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Abstract: Despite numerous clinical attempts to treat tumors, malignant tumors remain a
significant threat to human health due to associated side effects. Consequently, researchers
are dedicated to studying the dynamical evolution of tumors in order to provide guidance
for therapeutic treatment. This paper presents a stochastic tumor-immune model to dis-
cover the role of the regime switching in microenvironments and analyze tumor evolution
under comprehensive pulse effects. By selecting an appropriate Lyapunov function and
applying It6’s formula, the ergodicity theory of Markov chains, and inequality analysis
methods, we undertake a systematic investigation of a tumor’s behavior, focusing on its
extinction, its persistence, and the existence of a stationary distribution. Our detailed
analysis uncovers a profound impact of environmental regime switching on the dynamics
of tumor cells. Specifically, we find that when the system is subjected to a high-intensity
white noise environment over an extended duration, the growth of tumor cells is markedly
suppressed. This critical finding reveals the indispensable role of white noise intensity
and exposure duration in the long-term evolution of tumors. The tumor cells exhibit a
transition from persistence to extinction when the environmental regime switches between
two states. Furthermore, the growth factor of the tumor has an essential influence on the
steady-state distribution of the tumor evolution. The theoretical foundations in this paper
can provide some practical insights to develop more effective tumor treatment strategies,
ultimately contributing to advancements in cancer research and care.

Keywords: tumor-immune interaction; stochastic perturbations; regime switching;
impulsive perturbations; persistence and extinction

MSC: 37A50; 58K30; 65D25; 92-10

1. Introduction

Cancer is one of the most severe global health threats; its high mortality rate makes
effective treatment a critical topic in medical research. Although existing therapies [1-4]
such as surgery, radiotherapy, chemotherapy, and immunotherapy have improved patient
survival rates to some extent, the complexity of cancer presents multiple challenges for
treatment. In particular, the complicated interactions between the immune system and
tumors pose a core issue in clinical practice: how to effectively control tumor growth and
improve therapeutic outcomes.
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In recent years, comprehensive pulsed therapy has attracted increasing attention as a
comprehensive strategy by combining chemotherapy with immunotherapy. This approach
utilizes periodic pulsed treatments to reduce side effects and enhance immune responses,
thereby improving therapeutic efficiency [5,6]. Under single-mode treatment, chemother-
apy or immunotherapy alone often struggles to fully control tumors or may lead to drug
resistance or adverse effects. In contrast, combining immunotherapy with chemotherapy
can significantly improve therapeutic outcomes and counteract tumor resistance [6]. Some
valuable work associated with comprehensive pulsed therapy has shown the advantages
of this therapy. For example, ref. [7] constructed a stochastic pulsed dynamical model
to study tumor evolution and extinction conditions under combined chemotherapy and
immunotherapy. Their results showed that comprehensive treatment profoundly influences
tumor progression and, under specific conditions, can lead to complete tumor cell eradica-
tion. Moreover, their model indicates that varying doses and intervals of pulsed therapy
have an optimal combination for better therapeutic outcomes [8]. In addition, a hybrid
treatment model proposed in [9] reveals that low-dose chemotherapy combined with inten-
sive immunotherapy effectively alleviates side effects while enhancing overall treatment
efficiency. Thus, by integrating the advantages of chemotherapy and immunotherapy, com-
prehensive pulsed therapy not only optimizes therapeutic outcomes but also reduces side
effects, providing more personalized and effective treatment strategies for cancer patients.

However, most existing studies are limited to deterministic frameworks [10-15], ne-
glecting the impact of environmental fluctuations on treatment efficacy. In reality, factors
such as tumor growth rates, immune responses, and other biological parameters are fre-
quently influenced by environmental changes, including variations in drug concentrations
and immune activity. Traditional deterministic models are inadequate in capturing such
uncertainties. In tumor-immune modeling, stochasticity has proven to significantly influ-
ence system dynamics: different types of stochastic noise, such as Lévy noise and Gaussian
white noise, can induce state transitions in tumors [16]; the correlation strength of noise di-
rectly determines stability and transition probabilities during treatment [17]; and stochastic
resonance phenomena highlight the potential for synergistic optimization between noise
and therapeutic parameters, significantly enhancing treatment outcomes [18]. Additionally,
noise impacts the steady-state distribution and statistical properties of the system, provid-
ing critical guidance for treatment strategy design [19]. These findings collectively validate
the central role of stochasticity in dynamic tumor modeling and therapy optimization.
Therefore, incorporating stochasticity into tumor-immune models is essential to improve
model precision and real-world applicability.

Furthermore, as the understanding of tumor-immune mechanisms has deepened, an
increasing number of studies have introduced stochastic switching mechanisms to simulate
the dynamic changes in tumor growth and immune response processes. By employing
Markov chains to characterize stochastic switching, it is possible to effectively capture
system parameter fluctuations induced by environmental changes, offering more precise
and detailed mathematical descriptions for cancer treatment. Ref. [20] constructed a
stochastic tumor-immune model with pulse treatment and demonstrated the impact of
stochastic and pulsed disturbances on tumor cell extinction dynamics, emphasizing the
critical role of environmental randomness in treatment outcomes. Ref. [21] proposed a
tumor—-immune model regulated by a Markov chain, deriving threshold conditions to
reveal how environmental parameter changes determine tumor cell extinction or long-term
survival. Moreover, ref. [22] explored a prostate cancer model incorporating Gaussian white
noise and environmental switching, finding that the combined effects of high-intensity noise
and environmental switching effectively suppressed tumor development and improved
patient quality of life. These studies indicate that stochastic switching and environmental



Mathematics 2025, 13, 928 3 0f 29

fluctuations are crucial factors for optimizing tumor immunotherapy strategies, providing
theoretical support for more precise treatment protocols.

During specific antitumor immune responses, helper T-cells and hunting T-cells form
functionally complementary dual-track mechanisms: Helper T-cells are activated by recog-
nizing MHC class II molecular complexes on antigen-presenting cells (e.g., macrophages),
subsequently secreting cytokines such as IL-2 and transmitting co-stimulatory signals to
establish the essential microenvironment for hunting T-cell proliferation and differentiation
[23]. Upon activation, hunting T-cells rely on MHC class I molecules to precisely identify
tumor-specific antigen epitopes, triggering target cell apoptosis via perforin—granzyme
complex release, while simultaneously generating immunological memory to prevent re-
currence [24,25]. These two subsets synergize through hierarchical antigen presentation
and coordinated signaling cascades, constructing a spatiotemporally dynamic immune
clearance network against malignant cells. Nevertheless, studies such as [20,21] only con-
sider two populations—tumor cells or tumor cells with hunting T-cells—while ignoring
the presence of helper T-cells. Although [26] accounted for three cell types, it did not
consider stochastic switching. Therefore, this study proposes a new stochastic switching
model based on three populations: tumor cells, hunting T-cells, and helper T-cells. By
incorporating pulse therapy and stochastic switching, this model aims to explore the effects
of environmental fluctuations on tumor immunotherapy and provide optimized strategies
and theoretical support for cancer treatment.

