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Randić degree-based energy of graphs

E. Zogić, B. Borovićanin, E. I. Milovanović, I. Ž. Milovanović

Abstract: Let G = (V,E), V = {1,2, . . . ,n}, be a simple graph of order n and size m, without
isolated vertices. Denote by ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0, di = d(i), a sequence of its vertex
degrees. If vertices i and j are adjacent, we write i ∼ j. With T I we denote a topological index
that can be represented as T I = T I(G) = ∑i∼ j F(di,d j), where F is an appropriately chosen
function with the property F(x,y) = F(y,x). Randić degree–based adjacency matrix RA = (ri j)

is defined as ri j =
F(di,d j)√

did j
if i ∼ j, and 0 otherwise. Denote by fi, i = 1,2, . . . ,n, the eigenvalues

of RA. The Randić degree-based energy of graph could be defined as RET I = RET I(G) =

∑n
i=1 | fi|. Upper and lower bounds for RET I are obtained.
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1 Introduction

Let G = (V,E), V = {1,2, . . . ,n}, be a simple graph of order n and size m, without isolated
vertices. Denote by ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0, di = d(i), a sequence of its vertex
degrees. If vertices i and j are adjacent, we write i ∼ j.

In chemistry, a variety of graph invariants, so-called ”topological indices”, is currently
being considered (see [5]), that can be represented in the form

T I = T I(G) = ∑
i∼ j

F(di,d j) ,

where F is an appropriately chosen function with the property F(x,y) = F(y,x).
To each topological index T I, we can associate Randć vertex degree adjacency matrix

RA = (ri j), defined as

ri j =

{ F(di,d j)√
did j

, if i ∼ j

0 , otherwise
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Engineering, Niš, Serbia.
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Let f1 ≥ f2 ≥ ·· · ≥ fn be the eigenvalues of the matrix RA, and γ1 ≥ γ2 ≥ ·· · ≥ γn the
absolute values of eigenvalues fi, i = 1,2, . . . ,n given in a decreasing order. It is elementary
to show that

tr(RA) =
n

∑
i=1

fi = 0 , (1)

and

tr
(
(RA)2)= n

∑
i=1

f 2
i =

n

∑
i=1

γ2
i = 2∑

i∼ j

F(di,d j)
2

did j
, (2)

where tr(RA) and tr((RA)2) are traces of matrices RA and (RA)2, respectively.
Randić degree-based energy, RET I can be defined as

RET I = RET I(G) =
n

∑
i=1

| fi|=
n

∑
i=1

γi .

In what follows, we list some particular vertex-degree-based topological indices and the
corresponding Randić degree-based energy of graph.

• For F(di,d j) = 1, the Randić energy, RET I = RE, defined in [1, 2] is obtained.

• For F(di,d j) =
√

did j, T I = RR is the reciprocal Randić index [7]. In this case the
ordinary energy RET I = E, defined in [6] is obtained.

• For F(di,d j) = di + d j, T I = M1 is the first Zagreb index [8]. The corresponding
Randić first Zagreb energy, RET I = RZ1E could be defined.

• For F(di,d j) = did j, T I = M2 is the second Zagreb index [9]. The corresponding
Randić second Zagreb energy, RET I = RZ2E could be defined.

The general Randić index R−1 is defined as [16]

R−1 = R−1(G) = ∑
i∼ j

1
did j

.

The symmetric division deg index, SDD is defined as [18]

SDD = SDD(G) = ∑
i∼ j

d2
i +d2

j

2did j
.

In this paper we are concerned with the lower and upper bounds for the Randić degree-
based energy RET I .
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2 Preliminaries

In this section, we recall some analytical inequalities for real number sequences which will
be used subsequently.

