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Missile Guidance Navigation and Control Algorithms 

Design Using Machine Learning 

Summary: 

This thesis discusses the use of machine learning to design guidance, 

navigation, and control algorithms as an alternative to traditional 

algorithms for a missile system. The machine learning algorithm used in 

this thesis is the neural network. It is trained using the Neuro 

Evolution of Augmenting Topologies algorithm. Furthermore, the missile 

system and its environment have been modeled in order to simulate and 

compare the missile performances. The terminal guidance neural network 

will be compared to the proportional navigation algorithm. In addition, 

the neural network GPS/INS integration will be compared to the Kalman 

filter GPS/INS integration. Moreover, the neural network roll, pitch, 

and yaw autopilots will be compared to the traditional PID roll, pitch, 

and yaw autopilots. The goal of this thesis is to design neural network 

guidance, navigation, and control solutions which is expected to perform 

similar or better than their traditional counterparts. Thereby, the 

viability of the neural network designs as a guidance, navigation, or 

control solution will be verified. 
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Синтеза алгоритама навигације и вођења пројектила заснованих на 

машинском учењу 

Резиме: 

У овој докторској тези се разматра употреба машинског учења у синтези 

алгоритама навигације, управљања и вођења ракете, као алтернативи 

традиционалним алгоритмима. Алгоритам машинског учења који се користи у 

овој докторској тези је заснован на примени неуронских мрежа. Неуронска 

мрежа се обучава Неуро еволуционим алгоритмом са приширеном топологијом. 

Осим тога, извршено је математичко моделовање вођеног пројектила и 

његовог окружења како би се извршиле нумеричке симулације и упоредиле 

његове перформансе. Извршено је поређење неуронске мреже алгоритма 

вођења терминалне фазе са алгоритмом пропорционалне навигације. Осим 

тога, интеграција GPS/INS-а на бази неуронских мрежа је упоређена са 

Калмановим филтром. На крају је дато поређење аутопилота по каналима 

ваљања, пропињања и скретања реализованих неуронским мрежама насупрот 

традиционалним аутопилотима са ПИД управљачким алгоритмима. Циљ ове 

докторске тезе је синтеза алгоритма вођења и управљања пројектила 

применом неуронских мрежа које треба да покаже слично или боље понашање 

од традиционалних решења. Притом, верификује се одрживост решења примене 

неуронских мрежа у синтези алгоритама управљања и вођења. 

Кључне речи: пројектил, вођење, управљање, навигација, синтеза, 
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1. Introduction 

Machine learning has become one of the most popular topics in modern 

technology. It is used by major technological companies such as Google, 

Microsoft, and Apple. That is because machine learning has shown to have 

great potential in solving engineering problems that are otherwise 

difficult to solve. For instance, facial recognition and content 

suggestion all use machine learning as it performs much better than other 

algorithms.  

The purpose of this research is to investigate the potential benefits 

of machine learning in missile guidance, navigation, and control system 

applications. More specifically, this thesis will focus on investigating 

whether machine learning can be used in terminal guidance as an 

alternative to proportional navigation, GPS/INS integration, as an 

alternative to Kalman filter, and roll, pitch, and yaw autopilot as an 

alternative to PID controllers.  

There are several assumptions made about the thesis. The major assumption 

is that the models used to simulate the missile and its environment is 

accurate. Moreover, the guidance computer behavior is assumed to be 

realistic. This means that the microprocessor is expected to behave 

exactly like the simulation. This includes all guidance, navigation, and 

control algorithms as well as the trained neural network algorithm 

counterpart. Hence, the performances are also assumed to be realistic. 

Furthermore, a deep understanding of machine learning and the missile 

system is required. Hence, this thesis will discuss machine learning and 

its training. Then, it will discuss the modeling of the missile system 

and its environment. It will also present the neural network guidance, 

navigation, and control designs. Once an understanding has been 

established, the performances of the traditional and neural network 

guidance, navigation, and control designs will be compared and analyzed 

quantitatively. This allows for the evaluation of the neural network 

designs as a viable solution for the missile system. 
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1.1. Methodology 

1.1.1. Missile Simulation 

Since the missile is an autonomous dynamic system, it needs to be 

accurately modeled and simulated. Therefore, Simulink will be used to 

simulate the environment and the missile. The environment includes 

Earth’s gravity, atmosphere, and transformation matrices. Hence, Earth’s 

gravity will be modeled using the WGS84 standard. In addition, the COESA 

standard will be used to model the variations in wind, pressure, and 

temperature with altitude. Furthermore, the transformation matrices will 

include the Coriolis correction to account for Earth’s rotation.  

Once the environment is modeled, the propulsion of the missile will be 

modeled. This is to account for the thrust forces as well as moments due 

to misalignment. Then, the structural elements such as the variable mass 

and moment of inertia will be modeled. Moreover, the aerodynamic forces 

and moments will be modeled. This generates the physical properties of 

the missile.  

The last step is to model the guidance computer and the actuation system. 

The actuation system consists of all the actuator models of the missile. 

Moreover, the guidance computer contains the traditional missile 

guidance, navigation, and control models. The missile guidance and 

control models allow the missile to reach the target. Additionally, the 

IMU, GPS, and INS algorithm models allow the missile to find its 

location.  

1.1.2. Neural Network Design 

For each of the guidance, navigation, and control, a unique neural 

network will be trained. Then, these neural networks will be integrated 

into the simulation replacing their traditional counterparts. This 

allows for the viability of the neural network as a solution to be 

verified. Furthermore, unlike the traditional neural network which is 

trained by back propagation, this thesis will use Neuro Evolution of 

Augmenting Topologies method to train the neural network. The uniqueness 
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of this training method is that it is an online training method that 

grows a neural network to optimally perform the intended purpose.  

1.1.3. Data Generation and Collection 

The simulation with traditional guidance, navigation, and control will 

be executed with variable initial conditions and target location. Then, 

the simulation with the neural network guidance, navigation, or control 

will be executed with the corresponding variable conditions. The 

performance of each of the guidance, navigation, and control of both 

traditional and neural network simulations will be recorded. Thereby, 

this completes the data generation and collection.  

1.1.4. Data Analysis 

Once the data collection is completed, the performances of each 

corresponding guidance, navigation, or control will be analyzed. The 

performances of the proportional navigation and terminal guidance neural 

network will be compared. In addition, the pure INS, Kalman filter 

integration, and neural network integration errors will be compared to 

the 6 DOF data. Furthermore, the traditional roll, pitch, and yaw 

autopilot performances will be compared to the neural network autopilots. 

A figure of merit will be used to evaluate the performance of the 

traditional and neural network methods. The figure of merit for guidance 

is the miss distance. On the other hand, the figure of merit for the 

navigation error and the autopilot performances is the mean square error. 

This allows the performances of both traditional and neural network 

methods to be quantitatively evaluated.  

1.1.5. Expected Results 

The expected results are that the neural network guidance, navigation, 

and control designs will perform similar or better than their traditional 

counterparts. This means that the viability of the neural network as a 

guidance, navigation, or control solution will be verified. In addition, 

the thesis is expected to overcome the challenges with neural network 

generalization in order to apply the solutions in real life.  
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2. Introduction to Machine Learning 

The advent of machine learning allowed computers to learn from past 

experiences. This means that computers can learn to adapt mathematical 

model behaviors and solve complex problems. Hence, this means that 

computers can solve problems that was otherwise difficult to solve using 

mathematics. In addition, it can reduce the solving complexity of the 

algorithm.  Machine learning is a vast and growing field that is divided 

into multiple categories. Figure 1 shows an example of the machine 

learning categories.  

 

Figure 1 - Machine Learning Fields (1) 

The three major categories of machine learning are supervised, 

unsupervised, and reinforcement learning. Supervised learning happens 

when a set of data is used to train the machine learning algorithm where 

the algorithm receives feedback of its performance. On the other hand, 

unsupervised learning also happens when a set of data is used for 
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training the machine learning algorithm. However, it learns without the 

supervision. In other words, the machine learning algorithm needs to 

figure out its performance independently. Lastly, reinforcement learning 

happens when the machine learning algorithm interacts with the 

environment. Based on that interaction, the algorithm is awarded a 

reward. By maximizing the reward, the optimal algorithm is trained.  

Furthermore, machine learning algorithms can be further classified as 

shown in Figure 2. Here, the supervised learning can be divided into 

classification and regression. Classification happens when a set of input 

are mapped to a certain output. For instance, a set of image feature can 

be classified to be a cat. On the other hand, regression happens when 

the set of input is best fitted to produce an output, similar to linear 

or nonlinear regression. Moreover, unsupervised learning can be labeled 

clustering. That is because the machine learning algorithm tries to make 

sense of the data and groups them in to different clusters.  

 

Figure 2 - Machine Learning Sub-Categories (2)  

Additionally, machine learning algorithm can be categorized based on 

algorithms as seen in Figure 3. Here algorithms such as Support Vector 

Machines (SVM) and Naïve Bayes are used for classification. In addition, 

algorithms such as Support Vector Regressor (SVR) and Decision Tree can 

be used for regression. Moreover, algorithms such as K-means and Hidden 
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Markov Model can be used for clustering. Furthermore, Q-learning 

algorithm can be used for reinforcement learning. 

It is important to note that the neural networks are a rather unique 

family of algorithms. That is because it can be used for classification, 

regression, and clustering. In addition, it can be used for reinforcement 

learning as well. Hence, it can be seen that the neural networks are 

adaptable. It is this exclusive property that is the reason that neural 

networks are the leading algorithms in modern science.  

 

Figure 3 - Machine Learning Algorithms (2) 

2.1. Neural Network 

The machine learning category used in this thesis is the reinforcement 

learning. That is because reinforcement learning allows for the machine 

learning algorithm in the missile to interact with the environment. In 

addition, neural networks algorithm is chosen because of its adaptability 

to different types of learning. 
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2.1.1. Neural Network Design 

Neural networks algorithm is inspired by the brain’s network of neurons. 

Figure 4 shows the biological neuron. Here, the dendrites serve as an 

input to the biological neuron. On the other hand, the axons serve as 

an output to the biological neuron. These networks of neurons are linked 

together as shown in Figure 5 where the dendrites are connected to axons. 

The flow of electric pulses in the brain allows the neurons to 

communicate. This is thought to be the bases of memories and decisions.  

 

Figure 4 - Biological Neuron (3) 

 

Figure 5 - Biological Neural Network (3) 

The artificial neuron shown in Figure 6 is very similar to the biological 

neuron. Here, there are multiple input ports to the artificial neuron 

similar to the dendrites. In addition, there are output ports from the 

artificial neuron similar to the axons. These networks of artificial 

neurons are linked together as shown in Figure 7 where the input and 

output ports are connected to form the Artificial Neuronal Network (ANN) 

or Neural Network (NN). The flow of logic through the neural network is 

how decision is made. 
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Figure 6 - Artificial Neuron (3) 

 

Figure 7 – Artificial Neural Network (3) 

The artificial neuron operational concept is shown in Figure 8. Here, 

each individual input is weighted then summed with all the inputs. The 

sum of the weighted inputs is put through an input-output function.  The 

most common function is the sigmoid function. That is because it produces 

a normalized output for the sum of the inputs. These normalized outputs 

are then inputted into the next set of artificial neurons.  

 

Figure 8 – Artificial Neuron Operational Concept (3) 
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Despite the similarity, the artificial neural network is much simpler 

than its biological counterpart. Figure 9 shows the evolution of the 

artificial network. Here, it can be seen that the biological network is 

simplified into computational neuroscience. These early models were 

computational heavy. Hence, they were simplified in order to form the 

modern artificial neural networks.   

 

Figure 9 - Biological to Artificial Network (4) 

The artificial neural network can be organized as a set of layers. The 

first layer is known as the input layer which is denoted with I. The 

input layer consists of a set of neurons that take in the input to the 

network. The length of the input layer is identical to the number of 

inputs. The second set of layers are the hidden layers which is denoted 

by H. These set of layers can have variable length and width and serve 

as the main computational logic for the network. The last layer is the 

output layer which is denoted by O. These layers serve as the last 

adjustment before the result of the neural network computation is 

exported. Moreover, the length of the layer is identical to the number 

of outputs.  

 

Figure 10 - Neural Network Layers (3) 
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2.1.2. Training 

There are vast amounts of training method for neural networks. Depending 

on the type of the neural network design, the best training method 

differs. Popular training methods such as Bayesian Regularization and 

Scaled Conjugate Gradient all have their strengths and weaknesses. 

However, since this thesis uses a traditional feed forward neural 

network, the most effective training function used for this type of 

networks is the Levenberg-Marquardt (LM) training method (5).  

The LM algorithm is an iterative method for training neural network that 

is depended on back propagation technique. This means that the 

differential error of the neural network prediction is compared to the 

supervised results. This enables the iterative method to adjust the 

neuron weights and thereby train the neural network (5).  

The LM algorithm is an improvement on the Gauss-Newton algorithm that 

is shown in Equation 1. Here, 𝑊𝑖+1 is the updated weight after each 

iteration. In addition, the 𝑊𝑖 is the current weight of the network. The 

current weight is subtracted from the correcting factor. Moreover, the 

Jacobian matrix J consists of all the first derivative weights and bias 

errors. Additionally, the vector of network error is represented by e 

(5).  

 

Equation 1 

 (5) 

 

The LM algorithm shown in Equation 2 adds a correction term to improve 

the training performance. Here, the 𝜇𝑘 term which can be updated with 

each iteration makes the correcting factor invertible (5). 

 

Equation 2 

(5) 
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2.1.3. Genetic Algorithm 

The genetic algorithm (GA) is a biological search algorithm. The 

algorithm is modeled based on the natural selection. This means that the 

biological search algorithm chooses the fittest of the solutions and 

grows it into the next generation and eliminates the unfit solutions. 

In addition, the genetic algorithm also cross breads solutions and 

randomizes it in order to search for a more optimal solution (6). 

Figure 11 show an example of a two-dimensional solution space. Here, 

there are a couple of maxima and minima. Assuming that the solution space 

represents the errors of the design, the task becomes a minimization 

problem. The goal of the genetic algorithm is to search for all the 

minima. Hence, by mimicking biological evolution, the genetic algorithm 

eliminates solutions that are not minima. This is achieved by evaluating 

the solution using fitness function. In addition, it is important to 

note that the genetic algorithm does not have a unique solution because 

it can converge into different local minimum. 

 

Figure 11 - Peak Graph (7) 
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2.1.3.1. Fitness Function 

The fitness function is used as an evaluation criterion for the genetic 

algorithm. The goal of the fitness function is to provide a quantitative 

measurement of the genetic algorithm solution performance. It is 

important to note that output of the fitness function results is a single 

value. Hence, it has to be carefully designed to properly evaluate the 

genetic algorithm with a single value output. This also means that a 

weight 𝑊𝑛 should be assigned to different evaluation criteria that sums 

up the fitness function as shown in Equation 3. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑊1𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1  + 𝑊2𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2 + ⋯+ 𝑊𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑛 Equation 3 

 

One example of an evaluation criteria is the Mean Square Error (MSE) 

shown in Equation 4. Here, the MSE takes the input from two sources, the 

desire and response for instance. Then, it outputs a quantitative 

numerical value that indicates the closeness the two sources are from 

each other. This performs very well when comparing the actual 

performances of a missile system with the desired performances.  

 

Equation 4 

(8) 

2.1.3.2. Stop Criteria 

It is important to identify and choose the correct stop criteria for 

genetic algorithm. That is because the genetic algorithm can converge 

to a local minimum. It can also diverge to infinity. Moreover, it can 

also get stuck in a loop that has very minimal or no improvement from a 

generation to another.   

The stop criteria can be as a form of time limit for the biological 

search. In addition, it can be the average change of solution between 

generations. Moreover, the search algorithm should also be limited within 

a certain search range. These criteria can be set together or alone in 

order to achieve maximum optimization.  
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2.1.4. NeuroEvolution of Augmenting Topologies  

The NeuroEvolution of Augmenting Topologies (NEAT) is a technique that 

utilizes the concept of genetic algorithm and reinforcement learning to 

train the neural network. The weight of the neural network is varied 

with the genetic algorithm. Here, every generation randomizes some 

weights of the neural network while inheriting some others from the 

previous generation.  In addition, the neural network acts as an agent 

that is connected live to the missile environment. This means that the 

neural network algorithm in the guidance computer interacts with the 

missile environment in order to achieve the desired performances. These 

performances are evaluated using fitness function in order to identify 

the fittest and unfit solutions. Therefore, growing the neural network 

to perform the desired functionality. This process can be seen in Figure 

12 (9). 

 

Figure 12 – Neural Network Evolution Concept (9) 
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2.1.5. Challenges  

The neural network generalization problem can present an issue in 

designing a neural network solution. That is because neural networks 

perform very well for repetitive patterns. However, since the missile 

is a dynamic system, it can be a challenge. Moreover, not every 

application can be trained using neural network. The challenge is to 

find a way to train the neural network that will successfully perform 

adequately for all situations. In addition, the selection of inputs and 

outputs for the training is challenging. That is because there are no 

agreed upon rules for choosing the inputs and the outputs for the neural 

network. Consequently, the selection of the incorrect inputs and outputs 

can result in very different neural network performance.  

Since there are several neural network designs, choosing the optimal 

neural network design is a challenge. That is because the design of the 

neural network affects the performance greatly. For instance, a 

feedforward network might be simpler but prone to errors. However, a 

cascade forward network reduces the error but adds complexity to the 

system. The complexity of the network design also extends to the number 

of layers of the network. Once again, the lower network size might not 

be sufficient to produce the optimal result while high network size might 

make the network too generalized.  

Additionally, since the neural network field is rather modern, there 

aren’t many platforms that supports it. And some that support it have 

limited functions or require deep knowledge of the field. For instance, 

MATLAB and Simulink support neural network design. However, the support 

is limited. This means that in order to have full control of the neural 

network, deep knowledge is required.   

Moreover, the training of neural networks requires a lot of computation 

power. This means that it will require a lot of time to design any 

network, let along optimizing it. In addition, high computation power 

is not readily available. This means that every training needs to be 

understood properly. Moreover, it also means that the results should be 

predicted before the initiation of the training to optimize time.  
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3. Mathematical Modeling 

3.1. Missile Environment 

Since the missile is flying on Earth, its environment needs to be 

modeled. This is achieved by using the gravitational model as well as 

the atmospheric model. In addition, the missile needs to be seen from 

different perspective. Hence, coordinates frames allow for such point 

of view. Moreover, Transformation matrices allow for the transition 

between different coordinate frames. Furthermore, quaternions allow for 

a more efficient way to calculate the transition between the coordinate 

frames.  

3.1.1. Gravitational Model 

Earth’s gravity is not consistent throughout the planet. Hence, a 

mathematical model was developed to model these changes. The estimation 

of the changes in gravity ranges from basic to more complex models. The 

basic models enable easier computations while the more complex ones are 

more accurate.  

3.1.1.1. Flat Earth Model 

The flat earth model assumes that Earth is not rotating and that the 

gravitational acceleration g is constant. This is the simplest model and 

it allows for a quick estimation of the missile’s trajectory. This model 

is important for short range missiles where the gravitational 

acceleration and Earth’s rotation has minimal effects on the trajectory. 

The gravitational acceleration can be calculated using Newton’s law of 

gravity as shown in Equation 5. 

𝑔 = 𝐺
𝑀

𝑟2
 

𝑤ℎ𝑒𝑟𝑒 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (𝐺) = 6.67 x 10−11Nm2kg−2 

𝑀 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐸𝐴𝑅𝑇𝐻 6 x 1024kg 

𝑟  𝑡𝑜 𝑒𝑎𝑟𝑡ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 6.371 x 106m 

Equation 5 

(10) 
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3.1.1.2. Spherical Earth Model 

The spherical earth model also assumes that Earth’s gravity is constant. 

However, unlike the flat earth model, the spherical earth model considers 

the rotation of Earth as seen in Figure 13. In addition, the effect of 

Earth’s curvature is also modeled. This model is important for medium 

range missiles where the rotation of Earth has an effect on the missile’s 

trajectory. However, the gravitational acceleration effects are minimal. 

 

Figure 13 - Spherical Earth Model (11) 

3.1.1.3. Elliptical Earth Model 

The most popular earth model is the elliptical earth model. That is 

because it considers the changes in gravitational acceleration as well 

as the rotation of Earth. Although Earth is not elliptical, the 

estimation obtained from the elliptical model is accurate enough. This 

model is important for long range missiles where the rotation of Earth 

and gravitational acceleration have an effect on its trajectory. One of 

the most popular elliptical models is the WGS84 as shown in Figure 14.  
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Figure 14 - Elliptical Earth Model (12) 

The WGS84 model defines the ellipsoid using the following characteristic 

equations.  

𝐸𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 𝑎 = 6378137m 

Equation 6 - 

WGS84 

(12) 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔
1

𝑓
=  298.25 

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 𝑓 =  0.00335281 

𝑆𝑒𝑚𝑖𝑚𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝑏 =  𝑎(1 − 𝑓) =  6356752.314m 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑒 = √𝑓(2 − 𝑓) =  0.08181919 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒 = 𝜔𝑖𝑒 = 7.29 x 10−5
rad

s
 

𝑀𝑒𝑟𝑖𝑑𝑖𝑎𝑛 𝑅𝑎𝑑𝑖𝑢𝑠 𝑅𝑀(𝜙) =
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2(𝜙))
3
2

 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 𝑅𝑁(𝜙) =
𝑎

(1 − 𝑒2 sin2(𝜙))
1
2

 

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑔 = [
0
0

𝛾(𝜙)
] + [

𝜁𝑔
𝜂𝑔

𝛿𝑔

] 

𝑊ℎ𝑒𝑟𝑒 

𝛾𝑒 =  9.7803267715
m

s2
 𝑎𝑛𝑑 𝛾(𝜙) =  𝛾𝑒

1 + 0.0019 sin2(𝜙)

√1 − 0.00669 sin2(𝜙)
 

[

𝜁𝑔
𝜂𝑔

𝛿𝑔

]  𝐴𝑟𝑒 𝑇ℎ𝑒 𝐿𝑜𝑐𝑎𝑙 𝑃𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑉𝑒𝑐𝑡𝑜𝑟  
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3.1.2. Atmospheric Model 

As altitude increases, the temperature, pressure, and density of air 

changes. There is no universal standard to model the changes of the 

atmosphere. However, the most popular standards are the International 

Standard Atmosphere (ISA) and the Committee on Extension to the Standard 

Atmosphere (COESA). This thesis will use the COESA standard which is 

shown in Table 1. The atmospheric model is important because the air 

pressure and density significantly affects the performance of the 

missile. Hence, the accuracy of the model is essential. 

 

Table 1 - COESA Atmospheric Model (13) 

3.1.3. Coordinate Frames 

There are several types of coordinate frames each with a unique 

perspective design for a particular usage. There is no limit to number 

of coordinate frames that could be defined. Nonetheless, this thesis 

will discuss the most commonly used frames in the missile applications.  

