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MULTIVARIATE MODEL FOR VEHICLES` AND MACHINES` 

INTERIOR SPACE ANTHROPOMETRIC DESIGN 

ABSTRACT 

Although it is known that the study of human-machine interaction in a system, in terms of 

its improvement and adjustments is a way to improve the efficiency of functioning, reduce 

fatigue, preserve human health and ensure optimum working environment conditions, it is 

still a challenge for many engineers - machine and vehicle constructors and experts who 

deal with this problem. Thus, the compatibility of the anthropometric characteristics of the 

driver/operator of the vehicle and machinery with cab dimensions, as well as the 

dimensions and position of the equipment in the cabin, directly affects the user from the 

aspect of comfort, health and working ability, and consequently influence the performance, 

productivity and financial losses as well as safety of the work environment, in a very broad 

scope. By reviewing the existing literature, it can be concluded that there is very little 

research dealing with the problem that is the subject of this dissertation.  

Bearing in mind other numerous development problems of the regions of Serbia and Libya, 

it is expected that the establishment and verification of the original model for the 

anthropometric design of the interior space of vehicles and machines on samples of Serbian 

and Libyan drivers and operators for transport machines will be a useful tool for decision-

makers in subjected industries that will enable better functional management on a global 

scale. In accordance with this, the initial hypotheses were then defined, processed and 

confirmed in the dissertation using collected anthropometric measurements by static 

anthropometry, on the specific populations, involving samples of 1,514 drivers and 133 

crane operators to confirm the present demographic differences. 

By applying correlation and regression analysis, as well as by testing the hypothesis, the 

first was confirmed. There are significant differences in the anthropometric measurements 

of the Serbian and Libyan populations, according to gender, nationality and occupation 

(drivers and operators), which indicates the need for the design for a specific population of 

users or requires the inclusion of all specific user populations as opposed to the previous 

design practices for the general population. 
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The the original model for the anthropometric design of the interior space of vehicles and 

machines was next proposed and verified. It has been shown that when dealing with design 

problems involving more dimensions, a new model based on multivariate statistical 

modeling should be used instead of the commonly used univariate percentile method. 

Through the proposed integral multivariate model for anthropometric adaptation, it is 

possible to reduce the multi-dimensional problem to a three-dimensional, spatial model. 

Thus, the goal is to determine a limited, as small as possible and the most adapted three-

dimensional space for a person, with the new original methodology that takes, as an 

anthropometric constraint, combinations of extreme pairs of dimensions and uses the theory 

of mechanisms and biomechanics for user accommodation. By checking the model, it was 

shown that the model is accurate and precise, since it covers 95% of the population of 

interest and, in that manner, all posted hypotheses have been confirmed. 

On the basis of the multivariate model for anthropometric adaptation, the dimensions of the 

minimum space required for the comfortable and safe accommodation are set to 1327 × 

1123 × 1926 mm for Serbian and 1203 × 1090 × 1838 mm for Libyan crane operators and 

1500 × 561 × 1230mm for Serbian and 1400 × 591 × 1155mm for Libyan passenger car 

drivers. Those results are in line with previously shown demographic differences between 

these populations. 

A generalization of the model defined in this dissertation establishes a platform for wider 

application of the proposed and confirmed model in other contexts, as well as the 

possibility of its further development and improvement, which is a proposal for further 

research in the subject area. 

Keywords: Multivariate modeling, Crane cabin, Vehicle interior space, Anthropometric 

measurements. 

 

Scientific field:             Mechanical Engineering 

Narrow scientific field:        Industrial Engineering (Ergonomics) 

UDC number:                      629.3.042/.043:629.3.012:572.087 (043.3) 
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МУЛТИВАРИЈАНТНИ МОДЕЛ ЗА АНТРОПОМЕТРИЈСКО 

ПРОЈЕКТОВАЊЕ УНУТРАШЊЕГ ПРОСТОРА ВОЗИЛА И 

МАШИНА 

Сажетак  

Иако је познато да истраживање интеракције човека и машине у систему, са аспекта 

његовог унапређења, односно прилагођавања у циљу побољшања ефикасности 

функционисања, смањења замора и очувања здравља човека и обезбеђивања 

оптималних услова радне средине, представља изазов бројним инжењерима 

конструкторима машина и возила, као и многим другим стручњацима који се баве 

овом проблематиком, прегледом постојеће литературе долази се до закључка да 

постоји веома мали број истраживања која се баве проблемом који је предмет ове 

дисертације, како у свету, тако и код нас. Тако, усклађеност антропометријских 

карактеристика возача/руковаоца возила и машина са димензијама кабине, као и са 

димензијама и положајем опреме у кабини, директно утиче на на самог корисника са 

аспеката комфора, здравља и радне способности, а последично на радни учинак, 

продуктивност и финансијске губитке компаније као и на безбедност радног 

окружења, шире посматрано. 

Имајући у виду и друге бројне развојне проблеме региона Србије и Либије, очекује се 

да ће успостављање и провера оригиналног модела за антропометријско 

пројектовање унутрашњег простора возила и машина на узорцима српских и 

либијских возача и руковаоца транспортним машинама представљати и користан 

алат који ће доносиоцима одлука у предметним индустријама омогућити много 

ефикасније функционално управљање на глобалном нивоу. У складу са тим 

дефинисане су иницијалне хипотезе, које су у дисертацији обрађене и потврђене, а 

затим је успостављена база антропомера предметних популација на основама начела 

статичке антропометрије, која укључује 1514 возача и 133 руковаоца дизалицом, а са 

циљем потврде присутних демографских разлика. 

Најпре је применом корелационе и регресионе анализе, као и тестирањем хипотеза 

доказано да постоје значајне разлике у антропометријским мерама разматраних 
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српских и либијских популација, а зависно од пола, националности и занимања 

(возача и руковаоца), што указује на потребу пројектовања за специфичну 

популацију корисника, односно налаже укључивање свих специфичних популација 

корисника за разлику од досадашње праксе пројектовања за општу популацију. 

Затим је предложен и проверен оригинални модел за антропометријско пројектовање 

унутрашњег простора возила и машина. Показано је да при решавању проблема 

пројектовања који укључују више димензија треба трагати за новим моделом који не 

треба да користи униваријантни перцентилни метод, већ мултиваријантно 

моделирање. Путем предложеног интегралног модела за антропометријску 

адаптацију заснованом на методама мултиваријантне статистике могуће је 

вишедимензионални проблем свести на тродимензионалн, просторни модел. Тако је 

испуњен циљ да се ограничени, што мањи, а човеку што боље прилагођен простор 

ограничен висином, дужином и ширином унутрашњег простора одреди новом 

оригиналном методологијом, тако што као антропометријско ограничење узимамо 

комбинације екстремних величина парова и низова антропомера којима треба 

прилагодити кабину, уз примену теорије механизама и биомеханике. Провером 

модела показано је да је модел  довољно тачан и прецизан,  са обухватом 95% 

популације од интереса, те су на тај начин потврђене постављене хипотезе овог 

истраживања. 

На основама мултиваријантног модела за антропометријску адаптацију одређене су 

димензије минималног потребног простора за комфоран и безбедан смештај 

руковаоца и возача и оне износе 1327×1123×1926 mm  за српске и 1203×1090×1838 

mm  за либијске руковаоце дизалицом, односно 1500×561×1230mm за српске и 

1400×591×1155mm за либијске возаче путничког аутомобила. Дати резултати су у 

складу са претходно потврђеним демографским разликама између разматраних 

популација. 

Генерализацијом модела дефинисаног у овој дисертацији успоставља се платформа 

за ширу примену предложеног и потврђеног модела истраживања у другим 



 

ix 
 

контекстима, као и могућност даљег развоја и унапређења модела, што је и предлог 

даљих истраживања  у предметној области. 

 

Кључне речи: Мултиваријантно моделирање, кабина крана, унутрашњи простор 

путничког аутомобила, антропометријска мерења. 

Научна област:        Машинство 

Ужа научна област:       Индустријско инжењерство 

UDC број:                 629.3.042/.043:629.3.012:572.087 (043.3) 
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NOMENCLATURE 

Abbreviation Definition unit 

WEI Weight kg 

STH standing height mm 

SIH sitting height mm 

LLL lower leg length mm 

ULL upper leg length mm 

SHW shoulder width mm 

HIB hip breadth mm 

ARL arm length mm 

SMD Serbian male drivers 

LMD Libyan male drivers 

SCO Serbian crane operators 

LCO Libyan crane operators 

SM Serbian males 

LM Libyan males 

SFD Serbian female drivers 

LFD Libyan female drivers 

SR Serbians (all participants) 

LI Libyans (all participants) 

N sample size 

Med. Median 

Min. minimal value 

Max. maximal value 

R Rank 

SD standard deviation 

cv(%) coefficient of variation 

D Kolmogorov statistics 

p p-value 

SIG. Significance 

n.s. not significant 

VT variable type 

r coefficient of correlation 

r2(%) coefficient of determination 

z z test for difference of means 

p significance level 

P05 5th percentile 

P50 50th percentile 

P95 95th percentile 

P99 99th percentile 

PC Principal component 
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1. INTRODUCTION 

Ergonomics has great potential to contribute to the design of all kinds of systems with 

people (work systems, product/service systems) and аn understanding of human variation 

facilitates the idea to fulfill the user’s requirements (Dul et al., 2012). To develop appropriate 

product designs, we need to understand the diversity in user needs (Khalid, 2006). More 

specifically, the aim of ergonomics is to adapt the devices, machines and workplaces to the 

worker, i.e. design work equipment, procedures and the environment to facilitate work and to 

achieve the greatest performance effects with the least effort during the work process. Also, the 

aim of this scientific discipline is to eliminate or reduce fatigue, exhaustion and pain, as well as 

to increase workplace safety and work efficiency, among other things, in the way that devices 

and machines are designed in accordance with the principles of anthropometry. Anthropometry 

(Pheasant, 2014), as a science that defines physical measures, is used by interior designers with 

the aim to make the users feel comfortable in their interior environment through optimal 

working posture usage, prevent injuries and improve safety and facilitate task execution in a 

more productive way. 

In addition to the great attention paid to the problem of the ergonomic modeling of 

technical systems, the method of anthropometric adjustment of the vehicle and machine cabins 

to suit drivers and operators has not been systematized and methodologically completed, 

although it is known that human error causes 85.2% of vehicle accidents and 60% of the 

accidents in lifting operations (Hesse et al., 2011; Milazzo et al., 2016). In the academic 

literature, there are research studies on the analysis of anthropometric measurements, most 

often using univariate modelling methods, such as percentiles, but they rarely orient themselves 

towards further modelling of the interior space, although the minimization of space can lead to 

significant effects in the economic, ecological and security areas (Bedinger et al., 2016; Diakaki 

et al., 2015). 

Also, although the process of modeling complex technical systems is very much 

present in the relevant literature, it still cannot be argued that all aspects of the development of 

mathematical models, as well as the modeling procedures themselves, are fully known, 

accurate enough, correct and adequate. 
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 These facts leave enough room for further research in the field of the anthropometric 

modeling of technical systems. 

1.1 The subject and scientific goal of this doctoral dissertation 

The subject of this doctoral dissertation’s research is the development of a 

multivariate model for the ergonomic/anthropometric adaptation of the interior space of the 

cabins of vehicles and machines, with the aim to enable operators to work comfortably and 

safely, managers to achieve high-level performance, and societies to have cleaner technologies. 

 The following facts are particularly important: 1. Modern cabins have been designed 

on the basis of anthropometric measures from decades ago, and today's drivers/operators are 

about 15 kg heavier, 2. previous research rarely focused on ergonomic factors, although drivers 

and operators of transport machines have the highest number of median days on sick leave and 

6-7 times the risk of fatal outcome compared to other workers, 3. anthropometric measurements 

of drivers and operators of transport machines are drastically different from those of 30 years 

ago (Guan et al., 2012), yet those measurements are used today for designing cabins (in the US, 

the first such research was carried out last year and there is still no such thing in Europe), 4. 

The rulebook on the safety of machines adopted in the Official Journal of the RS 13/2010 

(European Directive 2006/42/EU) requires taking into account the ergonomic principles in the 

design of machines, and, accordingly, it is necessary to pay more attention to ergonomic 

design, and 5. the production of cabins and their components can significantly contribute to the 

increase in industrial production according to a post-crisis model of economic growth, targeting 

middle and high-tech areas, the production of machines, devices and transport vehicles both in 

Serbia and elsewhere (Hesse et al., 2011; Brodie, 2010; Strahan et al., 2008; Sieber et al., 2014; 

Annie and Lucile, 2014; Buntak et al., 2013; Spasojevic Brkic et al., 2015; Brkić-Spasojević et 

al., 2016). 

It is known that the study of the interactions of a person and a machine in a system, in 

terms of its improvement, that is, adjustments in order to improve the efficiency of functioning, 

reduce fatigue and preserve human health and ensure optimum working environment 

conditions, is a challenge for many engineers and machine and vehicle constructors, as well as 
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other experts who deal with this problem. However, in reviewing the existing literature, we 

conclude that there is very little research dealing with the problem that is the subject of this 

dissertation, both in the world and in our country. The importance of studying the subject of 

this dissertation largely exceeds the number of published papers. Thus, it should be noted that a 

review of the available literature and those results indicate insufficient research and attention to 

the topic, and the methodology based on multivariate methods is a good basis for solving the 

problem of anthropometric optimization, which can have a further impact on the community (in 

line with the European Commission documents, Global Europe 2050, Europe 2020 strategy, 

Road Safety Programme 2011-2020, eSafety Vision, Vision Zero, directives 2005/27/EC, 

2006/42/EC, 2009/104/EC, 2010/40/EC, etc.). Previous research has undoubtedly indicated that 

the compatibility of the anthropometric characteristics of the drivers/operators of the transport 

machines with cabin dimensions, as well as the dimensions and position of the equipment in the 

cabin, affect several very important factors. The first category includes factors related to the 

effects that an anthropometric mismatch of the cabin (with the equipment in it) has on the user 

from the aspect of comfort, health and working ability. This is relevant because working 

positions that are not in accordance with ergonomic and biomechanical recommendations and 

principles over time lead to the occurrence of occupational diseases and the reduction of 

working ability. The second category includes factors related to the effects that the 

anthropometric mismatch of the cabin consequently has on the performance, productivity, and 

financial losses of the company. The third category includes factors related to the effects that 

the anthropometric mismatch of the cabin has on safety. 

The scientific goal within this doctoral dissertation is to set up and verify the original 

model for the anthropometric design of the interior space of vehicles and machines, which will 

arise after the systematization of existing knowledge in the field of ergonomics, risk, safety and 

health at work in different contextual frameworks with the newly established methodology on 

methods of multivariate statistics. The newly established methodology will be applied to 

characteristic examples of the importance in machine engineering - the passenger car drivers' 

population in order to model the interior space of the cabin required for the comfortable and 

safe accommodation of drivers and crane operators for the purpose of their comfortable and 

safe accommodation without distraction in the crane cabin with iterative sampling, both in 
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Serbia and Libya (the population of Serbia is on average taller with a lower body mass index 

compared to Libya, while data for specific strata are not available in the literature either in 

earlier or more recent time periods). 

It is also evident that research in the wide field of ergonomics is very scarce in the 

Libyan context. One of the rare surveys regarding safety issues in Libya (Hammad et al., 2011) 

concludes that workers on construction sites often do not utilize fall or hearing protection 

devices, and there is no training performed in hazard identification and elimination. It is also 

known (Al-Ghaweel et al., 2009) that road traffic accidents are the number one killer in Libya. 

Accordingly, it would be interesting to offer the very first study of anthropometric data on 

drivers and crane operators and its modelling in interior space. 

In accordance with the subject and the general scientific goal, the following aims at a 

lower level within this doctoral dissertation can be defined: 

- Defining the concept of the subject research; 

- Analysis of available research in the field; 

- Collection of data on anthropometric measures from the populations concerned; 

- Experimental confirmation of anthropometric measures growth and their different 

demographic distribution; 

- Development of an integral multivariate model for anthropometric adaptation with 

minimal dimensions of the cabin space in which the driver/operator will be 

ergonomically accommodated;  

- Designing the minimum space required for the driver/operator’s accommodation; 

and 

- Validation of the proposed integral multivariate model for the anthropometric 

adaptation of the interior space of the vehicle cabins and machines by comparison 

with the results of the univariate methods. 
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1.2 Starting hypotheses and research methods 

The starting hypotheses, which define the subject of the research, are derived from a 

literature analysis and a real-life situation characterized by the interaction of a person with a 

vehicle/machine in the modern environment. Namely, numerous problems that result in a large 

share of human errors indicate the presence of a complex problem that can be largely solved 

through an adequate anthropometric adjustment in accordance with the actual measures of 

specific populations. Bearing in mind other numerous development problems in the regions of 

Serbia and Libya, it is expected that the establishment of an original model for the 

anthropometric design of the interior space of vehicles and machines will be a useful tool that 

will enable decision makers in the industries concerned to be more efficient with functional 

management at the global level. In accordance with this, initial hypotheses have been defined, 

which should be processed and proved in this dissertation. 

The basic hypotheses that can be made on the basis of previous results in the literature 

can be defined as follows: 

H01 – The anthropometric measurements of Serbian and Libyan drivers as well as 

crane operators show significant differences depending on gender, occupation and nationality. 

H02 – By using multivariate statistics on the data of Serbian and Libyan drivers, as 

well as crane operators, it is possible to establish a sufficiently precise, original model for the 

anthropometric design of the interior space of vehicles and machines (namely passenger cars 

and crane cabins). 

Previous research commonly used a univariate percentile method to ensure that a 

particular product corresponds to a population between the 5th and 95th percentiles, which 

would be appropriate for 90% of the population of interest. However, when it comes to product 

design problems involving more than one dimension, this method shows significant drawbacks 

(Zehner et al, 1993; Lee & Bro, 2008; and Epifanio et al., 2013). The first disadvantage is that 

in reality there are no people who have all of the dimensions between the 5th and the 95th 

percentile; it is evident that, for example, a 5-percentile person does not have to have the 5th 

percentile dimension of all particular body parts. Furthermore, when more than one dimension 
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is involved in the problem of design, the use of percentiles actually involves a significantly 

lower percentage of the population than the desired 90%. Thirdly, the percentile method as a 

boundary model, in terms of dimensions, involves only the overall large and overall small 

models, without taking into account body configurations involving extreme measures of 

different dimensions. The above leads to the conclusion that when solving the problem of 

designing which involves more dimensions one should look for a new model that should not 

use a univariate percentile method (Guan et al., 2012), but a multivariate model should be used. 

Also, the goal is to limit size, creating the smallest possible space in the adapted interior that 

will suit a person. Space must be limited by the height, length and width that are determined by 

the new original methodology, by taking as an anthropometric constraint the combination of 

extreme pairs and the anthropometric measures series. 

On this basis, the following specific hypotheses can be formulated, which will be 

checked using the anthropometric measurement samples of Serbian and Libyan drivers, as well 

as crane operators: 

H1 - Using an integral multivariate model for anthropometric adaptation, it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy. 

H2 - Anthropometric measurements have mechanical and mathematical functions that 

determine all three dimensions of the space, taking into account over 90% of the population. 

H3 - On the basis of a multivariate model for anthropometric adaptation, it is possible to give 

recommendations for dimensioning the interior of the crane cabin in such a way that 

comfortable and safe accommodation of the users is ensured. 

H4 - On the basis of a multivariate model for anthropometric adaptation, it is possible to 

determine the dimensions of the minimum required space for a driver in a passenger vehicle in 

such manner that the driver has comfortable and safe accommodation. 

For the successful realization of the research goals and confirmation of the hypotheses 

of this doctoral dissertation, the basic and specific methods of logical reasoning and scientific 

knowledge will be used. Methods of analysis, modeling and statistical methods will be used 
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following the basic methods of scientific research. In addition to the basic methods of research, 

the following special methods will be used:  

1. Inductive and deductive methods of conclusion, 

2. Analytical and synthetic methods,  

3. Causal method,  

4. Specific methods of abstraction, generalization and specialization, as well as 

5. Comparative method. 

In order to successfully fulfill the aims of this research, special scientific methods will 

be applied, such as descriptive statistics, hypothesis testing and statistical reasoning, as well as 

multivariate statistical analysis methods together with the principles of biomechanics. 

During the research within the framework of this topic of the doctoral dissertation, the 

following scientific contributions can be expected: 

- Establishing databases of the anthropometric measurements of certain populations 

based on the principles of static anthropometry and proof of the present demographic 

differences (between Serbian and Libyan drivers and crane operators). 

- Defining an original integral research approach based on extreme sizes of pairs/arrays 

of anthropometric measurements to form an integral model of anthropometric optimization of 

space and development of an integral multivariate model for the anthropometric adaptation of 

the driver/operator in the cabin of the vehicle/machine of adequate coverage and accuracy. 

- The procedure for designing the minimum space required for the driver/operator. 

- By generalizing a defined model for strategy prioritization, a platform will be created 

for a wider application of research models in other contexts, as well as the possibility of further 

development and improvement of the model. 
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2 LITERATURE REVIEW 

2.1 Approaches in Anthropometric Design 

Anthropometric data are widely used when designing for humans. Namely, 

establishing accurate recommendations based on anthropometric data is the key to appropriate 

design. Anthropometric measurements are often taken to check how a relevant population 

performs various functions and movements in an interior space e.g. anthropometric data are 

widely used to eliminate or to minimize the mismatch between workers and their working 

environments. Designers make certain assumptions when using anthropometric data and, based 

on these assumptions, they develop design recommendations.  It is well known that 

anthropometric measurements depend on gender, race, age, occupation (Spasojević-Brkić et al., 

2014a), nationality, and nutrition (Fatollahzadeh, 2006). 

A large number of previous studies showed the importance of anthropometric data 

usage when designing for drivers or operators. 

In a study about truck drivers (Guan et al., 2012), a large sample was collected in 15 

states across the continental part of the United States. The sample consisted of 1,950 persons 

(1,779 men and 171 women); data were collected in the period from January 2006 to March 

2009, taking into account age, gender, race category, and body weight. The anthropometric 

measurements were taken from participants wearing street clothes, by means of anthropometric 

instruments (i.e. beam caliper, sliding caliper, and steel tape). There were two types of 

anthropometric dimensions taken: static and dynamic (Fatollahzadeh, 2006). Static dimensions 

refer to the actual size of a human body, while dynamic dimensions (functional measures) refer 

to the ability of a body to achieve certain tasks in a certain determined space, type of travel and 

enclosure, and include the description of measurement of human mobility, agility, or flexibility 

(Fatollahzadeh, 2006). 

Designing for a fixed percentile (e.g., 5th, 50th, or 95th) is the most frequent method. It 

simply implies that an individual with a given percentile stature would also be in the same 

percentile as far as the other body dimensions are concerned, and that is not realistic. For 
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instance, when designing for the 50th percentile, even if a tolerance of 15% is given above and 

below each dimension, no single complete set of body dimensions can be included (Roebuck et 

al., 1975). Porter et al. (1993) confirms that people vary considerably in their body proportions 

and that very few people can be expected to be consistently around a certain percentile (usually 

95th, 50th or 5th) for more than a few measurements and provides persuasive data about 

percentile values for a number of body dimensions recorded by a small sample of British 

automotive engineers of the Vehicle Ergonomics Group at Loughborough University (Figure 

2.1). Also, if a person's stature is broken down into few vertical dimensions then the total 

stature differs significantly from the sum (Hertzberg, 1960). Accordingly, the percentile 

approach is applicable only in the case of a small number of dimensions and at least one unique 

nationality (Guan et al., 2012). 

 

Figure 2.1 Percentile values for a variety of dimensions from a sample of British automotive engineers 

(n=10) (Porter et al., 1993) 

An interior space designer has to search for other techniques to ensure that the models 

are statistically correct. One method is to measure a group of men or women who are in the 5th 

or 95th percentile in both stature and weight and to calculate the median values of all other 

dimensions among the group (Haslegrave, 1986). These median values are additive, allowing 

the model to be statistically ‘correct'. But the problem with this approach is that, unless the total 

https://www.sciencedirect.com/science/article/pii/S0169814199000608#BIB5
https://www.sciencedirect.com/science/article/pii/S0169814199000608#BIB5
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sample is very large, the number of people who fall into the two extreme categories is likely to 

be quite small. 

Whatever method is chosen to define a variety of statistically 'correct' models, there is 

still the problem of estimating the percentage of people accommodated by a particular design. 

A common mistake made by many automotive manufacturers is to use the 5th percentile female 

stature and 95th percentile male stature manikins to assess a driving package, because in that 

case a large percentage of persons is not covered, on average 30%, depending on the number of 

included dimensions (Porter et al., 1993). 

The Principal Components Analysis (PCA) with the Varimax rotation method and the 

Kaiser Normalization might be applied to anthropometric data to evaluate the design and 

comfort of vehicle seats according to several papers (Brkic et al., 2015, Chung et al, 2004; 

Fatollahzadeh, 2006; Guan et al., 2012; and Spasojević-Brkić et al., 2015). There were four 

factors extracted in the survey (Fatollahzadeh, 2006), namely: 1) variables of length segments, 

2) variables of the weight and volume characteristics of drivers, 3) variables of the height of 

segments and 4) variables of hand length and foot breadth. Guan et al. (2012) applied the 

Multivariate Accommodation Model (MAM) for 35 anthropometric dimensions and found that 

MAM is an effective approach in design. Guan et al. (2012) again claim that the 5th - 95th 

percentile approach can be criticized for a decrease in accommodation when there is more than 

one dimension involved in the design. In the same study, the authors used SAS software and 

found that 12 sets of dimensions were reduced. Nadadur, and Parkinson (2012) proposed the 

Anthropometric Range Metric (ARM) approach for assessing the variation of 24 body 

measures for the populations of nine different nationalities. Kolich et al. (2004) used 

multivariate modelling techniques - stepwise, linear regression and the artificial neural network 

on data collected on seat-interface pressure measures, anthropometric characteristics, 

demographic information, and perceptions of seat appearance, while Park et al. (2000) found a 

difference in preferred driving posture between two different ethnicities - Koreans and 

Caucasians.                      

Such studies lead to the conclusion that workplace design depends on the approach 

applied in data modeling, in the anthropometric characteristics of users, and that national 
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background can have a significant effect on workplace design and modelling due to the 

differences in anthropometric characteristics (Park et al., 2000).  

A survey by Klarin et al. (2011) adopts methodology based on the fact that in a range 

of anthropometric measurements of equal total lengths, each measurement has segments of 

different lengths because people with the same leg length often have different upper and lower 

leg lengths. According to that fact, the passenger car interior space design should accommodate 

extreme measurements in a manner that anthropometric measurements behave as mechanical 

mechanisms (Klarin et al., 2011). In the same context for Serbian drivers, authors have found 

that the hip width in a sitting position has a significant effect on seat width, while the shoulder 

width affects hand control and car width, as well as that shoulder width, had a high variation 

among the same population, which gives an indication that male drivers’ shoulder width is 

greater than the shoulder width of female drivers for this population (Klarin et al. 2011). 

Moreover, the use of modern anthropometry data for interior modelling is recommended, since 

there are significant differences in seat dimensions compared to the International Standards 

Organization (ISO 8566-5, 1992) standard (Brkić et al., 2015). Klarin et al. (2009) have also 

pointed out that there is a difference in the angle of foot controls (towards the space reach of 

driver toe and heel) from 70º to 62.5º. Such differences justify the need for continual evaluation 

of interior vehicle space design and modelling, with different approaches used in order to 

quantify and determine the parameters related to interior vehicle space modelling (Essdai et al., 

2017). On the other hand, the use of the univariate, percentile approach indicates that certain 

construction constraints of the components in the crane cabins are the main reasons for reduced 

visibility and improper working postures of operators (Zunjic et al., 2015). Kushwaha and Kane 

(2016), Brkić et al. (2015) and Gustafson-Söderman (1987) conducted, surveys that also use the 

percentile approach. One of the rare surveys to use the factor analysis for crane operators is 

Spasojević-Brkić, (2014b), and it indicates the significance of the main crane operators’ 

anthropometric measures and provides an initial framework for the design of the workplace. 

In previous research studies, authors have applied not only different approaches but 

devices for measurement, too. For instance, a survey conducted by Klarin et al. (2009) used a 

3D scanner to determine the joint angles. Such a device provided a more effective approach 
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that saved time and made angle measurement very easy. Nadadur (2012) has used a 3D scanner 

to collect anthropometric dimensions from the North American and European population, but 

there were limited data since the 3D scanner is not a portable device. In the case of large-scale 

anthropometry studies, the conventional anthropometric measurement tools are found to be 

more practical (Heuberger et al., 2008; Del Prado, 2007; Omić et al., 2017; and Barroso et al., 

2005).  

2.2 The vehicle interior space modelling 

 Previous studies show that there is a need to optimize the interior vehicle space and to 

enhance the safety and comfort of multi-users. Klarin et al. (2011) have shared an opinion that 

the passenger car is still not adapted enough to a human being and proposed a solution for 

optimal workspace for foot controls accommodation so that foot controls would be positioned 

horizontally along the x-axis from the “0” point forwards at 320mm, and vertically along the z-

axis at 230mm, while space height along the z-axis amounts to 465mm, determined in terms of 

four segments by the anthropometric measurements of the foot of the 95th percentile man and 

the 5th percentile woman, according to the Serbian population of drivers. The angle for knee 

movement in the x-y plane when the lower leg and sitting height form a 90º angle, from the hip 

forward is 33º for the 5th percentile man, 53º on average, and 73º for the 95th man. The values of 

flexibility inwards are 11º, 31º, 51º, as shown in Figure 2.2, Klarin et al. (2011). Moreover, a 

survey by Klarin et al. (2009) introduced an algorithm in terms of mechanical rules with respect 

to the anthropometric mechanisms, by applying coordinates, the “0” point located at the contact 

point between the shoe heel and floor line of the vehicle, to quantify the design of a driver-

passenger car system. The findings have shown the following values for controls 

accommodation: horizontally, the x-axis is 320mm, vertically, along the z-axis is 230mm, and 

the space height along the z-axis amounts to 460mm while for foot controls location and use, 

the foot control angle is 62.5º towards the space reach of the driver’s toe and heel, although the 

technical literature suggested 70º. 



CHAPTER 2 

13 
 

 

Figure 2.2 Upper leg range (Klarin et al., 2011) 

Andreoni et al. (2002) states that the ergonomic details and approach used in 

determining and evaluating the interface between the driver and the car are vital in order to 

ensure high visibility with easy reach of all controls and displays, and, upon that, it is evident 

that real progress could be achieved in interior vehicle modelling. 

Kolich (2003) points out that there are two very important kinds of ergonomic criteria: 

physiological and anthropometric.  

Most of the previous seat design studies have focused on physiological factors such as 

vertebral discs, muscles, joints, and skin. These could be quantified through the 

еlectromyography device (Bush et al., 1995; Lee and Ferraiuolo, 1993; Sheridan et al., 1991), 

disc pressure measurement (Andersson et al., 1974), vibration transmissibility (Ebe and Griffin, 

2000), and pressure distribution at the occupant–seat interface (Kamijo et al., 1982; Hertzberg, 

1972). It is evident that such studies do not take into consideration human anthropometric 

characteristics (Reed el at. 1991). Hence, the preferable driver posture could not be achieved 

without considering the anthropometric criteria. Guan et al. (2012) conclude that there were 

anthropometric changes in width and girth between truck drivers across a quarter of a century. 

According to various previous research results it can be concluded that when aiming 

to model the optimal workplace, enhance work efficiency, improve safety and comfort 
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concepts (Fatollahzadeh, 2006 and Klarin et al., 2009), further research is needed since the 

interior space of a passenger car is not adapted enough for a human being.  

There is also the significantly dynamic nature of anthropometric measures which leads 

to the conclusion that the updating of anthropometric data is a vital task for ergonomic design. 

In this context, Klarin et al. (2011) have also mentioned a fact that anthropometric 

measurements change over time. Heights have increased, whereas other dimensions, i.e. foot 

length, shoulder width, and hip width have varied too, and therefore the anthropometric 

measurements should be continuously monitored. The recent accomplishment of 

empirical/prediction models (i.e. multiple linear regression, artificial neural network) in 

improving vehicle seat comfort are more effective in cost and time than the trial and error 

approach, which is time-consuming, expensive, and prone to measurement errors related to 

reliability and validity.  

