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ABSTRACT

Ceramic parts are increasingly produced by compacting loose powders to form, what is
called a ”green body”, which is further subjected to sintering, to give the final product.
During the sintering stage, the green body undergoes shrinkage inversely proportional to
its density, so defects and even large cracks can appear in the presence of density gradients.
Such circumstance affects the quality of production of ceramic parts, with still elevated
number of rejected pieces.

Numerical simulations of green body formation are increasingly used as a support for
the stable production. Modeling the compaction process usually involves complex
constitutive models with an elevated number of parameters. The current praxis of
evaluating the governing constants relies on a large number of experiments on the green
body, like, Brazilian, crush, triaxial tests etc. Therefore, the model calibration is time
consuming and rather difficult, presenting an obstacle for routine industrial purposes.

To tackle this problem, an alternative procedure based on Inverse Analysis (IA) is
developed, which relies on the data collected from the compaction experiment only.
Such approach fully eliminates the need for further testing on the green body, making it
practicable for routine industrial purposes. Within this methodology, a discrepancy
function is formed that quantifies the difference between experimental and simulated
quantities collected from the compaction test, which is further minimized to give the
constitutive parameters. To ascertain the strong influence of sought parameters on
measurable data, certain new green body geometries are designed.

Proposed approach is tested and validated on the calibration of "modified” Drucker-
Prager Cap (DPC) model, which is frequently adopted for powder pressing simulations.
To this purpose, rigorous experimentation involving both compaction tests for calibration
and destructive tests for verification are performed. The parameters obtained through [A
are used to simulate complex geometries, followed by a comparative study between the
currently adopted praxis vs. inverse analysis methodology.

Further on, calibration of a more sophisticated material model relying on the

Bigoni-Piccolroaz yield surface is considered. Certain instabilities in the numerical



implementation of this fairly complex model, lead to discontinuous discrepancy
function, and therefore, parameters are assessed by performing the minimization through
genetic algorithms. Computational burden coming from recursive simulations required
by the genetic algorithm is made consistent by employing controllably “enriched”
reduced basis model based on proper orthogonal decomposition. Finally, a comparison

between the novel model and the "modified” DPC model is presented.



Keywords: Inverse Analysis, Powder Compaction, Material Calibration, Drucker-Prager

Cap, Bigoni-Piccolroaz, Reduced Basis Model
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CAXETAK

[IpousBoama KepaMUUKUX KOMIIOHEHTH Hajyemrhe ce cacToju M3 Mpolieca MeXaHUYKOT
KOMIAKTHpama KEepaMHUYKOI Tpaxa y Wby JI00Hjama HCIpEecKa, KOjU Cce IOTOM
MO/IBpraBa CHHTEpPOBAlKY HaA TOBHIIECHO] TEMIIEpaTypH. Y TOKy CHHTEpOBama,
€BEHTYaJHO IPUCYCTBO IIyIUbMHA Y OTIPECKYy MH3a3MBa WHTEH3UBHHU]JE JIOKAJIHO
CKYIJbAF-€ MaTepujajia y TOj 30HH, LITO 3a MOCIEHUIy MMa HEXOMOTI'€HOCT (hPMHAITHOT
IIPOM3BO/Ia WM CTBapame YHYyTpallkbuX mpckotuHa. CxomHo ToMe mnepdopMmaHce
(UHATHOT TIPOM3BO/A y BEIMKOj MEPU Cy YCIOBJbEHE KBAJUTETOM MPOHM3BEICHOT
OTIpEecKa.

3HauajaH QaxkTop 3a CTAOMIHY M e(PHUKACHY NMPOU3BOMIY KEPAMUYKHX OTIIPEecaKa
npejacTaBba MOryhHOCT H3BOhEma pPEANTUCTHUHUX HYMEPUUYKHX CHMYJalyja camor
npoueca. Mojenupame OBOT Ipoleca Hajuelrhe ykjbyuyje KOMIUIEKCHE KOHCTUTYTHUBHE
Mojesie ca BeIMKUM OpojeM mapamerapa. Ilpouenype xanubpucama OBUX Mapamerapa,
KOje Cy TPEHYTHO y NMPUMEHH, 3aXTeBajy M3BOlCHE HU3A JIECTPYKTUBHUX TECTOBA Ha
otnpecky. OBakaB MPHUCTYN j€ 3aXTeBaH U HempuiaroleH 3a pyTHHCKY MHIYCTPH]CKY
IpUMEHY.

VY okBHpY OBe JucepTaldje pa3BHjeHAa je aJTepHAaTHBHA METOJda, Ca HU30M
MPEAHOCTH TIPH PEIllaBamy OMHCAHOT Mpobiema kanuOpaiyje mapaMerapa, 3aCHOBaHa
Ha IPUMEHM MHBEP3HUX aHaiu3a. Pa3BHjeHa MeTola KOPUCTH Kao E€KCIEpUMEHTAIHE
HO/IaTKe MCKJbYYHBO OHE BPETHOCTH KOj€ C€ MOTY U3MEPUTH y TOKY Ipolieca cabujama,
YiMe je HCKJby4YeHa TNOoTpeda 3a chpoBohemeM JeCTPYKTUBHHX HCIUTHBAaMkA Ha
oTIpecKy. Y OKBHpY pasBUjeHEe MeTofe QopMupaHa je MHJbHa (YHKIHja Koja
KBaHTH(UKYje JUCKpeNnaHily u3Mel)y eKcepuMEHTalHO M3MEPEHHMX, M OAroBapjyhmx
HYMEpUYKH TOOMjeHHX BpenHocTu. Tako je mporec kanuOpauuje KOHCTUTYTHBHHX
napaMerapa CBEIEH Ha MpoOieM HyMepuuke MHUHHUMU3alMje (QopMHpaHEe IUIbHE
¢dynknuje. Kako Oum ce o6eszbenmna oarosapajyha oCeT/BUBOCT EKCIIEPUMEHTATHO
U3MEpPEHNX BPEJHOCTH Ha TpakeHe Mapamerepe, JAepHUHUCaHe Cy MoceOHEe reoMeTpHje
OTHpecaka Kao pe3ynrar JAeTajbHe TeOMEeTpHjcKe aHanmmze. lume je ¢opmupan

€KCIIEPUMEHTJIAaHU TIPOTOKOJ KOJU Ta4HO AePUHHUIINE TEOMETPH]y OTIpecaka, Hu300p



eKCIIEPIMEHTAIHUX BPEIHOCTH, W NPUMEHY ojaroBapajyhux anroputama u LUy
ayTOMaTCKOT JI00Mjama TPAKEHUX KOHCTUTYTHBHHX MapaMeTapa.

PasBujena Meroma je TecTHMpaHa Ha pelIaBalky mpobiema  KanuOpaiuje
”Drucker-Prager Cap” KOHCTUTYTHBHOT MOJeJia, KOJU C€ YeCTO NpHUMElYje Yy
cuMynainyjaMa Tmpoleca cabujama mpaxa.  lecTupame je YKBbYUYWIO U OOMMHY
eKCIEpUMEHTAIHY Kammamy KopuIIhemeM AeCTPYKTHMBHHMX TECTOBAa Ha OTIpecHuMa,
yuMe cy noOujeHe pedepeHTHe BpPEAHOCTH, ymNoTpedsbeHe Kao 0aza 3a mopeheme.
JomyHcka Bepudukalyja cacrojaja ce y CUMyJIUpamby KOMIUIEKCHHX TE€OMETpHja,
kopunrhemeM KOHCTUTYTUBHUX NapaMeTrapa JoOujeHUuX MPUMEHOM pa3BHjeHE METOJE.

[IpennoxkeHa MeToa je MPUMEHEHA U Ha KaMOpaIijy CIOKEeHH]eT KOHCTUTYTUBHOT
MoJiena koju kopuctu ~Bigoni-Piccolroaz” monen miactuanoctu. OBO MpencTaBiba HOB
W W3Pa3UTO KOMIUIEKCAH KOHCTHTYTMBHU MOJEN, Ta je FeroBa HyMepHudKa
UMIUIEMEHTAIja pe3yiThpana HEeCTaOWIHMM HYMEpPHUUYKUM CHMYlanujama, 4uHehu
UWBbHY (QYHKIH]Y AUCKOHTHHyanHoM. [Ipu pemaBamy oBor mpoOnema kaimuOpanuje,
MUHUMH3alMja je W3BpLIEHa yHOTpeOOM ,[€HETUYKUX ajropurama’, y3 pa3BUjeHU
peayKOBaHH MOJEN 3a HyMEpHUYKe CHMYJIAIHje TECTa, YMME j€ MOCTUTHYTO 3HA4YajHO
CMameHhe KOMITjYTEPCKOT BpeMeHa MpHu U3Bohewy HeMnHeapHuX cuMmynanuja. Ha camom
Kpajy, ynopehenu cy pe3yaratd JoOHjeH! MPUMEHOM jeTHOT M APYTOI KOHCTUTYTHUBHOT
MojIefia y3 Ha3HaYeHEe CMEPHHUIIE O TPYIHU MpodieMa Ha KOjuMa UX je Moryhe MpUMEeHHUTH

ca 3aJ10BoJbaBajyhoM TadHorrhy.



Kibyune Peun: MuBep3ne Ananuse, [IpecoBame [Ipaxa, Kanubpanuja KonctutytnBaux
Monena, PenykoBanu Mopaemnu, Drucker-Prager Cap”, Monen [1nactuanoctu, ’Bigoni-

Piccolroaz”, Mopen [Timactuuroctu
9
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Chapter 1

INTRODUCTION

Production of parts by using powders as starting material, is a vital part of the
manufacturing industry. This route finds its applications in many sectors, such as
powder metallurgy, production of ceramic components, hard metals, pharmaceutical
tablets, detergents, magnets, and others [58]. The popularity of this method of
production is derived from several benefits offered by the process such as: possibility to
manufacture complex shapes, producing parts of high melting point materials as casting
is not a viable option and also, where the two constituents of the system cannot be mixed
(e.g. tungsten/copper system) [67].

Production usually comprises of two steps. The first step is the formation of “green
body” (compact) by cold compaction which refers to the use of mechanical force to
densify the powder so as to give a green body (figure 1.1). The second step is the
sintering step, which is consolidation of weakly bonded compact at elevated
temperatures, with or without additional pressure [55]. Following the cold compaction,
green body should have enough cohesion to remain intact after mold ejection, free of
macro defects and handleable for subsequent stages without failure. The presence of
defects within the green body can cause local shrinking during the sintering phase,
resulting in non-homogeneity of final product, appearance of residual stresses or even
formation of macro cracks (see [50, 51]). Such circumstances pose the need for detailed

study of cold compaction phase and is a topic of extensive research.
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Green body

Partially Fully
compressed compressed
powder powder

Loose
powder

Figure 1.1. Schematic representation of cold compaction

Numerical simulations are increasingly used to better understand the powder
compaction process. A successful simulation requires detailed constitutive description of
the involved material. In general, one can use either a discrete approach, where it is
attempted to separately model particles and their interaction, or continuum approaches
where overall macroscopic effects of the powder are studied.

Within discrete approach, each powder particle is treated individually and the contact
and friction between the particles are studied [29, 54, 68]. Rojek et al. [54] in their work
involving cold compaction of NiAl powder at low pressures (up to 50 MPa), modeled the
contact between powder particles following approaches based on elastic Hertz model
and plastic Storakers model. The plastic Storakers contact model was deemed more
suitable to represent a local interaction associated with yielding at the contact point for
particles, however, both models produced very similar macroscopic behavior. In another
work by Huang et al. [29], multi-particle finite element simulation was performed on
Al/SiC composite powders. The aim of the study was to understand the effects of
particle size ratio, initial packing structure and composition on compaction process. This
method involved generation of initial packing structure, imported into finite element
model, with each particle discretized by finite element meshes. Yan et al. [68]
investigated Lag ¢Sty 4Co,Fep 303 (LSCF) cathode which is used in solid oxide fuel
cells. The research involved a combination of Discrete Element Method (DEM) with
Kinetic Monte Carlo (KMC) simulations. DEM was used to create a number of
numerical samples containing spheres or clumped spheres to take into consideration

particle size, particle size distribution, aspect ratio, sphericity and orientation generating
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distinct powder packings. Further on, a cubic representative volume is sampled from
each powder packing and voxelized, serving as starting micro-structure for KMC
simulations used to model sintering mechanism.

Clearly, discrete modeling approach can be fairly useful to simulate the physical
processes in compaction. However, the difficulty lies in the fact that these models are
intrinsically “multi-scale”. Such modeling effectively implies that the true experiment is
scaled down to a representative volume to enact the original behavior. This leads to
several assumptions such as uniform distribution of density over the representative
volume, preserving the size ratio and particle distributions etc. Even after such
adjustments, the computational burden associated with the modeling is fairly high [53].

Alternatively, continuum based approach can be used to model powder compaction,
since from computational point of view, it is better suited for engineering applications [28].
This is related to the fact that even though the powder is clearly discontinuous at particle
level, such discontinuity becomes irrelevant when compacting it to a relatively dense state.
The use of continuum based approach employs phenomenological models like Cam-Clay,
Drucker-Prager, cap plasticity models etc. These models were originally developed for
soil mechanics [35], but are extensively used also to model powder compaction [2, 58,
59]. In particular, researchers have established Drucker-Prager Cap (DPC) model as a
good constitutive model [28] and most accepted one [26, 31]. This is due to the fact
that in DPC model the elliptical cap surface is added to shear failure surface, existing
in typical Drucker-Prager model. The shearing phenomenon becomes important during
decompression and ejection of powder whereas the cap surface takes into account the
densification of the powder [21, 59]. Furthermore, the DPC model is readily available in
commercial finite element modeling softwares. Clearly, such modeling necessitates the
complete knowledge of constitutive parameters entering the governing equations. The

assessment of these parameters is within the main focus of the present research.
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1.1 General Motivations

Quantification of material parameters used within constitutive models employed for
powder compaction simulation is a challenging task. Current practice relies on
performing destructive tests like Brazilian tests, uniaxial compression tests (crush tests),
triaxial tests and/or acquisition of stresses from mold used for compaction. Transition
from experimentally measured quantities to parameters of interest is done through
simplified relations, occasionally representing source of an error. This is evidenced by
works of Han et al. [28] and Lamarche et al. [35] on pharmaceutical tablets, Sinha et al.
[59] on sensitivity study of DPC model, Almanstétter [2] on doped tungsten powder,
Diarra et al. [23] on cosmetic products, Zhou et al. [70] on mixed metal powders and
many others [3, 26, 31, 58]. Such experimentations and the related calculations, provide
a reasonable estimate of the parameters but they involve large number of experiments,
particularly when the number of constitutive parameters is elevated. = Another
complication comes from the fact that during compaction a loose powder transforms into
a dense solid and these two states have fairly different mechanical behaviour. Such
transition must be accounted for in the modeling.

From mechanical point of view, the above mentioned transition implies that the
governing parameters should change with progressing of compaction. When continuum
based approach is used, which is the strategy adopted in this research, it is common to
relate relative density to volumetric plastic strain, as the internal state variable of the
model. It is therefore required to define parameters which are changing with
accumulated plastic strain. This is not a straightforward task since, for example, in the
classic form of DPC model hardening affects only “cap” parameters, while it assumes
fixed shear failure surface. Similar holds also for other plasticity models.

During the powder compaction, the values of most of the parameters change as the
relative density of the compact increases. This has been evidenced in [21, 28] for example
and can be visualized in the figure 1.2 (note the changing slope of the unloading branch at
different density levels) and figure 1.3 (shear surface also shifts along with the growing cap
surface). It is therefore needed to introduce a so called “elasto-plastic” coupling, where

also the elastic properties will depend on accumulated plastic strain.
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Figure 1.2. Unloading phase of powder compaction at different relative densities
evidencing change in elastic properties as compaction progresses
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Figure 1.3. Representation of changes in plastic property with changing relative density
evidenced by shift in DPC yield surface

As a possible remedy to the above mentioned limitations, some authors have
introduced and numerically implemented the field dependency of constitutive parameters
within continuum models (refer to [2, 3, 23, 26, 28, 31, 35, 58, 59, 70]). It assumes

constitutive parameters as a function of volumetric plastic strain, thereby enabling to
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incorporate also the elasto-plastic coupling. For compaction, relative density is derived
from the plastic strain and is treated as the solution dependent variable making it
possible to have parameter definition as a function of relative density. Clearly, such
modifications significantly affect the calibration procedure, since constitutive parameters
change as the density increases. Thus, the required number of experiments on green
bodies significantly increases. This circumstance creates the need for heavy
experimental protocol, making the industrial routine application rather difficult and
fairly expensive. Furthermore, some of the parameters cannot be determined by the
conventional experimental route of calibration at relatively low and high densities [26].
In a view of the listed difficulties, the research is motivated on finding an alternative
procedure for the calibration of constitutive models for powder compaction without

involving such heavy experimental regime.

1.2 Primary Objectives

The primary objective of the thesis is to develop a full characterization procedure to
determine the evolution of properties of the green body as a function of relative density,
throughout the cold compaction based on the Inverse Analysis (IA) methodology. The
IA approach synergically combines the experiments with numerical simulations and
mathematical programming for minimization of discrepancy between experimentally
measured quantities and their computed counterpart [13]. The novelty pursued relies on
the development of calibration protocol depending only on experimental quantities
collected from compaction test, and therefore excluding all the heavy experimentation
needed for evaluating the properties of green body. Such characterization is obviously
more appropriate for industrial applications and could lead to, hopefully important,
reduction of rejected pieces, as more information is available on the green body before it
subsequently undergoes sintering, leading to obvious economical and environmental
advantages.

To achieve this goal, numerical implementation of the DPC model, capable of taking
into account the elasto-plastic coupling together with other sources of non-linearities

observed from the experiments is done. The implemented model is optimized
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specifically for ceramic powders. After the successful development of the model with
the required features, a calibration procedure based on IA is setup. The evaluated
parameters from the IA are verified against the values obtained from traditional route of
performing experiments within an extensive testing campaign. As the final step, the
assessed parameters are fed to the developed constitutive model and the results are tested

on compaction of industrial powder, for a few different geometries.

1.3 Outline of the Method

Central methodological ingredient of developed calibration procedure represents the
Inverse Analysis (IA). The IA approach has already been successfully implemented in
different fields, like, material characterization based on instrumented indentation [14,
16], identification of stress states and elastic properties of concrete dams using flat jack
tests [25], determination of boundary temperatures and heat flux for a steady state heat
conduction problem [69], shape optimization of transonic airfoil [37], quantification of
unknown impact forces on a beam [65] and many others [8, 10, 11, 22, 48, 61].

The focus of this research is to implement IA in the present context of calibrating
models for simulation powder compaction based only on the data collected during
compaction experiment (e.g. using force vs. displacement curve). The developed
procedure is tested with reference to DPC model, however, the methodology can be
extended to the calibration of other models as well. In fact, with some modification the
developed methodology is also applied to the calibration of more sophisticated model
based on Bigoni-Piccolroaz yield criterion [49, 51].

One of the key ingredients required for IA includes the simulation of experiment. To
this purpose, the DPC model in its classic form is modified to include dependency of
constitutive parameters on the relative density. The selection of the experiment plays an
important role within the IA protocol, as it is of primary importance that all the sought
parameters are sensitive to the selected measurable quantities. To ascertain this,
systematic sensitivity analyses are performed through numerical simulations of
experiment.  Different mold geometries are considered to optimize the overall

experimental protocol. Once the experiment is selected and the measurable quantities are
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available from both the experiment and its numerical model, a discrepancy function is
formed to quantify the difference between the experimentally measured quantities and
their computed counterparts. This discrepancy function is further minimized using
mathematical programming techniques within an iterative procedure to give the required

parameters.

1.4 Organization of the Thesis

Chapter 2 presents an overview of the currently adopted praxis to calibrate the models
used in powder compaction. In particular the reference is made to Drucker-Prager Cap
(DPC) model, which is described with the relevant equations. This is followed by the
detailed description on the evaluation of model parameters through crush tests, Brazilian
tests and acquisition of radial stress.

In Chapter 3, the methodology based on Inverse Analysis (IA) is introduced. A brief
description of the compaction experiment with the testing machine used for it is given.
Following this, the general aspects of the compaction simulation are presented with the
specific details on the implementation of the ”modified” DPC model. Finally at the end of
the chapter, a survey of most frequently employed algorithms for constrained minimization
of the discrepancy function is outlined.

Chapter 4 describes the proposed calibration protocols. A sensitivity study is
presented, which is used to establish different mold geometries for compaction to
optimize the overall experimental protocol.

In Chapter 5, comparative results of the developed calibration procedure based on IA
and current praxis are presented with reference to the DPC model. At the beginning of
the chapter, the relevant experimental details of the compaction test for the production of
green bodies, for both flat cylindrical and modified mold geometries is mentioned. The
destructive tests on the former is used to establish reference values of parameters through
the procedure employed as current praxis, while the data from the compaction tests of
the latter is selected for IA identification. Following this, the comparison between the
assessed values on the basis of these two approaches is given. Finally at the end of the

chapter, the designed calibration protocol based on IA is summarized.
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Chapter 6 deals with the application of the developed IA procedure to calibrate a
more sophisticated material model relying on Bigoni-Piccolroaz yield criterion. This
novel constitutive model is outlined with the relevant equations. The main features of the
Genetic Algorithm (GA) which is used for the minimization of the discrepancy function
is further presented. Following this, reduced basis model based on proper orthogonal
decomposition is introduced to significantly reduce the associated computational burden
from recursive simulations required by GA. Finally, the developed calibration procedure
combining the reduced basis models with genetic algorithm is explained and the obtained
results are discussed and comparisons between novel model and DPC model are shown.

Chapter 7 concludes the thesis with final remarks and suggestions for potential future

research.



