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Dissertation title: Functional and imperative reactive programming based on a

generalization of the continuation monad in the C++ programming language

Abstract: There is a big class of problems that require software systems with

asynchronously executed components. For example, distributed computations

have the distributed nodes that process the data asynchronously to one anot-

her, service-oriented architectures need to process separate requests asynchrono-

usly, and multi-core and heterogeneous systems need to have multiple separa-

te tasks running concurrently to best utilize the hardware. Even ordinary GUI

applications need asynchronous components – the user interface needs to be re-

sponsive at all times which means that no matter in what state the program is

in, it needs to process and react to the input events coming from the user. The

necessity of concurrency and asynchronous execution brings in the added com-

plexity of the Inversion of Control (IoC) into the system, either through mes-

sage passing or through event processing. IoC makes code difficult to develop

and reason about, it increases component coupling and inhibits clean functional

or object-oriented software design.

In this dissertation, a method for solving the problems that IoC introduces is

presented. It presents a way to model both synchronous and different types of

asynchronous tasks with the continuation monad. The continuation monad serves

as a primitive to build more complex control flow structures that mimic the control

flow structures of the host programming language. It also allows for building more

complex control structures specialized for parallelism, transactional execution, and

for simulating functional programming idioms with asynchronous tasks through a

generalization of the continuation monad that allows the asynchronous tasks to

generate results one at a time. This allows for writing programming systems with

asynchronously executed components by writing seemingly synchronous imperati-

ve or functional code while leaving it up to the compiler to do all the heavy lifting

and convert the written code to asynchronously executed set of tasks. Another

benefit of the presented method is that it allows for easier automatic handling of

the data lifetime without the need for garbage collection.

This method has been successfully applied and tested in several Free/Libre

Open Source Software and proprietary real-world software projects used by hun-

dreds of millions of people around the world. In this dissertation, an example of a

secure project management system is described which is based on a similar system

implemented as a part of the KDE Plasma project. This dissertation also contains

the important parts of the implementation of the AsynQt library which extends



the Qt library, and its concurrency primitive – QFuture class – with functional

reactive programming patterns based on the method proposed in this dissertation.

Keywords: coordination, asynchronous task-oriented design, domain specific lan-

guages, programming language design, functional programming, imperative pro-

gramming, reactive programming, category theory, continuation monad
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Наслов дисертације: Функционално и императивно реактивно програми-

рање употребом генерализације монаде наставка у програмском језику C++

Резиме: Постоји велики број проблема који захтевају писање програмских

система који имају компоненте које се извршавају међусобно асинхроно једне

од других. На пример, код дистрибуираних израчунавања постоје дистрибу-

ирани чворови који обрађују податке асинхроно једни од других, системи са

сервисно-оријентисаним архитектурама морају да обрађују захтеве које до-

бијају од клијената асинхроно, а у више-језгарним и хетерогеним системима

постоји више одвојених задатака који се извршавају истовремено ради што

бољег искоришћења хардверских ресурса. Чак и обични графички програми

имају асинхроне компоненте – графичко корисничко окружење не сме да буде

заглављено ни у једном тренутку, што значи да без обзира на то шта програм

тренутно ради, не сме да престане да обрађује и реагује на улазне догађаје

који долазе од корисника. Неопходност асинхроног извршавања доноси до-

датно усложњавање програма због уметања извртања контроле извршавања

(IoC – Inversion of Control), а због употребе система за асинхрон пренос по-

рука или због употребе система за обраду догађаја. Због извртања контроле

извршавања, програм постаје тежак за развој и тешко разумљив.

У овој дисертацији приказан је један метод за решавање проблема који

настају због извртања контроле извршавања. Представљен је начин за мо-

деловање и синхроних и различитих типова асинхроних задатака употребом

монаде наставка. Монада наставка служи као основна примитива за изград-

њу сложенијих структура контроле тока извршавања програма које симули-

рају структуре контроле тока извршавања програмског језика C++. Такође

је представљено да монада наставка дозвољава изградњу напреднијих струк-

тура контроле тока програма које су специјализоване за паралелизацију или

за трансакционо извршавање. Представљен је и метод за симулирање кон-

цепата функционалног програмирања кроз генерализацију монаде наставка

која дозвољава асинхроним задацима да генеришу више резултата независно.

Показано је да ови методи омогућаваjу имплементацију програмских система

са асинхроно извршеним компонентама писањем наизглед синхроног импера-

тивног или функционалног кода, док је преводиоцу препуштено да направи

асинхроне задатке и преведе написани код у програм код ког се делови извр-

шавају асинхроно. Додатна предност представљеног метода је што омогућава

аутоматизацију руковања животним веком података у програму без потребе

за скупљачем отпадака.



У уводном поглављу (поглавље 1) је укратко описана мотивација, допри-

носи и организација дисертације. Поглавље 2 садржи детаљнији опис про-

блема који методи развијени у оквиру ове дисертације решавају, постојеће

начине имплементације програмских система са асинхроним компонентама,

као основне појмове теорије категорија. Употреба монаде наставка у кон-

тексту асинхроног програмирања и концепта буућих вредности је описана

у поглављу 3. Ово поглавље дефинише и реактивне токове (генерализацију

монаде наставка, као и трансформације над њима) који омогућавају импле-

ментацију програмских система као тока података и низа трансформација

над тим током. Поглавље 4 дефинише структуре контроле тока програма

базиране на монади наставка, док поглавље 5 приказује имплементацију. По-

следње поглавље садржи дискусију и поређење уобичајених метода за им-

плементацију програмских система са асинхроно извршаваним компоненама

са методима представљеним у овој дисертацији. Додаци дисертацији садрже

историју идеја презентованих у дисертацији (додатак A), анкету заједнице

професионалних програмера о читљивости кода имплементираног методима

представљених у дисертацији у односу на алтернативе (додатак B), као и

примену функционално реактивне технике на библиотеку Qt (додатак C).

Методи представљени у овој дисертацији су успешно примењени и тести-

рани у неколико слободних и власничких софтверских пројеката које користе

стотине милиона људи широм света. У овој дисертацији описан је пример

система управљања пројектима који се заснива на сличном систему који је

део пројекта KDE Plasma. Ова дисертација такође садржи важне делове

имплементације библиотеке AsynQt која проширује библиотеку Qt, и њену

примитиву за конкурентно извршавање – класу QFuture – функционалним

реактивним програмским обрасцима заснованим на методу предложеном у

овој дисертацији.

Кључне речи: координација, дизајн асинхроних система базираних на зада-

зима, доменски програмски језици, дизајн програмских језика, функционално

програмирање, императивно програмирање, реактивно програмирање, теори-

ја категорија, монада наставка
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1 Introduction



CHAPTER 1. INTRODUCTION

1.1 Motivation

There is a big class of problems that require software systems with asynchronously
executed components (we will call these asynchronous software systems). For ex-
ample, distributed computations have the distributed nodes that process the data
asynchronously to one another, service-oriented architectures need to process sep-
arate requests asynchronously, and multi-core and heterogeneous systems need to
have multiple separate tasks running concurrently to best utilize the hardware. Even
ordinary GUI applications need asynchronous components – the user interface needs
to be responsive at all times which means that no matter in what state the program
is in, it needs to process and react to the input events coming from the user. The
necessity of concurrency and asynchronous execution brings in the added complexity
of the Inversion of Control (IoC) into the system, either through message passing or
through event processing. The IoC happens because each time we want to execute
an asynchronous task, we need to schedule to receive an event to notify us that the
task is finished, so that we can process the result. This means that we are giving
up the control over the execution of our functions to an external entity – usually to
the event processing loop.

The IoC requires the software system to be split into smaller components in an
artificial manner. Instead of splitting the system into logical sub-components or
sub-routines, the system needs to be split at every invocation of an asynchronous
task – one component or routine to start the task, and a separate one to process the
result. This separation significantly increases the component coupling and inhibits
clean functional or object-oriented software design.

This leads to the software maintainability issues, because changing the behavi-
our of one component can have significant impact on the rest of the system, while
at the same time making it borderline impossible to perform automated testing of
isolated components, without mocking all other components that the tested com-
ponent needs to interact with. It also hinders readability and understandability
of the software system, both to developers who need to have an overview of the
whole system to be able to understand each separate component, and to static
code analyzers which usually fail to see all the interdependencies to be able to
effectively analyze the code.

The main aim of this dissertation is to design a method and a framework for
writing software systems that require asynchronous execution of certain tasks. This
method should allow programmers to implement asynchronous software systems in
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CHAPTER 1. INTRODUCTION

the same way they would implement programs which do not need any asynchronous
execution, leaving it up to the framework and the compiler to automatically con-
vert the functional or imperative code designed in a synchronous-like style to work
asynchronously.

1.2 Contributions

During the work on this dissertation, a new method for implementing software
systems that have the need for asynchronous execution has been developed. This
method has been successfully used in several real-world software solutions. More
specifically, the main contributions of this dissertation are as follows:

• Designed a common abstraction over synchronous and different types of asyn-
chronous tasks based on the continuation monad, which allows the program-
mer to use the same primitives when implementing a software system regard-
less of whether she is dealing with synchronous or asynchronous tasks. This
abstraction has been presented initially at the Qt Dev Days 2013 confer-
ence [Čuk13] in Berlin, Germany;

• Implemented a functional reactive programming (FRP) framework for the C++

programming language for expressing the logic of asynchronous software sys-
tems as a series of transformations over the input data streams based on the
reactive streams concept. This framework makes implementing asynchronous
software systems equivalent to implementing synchronous software systems
in the functional style. The fundamentals of this work have initially been
presented at the Central-European Functional Programming Summer School
2015 in Budapest, Hungary [Čuk15a], with an expanded solution accepted for
publication in the Springer’s LNCS series;

• Developed a memory optimization for the data-flow system of the implemented
FRP framework which provides memory safety guarantees without the need
for making excessive data copies and without the need for garbage collection
which is an integral part of most FP languages and systems. This work was
presented in a plenary talk at the C++ Siberia 2017 conference held in Tomsk,
Russia [Čuk15b];

• Created a solution for chaining synchronous and asynchronous tasks using
primitives that mimic the control flow constructs of the host programming
language to allow writing asynchronous software systems without the need to
split programs into small functions which are not logical subroutines of the

6



CHAPTER 1. INTRODUCTION

program due to the inversion of control (IoC). This work was presented at
the Meeting C++ 2014 conference held in Berlin, Germany [Čuk14], and C++

Russia 2015 [Čuk15c] conference held in Moscow, Russia, and later published
in the Software: Practice and Experience journal [Čuk16a];

• The developed methods were tested and benchmarked in practice. It was
demonstrated that, when implemented correctly, the concepts from the pro-
posed FRP and IRP frameworks have no induced runtime performance penal-
ties, while providing significant improvements to the code readability as shown
by the results of the professional C++ community survey;

• An implementation of the IRP framework concept over a 3rd party library
to demonstrate that the defined concepts are not dependent on particular
platform or framework. This has been presented at QtCon 2016 [Čuk16b] in
Berlin, Germany.

1.3 Organization

Motivation and background overview (Chapter 2) contains the basic con-
cepts and techniques needed for understanding the rest of this dissertation.
The first part (Section 2.1) gives an overview of the problems of implement-
ing software systems whose parts need to be executed asynchronously. This
part defines tasks and presents the differences between synchronous and var-
ious types of asynchronous tasks. It also shows the common approaches to
dealing with asynchrony, and the downsides they all bring (Section 2.2). The
second part gives an introduction to C++ algorithms, iterators and ranges
(Section 2.3) and an overview of the advanced C++ techniques used in this
dissertation (Section 2.4). The last part gives a short introduction to cate-
gory theory as it provides some important mathematical background to the
concepts used in this dissertation, and is not widely known amongst C++

programmers and imperative programming academic community;
Functional reactive programming (Chapter 3) discusses the continuation mo-

nad in the context of the asynchronous programming and the future value
primitive often used to represent the result of different asynchronous opera-
tions (Section 3.1). It presents reactive streams – a relaxation of the futures
concept that allows the asynchronous operation to keep returning new re-
sults after the first result is calculated. This chapter defines the reactive
streams by comparing them against C++ iterators and ranges, and presents
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the algorithms and transformations that can be used with reactive streams.
It discusses the effect of having stateful transformations in an asynchronous
system based on reactive streams, and how the data-flow-based software de-
sign can make the implementation of an asynchronous software system sim-
pler (Section 3.2).

Imperative reactive programming (Chapter 4) defines the flow control struc-
tures – schedulers – based on the continuation monad which allow the pro-
grammer to compose synchronous and different types of asynchronous tasks in
an imperative way – similar to the flow control structures for synchronous pro-
gramming provided by the host programming language. This chapter defines
(Section 4.2) schedulers that simulate serial execution, loops and branches, and
logic operator schedulers which can be used for easy error handling. It also
defines (Section 4.3) schedulers that go beyond the flow control structures
available in the C++ programming language like the transaction scheduler
which executes all the tasks successfully, or if a single task fails, undoes all
the tasks like no task has been executed; and also schedulers for parallel
task execution to demonstrate that the scheduler abstraction can also cover
the traditional parallelization techniques like the fork-join pattern [Hal13].
Finally, it defines (Section 4.4) the data lifetime which simulates the scoping
mechanism of the C++ programming language [ISO17, basic.scope] without
the need for garbage collection which is commonly required in the alterna-
tive approaches.

Implementation (Chapter 5) covers the possible implementation of the sched-
uler concept using the event loop as the behind-the-scenes synchronization
mechanism. This chapter shows a common abstraction of all types of tasks
which allows synchronous and various types of asynchronous tasks to be
handled with the same syntax. It shows the implementation of the serial
scheduler in detail (Section 5.2.3) and that the compiler can optimize the
code when this implementation is used to be as efficient as hand-written
code implemented using the call-callback approach (Section 5.3). This chap-
ter also discusses the negative impact on the compilation times used by
this approach (Section 5.4).

Discussion and conclusion (Chapter 6) shows that the approach to writing
software systems with asynchronous components presented in this disserta-
tion makes writing these software systems as easy as writing ordinary syn-
chronous code (Section 6.1). It compares the proposed solution to general
coroutines (Section 6.2.1), to resumable functions (stackless coroutines sched-
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uled for inclusion in C++20, Section 6.2.2), to stateful coroutines provided
by the Boost.Asio library [Koh] (Section 6.2.3) and to actor systems (Sec-
tion 6.2.4). It also demonstrates that this approach allows easier automated
testing of asynchronous systems, and that the defined abstractions allow the
static analyzer tools to easier comprehend the code and find errors in it.

Appendices provide additional information about the proposed solution. The ori-
gin of the ideas presented in this dissertation is explained in Appendix A. Ap-
pendix B contains a small survey of the professional C++ community on the
readability and understandability of code written using the imperative reac-
tive programming approach presented in this dissertation. Finally, Appendix
C shows how the presented functional reactive programming techniques can
be applied to a third-party library.

9
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CHAPTER 2. MOTIVATION AND BACKGROUND OVERVIEW

2.1 Interactive and concurrent software systems

Most modern software systems require different system components to be executed
concurrently. All interactive systems need to be able to process available data while
waiting for further interactions – from simple GUI applications which need to process
system events while waiting for user input, and multi-threaded applications that
perform complex calculations to multi-client servers which need to process multiple
client requests at the same time.

Since the terminology is not fully standardized, we will use the term concurrency
to denote different tasks being executed in the same time-frame. This does not
necessarily mean that these tasks are executed in separate threads – we will also
consider tasks that are executed cooperatively on a single thread, or tasks from
separate system processes to be concurrent tasks. We will cover the different task
types in Section 2.1.2.

A significant fraction of software bugs happen due to programmers not being
able to fully understand all the possible states their code can be in. In a concurrent
environment, this lack of understanding and the issues that arise from it are greatly
amplified [Car].

2.1.1 Blocking and synchronization

The usual approach of dealing with concurrency is through using plain threads
and mutexes. The problems with plain threads are numerous. The main problem
is that the threads are not composable [Lee06]. It is impossible to tell whether
another library or a called function creates new threads by itself. This can lead to
creating many more threads than the system can effectively handle. At the same
time, many of those threads will just be waiting for the data that is calculated
by other threads.

Another issue with threading is that concurrency can not be disabled. When
using plain threads, the program logic usually becomes dependent on different code
paths running at the same time. In that case, it is not easy to modify the code to
run on a single thread which could be useful in a number of scenarios, especially for
testing and debugging purposes.

Threads also have no standard way to return values to the caller. It usually
involves using a shared variable and manual synchronization through locks.

When programmers want to make their program run faster they tend to throw
raw power at it by improving CPUs clocks and adding new cores which is ineffective
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Figure 2.1: Amdahl’s Law

according to the Amdahl’s Law. Amdahl’s law [Rod85] gives us the theoretical limit
for the speed-up that can be gained by increasing the number of processing units
in our system depending on the percentage of the code which is not possible to
parallelize:

U(s, p) =
1

(1− p) + p
s

,

where U is the theoretical speed-up for the process, s the relative increase of
the number of processing units, and p the percentage of the code that is par-
allelizable. This means that for the system where 95% of the code can be fully
parallelized to run on all available processors, and only 5% of the code needs
to be executed serially, the maximum theoretical speed-up will be 20 times no
matter how many processing units are added (when s → ∞) as shown in Fig-
ure 2.1.

In a discussion on recursive mutexes, David Butenhof noted that this basic
synchronization primitive should have been called “the bottleneck” [But] instead
of creating a “cute acronym” for it (from mutual exclusion). Bottlenecks are
useful at times, sometimes indispensable – but they are never good.
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These problems all lead to decrease in execution speed. Most threads just end
up waiting for the results of other computations to be sent to them [Par15]. Yet,
the operating system still has to do all the book-keeping and context-switching to
manage all those threads, which is just bureaucracy that takes the CPU time from
the actual program that needs to be executed.

2.1.2 Different task types

Tasks are traditionally considered to be asynchronously executed moderately com-
plex sub-systems of the main software system. This definition is overly restricting,
and we will use the term task in a more relaxed sense. We will consider any piece
of code to be a task if it has the following properties:

• it can be started;
• we know when its execution has finished;
• we know whether it was executed successfully or not.

It makes no difference whether the code is executed synchronously or asyn-
chronously, how complex it is, or where it is executed.

We will separate the tasks with regard to the type of execution into the following
groups:

Synchronous tasks are the tasks that do not return the control back to the caller
before they are finished. Therefore, these tasks should not perform any time-
consuming operations. Good examples of synchronous tasks are short func-
tions like memcpy, snprintf or strcmp. Functions like scanf can also be con-
sidered tasks, but should not be used because they could block the caller
indefinitely.

Thread-based asynchronous tasks start a new thread in which the asynchrono-
us operation is executed. These tasks return the control to the caller imme-
diately after thread creation, without waiting for it to finish. The task needs
to send a signal to the caller when it finishes execution. (e.g. tasks based on
std::async or std::thread).

Event-based asynchronous tasks are almost the same as the thread-based ones,
with the exception that they do not have to run in a separate thread, but
are executed by the event loop in the main thread. If designed properly,
these tasks have most of the benefits, and no drawbacks compared to the
threaded ones [Ous96] (e.g. user interface and interaction, reactive network
communication) which makes them the preferred type of tasks in most cases.
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(a) Synchronous (b) Thread-based

(c) Event-based (d) Out-of-process

Figure 2.2: Task types

Out-of-process tasks provide a similar interface to the caller as the previous asyn-
chronous task types, but are not executed in the same process as the caller.
These tasks can be modeled as the event-based asynchronous tasks by listen-
ing to the process finished event that will be sent by the operating system
when the out-of-process task ends (e.g. executing external processes, network
distributed computation).

Other asynchronous task types like thread-reusing or fibre-based tasks, tasks
computed on specialized hardware (GPUs, heterogeneous cores), and similar can
easily be modelled after some of the aforementioned types, so we will not cover
them separately.

2.1.3 Asynchronous task execution and
the inversion of control

Programmers usually think about program logic in terms of algorithmic steps, loops
and branches (in the case of imperative programming) and data transformation (in
the case of functional programming) which are easy to visualize and reason about.
While this is a natural way to think about the control and data flows, the modern
software systems usually can not be implemented in this way.
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Figure 2.3: User authentication algorithm

Using ordinary control structures like loops and branching stops being a viable
option as soon as there are slow operations that need to be performed, or when the
program does not have all the needed data available, which can happen if the data is
sent to our system in chunks (slow database access, media streaming over network,
etc.) or if the program is getting the data from the user. Waiting for operations to
finish, or waiting for the data to arrive blocks the current process which, in the case
of a system logic implemented using the ordinary control structures, means that the
whole system is blocked.

While one part of the software system executes a slow operation or is waiting for
the data it needs to proceed, other parts of the system need to be able to continue
working. For example, in a GUI program, the program needs to be able to to
continue processing the operating system events while processing the data entered
by the user; network services need to be able to accept new clients while waiting for
the response from an existing one, and similar. This, combined with the complexity
that threads introduce, has led to abandonment of blocking APIs in the modern
systems [McC11]. Instead, the asynchronous approach is used.
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An asynchronous API call returns the control to the caller immediately – before
the action it represents is executed, often even before the action is even started. In
essence, it only tells the system that it wants a specific action performed, and that
it wants to be notified when said action has been completed. This allows the process
to continue performing other tasks.

Removing the periods of time where our system is idle improves latency, but
adds significant complexity to the implementation. The parts of the algorithm
that depend on the result of the asynchronous call need to be moved to a separate
function that handles the completion notification message. This is called inversion
of control (IoC) because there is an external agent that is invoking the code that
the programmer writes by sending it messages.

Inversion of control leads to program logic fragmentation – the program logic
needs to be split into many asynchronous result handler functions (or classes, as in
the state design pattern [Gam+95]) where these functions are not necessarily logical
subroutines of the program. The control flow becomes implicit through manipulation
of shared state which is not visible nor accessible by the programmer writing the
software [CM06].

Let us look at an example of a simplified user creation and authentication process
as presented by the activity diagram in the Figure 2.3 (a more complex example is
covered in Section 6.1.2). Translating this diagram to any imperative programming
language seems straightforward. Implemented in C++, it would look like this (with
variable definitions omitted for readability):

void login()

{

username = get_username();

new_user = !check_if_user_exists(username);

if (new_user) {

password = get_password();

initialize_account(username, password);

} else {

do {

password = get_password();

} while (!check_credentials(username, password));

}
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initialize_environment();

if (new_user) show_welcome_message();

}

This is a naive implementation and not something that should be done in a real
world system. Most tasks in this example need to be executed asynchronously in or-
der not to block the execution of the rest of the system. Namely, the tasks that wait
for the user input (get_username and get_password), tasks that communicate with
external agents (check_if_user_exists and check_credentials might need to con-
tact a network service that stores the user information), or tasks that are expensive
to execute (initialize_account and initialize_environment). When this problem
is taken in account, the code becomes more complicated because each asynchronous
task requires the programmer to separate the code that handles the result of a task
from the code that starts that task:

class login_process {

void login()

{

get_username(on_got_username);

}

void on_got_username(std::string username)

{

m_username = username;

check_if_user_exists(username,

on_user_existence_checked);

}

void on_user_existence_checked(bool user_exists)

{

m_new_user = !user_exists;

get_password(on_got_password);

}

void on_got_password(std::string password)

{

if (m_new_user) {

initialize_account(m_username, password);
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} else {

if (!check_credentials(m_username, password)) {

get_password(on_got_password);

return;

}

}

⋯

}

private:

std::string m_username;

bool m_new_user;

};

The program becomes significantly more complex by handling the asynchrony
of only three calls (get_username, check_if_user_exists and get_password) while
ignoring the rest. Instead of having the logic of a process in one place, the code gets
scattered into functions which are not logical subroutines of it.

As a side-effect, it is also necessary to create an object to keep the state which
raises issues in multi-threaded environments; or to pass them as call/callback argu-
ments which would break encapsulation and make the API more complex. In the
first implementation, those variables would have been local, which is not possible
any more.

2.2 Traditional approaches to dealing with
asynchronous operations

The increased complexity that arose from making the example from the previous
section asynchronous is not specific to calls and callbacks. Any abstraction that
deals with asynchronous operations by forcing the programmer to separate the task
starting from the result handling will have the same problem.

In this section, we cover the most important traditional approaches used for
implementing asynchronous tasks in imperative and functional programming lan-
guages.
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2.2.1 Calls and callbacks

The first approach is to use the callback functions as presented in the previous
section. The idea behind callback functions is to have a function that represents an
asynchronous operation accept a pointer to the function that is to be called when
the asynchronous operation is finished. This is the reason why it is called a callback
function – the programmer is scheduling the function to be called back by the system
when the asynchronous operation ends. The result of the asynchronous operation,
if it exists, can be passed in as the argument to the callback function.