2. Tumor-Immune Model and Preliminaries
2.1. Stochastic Tumor—Immune Model with Pulsed Effect and Regime Switching

In research on tumor immunodynamics, Kaur [27] employed a Michaelis-Menten
kinetic model to elucidate cytokine-mediated dynamic interactions between helper T-cells
and tumor cells, demonstrating that the biological threshold of affinity enhancement ef-
fectively suppresses tumor proliferation. Based on this framework, Wang [28] introduced
stochastic perturbations through Gaussian white noise to quantify microenvironmental
fluctuations while delineating the tripartite regulatory network involving tumor cells, hunt-
ing T-cells, and helper T-cells (Figure 1). Subsequently, Li [29] advanced this paradigm by
establishing the following integrated stochastic immune-oncology model that incorporates
both biological noise and periodic variations due to pharmacological interventions:

dT(t) = alT(l - (;T) - blTH) dt+0’1TdBl(t),
1

dH(t) = (’)/HR —d1H - szT)dt + UszBz(t), t #£nP,n € zt,
R hTR
dR(t) = (azR (1 - C2> —YHR —daR + T"’S) dt + 03RdBs(t), (1)

T(nP*) = [1—a(nP)]T(nP),
H(nP%) = [1+B(nP)|H(nP), st=nP,necZ",
R(nP*) = R(nP),

where T(t), H(t), and R(t) represent the populations of tumor cells, hunting T-cells, and
helper T-cells, respectively. The initial conditions of the model are T(0) > 0, H(0) > 0,
and R(0) > 0. The parameters include the intrinsic growth rates of tumor cells and helper
T-cells, denoted as a; (i = 1,2), and the environmental carrying capacities, denoted as
¢; (i = 1,2). The interaction between tumor cells and hunting T-cells leads to the loss
rate b; (i = 1,2), while the death rates of hunting T-cells and helper T-cells are given
by d; (i = 1,2). Additionally, helper T-cells activate hunting T-cells at a rate of v, and
their proliferation occurs at the rate & with the half-saturation constant g. The terms B;(t)
(i = 1,2,3) represent independent Brownian motions, and o; (i = 1,2,3) denote their
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corresponding noise intensities. The parameter P denotes the time interval between two
consecutive pulse therapies. The function a(nP) represents the tumor cell killing rate
during the n-th chemotherapy cycle, while b(nP) denotes the recruitment rate of hunting
T-cells during the n-th immunotherapy cycle.
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Figure 1. Diagram of interactions among tumor cells, hunting T-cells, and helper T-cells.

Markov chains demonstrate unique advantages in modeling environmental stochastic-
ity within complex biological systems: First, their finite-state switching mechanism [22,30]
effectively captures discontinuous transitions in tumor microenvironments or host immune
states, utilizing steady-state distributions to quantify the regulatory effects of multi-state
residence probabilities on system dynamics. Second, coupling Markov chains with white
noise [20,31] enables the differentiation of temporal-scale environmental perturbations;
the state transitions (colored noise) drive macroscopic behavioral evolution (e.g., tumor
drug-resistant phenotypic switching), while white noise captures transient parameter fluc-
tuations (e.g., random variations in drug metabolic rates). These properties solidify Markov
chains as an ideal framework for integrating environmental heterogeneity, therapeutic
perturbations, and biological adaptive mechanisms. To better capture the dynamic changes
in the external environment and their impact on the tumor-immune system, this study
incorporates a continuous-time finite-state Markov chain into the model. The interactions
among tumor cells, hunting T-cells, and helper T-cells after incorporating the Markov chain
are shown in Figure 1. The rationale for this approach lies in the observation that variations
in external conditions can lead to abrupt changes in tumor growth rates, immune response
intensity, and other biological parameters. For instance, paclitaxel effectively suppresses
tumor growth at a dosage of 28 mg/kg but becomes almost ineffective at 10 mg/kg [26].
Such abrupt changes cannot be adequately characterized by traditional Gaussian white
noise. By modeling these variations as state transitions governed by a Markov chain, it
becomes possible to represent the system’s behavior under distinct environmental states
and provide a more comprehensive understanding of tumor-immune dynamics under
complex environmental conditions. Based on this refinement, the original system model is
modified as follows:
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dT(t) = (al(r(t))T<1 ﬁ) fbl(r(t))TH)dt+(71(r(t))TdBl(t),

4H() = ()R — dy(r()H ~ b OV + () HaBa(D), t£nPne

dR(t) = (az(r(t))R (1 - m) —(r(#))HR — dy(r(t))R + %)dt + o3(r(t))RdBs(t), @)
T(nP") = [1 — a(nP)]T(nP),

H(nPt) =[1+B(nP)|H(nP), st=nPncZ".

R(nP*) = R(nP),

In which r(t) denotes a continuous-time finite-state Markov chain with the state space
M=/{1,2,...,m}, characterizing the stochastic dynamics of environmental changes. The
parameters a;(r(t)), b;(r(t)), ci(r(t)),d;i(r(t))(i = 1,2),v(r(t)), h(r(t)), and g(r(t)) are state-
dependent functions governed by the current state of r(t). The inclusion of r(t) enables
the model to capture sudden shifts in biological and environmental conditions, enhancing
its ability to reflect the realistic dynamics of the tumor-immune system under variable
external influences.

2.2. Preliminaries

Let {r(t),t > 0} be a right-continuous Markov chain [31] defined in the complete
filtered probability space (Q, F, { Fi }+>0, P), with the finite state space M = {1,2,...,m} .

The transitions are governed by the generator matrix £ = (Gij) ,» defined as

mXx

P{r(t+A) = jlr(t) = i} = {QUAH(A)’ I

1+ GiiA + O(A), i= ]
Where 6;; > 0 denotes the transition rate from the state i to the state j. For i # j, it holds
that 0; = — ). j Oii- Under the assumption that 6;; > 0, the Markov chain is irreducible
and independent of the Brownian motion B(-). Consequently, the Markov chain admits the
unique stationary distribution 7w = (71, ..., 7Ty,) € R1*™, determined by solving

[1]

m
e =0, Enkzl.
k=1

Definition 1 ([32]). X(t) = (T(t), H(t), R(t))T, where t € R, is called the solution to the ISDE
(Impulse ~ Stochastic ~ Differential ~ Equation)  system  if it  satisfies  the
following conditions:

(1) X(t) is absolutely continuous in the intervals (0, P] and (nP, (n +1)P],n € Z*;
(2) Foreach nP,n € Z*, we have

X(nP7)= lim X(t), X(nP')= lim X(t), and X(nP)= X(nP~);

t—nP~ t—nP+t

(3)  X(t) satisfies the given system equation for t € RT™\{nP,n € Z*}, and at each t = nP,n €
Zt, it satisfies the impulse condition.

Definition 2 ([32]). For any solution X (t) = (x1(t), x2(t), x3(t)) of the system, the following
hold:

(1) Iflim 400 x;i(t) =0, i =1,2,3, then x;(t) is said to be extinct;

1
(2)  Iflim;eo n fot xi(s)ds =0,i=1,2,3, then x;(t) is said to be non-persistent in the mean;

1
(3)  Iflim_eo n fot xi(s)ds > 0,i=1,2,3, then x;(t) is said to be weakly persistent.
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Lemma 1 ([33]). Suppose G(t) € C(Q2 x Ry, Ry \ {0}). If there exist the positive constants Ay,
T,and A > 0, such that for all t > T, G(t) satisfies the inequality

InG(t) < (or >)/\t—/\o/ G(s)ds+ iﬂiBi(t)
i=1

where B; (1 < i < n) are constants, then G(t)* < (or >))\
0

Lemma 2 ([34]). Assume that the following conditions hold:

(1) Foranyi # j, it holds that 6;; > 0.
(2)  For each k € M, the diffusion matrix D(X, k) is symmetric and satisfies the inequality

o2 < {TD(X, k)T < ;m% W € R,

where p € (0,1] is a constant independent of X € R".

