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Abstract: Polyphenols are a group of phytochemicals with extensive biological functions and health-
promoting potential. These compounds are present in most foods of plant origin and their increased
widespread availability through the intake of nutritional supplements, fortified foods, and beverages,
has also led to increased exposure throughout gestation. In this narrative review, we focus on the
role of polyphenols in both healthy and pathological pregnancy. General information related to their
classification and function is followed by an overview of their known effects in early-pregnancy
events, including the current insights into molecular mechanisms involved. Further, we provide
an overview of their involvement in some of the most common pregnancy-associated pathological
conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the
estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of
dietary polyphenols during pregnancy needs particular attention considering the possible effects of
polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further
studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy,
as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
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1. Introduction

Dietary polyphenols (also known as phenolics) are a heterogeneous group of more
than 8000 different biologically active compounds in plant-based foods. They are the major
group of non-nutrients and the most abundant dietary antioxidants [1]. The main dietary
sources of polyphenols are fruit and beverages (fruit juice, wine, tea, coffee, chocolate, and
beer) and, to a lesser extent vegetables, dry legumes, and cereals [2]. They are classified
on the basis of the number of phenol rings and of the structural elements that bind these
rings to one another. According to Phenol-Explorer, the most complete and most widely
used database in European countries [3,4], the major groups are flavonoids, phenolic acids,
stilbenes, and lignans (Figure 1). Among these, flavonoids are the most abundant polyphe-
nols in the diet and can be subcategorized as anthocyanins, chalcones, dihydrochalcones,
dihydroflavonols, flavanols, flavanones, flavones, flavonols, and isoflavonoids [5]. In most
cases, foods contain complex mixtures of polyphenols. Certain polyphenols such as the
flavonol quercetin are found in almost all plant products, whereas flavanones (naringenin)
and isoflavonoids (genistein) are specific to particular foods [6]. Flavonoids account for
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about two-thirds of the total intake, while phenolic acids (hydroxycinnamic acids and hy-
droxybenzoic acids) account for the remaining one-third. Lignans (sesamin) and stilbenes
(resveratrol) are far less common in the human diet [2].
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Figure 1. Main classes and subclasses of dietary polyphenols. Flavonoids make approximately
two-thirds of total polyphenol intake; phenolic acids account for the remaining one-third. * Other
polyphenols are alkylmethoxyphenols, alkylphenols, curcuminoids (curcumin), furanocoumarins
(psoralen), hydroxybenzaldehydes (vanillin), hydroxybenzoketones, hydroxycinnamaldehydes, hy-
droxycoumarins (coumarin, esculetin), hydroxyphenylpropenes (eugenol), methoxyphenols, naph-
toquinones, phenolic terpenes (carvacrol, thymol), tyrosols (hydroxytyrosol, tyrosol, oleuropein).
EGCG—epigallocatechin-gallate; SDG—secoisolariciresinol diglucoside.

However, the polyphenols that are most commonly consumed in our diets are not
necessarily the most bioavailable due to inefficient absorption or rapid excretion [7]. It
is important to stress that the chemical structure of polyphenol (not its concentration)
determines the rate and extent of absorption and the nature of the metabolites circulating
in the plasma. After ingestion, glycosylated polyphenols are hydrolyzed by intestinal
enzymes prior to being absorbed through the intestinal wall. Nonglycosylated polyphenols
are absorbed in the small intestine by passive diffusion. Circulating polyphenols reach the
liver and undergo extensive modification (methylation, sulfation, and/or glucuronidation).
Following biotransformation, weakly conjugated polyphenols re-enter circulation and are
excreted in the urine, while highly conjugated polyphenols are excreted in the bile and
enter the large intestine, where they can be processed by the colonic microflora and then
reabsorbed into circulation or excreted in the feces. Consequently, the forms of polyphenols
reaching the blood and tissues are different from those present in food [6]. The maximum
concentration in plasma rarely exceeds 1 µM after the consumption of 10–100 mg of a
single phenolic compound. However, the total plasma phenol concentration is probably
higher due to the presence of metabolites formed in the body’s tissues or by the colonic
microflora [2]. In recent years, polyphenol metabolites have attracted great interest as
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many of them showed similar or higher intrinsic biological activities in comparison to the
parent compounds [8,9]. Further, the effect of polyphenolic compounds in combination
may be very different from those expected by each of these compounds alone [10]. The
multitargeting and pleiotropic effects of polyphenols and their metabolites makes them
considered as health-promoting compounds. In the scientific community, these micronu-
trients have attracted attention given the recent evidence of their role in the prevention
of metabolic, cardiovascular, and neurodegenerative diseases, as well as in some types
of cancer [11]. An inverse association has been determined between the consumption of
foods rich in polyphenols and the risk of chronic noncommunicable diseases [12]. Namely,
epidemiological studies have revealed that polyphenol consumption provides significant
protection against the development of cardiovascular diseases, asthma, diabetes, cancer, tis-
sue inflammations, aging, etc., thus indicating that the role of polyphenols in human health
is still a fertile area of research [13–20]. However, in spite of the beneficial effects observed
in various chronic diseases in humans, limited and inconclusive information is currently
available about their effects in pregnant women. Maternal nutrition plays an important
role in providing the necessary energy and nutrients for fetal growth and development.
The growing interest in plant-derived substances has led to increased consumption of
dietary polyphenols throughout pregnancy. The total average polyphenol daily intake is
approximately 1 g [2]; however, the recent study in which dietary intake was measured in
different populations was shown that the highest consumption of polyphenols (approx. 2 g
daily) was observed in pregnant women [21]. Polyphenolic compounds are, to a varying
extent, absorbed from the gut lumen into the blood circulation [6,7], and so the placenta
will be exposed to these compounds. Low levels of polyphenols have been detected in the
placenta [22], but it is important to highlight that bioavailability appears to differ greatly
between the various polyphenols and that despite low oral bioavailability, most polyphe-
nols showed significant biological effects [23]. Research data indicates that transport across
the placenta is not efficient and that the placenta seems to act as a barrier for flavanols
and their metabolites. However, these compounds target the fetus and are excreted in the
amniotic fluid [24]. It is worth noting that polyphenol transportation through the placenta
involves selective transport mechanisms, suggesting that these compounds are able to cross
the placental barrier, and therefore may have biological effects on the offspring [22]. It
is well established that polyphenols act as conventional hydrogen- or electron-donating
antioxidants and consequently increase plasma antioxidant capacity and improve oxidative
stress parameters at the fetoplacental unit, which are recognized as main issues in different
pregnancy pathologies. In addition to their antioxidant properties, dietary polyphenols and
their in vivo metabolites may exert modulatory actions in cells through actions at protein
kinase and lipid kinase signaling pathways [25]. These compounds modulate the activity
of a wide range of enzymes and cell receptors [26], and they also interfere with the activity
and expression of several cell membrane transporters. Thus, the placenta is also a target for
the action of polyphenols, which could interfere with the placental uptake of nutrients or
other bioactive substances from the maternal circulation [10].