In the following example, the get_page is the asynchronous function, and the
on_page_retrieved is the callback. The get_page function is designed to follow
the API of the Boost.Asio [Koh] library – a well-known callback-based library for
asynchronous IO. It can easily be implemented by combining the Boost.Asio library’s
async_read_until which can be used to get the request headers (by reading until it
reaches an empty line, which corresponds to the HTTP web server semantics); with
the header retrieved, the program will know exactly how many bytes the response
body has, and it will able to get the response body with the async_read function.

void on_page_retrieved(const response &result)

{

std::cout << ”Web page retrieved”;

if (result.is_valid()) {

std::cout << ”Success: ” << result.body();

} else {

std::cout << ”Error retrieving the page\n”;

}

}

void get_page()

{

wget(”http://www.math.rs/”, on_page_retrieved);

std::cout << ”Sent the request\n”;

}

It is important to note that the wget call will not block the execution of the rest
of get_page function, so the user will see the ”Sent the request” message before
the actual request is fulfilled.
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Apart from the need to separate the code that starts the asynchronous opera-
tion from the code that handles the result, the call-callback approach has another
significant drawback – the same function call both starts the asynchronous oper-
ation and defines the handler which creates a tight coupling between the two. In
our case, the on_page_retrieved and get_page functions are tightly coupled, and
one can not really exist without the other which collides with the structured pro-
gramming best practices [DDH72]. This can be partially remedied by converting the
on_page_retrieved into a lambda which is directly passed to the wget function, but
that only places the result handler inside the function that starts the asynchronous
operation, but the logic is still artificially separated into two separate functions. This
also leads to maintainability problems since changing any synchronous function to
be asynchronous, and vice versa, would require changes in all the places where that
function was called from.

2.2.2 Signals and slots

Another approach to dealing with asynchrony are signals and slots. Broadly speak-
ing, the signals and slots system is a simple communication mechanism between
different objects. A signal is used to emit a message, and a slot that is connected to
said signal receives and processes the message [LP16, Chapter 1].

Note that we will be using the syntax for connecting the signals to their
respective slots as used in the Qt library for C++, since it is the most promi-
nent library for C++ that uses signals and slots mechanism, but we will keep
using the snake_case syntax, which is not usual in Qt, to keep uniformity of
the code examples.

Let’s consider mouse events in an application. Buttons in the GUI are objects
that send a clicked signal when the user clicks them.

button *exit_button;

button *get_page_button;

connect(exit_button, SIGNAL(clicked()),

main_window, SLOT(quit()));

connect(get_page_button, SIGNAL(clicked()),

main_window, SLOT(get_page()));

When the exit_button is clicked, the connection will invoke the quit member
function of the main_window object. In the same way, clicking on the get_page_button
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will invoke the get_page member function. It is important to note that slot invo-
cation can be synchronous (the slot function is invoked directly by the signal) or
scheduled/asynchronous (the slot function is only scheduled to be invoked by the
event processing loop when the signal is emitted).

Signals and slots allow easier decoupling of components than callbacks. Starting
the asynchronous operation is separated from specifying the handler. The button
does not know (nor it needs to) whether anybody is listening for its events – the
signal is sent anyway.

While this mechanism is primarily meant for handling the user interface events,
it can be as easily applied to any type of asynchronous operation. In the following
example, we present a similar example of fetching the contents of a web page we
had in the previous section:

void init()

{

connect(page, SIGNAL(page_retrieved(response)), 1

this, SLOT(on_page_retrieved(response)));

}

void get_page()

{

page.get(”http://www.math.rs/”); 2

}

void on_page_retrieved(const response& result)

{

std::cout << ”Web page retrieved”;

if (result.is_valid()) {

std::cout << ”Success: ” << result.body();

} else {

std::cout << ”Error retrieving the page\n”;

}

}

In this implementation, the get_page member function only needs to know which
page to request 2 . It does not need to care which function will process the result
– the handler is defined separately 1 .
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2.2.3 Actor systems

The third approach, popular mainly in the functional programming community, are
the actor systems [HBS73]. They were popularised by the Erlang [Arm03] pro-
gramming language, and a few of the more modern languages are adopting the
idea (Scala’s Akka library [MRO10], the C++ Actor Framework [Cha+13] and the
Distributed Haskell [EBP11] to name a few).

Similar to the signals and slots mechanism, the software system is broken into a
set of small components that are able to exchange messages. The difference is that
in the actor model, these messages are the only mechanism of communication be-
tween separate components. All components are completely isolated from one an-
other – there is no shared data, they can not access each other’s memory space and
similar. The system that uses the actor model needs to be designed as if all com-
ponents are running on physically separated machines which communicate over the
network. This also means that all messages are handled in asynchronous manner –
there is no way for one component to directly call a function belonging to another
component.

In the software systems based on the actor model, it is common for the sender to
decide who will be the recipient for each message, and not the other way round. For
example, an actor A can choose to send the message to the actor B. The actor B

is not able to request that it wants to listen to all messages from A – it will receive
all messages sent to it no matter who sent them.

The previous example of fetching a web page can be implemented using the actor
model as follows (notation is as used in the C++ Actor Framework):

void get_site(event_based_actor *self, const actor &page_actor)

{

self->async_send(page_actor, 1

get(”http://www.math.rs/”)); 2

}

behaviour receive(event_based_actor *self) {

return { [=] (const response_t &result) { 3

if (result.is_valid()) {

⋯

}

} };

}
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The async_send member function of an actor is used to send messages. In this
case, the get_site function is sending a single get message 2 to the actor identified
by page_actor 1 . When the request is received and processed, that actor will send
back a message of type response_t which is handled in the behaviour defined by the
receive function 3 .

The main benefit of the actor model is that the software systems built on it are
highly-horizontally scalable. The problem is that actors are still a very low-level
primitive and share many of the drawbacks that the previous solutions had. They
are not easily composable and they also require separating the entity that starts an
asynchronous operation from the entity that handles the result.

2.3 C++ algorithms and ranges

2.3.1 Iterators and algorithms

The <numeric> and <algorithm> headers of the C++ standard library (commonly
referred to as the STL – the Standard Template Library) provide a set of around
90 generic algorithms that operate on sequences. A sequence, as far as the C++

standard library is concerned, is denoted by a pair of iterators – one pointing to the
first element, and one pointing just past the last element of the sequence. Special
cases are the output sequences which are usually denoted only by a single iterator
to the beginning of the sequence where the assumption is that the output sequence
is holding a sufficient number of elements to store the result of the algorithm [Str13,
Section 4.4].

We will cover a few of the more distinct algorithms that have different require-
ments on the input sequences and that return different result types. These algo-
rithms and their differences will be useful later in this chapter.

2.3.1.1 Accumulate

The std::accumulate is a generic algorithm that encapsulates a simple pattern of
processing sequences in a tail-recursive manner often called folding [Hut99]. It takes
a collection (as a pair of iterators), the initial value for the accumulator, and a binary
operation that produces a new accumulated value given the previously accumulated
value and an element from the sequence. The algorithm processes the elements of
the given sequence in order, from beginning to the end, and for each element calls
the given binary operation on the previously accumulated value and the current
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sequence element. The result of the algorithm is the last calculated accumulated
value – the value after all elements have been processed.

This algorithm is useful for any sort of aggregation (summing a collection of
numbers, concatenating a collection of strings, etc.) but it is much more generic.
Since it encapsulates the general form of tail-recursion for sequence processing, it can
be used to implement many recursive algorithms and, in fact, most of the algorithms
in the C++ standard library can be implemented using std::accumulate, albeit not
always with the same performance [Dea16].

As previously mentioned, the accumulate algorithm encapsulates tail recursion.
Since the C++ standard does not require the compilers to perform the tail-recursion
optimization even if most of them do [Čuk18, Chapter 2], we can convert the recur-
sion into an iterative loop manually like so1:

template <typename BeginIt, typename EndIt,

typename Acc, typename F>

Acc accumulate(BeginIt begin, const EndIt& end,

Acc acc, BinaryOp op)

{

for (; begin != end; ++begin) {

acc = std::invoke(op, std::move(acc), *begin);

}

return acc;

}

From this implementation, we can deduce the prerequisites for the iterators
passed to the algorithm. It is necessary to be able to check whether two iterators
are different (representing different positions in the collection), and it is necessary
to be able to traverse the sequence once by incrementing the begin iterator in each
iteration of the for loop.

2.3.1.2 Transform

The std::accumulate is in the class of algorithms that read the whole sequence
to return only a single value as the result. The second class of algorithms, best
represented by the std::transform algorithm, returns a whole sequence of items,

1The algorithm implementations in this chapter are based on the implementations provided
by GNU’s libstdc++, version 7.2, with the types of begin and end iterators separated to support
sentinel types [NPS14]
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and the resulting items are generated gradually while the input sequence is being
read. Due to the design of the standard library, the resulting items are not returned
as the function result, but are written to the output collection denoted by the output
iterator passed to the algorithm.

For example, we can use std::transform to print out string representations of
objects in a collection by specifying the destination sequence to be an output stream
iterator:

std::transform(begin(people), end(people),

std::ostream_iterator<std::string>(std::cout, ”\n”),

[] (const auto& value) {

using std::to_string;

return to_string(value);

});

This code will start printing the values to the standard output even before the whole
input sequence is processed.

The implementation of the std::transform algorithm is quite straight-forward.
It gets an input sequence as a pair of iterators, the beginning of the output sequence,
and the transformation operation. It iterates over the input sequence, and for each
of the values it encounters in the input, it writes the transformed value to the
destination sequence.

template <typename BeginIt, typename EndIt,

typename OutputIt, typename Operation>

void transform(BeginIt begin, const EndIt& end,

OutputIt output, Operation op)

{

for (; begin != end; ++begin, ++output) {

*output = std::invoke(op, *begin);

}

}

From the implementation, we can see that, the iterator that represents the start
of the input sequence needs to be incrementable and equality-testable with the
iterator that represents the end of the input sequence, as it was the case with
std::accumulate. For the output sequence, it is just necessary to be able to move
from one element to the next with the assumption that there are enough elements
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in the sequence so that the algorithm does not need to check whether the end of the
output sequence is reached.

Usually, having out function arguments is a signal of bad API design. But,
in this case, it is a bit more complicated. The output iterator is not strictly an
out argument – it is also an in argument. Namely, the input is the preallocated
sequence that the algorithm can write the data to. If a new sequence was to be
returned as the result of the transform algorithm, the algorithm would need to
allocate memory for that sequence, and return it only when all the values from
the input sequence have been processed. Having the in-out parameter in this case
gives the programmer the complete control over how the resulting sequence should
be stored – which data structure it should be, whether it should be a data struc-
ture at all, or some special iterator like the std::ostream_iterator. It also allows
overwriting the input sequence with the transformed data if the original values are
not needed anymore.

2.3.1.3 Partition and sort

The next class of algorithms are the algorithms that modify the sequence in-place
like partitioning and sorting (both the stable and unstable variants of said algo-
rithms). This means that the source sequence is both the input and the output of
the algorithm.

Partitioning is a simple algorithm that takes a sequence of elements (as a pair of
iterators), a predicate function, and reorders the elements in the sequence so that
all elements that satisfy the predicate function come before the elements that do
not. The algorithm also returns the partition point as the function result:

template <typename BeginIt,

typename EndIt,

typename Predicate>

BeginIt partition(BeginIt first, EndIt last, Predicate pred)

{

if (first == last) return first;

while (std::invoke(pred, *first)) {

if (++first == last) {

return first;

}

}
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BeginIt next = first; 1

while (++next != last) {

if (std::invoke(pred, *next)) {

std::iter_swap(first, last);

++first;

}

}

return first;

}

This algorithm imposes all the same requirements to the iterators as the previous
ones – it needs to be able to check whether two iterators are equal or not, and it
needs to be able to increment the iterators.

But there is an additional requirement which might not be as obvious. The
algorithm is creating a copy of the iterator 1 which means that, while it still only
goes from one item to the next, it needs to be able to traverse the sequence multiple
times – both first and next iterators can traverse the sequence independently from
one another. This means that the partition algorithm can only work on proper
collections, it can not work on sequences like input streams which forget values as
soon as they are read.

While these requirements on iterators are sufficient to implement the parti-
tioning algorithm, increasing the requirements by allowing the iterator to also
be decremented would give us a more efficient version of the partitioning algo-
rithm:

template <typename BeginIt,

typename EndIt,

typename Predicate>

BeginIt partition(BeginIt first, EndIt last, Predicate pred)

{

while (true) {

while (true) {

if (first == last) {

return first;

} else if (std::invoke(pred, *first)) {

++first;
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} else {

break;

}

}

--last;

while (true) {

if (first == last) {

return first;

} else if (!bool(std::invoke(pred, *last))) {

--last;

} else {

break;

}

}

std::iter_swap(first, last);

++first;

}

}

2.3.1.4 Iterator types

So far, we have seen three different sets of requirements algorithms impose on the
iterators passed to them. All iterators need to have the equality operators de-
fined on them, and they need to be incrementable. Iterators that satisfy these
requirements belong to the class of input iterators. Adding the requirement that
the iterator can traverse the sequence multiple times gives us the class of forward
iterators, and adding the decrement operator to this class gives us bidirectional
iterators.

For some algorithms, this is still not sufficient. In the C++ standard library,
due to the algorithm complexity requirements for the sorting algorithm [ISO17,
alg.sort], it needs to be implemented using a hybrid sorting algorithm such as in-
trosort [Mus97]. All of these algorithms impose additional requirements on the
iterators – iterators need to be random-access – sequential bidirectional access is
not sufficient. This gives four categories of iterators and four different classes of
sequences that can be passed to the C++ standard library algorithms as input.
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2.3.1.5 Problems with iterators

While designing the initial version of the C++ standard library, Alexander Stepanov
focussed on defining the algorithms in a way that would allow him to implement
the stable sort algorithm by using the previously defined algorithms [Par17]. For
this purpose, having algorithms that operate on iterators instead of working directly
with sequences is perfect. It was possible to run an algorithm on a part of a sequence
instead of running it over the whole sequence.

For example, in order to implement a simple quicksort algorithm, we could use
the std::partition algorithm to move items that are less than the pivot element to
the beginning of the collection, and items that are greater or equal to the pivot to the
end. The partition algorithm will return the partition point – effectively returning
two sub-sequences that the quicksort algorithm should be recursively called on. If
sorting worked on collections instead on iterators, it would be necessary to create
intermediary temporary collections which would increase space complexity of the
algorithm, and reduce the runtime performance.

While iterators make the C++ standard library algorithms truly generic, they
do have significant drawbacks with regard to code correctness. Since the algo-
rithms know nothing about the data structures the iterators belong to, they can
not guard against some common programming errors like overflowing the output
sequence, or accessing data that does not belong to a single sequence:

std::copy(begin(source), end(source), Will overflow if the source sequence

begin(destination)); is longer than the destination

std::sort(begin(source), The algorithm does not know if the provided

end(destination)); iterators belong to two different sequences

Another important problem is that having the standard library algorithms accept
iterators as separate function arguments means that one algorithm can not be easily
invoked on the sequence created by another algorithm.

Consider the following scenario – we want to calculate the sum of squares of ele-
ments in a sequence without using a ready-made algorithm like std::inner_product,
but only by composing simpler C++ standard library algorithms. In Haskell2, this
could be implemented like so:

sum $ map (\x -> x * x) xs

2Haskell Language http://www.haskell.org
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This can be implemented in C++ using the std::transform algorithm to square
all the numbers in a given sequence, and then use the std::accumulate algorithm
to sum them. The problem is that we need to create a temporary collection to store
the results of the std::transform algorithm:

template <typename T>

auto sum_squares(const std::vector<T>& xs)

{

std::vector<T> squares(xs.length());

std::transform(begin(xs), end(xs),

begin(squares),

[] (auto x) { return x * x; });

return std::accumulate(begin(squares), end(squares), 0);

}

This is not as readable as the Haskell version, it is less generic (it works only
on vectors) and it is less efficient because it needs to allocate additional memory.
This would be much simpler and more efficient if it was implemented using a simple
for-loop.

2.3.1.6 Proxy iterators

If we skip the complexity of the syntax in the previous example, the main problem
is the need to create the temporary vector to store the squared numbers.

Is it really necessary? The std::accumulate algorithm expects an input iterator,
that is, an object that can be dereferenced, incremented, and compared against the
end iterator.

We can create such an object that behaves same as a normal iterator, only with
a different dereferencing operator. The dereferencing operator will not return the
value from the given vector directly – it will return the transformed value [Čuk18,
Chapter 7].

template <typename Iter, typename Func>

class transform_iterator {

public:

transform_iterator(Iter iter, Func func)

: m_iterator(iter)
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, m_func(func)

{

}

auto operator*() const Dereferencing the

{ transform_iterator will

return std::invoke(m_func, *m_iterator); transform the value

} before returning it

template <typename OtherIter> The equality operator

bool operator==(const OtherIter& other) const just tests whether

{ the passed iterator

return m_iterator == other; is the same as the

} internal iterator

⋯ // iterator traits and other member functions

private:

Iter m_iterator;

Func m_func;

};

template <typename Iter, typename Func>

auto transform(Iter&& iter, Func&& func)

{

return transform_iterator(std::forward<Iter>(iter),

std::forward<Func>(func));

}

The transform_iterator can be used with the std::accumulate algorithm with-
out the need for creating an intermediary vector to hold the results:

template <typename Col>

auto sum_squares(const Col& xs)

{

return std::accumulate(

transform(begin(xs), [] (auto x) { return x * x; }),

end(xs), 0);

}
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Apart from improving syntax and efficiency, this solution is also more generic as
it works on any sequence, and not only on vectors.

2.3.2 Ranges

One commonality in all the previous examples was that the used algorithms accepted
iterator pairs to denote input sequences – one iterator that points to the beginning,
and another that points to the end.

The end iterator is special. In most of the C++ standard library algorithms, the
end iterator is only used to check whether the algorithm has reached the end of the
sequence. It is never dereferenced (as it would result in an undefined behaviour) and
it is rarely changed (like we did in the second implementation of the partitioning
algorithm). This means that, in most cases, the algorithms do not need the end of
a sequence to be denoted by an iterator at all. It can be any object for which we
can check whether a given iterator is equal to it or not. Objects that serve just to
denote the end of a sequence are usually called sentinels.

Therefore, the abstraction over different types of sequences can internally hold
just one iterator that denotes the start of the sequence, and a sentinel denoting the
end of the sequence. This abstraction is called a range.

Just like there are different iterator types, there will be different range types
depending on the type of the contained begin iterator. We will focus here on in-
put ranges, and algorithms that can work on them. Input ranges consist of an
input iterator – iterator that can be dereferenced and incremented, and a sen-
tinel denoting the end of the range. Since the sentinel is just a dummy object
that is used to compare the iterator against when the algorithm needs to know
whether it has reached the end of the range, it is not known where the end of
an input range is until all the items in the range are traversed. This is similar
to a basic implementation of a singly linked list without any optimizations – the
implementation which keeps only the list head, and where each node only keeps
a pointer to the next element. For such a list, we can not know how many ele-
ments it contains, where it ends, etc. until we traverse the whole list. The main
difference compared to ranges is that we can traverse a list multiple times, which
does not hold for input ranges in general.

With ranges defined like this, we can get much better syntax than iterators
gave us, without loss of expressiveness. Instead of algorithms accepting pairs of
iterators, they can simply accept a range, and they can also return new ranges as
the result.
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With ranges, the previous example becomes much more readable:

template <typename Col>

auto sum_squares(const Col& xs)

{

return accumulate(

transform(xs, [] (auto x) { return x * x; }),

0);

}

This variant of the transform algorithm does not actually perform any trans-
formations on the original sequence, it just returns a new range consisting of a
proxy iterator similar to the tansform_iterator presented earlier, and a sentinel
which tests whether the end of the original sequence has been reached. The element
transformations will occur only when the accumulate algorithm tries to access the
elements of the transformed range in order to sum them.

In a similar manner, we can create ranges that define filtering – by creating a
proxy iterator that skips over values that do not satisfy a predicate, grouping – with
a proxy iterator that groups all equal elements in sub-ranges, etc.

2.4 Some important C++ features and techniques

2.4.1 Templates

C++ templates [Str13, p. 23.1] allow to create generic definitions of types and func-
tions. It is done by factoring out the common behaviour of the things we want to
implement and pass the specifics through the template parameters. This is useful
for defining generic collections such as std::vector or std::list that are able to
hold any proper data type, or functions like std::sort that can operate on any
random-accessible collection.

Templates in C++ are conceptually different than corresponding features in other
languages like Java or C#. In Java and C#, generics are just syntax sugar that
does not change the semantics of the language – it generates the same code as if
the Object class was used with a lot of casting down to the needed type – the same
bytecode handles both the lists of integers and lists of strings. The template code in
C++ does not end up in the compiled code, only specific instantiations for specified
arguments do. This means that during compilation, C++ creates separate class
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implementations for lists of integers and lists of strings, and separate functions for
sorting a vector of integers and an array of bytes. That results in longer compilation
times, and increased size of the compiled code, but no runtime performance penalties
at all – each of the instantiations is compiled and optimized to run for the specified
arguments.

2.4.2 Template Meta-Programming (TMP)

TMP is a meta-programming technique in which templates are used by the compiler
to generate code. It has been shown that the templating mechanism in C++ is a
Turing-complete language [Cza02], where programs written in it are executed during
program compilation.

The main technique for metaprogramming in C++ is based on partial evaluation
of templates. We will demonstrate this with a usual example of calculating a factorial
at compile-time. TMP for the most part follows a functional programming paradigm.
So it is a good practise first to define the function we want to implement in the
functional style. In Haskell, it would be as follows:

factorial 0 = 1

factorial n = n * factorial (n - 1)

The C++ TMP equivalent, albeit more verbose, would follow the same logic:

template <int n>

struct factorial

{

enum {

value = n * factorial<n - 1>::value The general case

};

};

template <>

struct factorial<0>

{

enum {

value = 1 Special case - when n = 0

};

};
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int main(int argc, char** argv)

{

int array[factorial<5>::value]; We can use the factorial

meta-function in the places

where the compiler expects

a constant expression

}

The power of TMP is not in implementing this kind of meta-programs, but rather
in the fact that it allows performing calculations and executing (meta) programs
at compile-time – it offers a programmable control over the compilation process,
including checking the compiler states and characteristics of the generated types.

2.4.2.1 Transforming types with meta-functions

The main use of TMP is for type transformation. When we define a template class
or a template using declaration, we are creating a meta-function that returns a new
type when we define its parameters.

For example, if we have a sequence type that can be iterated over, we can create
a meta-function that returns us the type of the values in that sequence like so:

template <typename T>

using value_type_t = decltype(*begin(std::declval<T>()));

For a given type T, this checks what is the type of the expression inside the
decltype statement. The expression dereferences the begin iterator of a value of
type T, which will be the type of the element contained in the collection of type T.

Alternatively, since all generic collection types in the C++ standard library
(and many other third party C++ libraries) have a nested value_type type defi-
nition [Čuk18, Chapter 11], we can implement the value_type_t meta-function in a
different way:

template <typename T>

using value_type_t = typename T::value_type;

This is a meta-function that, given a type T, returns the type specified by the
nested value_type definition.
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2.4.2.2 SFINAE

Substitution Failure Is Not An Error (SFINAE) is a rule of C++ where an invalid
substitution of template arguments does not constitute an error [VJ03]. The com-
piler just keeps going until a viable substitution is found. An error is reported only
if there is no valid substitution to be found. It is one of the more advanced TMP
techniques.

For a demonstration of this principle, the following code implements a checker
whether a given type T has a nested type definition called inner:

template <typename T>

struct has_typedef_inner {

template <typename C>

static std::true_type& test(typename C::inner*);

template <typename>

static std::false_type& test(...);

// Value is a static constant member

// that will be true iff the test<T>'s

// result is std::true_type

static const bool value =

sizeof(test<T>(0)) == sizeof(std::true_type);

};

struct i_have_inner {

typedef float inner;

};

has_typedef_inner<int>::value; // false

has_typedef_inner<i_have_inner>::value; // true

When the compiler encounters the has_typedef_inner<SomeType>::value state-
ment, it replaces the template argument with SomeType and calculates the mem-
ber value. For that, it needs to deduce the result type of test<T>(0). It does
so by performing pattern matching. If it succeeds to match against the first im-
plementation (if SomeType has the specified inner type), the result type will be
std::true_type. Otherwise, it will match against the second one, whose result
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type is std::false_type. We will need tests like this one to be able to differentiate
between different types of tasks.

2.4.3 Variadic templates

The C++11 standard lifted the requirement of the previous version of the standard
that templates must have a fixed number of arguments [Str13, p. 28.6]. Similar to the
other TMP techniques, implementing templates with variable number of arguments
called variadic templates has a functional base. In this case, it takes the usual form
of list processing (again, we are using Haskell for the functional notation):

doSomething :: [A] -> SomeType

doSomething [] = resultForTheEmptyList

doSomething (x:xs) = resultForTheHeadAndTail(x, xs)

Let us demonstrate this on a simple example of defining a tuple class. We start
by defining an empty tuple (0-tuple). Afterwards, we inductively define a n-tuple
from (n− 1)-tuple:

template <typename ...Types> The variadic

class tuple; template definition

template <> Specialization for the

class tuple<> {}; 0-tuple

template <typename Head, typename ...Tail>

class tuple<Head, Tail...> Inductive step - n-tuple privately

: private tuple<Tail...> { inherits from (n− 1)-tuple

protected:

Head m_head;

// ⋯

};

// Now we can define any tuple we want

tuple<int, double> pair;

tuple<int, int, int> triple;

tuple<int, int, bool, std::string> quadruple;
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This implementation can be seen as a recursive definition for a tuple. An n +

1-tuple is a product type of a n-tuple (which we privately inherited from) and a
value of a new type (the m_head member variable).