Chapter 2

CURRENT CALIBRATION
PROCEDURES FOR POWDER
COMPACTION MODELS

The current method of quantifying constitutive parameters entering the models used in
powder compaction relies on performing experiments on the green body. Recently, Diarra
et al. [24] performed a comparative study between “modified” Cam-Clay (CC) model
and “modified” Drucker-Prager Cap (DPC) model (modification so to include the elasto-
plastic coupling). For the modified CC model, the radial stresses measured from the die-
wall were used for evaluating the slope of critical state line (M), the size of the yield
surface (@) and the hydrostatic yield stress (p.). However, the modified CC model can
only be used to study densification and cannot take into account the failure behavior (for
example, the failure during ejection). Thus, DPC model must be selected to model such
behavior along with the densification and in fact, is the most accepted model for powder
compaction for different categories of materials, such as pharmaceutical tablets [21, 28],
ceramic powders [58], metal powders [2, 70], cosmetic products [23] etc. In what follows,
a brief description of the DPC model is outlined, proceeded by presenting the procedure

employed for the identification of its governing parameters.
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2.1 The Drucker Prager Cap Model

Graphical representation of DPC yield surface in p-g plane is visualized in figure 2.1. As

indicated in the figure, p represents a hydrostatic pressure and ¢, the equivalent von Mises

stress, namely:

Oxx + Oy + 02
= —évy (2.1)
B (O — ayy)2 + (0, — azz)2 + (0. — axx)2 +6 (aﬁy + 02, + a?x) 55
q= 5 (2.2)
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Figure 2.1. The DPC yield surface in p-g plane

In addition to the shear failure surface in the DP model in its classic form, here, a cap
surface is added to take into account yielding due to hydrostatic stress only. In the DPC
yield function, the elastic domain is enclosed by three surfaces, namely shear failure
surface, cap surface and transition surface (from shear to cap surface). The shear failure
surface is the boundary between the stress state that causes dilation and shape changes

and usually determines the failure of the compact. The densification and hardening is
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controlled by the expanding cap surface, governed by volumetric plastic deformation.
The third surface ensures a smooth transition between the shear and the cap surface to

avoid numerical instabilities. The parameters that define these surfaces are as follows:

e Shear failure surface (F;) is defined through material cohesion (d) which is an indicator

of the shear strength, and friction angle (/) through the following expression:

Fi=q—ptanf—d=0 (2.3)

e Cap surface (F,) is governed by evolution pressure (p,) and parameter R, which controls
the shape of the cap surface (usually known as cap eccentricity). Therefore, cap surface

is defined by:

2

Rq

Fe= |(p—pd*+ — R(d + patan ) = 0 (2.4)
o

\ 1+a_COS,B

e Transition surface (F}) is defined by transition radius (a):

2
Fy = \/(p—pa)QJr {q— <1—ﬁ>(a’+patanﬁ)1 —a(d+p,tanf) =0 (2.5)

Hardening is described by hydrostatic yield compression stress (p;) as a function of
volumetric plastic strain (¢,). Here, p;, is the magnitude of stress needed to compact the
material using hydrostatic stress alone. It can be calculated using the values of d, £, p,

and R such that:

P =pa (1 +Rtan ) + Rd (2.6)

In compaction modeling, the volumetric plastic strain plays the role of relative density of

the compact and the correlation between the two can be given by:

& = 1In (p%) 2.7)
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where, p and p,, are the current and initial relative density respectively.

In addition to the yield function, the plastic flow rule is defined. The plastic potential
is defined by an associative component (G,) on the cap surface whereas, a non-associative
component (G;) is used for shear failure surface and transition regions, shown in equations

below:

2

R
Ge= |(p—pd)*+ 4

\ 1+a_cosﬁ

(2.8)

2

Gy = |[(p—pa)tan f]* + (2.9)
o

\ 1+a_cosﬂ

To uniquely define the DPC yield function, a total of five parameters are required,

namely: cohesion (d), friction angle (f), transition surface radius (a), evolution pressure
(pa), cap eccentricity (R). The transition surface radius (a) is typically a small number
between 0.01 and 0.05 and is assumed as a constant value throughout the compaction (for
example, a = 0.02 in [3, 28], 0.03 [23]). In what follows, the current procedure employed

for identification of the rest of parameters is laid out.

2.2 Current Practice for Calibration of DPC Model

In the works carried out so far, the governing parameters of the DPC yield criterion are
evaluated using experiments on green body. Han et al. [28] in their study of
die-compaction simulation of pharmaceutical powders, assessed the material cohesion
(d) and friction angle () by using Brazilian disc test (diametrical compression) along
with uniaxial compression test (crush test). The samples of different densities were
formed and tested, so as to give the evolution of these parameters over the range of
relative density. The cap surface parameters, namely: evolution pressure (p,) and cap

eccentricity (R), were found out by forming green bodies at different densities and

13
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analyzing the loading path of the involved compaction tests. These values were then
used to calculate hydrostatic yield compression stress (p,). Shang et al. [58] in their
study tried to quantify the effect of deformation of the punches on the evaluated
parameters of the DPC model. For the assessment of shear failure surface, Brazilian disc
test along with uniaxial compression test were employed. The parameters of the cap
surface were estimated using measurements from axial and die-wall stresses. In another
research conducted by Cunningham et al. [21] analyzing tablet compaction, similar
approach was used to find the shear failure surface. The work carried out by Sinha et al.
[59] on the sensitivity of DPC parameters during decompression phase, also relied on the
methodology mentioned above for quantifying constitutive parameters.

In the more recent works, LaMarche et al. [35] performed studies for a range of
excipients and formulated products. The material cohesion and friction angle were
evaluated using Brazilian disc test and uniaxial compression test. The values of material
cohesion and friction angle were used along with die wall stress and axial stress to
quantify evolution pressure, cap eccentricity and hydrostatic yield stress. Garner et al.
[26] proposed a scheme to extrapolate parameters for the relative densities that are not
accessible experimentally so as to cover a full range from initial relative density to a
relative density of unity. To carry out the extrapolation, the parameters were identified at
some particular densities using the tests mentioned above. Almanstotter [2] in his study
of doped tungsten powder, Diarra et al. [23] in their work on compaction of cosmetic
products, Kadiri and Michrafy [31] in their research on effect of punch shape in powder
compaction process, employed the above mentioned techniques to characterize the
plastic parameters of the DPC model.

In the previous studies, shear failure surface parameters are assessed on the basis of
Brazilian disk tests and uniaxial compression tests, while cap surface parameters are
quantified through measuring radial stress on the die wall and analyzing the loading path
during compaction, whereas the elastic parameters were evaluated from the unloading
curves of radial stress vs. axial stress and axial stress vs. axial strain. In what follows,
the description of the above mentioned methodologies and their application to identify

the constitutive parameters is given.
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2.2.1 Shear Failure Surface Characterization

The most common method to characterize the shear failure surface involves carrying out
Brazilian test and crush test [2, 21, 23, 26, 28, 31, 35, 58, 59, 70]. These tests exhibit
shear in two different loading patterns and thus offer a good combination to determine the
shear failure surface, which is represented by a line in 2-dimensional p-g space. In the
Brazilian disk test, a disc shape specimen is loaded by two opposing normal strip loads
at the disc periphery. The schematic representation is shown in figure 2.2. The load is
continuously increased at a constant rate until the failure occurs. The load at which the
specimen fails (maximum load L) is then in turn used to calculate the failure limit (o) of

the sample using following formula:

2L

where D is the diameter and H is the height of the sample respectively.

Load, L

Punch 0

Sample

H

Q

Fixed Punch

Figure 2.2. Brazilian test setup

The crush test gives the stress vs. strain evolution of the green body using uniaxial
compression. The experimental setup is shown in figure 2.3. In the crush test, a cylindrical
sample is compressed until failure. As can be seen in the figure, one of the punches is kept

fixed, whereas the other punch applies load. The force and the displacement are recorded
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and failure load (F),) is picked from this curve. This is then used to compute failure stress

(0.) using diameter of the sample (D) by the following equation:

4F,

Sample

Fixed Punch

Figure 2.3. Crush test setup

The combination of Brazilian test and crush test is used to determine the shear failure
line as can be visualized in the figure 2.4. These two tests give two points on the shear
failure line, which in turn gives the cohesion as the intersection with y-axis, and friction
angle as the slope of this line. The equations used to calculate the points of shear failure

starting from stress values (o,) and (o) are given below.
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Figure 2.4. Schematic representation of different tests needed for calibration of shear
failure line DPC yield criterion

In the Brazilian test, the stress state can be represented as:

Pd = (%) (2.12)

Qi = (\/1_30d) (2.13)

whereas, in the crush test it is given by:

pe= (‘?f’) (2.14)

q. = (—o.) (2.15)

Using these equations, the material cohesion (d) and friction angle (f) can be deduced

through the formulae given below:

g ("d"— V13—2) (2.16)

o, + 20,
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(2.17)

p = tan~? (

From what precedes, it can be realized that the evaluation of cohesion and friction

300+d>

Oc

angle at a particular level of density requires two compaction tests and two destructive
tests (Brazilian and crush). It is reasonable to perform these tests at least twice at a
particular density level to check and establish reciprocity of results. This effectively
means that characterizing cohesion and friction angle at a single density point, involves
in total minimally eight experiments. Such characterization needs to be done at an
elevated number of densities (say, five or more) to have a reasonable estimate of

parameters over the range of relative density.

2.2.2 Cap Surface Characterization

The cap surface parameters are obtained by analyzing the stress state of the loading point
(A). The intersection of loading path OA (see figure 2.4) with the cap surface gives the
maximum value of axial stress and radial stress. The radial stress is measured from the die-
wall during compaction, usually, by employing strain gages and calibrating them details on
which can be found in appendix A. Axial stress can be recorded from the testing machine

used to perform compaction.
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Figure 2.5. Visualization of loading path in compaction test
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The available values of axial stress (0,) and radial stress (o,) are then converted to

hydrostatic pressure (p,) and equivalent mises stress (g,) by the following relations:

Po = (az kA 20”) (2.18)

3

qo = |O-Z - 0r| (2.19)

With an assumption that the die-wall is rigid, the radial strain rate at point A is null

and can be denoted as:

- 0G
h— )—¢ = 2.20
90, 1(po.q0) ( )
Given that 1 is a positive quantity in equation (2.20), it implies:
0G.
=0 2.21
90, 1 (po.q0) ( )

By using (2.8) and (2.21), the cap eccentricity (R) can be determined and is given as:

a

214 a—
* cos

R = (pO _pa) 3q0 (222)

Substituting value of R from equation (2.22) into (2.4), evolution pressure (p,) can be

computed as:
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9q0% + 24dqy | 1+ osf tan £ + 8 (3poqo + 2q0?) 1+a_cosﬂ an f
Pa = )
1 — t
+a cos an S
3 4dt 1 —
qo + 4dtan f +a cosﬁ
- 2
a
1 — t
+ a o5 an
(2.23)

Once the compaction is finished, compact’s relative density can be measured using
the volume of the sample and the absolute density of the material. This in turn can be
used to compute the volumetric plastic strain using equation (2.7). The hydrostatic yield
compression stress (p,) can be calculated using formula (2.6) and hardening law can be
defined.

From the above given relations, the cap surface can be fully determined at a particular
relative density. This needs to be done for multiple compacts, formed at different density

levels, to evaluate the cap surface and the hardening of DPC yield criterion.

2.2.3 Evaluation of Elastic Properties

The elastic behavior of compacting powder is assumed to be isotropic [2, 23, 31, 70].
Thus, only two elastic parameters, namely Young’s modulus (£) and Poisson’s ratio (v)
need to be evaluated. The elastic constants £ and v are related to the bulk modulus (K)
and shear modulus (G), describing the elastic behavior under hydrostatic stress and shear
stress, respectively. This can be expressed as:

E
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E

In the elastic range, the behavior of isotropic materials is governed by the Hooke’s

law, which in incremental form reads:

dS,’j

. dh
de’, 5G

v = g%t

(2.26)

where, deg. is the elastic strain increment, /; is the first stress invariant, §;; is the Kronecker
delta and s; (0;; — 1;/3) is the deviatoric stress tensor. In the compaction test, the die-wall

is assumed to be rigid, implying:

& =¢ep=0 (2.27)

o, =0y (2.28)

here, ¢,, €9, 0, and gy is radial strain, hoop strain, radial stress and hoop stress, respectively.

Using (2.27) and (2.28), axial strain increment can be computed from equation (2.26) as:

B do, +2do, dp

de. = = (2.29a)
3K K
do, —do, dg

de, = —c (2.29b)

The relationship between stress and strain can be expressed using the Young’s modulus

such that:
do. — E (v — 1) de.] (2.30a)
GZ_(v—Fl)(Qv—l) v & Ve
— (2
ds, — 0=~ v(2doy) (2.30b)

since, ¢, = g9 = 0 and o, = gy. Substituting, values of de, (2.29) and K (2.24) into the

above formula (2.30a), the following relation can be obtained:
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do. = L= 4, 2.31)

v
Using the value of do, from (2.31) and G from (2.25), and putting it into equation (2.30b),
following can be expressed:
E(1—v)

do, = T A=) de. (2.32)

The value of Poisson’s ratio can be calculated from (2.31) by using the slope of
unloading curve of axial stress vs. radial stress. For the Young’s modulus, slope of the
axial stress vs. axial strain needs to be plugged into equation (2.32). This needs to be
repeated at multiple level of densities.

From the above characterization procedure, it is obvious that multiple tests need to
be performed. To put more light on this, the full characterization of DPC model at a
particular level of density requires ten experiments (eight for shear failure line, two for
cap and elastic parameters) in the minimum case scenario. Thus, to calibrate a density
dependent DPC model which will require parameters to be defined as a function of
relative density, one should perform about fifty experiments for evaluating constitutive
parameters at five different levels of relative density. It is abundantly evident that such
procedure for calibration is very heavy experimentally and not so feasible for routine
industrial purposes. Similar heavy experimental regime can be expected with other
models for powder compaction simulations. Therefore, such circumstances invoke the
need for an alternative route to calibrate the models used for powder compaction and can

be tackled using the methodology based on IA presented in Chapter 3.
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Chapter 3

ON INVERSE ANALYSIS, POWDER
COMPACTION SIMULATION AND
RELATED NOVELTIES

In present research, the material constants entering the models employed in powder
compaction are evaluated through Inverse Analysis (IA). These are analyses performed
backwards, meaning that the solution is known but not the causes leading to it. As
opposed to commonly used direct analysis, here, the full result of the forward problem is
at the disposal, while the complete knowledge of all the inputs, namely, initial/boundary
conditions, geometry details, constants (constitutive parameters entering governing
equations) etc. is not available. Such problems are referred to as the “inverse problems”
and they are tackled within the growing branch in applied mechanics under the name of
inverse analysis [13, 63, 64].

The IA methodology synergically combines the experiment, its simulation and
mathematical programming. The idea is to perform the experiment along with its
simulation, and record the measurable quantities from both. The difference between
these measured values is estimated within, what is called a discrepancy function. As the
final step, this function is minimized with respect to the sought quantity of interest. The
flow of the IA procedure is visualized in figure 3.1. For more details on the subject, refer

to [13, 63, 64].
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Experiment

Discrepancy
Function

Minimization

Figure 3.1. Schematic representation of IA procedure

Over the last two decades, IA methodology has seen diverse applications in multiple
areas. These range from determination of initial/boundary conditions [65, 69] to shape
optimization [37, 61] and parameter identifications [10, 14, 25]. For example, Wang and
Chiu [65], employed IA to quantify the impact force on a beam, using experimentally
measured accelerations. In the work carried out by Sobieczky and Center [61], the shape
of the airfoil was optimized, respecting the geometry constraints, based on target
pressure distribution, used as the input data. Damasceno and Fratta [22], monitored the
chemical diffusion in a porous media using electrical resistivity tomography. Sodium
chloride solution was seeped in the porous media and electrical currents and voltages
were measured at the boundaries, helping to make electrical resistivity tomographic
images. Similar kind of study was done on sandy soils by Borsic et. al. [11] using water
as the conductor. Ostrowski et. al. [48] evaluated the heat conductivity and the heat
transfer coefficient utilizing the temperature field measurements. In another research,
Bolzon et. al. [10] used the indentation curve and the imprint of the indenter on the
specimen under test, to assess the sample’s mechanical properties, such as Young’s
modulus, yield limit and exponent of hardening. In more recent works, Xie et. al. [66]
estimated the endothermic reaction parameters like thermal conductivities, reaction
temperature and heat, making use of the temperature history curves. In a research by

Nakamura et. al. [44], a prediction of transient heat flux during aerodynamic heating
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was done relying on finite temperature data points. Liang et. al. [38] estimated the
inherent deformation in thin plate aluminum alloy joints during welding. Shrinkage and
bending in longitudinal and transverse directions were determined using the
measurements of deformations at limited locations.

From what precedes, it can be realized that the [A procedure is increasingly
employed in diverse fields of engineering. The common point in all these applications is
that the quantity of interest is evaluated on the basis of some experimentally measured
data. Clearly, such strategy offers an important advantage for assessing quantities
difficult, or even impossible to measure otherwise. This feature of the methodology is
particularly important for determination of parameters entering complex constitutive
models. The current research focuses on these kinds of problems.

By observing literature one can find many recent applications of IA methodology
employed for the assessment of material parameters. Fedele and Maier [25], identified
the stress states and the elastic properties of concrete used in dam structures. Flat jack
was inserted into the concrete and reference points were marked. The device was then
pressurized, and consequent variations in distances of these marked reference points was
measured and fed as an input for IA procedure. Applying similar principles, Chisari et.
al. [20] evaluated the material parameters of mortar joints in unreinforced masonry.
Buljak and Maier [15] in their research, showed the possibility to quantify residual
stresses in the material based on indentation tests alone. Elliptical indenters of novel
shape were proposed and the obtained indentation curve was used as an input to the [A
procedure. In a study performed by Magalhaes et. al. [40], the Young’s modulus of a
cantilever beam made of ASTM A36 steel was estimated from the displacement of the
structure. Jiang et. al. [30] quantified linear and nonlinear elastic properties of porcine
brain tissue. The ultrasonic probe was pushed into the soft tissue, which generated an
acoustic radiation force inducing plane shear waves. The velocity of these waves was
employed as input to the IA procedure. Chen et. al. [19] evaluated the cohesive model
parameters for crack growth simulations by analyzing the key points on the load-crack
extension experimental curve. Based on a similar approach, Buljak and Maier [12],
designed novel shape of sharp indenters to be specifically used for calibration of fracture

properties of brittle materials. Li et. al. [36] employed the IA procedure to determine the
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material models for work hardening and dynamic recovery. Bainite steel was subjected
to hot compression tests at high temperatures (1100°C-1400°C) at varying strain rates.
The obtained stress-strain curve was then used to evaluate the material constants of the
established constitutive equations to predict work hardening and recovery. Bolzon et. al.
[9] characterized aluminum-based metal matrix composites relying on the data of
indentation test. The material behavior was modeled through Drucker-Prager
constitutive model and parameters were determined by [A.

In a view of recent developments of inverse analysis methodology, and the
complications involved in evaluating parameters of constitutive models for compaction,
the research is motivated in employing IA within the present context considered in this
thesis.  The difficulty with characterizing constitutive parameters for compaction
modeling is derived from their elevated number and the way they change throughout
pressing. These circumstances make the application of IA procedure more challenging,
however, offering important benefits by eliminating the need for heavy experimental
regime described in the previous chapter. In the light of these potential novelties, 1A
procedure is adopted as the central methodology in this research work.

For applying such concept to determine parameters entering the governing equations,
die compaction tests are performed. A compaction curve, which is a typical output of
this experiment, is considered as experimental data U?. The same experiment is further
simulated using the commercial Finite Element (FE) code ABAQUS [1] to give the

computed data U*”. These measurements are used to form the residual vector R:

R(p) = U*? — U“"(p) (3.1)
Further on, a discrepancy function w is formulated:

o(p) = RT-R = [0 — U= (p)]" [U7 — U (p)] (3.2)

Parameter set that minimizes discrepancy function (3.2) represents the solution of the
inverse problem. To reach a numerical solution of this minimization problem, a suitable

mathematical programming algorithm is usually employed.

26



CHAPTER 3. ON INVERSE ANALYSIS, POWDER COMPACTION SIMULATION
AND RELATED NOVELTIES

From the above outline, it is clear that there are three crucial ingredients in
constructing the TA procedure: (1) the selection of the experiment, with proper
measurable quantities collected from it; (2) numerical simulation of the formulated
experiment and (3) the employment of appropriate iterative algorithm. In what follows,

all these ingredients are briefly discussed in the present context.

3.1 Compaction: Experiment and its Simulation

3.1.1 Experiment

The experiment to be considered within the inverse analysis is the compaction (pressing)
test itself. An attempt is made to define punch/mold (or die) geometry as simple as
possible, considering first the simplest cylindrical specimen formed through pressing test
performed in uniaxial strain regime. During the compaction, loose powder particles are
compressed in a die cavity by the application of pressure, to form a solid green body of
relatively high density, that conforms to the shape of the mold used. The pressure is
applied along one axis, whereas, the cavity into which the powder is pressed gives it a
lateral constraint. To perform compaction, the powder is filled in a corrosion resistant
steel mold. A combination of a movable punch along with a fixed one is subjected to a
force, which is then transferred to the powder.

For the purpose of applying force, an “’Instron” testing machine (servo-hydraulic) is
used in this research. This machine has a maximum load capacity of 600 kN and an
uncertainty of less than 0.5% in measuring the applied force. The experimental setup is
visualized in the figure 3.2, with reference to cylindrical green body, shown in the bottom

part of the figure.
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Figure 3.2. Experimental setup of compaction test

The force applied during the compaction vs. the displacement of the punch, can be
recorded from the machine and typically, has the form given in figure 3.3. This curve is
selected as the main measurable quantity from the experiment, to be used as an input
within the TA procedure. The solution of the subsequently formed inverse problem will
serve as a platform for definition of die/punch geometry (or geometries) required for the
calibration of the considered model. Systematic sensitivity analysis, by employing
numerical simulation of the experiment will be performed to motivate proper selection of

measurable quantities.
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Figure 3.3. Force vs. displacement (of the punch) curve from compaction experiment

3.1.2 General Aspects of Experiment Simulation

The FE models are designed by exploiting axial or planar symmetries wherever possible.
The powder is modeled as 2-D deformable body with fully integrated four node
axisymmetric element (CAX4) for 2-D cases, or fully integrated tri-linear iso-parametric
element (C3D8) in 3-D models. The punches and the mold are considered as analytical
rigid surfaces owing to their high stiffness as compared to the powder. The contact is
assumed to be hard in the normal direction (i.e. no penetration is allowed) while a
coefficient of friction is defined for the lateral direction. All contacts are assumed to
operate in finite sliding conditions, according to the implementation in ABAQUS [1].

For the constitutive description, DPC model is chosen as the reference material model.
In the numerical implementation of DPC yield function within ABAQUS, seven plastic
parameters are required: cohesion (d), friction angle (f), cap eccentricity (R), hydrostatic
compression yield stress (p;), transition surface radius (a), cap position (a) and the flow
stress ratio (k). Further on, the elastic parameters, namely: Young’s modulus (£) and
Poisson’s ratio (v) are also required.

In order to fulfill the need for transformation of the typical DPC model, so as to include
elasto-plastic coupling, field dependency of the parameters needs to be incorporated. For
such modifications, ABAQUS proves to be a very suitable choice as it offers the possibility
to amend the existing model using the user-subroutine "USDFLD”. Within the USDFLD
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subroutine, the parameters can be defined as a function of some solution dependent field.
Here it is selected to be plastic strain, which in turn can be converted to relative density
using equation (2.7). To formulate the dependency of governing parameters on relative
density, following relationship is proposed:

n

P=Pol 4 p, (3.3)

Pr— Po

P(p) = (Pr— Po)

where, P, and P, are the values of the parameter at final and initial relative density
respectively, prand p,, are final and initial value of density selected a priori, hence, not
subjected to the identification, while, 7 is the exponent governing this transition.

With this approach the trend of parameter change over a wide range of relative density
1s assessed by its initial value, final value and the exponent. Apart from introducing the
elasto-plastic coupling (i.e. the dependency of elastic parameters on accumulated plastic
strain), such description offers a framework for introducing more complex hardening rule
with respect to what is available within typical DPC model implementation.

