
Application of Reinforcement Learning for 

Control of Heat Pump Systems 
 

Dea Pujić*a, Marko Jelić*a, Marko Batića and Nikola Tomaševića 

* School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia 
a Institute Mihajlo Pupin,University of Belgrade, Volgina 15, 11060 Belgrade, Serbia 

{dea.pujic, marko.jelic, marko.batic, nikola.tomasevic}@pupin.rs 

 

 
Abstract— With the proliferation of heat pump systems for 

both heating and cooling applications for a wide range of 

space volumes, from isolated rooms to whole houses and 

buildings, their efficient operation is paramount to facilitate 

the transition to a more efficient building stock and reduction 

of greenhouse gas emissions. Also, phasing out polluting non-

renewable fossil fuel-based heating systems in favor of heat 

pumps contributes notably to the electrification of the 

thermal domain and allows for a more notable share to be 

facilitated by clean and renewable generation in the future. 

Therefore, on top of modeling approaches for these types of 

systems, adequate control algorithms need to be developed 

and deployed to ensure the proper utilization of flexibility 

that these devices offer. This paper presents a set of 

techniques based on reinforcement learning for heat pump 

control of room temperature based on varying source and 

user loop flow rates as control inputs and discusses the 

implications of a selection of different control strategies on 

the observed indoor temperature variables. 

I. INTRODUCTION 

With the goal of increasing the share of flexible loads in 
the total demand, heat pumps have been observed as key 
high efficiency appliances capable of bridging the gap 
between the thermal and electric domains. In doing so, they 
provide a means of increasing the adaptability of loads 
through the introduction of the previously untapped thermal 
side of the problem into the workflow of energy 
management solutions that traditionally focus only on 
electrical appliances. However, in order to ensure efficient 
operation of heat pump systems, control algorithms need to 
be deployed such that process parameters are kept in check 
and operated in the optimal way. With heat pump systems 
being, due to their intrinsic principle of operation by 
moving heat to or from the surrounding environment, 
highly reliant on stochastic meteorological parameters, 
ensuring that they are constantly operated at their highest 
possible efficiency is no easy task. Furthermore, 
programming controller algorithms for highly varying 
operating conditions presents an additional layer of 
complexity when striving for the best possible performance 
metrics. 

Various approaches can be found in related literature 
depicting control algorithms for similar systems [1]. 
However, with previously mentioned high volatility in 
mind due to varying meteorological conditions, model-
based approaches often need to be tuned independently in 
a variety of operating conditions as the process parameters 
change depending on the variable region that is being 
considered. In an attempt to mitigate this issue, this paper 
explores and presents a control approach based on 

reinforcement learning with two different operating rules, 
adapted to a specific use case involving a numeric heat 
pump model combined with a building model. 
Reinforcement learning has been chosen in particular due 
to its nature which allows for the algorithm to be self-
learning, i.e., harnessing the ability to adapt to the system it 
is being applied to while being given minimum expert 
input. In essence, it explores the feasible region defined 
within the given environment and adapts in accordance 
with a specified simplistic reward/penalty depending on the 
achieved result(s). 

II. RESEARCH QUESTIONS 

The heat pump for which the control will be presented in 
this paper is based on a simplified air-to-water system and 
transfers a given amount of heat 𝑄, which depends on two 
inlet flow rates. The first is the air flow rate on the external 
environment as the energy source side (expressed as a 
multiple of a nominal value, called the source flow 
multiplier 𝑠𝑓𝑚) and water flow on the consumer side 
(expressed as a multiple of a nominal value, called user 
flow multiplier 𝑢𝑓𝑚). The mentioned amount of heat 𝑄 is 
transferred to the building and accordingly, the temperature 
in a room, 𝑇𝑖 , is indirectly controlled. Therefore, the aim of 
this approach is to design a controller that sets the flow 
rate(s) at the inlet(s) of the heat pump’s heat exchangers 
(evaporator and condenser), which in turn controls the 
temperature of a particular room within the building. 
However, by analyzing the results of the model presented 
in [2], it was concluded that, although it is technically 
possible to control two flow rates, the impact of varying 
flow rates on the user side is relatively negligible, and 
hence it has been removed from consideration in terms of 
the development of a control algorithm for it. Therefore, it 
was decided to analyze the control of the internal 
temperature by adjusting only the air flow rate on the source 
side, with a constant flow of water set on the user side. 