The RAMSIS tool has been established to verify interior vehicle layout, i.e. joint 

angles. RAMSIS stands for Rechnergestütztes Anthropometrisches Menschmodell zur Insassen 

Simulation (Computer-Based, Anthropometric Human Model for Passenger Simulation). It was 

used by Vogt et al. (2005) to create a dependable and theoretically justified approach to design 

interior vehicle layout. Along with RAMSIS, several authors and standards (Bubb 1992, 

Dupuis 1983, Rebiff 1996, and DIN 33408, 1981) recommend the ideal joint angles for sitting 

in a passenger car, as defined in Figure 2.3, and their values illustrated in Table 2.1. 

 

Figure 2.3 Posture joints definition (Vogt et al., 2005) 
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Table 2.1 Recommended joints angles for sitting in a passenger car (Vogt et al., 2005) 

Recommended 

RAMSIS Bubb (1992) 

DIN 

33408 

(1981) 

Dupuis 

(1983) 

HdE 

(1998) 

Rebiffe 

(1996) Joint 

Torso 

orientation 
27º - - - - - 

Shoulder joint 22º 9º - 69º 38º - - 0º - 25º 

Elbow joint 127º 134º - 158º 120º - - 80º-20º 

Hip joint 99º 101º - 113º 95º 105º-115º 110º 95º-20º 

Knee joint 119º 142º - 152º 125º 110º 120º 145º 95º-35º 

 

Vogt et al. (2005) define a concept for an interior layout process in terms of the 

ergonomic posture of the human body and comfort angles for the human skeleton (Figure 2.3), 

with four theoretical seating concepts that cover eye point, hand point, or heel point, as 

illustrated in the flowchart shown in Figure 2.4. By setting either eye point, hip point, heel 

point, or hand point, as fixed points for all anthropometric types (as defined by the RAMSIS 

typology in Table 2.2) the adjustment fields in each case of four theoretical concepts could be 

obtained as shown in Figures 2.5, 2.6, 2.7, and 2.8 by Vogt et al. (2005) (all dimensions in 

mm). 

 

Figure 2.4 Interior vehicle layout concept (Vogt et al., 2005) 
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Table 2.2 RAMSIS Typology (Vogt et al., 2005) 

Gender Male – Female 

Body height Very short – Short – Medium -Tall – Very tall 

Torso length Short torso – Medium torso – Long torso 

 

Vogt et al. (2005) conclude that the final seating concept could be described as 

illustrated in Figure 2.9 (All the dimensions in mm) with the recommendation that the concept 

generated by RAMSIS needs more verification for real use to uncover the weakness of the 

adjustment fields.  

 

 

 

Figure 2.5 Fixed eye 

 

Figure 2.6 Fixed hip point 
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Figure 2.7 Fixed heel point 

 

Figure 2.8 Fixed hand point 

 

 

Figure 2.9 Final concept (Vogt et al., 2005) 

 

Parkinson et al. (2005) and (Parkinson and Reed, 2006) have introduced a new 

approach to the optimization of interior vehicle modelling, and Figure 2.10 shows their 

methodology.  
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Figure 2.10 Flowchart of the optimization process (Parkinson and Reed, 2006) 

Most previous studies reflect the fact that the changes and variations that take place 

over time in human anthropometrical characteristics are due to related factors i.e. gender, age, 

race, occupation, nationality, and nutrition (Spasojević et al., 2014a; Fatollahzadeh, 2006; and 

Guan et al., 2012). In addition, changes take place over time (Klarin et al., 2011) and lead to the 

fact that the updating of anthropometric data is a vital element in comfort design, particularly in 

vehicle interior design (Parkinson and Reed, 2006). Klarin et al. (2011) pointed to the need for 

continual evaluation of interior vehicle space design and modeling, with different approaches 

such as the algorithm model, that could be used to quantify and determine the parameters 

related to the interior vehicle space modelling, while Kolich et al. (2004) have shared the 

opinion that the use of empirical/prediction models (i.e. stepwise multiple linear regression) 

would be more effective and should be more widely used. 

Vehicle interior space modelling includes aspects of seat comfort, human interactions, 

visual displays of location, pedal controls, reaches etc. All those aspects should be taken into 

account in the ergonomic design of vehicle interior, in order to achieve satisfactory driving 

tasks in terms of safety, driver feedback, and driving tasks execution in a comfortable manner. 

Numerous studies have researched those aspects in order to improve driving task performance 

through ergonomic design. 
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A survey by Fatollahzadeh, (2006) indicates that the anthropometrical characteristics 

of truck drivers have a significant effect on the perceived comfort that influences a driver’s 

performance. Fatollahzadeh, (2006) also notes that the interaction between the driver’s mental 

view of the surroundings and infrastructure and vehicle displays have a vital role in performing 

the task. In addition, the quality of the interaction and the options that drivers select to handle 

driving tasks depend on their knowledge, education, and experience, which are considered to be 

the main factors in handling a task appropriately and safely. 

Park et al. (2000) investigated the relations among drivers’ physical dimensions, their 

driving posture, and preferred seat adjustments after collecting data on 43 drivers (24 males and 

19 females) from Korea, representing a range of percentiles (5th – 95th). All the gathered 

anthropometry data was based on ISO 3635 (1981) and the Korean Standards Association 

(KSA, 7004, 1989) and found that there is no significant difference in mean and standard 

deviation from the Korean standard. Park et al. (2000) showed there was a difference in 

preferred driving postures between Koreans and Caucasians. The same study (Park et al., 2000) 

found a strong positive correlation between knee angle and shoulder angle (r=0.762, p<0.01), 

and a strong positive correlation between knee angle and foot-calf angle (r=0.720, p<0.01). For 

instance, the trunk-thigh angle was related to all postural angles (p<0.05). Therefore, the trunk 

angle increases as the knee angle, elbow angle, foot-calf angle, and shoulder angle are 

increased, but the knee angle and foot-calf angle are not correlated with the elbow angle. A 

laboratory study of 68 adult drivers, found that seat height, steering wheel position, and seat 

cushion angle, have considerable effects on posture, and concluded that a driver adapts to 

changes in the vehicle and seat geometry through limb posture, while torso posture remains 

fairly constant (Reed et al., 2000). 

A static analysis study of the car driver posture that assessed the biomechanical 

features in the interaction between the driver and the seat, by using an optoelectronic system for 

motion capture and suitable matrices of pressure sensors, found the lumbar flexion angle to be 

an indicator of postural comfort, and the same angle for all the participants is described by 

Andreoni et al. (2002). Andreoni et al. (2002) claim that a multi-factor method should be 
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applied to the study of car driver posture and propose to consider the lumbar flexion angle as an 

indicator of postural comfort. 

In an optimization study, Spasojević-Brkić et al. (2014a), Klarin et al. (2009), and 

Klarin et al., (2011) discuss an adaptation of the passenger car to driver, including the limits of 

anthropometric measurements and technical limitations of the car, in order to improve the 

comfort, safety, and efficiency of vehicle operation. Serbian drivers’ data were used to propose 

an original methodology for interior space modelling that uses point “0” as the origin point of a 

coordinate system with x, y and z-axes of the person-vehicle system, and show that the 

anthropometric measures of length have mechanical and mathematical functions that determine 

the width of interior space together with shoulder width measure, while the floor-ceiling height 

of a vehicle is primarily affected by the anthropometric measurements of seating height and 

lower leg, so that the interior space necessary to accommodate the driver of a passenger vehicle 

comfortably is 1,250mm in height with a width of 926mm needed for knee spread. The width 

space needed for foot control at the level of the pedals is about 460mm wide and 200mm high, 

the distance needed between the clutch pedal and the break is 50mm, and the distance needed 

between the brake pedal and accelerator pedal is 60mm (Klarin et al., 2009). 

Fazlollahtabar, (2010) has studied seat comfort in order to quantify consumers’ 

preferences by means of a multi-criteria decision-making technique, which is composed of the 

Analytical Hierarchy Procedure (AHP), Entropy method, and Technical for Order Preference 

by Similarity to an Ideal Solution (TOPSIS). Fazlollahtabar (2010) pointed out two categories 

of criteria: (1) The physiological ergonomics criteria which are quantified by means of the 

electromyography device (Bush et al. 1995; Lee and Ferraiudo 1993; Sheridan et al. 1991), 

which deals with muscles, joints, skin, and vertebral discs, (2) The anthropometric ergonomics 

criteria, which are vital aspects of comfortable seating (Akerbom, 1949), since seat designs 

adopt a range of appropriate anthropometric dimensions typically to the 5th percentile female 

and the 95th percentile male, (3) The subjective perceptions of comfort criteria. In this respect, 

the apex of the lumbar contour should be positioned between 105 and 150mm from the H-

point, and 471mm should accommodate the 95th percentile female buttock - to - popliteal length 

of 440mm, which is just about 305mm from the H-point (Reed, 1994; Fazlollahtabar, 2010). 
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By applying the principle of anthropometric accommodation, the minimum cushion width must 

exceed the 95th percentile female sitting hip breadth of 432mm (Gordon et al., 1997; Reed, 

1994).   

Chung et al. (2004) have described many previous studies that relate to driving 

postures which considered the most important variables of driver space such as Philipport et al. 

(1984), who pointed out that the steering wheel position affects the driver’s posture. Imeman 

(1993) investigated adjustable pedals through broad anthropometric data sources, including the 

wide variations of people. In addition, Shin et al. (1997) proposed adjustable pedals to control 

the safe space between the pedal and the upper body of shorter women. These studies lead to 

the conclusion that the automotive industry is required to accommodate ergonomic data in 

order to develop products that consider the physical characteristics of users; otherwise, these 

products will not be comfortable and satisfactory. In order to achieve a proper driving posture, 

the industry must ensure wide visibility, easy reach for all car control and displays, in addition 

to the ergonomic details available and the assessment criteria used to analyze and evaluate the 

interaction between the driver and the car (Andreoni et al., 2002). In a vehicle seat comfort 

study, by Kolich et al. (2004) a statistical model was used (stepwise multiple linear regression) 

and compared to an artificial neural network and found that the neural network approach has 

higher (r²) values (0.8 vs. 0.713), and low average error values (1.192-1.779). The author 

mentioned the artificial neural network in another option to predict the vehicle seat comfort, 

and it can be used, despite the fact that this approach of modelling has not been widely used by 

ergonomists (Kolich et al., 2004).  

A survey of auto seat design (Reed, 1994) has pointed out recommendations for 

improved comfort, and divided seat design parameters associated with seat comfort into three 

groups: (1) Feel parameters that are related to the physical contact between the sitter and the 

seat, including the pressure distribution and upholstery properties, (2) Support parameters that 

affect the posture of the occupant, including seat contours and adjustments, (3) The fit 

parameter level, determined based on noting the limiting values among the 5th  percentile-

female and the 95th percentile-male, for particular anthropometric dimensions. For instance, the 

95th percentile-female hip width is used as a specification limit since it’s greater than the 95th 
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percentile-male, and in the same way, the minimum cushion width would be chosen to be 

greater than the 95th percentile-female seated hip breadth of 432mm (Gordon et al., 1989). 

Grandjean (1980) suggests a cushion width of 480mm in order to accommodate the clothing of 

the sitter. Other authors specify the hip width as illustrated in Table 2.3.  

Table 2.3 Comparative analysis of surveys in determining hip width for auto seat design (Reed, 1994). 

Reference Hip width(mm) Clarification 

Chaffin & Anderson 

(1991) 
457 

A study of 143 women aged 50-64years 95th 

percentile. 

Schneider et al. 

(1985) 
439 

A study of 25 males of driver anthropometry 95th 

percentile by stature and weight. 

Grandjien (1980) 480 

Recommended as minimum clearance at the hips to 

accommodate large females with clothing and an 

allowance for leg splay 

Maertens (1993) 500 
Authors do not specify the position at which this 

dimension is measured 

 

While the cushion length analysis is more complicated than the cushion width, due to the fact 

that it is constrained by the buttock-to-popliteal length of the small women segment of the 

population, the previous studies stated convergent values as shown in Table 2.4 (Reed, 1994). 

Table 2.4 Comparative analysis of surveys in determining cushion length for the auto seat design (Reed, 

1994). 

Reference Length cushion 

(mm) 

Remarks 

Gordon (1989) 
440 

5th percentile women buttock-to-popliteal 

length 

Chaffin& Anderson 

(1991) 
330-470 

For general chair design, measured from the 

furthest forward contact point on the backrest 

to the front edge of the chair 

Keegan (1964) 432 

Grabdjean  (1980) 440-550 

Maestrten  (1993) 380 

 

Furthermore, Rebiffe (1969) pointed that the most important posture angles for 

comfort, as defined in Figure 2.11, are the back, trunk/thigh, and knee angles, which represent 

the relative orientation of the trunks, thigh, and leg. The author recommends ranges for those 
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body segment angles as given in Table 2.5. Table 2.6 summarizes the recommended fit 

parameter levels, which are linear (Reed, 1994). 

 

Figure 2.11 Definitions of posture angles in Rebiff (1969) 

Table 2.5 Recommended range of body segments angles according to Rebiffe (1996) 

Angle *Recommended Range (degrees) 

A - Back 20-30 

B - Trunk/Thigh 95-120 

C - Knee 95-135 

D - Ankle 90-110 

E - Upper arm 10-45* 

F - Elbow 80-120 

*These values are on hand support and seat back configuration. 

Table 2.6 Recommended dimensions ranges of different fit parameter levels (Reed, 1994) 

Parameter 

 

Recommended dimension range (mm) 

Should not be 

less than  

Should not be more than 

1 - Cushion width  

1-1 - Actual width H-Point  432 - 

1-2 - Clearance at H-point 500 - 

1-3 - Width at front of cushion 500 - 

2.  Cushion Length  

2.1 Forward of H-point on thigh line - 305 

3 . Backrest Width  

3.1 At waist 220mm above H-point 360 - 

3.2 At chest 318mm above H-point 456 - 

3.3 Height of side bolsters above H-point  - 288 

4. Backrest height  410 550 
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Reed (2000) has found that the seat cushion angle, seat height, and steering wheel 

position, seat height, and seat cushion angle have significant effects on driving posture, which 

is mostly independent of body size, and gender. In this study, the authors define the posture 

variable as in Table 2.7. 

Table 2.7 Posture variables definitions (Reed, 2000) 

Variable Definition 

Hip-X 
Fore-aft distance from the mean hip joint location to the ball-of-foot 

reference point 

Hip-to-eye angle 
Angle in the side view (x, z) plane of the vector from the mean hip joint to 

the center eye point with respect to vertical 

Center eye point 

An eye location estimates on the body centerline with the fore-aft coordinate 

of the infraorbital landmark, the lateral coordinate of the glabella landmark, 

and the vertical coordinate of the corner-eye landmark 

Pelvis angle, thorax 

angle, head angle 

x, z (side view) plane angle of the respective segment with respect to vertical 

Lumbar flexion Pelvis angle minus thorax angle 

Cervical flexion Head angle minus thorax angle 

Elbow angle 
Angle between the arm and forearm segments in the plane of the 

segments; smaller values indicate greater flexion 

Knee angle 

Angle between the thigh and leg segments in the plane of the segments; 

smaller values indicate greater flexion 

 

 

The results of effects of steering wheel position and seat cushion angle as given by 

Reed, (2000) are as in Table 2.8. 

Table 2.8 Effects of steering wheel position and seat cushion angle (Reed, 2000) 

Variable Normalized Steering Wheel Position 

(–100 to +100 mm) 

Seat Cushion Angle 

 (11°–18°) 

Hip-X (mm) 89.6 –6.0 

Hip-to-eye angle 3.1 0.59 

Lumbar flexion - 2.0 

Cervical flexion - - 

Elbow angle –26.5 - 

Knee angle 16.3 –3.6 

 

In the Serbian drivers’ population study, the maximum width needed for 

accommodation along the x-axis is 169mm, at lowest level of seat, and 1,013mm along the y-

axis, with the upper-leg angle of 26º between the axis of symmetry and the corresponding plane 

for leg room (Klarin et al., 2011). In addition, the authors stated that the hip width in sitting 
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position has significant effects on the seat width, while the shoulder width effects the hand 

control and car width. The authors concluded that the Serbian population of drivers (male and 

female) characterized by slightly variation at hip width in sitting position, in all percentiles as 

shown in Table 2.9, shows the average difference of hip width among the male and female 

drivers of about 20.6675mm (Klarin et al., 2011) 

Table 2.9  Hip width of Serbian drivers’ population (Klarin et al., 2011) 

Percentile Hip width of 

males (mm) 

Hip width of 

females (mm) 

Difference (mm) 

5th 320.13 299.47 20.66 

50th 390.70 370.02 20.68 

95th 461.24 440.57 20.67 

99th 490.44 469.78 20.66 
 

With shoulder width there is a high variation for the same population, as shown in 

Table 2.10, with an average difference of 84.1mm. This indicates that the male drivers' 

shoulder width is greater than shoulder width of female drivers for this population.     

Table 2.10 Shoulder width of Serbian drivers’ population (Klarin et al., 2011) 

Percentile 
Shoulder width of 

male drivers (mm) 

Shoulder width of 

female drivers (mm) 
Difference (mm) 

5th 392.76 355.61 37.15 

50th 471.21 412.26 58.95 

95th 549.66 468.91 80.75 

99th 651.92 492.37 159.55 

 

The vehicle manufacturers tend to make an effort to widen the perceived space as an 

alternative of physical space, which is difficult to extend due to cost and physical constraints. In 

this regard, a study was conducted of the vehicle interior space design in terms of the driver–

passengers’ physical effect based on illusory design, to examine the effects of car interior 

design including optical illusions for three parts of the car, the instrument panel, the door-trim 

armrest, and the a-pillars, using 3D image projection. The results show that these three parts of 

the car can make in-vehicle spaces seem larger than the original design (Yang et al., 2015). 

The interior vehicle space modelling and design has been studied and researched from 

different aspects and points of view in previous studies, such as sitting posture, seat comfort, 

and accommodation of vehicle drivers in terms of anthropometric dimensions. Fatollahzadeh, 
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(2006) found that anthropometric characteristics of a truck driver have significant effect on 

perceived comfort, while Park et al. (2000) found a difference in preferred driving posture 

between two different ethnicities - Koreans and Caucasian. Such studies lead to the conclusions 

that each work place design and modelling in terms of comfort depends upon the 

anthropometric characteristics of users, and that the nationalities can have a significant effect on 

workplace design and modelling since there are differences in anthropometric characteristics. 

Authors Reed (1994), Chung et al. (2004) and Reed (2000) agreed that seat cushion angle, seat 

height, and steering position have significant effect on the comfort of a driving posture. On the 

other side, the 5th percentile women and the 95th percentile men approach assists the designer 

in selecting the appropriate anthropometric dimensions among the percentiles that are 

ergonomically fit for an occupant. For instance, it is recommended that the 95th percentile 

women hip width should be used as a limit dimension of cushion width since it’s greater than 

the 95th percentile men, and so on in the same context (Reed, 1994).  

2.3 Crane cabin interior space modelling  

Cranes are a central component of many operations. They are used in the construction 

industry to move materials, in the manufacturing industry to transport and assemble heavy 

equipment, in the maritime industry for shipbuilding and maintenance and in the railroad 

industry to load/unload cargos etc. (Milazzo et al., 2016; Fang et al., 2016; Sanfilippo et al., 

2016; and Dotoli et al., 2017). Occupational fatalities and injuries caused by the operation of 

cranes pose a serious public problem (Aneziris et al., 2008). When properly operated, cranes 

contribute substantially to the efficient progress of work, but they also have the potential to 

cause enormous loss of life and property (Raviv et al., 2017). Some estimates suggest that 

cranes are involved in up to one-third of all construction and maintenance fatalities (Neitzel et 

al., 2001). A tipped, dropped, or mishandled load can create lethal injuries, non-lethal 

permanent injuries and recoverable injuries (Aneziris et al., 2008). This risk of loss is not 

limited only to those directly involved in construction operations, but also to pedestrians and 

other workers who could be injured or killed (Neitzel et al., 2001). Obviously, these kinds of 

accidents also have huge cost implications (Lee et al., 2006). Mobile cranes have the highest 

accident rates, while North America is considered to be the part of the world where the most 
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accidents take place (Milazzo et al., 2016). Worldwide accident records over the last 5 years 

show that under existing regulations regarding crane safety, rates of injuries/illness could be 

considered as constant all over the world while poor human performance as an influential factor 

is a growing trend (Milazzo et al., 2016; Tam and Fung, 2011). 

Crane operators remain in cabins for the entire working day (Fung et al., 2016; and 

Bongers et al., 1988). Tight schedules usually hinder the implementation of site safety 

measures as shown in the example of a construction site in China (Fung et al., 2016). 

Construction sites have special safety regulations provided by large number of various bodies 

(Chandler and Delgado, 2001). The space within the crane cabin is adequate for only 18.5 % of 

operators, while 28.9 % of them feel extremely uncomfortable (Spasojević-Brkić et al., 2014b).  

A large number of standards, issued at the national or international level, by 

government, military, manufacturing or other organizations, could be implemented in  crane 

cabin design. Chandler and Delgado (2001) prepared guidelines covering all existing standards 

for overhead cranes in order to aid human factors engineers in evaluating the existing cranes 

during accident investigations or safety reviews. For instance, the standard ISO 8566-5 (1992) 

defines the necessary crane cabin dimensions as 1300×900×1600 mm. 

Crane operators spend long hours operating cranes and often work under pressure. They 

spend at least 6 and often up to 8 hours a day working in shifts in a static sedentary position in 

cabins that are often located high above the ground (Fung et al., 2016; Bongers et al., 1988; 

Chandler and Delgado, 2001; Kushwaha, and Kane, 2016; Ray and Tewari, 2012; Le et al., 

2014; and Shapira et al., 2014). Accordingly, the ergonomic design of crane cabin is vital to 

prevent the occupational diseases of crane operators, which can be achieved through a better 

understanding of the anthropometric characteristics of crane operators (Ray and Tewari, 2012). 

The crane operators’ job in current crane cabins demands frequent body twisting to reach 

controls and see the load, deep sideways bending and exposure to vibrations due to load 

stopping (Bongers et al., 1988; Shapira et al., 2014; Bovenzi et al., 2002; Reed and Flannagan, 

2000; and Kittusamy et al., 2004). The physical demands of the crane operator’s job include 

forceful and/or repetitive movement and an awkward and static posture of various body 

segments under vibrations exposure. On the mental level, they have to keep an eye on their 
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work and be aware of the position of the hook and the object in relation to other equipment, the 

building and other personnel (Zunjic et al., 2015; and Kittusamy et al., 2004).  

Kushwaha and Kane (2016) noticed in their sample of 27 operators that all of them 

continuously suffered from some kind of a musculoskeletal disorder. Neck, upper back and 

lower back pain, thigh/hip and knee pain were the most frequently reported disorders 

(Kushwaha and Kane, 2016). Burdorf and Zonderman (1990) carried out a survey among 33 

crane operators in a steel factory and recommended that persons with a history of back 

complaints not seek employment as crane operators because further vibrations caused by crane 

movement would exacerbate their health problems. Zunjic et al. (2015) also noticed that crane 

operators complained about fatigue, discomfort and pain, mostly located in the back, neck and 

shoulders. Bovenzi et al. (2002) found there were 40-60% of operators with a 12-month 

prevalence of lower back pain. Kittusamy and Buchholz (2004) further argued that awkward 

posture during the operation of heavy construction equipment was a consequence of improper 

cabin design and work procedures. Kittusamy and Buchholz (2004) emphasized that the poor 

visibility of the task, limited room in the cabin, excessive force required to operate 

levers/pedals, and improper seat designs were some of the characteristics of a poorly designed 

cabin. Compared to other operators, taller crane operators (over 170 cm) are probably the most 

vulnerable workers because they have a more forward-flexed posture, which induces a very 

high flexion-relaxation response and ligaments tension (Ray and Tewari, 2012; Lee et al., 

2014). Carragee et al. (2008) have presented the conclusion that among workers in manual 

occupations, the annual prevalence of neck pain varied from 16.5% among spinning industry 

production line workers in Lithuania to 74% in Swedish crane operators, who are among the 

tallest in Europe, the prevalence of neck pain mostly commencing at the interface between the 

operator and workplace due to workplace risk factors that are ergonomically not yet adapted 

(Côté et al., 2009). Ray and Tewari (2012) studied 23 body dimensions of 21 crane operators to 

minimize the anthropometric mismatch within the enclosed workspace. They found many 

mismatches even among the 50th percentile Indian crane operator population on site with the 

existing work system. Using the example of the crane cabin manufactured by Mac Gregor that 

operates in Sweden, Nordin and Olson, (2008) have discussed crane operators’ comfort and 

concluded that the given cabin was not suitable for the majority of users due to inadequate 
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posture, the incorrect placement of regulators and indicators, and the poor visual field of an 

operator. The uncomfortable working positions, which often limit the unconstrained 

performance of working movements, together with the mental effort needed to ensure as good a 

vision field as possible, forces the operator to work more slowly and hence decreases 

productivity and safety (Zunjic et al., 2015). Veljkovic et al. (2015) have conducted an 

evaluation of crane cabin safety and ergonomic characteristics based on data collected for 

benchmarking analysis in the Swedish port. Six crane cabin types were examined regarding 

eight characteristics divided in three groups: operator-control devices interaction, safety and 

anthropometric adjustment according to needs weighting data. Analysis of those data shows 

that only 52.5% of operator-control devices interaction issues, 75% of safety and 60% of 

anthropometric adjustment issues are satisfied in current designs and the authors conclude that 

contemporary crane cabins designs still do not satisfy operator needs in the fields of both safety 

and ergonomics and according to that future research are expected to fulfill those aims.   

2.4 Conclusion 

As different rules, regulations and standards on the safety of machinery indicate – the 

application of the principles of ergonomics are helpful. 

Planning the area of a driver or a crane operator, dimensioning and positioning of the 

control elements must be based on data on the anthropometric characteristics of the driver or 

operator. By designing a workplace and space without using the anthropometric characteristics 

of the population that will use this workplace, it is impossible to realize the conditions in which 

the driver's population will feel comfortable and secure. In fact, the loads that can arise while 

driving a vehicle are mainly associated with a highly uncomfortable, irregular driver's position 

as a consequence of the non-conformity of the dimensions of the vehicle cabin and the 

positions of the control elements of the vehicle with the anthropometric characteristics of the 

driver. It is very important to determine the anthropometric characteristics of the population, 

which is of particular importance for the ergonomic parameters of the vehicles that are aimed at 

ensuring the safety and protection of drivers in traffic. 

As previous research has pointed out, the adaptation of vehicles to people, depends on 

many factors in addition to the large importance of anthropometric adaptation, because it 
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depends on the possible placement of a person in the vehicle, and thus the comfort, safety and 

efficiency of vehicle operation. The driver in driving conditions is in a sitting position, which 

requires special adaptation of the visual angle and position of the human body in the seat of the 

vehicle and the position of the dimensions and form and place of the commands and cursors.  

Previous research has pointed out that crane operators’ strenuous work postures and 

different occupational diseases in current crane cabin spaces stem from the incompatibility 

between the anthropometric characteristics of operators and the dimensions and designer 

solutions of contemporary cabins. The need to increase the well-being of crane operators and 

avoid discomfort could be fulfilled through anthropometric optimization.  

Previous research shows that all anthropometric measures of a particular person do not 

correspond to the same percentile, so that the quality of the obtained results with the use of 

percentile decreases depending on the number of critical dimensions and correlations. In recent 

years, the traditional percentile approach has been criticized by some authors for the decrease in 

accommodation when two or more dimensions are involved in a design, although others still 

refer to this approach in the literature. This tendency is important to bear in mind even if only a 

few authors use multivariate approaches such as principal components analysis (Bittner 1987; 

Gordon et al., 1997; and Zehner et al., 1993). There is a real practical problem that lies in the 

fact that such percentiles are inadequate, and when the design problem requires several 

dimensions for proper fitting, this problem results in less than 90% of the population fit. 

Different multivariate approaches have been proposed up to now, but without results that 

enabled their wider application. The main reason for that is the fact that thus far there has been 

a weak connection between multivariate approaches and interior space modeling techniques. 

For these reasons, further usage and development of a multivariate analysis that better 

interprets the data related to anthropometric measures and provides more precise results for the 

design of ergonomically adapted products seems to be promising. The multivariate analysis 

offers an approach to defining the real design boundaries that are needed in cases where it is 

important to use several different anthropometric measures at the same time, as in the case of 

vehicles and crane cabins, and accordingly it will be applied herein. Furthermore, 

anthropometric characteristics analysis is needed in the field of crane operators and drivers too, 

all with the aim to make them feel comfortable in their interior environment through optimal 
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working posture usage that prevents injuries and improves safety and facilitates task execution 

in a more productive way. 
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3  ANALYSIS OF SIGNIFICANT DIFFERENCES IN SERBIAN AND 

LIBYAN ANTHROPOMETRIC MEASUREMENTS BASED ON 

GENDER, OCCUPATION, AND NATIONALITY 

3.1  Introduction 

This chapter aim to verify the hypothesis H01 that claims that the anthropometric 

measurements of Serbian and Libyan drivers as well as crane operators show significant 

differences depending on gender, occupation and nationality. This hypothesis is based on the 

assumption that gender, age, occupation, and nationality have a significant effect on 

anthropometric measurements as shown in previous research (Huang et al, 2010; Locke et al, 

2014; Fatollahzadeh, 2006; and Hsiao et al, 2002). Serbian and Libyan context analysis on 

anthropometric matters has not been found in available research sources. To check the 

hypothesis that the anthropometric measurements of Serbian and Libyan drivers and crane 

operators (both male and female) show significant differences depending on gender, occupation 

and nationality, appropriate statistical tests have been performed on data collected in Serbia and 

Libya. The aim is to examine significant differences in anthropometric measurements between 

surveyed populations in order to identify which anthropometric measurements are influenced 

by gender, occupation, or nationality and to find the pattern that exists with the aim to help 

designers to accommodate persons in certain spaces. Such analysis of differences in 

anthropometric measurements among populations can be a valuable tool for user design, since 

the focus in design must be the end user, rather than the product itself (Barnum, 2010). 

3.2 Different nationalities and gender anthropometric measurements data 

in design 

It is well known that anthropometric measurements depend on gender, race, age, 

occupation (Huang et al., 2010; Beydoun, and Wang, 2009), nationality, and nutrition 

(Fatollahzadeh, 2006). For instance, a study aimed at updating the minimum aircraft seating 

standards concluded that there were changes in anthropometric characteristics over time, so seat 

dimensions need to be reviewed in order to provide adequate accommodation for contemporary 
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frames (Quigley et al, 2001). Quigley et al. (2001) have also provided the percentiles values of 

anthropometric data of the nationalities of Europe, on the one hand (Table 3.1), and Japan, 

China and the U.S., on the other (Table 3.2), which show the various differences in the standing 

height, body weight, etc., between European nationalities, and other nationalities.  

Table 3.1 European nationalities anthropometric data percentiles values (Quigley et.al. 2001) 

 

 

 

 
 

 

 

 

 

 

 

 

Table 3.2 U.S., Chinese, and Japanese nationalities’ anthropometric data percentiles values and standard 

deviations (Quigley et al, 2001) 

Country percentile WEI STH SIH LLL ULL SHW HIB 

U.S.A. 

5th Female 47 1517 801 403 396 416 342 

95th Male 113 1877 983 513 482 563 522 

99th Male 130 1925 1008 532 500 608 584 

China 

5th Female 40 1461 782 415 486 358 305 

95th Male 74 1792 965 548 609 483 395 

99th Male 82 1834 990 567 634 508 428 

Japan 

5th Female 43 1474 793 424 499 383 325 

95th Male 75 1781 970 537 609 487 404 

99th Male 84 1820 995 552 632 508 429 

 

Consequently, the nationality and gender disparities are recommended to be further 

studied (Beydoun, and Wang, 2009). With that goal, for instance, Guan et al. (2012) have noted 

that anthropometric measurements (that represent width) also change over time across a 25-

year period. This has also been confirmed by Klarin et al. (2011). Klarin et al, (2011) have 

shown that the height of drivers has increased, whereas other dimensions, i.e. foot length, 

Country percentile WEI STH SIH LLL ULL SHW HIB 

Germany 

5th Female 52 1529 807 462 551 425 355 

95th Male 105 1865 977 588 681 547 497 

99th Male 118 1910 1000 606 706 576 546 

England 

5th Female 49 1515 800 457 541 411 343 

95th Male 103 1870 979 591 677 537 485 

99th Male 117 1918 1004 610 704 564 533 

France 

5th Female 46 1518 818 462 527 390 331 

95th Male 93 1846 977 581 646 517 437 

99th Male 104 1894 1001 599 668 542 473 
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shoulder width, and hip width have varied too in this time frame. Therefore, the use of up to 

date anthropometric data is recommended (Brkić et al., 2015) in contemporary design issues, 

and gender, nationality and occupation also have vital importance in anthropometric 

measurements analysis and in design as well. The prediction model that uses linear regression 

is more effective both in cost and time and is more widely used than the trial and error 

approach, which is prone to measurement errors related to reliability and validity (Kolich et al., 

2004). 