Within present research it is proposed that four plastic parameters (d, f, R, p,) along
with the elastic ones (£, v) are going to be identified by using the above formula, while
the others (a, a, k) will be kept fixed at a constant value throughout the simulation. This
assumption is reasonable since the transition radius which enables smoothening, cap
position that is related to the history of the material and the flow stress ratio controlling
the shape of yield surface, usually change marginally with progressing compaction.
Therefore, a total of 21 inputs are required for the numerical simulation. Coefficient of
friction is an additional quantity needed for the simulation. In the current work, it is
assumed as an unknown, and therefore subjected to identification along with other
parameters, offering a more realistic alternative as compared to previous studies [23, 26]

where its value was a priori assumed.
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Figure 3.4. FE model of compaction simulation and the digitally extracted curve

Upon performing the test simulation, the force vs. displacement curve is extracted
from the simulation and transferred to the digital form visualized in figure 3.4.
Simulated curve together with the experimental one serve to form discrepancy function
in the form given by equation (3.2), which is subsequently minimized. Main features of

the minimization algorithms employed to this purpose are outlined in what follows.
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3.2 Mathematical Programming

3.2.1 Forming the Discrepancy Function

The results from the experiment and the simulations are collected to form the residual
vector using equation (3.1). In the present context, the entries to the vector R are the
differences between displacements corresponding to a certain level of force (see figure

3.5). The discrepancy function (@) given in relation (3.2) represents the sum of squares

of the residual vector members.
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Figure 3.5. Visualization of the residual vector formation as the difference between
experimental and simulated curve for compaction.

Such an expression of the discrepancy function (usually referred to as the objective
function in the minimization jargon) in the least square sense is the most frequently used
formulation in engineering for fitting actual data employing parameterized models [13].
This kind of definition offers certain advantages, particularly when calculating derivatives.

Differentiating the objective function with respect to the parameters p, gives:

Ow OR17
7 = 2 [8_p] R (3.4)
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where, [g—ﬂ = J is the Jacobian, which is a m x n matrix. Here, m is the size of residual

vector R and 7 is the total number of sought parameters. Hessian matrix of second order

derivatives of the objective function can be written as:

82(1) T - 821’,'
- J7. i 3.5
SpopT JT I+ ;:1 ' op? 3.5)

where, 7; is the component of vector R. The contribution of the second part in above
equation (3.5) vanishes in the vicinity of the solution, since ; members are close to zero
there. Hence, approximating Hessian matrix just by the first term in (3.5) represents a
reasonable simplification. This approximation is a very peculiar feature of the least square
type of problem formulation adopted in many engineering problems and is going to be
used throughout this work. The minimization of this function with respect to the sought
parameters is the solution to the inverse problem. Some of the minimization techniques

employed to this purpose are outlined in what follows.

3.2.2 Minimization Algorithms

Minimization algorithms usually solve the problem iteratively. After the initial guess is
supplied, the procedures iteratively propagates by generating new parameter sets with the
improved value of the objective function, even though some algorithms are not providing
continuous reduction of it. The scheme employed to proceed from one iteration to another,
distinguishes the type of algorithm. There are two fundamental strategies for moving from

current solution point to the next one: (1) line search methods and (2) trust region methods.

Line Search Methods

Within the line search minimization technique, it is required to find the direction & and
to determine how far to go along that direction (dj). If the current iterate is py, the new

one is given by:

Pi+1 = Pk + diO (3.6)
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The effectiveness of this method relies on the choice of the direction as well as the step
length determined by the scalar d;. The selection of these two quantities distinguishes
different types of line search methods, where the two most common ones, are: line search
with steepest descent and Newton line search technique. These two are briefly described

here.

Steepest Descent Method:

In this method, the direction of steepest descent is found by calculating the gradient

and dividing it by its magnitude, as it is the most logical approach, namely:

Kélo)
6[) k

Xy = — %0 (37)
Opx

|

Once the direction is determined, the algorithm needs to find the appropriate step length

that minimizes the following equation:

n}in o(py + drot) (3.8)
k

Ideally, the best step length would be the one that globally minimizes the relation (3.8).
However, it may be computationally too expensive to find this value. Usually, a few
different combinations of the step lengths are tried and then the best of them is selected.
Choosing different step lengths means solving the forward problem each time, for that
particular length. This needs to be repeated for each iteration. Note that the steepest
descent is the direction at the current iterate and may not match the direction of global
minimizer. Such a circumstance, which is almost always there in non-convex problems,
causes this method to take small steps. Since, the difficulty is related to the direction itself,
there are no effective ways to improve the overall performance. Therefore, a high number
of iterations would be required to solve the problem, usually with a linear convergence rate.
This is a major drawback when using this method, since each iteration is computationally
expensive, as the forward solver is a FEM simulation. An alternative line search strategy,
that potentially provides quadratic convergence relies on the objective function expressed

as a quadratic form. Such approach is adopted within Newton line search method.
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Newton Line Search Method:

In this technique, the direction & is derived by minimizing (with respect to o) the
Taylor series approximation of the objective function truncated at the second order. The

numerical relation is given by:

b+ o) = (o) = o(po) + () |52 () + )" | 5] (00 (o) 69

where, py is the current iterate, & is the direction and M, represents the model function.
Assuming Hessian matrix to be positive definite, Newton direction can be evaluated by

taking first derivative of the model function with respect to the direction and setting it to

Pwl1 ! Tow
“k:‘[a—pz] [%} G-19)

zero, which gives:

It can be observed that the Newton direction has a step length of one (i.e. no
additional scaling is required), as it is derived by setting the first derivative of model
function to zero. This implies that Newton direction is the exact minimizer of the model
function and therefore, it can give the solution in just one iteration if the model function
closely represents the real objective one. However, that is not usually true in the cases of
non-convex problems, since the model approximation of the objective function starts to
worsen far from the current iterate, which could potentially lead to an increase in
objective function’s value. Another issue is that the Hessian matrix can be non-positive
definite. Clearly, in this case the Newton direction cannot be defined. There are methods
which modify Hessian matrix to make it positive definite, but it is arguable if such a
modification would yield a descending step. This hampers the performance of Newton
method in complicated problems, such as the one considered in this research, where the
objective function depends on elevated number of parameters. As a possible remedy, the

second strategy based on the trust region method can be used.
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Trust Region Methods

Trust Region Algorithm (TRA) also relies on the quadratic approximation of the objective
function (3.9), but used in a different way. In TRA, a region around the current iterate is
defined, within which the model function can be "trusted” to be a good approximation of
the real objective function. The minimization is further performed but restricted to only
this region around the current iterate. This is implemented by simultaneously seeking both
the direction and the step length that makes, hopefully, the best possible improvement of
the function, within the radius J; of the trust region. This minimization sub-problem is

formulated by:

min My (ot;) suchthat |oy| < J¢ (3.11)
o

The evaluation of this minimizer o distinguishes the different trust region methods. In
the Cauchy point trust region, o is found out by using the steepest descent method within
this trusted area. The presence of the model function makes the steepest descent method
much more effective as trying different step lengths can be done without any computational
cost. However, Cauchy point does not involve Hessian matrix and uses it only to compute
the model function in the steepest descent direction. Therefore, the Hessian matrix is not
contributing in determining the direction and quadratic convergence cannot be expected.

Another strategy known as the Lavenberg Marquardt technique, employs the Newton
method to evaluate the direction o and restricts it to the trust region. The positive definite
nature of the Hessian matrix is ascertained by adding a small scalar quantity to it, when
needed. However, in the cases when the scalar is too large, the approximation of the
Hessian matrix itself could be erroneous, thus, limiting the algorithm to linear convergence
only, or even step rejection due to bad step evaluation. In the cases when the scalar is too
small, the Hessian matrix could be very close to being non-positive definite leading to ill
conditioned problem, making this technique difficult to use.

Both these methods have their advantages. Steepest descent on one side always
ensures that the direction is that of descent while, Newton method offers quadratic
convergence. The combination of the two would help derive maximum benefits, and is

most commonly used trust region method. In this technique, minimizer o4 can be

36



CHAPTER 3. ON INVERSE ANALYSIS, POWDER COMPACTION SIMULATION
AND RELATED NOVELTIES

expressed as the linear combination of steepest descent and Newton direction, such that:
o = [larou’™ + azo|| < oy (3.12)

Expressing the direction o4 in the above form makes the problem two-dimensional,
irrespective of its initial dimension: once that 04" and o are formulated, the goal is to
find the values of the coefficients a; and a, that define the direction ;. These
coefficients can be evaluated using the Langrange multipliers technique, details on
which can be found in [13].

The effectiveness of TRA highly depends on the trust region size. The usually adopted

criterion to select its radius (Jy) is given by the ratio written below:

w(pr) — o(pr + o)
M(0) — M(o)

(3.13)

Numerator of the above ratio is the actual decrease in the value of the objective function
while the denominator is the predicted reduction, which is clearly always a positive
number. This ratio, which is calculated a posteriori once that next parameter set is
evaluated, gives information for potential modification of the trust region radius for the
subsequent iteration depending on its value. If the ratio is close to one, it means that the
model and the objective function are in good agreement, and one could possibly enlarge
the trust region, helping to progress with larger steps and potentially, move much closer
to the minimizer of the objective function. If the ratio is negative, it means that the value
of the objective function has increased and thus, the step is rejected and trust region is
shrank. If the ratio is very close to zero, it implies that the model function is not a good
approximation of the real objective function and the trust region radius should still be
reduced, to avoid possible step rejection in the subsequent iteration. The presence of this
radius constrains the search of the direction in the region where model function is in
close approximation of real objective one, thereby, avoiding possible step rejections.
This makes TRA more robust for complicated problems, as the one dealt within this
research.

Another advantage offered by TRA is the possibility to deal with constraints of the

type I, < p < u,, where, Ib and u, are the lower and upper bounds respectively, imposed
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on the sought parameters. This is particularly important from the point of view of the
current problem, since the variables in question are material parameters, which need to
have physically acceptable values. In the light of these mentioned benefits, TRA will be
used throughout this research as the minimization algorithm.

Within the TRA, the first derivatives are calculated using finite differences, meaning
that the number of simulations required is one more than the total count of the sought
parameters. The minimization generally involves about ten iterations, with mostly
continuous reduction of the objective function (i.e. limited number of step rejections),
provided that the problem is well-posed. When the minimum change of the objective
function or the parameters between two consecutive iterations reaches a predefined
threshold (specified by the tolerances), iterative procedure is stopped. The final
converged solution at the end of the iterative procedure is the best estimate of the sought
parameters.

The TA methodology outlined in this chapter is applied in the context of powder
compaction, offering several advantages. IA procedure gives the possibility to assess the
material parameters by using data from the compaction test only, without any further
experimentation. The constitutive parameters are defined such that it provides the
capability to simulate compaction behavior for a range of materials, by the virtue of the
exponent. It can take into account the transitions of parameters ranging from linear
(n = 1) to exponentially increasing or decreasing. Another big advantage that can be
derived is the ability to determine the material properties from a low density up to a high
density in a continuous manner, something which is not possible through conventional
experiments [26]. Such benefits drive the research towards the use of IA methodology as
an alternative to the current methods for calibration of constitutive models. Detailed
description of designed testing protocol centered on the discussed techniques, followed

by the assessed results is shown in the following chapters.
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Chapter 4

PROPOSED CALIBRATION
PROTOCOLS

To calibrate Drucker-Prager Cap (DPC) constitutive model, the Inverse Analysis (IA)
procedure described in the previous chapter is applied. Material under consideration is a
mix of alumina powder with graphite as the binder. Such composition is a commonly
used mixture to make refractory materials especially in steel making process [43, 52,
71]. As the first attempt, only a flat cylindrical configuration is going to be used for the
calibration purposes and considered measurable quantities are the data collected from
digitalized force-displacement curve.

A cylindrical green body of 60 g weight with 36 mm final height and 30 mm diameter
(see figure 4.1b) is formed, applying a compaction force of 17675 N corresponding to
about 25 MPa pressure. Resulting compaction curve measured from the experiment is

shown in figure 4.2.
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Figure 4.1. Cylindrical green body
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Figure 4.2. Compaction curve corresponding to the cylindrical green body

The simulation is performed within force control regime, corresponding to the
experimental conditions listed above. The height up to which the mold was filled is
taken as the initial height of the modeled specimen, which is calculated by adding the
final green body height (36 mm) to the maximum displacement from the compaction
curve (28.6 mm). The powder specimen is discretized in 672 four node fully integrated
axisymmetric (CAX4) elements. The other simulation conditions are those described in

the previous chapter (see section 3.1.2).
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Using the experimental and simulated results IA procedure is developed in order to
assess the unknown parameters. The parameters subjected to identification are four
plastic parameters namely: material cohesion (d), friction angle (), cap eccentricity (R)
and hydrostatic compression yield stress (pp); two elastic parameters: Young’s modulus
(E) and Poisson’s ratio (v); and the coefficient of friction defining the lateral contact
between the powder and the mold. Only the friction coefficient is assumed as a constant
throughout the compaction and it is evaluated as independent of the relative density,
while the other six parameters are estimated as a function of the relative density using
equation (3.3) by quantifying the initial and the final value of the parameter
(corresponding to initial and final density) along with an exponent governing the
transition for this density range. Therefore, a total of 19 parameters are assessed. The
parameters are initialized with some “expert” values to start the A procedure, and the
bounds within which these parameters are searched is decided by using the expected
range of properties for this type of material. The mathematical programming is done in
MATLAB [41], employing the already implemented Trust Region Algorithm (TRA) for
minimization. The parameters are normalized between zero and one, where zero
corresponds to the parameter’s lower bound and one to the upper bound. Gradients are
calculated through forward difference with the perturbation of 107, The iterative
procedure is stopped when the change in the objective function value is less than 10~ or
difference between the norm of the parameter vector within two consecutive iterations is
lower than 1072, The comparison of compaction curve corresponding to the final
parameters evaluated through IA against the experimental one is given in the following

figure.

41



CHAPTER 4. PROPOSED CALIBRATION PROTOCOLS

25 ! ! T T
===‘Computed Initial

220 o —-Computed Final [ &+ o |
g 15L-- —Exp:erlmental :
o . i
s : :
o ; i
S0 P Promoeeeeeee R SRRy~ CLELRERE, fagreceee- n
1%} ; |
o : :
e N

0 — *

0 5 10 15 20 25 30

Figure 4.3. Experimental vs. computed curves (initialization 1)

From the above figure it can be seen that the solution to the inverse problem is found.
However, since the problem at hand is rather complex and governed by an elevated
number of parameters, it is important to check if the found solution represents a global

minimizer of the objective function. The most common way to assess this is to use a

Displacement [mm)]

35

different parameter initialization and perform an additional inverse analysis.

procedure converges to the same solution as before, only then other checks (for example,
comparison against experimentally determined values) are worthwhile to perform. In the

following figure, the compaction curve obtained on the basis of IA procedure starting

from a different initialization is visualized.
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As can be seen, both the above figures give a good agreement between the
experimental and simulated curve. This indicates that the minimum was found in both
cases. The final parameters at the end of IA procedure are compared in the following
table 4.1. The parameters were evaluated for a density range of 0.5-0.9 and their

transition can be obtained by equation (3.3) .

Table 4.1. Final parameters corresponding to two different initializations

Parameter Initial Value Final Value Exponent
A il [ Inir-2 | Ini-l | Init-2 | Init-1 | Init-2

Young’s 0024 10059 0766 |0729

modulus [GPa] [GPa] [GPa] [GPa] 4.230 | 4733

Poisson’s | ) »3 10251 | 0238 | 0256 | 1.205 | 1.068

ratio

Material 0.494 0.435 2.141 3.087

cohesion [MPa] [MPa] [MPa] [MPa] 1.929 | 1.573

Friction | 5 30451 | 56.2791 | 59,220 | 58,9631 | 1315 | 0.971

angle

Cap o268 |1064 10199 |0271 |2931 | 4358

eccentricity

Hydrostatic | 0.185 | 0.149 | 44.081 | 25.933

yield stress | [MPa] [MPa] [MPa] [MPa] 2.853 | 2.867

Friction

Costrivtent | 0256 0.248

Although the compaction curves are nominally the same, it can be realized from table
4.1 that there is a noticeable difference in the values of the parameters. For example, there
is a difference of more than 30% in cohesion value between the two sets, while the cap
parameters (i.e. R and p;) have even larger discrepancy. Following figures are further
demonstrating the mentioned difference, by comparing these parameters over the whole

considered range of relative density.
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Figure 4.7. Cap eccentricity corresponding to initialization 1 and 2

Previous results clearly illustrate that the inverse problem is ”ill-posed” as the
objective function is not featured by only one well defined global minimum. Therefore,
neither of the parameter sets, which represent the solution of the inverse problem, can be
regarded as the representative material parameters. This ill-posedness usually occurs
when the measured data from the simulations are not rich-enough”, meaning that the
sensitivity with respect to sought parameters is questionable. In the flat cylindrical
geometry (configuration-1) considered above, the stress state is fairly homogeneous. The
stress distribution over the sample can be visualized in figure 4.8. The simulation
leading to the visualized result in the figure is performed without friction, in order to
demonstrate the influence of specimen’s geometry only to the stress distribution. Note

that the model considered here is 3-D for comparison purposes later on.

S, Mises S, S12

(Avg: 75%) (Avg: 75%)
+1.008e+01 -
+1.008e+01 Ta-ia4e-03
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+1.008e+01 +3.832e-04
+1.008e+01 +1.296e-04
+1.008e+01 -1.239e-04
+1.008e+01 -3.774e-04
+1.008e+01 -6.310e-04
+1.008e+01 -8.845e-04
+1.008e+01 -1.138e-03
+1.008e+01 -1.392e-03
+1.008e+01 -1.645e-03
+1.008e+01 -1.899e-03

(a) Equivalent von Mises stress (b) Shear stress

Figure 4.8. Stress distribution in configuration-1
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Such stress distribution implies uniform density distribution throughout the sample.
Given the complexity of the model with a high number of parameters, it is of vital
importance to have a fairly reasonable density distribution over the sample, so that the
overall response of the simulation is more sensitive to the sought parameters. Particular
difficulty related to the use of curve collected from configuration-1 alone is that the shear
component of the stress (figure 4.8b) in the considered geometry is practically equal to
zero. This results in the fact that the sensitivity of measurable quantities with respect to
cohesion and friction angle, defining the shear failure line, are rather low.

From what precedes, it is clear that more complex geometries need to be considered to
have heterogeneous stress distribution within the sample. In particular, the sensitivity of
shear failure parameters must be increased by producing specimen which has zones with
dominant shear component of the stress. To fulfill these requirements, different geometries
will be manufactured in order to address the above mentioned needs. Prior to the selection
of these new geometries, first numerical simulations of experiments with different shapes
of green body are done. A systematic sensitivity analysis of these designs is carried out

to motivate the geometry selection. Some selected results are given in what follows.

4.1 Sensitivity Analysis

The first proposed step for the selection of geometries is to make sure that there is a zone
with reasonably large shear component of stress. The most logical way to do so is to use
an inclined punch with an angle of 45°, as it represents the surface with maximal value
of shear stress. Figure 4.9a shows the proposed punch design. With a view to maximize
the heterogeneity in the stress distribution, different geometries are formed combining the
flat punch (figure 4.9b) and the newly proposed punch. As opposed to only flat punches
used conventionally to form cylindrical green bodies, here, different shapes of the green
body are realized by substituting either the top, the bottom or both punches, with the
inclined (proposed) geometry. A schematic representation of few such geometries that
are considered for the stress distribution evaluation (hereafter, referred as configurations)

is given in the figure 4.10.
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Figure 4.9. Proposed punch design along with the conventional cylindrical one
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Figure 4.10. Schematic representation of proposed green body configurations

To study the stress distribution, numerical simulations of the above shown

configurations are performed within a force control regime. Considered models are three

dimensional exploiting planar symmetry. The specimens are discretized into 3200 eight

node fully integrated tri-linear iso-parametric elements (marked by C3D8 in ABAQUS).

To ensure similar conditions, number of elements are kept the same for all configurations
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and a compaction force of 20 kN is considered. In order to have the same starting density

(in an averaged sense), the initial height (mean value of longer and shorter heights) is

also kept equal for all simulations. Frictionless contact is defined between the powder

and mold/punch to emphasize the effect to stress distribution coming only from the

different geometry considerations. The study of effects of friction to the stress

distribution is given in the following section 4.2. All other simulation conditions are

explained in section 3.1.2. The results of stress distribution are given in Figures 4.11

to 4.13.
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(a) Equivalent von Mises stress
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(b) Shear stress

Figure 4.11. Stress distribution in configuration-2
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Figure 4.12. Stress distribution in configuration-3

48

@)

Y
2—» X (D




CHAPTER 4. PROPOSED CALIBRATION PROTOCOLS

S, Mises
S, 512

Avg: 75% :

( g+1 36)5e+01 (Avg: 75%)
+1.255e+01 +5.049e+00
+1.144e+01 +4.213e+00
+1.034e+01 +3.377e+00
+9.237e+00 +2.541e+00
+8.133e+00 +1.705e+00
+7.029e+00 +8.693e-01
+5.925e+00 +3.336e-02
+4.821e+00 -8.025e-01
+3.716e+00 -1.638e+00
+2.612e+00 -2.474e+00
+1.508e+00 -3.310e+00
+4.043e-01 -4.146e+00

-4.982e+00
(a) Equivalent von Mises stress (b) Shear stress

Figure 4.13. Stress distribution in configuration-4

From the above figures, it can be visualized that incorporating such geometries
produces a heterogeneous stress distribution within the compacted powder. In particular,
the equivalent von Mises stress distribution is most diverse in the configuration-2, while
configuration-3 gives the highest value for shear stress. These results justify the choice
to use the proposed design, as the source of experimental results to calibrate considered
constitutive model. Figures 4.11 to 4.13 show only the final stress distribution over the
sample upon the completion of the compaction process. More detailed observations can
be made by studying the complete history of a few material points within the sample
over the whole compaction experiment.

To perform a quantitative study, stress state of the material points circled in the
figure 4.14 is analyzed throughout the compaction and their relative position is kept the
same for the comparison purpose. For these material points, stress state over the
complete compaction process is presented in a form of hydrostatic pressure (p) vs.

equivalent von Mises stress (¢) graph, given in Figures 4.15 to 4.18.
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Figure 4.14. 2-D Schematic representation of specimen to show material point locations
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Figure 4.15. Stress path of selected material points in configuration-1
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Figure 4.16. Stress path of selected material points in configuration-2
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Figure 4.17. Stress path of selected material points in configuration-3
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Figure 4.18. Stress path of selected material points in configuration-4
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Figure 4.19. Stress path of material point-3 in all configurations

From the above figures, following conclusions can be derived: (a) The plots
corresponding to material point 1, 2 and 3 are all distinct in figure 4.16, implying the
most diverse stress distribution in configuration-2. (b) In figure 4.19, the stress path of
configuration-3 shows comparatively higher values of ¢ for the same p. This suggests
that such a loading path of some of the material points (e.g. material point 3 here) in
configuration-3 will lie in closer vicinity of shear failure line, making the measurable
quantities from configuration-3 the most sensitive to cohesion and friction angle. (c) The
plot of material point 3 in figure 4.18 shows a changing stress path within the same
element in configuration-4. This further contributes to the heterogeneity in the stress
distribution.

