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Abstract: We analyze wave equation for spatially one-dimensional continuum with constitutive
equation of non-local type. The deformation is described by a specially selected strain measure with
general fractional derivative of the Riesz type. The form of constitutive equation is assumed to be in
strain-driven type, often used in nano-mechanics. The resulting equations are solved in the space of
tempered distributions by using the Fourier and Laplace transforms. The properties of the solution
are examined and compared with the classical case.
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1. Introduction

Differential equations of fractional orders appear in many branches of physics and
mechanics. There are numerous solutions to concrete problems collected in the books [1–6],
for example. Fractional derivatives (FDs) are non-local operators, and, in most applications
in mechanics, fractional derivatives, when the independent coordinate is time, are used to
model the dissipation and/or memory in the system. If FDs are used to describe memory,
physically they represent the (fading) memory of the system. However, when spatial
coordinates are used as independent variables, the fractional derivatives model non-local
action. As is well known in nano-materials, the non-local action (see [7]) is an important
phenomenon that is used to explain many properties that are characteristic of such materials.
In solid mechanics in general, and non-local and nano-mechanics in particular, there are
two types of constitutive equations that are used: strain- and stress-driven constitutive
equations. In the strain-driven form of constitutive equation, that we use in this work,
the stress is determined by action of a non-local operator on strain. In this work we
shall formulate relevant equations for the spatially one-dimensional body with a linear
constitutive equation in a specially selected deformation measure (strain) that is non-local.
The use of a general fractional derivative of a displacement field y(x, t) in the form of the
so-called truncated power-law kernel (see [8]) is the novelty that we propose here. After we
formulate the problem in distributional setting, we shall study some special motions, with
the emphasis on wave propagation with or without body forces.

2. Mathematical Model

Consider a rod with straight axis. Let x be a coordinate coinciding with the rod axis.
Suppose that the rod occupies a part of the space for which x ∈ [a, L], with a < L. We state
the definitions of the left and right general fractional derivative (GFD) of the Caputo type
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(see [9,10]). Throughout, we assume 0 < α < 1. The left GFD derivative of the Caputo type
of order α is defined as(

C
a Dα,λ

x y
)
(x) =

1
Γ(1 − α)

∫ x

a

exp(−λ(x − τ))y(1)(τ)
(x − τ)α dτ, x ∈ (a, L), (1)

λ ≥ 0,

where Γ is Euler’s gamma function and y is assumed to be absolutely continuous, i.e.,

∂y(x, t)
∂x

∈ L1, t ≥ 0.

In writing (1) we used specific kernel x−α exp (−λx)
Γ(1−α)

, suggested for application in contin-

uum mechanics; see [11], p. 6. The kernel x−α exp (−λx)
Γ(1−α)

is called the truncated power-law
kernel and was used earlier for the study of anomalous diffusion in [8] (Equation (2.35)), [12]
(Equation (13)) and in [13] (Equation (10)) as a friction kernel for the study of lipid motion
in a lipid bilayer system. Similarly, the right GFD derivative of the Caputo type of order α
with 0 < α < 1 is defined as(

C
x Dα,λ

L y
)
(x) = − 1

Γ(1 − α)

∫ L

x

exp(−λ(τ − x))y(1)(τ)
(τ − x)α dτ, x ∈ (a, L), (2)

λ ≥ 0.

Note that
(

C
a D1,λ

x y
)
(x) = dy

dx ,
(

C
x D1,λ

L y
)
(x) = − dy

dx . We need the definitions of Riesz-
type GFD. Using (1) and (2), we define

Dα,λ
x y(x) =

1
2

[
C
a Dα,λ

x y(x)− C
x Dα,λ

L y(x)
]
. (3)

Equation (3) is written as

Dα,λ
x y(x) =

1
2

1
Γ(1 − α)

∫ L

a

exp(−λ|x − τ|)
|x − τ|α

y(1)(τ)dτ. (4)

Before we define a new deformation measure, we state the classical strain tensor of
linear elasticity (see [14]) that for the three-dimensional body reads

Eij(xk, t) =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, i, j, k = 1, 2, 3. (5)

In (5), we denoted by ui
(
xj, t

)
, i, j = 1, 2, 3 components of the displacement vector

with respect to a prescribed Cartesian coordinate system with axes xj. Also, we use t to
denote time. Since here we consider one-dimensional bodies only, (5) becomes

E(x, t) =
∂u(x, t)

∂x
. (6)

Here u = u1 is the only non-zero component of displacement vector. Also, x = x1 is
the axis coinciding with the rod axis. Instead of (6), we shall use the following deformation
measure

Eα,λ(x, t)=Dα,λ
x u(x, t). (7)

In (7) we used Dα,λ
x defined by (4). Also, the derivatives are taken with respect to x.