3.1.3.1. Body Fixed Frame 

The body frame is located at the center of gravity (CG) of the missile 

as seen on Figure 15. This frame is used to see from the missile’s 

perspective. It is useful because aerodynamic and thrust forces and 

moments act along the frame’s axis. Therefore, the forces and moments 

are more intuitive.   
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Figure 15 - Body Fixed Frame (14) 

3.1.3.2. Sensor Frame 

Modern missiles depend on the Inertial Measure Unit (IMU), shown in 

Figure 16, to estimate its orientation and position. Since the IMU is 

not aligned with the CG of the missile but is mounted on it, a unique 

frame is defined. This frame enables the navigation algorithm to 

compensate the difference between the sensor placement and the body 

frame.  

 

Figure 16 - Strapped Down IMU (15)  

3.1.3.3. Navigation or North East Down (NED) Frame 

Figure 17 shows the navigation frame placed on Earth where one axis is 

pointed directly north, one east, and one down. This aligns the 

navigation frame with the planet. The navigation frame is centered at 

the launching point of the missile. This is so that the missile always 

fires at initially zero coordinates. Hence, this allows for the distance 

travelled and the deviation to be more intuitive. 
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Figure 17 - Navigation Frame (12) 

3.1.3.4. Wander Frame 

The wander frame is identical to the navigation frame with one key 

difference. Since the navigation frame always points towards north and 

east, unless the missile is fired directly north or east, the distance 

travelled will have an azimuth angle component. In order to remove the 

effect of the angle, the wander frame is created. As seen in Figure 18, 

the wander frame is tilted away from the navigation frame, this means 

that as long as the missile is travelled forward the Y component will 

increase and as long as there is a right deviation, the X component will 

increase. It is important to note that the X and Y conventions here are 

for the navigation frame with East North Up (ENU) convention.  

 

Figure 18 - Wander Frame (16) 
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3.1.3.5. Earth Centered Earth Fixed (ECEF) Frame 

The ECEF frame is the frame that represents Earth without rotation. As 

seen in Figure 19, the ECEF frame is center at the planet’s core with a 

plane on the equator and another on the prime meridian. The frame is 

fixed to the planet, and hence, moves with it. This means that it cannot 

see the Earth’s rotation. This frame is important because it allows the 

missile to be absolutely localized within the planet.  

 

Figure 19 - ECEF Frame (17) 

3.1.3.6. Earth Centered Inertial (ECI) Frame 

The ECI frame is also centered at the core of the planet. However, unlike 

the ECEF frame, one of the ECI planes are on the Equinox. This means 

that the frame remains stationary while Earth rotates which allows it 

to see Earth’s rotation. This frame is especially important for long 

distance flights where Earth’s rotation affects the flight trajectory. 

 

Figure 20 - ECI Frame (16) 
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3.1.3.7. Geodetic Frame 

Another frame that has its center on Earth’s core is the geodetic frame. 

Similar to the ECEF frame, the planes of the geodetic frame are on the 

meridian and the equator. However, the geodetic frame uses a polar system 

to represent the coordinates. This allows for easier computation. In 

addition, global positioning systems use the geodetic frame which makes 

it very essential. 

 

Figure 21 – Geodetic Frame (17) 

3.1.4. Transformation Matrix  

The transformation matrix allows the transition between the coordinate 

frames. This is important because it allows for the missile’s forces and 

moments to be seen from a different perspective. 

3.1.4.1. Body to Navigation Frame 

The transformation matrix from the body frame to navigation frame is 

shown in Equation 7. Since there are three rotations, the transformation 

matrix is broken down into its components of roll, pitch, and yaw. Each 

transformation matrix component can be multiplied with forces or moments 

in order to change their perspective. It is important to note that the 

order of multiplication matters. Equation 7 shows the yaw-pitch-roll 

order.  In addition, it is essential to keep in mind the ranges specified 

in Equation 7. That is because the pitch angle 𝜃 can align the roll and 

yaw axis which causes singularity in the XYZ or ZYX Euler angle 

notations. This could happen when 𝜃 is 
𝜋

2
rad or 

3𝜋

2
rad.  
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𝑅𝑜𝑙𝑙 𝑇𝑟𝑎𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥  𝑇𝑅𝑜𝑙𝑙 = [
1 0 0
0 cos 𝜙 sin 𝜙
0 −sin 𝜙 cos 𝜙

] 

Equation 7 

(14) 

𝑃𝑖𝑡𝑐ℎ 𝑇𝑟𝑎𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥  𝑇𝑃𝑖𝑡𝑐ℎ = [
cos 𝜃 0 −sin 𝜃
0 1 0

sin 𝜃 0 cos  𝜃
] 

𝑌𝑎𝑤 𝑇𝑟𝑎𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥  𝑇𝑌𝑎𝑤 = [
cos 𝜓 sin 𝜓 0
−sin 𝜓 cos 𝜙 0

0 0 1
] 

Body to Navigation Transformation Matrix  𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

 

𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

=  𝑇𝑅𝑜𝑙𝑙 ∗ 𝑇𝑃𝑖𝑡𝑐ℎ ∗  𝑇𝑌𝑎𝑤 = 

 

 

3.1.4.2. ECEF To Navigation Frame 

Equation 8 shows the transformation matrix from ECEF to Navigation frame. 

There are two transitions between the two frames. The latitude 

transformation matrix  𝑇 𝜙 and the longitude transformation matrix 𝑇𝜆 are 

multiplied in longitude-latitude order. The transformation is 

illustrated on Figure 22. 

𝑇𝜆 = [
cos 𝜆 sin 𝜆 0
−sin 𝜆 cos 𝜆 0

0 0 1
] 

Equation 8 

(12) 
𝑇 𝜙 = 

[
 
 
 
 cos (𝜙 +

𝜋

2
) 0 sin (𝜙 +

𝜋

2
)

0 1 0

−sin(𝜙 +
𝜋

2
) 0 cos (𝜙 +

𝜋

2
)]
 
 
 
 

=  [
−sin 𝜙 0 cos ϕ

0 1 0
−cos 𝜙 0 −sin ϕ

] 

𝑇𝐸𝐶𝐸𝐹
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

= 𝑇 𝜙 ∗  𝑇𝜆 = [
− sin𝜙 𝑐𝑜𝑠 𝜆 − sin𝜙 𝑠𝑖𝑛 𝜆 cos𝜙

− sin𝜆 𝑐𝑜𝑠 𝜆 0
−cos𝜙 𝑐𝑜𝑠 𝜆 − cos𝜙 𝑠𝑖𝑛 𝜆 − sin𝜙

] 



 

 

 

 

25 | P a g e  

 

 

Figure 22 - Transformation Matrix ECEF to Navigation (12) 

3.1.4.3. Geodetic to ECEF Frame 

The transformation from geodetic to ECEF Frame can be completed with a 

system of equations shown in Equation 9. Here, the WGS84 model’s 

parameters are used to transform the coordinates. 

𝑥 = (𝑅𝑁 + ℎ)cos 𝜙cos 𝜆 
Equation 9 

(12) 
𝑦 = (𝑅𝑁 + ℎ)cos 𝜙sin 𝜆 

𝑧 = (𝑅𝑁(1 − 𝑒2) + ℎ)sin 𝜙 

3.1.4.4. Properties of Transformation Matrix 

A unique property of the transformation matrix is the fact that it is 

orthogonal. This means that the determinant of the matrix is one. In 

addition, it means that the transpose of the matrix is also its inverse. 

This allows for simplified mathematical operations.  

3.1.4.5. Puasson Equation 

Earth’s rotation has an effect on the derivative of the transformation 

matrix. Hence, the effect is compensated using Puasson’s equation shown 

in Equation 10. 𝑅𝐼 is an arbitrary matrix in an inertial frame, or a frame 

where the point of origin is moving. On the other hand, 𝑅𝑚 is an arbitrary 

matrix in a non-inertial frame, or a frame that its point of origin is 

not moving. Here, �̆�𝑚 is the skew matrix of the rotational rates. 
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�̇�𝐼 = �̇�𝑚 + �̆�𝑚𝑅𝐼 

Equation 10 

(16) 
�̆�𝑚 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] 

3.1.5. Quaternions Matrix 

An alternative way to calculate the transition between coordinates frame 

is by using quaternions. The challenge with transformation matrix is 

that it requires the computation of trigonometry functions, which can 

be computationally heavy. Hence, a four-dimensional complex number 

method is used as shown in Equation 11.  

 𝑄 = 𝑞0 +  𝑞1i +  𝑞2j +   𝑞3k 
Equation 11 

(16) 

3.1.5.1. Euler Angles to Quaternions 

In order to use quaternions, Euler Angles are used to initialize 

quaternions. This can be accomplished using Equation 12.Here, 𝜇 is the 

intensity of rotation, 𝛼 ,  𝛽, and 𝛾 are the rotation angles respectively. 

𝑞0 = cos
𝜇

2
 

Equation 12 

(16) 

𝑞1 = sin
𝜇

2
cos𝛼 

𝑞2 = sin
𝜇

2
cos𝛽 

𝑞3 = sin
𝜇

2
cos𝛾 
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3.1.5.2. Quaternions to Euler Angles 

Quaternion can also be converted back into Euler Angles. This is done 

using Equation 13. 𝜙, 𝜃,and 𝜓 are roll, pitch, yaw, angles respectively.  

sin𝜃 = − 2(𝑞2𝑞0 + 𝑞1𝑞3) 

Equation 13 

(17) 
𝜙 = arctan2[2(𝑞2𝑞3 − 𝑞1𝑞0), 1 − 2(𝑞1

2 + 𝑞2
2)] 

𝜓 = arctan2[2(𝑞1𝑞2 − 𝑞3𝑞0), 1 − 2(𝑞2
2 + 𝑞3

2)] 

3.1.5.3. Transformation Matrix to Quaternions 

An alternative way of initializing quaternions is by using the already 

established transformation matrix 𝑇. Here, the elements of the 

transformation matrix are used to calculate the initial quaternions as 

shown in Equation 14. 

𝑄 = 

[
 
 
 
 
 
 
 
 

𝑇[3,2] − 𝑇[2,3]

4𝑞0

𝑇[1,3] − 𝑇[3,1]

4𝑞0

𝑇[2,1] − 𝑇[1,2]

4𝑞0

1

2
√1 + 𝑇[1,1] + 𝑇[2,2] + 𝑇[3,3]]

 
 
 
 
 
 
 
 

 
Equation 14 

(17) 

3.1.5.4. Quaternions to Transformation Matrix 

Similarly, quaternions can be converted into transformation matrix. This 

can be accomplished using Equation 15.  

𝑇 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞3𝑞0) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 
Equation 15 

(16) 
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3.1.5.5. Rotation Rates to Quaternion Derivative 

Rotational rates p, q, and r can be used to calculate the next quaternion 

step. However, it is calculated with a differential order. The quaternion 

can be obtained by integration of the derivative of quaternion.  

�̇� =  [

𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1
−𝑞2 𝑞1 𝑞0

−𝑞1 −𝑞2 −𝑞3

] [
𝑝
𝑞
𝑟
] 

Equation 16 

(17) 

3.1.5.6. Quaternions Normalization  

In order to improve computational performance, quaternions can be 

normalized using Equation 17. This aids the computation from quaternions 

to transformation matrix. 

𝑁(𝑄) =
𝑞0 + 𝑞1i +  𝑞2j +  𝑞3k

√𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2
 

Equation 17 

(18) 

3.1.5.7. Quaternions Puasson Equation 

The Puasson’s equation can also be represented using quaternion. This 

allows for the computation to be done in the quaternion domain using 

Equation 18. 

�̇� =
1

2
𝑄𝜔 

Equation 18 

(16) 

3.1.5.8. Quaternions Coordinate Transformation 

Coordinate transformation can be done with quaternions 𝑄 and its 

conjugate 𝑄∗. Equation 19 shows the transformation from an arbitrary 

inertial frame 𝑅𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙  to a non-inertial frame 𝑅𝑁𝑜𝑛 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 . 

𝑅𝑁𝑜𝑛 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝑄𝑅𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑄
∗  

Equation 19 

(16) 
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3.2. Missile Kinematics 

Missile Kinematics is the description of how forces and moments impact 

the missile’s body. Since the missile is considered as a rigid body, 

traditional kinematics laws can be used to describe the equations of 

motion. 

3.2.1. Forces and Moments 

Typically, there are six Degrees of Freedom (6DOF) in a missile. There 

are three translational forces and three rotational moments. The 

corresponding equations in vector form are shown in Equation 20.  

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒  ∑𝐹 = 𝑚𝑎 
Equation 20 

(14) 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑚𝑒𝑛𝑡  ∑𝜏 =
d

dt
(𝑟 x 𝑚𝑉) 

 

Figure 23 illustrates the 6DOF of the missile. Here, u, v, and w represent 

the translational velocities while P, Q, and R represents the rotational 

velocity.  

 

Figure 23 - 6 Degrees of freedom (14) 
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The force 𝐹 can be broken down into three components 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧. Hence, 

the rewritten form is shown in Equation 21.  

𝐹𝑥 =
d(𝑚𝑢)

dt
, 𝐹𝑦 =

d(𝑚𝑣)

dt
, 𝐹𝑧 =

d(𝑚𝑤)

dt
 

Equation 21 

(14) 

 

In addition, the moment 𝜏 can be broken down into three components 𝐿, 𝑀, 

and 𝑁. Hence, the rewritten form is shown in Equation 22. Here, 𝐻 is the 

moment of momentum. 

𝐿 =
d𝐻𝑥

dt
,𝑀 =

d𝐻𝑦

dt
, 𝑁 =

d𝐻𝑧

dt
 

Equation 22 

(14) 

 

3.2.2. Inertial Effects on Forces 

Since the missile body is on an inertial frame, the Puasson’s form of 

the force formula is shown in Equation 23. 

𝐹 = 𝑚 [
d𝑉𝑀

dt
]
𝑏𝑜𝑑𝑦

+  𝑚(𝜔 × 𝑉𝑀),  

where 𝑉𝑀 is missile’s velocity  

𝜔 is rotational rate 

Equation 23 

(14) 

 

The cross multiplication of the missile’s velocity and the rotational 

rates results in Equation 24. 

𝜔 × 𝑉𝑀 = (𝑤𝑄 − 𝑣𝑅)i + (𝑢𝑅 − 𝑤𝑝)j + (𝑣𝑃 − 𝑢𝑄)k 
Equation 24 

(14) 
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This means that summation form of Equation 23 can be broken down into 

components as shown in Equation 25. 

∑𝐹𝑥 = 𝑚(�̇� + 𝑤 − 𝑣𝑅) 

Equation 25 

(14) 
∑𝐹𝑦 = 𝑚(�̇� + 𝑢𝑅 − 𝑤𝑃) 

∑𝐹𝑧 = 𝑚(�̇� + 𝑣𝑃 − 𝑢𝑄) 

3.2.3. Inertial Effects on Moments 

In addition, there are inertial effects on the missile’s moments. That 

is because the velocity components of Equation 20 for rotational moments 

is affected by inertial. Hence, the Puasson form of the equation needs 

to be considered as shown in Equation 26. 

[
d𝑟

dt
]
𝑏𝑜𝑑𝑦

= [
d𝑟

dt
]
𝑁𝑜𝑛𝑒 𝐼𝑛𝑒𝑡𝑖𝑎𝑙

+ 𝜔 × 𝑟 

𝑆𝑖𝑛𝑐𝑒 [
d𝑟

dt
]
𝑁𝑜𝑛𝑒 𝐼𝑛𝑒𝑡𝑖𝑎𝑙

= 0 

𝑉 =  𝜔 × 𝑟 

Equation 26 

(14) 

 

Considering the effect of the inertial on the velocity, the updated 

moment of momentum equation is shown in Equation 27.   

𝐻 = 𝑟 × 𝑚𝑉 = 𝑚𝑟 × (𝜔 × 𝑟) 
Equation 27 

(14) 

 

The cross multiplication of the moment distance and the rotational rates 

results in Equation 28. 

𝑟 × (𝜔 × 𝑟) = [(𝑦2 + 𝑧2)𝑃 − 𝑥𝑦𝑄 − 𝑥𝑍𝑅]i + [(𝑧2 + 𝑥2)𝑄 − 𝑦𝑧𝑅 − 𝑥𝑦𝑃]j

+ [(𝑥2 + 𝑦2)𝑅 − 𝑥𝑧𝑃 − 𝑦𝑧𝑄]k  

Equation 28 

(14) 
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It is important to note that Equation 22 holds true if the object of the 

rotation is a particle. However, since missile is an entire body, the 

moment of momentum equations is shown in Equation 29. 

𝐻 = ∑r × mV = ∑mr × (ω × r) 

𝐻 = (∑𝑚𝑟2)𝜔 − ∑𝑚𝑟(𝑟 ∙ 𝜔) 

𝐻 = ∑δH = ∑(𝑟 × 𝑉)dm + ∑[𝑟 × (𝜔 × 𝑟)] dm  

𝑆𝑖𝑛𝑐𝑒 ∑(𝑟 × 𝑉)dm = 0  

δH = ∑[𝑟 × (𝜔 × 𝑟)]dm 

H = ∫ 𝑟 × (𝜔 ×𝑟)dm 

Equation 29 

(14) 

 

By using Equation 29, the components of the moment of momentum can be 

written as in Equation 30. 

𝐻𝑥 = 𝑃 ∫(𝑦2 + 𝑧2)dm − 𝑅 ∫𝑥𝑧 dm = 𝑃𝐼𝑥𝑥 − 𝑅𝐼𝑥𝑧 

Equation 30 

(14) 
𝐻𝑦 = 𝑄 ∫(𝑥2 + 𝑧2)dm = 𝑄𝐼𝑦𝑦 

𝐻𝑧 = 𝑅 ∫(𝑥2 + 𝑦2)dm − 𝑃 ∫𝑥𝑧 dm = 𝑅𝐼𝑧𝑧 − 𝑃𝐼𝑥𝑧 

 

Hence, the derivative can be taken to result in Equation 31. 

d𝐻𝑥

dt
=  

d𝑃

dt
𝐼𝑥𝑥 − 

d𝑅

dt
𝐼𝑥𝑧 

Equation 31 

(14) 

d𝐻𝑦

dt
=  

d𝑄

dt
𝐼𝑦𝑦 

d𝐻𝑧

dt
=  

d𝑅

dt
𝐼𝑧𝑧 −

d𝑃

dt
𝐼𝑧𝑧 
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The Puasson form of the moment equation is presented in Equation 32. 

∑𝑀 = (
d𝐻

dt
)

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
+ 𝜔 × 𝐻 

Equation 32 

(14) 

 

Here, the result of the cross multiplication of the rotation rates and 

moment of momentum is shown in Equation 33. 

𝜔 ×  𝐻 = (𝑄𝐻𝑧 − 𝑅𝐻𝑦)i + (𝑅𝐻𝑥 − 𝑃𝐻𝑧)j + (𝑃𝐻𝑦 − 𝑄𝐻𝑥)k 
Equation 33 

(14) 

 

By substituting Equation 33 and  Equation 31 in Equation 32, the 

resultant final summation form of the moment equations components is 

shown in Equation 34. 

∑𝐿 = �̇�𝐼𝑥 − �̇�𝐼𝑥𝑧 + 𝑄𝑅(𝐼𝑧 − 𝐼𝑦) − 𝑃𝑄𝐼𝑥𝑧 

Equation 34 

(14) 
∑𝑀 = �̇�𝐼𝑦 + 𝑃𝑅(𝐼𝑥 − 𝐼𝑧) + (𝑃2 − 𝑅2)𝐼𝑥𝑧 

∑𝑁 = �̇�𝐼𝑧 − �̇�𝐼𝑥𝑧 + 𝑃𝑄(𝐼𝑦 − 𝐼𝑥) + 𝑄𝑅𝐼𝑥𝑧 

 

3.2.4. Translational Equations of Motion 

The acceleration of the missile can be calculated from the forces and 

rotation rates as presented in Equation 35. 
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d𝑢

dt
= 𝑅𝑣 − 𝑄𝑤 +

𝐹𝑥
𝑚
 

Equation 35 

(14) 

d𝑣

dt
= 𝑃𝑤 − 𝑅𝑢 +

𝐹𝑦

𝑚
 

d𝑤

dt
= 𝑄𝑢 − 𝑃𝑣 +

𝐹𝑧
𝑚
 

 

3.2.5. Rotational Equations of Motion 

Although unintuitive, the derivative of Euler angles cannot be converted 

directly into rotation rates. The proper way of converting derivative 

of Euler angles to rotation rates, with the matrix form, is presented 

in Equation 36. 

𝑃 =
d𝜙

dt
− (

d𝜓

dt
)sin θ 

Equation 36 

(14) 

𝑄 = (
d𝜃

dt
) cos ϕ + (

d𝜓

dt
) cos 𝜃 sin ϕ 

𝑅 = (
d𝜓

dt
) cos θ cos ϕ − (

d𝜃

dt
) sin ϕ 

[
𝑃
𝑄
𝑅
] = [

1 0 −sin 𝜃
0 cos 𝜙 cos 𝜃 sin 𝜙
0 −sin 𝜙 cos 𝜃 cos 𝜙

] [

�̇�

�̇�
𝜓

] 
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3.3. Propulsion Model 

The missile propulsion system consists of two subsystems. The booster 

and the sustainer. The purpose of the booster is to launch the missile 

and give it the push it needs to get off the ground and reach a desired 

state. The sustainer on the other hand is to maintain the velocity of 

the missile in order to extend its range. Figure 24 presents a simplified 

model of the turbojet engine. Here, it can be seen that turbojet engine 

is made up of compressor, fuel injection, combustion section, turbine 

section, and nozzle.  

 

Figure 24 - Simplified Turbojet Engine (19) 

This thesis will not discuss the turbojet engine modeling. However, the 

modeling principles are similar. The focus of this thesis will be the 

modeling of a rocket motor engine shown in Figure 25. The rocket motor 

consists of a combustion chamber and nozzle. 

 

Figure 25 – Simplified Rocket Motor (19) 
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3.3.1. Thrust Profile  

Typically, the missile propulsion is modeled using the thrust profile. 

Figure 26 shows the thrust profile of the booster used in this paper. 

The thrust profile is a plot of the magnitude of thrust force 𝐹𝑇 in (dN) 

with time.  

 

Figure 26 - Booster Thrust Profile 

By using the thrust profile, the total impulse 𝐼𝑡 can be calculated as 

shown in Equation 37. The total impulse is the amount of thrust energy 

in the booster.  

𝐼𝑡 = ∫ 𝐹𝑇𝑑𝑡
𝑡

0

 ~ 𝐹𝑇𝑡 
Equation 37 

(19) 

Another important parameter is the specific impulse 𝐼𝑠 shown in Equation 

38. The specific impulse is the measurement of the quality of the 

propellant. Here 𝑚𝑝 and 𝑤𝑝 is the mass and weight of propellent 

respectively.  