Another advantage of employing multiple experiments is that it helps to regularize
the inverse problem by providing enriched measurable quantities. Regularization here
implies dealing with situations when measurable quantities are sensitive with respect to the
parameters but a compensation happens as a result of parameters having opposite effects
on the measured data. This leads to circumstances where one parameter (or more) has a
lower value, which is compensated by a higher value of the other(s). This would result in
multiple combinations of parameters fitting the same experiment, however, none of them
would be representative of the material’s properties. Such problems were encountered by
Bolzon et. al. [8] in an attempt to characterize “mystical” materials through indentation

tests. The study used indentation curve (typical output of indentation test) as an input
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for TA procedure in order to identify three parameters: Young’s modulus, yield limit and
exponent of hardening. The latter two compensated for each other’s influence as they had
opposing effects on the indentation curve. This led to the situation where two (or more)
different sets of parameters had exactly the same response.

To tackle this problem, researchers used imprint of the indenter (on the sample) as
an additional measurable quantity along with the indentation curve. The imprints were
fairly distinct for different sets of parameters that gave similar indentation curve. The
parameter set representing the material’s properties must also fit the imprint along with
the indentation curve, hence, introduction of imprints helped to regularize the inverse
problem. In the current work, elevated number of parameters (19) are evaluated presenting
a strong probability for such compensation. Therefore, to overcome the possible parameter
compensation, employing multiple experiments represents a reasonable strategy.

The results from the numerical simulations of the above mentioned geometries
strongly motivate their selection, however, contact friction has not been considered in
the performed simulations. Since it is well evidenced in the literature [21, 28] that
friction leads to density distribution, it is important to study the effect of contact friction

coefficient on the compaction. This study is presented in what follows.

4.2 Effects of Friction

Friction between the powder and punch/mold leads to a heterogeneous stress distribution
within the compacted sample, demonstrated in figure 4.20. This heterogeneity in stress
caused by friction affects the measurable quantities and it is visualized in the figure 4.21.
Since the measurable quantities are sensitive to the friction, it is important to assess the
value of coefficient of friction, otherwise the DPC parameters will be estimated

erroneously.
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(a) Simulation without friction (b) Simulation with friction

Figure 4.20. Stress distribution highlighting effect of friction in configuration-1
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Figure 4.21. Comparison of simulated compaction curves with and without friction

In the works so far, friction coefficient is either fixed as a constant value for the
compaction process [26] or it is evaluated using the Janssen-Walker theory [45]. Due to
friction, the load transmitted to bottom punch (usually kept fixed during the compaction)
is lower than that applied on the top punch. The difference between the loads of the top
and the bottom punch can be used to estimate the friction coefficient (x) utilizing the
radial stress measured from the die-wall (mold) based on the Janssen-Walker theory as

follows:

z

SEEEE @
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where o7, o are the stress at the top and bottom punch respectively, o, is the radial stress,
z is the distance of the strain gage from the top punch, while H and D are the height and
diameter of the sample respectively.

In the research of Han et. al. [28] on compaction of pharmaceutical tablets, friction
coefficient was identified using the above formula (4.1). Similar approach was used by
Zhou et. al. [70] for studying mixed metal powders, Diarra et. al. [23] in their research
on cosmetic products, Almanstétter in his work on doped tungsten powder and many
others [31, 35, 58] etc. Cunningham et. al. [21] conducted a detailed study on evaluating
friction between powder/tooling using the above equation (4.1). The research
recommended to perform compaction using single action press for friction estimation as
the maximum effects of friction are observed in the compacted specimen, while a double
action press was suggested to evaluate the material parameters of the DPC model since it
will minimize the frictional effects. Therefore for accurate determination of constitutive
parameters along with the friction coefficient, two different compaction experiments are
needed in addition to all the destructive tests. Another possible drawback is that such
estimation based on the above relation could potentially represent an additional source of
error as the quantity of interest (friction) is not directly measured but rather recalculated
from the other available measurements.

As a remedy to overcome the above mentioned difficulties, friction coefficient can be
evaluated directly through the IA procedure using the measured radial stress from the die-
wall. Due to the friction, the transmitted load keeps on decreasing along the height of the
specimen when moving farther from the top punch. This drop in load is larger for a higher
value of friction coefficient. Such gradient in the force would lead to different values of
radial stresses at different locations within the sample. This implies that the radial stress
(measurable data) is directly affected by the coefficient of friction (quantity of interest)
between the powder and mold. Hence, extracting the stress at multiple locations from the
sample and using it as an input for the IA procedure offers the solution to quantify friction.

To the purpose of obtaining radial stress values, strain gages are fitted on the mold.
Strain gages 1, 2 and 3 visualized in figure 4.22 are at a distance of 13 mm, 35 mm and
55 mm from the bottom of the mold, while the distance of these gages from the bottom

of sample is 3 mm, 25 mm and 45 mm, respectively. For configurations 2-4 the gages are
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placed on the longer side of the sample (i.e. left side of samples in figure 4.10). Schematic

representation is given in figure 4.23 showing only 2 configurations here for brevity.

Figure 4.22. Fitted strain gages on the mold

CONFIGURATION -1 CONFIGURATION -2

Figure 4.23. Schematic representation of strain gage locations on the sample

The value of the strain recorded from these gages is converted to the stress, with details
on this given in appendix A. The stresses are also extracted from the simulations. The
experimental and simulated measurements are fed to IA in the form of pressing force vs.
radial stress curve visualized in the figure 4.24, corresponding to stress measurement from

one strain gage
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Figure 4.24. Force vs. radial stress from compaction experiment

Inverse analysis relies on the collected data from the experiment and simulation,
therefore, the quantification of friction is independent of the type of compaction
experiment (single or double action press). Further on, since the parameters are directly
evaluated from the measured data within IA, any possible errors coming from
recalculation, such as those in equation (4.1), can be avoided.

From the investigations summarized in this chapter, it can be realized that employing
proposed geometries is essential for successful implementation of IA in the present
context. However, it is important to determine how many of these different experiments
(configurations) are needed. To this purpose, compaction curve and radial stress curve
from different combinations of these mentioned geometries are going to be used as
inputs for IA procedure. On the basis of these results, minimum number of such
experiments required for successful calibration are going to be established. The results
of the parameter identification employing various combinations of configurations are

presented in the next chapter.
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RESULTS

Described test procedures are employed as resources of experimental results to be used
for the assessment of constitutive parameters entering Drucker-Prager Cap (DPC) yield
criterion through developed methodology based on Inverse Analysis (IA). Comparative
IA employing different combinations of configurations should serve to draw a
conclusion about minimum amount of data required for identifying representative
material parameters. For comparison the same parameters are evaluated by relying on
the currently adopted methods following the guidelines laid out in Chapter 2. The test

conditions and details regarding material used are given in what follows.

5.1 Materials and Experiments

In the current research, alumina graphite powder mixture is studied. Alumina has high
thermal, wear and corrosion resistance, and can operate in the temperature range of 1500
°C -2000 °C. On the other hand, graphite acts as a binder and has low thermal expansion
coefficient (1.2 x 1076 °C - 8.2 x 107% °C) [47], high thermal conductivity (25 W m™!
K= -470 W m~! K1) [47] and a low wettability by the slag. Combination of the two
powders provides excellent thermo-mechanical properties, thus, making the mixture a
popular choice for refractory linings of ladles in steel making processes, shrouds for
transferring molten steel from tundish to continuous casters, etc. [43, 52, 71].

For the current study, the powder mixture is manufactured by the partner on this

project, Vesuvius Inc. (Mons, Belgium). The absolute density of the mixture is
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determined through pyconometry and found to be equal to 2.638 g/cm?. Figure 5.1
shows the Scanning Electron Microscope (SEM) micro-graph [32] of the powder. Long,
plate like, particles are graphite, while the irregularly shaped ones are the alumina
particles, present in different sizes. This mixture is a topic of research at Vesuvius Inc., a
partner in this research, and due to the industrial constraints on sharing information,
further details about the composition of powder cannot be provided. The compaction
behavior of mentioned powder mixture is characterized in the current work and detailed

description of the performed compaction experiments is presented in what follows.

S
5

BSE 15.0kV x56 500um

Figure 5.1. SEM micro-graph of alumina graphite powder

5.1.1 Compaction Tests

The compaction tests are performed in a closed die setup. Therefore, it is not possible to
measure the displacement of the sample directly, rather the displacement of the punch is
recorded. The punch displacement includes the deformation of the specimen and elastic
compliance of various elements of the testing apparatus, namely the load cells and
punches. This inevitably introduces errors in the measured compaction curve. To
quantify the compliance of the experimental apparatus the top and the bottom punches
are pressed together with no powder in the die. Load is applied on the top punch, and

force displacement response is measured, which has a form as presented in the figure
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5.2. This curve is subtracted from the compaction curve of the pressed powder, to give
corrected response. All the compaction curves shown in this thesis have been adjusted

for this error due to machine compliance.
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Figure 5.2. Elastic deformation of the testing system

To protect the tooling (mold and punches) against the potential corrosion and wear,
nitriding treatment is performed on it. Nitriding is case hardening treatment making the
outer metal surface harder while keeping the inner surface intact. Prior to being used
within the compaction experiment, the tooling is lubricated by the ceramic lacquer
manufactured by Sogelub special lubricants. The mold employed for the compaction
made from steel subjected to nitriding is 150 mm high with a cylindrical opening of 30
mm in diameter. The load is applied on the top punch moving at a speed of 1.5 mm/min
throughout the pressing, while the bottom punch is kept fixed. For the purpose of
applying force, an “Instron” testing machine is used and details on this can be found in
section 3.1.1. Using this setup, flat cylindrical green bodies of different densities are
formed for the destructive tests (crush and Brazilian), while for the calibration through
inverse analysis, also additional green bodies of newly proposed shapes are produced,
with relevant details outlined in section 4.1. Clearly, for these green bodies different

punches are used, but the mold is the same.
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Sample Preparation for Crush Tests

For the crush test, samples are produced in a relative density range of 69%-93%. The
diameter of the samples is 30 mm while the height ranged from 50-53 mm, giving the
height to diameter ratio of 1.75 approximately. The compaction force and the weight of
powder is adjusted for preparing required samples. Two green bodies are formed
corresponding to the same level of relative density to control the reproducibility of the
results. Experimental details are given in table 5.1. Prepared samples for crush tests are
visualized in figure 5.3. Compaction curve corresponding to sample of 93% relative

density is given in figure 5.4, while others are omitted for brevity.

Table 5.1. Experimental details of the compaction tests performed to prepare crush test

samples
Sample | Sample | Compaction | Sample Height | Relative | Relative Density
Name | Mass [g] | Force [kN] | Final [mm] Density | Averaged
I D = - n
AR N = gy
s 0| T o | 08
IR =y
I R = == Sy
e I - B
o1 e | e e s
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Figure 5.3. Prepared samples for crush tests
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Figure 5.4. Compaction curves of the crush test samples of 93% relative density
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Sample Preparation for Brazilian Tests

The Brazilian test is performed in accordance with the ASTM standard D3967-95a [4]
which specifies that the height to diameter ratio of the sample must be between 0.2 +-0.75.
Following the ASTM guidelines, the green bodies are formed with a diameter of 30 mm,
while the height varied from 18-21 mm (for different relative densities), corresponding
to the aspect ratio of 0.6 + 0.7. It is worth noting that here it is crucial to produce green
bodies that have the same relative densities as those of the samples prepared for the crush
test. This is to ensure that the failure stresses from both the destructive tests (i.e. crush
and Brazilian test) are obtained at the same relative density and therefore, cohesion and
friction angle, defining the shear failure line, at that particular level of relative density can
be determined. To achieve the desired height and the aspect ratio mandated by ASTM
standard, the weight of the powder along with the compaction force need to be adjusted
accordingly. Relevant experimental details regarding diverse experiments are given in
table 5.2. The formed samples are shown in figure 5.5. Compaction curve of the specimen

of 93% relative density is given in figure 5.6, while the rest are skipped for brevity.

Table 5.2. Experimental details of the compaction tests performed to prepare Brazilian
test samples

Sample | Sample | Compaction | Sample Height | Relative | Relative Density
Name | Mass [g] | Force [kN] | Final [mm] Density | Averaged
x| % | M2 ng ooy | 09
I
g2 0| o omer | 80
R = g
I = e
B s | aw B o
@r 1 B | 4 g oem | 06
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Figure 5.5. Prepared samples for Brazilian tests

w
o

=== Sample-1

N
(@)
T

i

== Sample-2

N
o

—_
o

Pressing Force [kN]
(&)

()]

Displacement [mm]

Figure 5.6. Compaction curves of the Brazilian test samples of 93% relative density

For each of the seven relative density values, namely, 69%, 73%, 78%, 81%, 83%,
89% and 93%, two samples are formed for both of the tests (i.e. crush and Brazilian
test). Upon performing these tests, cohesion and friction angle are estimated at a particular
relative density level. Experimental description and results of the destructive tests are

given in section 5.1.2.

Sample Preparation of the Proposed Geometries for Calibration through 1A

For calibration through IA, green bodies of various shapes (figure 4.10) along with the
flat cylindrical one (figure 4.1a) are formed. For all configurations, pressing force of 17
kN is applied to compact 60 g of the powder in already described mold with cylindrical
opening of 30 mm in diameter. Along with the measured force displacement curves, also

radial stresses are acquired from the die-wall using the calibrated strain gages with details
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given in appendix A. The locations of the strain gages on the mold are visualized figure
4.22.

Relevant experimental details are given in table 5.3. Figure 5.7 shows the formed
samples. Resulting compaction and radial stress curves are visualized in figures 5.8 to
5.10. Note that a high compaction force is used so as to form green bodies with a high
relative density and therefore, the radial stress from the top gage (gage-3) is not considered.
With progressing compaction, the sample gradually leaves the zone where the top strain
gage is positioned, and hence the radial stress measurement is not available throughout

the whole compaction experiment.

Table 5.3. Experimental details of the compaction tests performed to prepare samples
for calibration through IA

Configuration Initial Height [mm] | Final Heightfmm] | Average Relative
Longer | Shorter | Longer | Shorter | Density
1 64.60 64.60 36.18 36.18 0.888
2 79.12 49.13 51.87 21.89 0.873
3 63.84 63.81 37.79 37.75 0.843
4 87.78 27.80 64.39 4.41 0.865
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Figure 5.7. Prepared samples for calibration through 1A
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Figure 5.8. Compaction curve corresponding to configuration-1 to configuration-4
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Figure 5.9. Radial stress curves corresponding to configuration-1 to configuration-4 for

middle strain gage
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Figure 5.10. Radial stress curves corresponding to configuration-1 to configuration-4

for bottom strain gage

Resulting compaction curves and the radial stress curves corresponding to

configuration-1 to -4 are further used as inputs for the IA procedure and the results are

given in section 5.3. The radial stress curves shown here will also be utilized to obtain

cap surface parameters based on methods of calibration applied as current praxis, with

detailed description of the procedure provided in section 5.2. In what follows, Brazilian

tests and crush test results of the compacted samples are reported.
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5.1.2 Crush and Brazilian Tests

The samples shown in figures 5.3 and 5.5 are subjected to crush and Brazilian tests
respectively. These destructive tests are performed on a Tinius Olsen H50KT type press
within this research. The force is applied on the top punch which is moving at a speed of
0.3 mm/min, while the bottom punch is kept fixed. A load cell of 10 kN is used, which
has an uncertainty of less than 0.05% in force measurement. The machine is shown in
figure 5.11. Experimental setup corresponding to crush and Brazilian tests are visualized

in figure 5.12 and 5.13 respectively.

Figure 5.11. Tinius Olsen H50KT press for performing destructive tests
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Figure 5.12. Experimental setup of crush test

Figure 5.13. Experimental setup of Brazilian test

Typical output of both these experiments is a force vs. displacement curve, where the
maximum force is a quantity required for further calculations. It is used to compute the
failure stress corresponding to the two tests using equations (2.10) and (2.11). For more

details on these calculations, refer to section 2.2.1. Specimens subjected to the crush and
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Brazilian tests are shown in 5.14 and 5.15, respectively. The force vs. displacement curves
measured from the crush tests performed on the samples of relative densities 93% and 78%
are given in figures 5.16 and 5.17, respectively, as the most representative ones. Similarly,

figures 5.18 and 5.19 show the Brazilian test results for the green bodies of 93% and 73%

relative density. The other force-displacement graphs of crush and Brazilian tests have
been omitted for brevity.

Figure 5.14. Samples corresponding to 69% to 93% relative density (left to right)
subjected to crush test

Figure 5.15. Samples corresponding to 69% to 93% relative density (left to right)
subjected to Brazilian test
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Figure 5.16. Resulting curves of crush test performed on samples of 93% relative density
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Figure 5.17. Resulting curves of crush test performed on samples of 78% relative density
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Figure 5.18. Resulting curves of Brazilian test performed on samples of 93% relative
density
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Figure 5.19. Resulting curves of Brazilian test performed on samples of 73% relative
density

The bulging in the samples which can be seen in figure 5.14 and crack on the
diametrical surface, visualized in figure 5.15, are characteristics of the specimens
subjected to crush and Brazilian test, respectively. Force vs. displacement curves of the
crush test shown in figure 5.17, corresponding to the sample of a relative density 78%
demonstrates that the curves of the two specimens having the same relative density are
fairly different. Similar is observed for Brazilian test samples of relative density 73%
given in figure 5.19. Such behavior is typically encountered in this research when
specimens of low relative density are subjected to destructive tests. As the relative
density of the sample increases, the force vs. displacement curves of the two samples at
the same density start becoming coherent. Indeed, no such dispersion is noticed on the
curves corresponding to samples with higher density, like those in figures 5.16 and 5.18.
The difference between the two curves at lower relative densities can be corroborated to
the fact that powder particles are still very loosely bonded together. This can clearly be
observed from the samples, like those visualized on the left side in figures 5.14 and
figure 5.15. The discrepancy between the curves is even more pronounced as the density
decreases. Therefore, the results of the commonly used destructive tests are questionable
at lower densities. Additional difficulty encountered with the powder studied here is that
it turned out to be impossible to eject the samples from the mold, when relative density is

lower than 70%. Such circumstances highlights the limitations of the currently applied
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procedures for characterizing green body formed at low density, and puts a practical
constraint on the specimens of relative density lower than 70%.

In order to deal more effectively with experimental data having significant variation,
it is recommended to produce more samples (usually 5-10) at each density level for crush
and Brazilian test to establish statistically meaningful results. However, this increases
the number of experiments to be conducted making the procedure industrially very
demanding. Since, in the current work destructive tests are performed only to provide
reference values of the parameters, further tests are not done. All calculations are
therefore performed on two samples for single density, and representative maximum load
is taken as averaged value recorded in crush and Brazilian tests. Failure stress can then
be calculated using equations (2.11) and (2.10) for crush and Brazilian test, respectively.
The results of these calculations are given in the table 5.4 and 5.5. Figures 5.20 and 5.21

graphically show how the assessed failure stresses are changing with relative density.

Table 5.4. Results of the performed crush tests

Sample | Maximum | Maximum Load | Failure Failure Stress
Name Load [kN] | Averaged [KN] Stress [MPa] | Averaged [MPa]
iy | 5 492
A T
R
e 05 215
S rsi L6l
e =
o2 oy | OV 57 0.66
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Table 5.5. Results of the performed Brazilian tests

Sample | Maximum | Maximum Load | Failure Failure Stress
Name Load [N] | Averaged [N] Stress [MPa] | Averaged [MPa]
e i 799 12
2 | ao0ss | 203! 56 045
ser e [ o
E i 49 0.6
s | 36 034
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Figure 5.20. Averaged failure stress of all samples for crush tests
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Figure 5.21. Averaged failure stress of all samples for Brazilian tests

5.2 Determination of Parameters Based on Currently

Adopted Praxis

Drucker-Prager Cap (DPC) yield surface parameters can be divided into three groups:
shear failure surface parameters (cohesion and friction angle), cap surface parameters
(cap eccentricity and evolution pressure) and the transition surface parameter (transition
surface radius). Here, the transition radius () is treated as a constant with an assumed
value of 0.025 as usually it is suggested to be within the range of 0.01 and 0.05 [28, 70].
Comparative numerical results also confirmed that there is a very small influence of the
value of this parameter to the pressing curve. Hydrostatic yield compression stress (p;)
can be calculated from the values of cohesion (d), friction angle (£), cap eccentricity (R)
and evolution pressure (p,) using equation (2.6). Therefore, four plastic parameters (d,
p, R and p,) along with the two elastic parameters (£ and v) need to be evaluated as a
function of relative density for full characterization of the alumina-graphite mixture
considered in this research. Clearly, these parameters cannot be assessed as a continuous
function of relative density, but in a discrete manner corresponding to previously
mentioned seven relative densities, for which the data are available. More precise

’resolution” would require additional green bodies, and hence make the procedure even
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more time consuming. The evaluation of above listed parameters is given in what

follows.

5.2.1 Shear Failure Surface Parameters

In the 2-D p-q space, where p is the hydrostatic pressure and ¢ is the equivalent von Mises
stress, the shear failure surface is represented by a single line. Failure stress values of the
samples having the same relative density from both crush and Brazilian test are used to
find the corresponding point in p-g plane of the two tests for that particular density using
equations (2.12), (2.13), (2.14) and (2.15). Point (p., q.) of the crush test and (p,, q,) of
the Brazilian test, represent two points in the p-g plane (refer to figure 2.4). Therefore, the
shear failure line can be determined from these two points, where the slope of the line is
the friction angle while the intercept on the y-axis is the cohesion, assessed from equations
(2.16) and (2.17). For detailed description, see section 2.2.1.

The averaged failure stress values given in tables 5.4 and 5.5 are used to find the points
(e, q0) and (py, q4) at each relative density. These values of p and ¢ from both crush test
and Brazilian tests are then utilized to assess material cohesion and friction angle. The
parameters are determined at seven levels of relative densities namely, 69%, 73%, 78%,

81%, 83%, 89%, and 93%. Results are presented in table 5.6 and figures (5.22 and 5.23).

Table 5.6. Assessed parameters defining the shear failure surface of DPC yield function

Relative | p, qc Dd qa4 Cohesion | Friction Angle
Density | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] [Degrees]
0.93 1.64 4.92 0.68 3.68 2.80 52.22
0.88 1.55 4.66 0.57 3.07 2.16 58.18
0.83 1.12 3.35 0.47 2.52 1.93 51.89
0.81 0.72 2.15 0.31 1.66 1.29 50.16
0.78 0.54 1.61 0.23 1.23 0.95 50.76
0.73 0.31 0.92 0.13 0.69 0.52 52.34
0.69 0.22 0.66 0.09 0.47 0.34 55.12
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Figure 5.22. Experimentally determined cohesion as a function of relative density
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Figure 5.23. Experimentally determined friction angle as a function of relative density

5.2.2 Cap Surface Parameters

To determine R and p,, stress state of the point corresponding to the intersection of loading
path of the green body and the cap surface is analyzed (see figure 2.5). The stress state
of this point can be fully characterized by the axial stress, axial strain and radial stress
under the assumption that the die-wall is rigid. As the compaction progresses, cap surface
continuously expands uniquely representing a particular density at every instance during
the compaction. Since the point lies on the cap surface, yielding is active at this point and

therefore, equation (2.4) is satisfied. Given that the information on the stress state of this
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point is available, it can be converted to hydrostatic pressure (py) and equivalent von Mises
stress (go) following equations (2.18) and (2.19). If the friction angle is known, R can be
evaluated, by setting the radial plastic strain rate at (pg, go) equal to zero (since the die-
wall is assumed to be rigid), as visualized in equations (2.22) and (2.21). By substituting
the value of R into formula (2.4), p, can be determined as shown in equation (2.23), if
the cohesion is known. Since the values of cohesion and friction angle are available only
at discrete relative density points, R and p, can also be evaluated only at these particular
densities. Detailed explanations can be found in section 2.2.2.

