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Abstract 

The phenomenon of SCC is one of the most important problems that different metals 

are exposed to, according to the causative environment and the influencing stresses. 

SCC is the type of subcritical cracking, occurring in a corrosive environment. Metal 

fracture may occur due to SCC at a lower permissible stress level, causing problems 

that are difficult to solve. The sensitive materials, the applied stresses and the 

corrosive environment are the basic requirements that cause this phenomenon. It is 

difficult to predict the complexity of the interactions that occur within a crack and how 

they will grow and spread. The basic mechanisms of SCC remain fundamentally 

unclear despite numerous studies and research conducted on the topic. 

In this thesis, attention was focused on investigating crack growth behaviors in mild 

steel, computationally by the numerical method and by using the finite element 

simulation method. A model simulating crack growth was placed on the metal 

surface by applying tensile stress to the sample under normal conditions. The 

mechanical analysis of tensile stress was performed using the Code _Aster method 

to verify the effect of crack growth. 

The calculations in this study were carried out according to equations relating to 

linking the main influencing variables to obtain the best results. Three related 

variables significantly influencing crack growth and propagation were simulated. K, 

dk/da and max stress, are the variables that were simulated compared to crack 

length and growth, according to basic conditions, and that was by applying a 

constant tensile load to the sample, completely affecting the growth of the crack. 

Values of these variables were recorded every 2 mm for the crack growth. 

The results showed an increase in the values of K and max stress, while there was a 

decrease in the values of dK/da as the crack length increased. There was a great 

agreement between the results obtained mathematically according to equations and 

when applying simulations using finite elements. These results obtained are largely 

consistent with what has been obtained in most of the studies that have been 

conducted in this regard. 
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РЕЗИМЕ 

Појава напонске корозије је један од најважнијих проблема који се јављају у 

металним материјалима у неповољном окружењу и под дејством напона. 

Напонска корозија је врста поткритичне расата прслине, који се јавља у 

корзивној околини. Лом метала који настаје од последице напонске корозије 

при напону мањем од дозвољеног, је проблем који није лако решити, посебно 

код материјла осетљивих на корозију. Основна тешкоћа је да се утврди и 

предивди сложено међудејство наопна и корозије у присуству прслине, односно 

истраже механизми њеног настанка и раста. Основни механизми ове појаве су 

и даље недовољно разјашњени и поред великог броја истрживања која су 

спроведене последњих деценија.  

У овој дисертацији пажња је усмерена на нумеричко истраживање понашања 

конструкционог угљеничног челика у условима напонске корозије, а у присутву 

прслине. У том циљу примењена је метода коначних елемената, односно њена 

проширена варијанта када је у питању симулација раста прслине насталој на 

металној површини, а под дејством затезног напона и корозионе средине. За 

израчунавање напонско-деформационог стања коришћен је софтвер Code 

_Aster који је отворен за допуне и модификације у скалду са конкретним 

проблемом који се решава. 

Прорачуни и нумеричке симулације су изведени у складу са једначинама које 

повезују главне утицајне промељиве дља би се добили најбољи резултати. Три 

повезане променљиве које битно утичу на раст прслине су симулиране, фактор 

интензитета напона K, његова брзина, односно промена у односу на дужину 

прслине, dК/da, и максимални напон. Ове величина су одређиване за две врсте 

епрувета под дејтвом затезног напона, тако што су израчунате на свака 2 мм 

раста прслине. Резултати су показали раст К и максималног напона, док је 

брзина dК/da опадала при расту дужине прслине. Добијено је добро слагање 

нумериких и аналитичких резултата, као и добро слагање са експерименталним 

резултатима преузетим из литературе.  

. 



 

 

 
 

Kључне речи: 

Електрохемисјки принципи, услови средине, врх прслине, затезни напон, 

контрукциони челик, катодна реакција, фактор интензитета напона, метода 

коначних елемената, максимални напон. 
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CHAPTER 1 - Introduction 

1.1 Background 

Stress corrosion cracking is a kind of environmentally assisted failure of 

engineering materials. Gradual crack propagation, and eventual final failure, is a 

result of simultaneous response of chemical reactions and mechanical forces at the 

crack tip [1]. Historically, the phenomenon was observed in 19th century as a 

spontaneous cracking of military brass cartridges during a monsoon periods in India, 

when it was named 'seasonal cracking', the term which has retained till the modern 

period. Later, it was appeared that SCC was a cause of some severe industrial and 

urban accidents, some of them with serious losses [2]. The SCC is caused by three 

main factors: i) material susceptibility, ii) environmental corrosive conditions, iii) low 

level tensile stresses, applied or even only residual. When the applied loading is 

cyclical, 'corrosion fatigue' (CF) is considered as a particular case of SCC. Figure 1.1 

shows the relationship between these factors. When the applied loading is cyclical, 

'corrosion fatigue' (CF) is considered as a special case of SCC. Also, depending on 

the rate of chemical reactions in the crack tip, 'hydrogen induced cracking' (HIC) is 

considered as a specific mechanism of SCC [3]. 

 

 

Figure 1.1 Relationship between SCC factors [4] 



 

 

2 
 

 
The SCC mechanisms are classified into anodic and cathodic. Anodic SCC is 

governed by anodic metal dissolution at the crack tip; on the other side, the cathodic 

SCC, mostly occurring in welded joints, is governed by hydrogen diffusion into the 

metal, thus provoking hydrogen embrittlement and HIC. But, during corrosion, both 

mechanisms occur simultaneously, and the governing mechanism is characterized 

by the rate of particular reaction [4].  

During the SCC crack growth, three regions are typically observed above 

threshold stress-intensity level (Kiscc) - (i) low K values, when crack propagation rate 

increases rapidly, (ii) intermediate K values, when crack growth rate approaches 

almost constant plateau and, finally, (iii) when K values approaches KIC, rapid crack 

growth and the onset of final failure [5].  

Many review papers exist, concerning chemical, electrochemical and 

mechanical aspects at the crack tip. The most recent in-depth review was published 

by Bland et al. [6]. There are a large series of papers focused on mechanisms and 

modeling of SCC [6], [7-10]. Interested reader can find detailed modeling analysis in 

polemical papers between Shoji and Hall [7], [11-15]. A finite elements approach to 

SCC can be find in some recent papers [8], [9], [15-19].  

Mild steel is used for external structures such as topside, jackets, legs and 

cranes [10]. Welded joints are basic structural components used for marine 

engineering. The steel used for these structures must meet requirements, specified 

in Eurocode 3. The normal mild steel referred to in these standards is usually a yield 

curve of 350 to 460 MPa, [11]. Steel with a capacity of more than 460 MPa is also 

currently available. The use of such a steel in for components in structures can 

reduce processing costs and materials due to their good weldability and high 

strength. In addition, not only mechanical properties, but also the corrosion 

resistance of a high-grade steel is of primary importance for applications for 

components in structures, since they are often exposed to highly corrosive 

environments with humid conditions, [12].  

The last five decades have made significant progress in the development of 

mild steel for applications in pipelines, offshore constructions, ships and buildings. 

Such improvements were due to the need to achieved optimal combinations of 
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weldability, toughness and strength at reasonable prices. Focus in the improvements 

was on the zone of influence of the heat of the weld, its microstructure and 

properties, welding process and heat input, preheating and thermal treatment after 

welding. Although significant improvements in weldability through reduction of the 

carbon equivalent have been achieved over the years, the consequence is the 

increased dependence on thermomechanical processing and the transition to the 

mechanisms for strengthening with microwave insulation, far from the mechanisms 

dominated by carbon for which the original understanding is based [13].  

Mild steels, or micro-alloyed steels, are not considered as alloyed steels 

because they are designed to satisfy specific mechanical properties (yield strength 

larger than 275 MPa). They have low carbon content (0.05 to 0.25% C) for better 

formability and weldability, while the content of manganese is up to 2.0%, with Mo, 

Cu, N, V, Nb, Ti and Zr are used in different contents, [14], [15]. Further reduction of 

detrimental effects of the Corrosive Environment (CE) was enabled by introduction of 

new production methods such as controlled rolling and hardening, [16].  

Mild steel alloys are used in advanced marine objects such as ship and 

marine ships, due to their sufficient strength and excellent weldabilty, [17]. Recent 

studies behaviour showed the high sensitivity of SCC [18]. In addition, the use of 

these alloys requires welding and setting up connection procedures. The welding 

process induces structural changes which can influence local corrosive behaviour of 

the alloy. In addition, welded joints often have defects due to welding, as well as the 

remaining stresses, [14]   , [19]. Thus, the risk of Stress Corrosion Cracking (SCC) is 

often present causing unexpected failures without noticable external indicators, 

which will greatly limit its application. The cathodic protection is used to prolong steel 

operating time, but this can cause much more serious SCC problems. Therefore, the 

investigation of SCC behaviour of welded steel under cathode potential is of great 

importance [20]. 

The stress corrosion cracking problem must, therefore, be considered in the 

context of other constraints on design and maintenance, including costs. SCC is 

generally defined as the initiation and/or propagation of SCC in the presence of both 

tensile stress and corrosive environment. The occurrence of SCC is commonly 

recognized by brittle cracking features in normally ductile metals, meaning that the 
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catastrophic capability of stress corrosion cracking is manifested through an effective 

reduction in fracture toughness. Consequently,  stress corrosion cracking is a 

serious and growing concern in many industries, one of which is the shipbuilding 

industry [21] Figure 1.2 shows a sketch of pit corrosion and SCC initiation. 

 

Figure 1.2 Sketch of pit corrosion and SCC initiation. 

1.2  Defining the problem 

Recognizing an increase in cracks that support the environment or a long-term 

burst of stress has been identified as the main threat to the material security of 

construction materials. Reducing the lifespan of equipment by cracking corrosion has 

serious implications for the technological applications of metal surfaces [22]. 

 It is important to take into account the burst phenomena, which are considered to 

be voltage breaking (SCC), which this group of alloys can introduce in different 

degrees. In addition to SCC, mild steel is also sensitive to other types of brittle 

fractures, especially the cracking hydrogen (H), and too brittle fractures due to 

insufficient material. It is difficult in distinguishing SCC and H  in operating conditions 

[23]. The overall appearance of stress corrosion cracks in mild steel is the same as 

hydrogen embrittlement cracks (except that SCC can leave corrosion products on 

the fracture surfaces). In many cases, the details of the SCC fractions and hydrogen 

fractions can not be distinguished. Many service defects involving mild steel in 

environments are likely to result from hydrogen. Cracking may occur in the HAZ or 

weld metal, and it may be longitudinal or branches see (Figure 1.3 and Figure 1.4). 

