно примењивани и на ло-
кациjске проблеме у литератури. На пример, Atta и сар. [10] су користили
NSGA-II и генетски алгоритам са тежинском сумом (WSGA) за решавање ви-
шекритериjумског локациjског проблема без капацитета и са преференциjама
корисника. Karasakal и Silav [98] су предложили измењени SPEA-II алгоритам
(mSPEA-II) за двокритериjумски локациjски проблем са парциjалним покрива-
њем. Код предложеног алгоритма, функциjа прилагођености jе измењена и ко-
ристи се метрика гомилања из NSGA-II. Doerner и сар. [54] су применили NSGA-
II за решавање вишекритериjумског проблема покривања локациjа са приме-
ном на постављање jавних обjеката у областима коjе су под ризиком од удара
цунамиjа. Двокритериjумски локациjски проблем разматран jе у раду [19] и ре-
шаван помоћу NSGA-II. Villegas и сар. [178] су разматрали двокритериjумски
локациjски проблема коjи максимизуjе покривену потражњу корисника и мини-
мизуjе цену повезивања корисника са обjектима, као и фиксну цену отварања
обjеката. У раду [178] коришћена jе хибридна метода, настала комбиновањем
MOEA алгоритма и метода математичког програмирања. Medaglia и сар. [124]
су користили еволутивне алгоритме за решавање двокритериjумског локациj-
ског проблема са применама у управљању медицинским отпадом. Jош неки
примери примене еволутивних алгоритама на вишекритериjумске локациjске
проблеме могу се наћи у раду [69].

Како су се метахеуристике са jедним решењем и оне засноване на локалноj
претрази добро показале у применама за решавање локациjских проблема, исте
идеjе се могу пренети и на више функциjа циља. У наставку су укратко прика-
зане неке метахеуристике за вишекритериjумску оптимизациjу из литературе
коjе користе ове идеjе, док jе вишекритериjумска вариjанта методе промен-
љивих околина описана детаљниjе, jер jе коришћена за решавање проблема у
оквиру ове дисертациjе.

MOSA алгоритам (енгл. Multi-Objective Simulated Annealing) jе више-
критериjумска вариjанта методе симулираног каљења. Идеjа првог вишекри-
териjумског SA алгоритма из рада [162] jесте да током итерациjа недоминирана
решења имаjу већу стационарну вероватноћу, тj. више шансе да буду изабрана
као тренутно решење. Поред тога, могуће jе да два недоминирана решења
имаjу различите вероватноће у зависности од преференци доносиоца одлука.
У раду [162] разматрана су различита правила за прихватање решења, како
би се претрага фокусирала на недоминирана решења. Касниjе су настале нове
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вариjанте MOSA, као што jе вариjанта представљена у раду [62], а касниjе про-
ширена у раду [172]. Код алгоритма из рада [62], вредности функциjа циља се
комбинуjу у jедну на основу следеће формуле:

G =
M∑
i=1

ln fi,

где су f1, . . . , fM посматране функциjе циља коjе требе минимизовати. Вари-
jанта из рада [62] користи и архиву недоминираjућих решења, где се решења
обрађивана током стандардног процеса симулираног каљења убацуjу уколико
нису доминирана постоjећим члановима архиве. За разлику од алгоритма из
рада [62], MOSA предложен у [172] не комбинуjе функциjе циља у jедну нову
функциjу, већ се промене у вредностима сваке од функциjа циља пореде ди-
ректно. MOSA алгоритам предложен у раду [142] се заснива на одржавању
скупа недоминираних решења кроз итерациjе. Избор тренутног решења и кри-
териjум прихватања решења су дефинисани на следећи начин:

• Ако кандидат доминира над неким решењима, она се избацуjу, кандидат
постаjе тренутно решење и убацуjе се у скуп недоминираних решења;

• Ако неко решење доминира над кандидатом, кандидат постаjе тренутно
решење са одређеном вероватноћом коjа зависи од температуре;

• Ако ниjе испуњен ниjедан од претходна два услова, кандидат постаjе тре-
нутно решење и убацуjе се у скуп решења.

Више о MOSA и његовим вариjантама може се наћи у прегледном раду [5].
У постоjећоj литератури предложене су различите вариjанте вишекритери-

jумске табу претраге. На пример, у раду [82] се користи тежински просек
свих функциjа циља како би се нашло наjбоље решење у околини сваког тре-
нутног решења. Тежине се затим динамички ажурираjу током претраге како би
се истражили сви региони Парето фронта, што представља механизам дивер-
сификациjе претраге. Аутори рада [73] су предложили сличан алгоритам, коjи
такође користи адаптивне тежине. Приликом избора решења из околине узима
се оно коjе максимизуjе тежинску фунциjу свих функциjа циља, а да при томе
ниjе у табу листи. Током претраге се одржава скуп недоминираних решења,
где се додавањем нових решења бришу она коjа постаjу доминирана. Другачиjи
приступ избору решења из околине jе предложен у раду [15], где се решење бира
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на случаjан начин из листе кандидата коjа садржи сва недоминирана решења у
односу на тренутна решења околине и тренутни скуп недоминираних решења.
Како би се избегли проблеми са избором тежина и скалирањем функциjа циља,
аутори рада [104] предлажу употребу мултиномне расподеле вероватноће за из-
бор активне функциjе циља у свакоj итерациjи алгоритма. Затим се приликом
избора наjбољег решења из околине, бира оно коjе има наjбољу вредност те
активне функциjе, а коjе притом ниjе означено као табу. Додатно, могуће jе
изабрати и табу решење уколико оно доминира над неким од тренутних недо-
минираних решења. Оваj алгоритам користи рестарт процедуре као механизам
диверсифкациjе, где се на случаjан начин бира jедно недоминирано решење коjе
постаjе тренутно, а табу листа се празни.

Прва вишекритериjумска вариjанта GRASP алгоритма jе заснована на
тежинскоj комбинациjи функциjа циља и примењена jе на решавање вишекри-
териjумске вариjанте проблема ранца [177]. Предложени алгоритам у свакоj
итерациjи користи друге тежине како би се добила различита недоминирана
решења. Касниjе се у литератури jављаjу и друге вариjанте вишекритериjум-
ске GRASP методе. коjе не своде проблем на jедну функциjу циља и одржаваjу
скуп недоминираних решења током претраге. Приликом конструкциjе решења
може се користити комбинована функциjа циља или изабрати jедна од функ-
циjа циља. Ако користимо jедну од функциjа циља, она се може за сваку кон-
струкциjу изабрати на случаjан начин или неким утврђеним редоследом. Код
комбиновања функциjа циља, може се користити тежинска функциjа или да
се функциjе бираjу за сваки корак конструкциjе. Након конструкциjе решења
извршава се нека вариjанта вишекритериjумске локалне претраге коjа одговара
кораку конструкциjе. На пример, ако jе извршена комбинована конструкциjа,
код локалне претраге се за избор наjбољег решења из околине могу користити
различите функциjе циља. За свако решење пронађено приликом претраге се
проверава да ли се укључуjе у скуп недоминираних решења. Детаљни преглед
и евалуациjа оваквих вариjанти дати су у раду [119].

Метода променљивих околина jе дала одличне резултате за проблеме
са jедном функциjом циља разматране у овоj дисертациjи, што jе била мотива-
циjа за примену њене вишекритериjумске вариjанте на двокритериjумске вари-
jанте ових проблема. Jедна од првих примена методе променљивих околина на
проблеме вишекритериjумске оптимизациjе налази се у раду [75], за решавањe
вишекритериjумског проблема распоређивања послова. Затим jе обjављено jош
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неколико радова коjи на различите начине прилагођаваjу методу променљивих
околина конкретним проблемима вишекритериjумске оптимизациjе. Mетода jе
примењена за решавање различитих проблема алокациjе ресурса [107]. Про-
блем распоређивања на jедноj машини са различитим временским прозорима
jе решаван у раду [9]. Аутори рада [108] су решавали проблем алокациjе ре-
дудантности компоненти система. Динамички проблем распоређивања послова
решаван jе у раду [1].

Општи оквир за примену методе променљивих околина jе предложен у раду
[59], где jе промењена дефинициjа тренутног решења и поjма унапређивања
решења. Тренутно решење jе тренутни скуп недоминираних решења (тачака)
коjи се ажурира током итерациjа. На краjу извршавања алгоритма, тренутно
решење се враћа као апроксимативни Парето скуп, тj. скуп свих недоминира-
них решења пронађених током претраге. Решење E ′ представља унапређење
решења E уколико постоjи елемент e решења E ′ коjи ниjе доминаран тачкама
из решења E. Другим речима, унапређење решења постоjи ако постоjи нови
недоминирани елемент коjи се додаjе у тренутно решење. Поступак провере
побољшања решења приказан jе Алгоритмом 7.

Алгоритам 7 Провера побољшања решења за вишекритериjумски проблем
1: procedure MO-Improvement(E,E ′)
2: for all e ∈ E ′ do
3: if e /∈ E ∧ ¬Dominated(e, E) then
4: return True
5: return False

Користећи наведене дефинициjе претходних поjмова, може се представити и
вишекритериjумска промена околине коjа jе приказана Алгоритмом 8. Основна
идеjа jе иста као код корака промене околине за проблеме са jедном функци-
jом циља, уколико jе дошло до побољшања онда се враћа на прву околину,
иначе се иде на следећу. Процедура Update ажурира тренутно решење E тако
што додаjе нове недоминиране елементе из E ′, а избацуjе оне коjи су постали
доминирани.

Код вишекритериjумске фазе размрдавања, за сваку тачку тренутног ре-
шења се врши размрдавање у околини k. Нови генерисани елементи се чуваjу
у новом решењу E ′. Оваj поступак jе приказан Алгоритмом 9.

Комбинациjом ова два елемента, фазе размрдавања и фазе промене околине,
добиjамо редуковану вариjанту вишекритериjумске методе променљивих око-
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Алгоритам 8 Вишекритериjумска промена околине
1: procedure MO-NeighborhoodChange(E,E ′, k)
2: if MO-Improvement(E,E ′) then
3: k ← 1
4: E ← Update(E,E ′)
5: else
6: k ← k + 1

Алгоритам 9 Вишекритериjумска фаза размрдавања
1: procedure MO-Shake(E, k)
2: E ′ ← ∅
3: for all e ∈ E do
4: e′ ← Shake(e, k)
5: E ′ ← E ′ ∪ {e′}
6: return E ′

лина, коjа jе приказана Алгоритмом 10. Улазни параметри су почетно решење
E, максималан броj околина kmax, максимално дозвољено процесорско време
извршавања tmax или параметар за неки други критериjум заустављања (на
пример, максималан броj итерациjа без побољшања решења). Резултат извр-
шавања алгоритма jе скуп недоминираних решења E ′. Протекло процесорско
време извршавања алгоритма означено jе са CpuTime.

Алгоритам 10 Вишекритериjумска редукована метода променљивих околина
1: procedure MO-RVNS(E, kmax, tmax)
2: E ′ ← ∅
3: repeat
4: k ← 1
5: repeat
6: E ′ ←MO-Shake(E, k)
7: E ←MO-NeighborhoodChange(E,E ′, k)
8: until k = kmax

9: t← CpuTime
10: until t > tmax

11: return E ′

Код вишекритериjумске вариjанте променљивог спуста врши се променљиви
спуст за тренутна решења по свакоj функциjи циља поjединачно. За разлику
од вариjанте са jедном функциjом циља, приликом локалне претраге сваки еле-
мент коjи се добиjе из околине треба проверити за укључивање у тренутни скуп
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решења. Тако jе повратна вредност променљивог спуста (или локалне претраге)
скуп решења, а не jедно решење. Алгоритам 11 приказуjе основну структуру
методе променљивог спуста за вишекритериjумску оптимизациjу. Улазни па-
раметри су почетно решење E, максималан броj околина k′

max и укупан броj
функциjа циља M . Функциjе циља се смењуjу током претраге све док има
побољшања. Променљиви спуст у односу на функциjу циља fi означен jе са
VNDi. Идеjа jе да се свака тачка тренутног решења претражи у свакоj околини
у односу на сваку функциjу циља. За сваку функциjу циља се одржава и скуп
решења Si. Процедура Select бира на случаjан начин елемент коjи већ ниjе
обрађен у односу на дату функциjу циља. Процедура MO-ObjectiveChange

ради по истом принципу као и MO-NeighborhoodChange процедура, где се
у случаjу побољшања враћа на прву фунциjу циља и ажурира тренутно решење
пронађеним тачкама.

Алгоритам 11 Вишекритериjумски променљиви спуст
1: procedure MO-VND(E, k′

max,M)
2: S1 ← ∅, S2 ← ∅, . . . , Sr ← ∅
3: i← 1
4: repeat
5: repeat
6: e′ ← Select(E \ Si)
7: Ei ← VNDi(e′, k′

max)
8: Si ← Si ∪ Ei

9: until E \ Si = ∅
10: MO-ObjectiveChange(E, Si, i)
11: until i > r
12: return E

Комбиновањем процедуре променљивог спуста и фазе размрдавања добиjа
се вишекритериjумска општа метода променљивих околина, коjа jе приказана
Алгоритмом 12. У оквиру унутрашње петље, процедуре MO-Shake, MO-VND

и MO-NeighborhoodChange се секвенциjално извршаваjу све док се не ис-
траже све околине, тj. док се не достигне вредност параметра kmax. Спољашња
петља се извршава све док не истекне дозвољено време за извршавање, тj. док
се не прекорачи вредност параметра tmax. У случаjу да се уместо променљивог
спуста VNDi за сваку функциjу циља fi користи обична локална претрага у
односу на ту функциjу циља fi, добиjа се вишекритериjумска основна метода
променљивих околина.
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Алгоритам 12 Вишекритериjумска општа метода променљивих околина
1: procedure MO-GVNS(E, kmax,M, k′

maxtmax)
2: E ′ ← ∅
3: repeat
4: k ← 1
5: repeat
6: E ′ ←MO-Shake(E, k)
7: E ′′ ←MO-VND(E ′, k′

max,M)
8: E ←MO-NeighborhoodChange(E,E ′′, k)
9: until k = kmax

10: t← CpuTime
11: until t > tmax

12: return E ′

Детаљниjе о примени метахеуристика за вишекритериjумску оптимизациjу
коjе су засноване на побољшању jедног решења, а посебно оних заснованих на
локалноj претрази, може се наћи у прегледном раду [21].
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Глава 2

Проблем максималног покривања
локациjа са ограниченим буџетом и
преференциjама корисника

2.1 Опис проблема и преглед релевантне

литературе

Проблем максималног покривања локациjа

Проблем максималног покривања локациjа (енгл. Maximal Covering Location
Problem - MCLP) jе jедан од наjпроучаваниjих локациjских модела у литера-
тури, због широког спектра његових примена (планирање услужних и обjеката
за хитне службе, класификациjа, апстракциjа података, управљање ланцем
снабдевања). У основноj вариjанти MCLP, коjу су увели Church и ReVelle у
раду [37], познати су скуп корисника са задатом потражњом и скуп потенци-
jалних локациjа за успостављање обjеката. Претпоставља се да корисника могу
услужити само отворени обjекти чиjе растоjање од датог коисника ниjе веће од
критичне удаљености (радиjус покривања). Циљ MCLP-а jе одредити локациjе
за успостављање задатог броjа обjеката и придружити сваког корисника тачно
jедном од успостављених обjеката, тако да се максимизуjе количина покривене
потражње. Потражња корисника се сматра покривеном уколико се корисник
снабдева од обjекта коjи jе од њега удаљен не више од задатог радиjуса покри-
вања. У раду [125] доказано jе да jе MCLP НП-тежак.

37



2.1. ОПИС ПРОБЛЕМА И ПРЕГЛЕД РЕЛЕВАНТНЕ ЛИТЕРАТУРЕ

У циљу представљања математичке формулациjе проблема користе се сле-
деће ознаке за улазне параметре:

• J - Скуп корисника;

• I - Скуп потенциjалних локациjа обjеката;

• Sj - Скуп локациjа коjе могу покрити корисника j ∈ J ;

• aj - Потражња корисника j ∈ J ;

• p - Броj обjеката коjе треба успоставити.

Математичка формулациjа користи два скупа бинарних променљивих:

• xi - бинарна променљива коjа узима вредност 1 ако jе обjекат отворен на
локациjи i ∈ I , иначе има вредност 0.

• yj - бинарна променљива коjа узима вредност 1 ако jе потрошач j ∈ J

покривен неким обjектом, иначе има вредност 0.

Користећи наведену нотациjу, проблем се може записати у виду целоброjног
линеарног програма (енгл. Integer Linear Program - ILP) [37]:

max
∑
j∈J

ajyj (2.1)

при условима
∑
i∈I

xi = p, (2.2)

yj ≤
∑
i∈Sj

xi, ∀j ∈ J (2.3)

xi ∈ {0, 1}, ∀i ∈ I (2.4)

yj ∈ {0, 1}, ∀j ∈ J (2.5)

Функциjа циља (2.1) jеднака jе суми покривене потражње корисника, а циљ
проблема jе њена максимизациjа. Услов (2.2) обезбеђуjе да се отвара тачно p

обjеката. Услов (2.3) обезбеђуjе да се потрошач i може означити покривеним
само ако jе отворен бар jедан обjекат j коjи се налази у његовом радиjусу
покривања. Променљиве xi и yj су ограничене на бинарне вредности условима
(2.4) и (2.5).
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Након рада [37] у коjем jе уведен основни MCLP, поjавиле су се броjне сту-
диjе коjе уводе различите вариjанте овог проблема и предлажу методе за њи-
хово решавање. Нове вариjанте проблема MCLP су често добиjене укључива-
њем ограничења и претпоставки из различитих реалних ситуациjа. У раду [181]
разматрана jе вариjанта MCLP-a са jеднаким захтевима корисника са циљем
да се максимизуjе броj покривених корисника. Планарна вариjанта MCLP-
а изучавана jе у радовима [38] и [180], док су ReVelle и Hogan у раду [151]
предложили MCLP са вероватноћама за отварање обjекта за сваку локациjу
из датог скупа. ReVelle jе у раду [152] разматрао условну вариjанту MCLP-а
(енгл. conditional MCLP) са циљем да се максимизуjе броj обjеката покри-
вених другим обjектима (секундарна подршка), док jе примарна покривеност
обjектима обезбеђена за све кориснике. Вишекритериjумска условна вариjанта,
такође предложена у [152], даjе компромис између укупне покривене потражње
са примарним покрићем и броjа обjеката са секундарним покрићем. Berman
и Krass су у раду [16] формулисали генерализациjу MCLP-а коjа дозвољава
делимичну покривеност корисника, са степеном покривености коjи се даjе не-
растућом степенастом функциjом удаљености до наjближег отвореног обjекта.
Jош jедна генерализациjа MCLP-а, предложена у раду [44], укључуjе различите
типове обjекта коjи служе корисницима уз ограничење да се само одређени броj
различитих типова обjеката може активирати на истоj локациjи. У раду [169]
предложена jе вариjанта коjа jе настала на основу реалног проблема дизаjни-
рања мрежа хитне службе. Вариjанта из [169] укључуjе више типова услуга
и више типова услужних центара, као и претпоставке о хиjерархиjскоj уре-
ђености типова центара и ограничењу броjа отворених центара за сваки тип.
У раду [148] предложен jе вишепериодни MCLP (енгл. multi-period MCLP) за
проналажење оптималне локациjе сигурносних камера на раскрсници на мрежи
градског саобраћаjа како би се минимизовао броj саобраћаjних несрећа. Zarandi
и сар. у раду [185] уводе динамички MCLP (енгл. dynamic MCLP) узимаjући
у обзир више од jедног временског периода у моделу. Робусна вариjанта дина-
мичког MCLP-а jе формулисана у раду [129], где jе укључена непоузданост у
потражњи корисника. Фази (енгл. fuzzy) MCLP предложен у раду [56] прет-
поставља две врсте фази броjева за описивање два главна параметра MCLP-а:
радиjус покривања и растоjања између локациjа. MCLP jе и даље веома ак-
туелан, с обзиром на његов практични значаj и различите области примене.
Метода променљивих околина примењена jе за решавање оригиналног MCLP у
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раду [138]. Детаљан опис MCLP-а, његових вариjанти и примена може се наћи
у [67] и [165].

Проблем максималног покривања локациjа са

преференциjама корисника

Када се корисници распоређуjу на отворене обjекте, стандардни приступ
jе да се сваки корисник додели наjближем отвореном обjекту. Реалниjа прет-
поставка jе да корисници бираjу успостављени обjекат на основу своjих пре-
ференциjа. Преференциjе корисника су засноване на различитим факторима,
као што су: старост корисника, квалитет услуге, приходи корисника, удаље-
ност, начин превоза, итд. Први рад у литератури о локациjским проблемима
коjи укључуjе и преференциjе корисника у претпоставке проблема jе [81]. Ау-
тори су проширили добро познати локациjски проблем без капацитета (енгл.
Uncapacitated Facility Location Problem - UFLP) узимаjући у обзир сортирање
обjеката по преференциjама корисника и предложили алгоритам за решавање
новог проблема заснован на похлепноj хеуристици у комбинациjи са методом
гранања и ограничавања. Неколико реформулациjа UFLP-а са сортирањем
обjеката по преференциjама корисника, анализом сложености, полиедарским
моделима и доњим границама представљено jе у радовима [26, 79, 83, 92, 176].
Hansen и сар. су у раду [83] реформулисали проблем као двостепени лине-
арни програм (енгл. Bilevel Linear Program - BLUFLP) и предложена jе метода
решавања заснован на хибридизациjи шеме Стакелбергове равнотеже и ево-
лутивног алгоритма. Две нове формулациjе двостепеног модела BLUFLP-а у
мешовити целоброjни jедностепени програм су представили Camacho-Vallejo и
сар. у раду [25], где jе предложен и еволутивни алгоритам заснован на рав-
нотежи у Стакелберговоj игри за решавање двостепеног модела. У раду [117]
изложене су три метахеуристичке методе за решавање BLUFLP-а: алгоритам
оптимизациjе роjем честица, метода симулираног каљења и вариjанта методе
променљивих околина. Вариjанта BLUFLP-а са фиксним броjем обjеката коjе
треба отворити, означена као проблем p-медиjане са преференциjама клиjената
разматрали су Alekseva и Kochetov у раду [4], а у истом раду имплементиран
jе и генетски алгоритам за решавање разматраног проблема. Исти проблем jе
проучаван у раду [27], где су предложене две jедностепене реформулациjе, као
и хибридни хеуристички алгоритам заснован на методи расуте претраге (енгл.
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scatter search) и GRASP алгоритму.
У раду [93] предложена jе фази вариjанта UFLP-а са преференциjама кори-

сника. Разматрана су два критериjума оптимизациjе: проналажење локациjе
обjекта коjа максимизуjе минимални степен задовољства међу свим тачкама по-
тражње и максимизациjа преференциjа корисника локациjе. Локациjски про-
блем са ограничењима покривања и преференциjама корисника jе проучаван у
раду [106]. Аутори су предложили формулациjу мешовитог целоброjног про-
грамирања засновану на ограничењима корисника и хеуристици Лагранжеве
релаксациjе.

Недавне студиjе о MCLP-у такође укључуjу претпоставку да корисници би-
раjу успостављени обjекат на основу своjих преференциjа. На пример, Casas-
Ramirez и сар. су у раду [28] увели двостепени MCLP (енгл. bi-level MCLP), где
се разматра случаj фирме коjа жели да пронађе локациjе за отварање p обjеката
са циљем максимизациjе покривене потражње. Претпоставља се да скуп обjе-
ката коjи припадаjу конкуренциjи већ постоjи на тржишту и корисницима jе
дозвољено да се распореде на отворене обjекте на основу своjих преференциjа.
Аутори рада [28] су реформулисали двостепени MCLP модел у jедностепени и
предложили генетски алгоритам побољшан локалном претрагом као приступ
решавању разматраног проблема. Diaz и сар. су у раду [52] разматрали исту
ситуациjу на тржишту и предложена jе нова jедностепена формулациjа кон-
курентног двостепеног MCLP-а. Аутори су применили GRASP алгоритам и
хибридну методу GRASP алгоритма и табу претраге у циљу добиjања решења
за инстанце великих димензиjа. Мркела и Станимировић су у раду [133] раз-
матрали вариjанту са преференциjама корисника из рада [52] и предложили
два ефикасна метахеуристичка приступа за исти проблем: Метода променљи-
вих околина и хибридизациjа редуковане методе променљивих околина, табу
претраге и основне методе променљивих околина, означене као RVNS-TS-VNS.
Експериментални резултати представљени у раду [133] показуjу потенциjал и
VNS и RVNS-TS-VNS приступа решавању разматране вариjанте MCLP-а.