This review aims to present a wide spectrum of literature data and to summarize the
recent findings on dietary polyphenol activity in pregnancy, obtained from in vitro studies,
animal models, and clinical trials, including an insight into the molecular mechanisms
involved. Bearing in mind their abundance in food and the wide repertoire of biological
properties, the use of polyphenols could be a promising strategy for preventing or alleviat-
ing some of the complications in pregnancy. However, it should be noted that the diverging
effects of polyphenols on health can lead to both beneficial and risk-inducing consequences
for fetal health. Therefore, the inconclusive estimation of their benefits and safety will also
be discussed.

2. The Role of Dietary Polyphenols in Early-Pregnancy Events

The formation of functional placenta is fundamental for pregnancy success, and de-
pends on well-coordinated proliferation and differentiation of specialized trophoblast cells.
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The human placenta is composed of different trophoblast cell subpopulations that possess
diverse functional characteristics [27]. Three major trophoblast subtypes are recognized
in human placenta: syncytiotrophoblast (STB), cytotrophoblast (CTB), and extravillous
trophoblast (EVT) cells [28]. During differentiation, CTB cells can function as stem cell–
progenitor-like cells that can undergo either cell fusion, forming a layer of multinucleated
STB cells, or epithelial mesenchymal transition, creating EVT lineage. Syncytiotrophoblasts
are a main site of nutrient and gas exchange, as well as hormone production. On the other
hand, EVTs are capable of invading maternal decidua and transforming spiral arteries,
which is essential for placental and fetal development [28]. In early-pregnancy events, low
oxygen environment has been recognized as one of the crucial regulatory factors [29,30].
Thus far, studies in vivo have provided evidence that the fetus and first-trimester placenta
develop in relative hypoxia [30]. Furthermore, low oxygen level is also detected in in-
tervillous space. Despite that, during this period, the placenta grows significantly. The
progression of pregnancy oxygen level, from 2–4% O2 measured at 8 weeks of pregnancy
to 10% at 12 weeks, triggers oxidative stress (OS) in trophoblasts [29]. This rise is asso-
ciated with the increases in mRNAs and activities of the antioxidant enzymes catalase,
copper/zinc superoxide dismutase, and glutathione peroxidase in placenta tissue [29].
Together with this, maternal blood enters into the intervillous space. These highly con-
trolled events appear at the placental periphery and spread to the center, thus protecting
the fetus from sudden OS. The overwhelming evidence has indicated that OS is impli-
cated in angiogenesis, proliferation, differentiation, and invasion of the trophoblast during
placentation [31]. As shown by a study in vitro, hypoxia affects CTBs’ cell fate by changing
the balance between proliferation and differentiation of CTBs [32]. Hypoxia, which mimics
the situation in vivo, induces CTBs to enter mitosis, reducing their invasiveness, while
higher oxygen tension triggers CTBs’ differentiation. It has been observed that hypoxic con-
ditions selectively affect the expression of molecules required for trophoblast invasion. For
example, when culturing in low oxygen condition, CTBs express integrins and molecules
of the extracellular matrix (α5 and β1 integrins and fibronectin) responsible for early stages
of differentiation (before the 7th gestation week), but fail to express α1 integrin, which
appears during the later invasion phase [33]. This is in line with the results, which show
that hypoxic conditions inhibit trophoblast invasion at ~10 weeks of gestation [33]. Clearly,
oxygen influences gene regulation and downstream events in the placenta, but excessive
OS could harm placental homeostasis and seems to be associated with pregnancy-related
disorders such as early pregnancy loss, gestational diabetes mellitus (GDM), preeclampsia
(PE), and intrauterine growth restriction (IUGR). Thus, maintaining the balance between a
proper placentation and redox system is one of the key points during gestation. In that con-
text, understanding the influence of dietary polyphenols as strong antioxidants, which are
consumed during pregnancy, is of great importance. Although their effect on pregnancy is
mainly considered as beneficial and is attributed to their antioxidant properties, increasing
data also support their anti-inflammatory and metabolism-regulatory features. Several
lines of evidence showed that polyphenols influence some aspects of reproductive health
and early development. For example, genistein reduces motility and viability of sperm,
isoflavones decrease serum levels of dihydrotestosterone, while maternal consumption of
polyphenol-rich foods affects fetal health [34]. However, little is known about the impact
of polyphenols on placentation events beyond implantation. Most studies used a first-
trimester extravillous trophoblast HTR-8/SVneo cell line with H2O2-induced oxidative
damage. This cell line is shown to act as primary CTBs in response to various stimuli and
represent a suitable in vitro model of human placental extravillous cells [35–37]. In this
review, we will focus on the most investigated polyphenols and their effect on trophoblasts.
Caffeic acid (CA) is a hydroxycinnamic acid, and is abundantly present in the everyday
diet of pregnant women. The results obtained in animal models using CA and chlorogenic
acid have shown that these two phenolic acids positively affect the rates of maturation,
fertilization, and the blastocyst formation, and reduce the proportion of DNA-fragmented
nuclei in oocytes after exposure to hydrogen peroxide [38]. In vitro studies on human
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cells showed that CA increased antioxidant capacity in endometrial cells [39] and was
also efficient in inhibiting the oxidative damage in human umbilical vein endothelial cells
(HUVECs) [40]. The favorable effects of CA in trophoblast cells in both normal conditions
and under increased oxidative stress was confirmed in the most recent study [41]. In that
study, the investigated concentrations of CA were neither cytotoxic nor genotoxic. Caffeic
acid helped in the attenuation of DNA damage, protein and lipid peroxidation, and in
the significant elevation of GSH concentration in human trophoblast HTR-8/SVneo cells
following exposure to strong oxidant. All of these results indicate potential beneficial
effects of food rich in CA for pregnancy disorders related to increased oxidative stress [41].
Besides these experiments, CA was also used for surface modification of zirconium dioxide
nanoparticles (ZrO2 NPs) to attenuate NPs’ toxicity, and the results indicated that hybrid
NPs did not affect viability of HTR-8/SVneo cells [42]. It has been shown that one of the
most investigated dietary polyphenols, resveratrol (trans-3,5,4′-trihydroxystilbene), may
also protect human HTR-8/SVneo extravillous cells against H2O2-induced OS [43,44]. Both
studies showed that resveratrol ameliorates H2O2-induced cytotoxicity. It appears that
resveratrol prevents OS through several steps, by restoring superoxide dismutase (SOD)
and catalase (CAT) activity, by decreasing accumulation of reactive oxygen species (ROS)
and malondialdehyde (MDA), and by preventing apoptosis in stressed cells. Moreover,
investigation of underlying mechanisms showed that the protective effect of resveratrol on
trophoblast under oxidative stress conditions is mediated by autophagic processes [43]. It
was also observed that this polyphenol promotes HTR-8/SVneo cell migration/invasion
and epithelial–mesenchymal transition, affecting molecules relevant for these processes [45].
Namely, resveratrol treatment increased levels of matrixmetalloproteinase (MMP)-2 and
-9 and regulated expression of E-cadherin, N-cadherin, β-catenin, and vimentin. Further
investigation showed that resveratrol affects the network formation ability of HUVECs,
suggesting its possible role in spiral artery remodeling [46]. Like CA and resveratrol,
curcumin also protects HTR-8/SVneo against H2O2-induced OS, more precisely against
oxidative stress-induced apoptosis via increasing the Bcl-2/Bax ratio and decreasing the
protein expression level of cleaved caspase-3 [47]. Curcumin also alleviates OS through
the activation of Nrf2 signaling pathway. Recent investigation regarding its effect on
functional properties of HTR-8/Svneo cells showed that curcumin positively modulates
gene expression and angiogenesis, thus affecting the development of trophoblast cells [48].
Collectively, curcumin influences epigenetic modification of DNA methylation and affects
cellular growth, migration, and tube formation in the human extravillous trophoblast cells.