SCC demands vary somewhat in HE, where the only requirement is to provide 

a hydrogen source, together with a hydrogen-capable substance. Other SCC 

mechanisms are more specific and usually occur when the metal is in general 

corrosion due to the protection of the surface of the film, although SCC may occur at 
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low temperatures in some positions. Cracks continue under low pressure and usually 

arise as a result of residual stresses of welding or making. The fracture is usually 

through the granules, although it can be converted into the path between the cells 

due to the sensitization of the steel [24].  

 

Figure 1.3 SCC between BM and HAZ 

 

Figure 1.4 Surface SCC 

There are two hypotheses for studying this phenomenon: First, failure is either 

due to an easily corrosive "path" within the material and another form of hydrogen 

embrittlement (HE), with the release of hydrogen through the cathodic reaction of 

corrosion. In some cases, research has shown that public failure occurs as a result 

of hydrogen embrittlement (HE). It can be expected that in the study of the problem 

of HE with steel, this phenomenon is especially important in the case of alloys of 

high alloys. The failure of stress corrosion in welded joints in high-strength steel may 

be particularly probable for several reasons. If, after welding, the voltage is not 

produced, the residual welding pressure remains. In the welding area, these 

pressures will be very narrow, and because they are usually of high stress, risk of 
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cracking is increased. Even with stress relief therapy, local pressure concentrations 

are usually left on the seams. Depending on the project, welded joints can be related 

with cracks where typically aggressive chemical species occur, which increases the 

likelihood of failure. Metal changes that occur during the thermal welding cycle can 

occur in local microstructures that are particularly sensitive to SCC. Thus, welded 

joints are often vulnerable to SCC attack, although the base metal is immune. One 

should notice that not enough information is available on SCC for welding high-

strength steel. Many environments can cause stress corrosion [25]. 

 SCC is one of the most damaging types of failures and its practical 

importance is affected under the combined influence of consistently applied 

pressures and an active environment, [26].  

Although many research papers have been written over the past decades to 

explore the effect of different parameters on the stress fracture corrosion of mild 

steels in different environments, this phenomenon is still present for weld engineers 

especially for welded joints in actual steel structures. The importance of this study is 

observed according to researchers around the world: 

 HSLA-65 (ASTM A945) represent new steel for shipbuilding industry.  

 presently this phenomenon is not completely understood and hydrogen 

embrittlement detection, in particular, seems to be one of the most difficult 

aspects of the problem [21].  

 laboratory tests have not always accurately modelled field-welding behaviour, 

particularly for modern HSLA steels, [12]. 

However, for earlier reasons and more topics about stress corrosion cracking for 

mild steel is presented in more detail in the fourth chapter of this thesis, in general.  

1.3  Objective of the thesis 

The overall objective of this work is to obtain a theoretical background and a 

more coherent understanding of the effects of stress corrosion cracking of mild steel. 

The scientific and main objective of the dissertation is to develop a numerical 

simulation using finite elements and experimental and determine the impact of SCC 

on mild steel welded joints. 
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1.4  Scope of the Work 

In engineering problems, the problem often begins with the physical system, 

which is here the SCC phenomenon. To analyze many problems, a mathematical 

model is created. The solution of the mathematical model depends mainly on the 

form itself. In some simple cases, the exact (theoretical) solution can be created. On 

the other hand, the numerical solution is adopted as a perfect option in most 

practical situations. Accordingly, the method of elements selected for the current 

study will be applied to the approximate numerical solution. Therefore, numerical 

results are obtained from numerical simulations. To this end, the quality of the results 

will then be determined and determined by comparing the numerical and 

experimental results. In the end, redefining the relevant model at one or more stages 

depends on the degree of satisfaction of the analyst with the results achieved. Figure 

1.5 illustrates the sequence of these phases. 

 

Figure 1.5 The sequence of the engineering problem analysis 
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1.5  Methodology used 

The methodology of the applied research focuses on the following: First, the 

theoretical foundations of the thesis, which is the correct and deep understanding of 

the phenomenon of cracking stress corrosion, and the impact on the weld joints of 

steel construction, and the study literature dealing with research on this 

phenomenon. Second, the experiments will be carried out by the tests of the 

sensitivity of stress cracking corrosion and described by numerical simulation using 

the analysis of the limited elements in order to verify this phenomenon and its impact 

on the surfaces of the welded metal The present thesis is organized in six chapters, 

an introduction to the topic is included in chapter 1. Chapter 2 Literature review, this 

chapter provides a deep review of the phenomenon of stress cracking corrosion and 

its impact on mild steel over the past years. Chapter 3 deeply examines the 

fundamentals of mild steels. Chapter 4 examines the mechanics of stress cracking 

corrosion.  Chapter 5 this chapter deals with numerical simulation, i.e. application of 

extended finite element method. Finally, the results and discussions and conclusions 

are presented in Chapter 6. 
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CHAPTER 2 Literature review 

  2.1 Introduction 

As mentioned earlier in Chapter 1, controlling stress corrosion cracking is not 

an easy task to do without a strong background on the subject. Fortunately, this topic 

has attracted the attention of many researchers around the world in the past 

decades. This chapter summarizes the most important developments and findings 

found in the specialized research literature on avoiding stress corrosion cracking in 

recent years. 

2.2 Basic aspects of SCC General 

SCC is an old phenomenon known here as a kind of material failure that 

occurs when some materials are subjected to tensile stress in an erosive 

environment. Requires both tensile stress and the presence of a particular corrosion 

medium [21]. Removal either prevents cracking or stops cracking growth that has 

already spread. 

2.3 Brief history  

Stress Corrosion Cracking (SCC) is a progressive fracture mechanism that 

can occur in almost all metals. It was first identified by the British army in India at the 

end of the 19th century when cracks appeared in boxes of ammunition copper 

cartridges. The cartridge case developed high tensile stresses when the bullet was 

introduced, resulting in high temperatures, high humidity and traces of ammonia in 

the air, causing SCC [26], [27]. 

     The actual beginning of the scientific interest of the environment-assisted 

cracking of metals (specifically SCC and HE) was in the late 19th century. Early 

evidence showed that the SCC study had a practical application by the British Army 

in India in the latter half of the 19th century for cracks in boxes of copper ammunition 

cartridges. The cartridge case developed tightened pressure when the bullet was 

introduced, resulting in high temperatures, high humidity and ammonia effects in the 
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air, causing SCC, [5]. Below is a sequence of events on the developments that have 

occurred for this phenomenon from the beginning of the twentieth century until 

recent times. 

 Early in the 20th century, SCC was observed in martensitic steel, but the 

problem didn't become widely recognized for SCC until the era of the 

aerospace programs. Also during this period, the cracking of mild steel due to 

nitrates became of practical importance in the chemical industry. SCC occurs 

when the alloy is almost inert to the environment which does the cracking. 

During the 1930s when stainless steel came to be used, SCC was observed 

in this class of allays especially in chloride at elevated temperature. Also 

during this time, magnesium alloys for military aircraft were found to be 

susceptible to SCC in moist atmospheres [21]. 

 The 1940s and 1950s were a time when the seriousness of the SCC problem, 

the need to identify SCC sensitive materials and environments that facilitated 

physical failure, and the urgency of defining the research agenda were clear. 

In 1944, the first major seminar - a seminar on metal cracking caused by 

stress and corrosion - was organized by ASTM and AIME in Philadelphia, 

USA [29]. A similar seminar was also held in Boston, USA, in 1954 on stress 

corrosion cracking. 

 In the 1960s, fracture mechanics became a serious consideration for studying 

environmental effects on the mechanical properties of materials. In early 

1966, the Advanced Research Projects Agency (ARPA) of the US Department 

of Defense  asked the Marine Research Laboratory to conduct an intensive 

research into the problem of stress corrosion caused by high-strength alloys 

after realizing the importance of the technical complexity of the gravity of this 

phenomenon to designers of the aerospace and marine industries, From the 

difficulty of fragile fracture with the chemical reactions that occur within the 

cracks and cannot be accessed as shown in Figure (2.1). The agency also 

recognized new developments in surface physics and surface chemistry that 

could eventually lead to advances in metal fatigue corrosion. In 1967, the 

International Conference at the University of Ohio, USA, was the first 
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conference to address the key aspects of stress corrosion cracking discussed 

in the SCC phenomenon of all major alloy systems [30]. 

 

Figure 2.1 The three scientific elements of stress-corrosion cracking. 

 During the seventh decade of the last century, there was a great interest in 

(SCC), which focused on identifying the mechanisms of stress corrosion 

cracking and the growth of cracks. Held at, University of Surrey, United 

Kingdom 1977 International Conference on Mechanisms for Cracking of 

Sensitive Materials. 

 In the eighties of the last century, the most important achievement during this 

period was the "modelling and measurement of cracks and their bad effects 

on the spread of cracks at the loading of static and dynamic," held this 

conference at the National Physical Laboratory, the United Kingdom in 1984. 

The conference was one of the most important conferences that had a great 

impact on this phenomenon [27]. 

 In the 1990s, many types of research were interested in the topic, in 

particular, many conferences were held. One of the major differences in 
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research was the widespread and positive use of new techniques, including 

high-resolution analytical methods, and computational methods for study SCC 

in different environments [5]. 

 In the recent years, there is growing concern about SCC phenomenon on 

wide ranges in the welding technology in the deference metals and 

environments around the world, there are many kinds of researches and 

studies have been exposed to this phenomenon, such as: 

- The effect of SCC for steel 44340 and 3.5 NiCrMoV under the hydrogen 

charge with a different application of stress was studied [28]. Results show 

that the speed of SCC is lower in samples exposed to distilled water, but there 

is a significant similarity between the speed of the incision with the stress rate 

applied in both cases. The surface morphology of the samples was mostly 

between granular cells and was apparent at the highest applied stress 

gradients [28]. 

