UNIVERZITET U BEOGRADU TEHNOLOŠKO-METALURŠKI FAKULTET

Darko R. Jaćimovski

DISKONTINUALNI GRANIČNI SLOJ I ANALOGIJE PRENOSA U PAKOVANIM, FLUIDIZOVANIM I TRANSPORTNIM SISTEMIMA TEČNOST-ČESTICE

Doktorska disertacija

Beograd, 2017

MENTORI:

Dr Nevenka Bošković Vragolović redovni profesor Tehnološko-metalurškog fakulteta Univerziteta u Beogradu

Dr Radmila Garić Grulović naučni savetnik Institut za hemiju, tehnologiju i metalurgiju Univerziteta u Beogradu

ČLAN KOMISIJE:

Dr Rada Pjanović vanredni profesor Tehnološko-metalurškog fakulteta Univerziteta u Beogradu

DATUM ODBRANE:

Izrada ovog rada je višestruko i nesebično pomognuta od strane kolega i profesora.

Poseban vid zahvalnosti bih uputio prof. Nevenki Bošković-Vragolović koja je ujedno i mentor ovog rada na nesebičnoj pomoći i stručnosti koju poseduje i koju velikodušno prenosi.

Zahvalnost takođe dugujem i Naučnoj savetnici Radmili Garić-Grulović koja je takođe mentor ovog rada, jer je svojim velikim naučnim iskustvom bila neiscrpna podrška na putu stvaranja ovog rada.

Na stručnoj i kolegijalnoj podršci zahvalio bih se takođe prof. Radi Pjanović koja je član komisije i mojim dragim kolegama iz IHTM –a, kao i prof. Željku Grbavčiću.

Posebanu zahvalnost dugujem svojoj porodici na razumevanju, podržavanju i nesebičnom davanju. Zahvaljujući tome ovaj rad ima i drugi ne naučni smisao. "Kasno je, sjećanja, uzalud se javljate, beskorisne su vaše nemoćne utjehe i podsjećanja na ono što je moglo da bude, jer što nije bilo, nije ni moglo da bude. A uvijek izgleda lijepo ono što se nije ostvarilo."

Meša Selimović-Derviš i smrt

Posvećeno datumima 30.04.2013 i 02.06.2004

DISKONTINUALNI GRANIČNI SLOJ I ANALOGIJE PRENOSA U PAKOVANIM, FLUIDIZOVANIM I TRANSPORTNIM SISTEMIMA TEČNOST-ČESTICE

REZIME

U ovom radu eksperimentalno je ispitivan diskontinualni granični sloj i analogije prenosa količine kretanja, toplote i mase u fluidizovanim i pakovanim slojevima i pri hidrauličkom transportu sistema tečnost-čestice. Cilj ovog rada je upravo povezivanje karakteristika graničnog sloja sa prenosom količine kretanja, toplote i mase, sa akcentom na analogije između ovih prenosa. Fenomenološkim pristupom ovoj problematici, daje se doprinos koji bi olakšao teorijsko razmatranje višefaznih sistema tečnost-čestice (pakovani sloj, fluidizovani sloj, vertikalni transport), koji su izuzetno složeni.

Za izvođenje eksperimentalnog dela istraživanja u ovoj doktorskoj disertaciji korišćeni su različiti sistemi: standardne kolone različitih prečnika sa omotačem ili bez omotača, sa pakovanim, fluidizovanim i transportnim sistemima u cilju dobijanja parametara za koeficijente prenosa količine kretanja, mase i toplote i segmentirane kolone sa fluidizovanim česticama u cilju dobijanja parametara na koje utiče debljina graničnog sloja. Sva eksperimentalna merenja su izvršena u širokom opsegu hidrodinamičkih uslova: brzina strujanja fluida, veličina čestica čvrste faze i poroznosti slojeva.

Kao rezultat istraživanja razvijen je novi teorijski model za prenos mase i toplote zasnovan na analizi graničnog sloja koji se u disperznom sistemu formira od sudara do sudara čestica. Na osnovu modela dobijena je debljina difuzionog i termičkog graničnog sloja, izvedene su jednačine za korelisanje koeficijenata prelaza, Sherwood-ovog i Nusselt-ovog broja i faktora prenosa mase i toplote. Na osnovu uspostavljenog modela izvedena je jednačina za određivanje maksimalne vrednosti koeficijenata prelaza toplote i poroznosti sloja pri kojoj do nje dolazi.

U ovom radu je uspostavljena analogija prenosa količine kretanja, mase i toplote u partikulativno fluidizovanim slojevima zasnovana na modelu graničnog sloja. Postojeća analogija u fluidizovanom sloju, data na osnovu normalizovanih vrednosti koeficijenta trenja čestice-fluid i faktora prenosa mase proširena je na analogiju sva tri prenosa. Dobijeni model je upotrebljen za definisanje faktora prenosa mase i toplote pri minimalnoj fluidizaciji i transportu čestica.

U cilju praktične primene dobijenih rezultata urađena su eksperimentalna ispitivanja u fluidizovanim slojevima sa difuziono kontrolisanom hemijskom reakcijom gde su dobijeni faktori uvećanja prenosa zbog prisutne hemijske reakcije i uspostavljena je analogija prenosa.

Svi proračunati parametri su upoređeni sa eksperimentalnim i literaturnim podacima i prosečno srednje apsolutno odstupanje se kreće od 15-20%.

Nov pristup i jednačine koje su izvedene u ovom radu će u mnogome olakšati razumevanje fenomena prenosa u disperznim sistemima i predstavljaju dobru osnovu projektovanju uređaja sa ovim sistemima u cilju intenzifikacije procesa.

Ključne reči: Diskontinulani difuzioni granični sloj, Diskontinulani termički granični sloj, fluidizovan sloj, pakovan sloj, hidraulički transport, prenos mase, prenos toplote, analogija

Naučna oblast: Tehnološko inženjerstvo Uža nučna oblast: Hemijsko inženjerstvo UDK broj:

DISCONTINUED BOUNDARY LAYER AND TRANSPORT PHENOMENA ANALOGIES IN LIQUID-PARTICLES PACKED AND FLUIDIZED BEDS AND TRANSPORT SYSTEMS

ABSTRACT

In this thesis the discontinued boundary layer and the analogues among momentum, heat and mass transfer were examined experimentally for fluidized and packed beds and for hydraulic transport in liquid-particles systems. The aim of this paper is to connect the characteristics of the boundary layer with the momentum, heat and mass transfer, with an emphasis on analogies between these phenomena. Transport phenomena approach to this problem provides a contribution that facilitates theoretical description of multiphase liquid-particles systems (packed beds, fluidized beds, vertical transport), which are extremely complex.

Different experimental systems have been used to perform the research in this dissertation: standard columns of different diameters with or without heating jacket, with packed and fluidized beds and transport systems in order to obtain parameters for the momentum, heat and mass transfer coefficients, and segmented fluidized beds columns in order to obtain parameters influenced by the thickness of the boundary layer. All experimental measurements were performed in a wide range of hydrodynamic conditions: fluid velocities, solid particles sizes and bed voidages.

As a result of this research, a new theoretical model for mass and heat transfer s developed. Model is based on the analysis of the boundary layer, which in disperse systems forms between the two adjacent particles collisions. Based on the model, the thickness of the concentration and thermal boundary layer was obtained and the equations for correlating the transfer coefficients with Sherwood and Nusselt numbers and the mass and heat transfer factors were derived. On the basis of the established model, the equation for determining the maximum value of the heat transfer coefficient and the bed voidage for this value is derived.

In this thesis, the analogue based on the boundary layer model for the momentum, mass and heat transfer in particulate fluidized beds is established. The existing analogy for the fluidized beds, based on the normalized values of the friction coefficient fluid-particles and the mass transfer factor, has been extended to analogy for all three phenomena. The obtained model was used to define the mass and heat transfer factors at the minimum fluidization and transport of particles.

For the purpose of practical application of the obtained results, experimental research in fluidized beds with a diffusion-controlled chemical reaction were performed. The enhancement factors of the mass transfer coefficient due to the present chemical reaction were obtained and an analogue was established.

All calculated parameters are compared with experimental and literate data and average absolute deviation ranges from 15-20%.

The new approach and the equations derived in this dissertation will greatly facilitate the understanding of the transport phenomena in disperse systems and represent a good basis for equipment design in order of process intensification.

Key words: Discontinued concentration boundary layer, Discontinued thermal boundary layer, Fluidized bed, Packed bed, Hydraulic transport, Mass transfer, Heat transfer, Analogy

Scientific area: Technological engineering Scientific discipline: Chemical engineering UDC:

SADRŽAJ

Str.

Spisak slika	iv
Spisak tabela	xi
Upotrebljeni simboli	xiv
UVOD	1

LITERATURNI PREGLED

1.	Teor	ijske os	snove i pre	egled dosadašnjih istraživanja	4
	1.1.	Teorija	a granično	g sloja	4
		1.1.1.	Kontinua	ılni granični sloj	10
			1.1.1.1.	Debljina graničnog sloja i raspodela koncentracije	
				veličine koja se prenosi	12
			1.1.1.2.	Strujanje fluida preko ravne ploče	16
			1.1.1.3.	Strujanje fluida između paralelnih ploča i kroz cev	21
		1.1.2.	Diskonti	nualni granični sloj	23
			1.1.2.1.	Opstrujavanje cilindra	25
			1.1.2.2.	Opstrujavanje sfere	29
	1.2.	Disper	zni sistem	i fluid-čestice	34
		1.2.1.	Pakovani	i sloj	35
		1.2.2.	Fluidizov	vani sloj	
		1.2.3.	Vertikalr	ni transport	47
	1.3.	Analog	gije konve	ktivnog prenosa	51
		1.3.1.	Jednofaz	no strujanje	51
			1.3.1.1.	Reynolds-ova analogija	51
			1.3.1.2.	Prandtl–Taylor-ova analogija	52
			1.3.1.3.	Von Kármán-ova analogija	53
			1.3.1.4.	Chilton-Colburnova analogija	54
		1.3.2.	Strujanje	u disperznim sistemima	55
			1.3.2.1.	Analogija u pakovanim sistemima	55

1.3.2.2.	Analogija u fluidizovanim sistemima	56
1.3.2.3.	Analogija u transportnim sistemima	57

EKSPERIMENTALNA ISPITIVANJA

_

2.	Eksp	perimen	talna ispit	vanja prenosa količine	kretanja, mase i toplote	59
	2.1.	Eksper	rimentalna	ispitivanja u pakovano	m sloju	60
		2.1.1.	Eksperin	entalni sistem za ispiti	vanje prenosa mase	60
	2.2.	Eksper	rimentalna	ispitivanja u fluidizova	nom sloju	63
		2.2.1.	Eksperime	ntalni sistemi za ispitiv	anje prenosa mase	63
			2.2.1.1.	Metoda rastvaranja u s	sistemima bez i sa hemij	skom
				reakcijom		63
			2.2.1.2.	Elektrohemijska meto	da	67
		2.2.2.	Eksperime	ntalni sistem za ispitiva	nje prenosa toplote	70
	2.3.	Eksper	rimentalna	ispitivanja u vertikalno	om toku fluid-čestice	72
		2.3.1.	Eksperin	entalni sistem za ispiti	vanje prenosa mase u	
			transpor	mom sistemu		72
		2.3.2.	Eksperin	entalni sistem za ispiti	vanje prenosa toplote u	
			transport	nom sistemu		75
	2.4.	Karakt	teristika če	stica i fluida		77

REZULTATI I DISKUSIJA

3. Rezu	ıltati i d	liskusija	79
3.1.	Prenos	količine kretanja, mase i toplote u disperznim sistemima	
	tečnos	t-čestice	79
	3.1.1.	Prenos količine kretanja	79
	3.1.2.	Prenos mase	83
	3.1.3.	Prenos toplote	95
3.2.	Granič	ni sloj u disperznim sistemima tečnost-čestice	105
	3.2.1.	Difuzioni granični sloj i prenos mase u fluidizovanom sistemu	
		tečnost-čestice	108

	3.2.2.	Termički granični sloj i prenos toplote u fluidizovanom sistemu	
		tečnost-čestice	118
3.3.	Prenos	s mase sa hemijskom reakcijom u disperznim sistemima	135
3.4.	Verifil	kacija modela u pakovanom sloju i vertikalnom transportu	150
	3.4.1.	Verifikacija modela u pakovanom sloju	150
	3.4.2.	Verifikacija modela u vertikalnim transportnim sistemima	
		čvrsto-tečno	156
3.5.	Analog	gije prenosa količine kretanja, mase i toplote u disperznim sistemima	a .162
Zaključ	ci		177
Literatı	ıra		181
Prilozi			205

Spisak slika

Slika 1.1.	Formiranje graničnog sloja na ravnoj i zakrivljnoj površini koja miruje
Slika 1.2.	Struktura graničnog sloja /Cvijović & Bošković-Vragolović,2015
Slika 1.3.	Granični slojevi pri laminarnom i turbulentnom toku fluida /Aguiar,2006/
Slika 1.4.	Debljina graničnog sloja iznad ravne ploče /Anderson et al., 2001/
Slika 1.5.	Odnos debljina hidrodinamičkog, termičkog i difuzionog laminarnog graničnog sloja ($\Pr > 1$, $Sc > 1$)
Slika 1.6.	Grafički prikaz Blauzius-ovog rešenja jednačine
Slika 1.7.	Strujanje kroz simetričan sistem u oblasti formiranog graničnog sloja, profil brzina /Cvijović & Bošković-Vragolović, 2015/
Slika 1.8.	Opstrujavanje zakrivljene površine i odvajanje graničnog sloja /Cvijović & Bošković-Vragolović, 2015/
Slika 1.9.	<i>Opstrujavanje cilindra pri Re=2000 /Van Dyuke, 1982/</i>
Slika 1.10.	Promena koeficijenta otpora u zavisnosti od Reynolds-ovog broja za opstrujavanje glatkog cilindra /Welty et al., 2015/
Slika 1.11	Promena koeficijenta otpora u zavisnosti od Reynolds-ovog broja za opstrujavanje glatke sfere /Cvijović & Bošković-Vragolović,2015/
Slika 1.12.	Eksperimentalni prikaz različitih režima strijanja kod opstrujavanja sfere /Taneda, 1956/
Slika 1.13.	Satelitski snimak vremenskih prilika iznad Čileanskog ostrva "Robinson Kruso", 15 septembar 1999
Slika 1.14.	Disperzni sistemi tečno-čvrsto
Slika 1.15.	Kriva fluidizacije
Slika 1.16.	Zavisnost poroznosti od brzine, Richardson-Zaki-jeva zavisnost
Slika 1.17.	Poprečni presek kolone sa radijalnim raspodelom sondi za merenje temperature
Slika 2.1.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa količine kretanja i mase u pakovanom sloju

str.

Slika 2.2.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja	64
Slika 2.3.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja sa hemijskom reakcijom	66
Slika 2.4.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju elektrohemijskom metodom	68
Slika 2.5.	Napomsko-polarizaciona kriva rastvora bakar sulfata i natrijum sulfata pri protoku fluida od 3 dm ³ /min	69
Slika 2.6.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa toplote u fluidizovanom sloju	71
Slika 2.7.	Ekperimentalna aparatura za ispitivanje prenosa mase u vertikalnom toku smeše tečnost-čestice	73
Slika 2.8.	Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa toplote u vertikalnom toku smeše tečnost-čvrste čestice	75
Slika 3.1.	Zavisnost gradijenta pritiska od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transport $(d_p=2,98 \text{ mm})$	80
Slika 3.2.	Zavisnost gradijenta pritiska od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu $(d_p=1,20, 1,94 \ i 2,98 \ mm)$	81
Slika 3.3.	Zavisnost brzina fluida-poroznost u partikulativno fluidizovanom sloju i pri stešnjenom taloženju suspenzije čestica $/D_t=40$ mm, Grbavčić, 1989; $D_t=25,4$ mm, Garić-Grulović, 2006/	82
Slika 3.4.	Poređenje između eksperimentalnih vrednosti za koeficijent trenja fluid-čestice β , u partikulativno fluidizovanom sloju tečnost-čestice i vertikalnom toku fluida i čestica sa izračunatim vrednostima (d_p =1,94 mm)	83
Slika 3.5.	Zavisnost koeficijenta prelaza mase od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transport, za prečnik čestica $d_p=1,94$ mm	84
Slika 3.6.	Zavisnost koeficijenta prelaza mase od poroznosti u partikulativno fluidizovanom sloju ($d_p=1,94$ mm)	86
Slika 3.7.	Uzajamna zavisnost brzine fluida, poroznosti i koeficijenta prelaza mase u fluidizovanom sloju tečnost-čestice ($D_c=34$ mm; sl. 2.4; prenos mase elektrohemijskom metodom; $d_p=1,94$ mm)	87
Slika 3.8.	Zavisnost koeficijenta prelaza mase od površinske brzine fluida u partikulativno fluidizovanom sloju ($d_p = 1,94mm$)	88

Slika 3.9.	Zavisnost Sherwood-ovog broja od Reynolds-ovog broja u Pakovanom sloju, fluidizovanom sloju i vertikalnom transport fluida i čestica ($d_p = 1,94$ mm)	89
Slika 3.10.	Zavisnost Sherwood-ovog broja Sh od Reynolds-ovog broja Re u fluidizovanom sloju	9(
Slika 3.11.	Promena Sherwood-ovog broja za čestice sa promenom poroznosti u fluidizovanom sloju	91
Slika 3.12.	Zavisnost faktora prenosa mase od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transport fluida i čestica	92
Slika 3.13.	Zavisnost faktora prenosa mase j _D od površinske brzine u fluidizovanom sloju	93
Slika 3.14.	Uzajamna zavisnost brzine fluida, poroznosti i faktora prenosa mase u fluidizovanom sloju tečnost-čestice (metoda rastvaranja; $d_p=1,94mm$)	94
Slika 3.15.	Zavisnost $j_D = f(Re_p)$ u partikulativno fluidizovanom sloju (metoda rastvaranja; $d_p = 1,94$ mm) – poređenje sa literaturnim korelacijama	95
Slika 3.16.	Zavisnost koeficijenta prelaza toplote zid-fluid od površinske brzine fluida u partikulativno fluidizovanom sloju i vertikalnom transportu čestica	90
Slika 3.17.	Zavisnost koeficijenta prelaza toplote zid-fluid od površinske brzine fluida u partikulativno fluidizovanom sloju	97
Slika 3.18.	Uzajamna zavisnost brzine fluida, poroznosti i koeficijenta prelaza toplote u fluidizovanom sloju tečnost-čestice $(d_p=1,20 \text{ mm}) \dots \dots$	98
Slika 3.19.	Zavisnost koeficijenta prelaza toplote zid-fluid od poroznosti u partikulativno fluidizovanom sloju ($d_p=1,94 \text{ mm}$)	99
Slika 3.20.	Promena Nusselt-ovog broja sa promenom poroznosti u fluidizovanom sloju i vertikalnom transportu $(d_p = 1,94) \dots \dots$	100
Slika 3.21.	Zavisnost Nusselt-ovog broja za česticu Nu _p od površinske brzine fluida u partikulativno fluidizovanom sloju	101
Slika 3.22.	Zavisnost faktora prenosa toplote od površinske brzine fluida u fluidizovanom sloju i vertikalnom transportu fluida i čestica	102
Slika 3.23.	Zavisnost faktora prenosa toplote j _H od površinske brzine fluida u fluidizovanom sloju	103
Slika 3.24.	Faktor prenosa toplote u partikulativno fluidizovanom sloju $(d_p=1,94 \text{ mm})$ u funkciji Reynolds-ovog broja za čestice	104

Slika 3.25.	Zavisnost faktora prenosa toplote i mase od površinske brzine fluida u fluidizovanom sloju	105
Slika 3.26.	Formiranje graničnog sloja kod fluidizovanog sistema tečnost- čvrsto	106
Slika 3.27.	Prikaz podužnog preseka srednje vrednosti debljine graničnog sloja na rastojanju L	107
Slika 3.28.	Prikaz poređenja podužnih preseka površina graničnog sloja u sistemu sa česticama i bez čestica	107
Slika 3.29.	Zavisnost koeficijenta prelaza mase od površinske brzine fluida u fluidizovanom sloju ($d_p = 2,98 \text{ mm}$)	110
Slika 3.30.	Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.15 za koeficijent prelaza mase u fluidizovanom sloju	111
Slika 3.31.	Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.16 za Sherwood-ov broj za česticu u fluidizovanom sloju	112
Slika 3.32.	Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju	113
<i>Slika 3.33</i> .	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju $(d_p=1,20)$ sa literaturnim korelacijama	114
Slika 3.34.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju ($d_p=1,94$ mm) sa literaturnim korelacijama	115
Slika 3.35.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju ($d_p=2.98$ mm) sa literaturnim korelacijama	116
Slika 3.36.	Formiranje laminarnog hidrodinamičkog i termičkog graničnog sloja preko ravne ploče (Pr>1)	118
Slika 3.37.	Zavisnost korekcije K u odnosu na odnos (d_p/D_c)	121
Slika 3.38.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju ($d_p=0,803$ mm) sa literaturnim korelacijama	124
Slika 3.39.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju ($d_p=1,20$ mm) sa literaturnim korelacijama	125
Slika 3.40.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju ($d_p=1,94$ mm) sa literaturnim korelacijama	126

Slika 3.41.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju ($d_p=2,98mm$) sa literaturnim korelacijama
Slika 3.42.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.36 za Nusselt-ov broj za česticu u fluidizovanom sloju za čestice prečnika 0,803mm; 1,20 mm; 1,94 mm; 2,98 mm
Slika 3.43.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju ($d_p=0,803$ mm) sa literaturnim korelacijama
Slika 3.44.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju ($d_p=1,20$ mm) sa literaturnim korelacijama
Slika 3.45.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju ($d_p=1,94$ mm) sa literaturnim korelacijama
Slika 3.46.	Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju ($d_p=2,98$ mm) sa literaturnim korelacijama
Slika 3.47.	Difundovanje reaktanata u sistemu bez i sa hemijskom reakcijom [a) sistem bez hem. reakcije, b) sistem sa hem. Reakcijom, c) profil koncentracije reaktanata A i B]
<i>Slika 3.48</i> .	Zavisnost gradijenta pritiska od površinske brzine za čestice prečnika 1,94mm
Slika 3.49.	Zavisnost poroznosti od površinske brzine u fluidizovanom sistemu bez i sa hemijskom reakcijom za čestice prečnika 2,98mm
Slika 3.50.	Zavisnost koeficijenta prelaza mase k od površinske brzine za jednofazni i fluidizovan sistem za čestice prečnika 1,20 mm
Slika 3.51.	Uticaj prečnika čestice na koeficijent prelaza mase k u funkciji površinske brzine
Slika 3.52.	Poređenje eksperimentalnih i literaturnih podataka za fluidizovani sloj bez hemijske reakcije ($d_p=1,20 \text{ mm}$)
Slika 3.53.	Poređenje eksperimentalnih i literaturnih podataka za fluidizovani sloj sa hemijskom reakcijom $(d_p=1,20 \text{ mm})\dots\dots\dots\dots\dots$
Slika 3.54.	Zavisnost faktora prenosa mase od površinske brzine za prečnik čestica $d_p=1,20 \text{ mm}$
<i>Slika 3.55</i> .	Zavisnost faktora prenosa mase od površinske brzine za čestice $d_p=1,94mm$
Slika 3.56.	Zavisnost faktora prenosa mase od površinske brzine za prečnik

	$\check{c}estica \; d_p = 2,98 \; mm$
Slika 3.57.	Faktor prenosa mase za čestice prečnika 1,20mm, 1,94mm, 2,98mm za fluidizovan sistem bez i sa hemijskom reakcijom
Slika 3.58.	Poređenje eksperimentalnih podataka i modela (jedn.3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika $d_p=0,803$ mm
Slika 3.59.	Poređenje eksperimentalnih podataka i modela (jedn. 3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika $d_p=1,20$ mm
Slika 3.60.	Poređenje eksperimentalnih podataka i modela (jedn. 3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika $d_p=1,94$ mm
<i>Slika 3.61</i> .	Poređenje eksperimentalnih podataka i modela (jedn. 3.16)
Slika 3.62.	Poređenje eksperimentalnih podataka i modela (jedn. 3.17)
Slika 3.63.	Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice prečnika 1,20mm
Slika 3.64.	Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice 1,94mm
<i>Slika 3.65</i> .	Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice prečnika 2,98 mm
Slika 3.66.	Upoređivanje modela (jedn. 3.16) sa podacima za vertikalni transport za čestice prečnika 1,94 mm
Slika 3.67.	Upoređivanje modela (jedn. 3.17) sa podacima za vertikalni transport za čestice prečnika 2,98 mm
Slika 3.68.	Zavisnost faktora prenosa toplote i koeficijenta trenja od poroznosti sloja ($d_p=2,98mm$)
Slika 3.69.	Određivanje faktora prenosa toplote u tačkama minimalne fluidizacije i odnošenja za čestice prečnika 0,803mm;1,20mm; 1,94mm i 2,98mm
Slika 3.70.	Određivanje faktora prenosa mase u tačkama minimalne fluidizacije i odnošenja za čestice prečnika 1,20mm ; 1,94mm i 2,98mm
Slika 3.71.	Funkcija zamene za bezdimenzioni član $\frac{\sqrt{1-\varepsilon}}{\varepsilon}$
Slika 3.72.	Zavisnost bezdimenzionog faktora prenosa mase, toplote i koeficijenta trenja fluid-čestice od bezdimenzione poroznosti
Slika 3.73.	Analogija između prenosa toplote i mase za čestice prečnika 1,20mm
Slika 3.74.	Analogija između prenosa toplote i mase za čestice

	prečnika 1,94mm	172
Slika 3.75.	Analogija između prenosa toplote i mase za čestice prečnika 2,98 mm	173
Slika 3.76.	Određivanje faktora prenosa mase pri brzini minimalne fluidizacije i brzini odnošenja za čestice prečnika d _p =1,20mm, 1,94mm, 2,98mm u eksperimentima sa hemijskom reakcijom	174
Slika 3.77.	Analogija prenosa u bezdimenzionom obliku između količine kretanja i mase za fluidizovan sistem sa hemijskom reakcijom	175

Spisak tabela

Tabela 1.1.	Debljina graničnog sloja δ, pri strujanju vazduha i vode preko ravne ploče /Schlichting & Gersten, 2017/
Tabela 1.2.	Pregled najznačajnijih i najčešče korišćenih literaturnih korelacija za prenos toplote za pakovan sloj
Tabela 1.3.	Pregled najznačajnijih i najčešče korišćenih literaturnih korelacija za prenos mase za pakovan sloj
Tabela 1.4.	Pregled najznačajnijih i najčešče korišćenih literaturnih korelacija za prenos toplote fluidizovan sloj
Tabela 1.5.	Empirijske korelacije za prenos mase u fluidizovanim sistemima
Tabela 2.1.	Karakteristika čestica korišćenih u eksperimentima
Tabela 3.1.	Odstupanje eksperimentalnih podataka od modela i literaturnih korelacija za čestice prečnika d _p =1,20mm
Tabela 3.2.	Odstupanje eksperimentalnih podataka od modela i literaturnih korelacija za čestice prečnika d _p =1,94 mm
Tabela 3.3.	Odstupanje eksperimentalnh podataka od modela i literaturnih korelacija za čestice prečnika $d_p=2,98$ mm
Tabela 3.4.	Zavisnost korekcije modela K od prečnika čestice
Tabela 3.5.	Srednje apsolutno odstupanje eksperimentalnh podataka od modela i literaturnih korelacija za sve korišćene prečnike čestica u eksperimentu
Tabela 3.6.	Poređenje eksperimentalnih vrednosti sa izračunatim vrednostima preko modela (3.38 i 3.39) i modela Jamilahmadi-ja za ε_{max} i α_{max}
Tabela 3.7.	Srednje apsolutno odstupanje eksperimentalnih od literaturnih podataka izraženo u procentima
Tabela 3.8.	Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje za jednofazni tok
Tabela 3.9.	Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje za fluidizovan sloj
Tabela 3.10.	Srednje apsolutno odstupanje eksperimentalnih od izračunatih

xi

	vrednosti (jedn. 3.53)
Tabela 3.11.	Srednje apsolutno odstupanje i relativna greška modela (jedn. 3.15) od eksperimentalnih podataka za pakovan sloj
Tabela 3.12.	Srednje apsolutno odstupanje modela (jedn. 3.15) od eksperimentalnih podataka za koeficijent prelaza mase pri vertikalnom transport
<i>Tabela 3.13</i> .	Eksperimentalno određene vrednosti i vrednosti koje predviđa jednačina za faktor prenosa toplote u tačkama minimalne fluidizacije i odnošenja
Tabela 3.14.	Eksperimentalno određene vrednosti i vrednosti koje predviđaju jednačine (3.63-3.65) za prenos mase u tačkama minimalne fluidizacije i odnošenja
Tabela 3.15.	Srednje apsolutno odstupanje eksperimentalnih i izračunatih vrednosti bezdimenzionih veličina
Tabela 3.16.	Uporedni prikaz izvedenih jednačina koje definišu prenos toplote i mase
Tabela 3.17.	Vrednosti za j _{Dmf} i j _{D1} određene ekstrapolacijom preko jednačina 3.64 i 3.63 u sistemu sa hemijskom reakcijom

xii

PRILOG

Prenos količine kretanja u normalnom pakovanom sloju (eksp. Sistem: slika 2.1)	206
Prenos mase u gusto pakovanom sloju, (eksp.sistem:slika 2.1)	209
Prenos mase ugusto pakovanom sloju, podaci za prenos mase (eksperimentalna aparatura na slici 2.1)	210
Prenos mase u pakovanom i fluidizovanom sloju (eksp.sistem: slika 2.1)	212
Prenos toplote u fluidizovanom sloju (eksp.sistem: slika 2.6)	214
Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)	218
Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)	219
Prenos mase u fluidizovanom sloju elektrohemijskom metodom (eksp. sistem: slika 2.4)	220
Prenos mase u fluidizovanom sloju sa hemijskom reakcijom (eksp. sistem: slika 2.3)	223
Prenos količine kretanja u vertikalnom transport (eksp.sistem: slika 2.8)	224
Prenos toplote u vertikalnom transportu (eksp. sistem: slika 2.8)	226
Prenos mase u vertikalnom transportu (eksp. sistem: slika 2.7)	228
Prenos mase u vertikalnom transportu (eksp. sistem: slika 2.7)	231
	Prenos količine kretanja u normalnom pakovanom sloju (eksp. Sistem: slika 2.1)Prenos mase u gusto pakovanom sloju, (eksp.sistem:slika 2.1)Prenos mase ugusto pakovanom sloju, podaci za prenos mase (eksperimentalna aparatura na slici 2.1)Prenos mase u pakovanom i fluidizovanom sloju (eksp.sistem: slika 2.1)Prenos toplote u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2)Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.3)Prenos mase u vertikalnom transport (eksp. sistem: slika 2.3)Prenos mase u vertikalnom transportu (eksp. sistem: slika 2.8)Prenos mase u vertikalnom transportu (eksp. sistem: slika 2.7)Prenos mase u vertikalnom transportu (eksp. sistem: slika 2.7)

Upotrebljeni simboli

- A_t poprečni presek transportne kolone, m^2
- *a* termička difuzivnost, m^2/s
- c koncentracija veličine koja se prenosi
- c_k koncentracija količine kretanja, $(kg \cdot (m/s))/m^3$
- c_{T} koncentracija toplote, J/m^{3}
- c_A koncentracija mase, mol/m^3
- $c_{A,z}$ koncentracija komponente na zidu, mol/m^3
- $c_{A,0}$ koncentracija komponente u jezgru toka, mol/m^3
- c_p specifični toplotni kapacitet, $J/(kg \cdot K)$
- c_{pf} toplotni kapacitet fluida, $J/(kg \cdot K)$
- c_{pp} toplotni kapacitet čestica, $J/(kg \cdot K)$
- c_r koncentracija rastvora elektrolita, mol / m^3
- c_i koncentracija veličine koja se prenosi na granici faze
- c_o nailazna (maksimalna) koncentracija veličine koja se prenosi
- c_D koeficijent otpora usled oblika
- d_p prečnik čestica, m
- \mathscr{D}_{AB} difuzivnost, m^2/s
- D_{AB} koeficijent difuzije, m^2/s
- D_c prečnik kolone, m
- D_t prečnik transportne cevi, m
- F_{tr} sila trenja, N
- F gradijent pritiska usled trenja smeše o zid transportne cevi, Pa/m
- F_f gradijent pritiska usled trenja fluid-zid transportne cevi, Pa/m

- F_p gradijent pritiska usled trenja čestice-zid transportne cevi, Pa/m
- F_{w} gradijent pritiska usled trenja pseudofluida-zid transportne cevi, Pa/m
- Fr Froude-ov broj, $(\nu/(gD_t))^{1/2}$
- f_f koeficijent trenja fluid-zid transportne cevi
- f_p koeficijent trenja čestice-zid transportne cevi
- G_f maseni protok fluida, kg / s
- G_n maseni protok čestica, kg / s
- g ubrzanje zemljine teže, m/s^2
- Gr Grashof-ov broj, $\beta d^3 g \rho^2 (T_z T_f) / \mu^2$
- Ga Galileo-v broj, $d_p^3 \rho^2 g / \mu^2$
- h geometrijska visina, m
- H visina sloja, m
- *I* izvor veličine koja se prenosi
- I_x izvor veličine koja se prenosi u x pravcu
- j_H faktor prenosa toplote, Nu / (Re Pr^{1/3})
- j_D faktor prenosa mase, Sh / (Re Sc^{1/3})
- $j_{D,r}$ faktor prenosa mase u sistemu sa hem. reakcijom
- j_{Dmf} faktor prenosa mase u tački minimalne fluidizacije
- j_{D1} faktor prenosa mase u tački odnošenja
- j_{Hmf} faktor prenosa toplote u tački minimalne fluidizacije
- j_{H1} faktor prenosa toplote u tački odnošenja
- j_D^* bezdimenzioni faktor prenosa mase
- $j_{D,r}^*$ bezdimenzioni faktor prenosa mase u sistemu sa hem. reakcijom
- j_{H}^{*} bezdimenzioni faktor prenosa toplote
- k koeficijent prelaza mase, m/s
- k_r koeficijent prelaza mase sa hemijskom reakcijom, m/s
- L rastojanje između dva susedna sudara, m

- L_H dužina na kojoj se razmenjuje toplota, *m*
- $L_{t,Q}$ dužina na kojoj se razmenjuje masa, m
- Le Lewis-ov broj, Sc/Pr
- M_{o} koeficijent u jednačini binomne raspodele
- *m* masa supstance, *kg*
- n_A količina supstance, *mol*
- n Richardson-Zaki-jev koeficijent
- Nu Nusselt-ov broj, $\alpha D / \lambda_f$
- Nu_p Nusselt-ov broj za česticu, $\alpha d_p / \lambda_f$
- Nu_s Nusselt-ov broj u Kramers-ovoj jednačini, $2r\alpha/\lambda$
- p pritisak, Pa
- Pr Prandtl-ov broj, v/a
- \Pr_s Prandtl-ov broj u Kramers-ovoj jednačini, $(vc_p \rho)/\lambda$
- \dot{q}_V izvor/ponor toplote, $J/(m^3 s)$
- r_A brzina hemijske reakcije, $mol/(m^3s)$
- R prečnik sfere, m
- Re_{x} lokalna vrednost Reynolds-ovog broja, $(xU\rho)/\mu$
- Re_{o} Reynolds-ov broj za opstrujavanje, $(d_{o}U\rho)/\mu$
- Re_p Reynolds-ov broj za česticu, $(d_p U \rho) / \mu$
- $\operatorname{Re}_{\it mf}$ Reynolds-ov broj u tački minimalne fluidizacije, $(d_p U_{\it mf} \rho) / \mu$
- Re_t Reynolds-ov broj pri brzini odnošenja, $(d_p U_t \rho)/\mu$
- Re_{s} Reynolds-ov broj u Kramers-ovoj jednačini, (2rv)/v
- Sh Sherwood-ov broj, kD_c / D_{AB}
- Sh_p Sherwood-ov broj za česticu, kd_p / D_{AB}
- $\mathrm{Sh}_{p,r}$ Sherwood-ov broj za česticu u sistemu sa hem. reakcijom, $k_r d_p / D_{AB}$
- Sc Schmidt-ov broj, ν / D_{AB}
- St Stanton-ov broj, Nu / (Re Pr)

- St_{D} Stanton-ov difuzioni broj, Sh/(ReSc)
- t vreme, s
- T temperatura, °C
- T_z temperatura zida, °C
- T_0 temperatura u jezgru toka, °C
- u lokalna brzina u x-pravcu, m/s
- u_0 brzina u jezgru toka, m/s
- u_i brzina na zidu, m/s
- u^+ bezdimenziona brzina
- u frikciona brzina, m/s
- U površinska brzina, m/s
- U_{mf} minimalna brzina fluidizacije, m/s
- U_t brzina odnošenja, m/s
- v lokalna brzina u y-pravcu, m/s
- V zapremina, m^3
- \dot{V} zapreminski protok, m^3 / h
- *x*, *y*, *z* koordinate Decart-ovog sistema
- y^+ bezdimenziono rastojanje

Oznake alfabeta:

- α koeficijent prelaza toplote, $W / (m^2 K)$
- α_{\max} maksimalni koeficijent prelaza toplote, $W / (m^2 K)$
- β koeficijent trenja fluid-čestice, kg / m^4
- β_{mf} koeficijent trenja fluid-čestice u tački minimalne fluidizacije, kg / m^4
- β^* bezdimenzioni koeficijent trenja čestice-fluid
- Θ bezdimenziona raspodela koncentracije

- δ debljina graničnog sloja, *m*
- δ_x lokalna debljina graničnog sloja, m
- δ_p debljina graničnog sloja u disperznim sistemima, m
- δ_r debljina graničnog sloja sa hemijskom reakcijom, m
- δ_h debljina hidrodinamičkog graničnog sloja, m
- δ_{T} debljina termičkog graničnog sloja, *m*
- δ_A debljina difuzionog graničnog sloja, m
- ε poroznost sloja
- ε_A turbulentna difuzivnost komponente A
- ε_{mf} poroznost sloja u tački minimalne fluidizacije
- ε_{max} poroznost pri maksimalnom prenosu toplote
- ε_h turbulentna difuzivnost količine kretanja
- ε_T turbulentna difuzivnost termičke energije
- $\varepsilon_{\rm ps}$ poroznost pakovanog sloja
- φ sopstveni fluks
- ϕ uopšteni protočni fluks
- λ koeficijent toplotne provodljivosti, W / (mK)
- λ_p koeficijent toplotne provodljivosti čestice, W / (mK)
- η parametar u Blausius-ovom rešenju
- μ dinamički viskozitet, $Pa \cdot s$
- μ_z dinamički viskozitet uz površinu zida, $Pa \cdot s$
- v kinematski viskozitet, m^2/s
- ζ bezdimenziono rastojanje
- ρ gustina, kg / m^3
- ρ_p gustina čestica, kg / m^3
- $\rho_{A,s}$ masena koncentracija reaktanta A, kg / m^3
- $\rho_{B,o}$ masena koncentracija reaktanta B, kg / m^3

Greška merenja:

 $\sigma_A = 100 \cdot \left(\frac{1}{n} \sum_{1}^{n} \frac{|X_{\text{exp.}} - X_{izr.}|}{X_{\text{exp.}}} \right) - \text{ srednje apsolutno odstupanje, \%}$

UVOD

Istraživanje u oblasti prenosa količine kretanja, toplote i mase je praktično nemoguće bez razumevanja graničnog sloja. Svi prenosi koji se ostvaruju u disperznim sistemima tečnost-čestice čiji su glavni predstavnici: pakovan sloj, fluidizovan sloj i vertikalni transport su u osnovi posledica formiranja graničnog sloja koji uslovljavaju prenos. U dosadašnjoj literaturi su dosta često proučavani ovi prenosi, a celokupan doprinos ovoj tematici je zapravo veoma veliki broj eksperimentalnih korelacija koje definišu određen prenos u datom sistemu. Razlog tome su složeni strujni sistemi u kojima je teško pronaći teorijsko objašnjenje, što ima za posledicu relativno mali broj radova sa teorijskim prilazom problemu. Teorijsko razumevanje postojanja graničnog sloja u disperznim sistemima od velikog je značaja, jer na taj način se stvara veza između graničnog sloja i prenosa količine kratanja, toplote i mase. Analiza nastajanja graničnog sloja i njegova veza sa prenosima količine kretanja, toplote i mase predstavljaju preduslov za razumevanje analogije između prenosa u disperznim sistemima, na sličan način kao pri jednofaznom strujanju. Teorijsko razumevanje analogija u disperznim sistemima pruža mogućnost lakšeg projektovanja procesa, u ovakvim sistemima, kao i mogućnost primene principa intezifikacije u ovakvim procesima. Sa druge strane pružaju ustanovljene principe za teorijsko razmatranje ostalih vrsta disperznih sistema (npr. barbotažnih sistema i sl.). Ova znanja su potrebna za razvoj novih ili poboljšanje postojećih tehnologija u hemijskoj, prehrambenoj, farmaceutskoj i petrohemijskoj industriji, za razvoj biotehnoloških procesa i opreme, opreme za zaštitu životne sredine, opreme za tehnologiju u oblasti sinteze novih materijala i drugo.