Despite an increasing number of investigations describing the effect of different
polyphenols on early-pregnancy events, studies exploring their direct actions on trophoblast
still missing. Further work is required to better understand not only the antioxidant capac-
ity of polyphenols during gestation, but also to ascertain if these molecules can be used as
positive modulators of trophoblast function that may protect improper placentation.

3. The Role of Dietary Polyphenols in Pregnancy-Related Pathologies
3.1. Preeclampsia

Preeclampsia (PE) is a severe pregnancy complication affecting 2–8% of all pregnancies [49].
It is one of the leading causes of preterm birth, maternal and neonatal morbidity, and mortality
worldwide [50]. According to the International Society for the Study of Hypertension in Preg-
nancy (ISSHP), PE is defined as de novo hypertension after 20 weeks of gestation accompanied
by at least one of the following conditions: proteinuria, maternal organ dysfunction (acute
kidney injury, liver dysfunction, neurological complications, hematological complications), or
uteroplacental dysfunction [51]. Although the underlying causes of PE are still not elucidated
completely, the etiology of PE is connected to the abnormal placentation and maternal endothe-
lial dysfunction, leading to multiorgan disorder [49,52–54]. Shallow trophoblast invasion and
inadequate transformation of the uterine spiral arteries, characteristic for PE, lead to the placen-
tal malperfusion, ischemia-reperfusion injury, and placental oxidative stress [52,53]. Ischemic
placenta releases various soluble factors into maternal circulation, i.e., excessive amounts of
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proinflammatory cytokines and antiangiogenic factors, inducing damage of maternal endothe-
lial cells and systemic endothelial dysfunction, leading to the development of hypertension,
proteinuria, and other clinical symptoms of PE [52–54].

Strategies for PE treatment are limited to managing the symptoms pharmacologically
in order to reduce maternal risk and to prolong in utero fetal development as much as
possible, since ultimately, the only definitive treatment of PE is the delivery of the baby and
placenta [49,51]. Although recommended antihypertensive drugs for PE management are
generally considered to be safe for use in pregnancy, there is a lack of evidence-based data
on long-term effects on the child of in utero exposure to these drugs [55,56]. Taking that
into consideration and the limited efficiency of the existing PE treatment, there is a need
for the development of new therapeutic strategies to improve both safety and efficiency
of managing PE patients. Due to their antihypertensive, anti-inflammatory, antioxidative,
and vasculoprotective properties, the use of dietary polyphenols could be beneficial for PE
patients. Different in vitro and in vivo studies on animal PE models, as well as some clinical
studies, gave promising results for using various polyphenols in PE management [57–61].
In mice and rat PE models, hypertension and proteinuria were alleviated by treatment with
different polyphenols: resveratrol [62], curcumin [63,64], quercetin [65–67], punicalagin [68],
and baicalin [69]. Furthermore, different PE-related adverse pregnancy outcomes in animal
models, such as low fetal length and weight, low placental weight, low number of live pups,
and high fetal resorption rates, were ameliorated by polyphenol treatment [63–67,70,71].
Beneficial effects were also noted in different organs damaged by PE-like phenotype
induction on morphological and histological levels. Namely, baicalin inhibited apoptosis
in kidneys and livers of PE rats inducing the expression of antiapoptotic proteins XIAP
and Bcl-2 in liver cells and decreasing the expression of proapoptotic caspase-9 in liver and
kidney cells [69]. In LPS-induced PE rodent models, kidneys and spleens were swollen
and morphological changes in renal tissue could be noted [63,64]. Supplementation with
curcumin alleviated LPS-induced injuries in those organs [63,64]. Recent preclinical and
clinical studies reported enhanced efficiency of drugs usually used for PE management
when combined with polyphenols [61,67,70,72,73]. Although all molecules individually
showed beneficiary effects, the best results in attenuating PE-like symptoms induced in
rodents were achieved when aspirin was combined with curcumin [73] or quercetin [67,70].
In clinical studies, pregnant women with severe PE who were treated with nifedipine
supplemented with epigallocatechin gallate (EGCG) needed significantly shorter time to
control blood pressure, had prolonged time before a new hypertensive crisis, and needed
lower treatment dosages to effectively control blood pressure in comparison with a group
of women suffering from PE but who were treated only with nifedipine [61]. Similar
effects were achieved when PE patients were treated with nifedipine supplemented with
resveratrol [72].