- The installation for newly formed surface creation of the metal has been 

developed, [26]. Experiments were carried out in model solutions of NaCl on 

samples of various shipbuilding metals. Shipbuilding metal potentials without 

oxide film in the marine and ocean water have been obtained. The results 

show how much the steel potential value was critical "inside" the crack under 

corrosion-mechanical and fatigue destruction. The obtained results show that 

the electrochemical corrosion account is possible at the application of high-

tensile steels, which used in dynamically loaded constructions in corrosion 

environments. Hereof also follows that steel polarization potential for cathodic 

protection from local fractures is necessary to define on the new-formed 

surface. The observed phenomenon immutability potential of the metal with a 

minimum of surface charge on the new formed surface has important 

theoretical and practical significance for electrochemical protection from 

corrosion and mechanical fracture of vessels and ocean structures [26]. 

- Stress corrosion cracking (SCC) behavior and mechanism of E690 welded 

joint in a simulated marine atmosphere containing SO2 were investigated 

using slow strain rate tests (SSRT) method and electrochemical 

measurements. Results showed that it had very high SCC susceptibility in this 
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environment with a combined mechanism of anodic dissolution and hydrogen 

embrittlement (HE). The intern critical heat-affected zone in the welded joint 

was the most vulnerable location to SCC because this zone has less strength, 

more negative potential, and higher corrosion current density [30]. 

- Using the finite element method, the mechanical effect of nonlinear stress 

corrosion cracking on the stress rate at the tip of the crack, for (316L) in a 

model chloride medium was studied in [31]. Slow stein rate test was applied 

(SSRT). The results and investigations revealed the spread of cracks in the 

surface of the metal and its ramifications to multiple branches, and also some 

important information on the impact of the microscopic structure of metal 

erosion [31]. 

- Two options of finite element (FEM), impact function (IFM) were used to 

evaluate the impact of SCC on weld metal and heat-affected zone and their 

impact on the growth of cracks due to the residual stresses, [32]. The growth of 

cracks has been shown to be largely influenced by the initial location and the 

remaining stress distributions. The highest growth rate of cracking is obtained 

when the SCC crack grows along the z-axis, where ring tension is greatest in 

the focal welding area. The IFM evaluation also showed conservative results. In 

the asymmetric welding area, the effect of cracking is shown differently 

depending on the initial arrangement of the cracks [32]. 

- In 2015 using the finite element method, Wang and others proved that 

corrosion product films on the surface of the metal had a significant role in the 

growth of the SCC. The flat specimens and the U-shaped edge were 

examined in terms of the stress caused by the of the corrosion product films. 

The study showed the effect of the area of stress in front of the tip of the 

incision in the samples by Young’s modulus of the corrosion product films and 

the thickness of the layer and the geometric shape of the crack, [10]. 

2.4 Characteristics of SCC  

The following points summarize most of the characteristics of SCC: 

1. Tensile stress is required. This stress may be supplied by service loads, cold 

work, mismatch in fit-up, heat treatment, and by the wedging action of corrosion 
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products.  

2. Just alloys and not pure metals are affected, though there may be exceptions to 

this rule.  

3. In general, only a few chemical species present in the environment are effective in 

causing SCC of certain alloys. 

4. The species responsible for SCC, in general, need not be present either in large 

quantities or in high concentrations.  

5. With some alloy/corrode combination, such as titanium alloys and crystalline 

sodium chloride, or austenitic stainless steel and chloride solutions, temperatures 

substantially above room temperature may be required to activate some process 

essential to SCC.  

6. An alloy is usually almost inert to the environment which causes SCC.  

7. Stress corrosion cracking is always fragile under the microscope, even in very 

heavy alloys in tests of purely mechanical failures. 

8. There seems to be at least some tension in some systems where CSC does not 

occur. 

2.5 Sequence of Events in SCC 

  In the most general case, if a smooth specimen is placed in a corrosive 

environment in which it will eventually undergo SCC, the sequence of events is as 

shown in figure 2.2. First a corrosion pit forms. There is an important feature of most 

corrosion pits, the significance of which is not always appreciated, a porous cap of 

corrosion products which must be removed in order to see the pit itself. This cap 

impedes exchange between the corroding within the pit and the bulk corroding 

outside the pit, but it permits inward migration of anions such as chloride[30]. 
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Figure 2.2 Sequence of Events in SCC 

Generally, the pH within corrosion pits also differs from that outside the pit. 

The function of a corrosion pit in initiating SCC was once widely thought to be purely 

mechanical, to concentrate stresses. It now appears that the essential function of the 

pit when it initiates SCC is not primarily mechanical, but rather it is to provide a 

mechanism for altering the solution chemistry locally to one favorable for SCC. 

2.6 Stress Corrosion Cracking Growth Models 

Cracking stress has a variety of mechanisms that can be chemical or 

mechanical. Many factors influence these mechanisms, which can be mechanical, 

heat, chemical, or environmental. Some of the models used to assess this 

phenomenon (SCC) include a crack in the film that subsequently degrades as a 

result of crack branching. The diffusion of hydrogen and oxygen between the grains 

through the spaces between them, which causes internal stresses [40]. It is difficult 

to fully explain and clarify the mechanism of (SCC) at the same time. The 

mechanisms affecting (SCC) cannot be predicted at all, but depend on the 

surrounding conditions of the causative environment, the manufacturing process, 

and the stresses according to the place at the time of this phenomenon [41]. 

2.6.1 Rios et al., Model 

This model attempted to agree between mechanisms. It emphasized that 

there are several factors that cause a defect in the grain boundaries, which leads to 

the failure of the plastic area at the tip of the crack, which leads to the rapid growth of 

the crack. Some factors causing (SCC) such as residual stress, intergranular 

carbides, and different temperatures. The crack does not spread unevenly but rather 
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concentrates on sinuous areas forming a squeeze, such as (u-bend) [42]. Crack 

growth rate (CGR) is proportional to the subtle degree of residual stress within the 

alloy (SCC). The stress is slow at the end of the crack that is part of this process 

[43]. 

2.6.2 Jivkov et al., Model 

It was found in 2008 that the development of cracks and growth begins at the 

side of the crack, as a result of several variables and factors dependent on the 

geometry and the stress intensity factor (K). This model connects, between stress 

intensity factor (K) to the failure-prone portion, depending on the length and location of 

the crack in the sample. The crack tip is calculated using a special model specifically 

across granules. 

2.6.3 Hall Model 

In this model SCC occurs due to plastic failure during creep at the crack tip, 

enabling correlation of stress with stress intensity factor K [41]. 

2.6.4 Scott Model 

This model is used only for steam generator tubes, [44]. It is a simple model 

involving the stress intensity factor, as shown in Figure 2.5, where the comparison 

with experimental data is given, [41]. 

 



 

 

17 
 

 

Figure 2.3 Stress intensity factor vs crack growth rate [41]. 

 

 

 

2.6.5 The Slip Dissolution -Film Rupture Model 

This model introduces film formation and rupture, as well as its reactivation, 

depending on the crack tip state [40], [41]. It correlates Stress Intensity Factor (SIF) 

with crack growth rate, Fig. 2.5. 
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3. CHAPTER - High Strength Steel 

3.1 Introduction 

This chapter covers an aspect of mild steel that is classified as one of the 

steels widely used in the industry. High-strength steel is one of the types of this 

grade whose yield strength is not less than 450 MPa, which often contains 0.15 wt% 

C, 1.65 wt% Mn, and also has low levels (less than 0.035%) of P, S, and others, [45]. 

This type of steel has many uses, as we find it used in structures, construction, 

pipelines, shipbuilding and many other marine applications [46]. It is used to develop 

applications that require the design to withstand particularly high stresses, and which 

are often very close to the yield stress [47].  

 
3.2 Definition of High Strength Steels 

 
The conventional method [48, 49] to obtain this type of steel, when producing 

various types of steel, to develop optimum strength, the steel must first be 

completely transformed into martensite, and for this to be achieved the steel must be 

quenched at a rate fast enough to ensure that the decomposition of the austenite 

formed during the cooling of products such as pearlite and ferrite must be avoided. 

And by cooling to a martensite form which is subsequently heated or tempered, at 

medium temperature, by increasing the hardness of the formed steel without very 

large losses in strength. This is what is known as high-strength steel [48]. 

Different sectors in industry, have always demanded minimum construction 

mass to improve performance and production. To achieve this goal, good formability 

and weldability of high-strength steels is one such important method. Cold rolled 

steel and quenched steel with medium and high yield strength levels of 740 MPa and 

1100 MPa respectively are used with success in trucks, dumpers, cranes and similar 

products. For new types of high-strength steels, the production cost can be reduced 

by reducing the weight by relying on efficient designs due to its yield strength. The 

design procedures and production techniques used must take into account 

formability, weldability, hardness, torsion, crush resistance and fatigue, take 

advantage of the full potential of this type of steel [49]. 

 



 

 

19 
 

3.3 Classification  

 
Depending on the manufacturing and finishing method, product shape, 

microstructure, heat treatment, and given the level of strength required as specified, 

the steels are classified into different systems in the EN 10113-7 standard [50]. Steel 

grades are classified into three groups, according to EN, respecting the production 

process.  

3.3.1 Normalized steel grades (EN 10113 part 2)  

 
Normalization process, during which metal is heated to a certain temperature 

that enables the movement of grains, followed by cooling to the ambient temperature 

in the atmosphere. Hence, a microscopic composition of perlite granules with some 

ferrite is obtained. Better fabrication property and higher hardness ability are 

obtained in natural steel as compared to annealed (oven-cooled) steel [51]. 

3.3.2 Thermo-Mechanical controlled Processing steel grades (EN 10113 part 3)  

 
This is the most efficient process for minimizing the size grains. Thermo-

Mechanical Control Process (TMCP) involves control of both thermomechanical 

stability and rapid cooling. Thereby, reduction of thickness by rolling is largely 

controlled near the temperature Ar3. For this, the use of TMCP changes 

microstructure as well, [21] [51].  

 
3.3.3 Quenched and Tempered (Q&T) high strength steel grade (EN 10137 part 2)  

 
In this type of steel should be combined, fast cooling and controlled stability 

between grains, to obtain steel with advanced mechanical properties more than 

ordinary steel so that this steel has high ability to form and welding. Many steel 

grades were produced with a yield strength of 450 MPa, using the TMCP method. 

Recently, to overcome this shortcoming in the production of high strength structural 

steel, the Q&T method has been used concerning normal products, strength limits 

and section thicknesses [51], [52].  

By cooling the steel from the pure austenitic stage whose temperature ranges 

between (850-950 °C) until it reaches the martensite stage at room temperature or 
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less, and this is done by applying rapid cooling in certain cooling media such as 

(water, brine, oil, etc.), For the purpose of obtaining low alloy steels. The martensite 

phase is a brittle phase due to the increased carbon content, which in turn increases 

its hardness. 

