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SUMMARY 

Background Progression of chronic kidney disease (CKD) remains an unsolved problem in 

clinical nephrology since approaches to reverse or repair chronic renal injury are not yet 

available. Independent of the underlying disease, loss of functional kidney parenchyma and 

tubulo-interstitial fibrogenesis are commonly observed when kidney injury progresses towards 

CKD. In this regard, epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells 

(TECs) and consecutive G2/M arrest have been shown to determine maladaptive kidney repair in 

response to injury, ultimately associated with renal fibrogenesis and progression into CKD. 

Transforming growth factor β1 (TGF-β1) is considered as a key mediator of intrarenal EMT 

program and renal fibrosis. Neural cell adhesion molecule (NCAM) and fibroblast growth factor 

receptor (FGFR) signaling during EMT program have already been described and it has been 

noticed that both molecules are fundamental for EMT program in vitro. However, their cross-talk 

has been widely studied mainly in neural tissues and cancer cells, but there is a lacking of 

evidence for the contribution of their interplay to fibrogenesis, although several studies 

confirmed that both molecules can be separately involved in such process. Moreover, FGFR has 

been widely studied in many fields of research, including fibrosis, whereas NCAM contribution 

to renal fibrogenesis has been only suggested by two research groups (including our team). Thus, 

it encouraged us to investigate aforementioned molecules in human kidneys and to evaluate their 

significance in fibrotic response within the renal interstitial compartment. For the first time, here 

we present a functional significance of NCAM and FGFR co-operation in the induction of renal 

fibrosis, mediated by TGFβ-1. 

Material and methods In order to achieve goals of the study, we examined human kidney 

biopsy samples and performed cell culture experiments to clarify functional significance of 

NCAM/FGFR1 signaling in model of renal fibrosis. Immunostaining (immunohistochemistry 

and immunofluorescence) was performed to detect NCAM expressing cells in human kidneys in 

order to further characterize these cells and to label them for laser capture microdissection 

(LCM) which allows pure NCAM+ cells collecting for the subsequent qRT-PCR and gene 

expression analysis. Moreover, clinical relevance of both NCAM expressing renal interstitial 

cells and TGFβ-1 downstream effectors detection in human kidney biopsies were also examined. 

By using an established model of EMT program in human proximal tubular epithelial cells (HK-
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2 cells) in response to TGF-β1 (10ng/mL) exposure, NCAM/FGFR1 signaling responses were 

analyzed by light microscopy, immunolabeling, qRT-PCR and scratch assays. Modulation of 

NCAM/FGFR pathway was performed using PD173074 (100nM) - a small FGFR inhibitor. 

Results Significantly increased number of interstitial NCAM
 
expressing cells has been detected 

in the adult kidneys with incipient interstitial renal fibrosis (incipient IRF, <25% of renal tissue 

affected with fibrosis), compared to advanced stages of renal fibrosis (p<0.001). Among 90 

biopsy samples of various glomerulonephritises and glomerulopathies, an increased NCAM 

positivity was found in 45.6% of cases and was found to be independent of the underlying 

disease. After applying qRT-PCR using mRNA obtained from laser captured NCAM+ positive 

cells, NCAM-140 isoform was significantly over-expressed in NCAM+ cells laser captured from 

incipient IRF (p=0.006), and in the same cells significant αSMA (p=0.014) and SLUG (p=0.004) 

mRNAs up-regulations were detected. These cells were highly heterogeneous, whereby sub-

populations shared some markers involved in fibrosis, such as HE4. However, interstitial NCAM 

expression did not have long term impact on disease outcome and could not be used as predictor 

for the impairment of kidney function. Moreover, NCAM interstitial positivity was frequently 

found in patients with lower proteinuria values. Since TGF-β is the main cytokine involved the 

fibrogenic response, here we underlined the influence of this signaling pathway (SMADs, 

SNAIL) on morphology of renal tubulointerstitial compartment suggesting its signaling cascade 

was closely related to tubular atrophy and interstitial fibrosis, resulting in higher creatinine and 

urea values, lower eGFR, CDK development and disease progression. Beside SMAD2 influence 

on morphology of renal tubulointerstitial compartment and patients’ outcome, SNAIL expression 

in podocytes was also associated with nephrotic range proteinuria. EMT program of TECs, 

induced by TGF-β, was morphologically noticed 48h after treatment and was clearly apparent 

after 72 hours, associated with loss of CDH1 (encoding E-Cadherin) and transcriptional 

induction of SNAI1 (encoding SNAIL), SNAI2 (encoding SLUG), TWIST1, MMP2, MMP9, 

CDH2 (encoding N-Cadherin), ITGA5 (encoding integrin-α5), ITGB1 (encoding integrin-β1), 

ACTA2 (encoding α-SMA) and S100A4 (encoding FSP1). During early EMT program, 

transcriptional induction of several NCAM isoforms (mostly NCAM-140 isofrom) along with 

FGFR1 was observed after 24 hours of TGF-β1 exposure, implicating a mechanistic link 

between NCAM/FGFR1 signaling and induction of EMT program. These observations were 
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further supported by inhibition of EMT program by PD173074 to specifically block FGFR1 

signaling responses. Beside significant suppression of mRNA and proteins of genes de-regulated 

during EMT, FGFR inhibitor succeeded to reduce cell migration previously enhanced by TGF-

β1. 

Conclusion NCAM expressing cells do not only increase during fibrogenesis but also switch 

the isoforms. Compared to NCAM expressing in normal human kidneys, these cells under 

fibrotic microenvironment highly express NCAM-140 isoform. NCAM expression in renal 

interstitial compartment is disease independent, representing a trait of early fibrogenesis in the 

human kidney. Furthermore, TGF-β signaling pathway activation, is found to be associated with 

chronic renal parenchymal damage (tubular atrophy and interstitial fibrosis), resulting in 

impaired renal excretory function and CDK development and progression. Modulation of 

NCAM/FGFR1 signaling by PD173074 blocks EMT program in cultured human proximal 

tubular epithelial cells, implicating novel insights into maladaptive repair and parenchymal 

damage during renal fibrosis. Unequivocally, FGFR inhibitor could be a promising anti-fibrotic 

strategy for kidney diseases and has to be further explored in details. Collectively, the most 

important finding in our study reflects a robust induction of NCAM expression in incipient renal 

fibrosis and an important role of NCAM/FGFR interplay in the initiation step of fibrogenic 

response that could be effectively suppressed by inhibition of their cross-talk applying FGFR 

inhibitor (PD173074). 

Key words NCAM, FGFR, PD173074, fibrosis 
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SAŽETAK 

Uvod Progresija hronične bubrežne insuficijencije predstavlja gotovo nerešiv problem kliničke 

nefrologije, imajući u vidu da su terapijski postupci koji bi doveli do zaustavljanja ili 

reverzibilnosti hroničnih oštećenja parenhima bubrega još uvek nedostupni. Sva hronična 

oboljenja bubrega dovode do progresivnog gubitka funkcionalnog parenhima i 

tubulointersticijske fibroze, indukujući pojavu hronične bubrežne insuficijencije. U tom pogledu, 

smatra se da je supstrat nemogućnosti regeneracije oštećenog parenhima bubrega zapravo 

fenomen epitelno-mezenhimne transformacije (EMT) sa sledstvenim G2/M zastojem u fazi 

ćelijskog ciklusa koji dovodi do nastanka fibroze i progresije hronične bubrežne insuficijencije. 

Smatra se da je glavni medijator EMT programa i fibroze u bubregu transformišući faktor rasta 

β1 (TGF-β1). Opisano je da se tokom EMT programa indukuje ekspresija neuralnog ćelijskog 

adhezionog molekula (NCAM) i receptora za fibroblastni faktor rasta (FGFR), koji imaju važnu 

ulogu u in vitro EMT. Međutim, značaj međusobnih interakcija NCAM i FGFR molekula do 

sada je prevashodno ispitivan u neuralnom tkivu i različitim malignim oboljenjima, dok nema 

podataka o značaju ovih interakcija tokom procesa fibroze, iako je nekoliko studija potvrdilo da 

individualno NCAM i FGFR molekul mogu biti uključeni u ovaj proces. Štaviše, FGFR je 

izučavan u mnogim patološkim procesima, uključujući i fibrozu, dok je povezanost NCAM 

molekula sa procesom fibroze u bubregu sugerisana od strane samo dva istraživačka tima 

(uključujući i naš). Stoga smo poželeli da ispitamo prethodno pomenute molekule u bubrezima 

čoveka i da procenimo njihov značaj u procesu fibrogeneze. Po prvi put, u ovoj studiji 

prikazujemo funkcionalni značaj NCAM/FGFR interakcija u indukciji fibroze bubrega, 

posredovanoj TGF-β1. 

Materijal i metode U svrhu ispitivanja zadatih ciljeva studije, korišćeni su uzorci humanih 

biopsija bubrega kao i eksperimenti na ćelijskim kulturama kako bi se razjasnio funkcionalni 

značaj NCAM/FGFR1 signalnog puta u modelu fibroze bubrega. Primenjene su 

imunohistohemisjke i imunofluorescentne tehnike detektovanja NCAM eksprimirajućih ćelija sa 

ciljem njihove bolje krakterizacije i vizuelizacije, kao i radi sprovođenja laserske mikrodiskcije 

(LCM) koja omogućava sakupljenje izolovanih NCAM+ ćelija za dalja ispitivanja genske 

ekspresije metodom real-time RT-PCR (qRT-PCR). Takođe, ispitan je klinički značaj prisustva 

NCAM+ ćelija u intersticijumu bubrega kao i značaj detekcije nishodnih efektora TGF-β1 
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signalnog puta u biopsijskim uzorcima. Korišćenjem modela EMT programa indukovanog uz 

pomoć TGF-β1 (10ng/mL) na humanoj ćelijskoj liniji proksimalnih tubulskih epitelnih ćelija 

bubrega (HK-2 ćelijka linija), analiziran je značaj NCAM/FGFR1 signalnog puta uz pomoć 

metoda svetlosne mikroskopije, imunobojenja, qRT-PCR i migracionog eseja (scratch assays). 

Modulacija NCAM/FGFR1 interakcija sprovedena je korišćenjem PD173074 (100nM) - FGFR 

inhibitora. 

Rezultati Značajan porast broja NCAM eksprimirajućih ćelija u intersticijumu bubrega 

detektovan je u početnoj fazi interstcijske fibroze (<25% tkiva zahvaćeno fibrozom), poređenjem 

sa uznapredovalijim stadijuma fibroze (p<0.001). Analizom 90 biopsijskih uzoraka različitih 

glomerulonefritisa i glomerulopatija, povećan broj NCAM ćelija uočen je kod 45.6% ispitanika i 

nalaz je bio nezavistan od patohistološke dijagnoze. Primenom qRT-PCR metode, korišćenjem 

mRNA dobijene iz NCAM+ ćelija prikupljenih laserskom mikrodisekcijom, uočeno je da 

NCAM+ ćelije u početnoj fazi fibroze imaju povećanu ekspresiju NCAM-140 izoforme 

(p=0.006), kao i da pojačano eksprimiraju αSMA (p=0.014) i SLUG (p=0.004) gene. NCAM+ 

ćelije pokazivale se međusobno značajnu heterogenost, pri čemu su pojedine populacije ovih 

ćelija eksprimirale neke od molekula značajnuh u procesu fibrogeneze, kao što je HE4. Međutim, 

prisustvo intersticijske ekspresije NCAM molekula nije imalo dugotrajan uticaj na tok i ishod 

bolesti bubrega, tako da ovaj parametar ne može biti korišćen kao prediktor pogoršanja 

ekskretorne funkcije bubrega. Štaviše, NCAM intersticijska imunoreaktivnost češće je 

detektovana kod pacijanata sa nižim vrednostima proteinurije. S obzirom na to da je TGF-β 

glavni citokin uključen u proces fibrogeneze, imunomorfološkom detekcijom efektora ovog 

signalnog puta (SMAD proteini, SNAIL) uočili smo da je njihovo prisustvo značajno povezno sa 

morfološkim karakteristikama hroničnog oštećenja bubrežnog parenhima (tubulska atrofija i 

intersticijska fibroza), kao i da klinički korelira sa značajno višim vrednostima serumskog 

kreatinina i uree, ali i sa sniženim vrednostima jačine glomerulske fitracije (eGFR), te sa 

razvojem hronične bubrežne insuficijencije i njene progresije u više CKD stadijume. SNAIL je, 

kao i SMAD2, bio povezan hroničnim lezijama u tubulointerstcijumu i ishodom bolesti bubrega, 

ali je pored ovih obrazaca ispoljavanja uočena i značana detekcija ovog molekula u podocitima 

pacijenata sa nefrotskim vrednostima proteinurije. TGF-β1 indukovan EMT program u ćelijskoj 

liniji, morfološki je bio primetan 48h nakon stimulacije TGF-β1, ali su se jasni morfološki znaci 



vi 
 

EMT mogli uočiti tek 72h od započinjanja eksperimenta i bili su udruženi sa gubitkom ekspresije 

CDH1 (enkodira E-Cadherin) i sa transkripcionom indukcijom SNAI1 (enkodira SNAIL), 

SNAI2 (enkodira SLUG), TWIST1, MMP2, MMP9, CDH2 (enkodira N-Cadherin), ITGA5 

(enkodira integrin-α5), ITGB1 (enkodira integrin-β1), ACTA2 (enkodira α-SMA) and S100A4 

(enkodira FSP1). U toku rane, inicijalne faze EMT, već 24h nakon stimulacije TGF-β1 

detektovana je jasna indukcija ekspresije sve tri NCAM izoforme (najviše NCAM-140 izoforme) 

kao i FGFR1, sugerišući mehanističku povezanost između NCAM/FGFR1 signalnog puta i 

indukcije EMT programa. Ove opservacije su dalje potkrepljene činjenicom da je EMT uspešno 

suprimiran kada se blokirao FGFR signalni put uz pomoć PD173074. Pored značajne inhibicije 

ekspresije mRNA i proteina značajnih u procesu EMT, FGFR inhibitor je takođe uspešno 

usporio migraciju ćelija koja je prethodno bila stimulisana TGF-β1 uticajem. 

Zaključak U toku procesa fibrogeneze u bubregu, NCAM eksprimirajuće ćelije pored toga što 

postaju brojnije u ranoj fazi ovog procesa, one takođe menjaju značajno i izoformu molekula. U 

poređenju sa NCAM+ ćelijama u normalnom intesticijumu, ćelije u fibrozi značajno više 

eksprimiraju NCAM-140 izoformu. Ekspresija NCAM molekula nezavisna je od bolesti koja u 

osnovi zahvata bubreg, već prestavlja karaktersitiku ranih faza fibroze bubrega kod čoveka. 

Takođe, aktivacija TGF-β signalnog puta udružena je sa hroničnim oštećenjima parenhima 

bubrega (atrofija tubula i fibroza intersticijuma), dovodeći do poremećaja ekskretorne funkcije 

bubrega i razvoja i progresije hronične bubrežne insuficijencije. Modulacija NCAM/FGFR1 

signalnog puta korišćenjem PD173074 blokira EMT u kulturi epitelnih ćelija proksimalnih 

tubula bubrega, ukazujući na nove mehanizme uključene u proces oštećenja parenhima bubrega i 

reparacije. Nedvosmisleno, FGFR inhibitor bi mogao biti obećavajući anti-fibrotski agens u 

bubregu i trebalo bi ga dalje detaljnije ispitivati. Sveobuhvatno, najvažniji nalaz u našoj studiji 

ukazuje na izraženu indukciju NCAM ekspresije u početnim fazama intersticijske fibroze i 

značaj NCAM/FGFR interakcija u incijaciji procesa fibroze koja bi mogla biti uspešno 

suprimirana inhibicjom ovog signalnog puta primenom FGFR inhibitora (PD173074). 

Ključne reči NCAM, FGFR, PD173074, fibroza 
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1. INTRODUCTION 

 

Proper kidney function is important for the regulation of many physiological processes and 

consequently plays an important role in homeostasis. Excretory and homeostatic kidney 

functions include elimination of metabolic products through the urine, regulation of the fluid 

volume, as well as acid-base balance and electrolyte concentration. Additionally, kidney is also 

recognized as endocrine organ which produce and secrete hormones such as erythropoietin 

(EPO), renin, calcitriol and klotho. Through these endocrine functions kidney regulates 

erythropoiesis, blood pressure and mineralization of the bones. All these kidney functions require 

preserved kidney morphology and integrity of molecular pathways. Thus, any impairment on 

these levels could also induce disturbance in essential functions of kidney, either transient or 

permanent, with ability or disability to recover it (1, 2). 

The majority of kidney diseases have chronic course. Either primarily glomerular or 

tubulointerstital diseases, during the chronic course, result in the excessive accumulation of 

fibrous tissue, especially within the tubulointerstital compartment. Thus, renal interstitial fibrosis 

could be the common feature of all kidney diseases, leading to chronic renal failure (3). 

Fibrosis is considered as an injury-induced tissue response composed of inflammation, cytokines 

release, fibroblast activation/proliferation and deposition of matrix scaffold. It resemble normal 

tissue repair in many aspects and differ from it only in terminal phase. While normal tissue repair 

terminates with resolution of inflammation, matrix scaffold degradation and myofibroblasts 

apopotosis, fibrosis represent dysregulated repair seems as permanently active biosynthetic 

process with excessive deposition of extracellular matrix (ECM) components, accompanied by 

accumulation of fibroblasts and inflammatory cells, rarefactions of peritubular microvasculature 

and tubular damages (tubular atrophy and loss of tubular epithelial cells) (4-7). Only severe 

fibrosis resulting in scaring formation could be macroscopically visible. Like many organs, 

kidneys with severe and widespread fibrosis are stiff due to excessive ECM deposition, pale due 

to rarefaction of peritubular microvasculature, and have bumpy surface due to fibroblast 

contraction. Usually, slight and less severe fibrosis is visible under the microscope and is 

characterized by widening of interstitial space filled with ECM components (qualitatively 
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different from normal), fibroblasts (very rare in normal kidney tissue) and other cells (such as 

inflammatory cells) (8). 

Persistent effort to modulate this natural course of kidney diseases has led the scientists to better 

understanding of molecular mechanisms driving renal fibrosis. Preclinical studies found many 

effective strategies to mellow-down interstitial fibrosis in the animal kidneys, however, only a 

few of them are applicable in humans (9-13). Further investigations in the field of molecular 

background of renal interstitial fibrosis and signaling pathways driving initiation, maintenance 

and progression of such process could contribute to better understanding of the complex network 

involved in renal fibrosis and permit development of new potential strategies to treat renal 

fibrosis in humans. Moreover, a special focus should be on the activation of genes highly 

expressed during embryonic kidney development and its potential reactivation during wound 

healing events in the kidney.       
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1.1.Pathophysiology and morphology of renal fibrosis 

Extracellular matrix 

In addition to quantitative changes in the matrix, fibrosis could be also followed by the 

qualitative modifications of ECM (9). The main feature is the accumulation of collagens fibers, 

types I and III, and several fibronectin splice variants that modulate fibrogenesis. Moreover, 

fragments of collagen IV could be also detected within the fibrotic interstitium, although this 

collagen type normally constitutes basement membranes of the tubular epithelium and vascular 

endothelium. Fibrillar collagen assemble depends on numerous interaction partners in vivo, such 

as fibronectin, collagen type V, integrins (fibronectin and collagen binding), fibrillins (i.e. latent 

TGF-β binding proteins - LTBP), and secreted protein acidic and rich in cysteine (SPARC). 

Fibronectin co-localizes with pro-collagen secretion on fibroblasts. Collagen type V assists in the 

assembly of collagen type I. α5β1 integrin cooperates in cell adhesion, proliferation and 

differentiation and plays a role in extracellular matrix assembly (5, 14, 15). LTBP facilitate the 

secretion of pro-TGF-β and support its release and activation. SPARC serves as protective, 

antiproliferative actor, since it stimulates matrix metalloproteinases (MMPs) and plasminogen 

activator inhibitor-1 (PAI-1). All these mechanisms modulate collagen matrix both in normal and 

altered tissues (6). 

At the beginning, fibrosis is a focal feature with tendency to be widespread in the persistence of 

profibrotic microenvironment. Expansion of ECM in renal fibrosis, which induces the widening 

of interstitial space, appears due to excessive production by matrix-producing cells and/or 

decreased degradation due to suppressed activities of tissue proteases (5, 9, 16, 17).  

Matrix-producing cells 

The major role in renal fibrosis belongs to activated fibroblasts, also known as myofibroblasts (4, 

18). However, the origin of abundantly observed myofibroblasts within fibrotic areas is still 

debatable, especially considering that, in contrast to other human organs, normal renal tissue 

contains scarce fibroblasts (1). Thus, it is difficult to assign a collagen secretion to any particular 

cell type found within the fibrotic area. Instead, applying different strategies it is possible only to 

insinuate a collagen secretory function. Usually, in situ hybridization of mRNA encoding 

collagen chains, collagen poromoter activity and collagen containing cells are used as surrogate 
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markers of secretory activity. Otherwise, endoplasmic expression of HSP47, collagen type I 

chaperone could be even more related to secretion (19).  Some of the supposed ECM-producing 

cells are shown on the Figure 1.    