Let a = (ai), i = 1,2, . . . ,n be a sequence of positive real numbers. Then, for any real r,
r ≥ 1 or r ≤ 0, the Jensen’s inequality (see e.g. [15]) is valid

nr−1
n

∑
i=1

ar
i ≥

(
n

∑
i=1

ai

)r

. (3)

If 0 ≤ r ≤ 1, then the sense of (3) reverses.
Let p = (pi) and a = (ai), i = 1,2, . . . ,n, are positive real numbers with the properties

p1 + p2 + · · ·+ pn = 1 and 0 < a ≤ ai ≤ A < +∞. The following inequality was proved in
[17]

n

∑
i=1

piai +aA
n

∑
i=1

pi

ai
≤ a+A (4)

3 Main result

In this section we determine upper and lower bounds for the Randić degree-based energy,
RET I .

Theorem 3.1. Let G be a simple graph of order n ≥ 2, without isolated vertices. Then

RET I ≤
√

n tr((RA)2)− n
2
(γ1 − γn)2 (5)

with equality if and only if γ2 = γ3 = · · ·= γn−1 =
γ1+γn

2 .

Proof. Based on the Lagrange’s identity we have that

n
n

∑
i=1

γ2
i −

(
n

∑
i=1

γi

)2

= ∑
1≤i< j≤n

(γi − γ j)
2 ≥

n−1

∑
i=2

((γ1 − γi)
2 +(γi − γn)

2)+(γ1 − γn)
2 . (6)

For r = 2, n = 2, a1 = γ1 − γi and a2 = γi − γn, according to (3) we have that

(γ1 − γi)
2 +(γi − γn)

2 ≥ 1
2
(γ1 − γn)

2 . (7)

From (6) and (7) we get

n
n

∑
i=1

γ2
i −

(
n

∑
i=1

γi

)2

≥ 1
2

n−1

∑
i=2

(γ1 − γn)
2 +(γ1 − γn)

2 =
n
2
(γ1 − γn)

2 ,
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that is
n tr((RA)2)− n

2
(γ1 − γn)

2 ≥ (RET I)
2 .

From the above we arrive at (5).
Since equality in (6) holds if and only if γ1 = γ2 = · · · = γn−1 and γ2 = γ3 = · · · = γn,

therefore equality in (5) holds if and only if γ2 = γ3 = · · ·= γn−1 =
γ1+γn

2 .

Remark 3.2. For F(di,d j) = 1, F(di,d j) =
√

did j, F(di,d j) = di+d j and F(di,d j) = did j,
from (5), respectively, the following inequalities are obtained:

RE ≤
√

2nR−1 −
n
2
(γ1 − γn)2 , (8)

E ≤
√

2mn− n
2
(γ1 − γn)2 , (9)

RZ1E ≤
√

4n(SDD+m)− n
2
(γ1 − γn)2 ,

RZ2E ≤
√

2nM2 −
n
2
(γ1 − γn)2 .

The inequality (8) was proved in [12], whereas (9) in [13].

Since (γ1 − γn)
2 ≥ 0, we have the following corollary of Theorem 3.1.

Corollary 3.3. Let G be a simple graph of order n ≥ 2, without isolated vertices. Then

RET I ≤
√

ntr((RA)2) , (10)

with equality if and only if γ1 = γ2 = · · ·= γn.

Remark 3.4. For F(di,d j) = 1, F(di,d j) =
√

did j, F(di,d j) = di+d j and F(di,d j) = did j,
from (10), respectively, the following inequalities are obtained:

RE ≤
√

2nR−1 , (11)

E ≤
√

2mn , (12)

RZ1E ≤ 2
√

n(SDD+m) ,

RZ2E ≤
√

2nM2 .

The inequality (11) was proven in [2], and (12) in [11].
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Theorem 3.5. Let G be a simple, non-empty graph, of order n≥ 2, without isolated vertices.
Then

RET I ≥
tr((RA)2)+ γ1γn

γ1 + γn
, (13)

with equality if and only if γi = γ1 or γi = γn, for i = 1,2, . . . ,n.