Tempering is one of the main steps that are taken in steel production. To 

increase the strength of the metal and reduce its brittleness, residual stresses are 

eliminated by heating the hardened steel to a medium temperature. An increase in 

temperature is accompanied by a decrease in the region’s properties, and this leads 

to an increase in tensile strength, elongation and stiffness [30]. The level of yield 

strength of high-strength steels varies with different production methods. Table 3.1 

shows a group of types of high-strength steels for marine structures. 

 

Table 3.1. High strength steels used in offshore [53] 

 

 

3.4 Hardenability 

 
There are variation [54] about the meaning of hardness and hardenability. 

During cooling the steel can harden to a certain depth, this is known as the hardness 

property of steel. Hence, hardness is a physical property, independent of cooling rate, 

what mainly depends on chemical composition and grain size. Damping intensity is the 

structures obtained by the damping section and is a function of both the stiffness and 

the quenching process. Thus the quenching of the sample depends to a large extent 

on its microstructure, causing it to appear with different hardness values. Depending 

on carbon content and the steel structure. This defines hardness as a measure of a 

material's resistance to plastic deformation. 
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Several researchers explained that, in the early 1930s, the concept of hardness 

developed, the tempered martensite hardness increased more or less linear from cca 

0.05 to 0.5% of C. From Figure 3.1 one can see that the quenched stiffness decreases 

when the carbon content in austenite is more than 0.8%, which is much softer than 

martensite due to the presence of retained austenite [54]. 

 

 

Figure 3.1 Summary of extensive as-quenched hardness data from the literature for 

Fe-C alloys and steels by Krauss, [54] 

 

3.5 Hardening Mechanisms [55] 

 
Solid solution hardening, grain refinement, as well as precipitation hardening 

are the different mechanisms that can affect the strength. Refining grain size is the 

only reinforcement mechanism that increases durability at the same time, so it is 

considered the most unique mechanism. The relationship between grain size and 

yield strength of C-Mn steel is shown in Figure 3.2. 
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Figure 3.2 Relation between lower yield strength and the grain diameter.[40] 

3.5.1 Microalloyed steels [55] 

Microalloyed steels are alloys that can be obtained by adding a few elements in 

small quantities, such as V and Nb. Since grain refining is limited, alternative 

strengthening mechanisms must be employed to further increase yield strength. When 

designing fine grain steels, the deposition and hardening of pearlite should be used to 

a greater extent than is expected. Vanadium is often used to obtain the required level 

of solidification and precipitation at the reheating temperatures used in the rods heat 

treatment of high strength alloys, due to the limited solubility of some elements at 

these temperatures. 

Microelement compounds - V(C or N) precipitation during transformation or 

even afterwards, strengthen the microstructure. Proper quantity of V and N is 

needed to produce required level of strengthening. 

3.5.2 Thermomechanical Treatment (Rolling) 

Usually at temperatures just below the plate reheating temperature, initial rolling 

passes of the steel are performed, so that the deformation steps follow the rapid 

recrystallization and grain growth, [54] [55]. The addition of austenite grain growth 

inhibitors, when performing a heat treatment, repeated deformation and 

recrystallization steps are combined to initially improve the austenitic grain size and 

reduce its growth after recrystallization. By frequent recrystallization, due to optimal 

formations and the adoption of rather difficult reduction schedules, the best sizes of 



 

 

23 
 

recrystallized austenite grains resulting from this process are around 15 μm. 

Depending on the cooling rate, the transformation can produce iron pellets 6-8 

microns in size. It is at this point that controlled rolling is not only possible but is also 

beneficial for structural homogeneity [55]. 

By using additional micro-dye elements suitable particle sizes of austenite can 

be obtained, and in conjunction with a controlled rolling sequence, the recrystallization 

of austenite is greatly impeded. The shape of the grains and the surface area are 

affected by the evolution of this process much greater than that occurring in 

recrystallized austenite. During the process, both austenite recrystallization and CN 

precipitation reactions are affected.  However, as shown in Figure.3.3, since about the 

middle of the last century, instead of hot and calibrated rolling, thermomechanical 

rolling has been used. When adding materials up to X70 niobium and vanadium mixed 

with steel, low carbon steels can be produced. By using this method, it becomes 

possible to produce high-strength steels like X80, which have low carbon content and 

high weldability. The strength is greatly increased by adding molybdenum, copper and 

nickel, to a level of up to X100 when the steel on the plate is processed by mechanical 

thermal rolling in addition to modified accelerated cooling[52]. 

 

 

Figure 3.3 History in Line Pipe Steels (Large Diameter Pipe) [52] 

 

Great importance is given to the effect of austenite formation, and the transition 

temperature range (according to the alloy content, deformation and cooling rate). The 

mechanical properties of the carefully cast plate and the final grain size are factors 
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determining the conversion of the microstructure from austenite to ferrite. Also, the 

temperature range for the conversion of austenite to ferrite continues to be controlled 

beyond the production of a minimum level of austenite grains to determine its 

interaction motion. With controlled cooling, an increased growth rate can produce an 

accurate size of ferrite grains [55]. Hence, it is possible to design a rolling strategy, to 

produce the best possible size for recrystallized austenite grains. It is of utmost 

importance that the rolling process is controlled by recrystallization. During the 

controlled rolling, the cooling acceleration of low-carbon fine alloy steel products and 

its effect on the microstructure are shown in Fig. 3.4. The range of conversion of 

austenite to ferrite must be controlled so that the maximum purification of the ferrite 

grain is achieved. However, compared to the two, the grain size that can be produced 

from ferrite when converting from the austenitic grains flattened by rolling under the 

temperature of recrystallization is better than the size of the ferrite grains that can be 

produced when converting from recrystallized austenite. A moderate grain size which 

is coarser than the grain size can be achieved in sheets rolled in high strength steel. 

 

 

Figure 3.4 Schematic diagram of the influence of accelerated cooling on the 

microstructure of low-carbon micro alloyed steel products during controlled rolling [54] 
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However, about twenty years ago, the ISP (Inline Strip Production) line was 

developed in ATA Averdi steel plant in Italy with a production capacity of 5.105 

tons/year. This line (Figure 3.5) consists of the continuous casting machine for concast 

slabs 60 mm thick with the burnishing mill stand for squashing the slab with the liquid 

core to 43 mm, roughing train, a furnace for inductive heating of the strand, 

Ceremony-type furnace with the strand coiler and decoiler, ensuring maintaining the 

correct feedstock temperature, mill scale breaker, finishing train, laminar flow cooling, 

and a coiler for the finished product [54]. 

 

Figure 3. 5 Schematic diagram of an integrated production line of rolled plates in ISP 

(In-line Strip Production) process. The steel may be up to 1 mm thick [54] 

 

3.5.3 Processing methods of HSLA Steels [14] 

Given this, and to improve the mechanical properties of some Special Steel 

(HSLA) and its various forms, hot-rolled HSS products may include special 

treatment. These processing methods include: 

 To obtain fine austenite grains the rolling must be controlled to precipitate HSLA 

steels and/or highly deformed austenite grains. The austenite granules are 

converted into fine ferrite grains, during the cooling process, meanwhile, while the 

yield strength is improved the durability is greatly enhanced. Figure 3.6 illustrates 

the balance of strength and durability of integrated steel tubes, as well as 

demonstrates mechanical heat treatment concerning mechanical properties. 

 To produce fine ferrite grains during austenite conversion the rolled HSS steels 

are controlled, this is done during rapid cooling. The cooling temperature 

increases precipitation so that it cannot be fast, nor can it be slow enough to form 

ferrite. The effect of accelerated cooling on grain size is shown in Fig. 3.7, and it 

is noted that faster cooling gives finer grain size. 
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 To obtain HSS annealed steels for improved formability, the two-phase 

microstructure also shows lower yield strength and provides a better combination 

of ductility and tensile strength compared to normal HSS steels. High strength 

steel is also formed into cold-rolled sheets. 

The main advantage of HSS forgings (HSLA hot rolled products) is that it has a 

yield strength ranging from 275 to 485 MPa and can be higher, which can be 

achieved without heat treatment. Typically, the basic configurations of ferrite - 

pearlite forgings with fine alloys are from 0.3 to 0.5% C and 1.4 to 1.6% Mn. Also, 

low carbon steel forgings of this type are improved under the same conditions. 

 

 

Figure 3.6 Effect of microstructure and production process on the mechanical properties of 

line pipe steels [14] 

 

 

Figure 3.7 Controlled cooling and grain size. [56] 
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3.6. Chemical Composition and Properties of HSLA Steels [56] 

High-strength and low-alloy steel (HSLA) identifies steels that have several 

benefits and advantage over regular carbon steel, which has a low carbon presence. 

In general, it must have a set of high mechanical properties, such as high strength, 

along with improved toughness, ductility, excellent formability and weldability, and 

additional resistance to atmospheric corrosion. Due to its excellent properties, HSLA 

steel is widely used in the industry, as we find it used in automobile chassis, oil 

storage tanks, bridges, and tanks designed to withstand high pressure. Usually, the 

percentage of carbon in HSLA steels is low, which is mostly less than 0.15%, 

compared to ordinary carbon steels. These excellent properties are obtained by 

adding different alloy elements in very small quantities if compared to conventional 

steels, and this type of steel is known as fine alloy steels. There is a very great 

possibility to add a lot of elements, including carbon, manganese and silicon, to steel 

to achieve additional strength and improve its properties. Also, to ensure that these 

features are achieved, among the elements that can be added are chromium, nickel, 

niobium, boron, molybdenum, titanium and copper. 