𝐼𝑠 =
𝐼𝑡

𝑚𝑝𝑔
=

𝐼𝑡

𝑤𝑝
  

𝐼𝑠 =
𝐹

𝑚𝑝̇ 𝑔
=

𝐹

𝑤�̇�
 

Equation 38 

(19) 
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3.3.2. Thrust Forces, Moments, and Misalignment 

Ideally, the booster acting point 𝑋𝑇 should be aligned perfectly with 

the missile’s center of gravity 𝑋𝑐𝑔. However, in reality it is virtually 

impossible to align the two points. That is because 𝑋𝑐𝑔 is changing 

throughout the flight as the propellent is being consumed. This in 

essence caused unwanted forces and moments on the missile. Hence, it is 

important to consider them in modeling the booster. Figure 27 show the 

representation of thrust misalignment. Here, 𝜖𝑦 and 𝜖𝑧 are the 

misalignment angles.  

 

Figure 27 – Thrust Misalignment (20) 

By analyzing Figure 27, Equation 39 can be developed. Here, the thrust 

force is broken down into smaller thrust components while taking 

misalignment effects into consideration.  

𝐹𝑥
𝑇 = 𝐹𝑇√1 − sin2 𝜖𝑦 −sin2 𝜖𝑧 

Equation 39 

(20) 

𝐹𝑦
𝑇 = 𝐹𝑇sin𝜖𝑧 

𝐹𝑧
𝑇 = −𝐹𝑇sin𝜖𝑦 

𝐹𝑇 = �̇�𝐼𝑠𝑝 − 𝐴𝑒𝑝𝑎 
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In addition to force misalignment effects, there are moment effects due 

to misalignments 𝑀𝑇. Similar to the force case, the thrust moment can 

be broken down into components that takes into consideration the 

misalignment effects as shown in Equation 40. 

𝑀𝑥
𝑇 = 0 

Equation 40 

(20) 
𝑀𝑦

𝑇 = 𝐹𝑧
𝑇(𝑋𝑇 − 𝑋𝑐𝑔) 

𝑀𝑦
𝑇 = −𝐹𝑦

𝑇(𝑋𝑇 − 𝑋𝑐𝑔) 

3.4. Aerodynamic Model 

The missile aerodynamics can be modeled by observing the behavior of the 

missile due to the changes in conditions. For instance, the pitch moment 

of the missile can be observed during the change of angle of attack or 

velocity. The observed behavior can be written as an equation with a set 

of aerodynamic derivatives. The observed behavior can be aerodynamics 

forces or moments. It is important to note that the aerodynamics forces 

and moments act on the center of pressure (CP) as shown in Figure 28. 

 

Figure 28 - Missile Center of Pressure (14) 

3.4.1. Aerodynamics Derivatives 

The equation made from aerodynamic derivatives can be linear or non-

linear. The linear equations are good for initial approximation. However, 

since accuracy is a priority, non-linear equations are preferred. Hence, 

Equation 41 shows the aerodynamics equations and derivatives used to 

model the missile in this thesis. It is important to note that the 

equations provided are of general form in order to be comprehensive.  



 

 

 

 

39 | P a g e  

 

 

,  ,  ld lp nd mq md mq

pd rd qd
C C C C C C

V V V
= = =  

2 2 2 = +  

2

2

0 00 0m m m
C C C


= +   

2

2

0 00 0n n n
C C C


= +   

2

2

0 00 0N N N
C C C


= +   

2

2

0 00 0Y Y Y
C C C


= +   

2

2

0 00l l l
C C C


= +   

( ) ( )3 2

2 2 2 2

m m m mm m
C C C C C   

         =  +  + +  +  +
     

( ) ( )3 2

2 2 2 2

N N N mN N
C C C C C   

         =  +  + +  +  +
     

( ) ( ) ( )2 2
2 2 2 2 2

00A A n m A A m nA A
C C C C C C  

      = + + + + + + −  

( )
( )

3 2 2

2 2

2 2 2 2

0

N N N mN N Y

n N NN Y

C C C C C C

C C C C

     

   

     



   = + + + + + −  

− − + +
 

( )
( )

3 2 2

2 2

2 2 2 2

0

Y N N nN N Y

m YN Y

C C C C C C

C C C

     

   

     



   = − + + + + + −  

− − +
 

( ) ( )2
2 2

0m n l ldC C C C C C  
     = + + + + + +

 
 

( )
( )

3 2 2

2 2

2 2 2 2

0

n m m nm m n

m n ndm n

C C C C C C

C C C C

     

   

     



   = − + + + + + −  

− − + +
 

( )
( )

3 2 2

2 2

2 2 2 2

0

m m m mm m n

n m m mdm n

C C C C C C

C C C C C

     

   

     



   = + + + + +  

− − + + +
 

Equation 41 

(21) 
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3.4.2. Aerodynamics Forces 

Once the equations made from aerodynamic derivatives result in 

aerodynamic force coefficients. These coefficients are used to calculate 

the aerodynamic forces using Equation 42. 

𝐹𝑋 = −𝐹𝐴𝑥𝑖𝑎𝑙 =  
1

2
𝜌𝑉2𝑆𝐶𝐴 

Equation 42 

(14) 𝐹𝑌 = 𝐹𝑆𝑖𝑑𝑒 =
1

2
𝜌𝑉2𝑆𝐶𝑌 

𝐹𝑍 = −𝐹𝑁𝑜𝑟𝑚𝑎𝑙 =
1

2
𝜌𝑉2𝑆𝐶𝑁 

3.4.3. Aerodynamics Moments 

Similar to the aerodynamic force, the aerodynamic derivatives equations 

can result in aerodynamic moments coefficients. These coefficients are 

used to calculate aerodynamic moment using Equation 43. 

𝐿 =  
1

2
𝜌𝑉2𝑆𝐶𝑙𝑑 

Equation 43 

(14) 𝑀 =
1

2
𝜌𝑉2𝑆𝐶𝑚𝑑 

𝑁 =
1

2
𝜌𝑉2𝑆𝐶𝑛𝑑 

3.4.4. Aerodynamics Transfer Functions 

Aerodynamic transfer functions allow for the missile behavior to be 

simplified. This simplification allows for quick analysis of the missile. 

In addition, the linear time invariant model serves as a reference for 

the missile control loop. This allows for the missile autopilot to be 

design and tested before implementing it with the complete dynamics. 
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3.4.4.1. Dynamic Variables 

In order to define the aerodynamic transfer function, a set of dynamic 

variables, shown in Equation 44, should be defined. These variables are 

used to simplify the complex representation of the transfer function.  

𝑧𝜂 =
−𝑄𝑆. 𝐶𝑁𝜂

𝑚
 

𝑚𝑤 =
𝑄𝑆𝑙

𝐽𝑦
∙
𝑙

𝑈
∙ (𝐶𝑚𝛼 +

𝑙

𝑉
∙ 𝐶𝑚�̇�𝑧𝑤) 

𝑚𝜂 = 
𝑄𝑆𝑙

𝐽𝑦
∙ (𝐶𝑚𝜂 −

𝑙

𝑈2
∙ 𝐶𝑚�̇�𝑧𝜂) 

Equation 44 

(22) 

3.4.4.2. Control Variables 

There are two important control variables for transfer function which 

as natural frequency 𝜔𝑛
2 and damping factor 𝜁𝑛 and shown in Equation 45. 

𝜔𝑛
2 = −(𝑚𝑤𝑈 − 𝑧𝑤𝑚𝑞) 

𝜁𝑛 = −
𝑚𝑞 + 𝑧𝑤

2𝜔𝑛

 

Equation 45 

(22) 

3.4.4.3. Roll Transfer Function 

The roll factor of reinforcement 𝐾𝜙 and time constant 𝑇𝜙 in Equation 46 

are used to simplify the roll transfer function. 

𝐾𝜙 = −
𝑙𝜉

𝑙𝑝
 

𝑇𝜙 = −
1

𝑙𝑝
 

Equation 46 

(22) 

 

Hence, with all the parameters at hand. The roll transfer function can 

be represented as shown in Equation 47. 

𝑅𝑜𝑙𝑙 𝑅𝑎𝑡𝑒 𝑇𝐹: 
𝑝(s)

𝜉(s)
=

𝐾𝜙

𝑇𝜙𝑠 + 1
 

Equation 47 

(22) 

𝑅𝑜𝑙𝑙 𝐴𝑛𝑔𝑙𝑒 𝑇𝐹: 
𝜙(s)

𝜉(s)
=

1

s
 
𝑝(s)

𝜉(s)
=

𝐾𝜙

𝑇𝜙s + 1
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3.4.4.4. Pitch or Yaw Transfer Function 

The pitch or yaw factor of reinforcement 𝐾𝑞 and time constant 𝑇𝑎 in 

Equation 48 are used to simplify the pitch or yaw transfer function. 

𝐾𝑞 =
𝑧𝜂𝑚𝑤 − 𝑧𝑤𝑚𝜂

𝜔𝑛
2  

𝑇𝑎 =
𝑚𝜂

𝑧𝜂𝑚𝑤 − 𝑧𝑤𝑚𝜂
 

Equation 48 

(22) 

 

Similarly, with the required parameters, the pitch or yaw transfer 

function can be represented in Equation 49. 

𝑃𝑖𝑡𝑐ℎ 𝑜𝑟 𝑌𝑎𝑤 𝑅𝑎𝑡𝑒 𝑇𝐹: 
𝑞(s)

𝜂(s)
=

𝜔𝑛
2𝐾𝑞(𝑇𝑞s + 1)

s2 + 2𝜁𝑛𝜔𝑛s + 𝜔𝑛
2 Equation 49 

(22) 
𝑃𝑖𝑡𝑐ℎ 𝑜𝑟 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒 𝑇𝐹: 

𝜃(s)

𝜂(s)
=

1

s

𝑞(s)

𝜂(s)
=

𝜔𝑛
2𝐾𝑞(𝑇𝑞s + 1)

s(s2 + 2𝜁𝑛𝜔𝑛s + 𝜔𝑛
2)
 

3.4.4.5. Normal Acceleration Transfer Function 

Although contrary to intuition, the pitch or yaw autopilot in this thesis 

regulates the normal acceleration for lateral control. Hence, the normal 

acceleration transfer function is required. Equation 50 shows the 

reinforcement factor and time constant for the angle of attack. 

𝐾𝛼 =
1

𝑈
∙
𝑚𝜂𝑈 − 𝑚𝑞𝑧𝜂

𝜔𝑛
2  

𝑇𝛼 =
𝑧𝜂

𝑚𝜂𝑈 − 𝑚𝑞𝑧𝜂
 

Equation 50 

(22) 

 

In addition, Equation 51 shows the time constant and damping ratio for 

the normal acceleration.  

𝑇𝛾 = √
𝐾𝛼

𝐾𝑞
∙ 𝑇𝛼 

𝜁𝛾 =
1

2𝑇𝛾
(
𝐾𝛼

𝐾𝑞
− 𝑇𝛼) 

Equation 51 

(22) 
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Hence, with all the available parameters, the normal force transfer 

function can be represented as shown in Equation 52. 

𝑁𝑜𝑟𝑚𝑎𝑙 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝐹: 
𝑎𝑧(s)

𝜂(s)
=

𝑈𝜔𝑛
2𝐾𝑞(𝑇𝛾

2s2 + 2𝜁𝛾𝑇𝛾s + 1)

s2 + 2𝜁𝑛𝜔𝑛s + 𝜔𝑛
2  

Equation 52 

(22) 
𝑁𝑜𝑟𝑚𝑎𝑙 𝐿𝑜𝑎𝑑 𝑇𝐹:

𝑛𝑧(s)

𝜂(s)
=

𝑈

𝑔

𝜔𝑛
2𝐾𝑞(𝑇𝛾

2s2 + 2𝜁𝛾𝑇𝛾s + 1)

s2 + 2𝜁𝑛𝜔𝑛s + 𝜔𝑛
2  

3.5. Actuator Model 

In order to control the missile’s canards, there has to be an actuating 

system. Therefore, it is necessary to model the actuating system. To 

reduce the complexity of the system, the actuator system is modeled using 

a first order transfer function shown in  Equation 53. Here, 𝑇𝑎 is the 

actuator time constant.  

−
1

𝑇𝑎s + 1
 

Equation 53 

(23) 
 

Since the missile has four canards, the deflection convention needs to 

be agreed upon. Figure 29 shows the deflection convention in this thesis. 

Here, four canards are deflected for roll and two canards for pitch or 

yaw respectively. In addition, Equation 54 shows the mathematical formula 

to calculate the total deflection of roll 𝛿𝑝 , pitch 𝛿𝑞 , and yaw 𝛿𝑟 . 

 

Figure 29 - Canard Deflection Convention (24) 
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𝛿𝑝 =
𝛿1 + 𝛿2 + 𝛿3 + 𝛿4 

4
 

𝛿𝑞 =
𝛿2 − 𝛿4 

2
 

𝛿𝑟 =
𝛿1 − 𝛿3 

2
 

Equation 54 

(24) 

4. Autopilot Design 

4.1. Roll Autopilot 

As implied by the name, the function of the roll autopilot is to stabilize 

the roll angle of the missile. This is the most important missile 

autopilot despite the fact that it is the simplest. That is because 

without the stability of the roll angle, the pitch and yaw planes will 

be off. Hence, the command received on those autopilots will be operating 

at an incorrect orientation.  

4.1.1. Roll Autopilot Loop  

The roll autopilot used in this missile is a modified proportional-

derivative controller design. Figure 30 shows the autopilot design where 

𝑇𝑎 is the actuator time constant, 𝐺𝐴 is the roll rate transfer function 

from Equation 47. The proportional gain of the loop is 𝐾 and the 

derivative gain is 𝐺𝑅.  

 

Figure 30 - Roll Autopilot (25) 
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4.1.2. Roll Gain Calculation 

The roll gains for the autopilot was tuned manually using Ziegler-Nichols 

method. The method works by first setting all gains to zero except Kp. 

Then, gradually increase Kp until the response starts oscillating. This 

value of Kp is now set as Kc. The oscillation period of the response is 

Tc. By using the rules provided in Table 2, the PD controller gains can 

be calculated. It is important to note that since the PD controller rules 

is not in the table, the PID rules is used to calculate the gains while 

ignoring the integral gain. 

Controller Type Kp Ki Kd 

P 0.5Kc   

PI 0.4Kc 0.8Tc  

PID 0.6Kc 0.5Tc 0.125Tc 
 

Table 2 - Ziegler-Nichols Method Rules (26) 

4.2. Pitch and Yaw Autopilot 

The pitch and yaw autopilots are used to stabilize and control the 

missile during its flight. The pitch and yaw autopilots are identical 

because the missile in this thesis is cruciform. This means that the 

pitch and yaw dynamics are identical. Since its easier to adjust the 

acceleration to obtain the desired position, the normal acceleration 

transfer function from Equation 52 is used.  

4.2.1. Pitch or Yaw Autopilot Loop  

The pitch or yaw autopilot loop is a modified version of a proportional-

integral-derivative controller. Figure 31 shows the autopilot loop 

design. Here, 𝐺𝐴1
 is the transfer function of the derivative of the 

flight path angle. In addition, 𝐺𝐴2
 is the conversion from derivative of 

the flight path angle to pitch rate transfer function as presented in 

Equation 55. Lastly, in order to simplify the autopilot, a is set to 

zero.  
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𝐺𝐴1
=

�̇�

𝜂
=

𝜔𝑛
2𝐾𝑞

s2 + 2𝜁𝑛𝜔𝑛s + 𝜔𝑛
2 

Equation 55 

(23) 

𝐺𝐴2
=

𝑞

𝜂
=  𝐺𝐴1

(1 + 𝑇𝑞s) 

 

It is important to note that 𝐾 = 𝐾𝑎𝐺𝑁𝑈0 is the proportional gain, 𝐺𝑅 =

 𝐾𝑎𝐺𝑅  is the differential gain, and 𝐺𝑁 is the integral gain. In addition, 

𝑈0 is the velocity of the missile.  

 

Figure 31 – Pitch or Yaw Autopilot (23) 

4.2.2. Pitch or Yaw Gain Calculation 

The pitch or yaw autopilot can be evaluated analytically. By transforming 

the autopilot loop and solving for the gain, the resultant gain equations 

are presented in Equation 56. 

𝜔0 =
1

1.75
( 

1

𝑇𝑎
+ 2𝜁𝑛𝜔𝑛) 

𝐺𝑅 =
1

−𝐾𝑞

𝑇𝑎

𝑇𝑞
((

𝜔0

𝜔𝑛
)
2

(2.15 −
2𝜁𝑛
𝑇𝑎𝜔0

 
𝜔𝑛

𝜔0
) − 1) 

𝐾 = −
1

𝐾𝑞
(𝜔0𝑇𝑎 (

𝜔0

𝜔𝑛
)
2

− 1) − 𝐺𝑅 

𝐺𝑁 = −𝐾
𝐾𝑞

1 − 𝐾𝑞(𝐺𝑅 + 𝐾)
 

Equation 56 

(23) 
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4.3. Neural Network Autopilot 

The purpose of the neural network autopilot (NNA) is to stabilize and 

control the missile during its flight. This is achieved by designing two 

unique neural networks that mimic the behavior of the traditional missile 

autopilot. One autopilot design is responsible for roll control and the 

other is for lateral pitch or yaw control. It is important to note that 

although the lateral design can be used for pitch or yaw control, the 

trainings and implementations are done separately.  

4.3.1. Roll Neural Network Autopilot Algorithm 

The Roll Neural Network Autopilot (RNNA) algorithm is shown in Figure 

32. Here, the roll angle 𝜙  is subtracted from the Roll Demand 𝑅𝑜𝑙𝑙𝐷𝑒𝑚 of 

zero. The resultant can be denoted as Δ𝜙. Thereby, it creates the roll 

angle error. In addition, the roll angle error as well as the roll rate 

𝑃 are inputted into the RNNA where the roll command 𝑅𝑜𝑙𝑙𝐶𝑚𝑑 is calculated.  

 

Figure 32 – Roll Neural Network Autopilot Algorithm 

4.3.2. RNNA Design 

The design of the RNNA is a traditional feedforward network shown in 

Figure 33. The input neuron consists of roll angle error and roll rate. 

The output neuron consists of the roll command. The number of hidden 

layers has been varied during the training process where 10 layers 

delivered the optimum result. The length of each hidden layers as well 

as the connections between the layers, hence the weight and biases, are 

also varied during the training to obtain the optimum result. 
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Figure 33 – Roll Neural Network Autopilot Design 

4.3.3. RNNA Training Environment 

In order to train the RNNA using NEAT Training method, the missile 

environment simulation must be prepared. Although traditional control 

missile dynamics can be simplified with transfer functions, the 

generalization nature of neural network can present a challenge. That 

is because the performance of the RNNA is affected by the time variant 

and non-linear missile dynamics. Hence, the full simulation should be 

used. Nevertheless, in order to simplify the training, some simulation 

parameters were fixed. The RNNA simulation is shown in Figure 34. Here, 

the RNNA algorithm commands the Actuator Systems which consists of all 

the four actuators. However, the pitch and yaw commands are set to zero. 

In addition, the aerodynamics assumes that the center of mass, side slip 

angle, velocity, and altitude are constant. Additionally, the missile 

body assumes that the inertia and the mass is constant. Moreover, the 

gravity is assumed to be zero as well. The simulation is set to run for 

a maximum time, 10s in this case, and the roll demand is an initial roll 

angle of 20degs and step function to 0deg at 1 second. The velocity is 

set at 0.5 Mach. In addition, the training session is run for 48 hours. 

This is to ensure that there is sufficient time for the optimal solution 

to be found. 

 

Figure 34 – Roll Neural Network Autopilot Simulation 
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4.3.4. RNNA Training Genetic Algorithm Parameters 

The GA fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑅𝑁𝑁𝐴 shown in Equation 57 is used to 

evaluate the quality of RNNA. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑅𝑁𝑁𝐴 consists of the Mean Square Error 

of the Roll Demand 𝑅𝑜𝑙𝑙𝐷𝑒𝑚 and Roll Response 𝑅𝑜𝑙𝑙𝑅𝑒𝑠. This forces the 

algorithm to match 𝑅𝑜𝑙𝑙𝑅𝑒𝑠 to 𝑅𝑜𝑙𝑙𝐷𝑒𝑚 in order to obtain minimum MSE. In 

addition, the overshoot term minimizes the overshoot of the RNNA. 

Moreover, there are two terms that are used to quickly ignore bad RNNA 

results. The roll angle error term 𝐴𝑛𝑔𝑙𝑒𝑒 is zero except when the missile 

roll angle is too high in the simulation during training. The value of 

𝐴𝑛𝑔𝑙𝑒𝑒 is 200  in this experiment. Additionally, the zero error term 𝑍𝑒𝑟𝑜𝑒 

is zero except when the output of the RNNA is not zero when all the 

inputs are zero. The value of 𝑍𝑒𝑟𝑜𝑒 is 500 in this experiment. This is 

to minimize the neural network static error when all inputs are zero. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑅𝑁𝑁𝐴 = MSE(𝑅𝑜𝑙𝑙𝐷𝑒𝑚, 𝑅𝑜𝑙𝑙𝑅𝑒𝑠) + 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡2 + 𝐴𝑛𝑔𝑙𝑒𝑒 + 𝑍𝑒𝑟𝑜𝑒 Equation 57 

4.3.5. Lateral Neural Network Autopilot Algorithm 

The Lateral Neural Network Autopilot (LNNA) algorithm is shown in Figure 

35. Here, the design of the lateral acceleration 𝐴𝑐𝑐𝐿𝑎𝑡 is subtracted from 

the acceleration demand 𝐴𝑐𝑐𝐷𝑒𝑚. The resultant can be denoted as Δ𝐴𝑐𝑐. 

Thereby, it creates the acceleration error. In addition, the acceleration 

error, the lateral rate, and Mach number are inputted into the LNNA where 

the acceleration command 𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝐶𝑚𝑑 is calculated. 

 

Figure 35 - Lateral Neural Network Autopilot Algorithm 
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4.3.6. LNNA Design 

The design of the LNNA is a traditional feedforward network shown in 

Figure 36. The input neurons consist of the acceleration error, the 

lateral rate, and the Mach number. The output neuron consists of the 

lateral acceleration command. The number of hidden layers has been varied 

during the training process where 15 layers delivered the optimum result. 

The length of each hidden layers as well as the connections between the 

layers, hence the weight and biases, are also varied during the training 

to obtain the optimum result. 

 

Figure 36 – Lateral Neural Network Autopilot Design 

4.3.7. LNNA Training Environment 

In order to train the LNNA using NEAT Training method, the missile 

environment simulation must be prepared. Similar to the RNNA, the full 

simulation should be used. Nevertheless, in order to simplify the 

training, some simulation parameters were fixed for either pitch or yaw 

simulations. The LNNA simulation is shown in Figure 37. Although the 

RNNA training runs the simulation once, the LNNA requires the simulation 

to be run multiple times. That is because the Mach number of the 

simulation is changed for each time it is run. This is to reduce the 

generalization problem of neural networks. This loop is seen in Figure 

37 where the Mach number is varied from 0.1 to 1.3 with a step of 0.2. 
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Furthermore, the Actuator Systems consists of all the four actuators. 

However, for the pitch case, the yaw and roll commands are set to zero. 