3.3 Serbian and Libyan data basic information 

In this study, static dimensions were used in data gathering, since the main goal of the 

research is the modeling of the interior space of the workplace, such as the interior vehicle or 

crane cabin, in order to develop a model which will ensure the comfort and safety of the driver 

or operator. After data collection, the samples characteristics are summarized in Table 3.3 and 

Table 3.4. Table 3.3 shows information about 1,197 Serbian participants - car drivers (males 

and females) and crane operators (only males). Their anthropometric measurements and weight 

data were collected in 2015, using the static anthropometry method as illustrated in Figure 3.1 

(all crane operators had drivers` licenses). In the same way and at the same time (2015), a 

sample of 400 Libyan participants was gathered, as shown in Table 3.4 for the purpose of 

vehicle interior space modelling and crane cabin interior space modeling.  

Table 3.3 Serbian data information 

 

Gender 
Car 

driver

s  

Mean age SD 
Crane 

operators  

Mean 

age 
SD 

Total 

Participants 

Male drivers 921 43.17 13.058 83 48.48 10.07 1004 

Female drivers 193 38.15 11.30 - - - 193 

Total 1114 - - 83 - - 1197 
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Figure 3.1 Diagrams of body dimensions as measured in the National Health Survey (Klarin et al., 2011) 

Table 3.4 Libyan data information 

 

3.4 Analysis of anthropometric measurement differences – Serbian and 

Libyan data 

Statistical analysis is performed on anthropometric samples, to investigate the patterns 

of anthropometric measurement differences. Such analysis assesses variations between target 

samples, which are different in gender, nationality and occupation and provide more 

information that would be useful for ergonomic design, which takes into consideration the 

source of anthropometric variations. In order to verify whether there are any significant 

differences between anthropometric measurements in the collected samples (Serbian and 

Libyan), we have started with descriptive statistics calculations on eight anthropometric 

measurements, which are foot length (FOL), standing height (STH), sitting height (SIH), lower 

leg length (LLL), upper leg length (ULL), shoulder width (SHW), hip breadth (HIB), arm length 

Gender Car drivers  Mean age SD 
Crane 

operators  

Mean 

age 
SD 

Total 

Participant

s 
Male drivers 300 33.7 11.468 50 42.36 7.907 350 

Female drivers 50 32.86 11.264 - - - 50 

Total 400 - - 50 - - 450 
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(ARL) and body weight (WEI). The main goal was to explore the existence of data patterns and 

the behavior of samples through central tendency measures.  

Consequently, the effect of gender, occupation, and nationality is compared as well, to 

explore the correlation between anthropometric measurements. The significance of differences 

between samples of the collected anthropometric data using the z test is also tested. The 

analysis was conducted in order to identify whether there is a degree of difference in 

anthropometric measurements between the participants who are different in gender, occupation, 

and nationality, as could be expected according to the results of previous studies conducted on 

data of other populations (Huanget al., 2010; Beydoun and Wang, 2009; and Fatollahzadeh, 

2006).  

3.5 Data analysis procedure and results 

The procedures followed for statistical analysis methods are applied herein are: 

 Descriptive statistics on collected data, 

 Regression and correlation analysis between anthropometric measurements on Serbian 

and Libyan collected data and 

 Hypothesis testing for difference between anthropometric measurements between 

Serbian and Libyan collected data, using the z test for difference of means. 

Descriptive statistics includes sample sizes, means, medians, minimal and maximal 

values with their ranges, coefficient of variation and Kolmogorov test for normality. The last 

conclusion of type of data for anthropometric measures is presented based on results of the 

coefficient of variation and Kolmogorov test as parametric or non-parametric. 

Since all measurements are parametric, this enabled conducting the linear regression 

and correlation analysis, which include coefficient of correlations, coefficients of 

determination, as well as significance of regression and correlations. Criteria for correlation 

coefficient (Brkić et al., 2016) are: 

 0.0,0.5r  There is no correlation  

 0.5,0.7r  There is a weak correlation (*) 
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 0.7,0.9r  There is a strong correlation (**) 

 0.9,1.0r  There is an absolute correlation (***) 

In order to compare anthropometric measurements between different nationalities, for 

all examined groups of participants, the Z tests for difference of means were conducted between 

Serbian and Libyan samples. The following criteria was used to assess differences (Brkić et al., 

2016): 

 

If p>0.05 no significant difference (n.s.) 

If p<0.05 low difference (>) 

If p<0.01 strong difference (>>)  

If p <0.001 absolute difference (>>>). 

 

3.5.1 Statistical examination of data for Serbian and Libyan male drivers 

Descriptive statistics, regression analysis, and test of difference between means are 

performed as in the following sections for the samples in order to explore the relationships and 

source of variation between the anthropometric dimensions. Regression graphs where at least 

one correlation exists are depicted with regression lines, while otherwise only scatter plots are 

drawn for the observed sample. 

3.5.1.1 Descriptive statistics 

Descriptive statistics for Serbian and Libyan male drivers are presented in Table 3.5 

and Table 3.6 (the eight anthropometric measures and body weight). The mean and median 

values of Serbian male drivers are higher than the values of Libyan male drivers, except the 

shoulder width (with an equal value of median 470mm and mean 471.35mm), and foot length 

(with an equal value in median 275mm). 
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Table 3.5 Descriptive statistics for Serbian male drivers 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 921 86.617 86 47 125 78 11.693 13.50 0.1498 1 n.s. parameter 

STH 921 1811.26 1800 1640 1995 355 74.657 4.12 0.1668 1 n.s. parameter 

SIH 921 917.218 920 780 1020 240 47.064 5.13 0.1551 1 n.s. parameter 

LLL 921 593.613 600 470 690 220 35.754 6.02 0.1615 1 n.s. parameter 

ULL 921 636.228 635 490 800 310 45.544 7.16 0.204 1 n.s. parameter 

SHW 921 471.356 470 390 630 240 46.728 9.91 0.1535 1 n.s. parameter 

HIB 921 391.097 390 310 590 280 43.749 11.19 0.2434 1 n.s. parameter 

ARL 921 706.488 700 500 830 330 46.213 6.54 0.1882 1 n.s. parameter 

FOL 921 281.612 275 250 320 70 12.577 4.47 0.1765 1 n.s. parameter 

Table 3.6 Descriptive statistics for Libyan male drivers 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 300 82.910 83 44 125 81 14.149 17.07 0.1907 1 n.s. parameter 

STH 300 1749.517 1750 1570 1900 330 63.104 3.61 0.1871 1 n.s. parameter 

SIH 300 855.483 860 730 970 240 43.493 5.08 0.1919 1 n.s. parameter 

LLL 300 543.050 540 450 670 220 34.425 6.34 0.1516 1 n.s. parameter 

ULL 300 582.767 580 500 720 220 37.166 6.38 0.2407 1 n.s. parameter 

SHW 300 471.350 470 380 640 260 45.440 9.64 0.1661 1 n.s. parameter 

HIB 300 365.620 360 230 570 340 59.192 16.19 0.2018 1 n.s. parameter 

ARL 300 633.053 610 540 800 260 72.291 11.42 0.2220 1 n.s. parameter 

FOL 300 275.833 275 265 300 35 9.115 3.30 0.2126 1 n.s. parameter 

 

3.5.1.2 Correlation between anthropometric measurement for Serbian and 

Libyan male drivers 

Correlation between anthropometric measurements for Serbian and Libyan male 

drivers are presented at Table 3.7 and Table 3.8. The following main points could be concluded 

from the correlation pattern of Serbian and Libyan male drivers:  

1 - There are common patterns of correlation between Serbian and Libyan samples of male 

drivers as follows: 

a) Body weight has a non-significant correlation with standing height, sitting height, lower 

leg length, upper leg length, arm length, and foot length. 

b) Standing height has a non-significant correlation with shoulder width and hip breadth, 

while a low correlation exists with lower leg length (Serbian sample r=0.577, r²=33.29%, 
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Libyan sample, r=0.568, r²=32.26%), and upper leg length (Serbian sample r=0.522, 

r²=27.25%, Libyan sample, r=0.549, r²=30.14%). 

c) Arm length has a non-significant correlation with foot length, whereas hip breadth has a 

non-significant correlation with foot length and arm length.  

2 - There are different patterns of correlations between both samples, which can be summarized 

as: 

a) The body weight of Serbian male drivers has a non-significant correlation with shoulder 

width, but in the Libyan sample it has a weak correlation (r=0.515, r²=26.52%). Body 

weight also has a weak correlation with hip breadth in the Serbian sample (r=0.510, 

r²=26.52%). The Libyan sample has a non-significant correlation with hip breadth, and, in 

the same way, the sitting height for the Serbian sample has a weak correlation with arm 

length (r=0.602, r²=36.2%), as does the lower leg length with the arm length (r=0.520, 

r²=27.04%). In Libyan sample, the sitting height and the lower leg length have a non-

significant correlation with arm length. 

c) The standing height with arm length and foot length have a weak correlation (r=0.550, 

r²=30.25% r=0.596, r²=35.25% respectively). In the Libyan sample, neither arm length nor 

foot length have a significant correlation with standing height. Moreover, the standing 

height and the sitting height in Serbian sample have a strong correlation (r=0.731, 

r²=53.44%), while there is a weak correlation for these same measurements in the Libyan 

sample (r=0.541, r²=29.7%). 

The relationship between the anthropometric dimensions exhibited through the values 

of correlation, shows that Serbian male drivers have twelve different dimensions with 

significant correlation, while in the Libyan sample only six different anthropometric 

dimensions have significant correlation. In addition, the differences in the correlation 

relationship among the dimensions of two samples may give guidance that nationality has a 

role in such anthropometric variations (Fatollahzadeh, 2006). Figures 3.2 - 3.12. provide 

representative scatter plots for both Serbian and Libyan male drivers where at least one 

regression line exists (a correlation of any statistical significance).  
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Table 3.7 The correlation between anthropometric measurements for Serbian male drivers 

Comparison r r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.410 16.81 n.s SIH vs. LLL 0.440 19.36 n.s. 

WEI vs. SIH 0.293 8.58 n.s SIH vs. ULL 0.362 13.10 n.s. 

WEI vs. LLL 0.326 10.63 n.s SIH vs. SHW 0.301 9.06 n.s. 

WEI vs. ULL 0.358 12.82 n.s SIH vs. HIB 0.099 0.98 n.s. 

WEI vs. SHW 0.422 17.81 n.s SIH vs. ARL 0.602 36.24 * 

WEI vs. HIB 0.510 26.01 * SIH vs. FOL 0.395 15.60 n.s. 

WEI vs. ARL 0.278 7.73 n.s LLL vs. ULL 0.645 41.60 * 

WEI vs. FOL 0.363 13.18 n.s LLL vs. SHW 0.289 8.35 n.s 

STH vs. SIH 0.731 53.44 ** LLL vs. HIB 0.146 2.13 n.s 

STH vs. LLL 0.577 33.29 * LLL vs. ARL 0.520 27.04 * 

STH vs. ULL 0.522 27.25 * LLL vs. FOL 0.405 16.40 n.s 

STH vs. SHW 0.269 7.24 n.s ULL vs. SHW 0.380 14.44 n.s 

STH vs. HIB 0.084 0.71 n.s ULL vs. HIB 0.253 6.40 n.s 

STH vs. ARL 0.550 30.25 * ULL vs. ARL 0.492 24.21 n.s 

STH vs. FOL 0.596 35.52 * ULL vs. FOL 0.413 17.06 n.s 

ARL vs. FOL 0.386 14.90 n.s. SHW vs. HIB 0.610 37.21 * 

HIB vs. ARL 0.066 0.44 n.s. SHW vs. ARL 0.317 10.05 n.s. 

HIB vs. FOL 0.147 2.16 n.s. SHW vs. FOL 0.165 2.72 n.s. 

 

 

Table 3.8 The correlation between anthropometric measurements for Libyan male drivers 

Comparison r r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.201 4.04 n.s. SIH vs. LLL 0.238 5.66 n.s. 

WEI vs. SIH 0.201 4.04 n.s. SIH vs. ULL 0.231 5.34 n.s. 

WEI vs. LLL 0.262 6.86 n.s. SIH vs. SHW 0.182 3.31 n.s. 

WEI vs. ULL 0.293 8.58 n.s. SIH vs. HIB 0.140 1.96 n.s. 

WEI vs. SHW 0.515 26.52 * SIH vs. ARL 0.169 2.86 n.s. 

WEI vs. HIB 0.413 17.06 n.s. SIH vs. FOL 0.207 4.28 n.s. 

WE vs. ARL 0.055 0.30 n.s. LLL vs. ULL 0.698 48.72 * 

WEI vs. FOL 0.342 11.7 n.s. LLLL vs. SHW 0.303 9.18 n.s. 

STH vs. SIH 0.541 29.27 * LLL vs. HIB 0.215 4.62 n.s. 

STH vs. LLL 0.568 32.26 * LLL vs. ARL 0.186 3.46 n.s. 

STH vs. ULL 0.549 30.14 * LLL  vs. FOL  0.404 16.32 n.s. 

STH vs. SHW 0.166 2.76 n.s. ULL vs. SHW 0.292 8.53 n.s. 

STH vs. HIB 0.122 1.49 n.s. ULL vs. HIB 0.248 6.15 n.s. 

STH vs. ARL 0.139 1.932 n.s. ULL vs. ARL 0.189 3.57 n.s. 

STH vs. FOL 0.410 16.81 n.s. ULL vs. FOL 0.330 10.89 n.s. 

ARL vs. FOL 0.020 0.04 n.s. SHW vs. HIB 0.593 35.16 * 

HIB vs. ARL 0.321 10.30 n.s. SHW vs. FOL 0.195 3.80 n.s. 

HIB vs. FOL 0.058 0.34 n.s. SHW vs. ARL 0.110 1.21 n.s. 
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Figure 3.2 Regression between WEI and SHW for 

SMD and LMD 

 

Figure 3.3 Regression between WEI and HIB for 

SMD and LMD 

 

 

 

Figure 3.4 Regression between STH and SIH for 

SMD and LMD 

 

Figure 3.5 Regression between STH and LLL for 

SMD and LMD 
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Figure 3.6 Regression between STH and ARL for 

SMD and LMD 

 

 

Figure 3.7 Regression between STH and ULL 

for SMD and LMD 

 

 

Figure 3.8 Regression between SIH and ARL for 

SMD and LMD 

 

Figure 3.9 Regression between STH and FOL 

for SMD and LMD 
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Figure 3.10 Regression between LLL and ARL for 

SMD and LMD 

 

 

Figure 3.11 Regression between LLL and ULL for 

SMD and LMD 

  

 

 

Figure 3.12 Regression between SHW and HIB for SMD and LMD 
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3.5.1.3 Comparisons of means between anthropometric measurements 

between Serbian and Libyan male drivers 

Serbian male drivers and Libyan male drivers’ anthropometric measurements were 

compared and the results are shown in Table 3.9.  

Table 3.9 Comparison between Serbian male derivers and Libyan male drivers 

z test p value p 

WEI SMD>>>WEI LMD 0 p<0.001 

STH SMD>>>STH LMD 0 p<0.001 

SIH SMD >>>SIH LMD 0 p<0.001 

LLL SMD >>>LLL LMD 0 p<0.001 

ULL SMD>>>ULL LMD 0 p<0.001 

SHW SMD = SHW LMD 1 n.s. 

HIB SMD>>>HIB LMD 0 p<0.001 

ARL SMD >>>ARL LMD 0 p<0.001 

FOL SMD>>>FOL LMD 0 p<0.001 

From Table 3.9 it can be concluded that between Serbian and Libyan male drivers 

there is no significant difference except in shoulder width measurement, while the other 

compared measurements have absolute statistical differences in that Serbian dimensions have 

statistically significantly larger measurements than Libyan male drivers at p<0.001, with p 

values equaling 0 for all comparisons. Therefore, the conclusion can be drawn that Serbian 

male drivers in general have larger anthropometric measurements than Libyan male drivers. 

Figures 3.13 - 3.15 illustrate those differences of means. 

 

Figure 3.13 Ratio between SHW means for SMD and LMD 
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Figure 3.14 Ratio between WEI means for SMD and LMD 

 

Figure 3.15 Ratio between means of anthropometric measurements between SMD and LMD 

3.5.2 Statistical examination of data for Serbian and Libyan crane operators 

The Serbian sample of 83 operators and the Libyan sample of 50 operators have been 

tested and examined to explore the relationship and variations between the anthropometric 

measurements. 

3.5.2.1 Descriptive statistics 

In Table 3.10, and Table 3.11, the results of the descriptive statistics of Serbian and 

Libyan crane operators sample were presented, and it can be seen that the mean and median 

values of the Serbian sample are greater than the values of the Libyan sample. However, the 

mean value of shoulder width in Serbian crane operators is a little bit less than in Libyan 

operators. 
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Table 3.10 Descriptive statistics for Serbian crane operators 

Dimensio

n 
N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 83 84.916 82 65 110 45 11.636 13.70 0.2862 1 n.s. parameter 

STH 83 1768.19 1765 1630 1937 307 68.210 3.86 0.2694 1 n.s. parameter 

SIH 83 907.313 910 750 1020 270 56.749 6.25 0.2134 1 n.s. parameter 

LLL 83 587.169 585 490 770 280 40.176 6.84 0.2441 1 n.s. parameter 

ULL 83 618.229 615 520 710 190 36.350 5.88 0.1894 1 n.s. parameter 

SHW 83 478.349 480 380 580 200 48.520 10.14 0.2718 1 n.s. parameter 

HIB 83 401.313 395 300 590 290 58.629 14.61 0.2785 1 n.s. parameter 

ARL 83 704.554 700 495 800 305 50.892 7.22 0.1843 1 n.s. parameter 

FOL 83 297.422 296 259 321 62 12.524 4.21 0.3668 1 n.s. parameter 

Table 3.11 Descriptive statistics for Libyan crane operators 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 50 78.70 80 55 96 41 10.428 13.25 0.2799 1 n.s. parameter 

STH 50 1701.40 1700 1570 1830 260 58.554 3.44 0.3050 1 n.s. parameter 

SIH 50 829.40 840 700 900 200 47.827 5.77 0.1812 1 n.s. parameter 

LLL 50 534.60 530 460 600 140 36.545 6.84 0.2222 1 n.s. parameter 

ULL 50 559.00 560 500 630 130 32.779 5.86 0.1908 1 n.s. parameter 

SHW 50 489.00 470 410 620 210 53.918 11.03 0.1590 1 n.s. parameter 

HIB 50 382.00 370 300 490 190 49.652 13.00 0.2375 1 n.s. parameter 

ARL 50 642.40 650 450 800 350 82.054 12.77 0.1565 1 n.s. parameter 

FOL 50 273.70 270 255 295 40 9.248 3.38 0.1901 1 n.s. parameter 

 

3.5.2.2 Regression and correlation between anthropometric measurements 

for Serbian and Libyan crane operators 

In the Libyan sample, a weak correlation exists only between standing height and foot 

length (r=0.516, r²=26.63%), shoulder width and hip breadth (r=0.649, r²=42.12), and lower leg 

length and hip breadth (r=0.516, r²=26.63%). All other measurements have a non-significant 

correlation. But for the Serbian sample there is a strong correlation (Table 3.12) between standing 

height and sitting height, and shoulder width and hip breadth (r=0.752, r²=56.55%, and r=0.760, 

r²=57.76% respectively) Four measurements have weak correlations (Table 3.13). This leads to the 

conclusion that in the Serbian sample there are a larger number of significant correlations than in 

the Libyan sample. Further illustration of the regression between the anthropometric measurements 
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of the two samples is given in Figures 3.16–3.23, wherein different patterns of significant and non-

significant correlations confirm the analytical results. 

Table 3.12 The correlation between anthropometric measurements for Serbian crane operators 

Comparison r r² (%) SIG. Comparison R r² (%) SIG. 

WEI vs. STH 0.410 16.81 n.s. SIH vs. LLL 0.313 9.80 n.s. 

WEI vs. SIH 0.171 2.92 n.s. SIH vs. ULL 0.265 7.02 n.s. 

WEI vs. LLL 0.404 16.32 n.s. SIH vs. SHW 0.086 0.74 n.s. 

WEI vs. ULL 0.460 21.16 n.s. SIH vs. HIB 0.207 4.28 n.s. 

WEI vs. SHW 0.495 24.50 n.s. SIH vs. ARL 0.642 41.22 * 

WEI vs. HIB 0.600 36.00 * SIH vs. FOL 0.005 0.00 n.s. 

WEI vs. ARL 0.280 7.84 n.s. LLL vs. ULL 0.487 23.72 n.s. 

WEI vs. FOL 0.227 5.15 n.s. LLL vs. SHW 0.448 20.07 n.s. 

STH vs. SIH 0.752 56.55 ** LLL vs. HIB 0.423 17.89 n.s. 

STH vs. LLL 0.430 18.49 n.s. LLL vs. ARL 0.570 32.49 * 

STH vs. ULL 0.339 11.49 n.s. LLL vs. FOL 0.047 0.22 n.s. 

STH vs. SHW 0.188 3.53 n.s. ULL vs. SHW 0.450 20.25 n.s. 

STH vs. HIB 0.025 0.06 n.s. ULL vs. HIB 0.385 14.82 n.s. 

STH vs. ARL 0.614 37.70 * ULL vs. ARL 0.412 16.97 n.s. 

STH vs. FOL 0.049 0.24 n.s. ULL vs. FOL 0.079 0.62 n.s. 

ARL vs. FOL 0.084 0.71 n.s. SHW vs. HIB 0.760 57.76 ** 

HIB vs. ARL 0.045 0.20 n.s. SHW vs. ARL 0.341 11.63 n.s. 

HIB vs. FOL 0.021 0.04 n.s. SHW vs. FOL 0.122 1.49 n.s. 

Table 3.13 The correlation between anthropometric measurements for Libyan crane operators 

Comparison r r² (%) SIG. Comparison R r² (%) SIG. 

WEI vs. STH 0.257 6.60 n.s. SIH vs. LLL 0.184 3.39 n.s. 

WEI vs. SIH 0.203 4.12 n.s. SIH vs. ULL 0.052 0.27 n.s. 

WEI vs. LLL 0.162 2.62 n.s. SIH vs. SHW 0.241 5.81 n.s. 

WEI vs. ULL 0.175 3.06 n.s. SIH vs. HIB 0.128 1.64 n.s. 

WEI vs. SHW 0.291 8.41 n.s. SIH vs. ARL 0.250 6.25 n.s. 

WEI vs. HIB 0.352 12.39 n.s. SIH vs. FOL 0.328 10.76 n.s. 

WE vs. ARL 0.204 4.16 n.s. LLL vs. ULL 0.478 22.85 n.s. 

WEI vs. FOL 0.315 9.92 n.s. LLL vs. SHW 0.305 9.30 n.s. 

STH vs. SIH 0.314 9.92 n.s. LLL vs. HIB 0.516 26.63 * 

STH vs. LLL 0.422 17.81 n.s. LLL vs. ARL 0.046 0.21 n.s. 

STH vs. ULL 0.399 15.92 n.s. LLL vs. FOL 0.326 10.63 n.s. 

STH vs. SHW 0.005 0.00 n.s. ULL vs. SHW 0.184 3.39 n.s. 

STH vs. HIB 0.259 6.71 n.s. ULL vs. HIB 0.297 8.82 n.s. 

STH vs. ARL 0.131 1.716 n.s. ULL vs. ARL 0.196 3.84 n.s. 

STH vs. FOL 0.516 26.63 * ULL vs. FOL 0.373 13.91 n.s. 

ARL vs. FOL 0.025 0.00 n.s. SHW vs. HIB 0.649 42.12 * 

HIB v. ARL 0.042 0.00 n.s. SHW vs. ARL 0.038 0.14 n.s. 

HIB vs. FOL 0.135 1.82 n.s. SHW vs. FOL 0.130 1.69 n.s. 
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Figure 3.16 Regression between WEI and SHW for 

SCO and LCO 

 

Figure 3.17 Regression between STH and SIH for 

SCO and LCO 

 

 

 

 

Figure 3.18 Regression between STH and FOL for 

SCO and LCO 

 

Figure 3.19 Regression between STH and ARL for 

SCO and LCO 
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Figure 3.20 Regression between SIH and ARL for SCO 

and LCO 

 

Figure 3.21 Regression between LLL and HIB for 

SCO and LCO 

 

 

Figure 3.22 Regression between SHW and HIB for SCO 

and LCO 

 

Figure 3.23 Regression between LLL and ARL for 

SCO and LCO 
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3.5.2.3 Comparisons of means between anthropometric measurements 

between Serbian and Libyan crane operators 

The sample of Serbian crane operators (N=83 males) and the Libyan sample of crane 

operators (N=50 males) were tested and absolute differences are at significance p<0.001, for all 

anthropometric measurements other than hip breadth and shoulder width. The Serbian crane 

operators have larger values of measured variables than Libyan crane operators in all 

measurements, except in hip breadth, where there are statistically low significant differences 

(p<0.05 and p-value =0.0426).  

In addition, there is no significant difference in shoulder width, level with p-

value=0.2517, as can be seen from Table 3.14, which corresponds with results to male drivers 

(Table 3.9), except hip breadth. Figures 3.24-3.27 show significant differences between 

anthropometric measurements and confirm the results given in Table 3.14. 

 

Table 3.14 Comparison between Serbian male derivers and Libyan crane operators 

z test p value p 

WEI SCO>>>WEI LCO 0.0010 p<0.001 

STH SCO >>>STH LCO 0 p<0.001 

SIH SCO>>>SIH LCO 0 p<0.001 

LLL SCO>>>LLL LCO 0 p<0.001 

ULL SCO>>>ULL LCO 0 p<0.001 

SHW SCO = SHW LCO 0.2517 n.s. 

HIB SCO>HIB LCO 0.0426 p<0.05 

ARL SCO>>>ARL LCO 0 p<0.001 

FOL SCO>>>FOL LCO 0 p<0.001 
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Figure 3.24 Ratio between means for SCO and LCO 

 

Figure 3.25 Ratio between WEI means for 

SCO and LCO 

  

Figure 3.26 Ratio between HIB means for SCO 

and LCO 

Figure 3.27 Ratio between SHW means for SCO and 

LCO 

3.5.3 Statistical examination of data for Serbian and Libyan males 

The Serbian and Libyan male samples are composed from male drivers and crane 

operators (n= 1004, n= 350 respectively), examined to verify the patterns of data and how 

anthropometric measurements are affected. 

3.5.3.1 Descriptive statistics 

Descriptive statistics of anthropometric measurements for Serbian and Libyan male 

samples are presented in Tables 3.15 and 3.16. The mean and median values show that data in 

the Serbian sample have higher values than in the Libyan sample, excluding shoulder width, 

which has very close values. All data are normally distributed.     
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Table 3.15 Descriptive statistics of Serbian males 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG

. 
VT 

WEI 1004 86.476 86.0 47 125 78 11.692 13.52 0.2749 1 n.s. parameter 

STH 1004 1807.699 1800.0 1630 1995 365 75.057 4.15 0.2133 1 n.s. parameter 

SIH 1004 916.399 920.0 750 1020 270 47.984 5.24 0.1452 1 n.s. parameter 

LLL 1004 593.081 595.0 470 770 300 36.162 6.10 0.2366 1 n.s. parameter 

ULL 1004 634.740 630.0 490 800 310 45.113 7.11 0.2017 1 n.s. parameter 

SHW 1004 471.934 470.0 380 630 250 46.894 9.94 0.1689 1 n.s. parameter 

HIB 1004 391.941 390.0 300 590 290 45.216 11.54 0.2833 1 n.s. parameter 

ARL 1004 706.328 700.0 495 830 335 46.594 6.60 0.1644 1 n.s. parameter 

FOL 1004 282.919 285.0 250 321 71 13.300 4.70 0.2819 1 n.s. parameter 

Table 3.16 Descriptive statistics of Libyan males 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 350 82.309 82 44 125 81 13.746 16.70 0.2530 1 n.s. parameter 

STH 350 1742.643 1740 1570 1900 330 64.632 3.71 0.1935 1 n.s. parameter 

SIH 350 851.757 850 700 970 270 45.004 5.28 0.2618 1 n.s. parameter 

LLL 350 541.843 540 450 670 220 34.808 6.42 0.2051 1 n.s. parameter 

ULL 350 579.371 580 500 720 220 37.465 6.47 0.2260 1 n.s. parameter 

SHW 350 473.871 470 380 640 260 47.068 9.93 0.2319 1 n.s. parameter 

HIB 350 367.960 360 230 570 340 58.145 15.80 0.2298 1 n.s. parameter 

ARL 350 634.389 620 450 800 350 73.711 11.62 0.2298 1 n.s. parameter 

FOL 350 275.529 275 255 300 45 9.151 3.32 0.1674 1 n.s. parameter 

3.5.3.2 Regression and correlation between anthropometric measurement of 

Serbian and Libyan males 

Serbian males (male drivers and crane operators, N=1004) have a significant 

correlation between twelve different measurements, while Libyan males (male drivers and 

crane operators, N=350) have correlations between six different anthropometric measurements 

only. This means that the Libyan sample has fewer significant correlations than the Serbian 

sample, as shown in Tables 3.17 and 3.18. The patterns of correlations are almost the same as 

described in male drivers for both samples (Serbian and Libyan). Further illustration of the 

regression and correlations of anthropometric measurements is presented in Figures 3.28 – 

3.36. 
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Table 3.17 The correlations between anthropometric measurements for Serbian males 

Comparison r r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.411 16.89 n.s. SIH vs. LLL 0.428 18.32 n.s. 

WEI vs. SIH 0.282 7.95 n.s. SIH vs. ULL 0.355 12.60 n.s. 

WEI vs. LLL 0.334 11.16 n.s. SIH vs. SHW 0.276 7.62 n.s. 

WEI vs. ULL 0.366 13.40 n.s. SIH vs. HIB 0.116 1.35 n.s. 

WEI vs. SHW 0.425 18.06 n.s. SIH vs. ARL 0.606 36.72 * 

WEI vs. HIB 0.513 26.32 * SIH vs. FOL 0.317 10.05 n.s. 

WEI vs. ARL 0.279 7.78 n.s. LLL vs. ULL 0.632 39.94 * 

WEI v. FOL 0.319 10.18 n.s. LLL vs. SHW 0.301 9.06 n.s. 

STH vs. SIH 0.730 53.29 ** LLL vs. HIB 0.175 3.06 n.s. 

STH vs. LLL 0.564 31.81 * LLL vs. ARL 0.525 27.56 * 

STH vs. ULL 0.519 26.94 * LLL vs. FOL 0.335 11.22 n.s. 

STH vs. SHW 0.253 6.40 n.s. ULL vs. SHW 0.377 14.21 n.s. 

STH vs. HIB 0.066 0.44 n.s. ULL vs. HIB 0.253 6.40 n.s. 

STH vs. ARL 0.549 30.14 * ULL vs. ARL 0.483 23.33 n.s. 

STH vs. FOL 0.466 21.72 n.s. ULL vs. FOL 0.331 10.96 n.s. 

ARL vs. FOL 0.321 10.30 n.s. SHW vs. HIB 0.626 39.19 * 

HIB vs. ARL 0.063 0.40 n.s. SHW vs. ARL 0.318 10.11 n.s. 

HIB vs. FOL 0.142 2.02 n.s. SHW vs. FOL 0.147 2.16 n.s. 

 

Table 3.18 The correlations between anthropometric measurements of Libyan males 

Comparison r r² (%)  SIG. Comparison r r² (%)   SIG. 

WEI vs. STH  0.226 5.11 n.s. SIH vs. LLL 0.241 5.81 n.s. 

WEI vs. SIH  0.216 4.67 n.s. SIH vs. ULL 0.242 5.86 n.s. 

WEI vs. LLL  0.256 6.55 n.s. SIH vs. SHW 0.078 0.61 n.s. 

WEI vs. ULL 0.296 8.70 n.s. SIH vs. HIB 0.081 0.66 n.s. 

