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Randi¢ degree-based energy of graphs
E. Zogi¢, B. Borovicanin, E. I. Milovanovié, I. Z. Milovanovié

Abstract: Let G = (V,E), V = {1,2,...,n}, be a simple graph of order n and size m, without
isolated vertices. Denote by A=d; > dp > --- > d,, = 0 > 0, d; = d(i), a sequence of its vertex
degrees. If vertices i and j are adjacent, we write i ~ j. With 71 we denote a topological index
that can be represented as T1 = TI(G) = ¥;.; F(d;,d;), where F is an appropriately chosen
function with the property F(x,y) = F (y,x). Randi¢ degree—based adjacency matrix RA = (r;;)
F\(/d‘%’j if i ~ j, and O otherwise. Denote by f;, i =1,2,...,n, the eigenvalues
of RA. The Randi¢ degree-based energy of graph could be defined as RE7; = RET/(G) =
Y . |fil. Upper and lower bounds for RE7; are obtained.

is defined as r;; =
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1 Introduction

Let G= (V,E),V ={1,2,...,n}, be a simple graph of order n and size m, without isolated
vertices. Denote by A=d; >dp, > -+ >d, =0 >0, d; = d(i), a sequence of its vertex
degrees. If vertices i and j are adjacent, we write i ~ j.

In chemistry, a variety of graph invariants, so-called “topological indices”, is currently
being considered (see [5]), that can be represented in the form

TI=TI(G) =Y F(di,d)),
i~

where F is an appropriately chosen function with the property F(x,y) = F(y,x).

To each topological index T/, we can associate Rand¢ vertex degree adjacency matrix
RA = (r;j), defined as

{ F(did;) , 1le,]
rij = \/‘Td/

0, otherwise
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Let fi > f» > --- > f, be the eigenvalues of the matrix RA, and 71 > 9 > --- > ¥, the
absolute values of eigenvalues f;, i =1,2,...,n given in a decreasing order. It is elementary

to show that
n
=Y fi=0, (1)
i=1

and
d, ,dj)

:if; ;yz 2y L @)

i~j

where tr(RA) and tr((RA)?) are traces of matrices RA and (RA)2 respectively.
Randi¢ degree-based energy, RE7; can be defined as

-y

n
REr; =RE7(G) =) |f;
i=1 =1

In what follows, we list some particular vertex-degree-based topological indices and the
corresponding Randi¢ degree-based energy of graph.

e For F(d;,d;) = 1, the Randi¢ energy, RE7; = RE, defined in [1, 2] is obtained.

e For F(d;,d j) = \/didj, TI = RR is the reciprocal Randi¢ index [7]. In this case the
ordinary energy REr; = E, defined in [6] is obtained.

e For F(d,-,dj) =d;+d;j, TI = M, is the first Zagreb index [8]. The corresponding
Randic¢ first Zagreb energy, REr; = RZ| E could be defined.

e For F(d;,dj) = didj, TI = M, is the second Zagreb index [9]. The corresponding
Randi¢ second Zagreb energy, RE7; = RZ>E could be defined.

The general Randi¢ index R_ is defined as [16]

Ri=R.4(G)=) ——.

i~ j 1)

The symmetric division deg index, SDD is defined as [18]

2 2
& +d3

SDD =SDD(G) =}, — -+
idj

i~j

In this paper we are concerned with the lower and upper bounds for the Randi¢ degree-
based energy RE7;.
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2 Preliminaries

In this section, we recall some analytical inequalities for real number sequences which will
be used subsequently.

Leta= (a;),i=1,2,...,nbe a sequence of positive real numbers. Then, for any real r,
r>1orr <0, the Jensen’s inequality (see e.g. [15]) is valid

nrflia; > (ia,) . 3)

If 0 < r <1, then the sense of (3) reverses.

Let p = (p;) and a = (a;), i = 1,2,...,n, are positive real numbers with the properties
pr+p2+-+p,=1and 0 <a <ag <A < +oo. The following inequality was proved in
[17]

n n i
Y piai+aAY ‘T <a+A 4)

i=1 =1
3 Main result

In this section we determine upper and lower bounds for the Randi¢ degree-based energy,
RE7;.