In addition, for the yaw case, the pitch and roll commands are set to 

zero. In addition, the aerodynamics assumes the center of mass and 

altitude are constant. Unlike the RNNA, the side slip angle and velocity 

vary. The side slip angle changes dynamically with the simulation. On 

the other hand, the velocity is constant for each simulation run. 

Additionally, the missile body assumes that the inertia and the mass are 

constant. Moreover, the gravity is assumed to be zero as well. The 

simulation is set to run for a maximum time, 10s in this case. The 

initial pitch or yaw acceleration is zero. However, the acceleration 

demand slopes to -12 at 1 sec. Then, it slopes to 0 at 4sec. Lastly, it 

slopes to 12 at 7 seconds. This behavior is to account for the missile 

acceleration needs. Moreover, the training session is run for 4 days. 

This is to ensure that there is sufficient time for the optimal solution 

to be found. 

 

Figure 37 - Lateral Neural Network Autopilot Simulation 

4.3.8. LNNA Training Genetic Algorithm Parameters 

The GA fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑁𝑁𝐴 shown in Equation 58 is used to evaluate 

the quality of LNNA. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑁𝑁𝐴 consists of the summation of all the Mean 

Square Error of the Lateral Demand 𝐿𝑎𝑡𝐷𝑒𝑚 and Lateral Response 𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑅𝑒𝑠 

as well as the lateral angle error  𝐴𝑛𝑔𝑙𝑒𝑒. The MSE forces the algorithm 

to match 𝐿𝑎𝑡𝑅𝑒𝑠 to 𝐿𝑎𝑡𝐷𝑒𝑚 in order to obtain minimum MSE. On the other 

hand, 𝐴𝑛𝑔𝑙𝑒𝑒 is used to quickly ignore bad LNNA results. The lateral 

angle error term 𝐴𝑛𝑔𝑙𝑒𝑒 is zero except when the missile lateral angle is 

too high in the simulation during training. The value of 𝐴𝑛𝑔𝑙𝑒𝑒 is 200  

in this experiment. This sum reduces the generalization problem and it 

allows for a global quantification of the performance of the LNNA. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑁𝑁𝐴 = ∑ (𝑛
𝑡=0 MSE(𝐿𝑎𝑡𝐷𝑒𝑚, 𝐿𝑎𝑡𝑅𝑒𝑠) + 𝐴𝑛𝑔𝑙𝑒𝑒)𝑡 Equation 58 
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5. Guidance Design 

A guidance algorithm is needed to calculate the command given to the 

autopilot to perform the required maneuver to reach the target. There 

are many forms of guidance algorithm. Nevertheless, this thesis discusses 

the trajectory guidance and proportional guidance.  

5.1. Trajectory Guidance 

The trajectory guidance is used for the missile to maintain a constant 

trajectory parallel to the ground. Although the missile discussed in 

this thesis does not have sustainer, trajectory guidance can still be 

used for a short period. For instance, the missile can maintain a 

constant altitude when it is launched from air switching guidance 

algorithms. Figure 38 shows the missile or aircraft flying above the 

desired trajectory. By setting a reference points and geometrical 

relationship, the trajectory guidance algorithm can be derived as shown 

in Equation 59. This equation is valid when the reference point is 

perpendicular to the lateral acceleration 𝑎𝑠𝑐𝑚𝑑
. 

 

Figure 38 - Trajectory Guidance (27) 
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𝑎𝑠𝑐𝑚𝑑
= 2

𝑉2

𝐿1
sin 𝜂 

Equation 59 

(27) 
 

Therefore, in order to account for the situation where the missile is 

not perpendicular to the references point as seen in Figure 39, a more 

general equation should be developed.  

 

Figure 39 - Trajectory Guidance for Line of Sight (27) 

By using the relation between line of sight acceleration 𝑎⊥𝐿𝑂𝑆 and lateral 

acceleration 𝑎𝑠, Equation 60 can be developed. Here, the equation 

accounts for the line of sight of the missile and the reference point 

does not need to be perpendicular to the lateral acceleration. 

𝑎⊥𝐿𝑂𝑆 = 𝑎𝑠 cos 𝜂   

𝑆𝑖𝑛𝑐𝑒 𝑎𝑠 =  2
𝑉2

𝐿1
sin 𝜂 

𝑎⊥𝐿𝑂𝑆 =  2
𝑉2

𝐿1
sin 𝜂 cos 𝜂 = 2 (𝑉 cos 𝜂) (

𝑉

𝐿1
sin 𝜂)   

Equation 60 

(27) 
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5.2. Proportional Navigation 

The Proportional Navigation (PN) guidance algorithm is used to guide the 

missile towards the target during the terminal stage. Here, the missile 

uses the line of sight between itself and the target to calculate the 

acceleration needed to reach the target. Figure 40 shows the missile, 

target, and geometry properties relating the two entities.   

 

Figure 40 – Proportional Navigation (28) 

The PN algorithm is shown in Equation 61. Here, the lateral acceleration 

𝑎𝑐 is calculated with the closing velocity 𝑉𝑐, the line of sign rate 𝜆�̇�, 

and the navigation constant 𝑁′ that usually ranges between 3 and 5.   

𝑎𝑐 = 𝑁′𝑉𝑐𝜆�̇� 
Equation 61 

(28) 

 

Although as simple as it seems, the parameters of the PN algorithm are 

not readily available. This means that the parameters need to be 

estimated in order to calculate the required lateral acceleration. By 

using the approximation in Equation 62, the missing parameters can be 

calculated. It is important to keep in mind the effects resulted from 

the approximation of the PN algorithm parameters. 
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𝑅𝑇𝑀1 = 𝑅𝑇1 − 𝑅𝑀1 

𝑅𝑇𝑀2 = 𝑅𝑇2 − 𝑅𝑀2 

𝑅𝑇𝑀
2 = √𝑅𝑇𝑀1

2 + 𝑅𝑇𝑀2
2  

𝑉𝑇𝑀1 = 𝑉𝑇1 − 𝑉𝑀1 

𝑉𝑇𝑀2 = 𝑉𝑇2 − 𝑉𝑀2 

𝜆 = tan−1
𝑅𝑇𝑀2

𝑅𝑇𝑀1
 

�̇� =  [
𝑅𝑇𝑀1𝑉𝑇𝑀2 − 𝑅𝑇𝑀2𝑉𝑇𝑀1

𝑅𝑇𝑀
2 ] 

𝑉𝑐 =
−(𝑅𝑇𝑀1𝑉𝑇𝑀1 + 𝑅𝑇𝑀2𝑉𝑇𝑀2)

𝑅𝑇𝑀
 

Equation 62 

(28) 

5.3. Terminal Guidance Neural Network 

The purpose of the Terminal Guidance Neural Network (TGNN) is to guide 

the missile towards the target during the terminal phase of the flight. 

This is achieved by designing a neural network that mimics and improves 

the functionality of terminal guidance.   

5.3.1.  TGNN Algorithm 

The TGNN algorithm is shown in Figure 41. Here, the line of sight rate 

�̇� is subtracted from the demand line of sight rate of zero. The resultant 

can be denoted as Δ�̇�. Thereby, it creates the line of sight rate error.  

The error is fed into the TGNN where the acceleration command 𝐴𝑐 is 

calculated.  The acceleration command can be fed into the lateral 

autopilot. It is important to note that the line of sight rate can be 

either read by seeker or calculated using Equation 62 as in this case. 

 

Figure 41 – Terminal Guidance Neural Network Algorithm 
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5.3.2. TGNN Design 

The design of TGNN is a traditional feedforward network as shown in 

Figure 42. The input neuron consists of the line of sight rate error and 

the output neuron consists of the acceleration command. The output neuron 

consists of the acceleration command. The number of hidden layers has 

been varied during the training process where 10 layers delivered the 

optimum result. The length of each hidden layers as well as the 

connections between the layers, hence the weight and biases, are also 

varied during the training to obtain the optimum result. 

 

Figure 42 - Terminal Guidance Neural Network Design 

5.3.3. TGNN Training Environment 

In order to train the Terminal Guidance Neural Network using NEAT 

Training method, the missile environment simulation must be prepared. 

Figure 43 shows the simulation used to train the network. Here, the line 

of sight rate error is fed into the neural network. Then, the 

acceleration command is saturated with the missile lateral tolerance. 

The acceleration command is used to calculate the missile dynamics.  

A simplified missile dynamics model is used in the training. The purpose 

of the simplification is to speed up the training process. A second order 

Pitch or Yaw Rate transfer function shown in Equation 49 is used. The 
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calculated pitch or yaw rate is used to calculate the angle of the 

missile. In addition, a constant magnitude of velocity, 200m/s, is used 

for simplification.  The magnitude of velocity and missile angle are 

used to calculate the components of velocity. The components of the 

velocity are integrated to calculate the position. Both velocity and 

position are used to calculate the line of sight rate error.  

 

Figure 43 - Terminal Guidance Neural Network Simulation 

The simulation is set to run for a maximum time, 100s in this case. This 

is to prevent infinite loop. In addition, the missile is fired from a 

constant position, xm = 0m and ym = 3000m, and 0 to a constant the 

target, xt =10km and yt = 0m. The initial launch angle of the missile 

is at 0 deg. This is to remove any errors due to the initial angle 

position. In addition, the training session is run for 24 hours. This 

is to ensure that there is sufficient time for the optimal solution to 

be found.  

5.3.4. TGNN Training Genetic Algorithm Parameters 

The GA fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑇𝐺𝑁𝑁 shown in Equation 63 is used to 

evaluate the quality of the TGNN. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑇𝐺𝑁𝑁 consists of the Mean Square 

Error of the line of sight rate demand �̇�𝐷𝑒𝑚 of zero and �̇�𝑅𝑒𝑠 response. 

This forces the algorithm to match �̇�𝑅𝑒𝑠 to �̇�𝐷𝑒𝑚 in order to obtain minimum 

MSE. In addition, it includes the absolute value of the vertical and 

horizontal miss distance denoted with |𝑋|𝑀𝑖𝑠𝑠 and |𝑌|𝑀𝑖𝑠𝑠 respectively. The 

MSE of the idea acceleration of zero 𝐴𝑧𝑖𝑑𝑒𝑎𝑙 and the acceleration response 

𝐴𝑧𝑅𝑒𝑠 are included. This minimizes the acceleration command generated by 

the TGNN to minimize lateral loading on the missile.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑇𝐺𝑁𝑁 =  MSE(�̇�𝐷𝑒𝑚, �̇�𝑅𝑒𝑠) + |𝑋|𝑀𝑖𝑠𝑠 + |𝑌|𝑀𝑖𝑠𝑠 + 

MSE(𝐴𝑧𝑖𝑑𝑒𝑎𝑙, 𝐴𝑧𝑅𝑒𝑠) + 𝐴𝑙𝑡𝑒 + 𝐴𝑛𝑔𝑙𝑒𝑒 + 𝑅𝑎𝑛𝑔𝑒𝑒 

Equation 63 
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Furthermore, there are a couple of terms that are used to quickly ignore 

bad TGNN results. The altitude error term 𝐴𝑙𝑡𝑒 is zero except when the 

missile flies too high in the simulation during training. The value of 

𝐴𝑙𝑡𝑒 is set to be huge, 1 x 104  in this experiment. This signifies that 

the missile headed in the wrong direction.  In addition, the angle error 

term 𝐴𝑛𝑔𝑙𝑒𝑒 is zero except when the missile angle is above or below 

±80degs. This is to prevent the missile from turning with too high of 

an angle. Lastly, the range error 𝑅𝑎𝑛𝑔𝑒𝑒 is zero except when the range 

is negative. This is to prevent the missile from flying backwards. 

6. Navigation Design 

Missile navigation allows for the missile to locate itself and the target 

in space. The missile measures its linear acceleration as well as its 

rotational rate using the inertial measurement unit (IMU). The output 

of the IMU is then fed into the Inertial Navigation System (INS) 

algorithm, thereby calculating the location of the missile. In addition, 

in order to improve the accuracy of the INS algorithm, a GPS sensor is 

integrated with the INS algorithm.  

6.1. Inertial Measurement Unit Modeling 

At the core level, the function of the IMU is to read the acceleration 

and rotation rates of the missile. There are several sensor technologies 

that can accomplish this such as gimballed, strapdown, and laser IMUs. 

Each technology has its challenges.  

6.1.1. Gimballed IMU  

Figure 44 show the inner working of the gimballed IMU. Here, the entire 

platform is gyro stabilized. This means that they are rotating so far 

that it has the tendency to maintain its precession. The changes in the 

precession is measured to estimate the missile’s change of orientation. 

The challenge with this technology is that it takes up space, the gyro 

precession drifts with time, and the risk of gimbal lock, which is when 

two gimbals axis overlap. 
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Figure 44 - Gimballed Gyro (29) 

6.1.2. Strapdown IMU  

The strapdown IMU is shown in Figure 45. Unlike the gyro IMU, there is 

no gimbaled platform. Instead, there is a set of electronic sensors that 

are strapped down to the missile body which measures the acceleration 

and rotation of the missile. The challenge with these sensors is the 

accuracy of the measurement. However, since they can be small and cheap 

to produce while providing a good enough accuracy, it is the most popular 

sensor in modern missiles. Hence, this sensor is assumed in this thesis. 

 

Figure 45 - Strapdown IMU (29) 
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6.1.3. Ring Laser IMU  

When high accuracy is required, the ring laser IMU sensor can be used. 

Figure 46 shows the ring laser gyro. Here, the acceleration and rates 

are measured by the variation in the laser’s paths.  The challenges of 

this technology are that the sensor is complex and the cost of such 

sensor is high. 

 

Figure 46 - Ring Laser Gyro (29) 

6.1.4. IMU Errors 

The IMU can be modeled by introducing a set of errors to the true missile 

acceleration and rotation rates. Equation 64 shows the IMU error model. 

Here, the 𝑔𝑟 is the rotation rate output of the IMU, 𝑟 is the true 

rotational rate, 𝑐𝑟 is the offset, 𝑏𝑟 is the bias, and 𝑤𝑔𝑦𝑟𝑜 is the white 

noise associated wit the gyro. Similarly, 𝑎�̈� is the acceleration output 

of the IMU, �̈� is the true acceleration, 𝑐�̈� is the offset,𝑏�̈� is the 

bias, 𝑤𝑎𝑐𝑐𝑒𝑙 is the white noise. In addition, to the defined error, the 

sensitivity, quantization, saturation, and delay of the IMU error can 

be included to improve the accuracy of the IMU model.  

𝑔𝑟 = 𝑟 + 𝑐𝑟 + 𝑏𝑟 + 𝑤𝑔𝑦𝑟𝑜 Equation 64 

(30) 𝑎�̈� = �̈� + 𝑐�̈� + 𝑏�̈� + 𝑤𝑎𝑐𝑐𝑒𝑙 
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6.2. Inertial Navigation Algorithm 

This thesis uses the INS algorithm proposed by Salychev. The flow chart 

of the algorithm is shown in Figure 48 and Figure 49. The Salychev’s INS 

algorithm addresses the errors associated with the IMU and compensates 

it. Hence, by using this algorithm, the position and orientation of the 

missile can be calculated more accurately. 

6.2.1. Reading IMU Data 

The output of the IMU data consists of three gyroscope data and three 

accelerometer data. A series of four or eight data in sequence is stored 

as it is needed for the algorithm. The data is read by two separate 

channels as shown in the flowchart. 

6.2.2. Compensation of Gyro and Acceleration 

By using the IMU gyro error in Equation 64, the read gyro and acceleration 

data can be corrected for the error. It is important to note that an 

accurate model for the offset, bias, and white noise is needed to ensure 

the optimal correction. In the case where an accurate model is not 

feasible, then this step of the algorithm can be ignored as an incorrect 

model might decrease the accuracy.  

6.2.3. Calculation of Angle Increment 

Once the compensation is completed, the angular rate can be converted 

to angle increments using Equation 65. It is important to note that since 

computational speed is important in a missile, the integration can be 

simplified as a multiplication by sampling time 𝑇𝑠. 

𝛼 = ∫ 𝜔 𝑑𝑡
𝑡𝑘+ℎ𝑁1

𝑡𝑘

 ~ 𝜔𝑇𝑠 
Equation 65 

(16) 
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6.2.4. Calculation of Velocity Increment 

Similarly, once the compensation is completed, the acceleration can be 

converted to velocity increments using Equation 66. A shorter form of 

the integration can be used here as well. 

Δ𝑊 =  ∫ 𝑎 𝑑𝑡
𝑡𝑘+ℎ𝑁1

𝑡𝑘

 ~ 𝑎𝑇𝑠 
Equation 66 

(16) 

 

6.2.5. Coning Correction 

Since the rotational vector �̇� does not match the true rotation rate of 

the missile 𝜔 as discussed in section 3.2.5, the coning correction shown 

in Equation 67 is required.  

Δϕ = [

Δ𝜙𝑥

Δ𝜙𝑦

Δϕ𝑧
] =  

[
 
 
 
 
 
 
 
 
 
∑𝛼𝑥(j)

4

𝑗=1

∑𝛼𝑦(j)

4

𝑗=1

∑𝛼𝑧(j)

4

𝑗=1 ]
 
 
 
 
 
 
 
 
 

+ 

2

3
{𝑃1 [

𝛼𝑥(2)
𝛼𝑦(2)

𝛼𝑧(2)

] + 𝑃3 [

𝛼𝑥(4)
𝛼𝑦(4)

𝛼𝑧(4)

]} + 

1

2
(𝑃1 + 𝑃2) {[

𝛼𝑥(3)
𝛼𝑦(3)

𝛼𝑧(3)

] + [

𝛼𝑥(4)
𝛼𝑦(4)

𝛼𝑧(4)

]} + 

1

30
(𝑃1 − 𝑃2) {[

𝛼𝑥(3)
𝛼𝑦(3)

𝛼𝑧(3)

] − [

𝛼𝑥(4)
𝛼𝑦(4)

𝛼𝑧(4)

]} + 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑗 = [

0 −𝛼𝑧(j) 𝛼𝑦(j)

𝛼𝑧(j) 0 −𝛼𝑥(j)
−𝛼𝑦(j) 𝛼𝑥(j) 0

] 

 

Equation 67 

(16) 
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6.2.6. Quaternion Calculation 

Once the coning correction is completed, the quaternions can be 

determined. The quaternion calculation and correction use the algorithm 

presented in Figure 47. Therefore, the quaternion calculation is broken 

into two parts to reduce calculation error.  

 

Figure 47 -Quaternion Calculation (16) 

Equation 68 presents the discrete version of Euler angles to quaternion. 

Here, Δ𝜆 is the quaternion, Δ𝜙 is the intensity of rotation, Δ𝜙𝑥  , Δ𝜙𝑦,

𝑎𝑛𝑑 Δ𝜙𝑧 are the rotation angles.   

Δ𝜆 = 𝜆0 + Δ𝜆1i +  Δ𝜆2j + Δ𝜆3k 

Δ𝜆0 = cos
Δ𝜙

2
 

Δ𝜆1 =
Δ𝜙𝑥

Δ𝜙
sin

Δ𝜙

2
 

Δ𝜆2 =
Δ𝜙𝑦

Δ𝜙
sin

Δ𝜙

2
 

Δ𝜆3 =
Δ𝜙𝑧

Δ𝜙
sin

Δ𝜙

2
 

Equation 68 

(16) 

 

The initial condition of the final quaternion 𝑄𝑛
𝑓
 is set to form the 

transformation matrix between body to navigation frame. Once calculated, 

the final quaternion can be used to calculate the preliminary quaternion 

using Equation 69. 

𝑄𝑛+1
𝑃 = 𝑄𝑛

𝑓
Δ𝜆 

Equation 69 

(16) 
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The conjugate of the quaternion Δ𝑚∗ is shown in Equation 70. The 

conjugate is needed to calculate the final quaternions. ℎ𝑁3 is the 

sampling interval and 𝜔  is the absolute angular velocity.  

Δ𝑚∗ = Δm0 − Δm1i −  Δm2j −  Δm3k 

Δ𝑚0 = cos
𝜔ℎ𝑁3

2
 

Δ𝑚1 =
𝜔𝑥

𝜔
sin

𝜔ℎ𝑁3

2
 

Δ𝑚2 =
𝜔𝑦

𝜔
sin

𝜔ℎ𝑁3

2
 

Δ𝑚3 =
𝜔𝑧

𝜔
sin

𝜔ℎ𝑁3

2
 

Equation 70 

(16) 

 

Once the conjugate and preliminary quaternion are obtained, Equation 71 

can be used to obtain the final quaternion.  

𝑄𝑛+1
𝑓

= Δ𝑚∗𝑄𝑛+1
𝑃  

Equation 71 

(16) 

6.2.7. Quaternion to Transformation Matrix 

The final quaternion is first normalized using Equation 17. Then, 

Equation 15 is used to calculate the transformation matrix 𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

 from 

quaternion. 

6.2.8. Attitude Calculation 

The resultant transformation matrix can be used to calculate the 

orientation, or attitude, of the missile. This is accomplished by taking 

parts of the matrix and its geometry property as shown in Equation 72. 
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𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛[0] = √𝑇𝐵𝑜𝑑𝑦

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛[3,1]2 + 𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛[3,3]2 

𝜃 = atan
𝑇𝐵𝑜𝑑𝑦

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛
[3,2]

𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

[0]
 

𝛾 = −atan
𝑇𝐵𝑜𝑑𝑦

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛
[3,1]

𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

[3,3]
 

𝜓 = atan
𝑇𝐵𝑜𝑑𝑦

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛
[1,2]

𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

[2,2]
 

Equation 72 

(16) 

6.2.9. Sculling Compensation 

Since the measured body acceleration is in an inertial frame, the 

Puasson’s version of the equation should be used. However, since 

computational speed is essential, a discrete version of the body 

acceleration shown in Equation 73 is used. 

𝑊𝑥,𝑘 = 𝑊𝑥,𝑘−1 + 𝑊𝑦,𝑘−1𝛼𝑧,𝑘 − 𝑊𝑧,𝑘−1𝛼𝑦,𝑘 + Δ𝑊𝑥,𝑘  

𝑊𝑦,𝑘 = 𝑊𝑦,𝑘−1 + 𝑊𝑧,𝑘−1𝛼𝑥,𝑘 − 𝑊𝑥,𝑘−1𝛼𝑧,𝑘 + Δ𝑊𝑦,𝑘 

𝑊𝑧,𝑘 = 𝑊𝑧,𝑘−1 + 𝑊𝑥,𝑘−1𝛼𝑦,𝑘 − 𝑊𝑦,𝑘−1𝛼𝑥,𝑘 + Δ𝑊𝑧,𝑘 

𝑊𝑧,𝑘 = 𝑊𝑧,𝑘−1 + 𝑊𝑥,𝑘𝛼𝑦,𝑘 − 𝑊𝑦,𝑘𝛼𝑥,𝑘 + Δ𝑊𝑧,𝑘 

𝑊𝑦,𝑘 = 𝑊𝑦,𝑘−1 + 𝑊𝑧,𝑘𝛼𝑥,𝑘 − 𝑊𝑥,𝑘𝛼𝑧,𝑘 + Δ𝑊𝑦,𝑘 

𝑊𝑥,𝑘 = 𝑊𝑥,𝑘−1 + 𝑊𝑦,𝑘𝛼𝑧,𝑘 − 𝑊𝑧,𝑘𝛼𝑦,𝑘 + Δ𝑊𝑥,𝑘 

𝑊ℎ𝑒𝑟𝑒 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑠𝑖𝑜𝑛,𝑊𝑥 = 𝑊𝑦 = 𝑊𝑧 = 0  

Equation 73 

(16) 

6.2.10. Velocity Increment to Navigation Frame 

Once the sculling correction is completed, the velocity increment can 

be transformed, using the transformation matrix from section 6.2.7, to 

the navigation frame using Equation 74. 