WEI vs. SHW  0.460 21.16 n.s. SIH vs. ARL 0.170 2.89 n.s. 

WEI 

 

vs. HIB  0.392 15.37 n.s. SIH vs. FOL 0.237 5.62 n.s. 

WE vs. ARL  0.067 0.45 n.s. LLL vs. ULL 0.667 44.49 * 

WEI vs. FOL  0.343 11.76 n.s. LLL vs. SHW 0.288 8.29 n.s. 

STH  vs. SIH 0.533 28.41 * LLL vs. HIB 0.242 5.86 n.s. 

STH  vs. LLL 0.548 30.03 * LLL vs. ARL 0.143 2.04 n.s. 

STH  vs. ULL  0.558 31.14 * LLL vs. FOL 0.397 15.84 n.s. 

STH  vs. SHW  0.099 0.98 n.s. ULL vs. SHW 0.237 5.66 n.s. 

STH  vs. HIB  0.106 1.12 n.s. ULL vs. HIB 0.223 4.97 n.s. 

STH  vs. ARL  0.121 1.46 n.s. ULL vs. ARL 0.121 1.46 n.s. 

STH vs. FOL  0.429 18.4 n.s. ULL vs. FOL 0.344 11.83 n.s. 

ARL  vs. FOL  0.024 0.06 n.s. SHW vs. HIB 0.601 36.12 * 

HIB  vs. ARL  0.273 7.51 n.s. SHW vs. ARL 0.176 3.1 n.s. 

HIB  vs. FOL  0.059 0.350 n.s. SHW vs. FOL 0.058 0.34 n.s. 
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Figure 3.28 Regression between WEI and HIB for SM and LM 

 

Figure 3.29 Regression between STH and SIH for 

SM and LM 

 

Figure 3.30 Regression between STH and LLL for 

SM and LM 
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Figure 3.31 Regression between STH and ULL for 

SM and LM 

 

Figure 3.32 Regression between STH and ARL for 

SM and LM 

 

 

 

Figure 3.33 Regression between SIH and ARL for 

SM and LM 

 

Figure 3.34 Regression between LLL and ULL for 

SM and LM 
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Figure 3.35 Regression between LLL and ARL for 

SM and LM 

 

Figure 3.36 Regression between SHW and HIB for 

SM and LM 

 

3.5.3.3 Comparisons of means between anthropometric measurements 

between Serbian and Libyan males 

It was found, as in Table 3.19, that there are absolute significant differences between 

Serbian and Libyan males, at a significance level of p<0.001, for all measurements, except 

shoulder width, where there is no significant difference with p-value=0.5063. of the samples for 

male drivers. Figures 3.37-3.39, illustrate the significant differences between the means 

anthropometric measurements of the samples for male drivers. 

Table 3.19 Comparison between Serbian and Libyan male drivers 

z test p value p 

WEI SM>>>WEI LM 0 p<0.001 

STH SM >>>STH LM 0 p<0.001 

SIH SM>>>SIH LM 0 p<0.001 

LLL SM>>>LLL LM 0 p<0.001 

ULL SM>>>ULL LM 0 p<0.001 

SHW SM = SHW LM 0.5063 n.s. 

HIB SM>>>HIB LM 0 p<0.001 

ARL SM>>>ARL LM 0 p<0.001 

FOL SM>>>FOL LM 0 p<0.001 
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Figure 3.37 Ratio between WEI means for SM 

and LM 

 

Figure 3.38 Ratio between SHW means for SM and 

LM 

 

Figure 3.39 Ratio between means of anthropometric measurements between SMD and LMD 

 

3.5.4 Statistical examination of data for Serbian and Libyan female drivers 

A sample of female drivers from Serbia (n=193) and Libya (n=50), are examined to 

identify the behavior and effect of gender on the anthropometric measurements, and how far is 

it from a male one. Such information is valuable in the design of the interior space of vehicles 

and other equipment or machines that are driven or used by females.  
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3.5.4.1 Descriptive statistics 

The body weight, hip breadth, and foot length measurements in Libyan female drivers 

have greater values than those of Serbian female drivers, while the opposite is true for arm 

length and standing height, as in Tables 3.20 and 3.21. 

Table 3.20 Descriptive statistics for Serbian female drivers 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 193 65.539 64.0 45.000 115.000 70.0 11.565 17.65 0.238 1 n.s. parameter 

STH 193 1694.38 1700.0 1520.00 1880.00 360.0 61.465 3.63 0.138 1 n.s. parameter 

SIH 193 866.088 870.0 560.000 950.000 390.0 44.943 5.19 0.1973 1 n.s. parameter 

LLL 193 557.409 560.0 370.000 710.000 340.0 36.297 6.51 0.2986 1 n.s. parameter 

ULL 193 592.627 590.0 384.000 780.000 396.0 50.368 8.50 0.2702 1 n.s. parameter 

SHW 193 412.596 400.0 358.000 580.000 222.0 34.391 8.34 0.2711 1 n.s. parameter 

HIB 193 370.036 360.0 290.000 520.000 230.0 42.700 11.54 0.1535 1 n.s. parameter 

ARL 193 652.202 650.0 410.000 795.000 385.0 47.296 7.25 0.2651 1 n.s. parameter 

FOL 193 249.793 255.0 225.000 285.000 60.0 13.108 5.25 0.1849 1 n.s. parameter 

Table 3.21 Descriptive statistics for Libyan female drivers 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 
WEI 50 73.140 73.5 54 90 36 9.394 12.84 0.1731 1 n.s. parameter 

STH 50 1663.780 1660.0 1510 1780 270 53.796 3.23 0.168 1 n.s. parameter 

SIH 50 824.400 845.0 670 960 290 73.656 8.93 0.1444 1 n.s. parameter 

LLL 50 512.800 500.0 450 630 180 41.652 8.12 0.226 1 n.s. parameter 

ULL 50 565.800 570.0 490 670 180 41.654 7.36 0.1716 1 n.s. parameter 

SHW 50 402.800 400.0 340 500 160 30.973 7.69 0.1945 1 n.s. parameter 

HIB 50 386.600 390.0 320 460 140 31.727 8.21 0.1955 1 n.s. parameter 

ARL 50 617.400 620.0 530 680 150 36.579 5.92 0.1782 1 n.s. parameter 

FOL 50 252.40 255.0 230 175 45 13.141 5.21 0.188 1 n.s. parameter 

3.5.4.2 Regression and correlation between anthropometric measurement of 

Serbian and Libyan female drivers 

There is a weak significant correlation on body weight with hip breadth and shoulder width, and 

between lower leg length and upper leg length and shoulder width and hip breadth for both samples. 

The standing height has a significant correlation with sitting height, lower leg, and upper leg length 

in Libyan sample, and only with foot length in Serbian sample, as in Tables 3.22 and 3.23. 

Illustration of regression and correlation patterns is given in Figures 3.40–3.49. 
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.Table 3.22 The correlation between anthropometric measurements of Serbian female drivers 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.23 The correlations between anthropometric measurements of Libyan female drivers 

Comparison r r² 

(%) 
SIG. Comparison R r² (%) SIG. 

WEI vs. STH 0.094 0.88 n.s. SIH vs. LLL 0.468 21.90 n.s. 

WEI vs. SIH 0.072 0.52 n.s. SIH vs. ULL 0.486 23.62 n.s. 

WEI vs. LLL 0.079 0.62 n.s. SIH vs. SHW 0.089 0.79 n.s. 

WEI vs. ULL 0.048 0.23 n.s. SIH vs. HIB 0.068 0.46 n.s. 

WEI vs. SHW 0.638 40.70 * SIH vs. ARL 0.219 4.80 n.s. 

WEI vs. HIB 0.810 65.61 ** SIH vs. FOL 0.117 1.37 n.s. 

WEI vs. ARL 0.228 5.20 n.s. LLL vs. ULL 0.815 66.42 ** 

WEI vs. FOL 0.368 13.54 n.s. LLL vs. SHW 0.108 1.17 n.s. 

STH vs. SIH 0.704 49.56 ** LLL vs. HIB 0.003 0.00 n.s. 

STH vs. LLL 0.541 29.27 * LLL vs. ARL 0.289 8.35 n.s. 

STH vs. ULL 0.521 27.14 * LLL vs. FOL 0.118 1.39 n.s. 

STH vs. SHW 0.053 0.28 n.s. ULL vs. SHW 0.010 0.01 n.s. 

STH vs. HIB 0.162 2.62 n.s. ULL vs. HIB 0.026 0.07 n.s. 

STH vs. ARL 0.216 4.67 n.s. ULL vs. ARL 0.289 8.35 n.s. 

STH vs. FOL 0.117 1.369 n.s. ULL vs. FOL 0.024 0.06 n.s. 

ARL vs. FOL 0.190 3.61 n.s. SHW vs. HIB 0.695 48.30 * 

HIB vs. ARL 0.240 5.76 n.s. SHW vs. ARL 0.193 3.72 n.s. 

HIB vs. FOL 0.380 14.44 n.s. SHW vs. FOL 0.442 19.54 n.s. 

Comparison R r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.315 9.92 n.s. SIH vs. LLL 0.399 15.92 n.s. 

WEI vs. SIH 0.140 1.96 n.s. SIH vs. ULL 0.290 8.41 n.s. 

WEI vs. LLL 0.282 7.95 n.s. SIH vs. SHW 0.097 0.94 n.s. 

WEI vs. ULL 0.351 12.32 n.s. SIH vs. HIB 0.124 1.54 n.s. 

WEI vs. SHW 0.548 30.03 * SIH vs. ARL 0.221 4.88 n.s. 

WEI vs. HIB 0.658 43.3 * SIH vs. FOL 0.110 1.21 n.s. 

WEI vs. ARL 0.316 9.99 n.s. LLL vs. ULL 0.692 47.89 * 

WEI vs. FOL 0.516 26.63 * LLL vs. SHW 0.122 1.49 n.s. 

STH vs. SIH 0.422 17.81 n.s. LLL vs. HIB 0.080 0.64 n.s. 

STH vs. LLL 0.469 22.00 n.s. LLL vs. ARL 0.361 13.03 n.s. 

STH vs. ULL 0.435 18.92 n.s. LLL vs. FOL 0.333 11.09 n.s. 

STH vs. SHW 0.270 7.29 n.s. ULL vs. SHW 0.314 9.86 n.s. 

STH vs. HIB 0.192 3.69 n.s. ULL vs. HIB 0.185 3.42 n.s. 

STH vs. ARL 0.450 20.25 n.s. ULL vs. ARL 0.462 21.34 n.s. 

STH vs. FOL 0.594 35.28 * ULL vs. FOL 0.359 12.89 n.s. 

ARL vs. FOL 0.366 13.40 n.s. SHW vs. HIB 0.626 39.19 * 

HIB vs. ARL 0.382 14.59 n.s. SHW vs. ARL 0.502 25.20 * 

HIB vs. FOL 0.403 16.24 n.s. SHW vs. FOL 0.417 17.39 n.s. 
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Figure 3.40 Regression between WEI and HIB for SFD 

and LFD 

 

Figure 3.41 Regression between WEI and SHW 

for SFD and LFD 

 

 

 

 

Figure 3.42 Regression between STH and SIH for 

SFD and LFD 

 

Figure 3.43 Regression between WEI and FOL for SFD 

and LFD 
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Figure 3.44 Regression between STH and ULL 

for SFD and LFD 

 

 

Figure 3.45 Regression between STH and LLL for SFD 

and LFD 

 

 

 

 

Figure 3.46 Regression between LLL and ULL for 

SFD and LFD 

 

Figure 3.47 Regression between STH and FOL 

for SFD and LFD 
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Figure 3.48 Regression between SHW and HIB for 

SFD and LFD 

 

Figure 3.49 Regression between SHW and ARL 

for SFD and LFD 

 

3.5.4.3 Comparisons of means between the anthropometric measurements 

of Serbian and Libyan female drivers 

Serbian female drivers have an absolute significant difference in body weight at a 

significant level p<0.001 with p-values =0, which means that they have lower body weight than 

Libyan female drivers. A similar conclusion cold be drawn for Serbian hip breadth which has a 

strong significance level of p<0.01 with p-value=0.0023. Regarding all other anthropometric 

measurements, Serbian females have larger measurements than Libyan females at a 

significance level p<0.001 with p values close to zero, as shown in Table 3.24, except in 

shoulder width, where there is no significant difference with p-value=0.0517 and foot length 

with p-value=0.215. Figures 3.50 - 3.51 illustrate the differences in hip breadth values and body 

weight, where Libyan females have greater mean values than Serbian female drivers. Figure 

3.52 illustrates shoulder width and foot length that have no significant differences, and Figure 

3.53 depicts the rest of the mean value differences of anthropometric measurements, which 

confirms the obtained results.  
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Table 3.24 Comparison between Serbian and Libyan female drivers 

z test p value p 

WEI SFD<<< WEI LFD 0 p<0.001 

STH SFD>>>STH LFD 0.0005 p<0.001 

SIH SFD>>>SIH LFD 0.0001 p<0.001 

LLL SFD>>>LLL LFD 0 p<0.001 

ULL SFD>>>ULL LFD 0.0001 p<0.001 

SHW SFD=SHW LFD 0.0517 n.s. 

HIB SFD<<HIB LFD 0.0023 p<0.01 

ARL SFD>>>ARL LFD 0 p<0.001 

FOL SFD=FOL LFD 0.2105 n.s. 

 

 

 

Figure 3.50 Ratio between HIB means for SFD and LFD 

 

Figure 3.51 Ratio between WEI means for SFD 

and LFD 
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Figure 3.52 Ratios between SHW and FOL means 

for SFD and LFD 

 

Figure 3.53 Ratios between means of 

anthropometric measurements for SFD and LFD 

 

3.5.5 Statistical examination of data for all Serbian and Libyan participants 

All participants were combined into one sample according to their nationality. The 

Serbian sample was formed of male drivers, female drivers, and crane operators N= 

921+193+83=1197, and the same was done with the Libyan sample N=300+50+50=400. This 

analysis was conducted to explore the effect of large mixed data on the anthropometric 

measurements, and their patterns, which facilitates the interior space design of vehicles and 

cabins used by both males and females, in order to establish a model that could be fit to multi-

users. 

3.5.5.1 Descriptive statistics 

As can be seen from Table 3.25 and Table 3.26, the mean and median values show 

that the Serbian sample has higher values than the Libyan sample, excluding shoulder width 

which has very close values, meaning that the Serbian sample has larger anthropometric 

measurements than the Libyan sample has.  
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Table 3.25 Descriptive statistics for all Serbians participants 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 1197 83.100 84 45 125 80 13.980 16.82 0.2350 1 n.s. parameter 

STH 1197 1789.428 1780 1520 1995 475 84.078 4.70 0.2055 1 n.s. parameter 

SIH 1197 908.287 910 560 1020 460 50.969 5.61 0.1527 1 n.s. parameter 

LLL 1197 587.329 590 370 770 400 38.476 6.55 0.2372 1 n.s. parameter 

ULL 1197 627.950 625 384 800 416 48.519 7.73 0.1923 1 n.s. parameter 

SHW 1197 462.367 460 358 630 272 50.106 10.84 0.2013 1 n.s. parameter 

HIB 1197 388.409 390 290 590 300 45.522 11.72 0.3028 <0.200 n.s. parameter 

ARL 1197 697.601 700 410 830 420 50.757 7.28 0.1821 1 n.s. parameter 

FOL 1197 277.578 275 225 321 96 18.013 6.49 0.1879 1 n.s. parameter 

 

Table 3.26 Descriptive statistics for all Libyans participants 

Dimension N Mean Med. Min. Max. R SD cv (%) D p SIG. VT 

WEI 400 81.163 80.0 44 125 81 13.614 16.77 0.139 1 n.s. parameter 

STH 400 1732.785 1740.0 1510 1900 390 68.492 3.95 0.232 1 n.s. parameter 

SIH 400 848.338 850.0 670 970 300 50.198 5.92 0.194 1 n.s. parameter 

LLL 400 538.213 540.0 450 670 220 36.950 6.87 0.159 1 n.s. parameter 

ULL 400 577.675 580.0 490 720 230 38.223 6.62 0.219 1 n.s. parameter 

SHW 400 464.988 467.5 340 640 300 51.083 10.99 0.252 1 n.s. parameter 

HIB 400 370.290 360.0 230 570 340 55.847 15.08 0.157 1 n.s. parameter 

ARL 400 632.265 620.0 450 800 350 70.345 11.13 0.196 1 n.s. parameter 

FOL 400 272.64 275.0 230 300 70 12.374 4.54 0.252 1 n.s. parameter 

 

3.5.5.2 Regression and correlation between anthropometric measurement 

for all Serbian and Libyan participants 

The correlation results show that the measurements of the sample for the Serbian 

population have more statistically significant correlations than the Libyan sample has, as in 

Tables 3.27 and 3.28. 
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Table 3.27 The correlations between anthropometric measurements of all Serbian participants 

Comparison R r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.561 31.47 * SIH vs. LLL 0.495 24.50 n.s. 

WEI vs. SIH 0.403 16.24 n.s. SIH vs. ULL 0.419 17.56 n.s. 

WEI vs. LLL 0.443 19.62 n.s. SIH vs. SHW 0.353 12.46 n.s. 

WEI vs. ULL 0.463 21.44 n.s. SIH vs. HIB 0.043 0.18 n.s. 

WEI vs. SHW 0.569 32.38 * SIH vs. ARL 0.611 37.33 * 

WEI vs. HIB 0.537 28.84 * SIH vs. FOL 0.442 19.54 n.s. 

WEI vs. ARL 0.435 18.92 n.s. LLL vs. ULL 0.681 46.38 * 

WEI vs. FOL 0.588 34.57 * LLLL vs. SHW 0.383 14.67 n.s. 

STH vs. SIH 0.738 54.46 ** LLL vs. HIB 0.209 4.37 n.s. 

STH vs. LLL 0.618 38.19 * LLL vs. ARL 0.565 31.92 * 

STH vs. ULL 0.572 32.72 * LLL vs. FOL 0.462 21.34 n.s. 

STH vs. SHW 0.415 17.22 n.s. ULL vs. SHW 0.450 20.25 n.s. 

STH vs. HIB 0.518 26.83 * ULL vs. HIB 0.281 7.90 n.s. 

STH vs. ARL 0.621 38.56 * ULL vs. ARL 0.543 29.48 * 

STH vs. FOL 0.644 41.47 * ULL vs. FOL 0.450 20.25 n.s. 

ARL vs. FOL 0.488 23.81 n.s. SHW vs. HIB 0.630 39.69 * 

HIB vs. ARL 0.171 2.92 n.s. SHW vs. ARL 0.452 20.43 n.s. 

HIB vs. FOL 0.251 6.30 n.s. SHW vs. FOL 0.413 17.06 n.s. 

 

Table 3.28 The correlations between anthropometric measurements of all Libyan participants 

Comparison R r² (%) SIG. Comparison r r² (%) SIG. 

WEI vs. STH 0.267 7.13 n.s. SIH vs. LLL 0.320 10.24 n.s. 

WEI vs. SIH 0.202 4.08 n.s. SIH vs. ULL 0.302 9.12 n.s. 

WEI vs. LLL 0.278 7.73 n.s. SIH vs. SHW 0.130 1.69 n.s. 

WEI vs. ULL 0.278 7.73 n.s. SIH vs. HIB 0.039 0.15 n.s. 

WEI vs. SHW 0.509 25.91 * SIH vs. ARL 0.175 3.06 n.s. 

WEI vs. HIB 0.375 14.06 n.s. SIH vs. FOL 0.271 7.34 n.s. 

WE vs. ARL 0.070 0.49 n.s. LLL vs. ULL 0.692 47.89 * 

WEI vs. FOL 0.395 15.60 n.s. LLL vs. SHW 0.348 12.11 n.s. 

STH vs. SIH 0.563 31.70 * LLL vs. HIB 0.179 3.20 n.s. 

STH vs. LLL 0.584 34.11 * LLL vs. ARL 0.165 2.72 n.s. 

STH vs. ULL 0.551 30.36 * LLL vs. FOL 0.420 17.64 n.s. 

STH vs. SHW 0.248 6.15 n.s. ULL vs. SHW 0.241 5.81 n.s. 

STH vs. HIB 0.040 0.16 n.s. ULL vs. HIB 0.184 3.42 n.s. 

STH vs. ARL 0.146 2.13 n.s. ULL vs. ARL 0.138 1.90 n.s. 

STH vs. FOL 0.510 26.01 * ULL vs. FOL 0.294 8.64 n.s. 

ARL vs. FOL 0.020 0.04 n.s. SHW vs. HIB 0.483 23.33 n.s. 

HIB vs. ARL 0.243 5.90 n.s. SHW vs. ARL 0.178 3.17 n.s. 

HIB vs. FOL 0.001 0.00 n.s. SHW vs. FOL 0.355 12.60 n.s. 
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Further illustration of regression and correlations are depicted in Figures 3.54 – 3.68.  

 

 

Figure 3.54 Regression between WEI and SHW for 

SR and LI 

 

Figure 3.55 Regression between WEI and STH for 

SR and LI 

 

Figure 3.56 Regression between WEI and HIB 

for SR and LI 

 

Figure 3.57 Regression between WEI and 

FOL for SR and LI 
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Figure 3.58 Regression between STH and SIH for 

SR and LI 

 

Figure 3.59 Regression between STH and LLL for 

SR and LI 

 

Figure 3.60 Regression between STH and ULL for 

SR and LI 

 

Figure 3.61 Regression between STH and HIB for 

SR and LI 
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Figure 3.62 Regression between STH and ARL for 

SR and LI 

 

Figure 3.63 Regression between SIH and FOL for 

SR and LI 

 

 

Figure 3.64 Regression between LLL and ULL for 

SR and LI 

 

Figure 3.65 Regression between SIH and ARL for 

SR and LI 
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Figure 3.66 Regression between ULL and ARL for 

SR and LI 

 

Figure 3.67 Regression between LLL and ARL for 

SR and LI 

 

Figure 3.68 Regression between SHW and HIB for SR and LI 

3.5.5.3 Comparison of means between anthropometric measurements of all 

Serbian and Libyan participants 

This comparison was done in order to investigate and verify the effect of the mixed 

gender and occupation selection on the anthropometric measurements with nationality as the 

only difference. Absolute, significant differences were again found between all compared 

anthropometric measurements at a significance level of p<0.001, with p-values=0. Body weight 

showed a strong significance difference at level of p<0.01 (p-value=0.0052), and shoulder 
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width again had no significant difference with p-value=0.3132. The test indicates that the 

Serbian sample has larger anthropometric measurements than the Libyan sample, as shown in 

Table 3.29, whereas Figure 3.69 shows that there is no significant difference in mean values of 

shoulder width and the difference in body weight as shown in Figure 3.70. Figure 3.71 

represents the ratio between means and clearly illustrates the differences between the rest of 

measurements and confirms the captured results. 

Table 3.29 Comparison between all Serbian and Libyan participants 

z test p value p 

WEI SR >> WEI LI 0.0052 p<0.01 

STH SR >>> STH LI 0 p<0.001 

SIH SR >>> SIH LI 0 p<0.001 

LLL SR >>>   LLL LI 0 p<0.001 

ULL SR >>> ULL LI 0 p<0.001 

SHW SR = SHW LI 0.3132 n.s. 

HIB SR >>> HIB LI 0 p<0.001 

ARL SR >>>   ARL LI 0 p<0.001 

FOL SR >>> FOL LI 0 p<0.001 

 

 

Figure 3.69 Ratio between SHW means for SR and LI 

 

Figure 3.70 Ratio between WEI means for SR 

and LI 
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Figure 3.71 Ratio between WEI means for SR and LI 

3.5.6 Comparison of means of anthropometric measurements based on 

gender and occupation 

In order to study the effect of gender and occupation on the anthropometric 

measurements, the means of measurements of related samples were tested. The results are 

presented in the following sections. 

3.5.6.1 Comparison of means based on occupation for Serbian and Libyan 

samples 

Serbian samples have significant differences only in three measurements while six 

measurements have no significant differences as shown in Table 3.30 and Figure 3.72. Table 

3.31 shows reverse results for the Libyan sample. The arm length and lower leg length have no 

significant differences in either samples, and the standing height in both samples have an 

absolute difference (p value =0, p<0.001).  
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Table 3.30 Comparison between Serbian male drivers and Serbian crane operators 

z test p  value p 

WEI SMD  = WEI SCO 0.2023 n.s. 

STH SMD >>> STH SCO 0 p<0.001 

SIH SMD =  SIH SCO 0.1230 n.s. 

LLL SMD =  LLL SCO 0.1576 n.s. 

ULL SMD >>>  ULL SCO 0 p<0.001 

SHW SMD = SHW SCO 0.2074 n.s 

HIB SMD =HIB SCO 0.1212 n.s. 

ARL SMD = ARL SCO 0.7389 n.s. 

FOL SMD <<< FOL SCO 0 p<0.001 

 

Table 3.31 Comparison between Libyan male drivers and Libyan crane operators 

z test p value P 

WEI LMD > WEI LCO 0.0125 p<0.05 

STH LMD >>> STH LCO 0 p<0.001 

SIH LMD >>> SIH LCO 0.0003 p<0.001 

LLL LMD = LLL LCO 0.127 n.s. 

ULL LMD >>> ULL LCO 0 p<0.001 

SHW LMD < SHW LCO 0.0286 p<0.05 

HIB LMD < HIB LCO 0.0359 p<0.05 

ARL LMD = ARL LCO 0.4483 n.s. 

FOL LMD = FOL LCO 0.1308 n.s. 

 

Figure 3.72 Ratio between FOL means of Serbian and Libyan male drivers and crane operators 
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3.5.6.2 Comparison of means based on gender for Serbian and Libyan 

samples 

Tables 3.32 and 3.33 address absolute differences in all measurements of both 

samples, other than upper leg and sitting height in the Libyan sample, which have strong 

differences, and weak differences in arm length. Figure 3.73 depict differences in hip breadth 

for the tested samples. As can be seen, gender has more effect and a stronger influence on 

anthropometric measurements than occupation has. 

Table 3.32 Comparison between Serbian male drivers and Serbian female drivers 

z test p value  p 

WEI SMD >>> WEI SFD 0 p<0.001 

STH SMD >>> STH SFD 0 p<0.001 

SIH SMD >>> SIH SFD 0 p<0.001 

LLL SMD >>> LLL SFD 0 p<0.001 

ULL SMD >>> ULL SFD 0 p<0.001 

SHW SMD >>> SHW SFD 0 p<0.001 

HIB SMD >>>HIB SFD 0 p<0.001 

ARL SMD >>> ARL SFD 0 p<0.001 

FOL SMD >>> FOL SFD 0 p<0.001 

 

Table 3.33 Comparison between Libyan male drivers and Libyan female drivers 

z test p value p 

WEI LMD >>> WEI LFD 0 p<0.001 

STH LMD >>> STH LFD 0 p<0.001 

SIH LMD >> SIH LFD 0.0037 p<0.01 

LLL LMD >>> LLL LFD 0 p<0.001 

ULL LMD >> ULL LFD 0.0068 p<0.01 

SHW LMD >>> SHW LFD 0 p<0.001 

HIB LMD <<<HIB LFD 0.0002 p<0.001 

ARL LMD > ARL LFD 0 p<0.05 

FOL LMD >>> FOL LFD 0 p<0.001 
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Figure 3.73 Ratio between HIB means of Serbian and Libyan male drivers and female drivers 

3.6 Changes in anthropometric measurements over time 

The literature review shows that there are changes that have taken place over time in 

anthropometric measurements, and that they should therefore be constantly monitored (Klarin 

et al., 2011). Consequently, it is interesting to verify the changes that may take place within the 

anthropometric measurements over time. The data for the years 1997, 2004 and 2009 

(Spasojević et al., 2014a), were compared with the latest data from 2015 (Tables 3.34 and 3.35 

respectively). A sample of these data is plotted in Figures 3.74 - 3.80, which illustrate the 

variation trends over time of the anthropometric measurements for both males and females. It is 

remarkable that during the long periods of time i.e. 1997-2015 or 2004-2015 there was an 

increasing trend noted in the 99th percentile (2004-2015, Figure 3.74, and 1997-2015, Figure 

3.78) and the reverse was the case during short periods of time i.e. 2004-2009 or 2009-2015 as 

in Figure 3.76. 
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Table 3.34 Serbian males’ anthropometric measurements changes over time (Spasojević Brkić et al., 

2014a), 

Percentiles 1997 2004 2009 2015 Percentiles 1997 2004 2009 2015 

WEI 

P5 - 62.2 67.23 68 

SHW 

P5 449 403 392.76 400 

P50 - 83.1 86.37 86 P50 488 469 471.21 470 

P95 - 104 105.40 105 P95 527 534 549.66 570 

P99 - 113 113.31 119.8 P99 543 562 651.92 590 

STH 

P5 1667 1664 1609.9 1690 

HIB 

P5 356 323 320.16 340 

P50 1788.2 1785 1810.67 1800 P50 398 371 390.70 390 

P95 1909.4 1906 1930.6 1940 P95 440 420 461.24 470 

P99 1959.6 1956 1980.3 1980 P99 453 439 490.44 590 

SIH 

P5 886 852 834.7 840 

ARL 

P5 580.4 573 629.62 640 

P50 937.6 923 916.01 920 P50 659 674 705.72 700 

P95 988.6 994 997.32 990 P95 737.6 774 781.82 790 

P99 1009.7 1023 1030.98 1010 P99 770.2 811 813.32 800 

LLL 

P5 510.9 420 533.75 530 

ESH 

P5 - 798 - 750 

P50 557.9 559 593.51 600 P50 - 864 - 820 

P95 604.9 627 653.27 650 P95 - 930 - 900 

P99 624.4 652 678.01 680 P99 - 954 - 920 

ULL 

P5 573.4 584 557.79 570 

FOL 

P5 - 260 293.81 265 

P50 633.7 665 636.87 635 P50 - 279 310.93 275 

P95 693.9 746 715.95 710 P95 - 298 328.05 300 

P99 718.8 779 748.68 738 P99 - 305 335.14 315 
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Table 3.35 Serbian females’ anthropometric measurements changes over time (Spasojević Brkić et al., 

2014a) 

Percentiles 1997 2004 2009 2015 Percentiles 1997 2004 2009 2015 

WEI 

P5 53.2 48.6 46.34 41.6 

SHW 

P5 372 337.2 355.61 370 

P50 63.1 69.1 65.57 64 P50 408 406.9 412.26 400 

P95 73 89.7 84.80 84.4 P95 444 473.6 468.91 482 

P99 77.1 97 92.76 112.2 P99 459.2 502 492.37 510.8 

STH 

P5 1599.9 1585.6 1590.96 1600 

HIB 

P5 360.7 296.2 299.47 320 

P50 1676.2 1689.6 1693.33 1700 P50 387 356.9 370.02 360 

P95 1752.5 1793.6 1795.70 1794 P95 413.3 417.6 440.57 457 

P99 1676.2 1831 1838.08 1840 P99 424.2 439 469.78 520 

SIH 

P5 826.8 758.7 792.67 810 

ARL 

P5 584 481.7 573.73 590 

P50 865.6 872.7 866.51 870 P50 632 590.8 652.06 650 

P95 904.4 986.7 940.35 924 P95 680 699.9 730.35 710 

P99 920.5 1028 970.92 950 P99 700 739 762.75 780.8 

LLL 

P5 474.7 458.2 497.00 510 

ESH 

P50 - 710 - 688.5 

P50 510.9 518.4 556.93 560 P95 - 817 - 774.3 

P95 547.1 579 616.86 600 P99 - 924 - 859.3 

P99 562.1 600 641.67 670.4 P50 - 962 - 883.5 

ULL 

P5 525.1 460.8 510.72 530 

FOL 

P5 239.8 230.3 261.90 230 

P50 579.4 590.4 592.18 590 P50 252 257.6 277.76 255 

P95 633.7 720 673.64 680 P95 264.2 284.9 293.62 270 

P99 656.2 767 707.36 734 P99 269.2 295 300.18 275 

 



CHAPTER 3 

78 
 

 

 

Figure 3.74 Body weight changes of Serbian males over time 

 

 

Figure 3.75 Hip breadth changes of Serbian males over time 
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Figure 3.76 Standing height changes of Serbian males over time 

 

 

Figure 3.77 Lower leg length changes of Serbian males over time 
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Figure 3.78 Body weight changes of Serbian females over time 

 

 

 

Figure 3.79 Standing height changes of Serbian females over time 
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Figure 3.80 Lower leg length changes of Serbian females over time 

3.7 Discussion and conclusion 

3.7.1 Relationships between anthropometric measurements - discussion and 

conclusions 

     The correlation analysis has shown that different patterns among different 

populations, such as those subjected herein, exists, based on criteria such as nationality, gender, 

and occupation. Such information is very important and valuable in design according to user 

needs. The correlation between anthropometric measurements provides one of the initial 

assumptions for designers as to what extent the body measurements are correlated and can be 

affected by each other, i.e., body weight versus hip breadth, and shoulder width versus hip 

breadth, (one increases, the other increase) etc. Significant correlations between measurements 

provide beneficial guidance to the designer in designing the interior space through the results 

on relations between anthropometric dimensions that are output of this thesis. 