Although a suitable physical heat pump model was 
developed in order to test the performance and behavior of 
the controller, no parameter values that were used within 
this model were utilized in the design of the controller. 
From the standpoint of the control algorithm, the heat pump 
system was treated as a so-called black box for which it is 
only possible to measure the output values at given input 
parameters. In other words, the developed heat pump model 
was used as only a simulator, i.e., as an environment for 
testing its performance, with more details regarding its 
development available in [2] which discusses parametric 
heat pump modelling in greater detail. 



III. METHODOLOGY 

There is a large number of solutions offered in the related 
literature when it comes to the problem of designing control 
algorithms. Different solutions can be selected depending 
on the specific system properties, its key characteristics and 
the main goal that is desired to be achieved with a given 
controlled system. Within this paper, it was decided to 
utilize a common reinforcement learning approach, more 
precisely neural networks trained using reinforcement 
learning. Namely, the design of controllers for processes 
that exbibit frequent internal change or are extremely 
nonlinear, and consequently require different and specific 
control strategies, is often extremely challenging. However, 
as opposed to traditional fixed solutions, reinforcement 
learning-based controllers, which learn optimal control 
strategies by repeatedly observing the process through a 
number of experiments, are usually successful for such 
system groups.  

Concretely, in this paper, the controller was constructed 
as a neural network with three hidden artificial layers (with 
24 neurons each), and a deep Q-network (DQN) agent  [3] 
based on the Q learning method that was used to adjust the 
parameters. In this context, the neural network is designed 
to map the current conditions, which include the current 
internal temperature, the outlet temperature of the heating 
system, the envelope temperature of the building and the 
outside ambient temperature, to the required control output. 
Since the network had as many outputs as there are possible 
discrete controls, the designed neural network was defined 
to have four inputs and 𝑛 (number of control values) 
outputs.  

When considering a conventional supervisory approach 
to the network training process as opposed to an 
unsupervised reinforcement learning control algorithm, the 
corresponding parameters are adjusted to minimize an 
estimation error on a predefined data set. On the other hand, 
in the case of a DQN agent, the parameters are determined 
in such a way as to maximize a certain reward function. 
There are examples that can be solved in both ways, but 
there are also some that cannot be solved by using 
supervised approaches. These include cases in which it is 
not known in advance what the desired output is. This was 
exactly the case with heat pump control as described 
previously. Namely, for a given set of input parameters, 
there is no historical labeled data that would suggest that it 
is correct or incorrect to apply a specific control. 
Accordingly, the supervisory approach is not suitable in 
this case and so, a DQN agent is used. In a specific example 
of heat pump control as will be discussed further, the 
reward for a certain condition could be defined in relation 
to the deviation of the current temperature in a room which 
is the object of the control system with a reference from a 
set point value with details in this regard given in the next 
section. 

Namely, with respect to a desired user comfort 
specification, a range of acceptable temperatures can be 
defined bounded by a lower and upper value. Around these 
comfort constraints, an acceptable band of indoor 
temperatures is formed such that the control system can 
receive positive feedback (reward) if it maintains the room 
temperature within these limits, receive negative feedback 
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(penalty) if the controlled temperature goes outside the 
bounds, or both. However, the formulation of the reward 
function (i.e., the way in which it is suggested to the 
algorithm if the outcome is positive, negative or indifferent) 
can have a notable impact on the achieved form of both the 
control signal as well as the controlled variable. Therefore, 
in the following sections, two different approaches will be 
discussed in terms of defining the reward function. A 
simplistic reward will be compared to an arguably more 
complex one and the output of the neural network controller 
will be presented. 

IV. DISCUSSION 

In this section, the obtained results for the heat pump 
control will be presented. As explained previously, a neural 
network trained using Q learning has been chosen as the 
control approach to map current indoor, outdoor and 
building envelope temperature 𝑇𝑒 into one of n discrete 
control values so that the indoor temperature is maintained 
at a reference value of 21 °C. For the purpose of model 
development and corresponding testing, the external 
conditions were taken from the data set [4] for all tested 
cases using the first 100 samples of the sequence. The 
development has been carried out using Python libraries 
gym1, tensorflow, keras and rl. 

A. First use case – Simplistic reward function 

Since the crucial step in the process of utilizing neural 
network-based reinforcement learning is the definition of 
the reward function, as it directly influences what type of 
behavior the network should encourage, two different 
strategies have been tested and will be compared. Since the 
considered problem was defined as maintaining the indoor 
temperature at a given constant set point of 21 °C, the idea 
was to specify such a reward as to have the model learn that 
the mentioned temperature is required to be maintained in 
a certain range. This range is defined as an interval 
[20, 22] °C, as it is expected that a deviation of 1 °C on 
either side is acceptable and does not significantly affect 
comfort in the room.  