[

Δ𝑊𝑥

Δ𝑊𝑦

Δ𝑊𝑧

]

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

= 𝑇𝐵𝑜𝑑𝑦
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

[

𝑊𝑥

𝑊𝑦

𝑊𝑧

]

𝐵𝑜𝑑𝑦

 
Equation 74 

(16) 
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6.2.11. Velocity Calculation 

The velocity of the missile can be calculated with respect to the 

projection of velocity to Earth by using Equation 75. Δ𝑊𝑥
∗, Δ𝑊𝑦

∗,and Δ𝑊𝑧
∗ 

are the running sum of the velocity increment. 𝑈𝑥, 𝑈𝑦, 𝑈𝑧 are the 

projection of Earth rotation on the none-inertial frame. Ω𝑥 and Ω𝑦 are 

the projection of angular velocity on the none-inertial frame. 

𝑉𝑥 = Δ𝑊𝑥
∗ + ∫ (𝑉𝑦2𝑈𝑧 − 𝑉𝑧(Ω𝑦 + 2𝑈𝑦)dt

𝑡

𝑡0

 

Equation 75 

(16) 
𝑉𝑦 = Δ𝑊𝑦

∗ − ∫ (𝑉𝑥2𝑈𝑧 − 𝑉𝑧(Ω𝑥 + 2𝑈𝑥)dt
𝑡

𝑡0

 

𝑉𝑧 = Δ𝑊𝑧
∗ − ∫ 𝑉𝑦(Ω𝑥 + 2𝑈𝑥)dt

𝑡

𝑡0

 −  ∫ 𝑉𝑥(Ω𝑦 + 2𝑈𝑦)dt
𝑡

𝑡0

+ 𝑔 

 

The angular velocity projection can be calculated using Equation 76. 

Here, T is the transformation matrix from ECEF to navigation frame from 

section 3.1.4.2. 

Ω𝑥 = −
𝑉𝑦

𝑅𝑦
−

𝑉𝑥
𝑎

𝑒2𝑇[1,2]𝑇[2,3] 
Equation 76 

(16) 
Ω𝑦 = 

𝑉𝑥
𝑅𝑥

+
𝑉𝑦

𝑎
𝑒2𝑇[1,3]𝑇[2,3] 

 

The elliptical Earth model radii are calculated using Equation 77. Here 

a and e are from the elliptical earth model from section 3.1.1.3. In 

addition, H is the altitude of the missile. 

1

𝑅𝑥
=

1

𝑎
(1 − 𝑒2

𝑇[3,3]2

2
+ 𝑒2𝑇[1,3]2 −

𝐻

𝑎
)  

Equation 77 

(16) 1

𝑅𝑌
=

1

𝑎
(1 − 𝑒2

𝑇[3,3]2

2
+ 𝑒2𝑇[2,3]2 −

𝐻

𝑎
) 

 

Equation 78 calculates the projection of the absolute angular velocity. 

𝜔𝑥 = Ω𝑥 + 𝑈𝑥    
Equation 78 

(16) 
𝜔𝑦 = Ω𝑦 + 𝑈𝑦   

𝜔𝑧 = 𝑈𝑧   
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Earth’s angular velocity components can be calculated using Equation 79. 

𝑈𝑥 = 𝑈𝑇[1,3] 

Equation 79 

(16) 
𝑈𝑦 = 𝑈𝑇[2,3] 

𝑈𝑧 = 𝑈𝑇[3,3] 

6.2.12. Puasson Discrete Transformation Matrix 

Once the velocity is calculated, the transformation matrix should be put 

in Puasson form as shown in Equation 80. 

𝑇[1,2]𝑁 = 𝑇[1,2]𝑁−1 − Ω𝑦𝑇[3,2]𝑁−1ℎ𝑁3 

𝑇[2,2]𝑁 = 𝑇[2,2]𝑁−1 + Ω𝑥𝑇[3,2]𝑁−1ℎ𝑁3 

𝑇[3,2]𝑁 = 𝑇[3,2]𝑁−1 + ( Ω𝑦𝑇[1,2]𝑁−1 − Ω𝑥𝑇[2,2]𝑁−1)ℎ𝑁3 

𝑇[1,3]𝑁 = 𝑇[1,3]𝑁−1 − Ω𝑦𝑇[3,3]𝑁−1ℎ𝑁3 

𝑇[2,3]𝑁 = 𝑇[2,3]𝑁−1 + Ω𝑥𝑇[3,3]𝑁−1ℎ𝑁3 

𝑇[3,3]𝑁 = 𝑇[3,3]𝑁−1 + ( Ω𝑦𝑇[1,3]𝑁−1 − Ω𝑥𝑇[2,3]𝑁−1)ℎ𝑁3 

𝑇[3,1]𝑁 = 𝑇[1,2]𝑁𝑇[2,3]𝑁 − 𝑇[2,2]𝑁𝑇[1,3]𝑁 

Equation 80 

(16) 

6.2.13. Coordinate Calculation 

Now that all the parameters are found, the coordinate of the missile can 

be calculated. Here 𝜙 is the latitude, 𝜆 is the longitude, and 𝜖 is the 

azimuth of the missile.  

𝑇[0] = √𝑇[3,1]2 + 𝑇[2,3]2 

Equation 81 

(16) 

𝜙 = atan
𝑇[3,3]

𝑇[0]
 

𝜆 = atan
𝑇[3,2]

𝑇[3,1]
 

𝜖 = atan
𝑇[1,3]

𝑇[2,3]
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Figure 48 - INS Algorithm Part 1 (16) 
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Figure 49 - INS Algorithm Part 2 (16) 
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6.3. GPS/INS Integration 

6.3.1. GPS Modeling 

There is a wide range of models that can accurately represent the GPS. 

Similar to the IMU modeling, the GPS error modeling is shown in Equation 

82. Here the range from missile to each satellite 𝑅𝑖 consists of the true 

range 𝑟𝑖, 𝑋𝐴 antennae phase error, 𝑋𝑃 position error, 𝑋𝑉 velocity error, 

and 𝑋𝑇𝑆𝐹 scale factor error. Each error is multiplied with a coefficient 

𝐶  that is shorter form of the transformation matrix and vector presented 

in the original paper.  

𝑅𝑖 = 𝑟𝑖 + 𝐶0𝑋𝐴 + 𝐶1𝑋𝑃 + 𝐶2𝑋𝑉 + 𝐶4𝑋𝑇𝑆𝐹 
Equation 82 

(31) 

 

Once the range is obtained for at least three satellites, and since the 

position of each satellite 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 is known, a system of three equation 

can be generated from Equation 83 to solve for the missile position, x, 

y, and z.  

𝑅𝑖 = √(𝑥 − 𝑋𝑖)
2 + (𝑦 − 𝑌𝑖)

2 + (𝑧 − 𝑍𝑖)
2 

Equation 83 

(32) 
 

Nevertheless, a simpler yet effective GPS modeling method is used in 

this thesis. Since the chosen GPS has the sampling frequency 𝑓𝑠 of 10Hz, 

and the position of the missile in the simulation can be obtained, the 

GPS is modeled using a delayed sampling time shown in Equation 84. 

𝑥𝑠 = ∑ 𝑥𝑐𝛿(𝑡 − 𝑛𝑇𝑠)

∞

𝑛= −∞

 

Ω𝑠 =
2𝜋

𝑇𝑠

rad

s
 

𝑓𝑠 =
1

𝑇𝑠
 Hz 

Equation 84 

(33) 
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6.3.2. Kalman Filter 

In order to make sure of the GPS, a Kalman filter is used to integrate 

both INS algorithm data and GPS data. Hence, it is essential to 

understand the Kalman filter.  The Kalman filter consists of two major 

part, the state space model and the Kalman equation. 

6.3.2.1. State Space Model 

The first part of the state space model, shown in Equation 85, is used 

to predict the behavior of the missile. This serves as the reference 

behavior of the missile. Here, 𝑥𝑘 is the state vector, Φ𝑘,𝑘−1 is the 

transition matrix, 𝐺𝑘,𝑘−1 is the input matrix, and 𝜔𝑘−1 is the input white 

noise with covariance matrix 𝑄. 

𝑥𝑘 = Φ𝑘,𝑘−1𝑥𝑘−1 + 𝐺𝑘,𝑘−1𝜔𝑘−1 
Equation 85 

(16) 

 

In addition, the second part is the measurement part, where the behavior 

of the missile is measured and computed using Equation 86. Here, 𝑧𝑘 is 

the measurement vector, 𝐻 is the output matrix, and 𝑣𝑘 is the measurement 

white noise with covariance matrix 𝑅. 

𝑧𝑘 =  𝐻𝑥𝑘 + 𝑣𝑘 
Equation 86 

(16) 

6.3.2.2. Kalman Equation 

The traditional Kalman equation is shown in Equation 87. Here, 𝑥𝑘 is the 

optimal estimation and 𝐾𝑘 is the Kalman gain.  

𝑥𝑘 = 𝜙𝑘,𝑘−1�̂�𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻Φ𝑘,𝑘−1�̂�𝑘−1) 
Equation 87 

(16) 
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6.3.2.3. Kalman Filter Integration Algorithm 

One approach to integrate the GPS and INS is the use Kalman filter to 

predict the error instead of the position and velocity of the missile. 

This algorithm is presented in Figure 50. 

 

Figure 50 - GPS/INS Integration Algorithm (16) 

The first step of the algorithm is to find the previous prediction 𝑥𝑘−1. 

The previous prediction for position is set to be the difference,  𝛿𝑁, 

𝛿𝐸,and 𝛿𝑈 between the INS algorithm output and the GPS output as stated 

in Equation 88.  

[
𝛿𝑁
𝛿𝐸
𝛿𝑈

] = [

𝑁𝐼𝑁𝑆 − 𝑁𝐺𝑃𝑆

𝐸𝐼𝑁𝑆 − 𝐸𝐺𝑃𝑆

𝑈𝐼𝑁𝑆 − 𝑈𝐺𝑃𝑆

] 
Equation 88 

(16) 

 

In addition, the velocity difference 𝛿𝑉𝑁, 𝛿𝑉𝐸, and 𝛿𝑉𝑈 is also computed 

as stated in Equation 89. 

[

𝛿𝑉𝑁

𝛿𝑉𝐸

𝛿𝑉𝑈

] = [

𝑉𝑁_𝐼𝑁𝑆 − 𝑉𝑁_𝐺𝑃𝑆

𝑉𝐸_𝐼𝑁𝑆 − 𝑉𝐸_𝐺𝑃𝑆

𝑉𝑈_𝐼𝑁𝑆 − 𝑉𝑈_𝐺𝑃𝑆

] 
Equation 89 

(16) 
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Moreover, Equation 90 computes the angular difference 𝜙𝑁, 𝜙𝐸, and 𝜙𝑈. 

 [

𝜙𝑁

𝜙𝐸

𝜙𝑈

] = [
−𝛿𝛾
−𝛿𝜃
𝛿𝐻

] 
Equation 90 

(16) 

 

Equation 91 shows the three previous prediction 𝑥𝑘−1 which are represented 

as 𝑁𝑜𝑟𝑡ℎ𝑘−1, 𝐸𝑎𝑠𝑡𝑘−1, and 𝑈𝑝𝑘−1. Here, the Kalman filter algorithm is 

computed three times. Each time for a navigation axis channel. 

𝑁𝑜𝑟𝑡ℎ𝑘−1 = [
𝛿𝑁
𝛿𝑉𝑁

𝜙𝐸

] 

Equation 91 

(16) 
𝐸𝑎𝑠𝑡𝑘−1 = [

𝛿𝐸
𝛿𝑉𝐸

𝜙𝑁

] 

𝑈𝑝𝑘−1 = [
𝛿𝑈
𝛿𝑉𝑈

𝜙𝑈

] 

 

The transfer matrix Φ𝑘 for each of the individual channel is presented 

in Equation 92. This is the state space model of the behavior of the 

missile. 

Φ𝑁_𝑘 = 

[
 
 
 
1 𝑇𝑠 0
0 1 −𝑔𝑇𝑠

0
𝑇𝑠

𝑅𝐸𝐴𝑅𝑇𝐻
1

]
 
 
 
 

Equation 92 

(16) 

Φ𝐸_𝑘 = 

[
 
 
 
1 𝑇𝑠 0
0 1 −𝑔𝑇𝑠

0
𝑇𝑠

𝑅𝐸𝐴𝑅𝑇𝐻
1

]
 
 
 
 

Φ𝑈_𝑘 = 

[
 
 
 
 
 

1 𝑇𝑠 0 0
−2𝑔

𝑅𝐸𝐴𝑅𝑇𝐻
𝑇𝑠 1 0 0

0 0
𝑇

𝑅
tan Ξ 1

0 0 1 0]
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The state place model can be multiplied by the previous prediction to 

obtain the updated previous prediction 𝑥𝑘−1. It is made of three channels 

as seen in Equation 93. It is important to note that 𝑏𝑎 is the 

accelerometer bias error. 

𝛿𝑁𝑜𝑟𝑡ℎ𝑘 = Φ𝑁_𝑘𝑁𝑜𝑟𝑡ℎ𝑘−1 

Equation 93 

(16) 

𝛿𝐸𝑎𝑠𝑡𝑘 = Φ𝐸_𝑘𝐸𝑎𝑠𝑡𝑘−1 

𝛿𝑈𝑝𝑘 = Φ𝑈_𝑘𝑈𝑝𝑘−1 + [

0
𝑏𝑎

0
0

] 

 

Before progressing to the second step, a couple of parameters needs to 

be defined. These parameters are tuned for the missile presented in this 

thesis. Hence, it is essential to consider the proper parameters for 

other missiles. Equation 94 shows the output matrix for the missile. 

Here, it is set to identity matrix because the output is assumed to be 

not skewed. 

𝐻𝑁𝑜𝑟𝑡ℎ = [
1 0 0
0 1 0
0 0 1

]  

Equation 94 

(16) 

𝐻𝐸𝑎𝑠𝑡 = [
1 0 0
0 1 0
0 0 1

] 

𝐻𝑈𝑝 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 

In addition, the measurement noise matrix 𝑅 is shown in Equation 95. 

𝑅𝑁𝑜𝑟𝑡ℎ = [
10 0 0
0 10 0
0 0 10

] 

Equation 95 

(16) 
𝑅𝐸𝑎𝑠𝑡 = [

10 0 0
0 10 0
0 0 10

] 

𝑅𝑈𝑝 = [
10 0 0
0 10 0
0 0 10

] 
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Moreover, the initial input noise 𝑄 is presented in Equation 96.  

𝑄𝑁𝑜𝑟𝑡ℎ = 𝑃𝑘_𝑁𝑜𝑟𝑡ℎ_𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = [
1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3

] 

Equation 96 

(16) 

𝑄𝐸𝑎𝑠𝑡 = 𝑃𝑘_𝐸𝑎𝑠𝑡_𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = [
1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3

] 

𝑄𝑈𝑝 = 𝑃𝑘_𝑈𝑝_𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = [

1 x 10−3 1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3 1 x 10−3

1 x 10−3 1 x 10−3 1 x 10−3 1 x 10−3

] 

 

Lastly, the measurement vector 𝑧𝑘 is shown in Equation 97.  

𝑧𝑁𝑜𝑟𝑡ℎ = [
𝛿𝑁
𝛿𝑉𝑁

𝜙𝐸

] 

Equation 97 

(16) 

𝑧𝐸𝑎𝑠𝑡 = [
𝛿𝐸
𝛿𝑉𝐸

𝜙𝑁

] 

𝑧𝑈𝑝 = [

𝛿𝑈
𝛿𝑉𝑈

𝛿𝑉𝐸

𝜙𝑈

] 

 

The second step of the algorithm is to calculate the input noise. This 

is accomplished by using Equation 98 where the previous input noise is 

multiplied by the transfer matrix and its conjugates. 

𝑃𝑘_𝑁𝑜𝑟𝑡ℎ = Φ𝑁_𝑘𝑃𝑘−1_𝑁𝑜𝑟𝑡ℎΦ′𝑁_𝑘 

Equation 98 

(16) 
𝑃𝑘_𝐸𝑎𝑠𝑡 = Φ𝐸_𝑘𝑃𝑘−1_𝐸𝑎𝑠𝑡Φ′𝐸_𝑘 

𝑃𝑘_𝑈𝑝 = Φ𝑈_𝑘𝑃𝑘−1_𝑈𝑝Φ′𝑈_𝑘 
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The third step is to calculate the Kalman gain as shown by Equation 99. 

𝐾𝑁𝑜𝑟𝑡ℎ = 𝑃𝑘_𝑁𝑜𝑟𝑡ℎ 𝐻
′
𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑣(𝐻𝑁𝑜𝑟𝑡ℎ 𝑃𝑘𝑁𝑜𝑟𝑡ℎ

𝐻′
𝑁𝑜𝑟𝑡ℎ + 𝑅𝑁𝑜𝑟𝑡ℎ) 

Equation 99 

(16) 
𝐾𝐸𝑎𝑠𝑡 = 𝑃𝑘_𝐸𝑎𝑠𝑡 𝐻

′
𝐸𝑎𝑠𝑡𝑖𝑛𝑣(𝐻𝐸𝑎𝑠𝑡 𝑃𝑘𝐸𝑎𝑠𝑡

𝐻′
𝐸𝑎𝑠𝑡 + 𝑅𝐸𝑎𝑠𝑡) 

𝐾𝑈𝑝 = 𝑃𝑘_𝑈𝑝 𝐻
′
𝑈𝑝𝑖𝑛𝑣(𝐻𝑈𝑝 𝑃𝑘𝑈𝑝

𝐻′
𝑈𝑝 + 𝑅𝑈𝑝) 

 

After obtaining all the parameters, the fourth step is to calculate the 

optimal prediction 𝑥𝑘 in Equation 100. 

[

𝛿�̂�
𝛿𝑉�̂�

𝛿𝜙�̂�

] =  𝛿𝑁𝑜𝑟𝑡ℎ𝑘 + 𝐾𝑁𝑜𝑟𝑡ℎ(𝑧𝑁𝑜𝑟𝑡ℎ − 𝐻𝑁𝑜𝑟𝑡ℎ𝛿𝑁𝑜𝑟𝑡ℎ𝑘) 

Equation 100 

(16) 
[

𝛿�̂�
𝛿𝑉�̂�

𝛿𝜙�̂�

] =  𝛿𝐸𝑎𝑠𝑡𝑘 + 𝐾𝐸𝑎𝑠𝑡(𝑧𝐸𝑎𝑠𝑡 − 𝐻𝐸𝑎𝑠𝑡𝛿𝐸𝑎𝑠𝑡𝑘) 

[

𝛿�̂�
𝛿𝑉�̂�

𝛿𝜙�̂�

] =  𝛿𝑈𝑝𝑘 + 𝐾𝑈𝑝(𝑧𝑈𝑝 − 𝐻𝑈𝑝𝛿𝑈𝑝𝑘) 

 

Equation 101 updates the input noise as the fifth step of the algorithm.  

𝑃𝑘−1_𝑁𝑜𝑟𝑡ℎ = (𝐼 − 𝐾𝑁𝑜𝑟𝑡ℎ𝐻𝑁𝑜𝑟𝑡ℎ)𝑃𝑘_𝑁𝑜𝑟𝑡ℎ 

Equation 101 

(16) 
𝑃𝑘−1_𝐸𝑎𝑠𝑡 = (𝐼 − 𝐾𝐸𝑎𝑠𝑡𝐻𝐸𝑎𝑠𝑡)𝑃𝑘_𝐸𝑎𝑠𝑡 

𝑃𝑘−1_𝑈𝑝 = (𝐼 − 𝐾𝑈𝑝𝐻𝑈𝑝)𝑃𝑘_𝑈𝑝 
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Finally, the GPS/INS integration output can be obtained using Equation 

102. Here the INS algorithm output is subtracted by the optimal 

prediction. Hence, this corrects the error that was generated from the 

INS algorithm.  

𝑁𝑜𝑟𝑡ℎ𝐺𝑃𝑆𝐼𝑁𝑆 = 𝑁𝐼𝑁𝑆 −  𝛿�̂� 

Equation 102 

(16) 
𝐸𝑎𝑠𝑡𝐺𝑃𝑆𝐼𝑁𝑆 = 𝐸𝐼𝑁𝑆 −  𝛿�̂� 

𝑁𝑜𝑟𝑡ℎ𝐺𝑃𝑆𝐼𝑁𝑆 = 𝑈𝐼𝑁𝑆 −  𝛿�̂� 

 

Similarly, Equation 103 shows that the GPS/INS velocity can be obtained 

from the subtraction of the INS algorithm velocity and the optimally 

predicted velocity. Thereby, concluding the GPS/INS integration 

algorithm. 

𝑉𝑒𝑙𝑐𝑜𝑖𝑡𝑦𝑁_𝐺𝑃𝑆𝐼𝑁𝑆 = 𝑉𝑁_𝐼𝑁𝑆 −  𝛿𝑉�̂� 

Equation 103 

(16) 
𝑉𝑒𝑙𝑐𝑜𝑖𝑡𝑦𝐸_𝐺𝑃𝑆𝐼𝑁𝑆 = 𝑉𝐸_𝐼𝑁𝑆 −  𝛿𝑉�̂� 

𝑉𝑒𝑙𝑐𝑜𝑖𝑡𝑦𝑈_𝐺𝑃𝑆𝐼𝑁𝑆 = 𝑉𝑈_𝐼𝑁𝑆 −  𝛿𝑉�̂� 

6.3.3. Neural Network GPS/INS Integration 

The purpose of the Neural Network GPS/INS Integration (NNI) is to 

integrate GPS and INS data during the missile flight. This is achieved 

by designing a neural network that mimics and improves the functionality 

of GPS/INS integration. 
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6.3.3.1. NNI Algorithm 

The NNI algorithm is shown in Figure 51. Here, the GPS data is subtracted 

from the INS data. The resultant can be denoted as Δ𝑁𝐸𝐷. Hence, it 

creates the NED frame error. The error is fed into the NNI. In addition, 

a delayed sample of the NED frame error is also fed into the NNI. This 

is to allow the NNI to obtain more information when predicting the NED 

coordinates. The larger the previous error the bigger the correction 

should become. Moreover, the previous correction data is also fed into 

the NNI. This is to allow the NNI to know how far the previous correction 

was from the actual NED frame coordinates. The larger the correction, 

the more NNI prediction was incorrect. Hence, it needs to compensate for 

it. 