Theorem 3.1. Let G be a simple graph of order n > 2, without isolated vertices. Then

REn < ¢ntr<<RA>2> R ®
with equality ifand only if p =3 =+ = Yh—1 = 7’1+7’n

Proof. Based on the Lagrange’s identity we have that

n n 2 n—1
nZY?—(Z%) = Y (%—%)2_2‘5(@1 W+ T—-m)+m—m)?>. (6
i=1 i=1 1<i<j<n i

Forr=2,n=2,a; =7y — % and a; = ¥; — ¥, according to (3) we have that

=1+ -%m?=>; (% W) (7
From (6) and (7) we get
1 n—1

2
an—(Zj) Z(% Vn)2+(%—yn)2=§(%—%)2,

= =2
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that is
n
ntr((RA?) == (1 —m)* > (RErs)?
From the above we arrive at (5).
Since equality in (6) holds if andonly if yy =p = =% 1and p=pB=--- =V,
therefore equality in (5) holds if and only if p =3 =+ - =, = @
O

Remark 3.2. ForF(d,-,dj) =1, F(di,dj) = d,'dj, F(di,dj) = dl‘+dj andF(d,-,dj) = dl'dj
from (5), respectively, the following inequalities are obtained:

RE < \/ZHRl—;(Yl—Yn)Z» ®)

E < ¢%m_;%—%y, ©)

RZ\E < \/4n(SDD+m)’21(}’1Yn)27

RZE < \/2nM2—;l(71—Yn>2-

The inequality (8) was proved in [12], whereas (9) in [13].
Since (71 — %)? > 0, we have the following corollary of Theorem 3.1.

Corollary 3.3. Let G be a simple graph of order n > 2, without isolated vertices. Then

REr; < ntr((RA)z) , (10)

with equality if and only if yy = =+ = ,.

Remark 3.4. For F(di,dj) = 1, F(di,dj) = d,‘dj, F(di,dj) = di+dj and F(di,dj) = didj,
from (10), respectively, the following inequalities are obtained:

RE < +/2nR i, (11)
E < 2mn, (12)

RZIE < 2+/n(SDD+m),

RZLE < \/2nM,.

The inequality (11) was proven in [2], and (12) in [11].
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Theorem 3.5. Let G be a simple, non-empty graph, of order n > 2, without isolated vertices.

Then

tr((RA)?) + N
N + Y

with equality if and only if v, = v1 or ¥ = Yy, fori=1,2,...,n

RE71 > ; (13)

Proof. For p; = %;l, ai=%,a="%Y A=n,i=1,2,...,n, the inequality (4) transforms

into
n n
Y7 nmyl
i=1 i=1
<

RE7; RE7; — N+

that is
tr((RA)?) +n1% < (i + %)RE71,

wherefrom we obtain (13). ]

Remark 3.6. FOI’F(di,dj) = 1, F(d,',dj) = d,‘dj, F(di,dj) = di+dj ana’F(di,dj) = didj,

from (13), respectively, the following inequalities are obtained:

2R_1+nnY

Nn+%

N+
4(SDD + m) +nn v,
N+

2M; +nNY

N +%1

RE >

RZ\E >

RZLLE >

The inequality (14) was proved in [14].

Theorem 3.7. Let G be a simple non-singular graph with n > 2 vertices. Then

2tr((RA)?
RET; > ]5,(—]‘2) . (15)
Equality holds ifand only if fy = o= = fy = —fpr1 == —fn, (1 =2p).
Proof. According to the inequality (4) we have that
w((RAF) =L % = L /= Z 2fi =i fa) F| <
i= ) i=1 =1 (16)
|

<5 L

i=1

2fi— fi—fallfil) -

l\)\'—‘
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Since f; > fi > fy, fori=1,2,....n,

—(fi=f) <2fi—fi=fu<fi—fa,

that is
2fi—fi—ful < fr—Jn-
Now, based on (16) and (17) we get

w(RAY) < 5 (i~ fu)REx,

which gives the required result (15).

(17)

O

Remark 3.8. FOI”F(di,dj) = 1, F(di,dj) = d,'dj, F(di,dj) = di—l—dj andF(di,dj) :didj

from (15), respectively, the following inequalities are obtained:

RE > R
o fl_fn’

E >
fl_fn
8(SDD

RZ\E > ﬂ’
fl_fn
RLE > b
2 o fl_fn'

(18)

The inequality (18) was proven in [4]. Since, in this case, f1 — f, < 2, this inequality is

stronger then
RE >2R i,

which was proved in [3].
Theorem 3.9. Let G be a simple non-empty graph with n > 2 vertices. Then
REr; > 2tr((RA)2) ,

with equality ifand only if fi = —f,, b =f3=---= fa_1 =0.

Proof. Bearing in mind the inequality (1), we have that

2
0= (Zﬁ) =Y P2 fif-
i=1 i=1

i<j

(19)
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Accordingly

-

I
—

fP==2Y fifs,

i<j

that is

M:

20} fifi| -

i<j

Now, we have that

(REr;)* = (Z ) Z!ﬁl2+22\fz!\f]! >
=1 = i<j
>Y IfilP+2|Y fifi —2Z|ﬁl2 2tr((RA)?).
i=1 i<j
which gives the required result in (19). ]

Remark 3.10. For F(d;,d;) = 1, from (19) we obtain

E>2Vm,

which was proved in [10].
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