U razvoju mehanike fluida dugo je postajala podeljenost između matematičkog pristupa opstrujavanju i praktične hidraulike. Spoj je napravljen pojavom teorije graničnog sloja. Strujanje kroz disperzne sisteme teži da sledi taj primer, tako da ovaj rad upravo pruža vezu između teorije i prakse u ovakvim sistemima. Predmet ovog rada je istraživanje graničnih slojeva i njihova veza sa prenosima količine kretanja, topote i mase u pakovanim, fluidizovanim i transportnim sistemima. Konačni cilj ovog istraživanja je da se na osnovu analiza graničnog sloja dođe do analogija između sva tri prenosa u disperznim sistemima.

Rad se sastoji iz šest delova. Prva deo rada ima četiri poglavlja. U prvom poglavlju su analizirani kontinualni granični sloj, debljina graničnog sloja i raspodela koncentracije veličine koja se prenosi. Takođe je prikazana analiza strujanja preko ravne ploče, između paralelnih ploča i kroz cev. Drugo poglavlje obuhvata analizu diskontinualnog graničnog sloja, odvajanje graničnog sloja, opstrujavanje sfere i cilindra. U trećem poglavlju opisani su disperzni sistemi: pakovani, fluidizovani i transportni sa prikazom jednačina za prenos količine kretanja, toplote i mase. Četvrto poglavlje analizira analogije prenosa u jednofaznim i disperznim sistemima.

Drugi deo rada obuhvata prikaz eksperimentalnih aparatura i tehnika merenja sa kojima su prikupljeni podaci za istraživanje u ovom radu.

Treći deo rada daje rezultate dobijene u ovom radu i diskusiju rezultata i sastoji se od pet poglavlja. Prvo poglavlje prikazuje eksperimentalne podatke dobijene u ovom istraživanju, podaci su prikazani za sva tri sistema: pakovan, fluidizovan i transport. U ovom delu su eksperimentalni podaci poređeni sa literaturnim podacima. Drugo poglavlje obuhvata teorijsku analizu difuzionog i termičkog graničnog sloja u disperznim sistemima, prikazane su izvedene jednačine za debljinu graničnog sloja, koeficijente prelaza, Sherwood-ov i Nusselt-ov broj za česticu i faktore prenosa mase i toplote. Izvedene jednačine su upoređene sa eksperimentalnim podacima i literaturnim korelacijama. Treće poglavlje obuhvata analizu prenosa mase sa hemijskom reakcijom u fluidizovanom sloju i primenu izvedenih jednačina na ovu problematiku. Takođe su izvedene jednačine poređene sa eksperimentalnim i literaturnim podacima. U četvrtom poglavlju prikazano je poređenje izvedenih jednačina sa eksperimentalnim podacima za pakovan sloj i transportni sistem. Peto poglavlje prikazuje rezultate za analogije u disperznim sistemima. Prikazani su načini teorijskog određivanja faktora prenosa u tački minimalne fluidizacije i pri brzini odnošenja, dopunjena je analogija postavljena u normalizovanom obliku za član koji se odnosi na toplotu. Postavljen je novi tip analogije prenosa između mase i toplote. Svi teorijski dobijeni rezultati su upoređeni sa eksperimantalnim podacima. Na kraju ovog poglavlja postavljena je analogija između

količine kretanja i mase u normalizovanom obliku za fluidizovan sistem sa hemijskom reakcijom.

Deo četiri obuhvata najbitnije zaključke koji su dobijeni ovim istraživanjem.

Deo pet sadrži literaturu korišćenu u izradi ovog rada.

Deo šest čini prilog u kome su tabelarno pobrojani svi eksperimentalni podaci dobijeni u ovom istraživanju.

U okviru istraživanja na temu rada "DISKONTINUALNI GRANIČNI SLOJ I ANALOGIJE PRENOSA U PAKOVANIM, FLUIDIZOVANIM I TRANSPORTNIM SISTEMIMA TEČNOST-ČESTICE", proizašli su sledeći radovi:

- Jaćimovski Darko, Garić-Grulović Radmila, Grbavčić Željko, Bošković Vragolović Nevenka, Analogy between momentum and heat transfer in liquid– solid fluidized beds, Powder Technology, Short communications, 274 (2015), pp. 213–216,
- <u>Jaćimovski, D.</u>, Garić-Grulović, R., Vučetić, N., Pjanović, R., & Bošković-Vragolović, N. Mass transfer and concentration boundary layer in a particulate fluidized bed. Powder Technology, 303 (2016), pp. 68-75.
- <u>Jaćimovski R. Darko</u>, Garić-Grulović V. Radmila, Grbavčić B. Željko, Đuriš M. Mihal, Bošković-Vragolović M. Nevenka, Analogija prenosa količine kretanja, toplote i mase pri vertikalnom hidrauličkom transportu inertnih čestica, Hemijska Industrija, 68, 1 (2014) pp. 15-25.

LITERATURNI PREGLED

1. Teorijske osnove i pregled dosadašnjih istraživanja

1.1. Teorija graničnog sloja

U analizi fenomena prenosa posebno mesto zauzima proučavanje graničnog sloja, koji je u uskoj vezi sa prenosom količine kretanja, toplote i mase /Kondo et al., 1978; Schlichting & Gersten, 2017/. Teorija graničnog sloja je u osnovi različitih nauka kao što su na primer aeronautika i hidronautika. Poslednju deceniju ogromno mesto zauzima i proučavanju klime i klimatskih promena /Garratt, 1993; Oke, 2002; Stull, 2012; Wilcox et al., 2016; Davy & Esau, 2016/. Skoro da ne postoji prirodni fenomen na planeti zemlji a da granični sloj nije u osnovi pojave: opstrujavanje kamena u reci, letenje aviona i helihoptera, kretanje broda, strujanje fluida kroz cev, strujanje unutar krvnih sudova /Lew & Fung, 1970; Sutera, 1977; Huang et al., 2001; Rana & Neeves, 2016/, strujanje vazduha unutar gornjih disajnih puteva /Auregan & Depollier, 1995; Tetlow & Lucey, 2009; Khalili et al., 2016/, padanje tela kroz vazduh itd. /Bogdonoff, 1955; Lenschow, 1970; Fredsøe, 1984; Covert et al., 1992; Garratt, 1994; Pries & Secomb, 2005/.

Granični sloj postoji pri svim strujanjima u različitim tehnološkim procesima i postupcima kao što su sistemi sa kontaktom faza (gas-tečnost, gas-čvrsto, tečnost-čvrsto), tj. višefazni sistemi (pakovani, fluidizovani, cirkulacioni fluidizovani, sistemi sa vertikalnim i horizontalnim tokom faza tj. transportni sistemi i dr.), koji se koriste u proizvodnji i preradi polaznih sirovina u cilju izrade širokog spektra finalnih proizvoda u različitim granama industrije. Osnovne promene koje se odvijaju u procesima u industriji su fizičkohemijske transformacije (separacioni procesi), uz istovremeni prenos količine kretanja i/ili toplote i mase (proticanje fluida, mlevenje, taloženje, filtracija, mešanje, zagrevanje, kondenzacija, destilacija, ekstrakcija itd.), zbog čega su proizvodni procesi izuzetno složeni i uglavnom se izvode u višefaznim sistemima /Eckert & Jackson, 1950; Carberry, 1960; Talbot et al., 1980; Zhang et al., 1995; Bi et al., 1996; Zhang et al., 1997; Hossain et al., 2013/. Proučavanje i razumevanje graničnog sloja, u fenomenima koji su vezani sa prenosom količine kretanja, toplote i mase, uz eventualno

prisutne hemijske, biohemijske ili elektrohemijske reakcije /Mathers et al., 1957; Clark, 1973; Raja et al., 2000; Zhao et al., 2017/, nezaobilazan je korak u razvoju procesa, modelovanju, kontroli i upravljanju. Granični sloj prvi je definisao Prandtl 1904-te, u svom radu na temu "Strujanje fluida sa veoma malim trenjem" (Über Flüssigkeitsbewegungen bei sehr kleiner Reibung). Prandtl je pokazao kako teoretsko razmatranje može da se koristi kod viskoznih tokova u slučajevima od velikog praktičnog značaja. Koristeći teorijsko razmatranje, zajedno sa nekoliko jednostavnih eksperimenata (strujanje fluida preko ravne ploče i kroz kanal, opstrujavanje cilindra i dr.), Prandtl je pokazao da strujanje fluida uz površinu tela, može da se podeli u dva regiona: veoma tanak sloj blizu tela (granični sloj), gde je važna viskoznost fluida i preostala oblast izvan ovog sloja, gde se viskoznost fluida može zanemariti /Prandtl, 1904; Tani, 1977; Arakeri & Shankar, 2000; White, 2006; Schlichting & Gersten, 2017/. Uz pomoć ovog koncepta, ne samo da je fizički dato uverljivo objašnjenje značaja problema trenja viskoznih fluida, već je istovremeno, uz izuzetno smanjenje matematičkih poteškoća, postavljen put za teorijsko razmatranje viskoznih tokova. Ovim radom, Prandtl je uspostavio izgubljenu vezu između teorije i prakse koja je nastala krajem 19-og veka, kada je mehanika fluida podeljena na dva različita pravca (teoretska hidrodinamika, empirijska hidraulika), koji od podele jedva da su imali išta više zajedničko. Prandtl-ov rad "Strujanje fluida sa veoma malim trenjem", odnosno "Teorija graničnog sloja", pokazao se izuzetno korisnim, dao je značajan podstrek istraživanju mehanike fluida od početka 20-og veka i postao je osnova moderne mehanike fluida /White, 2001; Darby, 2001; Vogel-Prandtl, 2004; White, 2006; Chhabra & Richardson, 2008; Janna, 2010/.

U literaturi se mogu naći dva klasična slučaja formiranja graničnog sloja. Prvi granični sloj, posledica je strujanja slobodnog toka fluida konstantnom brzinom duž horizontalne nepokretne ploče, odnosno preko nekog tela /Blasius, 1908; Schubauer & Skramstad 1948; Eckert & Jackson, 1950; Fasel & Konzelmann 1990; Luchini & Bottaro 2001; Noro et al., 2014; Huang & Wu, 2015/, dok je drugi posledica kretanja horizontalne ploče ili nekog tela konstantnom brzinom u mirnoj tečnosti /Sakiadis^{a,b}, 1961; Nishioka & Morkovin 1986; Tetlow & Lucey 2009; Granlund et al., 2011; Bognár & Csáti, 2014/. U prvom slučaju, brzina strujanja fluida menja se od nule (na

ploči, telu), do brzine slobodnog toka fluida, dok je u drugom slučaju brzina fluida jednaka brzini pokretne ploče ili tela i postaje nula na nekoj udaljenosti od ploče ili tela.

Postavljajući teoriju graničnog sloja Prandtl (1904), je uspostavio vezu između kretanja idealnog i realnog fluida. Ta veza je granični sloj, oblast fluida u neposrednoj okolini tela, u kojoj se viskozni uticaji ne mogu zanemariti. Realan fluid ostvaruje trenje sa zidom, čime zid ima uticaj na brzinu kretanja fluida tj. na formiranje profila brzina normalno na pravac strujanja (slika 1.1). Prema Prandtl-u efekat unutrašnjeg trenja za fluide sa relativno malom viskoznošću, značajan je samo u uskoj oblasti koja okružuje granice fluida. Prema ovoj hipotezi strujanje izvan ovog, uskog regiona, može se smatrati strujanjem idealnog fluida.

Slika 1.1. Formiranje graničnog sloja na ravnoj i zakrivljnoj površini koja miruje.

Iznad površine preko koje struji realan fluid formira se u polju brzina hidrodinamički granični sloj, a ako za to postoje uslovi i termički i difuzioni granični sloj /Cijan, 1972; Galli, 2006; Martin & Boyd, 2006; Rienstra & Darau, 2011/. Promene karakterističnih veličina u graničnom sloju, brzine, temperature ili mase su dobro poznate, uzimajući u obzir da je još 1904-te uspostavljena i objavljena Prandtl-ova "Teorija graničnog sloja" /Prandtl, 1904; Sakiadis^{a,b,c}, 1961; Arpaci & Larsen, 1984; Arakeri & Shankar,2000; Goldstein 1996; Oosthuizen & Naylor, 1999; Anderson, 2005; Douglas et al., 2005; White, 2006; Incropera et al., 2007; Cebeci & Bradshaw, 2012; Kakac et al., 2013; Bejan, 2013; Schlichting & Gersten, 2017/. Smatra se da je preko 95% otpora pri prenosu količine kretanja, toplote i mase smešteno u graničnom sloju, ali je najčešća definicija graničnog sloja ta da je to deo toka fluida u kome se nalazi 99% promene veličine koja se prenosi.

U graničnom sloju može doći do laminarnog, preobražajnog i turbulentnog, odnosno vrtložnog strujanja. Granični sloj pri strujanju fluida preko ravnih površina sa svojim laminarnim i turbulentnim delom, ima veliki značaj za definisanje i određivanje strujanja uopšte /Prandtl, 1904; Dubs, 1939; Arakeri & Shankar, 2000; Goldstein 1996; Anderson, 2005; Tulapurkara, 2005; Douglas et al., 2005; Schlichting & Gersten, 2017/.

Razvoj teorije graničnog sloja, od njenog uspostavljanja pa do danas, odvijao se u dva osnovna pravca: (1) fizičko, a zatim i matematičko modelovanje različitih procesa kretanja fluida, (2) razvoj približnih i tačnih metoda za rešavanje postavljenih matematičkih modela. Do danas, objavljeno je mnogo radova, studija, monografija i knjiga koje su posvećene istraživanjima strujanja fluida u graničnim slojevima, tako da se vremenom formirala i posebna oblast mehanike fluida, Teorija graničnog sloja.

U početnom razvoju Teorije graničnog sloja, izučavani su jednostavniji modeli problema strujanja fluida, odnosno strujanje fluida kod koga se parametri fluida u posmatranoj tački fluidnog prostora ne menjaju tokom vremena (stacionarno strujanje). Svaki model, kao približna predstava procesa, bazira se na nekim pretpostavkama. Dobre pretpostavke su rezultat iskustva, teorijskog znanja i inženjerskog osećaja i zahvaljujući njima model se uprošćava uz očuvanje neophodnog stepena realnosti. Prvi objavljeni radovi iz ove oblasti /Blasius, 1908; Falkner & Skan, 1931; Howarth, 1934; Hartree, 1937; Falkner, 1939; Tani, 1949; Stewartson, 1954; Görtler, 1957/, odnosili su se na traženje tačnih rešenja postavljenih modela. Tačno rešenje Prandtl-ove (1904), jednačine za ravansko opstrujavanje tanke ravne ploče u obliku stepenih redova, prvi je dao Blasius (1908), pri čemu je izračunao i trenje na ploči. Takođe, Prandtl-ovu jednačinu rešio je Töpfer (1912), koristeći metodu integracije Runge-Kutta, kao i Goldstein (1930), dobivši rešenje jednako Blasius-ovom (1908). Nakon toga, istu jednačinu /Prandtl, 1904/, izračunao je sa velikom tačnošću i Howarth (1938). Strujanje oko valjka, normalno na uzdužnu osu prvi je obradio Blasius (1908), a poboljšana numerička rešenja data su od strane Hiemenz-a (1911), Howarth-a (1934), Frössling-a (1940), Ulrich-a (1949), Tifford-a (1954) i Tani-a (1949). Pored strujanja fluida oko valjka, za slučajeve strujanja fluida oko tela sa oštrom nailaznom ivicom Görtler (1952), je dao metodu redova koja predstavlja formalno tačno rešenje opšteg problema graničnog sloja stacionarnog laminarnog strujanja /Menon & Jain, 1971; Cijan, 1972; Schlichting & Gersten, 2017/.

Kako su se rešenja jednostavnijih modela odnosila na mali broj specijalnih slučajeva, to su se paralelno sa traženjem tačnih rešenja, razvijale i metode aproksimativnog rešavanja jednačina graničnog sloja. Prvu ideju o primeni ovakvih metoda dali su Kármán i Pohlhausen /Kármán, 1921; Pohlhausen, 1921/, a kasnije je ta ideja razrađivana i dopunjavana od strane drugih istraživača /Howarth, 1938; Holstein & Bohlen, 1940; Кочин, 1942; Tani, 1954; Шкадов, 1959 & 1962 & 1963; Лойцянский, 1965 & 1969 & 1976; Сальников & Ока, 1969; Сальников, 1972; Saljnikov, 1978; Папков, 1976 & 1979; Grundmann, 2009/.

Kao dalji prilog teoriji graničnih slojeva dato je razjašnjenje uslova spoljašnjeg strujanja, pri čemu su brzinski profili laminarnog graničnog sloja na svakom mestu međusobno slični. Ukoliko postoje slična rešenja može se sistem parcijalnih diferencijalnih jednačina svesti na jednu običnu diferencijalnu jednačinu. Najvažnije doprinose za rešavanje ovog problema dali su Falkner & Skan (1931), Hartree (1937), Goldstein (1939) i Mangler (1943). U kasnijim radovima, mnoštvo transformacija zasnovano na Prandtl-ovoj (1904) teoriji pokazalo se korisnim u analizi graničnih slojeva. Falkner i Skan (1931), proučavajući strujanje preko ravne ploče i klipno strujanje fluida, prvi su koristili aproksimativnu proceduru za rešavanje jednačina graničnog sloja. Njihovo rešenje jednačina graničnog sloja /Falkner & Skan, 1931/, zasnovano na kombinovanju nezavisnih promenljivih i transformacijama u cilju smanjenja broja promenljivih, od velikog je značaja za strujanje fluida preko ravnih površina /Stewartson, 1954; Harlow & Welch, 1965; Lund et al., 1998; Zaturska & Banks, 2001; Elgazery, 2008; Marinca et al., 2014/.

Uprkos očiglednoj jednostavnosti Falkner-Skan-ovih (1931) jednačina (jednodimenzione diferencijalne jednačine), njihovo rešavanje može biti ispunjeno problemima /Cebeci, 1977; Cebeci & Bradshaw, 1977; Ishak et al., 2007; Duque-Daza et al., 2011/. U nekim posebnim slučajevima za Folkner-Skan-ove jednačine, postoje i analitička rešenja /Fang & Zhang, 2008; Magyari & Keller, 2000/, ali ideja o transformacijama nezavisnih promenljivih, u većini studija je fokusirana na iznalaženje opštih rešenja, tj. univerzalnih rešenja jednačina graničnog sloja /Howarth, 1938, Clauser, 1954; Van Driest, 1956; Pavlović, 1997; Sparrow & Abraham, 2005; Duque-Daza et al., 2011/.
Aproksimativna procedura za rešavanje jednačine graničnog sloja zasnovana na kombinovanju nezavisnih promenljivih korišćena je i za dopunu Blasius-ovog (1908) rešenja, /Goldstein & Rosenhead, 1936; Schuh, 1953/, a zatim je ova procedura bila primenjena na različite ravanske probleme, kao i na probleme opstrujavanja obrtnih tela, pri čemu je raspored brzine spoljašnjeg strujanja, zadavan različitim oblicima funkcionalne zavisnosti od vremena /Görtler, 1944; Wundt, 1955; Watson, 1955; Rozin, 1960; Ašković, 1968/.

Prva istraživanja u oblasti nestacionarnih graničnih slojeva (kada se posmatrani parametri fluida u posmatranoj tački fluidnog prostora menjaju tokom vremena) i to neposredno nakon pojave Prandtl-ove teorije, izvršena su od strane Blasius-a (1908). Ova istraživanja vremenski zavisnih graničnih slojeva, odnose se na probleme pokretanja tela iz stanja mirovanja. Blasius, je pretpostavio pokretanje tela u tečnosti koja je u mirovanju, impulsivno, tj. trzajem do pune vremenski konstantne brzine. Goldstein i Rosenhead (1936), usavršili su Blasius-ovo rešenje uvođenjem dodatnog člana vremenskog razvoja strujne funkcije. Görtler (1944) i Watson (1955), proširili su proračun procesa formiranja graničnog sloja koristeći eksponencijalni zakon porasta brzine sa vremenom. Takođe, u literaturi razmatran je i slučaj graničnog sloja na ploči pri proizvoljnoj promeni brzine sa vremenom /Moore, 1951/. Metodu za proračun nestacionarnih periodičnih graničnih slojeva razvio je Lin, (1957), koja se može primeniti na strujanje fluida koje periodično osciluje. Periodične granične slojeve takođe, proučavali su brojni istraživači /Schlichting, 1932; Lighthill, 1954; Ishigaki, 1970; Wygnanski, 1997; Wu et al., 1999; Allaire & Amar, 1999; Lorke et al., 2003; Chabert et al., 2013; Schlichting & Gersten, 2017/.

Ideja o mogućnosti primene metoda jedno-parametarskih stacionarnih graničnih slojeva na nestacionarne /Rozin, 1960; Đurić, 1966; Struminskii, 1967; Đurić, 1969/, imala je svoje matematičke poteškoće. Metoda je zasnovana na uvođenju specijalnog oblika promenljivih i rešavanju jedne parcijalne diferencijalne jednačine u kojoj su podaci o nestacionarnosti prikazuju preko dve funkcije /Đurić, 1966 &1969/.

I pored relativno značajnog broja radova koji razmatraju različite modele strujanja i metode u oblasti klasične Teorije graničnog sloja /Falkner & Skan, 1931; Eckert & Livingood, 1953; Head, 1957; Davids & Cheng, 1972; Cebeci & Carr, 1978; Salama & Mansour, 2005; Ishak et al., 2007; Duque-Daza et al., 2011; Islam & Nahin, 2013; Bognár & Csáti, 2014/, i dalje ne postoji poseban metodološki pristup, koji bi za cilj imao sistematsko izlaganje metoda za rešavanje hidrodinamičkog, temperaturnog i difuzionog graničnog sloja, koji opisuju složene vidove strujanja, kao što su: nestacionarno magnetno hidrodinamičko strujanje, strujanje nestišljivog provodnog fluida oko tela proizvoljnog oblika, uticaji izvora/ponora toplote, toplote radijacije, kao i uticaj hemijske reakcije, na razvoj brzinskog, temperaturnog i koncentracionog polja i drugo /Rozin, 1960; Đurić, 1965 & 1966; Schetz & Oh, 1968; Telionis & Tsahalis, 1974; Raja et al., 2000; Huang et al., 2001; Harris et al., 2002; Boričić, 2014/. Sve češći pristupi istraživanja u oblasti graničnih slojeva, imaju za cilj dobijanje sistema jednačina univerzalnog karaktera za razmatranje efekata prenosa toplote i mase pri složenim oblicima strujanja /Đurić, 1965 & 1966; Pavlović, 1997; Sparrow & Abraham, 2005; Boričić, 2014/.

1.1.1. Kontinualni granični sloj

Kontinualni granični slojevi se formiraju pri strujanju realnih fluida na telima koja poseduju ravne polubeskonačne površine. Primeri takvih strujanja su: strujanje preko ravne polubeskonačne ploče, strujanje između polubeskonačnih paralelnih ploča, strujanje kroz duge cevi.

Pri strujanju realnog fluida preko ravne površine, u pravcu strujanja dolazi do promene brzine fluida od brzine koju ima čvrsta površina do brzine u kojoj je raspored brzina takav da se strujanje može smatrati neviskoznim, tj. idealnim (slika 1.1). Na slici 1.2. prikazana je struktura graničnog sloja.

Slika 1.2. Struktura graničnog sloja /Cvijović & Bošković-Vragolović, 2015/.

Na samom početku nepokretne površine, a u okviru graničnog sloja, strujanje je laminarno /Winoto & Crane, 1980; White, 2001/, pri čemu je brzina fluida uz nepokretnu površinu, niža u odnosu na brzinu fluida u slobodnom toku. Na slici 1.3a je prikazano laminarno strujanje fluida. Na nekoj udaljenosti $x = x_k$, laminarni granični sloj postaje nestabilan i nakon prelazne oblasti /Emmons, 1951/, postaje turbulentan granični sloj /Kline et al., 1967/.

Prelaz laminarnog graničnog sloja u turbulentni određen je vrednošću lokalnog dužinskog Reynolds-ovog broja /Reynolds, 1874/:

$$\operatorname{Re}_{x} = \frac{x \cdot U\rho}{\mu} \tag{1.1}$$

gde je U brzina fluida koja je jednaka nailaznoj brzini , a x predstavlja rastojanje od nailazne ivice.

Strujanje u graničnom sloju, koje je praćeno promenljivim Reynolds-ovim brojem, laminarno je do $\text{Re}_x < 2 \cdot 10^5$. Sa porastom Reynolds-ovog broja preko ove kritične vrednosti dolazi do poremećaja laminarnog strujanja u graničnom sloju, odnosno nastaje prelazni, koji zatim prelazi u turbulentni deo graničnog sloja. Turbulentni deo graničnog sloja ima tri podsloja: laminarni podsloj uz nepokretnu površinu, prelazni podsloj i turbulentni podsloj turbulentnog graničnog sloja (slika 1.3b). Vrtlozi u turbulentnom toku se povećavaju sa mešanjem fluida, koji su ionako prouzrokovani viskozitetom /Kline et al., 1967; Lee & Wu, 2008/. Pored toga, turbulentni granični sloj je uopšte deblji od laminarnog.

(a) Laminarni tok Slika 1.3. Granični slojevi pri laminarnom i turbulentnom toku fluida¹/Aguiar, 2006/.

¹ U fluid koji struji preko ravne površine periodično je uvođen hidrogen

Ako se pri strujanju realnog fluida prenosi i toplota ili masa formira se pored hidrodinamičkog i termički ili difuzioni granični sloj. U većini slučajeva, hidrodinamički granični sloj /Schlichting & Gersten, 2017/, ima presudan uticaj na formiranje termičkog i difuzionog graničnog sloja.

Pored režima strujanja koji određuje strukturu graničnog sloja, sva tri granična sloja (hidrodinamički, termički i difuzioni), imaju i dve značajne karakteristike koje zavise od režima strujanja – debljinu i raspodelu koncentracije veličine koja se prenosi u njima.

1.1.1.1. Debljina graničnog sloja i raspodela koncentracije veličine koja se prenosi

U cilju praktičnih analiza strujanja fluida i razgraničenja zone nevrtložnog, potencijalnog toka i zone toka sa izrazitim dejstvom sila viskoziteta potrebno je definisati i neku praktičnu granicu graničnog sloja. U tom pogledu bilo je više pokušaja.

Do danas, najbolje prihvaćena definicija granice graničnog sloja (kako je već ranije pomenuto) je ona koja definiše debljinu graničnog sloja, kao normalno rastojanje od čvrste granice do tačke u kojoj je brzina fluida za 1% manja od brzine u zoni uniformnog toka /Prandtl, 1904; Sakiadis^{a,b,c}, 1961; Arpaci & Larsen, 1984; Arakeri & Shankar, 2000; Goldstein, 1996; Oosthuizen & Naylor, 1999; Anderson, 2005; Douglas et al., 2005; White, 2006; Incropera et al., 2007; Cebeci & Bradshaw, 2012; Bejan, 2013; Schlichting & Gersten, 2017/, tj. u(y) = 0,99U (slika 1.4).

Slika 1.4. Debljina graničnog sloja iznad ravne ploče /Anderson et al., 2001/.

Za definisanje debljine graničnog sloja /Cvijović & Bošković-Vragolović, 2015/ koristi se jednačina integralnog bilansa graničnog sloja,

$$\frac{\partial}{\partial x}\int_{0}^{\delta} u(c-c_{0})dy = \int_{0}^{\delta} I_{x}dy - \mathscr{D}_{AB}\left(\frac{\partial c}{\partial y}\right)_{y=0}$$
(1.2)

koji je dobijen integracijom diferencijalnog bilansa.

U tabeli 1.1 date su vrednosti debljine graničnih slojeva koji se formiraju pri strujanju vazduha ili vode preko ravne površine.

Fluid	$ \nu \left[\frac{m^2}{s} \right] $	$U\left[\frac{m}{s}\right]$	x[m]	$\operatorname{Re}_{x} = \frac{Ux}{V}$	$\delta_x[mm]$
Vazduh	15.10-6	50	1	$3,3 \cdot 10^{6}$	8
		100	1	$6,6 \cdot 10^6$	8
		100	5	$3,3 \cdot 10^{6}$	36
		200	10	$1,3.10^{6}$	69
Voda	10 ⁻⁶	1	2	$2,0.10^{6}$	17
		2	5	$1,0.10^{6}$	39
		5	50	$2,5 \cdot 10^{6}$	321
		10	200	$2,0.10^{6}$	1122

Tabela 1.1. Debljina graničnog sloja δ , pri strujanju vazduha i vode preko ravne ploče /Schlichting & Gersten, 2017/.

Raspodela koncentracije veličine koja se prenosi u graničnom sloju, odnosno raspodela brzine, temperature i koncentracije komponente /Cvijović & Bošković-Vragolović, 2015; Welty et al., 2015/, određuje se rešavanjem opšteg diferencijalnog bilansa prenosa, za strujanje nestišljivih fluida:

$$\frac{Dc}{Dt} = \mathscr{D}_{AB} \nabla^2 c + I \tag{1.3}$$

gde je c uopštena koncentracija veličine koja se prenosi.

$$c = \frac{\text{količina veličine}}{\text{zapremina}}$$
(1.4)

odnosno po pojedinačnim prenosima za:

– prenos količine kretanja:

$$c_k = \frac{m \cdot u}{V} = \rho \cdot u \tag{1.5}$$

- prenos toplote :

$$c_T = \frac{m \cdot c_p \cdot T}{V} = \rho \cdot c_p \cdot T \tag{1.6}$$

– prenos mase :

$$c_A = \frac{n_A}{V} = c_A \tag{1.7}$$

Za strujanje fluida u graničnom sloju, egzaktno rešavanje profila brzina iziskuje rešavanje Navier-Stokes-ovih jednačina /Welty et al.,2015; Brodkey & Hershey,1988)/ koje za stacionarno ($\partial / \partial t = 0$), dvodimenziono strujanje nestišljivog fluida ($\rho = const$.), uz zanemarivanje efekta gravitacije (g = 0), glase za /Puttkammer, 2013/:

x – pravac:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
(1.8)

y – pravac:

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$
(1.9)

U slučaju prenosa toplote, temperaturna raspodela u graničnom sloju, definisana je diferencijalnim bilansom toplote, odnosno jednačinom poznatom kao Fourier-Kirchoffova jednačina /Cvijović & Bošković-Vragolović, 2015; Leble & Lewandowski, 2012; Welty et al. 2015/, koja za stacionarno $(\partial / \partial t = 0)$, dvodimenziono strujanje nestišljovog fluida ($\rho = const$.) glasi:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \frac{\dot{q}_V}{\rho c_p} + a\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$$
(1.10)

Kod prenosa mase, koncentracija komponente koja se prenosi, definisana je diferencijalnim bilansom prenosa mase tj. jednačinom poznatom kao Fick-ova jednačina /Cvijović & Bošković-Vragolović, 2015; Welty et al., 2015/, koja za stacionarno $(\partial / \partial t = 0)$, dvodimenziono strujanje fluida glasi (ρ =const.):

$$u\frac{\partial c_A}{\partial x} + v\frac{\partial c_A}{\partial y} = r_A + D_{AB} \left(\frac{\partial^2 c_A}{\partial x^2} + \frac{\partial^2 c_A}{\partial y^2} \right)$$
(1.11)

Za svaki granični sloj (hidrodinamički, termički i difuzioni), karakteristično je da je koncentracija u njegovom poprečnom preseku funkcija rastojanja od površine preko koje fluid struji i da se menja od koncentracije na ravnoj površini c_i , do koncentracije van graničnog sloja, c_0 . Raspodela koncentracije veličina koja se prenosi u laminarnom delu graničnog sloja određena je jednačinom /Cvijović & Bošković-Vragolović, 2015; Welty et al. 2015/:

$$\Theta = M_0 \zeta - (M_0 - 1) \zeta^{\frac{M_0}{M_0 - 1}}$$
(1.12)

i funkcija je bezdimenzionih veličina, bezdimenzione koncentracije:

$$\Theta = \frac{c - c_i}{c_0 - c_i} \tag{1.13}$$

i bezdimenzionog rastojanja:

$$\zeta = \frac{\gamma}{\delta} \tag{1.14}$$

Jednačina (1.12), se naziva bezdimenziona jednačina binomne raspodele koncentracije veličine koja se prenosi u laminarnom graničnom sloju i smatra se približnim rešenjem raspodele koncentracije. Koeficijent M_0 , u jednačini (1.12), različit je za različite sisteme (strujanje fluida preko ravne ploče, strujanje kroz cevod kružnog preseka i dr.).