 
3.6.1 Multivariate Interaction in HSLA Steel [56] 
 

The alloying elements added to the steel interact with the proportion of iron and 

carbon contained in the steel, resulting in different hardening effects. And by 

strengthening the solid solution, these added elements work to harden the steel. When 

combined with carbon in various fine and random carbide deposits, the elements of 

the steel alloys are solid when the precipitation hardens. The diffusion of these 

elements is affected, which results in many complex interactions between industry 

elements. Alloys. The precipitation is improved when several elements combine to 

form a carbide compound. Due to small quantities of alloying elements, the solid 

solution is strengthened, and to a lesser extent, the grain is refined. By adding alloying 

elements, the steel is strengthened. The cooling rate, deformation range, time and 

temperature are sensitive enhancers to the curing environment. For example, 

sediment formation is greatly influenced by the solubility and diffusion of fine alloy 

elements, as a result of temperature control. Grain growth is a thermally activated 

process, during steel processing, the temperature and time have a great influence on 

the grain size. 
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Figure 3.8 Multidimensional nature of micro alloyed steel with complex interactions and 

different contributions to the final mechanical property [56] 

 
3.6.2 Material specifications for HSLA steel 

 
  Much of the steel used in rolling or normalizing, is documented by the 

American Society for Testing and Materials (ASTM). Table 3.2 documents many 

ASTM specifications covering high quality HSLA steels in the presence of special 

elements. Certain ASTM, ASI, API and MIL specifications outline the chemical 

formulations, tests and additional procedures relevant to each application. The user 

may request special applications or supplementary tests for the task [5]. However, 

high-strength alloy steels will be tested in this work and its specifications will be 

described later. 
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Table 3.2 Compositional limits for HSLA steel in ASTM specifications properties [53] 

 

3.7 Advanced High Strength Steels 

In this Chapter different Advanced HSS are presented, classified according to 

their microstructure and production process. 

3.7.1 Dual-phase steel (DP) 

The dual-phase steel microstructure, Figure.3.9, shows matrix of fine ferrite 

and hard martensitic islands. The cooling is carefully controlled to produce a ferrite 

martensite structure from austenite if it is hot rolled. Upon rapid cooling, the final 

structure is produced from a double-phase structure of ferritic austenite, resulting in 

some of the austenite being converted into martensite, during continuous hardening 

[57]. 

 

Figure 3.9 DP microstructure schematic [45] 

 

The soft, elastic ferrite in the finished double-phase material, exceptionally, 

absorbs the pressure around the martensite islands, resulting in high stiffness and 
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fatigue strength, resulting in uniform elongation. Double-phase steels can be 

developed with additional production strength ranging from low to high Yield strength 

to UTS ratios, which allows a fair number of applications in different places. 

 
3.7.2 TRIP steel 
 

This type of high strength steel is widely used in marine applications as well as 

in the automotive industry. TRIP takes advantage of a multi-stage microstructure with 

fine ferrite content in difficult stages. The schematic diagram shown in Figure.3.10 

shows the microstructure of this species. The matrix contains a large amount of 

retained austenite (up to 5%), along with the martensite content. TRIP shall contain an 

acceptable proportion of bantite, to stabilize the austenite diffuse below carbon at 

ambient temperatures. To accelerate the formation of ferrite/bainite, Aland/or Si must 

be added, and the formation of carbide in the designated area is reduced [58]. 

 

Figure 3.10 Schematic of a typical TRIP microstructure [59] 

 
3.7.3 MnB steel 
 

The die-cooled hot-stamped steel contains Mn B, which makes it have high 

strength, a hot stamping process is formed for the steel, then pressure is formed 

when the blanks are heated to austenite, and this process takes place when the 

blanks are still red and smooth. Consequently, the absorption properties deteriorate 

which increases the environmental problem due to the addition of alloying elements, 

[60]. The synergetic effect of alloying elements on the phase transformation 

occurrence is shown in Figure 3.11, [60]. 
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Figure 3.11 Influence of alloying elements on TTT behaviour. [46] 

 

The stress and strain behavior of different steels (HSLA, DP, and TRIP) which 

have the same yield strength is illustrated in Figure 3.12.  

 

Figure 3.12 Advanced High Strength Steel Processing 

 

Figure 3.13 shows the different types of steels including conventional high-

strength steels, low-alloy steels (HSLA), light and steels, isotropies, newer grades of 

high-advanced steels, durable steels such as double-phase, and martensitic steels 

such as "AHSS".. The mixture stems mainly from its high capacity for stress 
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hardening, as a result of the low yield strength to the ratio of maximum tensile 

strength. Figure 3.14 shows the third generation of AHSS steel [62]. 

 

Figure 3.13. Tensile strength and elongation relationship of different HSS, [61] 

 

Figure 3.14 Third Generation of AHSS, [61] 

 

 

 

 

 

 



 

 

33 
 

Chapter 4  Mechanisms of Stress Corrosion Cracking (SCC) 

 
4.1 Definition of Stress Corrosion Cracking 

 

SCC is a weakening of engineering materials and their disruption and appears 

on the material after a while due to its slow diffusion as a result of the surrounding 

environment. As a result of the stress applied to the material in the medium with the 

synergistic reaction during the corrosion that reaches the material this phenomenon 

occurs [49].  

 SCC is defined as a type of subcritical cracking of materials, and as a result 

of the joint and synergistic interaction between the stress applied to the material, the 

environment that causes corrosion, and the presence of sensitive materials, the 

phenomenon of stress corrosion cracking occurs [64]. When a stress is applied that 

is well below the permissible service fatigue and without apparent general wear 

behaviour, SCC causes a material failure, with severe consequences within a certain 

period [65]. Several research has been done over the past years to study the 

phenomenon of SCC, which has established the general behaviour of SCC for 

different materials. Despite this, there is no reliable theory that can fully explain all of 

the behaviour to the SCC observed under clear circumstances, so the general 

concept of SCC remains widely hypothesized and is under investigation. Since there 

are no satisfactory automated models that impede efforts to predict SCC failure, to 

obtain accurate results for SCC, the automated investigation is one of the most 

important methods used to study this phenomenon [66]. The difficulty in 

understanding the basic mechanisms of SCC has major aspects, which are 

represented in the following three aspects: the inconsistency of experimental data for 

some researchers, the difficulty of accurately characterizing the materials inside the 

cracks, the complexity of the interactions between the different corrosion reactions 

and the mechanical stress. If all three basic requirements are fulfilled simultaneously, 

then only SCC can occur, namely, sensitive materials, tensile stress, and corrosive 

environment, but if any or one of them changes it will have the largest impact on 

SCC behaviour. These include, but are not limited to: alloy composition, metallic 

condition, stress intensity factor or size and method of applied stress, temperature, 

stress, pH, composition and concentration of the corrosion solution, electrochemical 
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potential, with stirring or mixing [67]. A certain corrosive environment can cause SCC 

in one substance; it does not necessarily affect another substance. 

Cracks from SCC are not visually distinguishable, but can only be observed 

microscopically. The shape resulting from crushing through this phenomenon can be 

along the boundaries of the grains (intergranular) or across the granules 

(transgranular), depending on its properties according to the system followed for this 

phenomenon. Figure 4.1 shows the types of SCC. 

 

Figure 4.1. Types of SCC a) intergranular, b) transgranular. 

4.2. Stress Corrosion Cracking models 

 
There is still a severe shortage of SCC models that includes an integrated 

mechanism, through which it is possible to develop an explanation that includes all 

aspects of the SCC phenomenon, both laboratory and field. Several mechanisms 

have been presented, each of which has the potential to elucidate a specific aspect 

of SCC behaviour. These mechanisms include, for example, anodic degradation, 

hydrogen fractionation, and surface absorption [35].  

The specific interpretation of the anode degradation mechanism can vary for 

researchers in this field, but the original concept of the mechanism remains 

unchanging. The generalized anodic degradation mechanism for cracking caused by 

stress corrosion in metals and their alloys, as it has been described as follows: 



 

 

35 
 

Localized corrosion occurs along the anodic path of sediments or regions, due to 

heterogeneity in sediment distribution with different electrochemical anodes in 

relation to the alloy matrix, often occurring at grain boundaries. Cracks occur 

between the granular cells, due to the rapid dissolution of the anode deposits, which 

leads to re-decomposition. 

Tensile stress concentrates at a defect tip. The protective membranes are torn at 

the end of the incision, due to the enhancement of the local stress field that causes 

the slip strips to move. The crack growth process is then repeated by sliding off the 

anodic deposits as a result of rupture of their protective membranes. The stretching 

of the crack becomes continuous if the rate of crack tip stress is greater than the rate 

of recharging. The fissure may grow slowly and intermittently, if these slips do not 

occur, and remain thus awaiting the activity of these slips, and the chemical reaction 

begins again, and rupture of these membranes occurs. Figure 4.2 shows 

schematically of the SCC mechanism. 

 

 

Figure 4.2: Schematic of anodic dissolution mechanism. 

Depending on observations that were recorded through the relationship between 

SCC and hydrogen, several researchers proposed a new mechanism for SCC, and 

hydrogen embrittlement, [68-73]. This mechanism carefully studied the role of 

hydrogen in SCCs in many metals and their alloys, as it was agreed with 



 

 

36 
 

overwhelming evidence that the SCC mechanism involved hydrogen embrittlement. 

During hydrogen erosion, the cathodic reactions are generated by: 

H2O + e- → H + OH-                                                     (1) 

 and 

H+ + e- → H                                                                 (2) 

In neutral as well as acidic solutions, a portion of atomic hydrogen binds together 

on the surface of the metal, forming molecular hydrogen. Atomic hydrogen can enter 

the material network, resulting in embrittlement effects through a variety of 

mechanisms such as hydrogen pressure, [74], surface adsorption, [75], cohesion, 

[76], flow of reinforced plastic, hydride, [77], Hydrogen trapping, [78]. Hydrogen can 

play a role in weakening the protective membranes and stimulating the chemical 

activity of the anode, which leads to reciprocal plastic slip. When tensile stress is 

effective in the process, there is a possibility that the cracked material will fail at a 

stress level below the yield strength level. The role that hydrogen plays in enhancing 

stress at the fissure tip leads to a distinction between the anode dissolution 

mechanism and the hydrogen fractionation mechanism. The following figure 4.3 

illustrates this mechanism. 

 

Figure 4.3: Schematic of hydrogen embrittlement mechanism. 
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The absorption of the surface active ingredients of the medium onto the metal 

surface can reduce the resistance and deformation of the solid materials. The 

emission of dislocation of the granules on the reinforced surface of the fissures ends 

promotes the fusion of the fissure-end with voids formed before the incisions. Brittle 

cracks or fractures are produced between the granular cells. This process, similar to 

hydrogen embrittlement, except that it is confined to the surface, also some other 

elements can produce this effect instead of hydrogen. Figure 4.4 illustrates the 

hydrogen embrittlement mechanism. 

 

Figure 4.4: Schematic of surface adsorption mechanism. 

