

Randić degree-based energy of graphs

E. Zogić, B. Borovićanin, E. I. Milovanović, I. Ž. Milovanović

Abstract: Let $G = (V, E)$, $V = \{1, 2, \dots, n\}$, be a simple graph of order n and size m , without isolated vertices. Denote by $\Delta = d_1 \geq d_2 \geq \dots \geq d_n = \delta > 0$, $d_i = d(i)$, a sequence of its vertex degrees. If vertices i and j are adjacent, we write $i \sim j$. With TI we denote a topological index that can be represented as $TI = TI(G) = \sum_{i \sim j} F(d_i, d_j)$, where F is an appropriately chosen function with the property $F(x, y) = F(y, x)$. Randić degree-based adjacency matrix $RA = (r_{ij})$ is defined as $r_{ij} = \frac{F(d_i, d_j)}{\sqrt{d_i d_j}}$ if $i \sim j$, and 0 otherwise. Denote by f_i , $i = 1, 2, \dots, n$, the eigenvalues of RA . The Randić degree-based energy of graph could be defined as $RE_{TI} = RE_{TI}(G) = \sum_{i=1}^n |f_i|$. Upper and lower bounds for RE_{TI} are obtained.

Keywords: Topological indices, vertex degree, Randić degree-based energy (of graph)

1 Introduction

Let $G = (V, E)$, $V = \{1, 2, \dots, n\}$, be a simple graph of order n and size m , without isolated vertices. Denote by $\Delta = d_1 \geq d_2 \geq \dots \geq d_n = \delta > 0$, $d_i = d(i)$, a sequence of its vertex degrees. If vertices i and j are adjacent, we write $i \sim j$.

In chemistry, a variety of graph invariants, so-called "topological indices", is currently being considered (see [5]), that can be represented in the form

$$TI = TI(G) = \sum_{i \sim j} F(d_i, d_j),$$

where F is an appropriately chosen function with the property $F(x, y) = F(y, x)$.

To each topological index TI , we can associate Randić vertex degree adjacency matrix $RA = (r_{ij})$, defined as

$$r_{ij} = \begin{cases} \frac{F(d_i, d_j)}{\sqrt{d_i d_j}}, & \text{if } i \sim j \\ 0, & \text{otherwise} \end{cases}$$

Manuscript received May 1, 2018; accepted November 12, 2018.

E. Zogić is with the State University of Novi Pazar, Novi Pazar, Serbia; B. Borovićanin is with the Faculty of Science, Kragujevac, Serbia; E. I. Milovanović, I. Ž. Milovanović are with the Faculty of Electronic Engineering, Niš, Serbia.

Let $f_1 \geq f_2 \geq \dots \geq f_n$ be the eigenvalues of the matrix RA , and $\gamma_1 \geq \gamma_2 \geq \dots \geq \gamma_n$ the absolute values of eigenvalues f_i , $i = 1, 2, \dots, n$ given in a decreasing order. It is elementary to show that

$$\text{tr}(RA) = \sum_{i=1}^n f_i = 0, \quad (1)$$

and

$$\text{tr}((RA)^2) = \sum_{i=1}^n f_i^2 = \sum_{i=1}^n \gamma_i^2 = 2 \sum_{i \sim j} \frac{F(d_i, d_j)^2}{d_i d_j}, \quad (2)$$

where $\text{tr}(RA)$ and $\text{tr}((RA)^2)$ are traces of matrices RA and $(RA)^2$, respectively.

Randić degree-based energy, RE_{TI} can be defined as

$$RE_{TI} = RE_{TI}(G) = \sum_{i=1}^n |f_i| = \sum_{i=1}^n \gamma_i.$$

In what follows, we list some particular vertex-degree-based topological indices and the corresponding Randić degree-based energy of graph.