Proof. For pi =
γi

RET I
, ai = γi, a = γn, A = γ1, i = 1,2, . . . ,n, the inequality (4) transforms

into
n

∑
i=1

γ2
i

RET I
+

γ1γn

n

∑
i=1

1

RET I
≤ γ1 + γn ,

that is
tr((RA)2)+nγ1γn ≤ (γ1 + γn)RET I ,

wherefrom we obtain (13).

Remark 3.6. For F(di,d j) = 1, F(di,d j) =
√

did j, F(di,d j) = di+d j and F(di,d j) = did j,
from (13), respectively, the following inequalities are obtained:

RE ≥ 2R−1 +nγ1γn

γ1 + γn
,

E ≥ 2m+nγ1γn

γ1 + γn
, (14)

RZ1E ≥ 4(SDD+m)+nγ1γn

γ1 + γn

RZ2E ≥ 2M2 +nγ1γn

γ1 + γn

The inequality (14) was proved in [14].

Theorem 3.7. Let G be a simple non-singular graph with n ≥ 2 vertices. Then

RET I ≥
2tr((RA)2)

fi − fn
. (15)

Equality holds if and only if f1 = f2 = · · ·= fp =− fp+1 = · · ·=− fn, (n = 2p).

Proof. According to the inequality (4) we have that

tr((RA)2) =
n

∑
i=1

γ2
i =

n

∑
i=1

f 2
i =

1
2

∣∣∣∣∣ n

∑
i=1

(
2 fi − f1 − fn

)
fi

∣∣∣∣∣≤
≤1

2

n

∑
i=1

(|2 fi − f1 − fn| | fi|) .
(16)
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Since f1 ≥ fi ≥ fn, for i = 1,2, . . . ,n,

−( f1 − fn)≤ 2 fi − f1 − fn ≤ f1 − fn ,

that is
|2 fi − f1 − fn| ≤ f1 − fn . (17)

Now, based on (16) and (17) we get

tr((RA)2)≤ 1
2
( f1 − fn)RET I ,

which gives the required result (15).

Remark 3.8. For F(di,d j) = 1, F(di,d j) =
√

did j, F(di,d j) = di+d j and F(di,d j) = did j,
from (15), respectively, the following inequalities are obtained:

RE ≥ 4R−1

f1 − fn
, (18)

E ≥ 4m
f1 − fn

,

RZ1E ≥ 8(SDD+m)

f1 − fn
,

RZ2E ≥ 4M2

f1 − fn
.

The inequality (18) was proven in [4]. Since, in this case, f1 − fn ≤ 2, this inequality is
stronger then

RE ≥ 2R−1 ,

which was proved in [3].

Theorem 3.9. Let G be a simple non-empty graph with n ≥ 2 vertices. Then

RET I ≥
√

2tr((RA)2) , (19)

with equality if and only if f1 =− fn, f2 = f3 = · · ·= fn−1 = 0.

Proof. Bearing in mind the inequality (1), we have that

0 =

(
n

∑
i=1

fi

)2

=
n

∑
i=1

f 2
i +2∑

i< j
fi f j .



Randić degree-based energy of graphs 105

Accordingly
n

∑
i=1

f 2
i =−2∑

i< j
fi f j ,

that is
n

∑
i=1

f 2
i = 2

∣∣∣∣∣∑i< j
fi f j

∣∣∣∣∣ .
Now, we have that

(RET I)
2 =

(
n

∑
i=1

| fi|

)2

=
n

∑
i=1

| fi|2 +2∑
i< j

| fi| | f j| ≥

≥
n

∑
i=1

| fi|2 +2

∣∣∣∣∣∑i< j
fi f j

∣∣∣∣∣= 2
n

∑
i=1

| fi|2 = 2tr((RA)2) .

which gives the required result in (19).

Remark 3.10. For F(di,d j) = 1, from (19) we obtain

E ≥ 2
√

m ,

which was proved in [10].
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[8] I. GUTMAN, N. TRINAJSIĆ, Graph theory and molecular orbitals. Total π-electron energy of
alternant hydrocarbons, Che. Phys. Lett. 17 (1972) 535–538.
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