Axial and radial stresses are continuously recorded throughout the compaction and the
curves are given in figures 5.8 to 5.10. Given that the values of cohesion and friction angle
are available only for relative densities of 69%, 73%, 78%, 81%, 83%, 89%, and 93%,
consequently, R and p, can be evaluated at these particular relative densities. However,
in the current work, radial stresses were only measured from the samples that are formed
for the calibration through IA. Therefore, the maximum relative density (see table 5.3)
up to which R and p, can be estimated is 89%, corresponding to configuration-1. Using
the values of axial and radial stress (corresponding to bottom gage) from configuration-1
along with cohesion and friction angle from 5.6, cap eccentricity and evolution pressure
are assessed from equations (2.22) and (2.23). Hydrostatic yield compression stress (pp)
is calculated from formula (2.6). The results are presented in table 5.7 and figures 5.24 to

5.26.

Table 5.7. Assessed parameters defining the cap surface of DPC yield function

. Evolution | Hydrostatic Yield
Relat.lve po o Cap . . Pressure | Compression Stress
Density | [MPa] | [MPa] | Eccentricity [MPal [MPal

0.88 17.84 | 10.74 0.71 8.94 20.70
0.83 11.56 | 7.08 0.66 6.57 13.41
0.81 9.68 5.92 0.63 593 11.24
0.78 7.41 4.54 0.63 4.51 8.61
0.73 4.55 2.96 0.61 2.80 5.33
0.69 2.67 1.80 0.62 1.54 3.14
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Figure 5.24. Experimentally determined cap eccentricity as a function of relative density
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Figure 5.25. Experimentally determined evolution pressure as a function of relative
density
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Figure 5.26. Experimentally determined hydrostatic yield compression stress as a
function of relative density

5.2.3 [Elastic Parameters

The elastic behavior of the compacting powder is assumed to be isotropic, therefore, only
two elastic parameters, namely, Young’s modulus (£) and Poisson’s ratio (v) are evaluated.
Poisson’s ratio is assessed from the slope of the unloading part of axial stress vs. radial
stress curve following equation (2.31). Young’s modulus is evaluated on the basis of
formula (2.32) using Poisson’s ratio and the slope of the unloading curve of axial stress
vs. axial strain graph. This implies that axial and radial stresses need to be measured by
forming green bodies at different relative densities.

In the current research, the focus is on applying new methodology for calibration of
DPC yield function and hence, such extensive experimentations are not carried out. A
simplified approach is followed and the Poisson’s ratio is assumed to lie between 0.05 and
0.30, as this is the typical range for such powder mixtures. Force vs. displacement data of
the compaction tests (to form crush test samples) is converted to axial stress vs. axial strain
curve. The slope of the first 20% of the unloading curve is taken for the calculations. The
slope of this 20% of the unloading plot along with the limit values of Poisson’s ratio (0.05
and 0.3) are used as inputs to the equation (2.32) to give two corresponding limit values

of Young’s modulus. This is done for five different compaction curves corresponding to
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samples of 93%, 89%, 83%, 78%, and 73% relative density. The results are presented in
table 5.8 and figure 5.27.

Table 5.8. Assessed Young’s modulus corresponding to Poisson’s ratio of 0.05 and 0.3

Relative | Young’s Modulus [GPa] | Young’s Modulus [GPa]
Density | for Poisson’s Ratio = 0.05 | for Poisson’s Ratio = 0.30
0.93 2.62 2.12
0.88 2.37 1.85
0.83 1.92 1.46
0.78 1.68 1.27
0.73 1.15 0.86

4 I
=&=Pojsson's Ratio = 0.3

E =¥=Pojsson's Ratio = 0.05
o3 - _
[2]
>
=
82} :
=
w
2
31 .
>

. | | | ;

0.5 0.6 0.7 0.8 0.9 1

Relative Density Ratio

Figure 5.27. Experimentally determined Young’s modulus as a function of relative
density

5.3 Determination of Parameters based on Inverse
Analysis

To setup the Inverse Analysis (IA) procedure, measurable quantities which are the
compaction curve and radial stress measurements in two different points are collected
from both the experiment and its simulation. Source of the experimental data to be
considered as inputs to [A are the results of pressing tests (figures 5.8 to 5.10) performed
to form green bodies of configurations -1 to -4 (see figures 4.1a and 4.10). Numerically

computed counterpart of these quantities are collected from the simulations through
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finite element models done in ABAQUS [1]. For each of the configurations -1 to -4 ,
separate finite element models are built, corresponding to the experimental conditions
given in table 5.3. Configuration-1 is modeled as 2-D to exploit the axial symmetry and
the specimen is discretized into 672 four-node fully integrated axisymmetric elements
(marked by CAX4 in ABAQUS), while 3-D models of configurations -2 to -4 contain
3200 eight-node fully integrated tri-linear iso-parametric elements (marked by C3DS8 in
ABAQUS). Other simulation conditions are those given in section 3.1.2.

Simulations are performed within the force control regime and a maximum load of
17 kN is used corresponding to peak force applied within the experiments to form green
bodies exploiting configurations -1 to -4. Therefore, the displacements from the
compaction curves along with the measured radial stresses corresponding to middle and
bottom gage are considered (both from the experiment and its simulation) from all
configurations, to form the residual vector, which is constructed as the difference
between experimentally measured data and its simulated counter-parts. There are 300
entries in residual vector corresponding to one configuration, where 100 points are the
differences between displacements corresponding to a certain level of force for the
compaction curves, while 200 points (100 for middle and additional 100 for bottom
gage) are the differences between the radial stresses. The collected measurements in the
residual vector are then normalized for both displacements and radial stresses separately,
to ensure similar contribution of these entities to the overall discrepancy between
experimental and computed results. As the next step, discrepancy function is formed as
the sum of the squares of the members of residual vector. Finally, the so formed
discrepancy function is iteratively minimized with respect to the sought parameters. For
minimization, Trust Region Algorithm (TRA) based on 2-D subspace minimization
already implemented in MATLAB [41] is used. Detailed explanations on the
construction of discrepancy function along with main features of TRA are outlined in
Chapter 3.

The sought parameters are four plastic (d, f, R, p,) and two elastic parameters (£ and
v) along with the coefficient of friction between the powder and mold/punches. Note that
in the numerical implementation of DPC yield criterion in ABAQUS, hydrostatic yield

compression stress (p;) is used instead of evolution pressure (p,). Further on, transition
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surface radius (), to which usually a value is attributed within a range of 0.01 and 0.05 [1]
is assumed as a constant here, throughout the compaction and therefore not subjected to the
identification. In order to motivate this assumption, simulations are performed considering
a=0.01 in one case, and a = 0.05 in another, while keeping all the other parameters fixed.
The results of the simulation can be visualized in figure 5.28. Indeed, the value of a has
marginal influence on the compaction simulation as the curves are practically the same

for both cases, justifying the assumption to treat « as a constant.
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Figure 5.28. Effect of transition surface radius on the simulated compaction curve

Given that the DPC model is modified to include dependency of parameters on relative
density, plastic (d, S, R, py) and elastic parameters (E,v) are assessed as a function of
relative density by using the proposed relation (3.3). According to it, each parameter is
quantified by its initial value (corresponding to initial relative density, here specifically
taken as 0.5), final value (final relative density, here adopted as 0.95) and the exponent
governing the transition of the parameter from initial to final value. All the six material
parameters (four plastic and two elastic) are assessed in this manner, while the friction
coefficient is evaluated as a single value independent of the relative density, making a
total of 19 parameters that are subjected to identification. The initial and final relative
densities are a priori selected and not considered for the evaluation.

To start the IA procedure, parameters are initialized with some “expert” values and

are searched within certain bounds which are selected based on the expected range of the
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properties of alumina-graphite powder mixture. Further on, the parameters are
normalized between 0 and 1, where O represents the lower bound and 1 is the upper
bound. For the minimization of discrepancy function employing TRA, gradients are
calculated using a forward difference with a perturbation of 10~%. This implies that the
number of simulations is one more than the number of sought parameters for one
iteration. The iterative procedure is stopped when the change in the objective function is
less than 107% or when the difference between the norm of the parameter vector within
two consecutive iterations is lower than 1072, Note that the range of relative density
(0.5-0.95) in which the parameters are assessed, the value of transition radius (a = 0.025)
and the mentioned algorithm tolerances are kept the same for all the inverse analyses
shown in this Chapter.

As the final step to design a calibration protocol based on Inverse Analysis (IA)
methodology, it is important to determine the minimum number of experiments needed
to be used as inputs for the IA procedure. To this purpose, a combination of experiments

(i.e. configurations -1 to -4) are selected and the results are presented in what follows.

5.3.1 Results of IA by Employing Two Configurations

As shown in Chapter 4, employing only configuration-1 was not enough to evaluate the
representative material properties. Therefore, the next logical step is to try and assess the
parameters employing two configurations. In the first attempt, inverse analysis relying on
the experimental data (compaction and radial stress curves) of two configurations (-1 and
-2) was used. The IA procedure terminated after six iterations. Computations are done on
a regular desktop computer with a 3.1 GHz (intel i-7) processor and 16 G-Byte RAM. The
computational time required for one iteration on this computer is about 4 hours, implying
total time needed for a full inverse analysis to be approximately 1 day.

Assessed parameters are given in table 5.9. Compaction curves corresponding to the
final parameters are given in figures 5.29 and 5.30. Note that the radial stress curves
corresponding to middle and bottom gages are also used as inputs to the IA procedure but

the curves are omitted here for brevity.
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Table 5.9. Final parameters corresponding to IA identification employing
configuration-1 and -2 as inputs

Parameter Initial Value | Final Value Exponent
(po = 0.50) | (p,=0.95)
Young’s 0.031 1.041
Modulus [GPa] [GPa] 4.082
Poisson’s 0.112 0.241 1.587
Ratio
Material 0.367 2.796 1,596
Cohesion [MPa] [MPa] '
Friction 56.8770°! 50.8080 1.601
Angle
Cap
Eccentricity 0.153 0.788 1.842
Hydrostatic 0.145 36.078 3014
Yield Stress [MPa] [MPa] '
Friction
Coefficient 0.247
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Figure 5.29. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through A employing configuration-1 and -2 as
inputs
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Figure 5.30. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs

The above figures show a good agreement between the experimental and computed

curves, as the inverse converged to a global minimum. To assess if the parameters

identified are the representative material parameters, configurations -3 and -4 are

simulated using the same parameters. The compaction curves corresponding to the two

configurations are given in 5.31 and 5.32.
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Figure 5.31. Experimental vs. final compaction computed curve for configuration-3
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs
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Figure 5.32. Experimental vs. final computed compaction curve for configuration-4
corresponding to parameters identified through IA employing configuration-1 and -2 as
inputs

Clearly, it can be observed that the parameters assessed by employing only two
configurations are not representative material parameters, as they cannot fit other
experiments. Therefore, similarly to the identification where only one configuration is
used, the solution to the inverse analysis represents a fitting of data specific to the
experiments, and clearly are not possessing the uniqueness of the solution. Similar
results are observed when using other combinations like configuration -1 and -3,
configuration -2 and -4, etc. These investigations illustrate that the measurable quantities
collected from two experiments are not rich enough to calibrate the DPC model. For
further enrichment of the experimental data, the combination of three configurations is

considered. Assessed results are given in what follows.

5.3.2 Results of IA by Employing Three Configurations

Three configurations selected as the source of input data to IA procedure are
configurations -1, -2 and -3. Configuration-2 has the most heterogeneous state of stress,
while the stress path of certain elements in configuration-3 lies in the close vicinity of
shear failure line of DPC yield function (see 4.1). It is therefore expected that this
combination provides reasonable diversity of stress paths covered by certain material

points, generating experimental data good enough to calibrate all the parameters of the
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considered model. Indeed, the combination of these configurations turned out to be
enough to calibrate the DPC model parameters. 1A procedure is started using
compaction and radial stress curves from these three configurations. The IA procedure
finished after only 7 iterations in a total time of about 45 hours. The solution to the
inverse problem is found as demonstrated in figures 5.33 to 5.41. Identified parameters

are given in table 5.10.

Table 5.10. Final parameters corresponding to IA identification employing
configuration-1, -2 and -3 as inputs

Parameter Initial Value | Final Value Exponent
(po = 0.50) | (pg = 0.95)
Young’s 0.248 2.907 1577
Modulus [GPa] [GPa] '
Poisson’s 0.048 0.204 3.128
Ratio
Material 0.257 3.274 2909
Cohesion [MPa] [MPa] '
Frietion | 45 4061 | s6.83661 | 1272
Angle
Cap
Eccentricity 0.521 0.740 1.166
Hydrostatic 0.230 35.581 3.032
Yield Stress [MPa] [MPa] '
Friction
Coefficient 0.051
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Figure 5.33. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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Figure 5.34. Experimental vs. computed radial stress curves (middle gage) for
configuration-1 corresponding to parameters identified through IA employing
configuration-1, -2 and -3 as inputs
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Figure 5.35. Experimental vs. computed radial stress curves (bottom gage) for
configuration-1 corresponding to parameters identified through IA employing
configuration-1, -2 and -3 as inputs
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Figure 5.36. Experimental vs. computed compaction curves for configuration-2
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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Figure 5.37. Experimental vs. computed radial stress curves (middle gage) for
configuration-2 corresponding to parameters identified through IA employing
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Figure 5.38. Experimental vs. computed radial stress curves (bottom gage) for
configuration-2 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs
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Figure 5.39. Experimental vs. computed compaction curves for configuration-3
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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Figure 5.40. Experimental vs. computed radial stress curves (middle gage) for
configuration-3 corresponding to parameters identified through IA employing
configuration-1, -2 and -3 as inputs
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Figure 5.41. Experimental vs. computed radial stress curves (bottom gage) for
configuration-3 corresponding to parameters identified through IA employing
configuration-1, -2 and -3 as inputs

From the above figures it can be observed that there is a good agreement between the

experimental and the final computed curves (both compaction and radial stresses curves)
for configurations -1, -2 and -3. For verification purposes, the assessed parameters are

used to simulate the configuration-4. Corresponding compaction curve along with the

experimental one given in 5.42 shows an excellent agreement between the two.
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Figure 5.42. Experimental vs. final computed compaction curve for configuration-4

corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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To further verify the uniqueness of the solution, an additional IA is performed using
a different parameter initialization. The IA procedure required 7 iterations taking a total
time of about 42 hours. The obtained compaction curves corresponding to configurations

-1, -2 and -3 are given in figures 5.43 to 5.45. Radial stress curves are not shown here for

brevity.
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Figure 5.43. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA starting from a different initialization
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Figure 5.44. Experimental vs. computed compaction curves for configuration-2
corresponding to parameters identified through IA starting from a different initialization
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Figure 5.45. Experimental vs. computed compaction curves for configuration-3
corresponding to parameters identified through IA starting from a different initialization

Identified parameters upon starting IA from a different initialization led to a good
agreement between the experimental and computed compaction curves. Assessed
parameters from the two initializations are also found to be very similar. The change in
the values of some selected parameters over the course of IA for both initializations are
demonstrated in the form of convergence plots given in figures 5.46 to 5.47. Here,

initialization-1 refers to results contained in table 5.10, while initialization-2 is the

second one.
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Figure 5.46. Convergence plot of cohesion for IA starting from 2 different initializations
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Figure 5.47. Convergence plot of hydrostatic yield compression stress for IA starting
from 2 different initializations
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Figure 5.48. Convergence plot of Young’s modulus for IA starting from 2 different
initializations

Figures visualizing the compaction curves and the convergence plots, contribute to
the conclusion that the designed inverse problem is well-posed. In a view of performing
further checks, the results are validated by comparing parameters’ values assessed through
IA against the experimentally determined ones given in section 5.2. Additionally, the
assessed parameters are used to simulate compaction test for complex geometries, not

considered within calibration. The comparison is summarized in what follows.
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5.4 Simulation of Complex Geometries Using Parameters

Obtained from IA

To analyze if the assessed parameters can be used to model the compaction of
alumina-graphite powder, miniaturized green bodies typically resembling industrial parts
are produced and their compaction is modeled through DPC model using the obtained
parameters from the developed IA procedure. The schematic representation of these

different shapes can be visualized in the following figure.
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Figure 5.49. Schematic representation of configurations -5 to -7

To produce samples corresponding to the shapes given in figure 5.49, the top punches
are designed as shown in figure 5.50, while a flat cylindrical punch is used as the bottom
one. The mold employed for the pressing has a cylindrical opening with a diameter of 40
mm and 150 mm height, made from nitrided steel. Compaction is performed on the same
“Instron” testing machine (upper part of figure 3.2). A load of 20 kN is applied to compact

60 g of alumina-graphite powder, with the top punch moving at a speed of 1.5 mm/min,
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while the bottom punch is kept fixed. All the mentioned experimental conditions are kept
the same for all configurations and the other relevant details are given in table 5.11. The

formed samples are visualized in 5.50.

Configuration Sample Sample Relative Density
Height Initial [mm] | Height Final [mm] Averaged
5 80.929 53.447 0.886
6 78.953 52.209 0.885
7 73.249 47.808 0.873

Table 5.11. Experimental details of the compaction tests performed to prepare samples
for configurations -5 to -7

Figure 5.50. Samples made from alumina-graphite powder along with the required
punches to produce configurations -5 to -7 (Left to Right)

Simulation of the compaction test for configurations -5, -6 and -7 is done in
ABAQUS. All finite element models are designed as axially symmetric. The specimens
for all configurations are meshed into 2480 four node fully integrated axially symmetric
elements (marked as CAX4 in ABAQUS). Simulations are performed within a force
control regime using a maximum load of 20 kN, corresponding to experimental details

listed in table 5.11. Other simulation conditions are the same as those listed in section
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3.1.2.  Performed simulations led to the curves which are compared against the

experimental in the figures 5.51 to 5.53.
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Figure 5.51. Experimental vs. final computed compaction curve for configuration-5
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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Figure 5.52. Experimental vs. final computed compaction curve for configuration-6
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs
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Figure 5.53. Experimental vs. final computed compaction curve for configuration-7
corresponding to parameters identified through IA employing configuration-1, -2 and -3
as inputs

A good agreement between the experimental and simulated compaction curves given
in figures 5.52 to 5.53 shows that the obtained parameters through IA can be used to
model compaction involving an arbitrary geometries. These results confirm that the
calibration protocol relying on IA methodology offers an alternative, and a more
effective route to calibrate the DPC model instead of the currently adopted methods
based on destructive tests. To conclude this comparative study, values assessed through
developed TA procedure are finally compared to those evaluated on the basis of a lot

more time consuming destructive tests. The results are given in the following section.

5.5 Inverse Analysis Approach vs. Currently Adopted

Praxis

Through the IA procedure, plastic parameters namely, cohesion (d), friction angle (f),
cap eccentricity (R) and hydrostatic compression yield stress (p), and the two elastic
parameters Young’s modulus (£) and Poisson’s ratio (v) are assessed in a relative density
range of 0.5-0.95. To establish reference values of parameters, four plastic parameters
and Young’s modulus are also evaluated from the existing methods relying on crush

tests, Brazilian tests and acquiring radial stresses from the die-wall, as demonstrated in
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section 5.2. From the experimental route, evolution pressure (p,) is assessed, while via
IA, p, is evaluated. The values of p, and p, are related through the equation (2.6). The
comparison of the parameters obtained from the two approaches are visualized in figures

5.54 t0 5.59.
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Figure 5.54. Comparison of material cohesion assessed from IA vs. experimentally
determined values
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Figure 5.55. Comparison of friction angle assessed from IA vs. experimentally
determined values
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Figure 5.56. Comparison of cap eccentricity assessed from [A vs. experimentally
determined values
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Figure 5.57. Comparison of hydrostatic yield compression stress assessed from IA vs.
experimentally determined values
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Figure 5.58. Comparison of evolution pressure assessed from IA vs. experimentally
determined values
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Figure 5.59. Comparison of Young’s modulus assessed from IA vs. experimentally
determined values

From the above figures, it can be realized that the parameters identified through TA
are in a good agreement with those evaluated on the basis of the industrially adopted
praxis of performing destructive tests. Obtained results contribute to the conclusion that
relationship between the parameters and relative density proposed by equation (3.3) is
general enough to capture both exponential trend (encountered for cohesion, for instance)

as well as the linear one (for friction angle).
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Furthermore, the parameters are assessed as a continuous function of relative density,
within the proposed IA approach, while through the currently adopted praxis, material
parameters can only be evaluated at discrete points of relative density. It is noteworthy
that even though IA provides richer results, it still involves a much fewer number of
experiments for calibration. This is evidenced by the fact that identifying parameters
using IA approach requires only three compaction experiments (configuration -1, -2 and
-3), while through current methods, assessing a parameter at only a particular relative
density requires performing a minimum of four compaction and four destructive tests (i.e
at least two samples for both crush and Brazilian tests) making a total of 56 experiments
for parameters estimated at only 7 relative density points in the current work.

Another advantage of IA is that it can be used to assess parameters in low relative
density range, while the same is not true when the method based on destructive tests is
employed. As demonstrated in section 5.2, the lowest possible relative density to produce
and test green bodies turns out to be 73%. Therefore, the accuracy of assessed cohesion
and friction angle at this level of relative density or lower is arguable. Within the 1A
approach, the parameters are determined at relative densities as low as 50%. One can
even go lower to represent the initial relative density of the specimen if needed, as the
parameters are evaluated using the available measurements from the compaction tests.
Even though the sample cannot be ejected or tested further, the data from the compaction
experiment is at the disposal to perform IA to determine the parameters in this low relative
density range.