Results on patterns of correlations between anthropometric measurements that are 

presented in different populations covered by this survey are summarized in Table 3.36, 

showing the strength of relationship between the anthropometric measurements, which have 

different patterns from one sample to another due to different nationality, occupation, and 

gender.  
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Table 3.36 Different patterns of correlations between anthropometric measurements that are presented in 

different populations covered by this survey. 

Sample No correlations  0.0,0.5r   

Weak correlations 

 0.5,0.7r 
 

 

Strong 

correlations 

 0.7,0.9r 
 

 

Absolute correlations 

 0.9,1.0r   

S
er

b
ia

n
 m

al
es

 

1-WEI vs. STH, SIH, LLL, ULL, SHW, 

ARL, FOL 

2-STH vs. SHW, HIB, FOL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, FOL 

6-LLL vs. SHW, HIB, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-WEI vs. HIB 

2--STH vs. LLL, 

ULL, ARL 

3-SIH vs. ARL 

4-LLL vs. ULL, ARL 

5-SHW vs. HIB 

1- STH vs. SIH None 

L
ib

y
an

 m
al

es
 

1-WEI vs. STH, SIH, LLL, ULL, SHW, 

HIB, ARL, FOL 

2-STH vs. SHW, HIB, ARL, FOL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. SHW, ARL, HIB, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-STH vs. SIH, LLL, 

ULL 

2-LLL vs. ULL 

3-SHW vs. HIB 

 

None None 

S
er

b
ia

n
 m

al
e 

d
ri

v
er

s 

1-WEI vs. STH, SIH, LLL, ULL, SHW, 

ARL, FOL 

2-STH vs. SHW, HIB 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, FOL 

6-LLL vs. SHW, HIB, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-WEI vs. HIB 

2-STH vs. LLL, ULL, 

ARL, FOL 

3-SIH vs. ARL 

4-LLL vs. ULL, ARL 

5-SHW vs. HIB 

 

1- STH vs. SIH None 
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Table 3.36 continued.  
L

ib
y
an

 m
al

e 
d
ri

v
er

s 

1-WEI vs. STH, SIH, LLL, ULL, HIB, 

ARL, FOL 

2-STH vs. SHW, HIB, ARL, FOL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. SHW, ARL, HIB, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-WEI vs. SHW 

2-STH vs. LLL 

, ULL, SIH, 

3-LLL vs. ULL 

4-SHW vs. HIB 

 

None None 

S
er

b
ia

n
 f

em
al

e 
d
ri

v
er

s 

1-WEI vs. STH, SIH, LLL, ULL, ARL 

2-STH vs. SIH, LLL, ULL, SHW, HIB, 

ARL3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. SHW, HIB, ARL, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. FOL 

 

1-WEI vs. SHW 

, HIB, FOL 

2-STH vs. FOL 

3-LLL vs. ULL 

4-SHW vs. HIB 

5- SHW vs. HIB, ARL 

 

None None 

L
ib

y
an

 f
em

al
e 

d
ri

v
er

s 

1-WEI vs. STH, SIH, LLL, ULL, ARL, 

FOL 

2-STH vs. SHW, HIB, ARL, FOL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. SHW, HIB, ARL, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-WEI vs. SHW 

2-STH vs. LLL, ULL 

3-SHW vs. HIB 

1-WEI vs. HIB 

2-STH vs. SIH 

3-LLL vs. ULL 

 

None 

S
er

b
ia

n
 c

ra
n
e 

o
p
er

at
o
rs

 1-WEI vs. STH, SIH, LLL, ULL, SHW, 

ARL, FOL 

2-STH vs. LLL, ULL, SHW, HIB, FOL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs.  

6-LLL vs. ULL, SHW, HIB, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-WEI vs. HIB 

2-STH vs. ARL 

3-SIH vs. ARL 

4-LLL vs. ARL 

1-STH vs. SIH 

2-SHW vs. HIB 
None 
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Table 3.36 continued.  
L

ib
y
an

 c
ra

n
e 

o
p
er

at
o
rs

 

1-WEI vs. STH, SIH, LLL, ULL, SHW, 

HIB, ARL, FOL 

2-STH vs. SIH, LLL, ULL, SHW, HIB, 

ARL 

3-ARL vs. FOL 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. ULL, SHW, ARL, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs. ARL, FOL 

 

1-STH vs. FOL 

2-LLL vs. HIB 

3-SHW vs. HIB 

None None 

A
ll

 S
er

b
ia

n
 p

ar
ti

ci
p
an

ts
 1-WEI vs. SIH, LLL, ULL, ARL 

2-STH vs. SHW 

3-ARL vs. FOL 

4-HIB vs.  ARL, FOL 

5-SIH vs.  LLL, ULL, SHW, HIB, FOL 

6-LLL vs. SHW, HIB, FOL 

7-ULL vs. SHW, HIB, FOL 

8-SHW vs. ARL, FOL 

 

 

1-WEI vs. HIB, STH, 

SHW, FOL 

2-STH vs. LLL, ULL, 

HIB, ARL, FOL 

3-SIH vs. ARL 

4-LLL vs. ULL, ARL 

5-ULL vs. ARL 

6-SHW vs. HIB 

1-STH vs. SIH None 

A
ll

 L
ib

y
an

 p
ar

ti
ci

p
an

ts
 

1-WEI vs. STH, SIH, LLL, ULL, HIB, 

ARL, FOL 

2-STH vs. SHW, HIB, ARL 

3-ARL vs. FOL. 

4-HIB vs. ARL, FOL 

5-SIH vs. LLL, ULL, SHW, HIB, ARL, 

FOL 

6-LLL vs. SHW, HIB, ARL, FOL 

7-ULL vs. SHW, HIB, ARL, FOL 

8-SHW vs.  HIB, ARL, FOL 

 

1-WEI vs. SHW 

2-STH vs. SIH, LLL, 

ULL, FOL 

3-ARL vs. HIB 

4-SIH vs. ARL 

5-LLL vs. ULL 

6- ULL vs. ARL 

7-SHW vs. HIB 

1-STH vs. SIH 

 

 

None 

 

As can be seen from Table 3.36, the differences in the correlations between the two 

nationalities show that the Serbian sample has ten correlations between measurements (nine are 

weak significant, one is strong) whereas the Libyan sample has fewer correlated measurements 

(six are weak correlations). 

The crane operators have a different correlation pattern than the passenger car drivers; 

there are fewer correlations among anthropometric measurements in both samples.  

The differences in the correlation relationships between the anthropometric 

measurements of crane operators in the Serbian and Libyan nationalities should be considered 

in interior crane cabins design.  
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The Serbian crane operators have five significant correlations between measurements 

(four are weak significant, and one is strong) which are more than the Libyan crane operators 

have (only three are weak significant) as shown in Table 3.36, whereas all other measurements 

have no significant correlations between each other. The conclusion is that nationality and 

occupation have a significant effect on the association of anthropometric measurements.  

The male samples (male drivers and crane operators) in both nationalities maintain a 

similar correlation pattern as male car drivers (Table 3.36). A conclusion can be derived that 

there are differences in the strength of relationship between human body dimensions between 

males of the nationalities under consideration according to these obtained correlation values. 

In female drivers’ the correlation between measurements shows that standing height 

has a strong significant correlation with sitting height, and weak correlation with lower leg 

length, and upper leg length in the Libyan sample. On the other hand, the Serbian female 

drivers have no significant correlation between these measurements (Table 3.36). Furthermore, 

both samples have a weak correlation between body weight versus shoulder width, while hip 

breadth has a weak correlation in the Serbian sample and a strong correlation in the Libyan 

sample. The correlation relations for all participants (males and females), as illustrated in Table 

3.36, shows that in the Serbian data, as the sample size increases, the number of significant 

correlations among compared measurements increases too, which is not the case in the Libyan 

data. 

The correlation analysis of this survey leads to the conclusion that the anthropometric 

measurements are affected by difference in nationality, which is in line with conclusions in 

Fatollahzadeh (2006).  

 Furthermore, the correlation analysis of anthropometric measurements draws 

attention to Particular considerations in design. For example, anthropometric measurements 

that are not significantly correlated with each other should be considered as independent 

dimensions in design i.e. lower leg length and body weight, lower leg and hip breadth, or 

shoulder width and foot length. One the other hand, measurements that have significant 

correlation with each other should be considered as dependent dimensions in the design 

process, i.e. as standing height increases, sitting height increases too, and as body weight 
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increases, shoulder width and hip breadth increase as well. At the same time, correlation 

analysis demonstrates that there are differences in the relation between anthropometric 

measurements, such as differences in the correlation relation result from differences in gender, 

nationality, and occupation. A conclusion to be drawn here is that nationalities, gender, and 

occupations have a significant effect on the association of anthropometric measurements.  

3.7.2 Discussion of the nationality, gender, and occupation effect on the 

differences between anthropometric measurements 

Further testing has been done in order to discover how the patterns of differences 

between the anthropometric measurements are affected by nationality, gender and occupation, 

when are the measurements not affected by nationality, gender and occupation and what are the 

sources of the effects of nationality, gender and occupation. These inquiries could be answered 

from results given in z tests summarized in Tables 3.37 and 3.38, as discussed below (sections 

3.7.2.1, and 3.7.2.2). 

3.7.3 The nationality effect on anthropometric measurements 

 

Table 3.37 shows the summarized significant difference patterns between the two 

tested anthropometric measurements of different nationality as discussed in the following 

points: 

1-The Serbian and Libyan male drivers’ samples have absolute significant difference in all 

dimensions. The differences in mean values between the two samples (Tables 3.5, and 3.6) is 

3.707 kg for body weight, whereas the other measurements vary from 5.779mm for foot 

length to 73.435mm for arm length as illustrated in Figure 3.14 and Figure 3.15. Excluding 

shoulder width, there is no significant difference between the Serbian and Libyan samples at 

p<0.001 with p-value=0 (Table 3.9), where the difference in mean values of shoulder width is 

0.006mm as illustrated clearly in Figure 3.13. 

2-The crane operators have a strong absolute significant difference in mean values for all 

measurements (Table 3.37)   except hip breadth, which has a weak significant difference in 
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mean with p< 0.05, p-value= 0.0426. From Tables 3.10, and 3.11, the mean difference in 

body weight between the two samples equal 6.216 kg. The rest of the measurements have a 

mean difference that varies from 23.722mm for foot length to 77.19mm for sitting height, 

excluding shoulder width which has no significant difference (p value=0.2517). Such mean 

differences are further illustrated in Figures 3.24 - 3.27.  

3-The Serbian and Libyan males (a sample of male drivers and crane operators), have the 

same pattern of absolute significant difference of the male drivers (Table 3.37). Such 

differences vary from7.39mm for foot length to 71.939mm for arm length (Tables 3.15 and 

3.16). The body weight has a mean difference of 4.167kg, but the shoulder width has no 

significant difference (p value=0.5063). Further illustration can be seen in figures 3.37-3.39. 

4-As addressed in Table 3.37, all Serbian and Libyan participants have the same patterns as 

in point 1, with an absolute significant difference between means at p<0.001, p-value= 0. 

Only body weights have a strong significant difference (p value =0.005, p<0.01), and the 

shoulder width has no significant difference with p value= 0.3132. The mean differences of 

measurements are in the range of 4.94mm (foot length) to 65.356mm (arm length) according 

to Tables 3.25 and 3.26, as well as in Figures 3.69 - 3.71. 

5- Female drivers have an absolute significant difference in all measurements except foot 

length and shoulder width, which have no significant differences (Table 3.37), where p values 

= 0.2105, and 0.0517 respectively, and the hip breadth of Serbian female drivers is smaller 

than Libyan hip breadth with a strong difference with p = 0.01 and p=0.0023. In addition, 

Serbian female drivers have a smaller body weight than Libyan female drivers have with p 

value=0, and p = 0.001. According to Tables 3.20 and 3.21, female driver samples have a 

mean difference in a range from 16.564mm (hip breadth) to 44.609mm (lower leg length), 

and 7.601kg for body weight. An illustration of differences is depicted in Figures 3.50-3.53. 

In conclusion, it is a fact that nationality has an effect on anthropometric 

measurements. In this survey, the dimensions of the Serbian nationality are larger than the 

Libyan, except in shoulder width. These findings support the conclusions of previous studies 

that the nationality affect is recommended for study (Beyden, and Wang, 2009). 

Fatollahzadeh, 2006; Huang, et al., 2010; Locke et al., 2014; and Hsiao et al., 2002 also 

mention that anthropometric dimensions are affected by nationality. 
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Table 3.37 Summarized significant difference in anthropometric measurements between different 

nationalities 

Sampl

e 
= 

no difference 

> 

low 

difference 

>> 

strong difference 

>>> 

absolute difference 

M
al

e 
d
ri

v
er

s 

SHW SMD = SHW LMD None None 

WEI SMD >>> WEI LMD 

STH SMD >>> STH LMD 

SIH SMD   >>> SIH LMD 

LLL SMD   >>> LLL LMD 

ULL SMD >>> ULL LMD 

HIB SMD >>> HIB LMD 

ARL SMD >>> ARL LMD 

FOL SMD >>> FOL LMD 

C
ra

n
e 

o
p
er

at
o
rs

 

SHW SCO = SHW LCO 
HIB SCO 

>HIB LCO 
None 

WEI SCO >>> WEI LCO 

STH SCO >>> STH LCO 

SIH SCO >>> SIH LCO 

LLL SCO >>> LLL LCO 

ULL SCO >>> ULL LCO 

ARL SCO >>>   ARL LCO 

FOL SCO >>> FOL LCO 

M
al

es
 

SHW SM = SHW LM None None 

WEI SM >>> WEI LM 

STH SM >>> STH LM 

SIH SM >>> SIH LM 

LLL SM >>> LLL LM 

ULL SM >>> ULL LM 

HIB SM >>> HIB LM 

ARL SM >>>   ARL LM 

FOL SM >>> FOL LM 

A
ll

 p
ar

ti
ci

p
an

t 

SHW SR = SHW LI None 
WEI SR >> WEI LI 

 

STH SR >>> STH LI 

SIH SR >>> SIH LI 

LLL SR >>>   LLL LI 

ULL SR >>> ULL LI 

HIB SR >>> HIB LI 

ARL SR >>>   ARL LI 

FOL SR >>> FOL LI 

F
em

al
e 

d
ri

v
er

s 

SHW SFD =SHW LFD 

FOL SFD = FOL LFD 

 
None 

HIB SFD << HIB 

LFD 

WEI SFD<<< WEI LFD 

STH SFD >>> STH LFD 

SIH SFD >>> SIH LFD 

LLL SFD >>> LLL LFD 

ULL SFD >>> ULL LFD 

ARL SFD>>>   ARL LFD 
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3.7.3.1 The gender and occupation effect on anthropometric measurements 

Table 3.38 summarized results of the significant differences of anthropometric 

measurements based on gender and occupation, the pattern of the differences between the 

tested samples that have a different behavior from the nationality effect, as discussed below. 

1-The effect of occupation on the anthropometric measurements can be seen from the 

tested samples of male drivers and crane operators from Table 3.38. Among the Serbian 

male drivers and Serbian crane operators’ samples, only standing height, upper leg 

length, and foot length have absolute significant differences with a difference mean 

varying from 15.81mm for foot length to 43.067mm for standing height (Tables 3.5, 

and 3.10). All other measurements have no significant difference, i.e. sitting height, 

lower leg length, shoulder width, hip breadth, and arm length. The Libyan male drivers 

and Libyan crane operators have greater differences between measurements as 

compared to the Serbian male drivers and crane operators’ sample. Only three 

measurements (lower leg, arm length, and foot length) have no significant differences. 

The other six measurements, three of them namely, body weight, shoulder width, and 

hip breadth have low significant differences. The other three (standing height, sitting 

height, and upper leg) have absolute differences (Table 3.38). Such differences between 

the two samples can be clearly seen from the mean difference range which is 16.38mm 

(hip breadth) to 48.177mm (standing height), while the body weight mean difference is 

4.21kg, according to Tables 3.6, and 3.11.  

2- The effect of gender on the anthropometric measurements can be seen from the 

tested samples of male and female drivers (as summarized in table 3.38). Both samples 

have absolute significant differences in all anthropometric measurements. From Tables 

3.5 and 3.20 the mean difference between these measurements in the Serbian samples 

vary in range from 21.06mm (hip breadth) to 116.88mm (standing height), while body 

weight has a mean difference of 21.078kg. The Libyan male drivers and female drivers 

have mean differences (Tables 3.6, and 3.21) that vary in range from 15.653mm (arm 

length) to 85.737mm (standing height).  
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Table 3.38 The summarized significant differences between anthropometric measurements different in 

gender and occupation 

Sample 
= 

no difference 

> 

low difference 

>> 

strong difference 

>>> 

absolute difference 

D
if

fe
re

n
t 
o
cc

u
p
at

io
n
 

WEI SMD = WEI SCO 

SIH SMD = SIH SCO 

LLL SMD = LLL SCO 

SHW SMD = SHW SCO 

HIB SMD = HIB SCO 

ARL SMD = ARL SCO 

 

None None 

STH SMD >>> STH SCO 

ULL SMD >>> ULL SCO 

FOL SMD <<< FOL SCO 

LLL LMD = LLL LCO 

ARL LMD = ARL LCO 

FOL LMD = FOL LCO 

WEI LMD > WEI LCO 

SHW LMD < SHW LCO 

HIB LMD < HIB LCO 
None 

STH LMD >>> STH LCO 

SIH LMD >>> SIH LCO 

ULL LMD >>> ULL LCO 

 

D
if

fe
re

n
t 
g
en

d
er

 None None None 

WEI SMD >>> WEI SFD 

STH SMD >>> STH SFD 

SIH SMD >>> SIH SFD 

LLL SMD >>> LLL SFD 

ULL SMD >>> ULL SFD 

SHW SMD >>> SHW SFD 

HIB SMD >>>HIB SFD 

ARL SMD >>> ARL SFD 

FOL SMD >>> FOL SFD 

None ARL LMD > ARL LFD 

SIH LMD >> SIH LF 

ULL LMD >> ULL 

LFD 

WEI LMD >>> WEI LFD 

STH LMD >>> STH LFD 

LLL LMD >>> LLL LFD 

SHW LMD >>> SHW LFD 

HIB LMD <<<HIB LFD 

FOL LMD >>> FOL LF 

 

 

From the results and discussion of this section, the following can be concluded: 

1-The effect of nationality on the anthropometric measurements has more significant 

differences and stronger influence than do occupation and gender. 

2-The occupation for the same nationality has fewer differences in measurements i.e. 

Serbian male drivers and Serbian crane operators, while for the Libyan population it is the 

reverse. 

3- Gender has an absolute effect on measurements when considered within the same 

occupation (absolute differences). 
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4- There is no steady pattern for the occupation effect; rather it differs from sample to 

another. In contrast, the nationality effect does present a steady pattern (i.e. shoulder width 

has no significant difference in all tested samples that are based on nationality). 

5- The hip breadth and body weight of females have different patterns from all male 

samples, which again indicates the gender effect. 
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4 MULTIVARIATE MODEL FOR VEHICLES` AND MACHINES` 

INTERIOR SPACE ANTHROPOMETRIC DESIGN 

4.1 Preface 

It is expected that the multivariate modeling application has the potential to solve 

problems recognized in the use of univariate methods, and accordingly, the aim here is to 

enable modeling in which there is proper fitting when several dimensions are in focus, which 

could result in coverage of more than 90% of the population. Also, there is a need to propose a 

method that will connect the multivariate modeling approach with interior space modeling 

based on biomechanics. 

Those aims are going to be fulfilled in a manner which will prove the basic hypothesis: 

H02 –By using multivariate statistics on the data of Serbian and Libyan drivers, as well as 

crane operators, it is possible to establish a sufficiently precise, original model for 

anthropometric design of the interior space of vehicles and machines.  

And the auxiliary hypothesis that says: 

H1 - Using an integral multivariate model for anthropometric adaptation, it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy. 

H2 - Anthropometric measurements have mechanical and mathematical functions that 

determine all three dimensions of the space, taking into account over 90% of the population. 

H3 - On the basis of a multivariate model for anthropometric adaptation, it is possible to give 

recommendations for dimensioning the interior of the crane cabin in such a way that 

comfortable and safe accommodation of the users is ensured. 

H4 - On the basis of a multivariate model for anthropometric adaptation it is possible to 

determine the dimensions of the minimum required space for a driver in a passenger vehicle in 

such a manner that the driver has comfortable and safe accommodation. 
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4.2 Crane cabin and passenger vehicle interior modeling 

4.2.1 The need for crane cabin interior modeling 

The defined hypotheses are going to be tested in the context of the crane cabin and 

passenger vehicle interior space modeling. Those working spaces have been chosen due to the 

following facts. 

Cranes are an extremely important component in many different operations such as 

construction, heavy industry, the process industry, the maritime industry, the railroad industry 

and within associated maintenance activities (Milazzo et al., 2016; Milazzo et al., 2015; Fang et 

al., 2016; Sanfilippo et al., 2015; and Dotoli et al., 2017). Cranes contribute significantly to 

effective job advancement when properly managed, but also have the potential to cause huge 

life and property losses, with the need to emphasize that the risk of loss is not limited to cranes 

alone (Raviv, et al., 2017). Occupational fatalities and injuries caused by the operation of cranes 

pose a serious public problem (Aneziris et al., 2008). Some estimates suggest that cranes are 

involved in up to one-third of all construction and maintenance fatalities (Neitzel et al., 2001). 

A tipped, dropped, or mishandled load can lead to lethal injuries, non-lethal permanent injuries 

and recoverable injuries (Aneziris et al., 2008). The risk of loss is not limited only to those 

directly involved in construction operations, but may also affect pedestrians, who have been 

killed in such accidents as well (Neitzel et al.,2001). Obviously, these kinds of accidents also 

have immense cost implications (Lee et al., 2006). Worldwide accident records over the last 5 

years show that under existing regulation regarding crane safety, the rates of injuries/illness can 

be considered constant, while poor human performance can be seen as an influential factor with 

a growing trend (Milazzo et al., 2016). In addition, the design that provides comfort, a proper 

ergonomic interface with the controls and a clear visibility field for the crane operator is needed 

in crane cabins today, too (Milazzo, et al., 2016; and Tam and Fung, 2011). Mobile cranes are 

the type of cranes with the highest accident rates (Milazzo et al., 2016).  The part of the world 

where the most accidents take place is North America (Milazzo, et al., 2016). Crane operators 

remain in cabins for the whole day (Fung, et al., 2016; and Bongers, et al., 1988), while tight 

schedules usually hinder the implementation of site safety (Fung et al., 2016). Construction 
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sites have special safety regulations established by a large number of bodies (Chandler and 

Delgado, 2001).  

Many procedures in the development process of crane cabins are still based on the 

specific experience of the manufacturers and historical guidelines that are often arbitrary and 

subjective, hence the need for more objective, theoretically justified and consistent models. 

With the aim for the design of safe and ergonomically adjusted crane cabins, up-to-date 

anthropometric information of the crane operator population is needed. Contemporary 

anthropometric characteristics (including variation in anthropometric measurements, gender, 

and operator fitness) and the orientation and layout of the cabinet should be considered as 

contributing factors in designing a crane cabin of high quality in order to ensure the safety and 

comfort of the operator and his environment (Spasojević, Brkic, et al., 2014b). 

While conducting a survey of tower cranes’ cabins it was found that the working 

environment in a crane cabin was inconvenient and caused fatigue due to insufficient air 

conditioning. Only 21.2% of participants were satisfied with the working conditions. Cabin 

space was uncomfortable for 36.8% of the participants, and together with long working hours 

(9-10 hours/day) such factors lead to unsafe crane operations (Tam, and Fung, 2011). 

Unpleasant body postures during the operation of heavy construction equipment, such 

as cranes, are due to the improper design of the cabin and to not enough adaptation to the 

prescribed work procedures. The poor visibility of the task that the operator of the cabin must 

do, the limited space in the cabin for carrying out work movements and other necessary 

activities, the need to use too much force to move levers, pedals, and other command 

instruments, as well as inadequate seat design, are some of the characteristics of poorly 

designed cabins. Unless controlled, the improper holding of any part of the body can lead to an 

increased risk of premature fatigue, pain, or injury. Exposure to discomfort, performance of 

repetitive movements in a noncompliant working position and overtime are factors that can lead 

to miscellaneous musculoskeletal disorders of the operator in the cabin. 

Several very important factors depend on the compatibility of the anthropometric 

characteristics of the operator with the dimensions of the crane cabin, as well as the dimensions 

and position of the equipment in the cabin. These factors can be divided into three basic 
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categories. The first category includes factors related to the effects that the anthropometric 

mismatch of the cabin (with the equipment in it) has on the operator. The second category 

includes factors related to the effects that the anthropometric mismatch of the cabin has on the 

performance and financial losses of the company. The third category includes factors related to 

the effects that the anthropometric mismatch of the cabin has on safety.  

In relation to the first factor, it should be pointed out that from an anthropometric 

point of view the inadequately designed cabin has a great influence on the comfort, health and 

working ability of the operator. If the equipment is not adapted to the body dimensions of the 

operator, comfort will be reduced. As a result, an operator often takes up positions that are not 

suitable for long-term work. Unsuitable work positions that are incompatible with ergonomic 

and biomechanical recommendations and principles, in addition to the development of pain in 

certain parts of the body, can lead to the occurrence of occupational diseases over an extended 

period of time. Degenerative changes on the spinal column are one example of the 

anthropometric mismatch in the health of the operators, which is manifested through the 

reduction of their working ability. 

In relation to the second factor, it should be noted that there are several ways in which 

the anthropometric mismatch of the cabin can lead to a reduction in performance. However, 

they are all related to extending the time needed to perform the task. If the equipment in the 

cabin is not adapted to the operator, the worker is forced to spend most of his working hours in 

a noncompliant working position, which often limits the unintentional performance of work 

movements. Due to the existence of such limiting factors, the worker works slower. In addition, 

as a result of the existence of an uncomfortable working position, the operator is forced to take 

more frequent breaks. Due to prolonged work in inadequate working conditions, workers 

experience health problems over time, which, according to a certain dynamic, lead to the 

absence of workers from work. In addition to the fact that employers allocate significant 

financial resources for the treatment of workers due to the occurrence of occupational diseases, 

employers are often unable to find an adequate replacement for the sick worker in time, which 

can affect the completion of the work on schedule. All this results in a slower process than 

planned, which further results in a decrease in profit due to reduced performance.  
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Regarding the third factor, it should be pointed out that the precision of execution of 

the work assignment is directly related to the anthropometric conformity of the cabin and the 

equipment in it. The inadequate formation of the command instruments, the inadequate 

dimensions of control devices, an inadequate cabin layout, and the incompatibility of the force 

required to activate command instruments with the anthropometric characteristics of the 

operator can have an impact on the accuracy of the execution of the task. The accuracy of work 

execution is also greatly influenced by visibility from the cabin. Inadequate construction of the 

cabin, which is not in line with the anthropometric characteristics of the operator, can lead to 

reduced visibility, which can be reflected in the precision of the execution of the work task. 

However, inaccurate execution of a work assignment can also jeopardize the safety of the 

cargo, as well as the people within the scope of the transported load. As a consequence of 

imprecise execution of a work assignment, the load may miss the target, hit another object, 

disconnect, or fall on other workers or passers-by. In the case of a high-risk load, such as 

hazardous substances, the consequences can be both far-reaching and long-lasting. Operator 

safety can also be compromised if the access to the cabin (stairs and other elements) is not 

designed in accordance with the anthropometric characteristics of the operator. 

A possible explanation for the improper crane cabin adequacy for the operator may be 

found in the fact that today’s available standards and manufacturers rely on the anthropometric 

data of the general population (Zunjic et al., 2015). Zunjic et al. (2015) tested the hypothesis of 

whether the dimensions of the cabin and the layout of equipment would rely on the data derived 

from the general population of Serbian citizens (using the largest known sample of the 

published data) instead of from the population of crane operators and confirmed that on the 

level of significance of 0.05, more than 50% anthropometric dimensions showed disagreement. 

Zunjic et al. (2015) provided qualitative advice to use transparent material in the design of the 

floor, ceiling and the lateral parts of the cabin and to remove all accompanying elements of 

construction from the visual field of the operator but did not define the interior space 

dimensions that enable anthropometric convenience. 

Another reason probably lies in the inconvenience of the applied univariate percentiles 

method. Multivariate anthropometric models have not been used to design crane cabin interior 
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space so far. It is expected that a contribution in this area could benefit the design of future 

crane cabins which, in turn, would help promote the safety and health of the crane operators. 

Hence, the first aim herein is to model the crane cabin interior space using up-to-date crane 

operator anthropometric data collected on two different nationalities and to compare the 

multivariate and univariate method for anthropometric models. The second aim is to define the 

dimensions of the interior space of the crane cabin that enable anthropometric convenience. 

Thus, in order to achieve these aims, the focus is on the following objectives: 

1 – The application of multivariate and univariate (percentiles) statistics on the 

anthropometric dimensions of crane operators with data collected for both Serbian and 

Libyan crane operators. 

2 - Crane operators’ multivariate models accommodation in the interior crane cabin 

space on the basis of kinematics mechanism. 

3 - The 5th and 95th percentile crane operators’ models accommodation in the interior 

crane cabin space. 

4 - Suggesting recommendations for improving performance and safety through the 

new crane cabin interior design. Accordingly, the ultimate goal herein is to solve the 

problems found in contemporary crane cabin designs and to practically eliminate the 

gap between the theoretical and actual productivity of the crane caused by the 

operator’s stress and visibility problems, which often result in high injury and fatality 

rates. 

4.2.2 Need for passenger vehicle interior modeling 

Vehicle interior space modeling includes human interactions with the interior space, 

aspects of seat comfort, location of visual displays, pedal controls, reaches etc. All those aspects 

should be considered in the ergonomic design of vehicle interiors, in order to achieve 

satisfactory driving tasks in terms of safety, driver feedback, and driving tasks execution in a 

comfortable manner.  
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Numerous studies have researched those aspects in order to improve driving task 

performance through ergonomic design. In this context, Andreoni et al. (2002) has stated that 

ergonomic details and approach used in determining and evaluating the interface between the 

driver and the car is essential, in order to ensure high visibility with easy reach of all controls 

and displays, and it is evident that real progress could be achieved in interior vehicle modelling, 

resulting in enhanced safety, comfort and performance.  

On the other hand, the updated anthropometric measurements usage is vital in design 

to overcome the variation in human anthropometrical characteristics that take place over time 

(Spasojević et al., 2014a; Fatollahzadeh, 2006; and Guan et al., 2012). Existing research that 

uses PCA presents a shortcoming in that they do not execute the calculation of extreme data 

(Epifanio et al., 2013). There are also no available interior space designs offered in the available 

research. Chung and Park (2004) have noted that there are problems in current occupant vehicle 

interfaces which result in non-updated use of physical dimensions in SAE J826 (SAE 1995a), 

because they are based on the 1960-1962 human examination survey by the U.S. Public Health 

service (Stoudt et al.,1965). Thompson (1995) enhanced this concept and pointed to errors 

stemming from the adoption of the SAE standard models in designing interior drive space. 

Multivariate anthropometric models have not been used to design passenger vehicle 

interior space so far, so it is expected that a contribution in this area could benefit the design of 

future passenger vehicles, which, in turn, would help promote safety and health in traffic, but 

will also help professional drivers enhance performances of the companies where they work. 

Hence, the first aim herein is to model the passenger vehicle interior space using up-to-date 

drivers’ anthropometric data and to compare the methods of the multivariate and univariate 

anthropometric models. The second aim is to define the passenger vehicle interior space 

dimensions that enable drivers’ anthropometric convenience. Thus, in order to achieve these 

aims, the focus is on the following objectives: 

1 – The application of multivariate and univariate (percentiles) statistics on 

anthropometric dimensions of both Serbian and Libyan drivers. 