 

Given the degeneration/rupture of the membrane model, the crack is unstable, 

but it repeatedly follows the sequences as shown in Figure.4.5: (1) the stress is 

mainly concentrated at the tip of the crack, (2) the exposures of the causative 

surface of the local rupture to the fracture of the protective film, (3) The slit growth, 

due to the consumption of electrons on the rest of the metal surface (cathode), as 

the anode decays the bare metal, (4) the presence of the oxide on the bare surface 

of the metal causes the slit growth at the same time, and (5)  When the oxide film 

reaches the critical thickness, the crack stops growing (this process is known as re-

passivation). The previous points represent the scope of work of the Ford-Anderson 

model [79]. 
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Figure 4.5. Schematic sequences of the film rupture model. 

 

The crack ends mainly undergoes anodic dissolution of the metal, while the 

cathodic reaction is supported by the crack mouth. There is a possibility of corrosion 

at the end of the slit due to separation of the anode and cathode, this corrosion is 

more negative than that at the mouth opening. As an outcome, the crevice end is 

polarized under free corrosion conditions with aluminum oxide causing anodic 

dissolution of the bare metal: 

ܯ → ା௡ܯ ൅ ݊݁ି	                                                         (3) 

while two possible cathodic reactions may be occurring at the crack mouth: 

ܱଶ ൅ ଶܱܪ2 ൅ 4݁ି →  (4)                                                   ିܪ4ܱ

ାܪ2 ൅ 2݁ି →  ଶ                                                           (5)ܪ

Which one cathodic reaction occurs at the crack mouth, may be critical in 

determining which kind of SCC is operable. It depends on pH value, oxygen supply, 
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chemical conditions on the metal surface, etc. In particular, anodic reaction of the 

ferrous alloys can be described by: 

݁ܨ3 ൅ ଶܱܪ4 → ଷ݁ܨ ସܱ ൅ ାܪ8 ൅ 8݁ି                                         (6) 

Additionally, in stainless steels with nickel and chromium as a main alloying 

elements: 

iܰ ൅ ଶܱܪ → iܱܰ ൅ ାܪ2 ൅ 2݁ି                                               (7) 

ݎܥ2 ൅ ଶܱܪ3 → ଶܱଷݎܥ ൅ ାܪ6 ൅ 6݁ି                                           (8) 

On the other side, in diluted aluminum alloys, anodic dissolution reaction is: 

݈ܣ2 ൅ ଶܱܪ6 → ሻଷܪሺܱ݈ܣ2 ൅  ଶ                                              (9)ܪ3

Ford and Andersen proposed a theoretical model for SCC crack growth rates 

considering electrochemical and mechanical aspects at the crack tip which is 

simultaneously subjected to corrosive environment and tensile loading. The 

fundamental mathematical equation for active path corrosion model is Faraday's law 

[79]. 
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                                        (10) 

where M is molar mass and z number of valence electrons, F is Faraday’s constant, 

Qf is the electric charge between two successive film rupture events, dotted εc is the 

strain rate at the crack tip and εf is the rupture ductility of the passive film, i is anodic 

current density immediately after the passive film rupture and m is re-passivation 

exponent. Equation's variable was grouped into materials constants (M, z, ρ, F), 

electrochemical (i and m) and mechanical (dotted εc) variables. This is the 

mathematical framework of the model. 

4.3 Electrochemical Aspects of Stress Corrosion Cracking 

Although SCC occurs without apparent general corrosion, the corrosion 

reactions within the initiated crack tip area, between the local solution and oxide films 

or bare metal, still plays an important role in crack initiation and propagation. 

Corrosion, by definition, is the consequence of the chemical reaction between 

a metal or metal alloy and its environment [34]. During a corrosion reaction, metal or 
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metal alloy is being oxidized to metal ions and dissolved into solution, a process 

called the anodic reaction. Meanwhile, other species, such as H+, receive the extra 

electrons generated by the anodic reaction and are being reduced to hydrogen gas, 

through a process known as a cathodic reaction. The pioneering work on electrolysis 

by Michael Faraday established the relationship between the current exchanged and 

mass of materials involved in chemical reaction during the corrosion process. 

Starting with his work and electrochemical principles he established, Butler and 

Volmer added concepts from thermodynamics to derive one of the most fundamental 

relationships in electrochemistry [37].  

The process that alters the corrosion current by changing the applied over-

potential is call polarization and the plot of potential vs. current is called the 

polarization curve. Some types of metals and alloys, when exposed to a certain 

corrosive environment  

While maintained at a specific range of potential, a layer of the oxide film will 

be formed, which blocks the corrosion reaction and thus decreases the corrosion 

current. This phenomenon is called passivation [36]. Figure 4.6 illustrates a typical 

polarization curve for material with passivation behaviors. The two grey areas 

indicate zones of susceptibility to stress corrosion cracking. As a result, the 

electrochemical potential strongly affects general corrosion, as well as SCC [37].  

 

Figure 4.6. Typical polarization curve of metal with passivation behavior 

The experimental data of anodic current can be represented by [81] 
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                                            (11) 

where Ecorr is corrosion potential, icorr corrosion current density on bare surface, Erp 

and irp are their equivalents on re-passivating surface, βa is Tafel slopes for anodic 

reactions on bare surface, βrp its equivalent on re-passivating surface. Ccorrosion 

current density. irp is the function of pH as defined by Freundlich adsorption equation 

[82]: 

log݅௥௣ ൌ ݇݃݋݈ െ  (12)                                                       ܪ݌݊

where k is a constant, and n is related to the valency of the cations: n = 0.5, 0.33, 

and 0.25 for monovalent, divalent and trivalent ions. The cathodic current density is 
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                                          (13) 

where n is charge number of cell reaction and δ is diffusion layer thickness, DH and cH 

are diffusion coefficient and concentration of hydrogen, respectively. Parameters to 

construct polarization curve are shown in Table 4.1, and calculated curves are shown 

in Figure 4.7. 

Table 4.1. Parameters for polarization curves [21]. 

Ecorr (V)    icorr (Am-2)    irp(Am-2)    βa(V dec-

1) 

   βc(V dec-1) βrp(V dec-1) 

-0.86 1 x 10-2 1 x 10-3- n x pH 0.12 0.72 -0.28 
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Figure 4.7. Polarization curves obtained from Equations (11) and (13). 

4.4 Mechanical Aspect of Stress Corrosion Cracking  

 
There are four necessary factors for SCC: 

(i) A material is subordinated to SCC. 

(ii) Corrosive environment. 

(iii) Mechanical load. 

(iv) Time. 

For SCC to occur, mechanical loading is an important aspect, it is considered 

one of the basic requirements for this phenomenon. SCC is a concern of many 

engineering constructions, including pipelines, pressure vessels and turbines. The 

SCC is a brittle, or quasi-brittle failure, with virtually no loss of material and visible 

corrosion. It is generally described as a "branched river" with a main crack and a 

secondary or tertiary crack with multiple branches. Cracks occur below the yield 

strength of the material and may be inter-granulated or trans-granulated. The 

initiation and propagation of SCC is a complex process of degradation, depending on 

the microstructural, mechanical and environmental parameters [83]. 

SCC mechanisms can be divided into anodic and cathodic. The first one is the 

controlled anodic dissolution of metal and the second one is the hydrogen uptake 

that causes the hydrogen embryo and is called "hydrogen-induced cracking". A 
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representative example of the mechanism of anodic stainless steel, while cathodic 

reactions are high- strength steels[1]. Anodizing mechanism, both models are widely 

accepted "sliding model" and "tear film model". In the film rupture model, a passive 

surface film, usually of oxide, protects the base metal from a corrosive environment. 

The applied loading causes the film to break the exposure of the base metal to 

corrosion. The rupture film will occur preferentially in the strain concentration 

regions, such as small cracks or defects. The growth rate of the crack depends on 

the competitive cracking and re-passivation sequences in the oxide film. Three basic 

loading modes are illustrated in Figure 4.8. As a result, when conducting SCC tests, 

both the loading mode and stress intensity must be prescribed in order to ensure 

accurate and reliable experimentation. 

 

Figure 4.8.: Schematic of three different loading modes. 

The crack tip strain rate (CTSR) can’t be experimentally measured, but has to be 

derived from theoretically proposed strain field ahead the crack. Total CTSR can be 

separated into the two components - stationary (or, perhaps, quasi-stationary) and 

advancing crack, i.e.: 
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The physical meaning of the above equation is as follows: the first term is the strain 

rate at distance, (r), from the crack tip, and the second term is the strain rate 

generated due to crack advances with the velocity da/dt trough the strain field. 

Hutchinson, Rice and Rosenberg developed a strain field distribution (HRR-field) for 

a stationary crack tip [84, 85]: 
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where K denotes the Stress Intensity Factor (SIF), r is characteristic distance in front 

of stationary crack, and n is strain hardening exponent from the Ramberg-Osgood 

strain-stress equation: 
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Graphical interpretation of the two equations are shown in Figures 4.9 and 4.10. 

Applying partial derivation to Eq. 15 yields the strain rate:   
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where K-dot denotes time derivative dK/dt.  

 

 
 

Fig. 4.9. HRR strain field in front of the crack tip distance r. 
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Fig. 4.10. Ramberg-Osgood equation. 

Similar to the HRR-field, for the 'crack advance' strain field was proposed, [86]: 
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as shown in Figure 4.11, while the strain rate component for a moving crack is time 

derivative of the above equation 
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Fig. 4.11. Strain field ahead the moving crack tip. 

 

Total strain rate (stationary plus moving crack) is sum of Eq.15 and 17. 
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where ܭሶ ൌ ܭ݀ ⁄ݐ݀  is time derivative of SIF. While some fracture mechanics 

experiments can be conducted to establish time-dependence of K-factor, it is 

supposed to be more convenient to apply 'chain rule': 
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and, getting back, the final equation for crack growth rate is formulated: 
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Both sides of above equation include   ሶܽ , but it can be easily solved either in 

analytical or in finite elements formulation. Parameters used in this work are shown 

in Table 4.2. 
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Table 4.2. Parameters used in calculation. 