(3)  There exists a bounded, open subset, D C R", with a smooth boundary such that, for each
k € M, there exists a nonnegative function V(-,k) : D¢ — R. The function V (-, k) is twice
continuously differentiable in D€ and satisfies

LV(X,k) < =¢,

for some constant, ¢ > 0, and all (X, k) € D€ x M.

Under these conditions, the system is ergodic and positive recurrent. Specifically, there
exists a unique stationary density u(-, -). Furthermore, for any Borel measurable function f(-,-) :
R" x M — R satisfying
Y [ R k) dz < o,
keMm IR
the following holds:

<hm / F(X )ds= Y f(X K)p(X, k) dz) ~1.
t—oo t ke
3. Dynamic Analysis of the System

3.1. The Existence and Uniqueness of the Positive Solution

Theorem 1. For any given initial value (T(0), H(0), R(0),7(0)) € Ry x M, the system (2) has
a unique global solution, (T(t), H(t), R(t),r(t)), such that

P{(T(t), H(t),R(t),r(t)) € Ry x M, Vt >0} =1.

Proof. To demonstrate the existence of the solution for the system (2), we first construct an
auxiliary impulsive-free system, which serves as a simplified framework to investigate the
behaviors of the stochastic tumor-immune dynamics. This auxiliary system is governed by
the following stochastic differential equations:
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cr(r(t)) 0<nP<t

IT [1-a(®mP)x
dxy (t) = (al(r(t))xl (1 O<nP<! ) —bi(r(t)) TI [1+,B(nP)]x1y1> dt + o1 (r(t))x1dBy (1),

vz —di(r()yr = ba(r(8)) TI [1— a(nP)]xlyl)dt +oa(r())y1dBa(t),

0<nP<t
h(r(t)) T1 [1a(nP)]xlzl)

( ®)
dzi(t) = <tl2(1’(t))21 (1 — %) —(r(t)) H [1+ B(nP)]y1z1 —da(r(t))z + 0<nP<t
_l’_

2(r(t)) 0<nP<t (AL [T a(mP)lv +g(r(t)

The initial conditions for the auxiliary system are specified as (x1(0),y1(0),z1(0),
r(0)) = (T(0),H(0),R(0),rp), where all initial values are strictly positive. According to
Definition 1, the solution derived from the system (3)

(T(f)rH(f)rR(t)/r(t))=< [T L—a@P)x(t), TT [1+ﬁ(”P)]y1(f),Z1(t)/r(f)>

O<nP<t O<nP<t

can be regarded as an equivalent solution to the system (2). The positivity of (T(t), H(t),
R(t),r(t)) was established in [29] and will not be restated here. Next, we proceed
to prove the uniqueness of the solution to the system (2). For any t € (0,P] or
t e (nP,(n+1)P],n € Z*, the system (2) is reduced to the following classical equations:

1) = (mr)70) (1- ks

) = B TOHO )dt-+ () TOB ),

AH(E) = (v(r(E) HOR(E) — d (1) H(E) — ba(r(5)) H(ET(E))dt + (1) H()Ba ), o
R(1) = (ma(r()R() (1= (00 ) =) HOR() —dalrl)R(E) + i DR
+o3(r(t))R(t)dBs(t).

Note that the coefficients of the system (4) satisfy the local Lipschitz condition with linear
growth, it follows from Mao’s theory [35] that there exists a unique local solution

(T(t), H(t),R(t),7(t)) € R x M

in the interval t € (0, 7], where 7, denotes the explosion time. To establish the global
existence of the solution, it is necessary to demonstrate that 7, = +oco. Given that the initial
values are positive and bounded, there exists a sufficiently large number, 1y > 0, such that

T(0) ¢ Uo,no}, H(0) e Uo,no}, R(0) € [nl,no].

0

For any n > ng, we define

1 1 1
=it 010y ¢ [La] ey ¢ [l ko [2])
It is evident that T;, increases as 7 increases, and 7, < T.. Let

Too = lim 7.
n—oo

If so, we can prove
To < Tp  4.S.
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Next, we will use a proof by contradiction. Suppose that there exist constants T > 0

and ¢ € (0,1) such that
Pt <T)>ce¢

The inequality above means that with positive probability, the process (T(t), H(t), R(t))
n| before the time T for some n. Consequently, there must

will exit the bounded region
exist an integer 11 > ng such that for all n > ny,

Pty <T)>c¢

Define a Lyapunov function W : R3 x M — R as follows
=(T+1—-1logT)+ (H+1—1logH)+ (R+1—1logR).

W(T,H,R) =
By applying It6’s formula [35], we can obtain the expression for the Lyapunov function as

ew(r,1,R)] = (1= 1) [T (1= ) = ) TH] + 33 r(0)
+ (1= g7 ) ) HR = () H = balr(D)HT] + 33 (r(0)
(17 ) [0 0R (1= 5 ) =00 HR =l + 7 ETE ]+ St
(A1+d2+20'1 +;(72+; ) + (ﬁ1+2+32)T+ (b +9)H

+2)R

ﬁ(‘N>

G
min(x(r(t))). Let

03 B—2max{ﬁ1+gl+I§2,E1+’?,ﬁ2+h+ 3 }
1 2

where £ = max(x(r(t))), % =
1 1 1

A d] + dZ + 0'1 + 0'2 +
2 2
()

the above expression can be rewritten as
LIW(T,H,R)] < A+BW(T,H,R)

Consequently, integrating both sides of the inequality (5) from 0 to 7, A T and taking the
expectation yields

E[W(T(Tn AT), H(ty AT), R(Tu A T)H
/‘Tn/\T W(T(t), H(t), R(t))dt]

< W(T(0), H(0), R(0)) + AT + BE

[ tosw(re), 1), R(t))dt]

W(T(0), H(0), R(0)) + AT + BE

< W(T(0), H(0), R(0)) + AT + B/ W(T(t AT), H(tu AT), R(t, AT))]d

T(Tn AT), H(ty AT), R(ty A T) }d

W(T(0), H(0), R(0)) + AT + B/O
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In which I4(-) represents the indicator function of the set A, and 7, AT = min(t,, T).
Using Gronwall’s inequality [35], we derive

E[W(T(ty AT), H(ty AT),R(ty AT))] < (W(T(0), H(0), R(0)) + AT)e"T.

For all n > ny, we have P(Q,) > ¢, where O, = {1, < T}. Consequently, for any w € Q,,
at least one of T(1,, w), H(Ty, w), or R(Ty,, w) equals n or 1/n. Thus,

W(T (T, @), H(Tn, @), R(T, @) > (1 —1 — ) A (}11 - lnn>.
Letting n — oo leads to a contradiction:
0o > (W(T(0), H(0),R(0)) + AT)ePT > co.
Therefore, we conclude that 7o, = oo, which implies that 7. = co. Hence, the solution to the
system (2) is globally unique and positive. [

The auxiliary system (3) provides an essential foundation for analyzing the existence
and properties of the solutions to the original impulsive stochastic system (2). By examining
the behavior of this simplified model, insights into the persistence and extinction of cell
populations under various biological and environmental conditions can be obtained.