From what precedes, it can be realized that inverse analysis offers a feasible, more
flexible and a very efficient approach to identify material parameters of models employed
in powder compaction. Such features of [A make it a promising alternative for calibration
within the industries, as opposed to the tedious and experimentally demanding approach

followed currently. The developed IA protocol is summarized in what follows.
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5.6 Summary of the Inverse Analysis Protocol

e Compaction experiments are performed to form green bodies of three different
configurations (-1, -2 and -3) with geometries given in figures 4.1a and 4.10. From the
experiment, measurable quantities are collected in the form of a digitalized pressing
force vs. displacement curve along with radial stresses corresponding to two strain

gages installed at different locations on the mold.

e Simulation of compaction tests corresponding to configurations -1, -2 and -3 is done
by employing finite element method (here, through commercial code ABAQUYS).
Considered material model for simulation is the "modified” DPC model. Modification
is done to include field dependencies of constitutive parameters of DPC model on
relative density by using the "USDFLD” subroutine already available in ABAQUS.
Once the simulation is finished, force-displacement graph along with radial stress vs.
pressing force curves corresponding to the same location of the strain gages as in the

experiment, are extracted.

e Residual vector is formed as the difference between experimentally measured data and
their computed counter-parts. Entries to the residual vector are taken to be the
displacements (100 points) from the compaction curves and the radial stresses (100
points each from bottom and middle gages) from radial stress plot corresponding to a

certain level of force.

e Discrepancy function is formed as the sum of the squares of the residual vector members.
Trust region algorithm based on 2-D subspace minimization is used to minimize the
discrepancy function. The parameters which minimize the discrepancy function is the

solution to the inverse problem and also the representative material parameters.
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CALIBRATION OF NOVEL
MATERIAL MODEL THROUGH
INVERSE ANALYSIS

Employing the Drucker-Prager Cap (DPC) model for powder compaction modeling is a
reasonable strategy to test the calibration procedure based on Inverse Analysis (IA)
methodology, developed within this research. This is due to the obvious advantages
offered by DPC model, such as, availability in commercial codes and stable numerical
implementation. Moreover, there is still a good amount of powder compositions, whose
behavior under certain conditions, can be modeled accurately enough through this
constitutive model.

However, the main limitation of continuum plasticity models, like DPC, is that they
do not model well the transition of the powder under compaction, from its granular to
fully dense state. It is experimentally observed that the powder compaction features
three phases: (1) granule sliding and rearrangement; (2) granule deformation and (3)
granule densification [50, 51]. It is furthermore evidenced that the cohesion of green
body starts to develop only within second phase, while already during the first phase
there is some growth in relative density. Clearly, models like DPC, which relate
equivalent plastic strain to the relative density, fail to take into account this transition,
namely to identify the level of relative density at which cohesion starts to develop. This

peculiarity of powder compaction is not addressed within the currently adopted models
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for simulation of compaction, hence, posing a need to develop a novel constitutive
model. The task of formulating the novel model was a topic of research of the group at
the University of Trento who are partners at the current (CERMAT-2) project.
Description of the developed model is presented in section 6.1.

From the viewpoint of calibration, the complexities are further enhanced when such
a sophisticated model is considered. The most obvious difficulty is an elevated number
of parameters. Further on, the numerical implementation and testing of the novel model
showed unstable simulations for certain combinations of parameters. The assessment of
parameters based on the developed IA procedure so far relied on the minimization of
objective function which is achieved by using Trust Region Algorithm (TRA)
throughout this research. Employing TRA involves calculations of first derivatives
which are approximated by finite forward differences. Such feature of TRA makes the
use of developed IA procedure rather difficult when combined with an unstable model,
exhibiting convergence difficulties for certain combinations of parameters.

As aremedy to solve the minimization problem, Genetic Algorithms (GA) can be used
which are capable of finding a global minimum for a discontinuous function even with
high non-convexity. However, the number of function evaluations when employing GA
is considerably elevated, usually larger by one to two orders of magnitude as compared to
TRA. Given that the function evaluation here involves a Finite Element (FE) simulations,
minimization technique based on GA is rendered unfeasible for practical purposes. The
only way in which this approach can be made applicable is to develop a faster alternative
to replace the FE simulations.

Potential replacement of Finite Element Model (FEM) is offered by an appropriately
designed Reduced Basis Model (RBM). Such techniques are relying on “correlation” of
numerically computed data, in order to design a subspace with significantly reduced
dimensionality.  This approach offers a substantial reduction of computing time
preserving almost the same accuracy as that of the original model by extracting the most
meaningful information from it. Different kinds of RBM have already been employed in
various fields of science and engineering, such as transient thermal analysis [6], damage
detection in structures [56], human face recognition methods [60], analysis of turbulent

flows [5] and many others [34, 39, 62]. In particular, the work of Buljak and Maier [16]
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is a typical example of the application of RBM in structural mechanics. In that research,
material characterization based on instrumented indentation tests was done by
performing numerical simulations of the experiment through RBM, instead of
computationally expensive FEM simulations.

In the present research, implementation of RBM for the acceleration of numerical
simulations of powder compaction is studied. To assess the parameters of the novel
model, IA procedure is designed, relying on the combination of GA and RBM. In what
follows, an overview of the novel model is given, proceeded by a brief description on
genetic algorithm and reduced basis model employed for the acceleration of non-linear

simulations.

6.1 Novel Constitutive Model for Powder Compaction

During powder compaction, material transforms from a loose to a dense state. Modeling
powder compaction accurately, through continuum plasticity, requires the yield criterion
to take into account the evolution of a material undergoing compaction from granular to
dense state. Most of the authors are using the modified Drucker-Prager Cap (DPC) yield
criteria to this purpose [28, 70], while some have also employed modified Cam Clay
(CC) criterion [24]. The modified DPC and CC criterion model the powder compaction
fairly well, however, these yield functions fail to provide any information about the
particular point at which the material is no longer granular and starts developing
cohesion. To address this shortcoming, yield function formulated by Bigoni and
Piccoloroaz [7] can be used.

The model presented here is based on Bigoni-Piccolroaz (BP) yield function, two
micro-mechanical hardening laws and elasto-plastic coupling. Short description of these

different ingredients is given in what follows.
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6.1.1 Bigoni-Piccolroaz Yield Function

BP yield criterion has an important capability to change the shape of yield surface. In the
present context, this feature is exploited to describe the transition between two distinctly
different states of a material undergoing compaction [51]. Figure 6.1 visualizes the
evolution of BP yield surface as the compaction progresses. Here, the breakpoint
pressure (p.,) marks the onset of 2" phase of compaction, namely, granule deformation.
Cohesion is almost negligible throughout the 1% phase and substantially starts to increase
in the 2" phase, as seen from figure 6.1. Density of the green body also grows rapidly

during the 2" phase, which is observed by the steep increase in slope in figure 6.2.

------ Initial Yield Surface

Yield Surface at
Breakpoint Pressure

—— Current Yield Surface

quivalent von Mises Stress, ¢

Tl\\E'

pca pCb pc

Increase in .
Hydrostatic Pressure, p

Cohesion

Figure 6.1. Bigoni-Piccolroaz yield surface at three different instances during
compaction

110



CHAPTER 6. CALIBRATION OF NOVEL MATERIAL MODEL THROUGH
INVERSE ANALYSIS

£
2
=l
£ S
] g
& ‘*V
. /
= S /
R & /
J.Q‘bv
= ™/
g /
[=*]
= 7/
&) PhaseI /

>

Compaction Pressure [MPa]

Figure 6.2. Semi logarithmic plot of compact density vs. applied pressure

Mathematical formulation of Bigoni-Piccolroaz yield function is given as:

F(0,M,pe,c) = flp, M, p..c) + ﬁ 6.1)

where, f(p, M, p., c) is the meridian function describing the pressure sensitivity part of
the function, while (¢/g(8)) is the deviatoric function defining the Lode dependence of
yielding. Here, o is the stress tensor, p is the hydrostatic pressure, M is the pressure
sensitivity parameter of the material, p, is the hardening parameter, c is the cohesion, ¢ is
the equivalent von Mises stress and @ is the Lode’s angle.

Analytical expression of f(p, M, p., c) reads:

o M.por) = —Mp/lp — 9" 2(1 — a)p +a], ifp € [0,1] ©2)

0, otherwise

here, o and m are shape factors of meridian section of the yield surface, while ¢ and M

respectively, are defined as:

_ptc
Petc

(6.3)
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b (1+0B)" -1
d (ny —1)(1 + oK)

where, M is the initial pressure sensitivity parameter, ki, 6 and n; are the parameters

M= M,+ (6.4)

defining the transition of M during the compaction and ./, is the second invariant of the
deviatoric strain.

The g(0) part of the deviatoric function is expressed as:

L = cos {@ — lcos'1 (ycos 30)] (6.5)

where, f and y are shape factors of deviatoric section of the yield surface and Lode’s angle

is defined in the form below:

6 = 3 cos’ TJ23/2 (6.6)

1 [3\/5 Js ]
The plastic flow rule used in combination with the BP yield function can take both,
associative and non-associative form, depending on the value of parameter #, helping to

model behavior of different types of powders [51]. The analytical formulation of the flow

rule is given as:

oF

) . 1
& =i|Q-gn(l-g)(TrQI|, and Q= (6.7)

here, Tr Q is the trace of matrix Q, €’ is the plastic strain rate tensor, 2 is the plastic flow
multiplier and I is the identity matrix. For #=0 the flow is associative, while for other
values of 7 it is non-associative.

The parameters needed to be quantified in order to define this plasticity model are:
cohesion (c), hardening (p.), pressure sensitivity parameters (M, k1, 6 and ny), plastic
flow (), meridian shape factor (a« and m), deviatoric shape factor (f and y). Parameters
controlling the shape of BP yield surface, namely: a, m and y are evaluated for both initial
(a1, my and y,) and final state (ag, mo and y,) of the powder, while f is identified as a
single constant assumed not to change during compaction. Initial hardening parameter
(pc0) 1s also needed to describe the phase (1) of the powder compaction. The increase in

cohesion and evolution of parameter p. with plastic deformation is dealt under hardening,
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which is given in what follows. For more detailed description of BP yield function and

developed plasticity model for powder compaction, refer to [7].

6.1.2 Description of Hardening Rules

Two hardening rules are defined by the dependency of hardening parameter (p.) and
cohesion (c) on the volumetric plastic strain (e?). The relation between p. and €’ is
determined by employing Cooper-Eaton hardening law which describes the densification
behavior of the material under isotropic compression. Cooper-Eaton formula takes into
account first two phases of the compaction through a double exponential law as given in
equation (6.8), where the exponents a; and 4; correspond to the 15 phase, while the
exponents a, and A, represent the 2" phase. Constants a; and a, denote the increment of
void ratio (ey) that would be achieved at infinite pressure by each of the two mechanisms
of compaction. Coefficients A; and A, are the values of pressure at which the 1*" and the

2" phase of compaction become dominant, respectively.

Y Y
e =— €0 {a1 exp (——1) ~+ a, exp (——2> } (6.8)
1 + €p pc pC

The second hardening rule models the growth in cohesion with progressing

compaction. Given that the relation between p. and e’ is established, increase in
cohesion can be defined as a function of hardening parameter (p.) by the formula given

as:

C=Cxo [1 — €Xp (_Fc <pc _pcb>)] (69)

where, ¢, is the limit value of cohesion after substantial plastic deformation, p,, is the
breakpoint pressure marking the onset of phase (2) of compaction and /. controls the
growth of cohesion from initial to final state of the powder. The Macaulay operator ()"
implies that value contained in it is non-negative, since the cohesion is null before p,; is
reached.

Parameters needed to characterize the two hardening rules are: ay, 4;, as, A3, Coos Peb
and /.. Definition of hardening rules and the BP yield function constitute the plastic part

of novel model, while the formulation of elasticity law is given in what follows.
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6.1.3 Elastic Response and Elasto-Plastic Coupling

The elastic response of the powder becomes stiffer as the compaction progresses, as
evidenced in figure 1.2. In the initial phase of compaction, the granular material obeys
the non-linear elastic law, while compacted powder behaves like a dense solid following
the linear elastic law [49]. In order to take these details into account, elastic rule is
defined such that: a) it incorporates transition from non-linear elastic law to a linear one
(i.e granular to solid) during the compaction and b) elasto-plastic coupling is defined in
order to include the dependence of elastic properties on the plastic deformation.

The mathematical formulation of the elastic law is given as:

2
ole..el) = {—§ﬂ65+0+ o+ )

K d(el\j)l/n
+ 2u€’
(6.10)
where,
1
d=1+1g{p.—pa), ﬂ(d):/h‘i‘c(d_c_l)/b (6.11)

In equation (6.10), €, is the elastic strain tensor, e and e? are volumetric elastic and
plastic strains respectively, u is the shear modulus such that x4, and x, correspond to initial
(granular) and final (dense) state of the powder respectively, py is the initial confinement
pressure (i.e. pre-consolidation pressure before compaction starts), d is elastic transition
parameter, # is the constant defining the exponential decay of d, e is the initial void ratio,
x 1s the bulk modulus, while 7'z in formula (6.11) controls how quickly the elastic response
changes from granular to compacted material. From the above relations, the elastic law
of the granular material can be recovered by setting d=1. For detailed explanations, see
[51].

In the numerical implementation of the model, I Lame parameter (4) is used instead
of bulk modulus, while shear modulus represents I Lame constant (x«). The parameters
required to model the elastic behavior are: Lame’s parameter I and II corresponding to

the initial (4, and u,) and final (4, and u,) state of the powder respectively, initial void
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ratio (eg), pre-consolidation pressure (pg), exponential decay term »n and parameter /g
controlling the change in the elastic behaviour.

From the outline of the novel model presented here, a total of 28 parameters (13 for
yield function, 7 for hardening, 8 for the elasticity) are needed to define the model. Out
of these 28, two elastic parameters, namely initial void ratio (ey) and exponential decay
term (n) are assumed as a priori known constants and are not subjected to the
identification. The remaining model parameters, which are given in table 6.1, are
subjected to the identification through inverse analysis procedure designed by combining
the concepts of genetic algorithms and reduced basis modeling, outlined in the following

sections.
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Table 6.1. Parameters defining the novel constitutive model

Serial Parameter | Units Parameter
Number Description
Yield Surface Parameters
1. Peo [MPa] | Initial Hardening
2. MO -
3. ky - Pressure
4. 01 - Sensitivity
5. ny -
® m L Meridian
Shape
8. a1 -
Parameters
9. (45) -
10. b - Deviatoric
11. Y1 - Shape
12. Vo [MPa] Parameters
13. n - Plastic flow
Hardening Parameters
14. ay -
15. A [MPa] Cooper-Eaton
16. as - Hardening
17. Ao [MPa]
18. Deb [MPa] Cohesion
19. Coo [MPa] Related
20. I, [MPa~] Hardening
Elastic Parameters
21. A [MPa]
22. Uy [MPa] Lame’s
23. A3 [MPa] Constants
24, o [MPa]
25. Iy [IMPa~!| |  Elasto-plastic
26. Po [MPa] Coupling

6.2 Genetic Algorithms

Genetic Algorithms (GA) represent a methodology to solve both constrained and
unconstrained minimization problems, iteratively. In the present context, the solution of
the minimization problem are the constitutive parameters of the novel material model.
Within the GA jargon, these candidate solutions (i.e. different parameter sets of novel
model) are referred to as members of the “population”. During each iteration

(’generation” in GA terminology), the population is modified by the process of "natural”
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selection. Through this process (sometimes also referred as “selection rules”), members
of the current population are used to produce three different types of “’kids”, namely,
“elite”, “cross-over” and “mutation” kids, to form the next generation. Over subsequent
generations, the population “evolves” towards an optimal solution. The working

principle of GA is given in what follows.

* At the beginning of the minimization, the initial population is formed by randomly
generated members (i.e. parameter vectors), which represent different points in the
parameter space. The domain is defined by an “expert” such that it correctly limits the

values of each of the sought parameter.

» The value of the objective function (referred as “fitness” function in GA jargon) is
calculated for the members of the current generation. This step is computationally
most demanding as each evaluation of the objective function represents solving of the

forward problem, which in the present context, involves finite element simulations.

* Once the values of the objective function are assessed, they are sorted in an ascending
order. Further on, the current population is modified through the natural selection
process, to form a new generation by creating kids, by employing the following

operations:

* Selection of the elite kids: These are the members with best (i.e. smallest) value
of the objective function within the current generation. They are directly passed to
the next generation without any modification, hence, preserving the members with
currently the best value of fitness function. Usually, the elite kids amount 2-5% of

the population size.

* Forming cross-over kids: A certain number of members are chosen as “’parents”
which contribute their ”genes” (i.e. parameter values) to create the cross-over
kids. The selection of the parents can be random, however, the most common
criterion is to consider the members from best to intermediate values of the fitness
function to be treated as the parents. Usually 50%-70% of the population is used
as the parents, which are then randomly combined to form “couples”. Obviously
with such an implementation, repetition of the same parent in different couples

is possible. After the couples are formed, the crossing-over of the genes of each
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parent is performed to produce cross-over kids. A straightforward cross-over rule
which is also adopted in the present work, generates random vector of the same
size as the parameter vector, with only zeroes and ones as entries. Applying this
rule to the previously formed couple, one cross-over kid is constructed on the basis
of this random vector such that entry 1 means taking the corresponding parameter
value from the first parent, while entry 0 means taking it from the second one. As
an example, crossing over two parents, X=[X1, X», X3, X4]” and Y=[Y1, Ys, Y3, ¥4]7
with the random vector R=[1,1,0,1]7, results in [X;, X, Y3, X4]”. The number
of cross-over kids is controlled by the “cross-over ratio”, which is the fraction
between cross-over kids and total remaining members after the elite are passed
to the next generation. Clearly, total number of members per generation remains

unchanged.

* Forming mutation kids: These are created by applying mutation (i.e. random
changes) to all the parameters of members remaining in the population after the
elite and cross-over kids are formed. The remaining members in the population
represent the worst ones (in terms of the objective function values). Therefore,
wasting these members by applying a fully random modification to create new
ones is a reasonable strategy, since, it may produce better members. The amount
of mutation that the parameters are subjected to is governed by a factor called
“mutation range”. This factor plays a very important role by preventing GA to be
trapped in a local minima. A simple one-dimensional example to demonstrate
this is given in figure 6.3. It can be clearly visualized from the figure, that with a
small amount of mutation the algorithm will not have the capability to jump out
from the local minimum. In the present work, the parameters are all normalized
within the range of zero (lower bound) and one (upper bound), and the mutation

used is equal to £0.1 to +0.4, specified in more details in section 6.5.
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Figure 6.3. The influence of amount of mutation to demonstrate capability of algorithm
to avoid trapping in local minima

Parameter, p,

» Using this procedure, a new generation is formed, replacing the old one. The process
iteratively continues until the stopping criteria are met. Two most commonly used rules
for terminating the minimization, adopted also in this study are: a) when a maximum
number of generations is met, or, b) when the number of “’stalling” generations reaches
a previously prescribed value, which represents the number of consecutive generations
with no improvement in the objective function value. For more detailed explanation of
GA, refer to [13, 42].

From the outline of GA presented above, it can be realized that this algorithm is a
zero-order, since it computes only the value of the objective function, and not its
derivatives. Such feature plays a very important role in minimizing discontinuous,
non-differentiable or highly nonlinear objective functions. However, this aspect of GA
comes at the expense of increased computational cost. The total number of objective
function evaluations (and therefore, FEM simulations in the present context) is equal to
the product between the size of the population and the total number of generations
required within the minimization procedure. Given that the total number of parameters
of the novel model to be evaluated is 26, from statistical reasons it is expected to have at

least about 150-200 members in each population, while the number of generations could
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be between 100 and 150. Clearly, the total number of FEM simulations is at least two
orders of magnitude larger than what is needed when traditional derivative based
algorithms (like, trust region) are employed. It is not practically possible to run such a
huge amount of simulations on a regular desktop computer as total time needed will be
measured by months. This contributes to the conclusion that the only viable option to
use GA for characterizing the novel model is to reduce significantly the computational
time required for FEM simulations. To this purpose, reduced basis modeling appears to
be a promising prospective. The description of the adopted form of reduced basis model

is outlined in what follows.

6.3 Reduced Basis Model

Reduced Basis Model (RBM) adopted in this study, is a projection based technique, relying
on the Proper Orthogonal Decomposition (POD). This is motivated by the fact that using a
POD basis gives the best approximation (or maximum accuracy), as it is the most efficient
way to capture the dominant components of a high dimensional process, through a fairly
small number of directions [18].

In the present work, RBM is designed to construct a low order approximation of
numerical simulations, therefore, only the discrete POD theory is presented. To
understand this better, let us suppose a finite element simulation of compaction test is
performed within force control regime, with some quantities of interest collected in a
resulting vector. Constitutive description for the simulation is defined through the novel
material model, that depends on some parameters, collected in a vector p. The recorded
output from the simulation is a compaction curve, which is stored in a vector
w=[uy, uy, ....uyl T whose entries are displacement of the same point (on the punch)
corresponding to Y force levels from zero to maximum specified force. Assuming that X
different simulations are performed by keeping all the conditions the same and only
changing the parameters of the material model, the resulting outputs of the simulations,
can be projected in a new coordinate system, through a linear combination of some

vectors as:
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X
wp) = d -Wi(p),j=1,2.Y (6.12)
i=1

Here, ¢, are the directions in the new coordinate system and d. are the unknown

1

coefficients (or “amplitudes”) of the expansion, whose values are computed through a

minimization process in the least square sense such that:

X

(p) — Zai “Pi(p)

i=1

min

(6.13)

where, ||-|| is the Ly norm.

Within the POD theory, u(p) in equation (6.12) represents a “’snapshot” which is
some output of a certain system corresponding to some input parameter p. A set of X
different snapshots is stored in a snapshot matrix U=[uy, uy, .....ux], such that each
column corresponds to different input parameters collected in matrix P=[p,, p,,.....py]-
Therefore, in the present context, a snapshot matrix (size ¥ by X) represents a collection
of X different vectors that are recording displacements from the compaction test,
generated by changing the parameters entering the novel model, while keeping all other
simulation conditions fixed. Using relation (6.12), snapshots in the matrix form can be

expressed in a new coordinate system as:

U=YA (6.14)

In the above equation, matrix ¥ = [\, ,..py] contains all the directions within the
new coordinate system and matrix A contains the corresponding amplitudes. The choice
of directions 1 to construct the basis for U is arbitrary and different set of amplitudes
correspond to each selected basis. However, using directions which are orthogonal to each
other, as given in equation (6.15), is advantageous, since, the determination of coefficients
becomes a simple task. This can be realized from the fact that due to orthogonality of
vectors, the amplitude ai will depend only on the vector 1; and not on the others, while if
the chosen basis is non orthogonal, the evaluation of amplitudes would involve solving a

set of linear equations.
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1, ifSl = S92
Y, (p) by, (p) = (6.15)
0, ifs; # s

Clearly, if all the directions in the new coordinate system are taken to represent the
snapshot matrix, no error is introduced and the quantities of each snapshot are merely
projected in a different reference system. Given that the goal here is to reduce the
dimensionality of the snapshot matrix and still maintain reasonable accuracy of its
approximation, the next step is to construct an ”optimal” orthogonal basis. Optimal here
implies that a sequence of specially ordered orthonormal directions ¥ = [\b1,Ps..p,]
needs to be determined such that the first two of these directions (i=2) gives the best
possible two-term approximation, the first three the best possible three term
approximation and so on. Once found, they provide a favorable basis for reduction of the
dimensionality of vectors (i.e. snapshots) in set, due to their optimal property,
guaranteeing that there cannot be any other basis that can have better approximation for
any selected number of reduced components.

The construction of optimal orthogonal basis can be achieved through Principal
Component Analysis (PCA) [57]. Procedure based on PCA uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables, called Principal Components (PC). This
transformation is defined in such a way that the first PC (direction) contains most of the
variation in the data, and each succeeding direction has the highest variation possible
under the constraint that it is orthogonal to the preceding directions. Therefore, the
dimensionality of the original space of variables is reduced by keeping just the first few
PCs, still preserving a good accuracy of the approximation.