We assume that the displacement field is absolutely continuous u(x, t) ∈ AC(R) in the
variable x (absolutely continuous, i.e., ∂u(x,t)

∂x ∈ L1, t ≥ 0). In this case, (1) and (2) exist and
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Eα,λ(x, t) =
1
2

1
Γ(1 − α)

∫ L

a

exp(−λ|x − τ|)
|x − τ|α

∂u(τ, t)
∂τ

dτ,

with 0 < α < 1, λ ≥ 0 exists too. The deformation measure, or strain, Eα,λ(x, t) is non-local.
Actually Eα,λ(x, t) takes values of the classical strain ∂u(x,t)

∂x at all points of the body, with

the weighting function equal to exp(−λ|x|)
|x|α .

Remark 1. For the case of three-dimensional elasticity theory, one can use the recently defined
multidimensional generalized Riesz derivative of the Luchko type, presented in [15], to define
generalization of the type (7) for the strain tensor (5).

Next we propose the constitutive equation of the rod. We assume that it is given in
strain-driven form, so that with (7) the linear stress-deformation measure relation becomes

σ(x, t) = E0Eα,λ(x, t), (8)

where σ is the stress and E0 is a constant (generalized modulus of elasticity). We consider
several special cases of (8).

• Eα,0(x, t) is the strain measure used in [16];

• E1,λ(x, t) = ∂u(x,t)
∂x , since lim

α→1
x−α

Γ(1−α)
= δ(x);

• E0,λ(x, t) is the Riesz type of derivative for the Caputo–Fabrizio fractional derivative

E0,λ(x, t) =
∫ L

a
exp(−λ|x − τ|)∂u(τ, t)

∂τ
dτ,

if we take λ = α
1−α and add the constant 2

1−α in front [17,18].

Suppose that we assume that the displacement field is given as u(x, t) = c(t), with
c(t) being arbitrary. This represents the rigid body motion along the axis of the body. Then

Eα,λ(x, t) = 0.

Therefore, we conclude that the rigid body motion of the rod, i.e., u(x, t) = c(t), with
c(t) being arbitrary, leads to zero strain. This shows that Eα,λ(x, t) can be used as a strain
measure. Now we analyze the general problem of motions that result in strain given by (7),
that is equal to zero. To do this, we examine the solution to the equation Eα,λ(x, t) = 0 in
general. We consider ∫ L

a

exp(−λ|x − τ|)
|x − τ|α

∂u(τ, t)
∂τ

dτ = 0. (9)

The next Lemma summarizes the result.

Lemma 1. For 0 < α < 1 the only solution to (9) for x ∈ (a, L), t ≥ 0, is u(x, t) = c(t).

Proof. Let U(x, t) be a function defined as

U(x, t) =


∂u(x,t)

∂x , a < x < L,

0, x < a or x > L,
t ≥ 0.

Then ∫ L

a

exp(−λ|x − τ|)
|x − τ|α

∂u(τ, t)
∂τ

dτ =

=
∫ +∞

−∞

exp(−λ|x − τ|)
|x − τ|α

∂u(τ, t)
∂τ

dτ =
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=

(
exp(−λ|τ|)

|τ|α
∗ U(τ, t)

)
(x, t),

where ∗ denotes the convolution. Equation (9) now becomes(
exp(−λ|τ|)

|τ|α
∗ U(τ, t)

)
(x, t) = 0, t ≥ 0. (10)

Since (10) is an equation represented by convolution of two elements from the space
of tempered distribution, one of which is with compact support, we analyze (10) in the
space of tempered distribution S ′. Let [U(x, t)] be a regular distribution defined by U(x, t).
[U(x, t)] is with the compact support. Distribution