У оквиру ове дисертациjе, представљена jе нова вариjанта MCLP-а, разли-
чита од оне вариjанте предложене у раду [52] и касниjе разматране у раду [133].
Полази се од истих претпоставки проблема као у [52], али уместо фиксног броjа
обjеката коjе треба успоставити, уводи се претпоставка да компаниjа коjа излази
на тржиште има ограничен буџет за успостављање обjеката. Свакоj потенциjал-
ноj локациjи додељуjу се фиксни трошкови за отварање обjекта коjи одражаваjу
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цене некретнина и друге трошкове везане за ову локациjу. Ово jе реалниjа прет-
поставка, имаjући у виду да се трошкови некретнина могу значаjно разлико-
вати у урбаним и руралним срединама, у центру града и његовим предграђима,
али чак и на различитим локациjама истог тржног или пословног центра, итд.
Идеjу о ограничавању буџета уместо фиксирања броjа обjеката у класичном
MCLP-у увели су Khuller и сар. у раду [102], а касниjе jе коришћена и у студи-
jама о различитим локациjским проблемима, као што су: [3], [33], [40], [157], итд.
Описана нова вариjанта MCLP, означена jе као MCLP са ограниченим буџетом
(енгл. budget-constrained MCLP) и преференциjама корисника. У наредном
одељку представљена jе целоброjна линеарна математичка формулациjа пола-
зећи од формулациjе вариjанте MCLP из рада [52]. За сваку од потенциjалних
локациjа обjеката укључуjу се фиксни трошкови за успостављање обjекта и до-
даjе се ограничење буџета за отварање свих обjеката. Након тога формулисан
jе одговараjући линеарни математички модел. Математичка формулациjа про-
блема MCLP са ограниченим буџетом и преференциjама корисника jе први пут
публикована у раду [137].

2.2 Математичка формулациjа проблема

Нека jе I1 скуп потенциjалних локациjа за отварање обjеката компаниjе коjа
излази на тржиште и I2 скуп локациjа отворених обjеката коjе припадаjу конку-
рентима, док jе I = I1∪I2. Скуп корисника jе J = J1∪J2, где J1 представља скуп
корисника коjи нису покривени постоjећим отвореним обjектима коjи припадаjу
конкурентима, а J2 означава скуп корисника покривених отвореним обjектима
конкурената. Корисник j ∈ J се сматра покривеним (енгл. covered) ако постоjи
отворен обjекат чиjе растоjање до корисника j ниjе веће од датог полупречника
покривања R, а непокривеним у супротном. Потражња Dj jе додељена сваком
кориснику j ∈ J , док I(j) ⊆ I представља подскуп локациjа обjеката коjи могу
покрити корисника j. За сваку потенциjалну локациjу обjекта i ∈ I, цена ус-
постављања обjекта ci jе дата и скуп корисника коjи могу бити покривени од
стране i jе означен као J(i). Преференциjа корисника j ∈ J према обjекту у
i ∈ I jе задата као вредност gij > 0. Ако важи gi1j > gi2j, то значи да корисник
j преферира да буде додељен обjекту на локациjи i1 у односу на обjекат на ло-
кациjи i2. Компаниjа коjа планира да изађе на тржиште има ограничен буџет
B за отварање обjеката на некоj од локациjа из скупа I1.
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У циљу представљања математичке формулациjе проблема, уводе се два
скупа бинарних променљивих. Променљива yi узима вредност 1 ако се обjекат
налази на локациjи i ∈ I, а 0 у супротном. Променљива xij се поставља на 1
ако jе корисник j ∈ J додељен обjекту коjи jе успостављен на локациjи i ∈ I, а
на 0 у супротном.

Користећи горњу нотациjу, MCLP ограниченог буџета са преференциjама
корисника може се формулисати као целоброjни линеарни програм на следећи
начин:

max
∑
i∈I1

∑
j∈J(i)

Djxij (2.6)

при условима ∑
i∈I1

ciyi ≤ B , (2.7)∑
i∈I(j)

xij = 1 ∀j ∈ J2 , (2.8)

∑
i∈I(j)

xij ≤ 1 ∀j ∈ J1 , (2.9)

xij ≤ yi ∀i ∈ I, j ∈ J(i) , (2.10)

yi = 1 ∀i ∈ I2 , (2.11)
|I(j)|∑
s=k+1

xis,j + yik ≤ 1 ∀j ∈ J, k ∈ 1, ..., |I(j)| − 1 , (2.12)

yi ∈ {0, 1} ∀i ∈ I , (2.13)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J . (2.14)

Функциjа циља (2.6) jе jеднака укупноj потражњи корисника покривених
новим успостављеним обjектима из I1, а циљ проблема jе њена максимизациjа.
Трошкови отварања обjеката не смеjу да пређу дати буџет B, што jе обезбеђено
ограничењем (2.7). Кориснике покривене постоjећим обjектом из I2 услужуjе
тачно jедан обjекат (2.8). Корисници коjи нису покривени постоjећим обjек-
тима могу бити додељени наjвише jедном новом обjекту из I1 (2.9). Ограни-
чења (2.10) обезбеђуjу да су корисници додељени само отвореним обjектима,
док ограничења (2.11) обезбеђуjу да постоjећи обjекти коjи припадаjу конку-
рентима остаjу отворени. Сваки корисник jе придружен своjоj наjпожељниjоj
локациjи (у смислу преференциjа) коjа може покрити датог корисника (2.12).
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Ограничења (2.13)–(2.14) дефинишу тип променљивих одлучивања yi и xij. Раз-
матрана вариjанта MCLP-а jе НП-тежак проблем оптимизациjе, као генерали-
зациjа класичног MCLP-а, за коjи jе доказано да jе НП-тежак у раду [125].

2.3 Метода променљивих околина за решавање

проблема

Методе засноване на VNS-у успешно су примењене на различите проблеме
покривања локациjа [43, 94, 115, 161], као и на различите вариjанте MCLP, као
што су: вариjанта MCLP са фази полупречником покривања [47], вариjанта
MCLP са различитим типовима обjеката [44] и робусна вариjанта динамичког
MCLP [129]. У овом одељку представљени су детаљи VNS имплементациjе за
MCLP ограниченог буџета са преференциjама корисника. VNS методе предло-
жене у [133] показале су се успешним при решавању сличне вариjанте MCLP-а
коjа такође укључуjе преференциjе корисника, али претпоставља унапред за-
дат броj обjеката коjе треба отворити. Због сличности ове две MCLP вариjанте,
VNS предложен у овоj дисертациjи дели неке заjедничке елементе са VNS хеу-
ристиком из рада [133]. Предложена имплементациjа за решавање разматране
MCLP вариjанте детаљно jе описана у раду [137], у коjем су приказани и ре-
зултати на модификованим MCLP инстанцама из литературе.

Представљање решења и рачунање функциjе циља

Решење проблема jе представљено као бинарни низ sol дужине |I1|, где I1

означава скуп потенциjалних локациjа обjеката. Сваки бит решења sol одговара
jедноj локациjи кандидата за отварање обjекта. Ако jе sol(i) = 1, i ∈ I1, то значи
да jе обjекат успостављен на локациjи i, док sol(i) = 0 означава да ниjе. Решење
се сматра допустивим ако збир трошкова ci отворених обjеката не прелази дати
буџет B.

Вредност функциjе циља допустивог решења sol израчунава се на следећи
начин. Прво, индекси успостављених обjеката се добиjаjу из решења sol. Затим
се корисници додељуjу отвореним обjектима на основу преференциjа корисника
и полупречника покривања. Корисник j се додељуjе свом наjпожељниjем успо-
стављеном обjекту на локациjи i само ако i ∈ I(j). Коначно, вредност функциjе

44



2.3. МЕТОДА ПРОМЕНЉИВИХ ОКОЛИНА ЗА РЕШАВАЊЕ ПРОБЛЕМА

циља се добиjа сумирањем потражње корисника коjи су додељени на нове ус-
постављене обjекте.

Генерисање почетног решења

Почетно решење за VNS jе конструисано похлепном процедуром приказаном
Алгоритмом 13. Процедура почиње „празним” решењем sol коjе нема успоста-
вљених обjеката (sol jе низ нула дужине |I1|). Процедура затим итеративно
отвара jедан по jедан обjекат док се не добиjе допустиво решење. Скуп потен-
циjалних локациjа за успостављање обjеката, означен као candidates, у почетку
jе jеднак I1. За сваку локациjу i из candidates, процедура израчунава додатну
потражњу корисника коjа би могла бити покривена након отварања обjекта на
i. Израчуната вредност jе означена као потенциjални gain (добит) локациjе кан-
дидата i. Обjекат се успоставља на локациjи imax коjа има максималан однос
добити и трошкова gain/ci, где ci представља трошкове отварања обjекта на i.
Индекс локациjе imax са новоотвореним обjектом се брише из скупа candidates.
Описани кораци се понављаjу све док укупни трошкови успостављања обjеката
не прелазе расположиви буџет B.

Алгоритам 13 Похлепна конструкциjа решења
1: Input: ∅
2: Output: sol
3: sol← 0;
4: candidates← I1;
5: while solution sol is feasible do
6: for i in candidates do
7: gaini ← the demand that would be covered
8: if a facility is opened at location i;
9: imax ← location with maximal gain to cost ratio;

10: sol(imax)← 1;
11: remove location imax from candidates;
12: return sol

Околине решења

Четири околине решења се истражуjу у оквиру предложеног VNS-а. Око-
лине су дефинисане операциjама коjе мењаjу локациjе обjеката у тренутном
решењу:

45



2.3. МЕТОДА ПРОМЕНЉИВИХ ОКОЛИНА ЗА РЕШАВАЊЕ ПРОБЛЕМА

• Операциjа замени (енгл. Swap) се врши затварањем отвореног обjекта
i у решењу sol и успостављањем обjекта на другоj локациjи j, i, j ∈ I1.
Околина N1

k (sol) садржи сва решења добиjена из sol извођењем операциjе
замени k пута, k ∈ N .

• Операциjа додаj (енгл. Add) отвара обjекат на новоj локациjи i ∈ I1 у
решењу sol. Сва решења добиjена из sol понављањем операциjе додаj k

пута припадаjу околини N2
k (sol), k ∈ N .

• Операциjа обриши (енгл. Delete) затвара претходно успостављени обjекат
на локациjи i ∈ I1 у решењу sol. Околина N3

k (sol), k ∈ N састоjи се од
свих решења добиjених затварањем k обjеката у sol.

• Обриши и додаj (енгл. Delete&Add) операциjа се врши затварањем одре-
ђеног броjа обjеката у тренутном решењу sol и отварањем обjеката на
новим локациjама док се не достигне дато ограничење буџета. Локациjе
за отварање обjеката бираjу се на исти начин као и у процедури похлепне
конструкциjе решења (Алгоритам 13). Ако jе броj обjеката коjе треба
затворити k, добиjена решења припадаjу околини N4

k (sol).

Као што се види из дефинициjе околина решења, операциjе отварања и
затварања обjеката се изводе велики броj пута током извршавања VNS-а. Да
би се самњило укупно време извршавања, користи се стратегиjа из [133] за
ажурирање вредности функциjе циља након отварања и затварања обjеката.
Као и у [133], за сваку локациjу i ∈ I, разматраjу се само корисници j из
листе J(i). За сваког корисника j ∈ J , листа локациjа i ∈ I(j) jе сортирана
у опадаjућем редоследу на основу преференциjа корисника j и чува се индекс
отвореног обjекта коjи тренутно услужуjе корисника j.

Приликом затварања обjекта на локациjи i ∈ I1, укупна покривена потра-
жња се смањуjе ако a) нема отвореног обjекта из I1 коjи може покрити кори-
снике коjе су претходно били покривени обjектом на локациjи i, или b) кори-
сници претходно додељени локациjи i преферираjу обjекат коjи су отворили
конкуренти у односу на било коjи други успостављени обjекат из I1 коjи може
покрити посматране кориснике. Стога, након затварања обjекта на локациjи
i, довољно jе размотрити само кориснике коjи су додељени овом обjекту. За
сваког корисника j из овог скупа, процедура претражуjе сортирану листу ло-
кациjа кандидата из I(j) и корисник j се додељуjе првом отвореном обjекту k
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из сортиране листе. Ако нема отвореног обjекта k у листи или jе пронађени
обjекат k у власништву конкурената, функциjа циља се смањуjе за потражњу
корисника j.

Приликом отварања обjекта на локациjи i ∈ I1, вредност функциjе циља се
повећава ако a) новоотворени обjекат може покрити кориснике коjи раниjе нису
били покривени, или b) постоjе корисници додељени конкурентним обjектима
коjи преферираjу новоотворени обjекат i у односу на обjекте коjима су тренутно
додељени. Зато се само листа корисника j ∈ J(i) обрађуjе после успостављања
обjекта на локациjу i. Ако jе корисник j ∈ J(i) био покривен неким другим
обjектом из I1 коjи jе био мање пожељан од i, корисник j се додељуjе новом
обjекту на локациjи i, али не долази до промене функциjе циља. Ако кори-
сник j ниjе био покривен ниjедним отвореним обjектом, или jе био покривен
мање пожељним обjектом конкуренциjе, корисник j се додељуjе новом обjекту
на локациjи i, а вредност функциjе циља се повећава за вредност потражње
корисника j.

Структура предложене методе

Псеудокод предложеног VNS-а за MCLP ограниченог буџета са преферен-
циjама корисника представљен jе Алгоритмом 15. Први корак jе процедура
похлепне конструкциjе решења коjа враћа почетно решење sol. Конструисано
почетно решење постаjе тренутно, коjе даље улази у процедуру Размрдавања.

Процедура Размрдавања користи може да користи све четири дефинисане
околине следећим редоследом. Прво се истражуjу околине N1

k , k = 0, ..., k1 де-
финисане операциjом замени, затим околине N4

k , k = 0, ..., k4 добиjене извође-
њем операциjе обриши и додаj. Размрдавање се даље наставља у околинама N2

k ,
k = 0, ..., k2 понављањем операциjе додаj и на краjу се истражуjу околине N3

k ,
k = 0, ..., k3 дефинисане операциjом обриши. Оваj редослед истраживања око-
лина добиjен jе кроз извођење прелиминарних експеримената (видети одељак
2.4). Ради jедноставности, околине решења sol коjе се користе у фази размрда-
вања су означене као Nk(sol), k = 1, ..., kmax где jе kmax = k1+k2+k3+k4 Параме-
три k1, k2, k3, k4 ∈ {0, 1, ..kmax} се одређуjу експерименталним путем. Уколико
неки од овиx параметара ki jеднак 0, то значи да се околине N i

k и не истражуjу
приликом процедуре размрдавања. На пример, уколико jе kmax = 3 и притом
je k1 = 1, k2 = 0, k3 = 2 и k4 = 0, то значи да се наjпре истражуjе околина N1

1 , а
затим околине N3

1 и N3
2 , док се околине N2

k и N4
k не истражуjу.
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Треба приметити да операциjе обриши и обриши и додаj увек даjу допу-
стиво решење, док операциjе замени и додаj могу нарушити допустивост ре-
шења у вези са датим ограничењем буџета. Стога, може се десити да решење
sol′ добиjено из фазе размрдавања буде недопустиво. У том случаjу, решење се
прослеђуjе процедури за похлепно поправљање решења коjе jе описана Алго-
ритмом 14.

Процедура почиње од недопустивог решења sol и креира листу свих парова
локациjа (i, j), где i, j ∈ I1, тако да jе sol(i) = 1, sol(j) = 0 и cj < ci. Креирана
листа jе означена као pairs (парови) и чине jе кандидати за операциjу замене
(енгл. swap) - затварање обjекта на локациjи i и отварање обjекта на j, али тако
да су трошкови отварања обjекта на локациjи j мањи у односу на трошкове
отварања на локациjи i. За сваки пар (i, j) ∈ pairs, процедура израчунава
однос потражње и трошкова demand/cost, где jе demand укупна покривена
потражња, а cost укупни трошкови у решењу коjи би се добили након извршења
ове замене. Пар (i′, j′) са максималним односом потражње и трошкова се бира
из pairs и врши се одговараjућа замена. У случаjу да jе листа парова кандидата
празна (нема операциjе замене коjа доводи до смањења укупне цене), процедура
испитуjе све отворене обjекте у sol и затвара обjекат i за коjи се добиjа решење
са наjвећим односом потражње и трошкова након затварања i. Описани кораци
се понављаjу док се не добиjе допустиво решење.

Алгоритам 14 Похлепно поправљање решења
Input: sol
Output: feasable solution sol

1: while solution sol is infeasible do
2: pairs← the list of all location pairs (i, j): sol(i) = 1, sol(j) = 0, cj < ci;
3: if pairs is not empty then
4: for (i, j) in pairs do
5: demand(i,j) ←total demand of sol if swap is performed on i and j;
6: cost(i,j) ←total cost of sol if swap is performed on i and j;
7: (i′, j′)← pair with maximal demand to cost ratio;
8: swap pair (i′, j′);
9: else

10: imax ← location i: sol(i) = 1, closing i results in maximal demand to
cost ratio;

11: sol(imax)← 0;
12: return sol
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Извршени прелиминарни експерименти су показали да се проценат поjављи-
вања недопустивог решења током фазе размрдавања креће између 8 % и 45 % (у
просеку) за разматране инстанце проблема. На основу тога може се закључити
да jе стратегиjа поправљања недопустивог решења након фазе размрдавања не-
опходна како би се обезбедила боља диверсификациjа претраге. Ако се дозволе
само допустиве операциjе у оквиру разматраних околина, повећава се шанса да
се алгоритам заглави у локалном оптимуму.

Фаза Локалне претраге се примењуjе након фазе Размрдавања, покушава-
jући да побољша sol′ истраживањем његове околине N1

1 (sol
′). Када се пронађе

прво допустиво решење sol′′ боље од sol′, претрага унутар N1
1 (sol

′) се зауста-
вља и sol′ се замењуjе са sol′′. Локална претрага се такође зауставља ако се не
пронађе побољшање у околини N1

1 (sol
′).

Алгоритам 15 Предложени VNS
1: Input: Imax, kmax

2: Output: sol
3: sol← Greedy Solution Construction
4: Icount ← 0
5: while Icount ≤ Imax do
6: k ← 1
7: while k ≤ kmax do
8: sol′ ← randomly generated solution from Nk(sol) ▷ Shaking step
9: if sol′ is infeasible then

10: sol′ ← Greedy Solution Repair (sol′)
11: while true do ▷ Local Search step
12: sol′′ ← the first feasible solution from N1

1 (sol
′) better than sol′

13: if sol′′ exists then
14: sol′ ← sol′′

15: else
16: break
17: if obj(sol′) > obj(sol) then ▷ Move or Not step
18: sol← sol′

19: k ← 1
20: Icount ← 0
21: else
22: k ← k + 1

23: Icount ← Icount + 1

24: return sol

Ефикасност ажурирања функциjе циља jе додатно побољшана ефикасном
имплементациjом операциjе замени. Пре извршавања операциjе замени, прво
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се уклања претходно успостављени обjекат i, а затим се испитуjе да ли постоjи
локациjа j без успостављеног обjекта тако да ће отварање обjекта на j довести
до побољшања вредности функциjе циља. Само у случаjу таква локациjа по-
стоjи, врши се операциjа замени за локациjе i и j. На оваj начин се избегаваjу
замени операциjе коjе не доносе побољшања.

Након што jе Локална претрага завршена, одлучуjе се да ли се прелази у
ново решење (корак Move or not). Алгоритам ће прећи на решење sol′ само ако
jе боље од тренутно наjбољег решења sol. У овом случаjу, k се поставља на 1, а
процедура Размрдавања почиње од N1(sol). У супротном, k се повећава за 1 и
Размрдавање се наставља у Nk(sol). Главна VNS петља се понавља све док се
не испуни услов заустављања, а то jе Imax узастопних итерациjа без побољшања
тренутног наjбољег решења.

Адаптивна метода променљивих околина

У циљу испитивања ефекта прихватања локалног оптимума коjи jе лошиjи
од текућег решења, имплементиран jе адаптивни VNS (енгл. Skewed VNS -
SVNS) за разматрани MCLP ограниченог буџета са преференциjама корисника.
SVNS jе вариjанта VNS метахеуристике коjа омогућава истраживање и решења
са лошиjом функциjом циља у односу на функциjу циља тренутног решења уко-
лико се репрезентациjа новог решења довољно разликуjе од тренутног [85, 87].
Структура имплементираног SVNS-а jе слична структури VNS-а представље-
ноj Алгоритмом 15, а разлика jе у правилу за прихватање решења. Прецизниjе,
SVNS дозвољава прихватање локалног оптимума sol′′ добиjеног у кораку ло-
калне претраге, чак и ако jе добиjени локални оптимум лошиjи од постоjећег
решења sol.
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Алгоритам 16 Адаптивни VNS
1: Input: Imax, kmax, α
2: Output: best
3: sol← Greedy Solution Construction
4: best← sol
5: Icount ← 0
6: while Icount ≤ Imax do
7: k ← 1
8: while k ≤ kmax do
9: sol′ ← Shaking in Nk(sol)

10: sol′′ ← Local Search in N1
1 (sol

′)
11: if obj(sol′′)× (1 + α× d(sol, sol′′) > obj(sol) then ▷ Move or Not step
12: sol← sol′′

13: k ← 1
14: if obj(sol′′) > obj(best) then
15: best← sol′′

16: Icount ← 0

17: else
18: k ← k + 1

19: Icount ← Icount + 1

20: return best

Локални оптимум sol′′ се прихвата ако важи:

obj(sol′′) · (1 + α · d(sol, sol′′) > obj(sol).

Овде d(sol, sol′′) означава Хамингово растоjање између кодова решења, по-
дељено са броjем потенциjалних локациjа m [116]. Параметар α коjи регулише
критериjум прихватања jе подешен експериментално (видети одељак 2.4). Ко-
раци предложеног SVNS-а за разматрани MCLP ограниченог буџета са префе-
ренциjама корисника су представљени Алгоритмом 16.

Метода са стратешком осцилациjом

За разматрани проблем, имплементирана jе jош jедна вариjанта VNS-а коjа
омогућава и истраживање околине недопустивог решења. Идеjа стратешке
осцилациjе (енгл. Strategic Oscillation, SO) састоjи се у томе да се кретањем
напред-назад између скупа допустивих и скупа недопустивих решења дође до
глобалног оптимума [77]. Процедура стратешке осцилациjе jе коришћена у
оквиру VNS имплементациjе у раду [60].

Структура VNS-а са стратешком осцилациjом (VNS-SO) за MCLP са огра-
ниченим буџетом и преференциjама корисника jе иста као структура VNS-а
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представљена у Алгоритму 15, са изузетком процедуре локалне претраге. Улаз
у процедуру локалне претраге у VNS-SO jе решење sol из корака размрда-
вања, као и параметар β коjи контролише степен недопустивости. Прецизниjе,
β представља процентуално повећање од почетне вредности буџета B. Про-
цедура локалне претраге истражуjе околину N1

1 (sol) и добиjа се потециjално
побољшано решење sol. Буџет B се повећава за β %, а процедура покушава
да пронађе побољшање у N1

1 (sol) са повећаним буџетом и као резултат добиjа
се решење sol′. Затим, буџет се враћа на оригиналну вредност и процедура
похлепног поправљања решења се примењуjе на добиjени локални оптимум sol′

како би се обезбедила његова допустивост. Коначно, околина N1
1 поправљеног

допустивог решења се истражуjе, а резултуjући локални оптимум sol′ замењуjе
sol ако jе obj(sol′) > obj(sol). Описани кораци се понављаjу све док постоjи
побољшање решења sol (погледати Алгоритам 17).

Алгоритам 17 Локална претрага са стратешком осцилациjом
Input: sol, β
Output: improved solution sol

1: sol← Local Search in N1
1 (sol)

2: repeat
3: increase budget by β%
4: sol′ ← Local Search in N1

1 (sol)
5: restore original budget value
6: sol′ ← Greedy Solution Repair (sol′)
7: sol′ ← Local Search in N1

1 (sol
′)

8: if obj(sol′) > obj(sol) then
9: sol← sol′

10: until obj(sol′) ≤ obj(sol)
11: return sol

2.4 Експериментални резултати

Сви тестови су извршени на рачунару са Intel Xeon E5-2640@2.5 GHz и 64
GB RAM мемориjе. У циљу добиjања оптималних решења, математичка фор-
мулациjа проблема jе коришћена у оквиру егзактног решавача Gurobi верзиjе 7.
Предложена VNS имплементациjа, као и адаптивни VNS и VNS са стратешком
осцилациjом, имплементирани су у програмском jезику C++. Извршени су и
прелиминарни експерименти како би се пронашао адекватан редослед истра-
живања околина и адекватна величина сваке околине коjу треба истражити.
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Адаптивни VNS и VNS са стратешком осцилациjом користе исти редослед и
величине околина као и предложени VNS. Вредности параметра α у SVNS-у
и параметар повећања буџета β VNS-а са стратешком осцилациjом су такође
изабрани наведеним експериментима. Да би се обезбедило коректно поређење
перформанси, свака од три имплементациjе VNS методе jе покренута 5 пута на
свакоj разматраноj инстанци.