- For $F(d_i, d_j) = 1$, the Randić energy, $RE_{TI} = RE$, defined in [1, 2] is obtained.
- For $F(d_i, d_j) = \sqrt{d_i d_j}$, $TI = RR$ is the reciprocal Randić index [7]. In this case the ordinary energy $RE_{TI} = E$, defined in [6] is obtained.
- For $F(d_i, d_j) = d_i + d_j$, $TI = M_1$ is the first Zagreb index [8]. The corresponding Randić first Zagreb energy, $RE_{TI} = RZ_1 E$ could be defined.
- For $F(d_i, d_j) = d_i d_j$, $TI = M_2$ is the second Zagreb index [9]. The corresponding Randić second Zagreb energy, $RE_{TI} = RZ_2 E$ could be defined.

The general Randić index R_{-1} is defined as [16]

$$R_{-1} = R_{-1}(G) = \sum_{i \sim j} \frac{1}{d_i d_j}.$$

The symmetric division deg index, SDD is defined as [18]

$$SDD = SDD(G) = \sum_{i \sim j} \frac{d_i^2 + d_j^2}{2d_i d_j}.$$

In this paper we are concerned with the lower and upper bounds for the Randić degree-based energy RE_{TI} .

2 Preliminaries

In this section, we recall some analytical inequalities for real number sequences which will be used subsequently.

Let $a = (a_i)$, $i = 1, 2, \dots, n$ be a sequence of positive real numbers. Then, for any real r , $r \geq 1$ or $r \leq 0$, the Jensen's inequality (see e.g. [15]) is valid

$$n^{r-1} \sum_{i=1}^n a_i^r \geq \left(\sum_{i=1}^n a_i \right)^r. \quad (3)$$

If $0 \leq r \leq 1$, then the sense of (3) reverses.

Let $p = (p_i)$ and $a = (a_i)$, $i = 1, 2, \dots, n$, are positive real numbers with the properties $p_1 + p_2 + \dots + p_n = 1$ and $0 < a \leq a_i \leq A < +\infty$. The following inequality was proved in [17]

$$\sum_{i=1}^n p_i a_i + a A \sum_{i=1}^n \frac{p_i}{a_i} \leq a + A \quad (4)$$

3 Main result

In this section we determine upper and lower bounds for the Randić degree-based energy, RE_{TI} .

Theorem 3.1. *Let G be a simple graph of order $n \geq 2$, without isolated vertices. Then*

$$RE_{TI} \leq \sqrt{n \text{tr}((RA)^2) - \frac{n}{2}(\gamma_1 - \gamma_n)^2} \quad (5)$$

with equality if and only if $\gamma_2 = \gamma_3 = \dots = \gamma_{n-1} = \frac{\gamma_1 + \gamma_n}{2}$.

Proof. Based on the Lagrange's identity we have that

$$n \sum_{i=1}^n \gamma_i^2 - \left(\sum_{i=1}^n \gamma_i \right)^2 = \sum_{1 \leq i < j \leq n} (\gamma_i - \gamma_j)^2 \geq \sum_{i=2}^{n-1} ((\gamma_1 - \gamma_i)^2 + (\gamma_i - \gamma_n)^2) + (\gamma_1 - \gamma_n)^2. \quad (6)$$

For $r = 2$, $n = 2$, $a_1 = \gamma_1 - \gamma_i$ and $a_2 = \gamma_i - \gamma_n$, according to (3) we have that

$$(\gamma_1 - \gamma_i)^2 + (\gamma_i - \gamma_n)^2 \geq \frac{1}{2}(\gamma_1 - \gamma_n)^2. \quad (7)$$

From (6) and (7) we get

$$n \sum_{i=1}^n \gamma_i^2 - \left(\sum_{i=1}^n \gamma_i \right)^2 \geq \frac{1}{2} \sum_{i=2}^{n-1} (\gamma_1 - \gamma_n)^2 + (\gamma_1 - \gamma_n)^2 = \frac{n}{2}(\gamma_1 - \gamma_n)^2,$$

that is

$$n \operatorname{tr}((RA)^2) - \frac{n}{2}(\gamma_1 - \gamma_n)^2 \geq (RE_{TI})^2.$$

From the above we arrive at (5).