2 - Drivers’ multivariate models accommodation in the interior passenger vehicle space 

on the basis of a kinematics mechanism. 
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3 - The 5th and 95th percentile drivers’ models accommodation in the interior space of 

the passenger vehicle interior. 

4 - Suggesting recommendations for improving performance and safety through new 

passenger vehicle interior design. Accordingly, the ultimate goal herein is to solve the 

problems found in contemporary passenger vehicles and to lower traffic injuries and 

fatality rates. 

4.3 Data collection procedures 

4.3.1 Crane operators’ data collection procedure 

In the present survey, all Serbian operators were recruited and measured using 

standard anthropometric instruments. The Electric Power Industry of Serbia has 6 production 

companies, located throughout Serbia. All of them agreed to participate in the survey. The 

number of participants that agreed to participate at each power plant is shown in Table 4.1, and 

anthropometric measurements were taken through an iterative sampling procedure. Iterative 

sampling is recommended as a procedure by Manjrekar (2010) since it has been shown that 

when building the sample size through iterations, a smaller sample size is needed.  

Table 4.1 Number of Serbian participants from each production plant 

Power plant 1 2 3 4 5 6 Total 

Number of 

Participants 
15 12 14 10 13 19 83 

 

Since anthropometric variables that are significantly related to fit or accommodate the 

particular environment should be evaluated (Bovenzi et al., 2002), foot length, standing height, 

sitting height, lower leg length, upper leg length, shoulder width, hip breadth and arm length 

were measured herein using standard anthropometric instruments and procedure. The static 

anthropometric method which implies measuring in the erect position during standing and 

sitting was used (so that the torso is at a 90° angle with the upper leg, and the upper leg at a 90° 

angle with the lower leg). The instruments used included a beam caliper, sliding calipers, a 

stool and a steel tape, similarly to the procedure used in previous studies (Zunjic et al., 2015; 
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Kushwaha and Kane, 2016; Ray and Tewari, 2012; Nordin and Olson 2008; da Silva, 2014; 

Spasojević et al., 2016; Hsiao, 2012; Klarin et al., 2011). All dimensions were determined with 

working clothes and footwear, similarly to previous studies (Zunjic et al., 2015; Klarin et al., 

2011), with the aim to find an interior space for accommodation in which operators work with 

personal protective equipment. The summarized statistics for 83 Serbian crane operators’ 

dimensions, together with the participants’ demographics and the values of the mean, standard 

deviation, maximum and minimum are given in Table 4.2. 

Table 4.2 Summarized statistics for 83 crane operators in Serbia (all measurements in mm) 

Participant 

demographics 

 

Gender: 83 male participants, Age: mean 48.48 years, Standard 

deviation 10.07 years 

Anthropometric 

Dimensions 
N Min. Max. Mean SD 

FOL 83 259 321 297.42 12.524 

STH 83 1630 1937 1768.19 68.210 

SIH 83 750 1020 907.31 56.749 

LLL 83 490 770 587.17 40.176 

ULL 83 520 710 618.23 36.350 

SHW 83 380 580 478.35 48.520 

HIB 83 300 590 401.31 58.629 

ARL 83 495 800 704.55 50.892 

The data given in Table 4.2 are comparable to the data available from previous 

studies. Our mean and standard deviation values for standing height are 1768.19 and 68.21 mm, 

while Burdorf et al. (2004) obtained 1765 and 74 mm on the data from the Netherlands, and 

Bovenzi et al. (2002) arrived at the values 1780 and 68 mm on the data from Italy. Ray and 

Tewari, (2012) did not provide mean values, but they did state that for the control position of 

the longitudinal travel, main hoist, and auxiliary hoist, the 50th percentile Indian user had a 45 

mm of misfit. 

A sample of Libyan crane operators was taken in similar manner from a Libyan iron 

and steel company where a very large number of cranes operate. Crane lifting is a vital task in 

the production units of the company. Crane operators spent 8 hours of work in each shift in 

overhead cranes with high capacity, handling steel products and supporting maintenance work 

that require a high level of accuracy from the operator. Fifty crane operators agreed to 
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participate in this survey. In order to study and model the crane cabin for the Libyan 

population, which has not yet been studied according to the surveyed literature, Table 4.3 

shows the demographics and summarized statistics of the sample. 

Table 4.3 Descriptive statistics of Libyan crane operator participants (all measurements in mm) 

Participant 

demographics 

 

Gender: 50 male participants, Age: mean 42.36 years, 

Standard deviation 7.91 years 
Anthropometric 

Dimensions 
N Min. Max. Mean SD 

FOL 50 255 295 273.7 9.25 

STH 50 1830 1570 1701.4 58.55 

SIH 50 700 900 829.4 47.83 

LLL 50 460 600 534.6 36.55 

ULL 50 500 630 559 32.78 

SHW 50 410 620 489 53.92 

HIB 50 300 490 382 49.65 

ARL 50 450 800 642.4 82.05 

 

4.3.2 Passenger vehicle drivers’ data collection procedure 

The data about passenger vehicle drivers are collected in a similar manner as 

previously. All participants, of both nationalities and genders, who had drivers licenses and 

were interested in participating, taking into account iterative sampling, are included , 

descriptive statistics of anthropometric measuesments as given in table 4.4, and 4.5. The 

average age of Serbian participants is 42.72 years with a standard deviation of 12.84. For 

Libyan participants, the average age is 34.68 with a standard deviation of 11.13.  

Table 4.4 Descriptive statistics for 1197 Serbian participants (all measurements in mm) 

Dimension N Min. Max. Mean SD 

FOL 1197 225 321 277.58 18.013 

STH 1197 1520 1995 1789.43 84.078 

SIH 1197 560 1020 908.29 50.969 

LLL 1197 370 770 587.33 38.476 

ULL 1197 384 800 627.95 48.519 

SHW 1197 358 630 462.37 50.106 

HIB 1197 290 590 388.41 45.522 

ARL 1197 410 830 697.60 50.757 
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Table 4.5 Summarized statistics for 400 Libyan participants (all measurements in mm) 

Dimension N Min. Max. Mean SD 

FOL 400 230 300 272.64 12.374 

STH 400 1510 1900 1732.79 68.492 

SIH 400 670 970 848.34 50.198 

LLL 400 450 670 538.21 36.950 

ULL 400 490 720 577.68 38.223 

SHW 400 340 640 464.99 51.083 

HIB 400 230 570 370.29 55.847 

ARL 400 450 800 632.265 70.345 

 

4.4 Multivariate Modeling Approach 

The procedure of multivariate modeling includes the Principal Components Analysis 

(PCA) used as one of the phases to obtain representative body models. PCA is essentially  

a rotation of the coordinate axes, chosen in such a way that each successful axis captures as 

much variance as possible and can be thought of as fitting an n-dimensional ellipsoid to the data 

(Abdi et al., 2010). After determining the principal components of the collected anthropometric 

data, the component scores are calculated and later transformed to the anthropometric 

measurement dimensions of the representative body models on the boundaries or on the surface 

of the ellipsoid by a reverse process of calculating matrices of eigenvalues, eigenvectors and 

factor loadings. If each variable load on only one factor simultaneously and there is a clear 

difference in intensity between the relevant factors whose eigenvalues are clearly larger than 

one, while the noise represented by factors with eigenvalues is clearly smaller than one, then 

further rotation is likely to provide a solution that is more reliable than the initial solution. 

Otherwise, there is no need to implement PCA because the rotation would make the solution 

less replicable and potentially harder to interpret since the mathematical properties of PCA 

have been lost (Abdi et al., 2010, and Babamoradi, 2013). A few statistical software packages, 

such as SPSS-IBM, Statistica-StatSoft etc., offer the possibility for PCA procedure execution.  
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An analysis of the main components often reveals relationships that were not obvious 

and thus enables interpretation of data that would otherwise not have occurred (Johnson et al., 

2002). 

If there is a vector x that represents p random variables, the first step is to find the 

linear function x-a: α'1x, which contains the maximum variance, where α1 is the vector of p 

constant α11, α12,...α1p, a 'denotes the transposition, so that: 

α'1x j

p

j

jpp xxxx 



1

11212111 ...           (1) 

Furthermore, the linear function α'2x is required, which is not correlated with α'1x, and 

so on until α'kx represents the k-th main component. There can be up to p major components, 

but the idea is that most of the total variance contained in x is explained by m main 

components, where m ˂˂p, and thus a large number of p variables can be replaced by one, two 

or three main components, without much information being lost (Jolliffe, 1986). 

In practice, the main components are defined as: 

 z = A’ x*                (2) 

Where A, in this case, has columns consisting of the own correlation matrix S vectors, 

and x * consists of standardized values. The purpose of adopting this approach is to find the 

main components of the standardized version of x, where this standardized version, labeled 

with x * has the j-th element xj/σjj
1/2, j=1, 2,….p, xjj is the j-th element of x, and σjj represents 

the variation of x. Then the covariance matrix for x* is actually a correlation matrix for x, and 

the main components of x* are given by the equation (2). 

A significant reason for using the correlation matrix instead of the covariance to 

define the main components is that the results of the analysis for different random variables can 

be directly compared. This is a consequence of the fact that data standardization results in 

measurement results on different measuring scales, different measuring units to a common 

metric space that is independent of any measuring unit and any measuring scale. When using 

covariates, the used data is not standardized, and if there are large differences between their 

variations then the variables with the highest variance will dominate in the first few main 
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components, leading to incorrect conclusions whenever the variables are measured in different 

measuring units, and yet this is the most common practice. There are several other important 

reasons why it is better to use the matrix of correlations, although there are also several cases in 

which the matrix of covariates yields better results, (for details see Jolliffe, 1986). In any case, 

in practice, the use of PCA with a correlation matrix is the most commonly encountered. 

One important feature of the main components obtained from the correlation matrix is 

that if instead of normalization α'k αk=1, one uses: 

                 α̃'k α̃k
   = λk

1/2                    (3) 

Then α̃kj, the j-th element of α̃k, represents the correlation between the j-th standardized variable 

x*
j and the k-th main component. This is valid considering that for k=1.2...p is valid: 

 α̃k = λk
1/2 αk,       var(zk) = λk,  (4) 

And the p dimensional vector ∑αk has a covariance between x*
j and zk for its j-th element. But 

since ∑αk= λk αk, the covariance between x*
j and zk is λk αkj. Also var(x*

j) =1, and hence the 

correlation between x*
j and zk given by: 

  kj

/

k/

k

*

j

jkk

)]zvar()x[var(



21

21
 α̃kj         (5), 

from where it started. 

 Due to this feature, normalization (4) is often used in practice. 

There are three criteria on how to decide the number of the extracted factors (the main 

components), which are: the a priori criteria based on the researcher who already knows how 

many factors are to be retained, the percentage of variance criterion which is based on a certain 

cumulative percentage of variance (at least 60%), and the latent root criterion or scree test (Hair 

et al., 2006). The scree test is performed by plotting latent roots (own values) in relation to the 

number of factors in their order of extraction, and the form of the resulting curve is used to 

evaluate the breakpoint (limit value). The point at which the curve first begins to straighten is 

considered to indicate the maximum number of extraction factors (Gordon et al., 1997). So, the 

place where the line changes direction is changing and the components that will be included in 

the analysis are counted to that point. 
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In the case of retaining three or more PCs, an ellipsoid or hyper-ellipsoid is required. 

Moreover, for the purpose of accommodating the desired percentage of the population, a 

tolerance ellipsoid rather than prediction is required (Chew, 1966). In this study we used a 

tolerance factor as provided by Krishnamoorthy and Mondal (2006). The obtained ellipsoid 

contains critical models. There are 14 points on the surface of the ellipsoid, 6 of them on the 

intersection of the axes and ellipsoid, and the remaining 8 at the centers of the octants, as given 

in Figure 4.1 (Essdai et al., 2018) 

 

Figure 4.1 The points representing critical models of the 95% enclosure ellipsoid (Omic et al., 2017, 

Essdai et al., 2018) 

The factor coordinates of the 14 critical models from the accommodation ellipse are 

transformed back into anthropometric dimensions by multiplying the matrix of factor scores 

with the inverse eigenvector matrix. Also, the anthropometric measures for those 14 models are 

obtained afterwards by multiplying the standardized values by the standard deviations and 

adding the total to the mean of the appropriate dimension, using the equation: 

1

cm cmZ PC U  
   (6) 



CHAPTER 4 

 

106 
 

Where Zcm is the matrix of standardized anthropometric measures for 14 critical 

models, PCcm is the matrix of factor scores for 14 critical models and U-1 is the inverse matrix 

of eigenvectors.  

On the other hand, percentiles distribute the results to 100 parts, i.e. each part contains 

1% distribution results. Univariate, 5th and 95th percentile models will also be obtained and 

compared to the multivariate results. In the end, both multivariate and univariate models will be 

used to determine the dimensions of the interior space necessary to accommodate all of them in 

an ergonomically designed interior space. 

4.3.3 The multivariate anthropometric models of Serbian crane operators 

The matrices of correlation, eigenvalues, eigenvectors and factor loadings obtained 

through the Principal Component Analysis are as follows in Tables 4.6, 4.7, 4.8 and 4.9 

respectively, while Figure 4.2 illustrates the scree plot of active variables. The decision to use 

the first three principal components (PCs) to define body models is made on the basis of the 

scree test, PC1, PC2 and PC3, which are orthogonal to one another and were found to account 

for 77.75% of the total variance. Choosing a cut-off total variance somewhere between 70% 

and 90% and retaining m PCs provides a rule which in practice preserves most of the 

information in the first m PCs (Jolliffe, and Cadima, 2016).  

Table 4.6 Correlation matrix of Serbian crane operators’ anthropometric measurements 

Dimension 
FOL STH SIH LLL ULL SHW HIB ARL 

FOL 1.0000 0.0489 -0.0051 0.0469 0.0788 -0.1219 -0.0208 -0.0838 

STH 0.0489 1.0000 0.7524 0.4302 0.3395 0.1878 0.0254 0.6140 

SIH -0.0051 0.7524 1.0000 0.3135 0.2651 0.0865 -0.2072 0.6422 

LLL 0.0469 0.4302 0.3135 1.0000 0.4874 0.4481 0.4235 0.5696 

ULL 0.0788 0.3395 0.2651 0.4874 1.0000 0.4504 0.3856 0.4121 

SHW -0.1219 0.1878 0.0865 0.4481 0.4504 1.0000 0.7603 0.3407 

HIB -0.0208 0.0254 -0.2072 0.4235 0.3856 0.7603 1.0000 0.0446 

ARL -0.0838 0.6140 0.6422 0.5696 0.4121 0.3407 0.0446 1.0000 
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Table 4.7 Eigenvalues of the correlation matrix of Serbian crane operators 

PCs Eigenvalue % Total 
Cumulative 

eigenvalue 

Cumulative 

variance 

1 3.2849 41.0609 3.2849 41.0609 

2 1.8826 23.5320 5.1674 64.5929 

3 1.0525 13.1567 6.2200 77.7496 

4 0.5496 6.8699 6.7696 84.6195 

5 0.5155 6.4434 7.2850 91.0629 

6 0.3622 4.5275 7.6472 95.5905 

7 0.2159 2.6992 7.8632 98.2896 

8 0.1368 1.7104 8.0000 100.0000 

Table 4.8 Eigenvector of the correlation matrix of Serbian crane operators 

Dimension Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL 0.00739 0.05001 0.95239 0.20136 0.02376 0.22189 0.00086 0.00747 

STH -0.40443 0.34635 0.03040 0.28688 0.28102 -0.49649 0.48441 0.27041 

SIH -0.35229 0.47659 -0.06165 0.13744 0.27933 0.02782 -0.66484 -0.32443 

LLL -0.43078 -0.10897 0.10270 -0.00057 -0.75994 -0.32486 -0.27869 0.17689 

ULL -0.38318 -0.15886 0.19704 -0.83232 0.30026 -0.07476 0.01109 0.02205 

SHW -0.35389 -0.44721 -0.13895 0.29044 0.27429 0.39837 -0.19510 0.54690 

HIB -0.24349 -0.59816 0.02690 0.28273 0.12718 -0.22130 0.11783 -0.65056 

ARL -0.44198 0.23558 -0.13723 -0.03486 -0.28872 0.62024 0.43999 -0.25974 

 

Table 4.9 Factor loadings based on correlation for Serbian crane operators 

Dimension Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL 0.01340 0.06862 0.97709 0.14928 0.01706 0.13354 0.00040 0.00276 

STH -0.73301 0.47522 0.03119 0.21268 0.20176 -0.29881 0.22510 0.10003 

SIH -0.63849 0.65391 -0.06325 0.10189 0.20055 0.01674 -0.30894 -0.12001 

LLL -0.78075 -0.14952 0.10536 -0.00042 -0.54561 -0.19551 -0.12950 0.06543 

ULL -0.69448 -0.21796 0.20215 -0.61704 0.21558 -0.04500 0.00515 0.00816 

SHW -0.61361 -0.64140 -0.14255 0.21532 0.19693 0.23975 -0.09066 0.20230 

HIB -0.44131 -0.82071 0.02760 0.20960 0.09131 -0.13318 0.05475 -0.24065 

ARL -0.80106 0.32323 -0.14079 -0.02584 -0.20729 0.37328 0.20446 -0.09608 
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Figure 4.2 Scree plot of Serbian crane operators 

The desired level of sample inclusion was set to 95% (95% tolerance ellipsoid) and 

was accomplished by fitting an ellipsoid in a three-dimensional space (Essdai et al., 2018; and 

Omic et al., 2017). 

In many practical engineering cases, tolerances are needed to fit data or product 

specifications in intervals or regions (Krishnomoorthy and Mondal, 2006). Chew (1966) 

distinguished between formulas for confidence, prediction and tolerance regions for the 

multivariate normal distribution and pointed out that tolerance has to be used when there is an 

aim to contain a specified percentage of the population. In this study, the anthropometric data 

should accommodate 95% of target population. For such cases, Krishnomoorthy and Mondal, 

(2006) developed a way, 40 years later, to calculate the tolerance factor for multivariate normal 

distribution in terms of the sample size and tolerance level and enabled the execution of one of 

Chew’s dissertation ideas (Chew, 1966). Through that, the semi axes of the ellipsoid could be 

derived in terms of the eigenvalues of the selected components. Whereas the semi axes of the 

ellipsoid are gained by multiplying the square root of the eigenvalues of the selected 

components by the square root of the c value, as in Table 4.10, the tolerance factor (c=9.92) for 

n=83 is calculated by interpolation (Krishnomoorthly and Mondal, 2006) for n between 80 and 

90. 
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Table 4.10 Semi-axes of the ellipsoid for Serbian crane operators 

Components 
Eigenvalue 

)(  
  

Tolerance 

factor (c) 
c  

Semi-axes of 

ellipsoid ( c ) 

PC1 3.284874 1.812422 9.92 3.149603 5.77778 

PC2 1.882556 1.372063 9.92 3.149603 5.215558 

PC3 1.052538 1.025933 9.92 3.149603 3.248198 

 

The next step is to determine the critical models on the surface of the ellipsoid, where 

the 5th and 95th percentile are also included, to check if they within the boundary space. There 

were 14 points from PCA on the ellipsoid surface representing the diverse body size and shape 

combinations (Figure 4.1). Six of them are intercepts on the ellipsoid surface by the three axes 

(points U, V, W, X, Y, and Z), while eight octant midpoints were obtained by cutoff of the 

ellipsoid into octants using CATIA software. The axes of the midpoint on the surface of the 

octant can be found by finding the inertia of the surface and extruded to the surface of the 

octant and then measure the axes (x, y, z), which are in this case 3.075, 2.46 and 1.996. There 

are eight sections (octants) divided by the three axes of this ellipsoid (points A, B, C, D, E, F, 

G, and H) (Spasojević Brkic et al., 2016, and Essdai et al., 2018). These 14 points, together 

with the centroid of the ellipsoid (point O), form the basis for the selection of the 

anthropometric models. 

Table 4.11 addresses the PCA application output. It consists of three PCs that were 

preserved according to the criterion that their eigenvalues should be greater than 1 (Hsiao, 

2012, Jolliffe and Cadima, 2016; and Bittner, 2000), which implies a minimum variance of 

13.156. Such a result is in accordance with the variance criterion given by Jolliffe and Cadima, 

(2016), as can be seen in Table 3.11. PC1, which accounts for 41.061% of the total variation, 

looking at the factor loadings and sample size needed for significance (Jolliffe and Cadima, 

2016). This mostly explains standing height, sitting height, lower leg length, upper leg length, 

and arm length (all refer to the overall height, and maximum reach, so PC1 can be interpreted 

as ‘height’). PC2, accounting for 23.532% of the variation, counted mostly from hip breadth 
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and shoulder width, is interpreted as ‘width’. PC3, accounting for 13.157% of the variation, 

mostly explains the variable foot length, and is hence interpreted as ‘depth’. 

Table 4.11 The first three PCs and their correlations with variables for Serbian crane operators 

Dimension (variables) PC1 PC2 PC3 

FOL 0.0134 0.069 0.977 

STH 0.733 0.475 0.031 

SIH 0.654 0.638 0.063 

LLL 0.781 0.150 0.105 

ULL 0.694 0.218 0.202 

SHW 0.614 0.641 0.143 

HIB 0.441 0.821 0.028 

ARL 0.801 0.323 0.141 

Eigenvalue 3.285 1.883 1.0525 

Cumulative percentage of total variation 41.061 23.532 13.157 

 

The first three selected components form the first three components coordinates of 14 

points as in Table 4.12. The next step is to calculate the factor/PC scores (standardized values) 

for 14 body models as given in Table 4.13, by multiplying the factor coordinates matrix (Table 

4.12) by the inverse matrix of the eigenvector matrix (Table 4.8). The results are shown in 

Table 4.13. 

Table 4.12 Factor/PC coordinates for body models 

 Model PC1 PC2 PC3 

U -5.71 0 0 

V 5.71 0 0 

X 0 4.32 0 

Z 0 -4.32 0 

Y 0 0 3.23 

W 0 0 -3.23 

A 3.075 2.46 -1.996 

B 3.075 2.46 1.996 

C 3.075 -2.46 1.996 

D 3.075 -2.46 -1.996 

E -3.075 2.46 -1.996 

F -3.075 2.46 1.996 

G -3.075 -2.46 1.996 

H -3.075 -2.46 -1.996 
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Table 4.13 Standardized values of 8 anthropometric dimensions for representative body models of 

Serbian crane operators including univariate percentile of 95th, 5th values. 

Model PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

P95  1.44347 1.69194 1.44826 0.81718 1.42424 2.07442 1.85379 1.67895 

P5  -1.67848 -1.58617 -1.52097 -1.64695 -1.60189 -1.61479 -1.19928 -1.25862 

U -0.04222 2.30932 2.01157 2.45974 2.18795 2.02073 1.39034 2.52371 

V 0.04222 -2.30932 -2.01157 -2.45974 -2.18795 -2.02073 -1.39034 -2.52371 

X 0.21604 1.49625 2.05886 -0.47077 -0.68625 -1.93196 -2.58404 1.01772 

Z -0.21604 -1.49625 -2.05886 0.47077 0.68625 1.93196 2.58404 -1.01772 

Y 3.07621 0.09818 -0.19914 0.33173 0.63643 -0.44880 0.08689 -0.44325 

W -3.07621 -0.09818 0.19914 -0.33173 -0.63643 0.44880 -0.08689 0.44325 

A -1.75520 -0.45228 0.21218 -1.79771 -1.96234 -1.91103 -2.27391 -0.50565 

B 2.04673 -0.33093 -0.03394 -1.38773 -1.17577 -2.46570 -2.16651 -1.05347 

C 1.80068 -2.03499 -2.37875 -0.85157 -0.39420 -0.26541 0.77643 -2.21253 

D -2.00125 -2.15634 -2.13263 -1.26156 -1.18078 0.28926 0.66903 -1.66472 

E -1.80068 2.03499 2.37875 0.85157 0.39420 0.26541 -0.77643 2.21253 

F 2.00125 2.15634 2.13263 1.26156 1.18078 -0.28926 -0.66903 1.66472 

G 1.75520 0.45228 -0.21218 1.79771 1.96234 1.91103 2.27391 0.50565 

H -2.04673 0.33093 0.03394 1.38773 1.17577 2.46570 2.16651 1.05347 

 

Table 4.14 shows anthropometric dimensions for the representative models that are 

gained by reversing the standardized values to anthropometric measurements, both for PCA 

and the percentiles, which have been obtained as the sum of the mean value of the appropriate 

dimension and the value of product of its standardized value and the standard deviation. 

Representative multivariate body models (Table 4.14) of Serbian crane operators can be 

described in the following manner, where the center of the ellipsoid represents an average 

person in all body dimensions.  

 Model U represents an individual with large overall height, width, arm length 

(maximum reach) and average foot length.   

 Model V represents an individual with small overall height, small width, average foot 

length and small arm length (minimum reach).   

 Model X represents an individual with large width, small height, average foot length 

and average arm length.   
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 Model Z represents an individual with small width, large height, average foot length 

and average arm length.   

 Model Y represents an individual with large foot length, and average overall height, 

width and arm length.   

 Model W is identical to Model Y, but represents an individual with small foot length.  

 Model A represents an individual with relatively average width, but small overall 

height, small foot length and small arm length.   

 Model B represents an individual with relatively small overall height, small arm length, 

but average width and large foot length.   

 Model C represents an individual with average overall height, average arm length, and 

small width but relatively large foot length.   

 Model D represents an overall small individual.   

 Model E in contrast to Model B, represents an individual with large overall height and 

large width but relatively small foot length.   

 Model F, in contrast to Model D, represents an overall large individual.   

 Model G in contrast to Model A, represents an individual with relatively small width, 

but large overall height, large arm length and small foot length. 

 Model H in contrast to Model A, represents an individual with relatively large overall 

height, large arm length, large foot length but relatively small width. 

The univariate, percentiles approach is also applied in order to verify whether these 

models fall inside the multivariate models. The 95th and 5th percentiles were calculated, and it 

was found that the percentiles value as summarized in Table 4.15 (all measurements in mm), 

fall within the range of the multivariate for all the anthropometric dimensions. Such a fact leads 

to the conclusion that the multivariate approach provides better population inclusion and is 

more effective than the univariate approach in cases of multi-anthropometric dimensions issues.  
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Table 4.14 Anthropometric dimensions of representative body models for Serbian operators including 

univariate percentile 95th, 5th values (all measurements in mm) 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95 316 1884 990 620 670 579 510 790 

P5 276 1660 821 521 560 400 331 641 

U 297 1926 1021 686 698 576 483 833 

V 298 1611 793 488 539 380 320 576 

X 295 1666 790 606 643 572 553 653 

Z 300 1870 1024 568 593 385 250 756 

Y 336 1775 896 600 641 457 406 682 

W 259 1761 919 574 595 500 396 727 

A 272 1621 786 536 575 492 441 620 

B 320 1629 772 553 604 465 447 592 

C 323 1746 905 531 575 359 274 651 

D 275 1737 919 515 547 386 268 679 

E 272 1791 909 643 661 598 528 758 

F 319 1799 895 659 690 571 535 730 

G 275 1907 1042 621 633 491 356 817 

H 322 1915 1028 638 661 464 362 789 

Min 259 1611 772 488 539 359 250 576 

Max 336 1926 1042 686 698 598 553 833 

 

Table 4.15 Summary of univariate percentiles models for Serbian crane operators (all measurements in 

mm) 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95 316 1884 990 620 670 579 510 790 

P5 276 1660 821 521 560 400 331 641 

 

In that manner the hypothesis: 

H1 - Using an integral multivariate model for anthropometric adaptation it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy. 

Has been proved in the crane cabin interior space modeling problem, based on the Serbian 

crane operators’ data. There are 3 PCs that form the mathematically described three-

dimensional, spatial model with an accuracy of 95% instead of the 90% coverage that the 

univariate percentiles application provides. 
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4.3.4 The multivariate anthropometric models of Libyan crane operators  

A similar procedure of modeling has been applied to the Libyan crane operators 

collected data. The tables below show the matrices of correlation (Table 4.16), the eigenvalues 

(Table 4.17), the eigenvectors (Table 4.18), factors loading (Table 4.19), and Figure 4.3 

illustrates the scree plot. 

Table 4.16 Correlation matrix of Libyan crane operators 

Dimension FOL STH SIH LLL ULL SHW HIB ARL 

FOL 1.00000 0.51599 0.32812 0.32603 0.37264 -0.12954 0.13467 -0.02539 

STH 0.51599 1.00000 0.31439 0.42228 0.39947 -0.00537 0.25944 0.13139 

SIH 0.32812 0.31439 1.00000 0.18376 0.05168 -0.24083 -0.12840 0.24999 

LLL 0.32603 0.42228 0.18376 1.00000 0.47752 0.30481 0.51556 -0.04595 

ULL 0.37264 0.39947 0.05168 0.47752 1.00000 0.18417 0.29718 -0.19561 

SHW -0.12954 -0.00537 -0.24083 0.30481 0.18417 1.00000 0.64949 -0.03773 

HIB 0.13467 0.25944 -0.12840 0.51556 0.29718 0.64949 1.00000 -0.04228 

ARL -0.02539 0.13139 0.24999 -0.04595 -0.19561 -0.03773 -0.04228 1.00000 

 

 

 

Figure 4.3 Scree plot of Libyan crane operators 
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Table 4.17 Eigenvalues of correlation matrix of Libyan crane operators 

PCs Eigenvalue % Total Cumulative Cumulative 

1 2.672929 33.41161 2.672929 33.4116 

2 1.850471 23.13089 4.523400 56.5425 

3 1.148651 14.35814 5.672051 70.9006 

4 0.629653 7.87067 6.301705 78.7713 

5 0.555987 6.94984 6.857692 85.7211 

6 0.452521 5.65651 7.310213 91.3777 

7 0.419502 5.24377 7.729714 96.6214 

8 0.270286 3.37857 8.000000 100.0000 

 

Table 4.18 Eigenvectors of correlation matrix of Libyan crane operators 

Dimension 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL -0.36833 -0.36294 -0.21518 -0.23781 0.52574 0.43545 0.37598 -0.14961 

STH -0.42946 -0.29503 0.05893 -0.39889 0.08257 -0.46812 -0.56084 -0.15950 

SIH -0.14918 -0.51892 0.23859 0.70340 0.02104 0.22198 -0.30435 0.12010 

LLL -0.49174 0.05851 0.04827 0.35749 -0.18939 -0.47671 0.54113 -0.26210 

ULL -0.43273 0.01463 -0.34849 -0.13410 -0.69573 0.38328 -0.09210 0.18351 

SHW -0.24541 0.54220 0.29487 0.10044 0.09435 0.37923 -0.28013 -0.56352 

HIB -0.40924 0.39734 0.23570 0.00183 0.31793 -0.03051 -0.00440 0.71907 

ARL 0.02955 -0.23761 0.79185 -0.36563 -0.29403 0.15188 0.26772 0.02758 

 

Table 4.19 Factor loadings based on correlation of Libyan crane operators 

Dimension Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL -0.60219 -0.49371 -0.23062 -0.18870 0.39201 0.29293 0.24352 -0.07778 

STH -0.70212 -0.40133 0.06316 -0.31652 0.06157 -0.31490 -0.36325 -0.08292 

SIH -0.70590 -0.24390 0.25571 0.55815 0.01569 0.14933 -0.19712 0.06244 

LLL -0.80395 0.07959 0.05173 0.28367 -0.14122 -0.32068 0.35048 -0.13626 

ULL -0.70748 0.01990 -0.37349 -0.10641 -0.51877 0.25783 -0.05965 0.09540 

SHW -0.40123 0.73757 0.31602 0.07970 0.07035 0.25511 -0.18144 -0.29297 

HIB 0.54051 -0.66907 0.25261 0.00145 0.23706 -0.02053 -0.00285 0.37384 

ARL 0.04831 -0.32323 0.84867 -0.29013 -0.21924 0.10217 0.17340 0.01434 
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The first three PCs as summarized in Table 4.20 are selected based on the eigenvalues 

and desired total explained variance amount to 70.90%. The first component loaded foot length, 

standing height, lower leg length, and upper leg length, with total explained variance 33.41%. 

This component represents body height and pedal reach. The second PC covers 23% of total 

variance containing shoulder width and hip breadth, which represent body width, and the third 

PC includes arm length with total explained variance 14% representing the maximum reach of 

‘depth’. 