In the present context, it is reasonable to expect that there will be a strong correlation
between the snapshots since they represent the outputs of the same system where just some
parameters are changed. The expected correlation suggests that previously presented POD
theory can be interpreted through PCA, making it effective to apply on the snapshot matrix,
allowing to construct a new orthogonal basis in which the dimensionality can be drastically
cut-down. The sequence of steps to generate the POD basis for the snapshot matrix is the

following:
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* Find a direction in which the summations of all projections of the snapshots gives a

maximum.

* Construct a direction orthogonal to the previous one and choose the one giving

maximum projection of all the snapshots.

* Repeat this process until last direction is found.

To use the above mentioned steps to construct a POD basis, one needs to solve the
eigenvalue problem, on positive semi-definite matrix S = UU”. It is evidenced in the
literature [13, 18, 48] that for vectors in set U, the POD directions are represented by
eigenvectors sorted in descending order of corresponding eigenvalues. To reduce the
dimensionality of the snapshot matrix, first few directions K (with K < X) are kept
which have the largest projection of all the snapshots. This decision can be made based
on the eigenvalues, which are sorted in descending order. The usual practice is to keep
the first eigenvalues whose summation is 99.9% of the total sum of the eigenvalues.
Thus, the corresponding eigenvectors represent the directions which contain the majority
of ”information” kept in the snapshot matrix. Therefore, by truncating the new basis to
only a small number of axes, a significant reduction of dimensionality is achieved by
preserving high accuracy of the approximation. The projection of snapshot matrix to a
reduced space is given as:

Ux¥PA (6.16)

12

and each individual snapshot can be written as:

Yap),i=12.X (6.17)

12

u;(p)

where, A (size K by X) and ¥ = [, .. Px] (size ¥ by K, such that K < X) are the
truncated amplitude and direction matrices respectively. The whole snapshot matrix can
be reconstructed just by the multiplication of the two matrices given by equation (6.16).
In what precedes, it is shown how the POD theory can be applied to construct the low
order approximation of a Finite Element (FE) simulations. However, this “light” model

obviously can give the responses of the simulations of compaction experiment, only for a
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discrete number of parameter combinations of the novel model: those that were previously
used to generate the snapshot matrix. Since the goal here is to use inverse analyses to
evaluate parameters of the novel model itself, the procedure relies on performing multiple
FE simulations corresponding to different input parameters within a range suggested by an
“expert”. Therefore, the required reduced basis model needs to be capable of computing
an approximate response of the system for any arbitrary combination of parameters within
that range. To this purpose, the existing data within the snapshot matrix in form of vectors
collecting displacements for discrete parameter combinations, need to be interpolated and
it is achieved through Radial Basis Functions (RBF) described in what follows. For more

details on POD, reader is referred to [13, 57].

6.4 POD-RBF Model for Direct Analysis

Radial Basis Functions (RBF) are frequently used to construct an approximation of a
certain multi-variable function by interpolation between the existing data [6, 13]. In the
present context, RBF are applied to form one continuous function: to compute the
numerical response of compaction experiment for any arbitrary parameter combination
of the novel model, within a certain range. To achieve this, RBF utilize the already
available values of snapshots computed for some discrete parameter combinations, and
interpolates these responses in such a way that the output is a snapshot defined over the
whole domain of parameters. A brief explanation of the methodology employed for this
interpolation is presented here.

Under the assumption that amplitude vector a given in equation (6.17) can be written

as the linear combination of some vectors, it can be expressed as:

X
a(p) =) b -g(p),j=12.K (6.18)

i=1
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In the above equation, ] are the coefficients of the interpolation and the entries to the

vector g are functions of sought parameters written as:

gi(p—p1)
g2(p — p2)

g(p) = . (6.19)
_gX(P - PX)_

The choice of interpolation function g; in formula (6.18) is arbitrary and here, radial basis
functions are chosen to represent them. There are a few types of RBF and it can be found

in [13]. In the current work, an inverse multi-quadric function is selected which reads:

1

g(p—m) =
Ve —pill +1

(6.20)

where, ||-|| is the Ly norm.
After defining the functions g;, the unknown coefficients bi need to be determined.
This can be done by making the equation (6.18) exact for all the snapshots. This leads to

the following formulation:

A=B-G (6.21)

such that,
by by ... by gi(pr—p1) @P2—p1) - &i(px—p1)
P N B G |&P—p) g(P2—p) . glpx—p2)
b7 by ... b gx(P1 —Px) gx(P2—Px) ... gx(Px—Px)

(6.22)
where, A is the amplitude matrix, G (size X by X) is a matrix comprising of the values of
the interpolation functions in all points in the parameter space used to generate snapshot

matrix, while matrix B (size K by X) stores the coefficients of interpolation. Here, X is
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number of available snapshots and K is the number of directions kept in the truncated
POD basis. It should be noted that before construction of matrix G, parameters should be
normalized such that all entries are in dimensionless range between 0 and 1. This is done
in order to avoid numerical problems as parameters can differ by orders of magnitude (for
instance, Lame’s constants and the hardening parameter in the novel model).

After computing matrix B, the snapshot u for any arbitrary parameter vector p can be
approximated through the relations (6.17) and (6.18), which gives the analytical

formulation for snapshot approximation as:

¥ B-g(p) (6.23)

12

u(p)

Considering the way in which the interpolation coefficients are determined, equation
(6.23) gives exact results for the parameters used to generate the snapshots, while it will
give some interpolated value for any other parameter. The above formulation represents
the “’light” model since the system response can be computed by a simple matrix
multiplication. To use this approximation, one only needs to compute vector g as a
function of any arbitrary parameter combination according to formula (6.19), since
matrices ¥ and B, that are collecting constants, are computed once-for-all. The
determination of the matrix B, however, requires to know the responses for a certain
range of the input parameters. This is done by collecting the sets of outputs
corresponding to different values of the input vectors through phase called “training” of
the POD-RBF model.

In the present context, training of the model is represented by performing a set of
Finite Element (FE) simulations to generate snapshots for multiple combinations of
parameters of the novel model, which should cover reasonably well the range of interest.
For this purpose, the common practice is to use a regular grid over the parameter space.
Given that the number of parameters to be identified within the novel model is 26,
regular grid distribution would lead to extremely elevated number, requiring 220
parameter combinations in the minimum case. Even for these bare minimum number of
parameter sets, required to form a regular grid, it is practically impossible to perform FE
simulations, or generally to calibrate matrices ¥ and B. Such circumstances penalizes

the training of the POD-RBF procedure and therefore, constrains the application of the
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outlined approach, since, it is obvious that for a reasonable approximation, the training
of the model must take into account adequate number of points in the parameter space.
To overcome the above mentioned shortcoming, a scheme is proposed within which
the POD-RBF model will be trained “selectively”. Selective training here implies that
the snapshot matrix is generated only for those parameter combinations which are in the
zone of the solution, or generally where the value of the objective function is low. To
this purpose, a scheme is proposed with employment of POD-RBF model with
controllable training, seen as “enrichment”, by gradually adding new points in the
parameter space throughout the minimization. Therefore the training is directly
incorporated into the minimization through genetic algorithm to perform inverse
analysis. The description of the proposed methodology is given in the following section.
The initial FE simulations, and subsequent operations required to calibrate matrices
for reduced order model, together form the ’training” of the model. The sequence of

operations is summarized as follows:

(1) Select X points within the domain of parameters that are subjected to identification.

(i) Perform numerical simulations of the considered experiments for these X different
parameter vectors p, to generate X snapshots u;. Store the snapshots and parameters

in two matrices U and P, respectively.

(iii) Solve the eigen-value problem for matrix UUT and sort the eigenvectors in descending

order of the corresponding eigenvalues.

(iv) Keep the first few eigenvectors P; (withi = 1, 2, ...K, with K < X)) corresponding to
the eigenvalues whose summation is 99.99% of the total sum of all the eigenvalues.
These directions represent the truncated POD basis of the snapshot matrix and are

stored in the matrix .
(v) Compute the truncated amplitude matrix A using the equation (6.16).
(vi) Construct matrix G for the existing parameter combinations as shown in (6.22).

(vii) Solve for matrix B containing the interpolation coefficients utilizing equation (6.21).

This step concludes the design and training of the POD-RBF model.
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(viii) To approximate numerical response by POD-RBF model, for any arbitrary parameter
p, compute vector g(p) according to relation (6.19) and use formula (6.23) to evaluate

system response.

6.5 POD-RBF Model with Controllable Enrichment for
Inverse Analysis

To setup the Inverse Analysis (IA) procedure, considered measurable quantities are the
compaction curves collected from both experiment and simulation of configurations -1
and -5 (figure 4.1a and figure 5.49). The radial stress curves are not employed as input
data, since the coefficient of friction has already been determined to be equal to 0.05 for
this powder-mold system, as given in the results in the previous chapter, otherwise it can
also be considered as an additional parameter to identify. The motivation behind selection
of configurations -1 and -5 is the complexity of the novel material model as well as an
elevated number of parameters. Therefore, along with configuration-1 which represents a
simple geometry (and hence, fairly homogeneous stress distribution over the sample), the
purpose of using configuration-5 is to have a more heterogeneous stress distribution and
thus “richer” experimental data as input to the IA.

Another advantage of employing a combination of configurations -1 and -5 is that
their Finite Element (FE) models can be designed as axially symmetric, thus, requiring
far lesser computational time, as opposed to that needed for 3-D models of the
configurations -2 and -3 (figure 4.10), used previously as input data for IA procedure.
Configuration-1 is discretized into 672 four-node fully integrated axisymmetric elements
(marked by CAX4 in ABAQUS), while configuration-5 contains 2480 CAX4 elements.
Simulations are performed within the force control regime applying a maximum load of
14 kN, corresponding to experimental details given in tables 5.3 and 5.11. The
coefficient of friction defining the lateral contact is kept fixed at a value of 0.05, as
previously mentioned. Other simulation conditions are those given in section 3.1.2.
Note, that the peak force used within the simulations is smaller than that applied during

the experiments, to avoid potential numerical instabilities of FE model for certain
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parameter combinations of the novel model, which tend to occur at higher values of
relative density.

Compaction curves are recorded both from the experiments and the simulations for
both configurations -1 and -5. The curves from the experiments are adjusted accordingly
to represent data up to the peak force of 14 kN applied within the simulations. After
collecting the experimental and simulated measurements, residual vector is formed
quantifying the difference between the two quantities. There are 200 entries in residual
vector, such that, from each configuration, 100 points are the differences between
displacements corresponding to 100 equidistantly spaced force levels from zero to
maximum specified force of 14 kN. Finally, the objective function is formed as the sum
of the squares of the members of residual vector and it is minimized with respect to
sought parameters of the novel model using genetic algorithms.

In the Genetic Algorithm (GA) methodology, value of the objective function which
quantifies the difference between experimental and simulated results, is sorted in
ascending order, to create elite, cross-over and mutation kids. Such a feature of GA
helps to potentially narrow down the zone of the solution, since the first few members of
a generation corresponding to the low values of objective function can be expected to lie
in proximity of the final solution. This serves as a reasonable ground to identify the zone
where the enrichment of the POD-RBF model should be performed.

Step-by-step description of the developed method, which combines GA with POD-

RBF model is given in what follows.

(1) The first generation is formed by randomly generating X = 300 parameter vectors of
the novel model, within the pre-defined range suggested by an “expert”. These
parameters are used to perform FE simulations of the compaction tests for both
configurations -1 and -5. In the case of lack of convergence of FE simulations, for
either of the two configurations, the member is replaced by another one, with a slight
modification of parameters so that the overall number of members in each generation

is kept constant.

(i1) Previous step also served to design two distinct POD-RBF models for configurations

-1 and -5, since the responses from FE simulations of both models can be represented
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(iii)

(iv)

v)

as individual snapshots. For each configuration, every simulation yields a snapshot
u which is formed by recording ¥ = 100 displacement points corresponding to 100
equidistantly spaced force levels from zero to maximum specified force of 14 kN.
These snapshots of individual configurations are collected in snapshot matrices Uy
(for configuration-1) and Uj; (for configuration-5). To project these matrices into an
optimal orthogonal basis, eigenvalue problem is solved on the matrices S; = U, U;”
and S5 = U;U;”. Obtained eigenvalues are sorted in descending order, and the drop by
several orders of magnitude is evidenced for the 15" value with respect to the largest
one for both configurations. Therefore, the truncated basis ¥, and ¥ corresponding
to configuration -1 and -5 respectively, gathered first 14 directions. The amplitudes

for these orthogonal directions are computed through equation (6.16) and stored in the

matrices A; and As.

Once the truncated POD basis is formed, Radial Basis Functions (RBF) are
employed to interpolate the response from the existing data to compute the numerical
response of compaction experiments for any arbitrary parameter combination of the
novel model. To this purpose, parameter vectors (p) used to perform these
simulations are normalized between 0 (lower bound) and 1 (upper bound) to take into
account the diverse order of magnitude of different entries and are stored in
parameter matrix (P). Using the respective amplitude matrices and the parameter

matrix, two corresponding POD-RBF models are designed.

From each simulation, compaction curve is extracted and it is compared against the
experimental one, for both configurations, to form the residual vector and eventually
the objective function as described above. Its value corresponding to each parameter

vector is assessed, and these values are then sorted in ascending order.

Apart from the first generation, all the subsequent generations are formed by
performing computations through the POD-RBF models to create elite, cross-over
and mutation kids such that: a) the first four parameter vectors with the best (lowest)
values of objective function are directly passed to the next generation as the elite
kids; b) the next 216 parameter sets are selected to form cross-over kids and ¢) the

worst 80 parameter vectors are subjected to mutation (random perturbation). Instead
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(vi)

(vii)

of using a constant value for the mutation, an alternative approach is used. The
amount of perturbation is kept to be + 0.4, + 0.3, + 0.2 and + 0.1, up to 50, 100,
150 and 200 generations, respectively. This strategy is driven from the fact that as
the number of generations increases, it is reasonable to expect that more and more

members would find themselves in the global minimum zone.

In the case of replacement of the elite members due to the improvement of the
objective function within any particular generation, the response for these members
is also calculated through FE simulations for comparative purposes. The vectors
collecting displacements corresponding to elite members are collected, from
POD-RBF model and FE simulations, for both configurations. The error vector (100
by 1) is formed for each configuration, such that it quantifies the difference between
the displacements from the two models (i.e FE and POD-RBF), corresponding to the
same force levels, as indicated in step (ii). Further on, the entries of the error vector
for both configurations are divided by the corresponding members of the vector
collecting displacements from FE simulations and the mean of its entries is
computed. Error for each of the two configurations is represented as the mean
percentage. The tolerance values for the error is kept to be 8%, 6%, 3% and 1% up to
50, 100, 150 and 200 generations, respectively. If the error between the two models
(i.e FE and POD-RBF) is larger than the prescribed tolerance for any of the

configurations, enrichments are performed as explained in the next step.

Enrichment here refers to performing additional FE simulations for the first few
members having low values of the objective function, within the current generation.
The responses from these simulations are collected in form of snapshots as described
in step (ii) for both configurations. These newly generated snapshots are respectively
added as “enrichments” to the already available snapshot matrices formed in step (ii),
giving “enriched” snapshot matrices for the two configurations, which are further
employed to construct new version of POD-RBF model, following already described
sequence of operations. In this way, controllable enrichment of POD-RBF models is
performed, with new reduced basis model used for further computations of the new

generations of GA. An important aspect of the procedure is the number of members
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(viii)

(ix)

within each generation that are taken into account for enrichment. Here, 15, 20, 25
and 30 members are considered for enrichment, if the total number of generations is
up to 50, 100, 150 and 200, respectively. Such a strategy is reasonable, since it can
be expected that within the first few generations, fewer members are in the global
minimum zone and this number increases as the algorithm progresses. Therefore, the
POD-RBF models for both configurations becomes more accurate, particularly

within the zone of interest.

In the event of the elite members being replaced, or those that are selected for the
enrichments, have convergence difficulties through FE simulations, for either of the
configurations, a slight modification of parameters is done. Such a scheme guarantees
the same number of members in each generation as well as makes the best possible

use of the computational time consumed during FE simulations.

The outlined sequence of steps from (ii) to (viii) is repeated until the convergence
criteria of the algorithm are met. Here, specifically as stopping criteria, the following
values are selected: the total number of generations reaches 200 or the stalling
generation exceeds 30 (i.e number of generations without any improvement of best
member’s objective function value), the algorithm is stopped. From the last
generation upon the termination of the minimization process, the best member is

taken as solution to the inverse analysis.

The procedure of combining the GA with POD-RBF model relies on three major

factors: a) the ability of GA to find the global minimum even when the objective

function is neither continuous nor differentiable, thereby helping to deal with certain

numerical instabilities of the novel model; b) sorting of the values of the objective

function within GA, enabling to perform controllable enrichment of POD-RBF model;

and c) the use of POD-RBF model to substitute FE simulations, contributing to the

significant reduction of computational burden, and hence, making minimization through

GA viable. Such features of GA and POD-RBF model are exploited simultaneously to

perform inverse analysis procedure for determining parameters of the novel model, with

the results of the identification presented in what follows.
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6.6 Results and Discussions

The novel material model is defined through 28 parameters. Out of these, 26 parameters
are assessed and the two parameters, namely: initial void ratio (ey) and exponential decay
term of elasto-plastic coupling () are not subjected to the identification, and kept fixed at
values of 0.5 and 2, respectively. The evaluated values of the parameters are given in table
6.2. The comparison between the experimental and simulated curves for configurations

-1 and -5 is presented in figures 6.4 and 6.5.

Table 6.2. Parameters of the novel constitutive model corresponding assessed through
IA employing configuration-1 and -5 as inputs

Serial Parameter Parameter Units Parameter
Number Value Description
Yield Surface Parameters
1. Peo 0.366 [MPa] | Initial Hardening
2. M, 0.984 -
3. k1 0.537 - Pressure
4. 01 227.940 - Sensitivity
5. ny 2.004 -
6. mq 1.825 [MPa] Meridian
7. ma 2.033 - Shape
8. “ 0.183 i Parameters
9. 02 1.312 -
10. S 1.811 - Deviatoric
11. 2] 0.863 - Shape
12. Vs 0.450 [MPa] Parameters
13. n 0.521 - Plastic flow
Hardening Parameters
14. a 0.701 -
15. A 0.486 [MPa] Cooper-Eaton
16. as 0.252 - Hardening
17. Ao 8.825 [MPa]
18. Deb 1.196 [MPa] Cohesion
19. Coo 1.124 [MPa] Related
20. T. 0.047 [MPa™!] Hardening
Elastic Parameters
21. A 209.090 [MPa]
22. m 28.107 [MPa] Lame’s
23. A; 4648.020 [MPa] Constants
24, Lo 599.830 [MPa]
25. Tr 0.996 [IMPa~!| |  Elasto-plastic
26. Do 0.113 [MPa] Coupling
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Figure 6.4. Experimental vs. final computed compaction curve from FE simulation for
configuration-1, corresponding to parameters of the novel model identified through TA
employing configuration-1, and -5 as inputs
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Figure 6.5. Experimental vs. final computed compaction curve from FE simulation for
configuration-5, corresponding to parameters of the novel model identified through IA
employing configuration-1, and -5 as inputs

The above figures show that the compaction curves from experiment and simulation
are in good agreement for both configurations -1 and -5. The minimization result is
achieved in 188 generations and it is terminated due to reaching the stopping criterion of
exceeding 30 generations with no improvement in the objective function. The other
details of the developed procedure are given in table 6.3. The complete first generation

comprising of 300 simulations each for both configurations and an additional 2570,
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making a total of 3170 simulations are performed by the full order finite element model,
which is about 5% of the overall number of objective function evaluations. Considering
that remaining function evaluations are done on the basis of POD-RBF model, such
strategy represents computational time reduction by almost five times, since calculation
of system response through POD-RBF model is practically done in a real time. It
represents significant time savings as one compaction simulation for both configurations

takes about 7 minutes on a computer with 17 processor and 8GB of RAM.

Table 6.3. Parameters of the novel constitutive model corresponding assessed through
IA employing configuration-1 and -5 as inputs

Members for FE Simulations FE
Generation Enrichment Number of Performed Simulations
through FE | Enrichments | (Column 1 x Column 2 (if
Simulations x 2 Configurations) Classical GA)
2-50 15 36 1080 14700
51-100 20 23 920 15000
101-150 25 9 450 15000
151-188* 30 2 120 11400
Total FE Simulations 2570 57100

Furthermore, the accuracy of POD-RBF model is verified by comparing its results
against FE simulations, for the final set of parameters obtained at the end of minimization
process, which are listed in table 6.2. The comparison is presented in figures 6.6 and 6.7.
It can be observed that there is an insignificant difference between the two curves, which
corroborates that the fast computations offered by POD-RBF models are not introducing

any additional error within the identification procedure.
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Figure 6.6. Comparison of compaction curves generated through POD-RBF model and
FE simulation for configuration-1, corresponding to parameters of the novel model
identified through IA employing configuration-1, and -5 as inputs
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Figure 6.7. Comparison of compaction curves generated through POD-RBF model and
FE simulation for configuration-5, corresponding to parameters of the novel model
identified through IA employing configuration-1, and -5 as inputs

To validate the proposed calibration method, and in turn the identified parameters of
the novel model listed in table 6.2, compaction simulations of complex geometries,
namely, configuration -6 and -7 (given in figure 5.49) are performed using these
parameters. The simulated curves are compared against the experimental ones, with

results visualized in figures 6.8 and 6.9.
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Figure 6.8. Experimental vs. final computed compaction curve from FE simulation for
configuration-6, corresponding to parameters of the novel model identified through TA
employing configuration-1, and -5 as inputs
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Figure 6.9. Experimental vs. final computed compaction curve from FE simulation for
configuration-7, corresponding to parameters of the novel model identified through IA
employing configuration-1, and -5 as inputs

The above results evidence that the inverse problem is well posed. The fact that the
parameters obtained through the developed calibration strategy can be used to model
compaction involving arbitrary geometries, confirms that the established procedure
provides an efficient transition from experimental data, collected from pressing test, to

the constitutive parameters, even for complex material models like the one considered

here.
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The Inverse Analysis (IA) procedure inherently contains numerical simulations of
the experiment, which may be unstable when complex constitutive models are utilized.
Such circumstance penalizes the use of efficient derivative based algorithms for
providing the solution to the resulting minimization problem within IA. Alternatively,
Genetic Algorithms (GA) can be exploited, with increased computational effort, as these
algorithms are involving a larger number of simulations. To make the computational
burden consistent with constrains related to the employment of GA, the use of reduced
basis model, as considered within this work, turns out to be crucial. Proposed training
scheme, different from previous studies (see e.g. [16, 48]) works fairly effective in
present context, by providing the enrichments of the POD-RBF model throughout the
minimization. The computational effort is therefore concentrated within the zone of
parameters with a low value of the objective function.

However, due to an elevated number of parameters, the designed POD-RBF model
cannot be trained once-and-for-all over the whole domain of parameters. This presents
a limitation since the system response cannot be computed for any arbitrary parameter
combinations that are far from the zone where the model is enriched. This implies that
full order FE model will again be employed to perform simulations for such parameter
combinations, as opposed to the POD-RBF models utilizing regular grids over the whole
parameter space, which can calculate the numerical response for any arbitrary parameter
once their training is complete. However, for any situation, where the number of sought
parameters is high, it is practically impossible to train the POD-RBF procedure according
to regular grid distribution, and the proposed training scheme may be an advantageous

alternative.