2.4.4 Move semantics

One of the notable features of C++ is the automatic clean-up that happens every
time an object goes out of the scope. When it happens, the destructor for that
object is called, and it frees up all the resources that object acquired [Mey97]. This
allows C++ programs to be implemented without the need for garbage collection
while, at the same time, not being forced to manually manage the lifetime of all
resources (memory, file descriptors, etc.).

While statements like std::vector<int> *v = new std::vector<int>(); are com-
mon in other contemporary languages, and are valid in C++ as well, they are not
often present in C++ code. Instead of using a pointer to a vector and allocating
the vector dynamically, it is customary to just declare a value of type std::vector,
and rely on automatic destruction when the vector goes out of the scope. Preferring
values to pointers works great when the program safety and resource leakage are
concerned, but it had a few significant downsides before C++11.

Consider the following example. We have a collection of values, and we want to
print them out grouped by some member variable.

template <typename T, typename M, typename C>

std::vector<T> filter_on_member(const std::vector<T>& xs, M member,

const C& value);

template <typename T, typename M, typename C>

void print_categorized(const std::vector<T>& xs, M member,

const std::vector<C>& categories)

{

std::vector<T> filtered;

for (auto category: categories) {

filtered = filter_on_member(xs, member, category);

for (const auto& x: filtered)

std::cout << x << std::endl;

}

}
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The filter_on_member function will return a temporary vector, which will be
assigned to the filtered variable. The assignment operator will copy the data from
the temporary vector, and then the temporary vector will be destroyed. And this
will happen for each category.

To recap, for each category, we just want to store the result of filter_on_member
function into the filtered variable, yet we will:

• Create a temporary vector containing the result of filter_on_member;
• Copy the data from the temporary vector to the filtered vector;
• Destroy the temporary vector.

Copying the data is expensive. The only reason why we would need to copy the
data is if someone else wanted to use the original vector. But since it is temporary,
we know that it will not be used by anyone else. So, instead of copying, we could
just steal the data from the temporary vector and move it into the filtered vector.

2.4.4.1 Lvalue and rvalue references

In C++11, we got the ability to tell whether something is a temporary value or
not. The values are split into two categories – lvalues and rvalues, and they can be
captured by lvalue-references and rvalue-references respectively. One way to deduce
whether a value is an lvalue, or an rvalues is to think of whether it can be on the left
side of the assignment operator or not. If it can be on the left side, it is an lvalue
and it is not a temporary; while if it is a temporary, we can not assign something to
it, and it can only be on the right side of the assignment operator, so it is an rvalue.
The actual rules are more complex than this, but this is the main gist.

Lvalue-references are denoted by a single ampersand &, whereas rvalue-references
are denoted by the double ampersand &&. We can use these to detect whether a value
is temporary or not. Let’s demonstrate this using the variables and functions from
the previous code snippet:

std::vector<T>& lvalue_ref = filtered; OK filtered is not a temporary,

std::vector<T>&& rvalue_ref = filtered; Error it does not bind to rvalue refs.

std::vector<T>& lvalue_ref = Error A result of a function is temporary vector

filter_on_member(⋯); which can not be bound to an lvalue ref.,

std::vector<T>&& rvalue_ref = Ok but it can be bound to an rvalue ref.

filter_on_member(⋯);
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const std::vector<T>& const_ref = OK A special rule allows binding tempo-

filter_on_member(⋯); raries to const-refs which prolongs

the lifetime of the temporary object

We can use different reference types to overload functions, and provide one im-
plementation that works on temporaries, and one that works on normal values.
For example, consider the std::vector. Usually, the vector contains a pointer to a
dynamically allocated buffer that contains the data, along with some bookkeeping
data.

If we are constructing a vector out of another vector, it would be beneficial to
know whether that vector is a temporary one or not. If it is not, we need to copy
all the data from the original vector, and if it is, we can just move the data into the
new vector – leaving the original vector empty.

template <typename T>

class vector {

public:

vector(const vector& other) The copy constructor needs

: m_count(other.m_count) to allocate a new buffer

, m_allocated(other.m_allocated) and copy all the data from

, m_data(new T[other.m_allocated]) the original vector into

{ said buffer

std::copy(⋯);

}

vector(vector&& other) The move constructor can

: m_count(other.m_count) just take the data from the

, m_allocated(other.m_allocated) original vector leaving

, m_data(other.m_data) the original vector empty

{

other.m_data = nullptr;

}

~vector()

{

delete [] m_data;

}
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private:

int m_count;

int m_data;

T* m_data;

};

2.4.4.2 Perfect forwarding

If we need to write a function that wraps in another function we will have the
problem of how to pass the arguments from the wrapper function to the function
we need to call.

We can pass the arguments by-value which can potentially incur performance
degradation due to unnecessary copying, and can lead to compilation errors if the
wrapped function expects a reference to an object because it wants to change the
original object.

The second option is to pass a reference to the object. This would solve the above
problems – no unneeded copying and the called function can access and change the
original object through the reference. But we will get new issues – it will not be
possible to pass temporaries to the function, nor objects declared as const because
a non-const reference can not be bound to them.

The third option is to use a const reference, which will work in most cases
optimally. The only case when a const reference can not be used is when the
wrapped function needs to change the original object. In this case using a const
reference will produce a compiler error.

This is solved in C++11 with the forwarding references (formerly known as uni-
versal references [Mey15]). A forwarding reference is written as a double ampersand
on a automatically deduced type (template parameter or on auto). In the following
code, the fwd argument is a forwarding reference to type T, while value is not (it is
a normal rvalue reference because it is not a reference on an automatically deduced
type, but on a concrete type – int).

template <typename T>

void f(T&& fwd, int&& value)

The forwarding reference allows us to accept both const and non-const objects,
and temporaries. When passing the forwarding reference to the wrapped function,
we need to use the std::forward helper function.
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template <typename T>

void f(T&& fwd, int&& value)

{

g(std::forward<T>(fwd));

}

This takes care of passing arguments to the wrapped function, but it does not
deal with the returned value. We have the same options for the function result
– return it as a value, reference or a const reference – and all of these can be
problematic in different situations. The solution is to also perfectly forward the
result of the wrapped function to the caller of the wrapper function. This can be
achieved by using decltype(auto) as the specification of the return type for the
wrapper function:

template <typename T>

decltype(auto) f(T&& fwd, int&& value)

{

return g(std::forward<T>(fwd));

}

2.4.5 Lambda expressions

Lambda expressions in C++ [Str13, p. 11.4] provide a concise way to create simple
function objects. Evaluation of a lambda expression results in a closure object. The
closure object may capture the variables from the enclosing scope that are used in
the lambda body.

int i = 4;

auto multiply_by_i =

[=] (int number) { A lambda that multiplies

return number * i; its argument with a value from

} the surrounding scope

multiply_by_i(5); invokes the lambda

The square-brackets section of the lambda declaration is called a lambda head
and it defines which variables from the outer scope should be captured inside of
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the closure object generated by evaluating the lambda expression [Čuk18, Chapter
3], and in which manner (by value or by reference). In this case, we captured all
the used variables by value. If we wanted the compiler to ensure that we want to
capture only the variable i, we could have simply written the capture as [i].

Lambdas, like other functor objects, are most useful as arguments of algorithm
methods such as std::count_if. The following example returns the number of
positive elements in a vector of integers:

std::count_if(

numbers.cbegin(),

numbers.cend(),

[] (int number) { return number >= 0; }

);

2.4.6 Pipe call syntax

We have seen the ranges abstraction over different structures that implement se-
quences in C++ in Section 2.3.2, and we have seen how they can be helpful when
defining composite transformations on sequences.

The problem with the previously shown syntax is that, like regular function
application, the first transformation (read left-to-right) is the last to be performed.
This is a common idiom in functional programming, but not in the procedural and
object-oriented programming languages. In OOP languages, syntax like this would
be preferred:

xs.filter(some_predicate)

.transform(transformation_function)

.group(some_operator);

Unfortunately, in C++, this would require that all the types that need to behave
like ranges have to implement filter, transform and similar member functions
which would destroy the point of ranges being a common abstraction over different
data structures.

There is a proposal for extending the C++ language core to allow free-standing
functions like f(x,y) to be called with x.f(y) syntax similar to the Wafl program-
ming language [Mal10], but this proposal has not yet been accepted for inclusion
into the C++ standard. Instead, if we want to provide a syntax that allows us to
define a chain of range transformations from left to right, we will need to implement
it manually by creating a small domain-specific language.
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It is common to use the pipe operator for transformation chaining [Sch11] in
libraries that implement ranges, much like it is used in most UNIX shells.

xs | filter(some_predicate)

| transform(transformation_function)

| group(some_operator);

If we have the transform function which accepts a range and a transformation
function, we can easily (though with some boilerplate) implement the support for
the pipe syntax for it. We just need to create a unary transform function which just
takes the transformation function and returns a dummy object that will perform
the transformation when connected to a range via the pipe operator:

template <typename F>

struct transformation_helper {

F function;

};

template <typename Rng, typename F>

decltype(auto) operator| (Rng&& range,

transformation_helper<F> helper)

{

return transform(std::forward<Rng>(range), The pipe operator calls

helper.function); the binary transform func.

}

template <typename F>

auto transform(F&& function)

{

return transformation_helper<F>{ The unary transform function

std::forward<F>(function) just creates an object that

}; defines the transformation

}

The implementation would be the same for other range transformation functions.
We will assume from now on that all functions that we use can be called both with
regular and the pipe-based syntax.
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2.4.7 Function objects and callables

We have seen several higher-order functions in the previous sections. Every time
we want to create a function that can accept another function as its argument,
we defined it as a function template, where one of the template parameters is the
function because C++ does not provide a common type over all different types of
functions.

We have a couple of different ways to define functions. One approach is to use
duck-typing and to say that anything that we can call with the common function
call syntax is a function. In C++, this includes the following:

• Free-standing functions (C functions)
• Pointers and references to free-standing functions
• Objects that have the call operator implemented on them (operator())
• Objects that can be cast to a function pointer

void f(); An ordinary free-standing function

auto f_ptr = &f; A function pointer

auto f_ref = *f_ptr; and reference

class f_obj_t {

public:

void operator() () const; The call operator defined in a class

allows instances of that class to

be called like normal functions

};

f_obj_t f_obj;

auto f_lambda = [] () { A lambda that does not capture anything

⋯ has the casting operator to a function pointer

};

We will expand this with pointers to member functions and pointers to mem-
ber variables. While these are not traditionally considered to be functions, member
functions behave mostly the same as free-standing functions with an implicit argu-
ment pointing to the object instance whose member function or variable we want
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to access (this). While these can not be called with the normal function call syn-
tax, we can use the std::invoke helper function to call both normal functions and
pointers to member functions and variables.

std::invoke(&std::string::empty, s); calls s.empty()

std::invoke(&std::toupper, c); calls toupper(c)

The std::invoke helper function introduces boilerplate into every function call,
but it is a necessity if we want to make our code as generic as possible. It has no
use in a non-generic context.

2.5 Introduction to category theory

Most of the concepts used in this dissertation come from functional programming
where the main building blocks are functions. We will now cover a few basic concepts
of the algebra of abstract functions – the category theory.

The category theory defines the behaviour that function-like objects should have
outside of the constraints of set theory. While most of the notation is shared with the
functions from set theory, it is important to remember that this is about abstracting
functions, not about defining relations between sets. For this reason, instead of using
the term function, in the rest of this section, we will be using the term arrow, as it
is common in the category theory.

Let’s start with a simple notion of a metagraph. A metagraph consists of [Lan98]
objects a, b, c, . . ., arrows f, g, h, . . ., and two operations:

• Domain, which assigns an object a = dom f to each arrow f ;
• Codomain, which assigns an object b = cod f to each arrow f .

We can introduce shorter notation for specifying the that a and b are the domain
and codomain (in that order) of an arrow f like so:

f : a → b

Definition 2.1. A category is a metagraph with two additional operations:

• Identity, which assigns an arrow idb = 1b : b → b to each object b where 1b

satisfies the unit rule – 1b ◦ f = f and g ◦ 1b = g for any f : a → b and
g : b → c. The unit rule can be represented graphically as:
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a b

b c

f

f
1b

g

g

• Composition, which assigns an arrow g ◦ f to each pair of arrows f and g

with dom g = cod f . g ◦ f is called composition of arrows g and f with
g ◦ f : dom f → cod g. Composition needs to be associative, meaning h ◦ (g ◦
f) = (h ◦ g) ◦ f , or graphically:

a d

b c

h◦(g◦f)=(h◦g)◦f

f

g◦f

g

h◦g

h

It is important to note that a category is anything that satisfies this definition.
Sets and functions on sets are just one special category (the Set category) where sets
are the objects, functions are arrows, and the usual identity function and function
composition are used. Another example is a category of all groups – objects are the
groups G, H, etc. and arrows are all homomorhpisms from G to H.

2.5.1 Category of C++ types

For us, the most interesting category is the Type category. The objects in this
category are C++ types (including the instantiated class templates), and arrows are
unary C++11 functions (including the instantiated function templates) and other
callables (see Section 2.4.7). This category can be seen as a special case of the Set

category because a C++ type can be seen as a set of all different values of said type.
The identity operation is a function that returns the same value it gets as the

argument:

template <typename T>

decltype(auto) identity(T &&value)

{

return std::forward<T>(value);

}

The identity is a generic function that will be instantiated for any type T it
is invoked for, and it will return a value of the same type it gets as the function
argument. It will correctly handle references and const-qualified types (see 2.4.4.2).
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The composition operation is a bit more involved. We need to create a function
template that takes two functions as arguments, and returns a composed function.
The easiest approach is to use a lambda for this:

template <typename G, typename F>

auto compose(F&& g, G&& f)

{

return [g, f] (auto&& value) {

return std::invoke(g,

std::invoke(f,

std::forward<decltype(value)>(value)));

}

}

The compose function creates a closure which will contain a copy of the functions
that need to be composed. When this closure is called, it will return the value it
receives as the argument with f and g applied to it.

Note that this implementation of the compose function makes copies of callables
f and g. This approach is idiomatic to the C++ standard library, but it can induce
performance issues if used with callables that are expensive to copy. Copying can
be avoided either by passing reference wrappers (by using std::ref) to the objects
that are expensive to copy, or by modifying the compose function to use perfect
forwarding for lambda captures (see [Rom]).

It would be easy to show that the identity function satisfies the unit law, and
that the compose function is associative, which makes this a category.

2.5.2 Functors

Anything that obeys the category laws is a category – it is just necessary to define
what objects and arrows are, and to define the identity and composition operations.
Let’s make a category where other categories are objects, and where arrows are
mappings between them.

Definition 2.2. A functor F between categories C and D is [Awo06] a mapping of
objects to objects, and arrows to arrows which satisfies the following rules:

• F (f) : F (dom f) → F (cod f) for any arrow f in category C

• F (g ◦ f) = F (g) ◦ F (f)

• F (1a) = 1F (a)
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D : F (a) F (b)

C : a b

F (f)

f

Figure 2.4: Graphical representation of the relation between arrows and objects of
categories C and D for a functor F : C → D.

It would be easy to show that functors compose in the right way, and that every
category has an identity functor, which gives us another example of a category –
the category of all categories in which arrows are functors.

While the definition of a functor seems rather abstract, functors appear every-
where in real-world programming. We will investigate functors that operate on the
Type category – functors that map types to other types, or in other words, endo-
functors on the Type category.

In order to create something that can operate on all different types in C++, it is
necessary to use templates. And since endofunctors on the Type category map types
to types, the obvious choice for implementing a functor in C++ is to create a class
template.

template <typename T>

class some_functor {

⋯

};

The some_functor class template takes one argument – any C++ type T – and
returns a new type some_functor<T>.

This is only one half of a functor – the some_functor class template transforms
types to types. It is also necessary to create a transformation that converts ordinary
C++ functions that operate on types from the Type category to functions that work
on the types with some_functor applied to them. Specifically, it needs a lifting
transformation lift_to_some_functor that, given a function f : T → R (for any
pair of types T and R) returns a function:

lift_to_some_functor(f) : some_functor〈T 〉 → some_functor〈R〉

From now on, when we talk about functors, we will mostly talk about endofunc-
tors on the Type category, and a functor will be consisted of a class template with a
single template parameter, and a corresponding lifting function.
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We are now going to cover a few examples of functors that are a part of the C++

standard library, or proposed for inclusion into the standard library in C++20.

2.5.2.1 Vectors and other sequences

The std::vector is main type commonly used to demonstrate class templates [Str13,
Section 3.4.2]. The internal implementation of a vector is not relevant for this
discussion, the only important thing is that a std::vector<T> is a sequence of values
of the same type T. This means that, everything in this section also applies to other
similar collections like linked lists and double-ended queues.

The std::vector is a class template, and it only needs a lifting function defined
for it in order for it to become a functor.

Note that we are going to relax the functor definition a bit. By definition, a
functor needs to be able to transform all the types from the Type category, which
std::vector and similar class templates can not do. Namely, we are not allowed to
create a vector of reference types which also belong to the Type category. While this
is a serious limitation from the theoretical standpoint, it is not relevant in practice.

The C++ standard library provides the std::transform algorithm which takes a
collection of values of type T, a transformation function which maps values of type T

to values of (possibly same) type R, and it returns a collection of transformed values.

std::vector<std::string> words = { ⋯ };

std::vector<int> word_lengths(words.length());

std::transform(std::cbegin(words), std::cend(words), 1

std::begin(word_lengths), 2

transformation_function);

The std::transform algorithm lifts the transformation_function and applies
it to the source collection [Čuk18, Chapter 1]. While conceptually the same, the
std::transform is not strictly a lifting transformation. It has a few problems:

• The lifting transformation should only accept a function that needs to be
lifted, and return a new function that operates on std::vector<T>;

• std::transform does not accept a collection to be transformed, but a pair of
iterators 1 ;

• and it does not return a new transformed collection – it accepts the pre-created
collection it writes the transformed values to as its argument 2 .
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This can easily be remedied by creating a wrapper function lift_to_vector

which has only the transformation function as its parameter, and it returns a lambda
that transforms the given vector:

template <typename F>

auto lift_to_vector(F&& transformation_function)

{

return [transformation_function] (const auto& values) {

std::vector<decltype(transformation_function(values[0]))>

result(values.length());

std::transform(std::cbegin(values), std::cend(values),

std::begin(result),

transformation_function);

return result;

};

}

The lift_to_vector function is a proper lifting function for the std::vector

functor. The important thing to note is that it just wraps the std::transform

algorithm to fit the functor definition, it does not do anything that said algorithm
can not. This implies that in context of the C++ programming language, anything
that can be used with the std::transform algorithm can also represent a functor.

In the context of C++, a functor consists of a template type (like std::vector)
and a lifting function. We will usually call the template type itself a functor if the
lifting function for it is known or if it is trivial to define.

2.5.2.2 Optional values

Another useful functor in the Type category is the std::optional class template. It
is a union (or a sum) type [Hud+07] that extends any C++ value type with a special
value denoting an empty state or diverging computation [Mog91]:

optional〈T 〉 = T + {⊥}

Optional values are useful when denoting missing values. A value might be
missing because an error has occurred and the value could not have been calculated.
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Also, a missing value can be a perfectly valid state. For example, in a system which
tracks the currently logged-in user, the value can be missing when there is no user
currently logged-in [Čuk18, Section 9.1.4].

The lifting transformation for std::optional can be defined in a similar way to
that of std::vector. It would be easy to make std::transform work for optional
values – a std::optional is semantically the same as a vector which does not have
more than one item.

An alternative, much simpler, solution would be to create a custom lifting func-
tion tailored exactly for std::optional:

template <typename F>

auto lift_to_optional(F&& transformation_function)

{

return [transformation_function] (const auto& optional_value) ->

std::optional<decltype(

std::invoke(transformation_function, *optional_value))

>

{

if (optional_value) { 1

return {

std::invoke(transformation_function, *optional_value) 2

};

} else {

return {}; 3

}

};

}

optional〈R〉 : {} {f(value)}

optional〈T 〉 : {} {value}
lift_to_optional(f)

Figure 2.5: Applying lifted function f : T → R to an optional value

The lift_to_optional function returns a closure object that represents the lifted
transformation_function. When the closure is invoked with an optional value, it
will check whether the value is missing or not. If the value is present 1 , the closure
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will return the transformed value 2 , and an empty optional value otherwise 3 (also
see Figure 2.5).

Optional values are often useful, and lifted functions make it easier to use them.
Imagine the following scenario – the program has an optional value login that
contains the username of the user that is currently logged-in. If no user is logged-in,
the optional value is empty. Further, it contains the following functions:

user_t user_data(const std::string& username);

std::string user_t::full_name() const;

html_t format_full_name(const std::string& full_name);

If the program needs to calculate the formatted full name of the currently logged-
in user without lifting, it would need to process the special state when no user is
logged-in separately, and it would need to manually extract and process the value
in the case when there is a user logged-in into the system.

With function lifting, it is possible to define the required transformation without
even considering there is a special state to worry about:

auto lifted_user_data = lift_to_optional(user_data);

auto lifted_full_name = lift_to_optional(&user_t::full_name);

auto lifted_format = lift_to_optional(format_full_name);

std::optional<html_t> current_user_full_name()

{

return lifted_format(

lifted_full_name(

lifted_user_data(login)

)

);

}

Implementing a transformation on an optional value is just a matter of composing
lifted functions in the same way normal functions would be composed for a normal
value.

Even more, if the limitation that the system can have only one user logged-in
is removed at some point during the development, and the optional value login

is replaced with a list of users that are logged-in, changing the above function to
generate a list of formatted names for logged-in users would be trivial – instead
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of lifting to std::optional, it would be possible just to lift the functions to the
std::vector functor.

If the optional login value was processed manually, without function lifting, it
would be necessary to make significant changes to the implementation of the above
function in order to make it work for a list of logged-in users.

2.5.3 Monads

We have shown how function lifting can make chaining functions that transform
functor type values as easy as transforming normal values.

The only downside is that in order for the lifted functions to be composable, the
functions that are being lifted need to be composable as well. There are situations
when this is a serious limitation.

Let us continue with the previous example, but this time, let us change the
signatures of the functions a bit. Instead of having the functions that return normal
values, the program needs to handle functions that can fail and return an invalid
value. This optional error state can be denoted by replacing return types with
optional values:

std::optional<user_t> user_data(const std::string& username);

std::optional<std::string> user_t::full_name() const;

std::optional<html_t> format_full_name(const std::string& full_name);

The problem that arises here is that if these functions are lifted, they will produce
functions that are not composable because the original functions are not composable.
Let’s see what is the exact problem on the user_data function:

optional〈string〉 optional〈optional〈user_t〉〉

string optional〈user_t〉

lifted_user_data

user_data

The lifted_user_data function returns a nested optional value – an optional
value inside of another optional value. In order to call user_t::full_name on
its result, it would need to be lifted two times. And, for the same reason, the
format_full_name function has to be lifted three times. The longer the chain of
functions that should be applied, the more lifting needs to be performed. In the
end, the result is a value deeply nested in several layers of std::optional.
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This is highly impractical because getting the result value in the end becomes
more difficult with each new level – it needs to be checked whether the optional value
is empty for each level until the value is reached. It is also semantically wrong –
the result is either a value or it is empty, but instead of representing this as a single
optional value, the result can have different invalid states where the differences
between those invalid states do not communicate anything.

Since the failures at different levels do not carry any important information, they
can be merged into one by flattening out the nested optional value into a normal
optional value. Specifically, we can create a join function which removes one level
from a nested optional value:

template <typename T>

std::optional<T> join(const std::optional<std::optional<T>>& outer)

{

if (!outer) return {}; 1

const auto& inner = *outer;

return inner; 2

}

If the outer optional value is empty 1 , the join function returns an empty
optional value as the result. Otherwise, it returns the inner optional value 2 .
With a join function defined like this, the problem of having nested optional values
can easily be avoided. If we define a join function for a functor that also has a
constructor function, we get another useful structure called a monad.

Definition 2.3. A monad M = 〈M,make, join〉 on a category C consists of an
endofunctor M : C → C, and two transformations make : C → M(C), and join :

M2(C) → M(C) satisfying the following rules (usually referred to as monad laws):

Left identity: mbind(make(a), f) ≡ f(a)

Right identity: mbind(m,make) ≡ m

Associativity: mbind(mbind(m, f), g) ≡ mbind(m,λx.mbind(f(x), g))

where mbind(m, f) = join(M(f)(m)), a is an object in C, f and g are arrows from
C to M(C), and m an object in M(C).

The make transformation takes an object from C, and wraps it into the monad –
it returns an object from M(C), while the join transformation allows us to unwrap
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values that have been wrapped multiple times. This means that it is possible to
create a singly-wrapped object from any object in C – if the object x is in C \M(C),
then make(x) is in M(C)\M2(C); whereas if x is in Mn(C)\Mn+1(C) where n > 1,
joinn−1(x) will be in M(C) \M2(C).