 

Figure 1. Origin of matrix-producing cells. 

Fibroblasts 

Unlike other organs, normal human kidneys are devoid of numerous fibroblasts. An increased 

number of fibroblasts appear during renal fibrosis, as a common event of all chronic kidney 

diseases. However, these fibroblasts display huge phenotypic heterogeneity, probably relay on 

the different origin. It has been suspected that the pool of fibrogenic fibroblasts could derive 

from resident fibroblasts, tubular epithelial and vascular endothelial cells (during epithelial to 

mesenchymal transformation (EMT) and endothelial to mesenchymal transformation (EndMT) 

processes initiated by tissue injury), bone marrow-derived fibrocytes, and from pericytes.  

Unfortunately, the conclusions of the previous studies manly derived from the cell culture 

experiments and from the manipulations on animal models. Thus, it is not easy to realize what 

really happens in the humans. Otherwise, it is not yet clear whether the aforementioned pool of 

fibrogenic cells should be considered as true fibroblasts or only as a separate phenotype of 
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collagen-producing cells. Moreover, it is less likely that all tissue fibroblasts are potentially 

fibrogenic (16, 20, 21). 

Overall, it clear that fibroblast population is highly heterogeneous. According to the molecules 

expressed by these cells, their functions can be discovered. Thus, it has been accepted that 

fibroblasts must be activated to produce ECM components and during such activation they 

acquire new phenotype and convert to myofibroblasts (21). During that process, the main 

characteristic is acquisition of α-smooth muscle actin (α-SMA) that is normally expressed by 

smooth muscle cells, such as vascular. Additionally, activated fibroblasts acquire various 

phonotypical characteristics making them different from normal kidney fibroblast. Some of the 

fibroblasts traits are expression of CD90, CD73, PDGF receptors and S100A4 (FSP-1) (22). 

The main differences among resident fibroblast in normal renal tissue and those in renal fibrosis 

are related to their proliferative capacity and ECM synthesis capacity (23). One of the molecules 

involved in fibroblast activation and proliferation is fibroblast growth factor receptor 1 (FGFR1) 

that can be activated by FGF and many different ligands including neural cell adhesion molecule 

(NCAM) (24, 25). Activation of FGFR1 by NCAM interaction additionally promotes FGFR1 

recycling, resulting in sustained FGFR1 signaling that is important for fibroblast migration (26, 

27). It has been also shown that α5β1 integrin expressed by fibroblasts promotes acquisition of a 

myofibroblastic phenotype (with a typical α-SMA expression pattern), which constitute the 

dominant interstitial cells in a pro-fibrotic microenvironment (4, 5, 16). Another up-regulated 

gene in myofibroblasts is human epididymis protein-4 (HE4), also found in non-α-SMA 

expressing cells (28).
 
HE4 is

 
a protein which suppresses the activity of multiple proteases, 

including serine proteinase and matrix metalloproteinases, and inhibits their capacity to degrade 

type I collagen (29). 

Bone-marrow derived fibrocytes 

Possible mechanism consider the influx of bone-marrow derived fibrocytes (collagen 

I/CD34/CD45 expressing cells) into the area of local injury, able to differentiate into the matrix 

producing myofibroblasts in response to local TGF-β stimuli (30, 31). However, it has been 

shown that influx of these fibrocytes in the fibrotic kidney is scarce and these fibrocytes did not 

significantly contrutibuted to interstitial fibrosis (32). 
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Tubular epithelium 

Tubular epithelial cells are also considered as contributors of renal interstitial fibrosis, through 

synthesis of ECM components. This phenomenon is well studied in the in vitro cell culture 

experiments, through the induction of EMT. The well known EMT inducers are hypoxia, TGF-β 

and EGF which stimulate broad spectrum of epithelial cells changes until they complete 

transition and become fibroblasts (33). Through such transformation, many intermediate cell 

phenotypes appear means they start to lose their epithelial and acquire mesenchymal traits (34). 

Low rate turn-over of tubular epithelial cells is a limiting factor in tubular regeneration after 

injury (35). Tubular injury can be acute, with ability to recover damages if the cause of damage 

is removable. Unfortunately, if the cause of injury persists, tubular epithelial cells are chronically 

exposed to bad stimuli and should undergo adaptive response. Step by step, these reactions lead 

to terminal dysfunction of tubular epithelial cells, morphologically characterized by tubular 

atrophy (36).  

Tubular atrophy could appear in the case of primarily tubulointerstitial injuries, as well as a 

secondary phenomenon of various forms of glomerular diseases with subsequent affection of 

tubulointerstitial compartment. Once become atrophic, regeneration would not be possible. Since 

the main consequence of chronically affected tubulointerstitial compartment would be 

deterioration in kidney function, leading to terminal insufficiency, there are an increasing efforts 

to prevent this chronic injury (37). 

Pericytes end endothelial cells 

Several studies identified pericytes and vascular endothelial cells as the major sources of 

interstitial myofibroblasts (32, 38-41). Thus, the scientific focus switched from tubular to 

vascular injury in many research groups. 

Mesenchymal stem cells 

Considering and ability of mesenchymal stem cells to differentiate in several cell lineage, 

including fibroblasts, they are also recognized as one of the putative origin of matrix producing 

cells in fibrogenic microenvironment (42).  
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Tissue proteases 

Endogenous potential to remove excessively produced ECM depends on protease activity, 

preferably MMPs and members of plasmin dependant pathway. These families of proteases are 

able to fragment components of ECM further suitable for removal. Unfortunately, under certain 

circumstances they are also able to release profibrotic growth factors triggering undesirable 

events. MMP family includes 25 members of zinc-dependant endopeptidases. They are divided 

in several categories: collagenases (MMP1, MMP8, MMP13), gelatinases (MMP2, MMP9), 

stromelysins (MMP3, MMP10, MMP11), membrane-type MMPs (MMP14, MMP15, MMP16, 

MMP17, MMP24, MMP25), matrilysin (MMP7, MMP26), enamelysin (MMP20), 

metalloelastase (MMP12), other types (MMP19, MMP21, MMP23A, MMP23B, MMP27, 

MMP28). Tissue inhibitors of metalloproteinases (TIMPs) control their activities and they are 

named TIMP1-4. Among MMPs, gelatinases (MMP2 and MMP9) are the most frequently 

studied in the kidney. It has been found that both MMP2 and MMP9 are able to degrade collagen 

type IV, as a main component of basement membrane (both tubular end endothelilal), and has 

been suspected that they could be able to affect also collagens type I and III, however without 

evidence of antifibrotic potential in interstitial compartment. Moreover, the effect of these MMPs 

could be “stage specific”, since their inhibition in advanced disease stage could accelerate 

fibrosis, while inhibition before the onset of fibrosis could be protective. MMP2 overexpression 

in tubular epithelium could be sufficient to induce fibrosis itself. Overall, it seems that MMP2 

and MMP9 profibrotic potential outweigh their antifibrotic activities in the kidney. TGF-β 

mediated activation of MMP2 and MMP14 (a membrane-bound activator of secreted MMP2 and 

MMP9 in fibroblasts) is associated with basement membrane destruction, as one of the initial 

events during EMT. MMP14 expression is induced by SNAIL transcription factor that is one of 

the key down-stream mediators of TGF-β signaling pathway and EMT process. Plasmin-

dependant pathway is also involved in the extracellular matrix remodeling. Whole network is 

really complex and the effects tissue proteases depend on the biochemical microenvironment. 

Shortly, tissue-type plasminogen activator (tPA) produces active plasmin by the proteolytic 

plasminogen cleavage. Active plasmin is able to destroy some ECM components such as laminin 

and fibronectin, as well as to change cell behavior through activation of MMPs. Thus, interplay 

between MMPs and plasmin dependant pathway could serve as a profibrotic mechanism 

inducing renal interstitial fibrosis and tubular cells loss (43, 44).         
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Inflammatory cells 

Infiltration with inflammatory cells is usually seen in the area of renal interstitial fibrosis, at least 

in some extent. This cell population is composed of lymphocytes, macrophages, dendritic and 

mast cells. Some subsets of these cells could be profibrotic, while the others could even serve as 

antifibrotic strategies. Lymphocytes are highly heterogeneous and represent the first cell 

population that infiltrate the interstitium and come even before macrophages. Among them, 

CD3+ T lymphocytes are well established contributors to renal fibrosis, while on the other hand 

the involvement of B lymphocytes is not clear. Interstitial macrophages have very important 

regulatory role in interstitial fibrosis. Depending on the way of their activation, classically or 

alternatively, two main macrophages populations are defined: M1 and M2. M1 macrophages 

accelerate renal interstitial fibrosis, while M2 macrophages are anti-inflammatory and provide 

tissue repair. Dendritic cells are antigen presenting cells in tubulointerstitial injury. However, 

they are not widely studied in the context of renal fibrosis. Although mast cells are considered as 

contributors to fibrosis in many organs, in the kidney they paradoxally suppresses fibrosis. 

Currently, some purposed therapeutic strategies to modulate fibrogenesis are based on the 

modulation of inflammatory cell response. Thus, blocking of TGF-β, TNF-α and IL-1 signaling 

are already investigated and effects are promising (8, 45). 

Microvasculature 

At the beginning, transient ischemia, trough activation of pro-apoptotic stimuli, causes the 

damage of peritubular microvasculature that becomes completely remodeled during progression 

of renal interstitial fibrosis. Peritubular microvasculature in advanced stages is scarce, either due 

to imbalance between pro- and antiangiogenic stimuli or due to loss of endothelial cells 

underwent EndMT. Rarefaction of microvasculature in kidney emphasize hypoxic conditions, 

serving as a great medium for further matrix synthesis by fibroblasts (known as a cells “enjoy” in 

hypoxic conditions) and leading to progression of tubulointerstitial fibrosis (46, 47).       
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1.2.Mechanisms and molecular background of renal interstitial fibrosis 

Fibrosis in parenchymal organs can be presented by three-step model.  

1) Primary injury of epithelial cells stimulate them to release cytokines which afterwards 

attract inflammatory cells to the site of the primary damages 

2) Infiltrating inflammatory cells also produce cytokines which in turns affect epithelial 

parenchymal cells and also activate fibroblasts to produce ECM components and 

stimulate their proliferation 

3) Fibrogenesis includes maintenance and progression of fibrotic tissue response and 

depends on the presence of self-stimulating mechanisms persisting even after primary 

cause of injury and inflammation disappears    

Myofibroblasts are the main highly specialized cells responsible for ECM production, both in 

normal tissue repair and during fibrogenesis, and represented activated fibroblasts with typical 

expression of α-SMA. The major initial fibroblasts activator is TGF-β, released locally from the 

injured epithelial cells and inflammatory cells (20, 48). Once activated, myofibroblasts produce 

TGF-β themselves providing self-sustaining mechanisms characteristic of fibrosis (49, 50). 

Nevertheless, TGF-β is a powerful stimulus for ECM synthesis especially collagen type I and 

fibronectin, as well as a potent inducers of EMT in vitro. Collagen and fibronectin together act as 

EMT facilitators stimulating cell migration (51). Widened interstitial space due to expansion of 

ECM leads to limited oxygen supply to parenchymal cells additionally causing epithelial injury 

and providing deeper and deeper tissue hypoxia which in turns further stimulates fibrogenesis. 

Epithelial to mesenchymal transition (EMT) and fibrosis  

EMT is a mechanisms involved in many events during embryogenesis such as formation of 

mesoderm and neural crest, aimed to create cells with ability to move and produce matrix (50). 

Tubular EMT is a highly regulated process consisting of four steps: (1) loss of epithelial cell 

adhesion, (2) de novo expression of mesenchymal markers such as α-SMA and reorganization of 

actin cytoskeleton, (3) disruption of TBM, and (4) enhancement of cell migration and invasion. 

Thus, the main features during EMT are epithelial cell detachment from the neighboring cells 
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and basement membrane, as well as movement into interstitium where they may start to produce 

matrix (33). 

Following the transformation, epithelial cells pass through many transient phenotypes 

progressively losing their epithelial and acquiring mesenchymal characteristics. Thus, E-cadherin 

down-regulation is one of the earliest molecular hallmarks of EMT, which afterwards leads to 

loss of cell-cell adhesion and detachment from the neighboring epithelial cells. At this step, 

activity of proteases (such as MMP-2, MMP-9 and MMP-14) is up-regulated aimed to digest 

basement membranes and allow cell migration into interstitial space. Transcription factors 

underlying EMT events (such as β-catenin, SMADs and SNAIL family) are also up-regulated 

and/or translocated into nuclei. Rho GTPase (Ras homologues guanosine triphosphatase) – 

mediated cytosceletal reorganization favor changes in cell shape and promote cell motility. 

Additionally, rearrangement in cytosceleton could be supported by activation of integrin-linked 

kinase (ILK) and β-catenin pathway. Upon EMT, cells start to express mesenchymal markers 

such as vimentin and S100A4 (FSP-1), and also markers of myofibroblasts such as α-SMA (52).  

Normal epithelial cells make a contact with basement membrane which separate them from 

interstitial compartment and prevent contact with ECM components. When basement membrane 

is degraded, the contact of epithelial cells with interstitial microenvironment (such as collagens, 

fibronectin and perhaps TGF-β) allows them to further destabilize epithelial phenotype and 

enhance EMT. Three main molecular pathways are crucial in the induction of EMT process, 

including Wnt/β-catenin, extracellular matrix/ILK and TGF-β/SMAD signaling (Figure 2). The 

central common downstream target of the aforementioned pathways is SNAIL family of 

transcription factors. Transcription activity of SNAIL results in down-regulation of epithelial and 

up-regulation of mesenchymal molecules (10, 52-54). 

In normal epithelial cells, glycogen synthase kinase-3β (GSK-3β) is constitutively active and 

phosphorylates SNAIL thereby targeting it for cytoplasmic degradation and preventing its 

nuclear translocation, thus acting as negative regulator of SNAIL activity. Both ILK and Akt 

kinase are able to phosphorylate GSK-3β and inhibit its activity which afterwards leads to 

increase SNAIL activity that enhances EMT. TGF-β/SMADs directly stimulate SNAIL 

transcription and also transcription of ILKs that in turns cooperate in additional promotion of 

SNAIL activity (55). TGF-β stimulates pathways involving Rho GTPase that is responsible for 
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reorganization of cytoskeleton in order to favor cell shape changes and improve cell motility 

(56).  

 

Figure 2. Signaling pathways involved in EMT and fibrosis in kidney.  

Transforming growth factor-β (TGF-β) / SMAD pathway 

TGF-β, secreted by inflammatory and injured epithelial cells, binds to its receptors type I and 

type II. Signaling pathway is initiated by TGF-β binding to type II receptor which recruits and 

phosphorylates type I receptor. After that, type I receptor further phosphorylates cytoplasmic 

SMAD2 and SMAD3 proteins which then make a complex with SMAD4 protein. SMAD 

complex then translocate into nucleus and bind to specific DNA sequence motifs, acting as 

transcription activator of many genes including SNAIL. At this point, SMADs complex also 

induce transcription of ILK which suppresses E-cadherin and up-regulates MMP-2 and 

fibronectin. SMADs are involved in the activation of Rho/Rho kinase (ROK) pathway and in the 

transcription of α-SMA (10, 54, 57). TGF-β ligands and receptors are summarized in Table 1. 
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Table 1.  TGF-β ligands and receptors. 

TGF-β 

superfamily 

ligand 

Type II 

receptor 

Type I receptor R-SMADs Co-

SMAD 

Ligand 

inhibitors 

Activin A ACVR2A ACVR1B (ALK4) SMAD2/3 SMAD4 Follistatin 

GDF1 ACVR2A ACVR1B (ALK4) SMAD2/3 SMAD4  

GDF11 ACVR2B ACVR1B (ALK4), TGFβRI (ALK5) SMAD2/3 SMAD4  

BMPs BMPR2 BMPR1A (ALK3), BMPR1B (ALK6) SMAD1/5/8 SMAD4 Noggin, 

Chordin, DAN 

Nodal ACVR2B ACVR1B (ALK4), ACVR1C (ALK7) SMAD2/3 SMAD4 Lefty 

TGF- βs TGFβRII TGFβRI (ALK5) SMAD2/3 SMAD4 LTBP1, THBS1, 

Decorin 

There are three distinct SMADs classes based on their roles in TGF-β family signaling 

transduction: R-SMADs (receptor-regulated SMADs), Co-SMAD (common SMAD) and I-

SMADs (inhibitory SMADs). They are summarized in the Table 2. 

Table 2. SMAD proteins divided in three classes.  

 

R-SMADs become phophorylated after TGF-β binding to its type I and type II receptors. 

Phosphorylated R-SMADS then bind to Co-SMAD making a complex that translocate into 

nucleus and regulate gene transcription. I-SMADs attenuate TGF-β signaling by blocking the 

interaction with TGF-β receptors and/or compete with Co-SMAD for the generation of R-

SMAD/Co-SMAD complex. TGF-β/SMAD signaling can be modulated by Wnt/GSK-β, Rho 

GTPase, p53, MAPK (mitogen-activated protein kinase) and PI3K-Akt/PKB (54, 58). 

R-SMADs 

SMAD 1 

SMAD 2 

SMAD 3 

SMAD 5 

SMAD 8 

Co-SMAD 

SMAD 4 

I-SMADs 

SMAD 6 

SMAD 7 



13 
 

In TGF-β-mediated renal fibrosis the major down-stream R-SMADs are SMAD2 and SMAD3, 

while SMAD7 controls inflammation (57). Regulation of the cellular SMADs concentration is 

mainly regulated by ubiquitin-mediated degradation through Smufr1 and Smurf2. 

Polyubiquitinatination of SMAD2 is reported to be mediated by SMURF2, NEDD4L, or WWP1, 

while SMAD3 is polyubiquitinated by CHIP. Phosphorylated SMAD2/3 can be 

polyubiquitinated by ARKADIA after the target gene transcription is initiated (59).  

Extracellular matrix / ILK pathway 

Integrin-linked kinase (ILK) is cytoplasmic serin-threonine kinase that interacts with cytoplasmic 

domain of β-integrin. Thus, ILK is transducer of integrin-mediated signals from extracellular 

matrix. Moreover, ILK can be activated by growth factors-mediated and cytokine-mediated 

ligands. As mentioned above, TGF-β/SMAD can also induce ILK transcription and participate in 

this signaling pathway. Activated ILK phosphorylate GSK-3β and inhibit its activity, whereby 

influence up-regulation of SNAIL and enhance β-catenin pathway (52).   

Wnt / β-catenin pathway 

Wnt cell surface receptors can be stimulated with extracellular Wnt glycoproteins leading to 

activation of this pathway which results in inhibition of GSK-3β and cytoplasmic accumulation 

of β-catenin. Finally, β-catenin translocates into nuclei acting as transcription activator of 

SNAIL, MMPs, vimentin and fibronectin. Without Wnt-mediated signals, β-catenin makes 

junction complex with E-cadherin. Free non-bound cytoplasmic β-catenin rapidly become 

phosphorylated by GSK-3β and marked for proteasomal degradation. Indirectly, Wnt pathway 

can be stimulated by ILK activity which inhibits GSK-3β and leads to β-catenin accumulation 

(53).   

Rho GTPases 

Rho GTPase is family that regulates balance between inactive (GDP) and active (GTP) form, 

influencing assembly or disassembly of actin-based structures. Rho activates ROK which in 

turns stimulate assembly of actin-myosin filaments by increasing the level of phosphomyosin. 

The result of the activation of Rho GTPase axis is enhanced cellular contractility underling 

movement – one of the crucial events during EMT (56).   
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1.3.Clinical relevance of signaling pathways and implication of anti-fibrotic 

therapies  

TGF-β/SMADs in renal diseases 

Precursor of TGF-β 

Three major TGF-β isoforms (β1, β2, β3) are widely expressed and secreted in latent forms, 

forming a complex with the relevant LTBPs (latent TGF-β binding proteins) (54). Proteolytic 

cleavage enable forming active TGF-β forms, and TGF-β1 is considered as a major mediator in 

fibrosis. However, a latent TGF-β is not only a simple precursor of active form, but also acts as a 

protective agent in renal fibrosis (60-61). The precise mechanism is not completely clear, 

however, it might be that protective effects of the latent TGF- β relay on the elevation of 

endogenous SMAD7. 

TGF-β receptors 

TGF- β signaling depends on the phosphorylation of TGF- β receptors, types I and II (TβRI, 

TβRII), which further phosphorylate SMADs. In the experimental models of fibrosis, in vivo and 

in vitro, TβRI was highly over-expressed, thus specific inhibitor of this receptor (SD-208) was 

able to diminish fibrogenic response (62). Nevertheless, the involvement of TβRII in fibrosis is 

highly organ and cell-dependant. Thus, disruption of this receptor in tubular epithelial cells and 

in fibroblasts results in the inhibition of TGF-β/SMAD3 signaling and protects from fibrosis. 