[
exp(−λ|τ|)

|τ|α
]
, defined by exp(−λ|τ|)

|τ|α , is in

S ′. Consequently, the convolution[
exp(−λ|τ|)

|τ|α
]
∗ [U(x, t)]

exists. We now apply the Fourier transform to (10). Firstly, we have, see [19], p. 346,

F
(

exp(−λ|τ|)
|τ|α

)
(k) = 2iΓ(1 − α)

(
λ2 + k2

)− 1−α
2 cos[(1 − α)Θ(k)], (11)

where
Θ(k) = arctan

k
λ

. (12)

Next, by using (11) in (10) we obtain[
2i
(

λ2 + k2
)− 1−α

2 cos[(1 − α)Θ(k)]
]
F [U(τ, t)](k) = 0. (13)

Since F ([U])(k) is an entire function in k, t ≥ 0, from (13) and the uniqueness theorem
for the Fourier transform we conclude that F (U) = 0 if 0 < α < 1, or ∂u(x,t)

∂x = 0, a.e. Thus,
u(x, t) = c(t).

We combine (4) and (11) to obtain

F
(

Dα,λ
x y(x)

)
= 2i|k|

(
λ2 + k2

)− 1−α
2 cos[(1 − α)Θ(k)]sgn(k)F (y)(k), (14)

where Θ(k) is given by (12).
Equation of motion is

∂σ(x, t)
∂x

+ f (x, t) = ρ
∂2u(x, t)

∂t2 , (15)

where f denotes the prescribed body forces and ρ denotes density. We take body force in
the form of friction force, proportional to the Caputo fractional derivative of displacement
u(x, t) with respect to time, i.e.,

f (x, t) = −µ C
0 Dβ

t u(x, t) = −µ
1

Γ(1 − β)

∫ t

0

1

(t − ξ)β

∂u(x, ξ)

∂ξ
dξ, 0 ≤ β ≤ 1, (16)

with µ ≥ 0. The form of the body force is taken to be proportional to the Caputo fractional
derivative of displacement in order to be able to model viscous force β = 1 and purely
elastic resistance force β = 0. Then, the equation of motion becomes

ρ
∂2u
∂t2 = E0

∂Eα,λ(x, t)
∂x

− µ C
0 Dβ

t u(x, t). (17)
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To (17), we prescribe the following initial condition

u(x, 0) = C1(x),
∂u
∂t

(x, 0) = C2(x). (18)

Remark 2. Note that[
C
0 Dα,λ

x u(x, t)− C
x Dα,λ

L u(x, t)
]
=

∂

∂x
Rα,λ(u)(x, t),

where

Rα,λ(u)(x, t) =
1

Γ(1 − α)

∫ ∞

−∞

u(x − ξ, t) exp(−λ|ξ|)
|ξ|α

dξ (19)

is modified Riesz potential (cf. [20]). It reduces to the classical Riesz potential for λ = 0.

3. Notations

In this Section, we present definitions that we shall use in the sequel. The Fourier
transform of a tempered distribution u ∈ S ′ is the tempered distribution Fu, that we
denote by û. It is defined by

⟨Fu, φ⟩ = ⟨u,F φ⟩, φ ∈ S ,

where

(F φ)(ω) =

∞∫
−∞

exp(ixω)φ(x)dx.

The inverse Fourier transform is

(F−1ψ)(x) =
1

2π

∞∫
−∞

exp(−ixω)ψ(ω)dω,

where φ, ψ ∈ S . F is a homeomorphism of S ′ onto S ′. Operations F and F−1 are the
inverse of each other; see [21–24].

For the case where f ∈ L1, f has the classical Fourier transform F f . We denote by [ f ]
the regular distribution defined by function f . Then F [ f ] = [F f ] and F−1(F [ f ]) = [ f ]. In
the case where F f ∈ L1, then F−1(F f ) = f a.e. See [23].

Suppose that f ∈ L2 and consider F(ω, a) defined as

F(ω, a) =
a∫

−a

exp(ixω) f (x)dx.