Инстанце проблема

За потребе експеримената, генерисане су три групе инстанци проблема.
Прва група инстанци jе добиjена модификациjом инстанци из [52], коjе су гене-
рисане за MCLP са преференциjама корисника. Скуп података из [52] садржи
6 група по 10 инстанци, где свака група садржи инстанце са истом величином
проблема и истим полупречником покривања. Величина проблема jе дефи-
нисана броjем корисника n = |J | и броjем потенциjалних локациjа обjеката
m = |I1|. Величине проблема n ×m за разматране групе инстанци су следеће:
225× 25, 450× 50, 675× 75, 900× 100, 1350× 150 и 1800× 200. Вредност полу-
пречника покривања jе постављена на 0.80, 0.70, 0.50, 0.30, 0.25 и 0.20, док се
преференциjе корисника према обjектима генеришу процедуром заснованом на
троугаоноj расподели вероватноћа, предложеном у раду [26].

У случаjу MCLP-а ограниченог буџета коjи jе разматран у овоj дисерта-
циjи, у инстанце jе неопходно укључити трошкове за успостављање обjеката и
расположиви буџет у свакоj инстанци из рада [52]. За сваку локациjу i ∈ I1,
трошкови ci су изабрани на случаjан начин из интервала [1000, 1500]. Вредност
B се израчунава као 1000p, где jе p броj обjеката коjе треба поставити, преузет
из одговараjућих оригиналних MCLP инстанци из [52]. Вредност p jе иста за
инстанце коjи припадаjу истоj групи: 3, 6, 10, 13, 20 и 27 за инстанце величине
225× 25, 450× 50, 675× 75, 900× 100, 1350× 150 и 1800× 200.

У циљу испитивања перформанси VNS метахеуристике и поређења са ег-
зактним методама када се димензиjа проблема повећава, додатно jе генерисана
група инстанци великих димензиjа пратећи процедуру из рада [52]. Величинe
проблема n × m за инстанце у овоj другоj групи су: 4500 × 500, 7200 × 800 и
9000 × 1000. Ове инстанце великих димензиjа се генеришу на следећи начин.
Прво, n+m тачака су на случаjан начин постављене у jединични квадрат. За-
тим се 10% тачака бира на случаjан начин као потенциjалне локациjе обjеката,
док преостале тачке представљаjу локациjе корисника. Полупречник покри-
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вања jе постављен на 0.5 за све инстанце у овоj групи. Потражња за сваког
корисника се генерише равномерно из интервала [1, m · 10], док jе буџет поста-
вљен на 100 ·m. Трошкови локациjа обjеката и преференциjе корисника према
обjектима добиjаjу се на исти начин као и за прву групу инстанци.

Трећа група инстанци jе генерисана на основу инстанци великих димензиjа
коjе су добиjене на основу реалних, демографских података, а представљене у
раду [123] коjи се бави MCLP-ом. Оваj скуп података састоjи се од 24 инстанце
коjе су засноване на подацима о демографскоj густини америчког становни-
штва према попису из 2010. године, а генерисани су коришћењем исте мето-
дологиjе као у [97]. У овим инстанцама, свака локациjа може представљати
локациjу корисника и истовремено локациjу потенциjалног или успостављеног
обjекта [123]. Свака локациjа jе дата своjим координатама (географска ширина
и дужина) и познат jе броj становника коjи живе у придруженом региону. Реги-
они су дефинисани блоком улица jедног од следећих региона: Њуjорк, Бронкс,
Сан Франциско и Кингс. Сваки регион дефинише групу инстанци, са истим
скупом чворова корисника и полупречником покривања, док броj обjеката коjи
треба поставити варира. Оригиналне групе инстанци укључуjу 2713, 3839, 5137
и 7730 чворова корисника. Детаљне информациjе о оригиналним инстанцама
могу се наћи у раду [123].

MCLP инстанце из [123] су измењене на следећи начин. Из скупа чворова
потражње у оригиналноj групи инстанци (Њуjорк, Бронкс, Сан Франциско и
Кингс), на случаjан начин jе изабрано 10% чворова као потенциjалне локациjе
обjеката. Из овог новодобиjеног скупа изабрано jе 10% чворова коjи предста-
вљаjу локациjе са већ успостављеним обjектима. Величине проблема n×m за
групе измењених инстанци Њуjорк, Бронкс, Сан Франциско и Кингс су сле-
деће: 2442 × 271, 3456 × 383, 4624 × 513 и 6957 × 773. Удаљеност између две
локациjе израчуната jе коришћењем географских координата, као у раду [123].
Полупречник покривања jе исти за све инстанце коjе припадаjу истоj групи
(R = 4000, 5000, 6000, 7000), док се буџет добиjа као броj чворова потражње
n × 10. Потражња сваког чвора jе jеднака величини популациjе у овом чвору
(броj корисника). Троугаона расподела се користи за израчунавање преферен-
циjа чворова потражње према обjектима, као у радовима [26] и [52]. За сваку
потенциjалну локациjу обjекта, трошкови успостављања обjекта се генеришу
нормалном расподелом из интервала [1000, 2000]. Средња вредност jе пропор-
ционална укупноj потражњи коjа би се могла покрити ако се обjекат налази на
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овоj локациjи, док jе стандардна девиjациjа постављена на 0.1.

Прелиминарни експерименти

За потребе прелиминарних експеримената, коришћен jе подскуп од 18 ин-
станци проблема из првог скупа података (три насумично одабране инстанце
проблема из сваке од шест група). Инстанце из друге групе нису разматране
у овим експериментима, због њихове сложености и дужег времена извршавања
VNS-а на њима.

Прво су извршени прелиминарни експерименти у циљу одређивања редо-
следа истраживања околина у фази размрдавања. Величина сваке околине N1,
N2, N3 и N4 jе постављена на 1 у овим експериментима и све могуће комбина-
циjе редоследа околина су испитане. VNS jе покренут 5 пута на свакоj инстанци
из изабраног подскупа, а време извршавања VNS-а jе било ограничено на m/10

секунди. Резултати су представљени у Табели 2.1 на следећи начин. Прва ко-
лона са леве стране садржи редослед околина, док друга колона представља
просечне вредности наjбољег VNS решења - avg best. Просечно процентуално
одступање VNS решења добиjеног у сваком покретању, израчунато у односу на
наjбоље решење дато jе у трећоj колони - avg gap(%). Просечно време покре-
тања у секундама у коjем jе VNS постигао наjбоље решење у сваком покретању
приказано jе у четвртоj колони - t(s). Треба приметити да су у Табели 2.1
просечне вредности у колонама 2-4 израчунате за све инстанце из подскупа по-
датака коjи се користи у прелиминарним експериментима. Последње четири
колоне Табеле 2.1 садрже просечан броj побољшања пронађених у околинама
N1, N2, N3 и N4.

Према подацима приказаним у Табели 2.1, претраживање околина по редо-
следу N1, N4, N3, N2 довело jе до наjвеће вредности функциjе циља (у просеку)
и оваj редослед jе коришћен у преосталим експериментима. Околине N1 и N4

су се показале наjбољим за истраживање, са просечним броjем побољшања од
1.63 и 2.24. Истраживање околина N2 и N3 било jе мање успешно, jер су у
просеку обезбедиле 1.06 и 1.29 побољшања. Затим jе величина свих околина
повећана на два, док jе редослед био фиксиран на N1, N4, N3, N2. Добиjена
просечна вредност функциjе циља од 405312.61 jе нешто мања у поређењу са
истраживањем околина величине jедан истим редоследом. Могуће jе приме-
тити да повећање величине околина N2 и N3 са jедан на два ниjе довело до
побољшања. На основу овога величине околина N2 и N3 су постављене на 1.
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Табела 2.1: Резултати прелиминарних експеримената са редоследом околина

Редослед avg best avg gap(%) avg t(s) просечан броj побољшања
N1 N2 N3 N4

N1 N2 N3 N4 405190.89 0.044 1.19 3.29 0.63 0.87 1.03
N1 N2 N4 N3 405257.50 0.045 1.07 3.13 0.47 0.58 1.55
N1 N3 N2 N4 405164.89 0.037 1.30 3.32 0.66 0.82 1.13
N1 N3 N4 N2 405292.11 0.042 1.03 3.47 0.58 0.82 1.29
N1 N4 N2 N3 405347.39 0.071 1.25 3.18 0.58 0.74 1.26
N1 N4 N3 N2 405174.00 0.053 1.40 3.24 0.50 0.71 1.63
N2 N1 N3 N4 405123.06 0.034 1.19 1.95 1.40 1.53 1.08
N2 N1 N4 N3 405153.89 0.037 1.72 2.16 1.40 1.55 1.63
N2 N3 N1 N4 405180.00 0.061 1.63 1.21 1.90 2.05 1.37
N2 N3 N4 N1 405164.89 0.061 1.42 0.74 1.87 2.05 2.26
N2 N4 N1 N3 405009.94 0.039 1.44 1.16 1.37 1.55 2.95
N2 N4 N3 N1 405021.78 0.038 1.33 0.76 1.42 1.58 2.79
N3 N1 N2 N4 405147.17 0.033 0.99 1.95 1.58 1.84 1.00
N3 N1 N4 N2 405168.56 0.025 0.99 1.71 1.42 1.90 1.32
N3 N2 N1 N4 405085.56 0.021 0.95 0.97 1.76 1.92 1.13
N3 N2 N4 N1 405162.94 0.038 1.37 0.47 1.87 2.00 1.92
N3 N4 N1 N2 405189.00 0.041 1.23 0.71 1.42 1.87 2.45
N3 N4 N2 N1 405198.61 0.029 1.02 0.42 1.61 1.97 2.26
N4 N1 N2 N3 405197.50 0.052 1.25 0.74 0.58 0.76 3.66
N4 N1 N3 N2 405170.94 0.053 1.20 0.87 0.50 0.76 4.18
N4 N2 N1 N3 405291.83 0.053 1.37 0.97 0.42 0.68 3.82
N4 N2 N3 N1 405285.83 0.051 1.34 0.92 0.58 0.82 3.90
N4 N3 N1 N2 405288.28 0.053 1.32 0.90 0.55 0.74 4.32
N4 N3 N2 N1 405193.39 0.032 1.42 0.92 0.45 0.74 3.87

Просек: 1.63 1.06 1.29 2.24

Табела 2.2 приказуjе резултате експеримената са различитим величинама
околина. У овим експериментима, коришћен jе редослед околина N1, N4, N3, N2,
величина околина N2 и N3 jе постављена на jедан, док jе величина околина N1

и N4 повећана до 6 са кораком jедан. Резултати за сваку разматрану комби-
нациjу су израчунати и представљени на исти начин као у Табели 2.1, с тим
што jе у табели 2.2 коришћена ознака N i

k за околину N i величине k. Према
резултатима приказаним у табели 2.2, може се закључити да величину око-
лина N1 и N4 треба фиксирати на 5, jер jе комбинациjа N1

5 , N
4
5 , N

2
1 , N

3
1 дала

наjвећу вредност функциjе циља (у просеку), са малим просечним проценту-
алним одступањем и кратким просечним временом извршавања. Као што се
може видети из Табеле 2.2, даље повећање величине околина N1 и N4 довело jе
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до деградациjе вредности функциjе циља (у просеку). На основу спроведених
прелиминарних експеримената, вредност параметра kmax jе постављена на 12,
где jе k1 = 5, k2 = 1, k3 = 1 и k4 = 5.

Табела 2.2: Резултати прелиминарних експеримената са величином околина

Околине avg best avg
gap(%)

avg
t(s)

Околине avg best avg
gap(%)

avg
t(s)

N1
1 N4

1 N2
1 N3

1 405347.39 0.071 1.25 N1
4 N4

1 N2
1 N3

1 405441.06 0.027 2.14
N1

1 N4
2 N2

1 N3
1 405262.56 0.023 2.16 N1

4 N4
2 N2

1 N3
1 405464.33 0.032 1.84

N1
1 N4

3 N2
1 N3

1 405488.17 0.034 2.65 N1
4 N4

3 N2
1 N3

1 405519.72 0.029 2.64
N1

1 N4
4 N2

1 N3
1 405369.28 0.041 2.33 N1

4 N4
4 N2

1 N3
1 405461.44 0.028 2.37

N1
1 N4

5 N2
1 N3

1 405527.94 0.043 2.92 N1
4 N4

5 N2
1 N3

1 405489.67 0.031 2.75
N1

1 N4
6 N2

1 N3
1 405488.17 0.042 2.32 N1

4 N4
6 N2

1 N3
1 405540.11 0.026 2.81

N1
2 N4

1 N2
1 N3

1 405453.33 0.044 1.94 N1
5 N4

1 N2
1 N3

1 405555.67 0.028 2.77
N1

2 N4
2 N2

1 N3
1 405291.00 0.036 2.02 N1

5 N4
2 N2

1 N3
1 405435.33 0.029 2.73

N1
2 N4

3 N2
1 N3

1 405519.17 0.036 2.93 N1
5 N4

3 N2
1 N3

1 405540.11 0.015 3.48
N1

2 N4
4 N2

1 N3
1 405499.33 0.030 3.15 N1

5 N4
4 N2

1 N3
1 405509.11 0.019 2.69

N1
2 N4

5 N2
1 N3

1 405505.50 0.035 2.44 N1
5 N4

5 N2
1 N3

1 405576.06 0.026 2.75
N1

2 N4
6 N2

1 N3
1 405499.44 0.040 2.76 N1

5 N4
6 N2

1 N3
1 405519.72 0.033 3.12

N1
3 N4

1 N2
1 N3

1 405441.06 0.032 2.41 N1
6 N4

1 N2
1 N3

1 405540.11 0.020 3.11
N1

3 N4
2 N2

1 N3
1 405464.33 0.032 2.48 N1

6 N4
2 N2

1 N3
1 405540.11 0.023 2.90

N1
3 N4

3 N2
1 N3

1 405529.50 0.038 2.51 N1
6 N4

3 N2
1 N3

1 405540.11 0.027 2.84
N1

3 N4
4 N2

1 N3
1 405453.56 0.032 2.58 N1

6 N4
4 N2

1 N3
1 405462.06 0.026 2.88

N1
3 N4

5 N2
1 N3

1 405519.72 0.032 2.91 N1
6 N4

5 N2
1 N3

1 405540.11 0.038 2.73
N1

3 N4
6 N2

1 N3
1 405497.22 0.038 2.34 N1

6 N4
6 N2

1 N3
1 405540.11 0.018 3.08

На краjу, извршен jе и скуп прелиминарних експеримената да би се одредиле
вредности параметра α коjи се користи у адаптивноj VNS методи и параметра
процентуалног повећања буџета β из VNS-а са стратешком осцилациjом. Резул-
тати су представљени у Табелама 2.3 и 2.4, где прва колона означава вредност
разматраног праметра, а подаци у преостале три колоне су представљени на
исти начин као подаци одговараjућих колона у Табели 2.1. На основу доби-
jених резултата, вредност параметра α jе постављена на 0.7, док jе повећање
буџета β фиксирано на 35%.
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Табела 2.3: Резултати прелиминарних експеримената са параметром α алго-
ритма SVNS

α avg best avg gap(%) avg t(s)

0.1 405540.111 0.010 2.724
0.2 405540.111 0.004 2.178
0.3 405576.056 0.015 2.199
0.4 405576.056 0.012 2.845
0.5 405576.056 0.008 2.757
0.6 405576.056 0.013 2.638
0.7 405576.056 0.005 2.884
0.8 405518.167 0.009 2.598
0.9 405574.500 0.011 1.968

Табела 2.4: Резултати прелиминарних експеримената са параметром β алго-
ритма VNS-SO

β % avg best avg gap(%) avg t(s)

10 405540.111 0.003 2.709
15 405540.111 0.006 2.633
20 405576.056 0.008 2.656
25 405576.056 0.009 2.358
30 405576.056 0.009 2.591
35 405576.056 0.006 2.740
40 405540.111 0.003 3.174
45 405540.111 0.004 2.972
50 405540.111 0.005 2.576

Резултати на инстанцама са ограниченим буџетом

Табела 2.5 приказуjе детаљне резултате Gurobi решавача, предложених VNS,
SVNS и VNS-SO метода на првом скупу инстанци. За ове инстанце, Gurobi ре-
шавач jе ограничен на 1 сат извршавања. Параметар критериjума заустављања
Imax за све VNS методе има вредност m/10, где jе m броj потенциjалних лока-
циjа обjеката. Прва колона Табеле 2.5 садржи ознаку разматране инстанце у
формату n × m − k, где n × m означава величину проблема, а k = 1, . . . , 10

jе броj додељен посматраноj инстанци у одговараjућоj групи. Следеће две ко-
лоне показуjу вредност функциjе циља оптималног решења Opt или вредност
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доње границе LB, добиjене Gurobi решавачем, као и време извршавања коjе
jе решавачу било потребно t(s) за рад (у секундама). У следеће четири ко-
лоне представљени су подаци коjи се односе на VNS резултате: наjбоља вред-
ност функциjе циља best добиjена у 5 покретања, просечно укупно време из-
вршавања (у секундама) коjе jе VNS методи било потребно да заврши свако
покретање - tot.t(s), просечно време извршавања (у секундама) у коjем jе VNS
пронашао своjе наjбоље решење у сваком покретању - t(s), процентуално одсту-
пање средње и наjлошиjе, односно наjмање вредности функциjе циља добиjене
у 5 VNS покретања, рачунато у односу на вредност функциjе циља оптималног
или наjбољег решења (mean gap(%) and worst gap(%)). У преосталим колонама
Табеле 2.5, резултати VNS-SO и SVNS метода су представљени на исти начин
као и за VNS. Оптимална и наjбоља позната решења су подебљана у Табели 2.5.

Резултати приказани у Табели 2.5 показуjу да сва три VNS приступа до-
стижу сва оптимална решења коjа даjе Gurobi решавач. У случаjу две инстанце
из групе 1350×150 и 8 инстанци из групе 1800×200, све три VNS методе су по-
бољшале доње границе коjе jе дао Gurobi. За две инстанце величине 1800×200,
наjбоља VNS, VNS-SO и SVNS решења се поклапаjу са допустивим коjе враћа
Gurobi решавач у року од jедног сата. Ниске вредности средњег и наjгорег
одступања од оптималних решења указуjу на високу стабилност све три ва-
риjанте VNS. За 46 од 60 тестираних инстанци, средње и наjвеће одступање
VNS решења су 0%, што значи да jе VNS достигао оптимално решење у свих 5
покретања. Слично, VNS-SO jе вратио решење са средњим и наjгорим одсту-
пањем од 0% за 49 од 60 инстанци. Предложени SVNS jе показао нешто боље
перформансе од VNS-а и VNS-SO-а у погледу стабилности решења, пошто су
средње и наjвеће одступање били 0% за 55 од 60 инстанци. Средње вредности
одступања наjбољих VNS, VNS-SO и SVNS решења нису прелазила вредности
редом 0.112%, 0.220% и 0.026%, а одступања наjлошиjих решења нису прелазиле
вредности редом 0.366%, 0.366% и 0.068%.

Што се тиче времена извршавања, предложене VNS методе су се показале
супериорним у односу на Gurobi за све разматране инстанце проблема. На
свих 10 инстанци у групи наjвећих димензиjа 1800× 200, Gurobi решавач ради
максимално 3600 секунди, док су VNS, VNS-SO и SVNS пронашли наjбоље
решење за мање од 7, 13 и 15 секунди. За другу наjвећу групу инстанци 1350×
150, Gurobi решавач jе достигао временско ограничење у 5 од 10 инстанци. Са
друге стране, VNS, VNS-SO и SVNS су дали наjбоље решење за мање од 3, 5 и
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6 секунди. Укупно време извршавања сва три VNS приступа остало jе кратко,
чак и у случаjу инстанци великих димензиjа из првог скупа података. Међутим,
може се приметити да су VNS-SO и SVNS били спориjи (у просеку) у односу
на VNS.

Табела 2.6 даjе сажети приказ резултата добиjених помоћу Gurobi решавача
и предложених VNS метода на инстанцама из првог скупа података груписа-
них по величини проблема. Прва колона Табеле 2.6 садржи димензиjу проблема
n×m разматране групе инстанци. У трећоj колони приказане су просечне вред-
ности функциjе циља (avg obj) решења добиjених Gurobi решавачем, док jе у
четвртоj колони приказано просечно време извршавања avg t(s). За сваку од
предложених VNS метода, дати су следећи подаци: просечне вредности функ-
циjе циља наjбољих решења, просечно укупно време извршавања avg tot.t(s),
просечно време потребно VNS методи да нађе наjбоље решење у сваком покре-
тању avg. t(s), просечно процентуално одступање средње вредности решења у
односу на оптимално или наjбоље решење (mean gap(%)), просечно проценту-
ално одступање наjлошиjег решења добиjено такође у односу на оптимално или
наjбоље решење (worst gap(%)). Просечне вредности представљене у Табели 2.6
су израчунате за све инстанце коjе припадаjу истоj групи (тj. коjе имаjу исту
величину n × m). За сваку групу инстанци у Табели 2.6, просечне вредности
оптималних решења или наjбољих решења су подебљане.

Из сажетог приказа резултата представљених у Табели 2.6, може се уочити
да се решења коjа jе дао Gurobi и предложени VNS поклапаjу за све инстанце
у прве четири групе: 225 × 25, 450 × 50, 675 × 75 и 900 × 100. У случаjу две
групе са инстанцама наjвећих димензиjа (1350 × 150 и 1800 × 200), просечна
вредност функциjе циља наjбољих решења добиjених сваком од предложених
VNS вариjанти била jе боља од просечне вредности наjбољег решења коjе jе
дао Gurobi. На ове две групе инстанци, просечно побољшање наjбољег решења
добиjеног предложеним VNS методама у односу на наjбоље решење коjе jе дао
Gurobi износи 0.07% и 0.16%, респективно.

Подаци представљени у колонама avg t(s) и avg tot.t(s) Табеле 2.6 указуjу
на ефикасност све три VNS методе на првом скупу података. За инстанце наj-
већих димензиjа 1800 × 200, предложени VNS, VNS-SO и SVNS су постигли
наjбоље решење за 3.69, 5.93 и 5.94 секунде (у просеку), док jе просечно укупно
време извршавања било 16.33, 29.91 и 29.22 секунди. Са друге стране, Gurobi jе
потрошио максимално време извршавања за сваку инстанцу из ове групе, а про-
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сечни квалитет решења био jе нижи у поређењу са квалитетом наjбољих VNS
решења. Колоне коjе се односе на просечне вредности одступања показуjу ста-
билност све три VNS имплементациjе. Просечне mean gap(%) и worst gap(%)

вредности биле су значаjно испод 0.1% за сва три VNS приступа. Из сажетог
приказа резултата на првом скупу података уочава се да су разматране VNS
вариjанте показале веома сличне перформансе у погледу квалитета решења.
Треба приметити да jе, у просеку, SVNS добиjао оптимално или наjбоље ре-
шење са бољом стабилношћу у поређењу са VNS и VNS-SO. У погледу времена
извршавања, VNS био бржи у поређењу са друга два VNS приступа, посебно
на већим инстанцама проблема.

Детаљни резултати експеримената на новим инстанцама великих димензиjа
(други скуп података) су представљени у Табели 2.7. Инстанце из другог скупа
података захтеваjу више рачунарског времена, стога jе ограничење за Gurobi
решавач постављено на 3 сата. Табела 2.7 jе организована на исти начин као
Табела 2.5. Као што се може видети из података представљених у Табели 2.7,
Gurobi решавач jе дао само допустива решења (доње границе) за инстанце ди-
мензиjа 4500× 500 и 7200× 800, док су наjбоља решења добиjена извршавањем
све три VNS метахеуристике бољег квалитета. У просеку, побољшања наjбо-
љих VNS решења у односу на доње границе коjе jе дао Gurobi на инстанцама
4500 × 500 и 7200 × 800 су редом 4.38% и 4.73%. За наjвећу групу инстанци
9000× 1000 у другоj групи, Gurobi решавач jе остао без мемориjе (64 GB RAM
мемориjе jе искоришћено) и ниjе добио чак ни допустиво решење. Са друге
стране, све три VNS методе су дале своjа наjбоља решења за релативно кратко
време, имаjући у виду димензиjу проблема.