The mbind transformation takes a monadic value m from M(C), and a trans-
formation f : C → M(C). It applies the lifted function M(f) (in the context of
M being a functor) to the given object m, and returns the result with one level
of nesting removed. It behaves similarly to the normal function composition, but
it allows us to compose functions that take normal values while returning values
wrapped in a monad.

2.5.3.1 Monad laws

The left identity law states that wrapping an ordinary value a into a monad and
then binding it with function f is same as calling the function f directly on the
value a.

M(a) M(M(b))

a M(b)

lifted(f):a7→M(b)

joinmake

f

Figure 2.6: Left identity law

The right identity law states that binding a monadic value with the make func-
tion returns that monadic value unchanged.

M(m)

m m

joinlifted(make)

Figure 2.7: Right identity law

The meaning behind the associativity law is less obvious. In a nutshell, it states
that binding a monadic value m first to function f , and then binding the result to
the function g will give us the same result as binding the value m to the composition
of f and g.

56



CHAPTER 2. MOTIVATION AND BACKGROUND OVERVIEW

While f and g are not composable in the traditional sense because g takes a
normal value and f returns a monadic value, they can be composed with a special
composition operator:

f � g := λv.mbind(f(v), g)

This operator is called Kleisli composition and it can be used to define the monad
laws in a more understandable manner:

Left and right identity: f � make ≡ f ≡ make � f
Associativity: (f � g) � h ≡ f � (g � h)

It is now obvious why the last monad law is called the associativity law –
while it does not look like associativity in its original form, it is the law that
requests the Kleisli composition operator defined on any particular monad to be
associative.

2.5.3.2 The partiality monad

So far we have demonstrated what optional values are, and we have shown how
functors and lifting help us handle them in a clean and generic way.

Lifting becomes insufficient when transforming optional values using partial func-
tions – functions that are not defined for all values in their domain. Partial functions
are usually modeled in practice as ordinary functions whose return type is an op-
tional value. As we have seen before, lifting these functions gives us functions that
return multi-layered optional values.

In this context, the Kleisli composition allows us to compose partial functions in
the same way normal functions are composed, without the need for special handling
of partiality.

The std::optional functor, along with the previously defined join function and
the std::make_optional function make the partiality monad (often referred to as
the Maybe monad).

Let’s return to the scenario of having to process the currently logged-in user and
generate a formatted representation of the user’s full name. The example contained
several partial functions represented as functions that return optional values. Pass-
ing the optional login variable through a chain of partial functions, can be done by
applying the Kleisli-composition of those functions to it:

(format_full_name� full_name� user_data)(login)
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expected〈R,E〉 : {error} {f(value)}

expected〈T,E〉 : {error} {value}
lift_to_expected(f)

Figure 2.8: Applying lifted function f : T → R to an expected value

The same result could be achieved using the mbind function, but it would be
more verbose. We will present a convenient syntax for chaining mbind operations
in Section 2.4.6.

2.5.3.3 The exception monad

The saying goes “The chain is as strong as its weakest link”. This is true also for
our chain of Kleisli-composed partial functions. The first function in the chain that
returns an empty optional object (⊥) as its result will break the chain of trans-
formations and the whole expression will return an empty optional value without
executing any of the following transformations.

This is useful for error handling when the program does not care about the
error itself, but only whether the error has occurred or not. A returned empty
optional value denotes that a transformation has failed, but it does not convey the
information which transformation has failed, nor what the error was because it can
represent only one possible error state.

If we wanted to keep the usage patterns that the partiality monad has, but the
information about the error needs to be preserved, it can be done by using a new
functor similar to std::optional with the empty optional state replaced with a set
of possible error values:

expected〈T,E〉 = T + E

An instance of the expected class template 3 can contain either a value of type
T , or an error of type E, but not both at the same time.

It is important to note that the expected template is parametrised on two
types – one type for the value, and one for the error. This is in odds with the
functor definition which requires the functor to be a function that maps one type
to another, and not a pair of types to a new type. In order to subvert this prob-
lem, we will consider that the type E is fixed and that expected is parametrised
only on T .

3The expected class template is proposed for inclusion into C++20 [Esc17]
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The lifting function for expected can be defined in a similar way to the lifting
function for std::optional presented earlier. The only difference is that now it
needs to carry on the error information:

template <typename F>

auto lift_to_expected(F&& transformation_function)

{

return [transformation_function] (const auto& expected_value) ->

expected<

decltype(

std::invoke(transformation_function, *expected_value)),

decltype(expected_value.error())

>

{

if (expected_value) { 1

return {

std::invoke(transformation_function, *expected_value) 2

};

} else {

return unexpected{expected_value.error()}; 3

}

};

}

The lift_to_expected function returns a closure object that represents the
transformation_function lifted to the expected functor. When the closure is in-
voked with an expected value, it will check whether it contains a value or an error.
If there is no error 1 , the closure will return the transformed value 2 . Otherwise,
it will just pass on the previous error 3 (also see Figure 2.8).

The implementation of the join function would also be very similar to the join

function for std::optional. Instead, we will implement the mbind function for the
expected functor, which will, alongside the expected class constructor make turn
the expected functor into the exception monad [Mog91].

template <typename T,

typename E,

typename Function>

auto mbind(const expected<T, E>& expected_value,
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Function transformation_function) ->

decltype(std::invoke(transformation_function, *expected_value))

{

if (!expected_value) {

return unexpected{ expected_value.error() }; 1

}

return std::invoke(transformation_function, *expected_value); 2

}

The mbind function accepts an expected value and a transformation function that
takes a normal value and returns a new expected value. If the expected value that
is passed to the mbind function contains an error 1 , mbind will return that error.
Otherwise, it will invoke the transformation_function on the value and return its
result 2 .

There are two important consequences of this implementation:

• If the expected value passed to mbind contains an error, the transformation
function will not be invoked at all;

• The only way to get a valid value in the resulting expected value is if the
original value was valid and if the transformation function succeeded;

When using the mbind function to chain multiple functions that return an ex-
pected value, we get a sequence of commands that are executed one by one for which
the execution stops as soon as any of the commands fail. This is the reason why
this is called the exception monad – it behaves similarly to the exceptions system in
most programming languages with a difference that the exception is encoded in the
return type of the function.

2.5.3.4 The continuation monad

In functional programming, a continuation [SS76] is a type C constructed from a
function f : A → R that generates a result of type R. A is the type produced by
the continuator, passed on to the continuation. We can connect the continuator and
the continuation with the then function. In Haskell, it can be defined like so:

newtype C r a = CT ((a -> r) -> r)

then (CT action) k = action k
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If we wanted to compose two continuations, we would need a function that looks
like this:

cmpCont :: ((a -> r) -> r) -> (a -> ((b -> r) -> r)) -> ((b -> r) -> r)

cmpCont g f = \b -> g (\x -> f x b)

If we take a closer look at the signature of the cmpCont function, we will see a
pattern that we have seen earlier – it has the same signature as the monadic bind
function when M r a = (a -> r) -> r (where the monad is parametrized on a). It
can easily be shown that this function obeys the laws that the monadic bind function
has to obey, which makes a category of all continuation functions a monad.
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3.1 Futures and continuations

The traditional approaches to asynchronous programming shown in Section 2.2 are
all valid, but have readability and maintainability issues. The task we have is quite
simple: request a page, and process it when it is retrieved. Something like this
should be easy to implement. It needs to be as simple as:

result = get_page(”http://www.math.rs/”);

if (result.is_valid()) {

⋯

}

when implemented in the imperative style, and if implemented in the functional
style, it needs to be as simple as:

get_page(”http://www.math.rs/”)

| filter(&response_t::is_valid)

| transform(⋯)

The only reason we can not write this is that the get_page function has to be
asynchronous, not to block the execution of the other parts of the system.

All the solutions we saw in the previous chapter require the program logic to be
split into two parts – one part that handles the logic before the asynchronous call,
and one part that comes after the asynchronous call has completed. We usually
need to perform several asynchronous calls which means that we need to split the
program logic into many smaller parts which are not its logical sub-routines. This
makes the software difficult to write, understand and maintain. We need better
abstractions than these.

3.1.1 Decoupling task creation from result handling

The lowest level of abstraction we want to create are the futures. A future represents
a handler for a value that is not yet known, but which will be known at some point
in the future. While this may sound confusing, the concept is quite simple. Consider
the following conversation between Alice and Bob:

Alice: What is the time?

(Bob looks at his watch)

Bob: It is 12:30.
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When Alice asks the question, she only knows the type of the answer – that
it will be a type that defines (at least) hours and minutes. We will call that type
time_t. Her request for the current time can be written as follows:

bob.get_time();

This way, she is asking Bob for the time, but the problem is that she is not
saving the result anywhere – she will never learn what is the current time. Can we
fix this by assigning it to a variable of type time_t?

time_t time = bob.get_time();

FunctionCaller

Figure 3.1: Returning a proper value from a function

If we want to be able to save the response like this, we first need to wait for Bob’s
reply. This means that Alice can not do anything until Bob answers the question.
This would be a bad idea since we can not know how much time it will take Bob
to reply, and even whether he will reply at all. The data flow for this case can be
seen in the Figure 3.1, where the caller is Alice, function is bob.get_time(), and the
resulting value is represented as a circle.

Since we do not want to block Alice indefinitely, we will have to define the time

variable not to be a normal value, but a future value:

future<time_t> time = bob.get_time();

Caller Function

Caller

Figure 3.2: Returning a future from function

This creates an empty container that can contain an instance of the time_t class.
When Bob prepares the answer, he can just put it into the container, and Alice will
be able to get it by calling time.get(). If the value is already present, the get
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member function will not block as it can return the value immediately. This will
allow Alice to continue working on other things, and still get Bob’s answer when
it arrives. The data flow in the Figure 3.2 shows that when the caller invokes the
function, it will not receive the resulting value, but an object that can later be used
to get it, when it becomes available.

3.1.2 Futures in C++

There are a few different classes for C++ that implement futures with slightly dif-
ferent features and semantics. The most notable ones are:

std::future<T> provides a minimal feature-set to allow easy implementation of
multi-threaded systems based on the fork-join idiom [Hal13];

boost::future<T> which is a drop-in replacement for the std::future<T>, but ex-
tends it with features that are planned for inclusion in the future revisions of
the C++ standard like future composition and chaining;

QFuture<T> from the Qt library [Čuk16b] which has similar features to the previous
ones, but with a syntax based on the signals and slots mechanism; and the

folly::Future<T> from the Facebook’s Folly library [Fug] which has special seman-
tics inspired by the Future class as implemented in the Scala programming
language [Ale13, Chapter 13].

Caller Function

Caller

! zzzz

Figure 3.3: Calling the get member function on a future

All of these classes have a get member function which returns a value contained in
the future class. The difference is in the behaviour of this function when the value is
not yet available. All but the folly::Future<T> block the execution of the caller until
the result becomes available (Figure 3.3), which is only useful in the fork-join pattern
where the caller creates a few asynchronous requests that should be executed in
parallel, and it needs the results of all of them to proceed with the execution. In our
example in which we call only bob.get_time() it makes the asynchronous execution
of the function useless and equivalent to not using the futures at all. In the case
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Caller Function

Continuation

Figure 3.4: Passing the value to the continuation function

of calling the get member function on an unfinished future, the folly::Future<T>

class will throw an exception, which is in accordance with the idea that asynchronous
functions should never block the caller, and forces the caller to implement the logic
of asynchronous execution in a proper way.

3.1.3 Proper way of handling futures

Having the caller blocked while it is waiting for the result defeats the purpose of the
asynchronous API. The main reason why we wanted the time-consuming operations
done asynchronously in the first place is to allow the main program to continue
working (processing user input, accepting new network connections, creating new
asynchronous requests, etc.) while it waits for the result. This means that designing
the system around the get member function of a future is a bad idea.

Instead of relying on the caller to get the value from a future manually, we only
need to provide it a way to define a continuation function for a specific asynchronous
operation. The continuation is a function that will be invoked when the result
becomes available [Cla99]. This way, we will never try to get the value from an
unfinished future, we will just define what should be done with the value once it
becomes available. In the following example, instead of Alice getting the result of
the asynchronous computation, she is just scheduling a continuation (print_time)
function which will print the result when Bob produces it:

bob.get_time() | continue_with(print_time);

The minimal interface a future should have consists of a constructor and a way
to chain a continuation to said future. This abstracts all of the previously shown
ways to implement asynchronous functions, and is also able to cover the synchronous
function calls:

Calls with callbacks can be represented as futures in a straight-forward way. Let
f be an (n + 1)-ary function, where the first n arguments are used for the

66



CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING

computation, and the last argument is the callback function. Then the unary
function g we get when we bind those first n arguments to specific values be-
haves like the future (note that the std::bind function has nothing to do with
monadic bind, it just implements partial function application in C++ [Čuk18,
Chapter 4]).

auto g = std::bind(f, arg1, arg2, ⋯, argn, _1);

This successfully separates the definition of an asynchronous operation with
its arguments (the constructor for this type of future), from the continuation
specification.

Signals and slots can also be represented in a simple manner. The signal sender
object, along with the signal provide the constructor for the future, while the
slot represents the continuation.

Message passing in actor systems needs a bit more effort to in order to represent
it as a future. Since we have already modelled callback functions as futures,
we can just model message replies with the callback functions.
An asynchronous operation that has a result (a returning value) in actor sys-
tems consists of one message that is sent from the caller to the callee, and then
the result is returned via another message sent back to the caller. The caller
will need to be able to create a unique identifier for every call it makes, and
the callee will need to return that identifier along with the calculated result.
We will show how to represent this in the call-callback approach which we
have shown is easy to represent using futures.

void f(auto arg1, auto arg2, ⋯, auto argn, auto callback)

{

auto request_id = generate_id();

global_callbacks[request_id] = callback;

callee.send_message(arg1, ⋯, argn, request_id);

}

void receive_message(auto value, auto request_id)

{

std::invoke(global_callbacks[request_id], value);

global_callbacks.remove(request_id);

}

The function f gets the arguments that will be passed to the actor that per-
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forms the asynchronous computation (callee) and the callback function that
should be called when the result becomes available. The callback is saved to
a structure that maps identifiers to callbacks. The callee will send beck the
result, which will invoke receive_message function. This will, in turn, invoke
the callback associated with the specified identifier.

Synchronous function calls can also be modelled with futures. If the n-ary func-
tion f is a synchronous one, we can easily create a callback-based function from
it.

void g(auto arg1, auto arg2, ⋯, auto argn, auto callback)

{

std::invoke(callback, f(arg1, arg2, ⋯, argn));

}

The fact that we have created an abstraction that works for both synchronous
and asynchronous computations will be quite useful later.

3.1.3.1 The continuation monad

Let us abstract out the specific definitions and implementations of various future-like
constructs we have seen and define the minimal interface they all should have. The
most basic operations we need to have are construction and continuation function
specification. These basic operations allow us to specify the asynchronous task that
needs to be performed, and to define the handler for the result of the asynchronous
operation.

Consider the following problem. Imagine that Alice wants to get the current
time, and if it is noon, she wants to ask Bob to lunch. Without asynchronous
execution, this would be trivial to implement:

if (bob.get_time() == 12h) {

if (bob.wants_to_eat()) {

⋯

}

}

Alice is asking Bob two questions and both of those need to be asynchronous for
the same reasons we saw in the previous section. Before asking the second question,
Alice first needs to get the result of the first one. The minimal interface for future
values we defined would allow us to solve this problem.
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bob.get_time() | continue_with([=] (auto time) {

if (time == 12h) {

bob.wants_to_eat() | continue_with([=] (auto time) {

⋯

});

}

});

The code is localised, but it is not readable, and Alice has no clean way to know
when the second asynchronous operation (bob.wants_to_eat) has been finished. The
only approach that Alice could take to be notified of when the asynchronous oper-
ations have been finished is to make the continuation functions explicitly notify her
which can not be implemented in a pure way.

Instead, we need to increase the requirements for the continue_with function.
Since Alice is effectively interested only in the result of the final operation, it would
be prudent to make the continue_with function to return a future value that will
contain the result of the continuation function passed to it. With this improvement,
the previous example could become much simpler, and Alice will be able to keep
track of which operations have been completed:

auto future_time = bob.get_time();

auto future_answer = future_time | continue_with([=] (auto time) {

if (time == 12h) {

return bob.wants_to_eat();

} else {

return { false };

}

});

future_answer | continue_with(⋯);

Let us analyze this a bit from the point of category theory. We have two functions
bob.get_time and bob.wants_to_eat that take ordinary values and return a future
value:

get_time : person → future〈time〉

wants_to_eat : person → future〈bool〉
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And we have a continue_with function that composes them into a single function
of type person → future〈bool〉.

We have a generic wrapper type parametrized on a single type (an arrow between
types) and we have a function that allows us to compose functions that take normal
values and return the wrapped values. If we add a constructor function that takes a
value and constructs a wrapped value out of it, we get the continuation monad [SS76]
where the continue_with function is the monadic bind (we will call it mbind from
now on) – the mbind function, as seen in Section 2.5.3. (it would be easy to show
that the monad laws are obeyed).

3.1.4 Wrapping futures into the continuation monad

Now that we have seen what the continuation monad is, let us see how the previously
mentioned implementations of the future concept fit into this definition.

All of them are wrapper types parametrized on the type of the value that will be
stored in the future object, and they all provide a constructor function that takes a
value and creates a future object containing that value.

3.1.4.1 std::future and boost::future

The std::future, as of writing, has no possibility of connecting a continuation
to it. If we wanted to implement the monadic bind function for it, we would
need to spin a separate thread which would do a blocking wait for the result
and invoke the continuation function when the result is ready. We will not im-
plement this because the std::future is planned to be extended in C++20 [ISO15]
to support the then member function in the same way that boost::future im-
plements it now.

The boost::future provides a mechanism for chaining continuations using the
then member function. The problem is that it expects a continuation function that
takes a future value, instead of an ordinary value which is needed for monadic bind.
This can be easily remedied by implementing our own mbind function that will wrap
the continuation that expects a normal value into a continuation suitable for the
then function.

template <typename Future, typename Continuation>

decltype(auto) mbind(Future&& future, Continuation cont)

{

return std::forward<Future>(future).then(
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[=] (auto f) {

return std::invoke(cont, f.get());

}

);

}

The reason why then requires a continuation function that accepts a future object
instead of a normal value is that the boost::future has an additional state beside
waiting for a value or having a value – it can also contain a pointer to exception if
an exception has occurred during the asynchronous operation. This means that the
boost::future does not really implement the continuation monad – it implements a
composition of the continuation monad and the exception monad (Section 2.5.3.3).
The mbind function we implemented assumes that no exceptions can happen to
model the continuation monad only.

3.1.4.2 QFuture

The QFuture is similar to the boost::future in that it models a composition of the
continuation monad and the exception monad. But it has a significantly different
syntax as it does not provide the then member function. In order to implement the
mbind function for the QFuture, we will need to use Qt’s signals and slots mechanism:

template <typename T, typename Continuation>

decltype(auto) mbind(const QFuture<T>& future, Continuation cont)

{

auto* watcher = new QFutureWatcher<T>();

QObject::connect(watcher, SIGNAL(finished()),

watcher, [=] {

std::invoke(watcher->future().result());

watcher->deleteLater();

}

⋯

}

This implementation demonstrates only how a continuation function could be
connected to a QFuture. Returning a future value containing the result of the con-
tinuation is significantly more involved (see Appendix C).
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3.1.4.3 folly::Future

The folly::Future class has the cleanest design of all. It is also a composition of the
continuation and exception monads (in Folly nomenclature called Try monad), but
unlike boost::future and QFuture this is communicated clearly through the then

member function API. Instead of having a continuation function accept an instance
of a future object, in folly::Future, the continuation function accepts an instances
of the Try monad.

If we accept that folly::Future is a composition of the continuation and excep-
tion monads with the error type defined as exception pointer, then the then member
function is a proper implementation of monadic bind, and the makeFuture function
is a proper constructor function because it can create a Future<T> object from an
instance of Try<T>.

3.1.4.4 Transforming futures

We have seen that future values can be modeled as monads. This means that we
can use all functions that we can define over a generic monad interface, on future
values. If we have the mbind function and a future value constructor, we can easily
implement functions like transform and join.

The transform function is easy to implement – we just need to compose the
future constructor and the transformation function and pass that as the continuation
function to mbind:

auto transform(F future, T tansformation)

{

return mbind(future, [=] (auto value) {

return make_ready_future(

std::invoke(transformation, value));

});

}

As we have seen in Section 2.5.3, the mbind function does exactly what transform
does, but it flattens the result in the end. This implementation of transform relies
on that fact and returns the result of transformation wrapped inside another future
object which mbind will unwrap.

Futures also share a few other features with the monads we have seen in the
previous chapter – features that are not common to all monads. Since a future can
either get a value at some point, or never get a value at all, we can also implement a
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filter function on it, similar to the partiality monad and ranges, where the filtered
future would get a value if the source future gets a value that satisfies a predicate,
or never get a value otherwise.

3.2 Reactive streams

It is interesting to see that many transformations defined on ranges can also be
applied to futures. If we wanted to get a square of the given future value, we could
do it simply by calling transform on it:

future<int> f = answer_ultimate_question_of_life()

| transform(square);

Instead of f being a future that will contain 42 (the result that is returned by the
answer_ultimate_question_of_life function), it will be a future that will contain
1764 (422). While, theoretically, we can also apply sort, group, etc. to a future, it
does not make much sense, since a future contains at most one value.

What happens if we remove the limitation that the future can return only one
value? Many processes in the real-world do not generate only a single value, but a
series of values. Not a series in the sense that we get a collection of items at some
point in the future, but in the sense that we get a new value from time to time.

Caller Function

Continuation

Continuation

Continuation

Caller

...
Figure 3.5: Stream of values

Examples of this include mouse movement where we get a new screen coordinate
(with some additional data) every time the user moves the mouse cursor, keyboard
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events where we get which key is pressed, client connections to a web service where
we get some information about a client whenever a new one connects to our service,
and similar.

This can not be modelled by futures, but is quite similar in nature. Just think
of it as a future that returns a value and another future of the same type.

In order for our previously defined structures to support sending multiple values,
the only thing that needs changing is to allow the continuation function (the function
passed to mbind) to be called multiple times. We are not going to redefine the
structures as we haven’t encoded the limit of how many times the continuation can
be invoked, but we will use a different nomenclature for futures that can generate
multiple values – we are going to refer to them as reactive streams [WH00].

3.2.1 Reactive streams as push iterators

Before we move on to how reactive streams can help us implement asynchronous
software systems, let us first cover how they relate to proxy iterators and ranges we
have seen in the previous chapter.

Reactive streams are sequences just like ranges are, and they can be iterated
over. Since we do not know in advance how many values a stream will emit (how
many times the continuation function will be invoked), we can not know where
the end of a stream is in advance. We can not know whether the stream has
an end or not. This means that the reactive streams behave mostly like input
ranges.

We based the input ranges on a proxy-iterator and sentinel pair, where the
iterator can be used to access a value (consuming it in the process). The algorithms
that operate on input ranges would be able to traverse the range and read the values
one by one until enough elements have been found, or the end of a range has been
reached.

If we were to allow the same algorithms to access reactive streams, we would
encounter a big problem. Namely, the algorithms that operate on ranges request
a value from a range which, in turn, requests the value from the range it proxies
for, and this process cascades until a proper (non-proxied) value is found. If an
algorithm tried to access a value from a reactive stream, this would have the same
effect as calling the get member function on a future – it would either block the
system until the future arrives, or it would throw an exception. This method of
operation is usually called the pull method because we are pulling values from a
sequence.
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With reactive streams, we need to take a different approach. We can still have
proxy iterators, but those iterators will not be iterators in traditional C++ sense –
they can not be dereferenced – they can only be bound to a continuation function.
This way, we can have the original stream of values, and the proxy iterators will
just need to process the values they receive and emit the results. This is usually
referred to as the push method because when a value arrives, it is pushed through
all the transformations up to the consumer.

3.2.1.1 Source streams

The streams that only emit values are usually called source streams. These streams
usually serve to handle any kind of input – they introduce values from external
entities into the system (like user input, or messages from clients in a web service).
As far as our software system is concerned, it is as if the source stream generates
those values – we can not know anything about the actual source of the value unless
this information is encoded in the value itself.

Since source streams only emit values, we only need to establish a way to connect
a continuation function to them. A generic interface that a source stream needs to
implement is as follows:

template <typename ValueType>

class source_stream {

public:

using value_type = ValueType; 1

template <typename Cont>

void set_continuation(Cont cont) 2

{

m_continuation = std::move(cont);

}

⋯

protected:

std::function<void(ValueType&&)> m_continuation;

};

Each stream emits only values of a single type. In order to allow easier meta-
programming, this type will be exported as the value_type nested type defini-
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tion 1 , just like it is done for normal C++ standard library collections. When
set_continuation is called, it will register the continuation function 2 that will be
notified whenever a new value appears.

It is important to note that streams do not need to inherit from the above type
because we have no need for dynamic polymorphism – they just need to provide the
same interface.