Then, as a → ∞, F(ω, a) converges in L2 to a function F(ω) ∈ L2 and

f (x, a) =
1

2π

a∫
−a

exp(−ixω)F(ω)dω,

converges in L2 to f (x). The functions f and F are connected by the formulae

F(ω) =
d

dω

∞∫
−∞

f (x)
exp(iωx)− 1

ix
dx, f (x) =

1
2π

d
dx

∞∫
−∞

F(ω)
exp(−ixω)− 1

(−iω)
dω, (20)

for almost all values of x; see [25], p. 69. Then, F(ω) is defined as the Fourier transform of
f ∈ L2. Fourier transform is a linear isometry of L2 onto L2 and F[ f ] = [F f ] see [23], p. 148
and [22], p. 216.
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Let f ∈ L1
loc and suppose that for some k ∈ N0, | f (x)| ≤ M|x|k, for |x| sufficiently

large. Then
[ f ] ∈ S ′, ⟨[ f ], φ⟩ = ⟨F [ f ],F−1 φ⟩ = ⟨F−1[ f ],F φ⟩ ,

where φ ∈ S ; see [23], p. 159 and 202.
From Fubini’s theorem, it is easily seen that f holds the following additional condition:

(F f )(y)(1 + |y|2)−k, k ∈ N0, belongs to L1, then F [ f ] = [F f ].
The GFD derivative of the Caputo type of order α, of a function f , lim f (x) = 0,

|x| → ∞ ( f (±∞) = 0) and for 0 < α < 1, is defined by (1) and (2). The definitions of
the order α GFD of the Caputo type (1) and (2) can be extended on S ′ as follows. For f ,
f (±∞) = 0, we have (see (14)),

F
(

Dα,λ
x f (x)

)
(k) = 2i|k|

(
λ2 + k2

)− 1−α
2 cos[(1 − α)Θ(k)]sgn(k)F ( f )(k),

where Θ(k) = arctan k
λ .

Definition 1. Let f ∈ S ′ such that

2i|k|
(

λ2 + k2
)− 1−α

2 cos[(1 − α)Θ(k)]sgn(k)F f ∈ S′.

Then, we define

Dα,λ
x f (x) = F−1

(
2i|k|

(
λ2 + k2

)− 1−α
2 cos[(1 − α)Θ(k)]sgn(k)F f

)
. (21)

From the definition, it follows that Dα,λ
x f does not exist for every f ∈ S ′. For the case

where f ∈ AC(R) we have

Dα,λ
x [ f ] = [F−1

(
2i|k|

(
λ2 + k2

)− 1−α
2 cos[(1 − α)Θ(k)]sgn(k)F f

)
] = [Dα,λ

x f ].

Consequently, using Definition 1 we extended the operator Dα,λ
x f (·) onto S′ and for

f ∈ AC(R) we determine that Dα,λ
x f (·) is a regular distribution.

Let
S′
+ =

{
f ∈ S ′, supp f ⊂ [0, ∞)

}
.

The Laplace transform of f ∈ S′
+ can be defined as

(L f )(s) = (F f exp(−σx))(−ω) = ⟨ f , exp(−sx)⟩,

where s = σ + iω (cf. [22,24]).

4. Solutions to the Cauchy Problem (17), (18)

To write the relevant system of equations in the distributional form, we note that
the system of equations in dimensionless form, describing motion of one-dimensional
continuum, consists of the equation of motion, the constitutive equation, and the strain
definition (geometrical equation) defined for x ∈ R, t ∈ R, and reads

ρ
∂2h(x, t)

∂t2 =
∂σ(x, t)

∂x
− µ C

0 Dβ
t h(x, t),

σ(x, t) = E0 Eα,λ(x, t), t > 0, x ∈ R,

ε(x, t) =
∂h(x, t)

∂x
,

(22)
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where σ(x, t), h(x, t), ε(x, t), x ∈ R, and t > 0 denote the stress, displacement, and strain
at the point x and time t,, respectively. The initial and boundary conditions associated
with (22) are

h(x, 0) = C1(x), ∂th(x, 0) = C2(x),

lim
x→±∞

h(x, t) = 0, lim
x→±∞

σ(x, t) = 0, t ≥ 0.
(23)