Imbalance in maternal circulating antiangiogenic and proangiogenic factors involved
in endothelial cell damage is characteristic for PE patients [47–49]. In PE, maternal serum
and placental levels of antiangiogenic factors, such as soluble fms-like tyrosine kinase-1
(sFlt-1) [74–77], soluble endoglin (sEng) [78,79], and endothelin-1 (ET-1) [80,81], are ele-
vated, while proangiogenic placental growth factor (PlGF) is downregulated [75,76,82,83]
in comparison with women with uneventful pregnancies. sFlt-1 is soluble vascular endothe-
lial growth factor (VEGF) receptor 1, and binds to the VEGF and PlGF, decreasing their
bioavailability and antagonizing effects mediated by these molecules [84]. In an analogous
way, sEng, being its soluble coreceptor, binds to and neutralizes the proangiogenic effects
of TGF-β [78,85]. ET-1 is potent vasoconstrictor peptide produced by vascular endothelial
cells with an important role in the maintenance of blood pressure [86,87]. The imbalance be-
tween pro- and antiangiogenic factors in PE patients’ sera is detectable long before the onset
of clinical symptoms of PE [76,79,82,83,88]. High serum sFlt-1/PlGF ratio is associated with
an increased risk of PE, and it was proposed to has better predicting value than either of the
biomarkers alone [89]. The beneficial effects of polyphenol treatment on the alleviation of
hypertension and other PE-related symptoms in experimental animal PE models have been
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associated with their impact on the angiogenic factors of placental expression and maternal
serum levels. Namely, quercetin supplementation decreased maternal plasma sFlt-1 and
ET-1 concentrations elevated by the induction of PE-like symptoms in mice and rats in
different PE models [65,66,70]. Moreover, quercetin upregulated PlGF levels in maternal
plasma of PE animals [65,70]. Furthermore, the imbalance of sFlt-1 and PlGF expression
in the placenta and uterus of PE animals was reversed by quercetin treatment [65,67,70].
Similar beneficiary effects was reported when mice and rats were treated with puerarin [71]
and vitexin [90] in different PE models. Resveratrol showed positive effects on endothelial
dysfunction induced in in vitro models [91–93]. This stilbenoid inhibited sFlt-1 release
from human umbilical vein endothelial cells (HUVECs), placental explants, and primary
cytotrophoblast and trophoblast HTR-8/SVneo cell line both under basal conditions or
after stimulation with hypoxia or cytokines [91,92]. HUVECs incubated with sera of PE
patients showed increased expression of endothelial dysfunction marker mRNAs, such as
intercellular adhesion molecule-1 (ICAM-1), von Willebrand factor (vWF), and Caspase-3
(CAS-3) [93]. When incubated in the presence of resveratrol, mRNA expression levels
were downregulated in HUVECs treated with PE sera [93]. Amelioration of PE symptoms
by polyphenol treatment in PE animal models is thought to also be mediated through
lowering of oxidative stress and inflammation [63–66,68,71,73,90]. Decreased oxidative
stress markers, as well as increased antioxidative capacity upon treatment with differ-
ent polyphenols, were reported in PE animals [65,68,90]. Polyphenol supplementation
decreased proinflammatory IL-6, TNF-α, MCP-1, and other proinflammatory cytokines
and upregulated anti-inflammatory IL-10 both in the maternal serum and placenta of PE
animals [63–66,71,73]. According to their well-known antihypertensive, anti-inflammatory,
antioxidative, and cardiovascular protective properties, it is not surprising that available
studies on rodent models gave promising results for using dietary polyphenols for amelio-
ration of PE-related symptoms. However, more studies on their mechanisms of action as
well as more clinical trials are necessary to determine therapeutic effectiveness, appropriate
dose ranges, and safety of using dietary polyphenols in pregnancy and as complementary
therapy for PE treatment.