3.2. Extinction and Non-Persistence in the Mean

Theorem 2. For the system (2), the following conclusions hold:
(1)  Extinction:
e IfTy <O, the helper T-cells will eventually go extinct.
o IfTh+ '?%1"1, the hunting T-cells will eventually go extinct.

o IfT'3 <O, the tumor cells will eventually go extinct.
(2)  Non-persistence in the mean:

e IfTy =0, the helper T-cells are non-persistent in the mean.
e IfT3 =0, both the hunting T-cells and the tumor cells are non-persistent in the mean.

Here,
. Ny ‘
D= 1 faa(i) = (i) — 503(0) 469
ieM
, 1 1,
In=limsup~ Y  In[l+pB(nP)]— i |dy (i) + o7 (i) |,
f=reo Focnpt ieM 2

Fy=limsup - Y Infl—a(nP)]+ ¥ m [al(i) - ;af(i)].

t=reo t 0<nP<t ieM

Proof. We will proceed with the analysis based on
(T(t), H(t), R(t),r(t)) = (0 I—P[ [1- a(nP)]xl(t),O ]—P[ 1 +ﬁ(nP)]y1(f),Z1(f),r(f)>-

By taking the logarithm of both sides of the system (3) and utilizing the It formula [35],
we obtain
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IT [1—a(nP)]x; .
dlnxy () = (ﬂl (r(1)) (1 B O<np<tc1(r(t)) ) —by(r(t)) H 1+ B(nP)ly; — 2alz(r(t))) dt + o1 (r(t))dBy(t) (6)

O<nP<t

= () (1= b ) ~ B ODHO = 303000 )t + ()0, )
dmmUF:G%U@)CMNW%U@%lkﬁﬂﬂmﬁ;ﬁWOOW+WUWM&@ ®)
= (YR = (1) = balr(0)T(0) = JB( ) )+ on(r(e)) (), ©)
tnz1 (1) = (na(r(0)) (1= ZHES ) 2 () H) ~ oo 0) + g pa s = S0(0) ) di-+ aa(r(6)dBa(r). (10
Integrating both sides from 0 to t, the above equations can be rewritten as
Inx () = Inx; (0) +/Ot (al(r(s)) - ;le(r(s)))dt— /Ot ZE:EE;;T(s)dt—/ dt+/ o1(r(s)) dBy (), (11)
i () =g 0) = [ (06)) + 50306 )t + [ 4)RE di = [ bl NTEa+ [ oalr(s) dbae

n =In t — 15 _ .tm _ !
Inz () =Inz (0) +/ (az r(s)) — da(r(s)) Zag(r(s))>dt /O HEORGL /Ofy(r(s))H(s)dt »

dt + / o3(r(s)) dB3(t
0

As follows,

Y In[l—a(nP)] +Inx;(t) —Inx;(0)
0<nP<t

1t 1 1 rtay(r(s))
Y In[l—a(nP)]+ ?/0 (al(r(s)) - 2chz(r(s)))dt i/ ci(r(s)) T(s) dt (13)

O<nP<t
1

1 /tbl(r(s))H(s) dt + L%(t)

t Jo

1lnH(0):: Y In[l+ B(nP)] + Inyy (£) — Inyy (0)

O<nP<t

_ % Y Infl+ B(nP)] - %/Ot (dl(r(s)) + ;azz(r(s))>dt+d1 /Otfy(r(s))R(s)dt (14)

O<nP<t
1 T(s Lz(t)

lng((é)) =1Inz(t) —Inz(0)
— % Ot (az(r(s)) —do(r(s)) — ;U§(r(s))>dt _ % Ot Z;E:g;;R(s) dt  (15)
L $))T(s) Ls(t)
T RGO e
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where L;( fo oi(r B;(s) (1 =12, 3) isa real—valued continuous local martingale. Its
quadratlc Varlatlon is given by (L; fo : ))ds. Making use of the strong law
of large numbers for local martmgales [35] we obtam

lim Li(t) = 0.(as.)
t—+oo ¢

(1)  Analysis of the Dynamics of the Helper T-Cells R(t)

Case of I'; < 0: By considering the upper limit of Equation (15) and given the condition

I= Y | axi) — da(i) —%ag(i)m(i) <0,
ieM

it is concluded that

lim sup @ <TIj <0,

t—o0

Which implies that
lim R(t) = 0.

t—00

Hence, according to Definition 2, the helper T-cells will eventually become extinct.
Case of '] = 0: Let € > 0 be an arbitrarily small constant. Assume that there exists a
time t; > 0 such that for all ¢ > #;, the following inequalities hold:

1 B é
a0 <e T TG ROy S 7

By using the expression of Equation (12), we obtain

InR(#) = Inz (£) Slnzl(o)—l—/; {az(r(s))—dz(r(s))—;ag(r(s))}dt—/; iig:g;;zl(s)dt—/(; 2y (r(s)) H(s)dt
Ls(t)

b h(r(s)T(s)
+ NOET COGAN,

<y m(az(i) — (i) —;ag(i)+h(i)+é>t— ?/tzl(s)dswg,]sg,(t).

ieM 270

Thus we have .
InR(f) < (r1+é)t—‘c2/ 21(s)ds + o3Bs ().
2 J0

Based on Lemma 1, we derive

(16)

Since R(t) > 0, it follows that
(R(t))* =0.
(2) Analysis of the Dynamics of the Hunting T-Cells H(t)

Case of I'; + 'y Fl < 0: Considering Equation (16) and the arbitrarily small constant
€ > 0in Equation (16) we deduce that
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Taking the upper limit of Equation (14) yields

In H(t) é
li ——= <Ip+4=T .
e A
This implies that
lim H(t) =0,
t—ro0

which indicates that the hunting T-cells will eventually go extinct.
Case of I'; = 0: Reviewing Equation (13), we have

,/Otbl(r(s))H(s)dt:—? T((é))—'—i Z [1—a(nP)] t/ [ul 12( (s))| dt

L )T - L) 7
ay(r(s 1
_ t/o el

By evaluating the upper limit of Equation (17), we obtain

~

bi(H(t))" <T3+§

where £ is a sufficiently small constant. If I'; = 0, it follows that

which indicates that the hunting T-cells are non-persistent in the mean sense.
(3) Analysis of the Dynamics of the Tumor Cells T(t)

Case of I'; < 0: Consider the following equation:

1ln;((é)):1 ¥ [1—a(nP)]+1/(:[{11(1'(:%))—;012(1*@))} gr— L [0l O) py g

0<nP<t t Jo ci(r(t))

—%/Otbl(( b dt+ /(71 )) dBy (b).

Taking the upper limit of the above equation as t — oo, we obtain
lim su 11r1T(1%) <TI3<0
t—)oos P t =3 '

Which implies that
lim T(t) =0,

t—o0
which indicates that the tumor cell population vanishes as t — oo.