Since we will consider the above equation with initial data over t ∈ R+ (and x ∈ R),
we put for the displacement u(x, t) = H(t)h(x, t), where H is Heviside distribution, and
we consider u as a distribution. This implies

∂

∂t
u(x, t) =

∂

∂t
h(x, t)H(t) + u0(x)× δ(t),

∂2

∂t2 u(x, t) =
∂2

∂t2 h(x, t)H(t) + v0(x)× δ(t) + u0(x)× δ′(t),

where u0(x) = C1(x), v0(x) = C2(x), so that the distributional form to (22) becomes

∂2u(x, t)
∂t2 = B2 ∂

∂x
Eα,λ(x, t)− b C

0 Dβ
t u(x, t) + C1(x)× δ′(t) + C2(x)× δ(t),

with 0 < α < 1, λ ≥ 0 and where we used B2 = E0
ρ and b = µ

ρ .

The equation in S ′(R2) which corresponds to (17) and (18) is

D2
t u = B2 DxDα,λ

x u − b C
0 Dβ

t u + C1(x)× δ(1)(t) + C2(x)× δ(t), (24)

where 0 < α < 1, u ∈ S ′(R2), supp u ⊂ [0, ∞)×R and C1, C2 ∈ S ′(R). Also, Dt and Dx
denote the partial derivatives in the sense of distributions. We first sought the solutions
to (24) that are regular distributions u = [u(x, t)]. Our main result is the following theorem.

Theorem 1. Let 0 < α < 1. Suppose that C1(x) and C2(x) have Fourier transforms Ĉ1(ω) and
Ĉ2(ω), respectively, such that (−iω)αĈi(ω) ∈ S′, i = 1, 2, and Ĉi(ω), i = 1, 2, are regular
distributions or measures. Then the distributions u given by:

• b > 0

u(x, t) = F−1

(
Ĉ1(k)

∞

∑
m=0

(−1)m
m

∑
j=0

(
m
j

)
bjK(m−j)(k)t2m−βj

Γ(2m + 1 − βj)

)
(x, t)

+F−1

(
Ĉ2(k)

∞

∑
m=0

(−1)m
m

∑
j=0

(
m
j

)
bjK(m−j)(k)t2m+1−βj

Γ(2(m + 1)− βj)

)
(x, t); (25)

• b = 0

u(x, t) = F−1
(

Ĉ1(k)
[

cos(a(|k|)t)
])

+F−1
(

Ĉ2(k)
[ sin(a(|k|)t)

a(|k|)

])
, (26)

with

a2(|k|) = K(k)=B2|k|2
(

λ2 + |k|2
)− 1−α

2 cos[(1 − α)Θ(k)],

and where
Θ(k) = arctan

k
λ

;
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• b ̸= 0, β = 1

u(x, t) = F−1
(

exp
(

bt
2

)[
Ĉ1(k) cos

(
t

√
K(k)− b2

4

)

+
Ĉ2(k) + b

2 Ĉ1(k)√
K(k)− b2

4

sin

(
t

√
K(k)− b2

4

)); (27)

are solutions to (24).

Proof. First we look for solutions u = [u(x, t)] that are regular tempered distributions
defined by the function u(x, t), u(±∞, t) = 0, t ≥ 0. By applying the Fourier and Laplace
transforms to (24) (cf. Section 3), we obtain

s2(LFu)(k, s) = −B2k2
(

λ2 + k2
)− 1−α

2 cos[(1 − α)Θ(k)]LFu − bsβLFu + Ĉ1(k)s + Ĉ2(k), (28)

where Ĉi(k) = FCi, i = 1, 2. Consequently,

LFu(k, s) =
Ĉ1(k)s + Ĉ2(k)

s2 + bsβ + B2k2(λ2 + k2)
− 1−α

2 cos[(1 − α)Θ(k)]
. (29)

We write (29) as

LFu(k, s) =
Ĉ1(k)s + Ĉ2(k)
s2 + bsβ +K(k)

, (30)

where

K(k)=B2k2
(

λ2 + k2
)− 1−α

2 cos[(1 − α)Θ(k)].