3.2.1.2 Stream sinks

On the other side of the spectre to source streams lie stream sinks. Sinks just receive
values, but they do not emit any values whatsoever. Since sinks do not emit values,
we do not need to provide a way to connect a continuation to them – they just need
to be able to accept values. This means that any callable satisfies the requirements
to be a sink if it can be called with the value type provided to the sink.

template <typename Sender,

typename Function,

typename InputType = typename Sender::value_type>

class sink_connection {

public:

sink_connection(Sender&& sender, Function function)

: m_sender(std::move(sender))

, m_function(function)

{

m_sender.set_continuation( When the sink_connection object

[this](InputType&& value) is constructed, it will register

{ itself as the continuation

process_value( function of the source stream

std::move(value)); provided to the constructor

}

);

}

void process_value(ValueType&& value) const

{

std::invoke(m_function, When we get a message, we just

std::move(value)); pass it on to the sink function

}
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private:

Sender m_sender;

Function m_function;

};

In order to support creating connections to sinks using the range-like pipe syntax,
we will need to provide some helper types and functions similar to what we had in
Section 2.4.6. The difference here is that the object we want to define the pipe
operator on is on the right-hand side of the operator:

stream | sink(print_value);

We need to create a helper function sink which just creates a dummy object
to hold the function we want to use as the sink (print_value) and we need to
implement a non-member pipe operator which accepts this dummy object as its
second argument:

template <typename F>

class sink_helper {

F function;

};

template <typename F>

decltype(auto) sink(F&& f)

{

return sink_helper<F>{std::forward<F>(f)};

}

template <typename F,

typename Stream>

decltype(auto) operator| (Stream&& stream, sink_helper<F>&& sink)

{

return sink_connection<Stream, F>(

std::forward<Stream>(stream),

sink.function

);

}
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Figure 3.6: The mouse_cursor object (rectangle with rounded corners) follows the
mouse cursor

3.2.1.3 Example source and sink

We are going to use the example of transforming the coordinates that get generated
while the user is moving the mouse cursor, in order to explain reactive streams
in a visual way. We will call the source stream that emits the mouse coordinates
mouse_position. Initially, we can just connect the mouse position stream directly
to a marker that will show the current position at all times like this:

auto mouse_cursor_sink = sink([] (point_t position) {

mouse_cursor->move_to(position.x, position.y)

});

mouse_position | mouse_cursor_sink;

This will create a sink to the function that moves the object called mouse_cursor

to the specified coordinates and connect the mouse_position stream to it. Whenever
the user moves the mouse, the mouse_cursor object will be moved. The window will
look like in the Figure 3.6.

3.2.2 Map, or transform

Now that we have sources and sinks defined, we can implement stream transforma-
tions that will allow us to treat streams like they were ordinary input ranges.

First, let’s implement the transform reactive stream modifier. The transform

modifier needs to be able to listen to new values from the stream it transforms, and
for each new value it should transform it with the provided transformation function
and emit the result.

78



CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING

template <

typename Sender,

typename Transformation,

typename InputValueType = The transformation proxy

typename Sender::value_type, iterator emits values of

typename ValueType = the result type of the

decltype(std::declval<Transformation>()( transformation function

std::declval<InputValueType>()))> invoked on an input value

class transform_impl {

public:

using value_type = ValueType;

transform_impl(Sender&& sender, Transformation transformation)

: m_sender(std::move(sender))

, m_transformation(std::move(transformation))

{

}

template <typename Cont>

void set_continuation(Cont continuation)

{

m_continuation = continuation; When we get a stream that

m_sender.set_continuation( wants to listen to our

[this](InputValueType&& value) { messages, we connect to

process_value( our source stream

std::move(value));

});

}

void process_value(InputValueType&& value) const

{

std::invoke(m_continuation,

std::invoke(m_transformation, Sending the transformed

std::move(value))); value to the continuation

}
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private:

Sender m_sender;

Transformation m_transformation;

std::function<void(MessageType&&)> m_continuation;

};

The constructor only saves the sender and the transformation functions. When
we connect a continuation (another proxy iterator or a sink) to it, it will save the
continuation and it will start listening to the source steam. We will assume that
we have also implemented the necessary helper classes and functions needed to use
transform_impl with the pipe syntax since it is not significantly different than the
implementation we had for sinks.

Now that we have a way to transform the mouse stream, we can create something
more useful than an object that follows the mouse. For example, we can set the y

coordinate to be a fixed number, and pass the events to the top_ruler object.

auto flatline_x = [](const point_t &point) {

return point_t(point.x(), 10);

};

auto top_ruler_sink = sink([] (point_t position) {

top_ruler->move_to(position.x, position.y)

});

mouse_position | transform(flatline_x) | top_ruler_sink;

Now, we get a new object whose position is a projection of the mouse coordinate
on the top of the window like in the Figure 3.7.

3.2.3 Sharing a stream

But now we have a problem. Only one object is able to use the mouse_position

stream. We need to be able to share a single stream between multiple listeners. The
current design does not allow this for two reasons:

• each stream iterator we created allows only one continuation function to be
defined; and

• we designed each proxy iterator to be a single owner of its source stream.
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Figure 3.7: Top ruler projection

We can solve this problem in several different ways. We could reimplement all
the previous stream iterators to store a list of continuation functions instead of
limiting the number of continuations to be one. If we took that approach, we would
also need to allow shared stream ownership – instead of stream iterators owning the
source stream, they would need to allow shared ownership where the source stream
is destroyed only if all stream iterators that are connected to it are destroyed.

The problem with this solution is that it would induce performance (atomic
reference counting for shared ownership) and memory overhead (book-keeping data
for a list of functions) even in the cases where there are no shared streams.

The alternative is just to create a special type of a stream – a stream that can be
shared. Only shared streams would need to do reference counting and allow multiple
listeners, which will have the performance overhead only in the places where sharing
is needed.

This would allow us to use the same source stream of mouse coordinates to define
positions of several objects – the mouse cursor indicator and its projections on the
top and left edge of the window (Figure 3.8):

auto shared_mouse = shared_stream(mouse_position);

shared_mouse | mouse_cursor_sink;

shared_mouse | transform(flatline_x) | top_ruler_sink;

shared_mouse | transform(flatline_y) | left_ruler_sink;

3.2.4 Stateful function objects

Now a question arises. Is it safe to pass any callable to transform? If we are allowed
to pass anything we want, we can also pass callables that have mutable state. Say, an
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Figure 3.8: Both rulers projection, and the cursor

object that will try to move towards the mouse cursor, but slowly, without jumping
(Figure 3.9). For this, it will need to store its previous position and use it when
calculating the new one.

class inert_object {

public:

inert_object()

{

}

point_t operator() (const point_t &mouse_position)

{

current_position.x = current_position.x * .99

+ mouse_position.x * .01;

current_position.y = current_position.y * .99

+ mouse_position.y * .01;

return current_position;

}

private:

point_t current_position;

};

Would the following code be safe, or are we required to either pass only pure
functions since we are working in a concurrent environment, or use a mutex to ensure
all mutations performed by the transformation callable are atomic?
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Figure 3.9: Rectangle that moves slowly towards the mouse

mouse_position | transform(inert_object()) | inert_marker_sink;

Usually, having mutable state in a concurrent system is ill-advised. It is one of
the reasons why the pure functional programming languages like Haskell have been
getting traction in recent years. There can be no data races if all data is immutable
(persistent).

In the above code example, we have implemented a function object that has a
mutable state, without mutexes or any synchronization at all. And we are using
it to process the values from an incoming reactive stream. It is obvious that, in
general, having mutable state can lead to concurrency problems. But the question
is whether all mutable state is bad.

Having mutable state is a problem when several entities try to access and modify
the same value at the same time – concurrently. Mutexes are used to force concurrent
processes to wait for each other so that only one process can update a certain value
at one point in time. But, if said value is not shared between multiple concurrent
processes, then it can not be a problem. Mutable state is only problematic when
it is shared (Figure 3.10). Proper design of reactive stream flows allows defining
stream transformations that do not share any data.

It is worth noting that by passing inert_object() to the transform function, we
are creating a new instance of that object, which none of other range iterators can
access – it has just one owner, and only one process can access it.

3.2.5 Stream filtering

Another useful stream transformation is filtering. Sometimes we want to ignore
some type of events. For example, a button in the UI usually does not care about
mouse movements outside of its area.
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SharedNot shared

Immutable

Mutable

Figure 3.10: Mutable versus immutable state

Unlike transform which emitted one transformed value for each value it received,
filter emits the values it received unmodified, but only if the value satisfies the
given predicate:

template <typename Sender,

typename Predicate,

typename ValueType = Filtering emits the same type

typename Sender::value_type> of values it receives

class filter_impl {

public:

using value_type = ValueType;

⋯

void process_value(ValueType&& value) const

{

if (std::invoke(m_predicate, value)) { Emits the value only

std::invoke(m_continuation, if it satisfies the

(std::move(value)); predicate

}

}

private:

Sender m_sender;

Predicate m_predicate;

std::function<void(ValueType&&)> m_continuation;

};
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Figure 3.11: The cross-hair is snapping to guide-lines

Filtering can be useful in the previous example if we wanted to make the mouse
cursor snap to positions where the y coordinate is divisible by 100.

mouse_position | filter([] (point_t point) { return point.y % 100 == 0; })

| snapping_marker_sink;

This has the effect of snapping to guide-lines. In this case, the guide-lines are
fixed to every 100 pixels, and are horizontal only (Figure 3.11).

3.2.6 Generating new stream events

There is a bug in the previous example. As can be seen in the Figure 3.11, one
guide-line (at 300 pixels) has been skipped. This can happen because the mouse
movement is not continuous, and there is a chance that while the mouse moves across
the line, the mouse event for the exact y = 300 will not be emitted. The faster the
mouse cursor moves, the greater probability that it will skip the guide-line.

In order to remedy this, we need to make the stream of coordinates contin-
uous. In this case, since the coordinates are integers, continuous means that we
want to create a stream in which the difference in coordinates for two consecutive
events is not greater than 1 pixel per axis. The simplest way to achieve this is
to remember the previous mouse coordinate, and generate the Manhattan path to
the new one.

class more_precision {

public:

using value_type = point_t;
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void process_value(point_t&& new_point)

{

// Going left (or right) until we reach new_point.x()

int stepX = (m_previous_point.x() < new_point.x()) ? 1 : -1;

for (int i = (int)m_previous_point.x();

i != (int)new_point.x(); i += stepX) {

m_continuation(point_t(i, m_previous_point.y()));

}

// Going down (or up) until we reach new_point.y()

int stepY = (m_previous_point.y() < new_point.y()) ? 1 : -1;

for (int i = (int)m_previous_point.y();

i != (int)new_point.y(); i += stepY) {

m_continuation(point_t(new_point.x(), i));

}

m_previous_point = new_point;

}

⋯

private:

std::function<void(point_t&&)> m_continuation;

point_t m_previous_point;

};

Unlike the previous stream iterators, the more_precision iterator is a highly
specialized one – it can only transform streams of coordinates and nothing else. For
each new coordinate it receives, it will generate all the mouse positions between the
previously saved position and the new one.

In order to fix the bug from the previous program, we only need to add a single
stream transformation (Figure 3.12):

mouse_position | more_precision()

| filter([] (point_t point) { return point.y % 100 == 0; })

| snapping_marker_sink;
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Figure 3.12: The cross-hair is snapping to guide-lines, fixed

3.2.7 Reactive streams as a monad

We have seen several examples of how a reactive stream can be transformed
as if it was an input range. By defining the transform stream modifier, we
have shown that reactive streams are functors. In order to show that reactive
streams are also monads, we will have to define two functions more – a func-
tion that constructs a reactive stream from a given value, and a function that
flattens out nested streams.

The former is easy, and we can even improve on the requirement a bit. Instead
of creating a function that converts a single value to a reactive stream, we will
implement a function that can convert a sequence of any number of values into a
stream.

template <typename T>

class values {

public:

using value_type = T;

explicit values(std::initializer_list<T> values)

: m_values(values)

{

}

template <typename Cont>

void set_continuation(Cont continuation)

{

for (auto&& value: m_values) {
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std::invoke(continuation, std::move(value));

}

m_values.clear();

}

private:

std::vector<T> m_values;

};

The values type implements a source stream that emits its values as soon as a
continuation is registered. It does not need to store the continuation at all because
it is not needed any more after the values are sent, and it can destroy all the stored
values as soon as they are emitted.

Implementing the join operation that flattens out a stream of streams is a bit
more intricate. It receives a stream of streams and it needs to listen to all of them
and pass on the messages it receives. It also needs to become the owner of all streams
it receives in order for them not to get destroyed.

template <

typename Sender,

typename NestedStreamType = typename Sender::value_type,

typename ValueType = typename NestedStreamType::value_type>

class join_impl {

public:

using value_type = ValueType;

void process_value(NestedStreamType&& source)

{

m_sources.emplace_back(std::move(source)); 1

m_sources.back().set_continuation(m_continuation);

}

⋯

private:

Sender m_sender;

std::function<void(ValueType&&)> m_continuation;

std::list<NestedStreamType> m_sources;

};
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The join transformation will receive new streams as values to process. Each
stream an instance of join_imple receives will be appended to the m_sources list to
prolong that stream’s lifetime, and it will set its continuation function to also be
the continuation of all received streams 1 .

With join and transform, we can easily create the monadic bind transformation
for reactive streams.

3.2.8 Data lifetime

An important thing to note regarding the design of reactive streams presented in
this dissertation is that each node in the stream connects to its parent only when
there is a node registered to listen for the values coming out of said node. The only
exceptions are the sink nodes as they connect to their parent immediately.

This means that, while the node connection operator (the pipe operator) is left-
associative, the connections (continuation function registration) happen from right
to left when a sink is added to the pipeline. Until a sink is registered, no connections
are performed. After the whole pipeline is connected, each value that a source node
emits will be pushed through the nodes from left to right until it reaches the sink.

A side-effect of this design is that the source nodes must be implemented in such
a way that they are not allowed to emit any values until their continuation function
is set. This was demonstrated in the previously implemented service source node
which started accepting client connections only after its continuation function has
been set.

If a source node is not implemented correctly, and it tries to emit a value before
it gets connected to a child node, the system will crash. While this might seem like
a downside of the proposed design of reactive streams, it follows the C++ mantra of
exposing the errors in the software system design as early as possible – in this case
as soon as the first value is emitted.

A properly designed software system has to define the lifetime of a value precisely.
As far as the proposed design of reactive streams is concerned, the value should
be constructed by the source node, moved through different transformations and
consumed and destructed by the sink node. It should not be allowed for a value
to get lost somewhere in the pipeline unless it is explicitly ignored by a node that
chooses not to pass it on as it is the case with the filter transformation.

This design allows for efficient value passing through the transformation pipeline
without the need for garbage collection and unnecessary copying of values which are
often present in other functional reactive systems.
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3.2.9 Data-flow software design

In order to write functional reactive systems, one must start to think about them as
data-flows [Bai+13]. More specifically, to analyze what is the input to the system,
what is the input and output of different system components, and how the data
should be transformed between them.

The input streams represent the data that is coming into the system from the
outside world, while receivers represent either internal system components that react
to the requests, or the data that is emitted back to the outside world.

The transformations that happen in-between, can be either simple ones described
in the previous sections, or complete system components that receive some message
types, and react to them by emitting different ones.

Let us demonstrate this with an example of a simple bookmarking web service
that listens for connections on several different ports at the same time. The web
service will listen for JSON-encoded messages containing the bookmark information,
and will send the client a response whether the bookmark is valid or not after writing
it to the standard output.

When designing a system like this, we first need to choose what are the inputs.
In this case, it would be the easiest to say that input is a reactive stream of string
messages that are coming from the client. For that, we need to implement a source
stream that accepts client connections and emits all messages that the client sends.
The service can be implemented like this:

class service {

public:

using value_type = std::string;

explicit service(

boost::asio::io_service& service,

unsigned short port = 42042)

: m_acceptor(service, The service listens

tcp::endpoint(tcp::v4(), port)) to the specified port

, m_socket(service) (by default 42042)

{

}

service(const service& other) = delete;

service(service&& other) = default;
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template <typename Cont>

void set_continuation(Cont cont) The service starts accepting

{ connections only when the

m_continuation = cont; continuation that processes

do_accept(); the incoming messages is defined

}

private:

void do_accept()

{

m_acceptor.async_accept(

m_socket,

[this](const error_code& error) {

if (!error) {

make_shared_session(

std::move(m_socket),

m_continuation

)->start();

} else {

std::cerr << error.message() << std::endl;

}

do_accept(); Accepting the next client

});

}

tcp::acceptor m_acceptor;

tcp::socket m_socket;

std::function<void(std::string&&)> m_continuation;

};

The service class implements the interface we required from all source streams
to implement. Since it listens only to a single port, we will have to create a several
instances if we want it to listen to several different ports. We have already created
all the functions we need for this.
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auto data_flow =

values { 42042, 42043, 42044 } The ports the service listens on

| transform([&] (auto port) { Gives us three streams

return service(event_loop, port) of messages - one for each

}) specified port

| join() Merges the messages from all service instances

into one single stream

⋯

Now that we have a merged stream of messages coming from the clients connected
to the service, we can consider what transformations on it we need to perform – what
the data flow should look like:

• First, we need to normalize the messages – to perform the initial cleanup. We
can trim the whitespace from the messages, since it carries no information,
and skip all the empty messages;

• Next, we need to parse the JSON data;
• And then to read the bookmark information from it;
• For each parsed bookmark, we write it to the standard output.

This is the initial data flow. We have a source, and several transformations to
perform on the messages that source emits.

auto sink_to_cout = sink([] (auto&& value) {

std::cout << value << std::endl;

});

auto data_flow =

⋯

| transform(trim) Normalize the input

| filter(std::not_fn(&std::string::empty)) messages

| transform(parse_json)

| transform(json_to_bookmark)

| sink_to_cout;
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There is a problem with the previously defined flow. Parsing JSON-formatted
strings and extracting the data from a parsed JSON object can fail – the input
string might not be a valid JSON, or the JSON object might not contain nec-
essary bookmark data. If we allowed these functions to throw exceptions when
they encounter an error, this would stop our program because the exception
mechanism in C++ can not work with reactive data flows. The exception mech-
anism can only unwind the function call stack and search for a function that
has the try-catch block to catch the exception. In the data flow, every trans-
formation is a separate function, and there is no traditional function call stack
which means that one function in the flow can not catch an exception thrown
by another.

Instead of using exceptions, the parse_json and json_to_bookmark functions will
need to do the error handling in a functional way – they need to return the error as
the result of the function. We can use expected<T> for this. This means that we no
longer can compose two ordinary transforms since the second transformation func-
tion expects a JSON object, and we are passing an instance of expected<json>. We
can fix this simply by replacing the json_to_bookmark function with its monadically-
bound variant:

⋯

| transform(parse_json)

| transform(

[] (const auto& optional_json) {

return optional_json | mbind(json_to_bookmark)

}

)

| sink_to_cout;

This composition of transformations will return an empty optional value if ei-
ther parsing or data extraction failed. Otherwise, it will return an instance of the
bookmark object. It behaves just like the usual C++ exceptions mechanism, but it
works with reactive streams.

The only piece that is missing is replying to the client. The problem is that with
the current design we are not able to reply to the client because the data flow does
not know that the client even exists. The source stream emits messages without any
information about who sent the message – it just contains the information about
the message itself.

93



CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING

Instead of the service object sending messages containing only strings, it needs
to send messages that contain strings, and information about the client we can use
when replying:

template <typename MessageType>

struct with_client {

MessageType value;

tcp::socket* socket;

void reply(const std::string& message) const

{

auto sptr = std::make_shared<std::string>(message);

boost::asio::async_write(

*socket,

boost::asio::buffer(*sptr, sptr->length()),

[sptr](auto&&, auto&&) {

// We don't care about when the message

// is sent to the client

});

}

};

The with_client is a generic type parametrized on one template parameter. We
can easily define the transform function for it (it would transform the value while
keeping the socket intact). This means that with_client is a functor, and we can
leverage that in our web service.

We can change the service class to emit with_client<std::string> instances
instead of plain strings. The transformations that we previously had in our data
flow do not need to change – we still need to process the messages in the same
way we did before. We only need to be able to make the previous data flow work
with strings wrapped in the with_client functor. As explained in Section 2.5.2, if
we have a function that works on a type, and we need a function that works on a
wrapped type, we just need to lift it.

In this case, instead of lifting all functions one by one, we can just make transform
and filter do it for us automatically. We can replace these functions with our own
implementations:

auto transform = [] (auto transformation) {

return ::transform(
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[=] (auto value_with_client) {

return with_client {

std::invoke(transformation,

value_with_client.value),

value_with_client.client

};

}

);

};

auto filter = [] (auto transformation) {

return ::filter(

[=] (auto value_with_client) {

return std::invoke(transformation,

value_with_client.value);

}

);

};

This will allow us to keep the same data flow we had earlier, without a single line
of the code changed in it, while allowing us to pass some extra information through
the flow that is only needed in the sink:

auto data_flow =

values { 42042, 42043, 42044 }

| transform([&] (auto port) {

return service(event_loop, port)

})

| join()

| transform(trim)

| filter(std::not_fn(&std::string::empty))

| transform(json_parse)

| transform([] (const auto& optional_json) {

return optional_json | mbind(json_to_bookmark)

})
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| sink([](const auto& bookmark_with_client) {

const auto exp_bookmark = bookmark_with_client.value;

if (!exp_bookmark) {

message.reply(”ERROR: Request not understood\n”);

return;

}

message.reply(”OK: Bookmark accepted”);

});

This shows the power of abstraction that reactive streams have – we can think
about the data flow for our software system, and model that flow using stream
transformations. It gives us a system that is easy to reason about as the data flow
diagram is directly mapped to the code, and it is easy to extend either by adding
new transformations, or by composing the reactive stream monad with other monads
like expected<T> or other.

96



4 Imperative reactive
programming
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4.1 Introduction

We saw the complexity that arises from the proper handling of asynchronous tasks
in Chapter 2. We have demonstrated how asynchronous execution can be handled in
the functional style to look like ordinary sequence processing in Chapter 3. But this
is not enough because most C++ developers are not accustomed to thinking about
software systems in terms of data flows, but rather in terms of algorithm steps – i.e.
in the imperative style.

The purpose of activity diagrams is to graphically represent these algorithm steps
– the algorithm itself, and organization of the subroutines in it. With asynchronous
tasks and the inversion of control (IoC), we get code that has almost nothing in
common with the corresponding diagram. The diagram that corresponds to the
actual implementation becomes more like the activity diagram in the Figure 4.1,
which represents only a part of the whole process).

Figure 4.1: User authentication algorithm with IoC

Our aim is to make the necessary abstractions that will allow the programmer
to write the code in an imperative manner – code that will implement an algorithm
with a “1:1” correspondence between the steps in the algorithm’s design and tasks
in the actual code. The compiler should then be able to do all the heavy lifting
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for us, and generate the equivalent IoC code behind the scenes. Taking the original
problem, we want to be able to write something similar to the following, and get a
proper asynchronous implementation:

function login:

username = get_username(username)

new_user = check_if_user_exists(username)

if new_user:

password = get_password()

initialize_account(username, password)

else:

do:

password = get_password()

while (!check_if_user(username, password))

initialize_environment()

if new_user:

show_welcome_message()

In a nutshell, we want to create the following:

• A single abstraction on top of different task types (both synchronous and
asynchronous) that will be able to invoke a task and know when it has finished;

• Flow control structures that will use this abstraction to emulate the flow con-
trol structures of the host programming language, along with a few additional
ones that are convenient for asynchronous programming;

• An embedded DSL (Domain-Specific Language) whose expressiveness on asyn-
chronous code is comparable to that of the host language on regular code, but
with lowered programmer-facing complexity.

Additionally, we want our solution:

• To make it easier to reason about asynchronous programs, and to make them
easier to test and validate;

• To be efficient – to have no performance penalties at runtime.
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4.2 Flow control structures

Just as the functional reactive programming approach to dealing with asynchrony
presented in Chapter 3 was based on the continuation monad and its more relaxed
variant – reactive streams, so the proposed imperative reactive programming (IRP)
solution will be.

In the FRP approach, we used continuations and reactive streams to pass values
from one stream or a stream transformation, to the next transformation. When a
value appears in the source stream, it is then pushed via the continuation function
to whichever object listens to values from that source stream.

In the imperative reactive programming approach, we can use continuations to
build more complex chains of tasks and different kinds of flow control structures.

Instead of values being passed on from one asynchronous function to another
directly (or, in the case of FRP, streams which generalize over asynchronous func-
tions), the value returned by an asynchronous task will be handled and processed
by task’s executor which will be able to use the returned value by itself, or pass it
on to another function.

This way we can build the flow control structures analogous to those provided by
the programming language, but which can handle asynchronous execution without
an explicit IoC. We can also build more advanced flow control structures that are
more specialized for asynchronous execution. We will refer to the mechanisms that
perform the task execution and result handling as schedulers. We will define those
in a similar manner to ”Lambda: The Ultimate Imperative” [SS76].