Case of I'; = 0: Let 1 > 0 be an arbitrarily small constant. Then, there exists a time
t > 0 such that for all ¢ > t;, the following conditions hold:

x1(0)
t

<e/2, E Y. [1—a(»P)] < lim sup1 Y. [1—a(mP)] +&/2.
0<nP<t f=reo 0<nP<t



Mathematics 2025, 13, 928

13 of 29

Substitute the above equation into Equation (11), we obtain

InT(t) < <x1§0)+1 Y [1—amP)] + Y milm) - ;le(i)}>t

0<nP<t ieM
Fay(r(s))
—/0 Ci(r(s))T(s)dt—/ by (r(s dt+/ o1 ((s)) dBy (£).

Simplify the above further, we have

v

t

InT(t) < (T3 + 1) — %1/0 T(s) dt + o1 (r(£)) B (b).
1

Applying Lemma 1, it follows that

I'3+¢

a/é

(T(H)" <

As For I'; = 0, which reduces to

Meanwhile T(t) > 0, therefore
(T(1))" =o.

The result above indicates that the tumor cell population is non-persistent in the mean
sense. [

3.3. Weak Persistence

Theorem 3. Assuming that I's > 0 and I'y + '?;721“1 < 0, the tumor cells will exhibit weak
2

persistence.

Proof. We proceed by contradiction. Assume that

1. T(t)
“ln—2 <
7o) =°
is false, i.e., T(t) > 0, which leads to
(T(#))* > 0.
Review Equation (13), we have
ESNEIOREE S R /{a ) — 53 r(s)) | at
t T<0) O<nP<t t ' !
1 rtay(r(s)) 1 Lq(¢)
_Z _ < 0.
Fh a0 T(s)dt i Jo bl(r(s))H(s) dat + = 0 (18)
Take the upper limit on both sides of Equation (18), we obtain
S TWO) + B (H() = T3 > 0. (19)

1

As follows, we continue to the proof by contradiction. Suppose that

(T(£)" <0,
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which implies that
(T(£))" =0.

Therefore, for any w € {(T(t,w))* = 0}, we obtain from Equation (19)
(H(t,w))* > 0.

Furthermore, take the upper limit of Equation (14), we obtain

. 1. H(t) N " )
“ln—l <T,p+ <T, 4+ 4-2 .
thm ; In H(0) I+ F(R(2))* <T ')/avzl"l <0

The result above implies that
<f{(t160)>* =0,

which contradicts the fact that (H(t,w))* > 0. Therefore, the assumption that (T(¢))* <0
is false, and it must be true that
(T(t))* > 0.

Thus we conclude that the tumor cells exhibit weakly persistence. [

3.4. Stationary Distribution
Theorem 4. If

A=Y = X i)+ aai) — (i) — dali) — 207(0) — 503(0) -
k=1 ieM

then for any given initial condition,
(T(0), H(0),R(0),7(0)) € R3 x M,
the system (2) admits a unique ergodic stationary distribution.

Proof. Using Itd’s formula [35], the system (3) becomes

0O<nP<t

IT [1—a(nP)|x; .
A (£) = (m(r(t)) <1_0<"P<f61(r(t)) )—bm(m I [Hﬁ(nP)]yl—zaf(r(t)))dt+01(r(t))dB1(t),
(20)

dlny, (t) = (721(7(0) —di(r(t)) = ba(r(t)) ] [1—a(nP)]x— ;Uzz(r(f))>dt+Uz(f(f))de(t)/ 1)

O<nP<t

dinza(0) = (a0 (1= 2005 ) = v HO ~ o) + 7SO = S0 )+ on(r(0)dBa(0). @2)

The system 3) can be
rewritten as follows by defining x(t) = In(x1(¢)), y(t) = In(y1(t)), z(t) = In(z1(t)),
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[T [1-a(nP)e* )
( O<nb<t )—bl<r<t>> I u+ﬁ<nP>1ey—2a%<r<t>>)dt+al<r<t>>d31<t>,

c1(r(t)) 0<nP<t

(7 ) —dy(r(1)) ~ ba(r(6)) ] [1—a<np>}eX—}r%(r(t)))dt+az<r<t>>de<t>,

0<nP<t } (23)
h(r(t)) TI [1—a(nP)e

e? 0<nP<t
m»)”““” IT [0+ BnP)e! — (1) + — et

O<nP<t

O<nP<t

+ 203( (t )))dt+03( (£))dBs(t).

On the basis of the proof in [34], it can be concluded that the ergodicity of the system (3) is
equivalent to the ergodicity of the system (23). Therefore, we only need to verify that the
system (23) satisfies the conditions in Lemma 2. We assume that 0;; > 0 for all i # j, which
ensures that condition (1) in Lemma 2 is satisfied. Let H(X, k) = diag(cy(k), 02(k), 03(k))
for k € M; then,

D(X,K) = H(X, ) HT (X, k) = diag(c? (k), 3 (k), 53(K)),

which is positive definite. This indicates that condition (2) in Lemma 2 is satisfied. We now
proceed to verify condition (3) in Lemma 2.
Let the function ¢(x, y, z) be defined as

P(x,y,z) = 141—6(ex +e e L M(—x—y—2z2), 6¢€(0,1),

where M is a constant. It is clear that ¢(x,y,z) has a minimum value, denoted as
¢(x0,Y0,20). Then we have

¢(x,v,2) — ¢(x0,Y0,20) > 0.

Define a non-negative function V : R® x M — R* U {0} as

V(x,y,2,k) = ¢(x,y,2) — ¢(x0, Y0, 20) + M(% + |8]),

where

1
Vilxy,z) = g5l +e +e5)1te,
Va(x,y,z) = M(—x —y —z),
Va(k) = (B + [8]),
and ¢ = (01, 0,...,0,)T, with

0 = /62 + 03+ + 03,

The term ¢ (for k € M) will be defined below. The expression |¢| ensures the non-
negativity of (0 + |#|). Therefore, V(x,y, z, k) is non-negative.
By applying It6’s formula [35], we derive the following expression:
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LV] = (¥ e +¢7)°
1 (k) 0<nP<t

+y(k)e! ™= —di(k)e! —ba(k) [T [1—a(nP)le?

O<nP<t

)ez — (k) H [1+ B(nP)]e!™* — dy(k)e*

O<nP<t

[T [1-a(nP)e
0 (k) (1 _ 0<nP<t )ex —b (k) H [1 +ﬁ(nP)]ex+y

+ ay (k) (1 — Cze(zk)

h(k) TI [1—a(nP)leXt=

O<nP<t

[T [1—a(nP)le +g(k)

O<nP<t
< 30 (e e 4 ef7) [al(k)ex oy (r(E)eV T + ay(k)e* + h(k)eﬂ
m(k) TI [1-a(np)le@os

+

+ 5

e + e +¢7)f 1 (af(k)e“ + o2(k)e? + ag(k)eZZ)

(246)z
B 0<nP<t B (1+6)y _ a2(k)e B (1+6)z
oK) hilk)e oy ke
+ g ()0 + B (k)19 - o2 (k)el+0)2)
a(k) TI [1—anP
- i )O<nP<t[ ( )]e(z+9)x _ (k) ey @20k) 2+0)
= 2¢, (k) 2 2¢5(k)

+ 3% (aa (k) + h(k))e®* 2 + 3%, (k)e¥+% 4 3% (an (k) + (k)% 2 + 3%, (k)e* 02 + T,

where

ay(k) T1 [1—a(nP)]
[ 0<nP<t L2+0x _ 1K) arey (k) i) dy (K)e(1+0):
2¢q (k) 2 2¢;5(k)
+ 39011 (k)e(1+9)x + 30,)/(1() Ox+y+z | 39,)/(k)e(1+9)y+z +30 (k)ey+(1+9)z
6 - 0

_'_39((12(]() +h(k))e(9+l) + 20 (k) (l+9)x+gg22(k) (l+9)y+ 2(72(k)e(1+9)z.