Note that
K(k) ≥ 0, k ∈ R. (31)

The inverse Laplace transform of (30), with (31), is given in [26], Equation (38), and
reads

Fu(k, t) = L−1

[
Ĉ1(k)s + Ĉ2(k)
s2 + bsβ +K(k)

]
(k, t) =

= Ĉ1(k)
∞

∑
m=0

(−1)m
m

∑
j=0

(
m
j

)
bjK(m−j)(k)t2m−βj

Γ(2m + 1 − βj)
+

+ Ĉ2(k)
∞

∑
m=0

(−1)m
m

∑
j=0

(
m
j

)
bjK(m−j)(k)t2m+1−βj

Γ(2(m + 1)− βj)
,

which proves (25). To obtain other forms of the solution, we consider the following special
cases:

• Let b = 0. Then, we have

Fu(k, t) = Ĉ1(k)
[

cos(a(|k|)t)
]
+ Ĉ2(k)

[ sin(a(|k|)t)
a(|k|)

]
,

with

a2(|k|) = K(k)=B2|k|2
(

λ2 + |k|2
)− 1−α

2 cos[(1 − α)Θ(k)],

where Θ = arctan k
λ . Now the solution corresponding to b = 0, becomes
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u(x, t) = F−1
(

Ĉ1(k)
[

cos(a(|k|)t)
])

+F−1
(

Ĉ2(k)
[ sin(a(|k|)t)

a(|k|)

])
. (32)

Since D2
t and Dx exist for every tempered distribution, the distribution u given by (32)

is a solution to (24) if and only if (−iω)α(Fu)(ω) ∈ S ′. This follows from Definition 1
and the fact that the functions cos(a(|k|)t) and sin(a(|k|)t) are bound on R.

• Let b > 0, β = 1. In this case, we have

LF (u)(k, s) =
Ĉ1(k)s + Ĉ2(k)
s2 + bs +K(k)

. (33)

The inverse Laplace transform of (33) is

F (u)(k, t) = exp
(

bt
2

)[
Ĉ1(k) cos

(
t

√
K(k)− b2

4

)

+
Ĉ2(k) + b

2 Ĉ1(k)√
K(k)− b2

4

sin

(
t

√
K(k)− b2

4

). (34)

Therefore

u(x, t) =
1

2π

∞∫
−∞

exp(−ixk) exp
(

bt
2

)[
Ĉ1(k) cos

(
t

√
K(k)− b2

4

)

+
Ĉ2(k) + b

2 Ĉ1(k)√
K(k)− b2

4

sin

(
t

√
K(k)− b2

4

)dk. (35)

Note that when K(k)− b2

4 < 0, we have in (35)

cos

(
t

√
K(k)− b2

4

)
= cosh

(
t

√
b2

4
−K(k)

)
,

sin
(

t
√
K(k)− b2

4

)
√
K(k)− b2

4

=
1√

b2

4 −K(k)
sinh

(
t

√
b2

4
−K(k)

)
.

So, theorem is proved.

Remark 3. Suppose that b = λ = 0. In this case, we have

K(k)=B2|k|1+α cos
[
(1 − α)

π

2

]
= B|k|1+α sin

απ

2
,

so that

LFu =
Ĉ1(k)s + Ĉ2(k)

s2 + B2|k|1+α sin απ
2

.

We have this case treated in [16]. The inverse Laplace transform gives

Fu = Ĉ1(k)
[

cos(|k|γat)
]
+ Ĉ2(k)

[ sin(|k|γat)
a|k|γ

]
, (36)

where a2 = B2 sin απ
2 and γ =

1 + α

2
; see [27], p. 171. From (36), it follows that Ĉi, i = 1, 2,

could only be a regular distribution or a measure (distribution of order zero) because the products in
the both two addends of (36) have to exist. Finally,
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u = F−1
(

Ĉ1(k)
[

cos(|k|γat)
])

+F−1
(

Ĉ2(k)
[ sin(|k|γat)

a|k|γ
])

, (37)

which is the result presented in [16].

5. Numerical Examples

(A) As a first specific example, we take generalization of the problem treated in [16].
Let b = 0 and

C1(x) =
1

x2 + d2 , C2(x) = 0, x ∈ R.