It is important to note that the schedulers can also be seen as tasks since they ful-
fil all the aforementioned requirements. This feature will allow us to nest schedulers
into each other [Čuk13; Čuk14].

4.2.1 Serial execution scheduler

The simplest form of execution is the serial execution. In essence, it is analogous to a
series of commands written one after another. With an exception that it implements
the short-circuit logic like the conjunction operator (&&) in C++ (and other C-like
languages) – it stops execution after the first task that has failed. In that case, it is
considered that the scheduler task also failed. Otherwise, the task has succeeded.

Let us demonstrate this using the famous coffee preparing algorithm. It compares
the synchronous (blocking) C++ implementation with the equivalent asynchronous
(non-blocking) implementation using the imperative reactive programming (IRP for
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short) approach. The only difference, apart from a bit changed syntax, is that
the ordinary C++ version needs to employ exception handling in order to stop the
execution if a task fails:

C++ C++/IRP

// Definition // Definition

void make_coffee() auto make_coffee = serial_

{ (

try {

fill_the_pot_with_water(); fill_the_pot_with_water(),

turn_on_the_cooker(); turn_on_the_cooker(),

place_the_pot_on_the_cooker(); place_the_pot_on_the_cooker(),

wait_for_the_water_to_boil(); wait_for_the_water_to_boil(),

put_coffee_in_the_water(); put_coffee_in_the_water(),

mix_a_bit(); mix_a_bit(),

pour_into_the_cup(); pour_into_the_cup()

} catch (...) {}

} )

// Invocation // Invocation

make_coffee(); make_coffee();

Implementing this behaviour is straight-forward. The scheduler needs to execute
the first task in the list, and schedule the continuation function for that task to
execute the next task, and so on. More precisely, it needs to perform the following
steps:

1. If the list is empty, returns success (>)
2. Execute the head of the list
3. When it finishes:

• if the task failed: end execution and return failure (⊥)
• if the task succeeded: recursively call the algorithm for the tail of the list

– executing the rest of the provided tasks

4.2.2 Logic operator schedulers

The serial execution scheduler behaves like logical conjunction, so we can introduce
an alias and_ and conjunction operator (&&) for it, for convenience when used in
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logical expressions. Disjunction can be similarly implemented. The only difference
is that instead of exiting when a task fails, it would exit when the first task succeeds:

1. If the list is empty, returns failure (⊥)
2. Execute the head of the list
3. When it finishes:

• if the task succeeded: end execution and return success (>)
• if the task failed: recursively call the algorithm for the tail of the list

Apart from conjunction and disjunction, to provide a full expressiveness of propo-
sitional logic, we need to add the schedulers which correspond to the constant logi-
cal operators (that always return success, or failure) and negation (which returns
success iff the task passed to it failed). All these schedulers get one task as argu-
ment, which is always executed.

true_

1. Execute the task
2. When it finishes:

• return success

(>)

false_

1. Execute the task
2. When it finishes:

• return failure

(⊥)

not_

1. Execute the task
2. When it finishes:

• if the task suc-
ceeded:
return failure

(⊥)
• if the task failed:

return success

(>)

Figure 4.2: Logical constants and negation

These can be particularly useful when reporting warnings and errors to the user,
or when we want to ignore an error that occurred in a specific task. Let us get back
to the coffee preparing example. Imagine that the task turn_on_the_cooker failed –
it would be good if we could show an error message to the user, since we are unable
to continue after that error:

fill_the_pot_with_water(),

or_(turn_on_the_cooker(), false_(show_message(”No electricity”))),

place_the_pot_on_the_cooker()

The show_message task will succeed, but we will ignore its result and pretend
that it has failed because the false_ scheduler always returns failure (⊥).
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If we make a dedicated task die_ that shows an error message and always returns
failure (⊥) (a composition of false_ and show_message), and use the disjunction
operator (||) instead of or_, we can even simulate constructs from some other pop-
ular imperative programming languages like Perl or PHP:

fill_the_pot_with_water(),

turn_on_the_cooker() || die_(”No electricity”),

place_the_pot_on_the_cooker()

On the other hand, if we do not have a spoon, and the task mix_a_bit fails, we
do not need to kill the whole process. We can just specify that we want to ignore
that task by wrapping it inside the true_ scheduler:

put_coffee_in_the_water(),

true_(mix_a_bit()),

pour_into_the_cup()

Modelling true_ and false_ to be functions and to accept a task they need
to execute before returning success (>) and failure (⊥) respectively gives us
greater expressiveness compared to modelling them as simple constants. If the
need for proper constants arises at some point, they are easily implemented by
passing an empty serial_ scheduler to the already defined true_ and false_ sched-
ulers.

4.2.3 Branching scheduler

By using serial_ and or_ we can only simulate the one-branch if statements
(those that do not have both then and else branches). In order to create a full
replacement, we need to create a new scheduler that receives three subtasks – one
which will be used as the predicate, one for the consequent, and one for the al-
ternative branch:

if_(predicate)

(

consequent

).else_(

alternative

)
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The behaviour of if_ can be written as follows:

1. Execute the predicate task
2. When it finishes:

• if the task succeeded: Execute the consequent task
• if the task failed: Execute the alternative task. If it does not exist,

return failure (⊥);
• When any of above two finishes, end execution and return the status it

returned.

This is the same behaviour of if-then-else statements in functional programming
languages, or the ternary operator (?:) from the C++ language.

Looking at our starting example of user authentication (Figure 2.3), we have
different code paths handling a new user compared to an already existing one. It
can be implemented like so:

if_(new_user) (

// Creating a new user

password = get_password(),

initialize_account(username, password)

).else_(

// Authenticating an existing user

⋯

)

4.2.4 Loop schedulers

While and do-while loops can also be easily defined. The while_ loop scheduler gets
a list of tasks – the first is used as the predicate, and the rest are serially executed. If
any task, except for the predicate, fails, the loop ends with the failure (⊥) status.
If the predicate fails, the status of the loop is reported as success (>).

The do-while (do_) is essentially the same, except that the condition is the last
task in the list, and thus the last to be executed. Again, the loop returns success

(>) iff the condition task fails.
By allowing the tasks to stop the loop, we are giving the user a mechanism

similar to that of the break keyword of C++.
In the example of user authentication, we have a part where the user is asked

for the password until the correct one is entered. This fits the do-while scheduler
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perfectly. It is worth noting that if the user does not provide a password, but cancels
the process, the get_password task can simply return failure (⊥) and the loop will
exit:

do_(

password = get_password(),

).while_(

!check_if_user(username, password)

)

The for_(init, condition, increment) loop can be easily implemented on top
of while_ and serial_ schedulers.

While this approach does not deal with the continue statement, only break, it
can be easily implemented either by assigning different meanings to different task
return values (instead of just 0 for success, 6= 0 for failure), or by using a more
nuanced error reporting mechanism based on the exception monad (Section 2.5.3.3)
where we would use different error types for break and continue. This would also
allow for defining a complete exception-like mechanism and error propagating, but
that is out of the focus of this dissertation since the principle of defining schedulers
would remain the same.

4.2.5 Chaining scheduler

As we have mentioned in Chapter 2, C++ does not allow overloading the dot operator
(as in a.b().c()), so it is not possible to write a scheduler that will be able to chain
the tasks with that syntax. This can be remedied in a similar manner to how we
defined transformation chaining on reactive streams in Chapter 3 – by using the
pipe syntax:

formatted_name = get_username() | get_full_name() | to_html();

This example shows that the result of one asynchronous operation can be passed
as an argument to another one (from get_username to get_full_name) or from an
asynchronous to the synchronous one (from get_full_name to to_html).

There is an important difference between the tasks that can be chained and
ones that can be passed to other schedulers. Other schedulers require the task to
return the status whether they succeeded or not, whereas a task that is chaining
needs to return an actual value because that value will be passed to the next task as
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an argument. These tasks are delimited continuations [Fel88], they can be invoked
multiple times, and the resulting values used later.

The behaviour of chaining head and tail can be described simply as:

1. Execute the head task
2. When it finishes, execute tail and pass it the result returned by the head task
3. When tail finishes, return whether it succeeded or not

This behaves the same as a monadic bind function of the continuation monad
when composing asynchronous tasks, and like the transform function when compos-
ing the synchronous tasks.

One nuance about the chaining scheduler that might not be as obvious is that
in the previous code snippet, the operator= is also a form of a chaining scheduler
– just a specialized one. Namely, the operator= scheduler just passes the result of
the chained asynchronous operation (when it is finished) to the operator= function
of the variable on its left-hand side.

If error handling is required for chaining as well, it can easily be done with the
tasks returning optional<T> or even expected<T>.

4.2.6 Basic schedulers demonstration

The schedulers that we defined so far allow us to write the asynchronous code using
the same principles and workflows as used in writing the ordinary imperative or
functional code that uses the ordinary C++ flow control structures. It makes a
full mapping between the programming concepts commonly used when designing
an algorithm or a data flow, and a concrete implementation without the need for
explicitly dealing with the inversion of control.

We have seen how reactive programming can make implementing asynchronous
systems in the functional style in Chapter 3 easier. We are now going to demonstrate
how we can benefit from the imperative style of reactive programming presented in
this dissertation. Now we will show it on the example from the Section 4.1. With
the schedulers we previously defined, we can implement this example like so:

auto login = serial_(

username = get_username(),

new_user = check_if_user_exists(username),
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if_(new_user) (

password = get_password(),

initialize_account(username, password)

).else_(

do_(

password = get_password(),

).while_(

!check_if_user(username, password)

)

),

initialize_environment(),

if_(new_user) (

show_welcome_message()

)

);

This is a line-by-line equivalent of the pseudo-code example we started with
where the only difference is the different syntax. C++ imposes a lot of restrictions
regarding operator overloading and definitions compared to some other languages
like Haskell or Scala. This limits the ability to create a domain-specific language
without any undesired artefacts. In this case, the artefacts are limited to using nor-
mal parentheses instead of braces, keywords with a trailing underscore (because the
original ones are reserved), and having the second part of compound statements like
do_/while_ and if_/else_ prefixed with a dot (because they need to be implemented
as methods of the first one).

4.3 Advanced schedulers

These were rather rudimentary schedulers which mimic the flow control structures
that the imperative languages provide for invoking synchronous tasks. We can
also define more complex schedulers to match some of the common asynchronous
programming patterns and good practices.
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4.3.1 Transaction scheduler

There are many systems where a batch of commands needs to be executed success-
fully from the start to the end, or not be executed at all. This means that if any of
the commands fail, the program and the data need to be restored to the same state
as before the first command was run.

We can use a variant of the command pattern [Gam+95; Fre+04] where the
command (a task in our terminology) also knows how to undo itself (has do() and
undo() member functions). The transaction scheduler receives a list of tasks that
should be executed sequentially, same as the serial scheduler. The behaviour can be
written as follows:

1. Execute the list head
2. When it finishes:

• if the task succeeded: Execute the tail recursively

– if the tail execution succeeded: return success (>);
– if the tail execution failed: Execute the undo member function of the

list head, and return failure (⊥).

• if the task failed: return failure (⊥).

In order to demonstrate the transaction scheduler, let us consider an example
of file copying. The requirement is that at the end of the operation, the file system
should not be changed unless the file has been completely copied:

transaction_(

temp = generate_temporary(destination),

copy(source, temp),

rename(temp, destination)

)

The first call creates a new temporary file (we can not copy directly to destination
since it can already exist, and we would overwrite it even in the case copying fails).
Then we copy the data, and rename the temporary file to destination.

Let us analyze the failure cases, and make sure that the original destination file
is untouched, and the temporary is deleted in all of them.

• If generate_temporary fails to create a temporary file, we are exiting the trans-
action – nothing has been done, we have not changed anything;
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• If copy fails, we start undoing previous commands – and the temporary file
gets deleted by calling the undo member function of generate_temporary;

• If renaming fails, we are calling undo on copy, which does not need to do
anything, and then on generate_temporary which deletes the temporary file.

There are two requirements that the tasks passed to the transaction scheduler
must fulfil in order for it to be able to guarantee execution correctness:

1. If the task execution fails, it needs to clean up after itself before returning
failure (⊥). This means that we do not need to call undo on a failed task.

2. The task needs to be designed so that the undo member function must always
succeed (in the previous example, the temporary file deletion must never fail).
If the undo member function fails, it is an unsolvable scenario[Ale12] so we are
not even trying to handle it.

It is trivial to prove that the scheduler itself fulfils these requirements if the
contained tasks fulfil them.

4.3.2 Fork execution scheduler

The main purpose of asynchronous programming is the ability to execute multiple
tasks at the same time. The previous schedulers did execute the tasks in an asyn-
chronous manner, but they did not execute the tasks that belong to them in parallel.
For that, we need a new scheduler type – fork_. It takes a list of tasks, and performs
the following:

1. Execute the list head
2. Execute the tail, in parallel using the same algorithm
3. When the list head finishes: register whether it succeeded or not

• if the tail execution has already finished: Return success (>) if both the
tail and the head finished successfully. Otherwise return failure (⊥).

• if not: Register that the head has finished, and register whether it suc-
ceeded or not.

4. When the tail finishes:

• if the head execution has already finished: Return success (>) if both
the tail and the head finished successfully. Otherwise return failure (⊥).

• if not: Register that the tail has finished, and register whether it suc-
ceeded or not.
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This way, the fork execution scheduler waits for all the child tasks to finish, and
returns success (>) only if all tasks succeeded. The behaviour can be optimized by
remembering only the total number of running child tasks, which will be shown in
the Chapter 5.

In order to demonstrate the fork scheduler, we will use a slightly modified ex-
ample of the user authentication problem. In the case where the user did not exist
previously, we are calling the initialize_account function. We might break that
function into three different parts – adding the user to the system, creating a di-
rectory for the user’s data directory and assigning ownership to that directory. The
first two can be performed in parallel, while the last one needs to wait for them to
be completed:

if_(new_user) (

password = get_password(),

fork_(

create_user(username),

directory = create_directory_for_user(username)

),

change_ownership(username, directory)

)

4.3.3 Detaching execution scheduler

The alternative approach to parallelism can be taken in the cases where we do
not need to know when the child tasks have finished (such as logging or displaying
messages to the user). For that case, we can define a simple scheduler detach_ that
starts all the tasks in the list and immediately returns success (>) without waiting
for the children tasks to finish, similar to ft_thread_unlink from the FairThreads
library [Bou06].

A fitting example to demonstrate detaching would be a web service that accepts
client connections and processes each client separately:

while_(client = asio::server::accept(server)) (

detach_(process_client(client))

)

110



CHAPTER 4. IMPERATIVE REACTIVE PROGRAMMING

4.4 Data lifetime

There are a few popular methods of communication between parallel processes.
Most notably, message passing and tuple spaces [Car+94]. We take a new, mostly
orthogonal approach. One reason is to avoid duplication – there are existing imple-
mentations for the above mentioned solutions that can be used with the presented
IRP schedulers (like CppLINDA1). The second, and more important reason, is that
using a foreign syntax and a totally different paradigm would spoil the idea of having
the code as similar as possible to the normal imperative code.

We are going to use the same model of scoped variables that the C++ language
uses [ISO17, basic.scope]. A variable exists only in the scope where it is defined. It is
created when the execution enters that scope, and it is destroyed when the execution
exits the scope. In the following example, which does some calculations on a large
data object, the variable data exists only while the function is being executed:

void process()

{

sound_wave data;

amplify_sound(&data); // we are passing a reference to the structure

// because it is inefficient to copy it

}

Although we will follow the same model, we can not rely on ordinary vari-
ables. Imagine that the amplify_sound function from the example is asynchronous.
This means that the caller will get the control immediately after calling it and
the variable (along with the data) will likely be destroyed before amplify_sound

ends. This would lead to memory corruption. If we allocate data dynamically, the
functions we call on it would need to know which one should free it which would
complicate the APIs.

We will have to think of scopes in a different way. The variable is created when
the execution enters the scope. But it is destroyed only when all its users finish
executing. For this to work properly, we will have to use the std::shared_ptr

introduced with C++11 [Str13, p. 5.2.1]:

auto process_task()

{

auto data = std::make_shared<sound_wave>();

1Linda for C++, http://sourceforge.net/projects/cpplinda/
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return serial_(

data = load_audio_task(),

amplify_sound_task(data),

highpass_filter_task(data)

);

}

The additional advantage of this approach compared to the tuple-spaces is the
lack of the need for garbage collection. Variables exist only while they are needed
and are automatically disposed of afterwards.
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5.1 The event loop

The usual rule in C++ is not to introduce any runtime performance penalties by
default. Introduce them only when the programmer uses a specific feature that re-
quires them. The classic examples are exceptions and virtual member functions.
If you do not use them, your code will be at least as performant as a C pro-
gram. The implementation of reactive programming scheduler follows this princi-
ple. When possible, the compiler needs to be able to optimize out all the used
abstractions.

Thanks to Alexandrescu and his Loki library [Ale01] the C++ compilers are now
dealing efficiently with the generic code and template meta-programming (TMP)
structures. The TMP is a Turing-complete language [Cza02] which is executed by
the compiler itself, while it compiles the code. As mentioned in Section 2.4, we will
use TMP mainly for code generation and static introspection.

The system that we want to create is internally based on message passing which
will allow us to be notified when an asynchronous task is finished. In particular,
on the centralized event loop where the client can register a handler for a specified
type of event. The message will then be processed, and the task scheduler will be
able to continue the execution with the next task.

The event loop, or message dispatcher, is a sub-system that listens for and dis-
patches events or messages. It usually resides in the main thread and serves as a
universal communication mechanism between objects in a process. It is often used
for synchronization, even in multi-threaded systems.

Popular C and C++ frameworks (for example GLib, Qt or Boost) provide
their own implementations of signal handling (with Boost requiring more work
to allow signals across threads by using boost::asio::io_service). In order to
implement the scheduler system in a generic way, we need to abstract out the
event loop so that the system can be used with any of the aforementioned li-
braries.

The abstract interface for the event loop contains only one type definition and
four functions:

// Alias type for a generic function container

// that takes a pointer to the task that sent the signal,

// along with the return status of its execution

// (0 for success and any other value for failure)

using signal_handler = std::function<void (void *, int)>;
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// Defines a function that should handle when

// the task (sender) has finished execution

void connect(void * sender, signal_handler h);

// Disconnects a task from its handlers

void disconnect(void * sender);

// Adds a new event that needs to be handled to the queue

// the arguments are the task that sent the event

// and the execution status

void emit(void * object, int status);

// Processes collected events

void process_events();

// Starts the event loop

[[noreturn]] void loop();

This API is quite simple. The following example shows how a connection is
established. It connects the sender with a lambda function:

signal::connect(sender,

[this] (void * task, int error) {

// process event

}

);

Using void pointers is highly discouraged in C++ because it breaks the type
safety. It is not a problem in this case since we are using them only as unique
identifiers of senders. There is no type-casting from void pointers to some more
specific pointer type.

This is a simple interface that can easily be implemented on top of the Qt or GLib
libraries. For example, in the case of Qt, it would be sufficient to create a new event
type (IRPEmitEvent) and register the process_events function as its handler. The
emit function would just send a IRPEmitEvent event via QApplication::sendEvent()

member function. The loop function could be left empty (a no-op), because the
application would have started Qt’s event loop anyway. Any time the emit function
is called, the process_events function will process any unprocessed events in the
queue.

115



CHAPTER 5. IMPLEMENTATION

5.2 Tasks and task factories

As previously specified, a task in our nomenclature covers any callable piece of code
for which we know when it has finished. In this case, “callable” means that it has the
nullary function call operator (the operator() with no arguments) [Str13, p. 3.4.3]
or a start() member function. If the task is synchronous, the task should return an
integer value that represents the execution status. In the case of an asynchronous
task, the task object needs to have a member function set_on_end which takes one
signal_handler argument. This member function registers a callback function that
should be invoked when the task finishes execution. Examples of these can be seen
here:

int function() class AsyncFunctionObject {

{ public:

// do something void operator() ()

⋯ {

// do something

// we have finished ⋯

return EXIT_SUCCESS;

} // we have finished

m_end_handler(this,

EXIT_SUCCESS);

class SyncFunctionObject { }

public:

int start() void set_on_end(

{ signal_handler end_handler)

// do something {

⋯ m_end_handler = end_handler;

}

// we have finished

return EXIT_SUCCESS; private:

} handler m_end_handler;

}; };

5.2.1 Introspection

In order to provide the most generic interface, we need to use the compile-time type
introspection to examine the type of the callable object passed to the scheduler at
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the time of compilation, instead of using the inheritance-based polymorphism which
would require the users to subclass a common super-class and would have runtime
performance penalties.

We can define a convenient macro which instantiates a SFINAE-based (Sec-
tion 2.4.2.2) structure which is able to test for member function existence during
compilation time:

#define declare_memfun_tester(Name, MemFun, Parameters) \

template<typename T> \

struct Name { \

template<typename U, void (U::*)Parameters> \

struct test_struct {}; \

\

template<typename U> \

static std::true_type test(test_struct<U, &U::MemFun> *); \

\

template<typename U> \

static std::false_type test(...); \

\

using type = decltype(test<T>(0)); \

static const bool value = \

std::is_same<type, std::true_type>::value; \

}

5.2.2 Conversion to continuations

In order to implement continuations, we need to be able to differentiate between
various types of callables. We need to be able to tell whether the passed callable is a
synchronous function, an asynchronous task, or it might be even a factory function
that returns an asynchronous task.

For this, we will implement a simple compile-time test which returns whether
a type has the needed requirements to be an asynchronous task. The test returns
true if the passed object is a function object (it has a call operator), and has the
set_on_end member function:

declare_memfun_tester(has_apply, operator(), ());

declare_memfun_tester(has_start, start, ());

declare_memfun_tester(has_set_on_end, set_on_end, (signal_handler));
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template<typename T>

struct is_async_task {

static const bool value =

(has_apply<T>::value || has_start<T>::value)

&& has_set_on_end<T>::value;

using type = typename std::integral_constant<bool, value>;

};

Beside ordinary tasks, we will also support lazy creation of tasks by using task
factories. This can be useful when the task object takes a significant amount of
memory, and is rarely invoked. If a scheduler receives a function whose return type
fulfils the requirements for a task (is_async_task<T>::value returns true), it first
calls the factory function and then executes the task.

5.2.3 Serial scheduler

Now that we know the task types during compilation, we can start implementing
the control structures – schedulers. The schedulers differ mainly in what they do
when the task finishes execution, so we will cover only serial_ in detail. As pre-
viously specified, it takes a variable number of tasks to execute. For this to work,
we need to use variadic templates – templates with variable number of arguments
(Section 2.4.3).

Dealing with variadic templates in C++ is similar to defining a function over a
list in FPLs. We start by defining the behaviour for the empty list, and then cover
the case where we have a head and a (possibly empty) tail. In order to keep the
code simpler, we will require tasks to have the function call operator and not the
start() member function:

template<>

class serial_scheduler<> {

public:

serial_scheduler() {}

void operator () ()

{

on_end_handler(this, EXIT_SUCCESS);

}
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Figure 5.1: Task execution process

void set_on_end(signal_handler handler) {

// Nothing to do - no tasks to execute

}

};

The algorithm in the Figure 5.1 represents the logic behind the execution of a
task. It detects the task type and executes the task. This logic is used in most task
schedulers in the library, so we are going to present it separately.

The main difference between schedulers is what they do when the previously
started task has finished executing. The serial_ scheduler just continues executing
the rest of the task list. In this case, it is equivalent to invoking the function
call operator (operator()) of the super-type (remember that processing variadic
template arguments is done in the same manner as recursive list processing – process
the head, and then invoke the algorithm on the tail of the list:

template<typename _Task, typename ... _OtherTasks>

class serial_scheduler<_Task, _OtherTasks ...>

: public serial_scheduler<_OtherTasks ...> {

private:

using this_type = serial_scheduler<_Task, _OtherTasks ...>;

using super_type = serial_scheduler<_OtherTasks ...>;

public:

serial_scheduler(_Task task, _OtherTasks ... others)

: super_type(others...), m_task(task) {}
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void operator () ()

{

// we are testing whether the head of the list

// is an asynchronous task and we start it

using is_async_task =

typename traits::is_async_task<_Task>::type;

_start(is_async_task());

}

private:

// Overloaded version that can execute synchronous tasks

void _start(std::false_type) {

// extraction of the function's return type

using stripped_type =

typename std::remove_pointer<

typename std::remove_reference<

decltype(m_task())>::type

>::type;

// checking whether the return type is an asynchronous

// task or a function

using is_task_class =

typename traits::is_task_class<stripped_type>::type;

_start_factory_or_function(is_task_class());

}

// Overloaded version of the function that can start

// asynchronous tasks

void _start(std::true_type) {

_start_task(m_task);

}

// Overloaded function that handles starting

// of a task from the factory

void _start_factory_or_function(std::true_type)
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{

using result_type = decltype(m_task());

using stripped_type = typename std::remove_pointer<

typename std::remove_reference<

decltype(m_task())>::type

>::type;

stripped_type task =

dereference_if_pointer<result_type>::deref(m_task());

_start_task(task);

}

// Overloaded function that executes the task function

// and immediately continues execution of other

// tasks in the scheduler

void _start_factory_or_function(std::false_type)

{

if (m_task() == EXIT_SUCCESS) {

super_type::start();

} else {

on_end_handler(this, EXIT_FAILURE);

}

}

// Function that connects the task's on_end signal

// and starts the task

template<typename T>

void _start_task(T && task)

{

signal::connect(&task, [this] (void * task, int status) {

if (status == EXIT_SUCCESS) {

this->super_type::start();

} else {

this->on_end_handler(this, status);

}
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});

task.set_on_end([] (void * task, int error) {

signal::emit(task, error);

});

task();

}

⋯ // on_end_handler related member functions

private:

_Task m_task;

};

// Convenience member function which forces the compiler

// to automatically deduce the template parameters

template < typename ... _Jobs >

serial_scheduler < _Jobs ... >

serial_ (_Jobs ... args) {

return serial_scheduler < _Jobs ... > (args ...);

}

5.3 Implementation efficiency

The system needs to have no runtime overhead compared to the regular call-callback
C++ code. It can not outperform the former, but it should be as efficient. We are
going to show that the compiler is able to optimize-out the introduced abstractions
and generate the same code as it would in the case of call-callback approach.