Similarly, the computation of £(—x — y — z) yields

- . 1—1[3 [1—a(nP)] 1
L(—x—y—2z)=—|ay(k) (1 — J=nP<t ) — by (k) H [1+ B(nP)le’ — Eglz(k)

€1 (k) 0<nP<t

—_

- |0~ () ~a) TT 1= sople - SR

0<nP<t
- (1 ) -6 TT [+ plapler — dali
0<nP<t
k)0<}1—1[’<t[1_a(np)] 1 2
[ —a(nP)]er +h(0) T 2% W]
O<nP<t
0() T1 [1=a(nP)
< o @ +b2(k)0<1,;[<t[1 —vc(nP)]]e

s |0 T 1+ pp) o) TT [+ pop)] |+ 200

0<nP<t 0<nP<t
- [ () + ax(K) — dy (k) — da(k) — 202 (K) — 203 (K) - }%(k)]
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For any k € M, we have

LV3(k) =) 0.
leM

Define the vector A = (A1, Ay, ..., Am)T, where
1
A = 01(8)+ a2(0) — d (k) — da (k) — 23 6) —

Observe that T is irreducible, there exists the vector ¢ = (81,95, ..., l9m)T, satisfying the
following system:
1

m
ro=—Y mAe| | +A
k=1 1

Hence the k-th element of the vector I'tt — A is

- ats — (s 0) + a2(8) = 02(k) = 620 ~ 3630) — 3636) — 30 = - - mve = =
leM k=1

Correspondingly, we have

a(k) T1 [1—a(nP)]

dy(r(t)) a(r(t))
LV(x,y,2k) < —MA - Qenpt p2H0)x LAY (140)y  H2VAY)) (246)z
(x,y,2,k) < 201 (r (1)) > 262 (r(1))
+ 3% (ap + h)e® 7 4+ 300,654 39 (ay + k)oY 4 300107707 4
where
ar(k) TI (1—a(nP))
I=I'+M 0<nP<t o TT (- anp)]|e
a (k) 0<nP<t

+<b1(k) [T a+p@P)+7(k) 1 (1+ﬁ(nP))>ey+a2(k)eZ_

0<nP<t 0<nP<t c2(k)

For any sufficiently small 0 < € < 1, we define the open set (2 with a compact closure as
Q= {(x,y,z) Cx| <In(e ™), |yl < In(e™Y), |z] < In(e ™), (x,y,2) € R3}.
The next step, we prove that
LV(x,y,2,k) < -1 holdson QF x M.

In domain Q€ x M, we select a M such that

2 . )
M > max{Z, sup <1+3"(a2+h)e9y+2), sup (39(a2+h)e9x+2+39alex+9z+1 , sup (39,31@%+9y+1>}. (24)
A (xy,2)eR? (xy2)eR? (xy,2)eR?

A sufficiently small € can be chosen such that

e? < i —, (25)
2-3%max{ay,ap + h}
el < 2 (26)

2- 39122(ﬁ1 + ar + fl),
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e < MA , (27)
8‘39@1 +a+h)
ap J1 [L—a(nP)]
69 Ofnpft _ _ (28)
30k (ay + ap + )
iy . 1—1[? t[l —a(nP)]
—MA — == L < —1, 29
28,6210 th< @9)
MA 4 I 1
—MA=SaR T <L (30)
MA- 2 < (31)

252€2+6

Define the following six sets:

ol ={(xy2eR:-~w<x<inE)} 0f=

{
02 = {(x,y,z) €ER¥: —0<y< ln(e)}, o = {(x,y,z) €ER:y>In(e )
{

O ={(xyz)eR:—o<z<In(e)}, 0f=

If so, we have
O =0lutuiuniuiunt

So what we should prove next is that
LV(x,y,z,k) < -1

holds in QL x M fori=1,...,6.
Case 1: In Q! x M, we have the following inequalities:

otz < efe? < 69(1 +e(2+9)2)l X0y < 0ty < €9(1 +e(l+9)y)’ e X0z < &bz < €9(1 —|—€(2+9)Z).

Therefore, we can express the following inequality for LV (x,y,z, k):

ap(k) T1 [1—a(nP)]

LV(x,y,z,k) < —MA — O<nP<t o(2+0)x dy (k)e(1+9)y _ L(k)e(ﬂ(?)z

2C1 (k) 2 2C2 (k)

+3%(az (k) + h(k))e™ = + 3%y (k)e* % + 3% (ay (k) + h(K))e™ = + 3% (K)e %% + 1

ap II [1—a(nP)]

< _MA T o<up<t ] [0 [ _h +30e? | o140
4 28, 2
A ) N )
+ (— Z“CZ + 3%ty + itp (k) + h)e9> o240z 1 (—Ai +3%(dy + h)e? + 2d139e9)
2

+ (A/é)\ +I1+3% + fz)e"V“).

(x,y,z) €R®:z>1In(e})

j
3

(x,y,2) € R3:x> ln(e_l)},

7
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From Equations (24)—(27), we obtain
LV(x,y,zk) < —1.
Case 2: In O? x M, we have the following inequalities:
C < 8(1 4 2O Btz < 01 4 (240)2),

Therefore, we can express the following inequality for LV (x,y,z, k):

LV (x,y,zk) < —MTA —

i T [1-a(nP)] ;
0<nP<t _ + 3%, € e2+0)x _ 21 ,(1+6)y
2C1 2

- ( "2 1 3%+ fz)e") 20z 4 <—Af‘ +3%e? + 3% (i, + fz)ee)
A .
+ (—Ai +3%(dp + )P 4 3% T 4 1>
Based on Equations (24), (26) and (27), we obtain

LV(x,y,z,k) < —1.

Case 3: In Q2 x M, we have the following inequalities:

efxtz < ee(l +€(2+6)x), ey+z < 69(1 +e(1+9)y), pX 0z < 69(1 +e(2+9)x)'

In this way, we can express the following inequality for LV (x,y, z, k):

M (_ﬁl 0<1})«[1 —a(nP)]

<
LV(x,y,z,k) < + 2

1 + 3% (i, + h)e® + 39(2169) (20

+ (39(ﬁ2 + fz)ef’ - dl>e(1+0)y _ ﬁige(zw)z
2 2C2

. A
+ (Ai/\ +2(idp + h)3%% + 3951e9> + (Né + 30, T 4 1) .
Based on Equations (24), (25), (27), and (28), we obtain

LV(x,y,z,k) < —1.