Сажети приказ експерименталних резултата на инстанцама другог скупа по-
датака дат у Табели 2.8 jасно оправдава употребу метахеуристичког приступа
заснованог на VNS методи при решавању инстанци проблема великих димен-
зиjа. Како се димензиjа проблема повећава, предност коришћења VNS метода
у односу на Gurobi решавач постаjе све очигледниjа, у погледу квалитета до-
биjених решења и потребних времена извршавања. У просеку, за инстанце
4500× 500 и 7200× 800, SVNS jе дао боља решења и показао се стабилниjим у
односу на VNS и VNS-SO методе, док jе VNS-SO био наjбољи у погледу квали-
тета решења и стабилности на инстанцама 9000 × 1000. Што се тиче времена
извршавања, VNS jе био наjбржи, али су све три VNS методе дале решења у
релативно кратком времену. На пример, приликом решавања наjвеће групе ин-
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станци 9000 × 1000, просечне t(s) вредности биле су око 5 минута за VNS, 41
минут за VNS-SO и 18 минута за SVNS.
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2.4. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

Детаљни резултати Gurobi решавача и предложеног VNS-а на инстанцама
проблема изведених на основу демографских података (трећи скуп података)
приказани су у Табели 2.9. За ове инстанце такође jе постављено временско
ограничење од 3 сата за Gurobi решавач. Табела 2.9 jе организована на следећи
начин. Прва колона означава групу и броj разматране инстанце (на пример,
NewYork-01), док друга колона приказуjе њену величину у формату n×m. Пре-
остале колоне коjе се односе на Gurobi и VNS резултате имаjу исту структуру
и значење као и одговараjуће колоне у Табели 2.5.

Резултати представљени у Табели 2.9 указуjу на предности предложених
VNS метода у односу на Gurobi решавач када се ради о захтевним инстанцама
проблема великих димензиjа. За инстанце у прве три групе (Њуjорк, Бронкс и
Сан Франциско), побољшане су све доње границе коjе jе Gurobi дао у датом вре-
менском ограничењу. Само у два случаjа (NewYork-03 и NewYork-06), наjбоља
VNS решења се поклапаjу са LB добиjеним Gurobi решавачем. Побољшања
наjбољих VNS решења у поређењу са доњим границама коjе jе дао Gurobi за
прве три групе инстанци износе 0.85%, 1.54% и 2.62%, респективно. За инстанце
у четвртоj групи (Кингс), Gurobi решавачу jе понестало мемориjе, иако jе 64
GB RAM мемориjе било на располагању. Са друге стране, предложене VNS
методе су дале наjбоље решење за релативно кратко време извршавања, док
максимална мемориjа коjу користи VNS никада ниjе прелазила 200 MB RAM
мемориjе.

Сажети приказ VNS резултата на трећем скупу података дат jе у Табели 2.10,
коjа представља просечне податке израчунате за све инстанце коjе припадаjу
истоj групи. Као што се може приметити, SVNS jе био у просеку супериорниjи
у односу на VNS и VNS-SO и по квалитету решења и по стабилности, док jе
VNS имао наjкраће просечно време извршавања. Вредности средњег и наjло-
шиjег одступања од наjбољег решења су у просеку веома мале (avg mean gap ≤
0.170% и avg worst gap ≤ 0.271%) што указуjе на стабилност све три предло-
жене VNS методе при решавању реалних инстанци. Чак и за наjвеће (Кингс)
инстанце, просечно време извршавања у коjем jе VNS дао своjа наjбоља ре-
шења било jе мање од 730 секунди. Просечно укупно време извршавања VNS-а
jе такође било релативно кратко (до 2461 секунде) имаjући у виду сложеност и
димензиjу разматраних инстанци из трећег скупа тест података.
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2.4. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

Резултати на инстанцама са фиксним броjем обjеката

У оквиру овог одељка испитане су перформансе предложених VNS метода
при решавању вариjанте MCLP коjа jе наjсличниjа проблему разматраном у
овоj дисертациjи. Прецизниjе, у питању jе вариjанта MCLP-а са преференци-
jама корисника и фиксним броjем p обjеката за постављање, коjа jе уведена у
раду [52] и решавана хибридном GRASP-TS метахеуристиком. Треба приме-
тити да jе ова MCLP вариjанта специjалан случаj проблема MCLP ограниченог
буџета са преференциjама корисника коjи се разматра у овоj дисертациjи, jер
се постављањем трошкова отварања обjеката на 1 и ограничења буџета на p

(броj обjеката коjи ће бити постављени) проблем своди на MCLP вариjанту из
рада [52]. Иста MCLP вариjанта jе разматрана и у раду [133], где jе предложен
хибридни RVNS-TS-VNS алгоритам као приступ решавању проблема.

Прилагођавање VNS, VNS-SO и SVNS имплементациjа предложених у овоj
дисертациjи за решавање MCLP вариjанте из [52] и [133] jе jедноставно. До-
вољно jе користити само околине добиjене на основу операциjе замени. У овом
случаjу, фаза размрдавања не производи недопустива решења, стога процедура
похлепног поправљања решења након размрдавања ниjе потребна. Приликом
прилагођавања VNS-SO методе, процедура похлепне конструкциjе решења се
мора позвати након повећања буџета како би се обезбедило да простор решења
са повећаним броjем лоцираних обjеката буде претражен. Остали елементи
прилагођених VNS имплементациjа и вредности параметара остаjу исти као у
оригиналним.

Прилагођене VNS методе су тестиране на MCLP скупу података генерисаних
у раду [52] на истом рачунару као оригиналне VNS имплементациjе предложене
за решавање вариjанте MCLP са огрениченим буџетом и преференциjама кори-
сника. Табели 2.11 представља сажети приказ резултата добиjених помоћу две
наjбоље познате методе из литературе, GRASP-TS [52] и RVNS-TS-VNS [133]
и модификациjе два предложена алгоритма са наjбољим перформансама, VNS
и SVNS. Прилагођена VNS-SO метода за MCLP вариjанту из [52] показала се
мање стабилном у односу на прилагођене VNS и SNVS методе и захтевала jе
значаjно дуже време извршавања. Из тог разлога, резултати прилагођеног
VNS-SO-а нису укључени у Табелу 2.11.

Све метахеуристике чиjи су резултати приказани у Табели 2.11, су импле-
ментиране у C++ програмском jезику, али тестиране на различитим рачуна-
рима. Да би се обезбедило коректно поређење, укупна времена извршавања
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2.4. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

GRASP-TS-а и RVNS-TS-VNS-а су скалирана и приказана са звездицом, тj.
tot.t∗. Фактор скалирања jе израчунат коришћењем jеднонитног PassMark ре-
зултата из базе www.cpubenchmark.com. GRASP-TS jе тестиран на Intel Xeon
E3-1220 @ 3.10 GHz процесору, RVNS-TS-VNS jе покренут на AMD A6-3670
APU @ 2.7 GHz процесору, док су модификоване VNS методе извршене на Intel
Xeon E5-2640 @ 2.5 GHz процесору. Према подацима из www.cpubenchmark.com,
jеднонитне вредности PassMark резултата за ова три рачунара су 1526, 1123 и
1348, респективно. Стога се скалирано време за GRASP-TS израчунава као
tot.t∗ = tot.t× 1526/1348, док се скалирано време за RVNS-TS-VNS добиjа као
tot.t∗ = tot.t× 1123/1348.

Резултати представљени у Табели 2.11 показуjу да све четири методе даjу
исте наjбоље познате вредности функциjе циља на свим инстанцама. RVNS-
TS-VNS и модификовани SVNS су показали бољу стабилност у поређењу са
друге две методе. За све инстанце, RVNS-TS-VNS и модификовани SVNS су
дали наjбоље познате вредности функциjе циља у сваком од 5 покретања. Та-
кође се може приметити да су модификациjе VNS и SVNS захтевале значаjно
краће време извршавања у поређењу са GRASP-TS и RVNS-TS-VNS методама
из литературе. Стога се може закључити да се методе VNS и SVNS предложене
у овоj дисертациjи могу успешно применити (уз мање неопходне измене) и на
MCLP вариjанту из [52], [133].
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Глава 3

Двокритериjумски проблем
максималног покривања локациjа
са преференциjама корисника

3.1 Опис проблема и преглед релевантне

литературе

У овом поглављу разматрана jе вариjанта двокритериjумског MCLP-а са
преференциjама корисника, коjа jе први пут представљена у раду [135]. Ула-
зни подаци за ову вариjанту MCLP-а су следећи: скуп потенциjалних локациjа
обjеката, скуп корисника са додељеним потражњама и преференциjе корисника
према локациjама обjеката. У питању jе хомогена вариjанта MCLP-а неограни-
чених капацитета, што значи да сви обjекти коjе треба отворити пружаjу исту
врсту услуге и да обjекти немаjу ограничења у погледу капацитета. Претпоста-
вља се да треба успоставити тачно p обjеката и да ће сваки корисник бити до-
дељен успостављеном обjекту коjи преферира. Како би се постигла равнотежа
између ефикасности успостављене мреже и правичности у пружању услуге ко-
рисницима, истовремено се посматраjу два циља. Први циљ jе максимизациjа
тежинске суме покривене потражње, при чему су тежине jеднаке или директно
пропорционалне вредностима преференциjа корисника. Други циљ jе миними-
зациjа броjа непокривених корисника. Описана вариjанта двокритериjумског
MCLP решавана jе у раду [136] у коjем су предложене три ефикасне методе
вишекритериjумске оптимизациjе засноване на методи променљивих околина.
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Описана MCLP вариjанта пре публиковања рада [135] ниjе истраживана у
литератури, иако постоjе разне области потенциjалне примене. Jедна од њих
jе оптимизациjа сервисних мрежа различитог типа, у ситуациjама где jе неоп-
ходно да се максимизуjе количина покривене потражње и да минимизуjе броj
корисника коjи остаjу неуслужени, узимаjући у обзир преференциjе корисника.
На пример, у системима испоруке неопходно jе максимизовати укупну покри-
вену потражњу уз обраћање пажње на то да корисници са већом потражњом
буду покривени обjектима коjе они преферираjу. У исто време, неопходно jе
смањити броj корисника коjи нису покривени обjектима, што jе више могуће.

Jош jедна примена посматраног проблема jесте у дизаjну телекомуникаци-
оних мрежа, на пример, при планирању постављања антена за бежичну кому-
никациjу. Потражња се представља количином протока података додељених
корисницима, док су преференциjе пропорционалне квалитету сигнала коjе ко-
рисник добиjа ако jе додељен лоцираноj антени (обjекту). У реалним ситуаци-
jама, квалитет сигнала не зависи само од растоjања између корисника и антене,
већ се може мењати уколико постоjе препреке између два чвора. Како постоjи
ограничени броj антена коjе треба поставити, ако се лоцираjу на местима погод-
ним по кориснике са великим потражњама, велики броj корисника са мањим
протоком података може остати непокривен. Са друге стране, ако се посма-
тра искључиво минимизациjа броjа непокривених корисника, важни корисници
са великим протоцима података могу остати непокривени или да имаjу лош
квалитет сигнала.

У литератури постоjи више радова коjи се баве проширивањем проблема
MCLP у погледу увођења више функциjа циља. Наjсличниjа вариjанта раз-
матраноj вариjанти у овоj дисертациjи предложена jе у раду [170] и има две
функциjе циља: тежинска сума покривене потражње и укупна цена отварања
обjеката. Двокритериjумски MCLP, коjи максимизуjе покривену потражњу и
минимизуjе тежинску суму растоjања између сваког непокривеног корисника и
њему наjближег услужног центра, проучаван jе у раду [36]. Badri и сар. [12] су
формулисали проблем лоцирања ватрогасних станица као вишекритериjумски
модел покривања локациjа. Примарни циљ jе максимизовати услугу наjзахтев-
ниjим подручjима, али су у модел укључени и други циљеви коjи се односе на
време транспорта, удаљеност и различите техничке захтеве.

Вариjанта вишекритериjумског MCLP-а коjа jе предложена у раду [8], има
за циљ да исторемено максимизуjе примарну и секундарну (резервну) покри-
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веност корисника, као и да минимизуjе суму растоjања између непокривених
корисника и њихових преферираних обjеката. Karasakal и Silva [98] уводе дво-
критериjумски MCLP коjи подразумева парциjално покривање непокривених
корисника. Ако за корисника постоjи бар jедан отворени центар на растоjању
коjе ниjе веће од неке задате константе (полупречника покривања), таj корисник
се сматра у потпуности покривеним. Са даљим порастом удаљености до наj-
ближег отвореног центра, степен покривености опада према некоj неопадаjућоj
функциjи (наjчешће линеарноj) и корисник се сматра парциjално (делимично
покривеним). Уколико jе растоjање корисника до њему наjближег центра веће
од неке задате константе, корисник jе непокривен. Модел укључуjе два циља:
максимизациjа потпуног и парциjалног покривања и минимизациjа максималне
дистанце између непокривених корисника и њихових наjближих обjеката. Дво-
критериjумски MCLP модел из [98] може да се користи за дизаjнирање мрежа
брзе испоруке где нису сви чворови потпуно покривени обjектима. У раду [139]
jе изучавана двокритериjумска вариjанта динамичког MCLP.

Chanta и сар. [31] су проучавали проблем локациjа станица хитне медицин-
ске помоћи (енгл. emergency medical services, EMS) са циљем да нађу баланс
између ефикасности услуге и правичности за кориснике. Као резултат фор-
мулисана су три модела двокритериjумског покривања локациjа [31]. У сва
три модела примарни циљ jе максимизациjа покривене потражње, док jе се-
кундарни циљ остваривање правичности у руралним и урбаним подручjима.
Секундарни циљеви предложени у моделу су: минимизациjа максималне ди-
станце између непокривене области потражње и њене наjближе станице, ми-
нимизациjа броjа непокривених руралних области потражње и минимизациjа
броjа непокривених области потражње. Проблем постављања станица за пу-
њење електричних возила jе формулисан као вишефазни вишекритериjумски
MCLP у раду [167]. Из економских разлога, аутори моделираjу постављање ин-
фраструктуре за пуњење у више фаза: прве фазе подстичу транзициjу путника,
док економски фактори доминираjу у касниjим фазама. Вариjанта двокрите-
риjумског MCLP коjа такође укључуjе преференциjе корисника, а наjсличниjа
jе вариjанти представљеноj у овоj дисертациjи, разматрана jе у раду [11] об-
jављеном годину дана после рада [135]. Први циљ вариjанте из рада [11] jе
максимизациjа укупне покривене потражње корисника, а други циљ максими-
зациjа укупног збира преференциjа покривених корисника. Међутим, модел из
рада [11] не укључуjе правичност као циљ, тj. не разматра се броj непокривених
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корисника. Поред тога, методологиjа истраживања из рада jе другачиjа, уме-
сто поређења скупова решења, пореде се само изабрана поjединачна решења,
те резултати из рада [11] и [135] нису директно упоредиви.

MOEA метахеуристике су успешно примењене на различитим дискретним
вишекритериjумским локациjским проблемима, укључуjући неке вариjанте ви-
шекритериjумског MCLP-а. На пример, Karasakal и Silva [98] су дизаjнирали
вишекритериjумски еволутивни алгоритам, означен као модификовани SPEA-II
(mSPEA-II), за решавање двокритериjумског MCLP-а предложеног у истом ис-
траживању. У раду [167] аутори истражуjу перформансе генетских алгоритама
са две различите конструктивне стратегиjе (инкременталне и декременталне),
при решавању вишефазних вишекритериjумских MCLP-а за постављање ста-
ница за пуњење електричних возила.

Пратећи идеjу примена MOEA приступа за друге вишекритериjумске лока-
циjске проблеме, у раду [135], прилагођена су три MOEA алгоритма из лите-
ратуре за двокритериjумски MCLP са преференциjама корисника. Прецизниjе,
прилагођени су: NSGA-II [51], SPEA-II [187] и ε-MOEA [50]. Експерименти су
извршени на четири групе MCLP инстанци из праксе и резултати су поређени
на основу три стандардна индикатора перформанси. Сва три MOEA приступа
показала добре перформансе, међу њима ниjе постоjала значаjна разлика.

MOEA алгоритми коришћени у [135] су популациjске метахеуристике, при-
лагођене разматраном двокритериjумском MCLP-у са преференциjама кори-
сника. У оквиру ове дисертациjе, испитуjе се другачиjи приступ, где се кори-
сти метахеуристика заснована на побољшању jедног решења и примени локалне
претраге. Полазећи од општег принципа примене VNS методе за вишекрите-
риjумску оптимизациjу из рада [59], дизаjниран jе вишекритериjумски VNS
за решавање двокритериjумске вариjанте MCLP-a из [135]. Пратећи концепт
основног, редукованог и општег VNS-а, имплементиране су три три вариjанте
вишекритериjумског VNS-а: вишекритериjумски основни VNS (енгл. multi-
objective basic VNS, MO-BVNS), вишекритериjумски редуковани VNS (енгл.
multi-objective reduced VNS, MO-RVNS) и вишекритериjумски уопштени VNS
(енгл. multi-objective generalized VNS, MO-GVNS).
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3.2 Математичка формулациjа проблема

Нека jе J скуп корисника, док jе I скуп потенциjалних локациjа за отварање
нових услужних центара. Корисник може бити покривен отвореним обjектом,
ако њихова удаљеност ниjе већа од унапред одређене вредности, коjа jе означена
као полупречник покривања. За сваког корисника j ∈ J , скуп локациjа центра
коjе покриваjу овог корисника означен jе са I(j). Са друге стране, J(i) означава
скуп корисника коjе jе могуће покрити успостављањем центра на локациjи i ∈ I.
Сваки корисник j ∈ J има одређену потражњу Dj > 0, док вредности gij ∈ (0, 1]

означаваjу преференциjу корисника j ∈ J да га опслужуjе центар i ∈ I. Веће
вредности преференциjе означаваjу већи афинитет корисника према обjекту.
Прецизниjе, gi1j > gi2j значи да би корисник j радиjе био опслужен од стране
услужног центра i1 него од центра i2. Броj нових услужних центара коjе треба
отворити jе фиксиран на p.

Математички модел разматраног двокритериjумског MCLP-а са преферен-
циjама корисника користи два скупа бинарних променљивих одлучивања. Про-
менљиве yi узима вредност 1 ако jе центар успостављен на локациjи i ∈ I, а 0
у супротном. Променљива xij jе jеднака 1 ако jе корисник j ∈ J покривен од
стране центра i ∈ I, а 0 у супротном.

Користећи наведену нотациjу, двокритериjумски MCLP са преференциjама
корисника [135] се може бити записан као следећи целоброjни линеарни про-
грам:

max
∑
i∈I

∑
j∈J(i)

gijDjxij (3.1)

min |J | −
∑
j∈J

∑
i∈I(j)

xij (3.2)
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при условима ∑
i∈I

yi = p , (3.3)∑
i∈I(j)

xij ≤ 1 ∀j ∈ J , (3.4)

xij ≤ yi ∀i ∈ I, j ∈ J(i) , (3.5)
|I(j)|∑
s=k+1

xis,j + yik ≤ 1 ∀j ∈ J, k ∈ 1, ..., |I(j)| − 1 , (3.6)

yi ∈ {0, 1} ∀i ∈ I , (3.7)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J . (3.8)

Прва функциjа циља (3.1) jе укупна тежинска суму потражње покривених
корисника, односно оних коjи су додељени отвореном центру и циљ jе њена
максимизациjа. Друга функциjа циља (3.2) представља броj непокривених ко-
рисника, а циљ jе њена минимизациjа. Тежине укључене у функциjу циља
(3.1) су jеднаке преференциjама корисника ка њиховом додељеном центру. На
оваj начин постиже се да већа вредност преференциjе корисника j ∈ J према
обjекту i ∈ I имплицира да ће утицаj покривене потражње Dj у укупноj суми
бити већи. Броj услужних центара коjе треба отворити jе постављен на p, што jе
обезбеђено ограничењем (3.3). Ограничење (3.4) означава да jе сваки корисник
покривен са наjвише jедним центром, док ограничење (3.5) обезбеђуjе да сваки
корисник може бити опслужен само од jедног отвореног центра. Ограничење
(3.6) обезбеђуjе да jе сваки корисник додељен свом наjпожељниjем отвореном
центру. Променљиве yi и xij су дефинисане као бинарне ограничењима (3.7) и
(3.8). Разматрани двокритериjумски MCLP jе НП-тежак, као генерализациjа
класичног jеднокритериjумског MCLP за коjи jе доказано да jе НП-тежак у
раду [125].

У циљу илустрациjе ефекта разматраних функциjа циља и преференциjа
корисника, на слици 3.1 приказана су различита решења добиjена на jедноj
инстанци малих димензиjа. На слици 3.1(a) представљена jе разматрана ин-
станца са три потенциjалне локациjе (означене као квадрати) и два корисника
(означени круговима у коjима уписане вредности означаваjу потражњу кори-
сника). Вредности испрекиданих линиjа означаваjу преференциjе корисника
према обjектима. У Парето оптималном решењу приказаном на слици 3.1(b),
центар i1 jе отворен да би се покрила велика потражња корисника j1 коjи пре-
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(a) Инстанца малих димензиjа са |I| = 3 и
|J | = 2.
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(b) Парето оптимално решење. Центар jе по-
стављен на i1. Вредности функциjа циља су:
F1 = 800, F2 = 1.
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(c) Парето оптимално решење. Центар jе по-
стављен на i2. Вредности функциjа циља су:
F1 = 260, F2 = 0.
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(d) Решење ниjе Парето оптимално. Центар jе
постављен на i3. Вредности функциjа циља су:
F1 = 140, F2 = 1.

Слика 3.1: Инстанца малих димензиjа (a). Решења (b), (c), (d) приказуjу утицаj
избора локациjе обjекта и преференциjа корисника на вредност функциjа циља
F1 и F2.

ферира центар i1 (преференциjа j1 ка i1 износи 0.8). Приметимо да корисник
j2 са пет пута мањом потражњом у односу на j1 остаjе непокривен. У другом
Парето отпималном решењу приказаном на слици 3.1(c), отворени центар на
i2 покрива оба корисника j1 и j2. На краjу, слика 3.1(d) приказуjе решење коjе
ниjе Парето оптимално, при чему jе центар успостављен на чвору i3. Треба
приметити да центар i3 покрива само корисника j2, коjи има високу преферен-
циjу према отвореном центру, али и ниску потражњу у исто време. Са друге
стране, корисник j1 са много већом потражњом остаjе непокривен.

У сврху илустрациjе ефекта коришћења две посматране функциjе циља, на
Слици 3.2 су приказана три решења добиjена на jедноj реалноj инстанци са
великим броjем чворова. На слици 3.2(a) приказана jе инстанца добиjена на
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основу демографских података из градске области Бронкс у Њу Jорку, преу-
зета из рада [123]. Инстанца садржи скуп од 3839 корисничких чворова (озна-
чени као плави кругови) од коjих jе 10% изабрано за потенциjалне локациjе
обjеката (означене као наранџасти кругови). Транспарентност боjе коjа репре-
зентуjе кориснички чвор jе пропорционална његовоj потражњи. Слика 3.2(c)
приказуjе екстремно решење у коjоj jе доносилац одлуке само заинтересован
да максимизуjе тежинску суму потражње (функциjа циља F1), те последично
значаjан броj корисника остаjе непокривен. Успостављени обjекти су означени
са црним квадратима, покривени корисници са плавим круговима, а непокри-
вени са црвеним крстовима. Ако jе само циљ минимизациjа броjа непокривених
корисника (функциjа циља F2), добиjа се jош jедно екстремно решење прика-
зано на Слици 3.2(d) са обjектима коjи су сада распоређени равномерниjе преко
целе мапе и релативно малим броjем непокривених корисника. Ако доносилац
одлука тежи да пронађе баланс између тежинске покривене потражње и броjа
непокривених корисника, добиjа се Парето оптимално решење приказано на
Слици 3.2(b).

3.3 Вишекритериjумска метода променљивих

околина

Представљање решења

У оквиру овог одељка описане су три вариjанте MO-VNS методе (означене
са MO-RVNS, MO-BVNS и MO-GVNS) за разматрани двокритериjумски MCLP
са префренциjама корисника. Све три вариjанте MO-VNS методе за оваj про-
блем су изложене у раду [136], заjедно са експерименталним резултатима. У
све три предложене вариjанте MO-VNS методе, решење проблема jе предста-
вљено бинарним низом дужине |I| где сваки бит одговара потенциjалноj лока-
циjи обjекта. Ако jе бит на i-тоj позициjи у низу jеднак 1, то значи да jе обjекат
i ∈ I отворен и вредност променљиве одлучивања yi постављена на 1. Иначе,
обjекат на локациjи i jе затворен и yi = 0. Како тачно p обjеката треба отво-
рити, решење се сматра допустивим ако тачно p битова у низу има вредност
1. На пример, ако jе p = 3, a |I| = 10, jедно од допустивих решења може бити
s = [0100110000]

Околине се засниваjу на операциjи замене (енгл. swap), односно затварању
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(a) Графички приказ Бронкс инстанце. (b) Пример Парето оптималног решења.