Pri turbulentnom strujanju /Welty et al., 2015/ dolazi do pojave vrtloga tako da njihove karakteristike određuju i karakteristike turbulentnog graničnog sloja. Vrtlozi su nestabilne strukture, u toku fluida stalno nastaju i nestaju pri čemu prelaze odgovarajući put. Rastojanje izmedju tačaka nastanka i nestanka vrtloga definisan je kao Prandtl-ov put mešanja. Učestalost pojave vrtloga i njihovo kretanje zavise od osobina sistema i brzine strujanja fluida. Pošto su u ovim uslovima vrtlozi nosioci prenosa njihovo prisustvo čini doprinos prenosu u odnosu na molekulski prenos.

Raspodela koncentracija veličine koja se prenosi u turbulentnom delu graničnog sloja definisana je empirijskom jednačinom datom preko bezdimenzionalnih veličina:

$$\Theta = \left(\zeta\right)^{1/7} \tag{1.15}$$

i poznata je kao zakon 1/7 stepena.

1.1.1.2. Strujanje fluida preko ravne ploče

Od fizičkog opisa graničnog sloju Ludviga Prandtl-a 1904. godine, bilo je mnogo pomaka u ovoj oblasti. Postoje poboljšana analitička rešenja prikazana matematičkim modelima koji su realizovani određenim računskim metodama /Eckert & Jackson, 1950; Puttkammer, 2013; Bognár & Csáti. 2014/.

U praksi, još uvek je teško izmeriti profile brzine u graničnom sloju. Brojne studije porede eksperimentalne rezultate najjednostavnijh istraživanja, kao što je profil brzina u graničnom sloju pri strujanju fluida preko ravne ploče /Puttkammer, 2013/, sa rezultatima koje pruža teorija graničnih slojeva /Schlichting & Gersten, 2017/. Neki autori /Islam & Nahim, 2013/ su imali širi pristup analizi strujanja fluida preko ravne ploče, gde su pomoću rešenja konačnih zapremina postavili numeričko rešenje za profil brzina i debljinu graničnog sloja kao i još nekoliko parametara (faktor oblika, površinski otpor pri strujanju). Numeričko rešenje su uporedili sa Blausius-ovim rešenjem. Prisutnost turbulencije u prelaznoj oblasti koja nastaje posle laminarne oblasti pri strujanju preko ravne ploče ispitivali su Schubauer & Skramstad (1948). U eksperimentu je određivano koji je procenat prisutne turbulencije. Strujnu sliku opstrujavanja ravne ploče sa prorezima (oblik testere, polukruga i proreza) prikazao je Hasheminejad et al. (2014), eksperiment je izveo sa strujanjem dima koji je osvetljen zelenim laserom, kamerom je praćen nastanak vrtloga i njegove karakteristike. Za veće brzine strujanja gasa i različite vrednosti Max-ovog broja u slučaju stišljivog Blausiusovog graničnog sloja koji se formira na ravnoj ploči, Huang & Wu (2015) su pratili numeričkom simulacijom tzv. neparalelne efekte.

– Laminarni granični sloj

Pri laminarnom strujanju fluida preko polubeskonačne ravne ploče iz bezdimenzione binomne raspodele koncentracije veličine koja se prenosi (jed. 1.12), koeficijent M_0 , u jednačini (1.12) je $M_0 = 1,5$ /Cvijović & Bošković-Vragolović, 2015/. Na osnovu toga, dobija se izraz za raspodelu koncentracije veličine koja se prenosi u laminarnom graničnom sloju iznad ravne ploče:

$$\Theta = 1,5\zeta - 0,5\zeta^3 \text{ ili } \frac{c - c_i}{c_0 - c_i} = 1,5\left(\frac{y}{\delta}\right) - 0,5\left(\frac{y}{\delta}\right)^3$$
(1.16)

odnosno, za:

– prenos količine kretanja:

$$\frac{u-u_z}{u_0-u_z} = 1,5\left(\frac{y}{\delta_h}\right) - 0,5\left(\frac{y}{\delta_h}\right)^3, \quad u_z = 0, \quad \Rightarrow \quad \frac{u}{u_0} = 1,5\left(\frac{y}{\delta_h}\right) - 0,5\left(\frac{y}{\delta_h}\right)^3 \quad (1.17)$$

- prenos toplote:

$$\frac{T - T_z}{T_0 - T_z} = 1.5 \left(\frac{y}{\delta_T}\right) - 0.5 \left(\frac{y}{\delta_T}\right)^3$$
(1.18)

- prenos mase:

$$\frac{c_A - c_{A,z}}{c_{A,0} - c_{A,z}} = 1.5 \left(\frac{y}{\delta_A}\right) - 0.5 \left(\frac{y}{\delta_A}\right)^3$$
(1.19)

gde je y- rastojanje od zida.

Iz integralnog bilansa graničnog sloja (1.2) i jednačina za profil koncentracija za ravnu polubeskonačnu ploču (1.17), (1.18) i (1.19) u laminarnim uslovima dobijaju se izrazi za debljinu graničnog sloja /Cvijović & Bošković-Vragolović, 2015; Welty et al. 2015/. S obzirom da se pri strujanju fluida uvek formira hidrodinamički granični sloj analiza je i urađena za definisanje njegove debljine. Zamenom približne raspodele brzina (1.17) u integralni bilans (1.2) dobija se debljina hidrodinamičkog graničnog sloja, za slučaj strujanja preko polubeskonačne ravne površine:

$$\frac{\delta_h}{x} = 4,64 \cdot \sqrt{\frac{\nu}{Ux}} = 4,64 \cdot \operatorname{Re}_x^{-1/2}$$
(1.20)

Jednačina (1.20) pokazuje da se debljina laminarnog graničnog sloja povećava kao kvadratni koren rastojanja od mesta gde granični sloj počinje da se razvija.

Kombinovanjem jednačina za integralni bilans graničnog sloja (1.2) i jednačine za raspodelu koncentracije veličine koja se prenosi (1.16) dobija se odnos debljine termičkog graničnog sloja δ_T i debljine hidrodinamičkog graničnog sloja δ_h :

$$\frac{\delta_T}{\delta_h} = \Pr^{-1/3} = \left(\frac{a}{\nu}\right)^{1/3}$$
(1.21)

odnosno,

$$\delta_T = \delta_h \cdot \Pr^{-1/3} \Longrightarrow \frac{\delta_T}{x} = 4,64 \cdot \sqrt{\frac{\nu}{Ux}} \cdot \Pr^{-1/3} = 4,64 \cdot \operatorname{Re}_x^{-1/2} \cdot \operatorname{Pr}^{-1/3}$$
(1.22)

Na analogan način dobija se i odnos debljina difuzionog graničnog sloja δ_A i hidrodinamičkog graničnog sloja δ_h :

$$\frac{\delta_A}{\delta_h} = Sc^{-1/3} = \left(\frac{D_{AB}}{v}\right)^{1/3}$$
(1.23)

odnosno,

$$\delta_A = \delta_h \cdot Sc^{-1/3} \Longrightarrow \frac{\delta_A}{x} = 4,64 \cdot \sqrt{\frac{\nu}{Ux}} \cdot Sc^{-1/3} = 4,64 \cdot \operatorname{Re}_x^{-1/2} \cdot Sc^{-1/3}$$
(1.24)

Odnos debljina hidrodinamičkog, termičkog i difuzionog graničnog sloja u laminarnom režimu strujanja, prikazan je na slici 1.5. Pri strujanju realnog fluida, u laminarnom režimu strujanja najčešće je $\delta_h > \delta_T > \delta_A$, odnosno $v > a > D_{AB}$, što znači da je fluid bolji provodnik količine kretanja od toplote i mase.

Slika 1.5. Odnos debljina hidrodinamičkog, termičkog i difuzionog laminarnog graničnog sloja (Pr > 1, Sc > 1).

Pored binomne raspodele brzine u laminarnom graničnom sloju koja se smatra približnim ali i dovoljno tačnim rešenjem, postoji i Blausius-ovo rešenje za isti problem /Schlichting & Gersten, 2017/ koje predstavlja tačno matematičko rešenje diferencijalne jednačine za dvodimenzionalno strujanje preko ravne ploče. Prilično komplikovanim matematičkim postupkom Blausius je dao rešenje raspodele brzina koje je prikazano na slici 1.6.

Na osnovu vrednosti η (gde je $u \approx 0,99U$), Blasius je odredio debljinu hidrodinamičkog graničnog sloja kao,

$$\eta = \sqrt{\frac{U}{vx}} \delta_h = 5,0 \tag{1.25}$$

odnosno

Slika 1.6. Grafički prikaz Blauzius-ovog rešenja jednačine.

$$\frac{\delta_h}{x} = 5, 0\sqrt{\frac{v}{Ux}} = 5,0 \operatorname{Re}_x^{-1/2}$$
(1.26)

Ovo rešenje se razlikuje od rešenja dobijenog na osnovu binomne raspodele (jed. 1.20), ali za praktičnu primenu često se koristi približno rešenje koje daje zadovoljavajuće dobre rezultate.

– Turbulentni granični sloj

Za razliku od laminarnog režima strujanja, u kome je moguće određivanje raspodele koncentracije veličine koja se prenosi, korišćenjem jednačina binomne raspodele koncentracije veličine koja se prenosi (jedn. 1.16), za turbulentni granični sloj, pri strujanju fluida preko beskonačne ravne ploče, najčešće se koristi poznata empirijska zavisnost nazvana pravilo "1/7" /Kármán, 1921; Schlichting, 1949; Sakiadis^{a,b}, 1961; Tollmien et al., 1961; Incropera et al., 2007; Janna, 2010; Schlichting & Gersten, 2017/, predložena od strane Prandtl-a /Prandtl, 1927; Brodkey & Hershey, 1988; Prandtl & Betz, 2010/. U turbulentnom graničnom sloju raspodela brzina, temperatura i koncentracija komponente bazira se na zakonu 1/7 stepena (jedn. 1.15).

raspodela brzina je:

$$\frac{u - u_z}{u_0 - u_z} = \left(\frac{y}{\delta_h}\right)^{1/7}, \quad u_z = 0, \quad \Rightarrow \quad \frac{u}{u_0} = \left(\frac{y}{\delta_h}\right)^{1/7}$$
(1.27)

raspodela temperatura:

$$\frac{T - T_z}{T_0 - T_z} = \left(\frac{y}{\delta_T}\right)^{1/7} \tag{1.28}$$

raspodela koncentracije komponenta:

$$\frac{c_A - c_{A,z}}{c_{A,0} - c_{A,z}} = \left(\frac{y}{\delta_A}\right)^{1/7}$$
(1.29)

Kombinovanjem jednačine integralnog bilansa graničnog sloja (1.2) i jednačina za raspodelu koncentracije u turbulentnom režimu strujanja (1.27), (1.28) i (1.29) dobijaju se izrazi za debljinu turbulentnog graničnog sloja pri strujanju preko ravne površine i to za /Welty et al., 2015/:

- hidrodinamički granični sloj:

$$\frac{\delta_h}{x} = 0,357 \cdot \left(\frac{\nu}{Ux}\right)^{1/5} = 0,357 \cdot \operatorname{Re}_x^{-1/5}$$
(1.30)

-termički granični sloj:

$$\delta_T = \delta_h \cdot \Pr^{-1/3} \Longrightarrow \frac{\delta_T}{x} = 0,357 \cdot \left(\frac{\nu}{Ux}\right)^{1/5} \cdot \Pr^{-1/3} = 0,357 \cdot \operatorname{Re}_x^{-1/5} \cdot \operatorname{Pr}^{-1/3}$$
(1.31)

– difuzioni granični sloj:

$$\delta_A = \delta_h \cdot Sc^{-1/3} \Longrightarrow \frac{\delta_A}{x} = 0,357 \left(\frac{\nu}{Ux}\right)^{1/5} \cdot Sc^{-1/3} = 0,357 \cdot \operatorname{Re}_x^{-1/5} \cdot Sc^{-1/3}$$
(1.32)

1.1.1.3. Strujanje fluida između paralelnih ploča i kroz cev

Strujanje fluida u simetričnim sistemima obuhvata najčešće strujanje između paralelnih ploča i strujanje kroz cev. Raspodela brzina je i u ovom slučaju bitna karakteristika strujanja. Polazeći od bezdimenzione jednačine binomne raspodele koncentracije veličine koja se prenosi (jedn. 1.12) u zoni formiranja graničnog sloja koeficijent u jednačini binomene raspodele je $M_0=1,5$, dok je za oblast formiranog laminarnog graničnog sloja, gde granični slojevi imaju međusobni uticaj, koeficijent $M_0=2$. Pokazano je da se može uzeti na celoj dužini cevi (ploče) vrednost koeficijenta $M_0=2$ /Cvijović & Bošković-Vragolović, 2015/. Strujanje između paralelnih ploča je prikazano na slici 1.7. Profil brzina kod strujanja fluida kroz cev ima paraboloidan oblik, pri čemu je njegov presek isti kao i presek profila brzina kod strujanja između paralelnih ploča.

Slika 1.7. Strujanje kroz simetričan sistem u oblasti formiranog graničnog sloja - profil brzina /Cvijović i Bošković-Vragolović,2015/.

Jednačina binomne raspodele koncentracije veličine koja se prenosi u zoni formiranja laminarnog graničnog sloja (jedn. 1.12), za strujanje fluida između paralelnih ploča i strujanje fluida kroz cev, za koeficijent $M_0=2$, postaje:

$$\Theta = 2\zeta - \zeta^2 ; \qquad \frac{c - c_i}{c_0 - c_i} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$
(1.33)

To znači da je izraz za raspodelu brzina:

$$\frac{u-u_z}{u_0-u_z} = 2\left(\frac{y}{\delta_h}\right) - \left(\frac{y}{\delta_h}\right)^2, \quad u_z = 0, \quad \Rightarrow \quad \frac{u}{u_0} = 2\left(\frac{y}{\delta_h}\right) - \left(\frac{y}{\delta_h}\right)^2 \tag{1.34}$$

raspodelu temperatura:

$$\frac{T - T_z}{T_0 - T_z} = 2 \left(\frac{y}{\delta_T}\right) - \left(\frac{y}{\delta_T}\right)^2$$
(1.35)

raspodelu koncentracije komponente:

$$\frac{c_A - c_{A,z}}{c_{A,0} - c_{A,z}} = 2\left(\frac{y}{\delta_A}\right) - \left(\frac{y}{\delta_A}\right)^2$$
(1.36)

Raspodela brzina u formiranom graničnom sloju između paralelnih ploča se uz pomoć analogija prenosa količine kretanja i toplote može koristi za predviđanje Nusseltovog broja u ovakvim sistemima /Rostami & Mortazavi, 1990/.

Pri razvijenom turbulentnom strujanju fluida između paralelnih ploča i strujanja kroz cev raspodela brzina je određena univerzalnom raspodelom brzina oblika:

$$u^{+} = C_{3} + C_{2} \ln y^{+} \tag{1.37}$$

gde je
$$u^{+} = \frac{u}{u^{*}}, y^{+} = \frac{y}{v/u^{*}}$$
 i $u^{*} = \sqrt{\frac{\tau_{i}}{\rho}}$

Za empirijski određene koeficijente C_2 i C_3 , za strujanje kroz cev jednačina (1.37) postaje:

- laminarni podsloj:
$$\varepsilon = 0; \quad 0 \le y^+ \le 5 \implies u^+ = y^+$$

- prelazni podsloj: $\varepsilon \cong v; \quad 5 \le y^+ \le 30 \implies u^+ = -3,05 + 5 \ln y^+$ (1.38)
- turbulentni podsloj: $\varepsilon \cong v; \quad y^+ \ge 30 \implies u^+ = 5,5 + 2,5 \ln y^+$

Debljina graničnog sloja u sistemima kada fluid struji kroz zatvorenu konturu je interesantna samo u zoni formiranja graničnog sloja, gde je ona slična debljini graničnog sloja pri strujanju iznad ravne ploče. Kada se formira granični sloj tada je $\delta_h = D_c/2$ kod strujanja kroz cev, odnosno $\delta_h = y_0/2$ kod strujanja između paralelnih ploča.

U literaturi postoje mnogobrojni radovi koji istražuju raspodelu brzina pri strujanju između paralelnih ploča i kroz cev, kao i prenos toplote i mase u ovakvim sistemima /Stephenson, 1975; Seshadri & Williams, 1978; Terrill, 1965; Prins et al., 1951/. Strujanje kroz cev se često posebno analizira jer je češća u inženjerskoj praksi od strujanja između paralelnih ploča /Schlichting & Gersten, 2017/.

1.1.2. Diskontinualni granični sloj

Diskontinualni granični sloj formira se na zakrivljenim površinama, odnosno na površinama sa različitim pravcem vektora površine /Prandtl, 1914; Goldstein, 1948; Schlichting, 1949; Tani, 1977; Tollmien et al., 1961; Hawkins, 1963; Neiland, 1969; Wu, 1972/. Sa promenom pravca vektora površine dolazi do promene poprečnog preseka i do stvaranja uslova za odvajanje graničnog sloja od površine tela. Primeri nastajanja diskontinualnih graničnih slojeva su: opstrujavanje polubeskonačnog cilindra, opstrujavanje polubeskonačnog cilindra koji rotira (Magnus-ov efekat), opstrujavanje sfere, opstrujavanje diska ili bilo kog drugog tela sa kratkom dužinom /Prandtl, 1914; Tollmien et al., 1961; Banks, 1965; Maxworthy, 1969; Achenbach, 1972 & 1974; Sears & Telionis, 1975; Reshotko, 1976; Ovchinnikov et al., 2006; Sadeque et al., 2008; He et al., 2013; He et al., 2016/.

Kao osnova i uvod u diskontinualne granične slojeve može poslužiti analiza strujanja neviskoznih i viskoznih fluida preko zakrivljene površine. Kada strujnice naiđu na promenu pravca vektora površine tj. kada se strujanje odvija preko zakrivljene površine dolazi do odvajanja graničnog sloja (slika 1.8). Tačka u kojoj dolazi do odvajanja sloja naziva se tačka odvajanja i na dalje od nje delovi fluida više nisu tik uz graničnu površinu već u pravcu strujanja fluida idu u vrtložni trag. Zbog male razlike u pritiscima tačka odvajanja se pomera napred ili nazad duž tela. To pomeranje tačke odvajanja utiče na strujnu sliku i na formiranje vrtloga iza tela /Goldstein & Rosenhead, 1936; Schuh, 1953; Kostich, 1991; Ovchinnikov et al., 2006; Sadeque et al., 2008; He et al., 2013; He et al., 2016; Schlichting & Gersten, 2017/. Primer opstrujavanja i odvajanja graničnog sloja je prikazan na slici 1.8.

Sa slike 1.8., se vidi da kada je površina zakrivljena (konveksna ili konkavna) dolazi do promene poprečnog preseka kroz koje struji fluid /Brodkey & Hershey, 1988; Schlichting & Gersten, 2017/. Prema Bernoulli-jevoj jednačini /Cvijović & Bošković-Vragolović, 2015/, zbir statičkog, hidrodinamičkog i hidrostatičkog pritiska mora biti konstantan u bilo kom preseku strujanja fluida, odnosno:

$$p + \frac{\rho u^2}{2} + \rho gh = const. \tag{1.39}$$

kada dolazi do smanjenja poprečnog preseka kroz koji struji fluid dolazi do promene brzine i pritiska.

Slika 1.8. Opstrujavanje zakrivljene površine i odvajanje graničnog sloja /Cvijović & Bošković-Vragolović, 2015/.

Sa slike 1.8, vidi se da je površina preseka "1" i "4" veća od površine preseka "2" i "3". U preseku "1" brzina ima neku vrednost U_1 i pritisak p_1 , dok je površina poprečnog preseka S_1 . U pravcu strujanja ka zakrivljenju dolazi do smanjivanja površine poprečnog preseka, pa je površina poprečnog preseka $S_2 < S_1$. Prema jednačini kontinuiteta, brzina na manjoj površini je veća, pa je $U_2 > U_1$, dok je pritisak u obrnutom odnosu prema Bernoulli-jevoj jednačini (jedn. 1.39) $p_1 < p_2$. Dakle brzina raste u pravcu strujanja, gradijent brzine je veći od nule, dok pritisak opada u pravcu strujanja (kod konveksne površine), gradijent pritiska je manji od nule. Takva situacija se nastavlja sve do tačke kada je pritisak najmanji a brzina najveća (to je najčešće slučaj na najvišoj tački zakrivljenja), to je tačka ravnoteže i mesto početka odvajanja graničnog sloja, na slici 1.8. to je presek "3". Posle prolaska ove tačke površina poprečnog preseka se opet povećava $S_4 > S_3$ i sve se događa obrnutim tokom, brzina u preseku "4" je manja nego u preseku "3", dok je pritisak veći. Dakle pritisak od preseka

"3" počinje opet da raste, a brzina da se smanjuje, pa je gradijent brzine sada negativan, a gradijent pritiska pozitivan. Usled povećanja pritiska u preseku "4" u odnosu na presek "3" dolazi do stvaranja povratnog toka fluida kome je pogonska sila razlika u pritiscima. Povratni tok fluida postoji do mesta odvajanja graničnog sloja (presek "3"). U preseku "3" dolazi do spajanja direktnog i povratnog toka fluida i oni dalje zbirno prelaze preko povratnog toka u pravcu strujanja i na taj način se deo fluida odvaja od površine objekta koji opstrujava. Polje iza tela čine homogeni vrtlozi i ta oblast se naziva turbulentni trag ili trag toka.

Pošto je u slučaju cilindra i sfere površ koja se opstrujava simetrična, teoretski gledano ugao pri kojem dolazi do odvajanja graničnog sloja je 90°. Međutim pri strujanju realnih fluida kod kojih je viskoznost izražena, a to su uglavnom svi fluidi, osim nekih aproksimacija, ugao odvajanja graničnog sloja se razlikuje od 90°. Tako za opstrujavanje cilindra u laminarnoj oblasti taj ugao je 80°, dok je za turbulentnu oblast 140°. Ugao odvajanja graničnog sloja kod opstrujavanje sfere u laminarnoj oblasti je nešto veći i iznosi 85°, dok je za turbulentnu oblast ovaj ugao 140° /Cvijović & Bošković-Vagolović, 2015/. Ove vrednosti uglova ne treba shvatiti kao strogo konstantne, već kao približne vrednosti uglova gde se odvija odvajanje graničnog sloja.

1.1.2.1. Opstrujavanje cilindra

Granični sloj pri opstrujavanju cilindra, egzistira od zaustavne tačke (mesto gde se strujna linija, kada naiđe na objekat koji opstrujava, zaustavlja), do tačke odvajanja graničnog sloja /Ovchinnikov et al., 2006; Pan et al., 2008; Schlichting & Gersten, 2017/. (slika 1.9).

Slika 1.9. Opstrujavanje cilindra pri Re=2000 /Van Dyke, 1982/.

Opstrujavanje cilindra viskoznim, odnosno realnim fluidom je dosta složenije i samim tim i otpori strujanju su složenije definisani. Grafički prikaz koeficijenta otpora za opstrujavanje polubeskonačnog cilindra realnim fluidom je data na slici 1.10.

Slika 1.10. Promena koeficijenta otpora u zavisnosti od Reynolds-ovog broja za opstrujavanje glatkog cilindra /Welty et al., 2015/.

Pri opstrujavanju cilindra, režimi strujanja i oblasti u kojima određeni režimi nastaju, mogu se uočiti preko dijagrama zavisnosti koeficijenta otpora od Reynoldsovog broja opstrujavanja (slika 1.10).

U radu Nobel-a (1974), prikazano je opstrujavanje cilindara napravljenih od prirodnih materijala: plodova biljaka kao što su crni luk, neke vrste trski, šišarki i sl. Cilindri su opstrujavani vazduhom u obe oblasti: laminarnoj i turbulentnoj. Cilj eksperimenta je bio određivanje debljine difuzionog graničnog sloja, što je i urađeno jer je Nobel dao korelaciju pomoću koje se predviđa debljina difuzionog graničnog sloja za cilindrične delove pomenutih biljaka. Pri velikim nadzvučnim brzinama vazduha opstrujavanje cilindra pročavao je Richmond (1957).

Pri Re_o<1 postoji takozvana oblast puzajućeg strujanja u njoj ne dolazi do odvajanja graničnog sloja, strujanje je slično strujanju neviskoznog fluida. Strujnice prate konturu cilindra (tačka A na slici 1.10.).

Kada je $1 < \text{Re}_o < 10^3$ počinje odvajanje graničnog sloja i tačka odvajanja se pomera ka prednjoj strani (ka zaustavnoj tački). U ovoj oblasti postoje podoblasti:

- 1 < Re_o < 40, gde se pojavljuju stabilni fiksni vrtlozi koji su postojani sa vremenom, sa povećanjem brzine i oni se uvećavaju. To je oblast gde počinje odvajanje graničnog sloja (tačka B na slici 1.10.).

 $-40 < \text{Re}_o < 80$, prelazna oblast u kojoj se fiksni vrtlozi polako izdužuju, da bi se pri kraju opsega naizmenično otkidali od cilindra (tačka B na slici 1.10.).

-80 < Re_o < 200, oblast u kojoj se formiraju Kármán-ovi vrtlozi, koji se naizmenično otkidaju sa površine cilindra. Rastojanje između dva vrtloga je tačno definisano kao i frekvencija pojavljivanja (tačka C na slici 1.10.).</p>

Kada je $10^3 < \text{Re}_o < 3.10^5$ opstrujavanje je u Newton-ovoj oblasti u kojoj je konstantan koeficijent opstrujavanja i ugao odvajanja je na 80° . Granični sloj pre odvajanja je laminaran. Strujanje postaje još više haotično, makroskopski vrtlozi više ne postoje. Iza cilindra je stanje haotično bez vidljivih makrostruktura, to se zove turbulentni trag. Turbulentni trag je širok (tačka D na slici 1.10.).

Za vrednosti $\text{Re}_o > 3.10^5$ oblast se naziva superkritična (ili nadkritična), sam granični sloj pre odvajanja postaje tanji, a vrednost koeficijenta opstrujavanja se smanjuje. Ugao odvajanja se pomera na zadnji deo cilindra (u odnosu na zaustavnu tačku) i iznosi 140°, turbulentni trag postoji i dalje sa sličnim karakteristikama kao u prethodnom režimu strujanja, sa jednom razlikom da postaje značajno uži (tačka E na slici 1.10.).

Ispitivanje opstrujavanja cilindara malog prečnika uradio je Morgan /Morgan, 1990/, on je ispitivao prenos toplote sa kablova koji prenose struju u dalekovodima na okolni vazduh koji struji različitim brzinama. U eksperimentu je dobio jednačinu koja predviđa prenos toplote:

za
$$\text{Re}_{o} < 5000$$
 (1.40)

$$Nu = 0,583 \operatorname{Re}_{o}^{0.471}$$
(1.41)

i za $\text{Re}_{o} > 5000$;

$$Nu = 0,148 \operatorname{Re}_{o}^{0,633} \tag{1.42}$$

Kod opstrujavanja cilindra prenos toplote zavisi od ugla (koji se meri od zaustavne tačke), postoje različite jednačine za različite vrednosti ugla /Sanitjai & Goldstein, 2004/. Ovi autori su ispitivali opstrujavanje cilindra vazduhom i vodom i određivali lokalne i srednje koeficijente prelaza toplote. Lokalne vrednosti prenosa toplote su prikazali grafički, sa uglom odvajanja koji je u eksperimentu iznosio 85°, dok su srednje vrednosti prikazali preko jednačina:

za zaustavnu tačku važi :

$$Nu_0 = 1,11 \operatorname{Re}_0^{0,5} \operatorname{Pr}^{0,35}$$
(1.43)

od zaustavne tačke do ugla odvajanja:

$$Nu_{0^{\circ}-85^{\circ}} = 0,945 \operatorname{Re}_{0}^{0.5} \operatorname{Pr}^{0.35}$$
(1.44)

između uglova 85-135°:

$$\operatorname{Nu}_{85^{\circ}-135^{\circ}} = \left(\left(6,5 \, e^{\operatorname{Re}_{o}/5000} \right)^{-5} + \left(0,072 \, \operatorname{Re}_{o}^{0,7} \right)^{-5} \right)^{-1/5} \operatorname{Pr}^{0,41}$$
(1.45)

između uglova 135-180°:

$$Nu_{135^{\circ}-180^{\circ}} = \left(\left(4,5 \, e^{\operatorname{Re}_o/4000} \right)^{-5} + \left(0,037 \, \operatorname{Re}_o^{0,8} \right)^{-5} \right)^{-1/5} \operatorname{Pr}^{0,42}$$
(1.46)

Prenos mase kod opstrujavnja cilindra se može takođe izraziti preko lokalnih i srednjih vrednosti. U radu Bošković-Vrgolović et al. (2013) su prikazane lokalne vrednosti koeficijenta prenosa mase u funkciji Reynolds-ovog broja, takođe je dat vizuelni prikaz opstrujavanja cilindra. U literaturi postoji čitav niz eksperimentalnih jednačina za srednju vrednost prenosa mase pri opstrujavanju cilindra /Linton & Sherwood, 1950; Ranz^{a,b} & Marshall, 1952; Linton & Sutherland, 1960; Geankoplis, 1972; Al-Enezi & Abdo,1991/:

$$j_D = 0,281 \operatorname{Re}_o^{-0.4} \tag{1.47}$$

koja važi za horizontalni cilindar u oblasti 1000<Sc<3000, 750<Re_o<12000.

1.1.2.2. Opstrujavanje sfere

Opstrujavanje sfere i fenomeni koji se tada mogu uočiti imaju veliku sličnost sa opstrujavanjem cilindra. Kod strujanja neviskoznih fluida ne dolazi do odvajanja graničnog sloja. Strujanje neviskoznih fluida pružilo je matematički pristup i idealizovano fizičko ponašanje fluida pri opstrujavanju cilindra i sfere. Doprinos takvog pristupa je svakako vrlo značajan, pruža dobru osnovu za strujanje realnih fluida oko cilindra i sfere. Pristup opstrujavanja sa idealnim fluidom pokazuje da se maksimum brzine, a minimum pritiska javlja pri uglu od 90°, što kod strujanja realnih fluida oko cilindra i sfere nije slučaj. Još jedan nedostatak koji proizilazi iz analize sa idealnim fluidom je poznati Dalamber-ov paradoks koji kaže da kod strujanja idealnog fluida oko cilindra i sfere ne postoji sila otpora kao ni sila uzgona /Schlichting i Gersdten, 2017/. Kod realnih fluida ove silu su zastupljene.

Na slici 1.11. dat je grafički prikaz zavisnosti koeficijenta otpora za opstrujavanje sfere od Reynolds-ovog broja realnim fluidom.

Slika 1.11. Promena koeficijenta otpora u zavisnosti od Reynolds-ovog broja za opstrujavanje glatke sfere /Cvijović & Bošković-Vagolović, 2015/.

Funkcija zavisnosti koeficijenta otpora od Reynolds-ovog broja je svakako složena funkcija i ne može se lako opisati jednostavnom jednačinom na celom opsegu

Reynolds-ovog broja. Jedan od pokušaja da se predstavi ovakva složena zavisnost je rad Turton-a & Levenspiel-a (1986), koji su dali funkciju oblika:

$$c_D = \frac{24}{\text{Re}_o} \left(1 + 0.173 \,\text{Re}_o^{0.657} \right) + \frac{0.413}{1 + 16300 \,\text{Re}_o^{-1.09}}$$
(1.48)

Jednačina (1.48) važi za širok opseg Re_o , ali je ipak ograničena u oblasti $1 \cdot 10^{-4} < \text{Re}_o \le 2 \cdot 10^5$. Izraz (1.48) je veoma pogodan za izračunavanje koeficijenta otpora.

Pri opstrujavanju sfere, režimi strujanja i oblasti u kojima određeni režimi nastaju, mogu se uočiti preko dijagrama zavisnosti koeficijenta otpora od Reynoldsovog broja opstrujavanja (slika 1.11).

Oblast za $\text{Re}_o < 0,4$ ili po nekim autorima $\text{Re}_o < 1$ pripada oblasti puzajućeg strujanja u kome nema odvajanja graničnog sloja, a za ovu oblast važi Stokes-ov zakon po kome je

$$F_{tr} = 6\pi v R \rho U \,, \tag{1.49}$$

U ovoj oblasti se koeficijent opstrujavanja može izračunati preko izraza:

$$c_D = \frac{24}{\mathrm{Re}_o} \tag{1.50}$$

Kada je $1 < \text{Re}_o < 1000$ počinje odvajanje graničnog sloja, tačka odvajanja graničnog sloja se pomera ka napred (ka zaustavnoj tački), koeficijent opstrujavanje se u ovoj oblasti može izračunati preko jednačine:

$$c_D = \frac{10}{\text{Re}_o^{1/2}}$$
(1.51)

Ova se oblast može podeliti u tri podoblasti:

- $10 < \text{Re}_o < 100$, pojavljuju se stabilni fiksni vrtlozi koji su postojani sa vremenom, sa povećanjem brzine i oni se uvećavaju. To je oblast gde počinje odvajanje graničnog sloja.
- 100 < Re_o < 150, prelazna oblast kada vrtlozi počinju da se izdužuju i osciluju i na kraju otkidaju sa površine sfere.
- 150 < Re_o < 1000, dolazi do degenerisanja vrtloga i naizmeničnog odvajanja vrtloga sa površine sfere, ovo su takozvani Kármán-ovi vrtlozi. Rastojanje i frekvencija vrtloga su tačno određeni.

Oblast $1000 < \text{Re}_a < 2.10^5$ je takozvana Newton-ova oblast. Ovu oblast karakteriše konstantna vrednost koeficijenta opstrujavanja $c_D = 0,43$, a ugao odvajanja je 85°. Granični sloj pre odvajanja je laminaran, a vrtlozi iza sfere ostavljaju širok turbulentni trag.

U nadkritičnoj oblasti $\text{Re}_o > 2 \cdot 10^5$ granični sloj je turbulentan pre odvajanja, vrtlozi iza sfere ostavljaju turbulentni trag, koji se sužava u odnosu na prethodnu oblast opstrujavanja. Ugao odvajanja se pomera ka zadnjem delu (u odnosu na zaustavnu tačku) i iznosi 140°. Koeficijent opstrujavanje je konstantan i ima vrednost od $c_D = 0,1$.

Kod opstrujavanja cilindra i sfere između Newton-ove i nadkritične oblasti pojavlju je se takozvana "kriza otpora" gde dolazi do naglog smanjenja koeficijenta opstrujavanja.

U svojim eksperimentima Taneda (1965) je prikazao jasnu vizuelizaciju pomenutih režima strujanja oko sfere (slika 1.12). /Van Dyke, 1982; Taneda, 1956; Taneda, 1965/.

a) Re=17,9

b) Re=73,6

d) Re=23000

e) Re=580000

Kao što je rečeno prisutnost pomenutih fenomena prenosa u prirodi su više nego očigledna i stalna. Kao primer može se navesti satelitski snimak koji je urađen iznad Robinzon Krusovih ostrva (Čile) gde se jasno uočavaju Kármán-ovi vrtlozi (slika 1.13). Kao i uvek priroda je najbolji kreator eksperimenata.

Slika 1.13. Satelitski snimak vremenskih prilika iznad Čileanskog ostrva "Robinson Kruso" ,15.septembar 1999.

Prenos toplote koji se ostvaruje prilikom opstrujavanja sfere je najčešće definisan jednačinom oblika:

$$Nu = 2 + a \operatorname{Re}_{a}^{b} \operatorname{Pr}^{n} \tag{1.52}$$

gde se koeficijenti a,b i n razlikuju zavisno od autora, tako je Frössling (1938) dao, a Ranz^{a,b} & Marshall (1952) potvrdili velikim brojem eksperimentalnih podataka jednačinu:

$$Nu = 2 + 0,6 \operatorname{Re}_{o}^{1/2} \operatorname{Pr}^{1/3}$$
(1.53)

koja važi u opsegu $1 < \text{Re}_{\circ} < 2 \cdot 10^5 \text{ i } 0, 6 < \text{Pr} < 400$

korekcijom osnovne jednačine (1.52) dolazi se do jednačina koju je dao: Whitaker (1972):

$$Nu = 2 + \left(0, 4 \operatorname{Re}_{o}^{1/2} + 0, 06 \operatorname{Re}_{o}^{2/3}\right) \operatorname{Pr}^{0,4} \left(\frac{\mu}{\mu_{z}}\right)^{0,25}$$
(1.54)

koja važi u opsegu $3,5 < \text{Re}_{\circ} < 7,4 \cdot 10^4$ i 0,71 < Pr < 380

Prenos toplote pri opstrujavanju sfere je na zanimljiv način predstavio Kramers /Kramers, 1946/, on je na jednostavan način uradio eksperiment sa opstrujavanjem sfere sa tri vrste fluida: voda,vazduh i ulje. Eksperiment sa vodom i uljem je radio na dve različite temperature. Mereći fluks toplote koju sfera emituje kroz svoju površinu i razliku temperature dolazi do koeficijenta prelaza toplote, eksperiment je rađen za tri

različita prečnika: 1,26; 0,787; 0,709 cm. Kombinujući ove eksperimentalne podatke Kramers je postavio jednačinu koja opisuje prenos toplote sa sfere na fluid koji je opstrujava:

$$Nu_s = 2 + 1,3 \operatorname{Pr}_s^{0,15} + 0,66 \operatorname{Pr}_s^{0,31} \operatorname{Re}_s^{0,50}$$
(1.55)

gde su Nu_s, Pr_s i Re_s bezdimenzioni brojevi prilagođeni datom sistemu.