Since equality in (6) holds if and only if $\gamma_1 = \gamma_2 = \dots = \gamma_{n-1}$ and $\gamma_2 = \gamma_3 = \dots = \gamma_n$, therefore equality in (5) holds if and only if $\gamma_2 = \gamma_3 = \dots = \gamma_{n-1} = \frac{\gamma_1 + \gamma_n}{2}$. \square

Remark 3.2. For $F(d_i, d_j) = 1$, $F(d_i, d_j) = \sqrt{d_i d_j}$, $F(d_i, d_j) = d_i + d_j$ and $F(d_i, d_j) = d_i d_j$, from (5), respectively, the following inequalities are obtained:

$$RE \leq \sqrt{2nR_{-1} - \frac{n}{2}(\gamma_1 - \gamma_n)^2}, \quad (8)$$

$$E \leq \sqrt{2mn - \frac{n}{2}(\gamma_1 - \gamma_n)^2}, \quad (9)$$

$$RZ_1 E \leq \sqrt{4n(SDD + m) - \frac{n}{2}(\gamma_1 - \gamma_n)^2},$$

$$RZ_2 E \leq \sqrt{2nM_2 - \frac{n}{2}(\gamma_1 - \gamma_n)^2}.$$

The inequality (8) was proved in [12], whereas (9) in [13].

Since $(\gamma_1 - \gamma_n)^2 \geq 0$, we have the following corollary of Theorem 3.1.

Corollary 3.3. Let G be a simple graph of order $n \geq 2$, without isolated vertices. Then

$$RE_{TI} \leq \sqrt{n \operatorname{tr}((RA)^2)}, \quad (10)$$

with equality if and only if $\gamma_1 = \gamma_2 = \dots = \gamma_n$.

Remark 3.4. For $F(d_i, d_j) = 1$, $F(d_i, d_j) = \sqrt{d_i d_j}$, $F(d_i, d_j) = d_i + d_j$ and $F(d_i, d_j) = d_i d_j$, from (10), respectively, the following inequalities are obtained:

$$RE \leq \sqrt{2nR_{-1}}, \quad (11)$$

$$E \leq \sqrt{2mn}, \quad (12)$$

$$\begin{aligned} RZ_1 E &\leq 2\sqrt{n(SDD + m)}, \\ RZ_2 E &\leq \sqrt{2nM_2}. \end{aligned}$$

The inequality (11) was proven in [2], and (12) in [11].

Theorem 3.5. Let G be a simple, non-empty graph, of order $n \geq 2$, without isolated vertices.

Then

$$RE_{TI} \geq \frac{\text{tr}((RA)^2) + \gamma_1 \gamma_n}{\gamma_1 + \gamma_n}, \quad (13)$$

with equality if and only if $\gamma_i = \gamma_1$ or $\gamma_i = \gamma_n$, for $i = 1, 2, \dots, n$.

Proof. For $p_i = \frac{\gamma_i}{RE_{TI}}$, $a_i = \gamma_i$, $a = \gamma_n$, $A = \gamma_1$, $i = 1, 2, \dots, n$, the inequality (4) transforms into

$$\frac{\sum_{i=1}^n \gamma_i^2}{RE_{TI}} + \frac{\gamma_1 \gamma_n \sum_{i=1}^n 1}{RE_{TI}} \leq \gamma_1 + \gamma_n,$$

that is

$$\text{tr}((RA)^2) + n\gamma_1 \gamma_n \leq (\gamma_1 + \gamma_n)RE_{TI},$$

wherefrom we obtain (13). \square

Remark 3.6. For $F(d_i, d_j) = 1$, $F(d_i, d_j) = \sqrt{d_i d_j}$, $F(d_i, d_j) = d_i + d_j$ and $F(d_i, d_j) = d_i d_j$, from (13), respectively, the following inequalities are obtained:

$$\begin{aligned} RE &\geq \frac{2R_{-1} + n\gamma_1 \gamma_n}{\gamma_1 + \gamma_n}, \\ E &\geq \frac{2m + n\gamma_1 \gamma_n}{\gamma_1 + \gamma_n}, \\ RZ_1 E &\geq \frac{4(SDD + m) + n\gamma_1 \gamma_n}{\gamma_1 + \gamma_n} \\ RZ_2 E &\geq \frac{2M_2 + n\gamma_1 \gamma_n}{\gamma_1 + \gamma_n} \end{aligned} \quad (14)$$

The inequality (14) was proved in [14].

Theorem 3.7. Let G be a simple non-singular graph with $n \geq 2$ vertices. Then

$$RE_{TI} \geq \frac{2\text{tr}((RA)^2)}{f_i - f_n}. \quad (15)$$

Equality holds if and only if $f_1 = f_2 = \dots = f_p = -f_{p+1} = \dots = -f_n$, ($n = 2p$).

Proof. According to the inequality (4) we have that

$$\begin{aligned} \text{tr}((RA)^2) &= \sum_{i=1}^n \gamma_i^2 = \sum_{i=1}^n f_i^2 = \frac{1}{2} \left| \sum_{i=1}^n (2f_i - f_1 - f_n) f_i \right| \leq \\ &\leq \frac{1}{2} \sum_{i=1}^n (|2f_i - f_1 - f_n| |f_i|). \end{aligned} \quad (16)$$

Since $f_1 \geq f_i \geq f_n$, for $i = 1, 2, \dots, n$,

$$-(f_1 - f_n) \leq 2f_i - f_1 - f_n \leq f_1 - f_n,$$

that is

$$|2f_i - f_1 - f_n| \leq f_1 - f_n. \quad (17)$$

Now, based on (16) and (17) we get

$$\text{tr}((RA)^2) \leq \frac{1}{2}(f_1 - f_n)RE_{TI},$$

which gives the required result (15). \square

Remark 3.8. For $F(d_i, d_j) = 1$, $F(d_i, d_j) = \sqrt{d_i d_j}$, $F(d_i, d_j) = d_i + d_j$ and $F(d_i, d_j) = d_i d_j$, from (15), respectively, the following inequalities are obtained:

$$\begin{aligned} RE &\geq \frac{4R_{-1}}{f_1 - f_n}, \\ E &\geq \frac{4m}{f_1 - f_n}, \\ RZ_1 E &\geq \frac{8(SDD + m)}{f_1 - f_n}, \\ RZ_2 E &\geq \frac{4M_2}{f_1 - f_n}. \end{aligned} \quad (18)$$

The inequality (18) was proven in [4]. Since, in this case, $f_1 - f_n \leq 2$, this inequality is stronger then

$$RE \geq 2R_{-1},$$

which was proved in [3].

Theorem 3.9. Let G be a simple non-empty graph with $n \geq 2$ vertices. Then

$$RE_{TI} \geq \sqrt{2\text{tr}((RA)^2)}, \quad (19)$$

with equality if and only if $f_1 = -f_n$, $f_2 = f_3 = \dots = f_{n-1} = 0$.

Proof. Bearing in mind the inequality (1), we have that

$$0 = \left(\sum_{i=1}^n f_i \right)^2 = \sum_{i=1}^n f_i^2 + 2 \sum_{i < j} f_i f_j.$$

Accordingly

$$\sum_{i=1}^n f_i^2 = -2 \sum_{i < j} f_i f_j,$$

that is

$$\sum_{i=1}^n f_i^2 = 2 \left| \sum_{i < j} f_i f_j \right|.$$

Now, we have that

$$\begin{aligned} (RE_{TI})^2 &= \left(\sum_{i=1}^n |f_i| \right)^2 = \sum_{i=1}^n |f_i|^2 + 2 \sum_{i < j} |f_i| |f_j| \geq \\ &\geq \sum_{i=1}^n |f_i|^2 + 2 \left| \sum_{i < j} f_i f_j \right| = 2 \sum_{i=1}^n |f_i|^2 = 2 \text{tr}((RA)^2). \end{aligned}$$

which gives the required result in (19). \square

Remark 3.10. For $F(d_i, d_j) = 1$, from (19) we obtain

$$E \geq 2\sqrt{m},$$

which was proved in [10].