However, such approach is not able to block ERK/p38 MAP kinase pathway. On the other hand, 

blocking of TβRII in collecting ducts is rather adverse, leading to enhanced renal fibrosis 

perhaps due to paracrine TGF-β signaling between epithelial and interstitial cells. Both TβRI and 

TβRII interact with Hsp90 (heat-shock protein 90kDa) resulting in prevention of TGF-β 

receptors’ degradation. Thus, inhibition of Hsp90 reduces TGF-β signaling and related 

fibrogenic response, by elevation of SMAD7/Smurf2 dependant ubiqutination of TβRI and 

TβRII receptors (63-64). 
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Roles of R-SMADs 

Both SMAD2 and SMAD3 are major TGF-β down-stream mediators in renal fibrosis. Several in 

vivo models of Smad3-knockout mice showed significant fibrotic response, and suggested that 

SMAD3 can be a critical mediator of TGF-β induced renal fibrosis. Furthermore, Hsp-72 

suppressed TGF-β induced phosphorylation of SMAD3 and prevented its nuclear translocation 

leading to inhibition of tubulointerstitial fibrosis in rat model. Moreover, SMAD3 has been also 

associated with many fibrogenic genes, such as several collagen types, as well as TIMMP-1. 

Specific SMAD3 inhibitor could block TGF-β induced EMT and attenuate diabetic 

glomerulosclerosis. However, the role of SMAD2 in renal fibrosis is still controversial, since 

several studies demonstrated protective role of SMAD2 in fibrogenic response by regulating 

SMAD3 signaling. TGF-β mediated gene expressions could decrease through BMP-7 activities 

which block the activation of SMAD-dependant and SMAD-independent pathways (such as 

ERK and MAPK through SMAD1 and SMAD5 activations). It has been also reported that 

SMAD2 and SMAD3 can be activated independently of TGF-β signaling, such as direct and 

angiotensin dependant MAPK-SMAD crosstalk. Moreover, SMAD3 plays an adverse role even 

in acute kidney injury enhancing TGF-β mediated tubular cell apoptosis by activation of pro-

apoptotic genes, such as Bcl-2-associated death promoter (BAD) (58).   

Roles of Co-SMAD 

SMAD4 is not only important for nuclear translocations of SMAD3, but also plays an important 

role in the initiation of SMAD3 targeted genes transcription. Blocking of SMAD4 up-regulation 

results in the reduced accumulation of ECM (58). 

Roles of I-SMADs 

In animal models, decreased SMAD7 expression potentiates TGF-β signaling paving the way to 

progressive renal fibrosis, and also increases renal inflammation by activation NF-κB response. 

Nevertheless, SMAD7 over-expression reduces renal inflammation by suppressing the release of 

cytokines (IL-1, TNF-α), adhesion molecules (ICAM-1, VCAM-1), macrophages and T cells 

(58).  
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Implications for therapies 

Suppression of TGF-β1 and its receptors, blockade of SMAD signaling and suppression of its 

downstream effectors are three global approaches for further perspectives in the treatment of 

renal fibrosis. Some of the purposed agents are: neutralizing TGF-β antibodies, TβR inhibitors, 

Hsp90 inhibitors, SMAD3 inhibitors and SMAD7 agonist. Gene therapy is also considered, but 

far away from the clinical application. Ferulic acid (FA) blocks pSMAD2/3 activation and 

suppresses TGF-β1induced EMT program (65). It might be that specific inhibition of SMAD3, 

as well as stimulation of SMAD7 activities would provide improvements in targeting fibrotic and 

inflammatory tissue responses in the various kidney diseases. Furthermore, SMAD7 might be 

also suitable for treatment of acute kidney injury since it can prevent tubular cell apoptosis. 

However, further studies are warranted to make more conclusive information. 

Moreover, several studies showed protective effects of these therapeutic strategies on the 

podocytes which are mainly affected in kidney diseases with proteinuria. It has been suggested 

that these therapies can even reduce deposition of immune complexes, reverse podocyte injuries 

and prevent interstitial fibrosis as the last stage of many kidney diseases.  

SNAIL 

SNAIL is an attractive target for the development of pharmaceutical agents, especially 

considering that it be induced by numerous factors and signaling involved in EMT. Recently, a 

Co (III)-DNA conjugate, Co(III)-E-box, has been developed for selective inhibition of Snail 

family of transcription factors and were considered in oncology research area (66, 67).  
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1.4.Fibroblast growth factor receptor (FGFR) and neural cell adhesion 

molecule (NCAM)  

 

1.4.1. NCAM structure  

There are two Neural Cell Adhesion Molecules (NCAMs) in mammals (NCAM1 and NCAM2), 

encoded by two different genes, but here we will focus on NCAM1 because NCAM2 has not 

been widely studied yet. NCAM1 (simply termed as NCAM), also known as CD56, is a cell 

surface molecule encoded by a single gene, located on chromosome 11 in humans. NCAM exists 

in three major isoforms and is also found in soluble secreted form. Three major NCAM isoforms 

result from alternative splicing and are named according to heir molecular weight: NCAM-

120kDa (NCAM-C), NCAM-140kDa (NCAM-B) and 1 NCAM-80kDa (NCAM-A). All of them 

are cell surface molecules, whereby NCAM120 is attached to the cell membrane via a 

glycophosphatidyl inositol (GPI-) anchor while NCAM140 and NCAM180 are single spanning 

transmembrane proteins and differ in the length of their cytoplasmic domains (68-70). 

NCAM belongs to the immunoglobulin (Ig) superfamily and is composed of five extracellular Ig 

domains and two fibronectin type III (FN3) domains and intracellular cytoplasmic part of 

varying length. NCAM gene contains more than 26 exons. The extracellular part of NCAM is 

encoded by exons 1–14 (two exons per module) and is similar for the three major isoforms. 

NCAM180 is defined by additional   16–19exons, while NCAM140 does not include exon 18 

compared to NCAM180. The smallest one isoform (NCAM120), beside common exons 1–14 

contains only additional exon 15 (68-70). 

NCAM molecules can be post-translationally modified either on extracellular or intracellular 

parts. All three isoforms can be extracellularly modified by attachment of long chains of 

polysialic acid (PSA) to the fifth Ig module and the first F3 module. Attachment of the 

negatively charged sugar PSA to the fifth Ig domain influences NCAM adhesive properties, 

changing it form a pro-adhesive to a pro-migratory molecule. Transmembrane isoforms 

(NCAM140 and NCAM180) can be also palmitoylated on intracellular domains (C-terminal 

sites), thereby determining NCAMs association with lipid rafts in the membrane and defining its 

signaling properties (71-74). 
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1.4.2. NCAM functions and signaling pathways 

During embryonic development, NCAM is heavily polysialilated and is widely expressed in 

many organs, including kidneys. However, in the adults it is mainly found in tissues of neural 

origin, but also appears during carcinogenesis. Thus, NCAM is thought be expressed in areas 

which retain a high degree of plasticity. Since during wound healing and repair many cells 

change their phenotype in order to recover injury, it has been considered that induction of 

NCAM expression in such area could appear, especially if in particular organ NCAM is 

expressed during organogenesis. Thus, re-induction of NCAM in epithelial structures could be 

considered as reversed organogenesis, through the process of epithelial to mesenchymal 

transition (EMT) (14, 24-27, 68-74). 

NCAM signaling can be induced by homophilic and various heterophilic interactions with other 

molecules such as fibroblast growth factor receptor (FGFR), heparin, heparan/chondroitin 

sulfates, various types of collagen, glial cell line derived neurotrophic factor (GDNF), GDNF 

family receptor a, ATP, platelet-derived growth factor (PDGF), and various cytoskeletal 

components (24, 69).  

NCAM homophilic interactions 

Precise mechanism of NCAM homophilic binding is not completely clarified and several 

alternative models have been proposed. Since extracellular parts of all three NCAM isoforms 

have Ig-like domains, NCAM's homophilic binding mechanisms involve binding between 

multiple NCAM modules in various configurations (24-27, 68-74). 

Rao et al. suggested that third Ig module of NCAM was important for the NCAM trans-

homophilic binding in the model where the third Ig module binds to itself. They also found that 

the first three modules and can bind to each other, meaning that the third Ig domain binds to 

itself while the second binds to fourth and the first binds to fifth Ig domain (75, 76). However, 

one of the most sensitive methods currently available– NMR and surface plasmon resonance 

(SPR) analysis could not detected proposed interactions. 

Using SPR, NMR and crystallography experiments, binding between the first and second Ig 

modules of NCAM was detected and the importance of the third Ig module for the homophilic 
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binding was also demonstrated. Soroka et al. discovered NCAM/NCAM interactions combining 

the first three Ig modules. Specific interactions between Ig1 and Ig2 modules mediate 

dimerization of NCAM molecules expressed on the same cell surface (cis-interactions), whereas 

interactions between NCAM molecules on the surfaces of opposing cells (trans-interactions) are 

mediated by Ig3 domain and its simultaneously binding to Ig1 and Ig2 (69, 77). 

Signaling cascade stimulated during these homophilic interactions includes NCAM association 

with p59
Fyn

 (Src family kinase) and its subsequent phosphorylation which in turns 

phosphorylates and activates its effector FAK. Activated FAK then acts by inducing CREB (c-

AMP response element binding protein), through Ras/Raf/MAPK/ERK up-stream effectors (78-

80). However, this specific intracellular signaling transduction is attributed only to NCAM-140 

isoform and does not engage NCAM-180 (79). 

This type of signaling cascade promotes adhesion properties of NCAM-expressing cells. 

However, de-adhesion processes can also appear during these NCAM homophilic bindings and 

they are primarily stimulated by post-translational modifications of NCAM molecule by 

polysialic acid (PSA) residues which then interferes with NCAM homophilic interactions (81-

82). 

NCAM and FGFR interactions 

NCAM is also involved in heterophilic interactions and is able to induce FGFR signaling acting 

through this pathway. All NCAM isoforms (120kDa, 140 kDa, 180 kDa) are able to bind to all 

FGFRs (FGFR1-4). The prototypical FGFRs consist of three Ig modules, a transmembrane 

domain and a cytoplasmic tyrosine kinase domain. The Ig1 and Ig2 modules are separated by a 

very long linker containing a stretch of acidic residues, termed the acid box. FGF binding to the 

FGFR results in the receptor dimerization, leading to auto-phosphorylation of the receptor 

tyrosine kinase domains. The FGF-receptor family consing of four closely related receptor 

tyrosine kinases (FGFR 1–4), can be activated their main ligands - FGFs (FGF1–FGF23), and 

also by cell adhesion molecules such as NCAM, L1 and N-cadherin. However, a direct binding 

to the FGFR has only been demonstrated for NCAM. These interactions occur between FN3 

NCAM domain and Ig2 and Ig3 FGFR domains, whereby both FN3 modules of NCAM are 

required for an efficient binding, whilst interaction involving amino acids located in the FG loop 
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region of the second FN3 module of NCAM and the FGFR1 results in weak binding. Beside an 

involvement of Ig2 and Ig3 modeule of FGFR in the interaction with NCAM, acid box region of 

the FGFR is proposed to be also a binding NCAM site but there is no strong evidence of this 

type of interplay. CHD (Cell adhesion molecule Homology Domain) region located in the second 

Ig module of the FGFR has been previously suggested to be involved in binding to NCAM, L1 

and N-cadherin, however despite structural possibility of interaction at this site it has been 

indicated CHD is not necessary for the NCAM/FGFR interaction (83; 69). Molecular sites of 

NCAM/FGFR interactions are illustrated on Figure 3. 

 

 Figure 3. NCAM and FGFR interactions.  
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After binding to FGFR, NCAM induce its dimerisation and activation through auto-

phosphorylation. Activated FGFR then recruits phospholipase Cγ (PLCγ) cleaving its substrate 

phosphatidylinositol 4,5-bisphosphate (PIP2) and generating the second messenger molecules 

inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces the release of Ca
2+

 by 

binding to intracellular Ca2
+
-channels. DAG remains at the membrane and can either activate 

protein kinase C (PKC) or can be converted into 2-arachidonylglycerol (2-AG) and arachidonic 

acid (AA), inducing various downstream signaling events (70, 80). 

Cross-talk between NCAM/NCAM and NCAM/FGFR interactions 

Moreover, cross talk between two NCAM signaling pathways is also possible. Thus, NCAM 

homophilic interactions (inducing p59
Fyn

/FAK) and NCAM heterophilic interaction with FGFR 

can converge at level of ERK activation. Ras-Raf-MAPK-Erk signaling cascade could be 

induced both by NCAM/NCAM and NCAM/FGFR interactions, making difficult to assign ERK 

activation to particular pathway involved in its induction, especially under in vivo observation 

where many extracellular and intracellular ligands and pathways can co-operate at the same time 

(84).  
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1.5.Further directions 

The growing interest in field of renal fibrosis management is reasonable, especially considering 

that the majority of kidney diseases could have chronic course and progressively develop 

impairment of kidney function that is morphologically presented with chronic tubulointerstitial 

damage and fibrosis. For patients and clinicians it is equally important to mellow-down, stop and 

reverse the putative adverse outcomes. Thus, a scientific attempts balancing between beneficial 

and adverse effects of proposed therapies are growing, but often hard to be archived. Further 

investigation should be focused on therapy options which target the underling mechanism of the 

earliest changes observed upon kidney injury. 

Since normal renal interstitium contains scarce fibroblasts, the origin of abundantly observed 

fibroblasts during fibrogenesis brings many controversies and several proposed models are 

available. In addition to rare fibroblasts, scarce NCAM positive cells with spindle shaped or 

dendritic morphology can be detected within the interstitium of the normal adult human kidney 

(16, 85). These cells seemed to have arisen from metanephric mesenchymal cells expressing 

NCAM during kidney development, and selectively persist within the renal interstitium after 

birth (86). Previously, it has been suspected that in early phases of repairing processes of a 

damaged kidney interstitial NCAM+ cells could increase (85). The origin of such NCAM
+
 cells 

in fibrogenesis or kidney repair and their relation to fetal NCAM
+
 mesenchymal cells is still 

unknown and remains to be clarified, as well as their pathophysiological significance. 

Considering an early induction of NCAM expression during fibrogenesis and taking into account 

that its signaling pathway could also involve FGFR activation, we thought that investigation in 

this field could bring new insights into renal fibrosis pathogenesis, especially considering that 

human renal interstitium under fibrotic conditions exhibits highly heterogeneity, mostly with 

regard to molecular markers expressed by interstitial cells (1). Since NCAM is one of the 

receptors essential during kidney organogenesis (86), we would like to clarify whether the 

increase of NCAM
+
 interstitial cell lineage during kidney repair could differ from rare NCAM

+
 

cells situated within normal renal interstitium and if they could share some of the markers 

involved in tissue wound healing processes, either those which contribute or those which could 

ameliorate fibrosis. 
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Moreover, since FGFR1 is involved in fibroblast activation and proliferation and can be 

activated by different ligands including NCAM, the interplay between these molecules is 

required to be clarified during fibrogenesis, mostly due to the fact that activation of FGFR1 by 

NCAM additionally promotes FGFR1 recycling, resulting in sustained FGFR1 signaling that is 

important for fibroblast migration (24-27).  
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2. AIMS 

The following aims were purposed: 

 Explore quantitative relationship between NCAM expressing renal interstitial cells with 

the degree of renal interstitial fibrosis and underlying pathohistological diagnosis, using 

human kidney biopsy samples 

 Investigate molecular profile (including the presence of proteins and defining the mRNA 

levels) of NCAM expressing renal interstitial cells with regard to three NCAM isoforms 

(NCAM-120, NCAM-140, NCAM-180), molecules whith regulatory role in renal fibrosis 

(FGFR1, HE4, α-SMA, MMP-2, MMP-9, SLUG, SNAIL, BMP 7, ALK 3), as well as 

molecules involved in TGF-β signaling pathway (SMAD2, SMAD3) 

 Compare mRNA expression levels of NCAM, FGFR1, ITGA5, ITGB1, RUNX1 and 

RUNX1T1 between kidney tissue samples of different degrees of interstitial fibrosis, and 

also compare it among various pathohistological diagnosis 

 Define the involvement of TGF-β in cell migration and explore its impact on molecular 

profile and dynamics of gene expression changes in TGF-β treated tubular epithelial cells 

(HK-2 cell line), both in the presence and the absence of FGFR inhibitor (PD173074), 

comparing with control (non-treated) HK-2 cells; investigate NCAM isoforms (NCAM-

120, NCAM-140, NCAM-180), FGFR1 and FGFR2 (their IIIb and IIIc isoforms), SLUG, 

SNAIL, TWIST 1, MMP-2, MMP-9, RUNX1, RUNX1T1, N-cadherina, E-cadherina, 

ITGA5, ITGB1, α-SMA, BMP 7, SMAD2 and SMAD3 
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3. MATERIAL AND METHODS 

3.1.Human kidney samples 

The study was carried out in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) and was approved by the Ethic Committee of Medical 

Faculty University of Belgrade (approval no. 29/II-15). 

In order to explore quantitative relationship between NCAM expressing renal interstitial cells 

with the degree of renal interstitial fibrosis and underlying pathohistological diagnosis, as well as 

to perform further characterization of NCAM expressing cells, 93 biopsy specimens of various 

kidney diseases were included in this study after routine diagnostic procedures. 

Moreover, additional 50 kidney biopsies of patients clinically presented with nephrotic syndrome 

or isolated proteinuria were analyzed in order to investigate clinicopathological features 

comparing them with the presence and expression pattern of TGF-β signaling pathway 

downstream effectors (SMAD3, SMAD2, SNAIL). 

For the assessments of gene expression, mRNA was isolated from the rest of frozen tissues of 24 

patients. Relative mRNA levels were analyzed according the degree of renal interstitial fibrosis 

among heterogeneous diagnosis.  

Renal tissue from the first core needle biopsy of each patient was formalin-fixed, paraffin-

embedded, routinely stained with H&E, PAS, silver methenamine and Masson trichrome, and 

further used for immunohistochemistry. The second renal biopsy core was put into cell culture 

medium RPMI 1640 (PAA Laboratories GmbH, Austria) immediately after removal, snap-frozen 

in liquid nitrogen, used for routine immunofluorescent diagnosis, and the rest of the tissue stored 

at -80
o
C for further immunostaining. In the cases where we had enough tissue, a piece of tissue 

sample was conserved in RNAlater (Qiagen Ltd., Hilden, Germany), a RNA stabilization 

reagent, for subsequent efficient reverse transcriptase PCR (RT-PCR) analysis. Normal renal 

tissues were obtained from 10 cadaveric kidneys that were not transplanted, as well as from 10 

non-tumor renal tissues obtained after nephrectomies due to renal tumors. 
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3.1.1. Patients data 

Clinical and laboratory patients data recorded at the time of biopsy, as well as at the time of last 

medical examination were collected from the medical records. Patients were clinically classified 

in chronic kidney disease (CKD) stages, following the widely accepted recommendations (87). 

Follow-up period was also noted in order to perform survival analysis aimed to define predictors 

of disease progression.  

3.1.2. Assessment of interstitial renal fibrosis and tubular atrophy 

Extension of interstitial renal fibrosis (IRF) was semi-quantitatively assessed on biopsies stained 

with PAS and Massone-trichrome, applying a scale from 0 to 3 with 0 meaning no IRF, 1 – less 

than 25% of renal tissue with IRF, 2 - 25% to 50% of renal tissue with IRF, and 3 - more than 

50% of renal tissue with IRF. Using the same rule, the abundance of tubular atrophy (TA) was 

assessed (TA-0 – no tubular atrophy; TA-1 – less than 25% of atrophic tubuli; TA-2 – 25-50% of 

atrophic tubuli; TA-3 – more than 50% of atrophic tubuli).    

3.1.3. Immunohistochemistry 

Immunohistochemistry was performed both on paraffin and cryo sections. Tissues embedded in 

paraffin blocks are previously fixed in 4% formalin and dehydrated in alcohol. Thus, before 

proceeding to staining procedures, 5 μm kidney tissue sections from paraffin blocks were 

deparaffinized in xylene and rehydrated through decreasing alcohol percentage series (100%, 

96% and 70%) finished with washing step into distillated water. Five μm thick frozen sections 

cut from each tissue were fixed in acetone for 10 min, air-dried at room temperature for 1 hour. 

Heat-induced antigen retrieval was performed for 20 min either in low (pH 6.0) or in high pH 

(pH 9.0) buffers, depending on the antibody. After antigen retrieval both frozen and paraffin 

samples were incubated for 1 hour at room temperature with primary antibodies listed in Table 

3.1. 
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Table 3.1. List of primary antibodies used for immunohistochemistry in human kidneys.  

No. Primary antibody (clone) Source Dilution Manufacture (Cat. No.) 

1 NCAM (Eric-1) Mouse  1:100 Ancell Corporation (208-020) 

2 NCAM (123C3.D5) Mouse RTU LabVision (MS-204-R7) 

3 MMP2  Rabbit 1:50 Sigma-Aldrich (HPA001939) 

4 MMP9 Rabbit 1:50 Sigma-Aldrich (HPA001238) 

5 SMAD2 (clone 31H15L4) Rabbit 1:100 Thermo scientific (700048) 

6 SMAD3 (clone EP568Y) Rabbit 1:500 Abcam (ab40854)  

7 SNAIL Rabbit 1:100 Abcam (ab180714) 

NCAM (Eric-1) was used on cryostat samples, while paraffin samples were incubated with 

NCAM (123C3.D5). The EnVision
TM

 Detection System (Dako) was applied to label anti-mouse 

or anti-rabbit polymer. Visualization of antigen-antibody reaction was carried out by 3,3'-

diaminobenzidine (DAB) or 3-amino-9-ethylcarbazole (AEC) and subsequently counterstaining 

with hemalaun (Merck, USA). Specimens were mounted with non-aqueous permanent mounting 

medium (Ultramount, Dako) or with aqueous-based mounting medium (Faramount, Dako). 