Prenos toplote sa sfere na fluid se može posmatrati i pri slobodnoj konvekciji, a kao pogonska sila se tada koristi razlika u temperaturi. Zanimljiv eksperiment je prikazao Kitamura et al. (2015) koji je po površini sfere na različitim uglovima u odnosu na centar sfere postavljao sonde za merenje temperature zida. U eksperimentu su koristili različite prečnike sfera, kao i različite pogonske sile koje uslovljavaju prenos toplote. Medijumi u kome je bila sfera bili su voda i vazduh, a da bi stvorili vizuelizaciju samog događaja bojili su fluid. Rezultat eksperimenta je osim odlične vizuelizacije i jednačina koja se primenjuje u ovakvim uslovima:

$$Nu = 0,06 \operatorname{Ra}_{d}^{0,35} \tag{1.56}$$

gde je $\operatorname{Ra}_d = \operatorname{Gr} \cdot \operatorname{Pr}$ Rayleigh-ov broj.

Prenos mase se kod opstrujavanja sfere definiše analogno načinu kod prenosa toplote (jedn. 1.52), pa je tako osnovni oblik za prenos mase koji je dao Frössling (1938):

$$Sh = 2 + 0.6 \operatorname{Re}_{0}^{1/2} \operatorname{Sc}^{1/3}$$
(1.57)

koja važi u opsegu $1 < \text{Re}_{0} < 2 \cdot 10^{5}$ i 0, 6 < Sc < 400

Jednačina Whitaker-a (1972) se može primeniti i na prenos mase:

$$Sh = 2 + (0,4 \operatorname{Re}_{o}^{1/2} + 0,06 \operatorname{Re}_{o}^{2/3}) Sc^{0,4}$$
(1.58)

Jednačina Linton-a i Sutherlend-a (1960) je nešto u drugačijem obliku:

$$Sh = 0,582 \operatorname{Re}_{0}^{1/2} \operatorname{Sc}^{1/3}$$
(1.59)

kao i jednačina Del Poza et al. (1991):

$$Sh = 5,219 \operatorname{Re}_{0}^{0,49}$$
 (1.60)

1.2. Disperzni sistemi fluid-čestice

Uopšteno disperzni sistemi se sastoje od fluida koji čini veći (noseći) deo i predstavlja disperznu fazu i faze koja je "utisnuta" u disperznu fazu i dobro izmešana po njenoj zapremini i predstavlja dispergovanu fazu. Disperzni sistem fluid-čestice čine disperzna faza tečnost/gas, i dispergovana faza- čvrste čestice. S obzirom da su u ovom radu ispitivani sistemi sa tečnom disperznom fazom, biće prikazana tri osnovna disperzna sistema tečnost-čestice: pakovan sloj, fluidizovan sloj i vertikalni transportni sistemi (slika 1.14).

Slika 1.14. Disperzni sistemi tečno-čvrsto.

Proučavanje disperznih sistema fluid-čestice, čiji su tipični predstavnici, pakovani sloj, fluidizovani sloj i transportni sistemi (slika 1.14), kao i odgovarajućih fenomena prenosa od velikog je značaja za hemijsku i procesnu industriju, zbog toga što

je oko 70% hemijsko-tehnoloških procesa vezano za procesiranje čestica /Kramers, 1946; Gunn, 1978; Agarwal, 1988; Oka, 1994; Grbavčić, et al., 1992/.

Ispitivanja prenosa količine kretanja, toplote i mase, u disperznim sistemima, pre svega imaju za cilj određivanje osnovnih fluidodinamičkih parametara prenosa količine kretanja (brzina fluida, brzina čestica, poroznost i pad pritiska), kao i koeficijenata prelaza toplote i mase /Carlos^{a,b} & Richarrdson, 1968; Kumar & Upadhyay, 1981; Kim, et al., 1986; Yutani et al., 1987; Kang, et al., 1991; Grbavčić, et al., 1992; Mankad, et al., 1997; Garim & Freire, 1999; Meewisse & Ferreira, 2003; Bošković-Vragolović , et al., 2007; Kalaga, et al., 2014/.

Disperzni sistemi najčešće se koriste u procesima u kojima je neophodno ostvariti veliku površinu kontakta među fazama /Oka, 1994; Grbavčić et al., 1992; Zhang & Fryer, 1994; Lareo & Fryer, 1998; Bošković-Vragolović et al., 2007; Atmakidis & Kenig, 2012/.

1.2.1. Pakovani sloj

Pakovan sloj se sastoji od fluida (gasa ili tečnosti) kao disperzne faze i čestica koje su nasute u nepokretnom sloju. Osnovni parametri pakovanog sloja su brzina fluida između čestica i pad pritiska koji nastaje zbog savladavanja otpora sredine koju fluid mora da prođe (pre svega efekti opstrujavanja i trenje na površini čestica). Brzina između čestica tzv. međučestična brzina se definiše kao odnos površinske brzine i poroznosti sloja:

$$u = \frac{U}{\varepsilon} \tag{1.61}$$

Pad pritiska u fluidizovanom sloju je određen Ergun-ovom jednačinom / Ergun, 1952/:

$$-\frac{\Delta P}{H} = 150 \frac{\left(1-\varepsilon\right)^2}{\varepsilon^3} \cdot \frac{\mu}{d_p^2} \cdot U + 1,75 \frac{1-\varepsilon}{\varepsilon^3} \cdot \frac{\rho_f}{d_p} U^2$$
(1.62)

Jednačina (1.62) važi za opseg $5 < \frac{\text{Re}_p}{1-\varepsilon} < 1000$, i sastavljena je od Carman-Kozeny-eve jednačine i Burke-Plummer-ove jednačine. Jednačina (1.62) važi za sferične čestice, a kod nesferičnih čestica umesto prečnika sfere uvodi se površinsko-zapreminski prečnik.

- Prenos toplote

U dosadašnjoj literaturi za prenos toplote u pakovanom sloju teorijska razmatranja se ne mogu naći. Uglavnom je pristup istraživanju empirijski, gde se obradom velikog broja podataka dolazi do korelacija za prenos toplote u pakovanom sloju. Najveći broj radova se odnosi na prenos toplote zid-fluid i uronjen objekat-fluid, gde je površina sa koje se vrši razmena toplote okružena pakovanim slojem. Često se koriste jednačine za prenos mase, koje zadržavaju oblik jedino su prilagođene prenosu toplote. Nekoliko empirijskih korelacija za prenos toplote u pakovanim slojevima je dat u tabeli 1.2.

Tabela 1.2. Pregled najznačajnijih i	najčešče korišćenih	literaturnih kon	elacija za prenos
toplote za pakovan sloj.	,		

Ranz ^{a,b} & Marshall (1952)	$Nu_p = 2 + 1,8 Re_p^{1/2} Pr^{1/3}$	Re _p >100 za gasove Re _p >110 za tečnosti	(1.63)
Yagi & Wakao (1959)	$j_H = 0,2 \operatorname{Re}_p^{-0,2}$	/	(1.64)
Sent Gupta & Thodos (1962),	$j_H \varepsilon = 0,0108 + \frac{0,929}{\text{Re}_p^{0.58} - 0,483}$	Re _p >20	(1.65)
Midoux et al.(1986)	$j_H = 0,177 \operatorname{Re}_p^{-0,29} \operatorname{Pr}^{0,077} (1-\varepsilon)^{0,145} \left(\frac{16}{5+11\varepsilon}\right)^{0,71}$	/	(1.66)

U novijim istraživanjima sve se više primenjuju savremenije metode istraživanja kao što su različite vrste kompijuterske simulacije i numeričke analize, najčešći primer je tzv. CFD (Computational Fluid Dynamics) metoda. U ovakvim analizama sistem se opisuje vizuelno i preko dijagrama, bez prikazivanja jednostavnog modela koji datu situaciju opisuje. Neke od radova koji se bave ispitivanjem prenosa toplote u pakovnim slojevima pomoću ovih metoda su dali: Guardoa et al. (2005), Guardoa et al. (2006), Nijemeisland & Dixon (2004), Ookawara et al. (2007), Bu et al. (2014), Izuzetak je rad Prasad-a et al. (2009) koji je proučavao prenos toplote u grejnom soloranom sistemu sa

pakovanim slojem, gde je kao konačan rezultat dao korelaciju za prenos toplote u ovakvom sistemu.

Prenos mase

Kao i kod prenosa toplote istraživanjanja su uglavnom zasnovana na empirijskim podacima. Pojavom elektrohemijske metode u analizi prenosa mase pojavili su se prvi pokušaji da se teorijski opiše prenos mase u pakovanim sistemima /Del Pozo et al., 1991/.

Del Pozo je zaključio da je za intezifikaciju prenosa mase presudan uticaj kontakta čestica sa elektrodom. U eksperimentima je uglavnom rađen prenos mase čestice-fluid, kao i uronjena sfera-fluid i zid-fluid. U tabeli 1.3. je dat prikaz literaturnih korelacija za prenos mase u pakovanom sloju.

Mac Kune & Wilhelm (1949)	$j_D = 1,625 \operatorname{Re}_p^{-0.507}$ $j_D = 0,687 \operatorname{Re}_p^{-0.327}$	15 <re<sub>p<120 Re_p>120</re<sub>	(1.67)
Ranz ^{a,b} & Marshall (1952)	$Sh_p = 2 + 1,8 \operatorname{Re}_p^{1/2} Sc^{1/3}$	Re _p >80	(1.68)
Ergun (1952)	$j_{D} = \frac{150(1-\varepsilon)}{\text{Re}_{p} Sc^{1/3}} + \frac{1,75}{6\varepsilon Sc^{1/3}}$	3 <re<sub>p<3000 170<sc<13700< td=""><td>(1.69)</td></sc<13700<></re<sub>	(1.69)
Evans & Gerald (1953)	$j_D = 1,48 \operatorname{Re}_p^{-0.52}$	1 <re<sub>p<100</re<sub>	(1.70)

Tabela 1.3. Pregled najznačajnijih i najčešče korišćenih literaturnih korelacija za prenos mase za pakovan sloj.

U slučaju prenosa mase u pakovanim slojevima broj novih radova je manji nego za prenos toplote i takođe su uglavnom korišćene CFD metode kao i druge vrste numeričke analize i simulacije /Romkes et al.,2003/, izuzetak od CFD metode je rad Wang-a et al. (2005), koji daje prikaz velikog broja korelacija za prenos mase u pakovanim slojevima.

1.2.2. Fluidizovani sloj

Fluidizovan sloj je dinamičan sistem u kome su čestice u stalnom haotičnom kretanju (odozdo-naviše i obrnuto). Postoje dve osnovne vrste fluidizacije: partikulativna i agregativna. Partikulativna fluidizacija se javlja kada je razlika gustina čestica i fluida mala. Agregativna fluidizacija se javlja kada je razlika gustina između čestica i fluida velika. U jednom periodu se u proučavanju fluidizovanih slojeva pojavila ideja da se fluidizovan sloj tretira kao idealan gas, a čestice kao molekuli gasa /Struminskii ,1996/, umesto funkcije raspodele brzine molekula gasa uvodi se funkcija raspodele brzine čestica u fluidizovanom sloju. Kretanje čestica u fluidizovanim sistemima su proučavali mnogobrojni autori, jedni u tom nizu su Carlos^a & Richardson (1968), koji su prikazali rad u kome su proučavali kretanje obojene čestice u transparentnom sloju, što bi značilo da čestice i sloj imaju isti indeks prelamanja svetlosti pa ne utiču na analizu obojene čestice. Rezultat ovog istraživanja prikazuje zavisnost brzine čestice od brzine fluida, kao i pojedine komponente brzine kao što su: aksijalna, radijalna, horizontalna i tangencijalna i na kraju ukupna brzina čestica. Sa porastom brzine fluida povećava se i brzina svake komponente brzine čestice, kao i ukupna brzina. Takođe se u radu jasno vidi da je aksijalna komponenta brzine dominantna, postaje sve dominantnija sa porastom brzine fluida. U radu su date i funkcije raspodele verovatnoće za sve komponente brzine. U drugom bitnom radu Carlos^b & Richardson (1968) su prikazali eksperimentalno određivanje koeficijenta aksijalnog mešanja M. Kako je aksijalna komponenta brzine dominantna u fluidizovanim sistemima u izrazu za jednačinu mešanja dolazi do njenog uprošćenja jer svi radijalni delovi jednačine se zanemaruju. Tada se kao jedna od jednačina koja se koristi u izračunavanju ovog koeficijenta uzima srednji slobodni put čestice koji je zasnovan na poređenju fluidizovanog sistema sa teorijom gasnog stanja (Maxwell-ova jednačina). Iz ovakvog pristupa je proizašla korelacija pomoću koje se može odrediti rastojanje između dva sudara čestica (analogno molekulima) i poznata je pod nazivom Carlos^b-Richardson-ova jednačina:

$$L = \frac{d_p}{6\sqrt{2}\left(1-\varepsilon\right)} \tag{1.71}$$

Kretanje čestica je izazvano dejstvom tri sile: gravitacionom, silom potiska i silom otpora. Dinamičkim uravnoteženjem ovih sila dolazi do kretanja čestica. Analizom dinamičke ravnoteže pomenutih sila došlo se do osnovne jednačine fluidizacije, koja određuje gradijent pritiska u fluidizovanom sloju /Kunii & Levenspil, 1991/:

$$-\frac{\Delta p}{H} = (\rho_p - \rho_f)g(1 - \varepsilon)$$
(1.72)

Na slici 1.15. prikazana je kriva fluidizacije, koja pokazuje kako se menja pad pritiska sa povećanjem brzine.

Slika 1.15. Kriva fluidizacije

Duž A-B na slici 1.15. pokazuje zavisnost pada pritiska za pakovan sloj koji je definisan Ergun-ovom jednačinom (1.62). Duž D-E predstavlja pad pritiska u fluidizovanom sloju i definisan je opštom jednačinom fluidizacije (1.72). Blagi maksimum koji se vidi na slici 1.15. potiče zbog kohezionih sila koje moraju biti savladane prilikom podizanja čestica u stanje fluidizacije. U tački B može se reći da je sistem i u pakovanom i fluidizovanom stanju, pa se ta ekvivalencija koristi prilikom

izvođenja jednačine za minimalnu brzinu fluidizacije U_{mf} . Izjednačavanjem opšte jednačine fluidizacije i Ergun-ove jednačine dobija se kvadratna jednačina oblika:

$$\frac{1,75}{\varepsilon_{mf}}\operatorname{Re}_{mf}^{2} + \frac{150(1-\varepsilon_{mf})}{\varepsilon_{mf}^{3}}\operatorname{Re}_{mf} - \frac{d_{p}g\rho_{f}(\rho_{p}-\rho_{f})}{\mu^{2}} = 0$$
(1.73)

Kvadratna jednačina (1.73) se u svom punom obliku rešava samo u slučaju kada je Reynolds-ov broj za minimalnu fluidizaciju u opsegu $20 < \text{Re}_{mf} < 1000$.

Kada je $\operatorname{Re}_{mf} < 20$, minimalna brzinu fluidizacije se može dobiti iz nešto jednostavnijeg izraza:

$$U_{mf} = \frac{d_{p}^{2}}{150} \frac{(\rho_{p} - \rho_{f})g}{\mu} \frac{\varepsilon_{mf}^{3}}{1 - \varepsilon_{mf}}$$
(1.74)

Sa druge strane kada je $\text{Re}_{mf} > 1000$ minimalna brzina fluidizacije je:

$$U_{mf} = \sqrt{\frac{d_p}{1,75} \frac{\left(\rho_p - \rho_f\right)g}{\rho_f}} \varepsilon_{mf}^3$$
(1.75)

Parametar koji određuje opseg postojanja fluidizovanog stanja pored brzine minimalne fluidizacije je brzina odnošenja čestice U_t . Brzina odnošenja čestice je jednaka brzini taloženja usamljene čestice i za sferične čestice se izračunava preko izraza:

$$U_{t} = \sqrt{\frac{4gd_{p}\left(\rho_{p} - \rho_{f}\right)}{3\rho_{f}c_{D}}}$$
(1.76)

Za brzinu odnošenja sferičnih čestica koriste se jednačine karakteristične za različite oblasti.

– Laminarna oblast taloženja ($\operatorname{Re}_t < 0, 4$):

$$U_{t} = \frac{d_{p}^{2}(\rho_{p} - \rho_{f})g}{18\mu}$$
(1.77)

– Preobražajna oblast $(0, 4 < \text{Re}_t < 500)$:

$$U_{t} = d_{p} \left[\frac{4}{225} \frac{g^{2} (\rho_{p} - \rho_{f})^{2}}{\rho_{f} \mu} \right]^{1/3}$$
(1.78)

- Turbulentna oblast $(500 < \text{Re}_t < 200\ 000)$:

$$U_{t} = \sqrt{\frac{3,1gd_{p}(\rho_{p} - \rho_{f})}{\rho_{f}}}$$
(1.79)

Poroznost partikulativnog fluidizovanog sloja je u funkciji brzine strujanja fluida i najčešće se računa preko Richardson-Zaki-jeve korelacije /Richardson & Zaki, 1954/,

$$U = U_t \varepsilon^n \tag{1.80}$$

gde koeficijent n, zavisi od brzine odnošenja na sledeći način:

$$n = 4,65 + 20 \cdot \left(\frac{d_p}{D_c}\right) \qquad za \quad \operatorname{Re}_{t} < 0,2 \qquad (1.81)$$

$$n = \left[4, 4 + 18(\frac{d_p}{D_c}) \right] \cdot \operatorname{Re}_t^{-0.03} \qquad za \quad 0, 2 < \operatorname{Re}_t < 1 \qquad (1.82)$$

$$n = \left[4, 4 + 18(\frac{d_p}{D_c}) \right] \cdot \operatorname{Re}_t^{-0,1} \qquad za \quad 1 < \operatorname{Re}_t < 200 \qquad (1.83)$$

$$n = 4, 4 \cdot \operatorname{Re}_{t}^{-0,1}$$
 $za \quad 200 < \operatorname{Re}_{t} < 500$ (1.84)

$$n = 2, 4$$
 $za \quad \operatorname{Re}_{t} > 500$ (1.85)

što je grafički prikazano na slici 1.16.

Slika 1.16. Zavisnost poroznosti od brzine, Richardson-Zaki-jeva zavisnost.

Kod fluidizacije karakteristična veličina koja opisuje prenos količine kretanja je koeficijent trenja između čestica i fluida. Koeficijent trenja fluid-čestice se izračunava preko jednačine koju je dao Grbavčić et al. (1991):

$$\beta = \varepsilon^{n+1} \frac{(1-\varepsilon)g(\rho_p - \rho_f)}{U^n}$$
(1.86)

U tački minimalne fluidizacije koeficijent trenja fluid-čestice je:

$$\beta_{mf} = \varepsilon_{mf}^{n+1} \frac{\left(1 - \varepsilon_{mf}\right) g(\rho_p - \rho_f)}{U_{mf}^n}$$
(1.87)

Bezdimenzioni koeficijent trenja fluid-čestice je definisan primenom varijacionog modela /Grbavčić et al.,1991/:

$$\beta^* = \frac{\beta}{\beta_{mf}} = 1 - C_2 + \frac{1}{\lambda} \left[1 - \left(\lambda \frac{\varepsilon - \varepsilon_{mf}}{1 - \varepsilon_{mf}} + C_1 \right)^2 \right]^{1/2}$$
(1.88)

gde su koeficijenti:

$$C_1 = \left(\frac{1}{1+B_z^2}\right)^{1/2}$$
(1.89)

$$\lambda = \sqrt{1 - C_1^2} - C_1 \tag{1.90}$$

$$C_2 = \frac{1}{\lambda} \sqrt{1 - C_1^2}$$
(1.91)

$$B_z = \frac{U_{mf}^n}{\varepsilon_{mf}^{n+1} U_t^n} \tag{1.92}$$

U slučaju krupnih čestica ($\operatorname{Re}_p > 100$) vrednost n = 2, a za sitnije čestice ($\operatorname{Re}_p < 100$) je n = 1.

- Prenos toplote

Prenos toplote kod fluidizovanih sistema je zasnovan kao i kod pakovanih slojeva na empirijskim iskustvima, dok je mali broj autora pokušao da objasni teorijski mehanizam prenosa toplote u fluidizovanim sistemima. Uglavnom se teorijska istraživanja mogu svesti na tri slučaja:

 Prenos toplote se odvija kondukcijom sa grejne površine na fluid kroz laminarni sloj koji se formira na grejnom telu /Gelperin & Einstein, 1971/. Brzina strujanja intezivira prenos toplote a ne koncentracija čestica. Neki autori tvrde obrnuto, da je uzrok intezifikacije prenosa toplote koncentracija čestica a ne brzina strujanja /Brea & Hamilton, 1971/.

- Prenos toplote se odvija pomoću čestica koje su u kontaktu sa grejnom površinom gde se greju (hlade), a onda odlaskom sa grejne površine u masu fluida prenose tu toplotu /Gelperin & Einstein,1971/.
- Ovaj način prenosa toplote je sličan prethodnom, jedino je razlika u tome što paket čestica prenosi toplotu a ne pojedinačna čestica /Mickley & Fairbanks, 1955/. Ovaj mehanizam je isključivo dat za agregativne sisteme.

U partikulativnim fluidizovanim sistemima značajan je samo prvi mehanizam. Dosadašnja ispitivanja prenosa toplote u fluidizovanim sistemima su najčešće rađena kao prenos zid-fluid, uronjeni objekat (grejač)-fluid i ređe kao prenos čestice-fluid. U većini radova na temu prenosa toplote, rađeno je radijalno merenje temperature u pravcu prečnika (slika 1.17), da bi se videla temperaturna raspodela od zida ka centru cevi (ako je zid na većoj temperaturi).

Slika 1.17. Poprečni presek kolone sa radijalnim raspodelom sondi za merenje temperature.

U radu Muroyama et al. (1986) pokazano je na osnovu merenja da je profil temperature paraboličan u jezgru, dok je profil veoma strm neposredno uz zid. Iz toga se može zaključiti da je otpor prenosu toplote u jezgru sloja konačan, a da je najveći otpor prenosu toplote zapravo termički granični sloj uz sam zid, čime termički granični sloj upravlja prenosom toplote. Treba spomenuti da i ako sloj koji je neposredno uz zid ima najčešće najveći otpor prelazu toplote, postoje slučajevi kada je i obrnuto. Uticaj čestično-konvektivnog prenosa toplote je posebno izražen kod čestica sa dobrom toplotnom provodljivošću, dok se kod staklenih čestica praktično može zanemariti.

Složenost mehanizma prenosa toplote vidi se iz modela koji su postavili Jamialahmadi et al. (1995) gde su pretpostavili da se površina za razmenu toplote sastoji iz dela koji zauzimaju čestice A_p , gde se ostvaruje prenosa toplote kondukcijom i dela koji ne zauzimaju čestice A_c , a prenos toplote se odvija prinudnom konvekcijom. Fluks toplote u jedinici vremena može se napisati:

$$q = q_c + q_p \Longrightarrow \alpha A = \alpha_c A_c + \alpha_p A_p \tag{1.93}$$

ili:

$$\alpha = \alpha_c + \frac{A_p}{A} \left(\alpha_p - \alpha_c \right) \tag{1.94}$$

Problem pri rešavanju jednačine (1.94) su određivanje odnosa površine A_p/A i koeficijenta prelaza toplote za oblast koja je pod uticajem čestica. Kako je:

$$\frac{A_p}{A} = 1,5 \left(\frac{n_p}{N}\right) \left(\frac{D_c}{d_p}\right) (1-\varepsilon)$$
(1.95)

gde je n_p/N udeo čestica koje su u kontaktu sa površinom za razmenu toplote. Smenom jednačine (1.95) u (1.934) dobija se izraz:

$$\alpha = \alpha_c + 1.5 \left(1 - \varepsilon\right) \left(\frac{n_p}{N}\right) \left(\frac{D_c}{d_p}\right) \left(\alpha_p - \alpha_c\right)$$
(1.96)

Za partikulativno fluidizovane slojeve udeo čestica koje su u kontaktu sa površinom za razmenu toplote nije konstantan već zavisi od poroznosti, geometrije kolone i prečnika čestica i izračunava se preko jednačine:

$$\frac{n_p}{N} = 0.9842 \left(\frac{d_p}{D_c}\right)^{1,256} \left(1 - \varepsilon\right)^{0,4925}$$
(1.97)

Smenom jednačine (1.97) u (1.96) konačno se dobija jednačina za koeficijent prelaza toplote koji obuhvata oba načina prenosa toplote (prinudno konvektivni i čestično-konvektivni sa kondukcijom).

$$\alpha = \alpha_c + 1.5 \left(\frac{d_p}{D_c}\right)^{0.256} \left(1 - \varepsilon\right)^{0.5075} \left(\alpha_p - \alpha_c\right)$$
(1.98)

Koeficijent prelaza toplote za oblast pod uticajem čestica je:
$$\alpha_{p} = \left(\frac{2}{\sqrt{\pi}}\sqrt{\lambda_{f}\rho_{f}c_{p,f}} + K\sqrt{\lambda_{p}\rho_{p}c_{p,p}}\right)\sqrt{f}$$
(1.99)

gde je K=0,0705 za sferične čestice i K=0,141 za cilindrične čestice. Frekvencija sudara koja je ujedno i frekvencija mešanja toplijih i hladnijih slojeva fluida izračunava se preko jednačine:

$$f = \frac{3w_p}{4d_p} \tag{1.100}$$

srednja brzina čestica je:

$$w_{p} = \sqrt{gd_{p} \left(1 - \frac{\rho_{f}}{\rho_{p}}\right)} F\left(\varepsilon, \varepsilon_{ps}\right)$$
(1.101)
i
$$F\left(\varepsilon_{ps}\right) = \frac{\varepsilon - \varepsilon_{ps}}{\varepsilon_{ps}}$$
(1.102)

$$F(\varepsilon,\varepsilon_{ps}) = \frac{\varepsilon - \varepsilon_{ps}}{5(1 - \varepsilon_{ps})(1 - \varepsilon)}$$
(1.102)

Ovaj model daje dobre rezultate za koeficijent prelaza toplote. Za agregativnu fluidizaciju predviđa i maksimum koeficijenta prelaza toplote. Pomoću modela je ustanovljena poroznost pri kojoj dolazi do maksimuma prelaza toplote u agregativno fluidizovanim slojevima, pri poroznosti $\varepsilon_{max} = 0,73$. U radu Richardson-a et al. (1976) sa dimetilftalatom (tečan) data je korelacija koja predviđa maksimum na krivoj za koeficijent prelaza toplote:

$$\alpha_{\max} = 836, 6 + 266 \cdot \log d_p \tag{1.103}$$

gde je d_p u mm.

Osim Jamialahmadi-jevog modela često se koristi i Haid-ova korelacija (1994) za prenos toplote:

$$\operatorname{Nu}_{p} = 0.1493 \operatorname{Re}_{p}^{0.72} \operatorname{Pr}^{0.52} \left(1 - \varepsilon\right)^{0.19} \varepsilon^{-1.41} \left(\frac{d_{p}}{D_{c}}\right)^{0.17} \left(\frac{\rho_{p} - \rho_{f}}{\rho_{f}}\right)^{0.03}$$
(1.104)

Ostale empirijske korelacije koje su dobijene iz velikog broja podataka su prikazane u tabeli 1.4.

Novija istraživanja prenosa toplote u fluidizovanom sloju su takođe bazirana na različitim metodama numeričke simulacije i analize, pa su tako radovi Chen-a et al. (2005), Abdulla (2015), Salwe et al. (2014), Khan & Elkamel (2002), Aghajani et al. (2004) dali doprinos u istraživanju prenosa toplote u fluidizovanim sistemima.

Hamilton (1970)	$j_H = 3,38 \mathrm{Re}_p^{'-0,435}$	2 <re<sub>p<2500 Pr=6,1 0,45 < ε < 0,99</re<sub>	(1.105)
Richardson et al.(1976)	$j_H \varepsilon = 0,67 \mathrm{Re}_p^{-0,38}$	$13 < \text{Re}_{\text{p}} < 380$ Pr=135,5 0,405 < ε < 0,85	(1.106)
Muroyama et al. (1986)	$j_H \varepsilon = 0,137 \mathrm{Re}_p^{-0,271}$	11 <re<sub>p<2620 4,3<pr<135,5 0,495 < ε < 0,95</pr<135,5 </re<sub>	(1.107)
Kato et al. (1981)	$Nu_p \cdot \varepsilon = 0,044 \text{Re}_p^{0.78} \text{Pr}^{0.78}$	1,4 <re<sub>p<350 6,2<pr<60< td=""><td>(1.108)</td></pr<60<></re<sub>	(1.108)
Kang et al. (1991)	$j_H \varepsilon = 0,191 \text{Re}_p^{-0,31}$	$68 < \text{Re}_{p} < 480$ Pr=5,6 $0,50 < \varepsilon < 0,85$	(1.109)
Bošković-Vragolović (2002)	$j_H \cdot \varepsilon = 0,17 \operatorname{Re}_p^{\prime^{-0,3}}$	/	(1.110)

Tabela 1.4. Pregled najznačajnijih i najčešče korišćenih literaturnih korelacija za prenos toplote u fluidizovanom sloju.

- Prenos mase

Prenos mase u fluidizovanim sistemima je kao što je već rečeno za prenos toplote istraživan uglavnom empirijski, postoji mali broj istraživača koji su imali teorijski pristup objašnjavanju mehanizma prenosa mase u ovakvim sistemima. Del Pozo /Del Pozo et al., 1991/ je u svojim istraživanjima prenosa mase pomoću elektrohemijske metode zaključio da i u fluidizovanim slojevima čestice utiču na prenos mase kroz elektrodu. U dosadašnjim istraživanjima uglavnom se prenos mase u fluidizovanim sistemima zasnivao na prenosu mase čestice-fluid, uronjen objekat-fluid i zid-fluid. Schmidt /Schmidt et al., 1999/ je pokazao da postoji maksimum na krivoj zavisnosti Sherwood-ovog broja od poroznosti, što pruža mogućnost da se mehanizmi objašnjavaju slično kao kod prenosa toplote, a da se korelacije koje su korišćene kod prenosa toplote mogu primenjivati i na prenos mase uz određena prilagođavanja izraza. Neke od empirijskih korelacija koje se često koriste za prenos mase u fluidizovanim sistemima su prikazane u tabeli 1.5.

Chu et al. (1953)	$Sh_{p} = 1,77 (Re_{p}/1-\epsilon)^{-0.56} Sc^{1/3}$	$30 < {\rm Re}_{\rm p}/(1-\epsilon) < 1000$	(1.111)
Fan et al. (1960)	$j_D = \frac{2}{\mathrm{Sc}^{1/3} \mathrm{Re}_p} + \frac{1.51 \cdot (1 - \varepsilon)^{1/2}}{\mathrm{Re}_p^{1/2}}$	/	(1.112)
Gupta & Thodos (1962)	$\varepsilon \cdot j_D = 0,01 + \frac{0,863}{\operatorname{Re}_p^{0.58} - 0,483}$	$\operatorname{Re}_p > 1$	(1.113)
Upadhyay & Tripathi (1975)	$Sh_{p} = 1,6218 (Re_{p}/1-\epsilon)^{0.5553} Sc^{1/2}$	$\operatorname{Re}_{p}/(1-\varepsilon) > 20$ 572 <sc<70000< td=""><td>(1.114)</td></sc<70000<>	(1.114)
Dwivedi & Upadhyay (1977)	$Sh_p = 0,4548 \cdot Re'_p^{(0,5931)} \cdot Sc^{1/3}$	Re' _p >10	(1.115)
Pickett et al. (1977)	$j_D = \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{-0.5}$	/	(1.116)
Riba et al. (1979)	$j_D = 0,265 \cdot Ga^{0,36} \cdot \operatorname{Re}_p^{-1,11}$	$Re_{p} = 265 - 3100$ Sc = 550 - 1450 Ga = 10 ⁶ - 3 \cdot 10 ⁷	(1.117)
Yutani et al. (1987)	$j_D = \frac{0.4}{\varepsilon} \operatorname{Re}_p^{-0.4}$	$\text{Re}_{p} = 0.5 - 1000$	(1.118)
Bošković et al. (1994)	$j_D = 0,261 \cdot Ga^{0,324} \cdot \operatorname{Re}_p^{-0,97}$	$Re_p = 14 - 400$ Sc = 1361 - 1932	(1.119)

Tabela 1.5. Empirijske korelacije za prenos mase u fluidizovanim sistemima

1.2.3. Vertikalni transport

Opšte ponašanje vertikalnog dvofaznog toka fluid-čvrste čestice prvenstveno zavisi od vrste fluida (gas ili tečnost), pri čemu je ponašanje sistema tečnost-čestice bitno drugačije od sistema gas-čestice /Kopko et al., 1975; Lareo & Fryer, 1998/. U vertikalnom toku tečnost-čestice, koncentracija čestica ravnomerna je po zapremini transportne cevi, pri svim brzinama fluida.

U vertikalnom toku tečnost-čestice postoje dva karakteristična režima strujanja čestica /Kopko et al., 1975; Grbavčić et al., 1992; Garić-Grulović et al., 2004/:

 Turbulentni tok čestica, u kome se čestice kreću vertikalno uz uočljive radijalne varijacije u odnosu na paralelne strujnice. Ovaj režim je karakterističan za manje brzine čestice i fluida, a vizuelno podseća na partikulativno fluidizovani sloj, kao da ukupna "fluidizovana" smeša protiče u odnosu na zid cevi. Turbulentni tok čestica obuhvata područje Reynolds-ovog broja koje približno odgovara prelaznom režimu strujanja pri jednofaznom strujanju fluida.

Paralelni tok čestica, u kome se čestice kreću naviše po pravolinijskim putanjama.
 Ovaj režim je karakterističan za veće brzine čestica i fluida. Paralelni tok čestica obuhvata područje Reynolds-ovog broja koje približno odgovara turbulentnom režimu strujanja pri jednofaznom strujanju fluida.

– Prenos količine kretanja

U zoni uspostavljenog vertikalnog dvofaznog toka smeše fluid-čestice (izvan zone ubrzavanja), osnovu hidrodinamičkog modela predstavljaju jednačine kontinuiteta i jednačine bilansa količine kretanja /Lefroy & Davidson, 1969; Capes & Nakamura, 1973/ kao i varijacioni model za izračunavanje međufaznog koeficijenta trenja fluid-čestice /Grbavčić et al., 1991/. Takođe, pretpostavljaju se konstantne karakteristike fluida i čestica.

Za jednodimenziono strujanje smeše fluid-čestice jednačine kontinuiteta, kada su čestice dostigle konačnu brzinu (izvan zone ubrzavanja), su za:

- fluid

$$\frac{d}{dz}(u\varepsilon\rho_f) = 0 \quad \text{tj.} \quad u\varepsilon = U = \frac{G_f}{\rho_f A_t}$$
(1.120)

- čestice

$$\frac{d}{d_z} \Big[v (1-\varepsilon) \rho_p \Big] = 0 \quad \text{tj. } v (1-\varepsilon) = c_s = \frac{G_p}{\rho_p A_t}$$
(1.121)

Bilans količine kretanja za jednodimenziono strujanje smeše fluid-čestice je /Lefroy & Davidson, 1969; Nakamura & Capes, 1973/:

$$-\frac{dP}{dz} = \left(\rho_p - \rho_f\right)g\left(1 - \varepsilon\right) + F \tag{1.122}$$

Jednačine bilansa količine kretanja za fluid i za čestice su za /Nakamura & Capes, 1973; Grbavčić et al., 1991 & 1992/:

– fluid

$$\varepsilon \cdot \left(-\frac{dP}{dz}\right) = \beta \left(u - v\right)^2 + F_f \tag{1.123}$$

čestice

$$(1-\varepsilon)\cdot\left(-\frac{dP}{dz}\right) = -\beta\left(u-v\right)^2 + \left(\rho_p - \rho_f\right)g\left(1-\varepsilon\right) + F_p$$
(1.124)

U jednačini (jedn. 1.122) *F* je gradijent pritiska usled trenja smeše fluid-čestice o zid transportne cevi. U jednačinama za bilans količine kretanja za fluid i za čvrste čestice (jedn. 1.123 i jedn. 1.125) sila trenja između fluida i čestica proporcionalna je kvadratu relativne brzine između fluida i čestica $u_s = u - v$ ("slip"), pri čemu je koeficijent proporcionalnosti β /Grbavčić et al., 1991/.