 

Figure 51 - Neural Network Integration Algorithm 

Once all the three data are imported into the NNI, it produces a 

correction prediction. The correction prediction is subtracted from the 

GPS data. This results in the NED prediction which can be used in the 

guidance and autopilot of the missile. The reason the GPS is used as a 

point of reference is because it is assumed to be the most accurate. It 

is important to keep in consideration that with this design, a 

significantly faulty GPS data will greatly impact the performance of the 

NNI. However, assuming the GPS performance is acceptable, the NNI 

performs as designed. The GPS data is produced using the GPS model in 

Equation 84. In addition, the IMU model in Equation 64 is used to produce 

gyro rates and acceleration. The results are fed into the INS algorithm 

in Figure 48 and Figure 49 to produce the INS data. 
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6.3.3.2. NNI Design 

The design of NNI is a traditional feedforward network as shown in Figure 

52. The input neuron consists of previous NED frame error, current NED 

frame error, and previous correction. The output neuron consists of the 

correction prediction. The number of hidden layers has been varied during 

the training process where 10 layers delivered the optimum result. The 

length of each hidden layers as well as the connections between the 

layers, hence the weight and biases, are also varied during the training 

to obtain the optimum result. 

 

Figure 52 - Neural Network Integration Design 

6.3.3.3. NNI Training Environment 

In order to train the Neural Network NNI using NEAT Training method, the 

missile environment simulation must be prepared. However, unlike with 

TGNN Training Environment, the missile simulation model cannot be 

simplified. That is because the time variant and non-linear dynamics 

affect the NNI performance greatly. Hence, a full simulation needs to 

be used. Since the full simulation of the missile will take very long 

to execute, the simulation is pre-executed and the resulted INS Data and 

GPS Data are recorded. Furthermore, one of the biggest challenges with 

neural network is generalization. The generalization problem can be 

reduced by evaluating the performance of the NNI across a range of pre-

executed simulation. Therefore, the NNI simulation, shown in Figure 53, 

consists of a loop. The simulation reads the launch angle 𝜃0. Then, based 
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on a look up table of the previously executed full missile simulation, 

the NNI algorithm, shown in Figure 52, reads the corresponding GPS and 

INS Data to obtain the NED prediction.  The launch angle is varied from 

10deg to 80deg in order to include a comprehensive set of INS and GPS 

behaviors. It is important to note that each of the three position and 

three velocity channels are trained separately. In addition, the training 

for the side component fixes the launch angle at 45degs and the initial 

Azimuth 𝐴𝑧0 is varied from -80 to 80 deg as shown in Figure 54. In 

addition, the training session is run for 4 hours which proved to be 

sufficient to obtain the optimum results. 

 

Figure 53 - NNI Simulation Launch Angle Variation 

 

Figure 54 – NNI Simulation Azimuth Angle Variation 

6.3.3.4. NNI Training Genetic Algorithm Parameters 

The GA fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑁𝐼 shown in Equation 104 is used to 

evaluate the quality of NNI. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑁𝐼 consists of the summation of all 

the Means Square Error of the Simulation Real XNED 𝑋𝑁𝐸𝐷6𝐷𝑂𝐹 and the XNED 

Prediction 𝑋𝑁𝐸𝐷Prediction. This sum reduces the generalization problem and 

it allows for a global quantification of the performance of the NNI.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑁𝐼 = ∑ (𝑛
𝑡=0 MSE(𝑋𝑁𝐸𝐷6𝐷𝑂𝐹 , 𝑋𝑁𝐸𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛))𝑡  Equation 104 
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7. Implementation and Verification 

7.1. High Level Simulation 

Figure 55 shows the highest-level simulation block diagram. Here, it can 

be seen that the booster affects the missile body. In addition, the 

gravitational model and aerodynamics also affects the missile body. The 

missile body flies within the environment where the coordinate 

transformation, actual missile velocity, position, and rotation rates 

are calculated. The environment effects are felt by the aerodynamics and 

guidance computer. The guidance computer control output affects the 

actuator. The actuator deflection affects the aerodynamics. Hence, this 

completes the high-level missile simulation cycle. 

 

Figure 55 – High Level Simulation 

7.1.1. Booster Simulation 

Figure 56 shows the booster simulation block diagram. Here, the Thrust 

profile from Figure 26 is read using a look-up table. The misalignment 

calculation uses Equation 39 to calculate the thrust forces. Moreover, 

the thrust moments are calculated using Equation 40. They are outputted 

in body frame.  

 

Figure 56 – Booster Simulation 
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7.1.2. Gravitational Model Simulation 

Figure 57 shows the gravitational model simulation block diagram. Here, 

the earth gravity parameters are read. It could be either for a flat, 

spherical, or elliptical model. The gravity is calculated using Equation 

5 for flat and spherical earth models. However, it uses the WGS84 

standard in Equation 6 for the elliptical model. The gravity is then 

outputted in body frame. 

 

Figure 57 – Gravitational Simulation 

7.1.3. Aerodynamics Simulation 

Figure 58 shows the aerodynamic simulation block diagram. Here, structure 

parameter such as the center of mass is read. Moreover, the environmental 

parameters such as angle of attack, side angle, missile velocity and 

Mach, dynamic pressure, and rotation rates are read. In addition, the 

aerodynamic derivatives are read as well. These are predetermined by the 

missile model. Additionally, the actuator deflections are inputted too. 

These are the results of the guidance computer commands. The aerodynamic 

calculation is then performed using Equation 41 to obtain both 

aerodynamic force and moment coefficients. The aerodynamic forces are 

calculated using Equation 42. On the other hand, the aerodynamic moments 

are calculated using Equation 43. Both force and moments are outputted 

in body frame. 

 

Figure 58 – Aerodynamic Simulation 
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7.1.4. Missile Body Simulation 

Figure 59 shows the missile body simulation block diagram. Here, the 

gravitational forces, aerodynamic forces, and thrust forces are summed 

together to form the total force on the missile. In addition, the 

aerodynamic moments and the thrust moments are summed together to form 

a total moment on the missile. The total moments and forces are outputted 

in body frame. Furthermore, the structure parameters such as the missile 

body inertia, mass, and center of mass as a function of time is read and 

outputted.  

 

Figure 59 - Missile Body Simulation 

7.1.5. Environment Simulation 

Figure 60 shows the environment simulation block diagram. Here, the 

atmospheric model shown in Table 1 is used to find the atmospheric 

parameters such as angle of attack, side angle, missile velocity and 

Mach, and dynamic pressure. In addition, the mass and the total force 

are used to calculate the body acceleration using Equation 20. However, 

for an accurate simulation Equation 21 can be used. Moreover, the 

inertial and total moments are read to calculate the rotation rates using 

Equation 34. The rotation rates are used to calculate the quaternion 

derivative using Equation 16. Then, the quaternion is used to calculate 

the missile angles using Equation 13. Furthermore, the quaternion can 

be used to calculate the transformation matrix Body to NED using the 

transpose of Equation 15.  
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The body acceleration and transformation matrix are corrected using 

Pausson’s equation shown in  Equation 10. In addition, the corrected 

velocity and position can be obtained as well.  These localization 

parameters can be converted into ECEF frame using transpose of Equation 

8. Moreover, it can be converted into geodetic frame using Equation 9. 

It is important to note that in case wander frame is used it can be 

converted into wander frame as well using the yaw transportation matrix 

of Equation 7. 

 

Figure 60 - Environment Simulation 

7.1.6. Actuator Simulation 

Figure 61 shows the actuator simulation block diagram. Here, the roll, 

pitch, and yaw commands are received from the guidance computer. These 

commands are summed together while prioritizing the roll command. That 

is because if the roll angle is not stabilized, the pitch and yaw commands 

could be incorrect since the guidance does not consider the roll angle. 

Each sum is inputted into an actuator model. Equation 53 is used to model 

the actuating system. In addition, the output response of the roll, 

pitch, and yaw deflection is calculated using Equation 54. 
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Figure 61 – Actuator Simulation 

7.1.7. Guidance Computer Simulation 

Figure 62 shows the guidance computer simulation block diagram. Here, 

the environmental parameters such as acceleration and rotation rates are 

read into the navigation. The navigation calculates the velocity, 

position, and angle of the missile. The navigation output is fed into 

both the guidance and the control. On the other hand, the seeker block 

outputs the target location. This simulation assumes an ideal seeker 

where the target location is exactly known.  The seeker output is fed 

into the guidance. The guidance calculates the guidance command then it 

feeds it to the control where the roll, pitch, and yaw commands are 

calculated. The control commands are then outputted.  

 

Figure 62 – Guidance Computer Simulation 
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7.1.8. Navigation Simulation 

Figure 63 shows the navigation simulation block diagram. Here, the 

environmental parameters such as the acceleration and rotation rates are 

fed into the IMU. The IMU parameter is then fed into the INS block. In 

addition, the environmental parameter such as the missile position in 

geodetic frame is fed into the GPS. Then, the GPS parameter and INS 

parameter are fed into the GPS/INS integration. 

 

Figure 63 – Navigation Simulation 

7.1.9. IMU Simulation 

Figure 64 shows the IMU simulation block diagram. Here, the environmental 

parameters such as acceleration and rotation rates are read. The IMU 

model from Equation 64 is used to calculate the IMU parameters. Then, 

the IMU parameters such as the noisy acceleration and noisy rotation 

rates are outputted. 

 

Figure 64 - IMU Simulation 

7.1.10. GPS Simulation 

Figure 65 shows the GPS simulation block diagram. Here, the environmental 

parameters such as the missile position in geodetic frame is read. The 

GPS model from Equation 84 is used to calculate the GPS parameters. Then, 

the GPS parameters such as noisy position and velocity are outputted. 

 

Figure 65 - IMU Simulation 
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7.1.11. Inertial Navigation System Simulation 

Figure 66 shows the INS simulation block diagram. Here, the IMU parameters 

such as acceleration and rotating rates are read into the INS algorithm. 

The INS algorithm from Figure 48 and Figure 49 calculates the estimated 

missile velocity, position, and angle in NED and geodetic frame.  These 

INS parameters are then outputted. It is important to note that in the 

case of GPS/INS integration with reset, the INS reset trigger is used 

to reset the INS. Moreover, the GPS/INS integration prediction is 

inputted to the INS algorithm for reset. 

 

Figure 66 – Inertial Navigation System Simulation 

7.1.12. GPS/INS Integration Simulation 

Figure 67 shows the GPS/INS Integration simulation block diagram. Here, 

the INS parameters such as the missile velocity, position, and angle are 

read. Moreover, the GPS parameters such as the velocity, position, and 

geodetic coordinates are read. Then, the GPS/INS integration algorithm 

calculates the prediction using Figure 50 for Kalman filter method. On 

the other hand, the GPS/INS integration algorithm calculates the 

prediction using Figure 51 for the NNI. The GPS/INS integration 

prediction is then outputted. It is important to note that the desired 

algorithm is pre-selected before the simulation is executed.  

 

Figure 67 – GPS/INS Integration Simulation 
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7.1.13. Guidance Simulation 

Figure 68 shows the guidance simulation block diagram. Here, the 

predefined trajectory is fed into the trajectory guidance block. In 

addition, the navigation parameters such as the missile position is also 

fed into the trajectory guidance block. This is where the trajectory 

guidance command is calculated using Equation 59. 

Moreover, the seeker parameters, such as target location, and the 

navigation parameters such as the missile position and velocity are fed 

into the terminal guidance block. Here, the terminal guidance command 

is calculated using Equation 61 for Proportional Navigation algorithm. 

However, the terminal guidance command is calculated using Figure 41 for 

TGNN. It is important to note that the type of terminal guidance 

algorithm is pre-selected before the simulation is executed.   

In addition, the terminal guidance and trajectory guidance cannot be 

happening at the same time. Hence, an exclusive OR block is used to allow 

only a single type of the guidance to be used. It is also important to 

note that the type of guidance is pre-selected before the simulation 

execution. However, it can be coded to switch during the missile flight.  

 

 

Figure 68 –Guidance Simulation 
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7.1.14. Control Simulation 

Figure 69 shows the control simulation block diagram. Here, the roll 

demand of zero is inputted into the roll autopilot. In addition, the 

navigation parameters such as roll angle and rate are also inputted into 

the roll autopilot. The roll autopilot calculates the command using 

Figure 30. However, its uses Figure 32 for Roll Neural Network Autopilot. 

Moreover, the pitch demand from guidance is inputted into the pitch 

autopilot. The navigation parameters such as vertical acceleration, 

velocity, and pitch rate are also inputted into the pitch autopilot. The 

pitch autopilot calculates the command using Figure 31. However, it uses 

Figure 35 for Pitch Neural Network Autopilot. Furthermore, the yaw demand 

from guidance is inputted into the yaw autopilot. The navigation 

parameters such as side acceleration, velocity, and yaw rate are also 

inputted into the yaw autopilot. The yaw autopilot calculates the command 

using Figure 31. However, it uses Figure 35 for Yaw Neural Network 

Autopilot. It is important to note that the gains are varied with 

velocity for traditional autopilot and the type of autopilot is pre-

selected before the simulation execution.   

 

Figure 69 – Control Simulation 
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7.2. Performance Comparison 

In order to verify the dependability of the Guidance, Navigation, and 

Control neural network algorithm, they will be compared to traditional 

algorithms. The comparison is done by implementing both neural network 

and traditional algorithms in a full missile simulation that is time 

variant and non-linear. This allows for an adequate estimation of the 

algorithms performance for a real system.  

7.2.1. TGNN vs PN Guidance Comparison 

The missile is launched at a constant 45degs launch angle. This angle 

is chosen for the comparison because it allows the missile to fly to the 

maximum range. In addition, it ensures sufficient altitude to evaluate 

the performance of the missile. However, it is important to note that 

since the launch angle is fixed, minimum range will cause problems. 

Hence, the minimum target range for this comparison is 8000m while the 

maximum target range is 14000m. Moreover, the minimum target deviation 

for this comparison is 0m while the maximum target deviation is 10000m 

in the negative direction.   

Furthermore, the terminal guidance algorithm along with the lateral 

autopilot is turned on at 20 seconds as shown in Figure 70. This is to 

allow the missile to reach the apex before the guidance starts. These 

guidance scenarios are repeated for both terminal guidance algorithms. 

The missile miss distance will be used as the evaluation criteria.  

 

Figure 70 - Guidance Comparison Scenario 
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Figure 71 and Figure 72 show the performance of the missile for the 

target at 8000m range and 0m deviation. Here, it can be seen that for 

the range TGNN performed better than PN. The TGNN range error is 202m 

while PN is 1724m. However, PN performed better for deviation. Here, it 

can be seen that the deviation error for TGNN is 928m while PN is 102m. 

This is because the TGNN algorithms design struggles with zero command. 

Moreover, TGNN took longer than PN to reach the altitude of the target. 

 

Figure 71 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = 0m 

 

Figure 72 – Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = 0m 
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Figure 73 and Figure 74 show the performance of the missile for the 

target at 8000m range and -2000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 

248m while PN is 801m. In addition, TGNN performed better for deviation. 

Here, it can be seen that the deviation error for TGNN is 205m while PN 

is 458m. It is important to note that TGNN took longer to reach the 

altitude of the target. 

 

Figure 73 – Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = -2000m 

 

Figure 74 – Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = -2000m 
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Figure 75 and Figure 76 show the performance of the missile for the 

target at 8000m range and -4000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 0m 

while PN is 7m. In addition, TGNN performed better for deviation. Here, 

it can be seen that the deviation error for TGNN is 0m while PN is 623m. 

It is important to note that both TGNN and PN took the same amount of 

time to reach the altitude of the target. 

 

Figure 75 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = -4000m 

 

Figure 76 – Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = -4000m 
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Figure 77 and Figure 78 show the performance of the missile for the 

target at 8000m range and -6000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 3m 

while PN is 365m. In addition, TGNN performed better for deviation. Here, 

it can be seen that the deviation error for TGNN is 19m while PN is 

4595m. It is important to note that TGNN took longer to reach the altitude 

of the target. 

 

Figure 77 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = -6000m 

 

Figure 78 – Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = -6000m 
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Figure 79 and Figure 80 show the performance of the missile for the 

target at 8000m range and -8000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 0m 

while PN is 1540m. In addition, TGNN performed better for deviation. 

Here, it can be seen that the deviation error for TGNN is 3069m while 

PN is 6895m. It is important to note that TGNN took longer to reach the 

altitude of the target. 

 

Figure 79 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = -8000m  

 

Figure 80 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = -8000m 
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Figure 81 and Figure 82 show the performance of the missile for the 

target at 8000m range and -10000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 0m 

while PN is 1683m. In addition, TGNN performed better for deviation. 

Here, it can be seen that the deviation error for TGNN is 6924m while 

PN is 9430m. It is important to note that TGNN took longer to reach the 

altitude of the target. 

 

Figure 81 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 8000m and Yt = -10000m  

 

Figure 82 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 8000m and Yt = -10000m 
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Figure 83 and Figure 84 show the performance of the missile for the 

target at 10000m range and 0m deviation. Here, it can be seen that for 

the both TGNN and PN performed similarly. The TGNN range error is 0m 

while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. However, TGNN deviated from the center axis before 

settling back to zero. It is important to note that TGNN and PN took the 

same amount of time to reach the altitude of the target. 

 

Figure 83 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = 0m 

 

Figure 84 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = 0m 
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Figure 85 and Figure 86 show the performance of the missile for the 

target at 10000m range and -2000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. It is important to note that TGNN and PN took the same 

amount of time to reach the altitude of the target. 

 

Figure 85 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = -2000m  

 

Figure 86 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = -2000m 
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Figure 87 and Figure 88 show the performance of the missile for the 

target at 10000m range and -4000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. In addition, PN performed a little bit better 

than TGNN for deviation. It can be seen that the deviation error for 

TGNN is 0.5m while PN is 0m. It is important to note that TGNN and PN 

took the same amount of time to reach the altitude of the target. 

 

Figure 87 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = -4000m 

 

Figure 88 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = -4000m 
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Figure 89 and Figure 90 show the performance of the missile for the 

target at 10000m range and -6000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 

1.3m while PN is 107m. In addition, TGNN performed better for deviation. 

Here, it can be seen that the deviation error for TGNN is 0m while PN 

is 538m. It is important to note that TGNN and PN took the same amount 

of time to reach the altitude of the target. 

 

Figure 89 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = -6000m  

 

Figure 90 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = -6000m 
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Figure 91 and Figure 92 show the performance of the missile for the 

target at 10000m range and -8000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 4m 

while PN is 124m. In addition, TGNN performed better for deviation. Here, 

it can be seen that the deviation error for TGNN is 14m while PN is 

4831m. It is important to note that TGNN took longer to reach the altitude 

of the target. 

 

Figure 91 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = -8000m 

 

Figure 92 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = -8000m 
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Figure 93 and Figure 94 show the performance of the missile for the 

target at 10000m range and -10000m deviation. Here, it can be seen that 

for the range PN performed better than TGNN. The TGNN range error is 10m 

while PN is 2m. However, TGNN performed better for deviation. Here, it 

can be seen that the deviation error for TGNN is 114m while PN is 8226m. 

It is important to note that TGNN took longer to reach the altitude of 

the target. 

 

Figure 93 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 10000m and Yt = -10000m 

 

Figure 94 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 10000m and Yt = -10000m 
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Figure 95 and Figure 96 show the performance of the missile for the 

target at 12000m range and 0m deviation. Here, it can be seen that for 

the both TGNN and PN performed similarly. The TGNN range error is 0m 

while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. However, TGNN deviated from the center axis before 

settling back to zero. It is important to note that TGNN and PN took the 

same amount of time to reach the altitude of the target. 

 

Figure 95 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = 0m 

 

Figure 96 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 12000m and Yt = 0m 
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Figure 97 and Figure 98 show the performance of the missile for the 

target at 12000m range and -2000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. It is important to note that TGNN and PN took the same 

amount of time to reach the altitude of the target. 

 

Figure 97 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = -2000m 

 

Figure 98 Comparison of NED Frame Position Miss Distance Between TGNN 

and PN for Target Located at Xt = 12000m and Yt = -2000m 
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Figure 99 and Figure 100 show the performance of the missile for the 

target at 12000m range and -4000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. It is important to note that TGNN and PN took the same 

amount of time to reach the altitude of the target. 

 

Figure 99 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = -4000m 

 

Figure 100 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 12000m and Yt = -4000m 
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Figure 101 and Figure 102 show the performance of the missile for the 

target at 12000m range and -6000m deviation. Here, it can be seen that 

for TGNN performed better than PN. The TGNN range error is 3m while PN 

is also 79m. In addition, TGNN performed better than PN for deviation. 

It can be seen that the deviation error for TGNN is 0m while PN is 144m. 

It is important to note that TGNN and PN took the same amount of time 

to reach the altitude of the target. 

 

Figure 101 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = -6000m 

 

Figure 102 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 12000m and Yt = -6000m 



 

 

 

 

107 | P a g e  

 

Figure 103 and Figure 104 show the performance of the missile for the 

target at 12000m range and -8000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 5m 

while PN is 691m. In addition, TGNN performed better for deviation. Here, 

it can be seen that the deviation error for TGNN is 8m while PN is 2408m. 

It is important to note that TGNN took longer to reach the altitude of 

the target. 

 

Figure 103 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = -8000m  

 

Figure 104 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 12000m and Yt = -8000m 
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Figure 105 and Figure 106 show the performance of the missile for the 

target at 12000m range and -10000m deviation. Here, it can be seen that 

for the range TGNN performed better than PN. The TGNN range error is 8m 

while PN is 599m. In addition, TGNN performed better for deviation. Here, 

it can be seen that the deviation error for TGNN is 28m while PN is 

4928m. It is important to note that TGNN took longer to reach the altitude 

of the target. 

 

Figure 105 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 12000m and Yt = -10000m 

 

Figure 106 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 12000m and Yt = -10000m 
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Figure 107 and Figure 108 show the performance of the missile for the 

target at 14000m range and 0m deviation. Here, it can be seen that for 

the both TGNN and PN performed similarly. The TGNN range error is 0m 

while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. However, TGNN deviated from the center axis before 

settling back to zero. It is important to note that TGNN took a little 

bit longer to reach the altitude of the target. 

 

Figure 107 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = 0m 

 

Figure 108 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = 0m 
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Figure 109 and Figure 110 show the performance of the missile for the 

target at 14000m range and -2000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. In addition, TGNN and PN performed similarly for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is also 0m. It is important to note that TGNN took a little bit longer 

to reach the altitude of the target. 

 

Figure 109 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = -2000m 

 

Figure 110 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = -2000m 
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Figure 111 and Figure 112 show the performance of the missile for the 

target at 14000m range and -4000m deviation. Here, it can be seen that 

for the both TGNN and PN performed similarly. The TGNN range error is 

0m while PN is also 0m. However, TGNN performed better than PN for 

deviation. It can be seen that the deviation error for TGNN is 0m while 

PN is 4m. It is important to note that TGNN took a little bit longer to 

reach the altitude of the target. 