Controls were performed as previously described (85), and for mouse monoclonal antibodies as 

isotype control mouse IgG1 (ab91353, Abcam, UK) antibody was also used. Slides were 

evaluated using the light microscope BX53 with DP12 CCD camera (Olympus, Germany). 

3.1.3.1. Semi-quantification of NCAM interstitial positivity 

Examining the relationship of NCAM
 
expressing interstitial cells with degree of interstitial renal 

fibrosis (IRF), immunostaining was performed on paraffin sections and evaluated by light 

microscopy, as a number of positive cells per field of view on the magnification x400 in the 

region with the most extensive interstitial NCAM positivity in a biopsy core.  20 cases of normal 

renal tissue were also assessed for the number of NCAM positive cells within the interstitium. 

All assessments were done independently by two pathologists. 
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3.1.4.  Double immunofluorescence labeling 

Five μm-thick cryostat sections were treated as previously described (85). In brief, frozen section 

were dried for 1h at room temperature, and fixed in acetone for 10 min. Since NCAM 

(EP2567Y) was produced in rabbit, it was used for double immunofluorescent labeling when the 

second antibody originated from mouse. 

Thus, in order to obtain double fluorescent labeling NCAM/granzyme B, NCAM/αSMA cells 

and NCAM/MMP9, we applied rabbit monoclonal antibody against NCAM clone EP257Y, 

followed by Cy3- conjugated goat anti-rabbit antibody (1:2000, Dianova), and mouse 

monoclonal antibodies against granzyme B, αSMA or MMP9 were added followed by goat anti-

mouse IgG-Alexa 488 (1:1000, Invitrogen). For NCAM/HE4 and NCAM/EPO cells detection, 

mouse monoclonal NCAM/Eric-1 antibody followed by goat anti-mouse IgG-Alexa 488, and 

rabbit polyclonal HE4 antibody, as well as rabbit polyclonal anti-EPO, followed by Cy3-

conjugated goat anti-rabbit antibody were applied. Nuclei were identified by 4,6-diamino-2-

phenylindolyl-dihydrochloride (DAPI; 1 μg/ml). List of primary antibodies with corresponding 

dilutions is shown in Table 3.2. 

Table 3.2. List of primary antibodies used for immunofluorescence in human kidneys.  

No. Primary antibody (clone) Source Dilution Manufacture (Cat. No.) 

1 NCAM (Eric-1) Mouse  1:100 Ancell Corporation (208-020) 

2 NCAM (EP2567Y) Rabbit 1:200 Epitomics (2433-1) 

4 MMP9 Mouse 1:100 Calbiochem 

6 MMP24 Rabbit 1:100 Calbiochem 

9 α-SMA (1A4) Mouse 1:400 Dako 

10 Granzyme B (2C5) Mouse 1:50 Santa Cruz (sc-8022) 

11 EPO Rabbit 1:100 Abcam (ab126876)  

12 HE4 Rabbit 1:100 Abcam (ab85179) 

13 CD73 Mouse 1:50 Abcam (ab81720) 

For assessment of TGF-β signaling and relation to molecules involved in EMT or fibrosis, the 

following stainings were performed:  pSMAD2/MMP2, pSMAD3/MMP9, SNAIL/α-SMA, 

TWIST/N-cadherin. Antibodies dilutions and detail are shown in Table 3.3. 
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Table 3.3. List of primary and secondary antibodies used for immunofluorescence in 

human kidneys.  

Primary antibodies Source Dilution Manufacturer 

P-Smad3 (9520S) rabbit 1:100 Cell Signaling 

p-Smad2 (3108S) rabbit 1:100 Cell Signaling 

MMP-2 (sc-13594) mouse 1:50 Santa Cruz 

MMP-9 (sc-393859) mouse 1:50 Santa Cruz 

Twist1 (ABD29) rabbit 1:100 EMD Millipore 

SNAIL (ab180714) rabbit 1:100 Abcam 

Alpha-SMA (A5228) mouse 1:100 Sigma 

N-Cadherin (610920) mouse 1:50 BD Transduction Laboratory 

HIF-1α (hydroxy P402) (ab72775) rabbit 1:50 Abcam 

HIF-2α (ab109616) rabbit 1:100 Abcam 

Secondary antibodies    

Anti-mouse IgG (H+L), Alexa Fluor 594 (A21203) donkey 1:200 Life technologies 

Anti-rabbit IgG (H+L), Alexa Fluor 488 (A21206) donkey 1:200 Life technologies 

Controls were performed in all experiments as previously described (85). Sections were mounted 

with Fluoro Preserve Reagent (Calboichem, Germany). Slides were analyzed either on LSM 510 

Confocal Microscope with Apotome (Carl Zeiss, Germany) using the AxioVision Release 4.8.2 

(Carl Zeiss, Germany) software version for analysis and documentation, or on epifluorescence 

microscopy with F-View CCD camera (Olympus, Germany), whereby digital pictures of each 

fluorescence channel were taken and superimposed for the specific antibody staining using the 

software AnalySIS from Soft Imaging Systems (Olympus) as previously published (85). 
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3.1.5. Laser capture microdissection, RNA isolation and quantitative real-time reverse 

transcription PCR  

Frozen renal tissues obtained from normal kidneys and from biopsies with incipient IRF were 

stained with NCAM/Eric-1 antibody. Only NCAM
+
 cells localized within renal interstitum 

exhibiting dendritic morphology were marked for catapulting in laser capture microdissection 

(LCM) procedure. Between 35 and 50 NCAM
+
 cells were captured from each sample using 

PALM MicroBeam (Zeiss, Germany) and afterward stored on -80°C in microtubes with 100μl 

RNAlater reagent until further analysis. 

RNA isolation was carried out using Arcturus® PicoPure® RNA isolation kit (Applied 

Biosystems, Germany), suitable for high quality RNA extraction from small samples. 

The quality of the isolated RNA was assessed using NanoDrop 2000 spectrophotometer (Thermo 

Scientific, Germany). 50 ng of total RNA was digested with DNaseI (Sigma) and used for cDNA 

synthesis using SuperScript II Reverse Transcriptase (Life Technologies). For quantitative real-

time reverse transcription PCR (qRT-PCR) analysis, diluted cDNA (1/10) was used as a template 

in a Fast SYBR Green Master Mix (Life Technologies, Germany) and run in StepOnePlus™ 

Real-Time PCR System (Applied Biosystems) in a total reaction volume of 20 μL. Primers were 

designed and purchased from PrimerDesign. Primer sequences are shown in Table 3.4. Samples 

were run in triplicates and the mRNA expression levels were quantitatively analyzed and 

normalized to the level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping 

gene. Before decision to use GAPDH as housekeeping gene in qRT-PCR procedure, we also 

tested 18s and β-actin. As signals for GAPDH were the most consistent within the analyzed 

samples we used it further analyses in qRT-PCR. GAPDH primers are also provided by 

PrimerDesign, but the sequences are undisclosed.  
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Table 3.4. Primer sequences used for qRT-PCR procedures. 

 

 
Forward primer 5’ to3’ Reverse primer 5’ to3’ 

NCAM-120 GAACCTGATCAAGCAGGATGACGG CTAACAGAGCAAAAGAAGAGTC 

NCAM-140 GTCCTGCTCCTGGTGGTTGTG CCTTCTCGGGCTCCGTCAGT
  

NCAM-180 CGAGGCTGCCTCCGTCAGCACC CCGGATCCATCATGCTTTGCTCTC 

FGFR1 GGCTACAAGGTCCGTTATGCC GATGCTGCCGTACTCATTCTC 

FGFR1 IIIb AATGTGACAGAGGCCCAGAG GGAGTCAGCAGACACTGT 

FGFR1 IIIc ACTGCTGGAGTTAATACCAC GGAGTCAGCAGACACTGT 

FGFR2 GCGTTTTCCTTGCAGCGGCTGG GTAAGTCACAGGATTCCCGTC 

FGFR2 IIIb CACTCGGGGATAAATAGTT ACTCGGAGACCCCTGCCA 

FGFR2 IIIc CGGTGTTAACACCACGGAC ACTCGGAGACCCCTGCCA 

WFDC2 (HE4) AGAACTGCACGCAAGAGTG TTGAGGTTGTCGGCGCATT 

α-SMA AAGCACAGAGCAAAAGAGGAAT ATGTCGTCCCAGTTGGTGAT 

FSP-1 TCTTTCTTGGTTTGATCCTG GCATCAAGCACGTGTCTGAA 

SLUG ACTCCGAAGCCAAATGACAA CTCTCTCTGTGGGTGTGTGT 

SNAIL GGCAATTTAACAATGTCTGAAAAGG GAATAGTTCTGGGAGACACATCG 

TWIST CTCAAGAGGTCGTGCCAATC CCCAGTATTTTTATTTCTAAAGGTGTT 

MMP2 TACAGGATCATTGGCTACACACC GGTCACATCGCTCCAGACT 

MMP9 TGTACCGCTATGGTTACACTCG GGCAGGGACAGTTGCTTCT 

ALK3 GGACATTGCTTTGCCATCATAG GGGCTTTTGGAGAATCTTTGC 

BMP7 CCTCCATTGCTCGCCTTG TATGCTGCTCATGTTTCCTAATAC 

ITGA5 GGCTTCAACTTAGACGCGGAG TGGCTGGTATTAGCCTTGGGT 

ITGB1 GTAACCAACCGTAGCAAAGGA TCCCCTGATCTTAATCGCAAAAC 

E-cadh CATGAGTGTCCCCCGGTATC CAGTATCAGCCGCTTTCAGA 

N-cadh TCAGGCGTCTGTAGAGGCTT ATGCACATCCTTCGATAAGACTG 

RUNX1 TGAGCTGAGAAATGCTACCGC ACTTCGACCGACAAACCTGAG 

RUNX1T1 ATGCCAGACTCACCTGTGGAT GGCTGTAGGAGAATGGCTCG 

PRMT1 ACAAAGACTACAAGATCCACTGGTG CGGTATAGATGTCCACCTCCTTTATG 
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3.2.Cell culture (HK-2 cells) 

3.2.1. Experimental procedure 

Human proximal tubular epithelial cells (HK-2 cell line) were cultured in 6-well plates in 2ml of 

growing medium (DMEM medium supplemented with 10% FCS and 1% 

penicillin/streptomycin) at 37°C in 5% CO2 air. They were seeded in the concentration of 

4×10
4
/ml of medium. Next day, growing medium was removed and serum-free DMEM was 

added. Experimental procedures started on the third day (24h after starvation) and completely 

were conducted under serum-free conditions. HK-2 cells were seeded in 4 wells divided in 

control, TGF-β1, PD173074, and TGF-β1+PD173074 treated groups. HK-2 cells were treated 

with 100nM PD173074 (Santa Cruise, CAS 219580-11-7) and stimulated with recombinant 

human TGF-β1 (R&D Systems) in the concentration of 10ng/ml. Treatment with PD173074 was 

done 1h prior to TGF-β1 stimulation. Cells were monitored by light microscopy at different time 

point, depending on the further experimental procedures. 

3.2.2. Scratch assay 

In order to estimate cell migration capacity in 4 experimental groups, we made scratches in the 

wells (in 6-well plate) using 1000μl pipette tips. Scratch was done immediately prior to TGF-β1 

stimulation. Distance between cells separated with the scratch was measured under the 

microscope, using Olympus XM10 camera and cellSence software (under the 10x 

magnification), at three distinct points which were labeled in order to repeat measurements at the 

same points later. Measurements were repeated 24, 48 and 72 hours after TGF-β1 application.  

3.2.3. RNA isolation and real-time RT-PCR analysis 

Cells were detached using trypsin and after washing with PBS they were centrifuged. Cell pellet 

was used for RNA isolation which was carried out using TRIzol reagent (Invitrogen) and 

PureLink® RNA Mini Kit (Life Technologies) following manufacturer instructions. The quality 

of the isolated RNA was assessed using NanoDrop 2000 spectrophotometer (Thermo Scientific). 

100 ng of total RNA, digested with DNaseI (Sigma), was used for cDNA synthesis using 

SuperScript II Reverse Transcriptase (Life Technologies). For quantitative real-time reverse 

transcription PCR (qRT-PCR) analysis, diluted cDNA (1/10) was used as a template in a Fast 
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SYBR Green Master Mix (Life Technologies) and run in StepOnePlus™ Real-Time PCR 

System (Applied Biosystems) in a total reaction volume of 20 μL. Primer sequences are shown 

in Table 3.4. Samples were run in triplicates and the mRNA expression levels were 

quantitatively analyzed and normalized to the level of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) housekeeping gene. GAPDH primers are provided by PrimerDesign, 

but the sequences are undisclosed. RNA isolation and qRT-PCR were done, depending on the 

genes of interest, at several time points: 6, 12, 24, 48 and 72 hours after TGF-β1 stimulation.  

3.2.4. Double immunofluorescence 

On the first day, 10
4
 HK-2 cells resuspended in 500µL of growing medium were seeded in 8 well 

culture slides (Falcon® 8 Well culture slide, glass slide with polystyrene vessel, Product 

#354118). Next day starvation was performed by removing the growing medium and changing 

into serum-free DMEM. On the third day experiment started, as described. After finishing the 

experimental procedures, immunofluorescent staining was performed as follows. Medium was 

removed from the chamber slides and slides were briefly washed with PBS. Then, -20°C pre-

cold 100% methanol was added in each well and culture slides were put on -20°C for 20min. 

When removed from -20°C, methanol was discarded and slides were washed briefly with PBS, 

preparing the slides for permeabilization step which was performed with 0.2% Triton X-100 in 

PBS for 15min at RT°. After 2 times washing with PBS, blocking with 5% BSA dissolved in 

0.1% Tween 20 in PBS was performed for 1h at RT°. Next, slides were washed with PBS and 

afterwards incubated with primary antibodies overnight on 4°C (two primary antibodies of 

different sources, i.e. one rabbit and one mouse or goat). Antibodies were diluted in 1% BSA 

dissolved in 0.1% Tween 20 in PBS and details are summarized in the Table 3.5. The second day 

of immunofluorescent staining started with washing step (3x5min with 0.1% Tween 20 in PBS 

on shaking plate) followed by application of secondary antibodies for 1h at RT°. Afterwards 

slides were washed 2 times for 5 min with 0.1% Tween 20 in PBS on shaking plate and prepared 

for incubation with DAPI (1:1000 diluted in pure PBS) on RT° for 5min. Chambers were 

removed and slides were finally washed with PBS for 15 min on shaking plate and covered using 

Immu-Mount (Thermo Scientific, #9990412) medium. 
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Table 3.5. List of primary and secondary antibodies used for cell culture double 

immunofluorescent staining. 

Primary antibodies Manufacturer Source Dilution 

P-Smad3 (9520S) Cell Signaling rabbit 1:100 

p-Smad2 (3108S) Cell Signaling rabbit 1:100 

Ki-67 (9449S) Cell Signaling mouse 1:200 

Twist1 (ABD29) EMD Millipore rabbit 1:100 

SNAIL (ab180714) Abcam rabbit 1:100 

Alpha-SMA (A5228) Sigma mouse 1:100 

Vimentin (AB1620) EMD Millipore goat 1:20 

N-Cadherin (610920) BD Transduction Laboratory mouse 1:50 

Secondary antibodies    

Anti-mouse IgG (H+L), Alexa Fluor 594 (A21203) Life technologies donkey 1:200 

Anti-rabbit IgG (H+L), Alexa Fluor 488 (A21206) Life technologies donkey 1:200 

Anti-goat IgG (H+L), Alexa Fluor 488 (A11055) Life technologies donkey 1:200 
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3.3.Statistical analysis 

Statistical analysis was performed using the IBM SPSS software, version 20.0. Each numerical 

variable was tested for normality of distribution, using Shapiro–Wilk and Kolmogorov–Smirnov 

tests, as well as considering skewness and kurtosis before the decision of implementation 

parametric or nonparametric statistical tests. For the assessments numerical data differences 

between two groups, Student t-test or Mann-Whitney U were applied depending on the normality 

of data distribution. ANOVA was used for the assessment of numerical data among more than 

two groups, only if Levene’s test of homogeneity of variances allowed it (p>0.050), otherwise 

Kruskall-Wallis test, followed by Mann-Whitney U were applied. Correlations between 

numerical variables are analyzed by Pearson’s (if data followed normal distribution) or 

Spearman’s correlation (if data did not follow normal distribution). Nominal/ordinal data are 

analyzed by χ2 test or Fisher exact test or by Kruskall-Wallis test, followed by Mann-Whitney U, 

depending on the number of groups. Univariate analysis was performed using the Kaplan–Meier 

estimator in order to identify variables significantly associated with adverse outcome. 

Differences between two groups of patients (with and without adverse outcome) were assessed 

by two-sided log rank test. In univariate analysis, potential predictors of kidney dysfunction 

development were identified using a significance value of p<0.05. P values <0.05 were also 

considered to be significant in other applied statistical tests. 
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4. RESULTS  

4.1.NCAM expressing renal interstitial cells and renal fibrosis 

Renal interstitial NCAM
+
 cells were rarely present in the tubulointerstitial compartments of 

normal human kidneys, used as a control group (Fig. 4.1.1). However, in 93 paraffin-embedded 

biopsy specimens with various degrees of interstitial fibrosis, NCAM
+
 interstitial cells were seen 

in 58 cases (62.4%). NCAM
+
 interstitial cells were detected in 100% of MesPGN, 76.0% of LN, 

69.2% of MGN,  62.5% of MPGN, 61.1% of FSGS, 50% of IgA nephropathy, 33.3% of renal 

grafts, 25% of RPGN, while NCAM
+
 interstitial cells were not detected in 4 cases of minimal 

change disease (Fig. 4.1.1). 

 

Figure 4.1.1. Frequency of interstitial NCAM positivity among various kidney diseases and 

in control normal kidneys. 

Mean number of NCAM
+
 cells were significantly higher in diseased kidneys (mean 2.45 

NCAM
+
 cells, 95% CI (1.83-3.07)) compared to controls (mean 0.25 NCAM

+
 cells, 95% CI 

(0.4-0.46)), t=6.731; p<0.001. 

A statistically significant increase of NCAM
+
 interstitial cells was present in incipient IRF, 

assessed as scale 1, compared to all others scales of fibrosis independently of the 

pathohistological diagnosis, as it is presented on Fig. 4.1.2. 
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Figure 4.1.2. NCAM and severity of renal fibrosis. Number of detected NCAM
+
 cells per field 

of view on ×400 magnification in controls and in diseased kidneys with regard to severity of 

interstitial renal fibrosis (IRF); p values after applying Mann-Whiteny U test. 

 

Relationship between number of NCAM
+
 cells and underlying kidney diseases classified 

according to IRF stages was further analyzed (Table 4.1.1.), however, there were no significant 

differences. These data support our previous findings that increase of interstitial NCAM
+
 was 

independent of diagnosis, but depends only on extent of interstitial fibrosis, appearing almost 

exclusively in early stages (IRF-1), as illustrated in Fig.4.1.2. 
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Table 4.1.1. Distribution of diagnosis and neural cell adhesion molecule (NCAM) 

interstitial positivity (including the number of NCAM positive interstitial cells presented 

with mean ±SD) observed among stages of interstitial renal fibrosis (IRF). 

Diagnosis 

IRF-0 IRF-1 IRF-2 IRF-3 

T
o
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 c
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N
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 c
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) 

m
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n
*

±
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FSGS 6 (3/6) 0.8±1.2 11 (8/11) 3.6±3.6 1 (0/1) 0.0±NA - - 

Kidney graft - -   3 (2/3) 3.0±3.0 1 (1/1) 2.0±NA 5 (0/5) 0.0±0.0 

MGN 7 (4/7) 1.0±1.2   4 (4/4) 6.5±4.4 - - 2 (1/2) 1.5±2.1 

Lupus nephritis 5 (2/5) 0.6±0.9 13 (12/13) 5.3±3.3 6 (4/6) 3.5±3.8 1 (1/1) 1.0±NA 

MesPGN 1 (1/1) 2.0±NA   4 (4/4) 3.8±1.7 - - - - 

MPGN 2 (1/2) 0.5±0.71   3 (3/3) 3.7±2.1 3 (1/3) 1.7±2.9 - - 

Minimal changes 4 (0/4) 0.0±0.0 - - - - - - 

IgA nephropathy 4 (2/4) 0.5±0.6   1 (1/1) 4.0±NA 1 (0/1) 0.0±NA - - 

RPGN - - - - 1 (0/1) 0.0±NA 4 (3/4) 0.8±0.5 

Statistical analysis - p=0.527
#
 - p=0.657

#
 - p=0.831

#
 - p=0.137

##
 

N- number of cases; *- mean number of NCAM+ cells per field of view x400; NA- not applicable; #- ANOVA test 

was applied; ##- Kruskall-Wallis test was applied because Levene’s test of homogeneity of variances was <0.050 

and consequently ANOVA could not be used. 