Case 4: In O} x M, we have the following inequality for LV (x,v, z,k):
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a1 (k) . rIIJ t[l — a(nP)] -
<—MA- sns 2+6)x
LV(x,y,2,k) <= MA 0 .
di(k) 1oy _ 2(K) 210): otz
Tl T 200 +360(az (k) + h(k))e
+ 39“1 (k)ex+9y + 39(ﬂ2(k) + h(k))69y+z + 39611 (k)ex+92 +1
1o
<nP<
<—-MA— v T
In which
L = _ZleU()e(lw)y _ we(ﬂe)z + 39(a2(k) + h(k))eex+z + 39a16x+6y + 39(a2 + h)eey+z + 39a16x+9z + I

Because of Equation (29), we obtain
LV(x,y,z,k) < —1.
Case 5: In Q2 x M, we have

ap(k) TT [1—a(nP)]

LV yz k) < —ma— Do | et o(2+0)x
— zacz ((kk)) etz 4 30 (a5 (k) + h(k))e®™ % + 3%y (k)e* % + 3% (an (k) + h(k))e? % 4 3%aq (k)eX 02 + 1
2
dy
< —MA— oo+l
in which
“ (k) 0<I—I[’<t[1 B tx(nP)] (2+9) ‘ZZ(k) (2+0) 0 6 0 0
I n +0)x _ +0)z X+z x+0y
I 20,00 e 262(K) e +3%(ap (k) + h(k))e”™ = + 3%y (k)e* Y+
3% (ay (k) + h(k))e® 2 +3%a; (k)eXt9% + 1.
From Equation (30), we obtain
LV(x,y,zk) < —1.
Case 6: In Q% x M, we have
" a®) T [1-a(nP)]
LV(x,y,2,k) < —MA — ZCZZWE(M)Z i 0<n§;t(k) o(2+0)x

—Me(He)y—l—Se ay (k) + h(k))e?* % + 391X 439 (a5 (k) + h(k))e? % + 390, (k)e* 07 4 1
5 (az(k) + h(k)) 1 (az(k) + h(k)) 1(k)
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I3

ay (k)

[T [1—a(nP)]

O<nP<t

2¢1 (k)

e(2H0)x _ —dlék) e1H0Y 139 (g 4 1) % 430016 T 3% (ay + h)ePY 7 4 300,0¥H07 4 1.

By way of Equation (31), we obtain
LV (x,y,z,k) < —1.
As a conclusion, we have
LV(x,y,z,k) <=1 for (x,y,zk)¢€ R3+ x M.

Correspondingly, the solution of the system (2) is positively recurrent and has a
unique stationary distribution. [

4. Numerical Simulations

The Milstein high-order method [36] is an efficient and accurate numerical method for
solving stochastic differential equations (SDEs). It can transform continuous SDEs into a
series of discrete approximations by discretizing the time step, thereby achieving numerical
solutions to the original equations. The strengths of the Milstein high-order method lies
not only in its ability to enhance the solution accuracy by introducing the second-order
term into Itd’s formula but also in solving various types of SDEs, including linear and
nonlinear equations. Particularly, this method is capable to solve SDEs with Markov regime
switching. Therefore, we choose to employ this method for the subsequent numerical
simulation. The initial conditions are set as

T(0) = 5 x 10° (cells), H(0) = 4 x 10%(cells), R(0) = 3 x 10° (cells).

For simplicity, it is assumed that the Markov chain r(t) takes values in the state space
M = {1,2}. If the Markov chain has the generator matrix

~_|-3 3
T 7 =7

the stationary distribution 71 = (711, 12) can be determined by solving the linear system
of equations

[

2
mE=0, Y m=1,
k=1

yielding 7t = (0.7,0.3).

Figure 2 illustrates the switching behavior of the Markov chain r(#) in the state space
M = {1,2}. Each state in the model corresponds to a specific combination of biologi-
cal conditions (such as a high metabolic/low-oxygen state), and the switching frequency
is determined by the statistical law of long-term observational data. This steady-state
probability-based switching mechanism essentially synchronizes invisible microenviron-
mental fluctuations with a regulated rhythm of therapeutic intervention, enabling discrete
clinical decision-making processes to effectively track continuous biological dynamics.
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Random State Switching
2.2 T T T T T T T T T

1.8— —

State

1.4 —

1.2 — —

1 | | 1 1 | | 1 1
0 10 20 30 40 50 60 70 80 90 100
Time (days)

0.8

Figure 2. Switching behavior of Markov chain r(t) in state space M = {1,2}.

Next, we numerically verify the extinction of tumor cells, hunting T-cells, and helper
T-cells. The timescale for the extinction dynamics spans several dozen to several hundred
days, depending on the model parameters and biological conditions. This range aligns
with empirical observations, where tumor elimination through treatment or the immune
response typically occurs over weeks to months. Rapid clearance is observed in highly
effective treatment scenarios, whereas slower extinction may result from gradual immune-
mediated suppression or a partial therapeutic response. The mathematical model captures
these dynamics by incorporating key factors such as the tumor growth rate, immune
response strength, and stochastic fluctuations, ensuring biological realism in the predicted
extinction timescale. The parameter values [26] are given as follows:

11(2) = 0.18/day, ay(1) = a(2) = 0.0245/day,
bi(1) = by (2) = 1.101 x 107 /cells/day, ba(1) = by(2) = 3.422 x 1010/ cells/day,
di(1) = d1(2) = 0.0412/day, dy(1) = d»(2) = 0.002/day,

1

1 1
= =2x10"7/cells, —— =
2) (1) (2)

(1) =6.2x 1077 /cells/day, k(1) = h(2) = 0.1245/day,
g(1) = g(2) = 2.019 x 107 cells.

=1x10"?/cells,

(H1): a1(1) =01(2) =1, 02(1) = 02(2) = 1; 03(1) = 0.6, 03(2) = 0.5,
(Ha): (1) = o1 (2 ): 7(1) = 0.3, 02(2) = 0.1; 03(1) = 0.6, 73(2) = 0.4,
(H3): o1(1) =065, 01(2) = 0.6; 02(1) = 02(2) = 2; 03(1) = 03(2) = 2.

Through calculation, the following results are obtained for H1, Hp, and H3:

T =Y m|ax(i) — da(i) — %a%(i) +h(i)] = —0.0165 < 0,
ieM

I, +~;%rl = —0.8329 < 0,

N 1 5.
= T lli—s(nr)] + ¥ o) - joi0)] = 0020 <o
<nP<t ieM
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According to Theorem 2, tumor cells, hunting T-cells, and helper T-cells will eventually go
extinct. These results are validated in Figure 3a—c.

ok y 2
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Time (days) Time (days) Time (days)
(a) (b) (c)

Figure 3. (a) Extinction dynamics of helper T—Cells; (b) Extinction dynamics of hunting T—Cells;
(c) Extinction dynamics of tumor cells. (1) : 01(1) = 1(2) = 1, 02(1) = 02(2) = 1; 03(1) =
0.6; 03(2) = 0.5. (Ha) : 01(1) = 01(2) = 1, 02(1) = 0.3; 2 (2) = 0.1; 03(1) = 0.6; 03(2) = 0.4.
(H3) :01(1) = 0.65; 01(2) = 0.6; 02(1) = 02(2) = 2; 03(1) = 03(2) = 2.

Keeping other parameters unchanged, we set
(1) =0.5; 01(2) = 0.2; 02(1) = 02(2) = 2; 03(1) = 03(2) = 2.