Table 4.20 First three PCs and their correlations with variables 

Dimension (variables) PC1 PC2 PC3 

FOL -0.6022 -0.49371 -0.23062 

STH -0.7021 -0.40133 0.063163 

SIH -0.7059 -0.2439 0.255712 

LLL -0.8039 0.07959 0.051729 

ULL -0.7075 0.0199 -0.37349 

SHW -0.40123 0.73757 0.316024 

HIB 0.540505 -0.6691 0.252607 

ARL 0.048314 -0.32323 0.84867 

Eigenvalue 2.672929 1.850471 1.148651 

Cumulative percentage of total variation 33.41161 23.13089 14.35814 

 

The semi axes of the ellipsoid are calculated using the already proposed methodology 

for calculations (Table 4.21) wherein, in this case, the tolerance factor is 11.07 for n=50 

(Krishnomoorthy and Mondel, 2006). By the same procedure, the midpoint on the surface of 

octants is obtained, and the axes are 3, 2.59, and 2.2. The factor coordinates of the 

representative body models developed are given in Table 4.22, and the score coordinates (z 

values) are shown in Table 4.23. Then from the z- values the body models are generated as in 

Table 4.24. 

Table 4.21 Semi-axes of ellipsoid for Libyan crane operators 

Components Eigenvalue )(    Tolerance factor (c) c  

Semi-axes of ellipsoid 

( c ) 

PC1 2.672929 1.634909 11.07 3.327161 5.439607 

PC2 1.850471 1.36032 11.07 3.327161 4.526004 

PC3 1.148651 1.071751 11.07 3.327161 3.565889 
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Table 4.22 Factor/PC coordinates for body models 

Model PC1 PC2 PC3 

  U -5.44 0 0 

V 5.44 0 0 

X 0 4.53 0 

Z 0 -4.53 0 

Y 0 0 3.57 

W 0 0 -3.57 

A 3 2.59 -2.2 

B 3 2.59 2.2 

C 3 -2.59 2.2 

D 3 -2.59 -2.2 

E -3 2.59 -2.2 

F -3 2.59 2.2 

G -3 -2.59 2.2 

H -3 -2.59 -2.2 

 

 

Table 4.23 Standardized values of 8 anthropometric dimensions for representative body model of Libyan 

crane operators including percentile 95th, 5th values. 

Model PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

p95 2.30327 1.51312 1.26708 1.51593 1.72364 1.89176 1.77234 1.4332 

p5 -0.94077 -1.73172 -1.66016 -1.76767 -1.49484 -1.27972 -1.47024 -1.93652 

U 2.00372 2.33624 0.81154 2.67506 2.35407 1.33504 2.22628 -0.16076 

V -2.00372 -2.33624 -0.81154 -2.67506 -2.35407 -1.33504 -2.22628 0.16076 

X -1.64411 -1.33646 -2.35071 0.26504 0.06627 2.45619 1.79994 -1.07638 

Z 1.64411 1.33646 2.35071 -0.26504 -0.06627 -2.45619 -1.79994 1.07638 

Y -0.76818 0.21039 0.85178 0.17231 -1.24409 1.05267 0.84143 2.82691 

W 0.76818 -0.21039 -0.85178 -0.17231 1.24409 -1.05267 -0.84143 -2.82691 

A -1.57161 -2.18214 -2.31645 -1.42987 -0.49364 0.01937 -0.71716 -2.26883 

B -2.51839 -1.92283 -1.26664 -1.2175 -2.02698 1.31678 0.3199 1.21531 

C -0.63837 -0.3946 1.42137 -1.52057 -2.10276 -1.49184 -1.7383 2.44614 

D 0.30841 -0.65391 0.37156 -1.73294 -0.56942 -2.78925 -2.77536 -1.03801 

E 0.63837 0.3946 -1.42137 1.52057 2.10276 1.49184 1.7383 -2.44614 

F -0.30841 0.65391 -0.37156 1.73294 0.56942 2.78925 2.77536 1.03801 

G 1.57161 2.18214 2.31645 1.42987 0.49364 -0.01937 0.71716 2.26883 

H 2.51839 1.92283 1.26664 1.2175 2.02698 -1.31678 -0.3199 -1.21531 
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Table 4.24 Anthropometric dimensions of representative body models of Libyan crane operators 

including percentile 95th, 5th values (all measurements in mm) 

 

R 

 

 

 

 

 

 

 

 

 

Representative models of Libyan crane operators and their characteristics are described 

below, where the center of the ellipsoid represents an average person in all body dimensions.  

 Model U represents an individual with large overall height, large foot length, large 

width and average arm length. 

 Model V represents an individual with small overall height, small width and, small foot 

length and average arm length. 

 Model X represents an individual with large width, small height, small foot length and 

average arm length. 

 Model Z represents an individual with small width, large height, large foot length and 

average arm length. 

 Model Y represents an individual average in width, height, and foot length but large 

with large arm length. 

 Model W is identical to Model Y, but represents an individual with small arm length. 

Model FOL STH SIH LLL ULL SHW HIB ARL 

p95 295 1790 890 590 616 591 470 760 

p5 265 1600 750 470 510 420 309 484 

U 292 1838 868 632 636 561 493 629 

V 255 1565 791 437 482 417 271 656 

X 258 1623 717 544 561 621 471 554 

Z 289 1780 942 525 557 357 293 731 

Y 267 1714 870 541 518 546 424 874 

W 281 1689 789 528 600 432 340 410 

A 259 1574 719 482 543 490 346 456 

B 250 1589 769 490 493 560 398 742 

C 268 1678 897 479 490 409 296 843 

D 277 1663 847 471 540 339 244 557 

E 280 1725 761 590 628 569 468 442 

F 271 1740 812 598 578 639 520 728 

G 288 1829 940 587 575 488 418 829 

H 297 1814 890 579 625 418 366 543 

Min. 250 1565 717 437 482 339 244 410 

Max. 297 1838 942 632 636 639 520 874 



CHAPTER 4 

 

119 
 

 Model A represents an individual with relatively average width, but small overall 

height, small foot length and small arm length. 

 Model B is identical to model A, but represents an individual with average arm length. 

 Model C represents an individual with average overall height, large arm length, but 

small width and foot length. 

 Model D represents an overall small individual. 

 Model E represents an individual with large overall width, small arm length but average 

foot length and height. 

 Model F in contrast to Model D, represents an overall large individual. 

 Model G in contrast to Model A, represents an individual with relatively small width, 

but large overall height, large in arm length and foot length 

 Model H in contrast to Model B, represents an individual with large overall height, 

large arm length, large foot length but with relatively small width. 

95th and 5th percentiles values are as summarized in Table 4.25, and they fall within 

the range of multivariate models. 

Table 4.25 Univariate - percentiles models for Libyan crane operators 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95 295 1790 890 590 616 591 470 760 

P5 265 1600 750 470 510 420 309 484 
 
In that manner the hypothesis: 

H1 - Using an integral multivariate model for anthropometric adaptation, it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy 

has been proved in the crane cabin interior space modeling problem, based on Libyan crane 

operators’ data. There are 3 PCs that form the mathematically described three-dimensional, 

spatial model and accuracy is 95% instead of the 90% coverage that the univariate, percentiles 

application provides. 
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4.3.5 The multivariate anthropometric models of Serbian drivers  

A similar procedure of modeling has been applied to the Serbian drivers collected data 

(males and females). The PCA output gives the results shown in Table 4.26, Table 4.27, Table 

4.28 and Table 4.29, the matrixes of correlation, the eigenvalues, the eigenvectors, and factor 

loadings, respectively. The scree plot is illustrated in Figure 4.4. 

Table 4.26 Correlation matrix of Serbian drivers 

Dimension 
FOL STH SIH LLL ULL SHW HIB ARL 

FOL 1.00000 0.64398 0.44191 0.46244 0.44998 0.41320 0.25136 0.48798 

STH 0.64398 1.00000 0.73799 0.61774 0.57239 0.41486 0.15839 0.62120 

SIH 0.44191 0.73799 1.00000 0.49480 0.41937 0.35303 -0.04289 0.61091 

LLL 0.46244 0.61774 0.49480 1.00000 0.68061 0.38339 0.20867 0.56465 

ULL 0.44998 0.57239 0.41937 0.68061 1.00000 0.45026 0.28139 0.54279 

SHW 0.41320 0.41486 0.35303 0.38339 0.45026 1.00000 0.62970 0.45183 

HIB 0.25136 0.15839 -0.04289 0.20867 0.28139 0.62970 1.00000 0.17096 

ARL 0.48798 0.62120 0.61091 0.56465 0.54279 0.45183 0.17096 1.00000 

 

Table 4.27 Eigenvalues of correlation matrix of Serbian drivers 

PC Eigenvalue % Total Cumulative Cumulative 

1 4.231026 52.88782 4.231026 52.8878 

2 1.345680 16.82100 5.576706 69.7088 

3 0.681135 8.51418 6.257841 78.2230 

4 0.570965 7.13707 6.828806 85.3601 

5 0.394681 4.93352 7.223487 90.2936 

6 0.318888 3.98610 7.542375 94.2797 

7 0.278387 3.47984 7.820762 97.7595 

8 0.179238 2.24047 8.000000 100.0000 
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Figure 4.4 Scree plot of Serbian drivers 

 

Table 4.28 Eigenvectors of correlation matrix of Serbian drivers 

Dimension Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL -0.35282 -0.00835 0.37051 -0.77052 0.21139 0.08368 -0.20672 -0.22373 

STH -0.41621 -0.21547 0.19206 -0.11771 -0.33280 -0.08337 0.40113 0.67156 

SIH -0.35653 -0.37433 0.33124 0.38208 -0.37142 0.02125 0.04953 -0.57984 

LLL -0.38168 -0.08422 -0.54453 -0.07602 -0.15394 -0.59721 -0.40457 -0.02994 

ULL -0.37568 0.04000 -0.59931 -0.07591 -0.02615 0.65223 0.22358 -0.12745 

SHW -0.32501 0.48574 0.23571 0.33374 -0.10566 0.28307 -0.57209 0.27001 

HIB -0.18424 0.74228 0.05166 -0.00999 -0.08207 -0.32474 0.48157 -0.26118 

ARL -0.38573 -0.13330 0.04695 0.35135 0.81506 -0.13394 0.14506 0.06696 

 

Table 4.29 Factor loadings based on correlation of Serbian drivers 

Dimension Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL -0.72573 -0.00968 0.30578 -0.58222 0.13280 0.04725 -0.10907 -0.09472 

STH -0.85611 -0.24996 0.15851 -0.08894 -0.20908 -0.04708 0.21165 0.28431 

SIH -0.73336 -0.43423 0.27337 0.28871 -0.23334 0.01200 0.02613 -0.24548 

LLL -0.44941 -0.09770 -0.78509 -0.05744 -0.09671 -0.33725 -0.21346 -0.01267 

ULL -0.49462 0.04640 -0.77276 -0.05736 -0.01643 0.36832 0.11797 -0.05396 

SHW 0.56347 -0.66852 0.19453 0.25218 -0.06638 0.15985 -0.30185 0.11431 

HIB -0.37896 0.86107 0.04263 -0.00755 -0.05156 -0.18338 0.25409 -0.11057 

ARL -0.79343 -0.15464 0.03875 0.26548 0.51205 -0.07563 0.07654 0.02835 
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The selected first three PCs are as summarized in Table 4.30. The criteria to select the 

first three PCs to define body models is made on the basis of enough factors to meet 60% or 

more of the explained variance (Hair et al., 2006). The retained first three PCs covered the total 

explained variance of 78%, where, PC1 accounts for 52.887% of total variation and explains 

and preserves most of the information (Jolliffe, and Cadima, 2016), including foot length, 

standing height, and sitting height, and which represent body height and pedal reach. PC2 

accounts for 16.82% of total variation, including shoulder width and hip breadth, and represents 

body width. PC3 includes lower leg length and upper leg length, which accounts for 8.54% of 

total variation, and represents the length of the sitting segments. 

Table 4.30 First three PCs and their correlations with variables for Serbian drivers 

Dimension (variables) PC1 PC2 PC3 

FOL -0.72573 -0.00968 0.30578 

STH -0.85611 -0.24996 0.15851 

SIH -0.73336 -0.43423 0.27337 

LLL -0.44941 -0.09770 -0.78509 

ULL -0.49462 0.04640 -0.77276 

SHW 0.56347 -0.66852 0.19453 

HIB -0.37896 0.86107 0.04263 

ARL -0.79343 -0.15464 0.03875 

Eigenvalue 4.231026 1.34568 0.681135 

Cumulative percentage of total 

variation 
52.887% 16.821% 8.514% 

 

The already explained modelling approach comes to semi axes of ellipsoid as in Table 

4.31, with captured at tolerance factor 6.25 for n>1000 (Krishnomoorthy and Mondal, 2006). 

The midpoints of surface octants of ellipsoid are gained through semi axes using CATIA or 

MATLAB, which are 2.66, 1.65, and 1.3. Factor coordinates of body models developed are as 

in Table 4.32, and score coordinates (z values) are as shown in Table 4.33. 
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Table 4.31 Semi-axes of ellipsoid for Serbian drivers 

Components Eigenvalue )(    Tolerance factor (c) c  

Semi-axes of ellipsoid 

( c ) 

PC1 4.231026 2.056946 6.25 2.5 5.142364 

PC2 1.34568 1.160034 6.25 2.5 2.900086 

PC3 0.681135 0.825309 6.25 2.5 2.063272 

Table 4.32 Factor coordinates for body models for Serbian drivers 

 Model PC1 PC2 PC3 

U -5.14 0 0 

V 5.14 0 0 

X 0 2.9 0 

Z 0 -2.9 0 

Y 0 0 2.06 

W 0 0 -2.06 

A 2.66 1.65 -1.3 

B 2.66 1.65 1.3 

C 2.66 -1.65 1.3 

D 2.66 -1.65 -1.3 

E -2.66 1.65 -1.3 

F -2.66 1.65 1.3 

G -2.66 -1.65 1.3 

H -2.66 -1.65 -1.3 

Table 4.33 Standardized values of 8 anthropometric dimensions for representative body model including 

univariate percentile 95th, 5th values for Serbian drivers 

Model PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

P95   1.52235 1.57678 1.60319 1.62883 1.69110 1.78887 1.79234 1.62341 

P5 -1.80860 -1.65831 -1.73219 -1.74990 -1.60659 -1.44427 -1.28310 -1.72589 

U 1.81349 2.13930 1.83257 1.96183 1.93101 1.67054 0.94698 1.98265 

V -1.81349 -2.13930 -1.83257 -1.96183 -1.93101 -1.67054 -0.94698 -1.98265 

X -0.02421 -0.62487 -1.08555 -0.24423 0.11600 1.40864 2.15260 -0.38658 

Z 0.02421 0.62487 1.08555 0.24423 -0.11600 -1.40864 -2.15260 0.38658 

Y 0.76324 0.39564 0.68235 -1.12174 -1.23458 0.48556 0.10642 0.09672 

W -0.76324 -0.39564 -0.68235 1.12174 1.23458 -0.48556 -0.10642 -0.09672 

A -1.43393 -1.71231 -1.99662 -0.44634 -0.15421 -0.36947 0.66753 -1.30703 

B -0.47062 -1.21296 -1.13540 -1.86212 -1.71242 0.24337 0.80185 -1.18496 

C -0.44307 -0.50190 0.09988 -1.58420 -1.84442 -1.35957 -1.64767 -0.74505 

D -1.40638 -1.00125 -0.76134 -0.16842 -0.28621 -1.97241 -1.78198 -0.86712 

E 0.44307 0.50190 -0.09988 1.58420 1.84442 1.35957 1.64767 0.74505 

F 1.40638 1.00125 0.76134 0.16842 0.28621 1.97241 1.78198 0.86712 

G 1.43393 1.71231 1.99662 0.44634 0.15421 0.36947 -0.66753 1.30703 

H 0.47062 1.21296 1.13540 1.86212 1.71242 -0.24337 -0.80185 1.18496 
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Table 4.34 shows the representative models and their characteristics for Serbian 

drivers, while the center of the ellipsoid represents an average person at all body dimensions. 

Moreover, the 95th and 5th percentiles (the univariate approach) are fitted within the models. 

Table 4.34 Anthropometric dimensions of representative body models of Serbian drivers including 

univariate percentiles of 95th, 5th values. 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95  305 1922 990 650 710 552 470 780 

P5 245 1650 820 520 550 390 330 610 

U 310 1969 1002 663 722 546 432 798 

V 245 1610 815 512 534 379 345 597 

X 277 1737 853 578 634 533 486 678 

Z 278 1842 964 597 622 392 290 717 

Y 291 1823 943 544 568 487 393 703 

W 264 1756 874 630 688 438 384 693 

A 252 1645 807 570 620 444 419 631 

B 269 1687 850 516 545 475 425 637 

C 270 1747 913 526 538 394 313 660 

D 252 1705 869 581 614 364 307 654 

E 286 1832 903 648 717 530 463 735 

F 303 1874 947 594 642 561 470 742 

G 303 1933 1010 605 635 481 358 764 

H 286 1891 966 659 711 450 352 758 

Min 245 1610 807 512 534 364 290 597 

Max 310 1969 1010 663 722 561 486 798 

 

Representative models of Serbian drivers and their characteristics are described below, 

where the center of the ellipsoid represents an average person at all body dimensions.  

 Model U Represents an individual with large overall height, large foot length, large 

width and large arm length. 

 Model V, in contrast to model U, represents an individual with small overall height, 

small width, small foot length and small arm length.   

 Model X represents an individual with large width, overall average in height, foot 

length and arm length.   

 Model Z has the same characteristics of model X, but represents an individual with 

small width  

 Model Y represents an individual with overall average in height, foot length and arm 

length, but with relatively small width.   
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 Model W represents an overall average individual model. 

 Model A represents an individual with relatively average width, but small overall 

height, small foot length and small arm length.   

 Model B represents an individual with small overall height, small foot length, small arm 

length, but relatively large width.  

 Model C represents an individual with average overall height, average arm length and 

average foot length, but who is small in width.   

 Model D is identical to the C model, but who is small in foot length.   

 Model E represents an individual with large overall width, average foot length and 

average height.   

 Model F, in contrast to Model C, represents an individual with large foot length.   

 Model G, in contrast to Model A, represents a relatively large individual.  

 Model H is in contrast to Model B. 

In that manner, hypothesis: 

H1 - Using an integral multivariate model for anthropometric adaptation, it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy 

has been proved in the crane cabin interior space modelling problem, based on Serbian drivers’ 

data. There are 3 PCs that form the mathematically described three-dimensional, spatial model, 

and accuracy is 95% instead of the 90% coverage that the univariate, percentiles application 

provides. 

4.3.6 The multivariate anthropometric models of Libyan drivers  

The result of PCA application on Libyan drivers’ data (males and females) is 

represented in these matrices: the correlation matrix (Table 4.35), the eigenvalues (Table 4.36), 

the eigenvectors (Table 4.37), the factor loadings (Table 4.38), and the scree plot as depicted in 

Figure 4.5.  
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Table 4.35 Correlation matrix for Libyan drivers 

Dimension FOL STH SIH LLL ULL SHW HIB ARL 

FOL 1.00000 0.50985 0.27136 0.42023 0.29438 0.35492 -0.00086 0.02024 

STH 0.50985 1.00000 0.56263 0.58439 0.55129 0.24767 0.04017 0.14574 

SIH 0.27136 0.56263 1.00000 0.32032 0.30239 0.12976 0.03915 0.17466 

LLL 0.42023 0.58439 0.32032 1.00000 0.69215 0.34798 0.17873 0.16534 

ULL 0.29438 0.55129 0.30239 0.69215 1.00000 0.24085 0.18439 0.13844 

SHW 0.35492 0.24767 0.12976 0.34798 0.24085 1.00000 0.48301 0.17840 

HIB -0.00086 0.04017 0.03915 0.17873 0.18439 0.48301 1.00000 0.24304 

ARL 0.02024 0.14574 0.17466 0.16534 0.13844 0.17840 0.24304 1.00000 

 

Table 4.36 Eigenvalues of correlation matrix of Libyan drivers 

PC Eigenvalue % Total Cumulative Cumulative 

1 3.136093 39.20116 3.136093 39.2012 

2 1.399456 17.49320 4.535549 56.6944 

3 0.979155 12.23944 5.514704 68.9338 

4 0.820132 10.25165 6.334835 79.1854 

5 0.674868 8.43585 7.009703 87.6213 

6 0.397001 4.96251 7.406704 92.5838 

7 0.308575 3.85718 7.715279 96.4410 

8 0.284721 3.55901 8.000000 100.0000 

 
 

 

Figure 4.5 Scree plot of Libyan drivers 
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Table 4.37 Eigenvectors for correlation matrix of Libyan drivers 

Dimension 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL 0.35457 -0.19124 0.39734 0.47376 0.39889 0.44770 0.26275 -0.16366 

STH 0.45945 -0.27472 -0.08769 0.09127 -0.08516 0.12051 -0.79284 0.21690 

SIH 0.33183 -0.24015 -0.41924 0.37657 -0.58534 -0.12856 0.38384 -0.09034 

LLL 0.46210 -0.05722 0.08300 -0.39352 0.15077 -0.15997 0.37287 0.65885 

ULL 0.42580 -0.07478 -0.00602 -0.59884 0.00712 0.00543 0.02013 -0.67377 

SHW 0.31061 0.47378 0.37081 0.29545 -0.01256 -0.64915 -0.12441 -0.13128 

HIB 0.17976 0.68243 0.05686 -0.07494 -0.40072 0.56700 0.01064 0.10461 

ARL 0.17160 0.36228 -0.71485 0.13794 0.55451 -0.00078 -0.00237 -0.04219 

 

Table 4.38 Factor loadings based on correlation of Libyan drivers 

Dimension 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

FOL 0.62790 -0.22623 0.39318 0.42905 0.32769 0.28209 0.14596 -0.08733 

STH 0.81363 -0.32499 -0.08677 0.08265 -0.06996 0.07593 -0.44042 0.11574 

SIH 0.58763 -0.28410 -0.41485 0.34103 -0.48086 -0.08100 0.21322 -0.04821 

LLL 0.81833 -0.06769 0.08213 -0.35638 0.12386 -0.10079 0.20713 0.35156 

ULL 0.75406 -0.08847 -0.00596 -0.54232 0.00585 0.00342 0.01118 -0.35952 

SHW 0.55006 0.56047 0.36692 0.26757 -0.01031 -0.40902 -0.06911 -0.07005 

HIB 0.31834 0.80730 0.05627 -0.06787 -0.32919 0.35726 0.00591 0.05582 

ARL 0.30388 0.42857 -0.70736 0.12492 0.45554 -0.00049 -0.00131 -0.02251 

 

The criteria to select the first three PCs to define body models is made on the basis of 

the three predetermined components for the purpose of study and to capture 60% or more of the 

explained variance (Hair et al., 2006). The first three PCs cover a total explained variance of 

68.9% as shown in Table 4.39. PC1 accounts for 39% of the total variation and preserves most 

of the information, including foot length, standing height, sitting height, lower leg length, and 

upper leg length, which represents the body height. PC2 accounts for 17% of the explained 

variance, including shoulder width and hip breadth, which represents the body width. PC3 
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accounts for 12% of the explained variance, which includes the arm length and represents the 

body depth (range of reach). 

Table 4.39 First three PCs and their correlations with variables for Libyan drivers 

Dimension (variables) PC1 PC2 PC3 

FOL 0.627904 -0.226231 0.393179 

STH 0.813632 -0.324987 -0.086774 

SIH 0.587633 -0.284098 -0.414849 

LLL 0.818334 -0.067693 0.082132 

ULL 0.754059 -0.088466 -0.005961 

SHW 0.550056 0.560474 0.366923 

HIB 0.318336 0.807302 0.056268 

ARL 0.303883 0.428570 -0.707359 

Eigenvalue 3.136093 1.399456 0.979155 

Cumulative percentage 

of total variation 
39.201% 17.493% 12.239% 

 

The semi axes of the ellipsoid are calculated as in Table 4.40 at tolerance factor 8.52 

for n=400, which is found by interpolation for n between 300 and 500 (Krishnomoorthy and 

Mondal, 2006). The same procedure is followed as for Serbian drivers and the midpoint of the 

surface of octants is given by the values 2.76, 2 and 1.76. The factor coordinates of the body 

models are as in Table 4.41 and the score coordinates (z values) are as shown in Table 4.42, 

which is reversed to real values in millimeters (the value multiplied by its standard deviation, 

plus its mean). Then the final model is generated as shown in Table 4.43. 

Table 4.40 Semi-axes of ellipsoid for Libyan crane operators 

Components 
Eigenvalue 

)(  
  

Tolerance factor 

(c) 
c  

Semi-axes of 

ellipsoid ( c ) 

PC1 3.136093 1.770902 8.52 2.918904 5.169092 

PC2 1.399456 1.182986 8.52 2.918904 3.453023 

PC3 0.979155 0.989523 8.52 2.918904 2.888321 
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Table 4.41 Factor coordinates for body models for Libyan drivers 

Model PC1 PC2 PC3 

U -5.17 0 0 

V 5.17 0 0 

X 0 3.45 0 

Z 0 -3.45 0 

Y 0 0 2.89 

W 0 0 -2.89 

A 2.76 2 -1.76 

B 2.76 2 1.76 

C 2.76 -2 1.76 

D 2.76 -2 -1.76 

E -2.76 2 -1.76 

F -2.76 2 1.76 

G -2.76 -2 1.76 

H -2.76 -2 -1.76 

 

Table 4.42 Standardized values of 8 anthropometric dimensions for representative body model for 

Libyan drivers including univariate percentile of 95th, 5th values. 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95 1.80723 1.56536 1.42759 1.67221 1.89219 1.66421 1.78542 2.24230 

P5 -2.23353 -1.64668 -1.75978 -1.57545 -1.52199 -1.46796 -1.43768 -1.16945 

U -1.83311 -2.37533 -1.71555 -2.38906 -2.20141 -1.60584 -0.92936 -0.88716 

V 1.83311 2.37533 1.71555 2.38906 2.20141 1.60584 0.92936 0.88716 

X -0.65977 -0.94777 -0.82853 -0.19742 -0.25800 1.63454 2.35437 1.24986 

Z 0.65977 0.94777 0.82853 0.19742 0.25800 -1.63454 -2.35437 -1.24986 

Y 1.14832 -0.25343 -1.21161 0.23987 -0.01741 1.07163 0.16434 -2.06591 

W -1.14832 0.25343 1.21161 -0.23987 0.01741 -1.07163 -0.16434 2.06591 

A -0.10319 0.87297 1.17340 1.01487 1.03626 1.15221 1.76091 2.45630 

B 1.29545 0.56429 -0.30233 1.30703 1.01506 2.45746 1.96107 -0.05997 

C 2.06040 1.66316 0.65829 1.53592 1.31418 0.56234 -0.76864 -1.50908 

D 0.66176 1.97184 2.13401 1.24376 1.33539 -0.74290 -0.96880 1.00719 

E -2.06040 -1.66316 -0.65829 -1.53592 -1.31418 -0.56234 0.76864 1.50908 

F -0.66176 -1.97184 -2.13401 -1.24376 -1.33539 0.74290 0.96880 -1.00719 

G 0.10319 -0.87297 -1.17340 -1.01487 -1.03626 -1.15221 -1.76091 -2.45630 

H -1.29545 -0.56429 0.30233 -1.30703 -1.01506 -2.45746 -1.96107 0.05997 
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Table 4.43 Anthropometric dimensions of representative body models of Libyan drivers including 

univariate percentile 95th, 5th values. 

Model FOL STH SIH LLL ULL SHW HIB ARL 

P95 295 1840 920 600 650 550 470 790 

P5 245 1620 760 480 520 390 290 550 

U 295 1895 934 626 662 547 422 695 

V 250 1570 762 450 494 383 318 570 

X 264 1668 807 531 568 548 502 720 

Z 281 1798 890 546 588 381 239 544 

Y 287 1715 788 547 577 520 379 487 

W 258 1750 909 529 578 410 361 777 

A 264 1598 741 492 527 503 424 561 

B 247 1619 815 481 527 436 413 738 

C 257 1694 864 490 539 339 261 636 

D 274 1673 789 501 538 406 272 459 

E 271 1793 907 576 617 524 469 805 

F 289 1771 833 587 616 591 480 628 

G 281 1868 955 584 629 427 316 703 

H 298 1847 881 595 628 494 327 526 

Min 247 1570 741 450 494 339 239 459 

Max 298 1895 955 626 662 591 502 805 

 

The generated models of Libyan drivers and their characteristics can be described as 

follows, where the center of the ellipsoid represents an average person at all body dimensions, 

and the univariate approach (percentiles) fall within the extracted models. 

 Model U represents an individual with large overall height, large foot length, large width 

and average arm length. 

 Model V, in contrast to model U, represents an individual with small overall height, 

small width, small foot length and average arm length.   

 Model X represents an individual with large width, overall average in height, foot length 

and arm length.   

 Model Z is identical to model X, except that it represents an individual with small width.  

 Model Y represents an individual with overall average height, relatively small arm 

length and who is large in width.   

 Model W represents an individual with small foot length, relatively average in height 

and width, with large arm length.  
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 Model A represents an individual with relatively average width, but small overall height, 

small foot length and small arm length.   

 Model B represents an individual with relatively small overall height, small foot length, 

small arm length, but average width.  

 Model C represents an overall average individual, but small in width.   

 Model D is identical with C model but represents an individual small in foot length.   

 Model E in contrast with model C, represents an individual large in width and arm 

length, with average foot length, and average height.   

 Model F is in contrast to Model C, but with larger foot length.   

 Model G, in contrast to Model A, represents an individual with relatively small width, 

but large overall height, while relatively large in arm length and foot length. 

 Model H is in contrast to Model B, and is represented by small body width and arm 

length, and large measures in body height. 

In that manner, hypothesis: 

H1 - Using an integral multivariate model for anthropometric adaptation, it is possible to 

reduce the multi-dimensional problem to a three-dimensional, spatial model of adequate 

accuracy 

has been proved in the crane cabin interior space modeling problem, based on Libyan drivers’ 

data. There are 3 PCs that form the mathematically described three-dimensional, spatial model, 

and accuracy is 95% instead of the 90% coverage that the univariate, percentiles application 

provides. 

4.4 Multivariate Models Accommodation in Vehicles` and Machines` 

Interior Space  

In workplaces design, multiple measurements must be considered. When each 

dimension is arranged sequentially to cover a certain percentile population, the design would 

include a certain percent of the user population for each specific function but will suffer from a 

compounded decrease in the level of overall accommodation, which would result in design 

inefficiency. Instead of focusing on each of the 8 individual dimensions, multivariate models 
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rely on three PCs that are linear combinations of the 8 original variables. The models generated 

in this study therefore include not only overall large and small persons but also individuals of 

different body configurations and provide a wider coverage then the percentiles approach.  

The representative models that are now described by mathematical functions have to 

be accommodated in interior space in a manner to take the smallest possible space. In that 

manner it is also evident that the hypothesis: 

H2 - Anthropometric measurements have mechanical and mathematical functions that 

determine all three dimensions of the space, taking into account over 90% of the population,  

Is partially proved. The missing part about mechanical functions is to be proved in text 

that follows. 

4.4.1 Crane Operators Multivariate Models Accommodation in Crane 

Cabin Interior Space 

The modeling of the cabin interior, for representative operators derived through 

multivariate statistics application, according to kinematics mechanism behavior, starts by 

adjusting the elements of the human-cabin system to comfort posture, along with fixing the 

origin of the coordinate system. Vogt et al. (2005) suggest fixing the joint visual angle or 

operator’s hip for the heel, hip or hand, while Klarin et al. (2011) use the heel for vehicle 

design. After fixing the origin of the coordinate system, there is a need to minimize potential 

energy in each operator’s joint, for which an angle of posture between anthropometric 

dimensions is also very important. Namely, fatigue is proportional to consumption of energy 

and each deviation from a physiological position is followed by energy consumption. 

Accordingly, it is logical that minimal potential energy enables the best comfort and the 

minimal fatigue, and that will be the guiding idea in multivariate models accommodation in 

crane cabin interior space. 

The crane cabin, similarly to vehicles, requires the construction measured by the 

coordinate system with the fixed point in the operator’s heel, which is in front of the foot pedal. 