Fig. 4.1.3., panel A illustrates routine PAS staining with diffuse incipient renal fibrosis (IRF-1) 

of patient with FSGS. Applying immunohistochemical staining, within the same area many 

peritubular NCAM
+
 cells were detected in the interstitial compartment (panel B).  

However, NCAM
+
 interstitial cells were usually detected focally around tubuli in the area with 

slight IRF (IRF-1), as it is shown in Fig. 4.1.4. A-C.  
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Figure 4.1.3. Morphology of interstitial fibrosis and NCAM interstitial positivity. FSGS 

with slight interstitial fibrosis (IRF-1) without tubular atrophy exhibiting an increased diffuse 

NCAM interstitial positivity detected on slides from paraffin-embedded tissue. (A) PAS, x400. 

(B) Immunoperoxidase staining, NCAM clone 123C3.D5, x400. 

 

 

Figure 4.1.4. Lupus nephritis with NCAM 

positive interstitial cells detected focally 

around tubuli in the area with slight IRF 

(IRF-1). (A) PAS, x400. (B) Massone 

trichrome staining, x400. (C) 

Immunoperoxidase staining, NCAM clone 

123C3.D5, x400. 
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4.2.Molecular profile of NCAM expressing renal interstitial cells 

Since NCAM expressing renal interstitial cells were detected in early fibrosis, we performed 

several double immunolabelings aimed to better define molecular characteristics of these cells, 

especially with regard to their regulatory role in fibrosis. 

Previous studies at our Institute reveled some of the markers that NCAM+ interstitial cells could 

share, such as FGFR1 and α5β1 integrin. These two markers are known to be expressed by 

fibroblasts. Thus, we further consider an opportunity to see whether these cells could represent a 

population of activated fibroblasts, so-called myofibroblasts. Beside α-SMA, HE4 expression is 

newly established characteristic of some myofibroblasts. 

Despite widespread interstitial expression of both NCAM and α-SMA in many cases with early 

fibrosis, the overlapping of these two molecules did not appear albeit sometimes it looked 

possible. Although both NCAM and α-SMA were localized within the same compartments, they 

did not expressed by the same cells. Moreover, NCAM+ and α-SMA+ interstitial cells 

represented two distinct cell populations, as illustrated on Fig. 4.2.1. 

 

Figure 4.2.1. NCAM and α-SMA double immunolabeling.  

CD73 has been previously characterized as marker of some population of renal fibroblasts, 

including those with EPO producing features. Here we examined if NCAM positive renal 
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interstitial cells could express CD73, and despite abundant expression of both NCAM and DC73 

in the renal interstitial compartment in cases with incipient fibrosis, co-expression was found 

only in few interstitial cells (Fig. 4.2.1).  

HE4 was also expressed by renal interstitial cells. In normal, control kidneys HE+ interstitial 

cells were rare. It was not surprising, because fibroblasts are consider to be scant in normal 

interstitium. However, we detected some overlapping between HE4 and NCAM that is also 

rarely present in normal renal interstitium. Furthermore, in the cases of incipient renal fibrosis, 

where NCAM+ cells could be prominent, HE4 was more frequently detected in the same cells as 

NCAM. HE4 and NCAM double immunolabeling is presented on the Fig. 4.2.2.      

 

 

Figure 4.2.2. NCAM and HE4 double immunolabeling.  

Modulation of fibrotic tissue response partly depends on the time-dependant activity of various 

tissue proteases, such as MMPs. Galatinases (MMP2 and MMP9) are the most popular in renal 

pathology. Their substrate is mainly collagen type IV, thus, their enhanced activity is noted in 

tubular epithelium affecting the integrity of basal membrane. Indeed, in this step their activity is 

considered as undesirable. However, if fibrosis is already initiated, activity of these gelatinases in 

the interstitial compartment would be useful to protect kidney tissue from the excessive ECM 
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deposition. Since NCAM+ interstitial cells are present in early fibrosis, we further investigated 

their relation with MMP2 and MMP9. Interestingly, MMP2 was not detected in the interstitium, 

but was abundantly expressed in tubuli usually surrounded with fibrosis. Nevertheless, MMP9 

was sometimes expressed by glomerular basement membrane components and was rarely found 

in the interstitium. Sometimes MMP9 was found in interstitium in the NCAM expressing cells, 

implicating some capacity of NCAM+ cells to degrade ECM in fibrosis. MMP24 was observed 

diffusely in tubular basement membrane in the cases with increased interstitial NCAM 

expression, and consequently overlapping of these two molecules was not observed (Fig. 4.2.3).      

 

 

 

Figure 4.2.3. NCAM, MMP2, MMP9 and MMP24 immunolabeling. 

At the beginning of our research, we found that increased interstitial NCAM positivity, appeared 

in incipient IRF, was independent of the underlying kidney diseases, although we cannot exclude 
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that increase in number of NCAM
+
 interstitial cells was caused by hypoxia at least in some 

cases. In this setting, since erythropoietin (EPO) producing renal fibroblasts are expected to 

increase rapidly in response to tissue hypoxia [5, 21], double immunofluorescent labeling using 

EPO and NCAM antibodies was performed. Unfortunately, we were not able to detect any EPO 

and NCAM overlapping (Figs. 4.2.4. A-C). Since NCAM can be also expressed by natural killer 

(NK) cells of the innate immune system, double NCAM/granzyme B immunostaining was 

performed to clarify their relationship in incipient renal fibrosis. In the panel D, an area of 

diffuse NCAM interstitial staining is visible without any granzyme B positivity. Within the 

whole biopsy sample of the same case that belongs to FSGS with incipient IRF only a single 

interstitial cell expressed both NCAM and granzyme B (panel E). Among cases of lupus 

nephritises, overlapping between these two molecules has not been detected, even within areas of 

mononuclear interstitial infiltrates (panel F). Thus, there were interstitial NCAM
+
 cells different 

from NK cells that were almost exclusively increased in incipient renal fibrosis.  

 

Figure 4.2.4. Double immunofluorescent labeling of NCAM with erythropoietin (EPO) and 

granzyme B. 
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Since tissue lysates could contain other NCAM expressing cells, not only the interstitial spindle 

shaped NCAM
+
 cells which were within the focus of our study, we decided to perform laser 

capture microdissection (LCM) which allowed us to separate and collect pure cell populations of 

the relevant NCAM
+
 cells out of tissue samples. Isolated pure NCAM

+
 cell populations were 

the most suitable starting material for downstream quantitative real-time PCR (qRT-PCR). Fig. 

4.2.5. (panels A and B) represents renal tissues stained with anti-NCAM antibody prior to LCM 

procedure, and illustrate widespread NCAM expression in incipient IRF (panel A) and scarce 

NCAM positivity in normal renal interstitium (panel B). Panels C-E illustrate tissues after LCM 

procedure. Statistically significant changes in the relative mRNA expression levels of NCAM 

isoforms have been revealed after applying qRT-PCR in the pure NCAM
+
 cell population. 

NCAM
+
 cells captured from incipient IRF significantly up-regulated NCAM

140kD
 isoform 

compared to NCAM
+
 cells in normal kidneys, p=0.004 (panel F). Nevertheless, mRNA 

expression levels of NCAM
120kD

 and NCAM
180kD

 isoforms were not changed significantly in 

comparison to normal kidneys (p=0.750; p=0.704; respectively), although both NCAM
120kD

 and 

NCAM
180kD 

were slightly up-regulated under fibrotic conditions. These findings implicate a 

specific NCAM isoform switch during fibrogenesis, thereby suggesting diverse roles of NCAM 

isoforms in homeostasis and during tissue repair.  
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Figure 4.2.5. Isolation of NCAM positive renal interstitial cells by laser capture 

microdissection (LCM) and changes in relative mRNA NCAM isofroms expression levels in 

incipient renal fibrosis. (A) Slide performed on cryostat section and stained by NCAM, clone 

Eric-1, with widespread NCAM expression, prior laser capture microdissection (arrow indicates 

the first selected NCAM positive cell for further LCM, while arrowhead shows second selected 

area). (B) Slide with rare NCAM cells within normal interstitium prior LCM.  (C), (D) and (E) 
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the same slides as Fig. (A) and (B) after LCM procedure.  (F) Relative expression levels of 

NCAM mRNAs isoforms, determined by quantitative real-time PCR (qRT-PCR), in NCAM
+
 

cells captured by LCM from normal and from renal tissue with incipient IRF, data are presented 

with mean values and standard error bars; due to high variability of variables, exclusively in 

diseased kidneys, nonparametric Mann Whitney U test was applied to assess the difference in 

mRNA levels between controls and diseased kidneys; there were 6 samples (2 cases in 

triplicates) of control cases and 42 (14 cases in triplicates) samples of cases with incipient renal 

fibrosis. 

4.3.Clinical relevance of NCAM expressing renal interstitial cells 

NCAM expressing renal interstitial cells has been detected within 59.4% human kidney biopsy 

samples, independently of the underling pathohistological diagnosis (p=0.995). However, it has 

been confirmed that frequency of NCAM positivity was higher in early stage of renal interstitial 

fibrosis, compared to other stages (Table 4.3.1). There were no significant difference of the 

distribution of NCAM expressing cases with regard to CKD stage, neither at the time of biopsy 

(p=0.954) nor at the time of last medical examination (p=0.601), as shown in the Tables 4.3.2 

and 4.3.3. However, it has been noticed that patients without NCAM expressing renal interstitial 

cell had higher serum creatinine values compared to patients with NCAM positivity (Table 4.3.2 

and 4.3.3), although it did not reach statistical significance. Nevertheless, proteinuria was lower 

in patients whose biopsies revealed interstitial NCAM positivity (3.97 g/24h) than in patients 

without NCAM expressing renal interstitial cells (8.41 g/24h) (p=0.024).  

These patients were also followed for 16 months (mean value). Pathohistological and clinical 

parameters were used in Kaplan-Meier survival analysis in order to define predictors of 

progression to advanced CKD stages. Among them, pathohistological diagnosis (p=0.026) and 

the degree of renal interstitial fibrosis (p=0.002) were marked as predictors of adverse outcome. 

Thus, patients with minimal change disease did not progress to advanced CKD stages, as 

illustrated on Fig.4.3.1.A. On the same Figure, panel B shows the impact of interstitial fibrosis 

degree on the CKD progression. Therefore, 90% of patients without fibrosis preserved kidney 

function during 3 years of follow-up, while patients with fibrosis exhibited deterioration of 

excretory kidney function with increasing incidence and faster appearance in advanced IRF 

stages (Fig.4.3.1.B). The presence of NCAM expressing renal interstitial cells (Fig.4.3.1.C) did 

not affect long-term patients outcome (with regard to CKD stages), p=0.273.  Possibility of 

progression to advanced CKD stages depended on the clinical parameters, such as serum 
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creatinine (p<0.001) and urea (p=0.007) values. Kidney function was maintaining longer in 

patients with normal serum creatinine and urea values compared to the patients with elevated 

aforementioned values (Fig.4.3.1.D and E). Worse outcome was observed slightly faster in 

patients with proteinuria >3g/day (Fig.4.3.1.F), however without statistical significance 

(p=0.231).  

Table 4.3.1. Distribution of patients with NCAM expressing renal interstitial cells with 

regard to pathohistological variables.  

Pathohistological variables 
NCAM+ renal interstitial cells 

p value 
Present Absent 

Diagnosis 

FSGS 5 (38.8%) 8 (61.5%) 

0.995 

Kidney graft 5 (71.4%) 2 (28.6%) 

MGN 4 (33.3%) 8 (66.7%) 

LN 5 (31.2%) 11 (68.8%) 

MesPGN 0 (0.0%) 4 (100.0%) 

MPGN 2 (33.3%) 4 (66.7%) 

MCD 3 (100.0%) 0 (0.0%) 

IgA nephropathy 2 (66.7%) 1 (33.3%) 

RPGN 2 (40.0%) 3 (60.0) 

Stage of interstitial renal fibrosis (IRF) 

IRF - 0  14 (70.0%) 6 (30.0%) 

0.001* 

IRF - 1 4 (13.8%) 25 (86.2%) 

IRF - 2 4 (44.4%) 5 (55.6%) 

IRF - 3 6 (54.5%) 5 (45.5%) 
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Table 4.3.2. Clinical and laboratory parameters recorded at the time of biopsy in patients 

with and without NCAM expressing renal interstitial cells. 

Clinical and laboratory parameters recorded at the 

time of biopsy 

NCAM expressing renal interstitial cells 

p value 

Absent Present  

CKD stage n (%) 

CKD 1 

CKD 2 

CKD 3 

CKD 4 

CKD 5 

12 (42.9%) 

3 (33.3%) 

3 (50.0%) 

5 (55.6%) 

2 (28.6%) 

16 (57.1%) 

6 (66.7%) 

3 (50.0%) 

4 (44.4%) 
0.954 

5 (71.4%) 

Serum creatinine [μmol/L]  146.64 ± 136.28 200.07 ± 239.45 0.244 

Creatinine clearance [ml/min]  77.56 ± 39.49 104.32 ± 70.19 0.199 

eGFR [ml/min/1.73m
2
]   73.80 ± 47.49 74.56 ± 47.21 0.952 

Urea [mmol/L]   10.61 ± 8.66 11.037 ± 8.17 0.838 

Glucose [mmol/L]   5.15 ± 1.11 4.76 ± 0.81 0.115 

Eritrocyturia  n (%) 
absent 15(44.1%) 19 (55.9%) 

0.585 
present 12 (37.5%) 20 (62.5%) 

Proteinuria [g/24h]   8.41 ± 9.45 3.97 ± 2.63 0.024* 

Red blood cells [×10
12

/L]   4.09 ± 0.66 4.09±0.76 0.999 

Hemoglobin [g/L]   122.85 ± 16.77 121.61 ± 25.01 0.852 

Hematocrit   0.35 ± 0.91 0.37 ±0.07 0.297 

MCV [fL]   88.64 ± 52.45 90.56 ± 4.31 0.231 
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Table 4.3.3. Clinical and laboratory parameters recorded at the time of last medical 

examination in patients with and without NCAM expressing renal interstitial cells. 

Clinical and laboratory parameters recorded at the 

time of last medical examination 

NCAM expressing renal interstitial cells 
p value 

Absent Present 

CKD stage  n (%) 

CKD 1 9 (45.0%) 11 (55.0%) 

0.601 

CKD 2 1 (14.3%) 6 (85.7%) 

CKD 3 1 (25.0%) 3 (75.0%) 

CKD 4 4 (100.0%) 0 (0.0%) 

CKD 5 2 (22.2%) 7 (77.8%) 

Serum creatinine [μmol/L]  183.95 ± 242.20 183.95 ± 242.20 0.560 

Creatinine clearance [ml/min]  86.75 ± 46.34 86.75 ± 46.34 0.334 

eGFR [ml/min/1.73m
2
] 74.59 ± 51.60 74.59 ± 51.60 0.744 

Urea [mmol/L] 
 

12.24 ± 11.64 12.00 ± 10.50 0.938 

Glucose [mmol/L] 5.27 ±2.24 5.27 ±2.24 0.175 

Eritrocyturia  n (%) 
absent 10 (34.5%) 19 (65.5%) 

0.547 
present 9 (42.9%) 12 (57.1%) 

Proteinuria [g/24h] 2.58 ± 2.36 2.58 ± 2.36 0.993 

Red blood cells [×10
12

/L]   3.43 ± 1.43 4.14 ±0.78 0.962 

Hemoglobin [g/L]   120.20 ± 17.1 123.71 ± 18.54 0.63 

Hematocrit   0.34 ± 0.05 0.39 ± 0.10 0.211 

MCV [fL]   93.52 ± 4.30 82.97 ± 29.32 0.248 

 



50 
 

 

Figure 4.3.1. Probability of preservation of kidney function depending on the 

pathohistological and clinical parameters. 
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Since it has been previously shown in animal models that NCAM interstitial detection could be 

transiently observed following hypoxic kidney injury (88), we felt encouraged to investigate 

NCAM relations to HIF molecules, as well as their relations to EPO productions. NCAM and 

HIF-2α were rarely co-expressed on the same cell, and expression pattern of HIF-2α in these 

cells included only cytoplasmic localization (Fig.4.3.2). However, NCAM expressing renal 

interstitial cells did not express EPO, as we already showed, but sometimes rare cells in the 

glomerular tuft exhibited NCAM/EPO co-localization (Fig.4.3.2).   

 

Figure 4.3.2. NCAM co-expression with HIF-2α in renal interstitial cell and NCAM/EPO 

co-expression in the cell of glomerular tuft. 

 

Furthermore, HIF-2α was found to be widely expressed in the nuclei both in interstitial cells and 

tubular epithelial cells, but strongly associated with some signs of chronic renal parenchymal 

damage, such as renal interstitial fibrosis (Fig.4.3.3.). However, HIF-1α was rarely detectable in 

the human kidney biopsy samples and was mainly found in almost normal interstitial 

compartment, sometimes associated with cells capable of EPO production (Fig.4.3.4.). 
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Figure 4.3.3. HIF-2α nuclear expressions (green) in renal interstitial cell within widened 

and fibrotic interstitial compartment and the same expression pattern in tubular epithelial 

cells of the tubuli surrounded by affected interstitium.  
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Figure 4.3.4. HIF-1α (green) nuclear expressions in renal interstitial cell could not be 

observed neither within cells of the widened and fibrotic interstitial compartment nor 

within atrophic tubular epithelial cells, whereas rare EPO producing cells (red) situated 

peritubularly in the area without fibrosis expressed HIF-1α (green) in the nuclei.   
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4.4.TGF-β down-stream effectors in kidney biopsy samples 

4.4.1. SMAD2 SMAD3 and SNAIL – immunohistochemistry 

Among 47 biopsy samples of patients presented with proteinuria (alone or as a part of nephrotic 

syndrome), SMAD3 was detected in all cases exhibiting constitutive expression in distal tubules 

and collecting ducts with cytoplasmic and membranous expression pattern (Fig.4.4.1.1.). 

Proximal tubular epithelial cells and atrophic tubuli did not express SMAD3, as shown on 

(Fig.4.4.1.1.B and D). 

  

  

 

Fig 4.4.1.1. SMAD3 expression in kidney biopsies.  (A) Immunopositivity of collecting ducts 

in renal medulla; (B) Immunopositivity of distal tubules in renal cortex; (C) Abundant interstitial 

fibrosis and tubular atrophy with global glomerulosclerosis in patient with end-stage kidney 

disease, PAS ×400; (D) Immunopositivity of collecting ducts in renal cortex and the absence of 

SMAD3 in atrophic tubuli.   

D C 

A B 
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Therefore, SMAD3 immunoreactivity was characteristic of morphologically preserved cortical 

and medullar distal tubules and collecting ducts and was not related to chronic renal parenchymal 

damages (interstitial fibrosis and tubular atrophy). On the other hand, SMAD2 protein was 

expressed in nuclei of many epithelial structures of nephron. This spectrum included distal 

tubules, collecting ducts and parietal cells of Bowman's capsule. Moreover, in contrast to 

SMAD3, SMAD2 was present diffusely in nuclei of all atrophic tubules surrounded by 

interstitial fibrosis (Figure 4.4.1.2.A), whereby morphologically preserved proximal tubules were 

devoid of SMAD2 immunoreactivity.  

SNAIL transcription factor had almost identical distribution and pattern of expressions as 

SMAD2. Thus, all atrophic tubules with SMAD2 presence in nuclei displayed also expression of 

SNAIL (Figure 4.4.1.2.B). Furthermore, we showed statistically significant correlation of 

SMAD2 and SNAIL expression in tubular epithelial cells with interstitial fibrosis (p<0.001) and 

tubular atrophy (p<0.001), as presented in Figure 4.4.1.3. Additionally, variable frequency of 

SNAIL expression was observed in glomerular podocytes. We have noticed that patients with 

neprhotic range proteinuria expressed SNAIL in podocytes (Figure 4.4.1.2.C), while in those 

with sub-nephrotic proteinuria values SNAIL could not be detected (Figure 4.4.1.2.D). 
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Figure 4.4.1.3. SMAD2 and SNAIL expressions in kidney biopsy samples (A) 

Immunopositivity of atrophic tubules surrounded with interstitial fibrosis, SMAD2 ×400; (B) 

Immunopositivity of atrophic tubules surrounded with interstitial fibrosis,  SNAIL ×400; (C) 

SNAIL expression in podocytes in patient with nephrotic range proteinuria, ×400; (D) The 

absence of SNAIL expression in podocytes in patient with sub-nephrotic proteinuria value, ×400. 

 

Figure 4.4.1.3. Distribution of SMAD2 and SNAIL tubular nuclear expressions with regard 

to presence and degrees of interstitial fibrosis (IRF) and tubular atrophy (TA). 