MFe (kg/mol)  atomic mass of iron 55.8 x 10-3 

MAl (kg/mol) atomic mass of aluminium 26.9 x 10-3 

F (C/mol) Faraday's constant 96485 

z number of exchanged electrons 2 

ρ (kg/m3) density 7.8 x 106 

to (sec.) incubation period of repassivation 1 x 10-2 

εf fracture ductility of passive film 1 x 10-3 

m exponent of repassivation kinetics 2/3 

σy (MPa) yield strength 450 

E (GPa) Young modulus 200 

ββ Ryce parameter 5.08 

n Ramberg-Osgood exponent 6 -10 

α material constant in HRR-field 0.2 x 10-2 

 

Characteristic distance r was calculated from the plastic zone size ahead the 

crack [26] 
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However, K and dK/dt are not independent variables, they are the function of applied 

stress σ, crack size a and geometry-dependent factor. Figure 4.12(a,b) shows two 

crack opening modes, simple tension (a) and pure opening mode (b). Analytical 

solution for both modes are almost the same, with only difference in geometry 

dependent correction, f(a/b), 
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details of which can be find elsewhere [27, 28]. Before we proceed to finite elements 

formulation, it might be of some interest to explain mutual relation between K and 

dK/da, which is shown in Figure 4.13.  
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Fig. 4.12. Two different types of loading - a) tensile, b) compact tension (CT). 

 

 

Fig. 4.13. K-function and dK/dt vs. crack size. 

  

Assuming monotonously growing crack, with constant applied stress, K is 

increasing power law function (left y-axis) while, on the other side, dK/da behaves in 

quite opposite manner (right y-axis). Physical meaning of such behaviour is as 

follows: small stationary cracks (or small K-values) are dominated by rather larger 

values of   
ௗ௄

ௗ௔

ଵ

௄
. On the other side, large moving cracks are dominated in a K2 

manner. However, in most general way, dK/da can be zero (when K=const. tests) or 

even negative (for decreasing K values). 
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CHAPTER 5 - Extended Finite Element Method (XFEM)  

5.1 Introduction  

Finite Element Method (FEM) has an important position in engineering since it 

can deal efficiently with challenging geometric forms. It is one of very few method to 

tackle non-smooth fracture tip stress and strain fields through a locally developed 

mesh, enabling compatibility with fracture mechanics singularities. 

Nevertheless, if applied to crack propagation, FEM has to overcome problem 

of re-meshing at each propagation step. Numerous methods have been suggested 

without real success before the extended finite element method (XFEM) has been 

developed, [91, 92], after 1991, as shown in Figure 5.1. 

 

 

Figure 5.1 Comparison of 2D solid fracture analysis model using enriched x-FEM 

(upper) and extended x-FEM (lower) 
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The essence of xFEM are additional degrees of freedom in the nodes of 

elements where crack cuts through. The mesh is independent of crack propagation, 

so there is no need for re-meshing. This provides correctness in the calculation of 

stress and strain concentration. 

5.2 Basics of extended finite element method  

Modelling of crack propagation by classical FEM is practically impossible 

because it requires countless re-meshing steps. The xFEM provides possibility to 

model arbitrary shaped cracks, [93], because it uses additional functions to model 

singularity, thus avoiding re-meshing.  

There are two types of these, so-called enhancement functions:  

• Heaviside's function, which is discontinuous and introduces the special field, 

moving to the sides of the crack,  

• Near Tip (NT) functions, representing the set of linear elastic asymptotic scroll 

function, defining displacements at the crack tip.  

 

Figure 5.2 Nodes NT and H(x) improved function 

 

Thereby two node types are involved, H node with 4 degrees of freedom 

(DoF), and NT with 10 DoF, Figure 5.2. 
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5.2.1 Defining of the displacement field XFEM  

Nodes enriched in the two directions with 4 crack tip functions ܨఈ(x) are 

defined as follows, [92]: 

 

The displacements now take the following form [1]: 

 

where ௜ܰ(x) is shape function and ௜ܷ is displacement vector. Hence, the additional 

DOFsࣵढ़, ॕஂ
ࣵ in 5-2 are only added to the enriched nodes.  

5.2.2 The general form of the extended finite element method 

Genaral equation can be now set for global stiffness matrix, displament and 

force vectors: 

 

Global stiffness matrix is now: 

 

where: 

 - Classical FE stiffness matrix  

 - "improved" FE stiffness matrix 

 -  - - coupling between classical and "improved" FE stiffness matrix. 

Stiffness matrix in general can be calculated as follows:  

 

where C is constitutive matrix,  classical and      improved shape functions 

matrix, respectively: 
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q and f matrixes can be expressed as follows: 

 

 

Where ௨݂ and ఈ݂ are classical applied force and improved displacement vectors. 

It is now simple task to define strain and stress vectors: 

 

 

5.3 XFEM Implementation in Code-Aster 

XFEM is included in the multi-purpose commercial FEM program as there are 

some of the huge advancements that XFEM has to offer. The lack of commercial 

programming evidence for practicing a method like XFEM is due to the fact that it 
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was created and exploited in the late last century. Code-Aster is a finite element 

analysis engine, due to its convenient data files, it will produce a batch of result files. 

The Code- Aster with Morfeo programs are highly capable programs among other 

programs [94]. The first components of X-FEM are available as of Code-Aster 

version 7, and with its development, version 8 was obtained that allows for 

mechanical calculation with two- or three-dimensional linear flexibility, with boundary 

conditions far from crack, represented by levels groups. It is possible to consider 

contact on crack lips. Version 9 featured many advanced features like (multiplicity of 

cracking, plasticity ...). In version 10 powerful automated publishing algorithms are 

suggested. As for version 11, the X-FEM method has been extended to a heat linear 

actuator in order to take into account the problem of crack heat the initial specific 

mechanical problem [95]. 

 Finite element X-FEM can be produced from 3D, C_PLAN, D_PLAN or AXIS 

models. Oppose, X-FEM elements (* _SI forms) are not available. The X-FEM 

method theoretically makes it possible to represent a strong break (cracks or 

interface) or a low cut (an interface between suspended binary materials). It all 

depends on the fertilization function being introduced into the displacement or 

temperature approximation. 

In Code-Aster only a strong discontinuity is possible (field of displacements, 

constraints, or of temperature discontinuous).  

5.3.1 Modeling Approach  

To model moving fracture in Abaqus, arrangement with phantom node 

technique, cohesive segment method and VCCT technique are used [98]. It is 

assumed that a crack extension of ∆ߙ from ߙ ൅ ߙ to (݅ node) ߙ∆ ൅  node (k) does ߙ∆2

not significantly alter the stresses and strains at the crack tip, Fig. 5.3. For a crack 

modeled with two-dimensional, 4-noded elements, the work ΔΕ can be calculated as 

 

where Χ௜ and Ζ௜ are opening and shear forces, respectively, at node i and Δݑ௜ and 

 ݓ ௜, are opening and shear displacements at node ݆. The expression of the workݓ∆

based on this two-steps Virtual Crack Closure Technique is given by: 
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Figure 5.3 Crack closure two-step method 

Another approach is the one step Virtual Crack Closure Technique, where the 

the work ܹ is defined as: 
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Finally, the Energy Release Rate is defined as: 

 

5.4. Crack Growth Criteria in stress corrosion cracking 

For a reliable test, different types of specimens are used to evaluate fracture 

toughness [98]. One of the most used criteria is the power law defined as follows: 

 

Another option is the B-K criterion [100]: 

 

5.4.1 Evaluation of the stress intensity factors  
 

Conversion of the contour collaboration energy integral is defined as: 

 

where  ݑ௜,ଵ
ఈ௨௫, ௜௞ߝ

ఈ௨௫, ௜௝ߪ
ఈ௞௫ are auxiliary displacement, strain, and stress fields 

respectively. The domain form of this integral is: 

 

5.4.2 Difficulties with the XFEM  
 

Although XFEM is a robust method, there are few associated difficulties: 

• Singular and discontinuous integrands 

• Blending the different partitions of unity  

• Poor convergence rate  

• Stress intensity factor computation 

• ILL-conditioning  

• Additional unknowns  
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CHAPTER 6 - RESULTS 

 

6.1. Finite elements formulation 

Geometry of tensile test specimen is shown in Figure 6.1. In order to trim the 

size of the file and processing time, the 'heads' of the specimen were shortened. It 

was supposed that it would not affect stress concentration at the crack tip. Structured 

grid was generated on the one half of specimen, Figure 6.2, with fine mesh in the 

mid-section of the specimen. Detailed mesh refinement can be seen on Figure 6.3. 

Extended Finite Elements Method (X-FEM) was used with provision of Fracture 

Mechanics module in Code-Aster. The crack itself was not drawn but it was defined 

as a simple function within the Code-Aster environment. A series of calculations 

were performed with crack size, as a lateral notch, a=3 -10mm. Applies stress was 

σ=1/3 of the yield stress (σy= 450 MPa). External Python procedure was written to 

enhance some automation. Stored K and crack size values were used to estimate 

dK/da  

                                                   (23)  

The result of XFEM calculation is shown in Figure 6.4 and zoomed crack region in 

Figure 6.5. It was a test, benchmark case, since the calculated values should be, 

and they were, close to the analytical solution of Equation 20.   

Another set of computations, based on elsto-plastic fracture mechanics, were 

performed on the compact tension (CT) specimen, Figure 6.6. The mesh and 

detailed mesh refinement are shown in Figures 6.7 and 6.8. Boundary condition was 

set as a displacement in y-direction, ∆y=1-5 mm. Plastic behaviour of the material 

was governed by Ramberg-Osgood equation, n=8 case in the Equation 14 and 

Figure 6.4. Simo-Miehe algorithm was used, which is supposed to be accurate up to 

5% of plastic deformation. Calculated K and dK/da values were used for crack tip 

Δa
ΔK=

da
dK
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strain rate evaluation. Von-Mises output of XFEM calculations are shown in Figures 

6.9 and 6.10. This particular case was for a crack size a=5mm, and y-axis 

displacement ∆y=5 mm.  

 

Fig. 6.1. Geometry of tensile test specimen. (Dimensions are in mm.) 
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Fig. 6.2. Structured mesh on the half of the tensile test specimen. 

 

Fig. 6.3. Refined mesh in the crack section of the tensile test specimen.  
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Fig. 6.4. Von-Mises stress distribution. 

 

 

 

Fig. 6.5. Enlarged section of the crack zone. 
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Fig. 6.6. Compact tension (CT) specimen. Dimensions in mm. 

 

 

Fig. 6.7. Mesh of the CT specime 
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Fig. 6.8. Locally refined mesh of the CT specimen in the crack zone. 

 

Fig. 6.9. Von-Misess stresses in CT specimen. 
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Fig. 6.10. Stress concentration on the tip of the crack. 