Za gradijent pritiska usled trenja smeše fluid-čestice *F*, o zid transportne cevi (jedn. 1.122), pretpostavlja se aditivni karakter /Capes & Nakamura, 1973; Yang, 1978; Leung, 1980; Grbavčić et al., 1992/, tj. da se može razdvojiti na gradijent pritiska usled trenja fluid-zid i gradijent pritiska usled trenja čestice-zid transportne cevi:

$$F = F_f + F_p \tag{1.125}$$

Gradijenti pritiska usled trenja fluid-zid F_f i čestice-zid F_p u jednačini (1.125) definišu se jednačinama Fanning-ovog tipa:

$$F_{f} = 2 f_{f} \rho_{f} \frac{U^{2}}{D_{t}}$$
(1.126)

$$F_{p} = 2 f_{p} \rho_{p} \frac{(1-\varepsilon)v^{2}}{D_{t}}$$
(1.127)

u kojima je f_f koeficijent trenja fluid-zid, a f_p koeficijent trenja čestice-zid.

Koeficijent trenja fluid-zid transportne cevi može da se odredi eksperimentalno, korelisanjem podataka za pad pritiska pri strujanju fluida bez prisustva čestica, ili uobičajenom metodom proračuna pomoću korelacije /Bird et al., 2002/:

$$f_f = \frac{0,0791}{\text{Re}^{0,25}} \tag{1.128}$$

Koeficijent trenja čestice-zid transportne cevi f_p , u vertikalnom toku smeše fluidčvrste čestice, može se odrediti na osnovu eksperimentalnih podataka za protok fluida G_f , protok čestica G_p , ukupni gradijent pritiska (-dP/dz), poroznost ε i gradijenta pritiska usled trenja fluid-zid F_f . Za određivanje koeficijenta trenja čestice-zid na ovaj način najkomplikovanije je eksperimentalno odrediti poroznost u dvofaznom toku. Kombinovanjem jednačina (1.121), (1.122), (1.125) i (1.127), dobija se:

$$f_p = \frac{\pi^2}{32} \cdot \frac{D_t^5 \cdot \rho_p (l \cdot \varepsilon)}{G_p^2} \cdot \left(-\frac{dP}{dz} - F_f - \left(\rho_p - \rho_f\right) \cdot g \cdot (l - \varepsilon) \right)$$
(1.129)

Ovako određene vrednosti koeficijenta trenja čestice-zid transportne cevi korelisane su u funkciji Froude-ovog broja /Grbavčić et al., 1992/.

$$f_p = 0,035 \cdot \mathrm{Fr}^{-2} \tag{1.130}$$

Precizno određivanje koeficijenta trenja čestice-zid transportne cevi od izuzetnog je značaja za izračunavanja osnovnih fluidodinamičkih karakteristika vertikalnog dvofaznog toka tečnost-čestice. Takođe, u literaturi postoje brojne empirijske korelacije za izračunavanje koeficijenta trenja čestice-zid, f_p /Yang, 1978; Leung, 1980; Garić et al., 1996/.

Izračunavanje koeficijenta trenja čestice-zid transportne cevi po različitim korelacijama daje nepouzdano predviđanje osnovnih fluidodinamičkih karakteristika (v, ε i G_p), čime se potvrđuje Leung-ov (1980) stav da se korišćenje empirijskih korelacija drugih autora izvedenih pod drugim eksperimentalnim uslovima ne preporučuje, jer u protivnom, obično dolazi do velikog rasipanja podataka /Leung, 1980; Grbavčić et al., 1992; Garić et al., 1996/.

- Prenos toplote

Ispitivanja prenosa toplote u vertikalnom dvofaznom toku smeše fluid-čestice, odnosno vertikalnom transportu čestica, u literaturi su malobrojna. Većina objavljenih radova bavi se prenosom toplote u vertikalnom toku tečnih suspenzija sitnih čestica ili krupnih čestica voća i povrća u prehrambenoj industriji /de Ruyter & Brunet, 1973; Manson & Cullen, 1974; Heppel, 1985; Chandarana & Gavin, 1989; Maesmans et al., 1992/.

Kada je u pitanju relativno redak tok tečnost-čestice neki autori smatraju /Chandarana & Gavin, 1989; Zuritz et al., 1990/, da se koeficijent prelaza toplote na čestice može sa dovoljnom tačnošću predvideti iz korelacije Ranz^{a,b}-a i Marshall-a (1952), za prenos toplote sa usamljene čestice fiksirane u toku fluida:

$$Nu_p = 2 + 0.6 Pr^{1/3} Re_p^{1/2}$$
(1.131)

gde je $\operatorname{Re}_{p} = \rho_{f} U_{t} d_{p} / \mu$, Reynolds-ov broj za česticu.

Jedna od retkih korelacija koju je za prenos toplote pri vertikalnom hidrotransportu dala Garić-Grulović (2006) je:

$$j_{H} = 1, 2 \cdot 10^{4} \left(\frac{dp}{D_{t}}\right)^{2} / \operatorname{Re}_{p}^{1,39}$$
 (1.132)

- Prenos mase

Prenos mase pri vertikalnom transportu je takođe malo ispitivan i uglavnom empirijski. Izuzetak je rad Fu-a et al. (1998), oni su sfere od polistirena prečnika 6 mm oblagali saharozom i takve čestice su u vertikalnoj cevi transportovali. Rezultate merenja nisu objavili preko korelacije već opisno u poređenju sa radom Frössling-a et al. (1938). Neke od jako retkih jednačina preko kojih se može izračunati prenos mase u ovakvim sistemima su:

-Levins & Glastobury (1972):

$$\operatorname{Sh}_{p} = 2 + 0,44Sc^{0.38}\operatorname{Re}_{p}^{1/2}$$
 (1.133)

važi za tečnost-sitne čestice;

-Garić-Grulović (2006):

$$j_D = 1500 \left(\frac{d_p}{D_t}\right)^2 / \operatorname{Re}_p \tag{1.134}$$

1.3. Analogije konvektivnog prenosa

1.3.1. Jednofazno strujanje

1.3.1.1. Reynolds-ova analogija

Prva analogija je Reynolds-ova analogija i postavljena je davne 1874 godine /Reynolds,1874/. Osnovna pretpostavka Reynolds-ove analogije je da analogija prenosa količine kretanja, toplote i mase, pri strujanju gasa preko čvrste površine, postoji kada postoji jednakost relativnih raspodela brzine, temperature i koncentracije /Welty et al., 2005/:

$$\frac{d}{dy}\left(\frac{u}{u_0}\right)_{y=0} = \frac{d}{dy}\left(\frac{T-T_i}{T_0-T_i}\right)_{y=0} = \frac{d}{dy}\left(\frac{c_A - c_{Ai}}{c_{A0} - c_{Ai}}\right)_{y=0}$$
(1.135)

Takođe je pretpostavio da su debljina hidrodinamičkog, termičkog i difuzionog graničnog sloja jednake ($\delta_h = \delta_T = \delta_A$) tj. da su Prandtl-ov i Schmidt-ov broj jednaki jedinici što je ujedno i veliko ograničenje ove analogije. To znači da je za prenose količine kretanja i toplote $\lambda = c_p \mu$, dok je za prenose količine kretanja i mase $\mu = \rho D_{AB}$. Sa datim pretpostavkama (ograničenjima) Reynolds je došao do konačnog oblika prve analogije prenosa:

$$\frac{c_f}{2} = St = St_D \tag{1.136}$$

gde je St-Stanton-ov broj.

Reynolds-ova analogija, iako zbog ograničenja koje je postavio Reynolds, nema praktični značaj, zauzima bitno mesto kada je reč o analogijama jer ukazuje na sličnost različitih vrsta prenosa. Poslužila je kao osnova savremenijim i egzaktnijim analogijama. Kao mana pored već navedenih ograničenja je da Reynolds-ova analogija ne uzima u obzir profil koncentracije. Takođe nije uzet u obzir i mehanizam prenosa (molekulski i turbulentni). Sve nedostatke su u daljim istraživanjima brojni autori probali da otklone sa više ili manje uspeha.

1.3.1.2. Prandtl-Taylor-ova analogija

Prandtl je 1904 godine /Prandtl, 1904/ proširio Reynolds-ovu analogiju uzevši u obzir i raspodelu koncentracija u laminarnom podsloju graničnog sloja. Smicajni napon u graničnom sloju na dodiru fluid-zid je dat Newton-ovim zakonom:

$$\tau_0 = \rho \left(\nu + \varepsilon_h \right) \frac{dU}{dy} \bigg|_{y=0}$$
(1.137)

Toplotni fluks kroz granični podsloj može se prikazati Fourier-ovim zakonom,

$$q_0 = -\rho c_p (a + \varepsilon_T) \frac{dT}{dy} \bigg|_{y=0}$$
(1.138)

dok je maseni fluks kroz granični podsloj prikazan Fick-ovim zakonom:

$$\left(N_{A}\right)_{0} = -\left(D_{AB} + \varepsilon_{A}\right) \frac{dc_{A}}{dy}\Big|_{y=0}$$
(1.139)

Turbulentne difuzivnosti koje u laminarnom podsloju ne postoje, jednake su nuli. Kombinovanjem izraza (1.137), (1.138) i (1.139) i poštujući univerzalnu raspodelu brzina u oblasti graničnog podsloja, postavljene su jednačine za Nusselt-ov broj (prenos toplote):

$$Nu = \frac{(f/2) \operatorname{Re} \operatorname{Pr}}{1 + 5\sqrt{(f/2)}(\operatorname{Pr}-1)}$$
(1.140)

i Sherwood-ov broj (prenos mase):

$$Sh = \frac{(f/2)\operatorname{Re} Sc}{1+5\sqrt{(f/2)}(Sc-1)}$$
(1.141)

gde je objedinjenjem izraza (1.140) i (1.141) postavljena Prantdl-Taylor-ova analogija:

$$\frac{f}{2} = \frac{Nu(1+5\sqrt{(f/2)}(\Pr-1))}{\operatorname{Re}\operatorname{Pr}} = \frac{Sh(1+5\sqrt{(f/2)}(Sc-1))}{\operatorname{Re}Sc}$$
(1.142)

ili

$$\frac{f}{2} = St \left(1 + 5\sqrt{(f/2)}(Pr-1) \right) = St_D \left(1 + 5\sqrt{(f/2)}(Sc-1) \right)$$
(1.143)

Iz izraza (1.143) je očigledna sličnost sa Reynolds-ovom analogijom, gde se jasno izdvajaju članovi koji se odnose na Prantdl-ovu dopunu (proširenje) Reynolds-ove analogije.

1.3.1.3. Von Kármán-ova analogija

Von Kármán-ova analogija /Von Kármán, 1939/, zapravo je proširenje Prandtl-Taylor-ove analogije, koja je u analizu analogije uvrstila i raspodele veličina koje se prenose u preobražajnom podsloju.

Iz analize prenosa količine kretanja, toplote i mase dobijene su jednačine:

$$Nu = \frac{(f/2) \operatorname{Re} \operatorname{Pr}}{1 + 5\sqrt{(f/2)} \left\{ \operatorname{Pr} - 1 + \ln[(1 + 5\operatorname{Pr})/6] \right\}}$$
(1.144)

$$Sh = \frac{(f/2) \operatorname{Re} Sc}{1 + 5\sqrt{(f/2)}) \left\{ (Sc - 1 + \ln[(1 + 5Sc)/6] \right\}}$$
(1.145)

Iz jednačina (1.144) i (1.145) Von Kármán je postavio analogiju prenosa:

$$\frac{f}{2} = St \left\{ 1 + 5\sqrt{(f/2)} (\Pr(-1) + \ln\left[(1+5\Pr)/6\right] \right\} =$$

$$= St_D \left\{ 1 + 5\sqrt{(f/2)} (Sc - 1) + \ln\left[(1+5Sc)/6\right] \right\}$$
(1.146)

Kod ove analogije izdvajaju se članovi koji dopunjuju Reynolds-ovu odnosno Prandtl-Taylor-ovu analogiju. Treba još naglasiti da su Prandtl i von Kármán svoje analogije zasnovali na turbulentnoj difuzivnosti.

1.3.1.4. Chilton-Colburnova analogija

Chilton-Colburn-ova analogija /Chilton & Colburn, 1934; Trinh, 2010/ je najčešće korišćena analogija, a zasniva se na eksperimentalno dobijenim rezultatima za prenos količine kretanja, toplote i mase pri turbulentnom strujanju fluida kroz glatku cev.

Tako je za prenos količine kretanja:

$$\frac{f_f}{2} = 0,023 \,\mathrm{Re}^{-0,2} \tag{1.147}$$

za prenos toplote:

$$\frac{\alpha}{\rho u_0 c_p} \left(\frac{c_p \mu}{\lambda}\right)^{2/3} \left(\frac{\mu_i}{\mu}\right)^{0.14} = 0,023 \,\mathrm{Re}^{-0.2}$$
(1.148)

odnosno,

$$Nu = 0,023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{1/3} \tag{1.149}$$

dok je za prenos mase,

$$Sh = 0,023 \operatorname{Re}^{0.8} Sc^{1/3}$$
(1.150)

Kombinovanjem jednačina (1.147), (1.149) i (1.150) postavljena je Chilton-Colbun-ova analogija:

$$\frac{f_f}{2} = \frac{Nu}{\text{Re}\,\text{Pr}^{1/3}} = \frac{Sh}{\text{Re}\,Sc^{1/3}}$$
(1.151)

Ova analogija se prikazuje i u nešto drugačijem obliku, po kome je danas prepoznatljiva gde su uvedene veličine faktor prenosa toplote, j_H -faktor i faktor prenosa mase, j_D -faktor.

$$\frac{f_f}{2} = j_H = j_D \tag{1.152}$$

Jednostavan oblik ove analogije često je korišćen za postavljanje analogija u drugačijim sistemima.

1.3.2. Strujanje u disperznim sistemima

1.3.2.1. Analogija u pakovanim sistemima

Analogijom prenosa količine kretanja, toplote i mase u pakovanim slojevima bavio se mali broja autora /Bošković-Vragolović et al., 2005/. Postoje autori koji su se bavili ispitivanjem i analizom prenosa količine kretanja i mase ali ne zalazeći u njihovu međusobnu vezu /Kumar & Upadhyay, 1981/. Uspostavljanje odgovarajuće analogije značilo bi praktično da podatak za pad pritiska u jednom pakovanom sloju bude dovoljan i za definisanje drugih veoma važnih veličina kao što su koeficijenti prelaza mase i toplote.

Jedan od retkih izuzetaka je rad Chu-a et al. (1953), koji koeficijent prenosa mase u pakovanim slojevima poredi sa koeficijentom trenja u pakovanom sloju, definisanim po uzoru na koeficijent trenja za strujanje kroz cev, prilagođenom za pakovane slojeve:

$$\Delta p = 4f_p \frac{H}{d_p} \frac{U^2}{2} \rho \frac{1-\varepsilon}{\varepsilon^3}$$
(1.153)

Koeficijent trenja definisan je kao veličina koja se za dva puta razlikuje od modifikovanog koeficijenta trenja. Treba dodati da su ovi autori eksperimentalna ispitivanja prenosa mase izvršili u pakovanim slojevima kroz koje struji gas, ali da su analizu rezultata na osnovu literaturnih podataka proširili i na strujanje tečnosti kroz pakovane slojeve. Takođe po ovim autorima jednačine koje su date u radu važe i za

fluidizovane slojeve. Konačni oblik analogije između prenosa količine kretanja i mase u pakovanim slojevima, po ovim autorima je:

$$j_D = \frac{f_p}{20}$$
(1.154)

Gupta & Thodos (1962), su u svom radu dali rezultat ispitivanja analogije prenosa mase i toplote u pakovanim slojevima kao:

$$\frac{j_H}{j_D} = 1,076$$
 (1.155)

odnosno pokazali su postojanje veoma bliske analogije (sa malim odstupanjima) između prenosa mase i toplote u pakovanim slojevima.

Po nekim literaturnim izvorima /Brodkey & Hershey, 1988/, na osnovu ranijih ispitivanja, izvodi se zaključak da u pakovanim slojevima postoji potpuna analogija prenosa toplote i mase:

$$j_{H} = j_{D} = \frac{0,4548}{\varepsilon} \operatorname{Re}_{p}^{-0,4069}$$
(1.156)

Takođe, literaturna korelacija analogije prenosa toplote i mase, Petrovic-a & Thodos -a (1968), je:

$$j_H \varepsilon = j_D \varepsilon \tag{1.157}$$

Pored toga, navedena analogija prenosa toplote i mase (jedn. 1.157), za strujanje fluda kroz pakovane slojeve, gas-čvrsta faza, eksperimentalno je i potvrđena je u radu Pešić-a (2016).

1.3.2.2. Analogija u fluidizovanim sistemima

Kod složenijih sistema koji imaju prisutnu drugu fazu u pravcu strujanja, prenos količine kretanja je posledica ne samo trenja već i različitih efekata opstrujavanja. Kako se može primetiti u prethodno navedenim teorijama analogija količine kretanja sa toplotom i masom postoji samo ukoliko je prenos količine kretanja uslovljen trenjem (izraženim Faningovim koeficijentom trenja f_f). Postojanje drugih faktora koji intenziviraju prenos količine kretanja zbog prisustva opstrujavajućih efekata glavni je razlog zašto u literaturi ima mali broj objavljenih rezultata koji se tiču analogija u heterogenim sistemima. Jedna od njih je analogija /Bošković et al., 1994/ postavljena kao analogija prenosa količine kretanja i mase. Analogija količine kretanja i mase u tom radu je izražena kao jednakost normalizovanih vrednosti koeficijenta trenja fluid-čestice i faktora prenosa mase:

$$\frac{\beta}{\beta_{mf}} = \frac{j_D - j_{D1}}{j_{Dmf} - j_{D1}}$$
(1.158)

ili

 $\beta^* = j_D^* \tag{1.159}$

Vrednosti j_{D1} i j_{Dmf} su određivani ekstrapolacijom eksperimentalnih podataka što je praktično umanjilo širu mogućnost primene postavljene analogije u partikulativno fluidizovanom sloju.

1.3.2.3. Analogija u transportnim sistemima

Kao i u slučaju prenosa u fluidizovanim slojevima i kada su u pitanju transportni sistemi u literaturi ima malo objavljenih radova u oblasti analogija prenosa. Jedan od tih radova je rad /Garić et al., 2005/ gde je prvo uveden koncept pseudofluida po kome se smeša čestica i fluida tretira kao suspenzija. Analogija je pokazana u radu Garić et al. (2009), i data je u formi Cilton-Colburn-ove analogije za paralelni tok čestica:

$$\frac{f_w}{2} = j_H = j_D = \frac{0.0395}{\text{Re}_m^{0.25}} \quad za \quad 15000 < \text{Re}_m < 32000$$
(1.160)

gde je f_w koeficijent trenja pseudofluid-zid transportne cevi:

$$f_w = \frac{F_w D_t}{2\rho_m U_m^2} \tag{1.161}$$

U jednačini (1.161), U_m je brzina pseudofluida,

$$U_m = \frac{G_f}{\rho_f A_t} + \frac{G_p}{\rho_p A_t}$$
(1.162)

dok je ρ_m , prividna gustina pseudofluida i μ_m prividna viskoznost pseudofluida:

$$\rho_m = \varepsilon \rho_f + (1 - \varepsilon) \rho_p \tag{1.163}$$

$$\mu_m = \mu_f \exp\left(\frac{5(1-\varepsilon)}{3\varepsilon}\right) \tag{1.164}$$

a cela analiza je urađenja kao zavisnost od modifikovanog Reynolds-ovog broja za pseudofluid:

$$\operatorname{Re}_{m} = \frac{\rho_{m} U_{m} D_{l}}{\mu_{m}}$$
(1.165)

EKSPERIMENTALNA ISPITIVANJA

2. Eksperimentalna ispitivanja prenosa količine kretanja, mase i toplote

U ovom radu vršena su eksperimentalna ispitivanja prenosa količine kretanja, mase i toplote u pakovanim i fluidizovanim slojevima, kao i u vertikalnom dvofaznom toku tečnost-čestice. Cilj ovih ispitivanja bio je da se uz pomoć, teorijski razvijenog, modela zasnovanog na teoriji graničnog sloja definišu korelacije za predviđanje koeficijenata prelaza mase i toplote, kao i da se ispita mogućnost formulisanja analogije između sva tri prenosa u navedenim sistemima.

Pri eksperimentalnim ispitivanjima, prikupljeni su potrebni podaci za definisanje fluido-dinamičkih parametara i prenosa količine kretanja, kao i specifični podaci za određivanje koeficijenata prelaza mase i toplote u pakovanim slojevima, partikulativno fluidizovanim slojevima i transportnim sistemima.

Za postizanje navedenih ciljeva ispitivanja konstruisano je nekoliko aparatura:

- aparatura za ispitivanje prenosa količine kretanja i mase u pakovanom sloju,
- aparatura za ispitivanje prenosa količine kretanja i mase u fluidizovanom sloju,
- aparatura za ispitivanje prenosa količine kretanja i toplote u fluidizovanom sloju,
- aparatura za ispitivanje prenosa količine kretanja, mase i toplote u vertikalnom toku tečnost-čestice.

Pored standardnih merenja fluidodinamičkih parametara (brzine fluida, visine sloja, pritiska i drugo) za ispitivanje prenosa mase i toplote korišćene su metode:

- praćenja dinamike rastvaranja teško rastvorne supstance, radi određivanja koeficijenata prelaza mase zid-fluid u prisustvu inertnih čestica, bez i sa hemijskom reakcijom u sistemu,
- elektrohemijska metoda za ispitivanje prenosa mase,
- merenja temperatura zida i smeše fluida i čestica, radi određivanja koeficijenata prelaza toplote zid-fluid i zid-smeša fluida i čestica.

2.1. Eksperimentalna ispitivanja u pakovanom sloju

2.1.1. Eksperimentalni sistem za ispitivanje prenosa mase

Aparatura za ispitivanje prenosa mase u pakovanom sloju tečnost-čestice sastojala se od cevi (c) unutrašnjeg prečnika 40 mm i dužine 500 mm (slika 2.1). U koloni (c), nalazila se sfera obložena benzoevom kiselinom (detalj "A", slika 2.1). Pored toga, kolona je imala priključke za merenje pritiska u pakovanom sloju (g), kao i termopar za merenje temperature pakovanog sloja (T). Temperatura vode na ulazu u pakovani sloj održavana je konstantnom u opsegu od 14 do $16^{\circ}C$. Protok vode kroz pakovani sloj meren je elektromagnetnim meračima protoka.

Slika 2.1. Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa količine kretanja i mase u pakovanom sloju:

- a priključak za ulazani tok fluida;
- b raspodeljivač ulaznog toka;
- c-kolona/punjenje (čestice);
- d sfera sa benzoevom kiselinom;
- e-preliv;

- f mrežica;
- g priključi za merenje pritiska;
- h merač protoka;
- i ventil;
- V ulazni/izlazni protok

Ostali elementi eksperimentalnog sistema za ispitivanje prenosa mase metodom rastvaranja u pakovanom sloju prikazani su na slici 2.1.

Merenja su vršena sa česticama prečnika 0,803, 1,20, 1,94, 2,98 mm, pri opstrujavanju uronjene sfere u pakovani sloj, a obuhvatila su prikupljanje podataka za:

– pad pritiska u pakovanom sloju (ΔP),

- protok tečnosti kroz pakovani sloj (G_f),
- temperaturu pakovanog sloja (T),
- prenetu masu sa zida kolone u smešu fluida i čestica, tj. pakovani sloj (Δm).

Za ispitivanje prenosa mase korišćena je metoda praćenja dinamike rastvaranja benzoeve kiseline.

U pripremnoj fazi eksperimenta, u rastop benzoeve kiseline (temperature oko 135°*C*) uranjana je na kratko sfera prečnika 20 mm, a zatim se hladila na vazduhu (detalj "A", slika 2.1). Postupak nanošenja benzoeve kiseline se ponavljao nekoliko puta sve dok se površina sfere ne presvuče uniformnim slojem kiseline debljine oko 0,5 mm, nakon čega je merena masa sfere.

U fazi samog eksperimenta, prvo je podešavan željeni protok vode, a zatim je sfera sa benzoevom kiselinom postavljana u pakovani sloj. Vreme trajanja svakog eksperimenta je bilo 15 min, nakon čega je sfera uklanjana iz sloja, sušena 30 min na 50°C i ponovo je merena njena masa. Srednji koeficijent prelaza mase određivan je iz jednačine:

$$k = \frac{\Delta m}{\Delta t \cdot S \cdot \Delta c_{\rm ln}} \tag{2.1}$$

gde je:

 Δm – preneta masa benzoeve kiseline,

 Δt – vreme trajanja procesa penosa mase,

S – površina sa koje se vrši prenos mase, $S = L_{t,A} D_c \pi$,

 Δc_{ln} – pogonska sila tj. srednja logaritamska razlika koncentracija.

Pogonska sila za prenos mase je razlika ravnotežne koncentracije benzoeve kiseline na međufaznoj površini i koncentracije u fluidu:

$$\Delta c_{ln} = \frac{(c^* - c_{\infty,1}) - (c^* - c_{\infty,2})}{ln \frac{c^* - c_{\infty,1}}{c^* - c_{\infty,2}}}$$
(2.2)

gde je:

 $c_{\infty 1}$ - masena koncentracija na ulazu u kolonu,

 $c_{\infty,2}$ - masena koncentracija na izlazu iz kolone,

 c^* - ravnotežna koncentracija benzoeve kiseline u vodi.

Ravnotežna koncentracija benzoeve kiseline u vodi određivana je iz korelacije /Kumar et al., 1978/:

$$c^* = 10^{0.19 + 0.01343 \cdot T} \tag{2.3}$$

gde je c^* u kg/m^3 , a temperatura T u $^{\circ}C$.

S obzirom da je benzoeva kiselina slabo rastvorna supstanca, može da se smatra da u ulaznoj struji fluida nema benzoeve kiseline ($c_{\infty,1} = 0$), pa se izraz za Δc_{\ln} svodi na:

$$\Delta c_{ln} = \frac{c_{\infty,2}}{ln \frac{c^{*}}{c^{*} - c_{\infty,2}}}$$
(2.4)

Izlazna koncentracija $c_{\infty,2}$ određivana je na osnovu mase rastvorene benzoeve kiseline (Δm) u periodu trajanja eksperimenta, pri datom zapreminskom protoku vode \dot{V} , iz izraza:

$$c_{\infty,2} = \frac{\Delta m}{V \Delta t} \tag{2.5}$$

Za obradu eksperimentalnih podataka bilo je potrebno i poznavanje koeficijenta difuzije benzoeve kiseline u vodi. Ovaj koeficijent određivan je iz korelacije /Kumar et al., 1978/:

$$\mathcal{Q}_{C_6H_5COOH} \cdot 10^{11} = 40,04 + 1,0663 \cdot t + 0,041143 \cdot T^2$$
(2.6)

gde je temperatura, T u \mathcal{C} , a $\mathcal{D}_{C_6H_5COOH}$ u m^2/s .

U toku jednog eksperimenta temperatura vode bila je približno konstantna, a generalno je varirala u opsegu od 8,6 do 12 \mathcal{C} .

Ukupno je urađeno 75 eksperimenata za prenos količine kretanja u pakovanim slojevima, dok je za prenos mase uradjeno 82 eksperimenta. Eksperimentalni podaci sistematizovani su u prilogu P1. U tabeli P1-1 dati su eksperimentalni podaci za fluidodinamičke karakteristike (protok fluida, gradijent pritiska i poroznost), a u tabeli P1-2 i P1-3 podaci za prenos mase u pakovanim slojevima. Pored toga u eksperimentalnom sistemu za prenos mase u pakovanim slojevima (slika 2.1), urađen je i 41 eksperimenat, koji obuhvata i pakovane i fluidizovane slojeve. Ovi podaci su sistematizovani u tabeli P1-4.

2.2. Eksperimentalna ispitivanja u fluidizovanom sloju

2.2.1. Eksperimentalni sistemi za ispitivanje prenosa mase

2.2.1.1. Metoda rastvaranja u sistemima bez i sa hemijskom reakcijom

Za ispitivanje prenosa mase u fluidizovanom sloju bez hemijske reakcije korišćena je aparatura prikazana na slici 2.2. Kolona za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja unutrašnjeg prečnika 34 mm, bila je po visini podeljena na šest jednakih segmenta (c), gde se u svakom segmenu nalazio kanal dimenzija 100x10 mm (detalj "A", slika 2.2). U svaki kanal pojedinačnih segmenata nanošena je benzoeva kiselina, a zatim su segmenti po visini postavljani tako da se svi kanali u nizu nastavljaju jedan na drugi u jedinstven kontinualni kanal (e).

Kolona za ispitivanje prenosa mase u fluidizovanom sloju, bila je snabdevena piezometrima za merenje pritiska (i), kao i sa Ni-Cr-Ni termoparom za merenje temperature fluidizovanog sloja (T), pri čemu je temperatura vode na ulazu u fluidizovani sloj održavana konstantnom u opsegu od 14 do $16 \,^{\circ}C$. Protok vode kroz fluidizovani sloj meren je sa elektromagnetnim meračem protoka (j) (Yamatake-Honeywell KID 10A-0010). Ostali sastavni delovi aparature za ispitivanje prenosa mase prikazani su na slici 2.2.

Merenja su vršena sa česticama prečnika 0,803 mm, 1,2 mm, 1,94 mm i 2,98 mm, a obuhvatila su prikupljanje podataka za:

- pad pritiska u fluidizovanom sloju (ΔP),
- masu čestica u fluidizovanom sloju (M),
- visinu fluidizovanog sloja (*H*),
- protok tečnosti kroz fluidizovani sloj (G_f),

- temperaturu fluidizovanog sloja (*T*).
- prenetu masu sa zida kolone, tj. segmenata kolone (c), u smešu fluida i čestica, tj. fluidizovani sloj (Δm).

- Slika 2.2. Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja
 - a priključak za ulazani tok fluida,
 - b raspodeljivač ulaznog toka,
 - c segment kolona,
 - d zaptivne gumice,
 - e žljeb sa benzoevom kiselinom,
 - f preliv,
 - g mreža,
 - h priključak za izlazni tok fluida,
- i prikljuci za merenje pritiska (piezometri),
- j merač protoka,
- k ventil,
- T merač temperature,
- V protok fluida

Detalj: A segment kolone sa benzoevom kiselinom

Za ispitivanje prenosa mase korišćena je metoda praćenja dinamike rastvaranja slabo rastvorne benzoeve kiseline.

U pripremnoj fazi eksperimenta rastop benzoeve kiseline (temperature oko $135^{\circ}C$) je ulivan u žljeb segmenta kolone (c), dimenzija 100x10x2 mm (detalj "A", slika 2.2). Višak benzoeve kiseline iz žljeba segmenta odstranjivan je finom brusnom hartijom do vrednosti unutrašnjeg prečnika segmenta, tj. kolone, nakon čega je merena masa segmenta.

Svaki eksperiment urađen na jednom protoku podrazumevao je sklapanje i demontiranje kolone. Količina čestica u koloni bila je dovoljna da pri određenom protoku, fluidizovani sloj bude iznad najvišeg segmenta. Vreme trajanja svakog eksperimenta bilo je između 10 i 20 min u zavisnosti od protoka fluida tj. u zavisnosti od količine rastvorene benzoeve kiseline, nakon čega su segmenti skidani sa kolone, sušeni 30 min na $50 \,^{\circ}C$ i ponovo merena njihova masa. Koeficijent prelaza mase je određivan iz jednačine:

$$k = \frac{\Delta m}{\Delta t \cdot S \cdot \Delta c} \tag{2.7}$$

odnosno,

$$k = \frac{m_0 - m_1}{\Delta t \cdot S \cdot c^*} \tag{2.8}$$

gde je:

 Δm – preneta masa benzoeve kiseline (m_0, m_1 – masa pre i nakon eksperimenta),

 Δt – vreme trajanja procesa prenosa mase,

S – površina sa koje se vrši prenos mase, $S = L_{t,A} D_c \pi$,

 c^* – ravnotežna koncentracija benzoeve kiseline u vodi (jedn. 2.3).

Ovde treba naglasiti da su zbog korišćene metode dobijene srednje vrednosti koeficijenta prenosa mase.

Ukupno je urađeno 24 eksperimenata za prenos mase u fluidizovanom sloju korišćenjem metode rastvaranja bez hemijske reakcije. Eksperimentalni podaci sistematizovani su u prilogu P2. U tabeli P2-2-1a dati su eksperimentalni podaci za fluido-dinamičke karakteristike (brzina fluida, gradijent pritiska i poroznost), a u tabeli P2-2-1b podaci za prenos mase u fluidizovanim slojevima.

Eksperimentalni podaci koji su dobijeni pri ispitivanju prenosa mase sa hemijskom reakcijom su rađeni na eksperimentalnoj aparaturi koja je prikazana na slici 2.3. Suština ovih eksperimentalnih ispitivanja je ista kao i kod prenosa mase bez hemijske reakcije u fluidizovanom sistemu prikazanom na slici 2.2., sa jedinom razlikom što je u sistem dodat natrijum hidroksid (NaOH), koji je reagovao sa benzoevom kiselinom. Reakcija između benzoeve kiseline i NaOH je brza i nepovratna, dok je proces difuziono kontrolisan.

- Slika 2.3. Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja sa hemijskom reakcijom.
 - a priključak za ulazani tok fluida,
 - b raspodeljivač ulaznog toka,
 - c segment kolona,
 - d zaptivne gumice,
 - e kolona,
 - f preliv,
 - g mreža,
 - h priključak za izlazni tok fluida,

i - prikljuci za merenje pritiska (piezometri),

- j merač protoka,
- k ventil,
- T merač temperature,
- V protok fluida

Detalj: A segment kolone sa benzoevom kiselinom

Unutrašnji prečnik kolone bio je 34mm, dok su u eksperimentu korišćene čestice prečnika 1,20 mm, 1,94 mm, 2,98 mm. Prsten sa benzeovom kiselinom se nalazio iznad

raspodeljivača toka. Merenje u jednom eksperimentu je trajalo kratko, oko 2 do 3 minuta, jer je reakcija između NaOH i benzoeve kiseline, kao što je već rečeno, brza. Koeficijent prelaza mase određivan je pomoću jednačine 2.8.

Tokom eksperimenta, merenja su obuhvatila prikupljanje podataka za:

- protok fluida (G_f),
- visinu sloja (H),
- pad pritiska (ΔP),
- temperaturu sloja (T) i
- prenetu masu sa zida kolone, tj. segmenata kolone (c, slika 2.3), u smešu fluida i čestica, tj. fluidizovani sloj (Δm).

Ukupno je urađeno 23 eksperimenata pri ispitivanju prenosa mase sa hemijskom reakcijom u fluidizovanom sloju. Eksperimentalni podaci sistematizovani su u prilogu P2. U tabeli P2-2-3 dati su eksperimentalni podaci za prenos mase u fluidizovanom sistemu sa hemijskom reakcijom.

2.2.1.2. Elektrohemijska metoda

Eksperimentalna aparatura za ispitivanje prenosa mase elektrohemijskom metodom prikazana je na slici 2.4. Merenja su vršena sa česticama prečnika 1,2 mm, 1,94 mm i 2,98 mm. Osnovni deo ove aparature činila je kolona unutrašnjeg prečnika 34 mm, ukupne visina 1180 mm, od čega je bilo aktivno (u kontaktu sa česticama fluidizovanog sloja) 985 mm. U donjem delu kolone nalazila se elektroda pomoću koje su mereni parametri za određivanje koeficijenta prenosa mase.