A B 

C D 
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4.4.2. SMAD2, SMAD3 and SNAIL - clinico-immunomorphological correlations  

It has been statistically confirmed that patients who expressed SMAD2 in nuclei of proximal 

tubule cells (i.e. all atrophic tubuli) had significantly higher urea and creatinine levels, as well as 

significantly reduced eGFR (Table 4.4.2.1). Furthermore, there were statistically significant 

more SMAD2 and SNAIL positive cases (with regard to nuclear tubular expression) with each 

increase in CKD stage, as shown in Table 4.4.2.1. 

Table 4.4.2.1. Clinical and laboratory parameters recorded at the time of biopsy in patients 

with and without SMAD2 and SNAIL expressing tubular epithelial cells. 

Clinical and laboratory parameters  
SMAD2 and SNAIL expressing tubular epithelial cells 

p value 

Absent Present  

Age (years) 
 

40.0±17.6 44.9±14.8 0.354 

CKD stage n (%) 

CKD1 9 (69.2%) 4 (30.8%) 

0.001* 

CKD2 3 (30.0%) 7 (70.0%) 

CKD3 2 (16.7%) 10 (83.3%) 

CKD4 0 (0.0%) 4 (100%) 

CKD5 0 (0.0%) 1 (100%) 

Serum creatinine [μmol/L]  84.5±29.3 129.7±68.3 0.006* 

eGFR [ml/min/1.73m
2
] 

 
95.9±33.3 61.7±38.1 0.007* 

Urea [mmol/L] 
 

7.3±1.9 9.8±4.9 0.026* 

Glucose [mmol/L] 
 

5.0±0.6 4.9±0.9 0.795 

Proteinuria [g/24h] 
 

4.2±2.3 6.2±4.5 0.072 

SNAIL expression in podocytes was clinically followed with higher proteinuria values. The 

average level of proteinuria in patients with SNAIL expression in podocytes was 7,4±3,5 g/24h, 

while in patients without SNAIL positivity in podocytes was only 1,6±0,97 g/24h (p<0.001). 
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4.4.3. Immunofluorescent detection of TWIST, activated form of SMAD proteins and 

SNAIL protein 

TWIST has been considered to be involved in EMT events and could be induced by TGF-β 

ligand. In the analyzed human kidney biopsy samples, TWIST was occasionally detected in 

proximal tubular epithelial cells (as labeled with N-cadherin) even in the absence of chronical 

tubulointerstitial damages (right panel on Fig.4.4.3.1.). However, normal proximal tubuli were 

usually labeled only with N-cadherin but not with TWIST (left panel on Fig.4.4.3.1.). 

Since immunohistochemistry gave useful hint for further investigations but provided 

immunolabeling with a lot of background staining, we further wanted to explore the presence of 

activated SMAD forms (phosphorylated) and to check SNAIL and TWIST expression using 

imunofluorescent labeling. Surprisingly, we found variable pSMAD2 and pSMAD3 

immunofluorescent staining among cases. Thus, pSMAD2 was expressed focally in tubular 

epithelial cells and sometimes was associated with MMP2 immunopositivity, as illustrated on 

Figure 4.3.3.1.A. The same pattern in tubular compartment was observed with pSMAD3 and 

MMP9 (Figure 4.3.3.1.B). However, pSMAD2, but not pSMAD3, was visible in renal interstitial 

cells closely packed between tubuli (Figure 4.3.3.1.C), as well as in glomerular tuft of the case 

with diabetic glomerolopathy (Figure 4.3.3.1.D). SNAIL was expressed exclusively in podocytes 

of patients with nephrotic range proteinuria and could not be detected in any other compartment 

by immunofluorescence (Figure 4.3.3.1E and F).  

 

Figure 4.4.3.1. TWIST/N-cadherin double immunofluorescent labeling. 
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Figure 4.4.3.2. pSMAD2, pSMAD3 and SNAIL immunofluorescent labeling with additional 

double staining with MMP2, MMP9 and α-SMA in human kidney biopsies. A) pSMAD2 

(green) and MMP2 (red); B) pSMAD3 (green) and MMP9 (red); C) pSMAD2 widespread 

interstitial expression in the case of diabetic nephropathy; D) pSMAD2 glomerular expression in 

the same case of diabetic nephropathy; E) SNAIL expression in glomerulus of patient clinically 

presented with nephrotic range proteinuria; F) Glomerular SNAIL (green) and interstitial α-SMA 

(red) expressions in patient clinically presented with nephrotic range proteinuria.  
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4.5.Gene expression levels - kidney biopsy samples of renal fibrosis 

It has been observed that NCAM-140 became higher expressed in advanced IRF stages, and 

FGFR1 has been shown similar trend, as shown on Fig. 4.5.1.  

 

Figure 4.5.1. NCAM-140 and FGFR1 mRNA expression levels among different IRF 

degrees. 

The most prominent changes within various stages of renal interstitial fibrosis were detected in 

mRNA expression levels of ITGA5 and ITGB1. Fig. 4.5.2 illustartes extremely high ITGA5 

expression in the most severe IRF stage. 

  

Figure 4.5.2. ITGA5 and ITGB1 mRNA expression levels among different IRF degrees. 
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FSP1 was the most prominent in the earliest stage of fibrosis (IRF-1), while α-SMA mRNA was 

the highest in the most advanced stage (IRF-3), as shoen on the Fig.4.5.3. 

 

Figure 4.5.3. FSP1 and α-SMA mRNA expression levels among different IRF degrees. 

RUNX1, RUNX1T1 and PRMT1 showed increased expressions in higher IRF stages. (Fig.4.5.4) 

 

Figure 4.5.4. RUNX1, RUNX1T1 and PRMT1 mRNA expression levels among different 

IRF degrees. 
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Considering increased expressions of aforementioned genes with each increase in severity of 

renal interstitial fibrosis, regardless of the underlying kidney diseases, we further explored their 

correlations with RUNX1 transcription factor since RUNX1 is one of known transcriptional 

inducers of NCAM expression (89). Considering also that RUNX1 activity can be stimulated by 

PRMT1 induced methylation (90) and suppressed by RUNX1T1 (91), we have been searched 

thir possible relations, as illustrated on Fig.4.5.5 and Fig.4.5.6. 

 

 

 

Figure 4.5.5. Spearman’s correlations of RUNX1 with RUNX1T1, PRMT1, NCAM-140 and 

FGFR1. 
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Figure 4.5.6. Pearson’s correlations of RUNX1 with FSP1, α-SMA, ITGA5 and ITGB1. 
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4.6.The effects of TGF-β on kidney tubular epithelial cells (HK-2 cells) and    

modulation of these effects by FGFR inhibitor  

4.6.1.  Time-dependant morphological changes of HK-2 cells 

Based on the cell morphology, clear influence of TGF-β1 was detected 72h after stimulation. As 

shown in the Fig.4.6.1.1, cells were spindle-shaped and acquired fibroblast-like morphology. 

PD173074 completely prevented such morphological changes under the TGF-β1 influence, 

leading to preservation of normal epithelial shape of HK-2 cells. 

 

Figure 4.6.1.1. Time dependant morphological changes induced by TGF-β1 and modulated 

with PD173074.  
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4.6.2. Migration sctratch assay 

 

 

Figure 4.6.2.1. Pictures captured at the time of treatment and scratch (0 day) and next 

experimental day (1st day). 
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Figure 4.6.2.2. Pictures captured on the second and third experimental days. 

As shown in the Fig.4.6.2.1 and 4.6.2.2., TGF-β1 treated cells migrated faster, and PD173074 

suppressed TGF-β1 induced potential of enhanced cell migration. 

Using scratch assay analysis, TGF-β1 treated cells migrated faster than control HK-2 cells, 

PD173074 treated, as well as TGF-β1+PD173074 treated cells. Thus, 24h after TGF-β1 



67 
 

stimulation, around 55% of scratch distance was visible, whereby in three other groups almost 

90% of initial scratch distance could be observed (Fig.4.6.2.3.). The same cell migration patterns 

were detected during the next two experimental days. Illustrations in the Fig.4.6.2.3 show clear 

difference in the migration capacity of cells treated with TGF-β1 compared to the cells 

stimulated with TGF-β1 in addition to PD173074 within three days. 

 

 

Figure 4.6.2.3. Scratch assay analysis within three experimental days. 
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4.6.3. Gene expression analysis 

Initially, HK-2 cells were tested for the relative mRNA expression levels of NCAM (three 

isoforms: NCAM-120, NCAM-140, NCAM-180) and FGFR1 within control and TGF-β1 

(10ng/μl) treated group. qRT-PCR analysis revealed over-expression picks of both NCAMs and 

FGFR1 24h after TGF-β1 stimulation (Fig. 4.6.3.1 A), whereby morphological difference was 

not observed among these two group using light microscopy (Fig. 4.6.3.1 C). 

 

Figure 4.6.3.1. Time-dependant morphological and molecular changes upon TGF-β1 

stimulation of proximal tubular epithelial cells (HK2-cells). A) relative mRNA expression 

levels of NCAM isoforms and FGFR1 at 5 different time points (6h, 12h, 24h, 48h, 72h) after 

TGF-β1 treatment; B) relative mRNA expression levels of genes known to be affected during 

TGF-β1 stimulation measured 24h and 48h after TGF-β1 treatment of HK2-cells; C) cell 

morphology observed at three time points (24h, 48h, 72h) optico-microscopically in control 

group, as well as in groups treated with TGF-β1 alone and in addition to PD173074. 
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However, 48h upon TGF-β1 administration HK-2 cells started to change their phenotype 

acquiring somewhat spindle shape appearance, but still many of them resemble normal epithelial 

morphology (Fig. 4.6.3.1 C). At that time point, rapid decrement of NCAMs and FGFR1 mRNA 

levels was observed (Fig. 4.6.3.1 A). Furthermore, genes known to be affected in TGF-β1 

induced fibrosis were highly over-expressed 48h after stimulation, whilst their expressions were 

low the day before (24h after TGF-β1) as illustrated in Fig. 4.6.3.1 B. Since it seemed that over-

expression picks of NCAMs and FGFR1 were the earliest changes observed upon TGF-β1 

stimulation, and appreciating rapid decline of their mRNA levels even next day that were 

followed by increased expression of SLUG, SNAIL, TWIST, MMP2, MMP9, FSP-1 and α-

SMA, we hypothesized that at least FGFR1 could have an important role in the initiation of renal 

fibrosis in vitro. Thus, we further wanted to explore effects of FGFR1 inhibitor (PD173074) on 

TGF-β1 induced fibrosis, following cell morphology, cell migration, gene expressions and 

relevant protein expressions and localizations. 

Since the picks of genes up-regulations upon TGF-β1 stimulation were detected 48h after such 

treatment, we further followed gene expression levels under the impact of both PD173074 and 

TGF-β1 in order to clarify ability of PD173074 to modulate aforementioned transcriptional 

events.  

SLUG, SNAIL and TWIST 

Thus, 48h after TGF-β1 and PD173074 stimulation SLUG, SNAIL and TWIST were expressed 

at significantly lower levels compared to their expression under the influence of TGF-β1 alone 

(Fig. 4.6.3.2 A), achieving the levels similar to those observed in control HK-2 cells. At 72h 

SLUG mRNA (Fig. 4.6.3.2 B) was lower than 48h after experimental procedure. Although 

PD173074 suppressed SLUG up-regulation, the difference was not significant (Fig. 4.6.3.2 B). 

However, SNAIL remained up-regulated 72h after TGF-β1 stimulation, but unfortunately 

PD173074 could not significantly resist powerful TGF-β1 influence (Fig. 4.6.3.2 B). 

Furthermore, TWIST reached over-expression pick 72h upon TGF-β1 treatment, whereby such 

effect was remarkably reduced by PD173074 administration (panel B).  

  



70 
 

FSP-1 and α-SMA  

Both FSP-1 and α-SMA are considered as key contributors to tissue fibrosis. Consequently, it 

was not surprising that their relative mRNA expression levels were highly over-expressed in in 

vitro model of TGF-β1 induced renal fibrosis (Fig. 4.6.3.2 C and D). However, PD173074 

successfully suppressed extremely extensive up-regulation of either FSP-1 or α-SMA, as shown 

in Fig. 4.6.3.2 C and D. 

 

 

Figure 4.6.3.2. Modulation of gene expressions by PD173074 in TGF-β1 stimulated HK-2 

cells – SLUG, SNAIL, TWIST, FSP-1 and α-SMA (48h and 72h). 
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E-cadherin and N-cadherin  

It has been shown that switch of cadherins appeared 48h after TGF-β1 application, persisting 

also the next day (Fig.4.6.3.3). Thus, a remarkable molecular trait of TGF-β1 influence on HK-2 

cells was E-cadherin down-regulation followed by up-regulation of N-cadherin. The effect of 

PD173074 on modulation of cadherin expressions was not too strong at the beginning (48h), but 

became striking on the third day (72h). Indeed, the third experimental day was accompanied by 

almost complete restoration of cadherin expression. 

  

Figure 4.6.3.3. Modulation of gene expressions by PD173074 in TGF-β1 stimulated HK-2 

cells: E-cadherin and N-cadherin relative mRNA expression levels. 

 

MMP2 and MMP9 

MMP2 responded stronger than MMP9 during TGF-β1 stimulation (Fig. 4.6.3.4). PD173074 

succeeded to prevent high over-expressions of both MMPs, but still MMP2 remained up-

regulated in comparison to control HK-2 cells. 
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Figure 4.6.3.4. Modulation of gene expressions by PD173074 in TGF-β1 stimulated HK-2 

cells: MMP2 and MMP9 relative mRNA expression levels. 

 

Integrins (ITGA5 and ITGB1) 

In response to TGF-β1 stimulation, HK-2 cells upregulated expressions of both ITGA5 and 

ITGB1, whereby ITGB1 mRNA levels were slightly higher compared to ITGA5.   Statistically 

significant down-regulation of both ITGA5 and ITGB1 was observed upon PD173074 treatment 

in the cells stimulated with TGF-β1 (Fig. 4.6.3.5). Although ITGA5 was still overexpressed 48h 

after treatment, an observed downregulation was significant, and it became confident next 

experimental day (72h).  

  

Figure 4.6.3.5. Modulation of gene expressions by PD173074 in TGF-β1 stimulated HK-2 

cells: ITGA5 and ITGB1 relative mRNA expression levels. 
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FGFR1 and FGFR2 isoforms (IIIb and IIIc) 

qRT-PCR primers for FGFR1 and FGFR2 IIIb and IIIc isoforms were not good enough to get 

strong conclusions. As illustrated below (Fig. 4.6.3.6), on the amplification plots GAPDH was 

excellent, while FGFR1 IIIb and FGFR2 IIIc were not satisfying but not so bad. Moreover, 

FGFR1 IIIc and FGFR2 IIIb could not be used for gene expression analysis.  

 

 

GAPDH 

FGFR1 IIIb 
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Figure 4.6.3.6. Amplification plots of GAPDH and FGFR1 and FGFR2 (IIIb and IIIc 

isoforms). 

FGFR2 IIIb 

FGFR1 IIIc 

FGFR2 IIIc 
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Thus, we presented on the Fig. 4.6.3.7 total FGFR1 and FGFR2, as well as mRNA levels of 

FGFR1 IIIb and FGFR2 IIIc isoforms. Despite over-expression of total FGFR1 and FGFR2, both 

FGFR1 IIIb and FGFR2 IIIc isoforms were downregulated upon TGF-β stimulation and were 

restored after PD173074 administration (Fig. 4.6.3.7).  

  

Figure 4.6.3.7. Modulation of gene expressions by PD173074 in TGF-β1 stimulated HK-2 

cells: total FGFR1 and FGFR1 IIIb isoform and total FGFR2 and FGFR2 IIIc isoform - 

relative mRNA expression levels 48h after treatment. 

 

4.6.4. Protein expression detected by double immunofluorecent labeling 

Since previous results (with regard to cell morphology, their migration capacity and gene 

expressions estimated by qRT-PCR) suggested potential of FGFR inhibitor (PD173074) to 

suppress TGF-β1 effects on HK-2 cells, we further wanted to evaluate presence and localization 

of TGF-β1 down-stream effectors, such as SMAD proteins, as well as transcription factors up-

regulated in response to TGF-β1/SMAD signaling (SNAIL and TWIST). Considering α-SMA 

and N-cadherin up-regulation upon TGF-β1 treatment and their decrement after PD173074 

application in TGF-β1 treated HK-2 cells, we performed immunolabeling using these two 

antibodies in the experimental groups. Moreover, vimentin as an intermediate filament protein 

characteristic for mesenchymal cells, and Ki-67 as marker of proliferation were also explored by 

immunofluorescent staining.  
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PD173074 prevented pSMAD2 and pSMAD3 appearance in the nuclei 

SMAD2 and SMAD3 proteins became phosphorylated upon TGF-β1 and were detected in the 

nuclear compartment as pSMAD2 and pSMAD3 either 48 (Fig. 4.6.4.1) or 72h (Fig. 4.6.4.2) 

after stimulation (panels on the left side). 

 

Figure 4.6.4.1. Double immunofluorescent labeling: pSMAD2/Vimentin and pSMAD3/Ki-

67 – 48h after treatment. 

These green fluorescent dots representing aforementioned pSMAD proteins could not be visible 

in the TGF-β1+PD173074 treated cells (Fig. 4.6.4.1 and Fig. 4.6.4.2, panels on the right side), 

suggesting that PD173074 (known as FGFR inhibitor) suppressed TGF-β1 signaling through 

inhibition of SMAD dependent downstream actions. 
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Figure 4.6.4.2. Double immunofluorescent labeling: pSMAD2/Vimentin and pSMAD3/Ki-

67 – 72h after treatment. 

Since PD173074 acts as small ATP competitive inhibitor of tyrosine/kinase receptors it was not 

clear why serine/threonine dependant phosphorylation of SMAD proteins was affected by 

administration of PD173074. Thus, we decided to look at even earlier time point and performed 

immunolabeling 24h after stimulation with TGF-β1 alone and with TGF-β1+PD173074. 

Surprisingly, pSMAD3 was detected in the cytosol, but not in the nuclei, in both experimental 

groups (Fig. 4.6.4.3), indirectly implicating that PD173074 did not cross-react with 

serine/threonine dependent SMAD phosphorylation. Possible explanation for later disappearance 

of pSMAD3 from the cells treated with TGF-β1+PD173074 could be that prolonged effect of 

PD173074 prevents nuclear translocation of pSMAD3 and stimulates its degradation in the 

cytosol.  
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Figure 4.6.4.3. Immunofluorescent labeling of pSMAD3 in HK-2 cells 24h after treatment 

with TGF-β1 alone and in addition to PD173074. 

 

PD173074 preserved vimentin expression and did not affect cell proliferation capacity 

Although vimentin is known as intermediate filament protein of mesenchymal cells, it is 

constitutively expressed in normal human proximal epithelial cells. As shown on Fig. 4.6.4.1 and 

Fig. 4.6.4.2, vimentin (red) is expressed upon exposure to TGF-β1 (diffusely), as well as upon 

additional stimulation with PD173074 (perinuclearly).  

Based on immunofluorescent staining, nuclear detection of Ki-67 (red) was observed in each 

cell, thus there was no influence of PD173074 on the cell proliferation (Fig. 4.6.4.1 and Fig. 

4.6.4.2), although migration capacity was reduced (Fig. 4.6.2.3). 

Influence of PD73074 on the presence and localization of SNAIL and TWIST 

TGF-β1 stimulation caused widespread SNAIL protein expression (Fig. 4.6.4.4 and Fig. 4.6.4.5), 

beside its effects on significant transcriptional up-regulation of SNAL mRNA (Fig. 4.6.3.2 A and 

B). At 48h experimental time point, SNAIL was detected both in cytoplasm and nuclei (Fig. 

4.6.4.4). 
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Figure 4.6.4.4. Double immunofluorescent labeling: SNAIL/α-SMA and TWIST/N-cadh – 

48h after treatment. 

These findings were confirmed the next day (72h), whereby an immunofluorescent signal (green) 

became even stronger in the nuclear compartment (Fig. 4.6.4.5). Treatment with PD173074 

succeeded to prevent SNAIL protein appearance either in cytoplasm or nuclei during 48h of 

experimental procedures (Fig. 4.6.4.4) and that was in accordance with highly down-regulated 

SNAIL mRNA expression as shown on Fig. 4.6.3.2 A.  However, 72h upon treatment together 

with TGF-β1 and PD173074, SNAIL became slightly detectable in nuclei of few HK-2 cells 

(Fig. 4.6.4.5) but still more than significantly less compared to TGF-β1 treated group. 

TWIST was significantly over-expressed in TGF-β1 treated group both on mRNA (Fig. 4.6.3.2) 

and protein level (Fig.4.6.4.4 and Fig. 4.6.4.5). Although PD173074 reduced TWIST mRNA 

level (Fig. 4.6.3.2, panels A and B), TWIST protein was still visible in the cells. However, it is 

very important to notice that at 48h TWIST was mainly detected in cytoplasm, whereby its 
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protein expression was also detected in nuclei of some HK-2 cells stimulated with PD173074 

and TGF-β1. 