References

- [1] S. B. BOZKURT, A. D. GÜRGÖR, I. GUTMAN, RANDIĆ *Spectral radius and Randić energy*, MATCH Commun. Math. Comput. Chem. 64 (2010) 321–334.
- [2] S. B. BOZKURT, A. D. GÜRGÖR, I. GUTMAN, A. S. ÇEVIK, *Randić matrix and Randić energy*, MATCH Commun. Math. Comput. Chem. 64 (2010) 239–250.
- [3] M. CAVERS, S. FALLAT, S. KIRKLAND, *On the normalized Laplacian energy and general Randić index R_{-1} of graphs*, Lin. Algebra Appl. 433 (2010) 172–190.
- [4] K. CH. DAS, I. GUTMAN, I. MILOVANOVIĆ, E. MILOVANOVIĆ, B. FURTULA, *Degree-based energies of graphs*, Lin. Algebra Appl. 554 (2018) 185–204.
- [5] I. GUTMAN, DEGREE-BASED TOPOLOGICAL INDICES, Croat. Chem. Acta, 86 (2013) 351–361.
- [6] I. GUTMAN, *The energy of a graph*, Ber. Math. Statist. Sekt. Forchungsz. Graz 103 (1978) 1–22.
- [7] I. GUTMAN, B. FURTULA, C. ELPHIC, *Some new/old vertex-degree-based topological indices*, MATCH Commun. Math. Comput. Chem. 72 (2014) 617–632.
- [8] I. GUTMAN, N. TRINAJSIĆ, *Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons*, Che. Phys. Lett. 17 (1972) 535–538.

- [9] I. GUTMAN, B. RUŠČIĆ, N. TRINAJSTIĆ, C. F. WILCOX, *Graph theory and molecular orbitals. XI Acyclic phyenes*, J. Chem. Phys. 62 (1975) 3399–3405.
- [10] X. LI, Y. SHI, I. GUTMAN, *Graph energy*, Springer, New York, 2012.
- [11] B. J. MCCLELLAND, *Properties of the latest roots of a matrix: The estimation of π -electron energy*, J. Chem. Phys. 54 (1971) 640–643.
- [12] I. MILOVANOVIĆ, E. MILOVANOVIĆ, I. GUTMAN, *Upper bounds for some graph energies*, Appl. Math. Comput. 289 (2016) 435–443.
- [13] I. Ž. MILOVANOVIĆ, E. I. MILOVANOVIĆ, *Remarks on the energy and minimum dominating energy of graph*, MATCH Commun. Math. Comput. Chem. 75 (2016) 305–314.
- [14] I. Ž. MILOVANOVIĆ, E. I. MILOVANOVIĆ, A. ZAKIĆ, *A short note on graph energy*, MATCH Commun. Math. Comput. Chem. 72 (2014) 179–182.
- [15] D. S. MITRINOVIĆ, J. E. PEČARIĆ, A. M. FINK, *Classical and new inequalities in analysis*, Springer, Dordrecht, 1993.
- [16] M. RANDIĆ, *Characterization of molecular branching*, J. Amer. Chem. Soc. 97 (1975) 6605–6615.
- [17] B. C. RENNIE, *On a class of inequalities*, J. Austral. Math. Soc. 3 (1963) 442–448.
- [18] D. VUKIČEVIĆ, *Bond additive modelling 2. Mathematical properties of max-min redeg index*, Croat. Chem. Acta. 83 (2010) 261–273.