The following is a side-by-side display of original C++ code with the generated
assembly code1 when invoking synchronous functions (Listing 5.2). It shows that the
serial_ scheduler (and the continuation-continnuator abstraction with it) generates
no overhead compared to the normal C++ code when calling functions. Even more,
if functions are declared to be inline, the compiler is able to inline them even when
using the scheduler. A similar output is created when testing the other schedulers.

1generated by GCC version 4.7 with the following flags: -std=c++0x -g -Wa,-a,-ad -O3
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function1(); call _Z9function1v

function2(); call _Z9function2v

inlineable_function(); ⋯ // no call instruction

serial_(

function1, call _Z9function1v

function2, call _Z9function2v

inlineable_function ⋯ // no call instruction

)();

Figure 5.2: Assembly code generated for synchronous functions

When calling the asynchronous functions from the scheduler, the compiler also
generates the same assembly code as if we implemented the program using the call-
callback method. It is interesting to see that, when we pass a function that has
a callback function as its argument to the scheduler, that executing the scheduler
calls only the former function, and automatically passes the continuation function
to iy. This is demonstrated by the following example in which the calculate_async

function performs some calculation asynchronously, and calls its argument when it
finishes:

calculate_async(continuation); mov edi, OFFSET FLAT:_Z12continuationv

call _Z15calculate_asyncPFvvE

serial_( mov edi, OFFSET FLAT:_Z12continuationv

calculate_async, call _Z15calculate_asyncPFvvE

continuation

)();

The fact that the assembly code is the same, both when calling ordinary func-
tions and asynchronous ones, implies that our abstractions do not introduce any
performance overhead by themselves. The only possible overhead of the system
is due to the usage of the event loop for dealing with asynchronous calls which is
anyhow a common element in all modern systems.

In order to test this statement in practice, we have tested the throughput of
a single-threaded web-socket echo server implemented with Boost.Asio, with anal-
ogous version in which the IRP approach was used. The second version was also
based on Boost.Asio, but with its functions wrapped into tasks that can be passed
to the IRP schedulers.
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The Web Socket protocol has a limit of 125 bytes for a base message which can
be sent in a single frame. If a message is larger, it is split into multiple frames. In
order to test the system in the real-world scenario, we have sent messages of different
sizes – from small JSON documents, to larger images going up to 4MiB.

The benchmarking process went as follows:

• Start the server;
• Start a sufficient number of clients and load the data without connecting to

the server (sufficient number to contain at least 500MiB of data);
• Trigger the clients to connect to the server;
• Measure the amount of data sent by the server in a single second.

By pre-starting and pre-loading the clients, we have removed the possibility of
slow clients tainting the results of the benchmark.

The tests were performed both with servers compiled with GCC 5.2 and Clang
3.6 compilers (without client recompilation). The initial results with GCC were
154 MiB/s for the pure Boost.Asio version, and 147 MiB/s for the IRP version.
While this is still a good result, the performance hit is noticeable (even more so
with Clang, see table 5.1).

After profiling the code, it was shown that the main performance issue that exists
only in the IRP version is due to its usage of std::shared_pointer to pass the data
around (see Section 4.4). The shared pointer keeps a reference count which needs
to be incremented and decremented atomically whenever a new copy is created, or
an instance is destroyed. The pure Boost.Asio version used global variables and
references to them. When the IRP variant of the server was altered to use global
variables and pass references to them to the tasks, it reached similar performance
to the pure Boost.Asio version when compiled with GCC. The Clang version also
improved, but was still slower than the pure Boost.Asio version. This implies that
Clang misses some optimization opportunities, and that the performance of the IRP
solution depends significantly on the compiler used which is true for any template-
heavy code.

Service version GCC 5.2 Clang 3.6
Pure Boost.Asio version 154 MiB 137 MiB
Initial IRP version 147 MiB 128 MiB
IRP without shared pointers 154 MiB 130 MiB

Table 5.1: Echo server throughput
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This was exactly our aim – to have a nicer way to write code, but to still have
programs that are as efficient as the usual call-callback code.

5.4 Compilation times

Due to the heavy usage of template meta-programming, the scheduler mechanism
has a negative impact on the compilation times. In order to measure how much, we
have performed a few benchmarks.

We have measured the speed of compiling serial_ and fork_ schedulers sepa-
rately, compared that to the compilation speed of normal synchronous code, and
asynchronous code that implements the same logic using calls and callbacks. In
order to get the clearest picture of how big is the performance hit of using the
schedulers, and we did not compare against the std::future<T> and similar classes
since they are also template-based. These tests have shown around 11% hit for the
serial_ scheduler, and 12% for the fork_ (Figure 5.3 (a)).

The second thing we measured is the performance impact on a full build of a
real project – a simple web-socket server. While the previous tests were meant to
show how much time the compiler needs to compile the IRP control structures, this
one is meant to test what is the impact on the full build (compilation + linking) of
a project that uses real-world libraries like Boost.Asio. In this case, the slowdown
was 2% (Figure 5.3 (b)).

Sync Callbacks IRP
0s

1s

2s

3s
2.3 2.34

2.62.3 2.34
2.62

serial_ fork_

(a) Compilation of serial_

and fork_ schedulers

Callbacks IRP
0s

5s

10s

15s

20s 17.9 18.2

(b) Full build time of the
echo web-socket project

Figure 5.3: Compilation times (in seconds)
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6.1 Case studies

6.1.1 A simple echo server

As the first example, we will cover a single-threaded implementation of a simple
echo server with a WebSocket-like handshake. The server should at all times be
listening to incoming connections. It means that we can not wait for one client
to be disconnected before we are ready to serve the next one. We will branch
out and detach processing the connection as soon as we receive the request. The
implementation uses the Boost.Asio [Koh] library wrapped so that its functions can
be used as tasks:

asio::server server;

asio::client_ptr client;

// We want to wait until we get a connection.

while_(client = asio::server::accept(server)) (

detach_(

// Start a detached execution path to process the client.

[] {

// Defining local variables that are needed

// for communication with the client

asio::client_header_ptr header;

asio::message_ptr message;

asio::key_ptr server_key;

serial_(

// WebSocket handshake

asio::client::get_header(header),

server_key = asio::server::create_key(items),

asio::client::send_header(client, server_key),

// Sending the initial greeting message

asio::client::message_write(client, ”Hello, I'm Echo”),

// Connection established

while_(message = asio::client::message_read(client)) (
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// echoing the input

asio::client::message_write(client, message)

)

)();

}

)

)

It is important to note that the existence of detach_ does not necessarily imply
creating a separate thread for each connection. In fact, it does not in the default
implementation. The whole service is able to handle multiple connections in a
single thread. Due to the level of abstraction, it is easy to alter the behaviour of
detach_ to spread the load on multiple threads, if the need arises. Our example will
continue working without changing a single line of code – after all, that change is
an implementation detail and not a part of our algorithm.

6.1.2 Secure project management service

In this example, which is based on the KActivities1 project, but simplified, we will
dive deeper into the comparison between the explicit IoC and the IRP approach.
Imagine the following scenario – we have a system to manage a set of projects. The
user can work on only one project at a time and some projects are private and
encrypted with a password. When switching to a private project (Figure 6.1), the
user is asked for the password. If the project was successfully decrypted, it is loaded
and the environment adapts to it. If the decryption failed, the user is repeatedly
asked for the password until she enters the correct one or cancels the procedure. As
before, all the steps in the algorithm should be non-blocking.

When using the standard call-callback approach for asynchronous programming,
we need to break apart the algorithm into a set of small methods that are not logical
sub-parts of it. We also need to move all the variables that we do not want to carry
from call to call into the global namespace:

void request_switch_to(string project)

{

// Setting a global variable that holds

// the project to which we want to switch

global::new_project = project;

1KDE Activities Framework https://projects.kde.org/projects/frameworks/kactivities
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Figure 6.1: Switching projects algorithm

is_private(global::new_project);

}

void is_private_callback(bool result)

{

if (!result) {

// Not a private project, we can switch

// to it without problems

switch_project();

} else {

// Requesting the service to ask the

// user for the password and to try

// to decrypt the project

request_decryption(request_decryption_callback);

}

}
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void request_decryption_callback(bool success, bool canceled)

{

if (canceled) {

// If the request is canceled, cancel

// the whole procedure

global::new_project.clear();

} else if (success) {

// If the decryption is successful,

// we can switch to the project

switch_project();

} else {

// If the decryption failed,

// we need to ask the user for the

// password again

is_private_callback(true);

}

}

void switch_project()

{

// First, we need to encrypt the current project

// if it is private

is_private(global::current_project,

is_current_project_private_callback);

}

void is_current_project_private_callback(value bool)

{

if (value) {

// We will send the request to encrypt

// the current project, but we will not

// wait for it to be finished

encrypt(global::current_project);

}
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// We can now actually change the current project

global::current_project = global::new_project;

}

The implementation is hard to understand even with all comments placed in the
code. It is impossible to see the flow of the program. Even more, the rule that a
method’s name should explain what it does can not be followed at all, because none
of the methods can really stand by itself. Any naming scheme we choose will fail to
explain the purpose of the method, who should call it and when.

Let us look at the equivalent implementation using the IRP method proposed in
this dissertation:

void request_switch_to(var<string> new_project)

{

// Decryption status that can be Success,

// Cancelled or Failed

var<DecryptionStatus> decryption_status;

serial_(

// If the project is private, keep trying

// to decrypt while the decryption_status

// is not Success or Cancelled.

if_(is_private(new_project)) (

do_(

decryption_status =

request_decryption(new_project)

).while_(

decryption_status == Failed,

)

),

// Asserting that the user did not cancel

// the procedure

decryption_status == Success,

// If the current project is private,

// encrypt it.

if_(is_private(current_project)) (
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detach_(request_encryption(current_project))

),

// Set the new project to be the current

current_project = new_project

)();

}

The code is easy to understand, as well as the logic behind it. It can be argued
that it is even simpler to understand than the diagram in the Figure 6.1. It also has
the benefit of being easy to refactor and change. If we decide that we want to wait
for the previously selected project to be encrypted before we change to the new one,
we can just remove the detach_ statement. The same modification would introduce
at least one additional method in the original implementation. We will leave the
modification of the original code up to the reader.

6.2 Comparison with other techniques

6.2.1 Comparison with coroutines

The concept of coroutines was introduced in the early 1960s [Con63]. It describes a
cooperative task management where one routine can yield control to another when
it needs to retrieve a result that is not immediately available, and get the control
back when available. There is no common definition of the concept, but the general
consensus is that coroutines should follow these notions:

• the values of data local to a coroutine persist between successive calls;
• the execution of a coroutine is suspended as control leaves it, only to carry on

where it left off when control re-enters the coroutine at some later stage.

Although a very old concept, and quite covered in the computer-science com-
munity and some FPLs, it started to get more popular in practice a few years ago,
mostly in the form of generators (see Python generators [SPH]). While they can be
used to cover more general use-cases, such is ours, coroutines fail on two important
points.

The first is the implementation efficiency. Coroutines, as usually implemented
(Python, boost.coroutine), need to save the states of all routines that are started,
with special care that needs to be taken regarding the recursive coroutines. This
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leads to overuse of memory, inhibition of CPU’s branch prediction, and excessive
context switching. Furthermore, since coroutine lifetime is not tied to the caller
like it is with the normal subroutines, the memory can not be used as a stack.
It mandates a more complex memory management system which brings additional
performance hits.

The second is a greatly lowered usability. Reasoning about processes where the
control is able to jump from one step to another is even harder than thinking in a
call-callback paradigm. The flow of the program is completely broken which also
makes it very difficult, if not impossible, to do the step-by-step debugging on it.
Debugging programs based on the presented IRP solution is the same as debugging
callback-based programs as it is how the compiler sees the schedulers we defined.

6.2.2 Comparison with resumable functions

As previously shown, general coroutines lack in usability and versatility. One of the
possible approaches to fix this problem is to introduce resumable functions and the
co_await keyword to the language [Nis14] (as proposed for C++20 under the name
coroutines, even though they do not provide the general for of coroutines).

A resumable function, similarly to a coroutine, is a function that is capable of
split-phase execution, meaning that the function may be observed to return from an
invocation without producing its final logical result or all of its side-effects [Gus+13].
A resumable function would, when it first suspends, return a placeholder for the re-
sult (std::future<T>) representing the return value of a function that will eventually
be calculated. After suspending, this function will be resumed by the scheduler and
will eventually complete its logic, and set the function’s result value in the place-
holder.

The co_await keyword would instruct the compiler that the caller function should
be suspended until the future<T> returned by the invoked interruptible subroutine
gets its value. In the following example, parent_routine will execute the first state-
ment, and then become suspended until the result of complex_subroutine is calcu-
lated. The runtime system needs to know when the calculation is ready in order to
be able to continue executing the parent routine from the point it was suspended
in.

With this approach, the code becomes straightforward and hides the inversion of
control and the asynchrony in a similar manner to that of the proposed imperative
reactive programming approach (Listing 6.2). The only point where the asynchrony
is exposed is in the need to mark the asynchronous call with co_await. This means
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future<double> complex_subroutine(double parameter)

{

⋯

}

future<void> parent_routine()

{

// Executes when the function is invoked

double parameter = 1.0;

// Defining a break/continue point

double result = co_await complex_subroutine(parameter);

// Executes when the complex_subroutine's

// result is ready

std::cout << result;

co_return result;

}

Figure 6.2: Resumable function example

that the user needs to know whether a method is asynchronous or not in order to
invoke it. It implies the need to change the caller code if the called method’s type
of execution is changed, which is not a requirement of our approach.

The second, and more significant issue with the resumable functions concept is
the need for a more complex programming language runtime. The runtime system
needs to do the book-keeping for all futures that are being waited for and to keep the
function call contexts in a similar manner to that of coroutines. The approach taken
in this dissertation requires no changes to the language nor the runtime system – it
uses only the abstraction mechanisms already provided.

The resumable functions also lack the level of abstraction needed to allow the
creation of more advanced schedulers like the transaction scheduler (4.3.1).

6.2.3 Comparison with Boost.Asio

Boost.Asio is a great library for asynchronous network and low-level I/O program-
ming, but is applicable also to other domains that require asynchronous execution.
Boost.Asio provides the tools to manage asynchronous operations, without requiring
programs to use concurrency models based on threads and explicit locking (mutexes

134



CHAPTER 6. DISCUSSION AND CONCLUSION

and alike). It is based on the serialized event dispatch system which guarantees that
two event handlers will not be invoked concurrently.

The library API is callback-based. Every asynchronous operation requires a
handler function to be provided. When the operation is finished, the handler will
be called with the result, or with an error code in the case of failure.

Boost.Asio also provides a library-level coroutine implementation that allows
writing programs in a similar manner to the resumable functions, but without the
need for extending the core language. To implement a coroutine, the developer
just needs to create a class that inherits boost::asio::coroutine. Since these are
stackless coroutines, the state needs to be stored in the class itself. The actual
implementation of the coroutine logic goes into the call operator of the class, as it
is shown in the Listing 6.3.

The first invocation of the call operator will execute the code after the first yield
keyword. The second invocation will execute the code after the second yield and
so on. This, along with passing the reference to the coroutine itself (*this) as the
callback of the asynchronous operation allows writing localised imperative code that
will be unwrapped into calls and callbacks at runtime.

This approach does not require changes to the core language like the resumable
functions do, but it requires the user to write boiler-plate code to wrap the coroutine
logic in. Compared to the presented solution, its advantage is that it uses mostly
standard C++ syntax (apart from the boiler-plate and a few special keywords like
yield). The disadvantage is that it does not directly support the creation of more
advanced schedulers, and that unwrapping the logic into the call-callback pairs hap-
pens at runtime instead of it being done during compilation like it is the case with
our implementation.

6.2.4 Comparison with actor systems

The actor model formalism was first published by Hewitt, Bishop and Steiger in
1973 [HBS73]. They wanted to create a model for formulating programs for their
artificial intelligence research. Shortly thereafter, Ericsson started developing a new
functional programming language called Erlang for telecommunication systems im-
plementation where the concept reached its full potential.

The basic idea is to model a system to impersonate a group of people performing
a task in collaboration with each other. One person knows how to do specific tasks,
and can do it independently of others. He gets a request, performs a task, and
sends the result or a new request to another person. A person, in this sense, is an
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class session: boost::asio::coroutine {

public:

session(boost::shared_ptr<tcp::socket> socket)

: m_socket(socket),

m_buffer(new std::vector<char>(1024))

{

}

void operator() (boost::system::error_code ec =

boost::system::error_code(),

std::size_t n = 0)

{

if (!ec) reenter (this) {

while (true) {

yield m_socket->async_read_some(

boost::asio::buffer(*m_buffer), *this);

yield boost::asio::async_write(

*m_socket,

boost::asio::buffer(*m_buffer, n),

*this);

}

}

}

private:

boost::shared_ptr<tcp::socket> m_socket;

boost::shared_ptr<std::vector<char>> m_buffer;

};

Figure 6.3: Echo server using stackless coroutines in Boost.Asio

independent and isolated entity, and his internal logic and data are not available to
the outer world.

The main benefits of actor systems and message passing are loose coupling be-
tween components and relieving the user of the need to manually handle threads
and distributed computation. Actor systems are generally very scalable in the terms
of distributing the workload across a large number of separate physical nodes.

On the other hand, the loose coupling and communication solely through the
message queues reduces the usability and composability even more than the call-
callback approach. Let us look at an example of requesting a user name in an
asynchronous manner. The example (Listing 6.4) is implemented with Akka 2.

2Akka – an actor system for the Scala programming language – http://akka.io
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class LoginActor extends Actor {

def receive = {

case Login =>

usernameProvider ! GetUsername()

case ReturnedUsername(username) =>

// ⋯

}

}

Figure 6.4: Actor implementation example

At first, the example looks suspiciously like the call-callback example, as shown
in the Section 4.1. It has something that looks like our login method, a request for
the username, and a callback handler. But, if we dive more into it, it shows some
additional problems.

When sending a message to the usernameProvider actor, we have no indica-
tion of where the execution will continue from after the username retrieval task
has finished. If we had another case in the above code for a message of type
OnGotUsername(String), it would be impossible to tell which of those is the con-
tinuation just by reading the code. With the call-callback approach we had this
information because it was necessary to provide a specific callback method.

The other problem arises in the case where more than one code path can lead
to the invocation of GetUsername. In that case, we somehow need to remember (in-
actor mutable state, or by creating different actor behaviours) where we asked for
the username to be able to process the response correctly.

With our solution, we know that the continuation is what looks like the next
statement in the code, and we don’t have the limitation that we can have only one
handler for a specific asynchronous method.

6.2.5 Testing and validation

So far, we have shown that the proposed approach makes the code easier to write
and reason about. We will also briefly demonstrate that it also improves the ability
to do automated testing and static code analysis.
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6.2.5.1 Automated testing

Unit testing is one of the more popular testing methods for the projects where it is
hard or impossible to do formal verification of software. The primary goal of unit
testing is to take the smallest piece of code, isolate it from the remainder, and test
whether it behaves as desired [HK07].

Testing asynchronous systems is not a solved topic. The need for all previously
defined task types (Section 2.1.2) usually comes from the need to integrate more
separate agents, be it a user, a separate process or thread, or an external service.
While Multi-Agent Systems (MAS) are becoming prevalent in the modern software
design, not enough research was focused on how they can be tested [CCZ05].

The Agile methodology for MAS proposes a testing phase based on JUnit which
required reimplementing significant parts of the underlying agent platform [Knu02].
An alternative approach is to create mock agents and aspects [Coe+06] which focus
on testing the actual system agents in a more granular way. The tests are organized
in a few levels – from testing of the specific agents, to testing the integration between
them. All this requires a substantial amount of work on the testing infrastructure
itself, which increases the probability of errors. It also adds the need for extensive
testing of the testing infrastructure itself, which is a clear overhead of the process.

Because of the increased complexity required to create proper MAS tests, in
practice, developers tend to write ordinary unit tests with sleep intervals which
are meant to allow the system to settle when all the agents in it finish processing
their messages. This is widely used, but is not efficient and can be risky because
the sleeps can potentially block some messages from arriving, or interfere with the
communication in some other manner.

Our approach allows for a cleaner separation of unit and program logic tests.
It can ease up integration testing in the casees where the task interactions are
fully described by the IRP schedulers – that is, if there is no behind the scenes
interoperation between tasks. While this assumption is not applicable to all real-
world problems, it does cover enough cases to be useful.

Concretely, the clean multi-layered separation comes from the code separation
into asynchronous calls and the routines invoking them, which, in turn, can be used
as asynchronous calls in other routines. The testing is performed much like in the
case of synchronous programs by first testing the smallest non-divisible chunks of
code, and then proceeding to test the code that uses the former.

For the program logic tests, instead of the need to reimplement significant parts
of the underlying agent platform in the testing framework itself, IRP allows a sim-
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pler approach. By creating a common abstraction over both synchronous and asyn-
chronous calls, it allows the same code to be executed against both with no alter-
ations whatsoever.

This means that, in order to test the logic of a routine, one needs only to provide
it with the synchronous versions of the used functions. We can demonstrate this on
the login example. Let us consider just the following:

auto login = serial_(

username = get_username,

⋯

);

The code is the same regardless of whether the invoked method is asynchronous
or not. This means that we can pass it an asynchronous get_username method, as
well as a blocking one based on std::getline or similar. This switch is as simple
as changing a compilation flag and does not require any changes to the code itself.
This allows the build system to use the same code to generate the final product, the
logic/integration tests over synchronous versions of the functions, and tests of the
actual asynchronous functions, as presented in the Figure 6.5.

Figure 6.5: Testing components

It is worth noting that the methods based on the IRP schedulers do not need
rewriting in order to make them synchronous – they become synchronous automat-
ically when the tasks they invoke are synchronous. In the previous example, the
login method will be asynchronous in the final program, while being blocking in
the logic/integration tests – without any changes to the method nor the scheduler
itself.

This way, we are able to catch a class of bugs before the complete integration
tests, and in the case it is found, it is more easily located.
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6.2.6 Static analysis

We are now going to demonstrate that this approach is also beneficial in aiding the
static analysis tools such as clang-analyze.

In the same manner as with the unit testing, we are performing the static analysis
on the algorithm with tasks replaced by their synchronous equivalents, thus telling
the analyser that the variables will not be altered by some other function called by
the event loop.

Let us demonstrate this with a simple program that uses a task to initialize a
pointer. The task factory function just returns a lambda that will actually set the
pointer to point to the object specified by the passed index. The program that uses
the function will have a small bug that will allow it to leave the pointer uninitialised:

auto assignValue(Value * &vp, int i) {

return [&] { vp = getObject(i); }

}

We will first test the analyser by manually calling the task factory and the
function it generates. This will show us what is the best analysis we can get for
this example. It should be noted that this basic program would not work with the
asynchronous version of the assignValue function – it is used only as an edge case
for comparing the quality of static analysis output:

Value* value = nullptr;

int i = index();

if (i >= 0) {

assignValue(value, i)();

}

value->write();

The bug in the above code is obvious – if the index function returns a negative
value, the pointer will be null and we will get a crash at runtime when invoking
value->write().

When running the analyser on this code, we get a detailed explanation of the
error, as shown in the Figure 6.6 (a). It clearly states that if i becomes negative,
the pointer will be null in the last line of the main function.
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int main(int argc, char* argv[])

{

Value* value = nullptr;

1 'value' intialized to a null

pointer value

int i = index();

if (i >= 0) {

2 Assuming 'i' is < 0

assignValue(value, i)();

3 Taking false branch

}

value->write();

4 Called C++ object pointer is

null

}

(a) Ordinary if

int main(int argc, char* argv[])

{

Value* value = nullptr;

1 'value' intialized to a null

pointer value

int i = index();

if_ (i >= 0) (

assignValue(value, i)();

)();

value->write();

2 Called C++ object pointer is

null

}

(b) IRP if_

Figure 6.6: Clang analyser output

The next step is to do the same for the IRP version where we replace the if

construct with the IRP equivalent (Listing 6.7). As previously stated, we are still
testing with the synchronous version of the assignValue function, but the relevant
part of the code would work with the asynchronous version without any changes.