Ispitivanje prenosa mase elektrohemijskom metodom je rađeno sa vodenim rastvorom bakar(II) sulfata, CuSO₄ koncentracije 0,03 mol/dm³ u koji je dodat natrijum sulfat Na₂SO₄ u koncentraciji 0,1 mol/dm³. Natrijum sulfat je imao ulogu osnovnog elektrolita pomoću kojeg se suzbijaju migracione struje. Fluid je bio ravnomerno raspoređen po preseku kolone zahvaljujući raspodeljivaču koji se sastojao od nasutog sloja čestica u visini od 64 mm. Dužina pravougaone prohromske elektrode (anode i katode) bila je 239 mm, a širina 10 mm. Rastojanje između elektroda bilo je 32 mm. Da bi elektrohemijska reakcija bila difuziono kontrolisana potrebno je sistem dovesti u to stanje pomoću radnih uslova (promenom električnih veličina). Za utvrđivanje difuziono

kontrolisanih uslova potrebno je bilo uraditi snimanje naponsko-polarizacione krive. Ona je dobijena merenjem struje u funkciji napona na elektrodama. Primer naponskopolarizacione krive je dat na slici 2.5.

Slika 2.4. Šematski prikaz eksperimentalnog sistema za ispitivanje prenosa mase u fluidizovanom sloju elektrohemijskom metodom:

a - priključak za ulazani tok fluida,	V - protok fluida
b - raspodeljivač ulaznog toka,	-
c - fluidizaciona kolona,	Detalj: A
d - preliv,	g - vodeni rastvor elektrolita
e - mreža,	h - elektrode (katoda,anoda),
f - priključci za merenje pritiska (piezo-	V-voltmetar,
metri),	A-ampermetar
T - termopar	

Sa slike 2.5, uočavaju se različiti koeficijenti pravca krive u različitim oblastima napona. Za difuziono kontrolisanu reakciju je bitan plato koji se u ovom slučaju javlja između 2,1 – 2,6 V, što znači da je u ovom opsegu napona reakcija difuziono kontrolisana pa je za radni napon uzeta vrednost U=2,5 V. Održavanjem ovog napona između elektroda potenciometrom, uspostavljani su uslovi za početak merenja. Za svaku vrednost protoka se meri visina sloja, pad pritiska, temperatura rastvora, jačina struje kroz elektrolit. U uslovima difuziono kontrolisane reakcije, I je granična struja. Koeficijent prelaza mase se izračunava preko izraza:

$$k = \frac{I}{zFAc_r} \tag{2.9}$$

gde je z = 2 za jone bakra (II), a *F*-Faraday-eva konstanta.

Slika 2.5. Naponsko-polarizaciona kriva rastvora bakar sulfata i natrijum sulfata pri protoku fluida od 3 dm³/min.

Elektrohemijska metoda je brza metoda, gde se jednostavnim merenjem jačine struje dobijaju vrednosti za koeficijent prelaza mase. Pomoću elektrohemijske metode mogu se meriti srednje vrednosti koeficijenta prelaza mase ali i lokalne vrednosti korišćenjem takozvanih tačkastih elektroda.

Ukupno je urađeno 96 eksperimenata za prenos mase u fluidizovanom sloju korišćenjem elektrohemijske metode. Eksperimentalni podaci sistematizovani su u prilogu P2. U tabeli P2-2-2, prikazani su podaci za prenos mase u fluidizovanim slojevima elektrohemijskom metodom.

2.2.2. Eksperimentalni sistem za ispitivanje prenosa toplote

Aparatura za ispitivanje prenosa toplote u fluidizovanom sistemu tečnost-čestice prikazana je na slici 2.6.

Aparatura se sastojala od bakarne cevi (a) prečnika 27,4/25,4 mm, dužine 1320 mm (slika 2.6). Bakarna cev snabdevena je omotačem za toplotnu razmenu (b), dužine 700 mm. Zagrevanje bakarne cevi vršeno je zasićenom vodenom parom koja je uvođena u omotač na vrhu, a odvođena sa dna omotača kao kondenzat. U unutrašnjosti omotača ugrađene su poprečne pregrade čime je povećana efikasnost zagrevanja zida bakarne cevi. Kao grejni fluid, koji je suprotnostrujno uvođen u omotač kolone, korišćena je vodena para na atmosferskom pritisku dovođena iz generatora pare snage 30 kW (c).

Fluidizaciona kolona snabdevena je sa piezometrima za merenje pritiska (i), kao i sa Ni-Cr-Ni termoparovima za merenje temperature fluidizovanog sloja $(T_{\infty,1}, T_{\infty,2})$ i zida kolone $(T_{0,1}, T_{0,2})$. Protok vode kroz mlaznicu meren je sa elektromagnetnim meračem protoka (j) (Yamatake-Honeywell KID 10A-0010). Ostali sastavni delovi aparatura za ispitivanje prenosa toplote prikazani su na slici 2.6.

Merenja su vršena sa česticama prečnika 0,803, 1,20, 1,94 i 2,98 mm, a obuhvatila su prikupljanje podataka za:

- pad pritiska u fluidizovanom sloju (ΔP),
- visinu fluidizovanog sloja (*H*),
- protok tečnosti kroz fluidizovani sloj (G_f),
- temperature fluidizovanog sloja $(T_{\infty,1}, T_{\infty,2})$ i zida kolone $(T_{0,1}, T_{0,2})$.

Temperatura vode na ulazu u fluidizovani sloj održavana je konstantnom u opsegu od 14 do $16 \,^{\circ}C$. Temperatura zida kolone merena je na ulazu i izlazu zone grejanja, tako što je termopar ugrađen u zid kolone, kako je prikazano na slici 2.6

 a – fluidizacioana kolona od bakra; b – grejna sekcija; c – generator pare; 	j – merač protoka; k – ventil; V – ulazni protok
d – priključak za ulazani tok fluida;	Detalj "A":
e – mreža;	m – Ni-Cr termopar;
f – raspodeljivač;	n – bakarna cev 8/6 mm;
g – fluidizovan sloj;	o – zid omotača;
h – preliv;	p – zid kolone;
i – pizeometarske cevi;	q – termička izolacija;

Temperatura fluidizovanog sloja merena je termoparovima postavljenim u osu kolone. Pretpostavljeno je da su temperature čestica i fluida na ulazu i izlazu zone grejanja iste, nakon uspostavljanja stacionarnog stanja (≈ 10 min). Koeficijent prelaza toplote određivan je iz izmerenih parametara sistema, na sledeći način:

$$\alpha = \frac{G_f C_{pf} \left(T_{\infty,2} - T_{\infty,1} \right)}{D_c \pi L_H \Delta T_{\text{ln}}}$$
(2.10)

gde je srednja logaritamska razlika temperatura:

$$\Delta T_{\rm ln} = \frac{\left(T_{0,2} - T_{\infty,2}\right) - \left(T_{0,1} - T_{\infty,1}\right)}{\ln \frac{\left(T_{0,2} - T_{\infty,2}\right)}{\left(T_{0,1} - T_{\infty,1}\right)}}$$
(2.11)

Ukupno je urađeno 142 eksperimenata za prenos toplote u fluidizovanom sloju. Eksperimentalni podaci sistematizovani su u prilogu P2. U tabeli P2-1 prikazani su podaci za prenos toplote u fluidizovanim slojevima.

2.3. Eksperimentalna ispitivanja u vertikalnom toku fluid-čestice

2.3.1. Eksperimentalni sistem za ispitivanje prenosa mase u transportnom sistemu

Aparatura za ispitivanje prenosa mase u transportnim sistemima sastojala se od bakarne transportne cevi (c) prečnika 27,4/25,4 mm, dužine 1320 mm (slika 2.7). Transportna cev bila je snabdevena segmentom ispunjenim benzoevom kiselinom visine 18,5 mm (detalj "A", slika 2.7).

Transportna cev (c) bila je uronjena u modifikovani fontanski sloj (h) koji je imao ulogu dozera čvrstih čestica. Na dnu fontanskog sloja ugrađena je mlaznica (a) prečnika 20 mm kroz koju se uvođena voda za transport čestica. Aksijalno rastojanje transportne cevi od mlaznice L je 20 mm (slika 2.7). Na transportnoj cevi nalazili su se piezometri za merenje pritiska, kao i Ni-Cr-Ni termoparovi za merenje temperature smeše fluida i čestica. Protok vode kroz mlaznicu meren je sa elektromagnetnim meračem protoka (j) (Yamatake-Honeywell KID 10A-0010 i KID 10A-0025).

Aparatura za ispitivanje prenosa mase u transportnom sistemu, bila je snabdevena sa specijalno konstruisanom kutijom za merenje protoka fluida i čestica (g), kojom je zahvatan ukupni tok čestica i fluida u određenom vremenskom intervalu (10 s do 1 min). Nakon merenja ukupne mase, čestice su izdvajane, sušene i određivana je

njihova masa. Na osnovu ovih podataka računat je maseni protok čvrste G_p i tečne faze G_f . Ostali sastavni delovi aparatura za ispitivanje prenosa mase prikazani su na slici 2.7.

Slika 2.7. Ekperimentalna aparatura za ispitivanje prenosa mase u vertikalnom toku smeše tečnost-čestice:

a-mlaznica 20 mm u prečniku,	j-merač protoka,
o-mreža,	k-ventil,
c-transportna cev	T-termopar,
d-prsten ispunjen benzeovom kiselinom	V-ukupni protok vode,
e-preliv vode i čestica,	V _T -protok vode kroz transportnu cev,
f-preliv za vodu	V _A -protok vode kroz dozer,
g-kutija,	L-rastojanje od 20 mm,
n-modifikovani fontansko-fluidizovani sloj,	Detalj "A":
-piezometri,	m- rastop benzoeve kiseline

Merenja su vršena sa česticama prečnika 1,20 mm, 1,94 mm i 2,98 mm, a obuhvatila su prikupljanje podataka za:

- pad pritiska u transportnoj cevi (ΔP),
- protok tečnosti kroz transportnu cev (G_f) ,
- protok čestica kroz transportnu cev (G_p) ,
- temperaturu fluida na ulazu u transportnu cev i
- prenetu masu sa zida kolone u smešu fluida i čestica (Δm).

Za ispitivanje prenosa mase korišćena je metoda praćenja dinamike rastvaranja benzoeve kiseline.

U pripremnoj fazi eksperimenta rastop benzoeve kiseline (temperature oko 135°C) je ulivan u žljeb (27,4/25,4 u prečniku, visine 18,5 mm) na kružnom prstenu (detalj "A", slika 2.7). Višak benzoeve kiseline iz žljeba prstena odstranjivan je finom brusnom hartijom do vrednosti unutrašnjeg prečnika prstena, tj. kolone, nakon čega je merena masa prstena.

U fazi samog eksperimenta, prvo je podešavan željeni protok vode, a zatim je prsten sa benzoevom kiselinom i segment cevovoda dužine 100 mm, postavljan na vrh cevi. Vreme trajanja svakog eksperimenta je bilo oko 10 min, nakon čega je prsten skidan sa kolone, sušen 30 min na $50 \,^{\circ}C$ i ponovo je merena njegova masa. Srednji koeficijent prelaza mase određivan je iz jednačine:

$$k = \frac{\Delta m}{\Delta t \cdot S \cdot \Delta c_{\rm ln}} \tag{2.12}$$

gde je:

 Δm – preneta masa benzoeve kiseline,

 Δt – vreme trajanja procesa prenosa mase,

S – površina sa koje se vrši prenos mase,

 Δc_{ln} – pogonska sila tj. srednja logaritamska razlika koncentracija (jedn. 2.2).

Ukupno je urađeno135 eksperimenata za prenos mase u vertikalnom toku smeše tečnost-čestice metodom rastvaranja. Eksperimentalni podaci sistematizovani su u prilogu P3. U tabeli P3-3 dati su eksperimentalni podaci za fluido-dinamičke karakteristike (protok fluida, gradijent pritiska i poroznost), a u tabeli P3-4 podaci za prenos mase u prikazanom transportnom sistemu.

2.3.2. Eksperimentalni sistem za ispitivanje prenosa toplote u transportnom sistemu

Aparatura za ispitivanje prenosa toplote u vertikalnom toku fluid-čestice, sastojala se od bakarne transportne cevi (c) prečnika 27,4/25,4 mm, dužine 1320 mm (slika 2.8).

- a mlaznica 20 mm u prečniku,
- b mreža,
- c transportna cev 25,4 mm u prečniku,
- d omotač za održavanje konstantne temperature zida,
- e preliv čestica i vode,
- f preliv za vodu,
- g kutija,
- h dozer čvrstih čestica,
- i piezometri,
- j merač protoka,

- k-ventil,
- L rastojanje transportne cevi od mlaznice,
- m-generator pare, 30kW,
- T-termoparovi,
- V –ukupni protok vode,
- Detalj A:
- $n termopar (termoparovi T_{0,1}, T_{0,2}),$
- o bakarna cev 8/6 mm,
- p omotač oko transportne cevi,
- q zid transportne cevi,
- r izolacija.

Transportna cev bila je sa omotačem (d) za toplotnu razmenu, dužine 700 mm. Zagrevanje transportne cevi vršeno je zasićenom vodenom parom koja je uvođena u omotač na vrhu, a odvođena sa dna omotača kao kondenzat. U unutrašnjosti omotača ugrađene su poprečne pregrade čime je povećana efikasnost zagrevanja zida transportne cevi.

Transportna cev (c) bila je uronjena u modifikovani fontanski sloj (h) koji je imao ulogu dozera čvrstih čestica. Zona zagrevanja nalazila se 320 mm iznad pozicije uvođenja čestica u transportnu cev, što je bilo dovoljno da se tok smeše u oblasti grejanja nalazi van zone ubrzavanja čestica. Transportna cev je imala ugrađene piezometre za merenje pritiska, kao Ni-Cr-Ni termoparove za merenje temperature smeše fluida i čestica odnosno zida cevi. Ostali elementi eksperimentalnog sistema za ispitivanje prenosa toplote prikazani su na slici 2.8 i identični su sa već opisanim u tačci 2.3.1.

Merenja su vršena sa česticama prečnika 1,20, 1,94 i 2,98 mm, a obuhvatila su prikupljanje podataka za:

- pad pritiska u transportnoj cevi (ΔP),
- protok tečnosti kroz transportnu cev (G_f) ,
- protok čestica kroz transportnu cev (G_p) i
- temperaturu smeše fluida i čestica odnosno zida transportne cevi (T).

Temperatura vode na ulazu u transportnu cev je održavana konstantnom u opsegu od 14 do 16 °C. Temperatura zida cevi je merena na ulazu i izlazu zone grejanja, tako što je termopar bio ugrađen u zid transportne cevi, kako je prikazano na slici 2.8 (Detalj "A"). Temperatura smeše fluida i čestica je merena termoparovima postavljenim u osu transportne cevi. Pretpostavljeno je da su temperature čestica i fluida na ulazu i izlazu zone grejanja bile iste. U prikazanom sistemu ulazni protok vode kroz mlaznicu (V, slika 2.8), deli se na protok kroz cev (V_T) i protok kroz anulus (V_A), a merenja su pokazala da je odnos V_T/V varirao između 0,48 i 0,93. Zagrejane čestice koje su izlazile iz transportne cevi kretale se u vidu pakovanog sloja naniže i imale su dovoljno vremena da se ohlade do temperature ulazne vode, što je opravdalo pretpostavku da su temperature vode i čestica na ulazu u transportnu cev bile iste. Sa druge strane, vreme zadržavanja čestica u zoni grejanja u režimu vertikalnog toka je

variralo između 0,9 i 60 s. Numeričke simulacije su pokazale da je logična pretpostavka da su i na izlazu temperature fluida i čestica približno iste. Koeficijent prenosa toplote određivan je iz toplotnog bilansa:

$$\alpha = \frac{\left(G_{f}c_{pf} + G_{p}c_{pp}\right)\left(T_{2} - T_{1}\right)}{\left(D_{t}\pi L_{t,Q}\right)\Delta T_{\text{ln}}}$$
(2.13)

gde je ΔT_{ln} - srednja logaritamska razlika temperatura zida i fluida (jedn. 2.11).

Podešavanjem protoka kroz mlaznicu na dnu transportnog sistema obuhvaćen je širok opseg brzina fluida, tako da su i u ovim ispitivanjima obuhvaćeni različiti režimi strujanja, od retkog do vrlo gustog transporta.

Ukupno je urađeno 68 eksperimenata za prenos toplote u vertikalnom toku smeše tečnost-čestice. Eksperimentalni podaci sistematizovani su u prilogu P3. U tabeli P3-1 dati su eksperimentalni podaci za fluido-dinamičke karakteristike (protok fluida, gradijent pritiska i poroznost), a u tabeli P3-2 podaci za prenos toplote u prikazanom transportnom sistemu.

2.4. Karakteristika čestica i fluida

Čestice korišćene u eksperimentu su staklene sfere čije su karakteristike date u tabeli 2.1.

d_p , mm	0,803	1,20	1,94	2,98
$\rho_p (\text{kg/m}^3)$	2923	2641	2507	2509
$U_{mf}(m/s)$	0,008	0,0120	0,0205	0,0310
$U_t(m/s)$	0,148	0,1884	0,2878	0,3698
\mathcal{E}_{mf}	0,398	0,420	0,447	0,462

Tabela 2.1. Karakteristika čestica korišćenih u eksperimentima

– Osnovni fizički podaci supstanci korišćenih u eksperimentalnom radu

Kao radni fluid je korišćena voda, a jednačine koje su korišćene za izračunavanje fizičkih osobina vode su:

- gustina: $\rho_f = 1000 - 0,0125 \cdot T - 0,0045 \cdot T^2, [kg / m^3]$ (2.14) - viskozitet /Perry & Green, 1999/:

$$\mu_{f} = (17,7575 - 0,5465 \cdot T + 0,0097 \cdot T^{2} - 8,871 \cdot 10^{-5} \cdot T^{3} + 3,1775 \cdot 10^{-7} \cdot T^{4}) \cdot 10^{-4} [Pa \cdot s]$$
(2.15)

Treba napomenuti da se rastvor NaOH u vodi u korišćenim eksperimentalnim sistemima ponaša slično vodi, pa jednačine koje se koriste za vodu mogu primeniti i za rastvor. Podatak da je za 1 mol/dm³ vodenog rastvora NaOH na temperaturi od 25°C, Smidth-ov broj $Sc_{NaOH} = 524$, preuzet je iz literature /Bennett & Myers, 1962/. Preračunavanjem na osnovu ove vrenosti Sc broja, i korišćenjem izraza (2.16) koji važi za tečnosti:

$$\frac{D\mu}{T} = const. \tag{2.16}$$

došlo se do izraza za koeficijent difuzivnosti NaOH u vodi u zavisnosti od temperature:

$$\mathscr{D}_{T} = 5,084 \cdot 10^{-15} \cdot \frac{T}{\mu_{T}}$$
(2.17)

Kao što je rečeno μ_T je praktično viskoznost čiste vode na datoj temperaturi. Izraz (2.17) važi za razblažene sisteme, jer koeficijent difuzivnosti nije funkcija koncentracije u razblaženim sistemima.

Toplotni kapacitet staklenih sfera je 0,837 kJ/(kg°C).

REZULTATI I DISKUSIJA
3. Rezultati i diskusija

3.1. Prenos količine kretanja, mase i toplote u disperznim sistemima tečnost-čestice

3.1.1. Prenos količine kretanja

Veličina koja određuje prenos količine kretanja u eksperimentima je pad pritiska ili gradijent pritiska. Na slici 3.1 prikazana je zavisnost gradijenta pritiska od brzine fluida u pakovanom i fluidizovanom sloju, kao i pri vertikalnom transportu fluida i čestica.

Može se uočiti da sa porastom brzine fluida u pakovanom sloju, raste gradijent tj. pad pritiska sve do brzine minimalne fluidizacije U_{nf} , na kojoj pakovani sloj prelazi u fluidizovani sloj. Sa daljim povećanjem brzine fluida, usled povećanja poroznosti sloja dolazi do smanjenja gradijenta pritiska (slika 3.1). Oblast brzina fluida između minimalne brzine fluidizacije U_{nf} i brzine odnošenja čestice U_t , predstavlja oblast egzistencije fluidizovanog sloja. Povećanjem brzine fluida u fluidizovanom sloju dolazi do ekspanzije fluidizovanog sloja, nakon čega dolazi do odnošenja čestica strujom fluida. Sa početkom odnošenja čestica strujom fluida, fluidizovani sloj "prelazi" u vertikalni transport fluida i čestica. Brzina na kojoj fluidizovani sloj "prelazi" u vertikalni dvofazni tok zavisi od koncentracije čestica u sloju i manja je u odnosu na brzinu odnošenja usamljene čestice i to tim više što je koncentracija čestica u sloju veća (slika 3.1). Sa druge strane, brzina na kojoj fluidizovani sloj uslovno rečeno "prelazi" u vertikalni dvofazni tok (U=0,105 m/s), istovremeno je i brzina (odnosno poroznost sloja, $\varepsilon \sim 0,70$), nakon koje dolazi do nagle ekspanzije fluidizovanog sloja tj. pada koncentracije čestica, smanjenja intenziteta mešanja i pada gradijenta pritiska,

Slika 3.1. Zavisnost gradijenta pritiska od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu ($d_p=2,98$ mm).

Na slici 3.2 prikazana je zavisnost gradijenta pritiska od brzine fluida u fluidizovanom sloju, za sve ispitivane prečnike čestica. Eksperimentalni podaci prikazani na slici 3.2 su dobijeni u eksperimentalnim merenjima prenosa toplote u fluidizovanom sloju (slika 2.6). Sa slike 3.2 vidi se da je gradijent pritiska za istu brzinu najveći za najkrupnije čestice.

Interesantno je napomenuti da su mnogi autori primetili da na dijagramu $U=f(\varepsilon)$, odnosno $U/U_t=f(\varepsilon)$, u logaritamskom sistemu pri $\varepsilon \approx 0.85$ dolazi do promene koeficijenta pravca. Jedan takav primer prikazan je na slici 3.3 /Carlos^{a,b} & Richardson, 1968; Kmiec, 1978; Grbavčić, 1989; Garić-Grulović, 2006/.

Slika 3.2. Zavisnost gradijenta pritiska od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu (d_p =1,20; 1,94 i 2,98 mm).

Carlos^{a,b} & Richardson (1968) i Kmiec (1978) su na osnovu analize kretanja obeleženih čestica u partikulativno fluidizovanim slojevima zaključili da pri poroznosti $\varepsilon \approx 0,85$ verovatno dolazi do promene u mehanizmu prenosa količine kretanja. Ovakvo zapažanje primećeno je i pri taloženju suspenzije čestica na poroznosti $\varepsilon \approx 0,85$ gde takođe dolazi do promene u mehanizmu prenosa količine kretanja /Grbavčić, 1989/. Ova vrednost se pojavljuje kao karakteristična vrednost i u vertikalnom transportu fluida i čestica i predstavlja granicu između turbulentnog i paralelnog toka čestica (slika 3.3).

Slika 3.3. Zavisnost brzina fluida-poroznost u partikulativno fluidizovanom sloju pri stešnjenom taloženju suspenzije čestica i u vertikalnom transportu/*D_t*=40 mm, Grbavčić, 1989; *D_t*=25,4 mm, Garić-Grulović, 2006/.

Osim gradijenta pritiska kao merila prenosa količine kretanja kod fluidizovanih slojeva i vertikalnog toka fluida i čestica, upotrebljava se i koeficijent trenja fluidčestice β . Zavisnost bezdimenzione grupe $\beta d_p / \rho_f$ od poroznosti prikazana je na slici 3.4. Prenos količine kretanja pruža osnov za analizu druga dva fenomena prenosa (prenosa mase, prenos toplote), pa se stoga na slici 3.4, navode eksperimentalni podaci dobijeni kao prateća merenja u eksperimentalnim ispitivanjima prenosa mase i prenosa toplote.

Na slici 3.4, prikazane su i vrednosti koeficijenata trenja fluid-čestice β u fluidizovanom sloju i vertikalnom toku fluida i čestica izračunate po jednačini (1.86). Može se uočiti vrlo dobro slaganje eksperimentalnih vrednosti koeficijenata trenja fluidčestice β i u fluidizovanom sloju i pri vertikalnom toku fluida i čestica sa jednačinom (1.86). Na određenim slikama su naznačene eksperimentalne aparature na kojima su podaci određeni. Srednje apsolutno odstupanje izmerenih i izračunatih vrednosti u fluidizovanom sloju je $\sigma_{sr} = 40,0\%$, dok je pri vertikalnom transportu fluida i čestica je $\sigma_{sr} = 18,2\%$.

Slika 3.4. Poređenje između eksperimentalnih vrednosti za koeficijent trenja fluidčestice β , u partikulativno fluidizovanom sloju tečnost-čestice i vertikalnom toku fluida i čestica sa izračunatim vrednostima (d_p =1,94 mm).

3.1.2. Prenos mase

Prenos mase ispitivan je u pakovanim i fluidizovanim slojevima, kao i u vertikalnom transportu fluida i čestica. Svi eksperimentalni podaci za prenos mase u pakovanom sloju dobijeni su na eksperimentalnoj aparaturi prikazanoj na slici (2.1), u

fluidizovanom sloju dobijeni su na eksperimentalnim aparaturama prikazanim na slikama (2.2) i (2.4), dok su eksperimentalni podaci za vertikalni transport fluida i čestica dobijeni na aparaturi prikazanoj na slici (2.7). Prenos mase u fluidizovanim slojevima, ispitivana je pomoću dve metode: metode rastvaranja (prenos mase zid-fluid) i elektrohemijske metode.

Osnovna veličina kojom se može kvantitativno prikazati prenos mase je koeficijent prelaza mase k. Eksperimentalni podaci za koeficijent prelaza mase od površinske brzine fluida za pakovani i fluidizovani sloj, kao i za vertikalni transport fluida i čestica prikazani su na slici 3.5.

Prenos mase u pakovanim slojevima, odnosno koeficijent prelaza mase, rapidno raste sa porastom brzine strujanja fluida (slika 3.5).

Slika 3.5. Zavisnost koeficijenta prelaza mase od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu, za prečnik čestica $d_p=1,94$ mm.

Na osnovu dosadašnjih ispitivanja o uticaju brzine strujanja na koeficijent prelaza mase u fluidizovanim slojevima, generalni zaključak je da koeficijent prelaza mase neznatno zavisi od promene brzine fluida /Vanadurongwan et al., 1976; Tournie et al., 1977; Riba & Couderc, 1980/, što potvrđuju i eksperimentalni podaci dobijeni u ovom radu (slika 3.5). Eksperimentalni podaci za koeficijent prelaza mase u vertikalnom toku fluida i čestica u zavisnosti od površinske brzine fluida (slika 3.5), na prvi pogled ukazuju da prethodna saznanja važe, iako su iz oblasti fluidizovanih slojeva.

Na slici 3.5 zapaža se da sa povećanjem brzine fluida koeficijent prelaza mase ostaje konstantan do brzine fluida bliske brzini odnošenja usamljene čestice U_t (za odgovarajuće prečnike čestica), koja ujedno predstavlja gornju granicu egzistencije fluidizovanih slojeva. Ujedno, opravdano je i postojanje vertikalnog toka fluid-čestice na brzinama nižim od brzine odnošenja usamljene čestice s obzirom da je brzina odnošenja jedne čestice u suspenziji manja u odnosu na brzinu odnošenja usamljene čestice i to tim više što je koncentracija suspenzije veća. Ova oblast vertikalnog toka fluida i čestica ukazuje na sličnost fluidizovanih slojeva i vertikalnog toka i opravdava slično ponašanje u ova dva sistema.

Rezultati ispitivanja uticaja poroznosti fluidizovanog sloja na koeficijent prelaza mase prikazani su na slici 3.6. Imajući u vidu da su u partikulativno fluidizovanom sloju poroznost sloja i brzina fluida povezane veličine, tj. poroznost je monotono rastuća funkcija površinske brzine fluida, proizilazi da se uticaj poroznosti ne može razmatrati nezavisno od površinske brzine fluida, kao ni od međučestične brzine fluida ($u=U/\varepsilon$) što je trodimenzijalno prikazano na slici 3.7. U svakom slučaju, autori radova iz ove oblasti /Yutani et al., 1987; Schmidt et al., 1999/ brzinu prenosa mase zid-fluid objašnjavaju promenom brzine fluida koja je izazvana promenama brzine samih čestica. Stalno kretanje čestica u sloju izaziva mešanje fluida u blizini zida, smanjuje debljinu graničnog sloja i povećava prenos mase.

Slika 3.6. Zavisnost koeficijenta prelaza mase od poroznosti u partikulativno fluidizovanom sloju (d_p =1,94 mm).

Slika 3.7. Uzajamna zavisnost brzine fluida, poroznosti i koeficijenta prelaza mase u fluidizovanom sloju tečnost-čestice ($D_c=34$ mm; sl. 2.4; prenos mase elektrohemijskom metodom; $d_p=1,94$ mm).

Međutim, na zavisnosti koeficijenta prelaza mase od površinske brzine strujanja fluida (slika 3.8), ispitivanja u fluidizovanom sloju istih čestica u koloni prečnika D_c =40mm /Matović, 2001/ ukazuju na maksimum pri poroznosti od oko 0,79, što je saglasno sa ispitivanjima Yutani-ja et al. (1987). U svojim ispitivanjima Yutani et al., ukazuje da maksimalne vrednosti koeficijenta prenosa mase postoje u opsegu poroznosti od 0,57 do 0,85. Pored toga, ispitivanja Damronglerd-a et. al. (1975), Vanadurongwan-a et al. (1976) i Kalaga-e et al. (2014), ukazuju da sa porastom brzine fluida dolazi do velike ekspanzije sloja za ε >0,8, odnosno smanjenja koncentracije čestica u sloju, pri čemu intenzitet mešanja opada, što doprinosi smanjenju koeficijenta prelaza mase i vrednosti koeficijenta prelaza mase teže vrednostima za jednofazno strujanje (slika 3.8).

Slika 3.8. Zavisnost koeficijenta prelaza mase od površinske brzine fluida u partikulativno fluidizovanom sloju ($d_p = 1,94$ mm).

Zavisnost Sherwood-ovog broja Sh od Reynolds-ovog broja Re, za pakovani sloj, fluidizovani sloj i vertikalni transport fluida u slojevima sa česticama d_p =2,98mm, prikazana je na slici 3.9. S obzirom da je Sherwood-ov broj Sh, direktno proporcionalan koeficijentu prelaza mase (Sh = $k D_c / \mathcal{D}_{AB}$), funkcionalna zavisnost Sh=f(Re) za pakovane i fluidizovane slojeve, kao i za vertikalni tok fluida i čestica (slika 3.9), prati trend promene koeficijenta prelaza mase sa promenom brzine fluida (slika 3.5).

Slika 3.9. Zavisnost Sherwood-ovog broja od Reynolds-ovog broja u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu fluida i čestica ($d_p = 1,94$ mm).

Zavisnost Sherwood-ovog broja Sh od Reynolds-ovog broja Re, u fluidizovanom sloju, za sve ispitivane prečnike čestica, prikazana je na slici 3.10. Iz zavisnosti Sh=f(Re) primećuje sa da za sve ispitivane prečnike čestica u fluidizovanom sloju postoji blago opadanje vrednosti Sherwood-ovog broja sa porastom vrednosti Reynolds-ovog broja.

Slika 3.10. Zavisnost Sherwood-ovog broja Sh od Reynolds-ovog broja Re, u fluidizovanom sloju.

Zavisnost Sherwood-ovog broja za česticu (Sh_p = $k d_p / \mathcal{D}_{AB}$) od poroznosti, ε je prikazana na slici 3.11. Trend ove funkcije je sličan zavisnosti prikazanoj na slici 3.10. Na slici 3.11, došlo je do raslojavanja podataka po prečnicima čestica u fluidizovanom sloju. Iz zavisnosti Sh_p=f(ε) primećuje sa da za sve ispitivane prečnike čestica u fluidizovanom sloju metodom rastvaranja, odnosno prenosa mase zid-fluid, postoji blago opadanje Sh_p-broja /Damronglerd i sar., 1975; Vanadurongwan i sar., 1976; Schmidt et al., 1999/. Ovakva promena Sherwood-ovog broja za čestice objašnjava se uticajem koncentracije čestica na debljinu laminarnog podsloja u koncentracionom graničnom sloju /Yutani et al., 1987; Schmidt et al., 1999/. Slaganje eksperimentalnih podataka dobijenih metodom rastvaranja i elektrohemijskom metodom su bolja za čestice manjih prečnika.

Slika 3.11. Promena Sherwood-ovog broja za čestice sa promenom poroznosti u fluidizovanom sloju.

Faktor prenosa mase j_D u zavisnosti od brzine fluida, u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu fluida i čestica, prikazan je na slici 3.12.

Iz zavisnosti $j_D = f(U)$ primećuje sa da je za sve ispitivane sisteme tj. pakovani sloj, fluidizovani sloj i vertikalni transport fluida i čestica, najbolji prenos mase u pakovanim slojevima. Sa porastom brzine fluida zavisnosti $j_D = f(U)$, monotono je opadajuća funkcija. Takođe srednje vrednosti faktora prenosa mase u oblasti pakovanog sloja su od 35 do 95 puta veće u odnosu na srednju vrednost faktora prenosa mase u vertikalnom transportu fluida i čestica.

Slika 3.12. Zavisnost faktora prenosa mase od površinske brzine fluida u pakovanom sloju, fluidizovanom sloju i vertikalnom transportu fluida i čestica.

Eksperimentalni podaci za faktor prenosa mase j_D u zavisnosti od brzine fluida, u fluidizovanom sloju, prikazani su na slici 3.13. Uočava se da je za sve ispitivane čestice u fluidizovanom sloju, faktor prenosa mase j_D monotono opadajuća funkcija od brzine fluida. Kao što je već napomenuto, imajući u vidu da su U i ε zavisne veličine koje utiču na j_D na slici 3.14. data je zavisnost sva tri posmatrana parametra. Na osnovu uzajamne zavisnosti međučestične brzine fluida, poroznosti i faktora prenosa mase u fluidizovanom sloju tečnost-čestice, može da se zaključi da je faktor prenosa mase j_D monotono opadajuća funkcija i od poroznosti sloja.

Slika 3.13. Zavisnost faktora prenosa mase j_D od površinske brzine u fluidizovanom sloju.

Slika 3.14. Uzajamna zavisnost brzine fluida, poroznosti i faktora prenosa mase u fluidizovanom sloju tečnost-čestice (metoda rastvaranja; $d_p=1,94$ mm).

Na slici 3.15, dato je poređenje eksperimentalno dobijenih vrednosti faktora prenosa mase sa vrednostima koje su izračunate iz nekoliko korelacija.

Raspoloživi podaci u literaturi uglavnom su dobijeni na osnovu ispitivanja prenosa mase sa fluidizovanih čestica u fluid i korelisani su jednačinama oblika Sh_p= $f(\text{Re}_p)$. Korelacija koju su predložili Bošković et al. (1994), prikazana na slici 3.15 (jedn. 1.119, prikazana preko $j_D = \text{Sh}_p/(\text{Re}_p \text{Sc}^{1/3})$), pokazuje najbolje slaganje sa dobijenim eksperimentalnim podacima i to u širokom opsegu Reynolds-ovog broja za čestice. Ova korelacija izvedena je na bazi eksperimentalnih ispitivanja prenosa mase sa uronjene površine na fluid u prisustvu fluidizovanih čestica. Korelacija Dwivedi-ja & Upadhyay-a (1977), takođe prikazana na istoj slici, pokazuje slaganje sa navedenim eksperimentalnim podacima samo u određenom opsegu vrednosti Re_p (100<Re_p<250), dok korelacija Fan-a et al. (1960) daje dvostruko veće vrednosti za faktor prenosa mase u odnosu na korelaciju Dwivedi-ja i Upadhyay-a. Ostale navedene korelacije pokazuju isti opadajući trend kao i navedeni eksperimentalni podaci. Pored toga, odstupanja nekih korelacija su očekivana s obzirom da su dobijene korišćenjem različitih eksperimentalnih tehnika.

Slika 3.15. Zavisnost $j_D=f(\text{Re}_p)$ u partikulativno fluidizovanom sloju (metoda rastvaranja; $d_p=1,94$ mm) – poređenje sa literaturnim korelacijama.

3.1.3. Prenos toplote

Prenos toplote u fluidizovanom sloju, kao i pri vertikalnom transportu, eksperimentalno je ispitivan kao prenos zid-fluid u prisustvu sfernih čestica. Mehanizam prenosa toplote u mnogome zavisi od parametara kretanja fluida, pa se veličine koje prikazuju prenos toplote uglavnom prikazuju u odnosu na brzinu fluida i poroznost. Svi eksperimentalni podaci za prenos toplote u fluidizovanom sloju, dobijeni su na eksperimentalnoj aparaturi prikazanoj na slici 2.6, dok su eksperimentalni podaci za vertikalni transport fluida i čestica dobijeni na aparaturi prikazanoj na slici 2.8.

Zavisnost koeficijenta prelaza toplote α od površinske brzine, u fluidizovanom sloju i pri vertikalnom transportu čestica, prikazana je na slici 3.16.