6.6.1 Comparison between Drucker-Prager Cap and Bigoni

Piccolroaz Yield Surface

One of the unique features of the novel constitutive model is represented through the
Bigoni-Piccolroaz (BP) yield criterion, which has the ability to change the shape of the

yield surface. To demonstrate this, the yield surface corresponding to initial and final
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stages of compaction are visualized in figure 6.10, which is plotted by inputting the

parameters listed in table 6.2 into equation 6.1.
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(a) Bigoni-Piccolroaz yield surface resembling Drucker-Prager Cap type yield surface during
initial stages of compaction
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(b) Bigoni-Piccolroaz yield surface resembling either Cam Clay type yield surface during final
stages of compaction

Figure 6.10. Evolution of Bigoni-Piccolroaz yield surface during compaction for
powder from granular to dense state

Indeed, the above figure indicates the transformation of the yield surface from
Drucker-Prager Cap (DPC) type, which is typical for granular material, to Cam Clay like
surface for dense solid. Therefore, it is more relevant to compare the DPC and BP yield
surface only for the initial stages of compaction. It should be recalled that according to

BP yield criterion, cohesion only starts to develop once the breakpoint pressure (p.) is
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reached, which is identified as 1.19 MPa, while no such rule is defined for DPC yield
criterion. Therefore, to establish a fair comparison, the BP yield surface is plotted for
hydrostatic pressure (p=1.25 MPa), which is slightly higher than the breakpoint pressure,
marking the onset of cohesion. The relative density of the sample is recalculated from
the plastic strain through equation (2.7), which corresponds to 62% for this hydrostatic
pressure. For obtaining the DPC parameters at 62% relative density, previously
identified values listed in table 5.10 are used in combination with equation (3.3). The

comparison between the two yield surfaces is presented in the following figure.
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Figure 6.11. Comparison between Drucker-Prager Cap and Bigoni-Piccolroaz yield
surface in initial stages of compaction after cohesion starts developing in the powder.

The above figure shows a good agreement between the DPC and novel material model
for the initial part of the compaction. This contributes to the conclusion that DPC yield
criterion models the initial compaction accurately enough.

To establish some relevant comparison for the final part of compaction between the
BP and DPC criterion, final values of some of the similar parameters are listed in table 6.4.
Note that the cohesion here for DPC model refers to the intersection of yield surface with
the hydrostatic pressure axis on the tension side (negative side on the p-q plot). Hardening
parameter here is the intersection of yield surface with the hydrostatic pressure axis on the
compression side (positive side), which is marked as hydrostatic yield compression stress
(p») in the DPC model and hardening parameter (p..) in the novel model. Young’s modulus

for the novel model is recalculated from the values of Lame’s constants.
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Table 6.4. Comparsion between the final values of similar parameters for novel
constitutive model and DPC model

Final Value
Parameter (Relative Density=0.82)

DPC Model | Novel Model | Difference
Young’s Modulus 1.724 GPa 1.801 GPa 4.275 %
Cohesion 1.071 MPa | 1.124 MPa 4.715 %
Hardening Parameter | 13.231 MPa | 14.020 MPa | 5.627 %

It can be observed that values of the parameters for the two criteria are comparable
and the points at which these surfaces intersect the hydrostatic pressure axis are
reasonably close. This indicates that even though the shape of the final yield surfaces are
fairly different for BP and DPC yield criterion, both of them represent similar extreme
values for the allowed stress. In the present research, for this powder composition, the
loading path of the considered geometries tends to be closer to the hydrostatic axis (for
instance, see figure 2.5). Therefore, satisfactory results are obtained from the DPC
model, since the transformation of the yield surface becomes irrelevant for the examples
treated within this work. However, such flexibility of the yield surface could be
advantageous and play an important role when modeling compaction of certain powder
compositions or even more complex geometries, which cannot be taken into account

through the DPC model.
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CONCLUSIONS AND FUTURE
WORK

7.1 Conclusions

In the present work, a fully automated procedure is designed to calibrate the constitutive
models used in powder compaction simulations. During the compaction, powder
transforms from a granular state to a dense solid called ’green body”, exhibiting fairly
different mechanical properties for these two states. Therefore, modeling of the
compaction process is a challenging task, with simulations often involving complex
constitutive models like, Drucker-Prager Cap (DPC) [28, 31, 70], Cam-Clay [24], etc.,
which are defined through an elevated number of parameters.

Currently adopted praxis to evaluate the constants entering the material models relies
on performing time consuming destructive tests on a green body (for instance, Brazilian
and crush tests) [2, 28, 70]. Even though such calibration protocol provides a reasonable
estimate of the material parameters, a large number of experiments is needed.
Furthermore, some of the parameters cannot be determined at relatively low densities of
green body through the conventional experimental route [26]. Such circumstances make
the application of the current praxis rather difficult and fairly expensive for routine
industrial purposes.

To tackle this problem, an alternative approach based on Inverse Analysis (IA) is

developed. The central novelty of this research is the development of more accurate and
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more economical parameter calibration method, that relies on data collected from the
compaction tests only. Such scheme is obviously more efficient and advantageous for
routine industrial applications, since it fully eliminates the need for heavy experimental
regime adopted currently.

Inverse Analysis (IA) procedure is centered on the minimization of the discrepancy
between experimentally measured quantities and their numerically computed
counterparts [13]. From the compaction experiment, digitalized compaction force vs.
displacement (of the punch) curve and compaction force vs. radial stress (measured from
the die-wall) graphs are collected as measurable quantities. To ascertain the strong
influence of sought parameters on the measured data, systematic sensitivity analyses are
performed, and different mold geometries (i.e configurations) are designed. A
combination of these configurations represents the source of experimental data, while
their simulations, performed in commercial code ABAQUS, give the simulated data.
Discrepancy function is setup quantifying the difference between the two measured
quantities and the parameters which minimize this function represent the solution to the
inverse problem and also the representative material properties.

The developed 1A approach is tested to calibrate the Drucker-Prager Cap (DPC)
model which is frequently adopted for powder compaction simulations [2, 23, 28, 31,
70].  For accurate modeling, the typical DPC model is “modified” such that the
parameters are defined as a continuous function of accumulated plastic strain, which is
then converted to relative density. The proposed relationship between the parameters
and relative density is very general, capable of taking into account distinct trends of
evolution for different parameters. Such modification provides very flexible definition
of hardening (i.e. the dependency of yield function parameters on accumulated plastic
strain), which incorporates both linear and exponential trends. Along with the DPC
model parameters, the coefficient of friction is also evaluated as opposed to previous
studies where it has been assumed as a constant value [26] or derived through empirical
relations [28, 45, 59] usually representing a source of an error.

The minimization problem is solved through the Trust Region Algorithm (TRA). The
obtained parameters from IA successfully simulate the compaction of miniaturized green

bodies typically resembling industrial parts, validating the established calibration
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protocol. The parameters assessed via IA are in good agreement with those evaluated

through conventional experimental route, with multiple advantages that are listed here:

* The number of experiments required for the calibration by the IA procedure are three as
compared to about 60 that are needed based on the currently adopted praxis, highlighting

significant efficiency of the developed calibration method.

* Through IA, the parameters are assessed as a continuous function of relative density as
compared to the current praxis, where the parameters can only be estimated for discrete

relative densities.

* Through proposed procedure the parameters can also be evaluated for very low relative

densities, which cannot be done via conventional experimental route.

To further test the IA methodology, calibration of a more sophisticated constitutive
model relying on the Bigoni-Piccolroaz yield criterion is considered [7, 49, 51]. Apart
from the elevated number of parameters, this model showed unstable simulations for
certain parameter combinations. Such circumstance penalizes the use of efficient Trust
Region Algorithm (TRA) for the minimization. As a remedy, Genetic Algorithms (GA)
are employed. The computational burden coming from GA is made consistent with
repetitive routine applications through reduced basis model.

In the present work, Proper Orthogonal Decomposition (POD) is chosen as the
model reduction technique. Such strategy allows to approximate the system response by
projecting it in new reference frame with significant reduction in its dimensionality,
while still preserving reasonable accuracy of the approximation. Within the POD model,
the spatial distribution of the field of interest (displacements from compaction curve in
this case) are described using POD directions, while its amplitudes depend on the sought
parameters. This functional dependence of amplitudes on the parameters is expressed as
a linear combination through a priori chosen Radial Basis Functions (RBF), which are
frequently used for scattered data interpolation. The coefficients of this combination are
evaluated by satisfying the solution exactly for pre-selected inputs (parameters of novel
model) and outputs (vectors collecting displacements from compaction curve) through a

phase called "training”. However, the previously adopted training methods [16, 48]
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utilizing the regular grid over parameter space, cannot be employed for the current
POD-RBF model, since the number of parameters is quite high.

To overcome this difficulty, a scheme is designed to controllably train the POD-RBF
model, seen here as “enrichments”, only for those parameter combinations that are in the
zone of the solution. It is achieved by incorporating the training procedure directly into
the minimization through genetic algorithms. The best members within each generation
in GA lie in the proximity of the final solution, serving as a reasonable ground to identify
the zone for performing enrichment of POD-RBF model.

Using the developed scheme, the minimization problem is solved and obtained
parameters successfully simulate complex geometries, validating the established
procedure. It is interesting to note that almost 95% of function evaluations of GA are
performed through POD-RBF model, which are done in almost real-time, offering
significant time savings. It is also observed that the fast computations offered by
POD-RBF model do not represent any additional source of error. This contributes to the
conclusion, that the developed IA procedure employing POD-RBF model with
controllable enrichment can be effectively used to calibrate complex constitutive models,
with an elevated number of parameters and whose numerical implementation is not fully
stable. This particular scheme can be useful also in other applications when dealing with

complex material models, and not only in the present context of powder compaction.

7.2 Future Research

In the current research, developed protocol based on Inverse Analysis (IA) is
successfully applied to the calibration of Drucker-Prager Cap (DPC) model and novel
constitutive model. However, the methodology could very well be extended to other
material models like Cam-Clay or Gurson, and even for different groups of powders.
The examples treated in this thesis use A in a deterministic sense, however, such
procedure could be tailored to include the uncertainty within the process by employing
techniques like Kalman filters [27, 33]. In practical applications it is often observed that
the compaction curves corresponding to the same powder under similar conditions are

slightly different, and this discrepancy becomes even more pronounced at lower relative
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densities. Such behavior could be accounted through stochastic IA. The main idea to
perform such an IA remains the same, and the parameters are evaluated with some
standard deviation corresponding to the associated noise endowed in measurable
quantities, or generally some errors of different origins present in the model. To this
purpose, Kalman filters look promising and have been already been employed in
material characterization through indentation tests [17], flat jack tests [25], etc. Their
implementation in the present context requires further investigations, and can be the
topic of future research.

The reduced basis model used herein employs controllable training in the zone of
interest. Such scheme could be useful for any complex constitutive model involving an
elevated number of parameters, where the regular grid distribution is not possible, as
previously mentioned. A desirable extension of this strategy would be its investigation in
the context of multi-scale models. It would also be interesting to explore the model
reduction based on proper generalized decomposition as it eliminates the need for
laborious training which is involved when proper orthogonal decomposition is used.
This technique has already been applied in other fields of research [46], but the context
was different and its application to goals pursued in this study requires further

investigations.
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APPENDIX A

EVALUATION OF THE RADIAL
STRESS FROM STRAIN GAUGE

To measure the radial stress at different locations during the compaction test, strain gages
are attached on the outer surface of the die-wall (mold). However, given that the gages
are on the external surface of die-wall, the lateral stress (radial stress) cannot be measured
directly, making it obsolete to calibrate the strain gage.

For the calibration of the strain gage, sample made from rubber (with the same
diameter as the mold) is compacted in a well lubricated mold (to minimize the frictional
effects). It is assumed that for such materials, the Poisson’s ratio is almost equal to 0.5.
From elementary elasticity theory it can be seen that for uniaxial strain compaction, the

relationship between axial and radial stress is given by:

o= 1=V, (A1)

where, o, and o, are axial and radial stress respectively. Therefore, for rubber (with
Poisson’s ratio assumed to be 0.5), axial stress applied during compaction is equal to the

radial stress that the material exerts on the die-wall, as visualized from figure A.1.
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Figure A.1. Schematic representation of strain gages pasted on the die-wall

From the available value of axial stress and Poisson’s ratio, a relationship can be
established such that, for each value of circumferential strain, the corresponding radial
stress is known. The relationship between the circumferential strain and radial stress is
obviously linear, since the mold material made from steel deforms within elastic limits.
Therefore, the calibration factor of the strain gage is calculated as the slope of this plot.
For instance, in the present thesis, the following graph is obtained for strain gage

calibration and the slope (i.e. calibration factor) is found to be 466.6 MPa.
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APPENDIX A. EVALUATION OF THE RADIAL STRESS FROM STRAIN GAUGE
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Figure A.2. Axial stress (= radial stress) vs. circumferential strain for rubber sample

Once the calibration factor is assessed, the measured circumferential strain from the
powder compaction can directly be converted to the radial stress. Obviously, the load used
during the calibration is kept higher than what will be eventually applied on the powder
under consideration. Such a scheme allows to calculate radial stress for any pressing force
up to that limit, since the value of radial stress is known for all possible readings obtained
from the strain gage.

In the current work, the initial height up to which the powder is filled in the mold
is very similar for all the experiments in which the radial stress is recorded. However,
when specimen with relatively different initial heights are subjected to compaction, rubber
samples of different heights should be considered and the calibration factor can then be

calculated as the function of initial height.

A-3



This page is intentionally left blank.



BIOGRAPHY OF THE AUTHOR

A. Personal Information

Name: Shwetank Pandey
Date of birth and Place: 4" July 1991, Nagpur (India)

B. EDUCATION

B1. Undergraduate Studies

2008-2012: Bachelor of Technology (B.Tech) in Metallurgical and Materials Engineering
from Visvesvaraya National Institute of Technology, Nagpur.

Thesis Title: Effect of Rolling on Corrosion Behavior of 7075 Al-alloy.

B2. Postgraduate Studies

2012-2014: Master of Technology (M.Tech) from Indian Institute of Technology, Madras
with thesis development in RWTH Aachen, Germany on DAAD scholarship.
Thesis Title: Expert Model for BOF Process.

C. Scholarships

2013-2014: DAAD scholarship for master’s studies in RWTH, Aachen, Germany.
2014-2017: Marie Curie scholarship for doctoral studies in University of Belgrade, Serbia



This page is intentionally left blank.



Mpunor 1.

UsjaBa o ayTopcTBY

Motnncanu-a: Shwetank Pandey
Opoj nngexca: [120-2014

UsjaBrbyjem
a je QOKTOpCKa gucepTtaumja nog HacnoBom

METO[A 3A KAIIMBPUCAHKE KOHCTUTYTUBHUX MOAENA 3A CUMYJIUPAKE
NPOLIECA NMPECOBAHKA KEPAMUYKOTI NMPAXA KOPULWREHLEM MHBEP3HUX
AHAJIU3A

PROCEDURE FOR CALIBRATION OF MATERIAL CONSTITUTIVE MODELS FOR
POWDER COMPACTION THROUGH INVERSE ANALYSIS

e pe3yntat CONnCTBeHOr UCTpaKnBadkor paaa,

e [a npegnoxeHa gucepTaumja y LenvHU HX Y AenoBuMa Huje buna npeanoxeHa
3a pobujarbe 6GuNo koje AunnoMe npema CTYAMjCKMM nporpamuma Apyrux
BMCOKOLLIKOJICKUX YCTaHOBA,

e [a cy pe3ynTaTi KOPeKTHO HaBeAEHU U

e [a HMCaM KpLuMo/na ayTopcka npaBa M KOPUCTUO WHTENEKTyamnHy CBOjUHY
APYrux nuua.

MoTnuc pokropaHaa

Y Beorpagay,




This page is intentionally left blank.



Mpunor 2.

U3jaBa 0 MICTOBETHOCTU LUTaMMaHe U efIeKTPOHCKe
Bep3nje AOKTOPCKOr paaa

Mme n npeaume aytopa: Shwetank Pandey
Bpoj nHpekca: [120-2014

Ctyaujcku nporpam [JokTtopcka ducepTaumja
Hacnos paga:

METOOA 3A KAJINBPUCAHE KOHCTUTYTUBHUX MOAENA 3A CUMYJIUPAKE
NMPOLIECA NPECOBAHKA KEPAMUYKOTI NMPAXA KOPULLHEHEM MHBEP3HUX
AHAJIU3A

PROCEDURE FOR CALIBRATION OF MATERIAL CONSTITUTIVE MODELS FOR
POWDER COMPACTION THROUGH INVERSE ANALYSIS

MenTop: Mpod. ap. Bnagnmmnp byrbak

Motnucanun/a: Shwetank Pandey

M3jaBrbyjeM fa je wtamnaHa Bep3vja MOr JOKTOPCKOr paja WUCTOBETHA €fEKTPOHCKO)
BEp3nju Kojy cam npepao/na 3a objaBrbuBawe Ha noptany OurutanHor
penosuTtopujyma YHuBep3uteta y beorpaay.

[os3sorbaBam ga ce objaBe MOjM NMYHM nojaun BesaHu 3a aobujarbe akagemckor
3Baka AOKTOpa Hayka, Kao LITO Cy MMe U npe3nme, rogmMHa u mMecto pohewa n gatym
onbpaHe paga.

OBM nuyHM nojaum Mory ce o00jaBUTM HA MpPEXHUM CTpaHuuama aurutanHe
BGubnnoTeke, y eNekTpoOHCKOM KaTanory n y nybnukauvjama YHusep3auteTa y beorpaay.

MoTnuc pokropaHpa

Y Beorpaay,




This page is intentionally left blank.



Mpwnor 3.

UsjaBa o kopuwhemwy

Osnawhyjem YHusepautetcky 6ubnuoteky ,Ceetosap Mapkosuh® ga y [AurutanHu
penosutopmnjym YHuBepauTeTa y beorpagy yHece MOjy OOKTOpPCKY AucepTtauujy nog
HacnoBoMm:

METO[A 3A KAIIMBPUCAHKE KOHCTUTYTUBHUX MOAEJA 3A CUMYJIUPAHE
NPOLIECA NMPECOBAHKA KEPAMUYKOTI NMPAXA KOPULWREHLEM MHBEP3HUX
AHANU3SA

PROCEDURE FOR CALIBRATION OF MATERIAL CONSTITUTIVE MODELS FOR
POWDER COMPACTION THROUGH INVERSE ANALYSIS

Koja je Moje ayTopcko aeno.

OduncepTaumjy ca caum npunosmma npegao/na cam y enekTtpoHckomMm dopmaTty norogHom
3a TpajHO apxMBupaHE.

Mojy OOKTOpCKY AncepTauujy noxpamweHy y [urutanHu penosvtopujym YHuBepsuTeTa
y Beorpagy mory oa kopucte cBu Koju nowTyjy ogpenbe cagpxaHe y ogabpaHom tuny
nuueHue KpeatmeHe 3ajegHuue (Creative Commons) 3a kojy cam ce oany4duo/na.

1. AyTtopcTBO

2. AyTOpCTBO - HEKOMepLUKjanHo

3. AyTopcTBO — HEKOMepUujanHo — 6e3 npepage

4. AyTOopCTBO — HEKOMEpLUMjanHo — AennTn nog UCTUM ycrnosmuma
5. AytopcTtBo — 6e3 npepage

6. AyTopCcTBO — AenuTu nog UCTUM ycrnosmma

(MonMmo ga 3aokpyxute camo jedHy O LecT NoHyheHux nuueHuu, Kpatak onuc
nuueHumM gart je Ha nonehuHu nucra).

MoTnuc pokTopaHpa

Y Beorpaay,




1. AytopcTtBo - [lo3BOrbaBaTe YMHOXaBak-e, OUCTPUOYUMjy W jaBHO cCaomniluTaBawe
aena, n npepage, ako ce HaBede MMe ayTopa Ha HayuH odpeheH of cTpaHe ayTopa
UnNn gaBaoua nuueHue, Yak n y komepuujanHe cepxe. OBo je HajcnoboaHuja o cBux
NULEHUMN.

2. AyTtopcTBO — HekoMmepLumjanHo. [lo3BorbaBaTe yMHOXaBakwe, AUCTpUBYLnjy 1 jaBHO
caonwTaBawe Aena, v npepage, ako ce HaBege Mme aytopa Ha HauvH oapefeH of
CTpaHe aytopa wnu gasaoua nuueHue. OBa nuvueHua He 003BOrbaBa KoMepuujanHy
ynotpeby gena.

3. AyTOpCcTBO - HekomepuujanHo — 6e3 npepage. [lo3BorbaBaTe YMHOXaBae€,
anctpmbyumnjy M jaBHO caonwitaBakwe aena, 6e3 npomeHa, npeobrvkoBara Wnv
ynoTpebe gena y cBOM Aeny, ako ce HaBede Mme ayTtopa Ha HavvH ogpeheH of
CcTpaHe aytopa wnu gasaoua nuueHue. OBa nuueHLa He 003BOSfbaBa komepuujanHy
ynoTpeby gena. Y ogHocy Ha cBe ocTane nuvueHue, OBOM JIMLEHLOM Ce orpaHvyaBa
Hajsehn o6um npaBa kopuwhewa gena.

4. AyTOpCTBO - HekoMepuujanHo — AenuTu nog uctum ycriosuma. [lossorbasaTte
YMHOXaBake, AMCTpUOYLMjy 1 jaBHO caonwiTaBawe gerna, u npepage, ako ce HaBeae
MMe ayTopa Ha HauvH oapefieH oA cTpaHe ayTtopa uMnu Aasaoua nuueHue 1 ako ce
npepaga Auctpubyvpa nog WCTOM WM CNMYHOM nuvueHuoM. OBa nuvueHua He
[03BOrbaBa komepuujanHy ynotpeby fena v npepaja.

5. AytopctBo — 6e3 npepage. [o3BorbaBate yMHOXaBake, OUCTPpUOYLM)y U jaBHO
caonwTaBawe gena, 6e3 npomeHa, npeobnmkoBawa nnm ynotpebe gena y cBom geny,
ako ce HaBede MMe ayTopa Ha HaudvH ofgpefeH of cTpaHe ayTopa unu gasaoua
nuueHue. OBa nuueHua Ao3BorbaBa kKoMepuumjanHiy ynotpedy aena.

6. AyTopcTBO - genutnm nog uCTUM ycrioBuMa. [Jo3BorbaBaTte yMHOXaBahse,
anctpmbyunjy v jaBHO caonwiTaBakwe gena, n npepage, ako ce HaBege ume aytopa Ha
HauuH oppefeH oa cTpaHe ayTopa WM JaBaoua NUUEHLE W ako ce npepaga
anctpmbympa nog WMCTOM WM ciMYHOM  nnudeHuoM. OBa nuueHua [03BOSbaBa
KkoMepuujanHy ynotpeby gena u npepaga. CnuyHa je codTBepckuMm nuueHuama,
OAHOCHO NuLieHLIamMma OTBOPEHOT KoAa.
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