Figure 4a,b show the numerical simulation results of the system (2) under the station-
ary distributions 77 = (0,1) and 7t = (1,0), respectively. To comprehensively analyze how
switching probabilities influence the average population size of tumor cells, we extend
the timescale as much as possible. A longer timescale allows us to observe the long-term
trends and stabilization effects. These results are consistent with the analytical conclusions
of Theorem 3. Furthermore, we observe that under weak persistence, when the noise
intensity ¢ increases from 0.2 to 0.5, the number of tumor cells significantly decreases. This
phenomenon indicates that higher noise intensity effectively suppresses tumor cell growth,
validating the critical role of noise interference in the control of tumor dynamics.

i z 1 [—m=(0,1) —=(1,0)
imean value =22.16; | _ -mean 0} Emean value =17.531 | _ -mean |
25 0 500 1000 1500 2000 2500 3000 35‘00 40‘00 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (days) Time (days)
(a) (b)

Figure 4. Numerical analysis of tumor cell dynamics under steady-state distributions.
(a): T = (0,1); (b): T = (1,0).

Next, we investigate the impact of random switching probabilities between differ-
ent states on tumor regression under the condition of tumor persistence, as shown in
Figure 5. The results indicate that when the probability of the system being exposed to
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high-noise-intensity states increases, the average number of tumor cells decreases signifi-
cantly. This suggests that increasing the switching probability to high-noise-intensity states
can effectively suppress tumor cells.

InT(t)

7=(0.3,0.7)
— -mean
tentetentd i ettt [=—m— d

L L L L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (days)

(a)

InT(t)

6 e e — —
7=(0.5,0.5)
15 !mean value = 19.66 !
| e ety ombverhef Wb )
14 1 — T T ' 1 1
o 00 1000 1500 2000 2500 000 500 000 500 S000
vs

InT(t)

T e — 18 01 = 7=(0.7,03) |
fmean value = 18.91]

i L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
i ¥

Figure 5. Effects of different switching probabilities on tumor dynamics under persistent states.
(a): m = (0.3,0.7); (b): T = (0.5,0.5); and (c): = = (0.7,0.3).

4.1. Impact of Noise Intensity

By keeping the parameters 07(2) = 0.5, 02(1) = 2, 5»(2) = 1.5, 03(1) = 2, and
03(2) = 1.5 unchanged, the stationary probability distribution is set as 7 = (0.7,0.3).

Figure 6 explores the long-term dynamics of tumor cells under different values of
01(1). Specifically, o4 (1) is chosen as 0.3, 0.5, and 0.7, respectively. Comparing the subplots
in Figure 6a—c, it can be observed that as 01(1) increases from 0.3 to 0.5, the tumor cell
clearance effect gradually strengthens. Furthermore, when ¢ (1) increases from 0.5 to 0.7,
the persistence of tumor cells transitions to extinction. These results demonstrate that
environmental disturbances, by increasing noise intensity, can significantly suppress tumor
cell growth, with stronger noise showing more pronounced inhibitory effects. This study
suggests that appropriately adjusting the intensity of random disturbances is an effective
approach to controlling the dynamics of tumor cells, providing new insights and theoretical
support for optimizing tumor treatment strategies.
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Figure 6. Influence of increasing noise intensity o7 (1) on tumor cell dynamics under steady—state
distribution 7t = (0.7,0.3). (a): 01(1) = 0.3; (b): o1 (1) = 0.5; and (c): ¢7(1) = 0.7.

4.2. Impact of State Switching

To analyze the impact of state switching on tumor cell dynamics, we set the parameters
01(1) = 0.7, 01(2) = 0.5; 0»(1) = 02(2) = 2; and 03(1) = 03(2) = 2. In the subsequent
numerical simulations, we study the system’s behavior under different stationary distribu-
tions, 77, of the Markov chain. The varying values of 7 represent different relative dwell
times of the system in the two states during the switching process.

Figure 7 illustrates the tumor cell behavior when the system remains entirely in
state 2 or state 1, corresponding to persistence and extinction, respectively. When the
switching probability between state 1 and state 2 changes (see Figure 8), it is observed
that as the dwell time in state 1 (high noise intensity) increases, the number of tumor cells
gradually decreases, exhibiting a transition from persistence to extinction. These results
demonstrate that extending the exposure time of the system to a high-noise-intensity state
can significantly suppress tumor cell growth. This further highlights the potential role of
stochastic state switching in controlling tumor dynamics.

26 T T T T T T T T T 30 I

20

A ////1n=am

In T(t)

20F

30k

40

S0k

[ [ [ [ T [ | % N S T I A 1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Time (days) Time (days)
(a) (b)

Figure 7. Tumor Cell dynamics: a comparison between state 1 and state 2. (a) (7t = (1,0)); (b)
(r=(0,1)).
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Figure 8. Effect of switching probabilities on tumor dynamics.

4.3. Impact of a;

Finally, we analyze the effect of different growth factors, a1, on the long-term behavior
of tumor cells by adjusting the parameter a;. The specific parameter settings for analysis
are as follows: o1(1) = 0.2; 01(2) = 04; 02(1) = 02(2) = 1.5; 03(1) = 03(2) = 1.5; and
a1(1) =a1(2) =0.1,0.2,0.3.

As shown in Figure 9, the left panel demonstrates the trends in the average value of
tumor cells for different values of 4. It can be observed that as 4; increases, the average
value of tumor cells exhibits a gradual upward trend. The right panel of Figure 9 depicts
the steady-state distribution corresponding to different values of a;. It reveals that as a;
increases from 0.1 to 0.3, the concentrated range of tumor cell quantity distribution shifts
progressively to the right, and the tumor cell count correspondingly increases. These
findings reveal the significant influences of the growth factor a; on the long-term behavior
of tumor cells. An increase in a; promotes tumor cell growth, providing theoretical insights
for the further development of tumor treatment strategies.
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Figure 9. Impact of growth factor 4; on tumor cell dynamics and steady-state distribution.
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5. Conclusions

In this study, we establish a stochastic differential equation model based on continuous-
time Markov chains to investigate the random dynamics and state-switching phenomena
induced by changes in the tumor microenvironment. Our results demonstrate that environ-
mental regime switching plays an essential role in the dynamics of tumor cells. Specifically,
we demonstrate the following:

1.  In the presence of high-intensity white noise, tumor cell growth is significantly sup-
pressed, with the suppression effect further enhanced by prolonged exposure.

2. The relevant results of the extinction, persistence, and existence of the stationary dis-
tribution in the system address the importance of white noise intensity and exposure
duration in influencing tumor dynamics, highlighting their potential as key factors in
designing effective tumor control strategies.

Our results show two strategies that can be used in clinical practice. These strategies
are based on stochastic modeling. High-intensity noise has been shown to suppress tumors,
so we suggest changing traditional chemotherapy methods to include controlled random-
ness. For example, we could use random dosing intervals (like varying from standard
schedules) or change drug concentrations between high and low every 72 hours to mimic
helpful environmental changes. Imaging methods should also include assessments of
randomness in the microenvironment. This could involve measuring changes in tumor
boundaries in regular MRI scans as early warnings of pathological state changes. While the
model yielded meaningful insights, it is crucial to note that real-world clinical applications
require careful consideration of individual patient conditions, including tumor heterogene-
ity and potential side effects. Future research should focus on integrating more complex
interactions within the tumor microenvironment and validating the theoretical predictions
through experimental and clinical studies.
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