3.2. Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) is a one of the most common pregnancy complica-
tions, defined as spontaneous hyperglycemia or the onset of any level of glucose intolerance
during pregnancy [94]. Along with the worldwide increase in the prevalence of obesity
and type 2 diabetes mellitus (DM), the prevalence of GDM is also rising. In Europe, the
prevalence of GDM is around 11%, with the highest prevalence (31.5%) in pregnant women
of Eastern European countries [95]. GDM is usually resolved following labor; however,
it is associated with adverse pregnancy outcomes. There are many potential short- and
long-term negative consequences of GDM for both the mother and the offspring. The risk
of developing hypertension, obesity, type 2 DM, and cardiovascular disease (CVD) later in
life is significantly higher in women with GDM [96]. Neonates may develop hypoglycemia,
severe jaundice, and macrosomia, while long-term complications of children include hyper-
tension, obesity, type 2 DM, and CVD [96–99]. GDM has also been reported to associate
with congenital malformations [100]. Several mechanisms have been suggested for the
pathogenesis of GDM, including a combination of altered adipose tissue endocrine function
and placental and hormonal changes, all contributing to insulin resistance (IR). In fact, there
are two main pathways leading to GDM. The first one is IR, which plays a crucial role in the
pathophysiology of this condition; in normal pregnancy, it can occur due to the increased
secretion of diabetogenic placental hormones [101]. It is important to stress that normal
pregnancy has a diabetogenic effect on metabolism and is characterized by a state of IR,
with a more than two-fold increase in insulin production to maintain euglycemia. Hence,
maternal IR is physiological in pregnancy and is critically important for maintaining the
maternal fuel supply to support the growing fetus, mostly during the third trimester [102].
When pancreatic β-cells cannot compensate with insulin secretion, glucose metabolism is
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altered, leading to GDM. Women in whom GDM develops have a significant increase in
insulin response but a decrease in insulin sensitivity as the hallmarks of type 2 DM, for
which they are at increased risk in later life [103]. The second pathway that leads to GDM is
a chronic subclinical inflammation, and there is clear evidence that GDM is associated with
changes in the maternal, fetal and placental inflammatory profile [104,105]. Furthermore,
normal pregnancy is considered a state of enhanced oxidative stress that plays an important
role in all stages of pregnancy, from embryo implantation, placental development, and
function until parturition. It is well known that GDM is associated with a heightened
level of oxidative stress, reflected through the increase in oxidative stress markers (such
as lipid peroxidation index) and the decrease in antioxidative defense capacity [105,106].
Given the high prevalence of GDM and the severity of short- and long-term complications,
there is an increasing demand for safe therapeutics for its prevention and treatment. Upon
GDM diagnosis, diet intervention is recommended, especially for women with mild GDM,
in addition to drug interventions, i.e., metformin, insulin. Based on the scientific results
summarized below, polyphenols could be at least part of the answer to this important
challenge. Numerous studies report the antidiabetic effects of dietary polyphenols due
to their anti-inflammatory and antioxidant effects, as well as their positive effects on in-
sulin secretion and the insulin signaling pathway [13,14,107]. The results from several
studies also support the notion that some dietary polyphenols can modulate cellular and
whole-body energy homeostasis under stress conditions during pregnancy, influencing
AMP-activated protein kinase, the crucial cellular energy sensor [107]. A positive correla-
tion has been found between the intake of polyphenol-rich food (PRF) and the prevention
and control of cardiometabolic complications during pregnancy, including GDM [108]. The
effect of polyphenol intake during pregnancy on the incidence and evolution of GDM is
described recently [109]. The total intake of polyphenols, especially flavonoids, during mid-
pregnancy was associated with a lower risk of GDM, according to a study on 2231 pregnant
women [110], and polyphenols were proposed to be beneficial in relieving GDM symp-
toms. A prospective study on pregnant women with body mass index (BMI) over 30
was conducted recently. Study participants consumed two cups of whole blueberries and
soluble fiber daily for 18 weeks, and it was noticed at the end of the trial that levels on
antioxidant markers (reduced glutathione (GSH) and total antioxidant capacity) increased,
while malondialdehyde (MDA) as a lipid peroxidation index decreased significantly [111].
Furthermore, plasminogen activator inhibitor 1 (PAI-1) decreased in maternal serum. It is
known that GDM triggers the expression and release of PAI-1, which is linked with GDM
severity due to excessively heightened pro-inflammatory cytokines with the development
of IR [112]. Since a combination of blueberries and fiber was used in this study, it cannot be
concluded with certainty what the individual contribution to this effect is, but it is likely
that increased antioxidative capacity is due to blueberry antioxidants, i.e., polyphenolic
compounds. Previously, the same research group showed multiple positive effects of a
daily intake of two cups of blueberries with fiber for 18 weeks, beginning mid-pregnancy,
in a group of pregnant women with BMI > 35 [113]. The results obtained in this random-
ized controlled trial suggested that investigated dietary treatment may prevent excess
gestational weight gain and improve glycemic control and inflammation in obese women.
Only 18% of women in the intervention group compared with 29% in the control group
developed GDM. These findings surely merit further clarification through identification of
active principles, most likely exerted through blueberry polyphenols. Among individual
dietary polyphenols, resveratrol is the most studied one in terms of beneficial properties
in GDM. A large body of evidence indicates that this antioxidant, found in red grapes
and berry fruits, exerts antidiabetic action in animal models of type 2DM. Resveratrol
is known to have antioxidant and anti-inflammatory properties; it improves pancreatic
islet structure and function and decreases IR in animals with experimentally induced dia-
betes. Its effects are strongly linked to changes in expression and activity of AMP-activated
protein kinase and SIRT1 in different tissues of diabetic animals [114]. Namely, AMPK is
involved in the reduction of gluconeogenesis in the liver, and it has been suggested as a
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potential target for resveratrol. This compound reversed the glucose and insulin intolerance
in the GDM mouse model, while increasing the average litter size and body weight at
birth. The underlying mechanisms involved increased liver AMPK activation [115]. The
regulation of the miR-23a-3p/NOV axis is another mechanism suggested according to the
results obtained in the GDM mouse model [116]. Resveratrol was able to neutralize the
negative effects of maternal GDM on the mouse embryos, observed through a reduction
in diabetes-induced embryonic apoptosis in the cranial neural tube region and embryonic
oxidative stress and improvement of antioxidant, glucose, and lipid status [117]. In the rats
on high-fat and sucrose diets, maternal resveratrol supplementation, beginning at the onset
of GDM in the third trimester and throughout lactation, improved glucose homeostasis and
insulin secretion, without adverse effects on the offspring [118]. Du and colleagues [119]
aimed to improve resveratrol stability and bioavailability through encapsulation of the
resveratrol and zinc oxide complex with chitosan. These nanoparticles had no toxic ef-
fects and ameliorated diabetic signs and inflammation in the GDM rat model. In vitro,
these nanoparticles exerted inhibitory effects on α-glucosidase and α-amylase activity,
comparable to the antidiabetic drug acarbose [119]. In vivo rat experiments also showed
that maternal diabetes may induce autism-like behavior in the offspring, in part through
hyperglycemia-induced oxidative stress and SOD suppression in the amygdala. Both
prenatal and postnatal treatment with resveratrol partly ameliorated this behavior [120]. In
the context of inflammation associated with GDM, treatment with resveratrol significantly
ameliorated the chemical and microbial induction of inflammation and insulin resistance,
restored the induced defects in the insulin signaling pathway and glucose uptake, and
also significantly reduced the expression and secretion of proinflammatory cytokines (IL-6,
IL-1α, IL-1β) and proinflammatory chemokines IL-8 and MCP-1 in human placenta and
adipose tissue [121]. Regarding the interventions with polyphenol supplements, in Malvasi
et al.’s study [122], decreases in blood glucose levels and lipid profile improvement were
observed in the group with trans-resveratrol supplementation. Namely, resveratrol’s addi-
tion to D-chiro-inositol and Myo-inositol treatment from the 24th to 28th week of pregnancy
had beneficial effects on GDM biochemical parameters in overweight pregnant woman
after 30 and 60 days. Overall, these findings support resveratrol as a dietary polyphenol
that may significantly ameliorate GDM signs in pregnant women [122]. It was shown that
another well-described polyphenol, curcumin, ameliorated glucose intolerance in GDM
mice. It inhibited upregulated fasting blood glucose and insulin levels and restored litter
size and birth weight when given orally during gestation [123]. Curcumin also attenuated
oxidative stress in GDM mice through decreased lipid peroxidation marker (thiobarbituric
acid reactive substances) and increased antioxidative enzyme expression (GSH, SOD, and
catalase). AMPK activation, which is attenuated in GDM mice, could be restored by the
treatment, thus normalizing liver glucose production through a reduction in glucose-6-
phosphatase expression [123]. In a whole-mouse embryo culture model, incidence of neural
tube defects induced by high glucose was lower when treated with curcumin [124]. Cur-
cumin also suppressed oxidative stress and abolished caspase-3 and caspase-8 cleavage
in this study [119], suggesting that maternal supplementation with curcumin might have
embryo-protective effects in diabetic pregnant women. Both curcumin and another dietary
polyphenol, phenolic acid punicalagin, possess potent anti-inflammatory properties in
in vitro human models of inflammation. These compounds ameliorated TNF-induced
expression of proinflammatory cytokines and chemokines, and also altered antioxidant
enzymes’ (SOD and catalase) mRNA expression in placental and adipose tissue [125].