Value * value = nullptr;

int i = index();

if_ (i >= 0) (

assignValue(value, i)

);

value->write();

Figure 6.7: Function invocation with the it_ scheduler

The output generated by the analyser, as shown in the Figure 6.6 (b). is not as
detailed as the first one because the analyser does not show the insides of the if_
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call, but it still tells the user that there is a problem of calling a method on a null
pointer. The analyser could be easily taught what the if_ means thus allowing it
to create even better diagnostics, but for most purposes, this is sufficient.

The last step is to actually convert the starting example to its call-callback
equivalent (Listing 6.8). This approach requires moving the value variable to the
global scope and splitting the main function into two separate parts.

Value * value = nullptr;

auto assignValueIfIndexPositive(Value * & vp, int i,

void (*callback)(void))

{

if (i >= 0) {

vp = getValue(i);

}

callback();

}

void onFinished()

{

value->write();

}

int main(int argc, char *argv[])

{

int i = index();

assignValueIfIndexPositive(value, i, onFinished);

}

Figure 6.8: Call-callback version of the code

When running the analyser on this program, it just returns a ‘No bugs found.’
message. This shows that, while the static analysis of a IRP scheduler-based program
is not as detailed as the one performed on an ordinary synchronous program, it is
still much better than the one performed on a call-callback version. The fact that
the analysis does not work for the approach that has been ubiquitous for a long time
and does on a new one speaks for itself.
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6.2.7 Related work

Lauer and Needham [LN79] have shown that the message passing and threads are
dual to each other, and that anything that is modeled using one of the approaches,
can be implemented with the other. Both systems have their advantages and dis-
advantages, and while plain threads are usually considered bad as explained by
Ousterhout, and more recently by Keiser [Ous96; Kei14], and under-performing as
shown by von Behren [BCB03], they are usually prevalent in most modern web
servers [Men03] and other software systems mainly because event-driven programs
are difficult to write and maintain [BCB03].

Lately, it has become apparent that an abstraction of different asynchronous
models is needed that will make the software easier to manage while not losing
performance.

The approach taken by Haller and Odersky on a managed platform [HO06] and
Charousset et al. for the native code [Cha+13] is to implement concurrent systems
using the actor model. This allows for a very horizontally scalable system. But the
actors are not easy to compose, and additional patterns need to be devised to truly
avoid IoC. Examples include the ask pattern [Hun14] or more intricate constructs
like async-finish [IS12].

Another approach is to try to make threads more usable by creating task-based
systems which can schedule threads by creating different types of executors, provid-
ing thread pools and work stealing semantics [Koh13].

Most of the recent research tends to focus on improving and developing the
lower-level parts of the system, with only a small number of new approaches being
taken for defining the higher-level abstractions. Approaches like the one taken in
the Responders library [CM06], provide a way of defining a control flow through
manipulation of shared state. While this allows the code to become more organized
and readable, the shared state requires synchronization mechanisms which induce
performance penalties. And it still does not provide the level of expressiveness that
our approach does.

In 1999, Claessen proposed using the continuation monad for modeling asyn-
chronous systems [Cla99]. The continuation monad is used by Li and Zdancewic to
create a system that unifies events and threads for Haskell [LZ07]. The continua-
tion monad is further abstracted to reactive streams [WH00; MRO10] which allow
using the common FPL patterns of list transformations to the event streams and
asynchronously calculated data.

This idea is valuable even for the non-functional programming languages. It
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just needs to be further expanded and adapted to imperative and object-oriented
paradigms like it is presented in this dissertation.

Since the solution proposed in this dissertation is based on the continuation
monad, it can abstract out any underlying model for asynchronous programming
and therefore automatically benefit from further developments in both actor and
message-passing systems, and task and thread-based models. It also allows easy
integration with the reactive streams thus making it a library that allows writing
asynchronous programs in a natural way to both functional and imperative pro-
grammers. Another approach that uses continuations is JavaTasks [FMM07] which
has some similarities to our approach. It defines a new programming language that
compiles to Java and implements resumable functions using switch constructs which
define which part of the routine should be executed. The main similarity to our so-
lution is that it is scheduler-agnostic, and that it can work with different event
systems.

6.3 Conclusion

We have defined an abstraction that is able to handle different types of tasks, and
used it for creating the control structures to mimic those from the host language,
along with a few that are not available in the host language (Sections 4.3.1 and 4.3.2)
With this, we have created an embedded DSL inside C++ that allows the user
to write the program logic that deals with asynchronous tasks in a more natural
manner.

We have demonstrated that this approach makes it easier to write and reason
about the programs that use asynchronous APIs along with the synchronous ones.
The program becomes a simple set of tasks that can run asynchronously and still
be deterministic.

The defined abstractions allow for swapping asynchronous calls with synchronous
ones without any code changes. This allows for easier automatic testing and static
code analysis.

We have also shown that the task abstraction introduces no performance over-
heads compared to the usual code.

The future work will focus on a few additional integration points between the
existing system and various asynchronous models, and host programming languages,
and potential inclusion of collective barrier inclusion and other synchronization con-
structs [IS14]. While C++ provides unmatched performance, a system like this could
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be beneficial to Scala and its Akka library [HO06], as well as the Cloud Haskell li-
brary [EBP11].

It is also worth researching the different types of error handling in asynchronous
environments and multi-agent systems, and how they can be adapted to the concept
of C++’s exceptions and its current techniques with cross-thread exception propa-
gation.

Another area of interest is the usefulness of the created schedulers on the other
types of monads beside continuations. The system should be applicable to standard
collections like lists and vectors, as well as the IO, Parser and similar monads. It
needs to be researched whether it would bring significant benefits to those areas as
well.
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The initial idea for creating an embedded DSL (domain-specific language) for
asynchronous task scheduling was born during the development of the activities
system of KDE Plasma Workspace. The activities system provides the user with
a way to manage projects, and how the Plasma Workspace behaves in each of the
projects.

Activities provide the user a way to set up encrypted password-protected projects
where only one project can be activated at some point in time. The project can get
activated only if the user provided the correct password and the project decryption
was successful. The actual encryption and decryption is handled by a trusted 3rd
party system which means that the activities system can not check the password
that the user entered, it can just wait for the 3rd party system to report whether
the data is accessible or not.

Due to the interconnections between project switching and the encryption sys-
tem, significant parts of the code were intermingled between the project management
class and the encryption management class. This was not a clean design since the
shared responsibility for the same task broke the encapsulation, and a lot of the
jobs of the project management class were performed by the encryption manage-
ment class.

Apart from that, the code was split into overly many callbacks, and had a few
global variables that needed special handling because different asynchronous calls
were both reading and writing them. User input, project opening and closing, com-
municating with the encryption system, communicating with the Plasma Desktop,
etc. all had to be modelled as asynchronous tasks to avoid blocking the user inter-
face. The further complication came from the fact that any of the operations can
fail and most of the failures required further synchronization with the rest of the
system. Because of all of this, the number of contributors willing to work on this
system decreased significantly, and those who remained failed to fully understand
the inner-workings of the system which resulted in an increased bug count.

After a particularly dubious commit made against the main service of the activ-
ities system, it was decided that it needs to be rewritten to handle asynchronocity
much better. The solution was to create asynchronous tasks and schedulers much
like the ones shown in this dissertation, although they were not as elegant at first.

After the switch to the implementation based on the continuation monad and
schedulers1 the need for a dedicated encryption management class went away. The
logic for project switching, which was formerly interspersed into two classes and a

1commit 5c85863dab2c2 from March 2012
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few dozen member functions became contained in a single one, without any global
variables that needed any special handling.

The concepts behind the schedulers were further developed for this dissertation,
along with the presented approaches that solve similar problems in the functional
style. Different implementations of the proposed approach ware successfully applied
in various systems – both in open source systems used by millions of people (in
different parts of the KDE software which is deployed in schools2, film studios3,
control room of the CMS experiment of the Large Hadron Collider in CERN4, etc.)
and in proprietary systems developed by third parties.

2KDE to Serve 52 Million Brazilian Students – https://dot.kde.org/2008/04/25/kde-serve-
52-million-brazilian-students

3KDE Plasma Used in The Hobbit – http://news.softpedia.com/news/KDE-Plasma-Used-in-
The-Hobbit-The-Desolation-of-Smaug-Production-Video-461707.shtml

4Bugs in the Fabric of Reality – http://cukic.co/2016/03/15/bugs-in-the-fabric-of-reality/
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In order to test the professional community opinion on the IRP schedulers, we
had set up a small survey with 29 participants. The survey was open for two days
for all willing participants, and the invitation to participate was posted to a few
social channels mainly targeting the open source developers community. None of
them had any previous contact with this particular solution.

The survey compared the IRP appreoach to the three most common approaches
for programming asynchronous systems: call-callback approach; actors and message
passing; and coroutines. The questions presented in the survey, along with the
collected data can be found online1.

The introductory questions covered the general programming experience of par-
ticipants, and their previous experience with asynchronous programming.

≥ 1 ≥ 2 ≥ 4 ≥ 8 ≥ 16
0

5

10

15

Figure B.1: Programming experience of the survey participants
(x-axis – years of programming experience, y-axis – number of participants)

These have shown that the survey was filled in mostly by experienced develop-
ers (majority had more than 8 years of programming experience) as shown in the
Figure B.1. The most popular programming language amongst the surveyed was
C++ (which is the targeted audience), followed by C, Java and similar languages.
Script languages like JavaScript and Python were moderately represented, while the
participants had mostly no experience with any functional programming language
(Figure B.2).

The survey showed that the different techniques of asynchronous programming
are not well known, even amongst experienced developers. The most used ones are
the call-callback and signal-slots approaches. This is understandable considering
that the participants are mostly focussed on C and C++ and other object-oriented

1Survey questions and collected data: http://poincare.math.rs/~ivan/papers/causeway/

survey/
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Figure B.2: Expertise in specific programming languages
(x-axis – level of expertise, y-axis – number of participants)

languages, where these two are prevalent. The actor systems took the third place
(Figure B.3).

B.1 Basic code example

The participants were first presented with a simple example written with all four
approaches. The example implemented a loop that shows a message to the user
every two seconds, where the waiting it asynchronous, that is, the main process is
not blocked between the messages.

The participants were asked to rate the solutions based on readability and how
easy it is to comprehend the code. The highest score was given to the solution based
on IRP schedulers (4.79) with 25 out of 29 people giving it the highest score possible
(Figure B.4 (a)). The second one were coroutines (3.07), followed by callbacks (2.79)
and actors (1.69).

The second question was about how many additional lines of code do they think
are needed to modify the program to show an additional message to the user and
sleep for three more seconds afterwards. The participants recognized the IRP-based
solution as the easiest to modify. The close second were coroutines for which the
most chosen option was also 1− 2 lines, but chosen only by 15 voters, compared to
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Figure B.3: Experience with asynchronous programming techniques
(x-axis – how often a particular technique is used, y-axis – number of participants)

26 for IRP. Additionally, the low dispersion of answers for the IRP-based solution
have shown that it leaves almost no doubt as to how to change the code. Coroutines,
as the second best solution, had the ”I don’t know” answer (represented as ’?’ in
the graph) chosen by 6 people (Figure B.4 (b)).

B.2 Asynchronous method invocation

The next part was about ranking the readability of code snippets that invoke an
asynchronous method, and comparing the intrusiveness of changing it to perform
invocation of a synchronous method.

For readability (Figure B.5 (a)), the IRP-based solution got the highest score of
3.76, followed closely by callbacks (3.48) and coroutines (3.34), while actors got the
lowest score (1.76).

With regard to intrusiveness of changing the code to be synchronous, the IRP-
based solution was ranked as the least intrusive (score of 4.62) with other options
ranking the same as in the previous question (Figure B.5 (b)).

B.3 Producer-consumer example

The last example was demonstrating the implementation of producer-consumer pat-
tern in the form of a simple echo server (Figure B.6). The procedure is taking the
clients from the producer one by one, asks the client for the message, and replies
with the same message. The participants were asked to rank the solutions for read-
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Figure B.4: Basic example

ability and intrusiveness of changing to synchronous execution, like in the previous
example.

The IRP-based solution got the highest scores on both (4.72 for readability, 4.75
for non-intrusiveness), followed by coroutines (3.59, 3.17), actors (2.18, 1.97) and
callbacks (1.45, 1.83).

The results clearly show that the participants consider the code based on the
IRP schedulers proposed in this dissertation to be easiest to understand and modify.
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Figure B.5: Asynchronous calculation
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Figure B.6: Producer-consumer pattern implementation
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In Chapter 3, we mentioned that the QFuture type was a combination of the
exception and continuation monads like other covered future types, that the main
difference was the syntax for specifying the continuation function.

In reality, the QFuture class template is somewhere between a future and a re-
active stream. Namely, the QFuture can return multiple values over time just like
reactive streams, the only limitation is that the values are stored inside of the fu-
ture object instance forever which means that a future can optimally return only a
limited number of values contrary to streams which were infinite.

While the QFuture is the main user-facing type, all the work happens in the
QFutureInterface type. It implements the logic of the asynchronous operation and
pushes the resulting values into the QFuture instance. We can demonstrate this
with a simple function which creates a future object that has already finished, and
contains a value:

template <typename T>

QFuture<std::decay_t<T>> makeReadyFuture(T&& value)

{

QFutureInterface<T> interface;

auto future = interface.future();

interface.reportStarted();

interface.reportResult(

std::forward<T>(value));

interface.reportFinished();

return future;

}

The interface defines when the calculation has started, the resulting value, and
when it has finished. The future object is only a handler which can be used to
retrieve the resulting value or values.

The makeReadyFuture function is one of the possible constructor functions for the
QFuture monad. It takes a value of type T and produces an instance of QFuture<T>
that contains said value. A possible alternative constructor would be a function that
creates a future whose value is not calculated yet, but will appear later.
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We can also create a function that creates a canceled future – a future that has
finished and contains an exception instead of a normal value:

template <typename T>

QFuture<T> makeCanceledFuture(const QException &exception)

{

QFutureInterface<T> interface;

auto future = interface.future();

interface.reportStarted();

interface.reportException(exception);

interface.reportFinished();

return future;

}

Both makeReadyFuture and makeCanceledFuture create an already completed fu-
ture. Implementing futures which are not finished is more involved. We need to
subclass the QFutureInterface class template and implement the logic for the value
generation manually. Let us demonstrate this with a delayed future – a future that
emits a given value after a predefined period of time.

template <typename T>

class DelayedFutureInterface : public QObject

, public QFutureInterface<T> {

public:

DelayedFutureInterface(T value, int milliseconds)

: m_value(value)

, m_milliseconds(milliseconds)

{

}

QFuture<T> start()

{

auto future = this->future();

this->reportStarted();
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QTimer::singleShot(m_milliseconds, [this] {

this->reportResult(m_value);

this->reportFinished();

deleteLater();

});

return future;

}

private:

T m_value;

int m_milliseconds;

};

When this future interface is started, it will schedule a timer that will set the
future value after a predefined number of milliseconds, and report that the future
has finished. We can wrap this in a convenient constructor function that creates the
delayed future:

template <typename T>

QFuture<std::decay_t<T>> makeDelayedFuture(T&& value, int milliseconds)

{

return (new DelayedFutureInterface<std::decay_t<T>>(

std::forward<T>(result), milliseconds)

)->start();

}

C.1 Transform

Now that we have seen several constructor functions for the QFuture, we can move
on to implement other functions required for the continuation monad. We can start
with transform. We have to subclass the QFutureInterface class template again.
This class will have to store the QFuture instance it is meant to transform, the
transformation function and the QFutureWatcher object to monitor the events on
the source future object1.

1The used type traits are omitted for readability. The full implementation is available at
https://cgit.kde.org/asynqt.git/
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template <typename _In, typename _Transformation>

class TransformFutureInterface

: public QObject

, public QFutureInterface<⋯> {

⋯

private:

QFuture<_In> m_future;

_Transformation m_trafo;

std::unique_ptr<QFutureWatcher<_In>> m_futureWatcher;

};

Just like with the DelayedFutureInterface, the function where the main logic
is implemented is the start member function. It needs to react to all events that
the source future can emit – it needs to listen for the generated values, transform
them, and pass them on; and it needs to pass on the events that mark the future
completion. The start member function will look like this:

QFuture<result_type> start()

{

m_futureWatcher.reset(new QFutureWatcher<_In>());

onFinished(m_futureWatcher, [this] { this->reportFinished(); });

onCanceled(m_futureWatcher, [this] { this->reportCanceled(); });

onResultReadyAt(m_futureWatcher,

[this] (int index) {

this->reportResult(

std::invoke(m_trafo, m_future.resultAt(index)));

});

this->reportStarted();

m_futureWatcher->setFuture(m_future);

return this->future();

}
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C.2 Flattening out the nested futures

Now that we have the constructor for the QFuture and the transform modifier,
we just need to implement the join function that flattens out nested futures. Since
each QFuture instance can generate multiple values, this means that if we are given a
QFuture<QFuture<T>>, we have a future that can generate several QFuture<T> objects
and that we need to listen to them all.

Ordinary reactive streams are infinite, which means that the only possible im-
plementation of a join transformation is to listen for all source streams at once and
emit the values as soon as they appear. Since the QFuture can only emit a limited
number of values, we get a few more options. We can use the Round Robin algo-
rithm [Sil09] and pick one value at a time from each of the futures we are listening
to. We can also perform ordered joining where we emit all the values generated by
the first future before moving on to the next one.

For this, we will need to create a class that will hold a single instance of a nested
future, along with a corresponding watcher object and a queue of ordinary future
objects we got from the nested one. Since we want to implement ordered joining, we
only need to listen to one future at a time which means that we only need a single
additional watcher object.

template <typename _Result>

class JoinFutureInterface

: public QObject

, public QFutureInterface<_Result> {

⋯

private:

QFuture<QFuture<_Result>> m_outerFuture;

std::unique_ptr<QFutureWatcher<QFuture<_Result>>>

m_outerFutureWatcher;

QQueue<QFuture<_Result>> m_innerFutures;

QFuture<_Result> m_currentInnerFuture;

std::unique_ptr<QFutureWatcher<_Result>>

m_innerFutureWatcher;

};
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The start member function will be more complicated compared to the one in
TransformFutureInterface as it has two levels of futures to deal with. The future
completion events need to be passed on only if the queue m_innerFutures queue is
empty. When a new value appears, it needs to add it to the queue.

QFuture<_Result> start()

{

m_outerFutureWatcher.reset(new QFutureWatcher<QFuture<_Result>>());

onFinished(m_outerFutureWatcher, [this] {

if (m_innerFutures.isEmpty()) {

this->reportFinished();

}

});

onCanceled(m_outerFutureWatcher, [this] {

if (m_innerFutures.isEmpty()) {

this->reportCanceled();

}

});

onResultReadyAt(m_outerFutureWatcher, [this] (int index) {

m_innerFutures.enqueue(m_outerFuture.resultAt(index));

processNextInnerFuture();

});

m_outerFutureWatcher->setFuture(m_outerFuture);

this->reportStarted();

return this->future();

}

The main job of the start member function is to handle the queue of futures we
need to listen to. The logic that does flattening is in the processNextInnerFuture

function. This function needs to handle the events coming from the first future in the
queue. If the current future has finished, the next one from the queue is scheduled
for processing. If the future has been canceled, it propagates the cancellation to the
JoinFutureInterface.
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void processNextInnerFuture()

{

// Already processing something

if (m_innerFutureWatcher) return;

m_innerFutureWatcher.reset(new QFutureWatcher<_Result>());

m_currentInnerFuture = m_innerFutures.head();

onFinished(m_innerFutureWatcher, [this] {

m_innerFutureWatcher.reset();

m_innerFutures.dequeue();

if (m_innerFutures.size() == 0) {

if (m_outerFuture.isCanceled()) {

this->reportCanceled();

}

if (m_outerFuture.isFinished()) {

this->reportFinished();

}

} else {

processNextInnerFuture();

}

});

onCanceled(m_innerFutureWatcher, [this] {

this->reportCanceled();

});

onResultReadyAt(m_innerFutureWatcher, [this] (int index) {

this->reportResult(m_currentInnerFuture.resultAt(index));

});

m_innerFutureWatcher->setFuture(m_currentInnerFuture);

this->reportStarted();

}
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These are all the functions required for the QFuture to be a monad. Other useful
functions that we defined for the reactive streams like filtering can also be easily
implemented in a similar manner.

C.3 Void future

A special type of a future is a future that does not return any value but only
communicates that an asynchronous operation has finished – a void future. All the
future implementations we mentioned in Chapter 3 including QFuture allow the type
parameter to be void. While reactive streams can not be defined as streams of void
values since the void type does not have a value, void futures are often used in
practice to denote that a process has been finished.

All the previously implemented transformations of the QFuture require the future
to have regular values. In C++, void is not a regular type [Cal16] which means
that the previously defined constructs will not work on QFuture<void>. In order
to support void futures, we need to create specializations for all of the previous
functions and classes we have created.

For the constructor function, the specialization is fairly trivial – we just need
to create a QFutureInterface and immediately report that it is finished without
previously setting a value:

QFuture<void> makeReadyFuture()

{

QFutureInterface<void> interface;

auto future = interface.future();

interface.reportStarted();

interface.reportFinished();

return future;

}

Some specializations will be straight-forward like the makeReadyFuture, but most
will not. In some cases, the specializations will require some thinking. Consider
the transform stream modifier. When we look at the types involved, we have
the QFuture<T> instance that we need to transform, and we have the resulting
QFuture<R>, where R is the return type of the transformation function.
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With regard to void futures, we have four separate cases that need to be covered:

• Both T and R are regular types
• Only T is regular, R is void

• T is void and R is regular
• Both T and R are void

The first case is already covered. For other cases, we need to cover what trans-
form means. For example, when R is void, we can not emit the transformed values.
Does that mean that we do not need to call the transformation function at all?
Similarly, if T is void, we can never get a value to transform. Does that mean that
the transformation function needs not to be called?

These questions do not have a single correct answer, but we can choose the ones
that fit the most common use-cases.

If the return type of the transformation is void, the most common use-case is
probably that it is a sink function (see Section 3.2.1.2) and that the developer is
only interested in when all the asynchronous operations have completed. In this
case, the obvious choice is to call the transformation on every value coming from
the source QFuture instance.

If the source future is a void future, then we will never receive an event that a
new value appeared, but the developer will still expect the transformation function
to be executed. The only choice we have is to execute the transformation function
when the source future emits that it has finished.

This means that we need to create specializations for both the function that
reports new values and for the function that handles the finished event of the source
future.

void setFutureResultOnFinished(std::true_type, /* T is void */

std::true_type /* R is void */)

{

if (!m_future.isCanceled()) { no value, no result to create,

m_transformation(); but it should still call the

} transformation function

}

void setFutureResultOnFinished(std::true_type, /* T is void */

std::false_type /* R is not void */)

{

164



APPENDIX C. EXTENDING THE QFUTURE

if (!m_future.isCanceled()) { pretending that the completion

this->reportResult( of the source future instance

m_transformation()); actually emits a void value

}

}

template <typename Other>

void setFutureResultOnFinished(

std::false_type, Other) If the source future is not a

{ void future, it needs no special

} handling of the completion event

void setFutureResultAt(int index,

std::false_type, /* T is not void */

std::true_type /* R is void */)

{

m_transformation( nothing to do with the value,

m_future.resultAt(index)); but we still want to call

the transformation function

}

void setFutureResultAt(int index,

std::false_type, /* T is not void */

std::false_type /* R is not void */)

{

this->reportResult(

applyTransformation(m_future.resultAt(index)));

}

template <typename Other>

void setFutureResultAt(int, std::true_type, Other) {}

QFuture<result_type> start()

{

m_futureWatcher.reset(new QFutureWatcher<_In>());
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onFinished(m_futureWatcher, [this] {

setFutureResultOnFinished(in_type_is_void(),

result_type_is_void());

this->reportFinished();

});

onCanceled(m_futureWatcher, [this] { this->reportCanceled(); });

onResultReadyAt(m_futureWatcher, [this] (int index) {

setFutureResultAt(index, in_type_is_void(),

result_type_is_void());

});

m_futureWatcher->setFuture(m_future);

this->reportStarted();

return this->future();

}

As this example shows, in order to support void futures, a significant effort is
required, but the work is mostly straight-forward. Once we decide what a specific
transformation means in the context of void futures, the code can easily be written.

C.4 The AsynQt library

This was a short demonstration of how concepts presented in this dissertation can
be applied to an independent software library and a non-standard design of a fu-
ture value concept. A more complete implementation of various extensions for the
QFuture type can be found in the AsynQt library2 developed as a part of this disser-
tation.

2KDE AsynQt library –https://cgit.kde.org/asynqt.git/
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Изјава о ауторству
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број уписа                   2029/2009                             _______________________________

Изјављујем

да је докторска дисертација под насловом 

Functional and imperative reactive programming based on the generalization of the          
continuation monad in the C++ programming language                                                       
(  Функционално и императивно реактивно програмирање употребом        
генерализације монаде наставка у програмском језику   C  ++  )            
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