(c) Екстремно решење где jе прва функциjа
циља приоритет.

(d) Екстремно решење где jе друга функциjа
циља приоритет.

Слика 3.2: Бронкс инстанца и три различита решења. Мапа Бронкса jе преузета
са www.openstreetmap.org.
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jедног обjекта на jедноj локациjи и отварању на другоj. Околина реда 1 се
добиjа применом jедне операциjе замене, док се применом 2 операциjе замене
добиjа околина реда 2, итд. На пример, ако на решење s применимо операциjу
замене елемената на позициjама 1 и 9 добиjамо ново допустиво решење s′ =

[0000110010]

Вишекритериjумски основни VNS

Алгоритам 18 Вишекритериjумски основни VNS (MO-BVNS)
1: Input: kmax, tmax

2: Output: set of non-dominated solutions S
3: S ← generate random set of non-dominated solutions
4: while tmax is not reached do
5: k ← 1
6: while k ≤ kmax do
7: N ← S
8: for each solution x ∈ S do
9: x′ ← Shake(x,k,N)

10: LocalSearch1(x
′, N)

11: LocalSearch2(x
′, N)

12: if N \ S ̸= ∅ then
13: S ← Clean(N)
14: k ← 1
15: else
16: k ← k + 1

Структура MO-BVNS заснована jе на корацима BVNS-a за jеднокритери-
jумску оптимизациjу и приказана jе Алгоритмом 18. Представљени MO-BVNS
почиње са насумично генерисаним скупом решења S, у коjем су доминирана
решења уклоњена, те алгоритам ради само са скупом недоминираних решења.
Оваj скуп се назива апроксимативним скупом, коjи током извршавања алго-
ритма треба да се приближи што више правом Парето оптималном скупу.

Током MO-BVNS итерациjа извршаваjу се две фазе, размрдавање и локална
претрага, заjедно са кораком промене околине. На краjу сваке итерациjе, ал-
горитам проверава да ли jе дошло до побољшања, тj. да ли jе додат нови
недоминирани елемент у тренутни скуп N . Ако jе решење побољшано, ал-
горитам започиње претрагу од прве околине, у супротном наставља претрагу
од следеће околине из датог скупа. Ако jе побољшање постигнуто, алгоритам
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ажурира тренутни апроскимативни скуп S, тj. уклања решења коjа су сада
доминирана извршавањем Clean процедуре. MO-BVNS итерациjе се изврша-
ваjу све док се не испуни критериjум заустављања, у овом случаjу док се не
достигне максимално време извршавања. У сваком кораку, над сваким реше-
њем у апроксимативном скупу се изводи размрдавање (имплементирано као
Shake процедура). Решење измењено размрдавањем се прослеђуjе у две про-
цедуре локалне претраге, по jедна за сваку функциjу циља (LocalSearch1 и
LocalSearch2).

Фаза размрдавања за свако решење из апроксимитивног скупа N jе иста
као у случаjу jеднокритериjумског BVNS-a. За свако решење апроксимативног
скупа x, мења се k насумичних локациjа (употребом операциjе swap) и на таj
начин се генерише ново решење из k-те околине тренутног решења x′. Фаза
размрдавања jе имплементирана као Shake процедура и приказана jе Алго-
ритмом 19. За разлику од jеднокритериjумске вариjанте, за свако решење x′

добиjено овом процедуром проверава се да ли jе недоминирано, тj. да ли га
треба укључити у тренутни апроскимативни скуп N (CheckNonDominance

процедура).

Алгоритам 19 Процедура размрдавања (Shake)
1: Input: solution x, neighborhood size k, set of solutions N
2: Output: perturbed solution x′, updated set of solutions N
3: x′ ← x
4: for i← 1 to k do
5: x′ ← RandomSwap(x′)

6: if CheckNonDominance(N, x′) then
7: N ← N ∪ {x′}

Фаза локалне претраге покушава да побољша апроксимативни скуп N у
односу на jедну од функциjа циља. Док истражуjе околину тренутног ре-
шења x, процедура локалне претраге изводи проверу недоминатности решења
(CheckNonDominance процедура) после сваке операциjе замене. Решење из
околине x′ коjе наjвише побољшава разматрану функциjу циља се бира као ново
тренутно решење. Процедура се завршава уколико се не побољшава вредност
разматране фунцкиjе циља (CheckObjective процедуре). Структура локалне
претраге jе описана Алгоритмом 20.
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Алгоритам 20 Локална претрага
1: Input: solution x, set of solutions N
2: Output: updated set of solutions N , set of new non-dominated solutions N ′

3: improvement← true
4: best← x
5: N ′ ← ∅
6: while improvement do
7: improvement← false
8: while there is new solution x′ in neighborhood of x do
9: x′ ← Swap(x)

10: if CheckNonDominance(N, x′) then
11: N ← N ∪ x′

12: N ′ ← N ′ ∪ x′

13: if CheckObjective(best, x′) then
14: best← x′

15: improvement← true

16: x← best

Вишекритериjумски редуковани VNS

У циљу испитивања утицаjа фазе размдравања на квалитет решења, импле-
ментирана jе и редукована вариjанта алгоритма означена са MO-RVNS. Циљ
jе поjачати експлорациjу простора претраге што jе више могуће, повећаваjући
броj итерациjа и позива Shake процедуре. Структура MO-RVNS вариjанте jе
приказана Алгоритмом 21. Може се приметити да се MO-RVNS добиjа од MO-
BVNS методе уклањањем процедура LocalSearch1 и LocalSearch2 (линиjе
8 и 9 Алгоритма 18).

Вишекритериjумски уопштени VNS

На основу идеjе општег VNS-a за jеднокритериjумску оптимизациjу, им-
плементирана jе jош jедна вишекритериjумска VNS вариjанта за разматрани
проблем, вишекритериjумска општа метода променљивих околина (MO-GVNS),
коjа jе приказана Алгоритмом 22. Разлика између MO-BVNS и MO-GVNS ме-
тода jе у фази локалне претраге, прецизниjе, у начину на коjи се LocalSearch1

и LocalSearch2 процедуре извршваjу. Треба напоменути да у оригиналном
раду [59], где jе представљен концепт за вишекритериjумски VNS, са MO-GVNS
jе означена вариjанта коjа користи процедуре променљивог спуста (VND) по
поjединачним функциjама циља уместо локалних претрага. Додатно, предста-

84



3.3. ВИШЕКРИТЕРИJУМСКА МЕТОДА ПРОМЕНЉИВИХ ОКОЛИНА

Алгоритам 21 Вишекритериjумски редуковани VNS (MO-RVNS)
1: Input:kmax, tmax

2: Output:set of non-dominated solutions S
3: S ← generate random set of non-dominated solutions
4: while tmax is not reached do
5: k ← 1
6: while k ≤ kmax do
7: N ← S
8: for each solution x ∈ S do
9: Shake(x,k,N)

10: if N \ S ̸= ∅ then
11: S ← Clean(N)
12: k ← 1
13: else
14: k ← k + 1

вљена вариjанта MO-BVNS ниjе разматрана у оригиналном раду [59].
MO-GVNS користи два додатна скупа N1 и N2 за чување недоминираних

решења добиjених позивањем LocalSearch1 и LocalSearch2. Инициjално,
N1 и N2 садрже само решења из фазе размрадавања. Две процедуре локалне
претраге се наизменично извршаваjу све док скупови N1 и N2 не постану празни,
што значи да ни jедно ново недоминирано решење ниjе пронађено. Следеће
недоминирано решење коjе ће бити прослеђено процедурама LocalSearch1 и
LocalSearch2 се бира процедуром Select. Ова процедура насумично бира
jедно решење из скупа недоминираних решења, шаље га процедурама локалне
претраге и након тога уклања решење из скупа.

85



3.4. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

Алгоритам 22 Вишекритериjумски општи VNS (MO-GVNS)
1: Input: kmax, tmax

2: Output: set of non-dominated solutions S
3: S ← generate random set of non-dominated solutions
4: while tmax is not reached do
5: k ← 1
6: while k ≤ kmax do
7: N ← S
8: for each solution x ∈ S do
9: x′ ← Shake(x,k,N)

10: N1 ← {x′}
11: N2 ← {x′}
12: while N1 ∪N2 ̸= ∅ do
13: N1 ← N1 ∪ LocalSearch1(Select(N2), N)
14: N2 ← N2 ∪ LocalSearch2(Select(N1), N)

15: if N \ S ̸= ∅ then
16: S ← Clean(N)
17: k ← 1
18: else
19: k ← k + 1

3.4 Експериментални резултати

Три предложена MO-VNS алгоритма имплементирана су у програмском jе-
зику Java. У експериментима се такође користе вишекритериjумски еволутивни
приступи (NSGA-II, SPEA-II и ε-MOEA) приказани у раду [135] коjи су кори-
шћени у сврху поређења са предложеним MO-VNS вариjантама. Ове три MOEA
имплементациjе су преузете из Java оквира за вишекритериjумску оптимиза-
циjу [80] и прилагођене су за посматрани проблем. У постоjећоj литератури,
NSGA-II и SPEA-II су постали стандардни приступи у решавању вишекритери-
jумских оптимизационих проблема, стога jе постало уобичаjено да се перфор-
мансе неког новог вишекритериjумског приступа упоређуjу са ове две MOEA
методе.

У наставку jе дат сажети опис елемената MOEA метода из [135] коришћених
за решавање двокритериjумског MCLP са преференциjама корисника:

• Инициjална популациjа се у сваком од три MOEA алгоритма генерише
насумично.
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• Након генерисања инициjалне популациjе jединки, сваки од три MOEA
алгоритма понављаjу следеће кораке: селекциjа, укрштање, мутациjа, ева-
луациjа потомства и унапређење популациjе. Ови кораци се понављаjу док
се не испуни услов заустављања након чега се недоминирана популациjа
враћа као коначни резултат.

• У фази селекциjе користи се бинарни турнир са правилима за имплемен-
тациjу ограничења.

• За креирање нове генерациjе користи се jеднопозиционо укрштање, док
се за мутациjу користи инвертовање битова.

• Политика замене генерациjа зависи од датог MOEA алгоритма.

Све разматране методе (три предложене MO-VNS методе и три MOEA ме-
тоде коришћене у [135]) су извршене на истим тест инстанцама и на истом
рачунару са Intel i3-4170 3.70GHz CPU и 8GB RAM -a.

Инстанце

За потребе експеримената, коришћене су тест инстанце из [135], коjе су
добиjене модификациjом реалних инстанци великих димензиjа приказаних у
раду [123] за jеднокритериjумски MCLP. Инстанце из [123] су такође модифи-
коване и за тестирање метода за jеднокритериjумски MCLP са преференциjама
корисника и ограниченим буџетом коjи jе представљен у претходном поглављу.

Рад [135] се бави вишекритериjумским MCLP-ом и разматра реалниjе прет-
поставке у поређењу са [123]. У реалним ситуациjама, броj потенциjалних ло-
кациjа обjеката jе много мањи у поређењу са броjем локациjа корисника [45]. У
свакоj групи инстанци, 10% корисничких чворова се насумично бира за потен-
циjалне локациjе обjеката, што даjе |I| = 271, 383, 513 и 773 за Њуjорк, Бронкс,
Сан Франциско и Кингс, респективно. Полупречник покривања jе исти за ин-
станце коjе припадаjу истоj групи R = 400, 600, 600, 800, док jе броj обjеката коjе
jе потребно успоставити p = 70 за све групе. Пратећи идеjе из радова [26] и [52],
у раду [135] се користи троугаона расподела за израчунавање преференциjа ко-
рисника према потенциjалним обjектима. Овако генерисане преференциjе се на
краjу скалираjу у интервал (0, 1]. Када се генеришу преференциjе за сваког од
корисника j према свакоj локациjи i, следеће вредности се користе у троугаоноj
расподели:
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• доња граница - минимално растоjање од локациjе i до било ког корисника
у J(i),

• горња граница - максимално растоjање од локациjе i до било ког кори-
сника у J(i),

• модус - растоjање од локациjе i до корисника j.

За сваку од четири групе инстанци (Њуjорк, Бронкс, Сан Франциско и Кингс),
генерисано jе по 5 тест инстанци са различитим скуповима потенциjалних ло-
кациjа обjеката и различитим вредностима преференциjа корисника.

Резултати

Да би се обезбедило коректно поређење посматраних шест алгоритама (MO-
BVNS, MO-RVNS, MO-GVNS, NSGA-II, SPEA-II и ε-MOEA), максимално про-
цесорско време jе ограничено на tmax секунди за сваки алгоритам. Максимално
време извршавања зависи од величине инстанце, то значи да tmax расте са по-
растом |I| и |J |. У извршеним експериментима, вредност tmax jе постављена на
200, 300, 500 и 700 секунди за Њуjорк, Бронкс, Сан Франциско и Кингс групе
инстанци, респективно. Параметар свих MO-VNS алгоритама kmax представља
максималну величину околине и постављен jе на 3. Код MOEA алгоритама,
величина популациjе jе постављена на 100, вероватноћа укрштања на 1, док jе
вероватноћа мутациjе 0.01, 0.008, 0.006 и 0.004 за инстанце из Њуjорк, Бронкс,
Сан Франциско и Кингс групе, респективно. Вредност параметра k коjи кори-
сти SPEA-II алгоритам jе фиксирана на 1, што значи да се густина рачуна у
односу на растоjање од наjближег суседа. Броj jединки нове генерациjе jе поста-
вљен на 100 у оквиру SPEA-II алгоритма. Вредност параметра ε коришћеног за
критериjум доминантности у оквиру ε-MOEA алгоритма узима вредност 0.01.

Како jе прави Парето фронт непознат, комбиновани су Парето фронтови
из свих покретања свих шест разматраних алгоритама и коришћени као ре-
ферентни скуп. Решење алгоритма добиjено из jедног покретања означено jе
као апроксимативни скуп. Да би се упоредиле перформансе имплементираних
алгоритама, коришћено jе пет индикатора перформанси [109]:

• Хиперзапремина (енгл. Hypervolume - HV) се израчунава као величина
(запремина, површина) простора решења над коjим доминираjу решења
из апроксимативног скупа.
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• Инвертовано генеративно растоjање (енгл. Inverted generational distance
- IGD) се добиjа као просечно растоjање између решења из референтног
скупа и наjближег решења из апроксимативног скупа.

• Адитивни епсилон индикатор (енгл. Additive epsilon indicator - EPS+)
jе наjмања вредност за коjу треба транслирати апроксимативни скуп како
би он доминирао над референтним.

• Допринос (енгл. Contribution - C) jе однос величине пресека референт-
ног и апроксимативног скупа и величине референтог скупа. Ако jе апрок-
симативни скуп jеднак референтном, онда C износи 1.

• Величина (енгл. Size) jе броj решења у апроксимативном скупу.

Избор индикатора HV, IGD и EPS+ се заснива на њиховоj широкоj упо-
треби у вишекритериjумскоj оптимизациjи, На пример, извршена анализа у
раду [154] указуjе да jе HV наjвише коришћена метрика, а затим следе EPS и
IGD. Додатно, укључена су два интуитивна и jедноставна индикатора: допри-
нос и величина апроксимативног скупа. Циљ jе да се максимизуjу HV, C и Size,
а да се минимизуjу IGD и EPS+.

Сваки од шест алгоритама jе покренут 10 пута за сваку инстанцу из сваке
од четири групе инстанци. Добиjени резултати су приказани у Табели 3.1 на
следећи начин. За сваки индикатор перформанси (HV, IGD, EPS+, C и Size),
чуваjу се средња вредност (mean), минимум (min), максимум (max) и медиjана
(med.) вредности добиjених током 10 извршавања посматраног алгоритма на
свакоj тест инстанци. Стандардна девиjациjа (std) добиjених вредности jе та-
кође израчуната да би се оценила стабилност алгоритама. Просек вредности
mean, std, med., min и max статистика за сваки индикатор перформанси jе изра-
чунат по групама инстанци. Ове просечне вредности су приказане у Табели 3.1,
а наjбоље mean вредности су подебљане.
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Табела 3.1: Поређење предложених MO-VNS вариjанти и MOEA алгоритама за
двокритериjумски MCLP на групама инстанци - Њуjорк (NY), Бронкс (Bronx),
Сан Франциско (SF) и Кингс (Kings)

NSGA-II SPEA-II
Група HV IGD EPS+ C Size HV IGD EPS+ C Size

mean 0.721 0.064 0.130 0.002 87.5 0.704 0.080 0.152 0.000 73.8
std 0.028 0.018 0.026 0.004 16.2 0.027 0.018 0.029 0.000 14.9

NY min 0.676 0.039 0.091 0.000 62.4 0.658 0.051 0.105 0.000 48.4
med. 0.727 0.061 0.127 0.000 88.9 0.706 0.081 0.155 0.000 74.6
max 0.756 0.096 0.171 0.014 110.8 0.739 0.104 0.197 0.001 93.2
mean 0.650 0.115 0.177 0.000 103.5 0.633 0.131 0.196 0.000 86.7
std 0.025 0.018 0.028 0.000 22.4 0.028 0.020 0.023 0.000 18.7

Bronx min 0.607 0.093 0.140 0.000 74.4 0.593 0.100 0.162 0.000 59.6
med. 0.655 0.112 0.176 0.000 100.3 0.631 0.132 0.197 0.000 89.7
max 0.680 0.147 0.227 0.000 141.6 0.681 0.161 0.231 0.000 116.2
mean 0.460 0.237 0.311 0.000 63.8 0.465 0.237 0.306 0.000 59.8
std 0.053 0.040 0.044 0.000 19.4 0.040 0.030 0.035 0.000 16.1

SF min 0.381 0.176 0.250 0.000 34.2 0.409 0.189 0.255 0.000 34.4
med. 0.464 0.231 0.312 0.000 63.9 0.468 0.234 0.302 0.000 57.1
max 0.543 0.300 0.385 0.000 94.6 0.530 0.280 0.369 0.000 90.0
mean 0.229 0.444 0.536 0.000 40.6 0.235 0.440 0.526 0.000 39.3
std 0.052 0.062 0.069 0.000 13.4 0.053 0.065 0.059 0.000 14.4

Kings min 0.130 0.369 0.447 0.000 23.2 0.147 0.361 0.455 0.000 21.0
med. 0.236 0.434 0.527 0.000 39.3 0.242 0.433 0.518 0.000 37.2
max 0.297 0.568 0.674 0.000 66.0 0.304 0.557 0.632 0.000 64.8

Табела 3.1: Поређење предложених MO-VNS вариjанти и MOEA алгоритама
за двокритериjумски MCLP (наставак)

ϵ-MOEA MO-RVNS
Група HV IGD EPS+ C Size HV IGD EPS+ C Size

mean 0.684 0.101 0.173 0.000 61.8 0.802 0.010 0.035 0.041 137.4
std 0.030 0.022 0.028 0.000 10.0 0.009 0.004 0.019 0.060 7.6

NY min 0.629 0.070 0.133 0.000 45.6 0.784 0.006 0.014 0.000 122.4
med. 0.690 0.099 0.170 0.000 62.1 0.805 0.009 0.031 0.016 138.3
max 0.723 0.138 0.217 0.000 78.8 0.811 0.018 0.071 0.176 148.2
mean 0.606 0.153 0.220 0.000 71.5 0.802 0.014 0.040 0.078 215.2
std 0.032 0.021 0.033 0.000 15.1 0.006 0.004 0.011 0.088 16.4

Bronx min 0.552 0.122 0.175 0.000 49.2 0.792 0.009 0.024 0.001 186.0
med. 0.611 0.150 0.217 0.000 69.8 0.803 0.014 0.040 0.059 217.5
max 0.649 0.186 0.277 0.000 96.4 0.811 0.021 0.058 0.294 240.4
mean 0.448 0.253 0.332 0.000 51.3 0.720 0.047 0.104 0.037 102.4
std 0.048 0.035 0.043 0.000 14.0 0.023 0.015 0.026 0.059 12.8

SF min 0.371 0.199 0.270 0.000 31.6 0.680 0.029 0.059 0.000 82.0
med. 0.448 0.252 0.336 0.000 50.4 0.723 0.044 0.104 0.009 103.1
max 0.527 0.312 0.394 0.000 76.4 0.751 0.072 0.145 0.177 120.6
mean 0.219 0.457 0.554 0.000 35.8 0.685 0.059 0.128 0.048 118.1
std 0.058 0.071 0.080 0.000 12.0 0.029 0.018 0.024 0.110 15.7

Kings min 0.125 0.364 0.453 0.000 22.4 0.637 0.035 0.089 0.000 94.0
med. 0.229 0.443 0.539 0.000 34.2 0.684 0.058 0.129 0.002 117.9
max 0.302 0.581 0.698 0.000 61.6 0.725 0.092 0.161 0.348 144.4
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Табела 3.1: Поређење предложених MO-VNS вариjанти и MOEA алгоритама
за двокритериjумски MCLP (наставак)

MO-BVNS MO-GVNS
Група HV IGD EPS+ C Size HV IGD EPS+ C Size

mean 0.798 0.012 0.030 0.014 122.6 0.806 0.007 0.025 0.048 148.9
std 0.005 0.003 0.007 0.024 8.3 0.005 0.002 0.009 0.099 5.6

NY min 0.790 0.008 0.020 0.000 107.0 0.798 0.004 0.012 0.000 139.6
med. 0.798 0.012 0.028 0.001 123.4 0.806 0.007 0.024 0.002 149.1
max 0.804 0.017 0.043 0.067 135.0 0.813 0.010 0.038 0.310 157.6
mean 0.748 0.055 0.077 0.004 156.6 0.779 0.032 0.049 0.019 206.0
std 0.021 0.016 0.018 0.007 16.6 0.010 0.007 0.009 0.033 18.2

Bronx min 0.706 0.036 0.054 0.000 128.4 0.763 0.022 0.035 0.000 181.0
med. 0.750 0.052 0.076 0.000 156.4 0.779 0.032 0.048 0.006 203.2
max 0.774 0.089 0.114 0.023 182.0 0.792 0.044 0.061 0.103 240.2
mean 0.710 0.052 0.075 0.017 129.9 0.736 0.034 0.057 0.046 164.3
std 0.024 0.016 0.017 0.035 14.2 0.022 0.015 0.016 0.068 15.5

SF min 0.671 0.027 0.048 0.000 106.0 0.698 0.015 0.030 0.000 141.2
med. 0.708 0.053 0.076 0.000 130.5 0.734 0.035 0.059 0.014 163.0
max 0.748 0.077 0.102 0.107 153.0 0.767 0.058 0.081 0.205 191.2
mean 0.626 0.094 0.128 0.006 138.4 0.671 0.065 0.092 0.045 162.6
std 0.038 0.026 0.031 0.014 19.0 0.041 0.027 0.027 0.108 17.0

Kings min 0.554 0.060 0.086 0.000 109.6 0.611 0.025 0.048 0.000 136.8
med. 0.633 0.089 0.124 0.000 136.3 0.675 0.064 0.093 0.002 164.0
max 0.681 0.144 0.185 0.044 173.4 0.735 0.107 0.135 0.330 192.0

Прво су анализиране и поређене (просечне) средње вредности (mean) ин-
дикатора перформанси за сваки алгоритам из посматране групе инстанци. На
основу вредности свих пет индикатора перформанси презентованих у Табели 3.1,
закључуjе се да сва три МОЕА алгоритма имаjу сличне перформансе. Са друге
стране, три предложена MO-VNS алгоритма су показали боље резултате у од-
носу на МОЕА алгоритме на све 4 групе инстанци. Разлика у перформансама
између MO-VNS имплементациjа и MOEА приступа се посебно уочава на две
наjвеће групе инстанци - Сан Франциско и Кингс. Jедан од разлога за супериор-
ност MO-VNS приступа у односу на MOEA алгоритме jе чињеница да МО-VNS
изводи ажурирања вредности две функциjе циља након сваке операциjе замене
(отварање или затварање обjекта), док MOEA алгоритми не користе ове опе-
рациjе и мораjу да рачунаjу функциjе циља за сва решења у новоj генерациjи.