The flavonoid quercetin exhibited protective effects in several studies on GDM
models [126–129]. Maternal supplementation with quercetin significantly lowered the inci-
dence on neural tube defects and apoptosis in the mice embryos, and did so through inhibi-
tion of nitrosative stress, which is associated with increased birth defect incidence [127,129].
This effect could be exerted through inhibition of nitric oxide synthase 2, increased SOD1
expression, and decreased endoplasmic reticulum stress [127,129]. Prophylactic adminis-
tration of this compound four weeks before conception resulted in an increase in blastocyst
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numbers and percentage of well-developed stages, and the expression of genes essential
for blastocyst development and implantation as Igf1r, itgav, itgb3, and COX2 [126]. Fur-
thermore, quercetin reversed the inhibitory effect of GDM on 17β-estradiol serum level
in pregnant mice. GDM led to an increase in the number of glycogen cells of the rat pla-
centa, which was prevented by the oral administration of quercetin during gestation [128].
Quercetin also neutralized the suppressive effect of GDM on adiponectin expression and
reduced the expression of its receptors [128]. This adipokine has been shown to act in a
protective fashion in GDM [130]. In one word, numerous preclinical studies have shown
benefits and potential of quercetin in prevention or attenuation of maternal cardiometabolic
disorders, including GDM. The most recent review article highlighted the results obtained
from animal studies about quercetin administration during pregnancy, emphasizing its
role in modifying phenotypic plasticity [131]. Bearing in mind these results, it could be
concluded that quercetin supplementation during pregnancy represents a viable strategy
for changing cardiometabolic parameters throughout life. Other polyphenols have been
shown to possess antidiabetic potential in GDM. One such compound is nobiletin, a flavone
found in tangerine peels [132]. In in vitro tissue culture, nobiletin exerted antidiabetic
activities: it improved TNF-impaired glucose uptake in skeletal muscle explants and sup-
pressed TNF-induced proinflammatory cytokines and chemokines in the placenta [133].
These observations were verified in vivo in a mouse GDM model. GDM mice treated with
nobiletin, either in a prophylactic or treatment manner, significantly suppressed proin-
flammatory cytokines and chemokine expression and secretion in placenta and adipose
tissue. Nobiletin holds a great promise for the prevention/treatment of GDM, given that
supplementation of either citrus flavonoids or Diabetinol® (with nobiletin as the primary
active ingredient) has already been found to significantly improve fasting glucose and lipid
profiles in nonpregnant diabetic subjects [134,135]. Epigallocatechin gallate, a flavanol
abundant in green tea, given orally to pregnant diabetic mice, significantly decreased dam
neural tube defect formation induced by high glucose and inhibited maternal diabetes-
induced global DNA hypermetylation, as well as DNA methylation in the CpG islands
of genes essential for neural tube closure [136]. Oleuropein, a dietary polyphenol present
in olive fruit and oil, was investigated in a recent study conducted by Zhang et al. [137].
It attenuated the elevated body weight of GDM mice; gestational outcome was markedly
improved. Due to oleuropein administration, markers of oxidative stress and inflammation
as well as blood glucose, insulin, and hepatic glycogen levels were alleviated, and the
AMPK signaling pathway was activated. Pomegranate ellagic polyphenols (PEP) exerted
beneficial effects in a rat model of GDM, which was reflected in restored body weight
and fetal body weight, and normalization of fasting glucose, insulin levels, and insulin
resistance index [138]. Apart from beneficial effects for the lipid status, PEP reversed
the negative effects of GDM on 11β-hydroxy steroid dehydrogenase type 2, an enzyme
that protects the fetus from excessive cortisol in utero, as well as proteins implicated in
insulin resistance. The inflammatory mediators TNF-α, IL-6, and CRP were also lowered
by the treatment. The findings of that study also indicate that PEP could regulate the
PPARα-TRB3-AKT2-p-FOXO1-GLUT2 signaling pathways, which are related to insulin
sensitivity [138].

In conclusion, dietary polyphenols possess numerous antidiabetic effects, including
increasing glucose tolerance and improving lipid status, while decreasing inflammation,
oxidative and endoplasmic reticulum stress, and lowering GDM-induced birth defect
incidence. Additional efforts should be put into the careful design of polyphenol-rich
diets and single-polyphenol supplementation for GDM prevention or treatment. Potential
adverse effects and organ toxicity should be carefully assessed.