 

Figure 4.6.4.5. Double immunofluorescent labeling: SNAIL/α-SMA and TWIST/N-cadh – 

72h after treatment. 
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PD173074 completely prevented α-SMA protein expression upon TGF-β1 stimulation, but 

did not influence N-cadherin 

α-SMA, as a crucial protein expressed upon TGF-β1 stimulation, was observed in cytoplasm of 

HK-2 cells both 48h and 72h after  TGF-β1 treatment (Fig. 4.6.4.4 and 4.6.4.5). This phenotype 

was not detected in the group stimulated with PD173074 and TGF-β1 together, since α-SMA 

was not visible on the protein level in any cell (Fig. 4.6.4.4 and 4.6.4.5). These results obtained 

by immunofluorescent labeling were in accordance with qRT-PCR data (Fig. 4.6.3.2 C and D).  

Despite significant changes of N-cadherin mRNA observed among control, TGF-β1 and TGF-

β1-PD173074 treated groups of HK-2 cells (Fig.4.6.3.3), immunolabeling discovered the 

presence of N-cadherin (cell surface red immunofluorecent signal) in all groups (Fig. 4.6.4.4 and 

4.6.4.5), including control (not shown).  
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5. DISCUSSION  

Progression of chronic kidney disease (CKD) remains an unsolved problem in clinical 

nephrology since approaches to reverse or repair chronic renal injury are not yet available (92). 

Independent of the underlying disease, loss of functional kidney parenchyma and tubulo-

interstitial fibrogenesis are commonly observed when kidney injury progresses towards CKD (9). 

In this regard, epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells (TECs) and 

consecutive G2/M arrest have been shown to determine maladaptive kidney repair in response to 

injury, ultimately associated with renal fibrogenesis and progression into CKD (40, 93, 94). 

Persistent effort to modulate CKD progression has led scientists to better understand molecular 

mechanisms driving renal fibrosis (95). TGF-β1 is considered as a key mediator of intrarenal 

EMT program and renal fibrosis (10, 96, 97). Preclinical studies found many effective strategies 

to attenuate EMT program in rodents (11-13), but only a few of them are applicable in humans 

(10). Moreover, some of the proposed therapy strategies were efficient to reduce fibrosis, but 

unfortunately it stimulated inflammation (98). Thus, further investigations to develop new 

strategies to modulate EMT program should be focused on down-stream effectors of TGF-β1 

signaling pathway. 

NCAM and FGFR signaling during EMT program have already been described and it has been 

noticed that both molecules are fundamental for EMT program in vitro (99-102; 24-26, 14). 

Moreover, their up-regulations in response to TGF- β have been also previously detected (103-

107). Thus, it encouraged us to investigate aforementioned molecules in human kidneys and to 

evaluate their significance in fibrotic response within the renal interstitial compartment.  

NCAM and renal fibrosis: its isoforms and possible transcriptional regulation 

Here we presented that NCAM cells were really scarce in the normal interstitial compartment of 

the kidney and were almost exclusively increased at the beginning of renal interstitial fibrosis, 

independently of the underling diagnosis. Looking deeper at the molecular background, NCAM-

140 isoform appeared to be a hallmark of these NCAM+ cells in incipient renal fibrosis since it 

was specifically over-expressed in those kidneys compared to NCAM+ cells found in normal 

interstitium. Furthermore, it has been observed that NCAM-140 isoform is also over-expressed 

focally in the cardiomiocytes as reaction to local scar formation in ischemic cardiomyopathy (89, 



83 
 

108). Since molecular characterization of NCAM expressing renal interstitial cells revealed their 

heterogeneity, we enrolled series of experimental procedure in order to see whether these cells 

could further contribute to progression of renal fibrosis or they could serve as counteracting 

mechanisms preventing/ameliorating such disease progression. 

Taking into account that NCAM is widely expressed during embryonic kidney development in 

metanephric mesenchyme and its derivates and progressively disappears during maturation of 

structures which further forms nephron unit in the kidney through the process of mesenchymal-

to-epithelial transformation (MET) (86, 109), we thought that rare interstitial NCAM expressing 

cells in mature adult kidney could represent population of resident metanephric mesenchymal 

cells with self-renewing and stem like properties. However, it was hard to perceive possible 

origin of increased NCAM+ cell population within the diseases kidneys with early interstitial 

fibrosis. Thus, there were several possible explanations for this phenomenon. I might be that an 

increased number of NCAM+ renal interstitial cells arise from enhanced proliferation of resident 

NCAM+ cells, however the question is whether these resident cell have such high proliferation 

capacity to fill abundantly the interstitial compartment as observed in early stages of renal 

fibrosis. The second possibility is that NCAM molecule appears on the surface of some kind of 

fibroblasts, such heterogeneous within the fibrotic interstitium, during the course of renal 

fibrosis. It could be supported by the presence of HE4 protein in some NCAM+ cells, since HE4 

is newly labeled as marker of activated fibroblasts (28). However, the most interesting question 

for us was whether an increased number of NCAM+ interstitial cells could represent transient 

phenotype of tubular epithelial cells undergoing EMT and serve as an evidence of in vivo EMT 

process within the kidney following tubular injury. This question looks the most exciting, but 

this answer is the most difficult to be given. Although EMT is widely investigated by numerous 

researchers in in vitro studies (17), there is a lacking of evidence that such process contribute to 

fibrogenesis in vivo. This hypothesis made controversies and polemics in science (110, 111).  

Despite these controversial opinions with regard to existence of EMT driving fibrosis in vivo 

(110, 111), in vitro studies could be helpful in determination of molecular function and could 

provide more conclusive and confident data in order to clarify significance of previously 

observed phenomenon. 
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Here we used an established in vitro model of EMT induced renal fibrosis, applying TGF-β1 as a 

major trigger of EMT program in cultured proximal tubular epithelial cells of the kidney (HK-2 

cells). We followed various EMT events at several time points during 96 hours and carefully 

monitored changes, including gene expression levels. Thus, the robust induction of all three 

NCAM isoforms was observed with the highest mRNA levels 24h after EMT program 

stimulation. In accordance with our results are the findings arisen from the study of Lehembre et 

al (14). Moreover, it has been also previously reported that TGF-β is involved in modulation of 

NCAM expression, inducing up-regulation of all three major NCAM isoforms, mainly NCAM-

140, but also in a lesser extent two others (NCAM-120 and NCAM-180) (103-105). 

TGF-β, the major activator of EMT program, seems to act by stimulating the transcriptional 

activity of the NCAM gene (104). There are several transcription factors with potential binding 

site to NCAM promoter region (NF-kappa B, PAX, HOX, RUNX1). However, it seemed that 

RUNX1 could be directly involved in the stimulation of aberrant NCAM expression, since other 

known transcription factors are usually constitutively expressed, while RUNX1 follows the trend 

of NCAM-140 up-regulation (89). Thus we proceeded to the next investigation step and 

performed kidney tissue lysates of the 16 patients suffered from various glomerulonephritides 

and glomerulopathies whose biopsies revealed different degrees of interstitial fibrosis. Here we 

examined expression of NCAM-140 isoform, as well its potential transcription factor RUNX1. 

qRT-PCR analysis discovered increasing relative mRNA expressions of both NCAM-140 and 

RUNX1 with increasing IRF stages, implicating that NCAM-140 up-regulation in severely 

affected kidneys with IRF can be result of over-expression of RUNX1 gene. Furthermore, 

PRMT1 as a known epigenetic positive regulator of RUNX1 is also highly expressed in 

advanced IRF stages following the same dynamics of both NCAM-140 and RUNX1 mRNA 

expressions. Unfortunately, these observations with regard to NCAM-140 expression levels are 

not in accordance with the finding of immunolabeling using NCAM antibody, since in 

morphologically NCAM+ cells were most numerous in the less severe IRF in the kidney biopsy 

samples. In order to try to explain this inconsistency between NCAM mRNA levels and protein 

detection among various IRF stages, afterward one more gene is explored on the mRNA level – 

RUNX1T1 as a putative repressor of RUNX1. Surprisingly we found nearly 400 times fold 

increase in RUNX1T1 in the most advanced IRF stage. Despite obvious increase in PRMT1 (159 

times fold increase) and RUNX1 (79 times fold increase), it is very likely that huge RUNX1T1 
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over-expression overcomes the possible effects of NCAM-140 inducers. Although RUNX1T1 

has not been well studied alone yet, its function is usually considered through the roles of 

RUNX1/RUNX1T1fusion oncoprotein. Nevertheless, these findings have to be further explored 

and it is possible that distinct explanations for currently acquired data in our study would be 

available.  

NCAM signaling pathways 

NCAM is not a simple adhesion molecule, but it is rather involved in signaling cascades essential 

for many physiological processes and could be also aberrantly activated during variable 

pathological conditions (89, 101, 108). 

Since NCAM was apparently up-regulated early upon response to TGF-β1 and considering its 

potential signaling not only by NCAM-NCAM homophilic bindings but also its signaling 

through the activation of FGFR signaling pathway, we tried to find any potential relationship 

between NCAM and FGFR during fibrotic response in kidney and their association with EMT 

program. Indeed, here we present that both NCAM and FGFR1 are rapidly over-expressed after 

EMT program induction, implicating their role in the initiation of EMT in proximal tubular 

epithelial cells (TECs). Although all three NCAM isoforms were up-regulated during EMT 

program in TECs, the most prominent was the expression of NCAM-140. Furthermore, applying 

qRT-PCR we also revealed significant increase of NCAM-140 and FGFR1 mRNAs with 

progression of renal fibrosis in human biopsy samples. Lehembre et al. also showed that upon 

TGF-β EMT induction, NCAM starts to be more expressed, specifically its 140kDa isofrom (14). 

These findings were the triggers for subsequent investigation steps stimulating us to further 

clarify their relation to other molecules known to be involved during NCAM and FGFR 

signaling. Beside heterophilic NCAM interaction with FGFR (cell-cell interaction), it is also 

involved in cell-matrix interactions through the interactions with integrins. Thus, ITGB1 

(integrin β1) was found to be important for neuroblastoma cell migration through the interplay 

with NCAM-140 (112). Furthermore, it has been illustrated that this process depends on 

MAPK/ERK activation. Since ERK is the point of convergence of NCAM-NCAM and NCAM-

FGFR pathways, the investigator applied MAPK and FGFR (50 nM PD173074) inhibitors. They 

found that NCAM/integrin β1dependant cell migration was FGFR independent, although 

requires MAPK/ERK signaling cascade that might be induced through the other mechanisms 
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including NCAM-NCAM interactions (112). However, in our experiments it has been shown 

enhanced HK-2 cell migration toward TGF-β1 could be significantly suppressed by PD173074, 

thus leading us to conclude that FGFR signaling play an important role in cell migration during 

EMT program induced in HK-2 cells. Since in the absence of FGF ligands, a highly over-

expressed FGFR1 could be stimulated only by interaction with NCAM (up-regulated in the same 

manner, after TGF-β1 induction), we concluded that forced migration of HK2-cells undergoing 

TGF-β1 induced EMT is highly dependent on NCAM/FGFR1 signaling pathway. In parallel, 

performed qRT-PCR analysis shows also significant decrease of ITGB1 upon FGFR signaling 

blockade. In human biopsy samples, ITGB1 follows the same trend of expression as NCAM-140 

and was highly expressed in the most advance fibrosis stage. Beside, stimulation of cell 

migration undergoing EMT, integrity of NCAM/FGFR1 signaling appeared to be important for 

the induction and maintenance of mesenchymal morphological and molecular traits, and will be 

further discussed. Since β1 usually makes a complex with α5 subunit of integrin (113), and 

considering an involvement of α5 integrin in fibroblast activation and contribution to progression 

of renal fibrosis (5), we became encouraged to assess α5 integrin mRNA expression during EMT 

in vitro and renal fibrosis in human biopsy samples. It has been found here that ITGA5 mRNA 

expression levels increase during EMT program and could be sufficiently down-regulated by 

inhibition of NCAM/FGFR signaling. Moreover, in human kidneys, mRNA levels of ITGA5 

correlate with the degree of interstitial fibrosis. Thus, in the interstitium widely affected with 

fibrosis the levels of ITGA5 were the highest. Integrin α5 is already found to be significantly up-

regulated in response to TGF-β in murine tubular epithelial cells (114). Since α5 subunit defines 

binding site to ECM components of α5β1 integrin, it has been proposed that it has high affinity 

to fibronectin (15, 113). 

Moreover, several studies also suggested that both NCAM and FGFR are fundamental for EMT 

in vitro. However, it has been also indicated that alternative splicing of FGFRs’ Ig3 (D3) domain 

generates IIIb and IIIc isoforms influencing distinct affinity of FGFRs to their FGF and other 

ligands (83). NCAM specifically binds by its second FNIII domain to Ig2 and Ig3 FGFRs 

domains (24, 26). However, since FGFR isoforms differ in Ig3 domain, researchers further found 

the NCAM interacts with IIIc FGFR isoforms (24, 26, 115). 
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FGFRs IIIb isoforms are characteristically found in epithelial cells, whereas IIIc isoforms are 

known to be expressed by mesenchymal cells and during carcinogenesis, leading to disease 

progression (116, 117).  Thus, it was reasonable to further consider expressions of specific FGFR 

isoforms during EMT program. It has been noticed TGF-β1 induced switches from IIIb to IIIc 

isoform (116). However, they found that FGFR2 IIIb isoform is characteristically expressed by 

NMuMG cells, and EMT induced acquisition of FGFR1 IIIc isoform. It indicates that not only 

alternative splicing changes during EMT, but also FGF receptor type could be affected. 

Accordingly, in our study we have tried to explore the influence of TGF-β1 on the expression 

levels of alternatively spliced FGFR1 and FGFR2 isoforms (IIIb and IIIc). However, we have not 

been able to make strong conclusions because the lacking of evidence for mRNA expressions of 

FGFR1 IIIc and FGFR2 IIIb isoforms, but we suggested that both FGFR1 IIIb and FGFR2 IIIc 

isoforms could be down-regulated in response to the EMT program induction. Nevertheless, 

since we observed over-expression of both total FGFR1 and FGFR2 mRNAs, it could be 

indirectly concluded that these over-expressions resulted from FGFR1 IIIc and FGFR2 IIIb 

isoforms up-regulation (since the second isoform of both FGFRs were down-regulated). 

Moreover, these changes were almost completely restored by inhibition of NCAM/FGFR 

signaling (by PD173074), implicating that specific FGFR isoforms are required for the 

interaction with NCAM and consecutive signaling during EMT of HK-2 cells. 

Molecular background of renal fibrosis in human kidneys: an involvement of 

TGF-β signaling pathway 

TGF-β1 has been widely investigated in many in vitro and in vivo models of organ fibrosis, 

including those in kidneys. However, the morphological evidence of the existence and 

contribution of this signaling pathway to human kidney fibrosis in vivo have not been completely 

clarified yet. Hence, here we were able to present that major down-stream signaling effectors of 

TGF-β1 are expressed in many epithelial structures in human kidneys either morphologically 

preserved or damaged. An abundant constitutive expression of pSMAD2/3 is already found in 

distal tubules and collecting ducts in human kidneys (118). However, they found co-localization 

of pSMAD2/3 and SNAIL with vimentin in tubules exhibiting EMT like features in human 

kidney transplants (118). Beside constitutive expressions of SMADs and SNAIL, our study 

revealed similar expression patterns of both SMAD2 and SNAIL as found in kidney grafts, and 
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they were significantly related to chronic renal parenchymal damages (tubular atrophy and 

interstitial fibrosis) influencing excretory renal functions with impaired response and leading to 

acquisition of more advanced CKD stages. It has been also shown that SNAIL is not simply 

related to morphological EMT features in kidney transplants (fibrosis), but was found to be 

significantly related to graft dysfunction (low eGFR levels) (118). Our study also revealed that 

activated SMADs (pSMAD2/SMAD3) are expressed in lesser extent than non-phosphorylated 

SMADs. Indeed, we did not find constitutive expression of pSMAD2/SMAD3 in human kidneys 

(by immunofluorescent labeling), but rather observed them in epithelial cells of some tubuli 

within the core biopsy. These tubuli also expressed MMP2 and MMP9, implicating an early 

disturbance that would probably lead to further tubular damage involving degradation of tubular 

basement membrane and providing access of transforming epithelial cells to the interstitial 

compartment, suggesting their potential to contribute fibrogenesis (an active process of ECM 

remodeling/production). An induction of MMP2 and MMP9 has been already found in epithelial 

cells as reaction to FGF-2 stimuli (119). 

SNAIL shares the same pattern of expression as SMAD2 in human kidney tubulointerstitial 

compartment, but also has an additional involvement in glomerular damage. Indeed, in parallel 

with affection of excretory function of the human kidney, SNAIL also contributes to impaired 

podocyte function. Thus, SNAIL expression by podocytes leads to appearance of nephrotic range 

proteinuria values. These findings did not surprise us since it has been previously shown that in 

nephrotic rats Snail is highly expressed in podocytes either on protein or in mRNA levels (120). 

The underling mechanism considers Snail induced repression of nephrin synthesis, as one of the 

important protein constituent of slit-diaphragm between glomerular podocytes. Additionally, 

there are evidences that also high glucose levels in mice are able to induce podocytes’ Snail 

over-expression, subsequently leading to down-regulation of both nephrin and podocin (121).  

However, both studies found that Wnt/β-Catenin pathway act up-stream of Snail induction in 

podocytes (120, 121), although is known that SNAIL can be induced by TGF-β as well (122). 

Induction of Snail is sufficient to induce renal fibrosis in animals, and high mRNA SNAIL levels 

are found in fibrotic human kidneys (123, 124). For the first time here we detected 

morphological evidence of the SNAIL involvement in chronic tubulointerstitial damages and 
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approved that aberrant SNAIL expression by podocytes could be responsible for nephrotic range 

proteinuria in patients.  

Our results that came from experimental induction of EMT program in tubular epithelial cells of 

the human kidney and that were confirmed in human biopsy samples suggested an involvement 

of both NCAM and FGFR in initiation step of renal fibrosis. In the same setting, other molecules 

that are known to be affected in fibrotic response were also examined. Thus, undoubtedly we 

found significant increase in mRNA levels of ITGA5 (encoding integrin α5) and ITGB1 

(encoding integrin β1) both after EMT program induction in vitro and in the whole human 

kidney tissue lysates. By increased severity of renal interstitial fibrosis, a gradual increment of 

both integrins’ mRNA was observed. α5β1 integrin is known marker of in vitro EMT (4), and is 

also previously detected in fibrotic kidneys (5, 85). α5β1 integrin cooperates in cell adhesion, 

proliferation and differentiation and plays a role in extracellular matrix assembly. When 

expressed by fibroblasts, α5β1 integrin promotes acquisition of a myofibroblastic phenotype with 

typical α-SMA expression pattern (5, 15, 14; 112). In EMT model, it has been shown that α5 

integrin knock-down results in attenuation of α-SMA (induced by TGF-β) but does not affect 

cells morphology (114), suggesting that α5 integrin could be involved in fibroblast activation. It 

has been shown that TWIST, acts up-stream of the α5 integrin induction during EMT program 

(125).  

Interstitial fibrosis and tubular atrophy are morphological hallmarks of CKD. The degree of 

affected tubulointerstitial compartment directly influences kidney function and serves as 

prognostic marker for renal failure. Fibroblasts are thought to be the main effectors cells in renal 

fibrogenesis. They reside within kidney cortex, as well as in perivascular area. However, 

fibroblasts do not have unique molecular traits but rather represent highly heterogeneous 

population situated within fibrotic area. Their activation leads to excessive production of ECM 

components. During activation some of these fibroblasts start to express α-SMA, a prototypic 

characteristic for myofibroblast. Some other fibroblasts could express FSP-1 and they are 

considered to be important in early phase of fibrogenesis (119, 126). FSP-1 is a cytoskeletal 

protein that belongs to calmodulin-S100-troponin C superfamily of intracellular calcium binding 

proteins, and is known to be expressed by mesenchymal cells influencing cell motility (127). 

FSP-1 stimulates fibronectin and collagen production. Numerous experimental procedures 



90 
 

demonstrated an induction of α-SMA and FSP-1 towards TGF-β1 stimulation. Our findings 

revealed up-regulation of both α-SMA and FSP-1 in human kidney samples with various degree 

of renal interstitial fibrosis. However, the highest over-expression of FSP-1 was found in early 

fibrosis stage (IRF-1), whereas α-SMA showed the highest relative mRNA level in the most 

severe fibrosis stage (IRF-3).          

Modulation of NCAM/FGFR signaling – relevance for renal fibrosis and 

implication for therapy 

NCAM induced FGFR signaling has been widely studied, mainly in neural tissues and cancer 

cells (14, 24-27, 99, 100, 115). However, there is a lacking of evidence for the contribution of 

their interplay to fibrogenesis, although several studies confirmed that both molecules can be 

separately involved such process (88, 106, 128). Thus, FGFR is widely studied in many fields of 

research, including fibrosis. Nevertheless, according to available data and our knowledge, 

involvement of NCAM expressing cells in renal fibrosis is only considered by our research group 

and also by Vansthertem and co-workers (85, 88, 129). Thus, for the first time, here we present a 

functional significance of NCAM and FGFR co-operation in the induction of renal fibrosis, 

mediated by TGF-β1. 

Hence, based on the previously discussed results from the beginning of our research we further 

suspected that modulation of NCAM/FGFR1 signaling can suppress EMT of human tubular 

epithelial cells (TECs), currently used as an established in vitro model of renal fibrosis and a 

good starting point for experiments that can be able to clarify molecular pathway underling such 

process. 