Међусобним поређењем перформанси три предложене MO-VNS имплемен-
тациjе, може се закључити да су MO-RVNS и MO-GVNS показале боље перфор-
мансе у односу на MO-BVNS. На основу просечних средњих вредности свих пет
индикатора, MO-GVNS jе супериорниjи на NY и SF групама инстанци у односу
на MO-RVNS и MO-BVNS, док jе MO-RVNS бољи на Бронкс групи инстанци у
поређењу са MO-GVNS и MO-BVNS. На наjвећоj групи инстанци (Кингс), MO-

91



3.4. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

New York Bronx San Francisco Kings
Instance group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NSGA-II SPEA-II -MOEA MO-RVNS MO-BVNS MO-GVNS

(a) HV

New York Bronx San Francisco Kings
Instance group

0.0

0.1

0.2

0.3

0.4

NSGA-II SPEA-II -MOEA MO-RVNS MO-BVNS MO-GVNS

(b) IGD

New York Bronx San Francisco Kings
Instance group

0.0

0.1

0.2

0.3

0.4

0.5

NSGA-II SPEA-II -MOEA MO-RVNS MO-BVNS MO-GVNS

(c) EPS+

New York Bronx San Francisco Kings
Instance group

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

NSGA-II SPEA-II -MOEA MO-RVNS MO-BVNS MO-GVNS

(d) C

New York Bronx San Francisco Kings
Instance group

0

50

100

150

200

NSGA-II SPEA-II -MOEA MO-RVNS MO-BVNS MO-GVNS

(e) Size

Слика 3.3: Поређење MO-VNS и MOEA метода коришћењем средњих вредности
пет индикатора перформанси.

GVNS и MO-RVNS су показали сличне перформансе. Прецизниjе, МО-RVNS
jе дао боље средње вредности за три, а MO-GVNS за две од пет индикатора
перформанси на Кингс групи инстанци.

На Слици 3.3 приказани су графици коjи даjу бољи увид у перформансе
предложених MO-VNS метода и три МОЕА приступа из [135]. Са Слике 3.3
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jасно се може видети да MO-VNS приступ даjе боље резултате у односу на
MOEA приступе у погледу свих 5 индикатора перформанси. Када се међусобно
пореде MO-VNS вариjанте и анализираjу вредности индикатора HV , IGD и C,
приказани на графиконима Слике 3.3(a), (b) и (d), респективно, закључуjе се
да jе MO-RVNS супериорниjи у односу на друге две MO-VNS методе на Бронкс
и Кингс групама инстанци, док MO-GVNS има боље перформансе на Њуjорк
и Сан Франциско групама инстанци. Према графикону на Слици 3.3(c), где
jе приказан EPS+ индикатор, рангирање jе следеће: MO-GVNS, затим MO-
BVNS и на краjу MO-RVNS. Треба напоменути да мала одступања од овог
рангирања постоjе код Бронкс групе инстанци на коjоj MO-RVNS има наjбољу
вредност индикатора, затим у случаjу Кингс групе, где MO-BVNS и MO-RVNS
имаjу исте вредности индикатора EPS+. На основу резултата на Слици 3.3(e),
где су дате вредности Size, MO-GVNS и MO-RVNS су суперирониjи за групе
инстанци Њуjорк и Бронкс, респективно. За две наjвеће групе инстанци Сан
Франциско и Кингс, рангирање по индикатору Size jе следеће: MO-GVNS, MO-
BVNS, MO-RVNS.

Имаjући у виду да доносиоци одлука бираjу компромисно решење на основу
конкретне реалне ситуациjе, улога алгоритама jе да пруже што више различи-
тих алтернатива. Графичка репрезентациjа апроксимативних скупова решења
се користи како би се дао бољи опис добиjених решења на jедноj инстанци из
сваке групе. Слика 3.4 приказуjе апроксимативне скупове (фронтове) са наjве-
ћом вредношћу индикатора HV добиjене у 10 извршавања на jедноj инстанци
из сваке групе (Њуjорк, Бронкс, Сан Франциско и Кингс). Решења из рефе-
рентног скупа су означена црним квадратима на све четири слике. Вредности
F2 на хоризонталноj оси су приказане као проценат непокривених корисника из
скупа J .

На основу графичке репрезентациjе може се приметити да су MO-VNS ре-
шења боље распрострањена по простору функциjа циља у поређењу са онима
коjе даjу MOEA методе. На Њуjорк и Бронкс инстанцама (видети Слику 3.4a
и Слику 3.4b) постоjи одређено преклапање МО-VNS и МОЕА решења на сре-
дини простора функциjа циља, док на инстанцама већих димензиjа Сан Фран-
циско и Кингс (Слика 3.4c и Слика 3.4d), решења три MO-VNS вариjанте очи-
гледно доминираjу над решењима MOEA метода. Може се такође приметити
да MO-RVNS често даjе боља решења на средини простора функциjа циља,
док су MO-BNVS и MO-GVNS решења равномерниjе распрострањена по про-
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Слика 3.4: Референтни скуп и апроксимативни скуп са наjвећом хиперзапре-
мином добиjени за прву инстанцу из сваке групе

стору. За боље разумевање добиjених решења, може се анализирати избор до-
носиоца одлука када се користи референтни скуп за Бронкс инстанцу (видети
Слику 3.4b). Ако доносилац одлука преферира мање непокривених корисника,
он ће одабрати решење са ≈12% непокривених корисника и ≈700 000 покривене
тежинске потражње. У супротном, он може да повећа покривену тежинску
потражњу до ≈800 000, али ≈30% корисника ће остати непокривено. Између
ова два екстремна решења, доносилац одлука може изабрати између многих
решења са компромисом између покривене тежинске потражње и броjа непо-
кривених корисника.
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Глава 4

Уопштени проблем постављања
регенератора у оптичким мрежама

4.1 Опис проблема и преглед релевантне

литературе

Оптичке мреже су тип телекомуникационих мрежа коjе користе оптичке
каблове за пренос података у виду светлосних импулса (оптичких сигнала) из-
међу два чвора. Употреба светлости као медиja за пренос чини оптичку мрежу
jедном од наjбржих телекомуникационих мрежа. Са друге стране, квалитет
преноса сигнала опада при повећању удаљености од изворног чвора. Стога,
специjални и скупи уређаjи, коjи се називаjу регенератори, мораjу бити угра-
ђени у мрежу да би се повратио квалитет оптичког сигнала. Имаjући у виду ви-
соке трошкове инсталациjе и одржавања регенератора, важно jе минимизовати
броj уграђених регенератора, а истовремено одржати поуздану комуникациjу
између свих чворова у мрежи. Оваj проблем су представили Chen и сар. [35]
и означен jе као проблем постављања регенератора (енгл. Regenerator Location
Problem - RLP). У RLP-у, претпоставља се да су трошкови постављања исти
за све регенераторе и да сви чворови у мрежи могу да комуницираjу. Касниjе,
Chen и сар. [34] су разматрали случаj када само подскуп чворова у мрежи кому-
ницира (краjњи чворови) и добиjени проблем jе означен као уопштени проблем
постављања регенератора (енгл. Generalized Regenerator Location Problem -
GRLP). Мотивисани чињеницом да трошкови инсталациjе регенератора на ра-
зличитим локациjама могу варирати због трошкова некретнина или из других
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практичких разлога, Chen и сар. [34] су представили вариjанту GRLP-а, под на-
зивом тежински уопштени проблем постављања регенератора (енгл. Weighted
Generalized Regenerator Location Problem - WGRLP). WGRLP боље одражава
реалну ситуациjу када регенератори мораjу бити уграђени на нехомогеном про-
стору (на пример, трошкови постављања регенератора у центру града могу бити
знатно већи у односу на приградско насеље или рурално подручjе). Све прет-
поставке и захтеви у WGRLP-у су исти као и у GRLP-у, са изузетком трошкова
инсталациjе коjи могу варирати у зависности од потенциjалне локациjе за поста-
вљање регенератора. Циљ WGRLP-а jе минимизовати укупан збир трошкова
инсталациjе регенератора. У случаjевима када су трошкови уградње регене-
ратора jеднаки за сваку потенциjалну локациjу (тj. регенератори су распоре-
ђени на хомогеном простору), коришћење GRLP-а jе прикладниjе. И GRLP
и WGRLP су НП-тешки проблеми оптимизациjе, имаjући у виду да jе RLP
доказано НП-тежак [35,71].

Због сложености разматраних проблема постављања регенератора, као и
чињенице да оптичке мреже имаjу велики броj чворова, егзактне методе су у
могућности да обезбеде решења само за инстанце малих и средњих димензиjа.
Стога, хеуристичке методе представљаjу природан избор за проблеме коjи про-
изилазе из дизаjна оптичких мрежа великих димензиjа [96]. Chen и сар. [35]
су предложили три хеуристичке методе и методу гранања и одсецања (BnC) за
решавање RLP-а. На основу уочене везе RLP-а и проблема разапињућег стабла
са максималним броjем листова (енгл. Maximum Leaf Spanning Tree Problem
- MLSTP), закључено jе да се процедура стратешке осцилациjе предложена за
MLSTP [158] може применити и на RLP, што jе и урађено у раду [35]. Касниjе,
Duarte и сар. [58] су предложили GRASP и пристрасни генетски алгоритам са
насумичним кључевима (енгл. Biased Random Key Genetic Algorithm) за реша-
вање RLP-а. Методу гранања и одсецања, две конструктивне хеуристике (GH1
и GH2), и процедуру локалне претраге су развили Chen и сар. [34] за решавање
GRLP, док су Quintana и сар. [147] предложили GRASP за исти проблем.

У циљу решавања проблема WGRLP, Chen и сар [34] су модификовали BnC
и две хеуристике GH1 и GH2 коjе су претходно биле развиjене за GRLP. У
раду [134] предложене су SVNS и BVNS методе за решавање WGRLP. Обе
методе предложене у раду [134] могу бити примењене и за решавање проблема
GRLP, тако што се при примени предложених метода за решавање WGRLP
цена сваке локациjе постави на 1, чиме се WGRLP своди на GRLP.
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У овоj дисертациjи, предложена jе основна вариjанта VNS метахеуристике,
коjа се може успешно применити на оба проблема, WGRLP и GRLP. Предло-
жена метода представља побољшање у односу на постоjеће вариjанте VNS ме-
тода коjе су претходно имплементиране у [134], те надаље означен као побољ-
шани BVNS (iBVNS). Предложени iBVNS jе тестиран на GRLP и WGRLP ин-
станцама из литературе [34, 134]. Добиjени iBVNS резултати су упоређени са
резултатима егзактне BnC методе, похлепних хеуристика GH1 и GH2 [34], по-
стоjећих SVNS и BVNS метода [134], као и наjбоље познате метахеуристике
GRASP [147] за GRLP. Предложена iBVNS имплементациjа, као и њени резул-
тати на GRLP и WGRLP инстанцама изложени су у раду [132].

4.2 Формулациjа проблема на графу

Оба разматрана проблема, GRLP и WGRLP, полазе од оптичке мреже пред-
стављене графом G = (V,E) са скупом чворова V и скупом грана E. Скуп
чворова V jе подељен на два дисjунктна скупа: скуп краjњих (терминалних)
чворова T коjи комуницираjу међусобно и скуп S потенциjалних локациjа за
постављање регенератора. Постоjи ограничење dmax > 0 за удаљеност коjу оп-
тички сигнал може да пређе пре почетка слабљења квалитета сигнала. Путања
P коjа повезуjе два краjња чвора jе представљена низом i, v1, . . . , vm, j, где jе
i, j ∈ T , vk ∈ V , k = 1, ...,m. Претпоставља се да постоjи грана коjа повезуjе
сваки пар суседних чворова у овом низу. Дужина путање P , означена као l(P ),
jе добиjена сабирањем дужина грана између парова суседних чворова у низу
коjи представља P . Ако важи l(P ) ≤ dmax, сигнал се може пренети од i до j без
регенерисања. У супротном, регенератори мораjу бити постављени у jедном
или више унутрашњих чворова путање P .

Нека jе L⊆ S скуп постављених регенератора и претпоставимо да путања
P садржи регенераторе {r1, . . . , rk}⊆L. Удаљеност између два краjња чвора i

и j дуж P се рачуна као d(P )=max{l(Pi,r1), l(Pr1,r2), ..., l(Prk,j)}. Овде jе Pk,l под-
путања P коjа повезуjе k и l, где jе k, l∈{i, r1, . . . , rk, j}. Рачунање удаљености
између два краjња чвора jе илустровано на Слици 4.1. Растоjања су израчуната
за путању без регенератора (Слика 4.1(a)), jедан регенератор (Слика 4.1(b) и
4.1(c)) и два регенератора (Слика 4.1(d)).

Код оба проблема, GRLP и WGRLP, скуп регенератора L ⊆ S мора бити
изабран тако да сваки краjњи чвор i може да пошаље сигнал другом краjњем
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чвору j дуж неке путање P тако да jе d(P ) ≤ dmax. Jедина разлика између
GRLP и WGRLP jе претпоставка коjа се односи на трошкове постављања ре-
генератора. Код проблема WGRLP, сваки чвор r ∈ S има додељену тежину
wr > 0 коjа одражава цену инсталациjе регенератора на r. У случаjу GRLP-а,
трошкови инсталациjе су jеднаки за све чворове из S, што значи wr = 1 за сваки
r ∈ S. Циљ WGRLP-а jе минимизациjа суме тежина постављених регенератора∑

r∈L wr, док jе циљ GRLP-a минимизациjа броjа постављених регенератора∑
r∈L 1.

40 20 300 1A B

(a) Путања без постављених регенера-
тора. d(P ) = dA0 + d01 + d1B = 90

40 20 300 1A B

(b) Jедан регенератор постављен у чвору
0. d(P ) = max(dA0, (d01 + d1B)) = 50

40 20 300 1A B

(c) Jедан регенератор постављен у чвору
1. d(P ) = max((dA0 + d01), d1B) = 60

40 20 300 1A B

(d) Два постављена регенератора. d(P ) =
max(dA0, d01, d1B) = 40

Слика 4.1: Израчунавање дужине путање између два краjња чвора. Дужина
путање зависи од броjа и позициjа регенератора.

Почетни граф G = (V,E) се трансформише у jедноставниjи граф B =

(V,E ′), означен као комуникациони граф. Оваj концепт су увели Chen и сар. [34],
a коришћен jе у радовима [34,134,147] за решавање проблема GRLP и WGRLP.
Кораци конструисања комуникационог графа су следећи:

1) Уклонити све гране дужине веће од dmax из скупа E;
2) За сваки несуседни пар чворова i, j ∈ V , додати нову грану e коjа их

повезуjе, и израчунати дужину e као дужину одговараjуће наjкраће путање
између i и j;

3) Уклонити све нове гране дужине веће од dmax и означити преостали скуп
грана са E ′.

Пар краjњих чворова i, j ∈ T се сматра повезаним ако постоjи грана e ∈ E ′

коjа их повезуjе. Ово значи да jе могућа директна комуникациjа између i и j.
У супротном, оваj пар се означава као пар коjи ниjе директно повезан (енгл.
not directly connected - NDC). Решење за GRLP (WGRLP) jе допустиво ако су
сви парови краjњих чворова повезани. Кораци за изградњу комуникационог
графа су приказани на Слици 4.2.

За боље разумевање GRLP и WGRLP проблема, jедна инстанца малих ди-
мензиjа из литературе [34] и њена два оптимална решења су приказани на
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(a) Почетни граф са тежинама грана jедна-
ким дужини између два чвора и dmax = 100.
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(b) Гране са дужином већом од dmax су укло-
њене. У овом случаjу, грана (2, 3) са дужи-
ном 120 jе уклоњена из графа.
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(c) Наjкраће путање измећу чворова дужине
не веће од dmax су додате као нове гране.
Гране (B, 3) и (A, 0) се додаjу у граф.
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(d) Добиjени комуникациони граф.

Слика 4.2: Конструкциjа комуникационог графа

Слици 4.3. Разлика у трошковима постављања регенератора код GRLP и WGRLP
може резултирати различитим оптималним решењима, што се може видети на
сликама 4.3b и 4.3c.

4.3 Унапређена метода променљивих околина

за WGRLP

Метода променљивих околина jе већ успешно примењивана у постоjећоj
литератури за решавање проблема оптимизациjе телекомуникационих мрежа
[91,112,114,120,126,127]. У овоj дисертациjи, предложена jе побољшана основна
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(a) Инстанца са 50 чворова од коjих 13 (25%)
чине потенциjалне локациjе за регенераторе.
Броj NDC парова jе 266.

(b) Оптимално решење за основну вариjанту
проблема (GRLP). Вредност функциjе циља
jе 6.

3

3

2 32 2 2

2
34

2
2

2

(c) Оптимално решење за тежинску вари-
jанту проблема (WGRLP). За сваку лока-
циjу регенератора назначена jе цена поста-
вљања. Вредност функциjе циља jе 15.

Слика 4.3: Инстанца малих димензиjа из литературе и оптимална решења за
GRLP и WGRLP проблеме. Успостављени регенератори означени су црвеном
боjом, док jе свака потенциjална локациjа обележена ценом постављања реге-
нератора.
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VNS метахеуристике у односу на VNS вариjанту из рада [134], означена са
iBVNS, коjа може да се користи за решавање оба проблема, WGRLP и GRLP.
Предложени iBVNS даjе решења бољег квалитета за краће време извршавања у
поређену са постоjећим хеуристичким приступима за решавање GRLP и WGRLP.
У наставку овог одељка детаљно су обjашњени елементи iBVNS методе.

Репрезентациjа решења

Предложени iBVNS користи низ целих броjева за кодирање решења за WGRLP.
Сваки елемент низа представља индекс локациjе са постављеним регенерато-
ром. Када су локациjе регенератора познате, вредност функциjе циља WGRLP-
а се добиjа сабирањем тежина ових локациjа, док jе вредност функциjе циља
GRLP-а jеднака броjу постављених регенератора.

У предложеноj iBVNS методи, комуникациони граф jе представљен листом
чворова. За сваки чвор из листе, хеш скуп чува информациjе о његовим су-
седним чворовима. На оваj начин, алгоритам може ефикасно проверити да ли
разматрана грана постоjи у графу и истражити суседне чворове датог чвора.

Решење проблема за GRLP (WGRLP) се сматра допустивим ако су сви NDC

парови у одговараjућем комуникационом графу повезани. Због тога jе за сваки
пар чворова потребно на ефикасан начин испитати да ли jе он повезан или NDC

пар. Потребна ефикасност се постиже чувањем свих NDC парова у хеш мапи.
Тачниjе, хеш мапа садржи сваки NDC пар (индексе чворова коjи чине пар) са
додељеним логичким вредностима (true за повезане и false за неповезане NDC

парове). Ако су све вредности у хеш мапи jеднаке true, одговараjуће решење jе
допустиво. Графички прикази jедног допустивог и jедног недопустивог решења
проблема WGRLP дати су на Слици 4.4, као и одговараjуће табеле повезаности
NDC парова за свако од приказаних решења.

Околине решења

Предложена iBVNS имплементациjа користи две околине решења, означене
као N1 и N2. Околина N1 решења x састоjи се од свих решења добиjених од
x уклањањем jедног постављеног регенератора. Ова околина се истражуjе у
фази размрдавања предложеног iBVNS-а, где се регенератор за уклањање бира
насумично. Понављањем описаног уклањања регенератора k пута добиjа се
околина величине k. Требало би напоменути да се уклањањем регенератора
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(a) Графички приказ допустивог пре-
шења. Локациjе регенератора су прика-
зане црвеном боjом, а индекси (1, 3, 4) се
чуваjу у низу.

A - B True

A - C True

A - D True

B - C True

A - E True

B - D True

B - E True

C - D True

C - E True

D - E True

(b) Табела NDC парова коjи одговараjу
решењу приказаном под (a). Сви NDC па-
рови су повезани (ознака true).
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(c) Графички приказ недопустивог ре-
шења. Локациjе регенератора су прика-
зане црвеном боjом а индекси (0, 3, 4) се
чуваjу у низу. Краjњи чвор C jе одвоjен
од других краjњих чворова.

A - B True

A - C True

A - D True

B - C True

A - E False

B - D True

B - EFalse

C - D True

C - E False

D - E False

True True

True

False

False

True

False

(d) Табела NDC парова коjи одговараjу
решењу приказаном под (c). NDC парови
коjи укључуjу чвор C означено jе да нису
повезани (ознака false).

Слика 4.4: Репрезентациjа допустивог (a, b) и недопустивог (c, d) решења. Ре-
шење jе приказано графички са означеним локациjама регенератора (црвена
боjа и облик ромба). Активне гране (повезане на регенератор) су приказане са
црним пуним линиjама, док су неактивне приказане сивим испрекиданим лини-
jама. Сви краjњи чворови мораjу бити повезани да би решење било допустиво
(видети табеле NDC парова).
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може добити недопустиво решење, коjе се у том случаjу поправља процедуром
описаном у Одељку 4.3. На Слици 4.5. дат jе пример jедног допустивог решења
- Слика 4.5(а), његовог недопустивог суседа из околине N1 - Слика 4.5(b) и
поправљеног суседног решења до допустивог - Слика 4.5(c)
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(a) Почетно решење са изабраним регенера-
тором (на чвору 1) за уклањање.
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(b) Решење добиjено уклањањем регенера-
тора на локациjи 1. Добиjено решење jе не-
допустиво. Краjњи чворови А и C су одво-
jени од других чворова.
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(c) Решење добиjено поправљањем недопу-
стивог решења (b) тако што су додата два
регенератора (0 и 5). Добиjено решење jе
допустиво, али користи више регенератора
у поређењу са почетним решењем (a).

Слика 4.5: Илустрациjа околине N1.

Околина N2 решења x садржи сва решења добиjена од x уклањањем jедног
постављеног регенератора и постављањем регенератора на другу потенциjалну
локациjу са мањим трошковима постављања у поређењу са почетном локациjом
(операциjа замене). Околина N2 се користи у фази локалне претраге предло-
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женог iBVNS-а. Описана операциjа замене се извршава само ако решење остаjе
допустиво. Све операциjе замене коjе могу да доведу до побољшања функциjе
циља се испитуjу процедуром провере допустивости описаном у Одељку 4.3. За
илустрациjу, jедно решење добиjено операциjом замене приказано jе на Слици
4.6.
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(a) Почетно допустиво решење са два чвора
(4 и 6) коjа су изабрана за операциjу замене.
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(b) Решење након операциjе замене чворова
4 и 6. Ново решење jе остало допустиво.

Слика 4.6: Илустрациjа околине N2.

Ефикасно ажурирање функциjе циља

Две главне операциjе коjе се изводе током извршавања iBVNS-а су: дода-
вање регенератора у решење и уклањање регенератора из решења. Када до-
даjемо регенератор у решење, претрага графа по ширини (енгл. Breadth-first
search - BFS) се примењуjе почевши од локациjе на коjу се регенератор r ∈ S

поставља. Током BFS претраге, низ логичких вредности visited се креира и
ажурира да би се сачувала информациjа о посећеним чворовима. Ако jе чвор
посећен, његов одговараjући елемент у овом низу jе true, а у супротном false.

У предложеноj iBVNS имплементациjи, BFS претрага jе модификована на
следећи начин. Када се разматра чвор v коjи jе суседан локациjи регенератора
u, његови суседи ће бити испитани само ако jе регенератор инсталиран на v.
У супротном, v се означава као посећен, и његови суседи се даље не разма-
траjу. На оваj начин, ниjе потребно вршити промене у комуникационом графу
(брисање и уметање нових вештачких грана), као што jе то случаj у GRASP
имплементациjи из рада [147] и VNS имплементациjама из рада [134]. Додавање
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нових грана у комуникациони граф негативно утиче на ефикасност алгоритама
што jе у предложеноj iBVNS имплементациjи избегнуто модификациjом BFS
претраге. Алгоритам 23 показуjе псеудокод имплементиране модфиковане BFS
процедуре почевши од локациjе r.