 

Figure 111 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = -4000m 

 

Figure 112 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = -4000m 
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Figure 113 and Figure 114 show the performance of the missile for the 

target at 14000m range and -6000m deviation. Here, it can be seen that 

TGNN performed better than PN. The TGNN range error is 1m while PN is 

also 615m. In addition, TGNN performed better than PN for deviation. It 

can be seen that the deviation error for TGNN is 1.3m while PN is 733m. 

It is important to note that TGNN took longer to reach the altitude of 

the target. 

 

Figure 113 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = -6000m 

 

Figure 114 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = -6000m 
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Figure 115 and Figure 116 show the performance of the missile for the 

target at 14000m range and -8000m deviation. Here, it can be seen that 

TGNN performed better than PN. The TGNN range error is 3m while PN is 

also 1383m. In addition, TGNN performed better than PN for deviation. 

It can be seen that the deviation error for TGNN is 1.5m while PN is 

2571m. It is important to note that TGNN took longer to reach the altitude 

of the target. 

 

Figure 115 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = -8000m  

 

Figure 116 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = -8000m 
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Figure 117 and Figure 118 show the performance of the missile for the 

target at 14000m range and -10000m deviation. Here, it can be seen that 

TGNN performed better than PN. The TGNN range error is 4m while PN is 

also 1632m. In addition, TGNN performed better than PN for deviation. 

It can be seen that the deviation error for TGNN is 16m while PN is 

4719m. It is important to note that TGNN took longer to reach the altitude 

of the target. 

 

Figure 117 - Comparison of NED Frame Position Between TGNN and PN for 

Target Located at Xt = 14000m and Yt = -10000m 

 

Figure 118 - Comparison of NED Frame Position Miss Distance Between 

TGNN and PN for Target Located at Xt = 14000m and Yt = -10000m 
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Figure 119 and Figure 120 show the comparison of the histogram 

distribution between PN and TGNN for range and deviation miss distances. 

It can be seen that PN has a higher mean and a higher standard of 

deviation. This means that for both cases PN has more error. This leads 

to the conclusion that TGNN is a viable if not better alternative to PN 

for Terminal Guidance. 

 

Figure 119 – Comparison of The Histogram Distribution Between PN and 

TGNN For Range Miss Distance   

 

Figure 120 Comparison of The Histogram Distribution Between PN and 

TGNN For Deviation Miss Distance   
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7.2.2. Autopilot NN vs Autopilot  

Similar to the guidance comparison, the missile is launched at 45degs 

launch angle. The angle is chosen for the comparison because it allows 

the missile to fly to the maximum range. In addition, it ensures 

sufficient amount of altitude to evaluate performance of the missile. 

The proportional navigation algorithm is used to guide the missile 

towards the target. In order to reduce the terminal guidance limitations, 

the target range is varied between 10000m and 14000m. Moreover, the 

target deviation is varied between 0m and 3000m. It is important to note 

that the missile guidance and autopilot starts at 20 seconds after launch 

as shown in Figure 121. This is to ensure that the missile reaches the 

apex before the guidance start. In addition, the scenario will be 

repeated with a maximum actuator deflection of 15degs and 20degs. This 

will allow the controllers to be tested with and without aerodynamic 

limitations caused by the maximum actuator deflection of 15degs. 

Additionally, the IMU refresh rate is set to 0.2mili seconds in order 

for the NNA to work properly.  

Both PID and Neural Network Autopilot will be used to control the missile 

in these scenarios. Unlike the guidance comparison where only the miss 

distance of the missile is used as the evaluation criteria, the Mean 

Square Error will be used as well. Here, the MSE of both algorithms for 

roll, pitch, and yaw responses will be compared. Hence, this creates a 

quantifiable criterion to see which controller followed the demand 

better. Furthermore, the Euler angles of the missile will be presented 

in order to see the smoothness of each of the controllers. This is 

important because an oscillating missile is not desirable. 

 

Figure 121 - Autopilot Comparison Scenario 
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Figure 122 and Figure 123 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that both PID and NNA algorithms 

performed almost perfectly. However, PID has a small range miss distance.  

 

 

Figure 122 – Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = 0m 

 

Figure 123 – Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 10000m and Yt = 0m 
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Figure 124 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 10000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 124 – Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = 0m 

Figure 125 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 10000m range and 

0m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 125 – Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= 0m 
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Figure 126 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller shows an unusual behavior which contributed to the 

small miss distance. 

 

Figure 126 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= 0m 

Figure 127 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 127  - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= 0m 
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Figure 128 and Figure 129 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that both PID and NNA 

algorithms performed almost perfectly.  

 

 

Figure 128 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = -1000m 

 

Figure 129 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 10000m and Yt = -1000m 
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Figure 130 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 10000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 130 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = -1000m 

Figure 131 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 10000m range and 

-1000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 131 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -1000m 
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Figure 132 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 132 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -1000m 

Figure 133 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 133 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -1000m 
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Figure 134 and Figure 135 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the NNA controller 

performed better for range with less miss distance. However, the PID 

controller performed better for deviation with less miss distance. 

 

 

Figure 134 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = -3000m 

 

Figure 135 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 10000m and Yt = -3000m 
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Figure 136 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 10000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 136 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

10000m and Yt = -3000m 

Figure 137 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 10000m range and 

-3000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 137 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -3000m 
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Figure 138 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA 

controllers performed better than the PID controller as it has a lower 

MSE value. The PID controller does not match as well because it was tuned 

for the transfer function.  

 

Figure 138 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -3000m 

Figure 139 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

It is interesting because despite Yaw LNNA controller having a better 

performance, the PID resulted in less range miss distance. Nevertheless, 

the performance of both controllers is very similar. 

 
Figure 139 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt 

= -3000m 
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Figure 140 and Figure 141 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the NNA controller performed 

better for range with less miss distance. However, the PID controller 

performed better for deviation with less miss distance. 

 

 

Figure 140 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = 0m 

 

Figure 141 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 12000m and Yt = 0m 
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Figure 142 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 12000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 142 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = 0m 

Figure 143 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 12000m range and 

0m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 143 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= 0m 
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Figure 144 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 144 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= 0m 

Figure 145 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

It is interesting because despite Yaw LNNA controller having a better 

performance, the PID resulted in less range miss distance. Nevertheless, 

the performance of both controllers is very similar. 

 

Figure 145 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= 0m 
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Figure 146 and Figure 147 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 146 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = -1000m 

 

 

Figure 147 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 12000m and Yt = -1000m 
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Figure 148 shows the missile Euler angles comparisons between NNA and 

PID controller for a maximum actuator deflection of 15deg and the target 

at 12000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 148 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = -1000m 

Figure 149 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 12000m range and 

-1000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 149 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -1000m 
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Figure 150 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 150 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -1000m  

Figure 151 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 151  - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -1000m 
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Figure 152 and Figure 153 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 152 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = -3000m 

 

 

Figure 153 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 12000m and Yt = -3000m 
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Figure 154 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 12000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 154 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

12000m and Yt = -3000m 

Figure 155 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 12000m range and 

-3000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 155 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -3000m 
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Figure 156 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 156 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -3000m  

Figure 157 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 157 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt 

= -3000m 



 

 

 

 

135 | P a g e  

 

Figure 158 and Figure 159 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the NNA controller performed 

better for range. However, the PID controller performed better for 

deviation. 

 

Figure 158 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = 0m 

 

 

Figure 159 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 14000m and Yt = 0m 
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Figure 160 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 14000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 160 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = 0m 

Figure 161 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 14000m range and 

0m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 161 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= 0m 
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Figure 162 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 162 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= 0m 

Figure 163 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the PID controller performed 

better than the Yaw LNNA controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 163 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= 0m 
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Figure 164 and Figure 165 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the NNA controller 

performed better for range. However, the PID controller performed better 

for deviation. 

 

Figure 164 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = -1000m 

 

 

Figure 165 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 14000m and Yt = -1000m 
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Figure 166 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 14000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 166 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = -1000m 

Figure 167 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 14000m range and 

-1000m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 167 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -1000m 
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Figure 168 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 168 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -1000m 

Figure 169 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the PID controller 

performed better than the Yaw LNNA controller as it has a lower MSE 

value. Nevertheless, the performance of both controllers is very similar. 

 

Figure 169 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -1000m 
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Figure 170 and Figure 171 show the autopilot performance of the missile 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

Figure 170 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = -3000m 

 

 

Figure 171 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 15deg and Target 

Located at Xt = 14000m and Yt = -3000m 
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Figure 172 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 15deg and the target 

at 14000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 172 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 15deg and Target Located at Xt = 

14000m and Yt = -3000m 

Figure 173 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 15deg and the target at 14000m range and 

-3000m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 173 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -3000m 
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Figure 174 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 15deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 174 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -3000m 

Figure 175 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 15deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the PID controller 

performed better than the Yaw LNNA controller as it has a lower MSE 

value. Nevertheless, the performance of both controllers is very similar. 

 

Figure 175 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt 

= -3000m 
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Figure 176 shows the comparison of the histogram distribution between 

PID and NNA controllers for range and deviation miss distances with a 

maximum actuator deflection of 15deg. It can be seen that PID has a 

higher mean and a higher standard of deviation. This means that for both 

cases PID resulted in more error. This leads to the conclusion that NNA 

is a viable if not a better alternative to the PID controller. 

 

Figure 176 - Comparison of The Histogram Distribution Between PID and 

NNA Controllers for Range and Deviation Miss Distance   

Figure 176 shows the comparison of the histogram distribution between 

the performances of the Roll PID and RNNA controllers. It can be seen 

that the RNNA controller has a lower mean. This means that the RNNA 

controller is more precise. On the other hand, the PID controller has a 

lower standard of deviation. This means that the PID controller is more 

accurate. 

 

Figure 177 – Comparison of The Histogram Distribution Between The 

Performances of Roll PID and RNNA Controllers 



 

 

 

 

145 | P a g e  

 

Figure 178 shows the comparison of the histogram distribution between 

the performances of the Pitch PID and LNNA controllers. It can be seen 

that the PID controller has a higher mean and standard of deviation. 

This means that Pitch LNNA performed better overall. 

 

Figure 178 – Comparison of The Histogram Distribution Between The 

Performances of Pitch PID and LNNA Controllers 

Figure 179 shows the comparison of the histogram distribution between 

the performances of the Yaw PID and LNNA controllers. It can be seen 

that the Yaw LNNA controller has a lower mean. This means that the Yaw 

LNNA controller is more precise. On the other hand, the PID controller 

has a lower standard of deviation. This means that the PID controller 

is more accurate. 

 

Figure 179 – Comparison of The Histogram Distribution Between The 

Performances of Yaw PID and LNNA Controllers 
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Figure 181 and Figure 186 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that both PID and NNA algorithms 

performed almost perfectly. However, PID has a small range miss distance.  

 

 

Figure 180 – Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = 0m 

 

Figure 181 – Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 10000m and Yt = 0m 
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Figure 182 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 10000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 182 – Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = 0m 

Figure 183 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 10000m range and 

0m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 183 – Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= 0m 



 

 

 

 

148 | P a g e  

 

Figure 184 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller shows an unusual behavior which contributed to the 

small miss distance. 

 

Figure 184 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= 0m 

Figure 185 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 10000m range 

and 0m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 185 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= 0m 
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Figure 186 and Figure 187 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that both PID and NNA 

algorithms performed almost perfectly.  

 

 

Figure 186 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = -1000m 

 

Figure 187 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 10000m and Yt = -1000m 
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Figure 188 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 10000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 188 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = -1000m 

Figure 189 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 10000m range and 

-1000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 189 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -1000m 
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Figure 190 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 190 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -1000m 

Figure 191 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 10000m range 

and -1000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 191 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -1000m 
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Figure 192 and Figure 193 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the PID controller 

performed better for both range and deviation with less miss distance.  

 

 

Figure 192 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = -3000m 

 

 

Figure 193 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 10000m and Yt = -3000m 
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Figure 194 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 10000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 194 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

10000m and Yt = -3000m 

Figure 195 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 10000m range and 

-3000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 195 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -3000m 
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Figure 196 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA 

controllers performed better than the PID controller as it has a lower 

MSE value. It is interesting because despite Pitch LNNA controller having 

a better performance, the PID resulted in less range miss distance.  The 

PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 196 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -3000m 

Figure 197 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 10000m range 

and -3000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

It is interesting because despite Yaw LNNA controller having a better 

performance, the PID resulted in less range miss distance. Nevertheless, 

the performance of both controllers is very similar. 

 

Figure 197 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt 

= -3000m 
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Figure 198 and Figure 199 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the NNA controller performed 

better for range with less miss distance. However, the PID controller 

performed better for deviation with less miss distance. 

 

 

Figure 198 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = 0m 

 

 

Figure 199 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 12000m and Yt = 0m 
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Figure 200 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 12000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 200 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = 0m 

Figure 201 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 12000m range and 

0m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 201 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= 0m 
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Figure 202 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 202 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= 0m 

Figure 203 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 12000m range 

and 0m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

It is interesting because despite Yaw LNNA controller having a better 

performance, the PID resulted in less range miss distance. Nevertheless, 

the performance of both controllers is very similar. 

 

Figure 203 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= 0m 
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Figure 204 and Figure 205 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 204 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = -1000m 

 

 

Figure 205 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 12000m and Yt = -1000m 
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Figure 206 shows the missile Euler angles comparisons between NNA and 

PID controller for a maximum actuator deflection of 20deg and the target 

at 12000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 206 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = -1000m 

Figure 207 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 12000m range and 

-1000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 207 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -1000m 
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Figure 208 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 208 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -1000m  

Figure 209 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 12000m range 

and -1000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 209  - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -1000m 



 

 

 

 

161 | P a g e  

 

Figure 210 and Figure 211 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 210 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = -3000m 

 

 

Figure 211 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 12000m and Yt = -3000m 
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Figure 212 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 12000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 212 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

12000m and Yt = -3000m 

Figure 213 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 12000m range and 

-3000m deviation. Here, it can be seen that the RNNA controller performed 

better than the PID controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 213 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -3000m 
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Figure 214 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 214 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -3000m  

Figure 215 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 12000m range 

and -3000m deviation. Here, it can be seen that the Yaw LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 215 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt 

= -3000m 
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Figure 216 and Figure 217 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the NNA controller performed 

better for range. However, the PID controller performed better for 

deviation. 

 

Figure 216 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = 0m 

 

 

Figure 217 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 14000m and Yt = 0m 
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Figure 218 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 14000m range and 0m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 218 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = 0m 

Figure 219 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 14000m range and 

0m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 219 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= 0m 
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Figure 220 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 220 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= 0m 

Figure 221 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 14000m range 

and 0m deviation. Here, it can be seen that the PID controller performed 

better than the Yaw LNNA controller as it has a lower MSE value. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 221 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= 0m 
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Figure 222 and Figure 223 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 222 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = -1000m 

 

 

Figure 223 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 14000m and Yt = -1000m 
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Figure 224 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 14000m range and -1000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 224 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = -1000m 

Figure 225 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 14000m range and 

-1000m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 225 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -1000m 
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Figure 226 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 226 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -1000m 

Figure 227 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 14000m range 

and -1000m deviation. Here, it can be seen that the PID controller 

performed better than the Yaw LNNA controller as it has a lower MSE 

value. It is interesting because despite PID controller having a better 

performance, the Yaw LNNA resulted in less range miss distance.  

Nevertheless, the performance of both controllers is very similar. 

 

Figure 227 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -1000m 
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Figure 228 and Figure 229 show the autopilot performance of the missile 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the NNA controller 

performed better for both range and deviation. 

 

 

Figure 228 - Comparison of NED Frame Position Between NNA and PID for 

a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = -3000m 

 

 

Figure 229 - Comparison of NED Frame Position Miss Distance Between 

NNA and PID for a Maximum Actuator Deflection of 20deg and Target 

Located at Xt = 14000m and Yt = -3000m 
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Figure 230 shows the missile Euler angles comparisons between NNA and 

PID controllers for a maximum actuator deflection of 20deg and the target 

at 14000m range and -3000m deviation. Here, it can be seen that the PID 

controller is smoother than the NNA controller, which has a small 

oscillation. 

 

Figure 230 - Comparison of Missile Euler Angles Between NNA and PID 

for a Maximum Actuator Deflection of 20deg and Target Located at Xt = 

14000m and Yt = -3000m 

Figure 231 shows the comparison between RNNA and PID controllers for a 

maximum actuator deflection of 20deg and the target at 14000m range and 

-3000m deviation. Here, it can be seen that the PID controller performed 

better than the RNNA controller as it has a lower MSE value. It is 

important to note that the roll demand is adjusted to account for the 

static error.  

 

Figure 231 - Comparison of Roll Response Between RNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -3000m 
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Figure 232 shows the comparison between Pitch LNNA and PID controllers 

for a maximum actuator deflection of 20deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the Pitch LNNA controller 

performed better than the PID controller as it has a lower MSE value. 

The PID controller does not match as well because it was tuned for the 

transfer function.  

 

Figure 232 - Comparison of Pitch Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -3000m 

Figure 233 shows the comparison between Yaw LNNA and PID controllers for 

a maximum actuator deflection of 20deg and the target at 14000m range 

and -3000m deviation. Here, it can be seen that the PID controller 

performed better than the Yaw LNNA controller as it has a lower MSE 

value. It is interesting because despite PID controller having a better 

performance, the Yaw LNNA resulted in less range miss distance. 

Nevertheless, the performance of both controllers is very similar. 

 

Figure 233 - Comparison of Yaw Response Between LNNA and PID for Max 

Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt 

= -3000m 
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Figure 234 shows the comparison of the histogram distribution between 

PID and NNA controllers for range and deviation miss distances with a 

maximum actuator deflection of 20deg. It can be seen that PID has a 

higher mean and a higher standard of deviation. This means that for both 

cases PID resulted in more error. This leads to the conclusion that NNA 

is a viable if not a better alternative to the PID controller. 

 

Figure 234 - Comparison of The Histogram Distribution Between PID and 

NNA Controllers for Range and Deviation Miss Distance   

Figure 235 shows the comparison of the histogram distribution between 

the performances of the Roll PID and RNNA controllers. It can be seen 

that the RNNA controller has a lower mean. This means that the RNNA 

controller is more precise. On the other hand, the PID controller has a 

lower standard of deviation. This means that the PID controller is more 

accurate. 

 

Figure 235 – Comparison of The Histogram Distribution Between The 

Performances of Roll PID and RNNA Controllers 
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Figure 236 shows the comparison of the histogram distribution between 

the performances of the Pitch PID and LNNA controllers. It can be seen 

that the PID controller has a higher mean and standard of deviation. 

This means that Pitch LNNA performed better overall. 

 

Figure 236 – Comparison of The Histogram Distribution Between The 

Performances of Pitch PID and LNNA Controllers 

Figure 237 shows the comparison of the histogram distribution between 

the performances of the Yaw PID and LNNA controllers. It can be seen 

that the Yaw LNNA controller has a lower mean. This means that the Yaw 

LNNA controller is more precise. On the other hand, the PID controller 

has a lower standard of deviation. This means that the PID controller 

is more accurate. 

 

Figure 237 – Comparison of The Histogram Distribution Between The 

Performances of Yaw PID and LNNA Controllers 
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7.2.3. NNI vs GPS/INS Integration Comparison 

The missile is launched at varying launch angles from 10deg to 80deg 

with a step of 10 deg. At each launch angle, the target is located at 

either 0m or 2000m. The reason for varying the launch angle and target 

location is to see the effects it has on the GPS/INS integration 

performance. It is important to note that the GPS/INS integration can 

only happen if the GPS signal is available. Since the simulation assumes 

a commercial GPS, the limitation has to be taken into consideration. 

Therefore, Figure 238 shows the GPS/INS Comparison Scenario when the GPS 

signal is available. The GPS first becomes available once the missile 

is launched and its velocity drops below 500m/s. That is because 

commercial GPS is software limited to not report data faster than the 

500m/s velocity limit. Since the GPS signal can be lost during the 

flight, it should be tested in the simulation. In addition, the 

reacquisition of the GPS signal is important. Hence, it is also tested 

in the simulation.  

 

Figure 238 – GPS/INS Comparison Scenario 

Furthermore, there are two methods of handling the loss of GPS signal. 

One method is to switch the INS algorithm with no reset. The No Reset 

method keeps the INS estimation as a backup localization of the missile. 

The Rest method will reset the INS with the predicted estimation. 

Therefore, the INS is corrected with the prediction although no backup 

localization is kept. The performance of the two methods will be 

presented separately in the comparison. That is because each method has 

its unique advantage. The performance of the No Reset method will assume 
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constant GPS signal. This is to ensure that error from not resetting 

does not overshadow the integration performance. However, for the Reset 

method, the performance will include the GPS loss of signal. That is 

because it is important to see the effects of resetting the INS on the 

integration algorithm performance. In addition, it is also the more 

popular method used in the missile industry. Moreover, the performance 

of the integration algorithm will be evaluated using Mean Square Error. 

This is to allow an overall quantifiable comparison criterion.  

Figure 239 shows the no reset GPS/INS integration concept. Here, the 

blue line is the pure INS performance. In addition, the green line is 

the actual location of the missile. Moreover, the red line is the GPS/INS 

integration with no reset. It can be seen that the GPS/INS integration 

performance is better than INS.  However, once the GPS signal is lost, 

the algorithm switches directly to the INS. This makes the performance 

gains useless if the GPS signal is lost. The algorithm switches back 

once the GPS signal is regained. On the other hand, Figure 240 shows the 

reset GPS/INS integration concept. Similarly, green line is the actual 

location of the missile. However, there is no pure INS blue line because 

it is being reset at every iteration. The red line is the GPS/INS 

integration with reset. It can be seen that once the GPS signal is lost, 

the algorithm switches to the cyan pure INS performance. Then, once the 

GPS is regained, it continues with the algorithm from where it left off.  

 

Figure 239 - GPS/INS Integration Concept of Operation with No INS 

Reset 

 

Figure 240 - GPS/INS Integration Concept of Operation with INS Reset 
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Figure 241 and Figure 242 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. However, it can 

be seen that the INS struggled with a high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 241 – Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

20deg and Target Y = 0m 

 

Figure 242 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

20deg and Target Y = 2000m 
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Figure 243 and Figure 244 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. However, it can 

be seen that the INS struggled with a high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 243 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

30deg and Target Y = 0m 

 

Figure 244 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

30deg and Target Y = 2000m 
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Figure 245 and Figure 246 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least and small MSE. 

On the other hand, although NNI performed fine and better than the Kalman 

filter, the GPS error worsens the navigation performance. Hence, pure 

INS was a better choice for this particular case. It is important to 

note that the deviation did not affect the performance much. 

 

Figure 245 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

40deg and Target Y = 0m 

 

Figure 246 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

40deg and Target Y = 2000m 
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Figure 247 and Figure 248 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least MSE but also 

close to NNI performance. The NNI performed fine and better than the 

Kalman filter. However, the GPS error worsens the navigation performance. 