Na prikazanoj zavisnosti za fluidizovani sloj $\alpha = f(U)$, zapaža se da sa porastom brzine fluida raste i koeficijent prelaza toplote i dostiže maksimalnu vrednost, nakon koje vrednosti koeficijenta padaju sa daljim povećanjem brzine fluida (slika 3.16). Treba imati u vidu da sa povećanjem brzine fluida, za odgovarajući prečnik čestica, opada koncentracija čestica u toku fluida, pa samim tim i koeficijent prelaza toplote.

Slika 3.16. Zavisnost koeficijenta prelaza toplote zid-fluid od površinske brzine fluida u partikulativno fluidizovanom sloju i vertikalnom transportu čestica.

Sa početkom odnošenja čestica strujom fluida, fluidizovani sloj "prelazi" u vertikalni transport fluida i čestica. Sa povećanjem brzine fluida u vertikalnom toku fluida i čestica, koeficijent prelaza toplote opada, dok je pri većim brzinama fluida približno konstantan (slika 3.16).

Dosadašnja ispitivanja o uticaju brzine strujanja fluida na koeficijent prelaza toplote u fluidizovanim slojevima (slika 3.17), ukazuju da su vrednosti koeficijenta prelaza toplote u direktnoj funkciji od fizičkih karakteristika fluida kao i od njegove brzine /Richardson et al., 1976/, kao i da koeficijent prelaza toplote raste sa porastom prečnika čestica /Jamialahmadi et al., 1995/. Međutim, teško je izvući validne zaključke posmatrajajući samo jednu funkcionalnu zavisnost, $\alpha=f(U)$ ili $\alpha=f(\varepsilon)$. Treba imati u

Slika 3.17. Zavisnost koeficijenta prelaza toplote zid-fluid od površinske brzine fluida u partikulativno fluidizovanom sloju.

vidu da sa povećanjem brzine fluida, za odgovarajući prečnik čestica, opada koncentracija čestica u toku fluida, pa samim tim i koeficijent prelaza toplote (slika 3.17). Da su brzina fluida, poroznost i koeficijent prelaza toplote uzajamno povezane veličine najbolje se vidi sa dijagrama na slici 3.18. Treba napomenuti da je za ovo poređenje izabrana međučestična (stvarna) brzina fluida kao reprezentativnija veličina u odnosu na površinsku (prividnu) brzinu fluida. Pored toga, na slici 3.17, primećuje se da sve krive imaju maksimum, koji se nalazi u opsegu brzina 0,08 - 0,12 m/s, odnosno poroznosti 0,74 - 0,83 (slike 3.17; 3.18 i 3.19), što se takođe slaže sa dosadašnjim literaturnim podacima.

Slika 3.18. Uzajamna zavisnost brzine fluida, poroznosti i koeficijenta prelaza toplote u fluidizovanom sloju tečnost-čestice (d_p =1,20mm).

Pozitivan uticaj koncentracije čestica $(1 - \varepsilon)$, na prenos toplote može biti iz dva razloga (slika 3.19). Kako je navedeno u pregledu literature, pozitivan uticaj prisustva čestica na povećanje vrednosti koeficijenta prelaza toplote može biti posledica činjenice da je pri većoj koncentraciji čestica u sloju učestaliji kontakt čestica i površine za toplotnu razmenu, čime se erozija graničnog sloja povećava. Sa druge strane, veća koncentracija čestica verovatno prouzrokuje i intenzivnije mešanje fluida.

Slika 3.19. Zavisnost koeficijenta prelaza toplote zid-fluid od poroznosti u partikulativno fluidizovanom sloju ($d_p=1,94$ mm).

Na slici 3.20 prikazana je zavisnost Nusselt-ovog broja od poroznosti, za fluidizovani sloj i vertikalni transport fluida i čestica. Iz zavisnosti Nu= $f(\varepsilon)$ primećuje sa da i za fluidizovani sloj i vertikalni tok fluida i čestica, postoji promena koeficijenta pravca Nu-broja pri nekoj poroznosti sloja (fluidizovani sloj: $\varepsilon \approx 0.74 \div 0.80$, vertikalni

transport: $\varepsilon \approx 0,85$). Ovakva promena Nusselt-ovog broja u literaturi se oslanja na mehanizam prenosa toplote, odnosno na pretpostavku o uticaju koncentracije čestica na debljinu laminarnog podsloja u termičkom graničnom sloju /Hamilton, 1970/. Iz prethodnih razmatranja, kod vertikalnog transporta fluida i čestica, zaključeno je da na poroznosti od oko $\varepsilon \approx 0,85$ dolazi do promene režima strujanja, tj. promene mehanizama prenosa količine kretanja (slika 3.3), tako da i u slučaju prenosa toplote, najverovatnije dolazi do promene mehanizma prenosa toplote (slika 3.20). S obzirom da Nusselt-ov broj zavisi od debljine termičkog graničnog sloja, visoke vrednosti Nusselt-ovog broja za $\varepsilon < 0,85$ ukazuju da je termički granični sloj narušavan prisustvom čestica (turbulentni režim strujanja). Čestice u dvofaznom toku se sudaraju među sobom kao i sa zidom transportne cevi narušavajući laminarni granični podsloj, tako da sa povećanjem koncentracije čestica rastu i vrednosti Nusselt-ovog broja.

Slika 3.20. Promena Nusselt-ovog broja sa promenom poroznosti u fluidizovanom sloju i vertikalnom transportu ($d_p = 1,94$ mm).

Zavisnost Nusselt-ovog broja za česticu Nu_p od poroznosti odnosno površinske brzine ima, očekivano, karakterističan oblik krive sa maksimumom koji funkcija dostiže za opseg vrednosti poroznosti $0,74 \div 0,83$ (odnosno brzine $0,08 \div 0,12$ m/s), slika 3.21. Maksimum je izraženiji i bolje uočljiv pri prenosima u fluidizovanim slojevima sa krupnijim česticama.

Slika 3.21. Zavisnost Nusselt-ovog broja za česticu Nu_p od površinske brzine fluida u partikulativno fluidizovanom sloju.

Eksperimentalni podaci za prenos toplote u fluidizovanom sloju i vertikalnom toku fluida i čestica prikazani su na slici 3.22, u obliku funkcionalne zavisnosti $j_H=f(U)$. Može se uočiti da podaci za ova dva sistema u oblasti poroznosti 0,74 do 0,85, slede praktično istu liniju, tj. pri istoj brzini fluida (0,1 ÷ 0,35 m/s), vrednosti j_H faktora u partikulativno fluidizovanom sloju i vertikalnom toku fluida i čestica su vrlo bliske. S obzirom da vrednost poroznosti $\varepsilon \approx 0.85$, predstavlja granicu između turbulentnog i paralelnog režima strujanja u vertikalnom toku fluida i čestica ($\varepsilon < 0.85$ – turbulentni režim; $\varepsilon > 0.85$ – paralelni režim kretanja čestica), može se zaključiti da je partikulativno fluidizovani sloj uvek u režimu turbulentnog kretanja čestica (slika 3.22). Ovo još jednom potvrđuje tezu da su "turbulentni" režim u vertikalnom toku fluida i čestica i partikulativna fluidizacija vrlo bliski sistemi, s tom razlikom što se u prvom slučaju "fluidizovana" suspenzija čestica kreće naviše relativno u odnosu na zid cevi.

Slika 3.22. Zavisnost faktora prenosa toplote od površinske brzine fluida u fluidizovanom sloju i vertikalnom transportu fluida i čestica.

Zavisnost faktora prenosa toplote j_H od površinske brzine fluida u fluidizovanom sloju prikazana je na slici 3.23. Faktor prenosa toplote j_H pri istoj brzini fluida, ima veću

Slika 3.23. Zavisnost faktora prenosa toplote j_H od površinske brzine fluida u fluidizovanom sloju.

Na slici 3.24 prikazano je i poređenje eksperimentalnih rezultata dobijenih u ovom radu, sa literaturnim korelacijama Hamilton-a (1970), Richardson-a et al. (1976), Muroyama-e et al. (1986) i Kang-a et al. (1991), koje takođe uzimaju u obzir i uticaj poroznosti (jedn. 1.105, 1.106, 1.107, 1.109, izražene preko $j_{\rm H} = Nu/(Re_p Pr^{/3})$), pri čemu korelacije Hamilton-a (1970) i Richardson-a et al. (1976) značajno odstupaju od prikazanih eksperimentalnih podataka (slika 3.24), ovo odstupanje je očekivano s obzirom da su korelacije izvedene za konstantne vrednosti Prandtl-ovog broja, koji je

primera radi kod Richardson-a u proseku oko 20 puta viši od Prandtl-ovog broja kod prikazanih eksperimentalnih vrednosti.

Prikazani eksperimentalni podaci za faktor prenosa toplote u zavisnosti od Reynolds-ovog broja j_H =f(Re_p), slede generalno poznati oblik u logaritamskom dijagramu (slika 3.24) i u dobroj su saglasnosti sa korealacijom Bošković-Vragolović (2002), koja je izvedena na bazi eksperimentalnih podataka dobijenih u istom eksperimentalnom sistemu (slika 2.6), takođe sa više prečnika staklenih sfera (d_p =0,8 do 3 mm; jedn. 3.1):

$$j_{\mu}\varepsilon = 0.17 \text{ Re}_{p}^{\prime-0.3}$$
 (3.1)

Može se uočiti da je u korelaciji (3.1) obuhvaćen i uticaj poroznosti kroz grupe j_{H} ε i Re'_p=Re_p/(1- ε).

Slika 3.24. Faktor prenosa toplote u partikulativno fluidizovanom sloju (d_p =1,94 mm) u funkciji Reynolds-ovog broja za čestice-poređenje sa literaturnim korelacijama.

Poređenja radi na slici 3.25 prikazani su eksperimentalni podaci za faktor prenosa toplote i mase u zavisnosti od površinske brzine.

Slika 3.25. Zavisnost faktora prenosa toplote i mase od površinske brzine fluida u fluidizovanom sloju.

Sa slike 3.25 se vidi da su za istu površinsku brzinu, vrednosti faktora prenosa mase veće od faktora prenosa toplote, posebno u delu manjih brzina.

3.2. Granični sloj u disperznim sistemima tečnost-čestice

Dosadašnja istraživanja prenosa količine kretanja, toplote i mase uglavnom su se svodila na eksperimentalna merenja i korelisanje eksperimentalnih podataka. Mali je broj radova koji se bave mehanizmom prenosa količine kretanja, toplote i mase u disperznim sistemima ili formiranjem graničnog sloja u takvim sistemima. Izuzetak su radovi del Poza /del Pozo et al., 1991/ i Aghajani-ja /Aghajani et al., 2004/ iz oblasti prenosa toplote. Iz želje da se mehanizmi prenosa u fluidizovanim sistemima definišu i teorijski objasne, došlo se na ideju postavke modela koji će ove prenose u fluidizovanim sistemima teorijski objasniti ili bar bliže odrediti. Osnovna pretpostavka modela je da granični sloj postoji između svaka dva susedna sudara čestica sa zidom kolone. Granični sloj nastaje pri sudaru čestice sa zidom kolone, dok se završava sa prvim susednim sudarom čestice sa zidom kolone. Rastojanja između dva susedna sudara čestice sa zidom kolone približno su jednaka na celoj dužini kolone koja je u kontaktu sa česticama. Tada se može reći da je dužina graničnog sloja jednaka dužini između dva susedna sudara (slika 3.26).

Slika 3.26. Formiranje graničnog sloja kod fluidizovanog sistema tečnost-čvrsto

Sa slike 3.26 se vidi da je rastojanje *L* kraće kada postoje čestice u sistemu, nego kada struji fluid bez čestica. Egzaktna jednačina koja definiše rastojanje između dva susedna sudara čestice sa zidom kolone ne postoji. Postoje razne aproksimativne jednačine koje uglavnom koriste geometriju kao osnovno sredstvo u analizi, ove jednačine su uglavnom glomazne i nisu lake za primenu. Nasuprot ovakvim jednačinama Carlos i Richardson /Carlos^{a,b} & Richardson, 1968/ su dali vrlo jednostavnu jednačinu, koju su izveli teorijskom analizom fluidizovanog sistema, tretirajući ga preko kinetičke teorije idealanog gasa:

$$L = \frac{d_p}{6\sqrt{2}\left(1-\varepsilon\right)} \tag{1.71}$$

Za istu poroznost i prečnik čestice, dužina L je ista kod sva tri granična sloja (hidrodinamički, termički i difuzioni). Srednja vrednost debljine graničnog sloja δ je :

$$\delta = \frac{1}{L} \int_{0}^{L} \delta_{x} dx \tag{3.2}$$

gde je δ_x lokalna vrednost debljine graničnog sloja.

Osim definisanja rastojanja između dva susedna sudara sa zidom kolone od opšteg značaja je i uticaj fizičkog prisustva čestica u graničnom sloju koji je najlakše objasniti preko slike 3.27.

Slika 3.27. Prikaz podužnog preseka srednje vrednosti debljine graničnog sloja na rastojanju L.

Kada u sistemu nema čestica srednja vrednost debljine graničnog sloja je δ , a površina podužnog preseka je površina pravougaonika A_d , (slika 3.27a):

$$A_d = \delta \cdot L \tag{3.3}$$

Površina podužnog preseka u prisustvu čestica u fluidizovanom sistemu je A_p (slika 3.27b i 3.28):

$$A_p = \varepsilon \cdot A_d = \varepsilon \cdot \delta \cdot L \tag{3.4}$$

To znači da čestice svojim fizičkim prisustvom umanjuju površinu $A_d \ \varepsilon$ puta. Pošto površina A_p ima nepravilan oblik, zbog lakšeg poređenja sa površinom A_d mora se preoblikovati u pravougaonik dužine L i visine δ_p koji ima istu površinu kao površina A_p (slika 3.28).

Slika 3.28. Prikaz poređenja podužnih preseka površina graničnog sloja u sistemu sa česticama i bez čestica.

Očigledno je srednja debljina graničnog sloja δ_p , kada su u sistemu prisutne čestice, manja od srednje debljine graničnog sloja kada u sistemu nema čestica δ . Površina pravougaonika A_p je:

$$A_p = \delta_p \cdot L = \varepsilon \cdot \delta \cdot L \tag{3.5}$$

odnosno:

$$\delta_p = \varepsilon \cdot \delta \tag{3.6}$$

Jednačine (3.2)-(3.6) se mogu primeniti za svaki prenos posebno uvrštavajući odgovarajuće veličine za dati prenos.

3.2.1. Difuzioni granični sloj i prenos mase u fluidizovanom sistemu tečnost-čestice

Lokalna debljina difuzionog graničnog sloja se izračunava kako je već pokazano preko jednačine (1.24):

$$\delta_A = \delta_h \cdot Sc^{-1/3} \Longrightarrow \frac{\delta_A}{x} = 4,64 \cdot \sqrt{\frac{\nu}{u_0 x}} \cdot Sc^{-1/3} = 4,64 \cdot \operatorname{Re}_x^{-1/2} \cdot Sc^{-1/3}$$
(3.7)

što se u razvijenom obliku može napisati:

$$\delta_{D_x} = 4,64 D_{AB}^{1/3} \nu^{1/6} U_0^{-1/2} x^{1/2}$$
(3.8)

dok je srednja vrednost debljine difuzionog graničnog sloja dobijena iz jednačine (3.2):

$$\delta_D = 3,09 D_{AB}^{1/3} v^{1/6} U_0^{-1/2} L^{1/2}$$
(3.9)

Iz jednačine (3.6) dobija se srednja vrednost debljine difuzionog graničnog sloja u fluidizovanom sistemu:

$$\delta_{Dp} = 3,09\varepsilon D_{AB}^{1/3} \nu^{1/6} U_0^{-1/2} L^{1/2}$$
(3.10)

Zamenom jednačine Carlos-Richardson-a (1.71) u jednačinu (3.10) dobija se jednačina:

$$\delta_{Dp} = 1,061 \frac{\varepsilon}{\sqrt{1-\varepsilon}} D_{AB}^{1/3} v^{1/6} U_0^{-1/2} d_p^{1/2}$$
(3.11)

ili

$$\delta_{Dp} = 1,061 \frac{\varepsilon}{\sqrt{1-\varepsilon}} d_p \operatorname{Re}_p^{-1/2} Sc^{-1/3}$$
(3.12)

Model filma je zasnovan na pretpostavci da postoji nepokretan film fluida uz granicu faza u kome je skoncentrisan celokupni otpor prenosu mase i gde se prenos mase vrši isključivo molekulskim mehanizmom. Primenjujući model filma sa dovoljnom tačnošću može se isto primeniti i na srednju vrednost debljine difuzionog graničnog sloja. On takođe ima srednju vrednost konstantnu i praktično predstavlja celokupni otpor prenosu mase. Tako da je koeficijent prelaza mase dat izrazom:

$$k = \frac{D_{AB}}{\delta_{Dp}}$$
(3.13)

Kombinujući jednačine (3.13) i (3.11) odnosno (3.12) dobija se izraz za koeficijent prelaza mase u fluidizovanom sloju :

$$k = 0.942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} D_{AB}^{2/3} \nu^{-1/6} U_0^{1/2} d_p^{-1/2}$$
(3.14)

ili

$$k = 0,942 \frac{D_{AB}}{d_p} \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$$
(3.15)

Sada se mogu definisati Sherwood-ov broj za česticu:

$$Sh_{p} = \frac{k d_{p}}{D_{AB}} = 0,942 \frac{\sqrt{1-\epsilon}}{\epsilon} \operatorname{Re}_{p}^{1/2} Sc^{1/3}$$
 (3.16)

i faktor prenosa mase:

$$j_D = \frac{Sh_p}{\operatorname{Re}_p Sc^{1/3}} = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{-1/2}$$
(3.17)

Eksperimentalni podaci koji pokazuju promenu koeficijenta prelaza mase k duž visine kolone u funkciji brzine U, prikazani su na slici 3.29. Čestice za koje su prikazani eksperimentalni podaci su prečnika 2,98 mm, a merenja su izvršena u koloni za ispitivanje prenosa mase u fluidizovanom sloju metodom rastvaranja (Sl. 2.2)

Merenja u fluidizovanom sloju vršena su u cilju utvrđivanja uticaja debljine graničnog sloja na prenos mase. Na slici 3.29 su prikazani eksperimentalni podaci za koeficijent prenosa mase na svakom segmentu pri različitim protocima fluida. Na prvom segmentu su najveći prenosi jer je granični sloj još u formiranju. Na ostalim

Slika 3.29. Zavisnost koeficijenta prelaza mase od površinske brzine fluida u fluidizovanom sloju ($d_p = 2,98$ mm).

segmentima vrednosti koeficijenta prelaza mase haotično variraju. Teoretski gledano srednja vrednost koeficijenta prelaza mase bi trebalo da je ista na svim segmentima jer se difuzioni granični sloj ponovo formira na početku svakog segmenta (nije postignut kontinum). Međutim postoje oscilacije i one verovatno potiču od međusobnog uticaja segmenata jedan na drugi sa porastom visine. Srednja vrednost koeficijenta prelaza mase *k* za sve segmente takođe je prikazana na slici 3.29 kao puna crna linija. Tu se jasno primećuje maksimum pri brzini od približno 0,07 m/s za čestice prečnika $d_p=2,98$ mm. Na slici 3.30, prikazane su eksperimentalne srednje vrednosti koeficijenta prelaza mase *k* (srednja vrednost *k* na svim segmenata za dati protok), kao i vrednosti koje su izračunate preko modela (jedn. 3.14 ili 3.15) u zavisnosti od poroznosti ε , za čestice prečnika 1,20 mm, 1,94 mm i 2,98 mm.

Slika 3.30. Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.15 za koeficijent prelaza mase u fluidizovanom sloju.

Srednje apsolutno odstupanje između eksperimentalnih podataka i modela je 15,9%. Najbolja slaganja su za čestice prečnika d_p =1,94mm (8,96%), a zatim za 1,20 mm (19,0%), najlošije slaganje je za čestice 2,98mm (19,6%).

Treba primetiti da sa povećanjem prečnika čestica eksperimentalni podaci pokazuju da se koeficijent prelaza mase ne menja značajno i da kriva ima blagi pad sa povećanjem poroznosti. Ipak se ta minimalna odstupanja mogu objasniti tako što pri istoj poroznosti najveći koeficijent prelaza mase k je za najsitnije čestice $d_p=1,20$ mm. Analizom izraza u modelu (jedn. 3.14) to je logično jer sa smanjenjem prečnika čestice $d_p \left(k \propto 1/\sqrt{d_p}\right)$, raste koeficijent prelaza mase pri istoj poroznosti sloja.

Zavisnost Sherwood-ovog broja za česticu Sh_p u zavisnosti od poroznosti ε je prikazan na slici 3.31. Prikazani su eksperimentalni podaci za čestice prečnika 1,20mm, 1,94mm i 2,98mm kao i izračunate vrednosti preko modela (jedn. 3.16).

Slika 3.31. Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.16 za Sherwood-ov broj za česticu u fluidizovanom sloju.

Sa slike 3.31, može se videti slaganje između eksperimentalnih podataka i izračunatih podataka iz modela (jedn. 3.16) sa srednjim apsolutnim odstupanjem od 15,9%. Ova odstupanja su veća za veće prečnike jer se sistem nalazi blizu granice "stešnjenja", kada zidovi imaju uticaj na čestice $(d_p/D_c = 0,09)$, granica je 0,1). Zavisnost faktora prenosa mase j_D od poroznosti je prikazana na slici 3.32.

Slika 3.32. Poređenje između eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju.

Slika 3.32, prikazuje eksperimentalne podatke faktora prenosa mase j_D , kao i podatke izračunate preko modela (jedn. 3.17). Eksperimentalni podaci za česticu najmanjeg prečnika imaju najveće vrednosti faktora prenosa mase pri istoj poroznosti. To empirijsko pravilo potvrđuje se analizom modela (jedn. 3.17), jer sa smanjenjem prečnika čestice d_p ($j_D \propto 1/\sqrt{\text{Re}_p}$) pri istoj poroznosti, povećava faktor prenosa mase j_D . Do istih zaključka se može doći ako se posmatra debljina difuzionog graničnog sloja. Kada pri istoj poroznosti sloja prečnik čestica raste, raste i rastojanje L između dva susedna sudara sa zidom kolone (jedn. 1.71). Pošto raste L, raste i srednja debljina difuzionog graničnog sloja u fluidizovanim sistemima δ_{Dp} (jedn. 3.10). Prema jednačini (3.13) koeficijent prelaza mase k onda opada sa povećanjem prečnika čestice pri istoj

poroznosti (slika 3.30). U izrazu za Sherwood-ov broj za česticu Sh_p, koeficijent prelaza mase k se množi sa d_p koje utiče na oblik dijagrama, tako da za najveće d_p , Sherwood-ov broj za česticu Sh_p ima najveće vrednosti pri istoj poroznosti (slika 3.31). Kod izraza za faktor prenosa mase situacija je obrnuta jer je faktor prenosa mase u svojoj osnovi zapravo definisan kroz izraz:

$$j_D = \frac{k}{U} S c^{1/3}$$
(3.18)

Pošto koeficijent prelaza mase k opada sa povećanjem prečnika čestica d_p , taj trend prati i faktor prenosa mase j_D (slika 3.32) ako je poroznost konstantna.

Poređenje ekperimentalnih podataka za faktor prenosa mase j_D sa modelom (jedn. 3.17) i litaraturnim korelacijama je prikazana na slikama 3.33-3.35, za čestice prečnika: 1,20 mm; 1,94 mm; 2,98 mm (respektivno).

Slika 3.33. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju ($d_p=1,20$ mm) sa literaturnim korelacijama.

Slika 3.34. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju (d_p =1,94mm) sa literaturnim korelacijama.

Sa slika 3.33., 3.34. i 3.35, se vidi da su slaganja između eksperimentalnih podataka i podataka dobijenih izračunavanjem pomoću modela (jedn. 3.17) i literaturnih podataka dobra. Srednja apsolutna odstupanja su prikazana u tabelama 3.1-3.3.

Slika 3.35. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.17 za faktor prenosa mase u fluidizovanom sloju ($d_p=2,98$ mm) sa literaturnim korelacijama.

Tabela 3.1. Odstupanje eksperimentalnih podataka od modela i literaturnih korelacija za čestice prečnika d_p =1,20mm.

0/	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.
%0	(3.17)	(1.118)	(1.116)	(1.119)	(1.117)	(1.115)	(1.112)	(1.113)
Aps.	19,0	67,3	22,4	48,4	25,6	82,0	37,4	23,0

Tabela 3.2. Odstupanje eksperimentalnih podataka od modela i literaturnih korelacija za čestice prečnika d_p =1,94 mm.

%	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.
	(3.17)	(1.118)	(1.116)	(1.119)	(1.117)	(1.115)	(1.112)	(1.113)
Aps.	14,0	31,4	14,8	26,5	13,6	44,8	17,8	41,9

Tabela 3.3. Odstupanje eksperimentaln
h podataka od modela i literaturnih korelacija za čestice prečnik
a d_p =2,98 mm.

%	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.	Jedn.
	(3.17)	(1.118)	(1.116)	(1.119)	(1.117)	(1.115)	(1.112)	(1.113)
Aps.	19,6	30,2	14,7	21,0	18,7	33,3	16,9	29,2

Najbolje slaganje između eksperimentalnih podataka i literaturnih korelacija je za čestice prečnika 2,98 mm, a nešto lošija su za čestice prečnika 1,20 mm. Slaganje eksperimentalnih podataka i modela sa literaturnim korelacijama je takođe dobro, a mala odstupanja su očekivana jer su literaturne korelacije dobijene različitim metodama i u različitim kolonama (odnos L/D_c). Najbolje slaganje eksperimentalnih podataka je sa modelom (jedn. 3.17) i korelacijama Pickett-a (jedn. 1.116), Ribe (jedn. 1.117) i Fan-a (jedn. 1.112). Model (jedn. 3.17) ima najbolje slaganje sa korelacijom Pickett-a (jedn. 1.116), gde je odstupanje 6%. Najlošije slaganje eksperimentalnih podataka i modela

3.2.2. Termički granični sloj i prenos toplote u fluidizovanom sistemu tečnost-čestice

Iz analize radova Jamialahmadi-a et al. (1995) i Haid-a et al. (1994) dobijaju se potrebne osnove za izvođenje modela za prenos toplote u fluidizovanim sistemima. Termički granični sloj se formira u hidrodinamičkom graničnom sloju kada je Pr>1 (slika 3.36.) i predstavlja glavni otpor prenosu toplote. Na slici 3.36 prikazano je formiranje termičkog graničnog sloja pri strujanju fluida preko ravne beskonačne ploče.

Slika 3.36. Formiranje laminarnog hidrodinamičkog i termičkog graničnog sloja preko ravne ploče (Pr>1)

Debljina termičkog graničnog sloja se definiše prema debljini hidrodinamičkog graničnog sloja (jedn. 1.22). Čestice prekidaju termički granični sloj na istovetan način kako je to pokazano kod prenosa mase i difuzionog graničnog sloja, što znači da termički granični sloj ponovo nastaje i završava se sa svakim sudarom čestice sa zidom kolone. Takođe treba uzeti na analogan način i fizički uticaj čestica u termičkom graničnom sloju, kao i Carlos-Richardson-ovu definiciju (jedn. 1.71) rastojanja između čestica. Sumirajući navedene pretpostavke, može se konačno napisati da je srednja debljina termičkog graničnog sloja:

$$\delta_{Tp} = 1,061 \frac{\varepsilon}{1-\varepsilon} v^{1/2} U_0^{-1/2} d_p^{1/2} \operatorname{Pr}^{-1/3}$$
(3.19)

Koeficijent prelaza toplote je:

$$\alpha = \frac{\lambda}{\delta_{T_p}} \tag{3.20}$$

Zamenom jednačine (3.19) u (3.20) dobija se za koeficijent prelaza toplote:

$$\alpha = 0,942 \lambda \frac{\sqrt{1-\varepsilon}}{\varepsilon} v^{-1/2} U_0^{1/2} d_p^{-1/2} \operatorname{Pr}^{1/3}$$
(3.21)

Nusselt-ov broj za česticu:

$$Nu_{p} = \frac{\alpha d_{p}}{\lambda} = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{1/2} \operatorname{Pr}^{1/3}$$
(3.22)

i faktor prenosa toplote:

$$j_{H} = \frac{Nu_{p}}{\operatorname{Re}_{p}\operatorname{Pr}^{1/3}} = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.23)

Jednačine (3.19)-(3.23) pokazuju da između mase i toplote postoji analogija prenosa (sličnost jednačina), međutim kod prenosa toplote postoji i jedna posebnost. Posebnost je u tome da površina ispod čestice ne učestvuje u prenosu mase (masa ne može da prođe kroz česticu). Kod toplote to nije slučaj jer se i kroz samu česticu odvija prenos toplote (kondukcijom) kao i ispod površine čestice (čestično-konvektivnim mehanizmom). Zbog toga se mora uvesti korekcija izraza za prenos toplote (3.21)-(3.23). U radu Haid-a /Haid et al., 1994/ se vidi da korekcija mora biti urađena po koncentraciji čestice (poroznosti) i prečniku čestice. Korekcija u odnosu na poroznost se pokazuje takođe teorijski, dok je korekcija u odnosu na prečnik čestice empirijski ustanovljena. Zbog ovoga se može reći da je model koji je izveden za prenos toplote poluempirijski, a ne teorijski kao kod prenosa mase. Korekcija za uticaj poroznosti može se dobiti sličnim pristupom koji je imao Jamialahmadi et al. (1995) u svom radu. Kako je:

$$\frac{A_c}{A} = \varepsilon \quad i \quad \frac{A_p}{A} = 1 - \varepsilon \tag{3.24}$$

iz izraza (3.24) i (1.93) dobija se da je odnos:

$$\alpha_c = \frac{2\varepsilon - 1}{\varepsilon} \alpha \tag{3.25}$$

Izraz (3.25) čini korekciju izraza (3.21) i predstavlja "čistu" konvekciju pri prenosu toplote u fluidizovanim sistemima. Posle korigovanja izraza (3.21) izraz za koeficijent prelaza toplote u fluidizovanom sistemu postaje:

$$\alpha = 0,942 \frac{2\varepsilon - 1}{\varepsilon} \frac{\sqrt{1 - \varepsilon}}{\varepsilon} \lambda \nu^{-1/2} U_0^{1/2} d_p^{-1/2} \operatorname{Pr}^{1/3}$$
(3.26)

$$\alpha = 0,942 \frac{\lambda}{d_p} \frac{2\varepsilon - 1}{\varepsilon} \frac{\sqrt{1 - \varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$$
(3.27)

Korigovanjem jednačina (3.22) i (3.23) dobija se:

$$Nu_{p} = 0.942 \frac{2\varepsilon - 1}{\varepsilon} \frac{\sqrt{1 - \varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{1/2} \operatorname{Pr}^{1/3}$$
(3.28)

$$j_{H} = 0,942 \frac{2\varepsilon - 1}{\varepsilon} \frac{\sqrt{1 - \varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.29)

Uprkos korigovanju izraza (3.21) zbog dobijanja izraza za čistu konvekciju (3.27), primećeno je da jednačina (3.27) ima dobar trend i karakterističan oblik sa pojavom maksimuma ali je translatorno pomerena u odnosu na eksperimentalne podatake. To pokazuje da je potrebno izvršiti još jednu korekciju, ovog puta na prečnik čestica koji takođe utiče na površinu za razmenu toplote samo konvekcijom. Zavisnosti prenosa toplote od prečnika čestica obrađuje rad Haid-a et al. (1994). Pomoću eksperimentalnih podataka je urađena analiza zavisnosti koeficijenta korekcije izraza (3.27) od prečnika čestica d_p .

Tabela 3.4. Zavisnost korekcije modela K od prečnika čestice

d_p , mm	$d_p/\mathrm{D_c}$	K
0,803	0,0316	1,33
1,20	0,0433	1,06
1,94	0,0764	0,81
2,98	0,1173	0,67

U tabeli 3.4, K je odnos vrednosti dobijenih modelom (3.27) i eksperimentalnih podataka, odnosno predstavlja koliko model odstupa od eksperimentalnih podataka. Zavisnost koeficijenta korekcije K od prečnika čestica je dat na slici 3.37.

Slika 3.37. Zavisnost korekcije K u odnosu na odnos (d_p/D_c).

Zavisnost $K=f(d_p/D_c)$ je dobijena korelisanjem:

$$K = 0,658 + 2,16 \cdot e^{-37.4 \cdot \left(\frac{d_p}{D_c}\right)}$$
(3.30)

Jednačina (3.30) predstavlja zavisnost koeficijenta prelaza toplote od prečnika čestice d_p . Korelisanjem se mogu dobiti još tačnije jednačine koje definišu zavisnost Kod d_p , ali su one po svom obliku dosta složene, dok jednačina (3.30) relativno jednostavna i pruža podatke sa 99% tačnosti. Korekcijom sa koeficijentom K, jednačina (jedn. 3.27) postaje:

$$\alpha = \frac{0.942}{K} \cdot \frac{\lambda}{d_p} \frac{2\varepsilon - l}{\varepsilon} \frac{\sqrt{l - \varepsilon}}{\varepsilon} Re_p^{l/2} Pr^{l/3}$$
(3.31)

$$Nu_{p} = \frac{0.942}{K} \cdot \frac{2\varepsilon - l}{\varepsilon} \frac{\sqrt{l - \varepsilon}}{\varepsilon} Re_{p}^{l/2} Pr^{l/3}$$
(3.32)

i

$$j_{H} = \frac{0,942}{K} \cdot \frac{2\varepsilon - 1}{\varepsilon} \frac{\sqrt{1 - \varepsilon}}{\varepsilon} Re_{p}^{-1/2}$$
(3.33)

Uvodeći smenu:

$$K_{p} = \frac{1}{K} \cdot \frac{2\varepsilon - 1}{\varepsilon}$$
(3.34)

jednačine (3.31)-(3.33) postaju:

$$\alpha = 0,942 \cdot K_p \cdot \frac{\lambda}{d_p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$$
(3.35)

$$Nu_{p} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_{p}^{1/2} \operatorname{Pr}^{1/3}$$
(3.36)

$$j_{H} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.37)

Jednačine (3.35)-(3.37) imaju istu formu kao i jednačine za prenos mase sa prisutnom korekcijom K_p . Čestično-konvektivni prenos koji postoji kod prenosa toplote je teorijski obuhvaćen u izvođenju modela (zavisnost od ε) koji kod prenosa mase ne postoji. Takođe zavisnost prenosa toplote od prečnika čestica d_p ostaje za sada nepoznata pa je izvedena eksperimentalno. Ova zavisnost nije izražena kod prenosa mase. Što navodi na zaključak da je prenos toplote složeniji od prenosa mase. To potvrđuje i pojava maksimuma na krivoj za zavisnost koeficijenta prelaza toplote od brzine ili poroznosti, dok taj maksimum ne postoji kod ekvivalentnih zavisnosti za koeficijent prelaza mase. Izraz (3.35) je pogodan i zbog toga jer pruža mogućnost predviđanja maksimuma koeficijenta prelaza toplote (α_{max}). Iz uslova da je $d\alpha/d\varepsilon = 0$, iz jednačine (3.35) sledi da je poroznost pri kojoj dolazi do maksimalne vrednosti koeficijenta prelaza toplote definisana jednačinom:

$$\varepsilon_{\max} = \frac{(3n-7) \pm \sqrt{n^2 - 2n + 17}}{2(2n-2)}$$
(3.38)

U izvođenje jednačine (3.38) uzeta je u obzir zavisnost brzine od poroznosti sloja (Richardson-Zaki-jeva korelacija), gde *n* predstavlja Richardson-Zaki-jev eksponent. Maksimalna vrednost koeficijenta prelaza toplote je definisana na sledeći način:

$$\alpha_{\max} = \frac{0.942}{K} \frac{\lambda}{d_p} \frac{2\varepsilon_{\max} - 1}{\varepsilon_{\max}} \frac{\sqrt{1 - \varepsilon_{\max}}}{\varepsilon_{\max}} \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$$
(3.39)

Pomoću jednačine (3.38) izračunava se kolika je poroznost ε_{\max} pri maksimalnoj vrednosti koeficijenta prelaza toplote α_{\max} , a na osnovu nje i jednačine (3.35) može se izračunati maksimalna vrednost koeficijenta prelaza toplote α_{\max} za dati sistem.

Kod analize rezultata prenosa toplote u fluidizovanim slojevima, pre svega analizirana je zavisnost koeficijenta prelaza toplote α od poroznosti za nekoliko prečnika čestica sa kojima je eksperiment rađen (0,803 mm; 1,20 mm; 1,94 mm; 2,98 mm). Zbog preglednosti, krive će biti predstavljene za svaki prečnik posebno. Na slikama 3.38-3.41 prikazana je zavisnost koeficijenta prelaza toplote od poroznosti za čestice prečnika 0,803 mm; 1,20 mm; 1,94 mm i 2,98 mm. Takođe na istim slikama je dato poređenje eksperimentalnih i izračunatih vrednosti, po modelu definisanim jednačinom (3.35), sa literaturnim korelacijama.