Алгоритам 23 Модификована BFS претрага за комуникациони граф
1: Input: starting location r
2: Output: boolean array visited
3: queue← empty queue;
4: visited← false;
5: visited(r)← true;
6: queue.add(r);
7: while queue is not empty do
8: u← queue.poll();
9: for v adjacent to u do

10: if not visited(v) then
11: visited(v)← true;
12: if location v has a regenerator then
13: queue.add(v);
14: return visited

Приликом уклањања регенератора из решења или извршавања операциjе за-
мене, може се десити да добиjено решење ниjе допустиво. Део коjи одузима наj-
више времена jе испитивање допустивости новодобиjеног решења након сваке
од ове две операциjе. Стога, ефикасна процедура провере допустивости може
значаjно смањити укупно време извршавања. У предложеноj iBVNS методи,
модификовани BFS се користи да се ефикасно провери допустивост решења
након уклањања регенератора или извршавања операциjе замене. Процедура
за проверу допустивости на основу BFS-а jе описана Алгоритмом 24. Проце-
дура полази од новодобиjеног решења x и његовог скупа постављених регене-
ратора, означеног као x.regenerators. Локациjе регенератора коje су посећене
се чуваjу у скупу visitedRegenerators. На почетку извршавања BFS проце-
дуре, скуп visitedRegenerators jе празан и броjач повезаних парова pairs из
NDCpairs jе постављен на 0. Процедура провере допустивости разматра jедан
по jедан непосећени регенератор r из скупа x.regenerators и примењуjе BFS
почевши од локациjе r. BFS претрага враћа скуп посећених чворова visited као
излаз. У случаjу да jе регенератор r већ био посећен током BFS претраге неког
од претходно разматраних регенератора, он се не разматра поново и алгори-
там jедноставно додаjе r у скуп visitedRegenerators. Пар pair из NDCpairs
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jе означен као повезан ако су оба краjња чвора пара pair посећена, а броjач
повезаних NDC парова се повећава за jедан. Описаним поступком, сви сада
повезани парови из NDCpairs скупа су индетификовани на ефикасан начин.
Решење jе означено као допустиво ако jе сваки пар pair из скуша NDC парова
NDCpairs повезан. Процедура допустивости jе илустрована jедноставним при-
мером приказаним на Слици 4.7.

Алгоритам 24 Процедура провере допустивости решења
1: Input: solution x
2: Output: boolean feasibility
3: visitedRegenerators← ∅ ;
4: connected← 0;
5: for r in x.regenerators do
6: if r /∈ visitedRegenerators then
7: visited← BFS(r);
8: for pair in NDCpairs do
9: if pair is not connected and visited(pair.start) and visited(pair.end) then

10: mark pair as connected;
11: connected← connected + 1;
12: for p in x.regenerators do
13: if visited(p) then
14: add p to visitedRegenerators;
15: return connected == size of NDCpairs;

Примењена стратегиjа за проверу допустивости заснована на BFS процедури
не зависи од редоследа додавања регенератора у решење, као што jе то био слу-
чаj са провером допустивости имплементираном у VNS методама из рада [134] и
GRASP методи из рада [147]. Поред тога, може се десити да процедуре провере
допустивости примењене у постоjећим метахеуристичким приступима [134,147]
означе допустиво решење као недопустиво. Са друге стране, нови поступак
провере допустивости решења имплементиран у iBVNS методи не допушта мо-
гућност да се допустиво решење означи као недопустиво, у чему се огледа jош
jедна предност предложене iBVNS методе.

Похлепна конструкциjа и поправка решења

Предложени iBVNS користи похлепну процедуру, коjа се примењуjе за кон-
струисање почетног решења и за исправљање недопустивих решења коjа се могу
поjавити приликом брисања регенератора. У првом случаjу, похлепна проце-
дура почиње од празног решења, док jе у другом случаjу улаз решење коjе jе
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(a) Процедура провере допустивости почиње
од првог чвора регенератора у низу решења
(изабран jе регенератор у чвору 1).
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(b) Суседни чворови регенератора 1 су озна-
чени као посећени (обоjени зеленом боjом).
Регенератор на чвору 3 jе сада посећен и
процедура се наставља од њега.
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(c) Суседни чворови регенератора 3 су озна-
чени као посећени. Регенератор на чвору 4
jе сада посећен и процедура се наставља од
њега.

C

5

E
3

1
A

0

B
64

D2

(d) Суседни чворови регенератора 4 су озна-
чени као посећени. Сви краjњи чворови су
сада посећени, што значи да су сви NDC па-
рови сада повезани и решење jе означено као
допустиво.

Слика 4.7: Илустрациjа поступка провере допустивости.
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провером допустивости означено као недопустиво. Предложена похлепна про-
цедура, описана Алгоритмом 25, итеративно додаjе jедан по jедан регенератор
почевши од улазног решења s. За сваку потенциjалну локациjу i без поста-
вљеног регенератора, процедура израчунава вредност gain (добит), тj. уку-
пан броj NDC парова коjи би били повезани ако се регенератор постави на i.
Потенциjалне локациjе су сортиране у листи list у опадаjућем редоследу по
односу добити и трошкова (у случаjу GRLP-а, трошак сваке потенциjалне ло-
кациjе регенератора jе 1). Нова локациjа регенератора се насумично бира из
скупа коjи чине првих count елемената из листе list. Вредност count jе jеднака
броjу потенциjалних локациjа са односом добити и трошкова коjи ниjе мањи
од одређене вредности. У предложеноj похлепноj процедури та вредност се ра-
чуна као однос добити и трошкова прве локациjе max из листе list помноженог
параметром γ ∈ (0, 1). Мотивациjа за примену ове стратегиjе за избор нове
локациjе регенератора jе обезбеђивање боље диверсификациjе претраге. Ло-
кациjа са новим постављеним регенератором се брише из листе потенциjалних
локациjа. Након додавања регенератора, ниjе потребно из почетка покретати
проверу допустивости (тj. довољно jе испитати да ли су сви NDC парови озна-
чени као повезани), што обезбеђуjе додатну уштеду времена. Описани кораци
се понављаjу све док се не конструише допустиво решење. Описана похлепна
процедура jе илустрована примером на Слици 4.8.

Основна структура унапређене методе променљивих

околина

Основна структура предложене iBVNS методе jе приказана Алгоритмом 26.
Параметар критериjума заустављања Imax означава максималан броj итерациjа
без побољшања решења, док параметар kmax означава максималну величину
околина. Параметар weighted узима вредност true ако се iBVNS примењуjе на
WGRLP, а false ако се решава GRLP. Почетно решење се конструише похлепном
процедуром (Алгоритам 25), коjа полази од празног решења. Броj итерациjа
без побољшања Icount jе у почетку постављен на 0. Главна VNS петља почиње
постављањем броjача величине околине k на 1. Затим се итеративно приме-
њуjу три основне фазе алгоритма, размрдавање, локална претрага и промена
околине (Move or not) док jе k ≤ kmax. Главна VNS петља се понавља све док
Icount не достигне Imax.
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(a) За сваку потенциjалну локациjу, тj. чвор
jе дата вредност cost. Поред тога, gain
чвора се израчунава као броj нових NDC па-
рова коjи би били повезани ако се регенера-
тор постави на ту локациjу. Ова два броjа
су приказана изнад чвора као (gain, cost).
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(b) Први регенератор jе постављен на чвору
0, са наjвећим односом gain према cost (исто
као чвор 6). У овом случаjу, насумично се
одређуjе коjи ће чвор бити изабран. Вредно-
сти gain за сваки чвор се ажурираjу. Jедан
нови NDC пар jе сада повезан (A-B). Вред-
ност функциjе циља решења jе 1.
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(c) Нови регенератор jе постављен на чвор 6.
Jедан нови NDC пар jе сада повезан (D-E).
Вредност функциjе циља решења jе 2.
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(d) Нови регенератор jе постављен на чвор
3. Четири нова NDC пара су сада повезана
(A-D, A-E, B-D и B-E). Вредност функциjе
циља решења jе 3.

Слика 4.8: Илустрациjа поступка конструкциjе решења. Ради jедноставности,
параметар γ jе постављен на 1.
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(e) Нови регенератор jе постављен на чвор
1. Четири нова NDC пара су сада повезана
(A-C, B-C, C-D и C-E). Решење jе сада допу-
стиво и вредност функциjе циља jе 6. Може
се видети да jе оптимално решење другачиjе
(1, 3 и 6), где jе вредност функциjе циља jед-
нака 5.

Слика 4.8: Илустрациjа поступка конструкциjе решења (наставак)

Алгоритам 25 Процедура похлепне конструкциjе и поправке решења
1: Input: solution s
2: Output: feasible solution s
3: while solution s is infeasible do
4: for i in candidate locations do
5: visited← BFS(i);
6: gaini ← 0
7: pairsi = empty list;
8: for pair in NDCpairs do
9: if pair is not connected and visited(pair.start) and visited(pair.end) then

10: gaini ← gaini + 1;
11: add pair to pairsi;
12: list← sort candidate locations in decreasing order by gain to cost ratio;
13: max← first element of list;
14: count← 0;
15: for e in list do
16: if gain to cost ratio of e ≥ γ· gain to cost ratio of max then
17: count = count+ 1;
18: selected← select random location from the first count elements of list;
19: add regenerator at location selected;
20: mark all pairs from pairsselected as connected;
21: remove selected from candidate locations;

Фаза размрдавања се реализуjе у околини N1 величине k. Прецизниjе, k

насумично изабраних регенератора се уклања из тренутног решења x, што даjе

110



4.3. УНАПРЕЂЕНА МЕТОДА ПРОМЕНЉИВИХ ОКОЛИНА ЗА WGRLP

ново решење x′, коjе представља улаз за процедуру провере допустивости опи-
сану Алгоритмом 24. Ако jе решење x′ недопустиво, похлепна процедура се
примењуjе на x′ и поправља га до допустивог. Алгоритам наставља са фазом
локалне претраге, чиjи jе улаз допустиво решење x′. Фаза локалне претраге
се састоjи од процедура Clean и LocalSearch у случаjу WGRLP-а. Прво се
примењуjе процедура Clean чиjа jе улога уклањање непотребних регенератора
из x′, ако их има. Регенератор се сматра непотребним ако његово уклањање не
утиче на допустивост решења. Затим се примењуjе процедура LocalSearch да
би се пронашло потенциjално боље решење у околини N2 величине k = 1 решења
x′. То значи да се у сваком кораку изводи jедна операциjа замене (уклањање
jедног регенератора из x′ и постављање jефтиниjег), али само ако се том заме-
ном чува допустивост решења. Код имплементациjе процедуре LocalSearch

користи се стратегиjа првог побољшања. У случаjу GRLP-а, описана операциjа
замене не може да побољша вредност функциjе циља, док операциjа затварања
два и постављања jедног регенератора има кубну сложеност, што би значаjно
утицало на време извршавања алгоритма. Стога, при решавању GRLP, кори-
сти се само Clean процедура за уклањање непотребних регенератора, како би
се очувала ефикасност iBVNS-а.

При извршавању корака промене околине (Move or Not), алгоритам ће прећи
у решење x′ добиjено у фази локалне претраге само ако jе оно боље од тренутно
наjбољег решења x. У овом случаjу, броjач итерациjа без побољшања Icount се
ресетуjе на 0, а k се поставља на 1. У супротном, k се повећава за 1, а претрага
се наставља са размрдавањем у околини N1 величине k + 1. Описани кораци
се понављаjу док се не достигне максимални броj итерациjа без побољшања
решења Imax.
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Алгоритам 26 Предложени iBVNS за GRLP и WGRLP
1: Input: Imax, kmax, weighted
2: Output: solution x
3: x← empty solution;
4: GreedyProcedure(x) ;
5: Icount ← 0;
6: while Icount ≤ Imax do
7: k ← 1;
8: while k ≤ kmax do
9: x′ ← Shake in N1(x, k); //Shaking phase

10: x′ ← Clean (x′); //Local search phase
11: if weighted then
12: x′ ← LocalSearch in N2(x

′, 1);
13: if f(x′) < f(x) then //Move or not step
14: x← x′;
15: k ← 1;
16: Icount ← 0;
17: else
18: k ← k + 1;
19: Icount ← Icount + 1;

return x

4.4 Експериментални резултати

За тестирање предложеног iBVNS-а, коришћено jе пет скупова инстанци
из литературе: скупови 1, 2 и 3 коjе су увели Chen и сар. [34] и скупови 4 и
5 коjи су генерисани у раду [134]. Сваки скуп података jе дефинисан броjем
чворова n = |V | у мрежи и процентом p(%) краjњих чворова у V . Скуп 1
садржи GRLP инстанце малих и средњих димензиjа са n∈{50, 75, 100, 125, 150}
и p ∈ {25, 50, 75}. Скуп 2 се добиjа из скупа 1 додавањем насумично одабраних
тежина из скупа {2, 3, 4} потенциjалним локациjама регенератора. Скуп 3 се
састоjи од GRLP инстанци великих димензиjа са n ∈ {175, 200, 300, 400, 500} и
p ∈ {25, 50, 75} пратећи иста правила као за скуп 1. На краjу, скупови 4 и 5
садрже WGRLP инстанце великих димензиjа са n ∈ {175, 200, 300, 400, 500} и
p∈{25, 50, 75}, респективно. Скупови 4 и 5 из рада [134] се добиjаjу на основу
скупа 3 укључивањем насумично одабраних тежина из {2, 3, 4} у случаjу скупа
4 и {1, 2, 3, 4, 5, 6, 7, 8} за скуп 5. Сваки од разматраних скупова садржи по
10 инстанци за сваку комбинациjу n и p. Детаљно обjашњење о томе како су
инстанце генерисане се може наћи у радовима [34,134].

Предложена iBVNS метода jе имплементирана у програмском jезику Java.
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Сви експерименти су извршени на рачунару Intel Core i3-4170 CPU 3.7GHz
са 8GB RAM-а. На свакоj разматраноj инстанци из скупова 1-5, предложени
iBVNS jе покренут пет пута. На основу резултата прелиминарних експериме-
ната, вредности iBVNS параметара се постављаjу на следећи начин: kmax =

2, γ = 0.95, Imax = 50 + n/5 за GRLP, и kmax = 4, γ = 0.95, Imax = 100 + n/10 за
WGRLP.

Табела 4.1: Резултати и поређења на GRLP инстанцама из скупа 1

Група
B&C [34] GH1 [34] GH2 [34] BVNS [134] SVNS [134] iBVNS

UB LB t(s)∗ best t(s)∗ best t(s)∗ best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) t.tot(s)

50
25 7.2 7.2 0.20 7.2 0.00 7.2 0.00 7.3 1.11 1.23 7.3 1.11 0.88 7.2 0.05 0.00 0.00
50 7.5 7.5 0.20 7.7 0.00 7.7 0.00 7.5 0.00 2.74 7.5 0.00 2.67 7.5 0.07 0.00 0.00
75 4.3 4.3 0.10 4.3 0.00 4.3 0.00 4.3 0.00 1.06 4.3 0.00 1.14 4.3 0.04 0.00 0.00

75
25 9.7 9.7 1.40 9.8 0.00 9.8 0.00 9.7 0.00 2.96 9.7 0.00 1.93 9.7 0.10 0.00 0.00
50 9.2 9.2 2.20 9.6 0.00 9.5 0.00 9.2 0.00 3.74 9.2 0.00 6.03 9.2 0.12 0.01 0.20
75 5.5 5.5 0.60 5.5 0.00 5.6 0.00 5.5 0.00 2.96 5.5 0.00 3.09 5.5 0.06 0.00 0.00

100
25 11.7 11.7 6.70 11.8 0.00 11.8 0.00 11.8 0.67 5.92 12.2 2.33 7.73 11.7 0.44 0.04 0.00
50 10.8 10.8 21.50 10.9 0.00 11.0 0.00 10.8 0.55 11.96 10.8 1.15 9.76 10.8 0.51 0.11 0.18
75 7.0 7.0 3.20 7.2 0.00 7.3 0.00 7.0 0.47 14.82 7.0 1.12 12.76 7.0 0.21 0.02 0.00

125
25 14.1 14.1 31.70 14.1 0.00 14.1 0.00 14.2 0.53 12.05 14.1 0.90 10.31 14.1 0.76 0.08 0.00
50 11.9 11.9 237.10 12.1 0.20 12.0 0.10 11.9 0.38 12.91 11.9 1.38 8.84 11.9 0.89 0.15 0.30
75 8.1 8.1 14.20 8.4 0.00 8.5 0.10 8.1 1.28 13.35 8.1 1.87 13.27 8.1 0.36 0.07 1.82

150
25 14.5 14.5 259.80 14.5 0.10 14.5 0.10 14.5 0.15 14.99 14.5 0.89 12.31 14.5 1.13 0.16 0.15
50 12.2 12.2 838.60 12.3 0.40 12.3 0.50 12.2 0.76 18.88 12.2 2.27 17.98 12.2 0.95 0.21 0.21
75 9.1 9.1 403.40 9.5 0.10 9.5 0.20 9.1 1.89 17.75 9.2 2.17 9.54 9.1 0.46 0.07 1.95

Просек 9.52 9.52 121.39 9.66 0.05 9.67 0.07 9.54 0.52 9.16 9.57 1.01 7.88 9.52 0.32 0.06 0.41
∗на Intel Core 2 Duo са 3 GHz и 3.25 GB RAM-а

У Табелама 4.1-4.2, представљени су резултати на GRLP инстанцама из
скупова 1 и 3, респективно. Приказани су резултати предложеног iBVNS-а,
егзактне BnC методе и две хеуристике (GH1 и GH2) из рада [34], као и резул-
тати VNS метода (BVNS и SVNS) предложених у раду [134]. Прве две колоне
Табела 4.1-4.2 садрже параметре n и p(%) за сваку групу инстанци. Преостале
колоне садрже просечне резултате добиjене одговараjућом методом на инстан-
цама из исте групе (тj. инстанцама са истим n и p). Следеће три колоне садрже
горње (UB) и доње границе (LB) оптималног решења добиjеног егзактном BnC
методом и време извршавања у секундама - t(s) коjе захтева BnC на рачунару са
Intel Core 2 Duo 3 GHz и 3.25 GB RAM-а. Следеће четири колоне представљаjу
наjбоље резултате добиjене хеуристикама GH1 и GH2 (best) и одговараjућа вре-
мена извршавања - t(s) на истом рачунару као и BnC. Резултати коjи се односе
на перформансе предложеног iBVNS-а и постоjећих BVNS и SVNS метода су
приказани у последњих десет колона: наjбоље решење добиjено у пет циклуса -
best, просечно процентуално одступање од оптималног (или наjбољег познатог
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решења) - gap(%), просечно време извршавања у секундама коjе jе потребно
за постизање наjбољег решења - t(s), и просечно укупно време извршавања -
t.tot(s). Просечне вредности оптималних (или наjбољих познатих) решења за
сваку групу примера су подебљане у Табелама 4.1-4.2.

Табела 4.2: Резултати и поређења на GRLP инстанцама из скупа 3

Група
B&C [34] GH1 [34] GH2 [34] BVNS [134] SVNS [134] iBVNS

UB LB t(s)∗ best t(s)∗ best t(s)∗ best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) t.tot(s)

175
25 16.3 16.2 1625.50 16.4 0.10 16.5 0.30 16.3 0.00 15.43 16.3 0.59 12.45 16.3 0.39 0.20 1.73
50 13.1 12.3 2667.00 13.2 1.00 13.4 1.00 13.1 3.08 21.70 13.1 4.97 11.16 13.1 1.11 0.39 1.77
75 9.1 9.1 245.30 9.7 0.40 9.6 0.40 9.1 2.93 18.02 9.2 2.92 12.38 9.1 1.46 0.18 0.96

200
25 17.4 16.2 2869.00 17.4 0.30 17.5 0.40 17.4 0.17 21.54 17.4 1.11 13.34 17.4 0.29 0.48 2.40
50 12.8 11.3 3142.00 13.0 2.60 13.0 2.80 12.8 2.04 28.48 12.9 2.31 20.47 12.8 0.62 0.68 2.74
75 10.0 10.0 1116.00 10.6 1.70 10.5 1.70 10.1 1.96 14.55 10.1 2.32 15.02 10.0 0.52 0.35 1.37

300
25 16.8 15.3 3600.00 16.8 1.00 17.4 1.30 19.3 3.85 79.11 19.7 2.65 54.63 19.2 1.14 2.21 8.52
50 15.3 12.6 3600.00 15.4 1.20 16.1 2.40 16.5 2.87 86.08 16.9 4.69 27.27 16.3 2.48 2.52 7.95
75 12.4 9.9 3600.00 12.5 1.50 12.9 2.10 12.0 3.46 49.03 12.2 4.94 12.07 11.8 2.21 0.79 2.99

400
25 21.9 13.3 3600.00 22.4 7.40 22.4 8.90 19.9 2.72 285.61 20.5 3.10 57.06 19.9 1.14 6.67 22.23
50 19.6 11.1 3600.00 19.8 20.30 20.0 18.80 17.2 2.17 248.30 18.0 4.24 54.28 17.1 1.27 5.62 19.37
75 14.4 9.5 3600.00 14.7 4.70 14.4 6.00 13.1 3.94 84.87 13.5 3.66 18.09 13.0 2.01 1.96 7.38

500
25 24.8 12.1 3600.00 25.0 21.60 24.8 28.40 21.9 3.91 543.42 22.8 4.84 185.79 21.9 1.68 21.02 60.82
50 21.4 8.8 3600.00 21.4 20.30 21.4 33.20 18.8 3.04 532.96 19.7 3.32 81.34 18.6 2.69 13.84 44.05
75 12.7 7.6 3600.00 12.7 32.40 15.0 28.20 11.9 6.03 129.08 12.6 4.06 39.27 11.7 3.63 4.20 15.30

Просек 15.87 11.69 2937.65 16.07 7.77 16.33 9.06 15.29 2.81 143.88 15.66 3.32 40.97 15.21 1.51 4.07 13.31
∗на Intel Core 2 Duo са 3 GHz иand 3.25 GB RAM-а

Из резултата приказаних у Табели 4.1, може се видети да iBVNS скоро тре-
нутно достиже оптимална решења за свих 15 група инстанци из скупа 1 (0.06s
у просеку) и да jе његово укупно време рада такође веома кратко (0.41s у про-
секу). Хеуристике GH1 и GH2 су постигле оптимална решења само за 4 и 5
(од 15) група GRLP инстанци из скупа 1, респективно. Методе BVNS и SVNS
су постигле оптимална решења за 12 (од 15) група, a обе методе су потрошиле
више времена у односу на iBVNS да дођу до наjбољих решења (9.16s BVNS за
и 7.88s за SVNS у просеку).

У случаjу GRLP инстанци из скупа 3 коjе нису решене до оптималности,
предложени iBVNS достиже горње границе коjе jе дао егзактни BnC за 6 група
инстанци, док су горње границе добиjене BnC-ом побољшане за 7 од 15 група
инстанци (видети Табелу 4.2). Обе хеуристике, GH1 и GH2 из рада [34] су пока-
зале лоше перформансе на инстанцама из скупа 3. Просечно време извршавања
у коjем iBVNS први пут даjе своjе наjбоље решење и просечно укупно време
извршавања су веома кратки (4.07s и 13.31s, респективно), имаjући у виду ди-
мензиjу инстанци из скупа 3. Претходно предложене методе, BVNS и SVNS из
рада [134] су показале лошиjе перформансе у погледу и квалитета решења и
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времена извршавања у поређењу са iBVNS-ом.
У Табели 4.3, приказано jе поређење iBVNS резултата на наjвећим GRLP

инстанцама са резултатима добиjеним GRASP методом коjу су предложили
Quintana и сар. [147]. Аутори рада [147] су обjавили само резултате GRASP
методе на наjвећим GRLP инстанцама. Да би се обезбедило коректно поређење
iBVNS-а са GRASP-ом, тj. како би просечно време извршавања било мање за
iBVNS, задато jе ограничење од 20 секунди на укупно iBVNS време извршавања
и постављено jе Imax = n/5. Као што се може видети из Табеле 4.3, предложени
iBVNS jе побољшао наjбоља GRASP решења на свих 6 група GRLP инстанци
са n = 400, 500 чворова. У просеку, време коjе jе iBVNS методи требало да
достигне своjе наjбоље решење било jе 4.87, а укупно време рада iBVNS било
jе 12.78. Са друге стране, просечно време извршавања GRASP-а [147] jе било
16.38 секунди на Intel Core i5 2410M CPU са 2.30 GHz и 8GB RAM-а.