Hence, pure INS was a better choice but not much better. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 247 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

50deg and Target Y = 0m 

 

Figure 248 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 

50deg and Target Y = 2000m 
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Figure 249 and Figure 250 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases with the 

least MSE. In addition, the NNI performed fine as well. However, it can 

be seen that the INS struggled with a high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 249 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m  

 

Figure 250 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 251 and Figure 252 show the comparison of down position GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE 

that is also twice better than the Kalman filter. However, the Kalman 

filter did perform fine. In addition, it can be seen that the INS 

struggled with a very high MSE. It is important to note that the deviation 

did not affect the performance much. 

 

Figure 251 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 252 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 
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Figure 253 and Figure 254 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for no deviation. However, 

the NNI algorithm performed best for the case with deviation. That is 

because the NNI design struggles with zero input condition by introducing 

a bias. In addition, it can be seen that the INS struggled with a high 

MSE.  

 

Figure 253 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 0m 

 

Figure 254 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 2000m 
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Figure 255 and Figure 256 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for no deviation. However, 

the NNI algorithm performed best for the case with deviation. That is 

because the NNI design struggles with zero input condition by introducing 

a bias. In addition, it can be seen that the INS struggled with a very 

high MSE.  

 

Figure 255 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 0m 

 

Figure 256 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 2000m 
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Figure 257 and Figure 258 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for no deviation. However, 

the NNI algorithm performed best for the case with deviation. That is 

because the NNI design struggles with zero input condition by introducing 

a bias. In addition, it can be seen that the INS struggled with a very 

high MSE. 

 

Figure 257 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 0m 

 

Figure 258 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 2000m 
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Figure 259 and Figure 260 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation.  Here, it can be seen that 

the Kalman filter algorithm performed the best for no deviation. However, 

the NNI algorithm performed best for the case with deviation. That is 

because the NNI design struggles with zero input condition by introducing 

a bias. In addition, it can be seen that the INS struggled with a very 

high MSE. 

 

Figure 259 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 0m 

 

Figure 260 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 2000m 
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Figure 261 and Figure 262 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for no deviation. However, 

the NNI algorithm performed best for the case with deviation. That is 

because the NNI design struggles with zero input condition by introducing 

a bias. In addition, it can be seen that the INS struggled with a very 

high MSE. 

 

Figure 261 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m 

 

Figure 262 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 263 and Figure 264 show the comparison of east position GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed best for both cases. However, the 

NNI algorithm performed fine and close to Kalman filter for the deviation 

case. In addition, it still struggles with zero input with a bias. In 

addition, it can be seen that the INS struggled with a very high MSE. 

 

Figure 263 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 264 - Comparison of East Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 
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Figure 265 and Figure 266 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

However, the Kalman filter performed fine. In addition, it can be seen 

that the INS struggled with a very high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 265 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 0m 

 

Figure 266 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 2000m 
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Figure 267 and Figure 268 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

However, the Kalman filter performed fine. In addition, it can be seen 

that the INS struggled with a very high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 267 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 0m 

 

Figure 268 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 2000m 
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Figure 269 and Figure 270 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

However, the Kalman filter performed fine. In addition, it can be seen 

that the INS struggled with a very high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 269 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 0m 

 

Figure 270 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 2000m 
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Figure 271 and Figure 272 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

However, the Kalman filter performed fine. In addition, it can be seen 

that the INS struggled with a very high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 271 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 0m 

 

Figure 272 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 2000m 
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Figure 273 and Figure 274 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

However, the Kalman filter performed fine. In addition, it can be seen 

that the INS struggled with a very high MSE. It is important to note 

that the deviation did not affect the performance much. 

 

Figure 273 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m 

 

Figure 274 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 275 and Figure 276 show the comparison of north position GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases with the 

least MSE. However, the NNI filter performed fine. In addition, it can 

be seen that the INS struggled with a very high MSE. It is important to 

note that the deviation did not affect the performance much. 

 

Figure 275 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 276 - Comparison of North Position GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 
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Figure 277 and Figure 278 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the INS performed fine but with almost double the MSE. 

Moreover, the Kalman filter also performed fine but with a higher MSE. 

It is important to note that the deviation did not affect the performance 

much. 

 

Figure 277 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 0m 

 

Figure 278 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 2000m 
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Figure 279 and Figure 280 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least MSE. The GPS 

error worsened the navigation performance. Nevertheless, the NNI 

performed fine. Moreover, the Kalman filter also performed fine but with 

a higher MSE. It is important to note that the deviation did not affect 

the performance much. 

 

Figure 279 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 0m 

 

Figure 280 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 2000m 
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Figure 281 and Figure 282 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least MSE. The GPS 

error worsened the navigation performance. Nevertheless, the NNI 

performed fine. Moreover, the Kalman filter also performed fine but with 

a higher MSE. It is important to note that the deviation did not affect 

the performance much. 

 

Figure 281 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 0m 

 

Figure 282 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 2000m 
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Figure 283 and Figure 284 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least MSE. The GPS 

error worsened the navigation performance. Nevertheless, the NNI 

performed fine. Moreover, the Kalman filter also performed fine but with 

a higher MSE. It is important to note that the deviation did not affect 

the performance much. 

 

Figure 283 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 0m 

 

Figure 284 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 2000m 
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Figure 285 and Figure 286 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the INS performed the best for both cases with the least MSE. The GPS 

error worsened the navigation performance. Nevertheless, the NNI 

performed fine. Moreover, the Kalman filter also performed fine but with 

a higher MSE. It is important to note that the deviation did not affect 

the performance much. 

 

Figure 285 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m 

 

Figure 286 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 287 and Figure 288 show the comparison of down velocity GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 287 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 288 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 

 



 

 

 

 

201 | P a g e  

 

Figure 289 and Figure 290 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for the case with no deviation. 

However, the NNI performed best for the case with deviation. That is 

because the NNI algorithm struggles with zero input with a bias. In 

addition, the INS algorithm performed fine although with a higher MSE. 

 

Figure 289 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 0m 

 

Figure 290 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 2000m 
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Figure 291 and Figure 292 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for the case with no deviation. 

However, the NNI performed best for the case with deviation. That is 

because the NNI algorithm struggles with zero input with a bias. In 

addition, the INS algorithm performed fine although with a higher MSE. 

 

Figure 291 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 0m 

 

Figure 292 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 2000m 
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Figure 293 and Figure 294 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for the case with no deviation. 

However, the NNI performed best for the case with deviation by a little. 

That is because the NNI algorithm struggles with zero input with a bias. 

In addition, the INS algorithm performed fine although with a higher 

MSE. 

 

Figure 293 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 0m 

 

Figure 294 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 2000m 
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Figure 295 and Figure 296 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for both cases. However, the NNI 

performed fine with a bigger error with the deviation case. That is 

because the NNI algorithm struggles with zero input with a bias. In 

addition, the INS algorithm performed fine although with a higher MSE. 

 

Figure 295 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 0m 

 

Figure 296 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 2000m 
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Figure 297 and Figure 298 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for both cases. However, the NNI 

performed fine with a bigger error with the deviation case. That is 

because the NNI algorithm struggles with zero input with a bias. In 

addition, the INS algorithm performed fine although with a higher MSE. 

 

Figure 297 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m 

 

Figure 298 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 299 and Figure 300 show the comparison of east velocity GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter performed the best for both cases. However, the NNI 

performed fine with a bigger error with the deviation case. That is 

because the NNI algorithm struggles with zero input with a bias. In 

addition, the INS algorithm performed fine although with a higher MSE. 

 

Figure 299 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 300 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 
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Figure 301 and Figure 302 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 301 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 0m 

 

Figure 302 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 20 

deg and Target Y = 2000m 
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Figure 303 and Figure 304 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 303 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 0m 

 

Figure 304 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 30 

deg and Target Y = 2000m 
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Figure 305 and Figure 306 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 305 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 0m 

 

Figure 306 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 40 

deg and Target Y = 2000m 
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Figure 307 and Figure 308 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 307 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 0m 

 

Figure 308 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 50 

deg and Target Y = 2000m 
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Figure 309 and Figure 310 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 309 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 0m 

 

Figure 310 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 60 

deg and Target Y = 2000m 
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Figure 311 and Figure 312 show the comparison of north velocity GPS/INS 

integration in NED frame without reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI performed the best for both cases with the least MSE. 

Nevertheless, the INS performed fine. Moreover, the Kalman filter also 

performed fine but with a higher MSE. It is important to note that the 

deviation did not affect the performance much. 

 

Figure 311 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 0m 

 

Figure 312 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between INS, Kalman Filter, and NNI Without Reset for El0 = 70 

deg and Target Y = 2000m 
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Figure 313 shows a comparison of the histogram distribution of down 

position GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that INS has the highest mean and 

standard of deviation. This means that it is the least accurate overall 

despite having better performances in some cases. In addition, the NNI 

has the lowest mean and deviation. This means that is the most accurate 

despite having cases where it did not perform the best. Moreover, it can 

be seen that the Kalman filter performed fine overall. 

 

Figure 313 – Comparison of The Histogram Distribution for Down 

Position GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 

Figure 314 shows a comparison of the histogram distribution of east 

position GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that INS has the highest mean and 

standard of deviation. This means that it is the least accurate overall 

which was clearly seen in its performances. In addition, the Kalman 

filter has the lowest mean and deviation. This means that it is the most 

accurate despite having cases where it did not perform the best. 

Moreover, it can be seen that the NNI performed fine overall. However, 

the NNI distribution is skewed because of its challenges with zero input. 

Thus, making the Kalman filter a better solution for side navigation 

integration. 
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Figure 314 – Comparison of The Histogram Distribution for East 

Position GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 

Figure 315 shows a comparison of the histogram distribution of north 

position GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that INS has the highest mean and 

standard of deviation. This means that it is the least accurate overall 

which was clearly seen in its performances. In addition, the NNI has the 

lowest mean and deviation. This means that it is the most accurate 

despite which was also seen in its performances. Moreover, it can be 

seen that the Kalman filter performed fine overall. 

 

Figure 315 – Comparison of The Histogram Distribution for North 

Position GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 
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Figure 316 shows a comparison of the histogram distribution of down 

velocity GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that Kalman filter has the highest 

mean and standard of deviation. This means that it is the least accurate 

overall which was seen in its performances. In addition, the NNI has the 

lowest mean and deviation. This means that it is the most accurate 

despite having cases where it did not perform the best. In addition, it 

can be seen that the INS filter performed fine overall. 

 

Figure 316 – Comparison of The Histogram Distribution for Down 

Velocity GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 

Figure 317 shows a comparison of the histogram distribution of east 

velocity GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that INS has the highest mean but the 

lowest standard of deviation. This means that it is the least accurate 

but the most precise. In addition, the Kalman filter has the lowest mean 

and a low stand of deviation. This means that it is the most accurate 

as seen from its performances. In addition, the NNI performed fine. 

However, its distribution is mostly skewed because of its challenges 

with zero input. 
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Figure 317 – Comparison of The Histogram Distribution for East 

Velocity GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 

Figure 318 shows a comparison of the histogram distribution of north 

velocity GPS/INS integration in NED frame without reset for INS, NNI, 

and Kalman filter. It can be seen that INS has the highest mean but the 

lowest standard of deviation. This means that it is the least accurate 

but most precise. In addition, the NNI has the lowest mean and a low 

stand of deviation. This means that it is the most accurate as seen from 

its performances. In addition, the Kalman filter performed fine. However, 

it is the least accurate and least precise. 

 

Figure 318 – Comparison of The Histogram Distribution for North 

Velocity GPS/INS Integration in NED Frame Without Reset Between INS, 

NNI, and Kalman Filter. 
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Figure 319 and Figure 320 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 319 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 320 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 
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Figure 321 and Figure 322 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 321 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 322 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 323 and Figure 324 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 323 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 324 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 
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Figure 325 and Figure 326 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 325 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 326 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 327 and Figure 328 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 327 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 328 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 
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Figure 329 and Figure 330 show the comparison of down position GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

In addition, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 329 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

Figure 330 - Comparison of Down Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 331 and Figure 332 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 331 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 332 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 
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Figure 333 and Figure 334 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 333 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 334 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 335 and Figure 336 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 335 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 336 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 

 



 

 

 

 

226 | P a g e  

 

Figure 337 and Figure 338 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 337 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 338 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 339 and Figure 340 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 339 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 340 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 

 



 

 

 

 

228 | P a g e  

 

Figure 341 and Figure 342 show the comparison of east position GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter.  

 

Figure 341 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

Figure 342 - Comparison of East Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 343 and Figure 344 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 343 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 344 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 
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Figure 345 and Figure 346 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 345 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 346 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 347 and Figure 348 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 347 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 348 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 
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Figure 349 and Figure 350 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 349 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 350 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 351 and Figure 352 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 351 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 352 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 
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Figure 353 and Figure 354 show the comparison of north position GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is an interesting 

phenomenon because with the No Reset case NNI performed better. It is 

important to note that the deviation did not affect the performance much. 

 

Figure 353 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

Figure 354 - Comparison of North Position GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 355 and Figure 356 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman algorithm performed the best for both cases with the least 

MSE. Nevertheless, the NNI performed fine as well. It is important to 

note that the deviation did not affect the performance much. 

 

Figure 355 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 356 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 
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Figure 357 and Figure 358 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 357 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 358 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 359 and Figure 360 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 359 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 360 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 
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Figure 361 and Figure 362 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 361 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 362 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 363 and Figure 364 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 363 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 364 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 
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Figure 365 and Figure 366 show the comparison of down velocity GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 365 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

Figure 366 - Comparison of Down Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 367 and Figure 368 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter. 

 

Figure 367 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 368 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 

 



 

 

 

 

242 | P a g e  

 

Figure 369 and Figure 370 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter. 

 

Figure 369 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 370 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 371 and Figure 372 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for the case with no 

deviation. On the other hand, the NNI performed better in the deviation 

case. That is because the NNI has challenges with zero input for no 

deviation. Nevertheless, the NNI performed close to the Kalman filter. 

 

Figure 371 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 372 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 
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Figure 373 and Figure 374 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases. 

Nevertheless, the NNI performed fine and close to the Kalman filter.  

 

Figure 373 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 374 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 375 and Figure 376 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases. 

Nevertheless, the NNI performed fine and close to the Kalman filter. 

 

Figure 375 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 376 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 
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Figure 377 and Figure 378 show the comparison of east velocity GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases. 

Nevertheless, the NNI performed fine and close to the Kalman filter. 

 

Figure 377 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

 

Figure 378 - Comparison of East Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 379 and Figure 380 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 20deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much.  

 

Figure 379 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 0m 

 

Figure 380 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 20 deg and Target Y 

= 2000m 
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Figure 381 and Figure 382 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 30deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 381 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 0m 

 

Figure 382 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 30 deg and Target Y 

= 2000m 
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Figure 383 and Figure 384 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 40deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 383 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 0m 

 

Figure 384 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 40 deg and Target Y 

= 2000m 
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Figure 385 and Figure 386 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 50deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 385 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 0m 

 

Figure 386 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 50 deg and Target Y 

= 2000m 
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Figure 387 and Figure 388 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 60deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the NNI algorithm performed the best for both cases with the least MSE. 

Nevertheless, the Kalman filter performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 387 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 0m 

 

Figure 388 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 60 deg and Target Y 

= 2000m 
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Figure 389 and Figure 390 show the comparison of north velocity GPS/INS 

integration in NED frame with reset for the missile launched at 70deg 

and target located at 0m and 2000m deviation. Here, it can be seen that 

the Kalman filter algorithm performed the best for both cases with the 

least MSE. Nevertheless, the NNI performed fine as well. It is important 

to note that the deviation did not affect the performance much. 

 

Figure 389 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 0m 

 

Figure 390 - Comparison of North Velocity GPS/INS Integration in NED 

Frame Between Kalman and NNI With Reset for El0 = 70 deg and Target Y 

= 2000m 
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Figure 391 shows a comparison of the histogram distribution of down 

position GPS/INS integration in NED frame with reset between NNI and 

Kalman filter. It can be seen that Kalman filter has the higher mean. 

This means that it is less accurate overall. In addition, the NNI has 

the lower mean. This means that it is more accurate. Since the difference 

between the standard deviation of the Kalman filter and NNI is small, 

it can be assumed that they are equally precise. 

 

Figure 391 – Comparison of The Histogram Distribution for Down 

Position GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 

Figure 392 shows a comparison of the histogram distribution of east 

position GPS/INS integration in NED frame with reset between NNI and 

Kalman filter. It can be seen that NNI has the higher mean. This means 

that it is less accurate overall. This could be because of the challenges 

the NNI has with zero input for the no deviation case. In addition, the 

Kalman filter has the lower mean. This means that it is more accurate. 

Since the standard deviation of the NNI is smaller than the Kalman 

filter, it is more precise.  
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Figure 392 – Comparison of The Histogram Distribution for East 

Position GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 

Figure 393 shows a comparison of the histogram distribution of north 

position GPS/INS integration in NED frame with reset between NNI and 

Kalman filter. It can be seen that NNI has the higher mean. This means 

that it is less accurate overall. In addition, the Kalman filter has the 

lower mean. This means that it is more accurate. Since the standard 

deviation of the NNI is lower than the Kalman filter, it is more precise. 

 

Figure 393 – Comparison of The Histogram Distribution for North 

Position GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 
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Figure 394 shows a comparison of the histogram distribution of down 

velocity GPS/INS integration in NED frame with reset between NNI and 

Kalman filter. This means that it is less accurate overall. In addition, 

the NNI has the lower mean. This means that it is more accurate. Since 

the standard deviation of the Kalman filter is lower than the NNI, it 

is more precise. 

 

Figure 394  – Comparison of The Histogram Distribution for Down 

Velocity GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 

Figure 395 shows a comparison of the histogram distribution of east 

velocity GPS/INS integration in NED frame with reset for between NNI and 

Kalman filter. It can be seen that NNI has the higher mean. This means 

that it is less accurate overall. In addition, the Kalman filter has the 

lower mean. This means that it is more accurate. Since the standard 

deviation of the NNI is lower than the Kalman filter, it is more precise. 
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Figure 395 - Comparison of The Histogram Distribution for East 

Velocity GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 

Figure 396 shows a comparison of the histogram distribution of north 

velocity GPS/INS integration in NED frame with reset between NNI and 

Kalman filter. It can be seen that Kalman filter has the higher mean. 

This means that it is less accurate overall. In addition, the NNI has 

the lower mean. This means that it is more accurate. Since the standard 

deviation of the NNI is lower than the Kalman filter, it is more precise. 

 

Figure 396 - Comparison of The Histogram Distribution for North 

Velocity GPS/INS Integration in NED Frame With Reset Between NNI and 

Kalman Filter. 
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8. Conclusion 

This thesis investigated the possibility of using machine learning to 

design missile guidance, navigation, and control algorithms. This was 

accomplished by modeling the missile and its environment. In addition, 

the missile system and traditional guidance, navigation, and control 

algorithms were modeled. This allowed for a benchmark to test the 

algorithms designed by machine learning. It is important to keep in mind 

that the thesis assumes that the simulation is accurate enough to 

represent a physical missile system. 

Proportional navigation was used as the benchmark for the terminal 

guidance. The Terminal Guidance Neural Network algorithm was developed 

using machine learning to perform the task of terminal guidance. The 

TGNN algorithm resulted in a more accurate and precise terminal guidance 

algorithm than traditional PN. In fact, when pushing the limits of both 

algorithms, the TGNN algorithm resulted in significant improvements over 

the PN. This means that the TGNN is a viable if not a better alternative 

to the traditional PN algorithm. 

In addition, a modified version of the roll, pitch, and yaw PID 

controller was used as the benchmark for the missile autopilot. The 

missile was tested for 15deg and 20deg maximum actuator deflection. In 

both cases, the Roll Neural Network Autopilot controller was more precise 

than the PID controller. On the other hand, the Roll PID controller was 

more accurate. Additionally, the Pitch Lateral Neural Network Autopilot 

controller was more precise and accurate than the Pitch PID controller. 

Moreover, the Yaw Lateral Neural Network Autopilot controller was more 

precise. However, the Yaw PID controller was more accurate. This means 

that the Neural Network Autopilot algorithms designed by machine learning 

is also a viable alternative if not a better alternative to the 

traditional PID controller.  

Furthermore, the Kalman filter was used as the benchmark for the GPS/INS 

integration. The integration was tested using No Reset and Reset methods. 

In the No Reset Method, both north and down position channels were more 
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accurate and precise on Neural Network Integration algorithm. However, 

because of the challenge with zero input condition, Kalman filter was 

more accurate and precise for the east position channel.  The same 

behavior holds true for the NED velocities. However, the east velocity 

is more accurate on the NNI than the Kalman filter.  On the other hand, 

the behavior changes with the Reset case. The Kalman filter is more 

accurate and precise for down position channel. Although the Kalman 

filter was more precise, the NNI was more accurate for the east and north 

position channels.  The north velocity channel was more precise and 

accurate on the NNI algorithm. Nonetheless, the Kalman filter was more 

precise for the east velocity channel but less accurate. In addition, 

the NNI was more accurate on the down velocity channel but less accurate. 

This competitive behavior could be resulted from the fact that the NNI 

was trained only for the No Reset case despite being tested on the Reset 

case. Hence, with proper training, the NNI algorithm could be improved 

further. Since the NNI showed improvements on the No Reset case and was 

competitive with Kalman filter on the Reset case, the NNI algorithm is 

a viable alternative to the Kalman filter for GPS/INS integration.  

The lesson learned from this thesis is that machine learning is a viable 

solution to design missile guidance, navigation, and control algorithm. 

However, in addition to its advantages in improving the performances of 

the traditional algorithms, it is important to keep in mind the time it 

took to design and train the solution. Since the training time ranged 

from several hours to several days, traditional algorithm might be a 

more practical solution. That is because in the industry where 

development is limited with time and budget, time needed to find an 

adequate solution might not be acceptable. However, this could be 

combated by using super computers and parallel processing in order to 

speed up the training process. Moreover, another lesson is that the 

neural network algorithm is a tool and not a magical algorithm that will 

solve any problem. It requires deep understanding of both the matter and 

the network design. The best results were achieved not when the neural 

networks were working alone, but when the neural network worked with 
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traditional mathematical model such as the case with TGNN where the line 

of sight rate was calculated. Lastly, it is difficult to predict 

generalization challenge of the neural network. Nevertheless, one 

solution for this problem is by allowing the network to interact with 

as many cases as possible so that it can learn to interact with changes.  

The future step for this thesis is to test the neural network algorithm 

with physical systems. That is because despite the assumptions, the 

physical system behaves differently for the simulated one. That is 

because of all elements that has not been considered in the simulation. 

In addition, it is because mathematical models are not identical to the 

physical system and is limited to the understanding of the system. 

Additionally, the neural network guidance, navigation, and control 

algorithms can be further improved in order to increase its accuracy and 

design. For instance, the NNA can be improved to reduce oscillation and 

the NNI can be improved to work better with Reset case and solve the 

zero-input condition challenge.  In conclusion, the field of research 

and development is a growing field where new challenges and opportunities 

present itself every day. Hence, there will always be wonderful 

opportunities to expand the knowledge and travel beyond the horizons. 
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