4. Potential Harmful Effects of Dietary Polyphenols in Pregnancy

Despite the abundant evidence of polyphenol’s beneficial antioxidative and anti-
inflammatory effects on reproductive health [34], little is known about the wide range of
their biological actions in pregnancy, and the short- and/or long-term effects they might
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exert on offspring health. Data regarding the influence of polyphenolic compounds on
oocyte maturation, fertilization, and development of the blastocyst are still conflicting.
When analyzing the effects of polyphenols on pregnancy processes, it should be taken
into account that interventions in early physiological inflammatory and redox signaling
may pose a significant risk for both maternal and offspring health. Namely, moderate
levels of ROS support early pregnancy through the activation of several redox-sensitive
pathways to promote decidualization, embryogenesis, attachment of the embryo to the
uterine wall, trophoblast invasion, neaoangiogenesis, and vascular remodeling in the
placenta [31,139,140]. Consistently with these notions, reducing ROS production during
placentation impaired trophoblast invasion and placental development in mice, leading to
the development of PE symptoms [141]. This could be related to impaired differentiation
of proliferative CTB to invasive EVT cells, by altered expression of α1/β1 integrins on CTB,
inhibited activation of MMPs in EVT cells, and other mechanisms proposedly mediated
by ROS [29,30,142,143]. The establishment of pregnancy is also driven by locally synthe-
sized inflammatory cytokines and prostanoids from the decidual endometrium [144,145].
The major pharmacological action of polyphenols on gestational processes might come
from interference in the inflammatory cascade, by inhibition of cyclooxygenase (COX)-2
activity and the transformation of arachidonic acid into PGs [146]. These inhibitory effects
of polyphenolic compounds on PG synthesis in maternal reproductive tissues and the
fetus are thought to be analogous to the effects of nonsteroidal anti-inflammatory drugs
(NSAIDs) [147]. Apart from arachidonic acid pathways, plant polyphenols are documented
to negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway [148,149]. In
the same vein, selected phytochemicals have shown to inhibit inflammasome activity in
in vitro and in vivo tests [150]. Targeting NF-kB and inflammasome activity, polyphenolic
use may result in transcriptional repression of a large number of inflammatory genes,
including those encoding TNF-α, IL-1β, IL-6, IL-12p40, 17A, and COX2; the downreg-
ulation of chemokines; and decreased generation of ROS [151–154]. Considering the
aforementioned, it is reasonable to hypothesize that the anti-inflammatory, antioxidative,
antiproliferative, and vasoactive properties of polyphenols could interfere with blastocyst
development, implantation, and postimplantation processes. This hypothesis has been
supported by numerous results from in vitro and animal models. For instance, genistein
treatment of murine oocytes significantly reduced the rate of oocyte maturation, in vitro
fertilization, and embryonic development [155]. Similarly, treatment of murine oocytes with
high-dose curcumin during in vitro maturation (IVM) impaired blastocyst development
from the morula, promoted early-stage death of mouse blastocysts, increased resorption of
postimplantation embryos, and decreased fetal weight [156]. Moreover, in mice, maternal
intake of dietary curcumin in higher concentration significantly decreased in vivo oocyte
maturation and fertilization, and inhibited embryonic development from the zygote to
blastocyst stage [156]. It also reduced the potential of implantation and postimplantation
development [156]. Embryotoxic effects of curcumin at the early postimplantation stage of
gestation were confirmed in another study, where exposure to 24 µM of curcumin at the
blastocyst stage was lethal to all embryos [157]. Curcumin cytotoxic effects were suggested
to stem from improper activation of apoptotic processes through increased Bax and reduced
Bcl-2 expression, ROS generation, and caspase-3 activation in early-stage embryos, also
suggesting its role as a teratogen [158]. Administration of high-dose quercetin reduced
the expression and distribution of uterine receptivity molecules (mucin-1, E-cadherin and
integrin αVβ3) during the peri-implantation period in rats [159]. It also increased estrogen
levels, whereas it decreased progesterone in early-pregnant rats, possibly through interfer-
ence with the enzymes involved in sex steroid biosynthesis [159]. Additionally, quercetin at
high doses exhibited severe teratogenic effects, causing neural tube defects, somite dysmor-
phology, and telencephalic hypoplasia, among other injuries, in IVM mouse embryos [160].
Similarly, naringenin [160] and Ginkgolide B of ginkgo biloba extract [161] induced growth
retardation, developmental defects, and reduced viability in cultured mouse embryos.
Still, polyphenolic-induced embryotoxicity or failure of early-pregnancy endpoints was not
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shown in other rodent studies [162–164]. Furthermore, curcumin, quercetin, and naringenin
applied at lower doses than those exhibiting embryotoxic effects were suggested to have
protective effects against other teratogenic agents [160,165]. These inconsistencies may
reflect differences between the studies in terms of animal species- and strain-specific suscep-
tibility, and the experimental design (timing and dosing regimes, etc.) used in the studies.
Due to medical and ethical constraints in research on very early-pregnancy endpoints in
humans, studying women undergoing in vitro fertilization (IVF) remains the only means of
observing the impact of dietary polyphenols on early developmental measures. One such
study revealed that resveratrol supplementation in women undergoing IVF was strongly
associated with lower implantation and pregnancy rates and higher miscarriage rates [166].
One of the proposed mechanisms behind this outcome is thought to be resveratrol’s anti-
inflammatory action and direct inhibition of embryo attachment [166]. Resveratrol use
was associated with antideciduogenic effects by modification of genes regulating decid-
ualization and suppressing decidual senescence [167], which could increase the risk of
implantation failure and miscarriage. Furthermore, a dramatic increase in fetal pancreatic
mass and exocrine cell proliferation following maternal resveratrol supplementation in
nonhuman primates was shown [168]. Considering that resveratrol-rich grape juice and
derivatives are consumed daily worldwide by pregnant woman, further studies about
possible harmful effects of resveratrol use during human pregnancy should be conducted.
Besides early reproductive toxicity, PRF use during pregnancy could also affect devel-
opmental trajectories, causing miscarriage or preterm delivery [169,170]. Feverfew tea,
traditionally used for the treatment of fevers and headache, is also a potent abortifacient
(which is another traditional use), and is contraindicated in pregnancy [171]. Parsley, pen-
nyroyal, calendula, saffron, knotweed, nutmeg, and many other polyphenol-containing
plants have also been associated with a risk of miscarriage [172–174]. Moreover, plant
products containing isoflavonoids or thiocyanate, such as green tea, lemon balm leaves,
and soy beans, are suggested to inhibit thyroperoxidase and/or tissue deiodinases, leading
to early maternal hypothyroxinemia that may induce severe neurological damage during
the sensitive period of neuronal cell migration [175]. Owing to their anti-inflammatory and
antioxidant properties, polyphenol consumption during pregnancy has been commonly
associated with a serious vascular malformation, premature closure of ductus arteriosus
(PCDA) [147]. Several experimental and clinical studies have reported PCDA after a history
of maternal abundant polyphenol consumption. For instance, the use of green tea [176],
matè leaf herbal tea infusion [177], or chamomile tea [178], daily intake of prune berry
and violet vegetable juice (a blend of 18 vegetables and nine fruits that contains antho-
cyanins) [179] or MonaVie (a juice blend containing the cyclooxygenase and nitric oxide
synthase inhibitors, proanthocyanidins and anthocyanins) [180], or excessive quantities
of fresh oranges [181] and dark chocolate [182] in late pregnancy have all been associated
with PCDA. The underlying pathogenetic mechanisms are thought to be similar to those
involved in PG inhibition by NSAIDs [183]. Additionally, analogue to the effects of NSAIDs,
PRF-induced PCDA was ameliorated or completely reversed when these substances were
discontinued [181,184]. Functional closure of the ductus in healthy term newborns occurs
within the first postnatal days, while complete fibrous obliteration develops after several
weeks [185]. This is a result of a well-balanced interplay between locally produced and
circulating mediators, of which PGs have a major role, and the particular structure of the
vessel wall [186]. As both COX-1 and COX-2 are expressed in endothelial and smooth
muscle cells of the ductus arteriosus [187,188], prenatal inhibition of their activity may
cause constriction, or premature closure of the ductus [188]. Polyphenols are also shown
to induce PCDA by inhibiting NO-mediated vasodilatation in pregnant sheep after PRF
intake for 14 days [189]. The ductus arteriosus vulnerability to constrictive factors, thus
the risk of PCDA, progressively increases with gestational age (e.g., the sensitivity to
indomethacin-induced vasoconstriction is approximately 5–10% at 27 weeks, 15–20% at
32 weeks, and almost 100% at 34 weeks [190]. To date, there is no consensus concerning
the amount of polyphenol consumption that could cause PCDA. The evidence already
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available warrants caution regarding PRF consumption in the third trimester of pregnancy,
due to increased risk of PCDA and its pathophysiological consequences [147]. Current
evidence of the metabolism and pharmacokinetics of polyphenols ingested in pregnancy
indicates that the transplacental transport of these substances may potentially interfere
with fetal developmental processes [191,192]. The concept of “fetal programming” defines
fetal adaptive responses to the conditions encountered in utero, which results in various
(mal)adaptations that may be disadvantageous in adult life. Epigallocatechin-3-gallate,
caffeic acid, catechin, curcumin, epicatechin, lycopene, genistein, quercetin, resveratrol,
rosmarinic acid, and other dietary polyphenolic compounds, which are an integral part
of human diet, are thought to be involved in fetal programming by inducing changes to
the fetal epigenome [193–195]. These changes to the structure of DNA without changing
the underlying DNA sequence may have long-lasting effects, as they may be transmitted
to daughter cells [196–198], and down to the offspring via transgenerational epigenetic
inheritance [199].