Fixing the zero-coordinate point is enabled by the kinematics of heel movement, which for 

large legs and feet, due to seat movement backwards and downwards, moves the heel relatively 
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towards the front along with an increase in the foot’s angle with the floor. In the opposite case, 

this is achieved by moving the heel, e.g. in small anthropometric dimensions, towards the back 

and reducing the angle between the foot and the floor, along with an increase in the angle 

between the lower and the upper leg, as well as between the upper leg and the seat height, all 

aimed at the maximum overlapping of visual angles. Hence, our interior dimensioning 

methodology has three basic postulates: 

1. The designing and dimensioning of the cabin begins from the starting point of the 

coordinate system located in the fixed contact point of the operator’s heel and cabin floor, 

in front of the foot command next to the operator’s right foot.  

2. The visual angle, for the whole range of operators, is dimensioned to the minimum of 60º. 

3. The dimensioning of the remaining space is accomplished according to the large 

anthropometric dimension of representative models, corresponding to the movement of a 

mechanical mechanism, i.e. complying with the kinematics of movement. 

4.4.1.1 Multivariate Models Accommodation in Crane Cabin Interior Space 

for Serbian operators 

The vertical projection of the space required for the operator’s accommodation in the 

cabin shows how the representative models U, V, Z, B, and Y determine cabin interior 

dimensions towards the x and z axes. Figure 4.6 shows that, for operators corresponding to 

models U and V, the angle of 60º is enabled when looking downwards, which overlap in two 

extreme positions, where the angle between the torso and the upper leg is optimal at 109º for 

both models. Further, the optimal angle of the seat surface has been enabled in all positions, so 

that the femur is horizontal, and the hip and the seat surface form an angle of 7º. The arm span 

for using manual commands for those two models amounts to 576 mm (model V) and 833 mm 

(model U). All of the above is in accordance to head position and movement, horizontal and 

vertical seat adjustment and other dimensions and angles, from the shoulder joint (the semi-

center of rotation) to the hand with folded fingers. The arm span of model H, with maximum of 

783mm, as well as of model B, with minimum of 596mm, should also be considered. The arm 

flexibility of the user with the smallest arms enables, within a reduced field, normal work and 
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commands usage. Therefore, the chair should be adjustable horizontally close to 260mm 

according to the maximum and minimum arm lengths in models U and V (833-576=257), 

which enables controls reach, and 170 mm vertically. The adjustability of 170 mm enables 

minimizing of the space that is required for operator U, so operator U is moved to position U’. 

The seat length of 400 mm and back rest height of 550mm are determined by the 

anthropometric dimension of models U and V, wherein ergonomically, seat length constrained 

by upper leg length and lower leg segment (Reed,1994), considering enough space between 

knee and seat edge in order to avoid muscle stress. Model Y with the largest shoe length (shoe 

size) determines the length on the negative side on the x-axis. The minimal cabin dimension in 

the x-axes is 1327mm calculated by max. Lengths of the lower body segments (upper leg, 

lower leg, and foot length) and the sitting height which is reduced by 152.4mm (the distance 

between the back rest of the seat and the center of the hip, Spasojević-Brkić, 2014a). The z-axes 

should be 1926mm, representing the overall height of the cabin (model U), so that comfortable 

entrance of model U into the cabin is enabled. 

In the x-y plane (Figure 4.7), the y-axis dimensions are determined by hip breadth. The 

hip breadth for model Z is 250mm, and for model X it is 553mm, which determines the seat 

width. Therefore, the total length required in the y-axes should 1123mm considering the 

controllers’ dimensions (Figure 4.7) as close to 550mm. The horizontal adjustability of the seat 

by 50mm provides the comfortable accommodation of the operator in the x-z plane. 
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Figure 4.6 Space required for accommodation of the crane operator in the cabin, in the x-z plane 

for Serbian crane operators 

The problem of the armrest height is reduced to a compromise between the 

requirements of standard ergonomics and the need to use both hands simultaneously. The 

ergonomics of arm movements during work requires the placement of the work object in the 

optimal haptic field, which means the field at elbow height with the upper arms hanging loosely 

next to the body, while the angle between the lower arm and the upper leg is 90º while forming 

arches in the horizontal plane of the left and right arm. The intersection of the fields of both 

arches directed towards the body is the optimal haptic field. Since in this case the position of 

the commands would obstruct the visual angle, they need to be separated into consoles, which 

also serve as armrests. The armrest and the seat should be adjustable, both in terms of height (z-

axis) and length (x-axis). The position of the backrest with the commands is restricted by the 

maximum arm span, bearing in mind that the field within the optimal visible visual angle of 60º 

should be discarded. The next restriction refers to the depth of the chest, and hence the 

command should have a vertical axis on the straight-line x=500mm. The backrest provides 
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support, which allows a seated person to transfer part of their upper-body load (even the gravity 

forces due to the head, arms and upper trunk) onto the lower part of the body (even to the 

backrest support itself), which reduces the intradiscal pressure and enhances the relaxation of 

the supporting back muscles (Karuppiah et al. 2012). The backrest position in relation to the 

seat surface is the result of two movements: movement due to differences in seating height and 

owing to the difference in the height of the bent elbow. In the same manner, utilizing critical 

models, the basic dimensions of the operator’s seat are derived, in the x-y plane (Figure 4.7, all 

dimensions in mm), the dimensions of controller panels innfigureb 4.7 as given by Brkic et al., 

2015.  

 

Figure 4.7 Space required for accommodation of the crane operator in the cabin, in the x-y plane 

for Serbian crane operators (Brkic et al., 2015) 

 

The final minimal dimensions of the crane cabin, based on working requirements and 

appropriate comfort and safety, according to the proposed multivariate modeling procedure for 

Serbian crane operators, are 1327×1123×1926mm. 
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4.4.1.2 Multivariate Models Accommodation in Crane Cabin Interior Space 

for Libyan operators 

With the same context as in section 4.4.1.1, the accommodation in the crane cabin 

interior space for Libyan operators is as illustrated in Figure 4.8, in which the minimal length of 

the x-axes amounts to 1203mm and the y-axes amounts to 1090mm (Figure 4.9), and the 

models U, V, Y, H, and W determine the cabin interior dimensions in the x-z plane. The arm 

span (horizontally) close to 465mm to overcome controllers reach, is determined from models 

Y and W (874-410=464), the vertical adjustment should be 125mm to minimizing the space 

required by operator U to move to position U’. The z-axes is 1838mm as given by model U and 

it represents the overall height of the cabin. The seat length and backrest, following the same 

criteria as Serbian operators, were determined at 400mm and 550mm respectively for models U 

and V. Model H determines the feet length on the negative side by 297mm on the x-axis. 

The y-axis, as shown in Figure 4.9 (all dimensions in mm) is determined by hip 

breadth - the smallest breadth given by model D is 244mm and the largest breadth is model F 

(520mm). Therefore, the seat width is equal to 520mm. Also, the space required in the y-axis 

amounted to 1090mm. The final minimal model for Libyan crane operators that enhance safety 

and comfort is given at 1203mm×1090mm×1838mm. 

In that manner, hypotheses: 

H2 - Anthropometric measurements have mechanical and mathematical functions that 

determine all three dimensions of the space taking into account over 90% of the population and 

H3 - On the basis of a multivariate model for anthropometric adaptation, it is possible to 

provide recommendations for dimensioning the interior of the crane cabin in such a way that 

comfortable and safe accommodation of the users is ensured 

have been proved in the crane cabin interior space modeling problem.  
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Figure 4.8 Space required for accommodation of the crane operator in the cabin, in the x-z plane for 

Libyan crane operators 

 

Figure 4.9 Space required for accommodation of the crane operator in the cabin, in the x-y plane 

for Libyan crane operators (Brkic et al., 2015) 
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4.4.2 Passenger Vehicles Drivers’ Multivariate Models Accommodation in 

Interior Space 

The interior space of lower and middle-class vehicles, which are the most popular on 

the market and the most complicated for driver accommodation, is determined by the end 

positions of the trajectories along which the end points of the anthropometric measurements 

move: the feet top, knees top and head apex of the driver under driving conditions. It is 

therefore logical to assume that the space needed for passenger accommodation is easily 

obtained by mapping the optimal space for the driver (Klarin et al., 2014). The mechanism of 

human anthropometric measurements can be viewed as analogous to a mechanical mechanism, 

similarly to crane cabin operators. Hence, the geometry and kinematics of movements are 

designed from the ''O'' point which is positioned in front of the accelerator pedal and is 

approximately fixed and is the origin of the coordinate system with three axes: z, x, y. The heel 

point, both for male and female drivers is shown in Figure 4.10. 

 

Figure 4.10 Heel point, both for male and female drivers (Brkić et al., 2015) 

The position of the driver's anthropometric measurements under driving conditions is 

limited not only by the anthropometric measurements of dimensions, but also by the angles of 

movements. These angles are also subjected to the various effects of some lengths of individual 

anthropometric measurements. The passenger vehicle driver’s posture defining joints are as 

shown in Figure 4.11. 
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Figure 4.11 Posture defining joints 9 (Vogt et al., 2005) 

Figure 4.12 shows additional limitations for angles not presented in Table 2.5, the 

angle between the feet and the car floor ψ = 130 – 600, the angle between the lower part of the 

upper leg and the horizontal β = 50 – 120 and the angle between the axis passing through the 

ankle and the knee joints and the vertical γ + β = 150 – 370. In our passenger car interior space 

design, the angle between the seat backrest and the vertical is considered to be the most 

approximate to the angle between the axis passing through the hip and the rotating shoulder 

joints.   

 

Figure 4.12 Optimal angles of the human body in a car (Klarin et al., 2008) 
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The most significant anthropometric measurements in the passenger car interior space 

design whose different individual measurements amount to the same total sum are sitting 

height, upper leg length and lower leg length (Klarin et al., 2008), while in the construction of 

space for feet accommodation the lower leg length differs from the upper leg length for their 

equal total (Klarin et al., 2009). Klarin et al., (2009) studied the latter issue in detail and 

demonstrated that very long legs can be accommodated in a comparatively limited space, and 

the impact of this fact on the width of the space for accommodating the driver was also shown. 

The longer the legs and the higher the sitting height, the farther the hands are from the 

steering wheel. In this way, in addition to the limitations of optimal angles for the mechanism 

of anthropometric measurements accommodation, the limitation for moving the seat backwards 

along the x-axis is also obtained. The horizontal and vertical movement for the caricatured 

relations between the different upper and lower leg lengths, an example with a total of 800 mm, 

is presented in Figure 4.13. 

 

 

Figure 4.13 Horizontal and vertical driver seat movement in the example of upper and lower leg 

measurements 

 

If the seat height is 200 mm and the lower leg lengths are 300 mm, 400 mm and 500 

mm, the angle of the knee joint is 1400, 1500 and 1570, respectively, and the overall horizontal 

movement is approximately 40 mm. However, if the lower leg lengths are replaced, so that the 

lower leg length is 500 mm and the upper leg length 300 mm at the same angle of 1400, the 
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seat height has to be raised by as much as 130 mm. That is why the lower leg length is a critical 

anthropometric measurement in the passenger car interior space height limitation. In that sense 

other variables and angles are not ignored but are not critical. 

The key anthropometric measurements for the determination of the passenger car 

interior space height are the lower leg length and the sitting height of extremely large drivers 

and they are functionally interrelated as parts of the mechanism. Since the determination of the 

passenger car interior space height is equally influenced by the anthropometric measurements 

of the sitting height and lower leg length, the groups of the highest totals for these two 

anthropometric measurements will be observed for males. 

The second limit for the range of vehicle adjustment will be obtained by means of 

methodology similar to that for determining the anthropometric measurements of the smallest 

female driver (Figure 4.10). 

4.4.2.1 Serbian drivers’ multivariate models accommodation in interior 

vehicle space 

According to our original methodology, the minimal passenger car interior space for 

driver accommodation from the fixed point of the driver's heel in front of the accelerator pedal 

along the x-axis backwards should amount to 1500mm. The sitting driver posture horizontally 

represented by the largest value of models of lower leg, upper leg, foot length, and sitting 

height reduced by 152.4mm the distance between the back rest and center of the hip 

(Spasojević-Brkić, 2014a). The car floor-roof height along the z-axis should be 1230mm 

(200mm added to model G for sitting height as tolerance between the driver’s head and ceiling, 

Klarin et al., 2009). The distance for feet accommodation along the x-axis from the zero point 

to the shoe toe is 310mm, on the x-z planes as illustrated in Figures 4.14. The y-axis illustrated 

in Figure 4.15, represented by model F (with the largest shoulder width), provides the minimal 

width, which is 561mm (x-y plane). The required minimal space for the Serbian drivers 

amounts to 1500×561×1230mm. 
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Figure 4.14 Space required for accommodation of Serbian car drivers – x-z plane 

 

 

Figure 4.15 Space required for accommodation of Serbian car drivers – x-y plane 

 

4.4.2.2 Libyan drivers’ multivariate models accommodation in interior 

vehicle space 

As a result of anthropometric multivariate modeling, the space of vehicle modeling for Libyan 

drivers can be defined by models U, V, D, E, F and H. Figure 4.16 illustrates the x-z plane, the minimal 
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dimension on the x-axes is 1400mm, and the z-axes is 1155mm (just as in section 4.5.2.1). The arm 

reach is determined by model E and amounts 805mm, while foot accommodation is given by model H 

(298mm) along x-axes. The y- axis determined by model F is 591mm and represents the largest width as 

illustrated in Figure 4.17 (x-y plane).  The minimal space required for Libyan drivers amounts to 

1400×591×1155mm. 

 In that manner, hypotheses: 

H2 - Anthropometric measurements have mechanical and mathematical functions that 

determine all three dimensions of the space taking into account over 90% of the population and 

H3 - On the basis of a multivariate model for anthropometric adaptation, it is possible to 

provide recommendations for dimensioning the interior of the passenger car in such a way that 

comfortable and safe accommodation of the drivers is ensured 

have been proved in the passenger car interior space modeling problem. 

 

Figure 4.16 Space required for accommodation of Libyan car drivers – x-z plane 
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Figure 4.17 Space required for accommodation of Libyan car drivers – x-y plane 
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5 Discussion and conclusion 

5.1 Discussion 

One of the main issues of ergonomics in design is how to control the anthropometric 

variation, in order to set proper product design for multi users, to ensure safety, comfort, and 

enhance individual performance.  

Therefore, this study has focused on the root of such issues (anthropometric 

variations), generated from nationality, occupation, and gender. The multivariate modeling 

approach is adopted in order to accommodate such variations, developing a convenient design 

for users, which is the main aim of this research along with enhancing the safety and comfort 

for operators and drivers of machines and vehicles.  

This research sought to optimize the interior space of vehicles and driven machines 

(crane cabin), through the multivariate approach which is not widely applied as compared to the 

other anthropometric approaches such as the univariate (percentile) approach. Only a few 

authors (Bittner, 1987; Gorden et al., 1997; Kolich et al., 2004; Nadadur and Parkinson, 2012; 

Guan et al., 2012; Brkic et al., 2015) have used the multivariate approach under various 

concepts. Percentiles have revealed shortcomings in cases of multi dimensions and can be 

criticized when there is more than one dimension in design (Guan et al., 2012), since a large 

percentage of population is not covered – on average this amounts to 30% depending on the 

number of dimensions involved (Porter et al., 1993). 

The interior space of vehicles has not been researched enough (Klarin et al., 2011) and 

there are problems in the current vehicle interfaces often as result of non-updated 

measurements in standards (Chung and Park, 2004). The driven cabins (i.e. crane cabin) have 

deficiencies in interior cabin design too, since the current design results in discomfort followed 

by the fatigue, backpain, neck pain of operators (Zunjic et al., 2015; Cote et al., 2009; Burdorf 

and Zondervan, 1990; Bonvezi et al., 2002), poor visibility, limited cabin space and poorly 

designed cabins (Kittusamy and Buchholz, 2004).  
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Moreover, the anthropometric measurements play a vital role in design and should be 

continually updated (Parkison and Reed, 2006; Essdai et al., 2017), since these measurements 

change over time (Klarin, 2011), and are affected by gender, nationality, and occupation 

(Spasojevic et al., 2014a; Fatollahzadeh, 2006; and Guan et al., 2012). This study seeks to 

overcome and solve these issues that have not been not solved in previous research. The root 

causes of the shortcomings in interior vehicles and crane cabins design as surveyed in the 

literature, can be summarized in the following three points, which are addressed in this research 

by multivariate models: 

1- The effect of nationality, gender, and occupation is not considered enough, in the 

current anthropometric design. 

2-  The conventional approach (percentile) in modeling did not accommodate the entire 

targeted population when the design included multi-dimensions (more than one). 

3- The working standards show deficiencies in the current anthropometric design as 

compared to the updated anthropometric measurement models. 

The effect of gender, nationality, and occupation has been statistically studied and 

analyzed herein, and the regression and correlation analysis show different patterns with 

different correlation strength between measurements, exploring the relationships between them 

for the tested samples. Such different patterns of relationships, are revealed and quantified 

through a comparison between means (z-test). The samples are tested on the bases of 

nationality (Serbian male vs. Libyan male drivers, Serbian crane operators vs. Libyan crane 

operators, Serbian males vs. Libyan males, Serbian female drivers vs. Libyan female drivers, 

and all Serbian participants vs. all Libyan participants) and results show absolute significant 

differences between the examined mean values (Table 3.37) and reveal that Serbian 

participants are larger than Libyan participants in dimensions other than shoulder width, while 

Libyan female drivers are larger in body weight and hip breadth than Serbian female drivers. 

Such differences and relationships between the anthropometric measurements are beneficial to 

designers.    

The effect of occupation (Serbian male drivers vs. Serbian crane operators, and 

Libyan male drivers vs. Libyan crane operators) and gender (Serbian female drivers vs. Serbian 
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male drivers, and Libyan male drivers vs. Libyan female drivers), shows that gender has more 

effect than occupation (Table 3.38). The results are in line with those given in Spasojević-Brkić 

et al. (2014a) and Fatollahzadeh (2006).  

This survey is based on the Serbian sample of 83 crane cabin operators and the Libyan 

sample of 50, that means 133 in total. Table 5.1 shows cabin interior space dimensions, those 

samples were considerably larger than all of the samples used so far and were composed of two 

different nationalities. Brkic et al. (2015) used a sample of 64, Burdorf and Zondervan (1990) 

used a sample of 33, Bonvenzi et al. (2002), used 46, Ray and Tewari, (2012) used 21 

participants. The aim was to assess the operators not only according to the extreme 

measurements, as when using percentiles, but also according to extreme combinations of 

different measurements. 

 This was achieved through representative models obtained through use of both PCA 

and the 5th and 95th percentile models. Those models were later used to design the interior of a 

crane cabin on the basis of kinematic mechanism behavior and the dimensions of interior space. 

The percentiles models were obtained inside the interior space using the multivariate approach. 

It was confirmed that both the use of updated anthropometric data of crane operators and 

vehicle drivers and the use of the multivariate modeling approach have a great effect on 

improving the workplace design, resulting in comfortable accommodation and enhanced safety. 

In accordance with the results of this study, the most commonly used directives derived from 

the available standards should be partially corrected in order to solve today’s crane operators’ 

problems.  

These survey results show that different model dimensions are obtained from Serbian 

and Libyan data, and such differences related to the different nationality of the participants. 

 A comparison of these results and the results of a survey conducted by NASA (2001), 

shows that the multivariate approach model applied here provides more comfort to users and 

shows the importance of updating anthropometric measurements together with the necessity of 

conducting a survey based on crane operators’ data, not on the general population.  

 



CHAPTER 5 

 

149 
 

 

 Table 5.1 Crane cabin interior space dimensions (all dimensions in mm) 

Dimension Serbian sample Libyan sample 

Seat vertical adjustability 170 125 

Seat width  553 520 

Seat depth  400 400 

Backrest height 550 550 

Seat horizontal adjustability 260 465 

Overall cabin dimensions 1327×1123×1926      1203×1090×1838     

 

Both the interior cabin space dimensions (Serbian and Libyan, table 5.2) are 

significantly different from contemporary cabins with respect to the standard ISO 8566-5 

(1992) that identifies a space of 1300×900×1600mm and those in Brkic et al. (2015) as shown 

in Table 5.2. It can be seen that the largest height (the z-axes) of operators for the Serbian 

population is 1926mm and for the Libyan operators is 1838mm, while ISO 8566-5 (1992) 

gives1600mm. Also, the cabin width (the y-axes) is 900mm according to ISO 8566-5 (1992), 

while according to this study the required width for Serbian operators amounted to 1123mm 

and for Libyan operators to 1090mm. In the same manner for cabin length (the x-axes), the 

dimensions are 1327 and 1203mm for Serbian and Libyan operators respectively, whereas ISO 

8566-5 (1992) gives 1300mm. Table 5.3 shows the seat dimensions of the crane cabin as 

compared to the standards and to previous findings (Brkic et al., 2015).  

 

Table 5.2 Comparison between study results of crane cabin interior space dimensions and ISO 8566-5 

(1992) (all dimensions in mm) 

Study results ISO 8566-5 (1992) 

crane cabin 

dimensions  

Brkic et al., 2015 

(Serbian operators 

n=64) 
Serbian crane 

operators 

Libyan crane 

operators 

1327×1123×1926 1203×1090×1838 1300×900×1600 1150×1095×1865 
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Table 5.3 Summarized results of this survey results versus NASA (2001) and ISO 8566-5 (1992) 

specifications of crane seat dimensions (all dimensions in mm) 

 Seat dimensions 
 (Center–

NASA, 2001) 

ISO 8566-5 

(1992) 

Brkic et al. 

(2015) 

Multivariate modeling 

approach 

Serbian 

sample 

Libyan sample 

1-Backrest height  381-508 381-508 550 550 550 

2-Backrest width (F) 300 -360 300-360 380 400 400 

3-Seat height adjustment  152.4 - - 170 125 

4-Seat width (B) 450-510 450-510 490 553 520 

5-Seat depth (C) - - 400 400 400 

 

The passenger vehicle interior space was surveyed using a Serbian sample of 1197 

and a Libyan sample of 400 male and female drivers. The interior space dimensions of the 

vehicle for Serbian drivers amounted to 1500×561×1230mm, and for Libyan drivers 

1400×591×1155mm. The multivariate modeling approach reveals more accurate convergent 

values of hip breadth as compared to previous studies as shown in Table 5.4. The multivariate 

modeling approach results in greater comfort compared to all previous studies other than the 

Maertens (1993) study. 

 

Table 5.4 Comparison between percentile and multivariate approach for hip breadth 

Reference 

Hip 

breadth(

mm) 

Clarification 

Multivariate Modeling approach (current 

study 2018) 

Serbian sample Libyan sample 

Chaffin and 

Anderson (1991) 
457 

n= 143 women aged 50-64 

years 95th percentile. 

n=1197 drivers 

(193 women and 

1004 men) 

486mm (model X) 

n=400 drivers (50 

women and 350 

men) 

502mm (model X) 

Schneider et al., 

(1985) 
439 

n= 25 males of driver 

anthropometry 95th 

percentile by stature and 

weight. 

Grandjien (1980) 480 

Recommended as minimum 

clearance at the hips to 

accommodate large females 

with clothing and an 

allowance for leg splay 
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Table 5.4 Continued. 

Maertens (1993) 500 

Authors do not specify the 

position at which this 

dimension is measured, nor 

the sample size   

Gorden et all., 

1989 
432 95th percentile-female 

 

 

5.2 Conclusions and recommendations 

This dissertation described research that studied the anthropometric human variations 

and how to model it, which is one of main issues in ergonomic design that is important to 

ensure user comfort, safety, and enhance individuals’ performance, in light of producing 

products that better fit multi-users. The aim was to develop a multivariate model that includes a 

greater number of anthropometric variations than the percentile model does in order to resolve 

the anthropometric measurements variations in vehicles and crane cabins with better 

accommodation.  

In addition to this main aim, the research included Libyan anthropometric data, not yet 

surveyed in the literature, to compare it to the Serbian nationality, which has been researched 

before using the univariate percentile modeling approach. The research hypothesis based on 

these two main ideas (affect of nationality, gender, and occupation, and fact that there is a 

significant difference in anthropometric measurements) has been proved. Also, it has been 

shown that the anthropometric measurements of the two different nationalities (Libyan and 

Serbian) present significant differences depending on gender, occupation and nationality and 

that the multivariate approach for modeling enables the construction of a precise model that 

covers a larger part of population and consequetivly enables better accommodation of drivers 

and crane operators.  

Chapter two has provided reflective insights into the evolution of approaches that are 

still used today to address ergonomic issues in interior vehicle and crane cabin space. A large 
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number of previous studies have shown that anthropometric data are essential when designing 

for target users (drivers or operators). These authors have used various methods to model with 

the percentile approach, as it is the most widely applied, and approaches such as the 

anthropometry range metric (ARM) and the multivariate modeling techniques - stepwise, linear 

regression and artificial neural network, etc. are much less frequently applied. The surveyed 

literature shows that up until now there has been no optimal methodology found and 

recommended for modeling. Due to that fact, in order to optimize the interior space of vehicles 

or crane cabins, there are factors / considerations effecting the anthropometric design, 

concluded from the surveyed literature that were not surveyed enough nor analyzed and 

quantified, and such factors are in this survey considered as starting point: 

1-Nationality, gender, and occupation have an effect on anthropometric measurements. 

2-The use of general population measurements is not convenient to a specific user’s 

design, i.e. the use of anthropometric data of the general population for crane operator 

cabin design. 

3-Available standards in the field are partially not compatible to up-to-date 

measurements. 

Chapter three shows statistical analysis of the differences between the anthropometric 

measurements that relate to the gender, nationality, and occupation of the drivers and crane 

operators. In order to verify the stated hypothesis H, data was collected from the target 

population, Serbian drivers (male and female), Libyan drivers (male and female), Serbian crane 

operators (male), and Libyan crane operators (male). The regression and correlation analyses 

were performed to define the interrelationships between anthropometric measurements. Also, 

using hypothesis testing in the differences between sample mean values enabled exploring the 

relations and quantifying the differences. Most of the samples (male drivers, female drivers, 

males, crane operators, and all participants) show that there are significant differences between 

them. Only the shoulder width has no significant difference between Serbian and Libyan 

drivers, and the Libyan female drivers have a larger body weight than the Serbian female 

drivers. All other measurements in the Serbian participants are larger than the Libyan 
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participants. In that manner, the results prove the posted hypothesis together with the 

significance and influence of gender, occupation and nationality.  

Chapter four presented in detail the new, original modeling approach, which is based 

on PCA and accomplishes a 95% ellipsoid inclusion of the population. The original model is 

presented through 14 points that represent human models and are extracted from three main 

components by determining the ellipsoid axes in terms of 95% inclusion, the number of PCs, 

and the sample size. It is important to note that the percentile models (5th and 95th) fall inside 

the boundaries of the proposed multivariate model, which leads to the conclusion that the 

followed multivariate methodology has a wider inclusion/accommodation than the percentile 

method in the case of multidimensions.  

The extracted models of crane operators as compared to recommendations in available 

standards and the literature in the field (Chaffin and Anderson, 1991, Schneider et al., 1985, 

NASA, 2001 and ISO 8566-5, 1992) show that the updated anthropometric measurements 

modeled by the multivariate approach define more comfort space. The conclusion is that the 

proposed methodology is recommended in cases of multidimensions and in cases of multi 

characteristics of users that vary in gender, occupation, and nationality, which is most 

frequently the case in today’s products and markets.  The continual improvements in terms of 

the anthropometric measurements update and remodeling use, and the approach proposed here, 

is recommended in order to efficiently enhance safety, comfort, and the individual performance 

of users. 

5.3 Limitations of the study 

By reviewing the available literature in this field of research as well as by analyzing 

the results of the research obtained using the selected methodology in the framework of this 

dissertation, it can be noticed that the obtained results relate to the previous researches, but 

also significantly complement the existing results, specifically the need for better 

ergonomic adaptation of vehicles and machines for operators. 
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 In addition to undoubtedly significant contributions, this research has certain limitations 

which do not diminish the significance of it. The survey included populations from Serbia 

and Libya, whose differences are statistically proven. It is expected that other nationalities 

are to be included in the future research. Also, the newly established model can be applied 

to all other three-dimensional technical means. Although this dissertation represents not a 

small step forward in the field, the sample size could be larger and include additional 

nationalities. Accordingly, this is recommended in future research, although it is understood 

that this is not easy to accomplish. The lack of available or at least updated information of 

anthropometric data on national levels is a constraint in general in this field of research.  These 

limitations are recommendation for further research in the field. 

5.4 Proposal for further research 

Future research should go beyond this topic into the same field to cover issues of 

noise, vibration, temperature, luminance, as well as on vehicle/machine displays and on the 

controllers with respect to human interface, posture, and user feedback. This research could 

also be extended to consider the nutrition effect on anthropometric design, which is not 

surveyed enough in literature.  

5.5 Achieved scientific contribution 

This dissertation undoubtedly expands the existing knowledge and represents 

scientific contribution in the field. The achieved scientific contribution of the doctoral 

dissertation "Multivariate model for anthropometric design of the interior space of vehicles 

and machines" ("Multivariate Model for Vehicles" and "Interior Space" Anthropometric 

Design) reflects in the following: 

 Establishment of a modern database of anthropometry of certain populations based on 

the principles of static anthropometry and statistical confirmation of the present 

demographic differences. 

 Defining an original integral research approach based on extreme sizes of pairs/arrays 

of anthropometry to form an integral model of anthropometric space optimization. 
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 Development of an integral multivariate model for the anthropometric adaptation of the 

operator in the cabin of the vehicle/machine of adequate coverage and accuracy and its 

experimental confirmation. 

 Establishment and implementation of the design procedure for the minimum space 

required for the driver/operator. 

 Creating a platform for wider application of research models in other contexts, as well 

as the possibility of further development and improvement of the model. 

Part of the doctoral dissertation contributions is verified in works published in international 

journal on the JCR/SCI lists, in chapters in monographs and at international conferences. 

. 
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добијање било које дипломе према студијским програмима других 
високошколских установа, 

 да су резултати коректно наведени и  

 да нисам кршио/ла ауторска права и користио интелектуалну својину других 
лица.  

 
Потпис докторанда 

У Београду,   23.09.2018                                                                              

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

Прилог 2. 

 

Изјава o истоветности штампане и електронске 

верзије докторског рада 

 

 

Име и презиме аутора   Ахмед Али Ессдаи. 

Број индекса Д47/2013 

Студијски програм  Докторске студије 

Наслов рада “МУЛТИВАРИЈАНТНИ МОДЕЛ ЗА АНТРОПОМЕТРИЈСКО 

ПРОЈЕКТОВАЊЕ УНУТРАШЊЕГ ПРОСТОРА ВОЗИЛА И МАШИНА“ -

“MULTIVARIATE MODEL FOR VEHICLES` AND MACHINES` INTERIOR SPACE 

ANTHROPOMETRIC DESIGN“ 

Ментор  Весна Спасојевић Бркић 

 

Потписани/а   

 

Изјављујем да је штампана верзија мог докторског рада истоветна електронској 

верзији коју сам предао/ла за објављивање на порталу Дигиталног репозиторијума 

Универзитета у Београду.  

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања 

доктора наука, као што су име и презиме, година и место рођења и датум одбране 

рада.  

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у 

електронском каталогу и у публикацијама Универзитета у Београду. 

 

Потпис докторанда 

У Београду, 23.09.2018                                                                              

 

     



 

 

 

Прилог 3. 

Изјава о коришћењу 

 

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални 

репозиторијум Универзитета у Београду унесе моју докторску дисертацију под 

насловом: 

“МУЛТИВАРИЈАНТНИ МОДЕЛ ЗА АНТРОПОМЕТРИЈСКО ПРОЈЕКТОВАЊЕ 

УНУТРАШЊЕГ ПРОСТОРА ВОЗИЛА И МАШИНА“  

“MULTIVARIATE MODEL FOR VEHICLES` AND MACHINES` INTERIOR SPACE 

ANTHROPOMETRIC DESIGN“ 

која је моје ауторско дело.  

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за 

трајно архивирање.  

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у 

Београду могу да користе  сви који поштују одредбе садржане у одабраном типу 

лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла. 

1. Ауторство 

2. Ауторство - некомерцијално 

3. Ауторство – некомерцијално – без прераде 

4. Ауторство – некомерцијално – делити под истим условима 

5. Ауторство –  без прераде 

6. Ауторство –  делити под истим условима 

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци 

дат је на полеђини листа). 

Потпис докторанда 

У Београду  23.09.2018                                                                         

 