Then
Ĉ1(ω) =

π

d
exp(−d|k|), d > 0,

so that (32) becomes

u = F−1
(π

d
exp(−d|k|)

[
cos(a(|k|)t)

])
, (38)

where

a(|k|) =
[

B2|k|2
(

λ + |k|2
)− 1−α

2 cos[(1 − α)Θ(k)]
] 1

2
, Θ = arctan

k
λ

.

Since û(ω, t) is even, we have from (38)

u(x, t) =
1
d

∞∫
0

exp(−d|k|) cos(xk) cos(
[
B2|k|2

(
λ + |k|2

)− 1−α
2 cos[(1 − α)Θ(k)]

] 1
2 t)dk. (39)

In the Figures 1 and 2 we show solution given by (39) for the same set of parameters
except for values of λ. It is seen that increase in λ leads to a decrease in the amplitude of the
propagating wave. However, an increase in λ leads to the increase in speed of propagation
of the maximum of the wave. This is a rather unexpected effect of λ.

(B) As a second example we take C1(x) = δ(x), C2(x) = 0, for α = 1, b = 0. Since
F (δ)(k) = 1, the Equation (32) becomes

u(x, t) =
1

2π

∞∫
−∞

cos(xk) cos(B|k|t)dk, (40)

or
u(x, t) = δ(x − Bt). (41)

Equation (41) shows that in this case we have the classical wave equation with the
speed of propagation B.

(C) Next, we take b = 1, α = 0.1, λ = 0.1, β = 0.1 and C1(x) = δ(x), C2(x) = 0. By
solving (25), we obtain the result shown in Figure 3.

(D) Finally we present the solution to (35). We take B = 1, C1(x) = δ(x), C2(x) = 0,
for α = 0.1, b = 1,λ = 0.1 β = 1. Since F (δ)(k) = 1, the Equation (35) becomes

u(x, t) =
1

2π

∞∫
−∞

exp(−ixk) exp
(

bt
2

)[
cos

(
t

√
K(k)− b2

4

)

+
b
2√

K(k)− b2

4

sin

(
t

√
K(k)− b2

4

)dk. (42)

From the Figures 3 and 4, we conclude that, for the case where other parameters have
fixed values, the order of fractional derivative that models external dissipation β has small
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influence on the waves at the beginning of motion. It decreases the amplitude of waves for
larger times.

u x t( , )

x

t=1  10x
-2

t=2.5

t=10

0 5 10 15

0.5-

0

0.5

1

20

Figure 1. Solution (39) at three time instants for B = 1, α = 0.1, b = 0, and λ = 1 × 10−4.

u x t( , )

x

t=1  10x
-2

t=2.5

t=10

0 5 10 15 20

0.5-

0

0.5

1

Figure 2. Solution (39) at three time instants for B = 1, α = 0.1, b = 0, and λ = 1.

x

t=1 x 10
-5

t=0.1
t=0.2

u x t( , )

0 0.02 0.04 0.06 0.08 0.1
50-

0

50

100

150

200

Figure 3. Solution (25) at three time instants for B = 1, α = 0.1, β = 0.1, b = 1, and λ = 0.1.
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x

t=1 x 10
-5

t=0.1

t=0.2

u x t( , )

0 0.02 0.04 0.06 0.08 0.1

50-

0

50

100

150

200

Figure 4. Solution (35) at three time instants for B = 1, α = 0.1, b = 1, β = 1, and λ = 0.1.

6. Conclusions

In this work, we formulated a new wave equation with non-local action with fractional
type of dissipation (24). The solution to the equation is given for several special cases. Our
main conclusions are:

1. We introduced a new measure of deformation, generalizing the classical one-dimensional
strain. It is non-local and contains two parameters, α and λ. In the special case λ = 0,
it is reduced to classical or the strain measure or the generalized strain measure used
in [16]. We note that a similar formalism was used in [28] in the context of classical
particle mechanics, i.e., a finite number of degrees of freedom.

2. The solution is a regular distribution. The explicit form of the solution is given
with (25)–(27).

3. The obtained solution shows dissipation in the sense that amplitude is decreasing.
However, there is no periodicity/quasiperiodicity of the solution. This is explained by
the known property of the fractional derivative: the fractional derivative of a periodic
function is not periodic; see [29,30].
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