In conclusion, despite the growing body of studies highlighting potential benefits,
unambiguous links between polyphenols and their safe use in pregnancy are insufficient
and there is still a lack of evidence-based data. As in vitro animal and human studies
suggest, dietary polyphenols, especially in excessive dosages, may have adverse effects
on fetal health and pregnancy outcome. They have been shown to influence early gesta-
tional process by disrupting endometrial receptivity, embryo development/survival, and
implantation and placentation processes [159]. They might also interfere in subsequent
fetal developmental trajectories through epigenetic changes, with possible lifelong and/or
transgenerationally altered expression of certain genes [195]. By skewing the intrauterine
inflammatory and redox environment, overconsumption of PRF in the third trimester may
induce fetal/newborn defects such as PCDA and the related consequences [147]. All the
aforementioned warrants particular attention, considering (i) the increased supplement con-
sumption by pregnant woman [200], and (ii) that polyphenol intake through supplements
is thought to be approx. 100 times greater than through a Western diet [201]. Additionally,
some unexpected effects of PRF may be influenced by various individual factors, such as
women’s age, genetics, nutrition status, comorbidities, concomitant use of other bioactive
substances, etc. All of these aspects should be taken into account when designing future
studies aimed at improving our understanding of the mechanisms of functional foods and
their safety in pregnancy.

5. Conclusions and Future Research Directions

It is well documented that a polyphenol-rich diet has valuable health benefits and
can be considered as a powerful tool for the prevention of numerous chronic diseases;
recently, their effects have been also underlined against coronavirus disease 2019
(COVID-19) [202,203]. Dietary polyphenol consumption during pregnancy requires par-
ticular attention considering the potential influence of polyphenols on the mechanisms
of maternal adaptation and fetal development. Both the potential health benefits and the
possible adverse effects should be considered when it comes to the consumption of dietary
polyphenols during pregnancy.

Currently, native polyphenols found in food are the most often investigated polyphe-
nol compounds in vitro. However, polyphenol metabolites might be the biologically active
compounds rather than simple polyphenols. Hence, further in vitro studies are required
to show the biological activity of polyphenol metabolites. A crucial aspect that should be
implemented in the design of future studies on the topic is the clinical relevance of in vitro
findings. Namely, current studies are often conducted using polyphenol concentrations
that may exceed normally found physiologic concentrations [34]. Little is known about the
role of dietary polyphenols in advanced maternal age. This topic could be also significant
for future research, as maternal aging creates a suboptimal environment for placental and
fetal development that contributes to the vulnerability to adverse outcomes [204]. Another
underinvestigated area in the field is the influence of polyphenols present in prenatal
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nutrition on the long-term maternal health as well as the metabolic risk for the offspring,
or in one word, in transgenerational health promotion. Clarification of all these points is
essential for issuing future dietary polyphenol guidelines during pregnancy.
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