 

6.2. Experimental validation 

Numerical investigations were validated on experimentally published results for three 

different materials - stainless steel, mild steel and aluminum-copper alloy 2014.  The 

predicted crack growth rate for stainless steel is depicted in Figure 6.11. Material 

data typical for stainless steel were taken. The experimental results reported for 

sentisized 304 stainless steel in oxygenated water at t=2880C are shown for 

comparison [29]. As well, empirical equation, so called EPRI2007 equation, is 

included [30]. Crack growth rate calculation for mild steel, with the experimentally 

reported data, are shown in Figure 6.12, [31]. Here the current density was 

calculated assuming corrosion potential Ecorr=-0.725 V at t=750C. Finally, the crack 

propagation rate for a Al-Cu alloy is shown in Figure 6.13, [32]. These examples 

demonstrate that the model can provide reasonable prediction for SCC crack growth 

rate of various materials. Necessary prerequisites are determination the physical (M, 

ρ), electrochemical (polarization curve) and mechanical (σy and Ramberg-Osgood 

exponent) parameters of the particular material.  
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Fig. 6.11. Stainless steel calculated crack growth rate and experimental data from 

[29]. 

 

Fig. 6.12. Mild steel crack growth rate simulation and experimental data [31]. 
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Fig. 6.13. Aluminium-coper simulation, experimental data from [32]. 

6.3. Detailed calculation of fracture mechanics parameters  

In the follow text (Figs. 6.14-6.23) results for tensile specimen are shown for every 2 

mm of crack length growth. 
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Fig. 6.14. Data for a=2 mm 
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Fig. 6.15. Data for a=4 mm 
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Fig. 6.16. Data for a=6 mm 
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Fig. 6.17. Data for a=8 mm 
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Fig. 6.18. Data for a=10 mm 
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Fig. 6.19. Data for a=12 mm 
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Fig. 6.20. Data for a=14 mm 
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Fig. 6.21. Data a=16 mm 

 



 

 

73 
 

 

Fig. 6.22. Data for a=18 mm 
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Fig. 6.23. Data a=20 mm 
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Figures 6.24 – 6.26 show K, dK/da and max. stress vs. as diagrammes. 

 

 

 

Fig. 6.24. K vs. a 
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Fig. 6.25. dK/da vs a 
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Fig. 6.26. max.stress vs. a 

 

The same data as in Figs. 6.24-6.26 is presented in Table 6.1, just for convenience. 
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Table 6.1. Data for K, dK/da and max stress vs. crack length a 

a  (mm) K  (MPa√m) dK/da  (MPa√m) Max.stress (MPa) 

2  9.1  2278.3  221.5 

4  12.9  1611.1  284 

6  15.8  1315.4  358.2 

8  18.2  1139   467 

10  20.4  1018.9  540.6 

12  22.3  930.1   525.2 

14  24.1  861.1   538.6 

16  25.7  805.5   617 

18  27.3  759.4   641.7 

20  28.8  720.5   719.1 

   

Through the obtained results shown in Table (6.1), to assess crack growth 

using FEM. Several relationships between the variables can be obtained to know the 

stages of crack growth and its effect on the mechanical factors causing SCC. 

Many factors influence the growth of SCC, which makes the SCC assessment 

of substances a complex issue. It is also difficult to separate the influence of different 

factors and variables on SCC. 

The tensile sample is subjected to a constant applied load, thus determining 

the sample stress for the SCC under which it does not spread but rather grows a 

crack in the sample. The stress applied to the specimen is a factor affecting either 

the resistance or growth of SCC. Therefore, in some cases, the crack may have a 

beneficial effect on the SCC resistance of the material. 

It has been shown that SCC always begins from corrosion pits or localized 

erosion areas. Erosion drilling provides increased stresses that warn drilling and also 

there are electrochemical stimuli, favourable to SCC. A different mechanism of SCC 

has been observed for steels in different environments. 

Mechanism factors are important for discussing the behavior of crack growth 

and propagation, and such factors as crack mouth fatigue, stress intensity factor. 
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Different SCC behaviour must be taken into account by providing information on the 

metal. 

SCC propagation mechanisms are varied and range from electrochemical to 

mechanical. Several factors influence these mechanisms, and they can be 

mechanical, thermal, chemical, or environmental. 

Looking at Figure 6.24, one finds that it represents the correlation of K 

(MPa√m) and a (mm), under the conditions causing SCC, and a constant load. The 

K was measured along the sample length and the crack length ranged between 2-20 

mm. 

The K is shifted along with the crack interface in the plastic region of the 

sample, along the crack a. It was found that, under conditions of constant loading of 

the sample, the K equivalent before the crack front and with the crack length 

increases, leads to an increase in the crack length, so that as the crack length 

increases, the value of the K increases, starting from the value of (2mm) for the 

crack corresponding to the value of the stress intensity factor K (9.1 MPa√m), down 

to the crack length of (20 mm), up to the amount of (28.8 MPa√m) from the value of 

K. 

Figure (6.25) describes the relationship between the rate of change of the 

stress intensity factor concerning the rate of change of the amount of crack length 

(Mpa√m) dk/da, with crack length a (mm), for the same previous conditions, when a 

constant load is applied. One can see that dk/da has an inverse relationship with a. 

We find that the relationship decreases over the length of the sample, where the 

value of dK/da (2278.3 MPa√m) when the length of the crack a at its beginning was 

equal to (2 mm), then it decreased with increasing the length of the crack until it 

reached (20 mm), this length corresponds to dk / da with a value of (720.5 MPa√m). 

This decrease indicates that the SCC process occurs slowly in the accompanying 

environmental conditions, which is consistent with what was previously assumed and 

studied. 

Figure (6.26) shows the relationship between traction length a, with maximum 

stress σ Max. It has been observed that this relationship is direct, i.e., with increasing 

crack length, the maximum stress value σmax. 
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An increase in crack length, accompanied by increased maximum stress until 

the length of 10 mm, a quasi-stability of the maximum stress was observed at the 

values (540.6, 525.2, 538.6) MPa, which accompanies an increase in the crack 

length for the values of (10, 12, 14) mm, this stability, which is considered to be 

instantaneous, does not wish to have a direct effect on the process, but rather shows 

the extent of the process being affected by the surrounding conditions. Then σ max 

increased a, until it reached the last point with a value (719.1 MPa), corresponding to 

the crack length of 20 mm. By noting the stress applied to the sample, the length and 

depth of the crack affects the stress at the front of the crack and is considered more 

dramatic on the maximum stress. 

From the above, this part can be investigated by observing the parameters on 

the sample, the K and the maximum stress σmax, through the plastic strain at the 

crack front. 

The stress in the sample is distributed by applying tensile stress to it, where 

the front of the crack is affected when the crack length is 2 mm, and by the stress 

applied to the sample, the opening stress of the crack frontage increases, which is 

associated with the growth of the crack. 

This positive increase between the variables of K and maximum stress σmax 

with crack length a is an increase similar to what was obtained in many previous 

studies when investigating this phenomenon with several analytical and practical 

methods as well as by FEM method. Once the crack is initiated, the growth of the 

crack is determined by the K and it is found that in the range of maximum stress σmax 

corresponds to the region dominated by SCC. 

As one can see from Table 6.1 and Figures. 6.24, 6.25, 6.26, stress intensity 

factor increases with increasing slit length, decreases dK/da and σmax increases. 

This means that as the crack grows, in spite of K and σ Max, the stress increases, 

and the K rate decreases. This corresponds to what was obtained mathematically 

and analytically in Chapter Four, as is evident in Figure 4.13, which links these 

variables with increasing and decreasing relationships. 

 Thus, the process slows down, at least from this point of view, leading to the 

conclusion that stress corrosion cracking is a slow and stable process. 
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Chapter 7 - Conclusions 

 

Stress corrosion cracking is a kind of environmentally assisted failure of 

engineering materials. Gradual crack propagation and eventual final failure, are a 

result of simultaneous response of chemical reactions and mechanical forces at the 

crack tip [1]. The SCC is caused by three main factors: 1) material susceptibility to 

cracking, 2) environmental corrosive conditions, 3) applied tensile stress, possibly of 

the low level or even only residual stress. If the applied loading is cyclic, “corrosion 

fatigue” (CF) is considered as a particular case of SCC. In addition, depending on 

the rate of chemical reactions in the crack tip, “hydrogen induced cracking” (HIC) is 

also considered as a specific mechanism of the SCC [3]. 

The SCC mechanisms are classified into anodic and cathodic SCC, the first 

one governed by anodic metal dissolution at the crack tip, whereas the later one, 

dominantly occurring in welded joints, is governed by hydrogen diffusion, causing 

hydrogen embrittlement and/or HIC. However, during corrosion, both anodic and 

cathodic reactions occur simultaneously and the governing mechanism is 

determined by the rate of the particular reaction [4]. 

During the SCC crack growth, three regions can be observed: (1) low K 

values, when crack propagation rate increases rapidly, (2) intermediate stress-

intensity levels, when the crack growth rate approaches almost constant plateau 

and, finally, (3) when the K value approaches KIc, rapid crack growth and the onset 

of final failure [5]. 

This doctoral dissertation presents a brief introduction to slip dissolution 

model, (electro)chemical and mechanical aspects of the model, two finite element 

models for to different geometries (with applied stress and variable displacement as 

a boundary conditions) and, finally, verifications with experimentally published results 

for two different materials, stainless steel and mild steel SCC. The model was 

calculated in Python programming language, while the Code-Aster was used for 
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finite element analysis. Pre- and post-processing were performed in a Salome-Meca 

environment. All of them are open-source, free software, under the Linux OS, 

successfully used in other applications [19]. 

The Stress Corrosion Cracking model for crack growth rate was examined by 

using analytical and XFEM model, based on open-source software. These results 

are also compared with the experimental ones, providing the following conclusions: 

• Good predictions by XFEM were obtained for the crack growth rate for two 

different materials, better in the case of the mild steel.  

• Analytical model is also in relatively good agreement with experimental results, 

and with numerical ones, at least in certain range of K values. 

• The analysis crucially depends on (i) the crack tip strain rate (which is a function 

of mechanical properties and loading conditions) and, (ii) the anodic current 

density (which was revealed from electrochemical polarisation curves). 

• Loading conditions don’t affect significantly the stress state. 

As another aspect of this research, one can conclude that the stress intensity 

factor increases with crack length increase, dK/da decreases and max. stress 

increases. This means that as crack grows, although K and max. stress increase, the 

rate of K decreases, so the process decelerate, at least from that point of view, 

leading to the conclusion that stress corrosion cracking is a slow and stable process. 
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