Accordingly, the reward was defined as a pulse that had 
a positive value of 1 when the interior room was within the 
interval [20, 22] °C, and -1 otherwise, i.e. 

 

𝑟 = {
   1, 20 ≤ 𝑇𝑖 ≤ 22
−1, otherwise

. 

 

Such a simple reward does not penalize in any 
substantial way large deviations, and also does not provide 
additional rewards for achieving a temperature of exactly 
or very close to 21 °C. When it comes to the potential 
controls that are available for this model, five potential 
values were selected, namely  

 

𝑢 = 𝑠𝑓𝑚 ∈ [0.00,   0.25,   0.05,   0.75,   1.00]. 
 

Accordingly, the observed network had four inputs and 
five outputs. In addition to setting the reward and available 
controls, the total number of steps during the training 
process was set to 5 000. Mean absolute error (MAE) and 



the ADAM optimizer [5] with a learning rate of 0.01 were 
utilized as the objective function for neural network 
optimization. The same hyperparameters were also utilized 
for the training of the second neural network model. 

The results achieved in terms of the internal temperature 
and the corresponding flow rate multiple, after the training 
process, are shown in Figures 1 and 2. The first of them 
shows the values of the controlled variable (internal room 
temperature), as well as the envelope temperature 
(secondary output of the model) of the building. As can be 
seen, the internal temperature in 98 out of 100 steps remains 
in the acceptable interval marked in orange [20, 22] °C, 
which indicates a high quality of control. Namely, although 
the temperature is not in the immediate vicinity of 21 °C, 
such an outcome was not necessarily expected, having in 
mind the way in which the award was defined. 
Accordingly, the reward set in this way can be equated with 
the definition of the reward to maintain the temperature in 
the interval [20, 22] °C, which is almost ideally achieved. 
The second figure shows the value of the predefined control 
𝑢𝑓𝑚, as well as the value of the output of the controller – 
𝑠𝑓𝑚 from the source side. What can be immediately 
noticed is that all discrete control levels are present, which 
suggests that the model has explored and became aware of 
all the potential control options that were previously 
specified. 

B. Second use case – Complex reward function 

Another controller which will be presented in this paper, 
differs from the previous one primarily in the reward 
function that is defined in a slightly more complex way. 
Namely, the reward for the second reinforcement learning 
model has been defined as follows: 

 

𝑟 = {

10, 20.5 ≤ 𝑇𝑖 ≤ 21.5

1,
20 ≤ 𝑇𝑖 < 20.5 or 

21.5 < 𝑇𝑖 ≤ 22

−|𝑇𝑖 − 21|/100, otherwise

 

 

The goal of this reward was to keep the temperature closer 

to the set point, ideally in the range (21 ±  0.5)°C, but to 

also accept some minor deviations in the interval of 

(21 ±  1)°C. The results obtained after applying this 

control (letting the algorithm explore the allowed domain 

and training the control output) are shown in Figures 3 and 

4. It could be observed that for the whole period of time 

the temperature is within [20, 22) °C. However, the 

difference from this perspective is very small, considering 

that the previous controller also maintains the temperature 

in the given interval. Even in two samples when this was 

not the case, the deviations were minimal. However, 

significantly more notable difference was the time interval 

in which the temperature enters the range [20.5, 21.5] °C. 

In the previous case, it was during only 59% of the time, 

while in this one, with a more complex reward function, it 

was 78%. This certainly shows an improvement in terms 

of the controller performance. When analyzing the control 

sequence, it can be noticed that it uses only three of the 

five possible outputs. However, since the value of 0.25 and 

0 are treated as the same due to a saturation function which 

was applied, it can be said that only the control of 0.75 was 

not used. Taking into account all the above, as well as the 

fact that the duration of the training does not differ, it can 

be concluded that the second controller is preferable to the 

first one. 

 

Figure 1 – Timeseries of the observed room and envelope temperature in the first case 

 

Figure 2 – Performances of the RL controller’s control signal with the simpler reward function 

 



V. CONCLUSION AND FUTURE WORK 

The presented results in this paper depict how advanced 
reinforcement learning approaches for controllers can be 
applied to a combination of heat pump and building 
simulators to achieve a desired temperature range. This 
result is particularly interesting as it was achieved without 
the controller having any knowledge of the model structure 
that is being controlled. Thus, it shows that, without 
specific tuning to different conditions, such approaches 
may be considered to automatically adapt to varying 
circumstances. 
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Figure 3 – Timeseries of the observed room and envelope temperature in the second case 

 

figure 4 – Performances of the RL controller’s control signal with the more complex reward function 