Табела 4.3: Резултати и поређења GRASP-а и iBVNS-а на наjвећим GRLP ин-
станцама из скупа 3

Група
GRASP [147] iBVNS
best t(s)∗ best gap(%) t(s) t.tot(s)

400
25 20.9 6.85 19.9 2.68 3.66 13.06
50 18.3 19.53 17.2 2.29 4.09 11.96
75 13.9 4.62 12.9 2.93 1.56 4.88

500
25 23.4 18.25 22.2 3.16 8.98 19.04
50 19.6 19.19 18.7 5.17 9.13 18.69
75 12.4 29.82 11.8 4.96 1.83 9.06

Просечно 18.08 16.38 17.12 3.53 4.87 12.78
∗на Intel Core i5 2410M CPU са 2.30 GHz и 8GB RAM-а

Резултати iBVNS на инстанцама из скупа 2 упоређени су са резултатима
егзактне BnC методе и две похлепне хеуристике (GH1 и GH2) [34], као и са ре-
зултатима SVNS и BVNS метахеуристика [134]. Предложени iBVNS и постоjећи
SVNS и BVNS [134] су тестирани на истом рачунару. Резултати експеримената
на скупу 2 су представљени у Табели 4.4 на исти начин као у Табелама 4.1-
4.2. Резултати приказани у Табели 4.4 показуjу да само iBVNS метода и SVNS
из [134] достижу сва оптимална решења коjа су претходно добиjена егзактном
BnC методом на свакоj групи инстанци у скупу 2, док GH1, GH2, и BVNS даjу
решења лошиjег квалитета. SVNS jе био нешто бољи од iBVNS-а у погледу про-
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Табела 4.4: Резултати и поређења на WGRLP инстанцама из скупа 2

Група
B&C [34] GH1 [34] GH2 [34] BVNS [134] SVNS [134] iBVNS

UB LB t(s)∗ best t(s)∗ best t(s)∗ best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) t.tot(s)

50
25 21.3 21.3 0.20 21.4 0.00 21.4 0.00 21.3 0.00 2.52 21.3 0.00 2.29 21.3 0.00 0.00 0.36
50 21.3 21.3 0.20 21.4 0.00 21.3 0.00 21.3 0.00 2.93 21.3 0.00 3.81 21.3 0.00 0.01 0.54
75 11.3 11.3 0.10 11.5 0.00 11.5 0.00 11.3 0.00 1.61 11.3 0.00 1.97 11.3 0.00 0.00 0.43

75
25 28.2 28.2 1.20 28.4 0.00 28.4 0.00 28.2 0.00 3.99 28.2 0.00 2.57 28.2 0.00 0.01 0.76
50 25.7 25.7 2.20 26.1 0.00 25.8 0.00 25.7 0.00 9.92 25.7 0.07 8.82 25.7 0.00 0.04 1.43
75 13.9 13.9 0.40 14.5 0.00 14.2 0.00 13.9 0.00 5.73 13.9 0.00 4.71 13.9 0.33 0.04 0.55

100
25 35.0 35.0 5.20 35.1 0.00 35.0 0.00 35.0 0.28 15.04 35.0 0.04 15.42 35.0 0.00 0.06 2.28
50 28.6 28.6 15.90 28.8 0.00 28.9 0.20 28.6 0.69 19.06 28.6 0.05 29.03 28.6 0.00 0.14 3.11
75 18.7 18.7 2.30 19.1 0.00 18.9 0.10 18.7 0.11 12.52 18.7 0.19 16.27 18.7 1.02 0.10 1.39

125
25 42.6 42.6 35.10 42.6 0.10 42.6 0.10 42.7 0.12 19.91 42.6 0.00 27.03 42.6 0.24 0.28 4.10
50 31.6 31.6 124.70 32.5 0.20 32.3 0.50 31.6 0.52 61.33 31.6 0.44 80.92 31.6 0.31 0.67 5.45
75 20.1 20.1 9.60 20.8 0.20 20.9 0.00 20.1 0.75 33.86 20.1 0.47 42.64 20.1 0.87 0.38 3.46

150
25 41.9 41.9 146.10 42.0 0.10 42.1 0.30 42.2 0.04 15.88 41.9 0.00 16.73 41.9 0.00 0.36 7.58
50 32.3 32.3 562.30 33.3 1.20 32.8 0.60 32.3 0.75 23.28 32.3 0.59 21.25 32.3 0.10 1.10 8.36
75 21.4 21.4 31.20 22.1 0.20 21.9 0.50 21.4 0.87 50.1 21.4 0.64 37.67 21.4 0.27 0.48 3.21

Просек 26.26 26.26 62.45 26.64 0.13 26.53 0.15 26.29 0.28 18.51 26.26 0.17 20.74 26.26 0.21 0.25 2.87
∗на Intel Core 2 Duo са 3 GHz и 3.25 GB RAM-а

сечних вредности одступања на свим инстанцама из скупа 2 (0.17% за SVNS
и 0.21% за iBVNS). Међутим, у погледу времена извршавања, iBVNS се пока-
зао супериорниjим у односу на SVNS и BVNS. Подаци представљени у колони
t(s) показуjу да jе просечно време потребно iBVNS методи да постигне наjбоље
решење било 0.25s, док jе SVNS методи било потребно 20.74s, а BVNS методи
18.51s. Чак jе и просечно укупно време рада iBVNS-а (2.87s) било неколико
пута краће у поређењу са просечним временом SVNS-а и BVNS-а за постизање
своjих наjбољих решења. Xеуристике GH1 и GH2 су биле брзе у проналажењу
решења, али jе њихов квалитет решења био значаjно лошиjи у поређењу са
iBVNS-ом и другим метахеуристикама за WGRLP.

Експериментални резултати за скупове података 4 и 5 представљени су у
Табелама 4.5 и 4.6, респективно. За ове WGRLP инстанце великих димензиjа,
до сада нису позната оптимална решења. Стога, Табеле 4.5-4.6 садрже само
резултате SVNS-а и BVNS-а [134] и резултате предложеног iBVNS-а. На основу
приказаних података, може се закључити да jе iBVNS надмашио и SVNS и
BVNS у погледу квалитета решења, стабилности и времена рада. Предложени
iBVNS jе дао наjбоља позната решења за свих 15 група инстанци из скупа 4,
док су BVNS и SVNS достигли наjбоља позната решења само на осмоj и трећоj
групи инстанци, респективно.

Сличан закључак се може извести и за инстанце из скупа 5, где jе iBVNS по-
стигао наjбоља позната решења на свих 15, а BVNS и SVNS на 9 група инстанци.
Мале вредности просечног одступања (0.62% за скуп 4 и 0.06% за скуп 5) ука-
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зуjу на стабилност предложеног iBVNS приступа. Просечно време извршавања
за коjе jе iBVNS постигао своjе наjбоље решење по први пут (18.87s за скуп 4 и
11.61s за скуп 5) jе знатно ниже у поређењу са одговараjућим временима извр-
шавања BVNS-а (372.18s за скуп 4 и 217.95s за скуп 5) и SVNS-а (300.64s за скуп
4 и 226.62s за скуп 5). У просеку, укупно iBVNS време извршавања jе кратко
(67.78s за скуп 4 и 75.90s за скуп 5), што указуjе на ефикасност предложене
метахеуристике при решавању инстанци WGRLP великих димензиjа.

Табела 4.5: Резултати и поређења на WGRLP инстанцама из скупа 4

Група
SVNS [134] BVNS [134] iBVNS

best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) t.tot(s)

175
25 43.6 0.55 28.44 43.6 0.37 33.55 43.6 0.00 2.10 15.85
50 34.4 0.92 67.02 34.3 0.64 77.74 34.3 0.22 2.90 12.26
75 21.6 0.68 25.50 21.4 1.13 22.65 21.4 0.28 0.41 3.14

200
25 48.0 0.49 58.62 48.0 0.40 64.49 48.0 0.05 2.22 20.89
50 32.8 0.88 52.09 32.7 1.06 58.89 32.7 0.17 3.19 16.34
75 25.0 1.81 53.50 25.0 0.96 54.07 25.0 0.37 1.85 8.52

300
25 50.9 0.61 223.31 50.8 0.78 346.04 50.8 0.62 13.98 83.63
50 39.9 1.70 314.77 39.9 1.58 448.48 39.7 0.78 10.39 51.78
75 28.9 1.85 202.92 28.9 1.95 282.75 28.7 1.74 5.65 20.43

400
25 50.9 1.82 614.73 50.6 1.26 674.45 50.1 0.39 40.57 152.13
50 40.6 1.98 606.37 40.3 2.65 626.66 40.3 0.85 36.99 121.98
75 29.5 4.20 390.84 29.6 3.26 479.98 29.3 1.12 8.59 34.88

500
25 54.3 1.57 757.32 54.5 2.20 786.44 53.0 1.05 79.33 219.57
50 44.8 2.89 690.11 44.7 4.01 927.09 43.1 1.22 64.93 194.22
75 27.3 3.83 424.06 26.8 4.95 699.36 26.5 0.48 9.93 56.59

Просек 38.17 1.72 300.64 38.07 1.81 372.18 37.77 0.62 18.87 67.48
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Табела 4.6: Резултати и поређења на WGRLP инстанцама из скупа 5

Група
SVNS [134] BVNS [134] iBVNS

best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) t.tot(s)

175
25 56.1 0.00 17.06 56.1 0.00 14.30 56.1 0.00 1.63 20.37
50 37.3 0.44 40.62 37.3 0.34 43.34 37.3 0.03 2.79 17.67
75 19.7 0.07 17.19 19.7 0.07 27.31 19.7 0.00 0.32 4.18

200
25 64.1 0.00 42.48 64.1 0.10 27.35 64.1 0.00 1.01 29.64
50 31.3 0.19 40.17 31.3 0.00 35.42 31.3 0.00 1.51 19.11
75 22.9 0.05 29.99 22.9 0.05 20.83 22.9 0.05 0.46 6.34

300
25 55.1 0.33 240.05 55.1 0.05 231.45 55.1 0.00 11.06 112.09
50 37.8 0.50 170.46 37.8 0.29 244.32 37.8 0.07 7.75 80.29
75 22.8 1.15 173.30 22.9 1.01 148.42 22.8 0.07 4.08 24.54

400
25 52.6 0.59 384.67 52.6 0.26 290.12 52.3 0.19 32.05 171.07
50 34.9 0.78 433.95 34.7 0.25 458.64 34.7 0.04 11.17 136.31
75 21.8 0.62 227.74 21.8 0.47 263.24 21.7 0.00 3.09 36.82

500
25 58.5 0.92 630.76 58.7 0.66 555.41 58.1 0.16 45.36 224.76
50 34.1 1.15 542.47 34.3 0.91 563.93 33.6 0.27 47.05 197.16
75 18.4 0.34 408.37 18.4 0.26 345.23 18.3 0.00 4.83 58.17

Просек 37.83 0.48 226.62 37.85 0.31 217.95 37.72 0.06 11.61 75.90
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Глава 5

Двокритериjумски уопштени
проблем постављања регенератора
у оптичким мрежама

5.1 Опис проблема и преглед релевантне

литературе

Код претходно описаних GRLP и WGRLP, у случаjу ограниченог буџета,
ниjе увек могуће остварити комуникациjу између свих краjњих корисника пу-
тем оптичке мреже. То jе управо мотивациjа за увођење двокритериjимског
GRLP модела коjи узима у обзир и трошкове инсталациjе (тj. трошкове поста-
вљања регенератора) и комуникациjу парова краjњих корисника мреже. Како
у пракси, сви парови не мораjу имати исти приоритет, за другу функциjу циља
узима се збир тежинских коефициjената повезаних парова краjњих чворова.
Описану вариjанту вишекритериjумског GRLP представили смо у раду [140] и
до тада у литератури ова вариjанта GRLP ниjе била разматрана.

Нека jе S скуп локациjа за постављање регенератора и нека jе L ⊆ S скуп
чворова на коjима су постављени регенератори. Са T jе означен скуп парова
краjњих чворова. Прва функциjа циља f1 jе сума трошкова cl постављених
регенератора из скупа L. Друга функциjа циља f2 се добиjа сабирањем тежина
wij по свим паровима повезаних краjњих чворова i, j ∈ T . За рачунање друге
функциjе циља треба пронаћи коjи су парови краjњих чворова повезани након
постављања регенератора и сабрати њихове тежине. Посматрамо истовремено
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два циља: минимизациjу функциjе f1 и максимизациjу функциjе f2.
У литератури постоjи неколико радова коjи се односе на проблем поста-

вљања регенератора у оптичким мрежама, коjи укључуjу две или више функ-
циjа циља. Међутим, постоjећи радови користе другачиjе моделе у односу на
GRLP и уско су везани за специфичне технологиjе оптичких мрежа. Поред
тога, разматраjу само броj регенератора коjи треба минимизовати, али не узи-
маjу у обзир разлике у цени постављања регенератора на различитим локаци-
jама. На пример, у раду [29], аутори применом вариjанте генетског алгоритма
за вишекритериjумску оптимизациjу NSGA-II оптимизуjу две фукциjе циља:
вероватноћу блокирања и укупан броj регенератора. У раду [32] се оптими-
зуjу исте функциjе циља под претпоставком да jе могуће инсталирати више
регенератора на jедноj локациjи. Трећи проблем, разматран у [156], укључуjе
трошкове рутирања, броj операциjа регенерациjе сигнала и броj чворова коjи
врше регенерациjу. Резултуjући математички модел jе у [156] решаван програ-
мирањем ограничења (енгл. Constraint Programming).

За решавање разматраног проблема у раду [140] примењена су три позната
уопштена еволутивна алгоритма коjи се користе у вишекритериjумскоj опти-
мизациjи: NSGA-II [51], SPEA-II [188] и SMS-EMOA [17]. Имплементациjе ал-
горитама у раду [140] су прилагођене разматраном проблему.

Модификовани алгоритми NSGA-II, SPEA-II и SMS-EMOA за решавање
двокритериjумског GRLP користе бинарни низ за репрезентациjу решења, где
jе броj елемената низа jеднак броjу потенциjалних локациjа за регенераторе:
r = n(1 − p/100), где jе n броj чврова, а p проценат краjњих чворова (кори-
сника) у конкретном тест примеру. Решења почетне популациjе се генеришу на
случаjан начин. За свако решење се на случаjан начин бира броj k (0 ≤ k ≤ r),
а затим се k случаjно изабраних битова у бинарноj репрезентациjи решења по-
ставља на 1. Као оператор селекциjе се користи бинарна турнирска селекциjа.
За оператор укрштања се користи jеднопозиционо укрштање, док се мутациjа
реализуjе jедноставном променом вредности изабраних битова са одређеном ве-
роватноћом.

Основни корак у имплементациjи наведених алгоритама je обезбедити ефи-
касну евалуациjу решења. Прва функциjа циља се jедноставно рачуна на основу
цена постављених регенератора. За рачунање друге функциjе циља треба про-
наћи коjи су парови повезани након постављања регенератора и сабрати њихове
тежине. За ефикасну евалуациjу решења користи се процедура заснована на
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претрази графа у ширину, коjа се покреће из сваког постављеног регенератора
као што jе описано у претходном Поглављу 4, Алгоритмом 23. Описани кораци
евалуациjе решења приказани су Алгоритмом 27. Осим у модификованим ево-
лутивним алгоритмима NSGA-II, SPEA-II и SMS-EMOA, описана процедура се
користи и за ефикасно рачунање функциjа циља у предложеним алгоритмима
заснованим на методи променљивих околина за двокритериjумски GRLP, коjи
су описани у насатавку Поглавља 5.

Алгоритам 27 Евалуациjа функциjа циља двокритериjумског GRLP
1: Input: solution x, costs, weights
2: Output: f1, f2
3: visitedRegenerators ← ∅
4: f1 ← 0
5: f2 ← 0
6: for r in x.regenerators do
7: if r /∈ visitedRegenerators then
8: visited← BFS(r);
9: for pair in NDCpairs do

10: if pair is not connected and visited(pair.start) and visited(pair.end) then
11: mark pair as connected;
12: f2 ← f2+ weights[pair]

13: for p in x.regenerators do
14: if visited(p) then
15: add p to visitedRegenerators;
16: f1 ← f1 + costs[r]

5.2 Вишекритериjумска метода променљивих

околина

У овоj дисертациjи предложено jе неколико алгоритама заснованих на ме-
тоди променљивих околина за решавање двокритериjумског GRLP, MO-BVNS,
MO-RVNS, MO-GVNS чиjа jе основна структура иста као и структура наве-
дених алгоритама за решавање двокритериjумског проблема максималног по-
кривања локациjа, описаних у Поглављу 3. Kод вишекритериjумског GRLP
нема недопустивих решења, стога броj постављених регенератора може бити од
0 до n. Код фазе размрдавања Shake инвертуjе се k битова, где се са jедна-
ком вероватноћом од 0.5 уклања регенератор или поставља нови. Код локалне
претраге LocalSearch1 за побољшање f1, решење из околине се добиjа укла-
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њањем jедног регенератора. У случаjу локалне претраге LocalSearch2 за
побољшање функциjе f2, решење из околине се добиjа постављањем jедног ре-
генератора. Oбе локалне претраге се покрећу само ако већ нису покретане на
датом решењу из фазе размрдавања. Као што jе већ поменуто, имплемента-
циjа вариjанти вишекритериjумске VNS методе такође користи Алгоритам 27
за евалуациjу решења.

5.3 Експериментални резултати

За експерименте су модификоване инстанце из скупова 2 и 4 из радова [34]
и [134]. Димензиjе инстанце jедне групе су одређене броjем чворова n, као и
процентом чворова коjи представљаjу краjње чворове p. Инстанце су подељене
на групе са ознаком n(r), где je r = n(1−p/100), при чему свака група садржи по
10 инстанци. Инстанце су проширене тежинама за сваки пар краjњих чворова,
при чему свака тежина узима случаjну вредност из скупа 1, 2, 3, 4, 5.

За све алгоритме критериjум заустављања jе ограничено време извршавања
на n/10 секунди. За еволутивне алгоритме параметри су следећи: величина
популациjе jе 100, вероватноћа мутациjе 2/r, док jе вероватноћа укрштања 0.9.
За све VNS методе параметар kmax jе постављен на 3. Имплементирани ал-
горитми су упоређени на исти начин као у Поглављу 3, помоћу метрика HV ,
IGD, EPS+, C, Size. Takoђе, како прави Парето фронт ниjе познат, и овде
су комбиновини Парето фронтови из свих покретања свих шест разматраних
алгоритама и коришћени као референтни скуп.

Сваки имплементирати алгоритам jе покренут 10 пута за сваку инстанцу
из сваке групе. Експерименти су покретани на рачунару са процесором Intel
i7-8650U@1.90GHz и 16 GB RAM мемориjе. Добиjени резултати су приказани
у Табелама 5.1- 5.12 на следећи начин. За сваки индикатор перформанси (HV,
IGD, EPS+, C и Size), чуваjу се средња вредност (mean), минимум (min),
максимум (max) и медиjана (med.) вредности добиjених током 10 извршавања
посматраног алгоритма на свакоj тест инстанци. Стандардна девиjациjа (std)
добиjених вредности jе такође приказана. Просек вредности mean, std, med.,
min и max статистика за сваки индикатор перформанси jе израчунат по групама
инстанци. Ове просечне вредности су приказане у Табелама 5.1- 5.12, а наjбоље
mean вредности су подебљане.
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5.3. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

На основу приказаних резултата може се закључити да вариjанта MO-RVNS
даjе наjбоље резултате на инстанцама великих димензиjа. На инстанцама ма-
њих димензиjа алгоритми су упоредиви, где се посебно не истиче неки од те-
стираних.

На слици 5.1 су приказане средње вредности за сваку метрику и сваки алго-
ритам на инстанцама димензиjе n = 500. Aнализом средњих вредности разма-
траних метрика на овим инстанцама коjе су наjвећи изазов за решавање, може
се закључити да jе MO-RVNS показао наjбоље перформансе у односу на остале
алгоритме по свим метрикама. Изузетак jе величина апроксимативног скупа,
где су вариjанте МО-BVNS i MO-GVNS биле боље.
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5.3. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ
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Слика 5.1: Средње вредности метрика алгоритама на инстанцама наjвећих ди-
мензиjа n = 500
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Закључак

У овоj дисертациjи су разматрана два локациjска проблема, дефинисане
њихове двокритериjумске вариjанте и предложене ефикасне метахеуристичке
методе за решавање jеднокритериjумских и двокритериjумских вариjанти ових
проблема.

Уведена jе нова вариjанта локациjског проблема максималног покривања
(енгл. Маximal Covering Location Problem, MCLP) са преференциjама кори-
сника и ограниченим буџетом, коjа до сада ниjе била разматрана у литератури.
Дата jе математичка формулациjа ове нове вариjанте MCLP проблема и пре-
дложене су вариjанте методе променљивих околина за њено решавање. Такође,
предложена jе и двокритериjумска вариjанта MO-MCLP, коjа тражи баланс из-
међу тежинске суме потражње покривених корисника (где тежине одговараjу
преференциjама) и броjа непокривених корисника. Развиjене су вишекритери-
jумске вариjанте методе променљивих околина за решавање MO-MCLP коjе су
упоређене са уопштеним еволутивним алгоритмима.

Предложена jе ефикасна метода променљивих околина за решавање уопште-
ног проблема постављања регенератора у оптичким мрежама (енгл. Generalized
Regenerator Location Problem, GRLP), као и његове тежинске вариjанте WGRLP.
Резултати имплементиране методе су упоређењени са наjбољим из литературе.
Поред тога, дефинисана jе и двокритериjумска вариjанта MO-GRLP, где jе цена
постављања регенератора jедна функциjа циља, док другу чини сума тежина
повезаних парова краjњих чворова. Вишекритериjумска вариjанта методе про-
менљивих околина jе прилагођена за решавање MO-GRLP и резултати су упо-
ређени са уопштеним еволутивним алгоритмима.

Научни допринос ове дисертациjе огледа се у следећим резултатима:

• Предложен jе нови, унапређени начин решавања MCLP са преференци-
jама корисника у односу на постоjеће алгоритме из литературе.
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• Дефинисана jе нова вариjанта MCLP проблема са преференциjама кори-
сника и ограниченим буџетом.

• Предложене су вариjанте методе променљивих околина за решавање нове
MCLP вариjанте чиjи су резултати упоређени са егзактним решавачем.

• Дефинисан jе нови двокритериjумски MCLP са преференциjама кори-
сника са циљем остваривања баланса између покривене потражње кори-
сника и броjа непокривених корисника.

• У циљу решавања предложеног MO-MCLP, развиjене су различите вари-
jанте вишекритериjумске методе променљивих околина, чиjи су резултати
упоређени са резултатима постоjећих уопштених еволутивних алгоритама
за вишекритериjумску оптимизациjу.

• Генерисане су нове инстанце великих димензиjа на основу реалних по-
датака за MCLP са преференциjама корисника. Ове тест инстанце су
коришћене за евалуациjу ефикасности метода за решавање jеднокритери-
jумског и двокритериjумског MCLP.

• Унапређен jе начин решавања WGRLP у односу на постоjећа решења из
литературе.

• Уведен je нови ефикасни начина за проверу допустивости решења и ажу-
рирање вредности функциjе циља приликом локалне претраге код реша-
вања WGRLP.

• Дефинисан je нови двокритериjумски GRLP, решаван уопштеним еволу-
тивним алгоритмима, као и предложеном вишекритериjумском методом
променљивих околина.

Део ових доприноса обjављен jе у радовима у часописима индексираним на
SCI листи [132, 136, 137], као и радовима у зборницима конференциjа [134, 135,
138–140,170].

Будући правци истраживања могу да укључе хибридизациjу метода за реша-
вање вариjанти MCLP и WGRLP са хеуристикама или егзактним методама. За-
тим, проширивање двокритериjумских проблема новим функциjама циља коjе
би jош боље одсликавале ситуациjе у пракси. Поред тога, могуће jе приме-
нити предложене вишекритериjумске методе променљивих околина на сличне
вишекритериjумске проблеме из литературе.

138



Библиографиjа

[1] Mohammad Amin Adibi, Mostafa Zandieh, and Maghsoud Amiri. Multi-
objective scheduling of dynamic job shop using variable neighborhood search.
Expert Systems with Applications, 37(1):282–287, 2010.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory,
algorithms, and applications. Prentice Hall, New Jersey, USA, 1993.

[3] Deniz Aksen, Nuray Piyade, and Necati Aras. The budget constrained r-
interdiction median problem with capacity expansion. Central European
Journal of Operations Research, 18:269–291, 2010.

[4] Ekatarina Alekseeva and Yury Kochetov. Genetic local search for the p-median
problem with client’s preferences. Дискретный анализ и исследование опе-
раций, 14(1):3–31, 2007.

[5] Khalil Amine. Multiobjective simulated annealing: Principles and algorithm
variants. Advances in Operations Research, 2019:1–13, 2019.

[6] Claus Aranha, Christian L Camacho Villalón, Felipe Campelo, Marco Dorigo,
Rubén Ruiz, Marc Sevaux, Kenneth Sörensen, and Thomas Stützle. Metaphor-
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[28] Martha-Selene Casas-Ramı́rez, José-Fernando Camacho-Vallejo, Juan A Dı́az,
and Dolores E Luna. A bi-level maximal covering location problem.
Operational Research: An International Journal, 20:827–855, 2017.

[29] Matheus A Cavalcante, Helder A Pereira, Daniel AR Chaves, and Raul C
Almeida. Evolutionary multiobjective strategy for regenerator placement in

141



elastic optical networks. IEEE Transactions on Communications, 66(8):3583–
3596, 2018.
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