Firstly, we observed that morphologically TECs do not develop mesenchymal traits (spindle 

shape morphology) when treated with FGFR inhibitor (PD173074), despite an influence of TGF-

β1. This observation implicates an important role of NCAM/FGFR signaling in acquisition of 

mesenchymal characteristic of epithelial cells. Thus, we decided to explore important molecules 

that influence cell morphology such as intermediate filaments (vimentin and α-SMA - 

characteristic for mesenchymal cells and activated fibroblasts) and those involved in tight-

junction formation (E-cadherin and N-cadherin) (130-132). 
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However, HK-2 cells (human proximal tubular epithelial cells) share many features characteristic 

for the majority of epithelial cells, but also exhibit many differences, especially with regard to 

expression of vimentin, E-cadherin and N-cadherin. 

Vimentin 

Normal HK-2 cells express vimentin that is usually considered to be characteristic for 

mesenchymal cells. However, normal HK-2 cells makes perinuclear aggregation of vimentin 

intermediate filaments, while upon injury vimentin filaments spread through the whole 

cytoplasmic compartment making a fine network appearance (133). Thus, in order to follow 

vimentin expression during EMT changes in HK-2 cells, careful consideration should be done. 

Indeed, appearance of vimentin in cells is not a sign of EMT because normal cells also have this 

filament protein, but the pattern of its expression could suggest cell injury and the widespread 

appearance in the cytoplasm should be considered as mesenchymal characteristic. In our 

experiments, vimentin was found to be abundantly expressed in HK-2 cells towards TGF-β1 

stimulation. However, FGFR inhibitor restored the pattern of vimentin expression to perinuclear 

localization, as also observed in control. 

E-cadherin and N-cadherin 

Moreover, tubular epithelial cells in humans have several specificities with regard to expression 

of cadherins. It is widely accepted that switch from E-cadherin to N-cadherin culminates toward 

EMT. However, normal proximal tubular epithelial cells in human and rats already express N-

cadherin, instead of E-cadherin that makes tight-junctions in many epithelial structures including 

proximal tubuli in mice. According to our results, mRNA level of N-cadherin was up-regulated 

upon EMT program induction and was normalized by FGFR inhibitor application, whereas 

immunofluorescence did not show any difference with regard to expression patterns. Thus, N-

cadherin was almost identically visible on the cell membranes of HK-2 cells in all experimental 

groups. On the other hand, E-cadherin mRNA levels were repressed by TGF-β1 stimulation, 

while inhibition of NCAM/FGFR signaling in these cells normalized E-cadherin mRNA levels. 

These results could support the findings in the literature that upon EMT induction epithelial cells 

switch their cadherin phenotype by increased expression of N-cadherin and decreased E-cadherin 

levels. Moreover, it has been shown that loss of E-cadherin induces NCAM up-regulation (14). 
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However, here we present that NCAM up-regulation in response to TGF-β1 precedes E-cadherin 

down-regulation.  

SNAIL, SLUG and TWIST 

SNAIL superfamily (including SNAIL and SLUG) and TWIST transcription factors are 

fundamental in the induction of EMT. They regulate gene expression, stimulating those 

characteristic for mesenchymal cells and suppressing genes defined to be characteristic for 

epithelial cells. These transcription factors can be induced by several up-stream factors, 

including TGF-β1 (134, 135). However, transcriptional induction of SNAIL upon TGF-β1 

stimulation is direct consequence of SMAD2/3 phosphorylation which making a complex with 

SMAD4 translocate in the nuclear compartment stimulating SNAIL transcription. On the other 

hand, induction of TWIST transcription towards TGF-β1 is also regulated by STAT3 (134). 

Down-stream targets of TWIST and SNAIL family are numerous, but in the EMT context the 

most important is repression of E-cadherin. This repression is a direct consequence of SNAIL 

phosphorylation, whereby TWIST acts through the SLUG up-regulation which than in turns 

suppress E-cadherin (136). Altogether, it becomes apparent that SNAIL family of transcription 

factors are key point convergence during EMT that further induce changes in cells phenotype 

influencing their behavior. 

In our investigation, all aforementioned transcription factors were induced by TGF-β1 and 

afterwards significantly down-regulated by inhibition of NCAM induced FGFR signaling, as 

obtained by qRT-PCR. Moreover, applying double imunofluorescence we found vary prominent 

SNAIL and TWIST expression both in cytoplasm and nuclei of TECs undergoing EMT, as 

previously also detected for SNAIL protein upon TGF-β induced EMT of mammary epithelial 

cells (137). However, administration of PD173074 succeeded to almost completely prevent 

SNAIL expression, while TWIST appeared to less sensitive to the NCAM/FGFR inhibition. 

Thus, despite inhibition of FGFR signaling TWIST was still visible on the protein levels, but its 

subcellular localization was mainly detected within cytoplasm, indirectly implicating a 

functional inhibition of TWIST putative roles during EMT. 

Beside TGF-β1, SNAIL can be also induced in response to receptor tyrosine kinases (RTKs) 

signaling, activated by HGF, FGF, or EGF, acting through the RAS-MAPK or PI3K-Akt 
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pathways (135). It further expands our findings, suggesting a following putative axis of gene 

regulation: TGF-β1/NCAM/FGFR1/SNAIL, meaning that upon TGF-β stimulation SNAIL can 

be induced through the pSMAD2/3/4 manner and additionally by the induction of RTKs 

signaling (NCAM/FGFR1 signaling). The impotence of our findings can be supported with 

previous report where it has been shown that signaling via MAPK or PI3K are necessary and 

sufficient to regulate EMT in collaboration with TGF-β (138). 

α-SMA and FSP-1 

Both α-SMA and FSP-1 are considered as EMT markers and can be induced by TGF-β1 (23). 

Robust induction of both molecules was observed upon TGF-β1 simulation and was successfully 

suppressed by inhibition of NCAM/FGFR signaling in TECs. Furthermore, FSP-1 is found to be 

involved in the regulation of cell migration (127). Thus, beside ITGB1 modulation by 

PD173074, it might be that FSP-1 down-regulation is also one of the underling mechanisms of 

reduced cell capacity to migrate upon FGFR1 inhibition. Morphologically, α-SMA diffusely 

occupied cytoplasmic compartment upon induction of EMT program and could not be detected 

on the protein level in any cell treated with PD173074, implicating an important role of 

NCAM/FGFR signaling in the rearmament of cell cytoskeletal structure. Considering that α-

SMA is apparently expressed during fibroblast activation, as well as an important role of FGFR 

signaling in the same way (139), NCAM signaling through FGFR activation appears to be 

mechanisms driving acquisition of mesenchymal traits of tubular epithelial cells.     

Matrix-metalloproteinases (MMP2 and MMP9) 

MMPs, especially gelatinases MMP2 and MMP9 are up-regulated in response to tubular injury. 

Functionally, they promote degradation of basement membrane, thus providing an access of 

injured tubular cells to the interstitium, thereby facilitating cell migration (119, 140). Restoration 

of MMP2 an MMP9 mRNA levels after treatment with PD173074, could be also a background 

feature of reduced cell motility in this experimental group, compared to cells treated with TGF-

β1 alone.   
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Integrins (ITGA5 and ITGB1) 

Inhibition of NCAM/FGFR signaling leads to significant modulation of integrins’ expression 

initially induced by TGF-β1. However, ITGA5 responded slowly to such signaling modulation, 

since during the first two days mRNA levels were still higher than in controls but the third day 

after treatment it also normalized mRNA, similar to ITGB1 response. Since these integrins are 

considered to be hallmarks of EMT, their down-regulation which was also followed by cell 

morphology changes (reversal of spindle shaped to epithelial) and reduced migration capacity 

could be accepted as signs of MET (mesenchymal to epithelial transformation) observed upon 

inhibition of NCAM/FGFR signaling. 

Furthermore, it has been previously shown that ITGB1 is involved in the regulation cell 

migration behavior. It is known that NCAM induce cell migration through the interaction with 

ITGB1 (112). Moreover, an induction of ITGB1-FAK/ILK signaling axis is found to be 

underling mechanism of enhanced cell migration undergoing EMT induced by TWIST 

transcription factor (141). Thus, it might be that reduced cell migration observed upon 

PD173074 treatment appeared due to down-regulation of ITGB1, previously up-regulated in 

response to TGF-β.  

SMADs 

The main down-stream effectors of TGF-β are SMAD proteins. Among them, R-SMADs are 

fundamental for the EMT program induction. Both SMAD2 and SMAD3 phosphorylitaion 

induce cascade of gene reprogramming. When aberrant induction of TGF-β appears, intracellular 

signaling cross-talk becomes affected changing the cell fate. Thus, during EMT program, 

pSMAD2 and pSMAD3 translocate into nuclear compartment modulating gene expressions. 

These effects are manly induced by stimulation of SNAIL transcription which then triggers a 

wide range of gene expression changes.   

SMAD phosphorylation appears upon TGF-β1 to its receptor on the cell surface. Here we 

detected by immunofluorescent staining the presence of pSMAD2/3 in cytoplasmic compartment 

24h after TGF-β1 stimulation and found them in the nuclei next two days. Suppression of 

NCAM/FGFR signaling by small ATP inhibitor (PD173074) does not influence SMAD 

phosphorylation, as we observed pSMAD2 and pSMAD3 in the cylosol one day after treatment. 
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However, even next experimental day (48h) and also 72h after NCAM/FGFR signaling 

inhibition in cells stimulated with TGF-β1, neither pSMAD2 nor SMAD3 could be observed in 

cells. This finding has to be further clarified, since it is not clear why inhibition of FGFR 

signaling results in disappearance of pSMAD2/3. It might be this inhibition promotes 

ubiquitination and degradation of activated SMADs, but underling mechanisms has to be 

resolved.       

Plasticity of EMT and opportunity for managements 

Although TGF signaling triggers robust EMT activation in epithelial cells, either during wound 

healing and tissue repair or during carcinogenesis, a reversal of the EMT phenotype could also 

appear at some time point, indicating natural termination of EMT and subsequent acquisition of 

epithelial traits again or effects of induced pharmacological inhibition, indicating a high degree 

of plasticity in the EMT process (136). 

TGF-β1, a major inducer of EMT program and fibrosis, has been previously shown that induces 

over-expression of FGFR family members and stimulates NCAM up-regulation (88, 105). Our 

previous research revealed increased NCAM expression in interstitial kidney compartment in the 

initial renal fibrosis with consecutive disappearance in later fibrosis stages in human kidneys 

(85). These observations encouraged us to further consider possible role of NCAM molecule in 

kidney fibrosis, especially during the initiation of such process. Despite controversial opinions 

with regard to existence of EMT driving fibrosis in vivo (110, 111), in vitro studies could be 

helpful in determination of molecular function and could provide more conclusive and confident 

data in order to clarify significance of previously observed phenomenon. Since we also detected 

that NCAM expressing renal interstitial cells in human kidneys occasionally express FGFR 

molecule (129), and considering their potential cross-talk with subsequent signaling stimulation 

(24-26, 99-101), we here explored for the first time significance and involvement of 

NCAM/FGFR interplay during EMT program in cultured TECs.  

NCAM and FGFR signaling alone have already been described during EMT program and it has 

been noticed that both molecules are fundamental for EMT in vitro (14, 25, 99, 100, 102). 

However, relevance of their interplay during EMT program in kidney has not been evaluated yet, 

although cross reactions of NCAM and FGFR are known to be significant in oncology researches 
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(101). It is well known that functional cooperation between these two molecules results in 

induction of FGFR signaling directly stimulated by NCAM molecule (14, 25, 26). However, 

FGFR signaling induced by NCAM stimulation differs from the pathway initiated by other 

ligands such as FGF. In the absence of FGF, activation of FGFR by NCAM specifically 

promotes characteristic FGF receptor cellular trafficking and recycling that results in sustained 

FGFR signaling (14, 27), leading to enhanced cell migration with invasive and aggressive 

biological behavior (99, 101, 142). 

Since we observed early induction of NCAM and FGFR1 upon exposure to TGF-β1, as proto-

typical mediator of intrarenal EMT program, even before EMT hallmarks became apparent, it 

was reasonable to consider an opportunity to modulate or even prevent EMT program by 

modulation of NCAM/FGFR signaling responses, especially considering that TGF- β1 plays an 

important role in development renal fibrosis in humans influencing excretory kidney function. 

The majority of morphological and molecular TGF-β1 induced changes of TECs were obviously 

suppressed by inhibition of NCAM induced FGFR signaling, afterwards confirmed as acting 

through SMAD dependant manner. Altogether, it becomes apparent that NCAM and FGFR1 are 

the earliest up-regulated molecules upon TGF- β1 stimulated EMT program whose mechanistic 

co-operation can be effectively suppressed by FGFR inhibitor (PD173074) administration.  An 

efficiency of PD73074 to modulate EMT events during carcinogenesis has been already 

investigated, as well as its therapeutical potential to reduce hearth fibrosis (143-147).     

Considering renal fibrosis as a common consequence of many kidney diseases, requirements for 

novel anti-fibrotic therapies are growing (92). For the first time, we here provide evidence for a 

direct mechanistic link between NCAM and FGFR signaling in initiation of EMT program 

TECs, and also explore clinical relevance of TGF-β1 downstream effectors detection in human 

kidney biopsies revealing their association with impaired renal excretory function and chronic 

kidney disease development. Since aberrant NCAM/FGFR signaling is equally present among 

various human renal diseases especially at the beginning of renal interstitial fibrosis (129), and 

TGF-β1 is considered as master inducer of fibrogenic response in the kidney, our current 

findings could have significant translational implications. Finally, modulation of such 

NCAM/FGFR signaling as established by PD173074 effectively blocks EMT program in 

cultured TECs, offering new insights into aberrant EMT program during renal fibrosis and new 
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therapeutical targets for such EMT program. Since therapeutic efficacy of PD173074 has been 

investigated and proven in various cancers but also non-cancerous diseases and already entered 

clinical testing, our findings expand our knowledge of a putative role of NCAM/FGFR in EMT 

program initiation and renal fibrosis and it is attractive to speculate that specific modulation of 

such NCAM/FGFR signaling could be equally effective in the treatment of renal disease 

associated with aberrant EMT program.  

The substance explored in this investigation (PD173074) belongs to receptor tyrosine kinases 

(RTKs) inhibitors (TKIs). Since RTKs signaling pathway a crucial in various pathological 

processes, including malignancies and fibrosis, numerous TKIs are widely studied and many of 

them are already in clinical use or are subjected to clinical trials (148, 149). However, among 

proposed therapies selective inhibitors are scarce, but rather involve inhibition of several RTKs. 

Thus, controversies about application of non-selective therapy still exist. Considering that in 

many pathological states an aberrant induction of several signaling pathways appear and can also 

involve signaling by several RTKs, therapy with non-selective TKIs could be more promising 

and with extended benefits. However, this opportunity could be retained only for management of 

malignancies and appears to be unsuitable for non-malignant conditions, such as fibrosis (150). 

Many TKIs are already explored in animal models of renal fibrosis, focusing mainly on the 

inhibition of platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor 

(EGFR) and vascular endothelial growth factor receptor (VEGFR). With regard to FGFR 

signaling in pathogenesis of renal diseases, it has been only proven that FGFR1 and its ligand 

FGF2 (basic FGF) are involved in the induction of renal fibrosis and contribution to renal 

damage in immune-mediated injury (149). Moreover, using fibroblast cell line, it has been shown 

that TGF-β1 induced fibroblast proliferation through the up-regulation of FGF2 synthesis, 

implicating a significant role of FGFR1 signaling (151). Thus, FGFR signaling is already known 

to be activated by TGF-β1 in fibroblasts. However, here we present an involvement of FGFR 

signaling in epithelial cells and induction of EMT program induced by non-FGF ligand 

(NCAM). This finding confirms again that FGFR acts down-stream of TGF- β1 and provides a 

novel mechanism of its induction, as shown – stimulated with aberrant NCAM expression 

rapidly induced upon TGF- β1 and in line with FGFR1 over-expression. Considering that low 

dose of PD73074 is found to be FGFR selective, mostly affected FGFR1 activity, it could 



98 
 

designate this substance to be a choice for management of early fibrosis, thus preventing a 

widespread fibrogenesis in kidney and terminal renal fibrosis with end-stage kidney disease 

(ESKD) occurrence.  

Kidney diseases are important problem worldwide. They are defined as impaired kidney 

structure or function, influencing global health of those individuals. Any kidney disease can 

occur abruptly and afterwards either resolve or become chronic. Chronic kidney disease (CKD) 

is a general term that considers heterogeneous disorders affecting renal function and kidney 

morphology with wide range of clinical presentation patterns. Clinical presentations could be 

related to cause of disease, its severity and the progression rate. Impairment of renal excretory 

function is considered as the most serious outcome of CKD. Earlier stages of kidney disease 

could be asymptomatic and are usually detected during routine comorbid evaluations. These 

stages could be reversible, while more severe presentation often have progressive disease course.    

Patients with pathohistologicaly revealed underlying kidney damage are considered to have 

CKD. Depending on the estimated glomerular filtration rate (eGFR) and albuminuria levels, 

patients are classified in four CKD prognostic/risk categories: low, moderate, high and vary high 

risk. According to KDIGO recommendations (3), all patients have to be carefully monitored and 

management of progression and CKD complications is still challenging. All people with CKD 

are risk to develop acute kidney injury, and all of them with disease progression could develop 

complications such as anemia, metabolic bone disease including laboratory abnormalities, 

acidosis, cardiovascular and cerebrovascular diseases. Targeted therapies could provide better 

balance between beneficial and adverse effects. Thus, defining the main signaling pathway and 

discovering the major inducer underling fibrogenesis with individual approach might not be cost-

effective option, but could be the most appropriate choice for patients and clinicians in the 

future.    
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6. CONCLUSIONS 

NCAM expressing cells do not only increase during fibrogenesis but also switch the isoforms. 

Compared to NCAM expressing in normal human kidneys, these cell under fibrotic 

microenvironment highly express NCAM-140 isoform. NCAM expression in renal interstitial 

compartment is disease independent, representing a trait of early fibrogenesis in the human 

kidney. These cells are highly heterogeneous, whereby sub-populations share some markers 

involved in fibrosis. Moreover, relative gene expression levels involved in fibrosis, assessed by 

qRT-PCR, were higher in advanced stages and NCAM followed that trend.  However, interstitial 

NCAM expression does not have long term impact on disease outcome and could not be used as 

predictor for the impairment of kidney function. Moreover, NCAM interstitial positivity is 

frequently found in patients with lower range proteinuria values. 

Since TGF-β is the main cytokine involved the fibrogenic response, here we underline the 

influence of this signaling pathway on morphology of renal tubulointerstitial compartment 

suggesting its signaling cascade is visible in chronic parenchymal damage (tubular atrophy and 

interstitial fibrosis), resulting in impaired renal excretory function and CDK development and 

progression. Beside SMAD2 influence on morphology of renal tubulointerstitial compartment 

and patients’ outcome, SNAIL expression in podocytes is associated with nephrotic range 

proteinuria. 

Collectively, the most important finding in our study reflects a robust induction of NCAM 

expression in incipient renal fibrosis and an important role of NCAM/FGFR interplay in the 

initiation step of fibrogenic response that could be effectively suppressed by inhibition of their 

cross-talk applying FGFR inhibitor (PD173074). Despite clear morphological and molecular 

evidence that PD173074 reduced TGF-β1 effects on proximal tubular epithelial cells in vitro 

through switch from EMT to MET like phenotype, great ambiguity still persists with regard to 

the precise background molecular mechanism and cross-talk between these two pathways, 

requiring profound clarification. Moreover, although it has been also previously observed that 

both NCAM and FGFR could be up-regulated in response to TGF-β1 stimulation, there is still 

gap in between since NCAM/FGFR up-stream inducers are not identified in response to TGF-β1 

signaling. TGF-β signaling can also induce non-SMAD dependant cellular response and it is 
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clear that the co-operation between SMAD and non-SMAD signaling pathways determines the 

final outcome of cellular response to TGF-β. Since both NCAM and FGFR1 are up-regulated 

rapidly after TGF-β1 stimulation and before morphological evidence of nuclear localization of 

pSMAD2/3, it might be that regulation of NCAM and FGFR1 gene expressions under the 

influence of TGF-β1 involves non-SMAD pathways. Nevertheless, since inhibition of 

NCAM/FGFR signaling pathway by administration of PD173074 results in suppression of 

nuclear translocation of SMAD2/3 and promotes their degradation in cytosol, it looks that TGF-

β1 reduced responses by PD173074 were highly SMAD dependant. 

Unequivocally, FGFR inhibitor could be a promising anti-fibrotic strategy for kidney diseases 

and has to be further explored at least on animal models, since investigations in the field of 

molecular background of renal interstitial fibrosis and signaling pathways driving initiation, 

maintenance and progression of such process could contribute to better understanding of the 

complex network involved in renal fibrosis and permit development of new potential strategies 

to treat renal fibrosis in humans. There is no cure for CKD that affects more than million lives 

each year, but researcher may now be one step closer.  
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