Slika 3.38. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju ($d_p = 0,803$ mm) sa literaturnim korelacijama.

Slika 3.39. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju (d_p =1,20 mm) sa literaturnim korelacijama.

Slika 3.40. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju (d_p =1,94mm) sa literaturnim korelacijama.

Slika 3.41. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.35 za koeficijent prelaza toplote u fluidizovanom sloju (d_p =2,98mm) sa literaturnim korelacijama.

Na slikama 3.38-3.41 se vidi dobro slaganje modela (jedn. 3.35) sa eksperimentalnim podacima kao i sa drugim literaturnim korelacijama. Srednja apsolutna odstupanja eksperimentalnih podataka u odnosu na model i literaturne podatke su data u tabeli 3.5.

d mm	Muruyama et al.,1986	model	Jamialahmadi et	Haid et al., 1994
a_p , mm	(jedn. 1.107)	(jedn. 3.35)	al.,1995 (jedn. 1.96)	(jedn. 1.104)
0,803	13,6	8,33	27,4	11,1
1,20	6,68	11,4	18,6	11,2
1,94	6,26	11,1	9,46	10,5
2,98	9,02	21,2	16,2	13,3
Σ	8,89	13,0	17,9	11,5

Tabela 3.5. Srednje apsolutno odstupanje eksperimentalnh podataka od modela (jedn.3.35) i literaturnih korelacija za korišćene prečnike čestica u eksperimentu, %

Srednje apsolutno odstupanje modela od eksperimentalnih vrednosti je najbolje za čestice prečnika 0,803mm (8,33%), dok je najlošije slaganje sa česticama prečnika 2,98mm (21,2%). Srednje apsolutno odstupanje za čestice korišćene u eksperimentu u odnosu na model je 13%. Za čestice prečnika 1,20mm i 1,94mm pojavljuje se nagli porast vrednosti koeficijenta prelaza toplote pri malim poroznostima (\approx 0,65 i \approx 0,61, respektivno), a isti trend pokazuju i literaturne korelacije kao i eksperimentalni podaci. Ovako ponašanje nije primećeno za čestice prečnika 0,803mm i 2,98mm. Prisutna je pojava maksimuma u eksperimentalnim podacima kao i podacima koje predviđa model. Jedini literaturni model koji (jedn. 1.94) predviđa maksimum je model Jamialahmadija.Vrednost maksimuma dobijena preko eksperimentalnih podataka (kada se uklone mali pikovi koji ne prate trend krive) se slaže sa vrednostima koje predviđa kriva modela i model Jamialahmadi-ja (tabela 3.6.)

Tabela 3.6. Poređenje eksperimentalnih vrednosti sa izračunatim vrednostima preko modela (3.38 i 3.39) i modela Jamilahmadi-ja za ε_{max} i α_{max}

$d_p,$ mm	\mathcal{E}_{max} (eksp.)	\mathcal{E}_{\max} (model)	<i>E</i> _{max} (Jamialahmadi et al.,1995)	$\alpha_{\rm max}$ (eksp.)	$\alpha_{\rm max}$ (model)	<i>E</i> _{max} (Jamialahmadi et al.,1995)
0,803	0,78	0,78	0,78	3,52	3,64	4,31
1,20	0,78	0,78	0,77	3,84	4,12	4,26
1,94	0,79	0,79	0,79	4,93	4,97	4,35
2,98	0,79	0,79	0,79	4,98	5,28	4,40

Iz tabele 3.6 se vidi da se eksperimentalne vrednosti, vrednosti modela i vrednosti modela Jamilahmadi-ja slažu odlično za poroznost pri kojoj je vrednost koeficijenta prelaza toplote maksimalana. Prosečno srednje apsolutno odstupanje između eksperimentalno određenih vrednosti za koeficijent prelaza toplote i preko modela (3.39) je 4,38%. Vrednosti za poroznost pri maksimalnom prenosu koje su eksperimentalno određene i preko modela (3.38) su identične za date prečnike čestica. Srednja vrednost poroznosti na kojoj se pojavljuje maksimalna vrednost koeficijenta prelaza toplote iznosi 0,784. Vrednost poroznosti za koji je najveći koeficijent prenosa toplote se može odrediti preko izvedenog modela (3.39). U izrazu (3.38) figuriše Richardson-Zakijev koeficijent *n* koji iznosi 2,4, jer je u eksperimentu Re_t>500. Zamenom ove vrednosti u izraz (3.38) dobija se da je $\varepsilon_{max} = 0,79$, što je u skladu sa vrednostima koje su određene eksperimentom. Maksimalna vrednost koeficijenta prelaza toplote se određuje iz izraza (3.39). Na slici 3.42 je prikazana zavisnost Nusseltovog broja za česticu Nu_p od poroznosti sloja ε za četiri različita prečnika čestica.

Sa slike 3.42 se vidi da je slaganje eksperimentalnih podataka i modela (3.36) dobro za sve prikazane prečnike čestica, a srednje apsolutno odstupanje iznosi 13%. Nešto lošije slaganje imaju čestice prečnika $d_p=2,98$ mm sa odstupanjem od 21,2%. Kao što je očekivano maksimalna vrednost Nusselt-ovog broja za česticu je postignuta pri poroznosti od $\approx 0,78$.

Za različite prečnike čestica, krive zavisnosti faktora prenosa toplote j_H od poroznosti su prikazani na slikama 3.43-3.46.

Slika 3.42. Poređenje eksperimentalnih i izračunatih vrednosti po modelu (jedn. 3.36) za Nusselt-ov broj za česticu u fluidizovanim slojevima sa česticama prečnika 0,803 mm; 1,20 mm; 1,94 mm; 2,98 mm.

Slika 3.43. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju ($d_p=0,803$ mm) sa literaturnim korelacijama.

Slika 3.44. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju (d_p =1,20 mm) sa literaturnim korelacijama.

Slika 3.45. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju (d_p =1,94mm) sa literaturnim korelacijama.

Slika 3.46. Poređenje eksperimentalnih i izračunatih vrednosti po modelu 3.37 za faktor prenosa toplote u fluidizovanom sloju (d_p =2,98mm) sa literaturnim korelacijama.

Na slikama 3.43.-3.46. se vidi da je slaganje između eksperimentalnih podataka i vrednosti dobijenih preko modela (jedn. 3.37) dobro sa srednjim apsolutnim odstupanjem od 13%. Model za faktor prenosa toplote se može koristiti pri vrednostima poroznosti većim od 0,68. Izvedeni modeli za koeficijent prelaza toplote (jedn. 3.35) i Nusselt-ov broj za česticu (jedn. 3.36) definišu maksimume krive. Te krive imaju dobar trend, međutim izvedeni model za faktor prenosa toplote (jedn. 3.37) prati trend krive za koeficijent prelaza toplote i kao posledica toga je pojava maksimuma na krivoj koja opisuje faktor prenosa toplote što nije u skladu sa eksperimentalnim rezultatima jer kriva faktora prenosa toplote ima monotono opadajući trend. Međutim, za vrednosti poroznosti veće od 0,68 ovaj model se može primenjivati.

3.3. Prenos mase sa hemijskom reakcijom u disperznim sistemima

U dosadašnjim razmatranjima proučavan je prenos mase u fluidizovanim sistemima kao čist fizički proces. Postoje procesi u kojima pored fizičkog procesa postoji i hemijska reakcija koja utiče dodatno na prenos mase. Proučavanje ovakvih sistema je bitno kako sa fenomenološkog, tako i sa aplikativnog aspekta. Za jednofazni tok postoje različiti pristupi koji aproksimativno opisuju prenos mase sa hemijskom reakcijom u sistemima sa brzom i nepovratnom reakcijom. Postoje dve osnovne teorije za jednofazni tok po kojima se izvode jednačine za koeficijent prelaza mase kada u sistemu postoji hemijska reakcija. Te teorije su: teorija filma i penetraciona teorija /Bennett & Myers,1962/. Za objašnjenje ove dve teorije, potrebno je da se definiše hemijska reakcija, sa odgovarajućim oznakama koje su korišćene za izvođenje teorijskih modela. Reaktant A predstavlja supstancu koja se rastvara i difunduje kroz rastvor, dok B predstavlja reaktant koji je rastvoren u tečnom rastvaraču (najčešće vodi). Proizvodi reakcije su izostavljeni u izračunavanjima, jer se prati prenos mase reaktanta A bez i sa hemijskom reakcijom. Prenos je definisan isključivo rektantima A i B (difuzivnošću i koncentracijom).

A(reaktant)+B(reaktant)→ P(proizvodi)

Na slici 3.47a. je prikazano kako se molekuli rastvorene supstance (reaktant A) kreću u rastvoru, kada u sistemu nema hemijske reakcije. Slika 3.47b prikazuje slučaj kada postoji hemijska reakcija gde osim difundovanja reaktanta A postoji i difundovanje reaktanta B suprotnostrujno, tako da dolazi do njihovog sudaranja i reagovanja u reakcionoj ravni. Slika 3.47c prikazuje profile koncentracije reaktanta A i B. Koncentracija je najveća za oba reaktanta kada se on nalazi dovoljno daleko od reakcione ravni, a najmanja u samoj reakcionoj ravni. Smatra se da kada je hemijska reakcija brza i nepovratna da je koncentracija oba reaktanta u reakcionoj ravni jednaka nuli, što znači da su reaktanti u toj zamišljenoj ravni potpuno proreogovali. Može se reći da sve što prodifundije do ove ravni biva potrošeno u reakciji.

Slika 3.47. Difundovanje reaktanata u sistemu bez i sa hemijskom reakcijom [a) sistem bez hemijske reakcije, b) sistem sa hemijskom reakcijom c) profil koncentracije reaktanata A i B].

– Teorija filma

Teorija filma je izvedena iz pretpostavke da su filmovi gasa (u razmatranom slučaju granica čvrste faza) i tečnosti nepokretni i da reaktanti difunduju do reakcione ravni (slika 3.47b). Ovaj model, uzimajući u obzir debljine sloja kroz koji difunduje reaktant A u sistemu bez i sa hemijskom reakcijom pokazuje da su koeficijent prelaza mase sa hemijskom reakcijom i koeficijent prelaza mase bez hemijske reakcije u sledećem odnosu:

$$\frac{k_r}{k} = 1 + \frac{D_{BC} \cdot \rho_{B,o}}{D_{AC} \cdot \rho_{A,s}}$$
(3.40)

Ovaj količnik je uvek veći od jedan, tako da je koeficijent prelaza mase sa hemijskom reakcijom uvek veći od koeficijenta prelaza mase bez hemijske reakcije.

– Penetraciona teorija

Sličnim pristupom (slika 3.47b), penetraciona teorija pokazuje da je odnos koeficijenta prelaza mase sa hemijskom reakcijom i koeficijenta prelaza mase bez hemijske reakcije u sledećem odnosu:

$$\frac{k_r}{k} = 1 + \frac{\rho_{B,o}}{\rho_{A,s}}$$
(3.41)

Treba primetiti da kada je $D_{AC} = D_{BC}$ jednačina (3.40) postaje identična jednačini (3.41).

– Ostali modeli

Pored ove dve teorije postoje i druge korelacije koje definišu odnos između koeficijenata prelaza mase bez i sa hemijskom reakcijom /Bennett & Myers, 1962/. U uslovima kada je odnos $\rho_{B,0}/\rho_{A,s}$ veliki može se primeniti sledeći izraz :

$$\frac{k_r}{k} = \frac{\rho_{B,o}}{\rho_{A,o}} \cdot \left(\frac{Sc_A}{Sc_B}\right)^{2/3}$$
(3.42)

Potter je koristeći von Karman-ovu integralnu metodu i dobio izraz za laminaran tok. Za uslove $\rho_{B,0} / \rho_{A,s} > 2$, /Potter, 1958/ važi da je:

$$\frac{k_r}{k} = \left(\frac{D_{AC}}{D_{BC}}\right)^{\frac{1}{3}} + \left(\frac{D_{BC}}{D_{AC}}\right)^{\frac{2}{3}} \cdot \frac{\rho_{B,o}}{\rho_{A,s}}$$
(3.43)

Po izrazima (3.40)-(3.43) može se zaključiti kako se može povećati uticaj hemijske reakcije na intezitet prenosa mase. Jedan od načina je povećanjem koeficijenta difuzivnosti i koncentracije reaktanta B ili smanjenjem koeficijenta difuzivnosti i koncentracije reaktanta A. Uticaj je naravno još izraženiji ako se simultano primene ovi uslovi. Efekat smanjenja udela uticaja hemijske reakcije dešava se suprotnim delovanjem od prethodno rečenog. Kontrolom koncentracije reaktanata i koeficijenata difuzivnosti u stvari se utiče na položaj reakcione ravni.

– Analiza rezultata

Prenos mase sa hemijskom reakcijom je proučavan na eksperimentalnoj aparaturi prikazanoj na slici 2.3. U eksperimentu su korišćene čestice prečnika 1,20 mm, 1,94 mm i 2,98 mm. Prikupljeni su podaci u sistemu bez i sa hemijskom reakcijom u fluidizovanom i jednofaznom sistemu. Preliminarno su izvršena merenja parametara potrebnih za definisanje fluido-dinamike sistema, u cilju utvrđivanja da li prisutna rastvorena supstanca u tečnoj fazi utiče na fluido-dinamiku sloja. Na slici 3.48 prikazan je gradijent pritiska u funkciji brzine za čestice prečnika 1,94mm.

Slika 3.48. Zavisnost gradijenta pritiska od površinske brzine za čestice prečnika $d_p=1,94$ mm.

Na slici 3.49 su prikazane zavisnosti poroznosti sloja od površinske brzine za čestice prečnika 2,98mm u fluidizovanom sistemu bez i sa hemijskom reakcijom.

Slika 3.49. Zavisnost poroznosti od površinske brzine u fluidizovanom sistemu bez i sa hemijskom reakcijom za čestice prečnika 2,98 mm.

Sa slika 3.48. i 3.49, može se zaključiti da se fluidizovan sistem bez i sa hemijskom reakcijom ponaša identično u fluido-dinamičkom smislu, tj. dodatak NaOH u vodu ne utiče značajno na sistem. Koeficijent prelaza mase k je prikazan na slici 3.50 u zavisnosti od površinske brzine i to za čestice prečnika 1,20 mm. Prikazani su podaci za jednofazni i fluidizovan sistem.

Slika 3.50. Zavisnost koeficijenta prelaza mase *k* od površinske brzine za jednofazni i fluidizovan sistem za čestice prečnika 1,20 mm

Očigledno je da se u sistemu sa hemijskom reakcijom ostvaruju veći prenosi mase, kao i da se fluidizovani sistemi pri većim brzinama asimptotski približavaju jednofaznim sistemima. U cilju sagledavanja uticaja prečnika čestica na koeficijent prelaza mase k prikazana je zavisnost koeficijenta prelaza mase od brzine za prečnike čestica 1,20 mm, 1,94 mm, 2,98 mm na slici 3.51.

Slika 3.51. Uticaj prečnika čestice na koeficijent prelaza mase k u funkciji površinske brzine.

Može se zaključiti da prečnik čestica ne utiče bitnije na koeficijent prelaza mase. Faktor prenosa mase je prikazan na slikama 3.52 i 3.53, gde su eksperimentalni podaci upoređeni sa nekim literaturnim korelacijama za čestice prečnika 1,20 mm.

Slika 3.52. Poređenje eksperimentalnih i literaturnih podataka za fluidizovani sloj bez hemijske reakcije (d_p =1,20 mm).

Sa slika 3.52. i 3.53, se vidi da je slaganje eksperimentalnih podataka sa literaturnim podacima dobro, a srednja apsolutna odstupanja su prikazana u tabeli 3.7.

Slika 3.53. Poređenje eksperimentalnih i literaturnih podataka za fluidizovani sloj sa hemijskom reakcijom ($d_p=1,20$ mm).

Tabela 3.7. Srednje apsolutno odstupanje eksperimentalnih od literaturnih podataka izraženo u procentima.

d mm	Yutani et	Bošković	Pickett et	Riba et	Dwivedi	Fan et	Gupta et
a_p , mm	al.,1987	et al.,1994	al.,1977	al.,1979	et al.,1977	al.,1960	al., 1962
1,20	24,4	21,9	22,8	24,5	29,7	19,5	32,3
1,94	12,7	27,1	27,4	45,1	17,4	20,7	12,3
2,98	15,5	15,9	27,3	28,1	16,8	25,2	15,0
$\sigma_{{\scriptscriptstyle Asr},{\scriptscriptstyle ukupno}}$	17,5	21,6	25,8	32,6	21,3	21,8	19,9

Srednje apsolutno odstupanje eksperimentalnih podataka za sve korišćene čestice od primenjenih literaturnih korelacija je oko 23%.

Diskontinualni granični sloj u fluidizovanom sistemu sa hemijskom reakcijom

Kada se fluidizacija obavlja čistim fluidom (sistem bez hemijske reakcije), supstanca koja se rastvara sa zida kolone difunduje kroz granični sloj, gde se nalazi glavni otpor prenosu mase. Veličina otpora je određena njegovom debljinom (slika 3.47a). Kada u sistemu postoji reaktant on difunduje kroz difuzioni granični sloj u suprotnom smeru od supstance koja se rastvara, tako da tada molekuli reaktanta koji su u radnom fluidu zapravo ranije "presreću" molekule supstance koja se rastvara. Što znači da je debljina difuzionog graničnog sloja manja nego kada reakcije nema (slika 3.47b). Glavni otpor pri prenosu mase kada u sistemu postoji hemijska reakcija je upravo ta debljina sloja koju molekuli pređu od zida kolone do mesta reagovanja na reakcionoj ravani. Kod reakcija koje su brze i nepovratne molekuli rastvorene supstance ne postoje iza reakcione ravni. Koliko će puta debljina između zida kolone i reakcione ravni biti manja od debljine difuzionog graničnog sloja kada reakcije nema, određuje i vrednost faktora uvećanja usled hemijske reakcije *F*. Teorija i empirijska praksa aproksimativno daju neke moguće definicije ovog faktora (3.40)-(3.43). Posmatrajući sliku 3.47b se zaključuje se da je:

$$F = \frac{\delta}{\delta_r} \tag{3.44}$$

Odatle sledi da je:

$$\delta_r = \frac{\delta}{F} \tag{3.45}$$

Koeficijent prelaza mase za sisteme sa hemijskom reakcijom je definisan sa dovoljnom tačnošću preko izraza:

$$k_r = \frac{D_{AB}}{\delta_r} \tag{3.46}$$

Iz jednačina (3.46) i (3.45) dobija se:

$$k_r = F \cdot \frac{D_{AB}}{\delta} = F \cdot k \tag{3.47}$$

Ako se u jednačini (3.47) pomnoži leva i desna strana sa odnosom (d_p / D_{AB}) dobija se jednačina za Sherwood-ov broj za česticu $Sh_{p,r}$ kada u sistemu postoji hemijska reakcija:

$$k_r \cdot \frac{d_p}{D_{AB}} = F \cdot k \cdot \frac{d_p}{D_{AB}}$$
(3.48)

odnosno

$$Sh_{p,r} = F \cdot Sh_p \tag{3.49}$$

Sličan odnos može se dobiti i za faktor prenosa mase ako se jednačina (3.49) podeli sa $(Re_{p} \cdot Sc^{1/3})$:

$$\frac{Sh_{p,r}}{\operatorname{Re}_{p} \cdot Sc^{1/3}} = F \cdot \frac{Sh_{p}}{\operatorname{Re}_{p} \cdot Sc^{1/3}} \Longrightarrow j_{D,r} = F \cdot j_{D}$$
(3.50)

Na osnovu ove analize i eksperimentalno dobijenih rezultata može se zaključiti da se sve ove relevantne veličine (k_r , Sh_{p,r} j_{D,r}) dobijaju na osnovu njihovih vrednosti u sistemima bez hemijske reakcije povećane za faktor uvećanja *F*. Kako su koeficijent prelaza mase, Sherwood-ov broj za česticu i faktor prenosa mase definisani izvedenim modelom jednačine 3.15-3.17, jednačine 3.47, 3.49 i 3.50 su za:

koeficijent prelaza mase k_r u fluidizovanom sistemu sa hemijskom reakcijom:

$$k_r = 0,942 \cdot F \frac{D_{AB}}{d_p} \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$$
(3.51)

Sherwood-ov broj za česticu u fluidizovanom sistemu sa hemijskom reakcijom:

$$Sh_{p,r} = F \cdot \frac{k \, d_p}{D_{AB}} = 0,942 \cdot F \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$$
(3.52)

faktor prenosa mase za fluidizovan sistem sa hemijskom reakcijom:

$$j_{Dr} = F \cdot \frac{Sh_p}{\operatorname{Re}_p Sc^{1/3}} = 0,942 \cdot F \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{-1/2}$$
(3.53)

Eksperimentalni podaci se mogu uporediti sa izračunatim vrednostima prema jednačini (3.53). Rezultati tog poređenja su prikazani na slikama 3.54-3.56 za čestice prečnika 1,20 mm, 1,94 mm, 2,98 mm.

Slika 3.54. Zavisnost faktora prenosa mase od površinske brzine za prečnik čestica $d_p=1,20$ mm.

Na slikama 3.54.-3.56, prikazane su zavisnosti $j_D - U$ u jednofaznom toku sa i bez hemijske reakcije u različitim fluidizovanim slojevima. Ono što je zajedničko na svim zavisnostima je da u svim ispitivanim sistemima prisutna hemijska reakcija uvećala prenos mase pri čemu trend dobijenih zavisnosti je isti kao i kod sistemima bez hemijske reakcije.

Slika 3.55. Zavisnost faktora prenosa mase od površinske brzine za čestice d_p =1,94mm.

Slika 3.56. Zavisnost faktora prenosa mase od površinske brzine za prečnik čestica $d_p=2,98$ mm.

Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje od eksperimentalnih vrednosti za jednofazni tok prikazane su u tabeli 3.8.

Tabela 3.8. Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje za jednofazni tok.

	eksp. vrednost	jedn. 3.40.	jedn. 3.41	jedn. 3.42
F	10,9	14,8	8,52	11,3
$\sigma_{_A},\%$	/	35,8	21,8	3,7

Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje od eksperimentalnih vrednosti za fluidizovan sloj prikazane su u tabeli 3.9.

d_p ,mm	F
1,20	22,6
1,94	29,1
2,98	27,5

Tabela 3.9. Vrednosti faktora uvećanja F zbog prisutne hemijske reakcije i srednje apsolutno odstupanje za fluidizovan sloj.

Na slici 3.57. prikazana je zavisnost faktora prenosa mase od poroznosti sloja u ispitivanim fluidizovanim sistemima bez i sa hemijskom reakcijom. Može se zaključiti da veličina čestica ne utiče značajno na prenos mase tj. faktor prenosa mase bilo da se radi o sistemima bez ili sa hemijskom reakcijom.

Slika 3.57. Faktor prenosa mase za čestice prečnika 1,20 mm, 1,94 mm, 2,98 mm za fluidizovan sistem bez i sa hemijskom reakcijom.

Sa slika 3.55.-3.57, se vidi relativno dobro slaganje modela (jedn. 3.53) sa eksperimentalnim podacima za sve vrste korišćenih čestica. Srednje apsolutno odstupanje je dato u tabeli 3.10.

Tabela 3.10. Srednje apsolutno odstupanje eksperimentalnih od izračunatih vrednosti (jedn. 3.53)

d_p, mm	$\sigma_{\scriptscriptstyle A}$,%
1,20	28,4
1,94	32,5
2,98	30,8

Ukupno srednje apsolutno odstupanje za tri vrste korišćenih čestica je oko 30%, malo veće odstupanje se javlja zbog eksperimentalno određenog faktora uvećanja F koje je usrednjena vrednost za sve tačke eksperimenta.

3.4. Verifikacija modela u pakovanom sloju i vertikalnom transportu

3.4.1. Verifikacija modela u pakovanom sloju

Bez obzira što je model zasnovan, između ostalog, na teoriji stalnog "prekidanja" graničnog sloja i novog formiranja u fluidizovanom sloju tj. u sloju sa pokretnim česticama urađena je potencijalna primena ovog modela na pakovan sloj. U pakovanom sloju takođe dolazi do stalnog novog formiranja graničnog sloja zbog prisutnih nepokretnih čestica u struji fluida. Eksperimentalni podaci su prikupljeni na aparaturi prikazanoj na slici 2.1. Na slikama 3.58-3.60 prikazane su zavisnosti koeficijenta prelaza mase od površinske brzine u pakovanim slojevima za čestice prečnika 0,803mm; 1,20mm i 1,94mm. Na pomenutim slikama poređenja radi prikazani su i eksperimentalni podaci za fluidizovan sloj sa istim prečnikom čestica. Prikazani
rezultati su urađeni u normalno pakovanim slojevima u rasponu poroznosti od 0,385 do 0,421.

Slika 3.58. Poređenje eksperimentalnih podataka i modela (jedn.3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika d_p =0,803mm.

Slika 3.59. Poređenje eksperimentalnih podataka i modela (jedn. 3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika $d_p=1,20$ mm.

Slika 3.60. Poređenje eksperimentalnih podataka i modela (jedn. 3.15) u pakovanom i fluidizovanom sloju, za čestice prečnika $d_p=1,94$ mm

Generalno podaci dobijeni iz modela i eksperimentalno imaju dobro slaganje, a odstupanja su prikazana u tabeli 3.11. Najbolje slaganje, kako se vidi u tabeli 3.11. postoji u slojevima sa česticama prečnika 1,94mm.

$d_p (\mathrm{mm})$	$\sigma_{_A},\!\%$
0,803	32,5
1,20	22,2
1,94	15,2

Tabela 3.11. Apsolutno odstupanje modela (jedn. 3.15) od eksperimentalnih podataka za pakovan sloj

Srednje apsolutno odstupanje podataka dobijenih iz modela i eksperimentalno je oko 23,3 %. Na slici 3.61. prikazana je zavisnost Sh_p od U. Za slojeve sa česticama prečnika 0,803 mm prikazane su vrednosti Sh_p u pakovanom i fluidizovanom sloju, dok su za čestice prečnika 1,20 mm i 1,94 mm prikazane zavisnosti samo u pakovanim slojevima.

Slika 3.61. Poređenje eksperimentalnih podataka i modela (jedn. 3.16) u pakovanim i fluidizovanim slojevima

Interesatno je primetiti da su u pakovanim slojevima sa česticama prečnika 1,20 mm i 1,94 mm vrednosti površinske brzine veće od minimalne brzine fluidizacije. U tim slojevima su čestice bile blokirane sa vrha ili su čestice zadržavane u nepokretnom stanju i u stanju gušćeg pakovanja. Prenosi mase u pakovanim slojevima za $U > U_{mf}$ su značajno veći od prenosa u fluidizovanim slojevima pri istoj brzini. Provera važenja postavljenog modela (jedn. 3.16) u ovim slojevima je pokazala bolje slaganje u sloju sa česticama prečnika 1,20 mm. Razlog boljeg slaganja čestica prečnika 1,20 mm može biti uticaj stešnjenja koji je izraženiji kod čestica većeg prečnika.

Na slici 3.62. prikazana je zavisnost faktora prenosa mase od površinske brzine za ispitivane pakovane i fluidizovane slojeve sa česticama prečnika 0,803 mm, 1,20 mm, 1,94 mm. Na istoj slici su prikazani eksperimentalni podaci dobijeni u gusto pakovanim slojevima. Evidentno je dobro slaganje eksperimentalnih vrednosti i izračunatih vrednosti po modelu (jedn. 3.17) u slojevima u kojima je normalno pakovanje čestica iz kojih se prelazilo u fluidizovan sloj. U gusto pakovanim slojevima model (jedn. 3.17) dobro prati vrednosti j_p u sloju sa česticama prečnika 1,20 mm.

Slika 3.62. Poređenje eksperimentalnih podataka i modela (jedn. 3.17) u pakovanim i fluidizovanim slojevima.

3.4.2. Verifikacija modela u vertikalnim transportnim sistemima čvrsto-tečno

Pri vertikalnom transportu dolazi do stalnog kontakta čestica i zida kolone, koje prekidaju granični sloj. Na toj pretpostavci je zasnovana ideja da se modeli za predviđanje koeficijenta prelaza mase, Sherwood-ovog broja za česticu i faktora prenosa mase izvedenih u uslovima fluidizacije mogu primeniti i na transportni sistem.

Model (jedn. 3.15) koji se primenjuje za fluidizacione sisteme može se uporediti sa eksperimentalnim podacima dobijenim pri ispitivanju prenosa mase u vertikalnim transportnim sistemima. Zbog velikog broja podataka za tri vrste čestica na jednoj slici preglednost je značajno umanjena, pa su slike predstavljene pojedinačno za svaki prečnik posebno. Na slikama 3.63-3.65 prikazana je zavisnost koeficijenta prelaza mase od površinske brzine za čestice prečnika 1,20 mm, 1,94 mm i 2,98 mm.

U slučaju transporta čestice prečnika 1,20 mm i 1,94 mm, eksperimentalne vrednosti su manje od vrednosti koje su izračunate preko modela (jedn. 3.15). Trend zavisnosti k-U je isti za eksperimentalne i izračunate vrednosti, što znači da blago raste $(d_p=1,20 \text{ mm})$ ili je praktično konstantan $(d_p=1,94 \text{ mm})$. Razlog velikog odstupanja može da bude manji broj sudara čestica i zida kolone koji se ostvaruje pri transportu u odnosu na sudare u fluidizovanim slojevima. Izuzetak predstavlja zavisnost k-U za čestice prečnika 2,98 mm. U ovom slučaju vrednosti izračunate po modelu imaju nešto bolje slaganje sa eksperimentalnim vrednostima, ali su sada i niže. Verovatno je i u ovom slučaju razlog broj sudara čestica i zida kolone koji je kod većih čestica sličniji broju sudara u fluidizovanom sloju, jer je poroznost transportnog sistema veća.

Slika 3.63. Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice prečnika 1,20 mm.

Slika 3.64. Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice 1,94mm

Slika 3.65. Upoređivanje modela (jedn. 3.15) sa podacima za vertikalni transport za čestice prečnika 2,98 mm.

Poređenja eksperimentalnih i izračunaih vrednosti po modelu (jedn. 3.16) su urađena i za Sherwood-ov broj za česticu Sh_p, pa je tako na slici 3.66 kao primer prikazano upoređivanje eksperimentalnih podataka dobijenih za čestice prečnika 1,94mm. I prema ovoj zavisnosti izračunate vrednosti prate trend eksperimentalnih podataka, ali su očekivano i veće.

Slika 3.66. Upoređivanje modela (jedn. 3.16) sa podacima za vertikalni transport za čestice prečnika 1,94 mm.

Faktor prenosa mase j_D u funkciji površinske brzine U je prikazan za čestice prečnika 2,98 mm na slici 3.67. Pri površinskim brzinama fluida većim od 0,2 m/sslaganje eksperimentalnih i izračunatih podataka je dobro, što je takođe bilo očekivano u odnosu na zavisnost k-U (slika 3.65).

Slika 3.67. Upoređivanje modela (jedn. 3.17) sa podacima za vertikalni transport za čestice prečnika 2,98 mm.

Srednja apsolutna odstupanja eksperimentalnih podataka za koeficijent prelaza mase, od modela su prikazana u tabeli 3.12.

Tabela 3.12. Srednje apsolutno odstupanje modela (jedn. 3.15) od eksperimentalnih podataka za koeficijent prelaza mase pri vertikalnom transport.

$d_p (\mathrm{mm})$	$\sigma_{_A},\!$
1,20	34,3
1,94	51,4
2,98	21,0

Sa slika od 3.63-3.65, kao i iz tabele 3.12, vidi se da je odstupanje modela kod vertikalnog transporta nešto malo izraženije nego kod pakovanog sloja (jedn. 3.58-3.60; Tabela 3.11) . Srednje apsolutno odstupanje modela (jedn. 3.15) za tri korišćene vrste čestica od eksperimentalnih podataka za vertikalni transport iznosi 28,7%. Moguće neslaganje kao što je već rečeno sa modelom je u dužini graničnih slojeva koji su svakako drugačiji u pakovnim, fluidizovanim i transportnim slojevima, ali relativno malo srednje odstupanje nam pokazuje da postoji neka sličnost u mehanizmima prenosa u ovim sistemima.

3.5. Analogije prenosa količine kretanja, mase i toplote u disperznim sistemima

3.5.1. Analogije prenosa postavljene u normalizovanom obliku

U ovom radu analiziran je paralelno prenos količine kretanja, mase i toplote u fluidizovanom sloju u cilju uspostavljanja analogije prenosa. Prethodno postavljena analogija u fluidizovanom sloju između prenosa količine kretanja i mase /Bošković et al., 1994/ data je u obliku normalizovanih vrednosti koeficijenta trenja fluid-čestice i faktora prenosa mase (jedn. 1.158 i 1.159). U ovom radu urađena je slična analiza između prenosa količine kretanja i toplote. Iz analize ova dva prenosa primećena je sličnost zavisnosti $j_H - \varepsilon$ i $\beta d_p / \rho_f - \varepsilon$, što je prikazano na slici 3.68 za čestice prečnika 2,98mm.

Identičnim postupkom kao u radu Bošković et al. (1994) dobija se veza (analogija) između prenosa toplote i količine kretanja:

$$\frac{j_{H} - j_{H1}}{j_{Hmf} - j_{H1}} = \frac{\beta}{\beta_{mf}}$$
(3.54)

ili u normalizovanom obliku:

$$\boldsymbol{\beta}^* = \boldsymbol{j}_H^* \tag{3.55}$$

Ova uspostavljena veza daje mogućnost korišćenja jednačine 1.88 za određivanje faktora prenosa toplote na osnovu fluido-dinamičkih parametara ε_{mf} i U_{mf} :

Slika 3.68. Zavisnost faktora prenosa toplote i koeficijenta trenja od poroznosti sloja $(d_p=2,98 \text{ mm})$

$$j_{H}^{*} = \frac{j_{H} - j_{H1}}{j_{Hmf} - j_{H1}} = 1 - C_{2} + \frac{1}{\lambda} \left[1 - \left(\lambda \frac{\varepsilon - \varepsilon_{mf}}{1 - \varepsilon_{mf}} + C_{1} \right)^{2} \right]^{1/2}$$
(3.56)

gde su parametri jednačine 3.56 dati u delu 1.2.2.

Uzimajući u obzir ranije postavljenu analogiju između prenosa mase i količine kretanja datu izrazima (1.158) i (1.159) i jednačine (3.54) i (3.55) može se definisati analogija u sva tri prenosa:

$$\frac{\beta}{\beta_{mf}} = \frac{j_H - j_{H1}}{j_{Hmf} - j_{H1}} = \frac{j_D - j_{D1}}{j_{Dmf} - j_{D1}}$$
(3.57)

ili u normalizovanom obliku:

$$\beta^* = j_H^* = j_D^* \tag{3.58}$$

Najveći nedostatak u primeni ove analogije je određivanje vrednosti faktora prenosa toplote i mase u tački minimalne fluidizacije i tački odnošenja. Te vrednosti se određuju ekstrapolacijom eksperimentalnih podataka kod zavisnosti faktora prenosa toplote (ili mase) od bezdimenzionog koeficijenta trenja između fluida i čestica. Na slici 3.69 prikazan je način određivanja vrednosti j_{Hmf} i j_{H1} za četiri prečnika čestica.

Slika 3.69. Određivanje faktora prenosa toplote u tačkama minimalne fluidizacije i odnošenja za čestice prečnika 0,803mm; 1,20 mm; 1,94 mm i 2,98 mm.

Ekstrapolacija eksperimentalnih podataka za prenos mase i određivanje faktora prenosa mase u tačkama minimalne fluidizacije i odnošenja ($\beta^* = 0$ i $\beta^* = 1$) je prikazana na slici 3.70. Ektrapolacija je urađena za čestice prečnika 1,20 mm; 1,94 mm; 2,98 mm.

Slika 3.70. Određivanje faktora prenosa mase u tačkama minimalne fluidizacije i odnošenja za čestice prečnika 1,20 mm; 1,94 mm i 2,98 mm.

Određivanje vrednosti faktora prenosa mase ili toplote u tačkama minimalne fluidizacije i odnošenja mogu se rešiti upotrebom modela (jedn. (3.17) i (3.37)). Iz izraza za faktor prenosa toplote (jedn. 3.37) i faktora prenosa mase (jedn. 3.17) se vidi da se oni ne mogu koristiti u tački odnošenja. To je zato što su te funkcije za $\varepsilon = 1$ jednake nuli, što u praksi nije slučaj. Jednačina (3.37) se ne može definisati ni u tački minimalne fluidizacije, jer u izrazu za K_p figuriše član $(2\varepsilon - 1)/\varepsilon$ koji daje negativne vrednosti za vrednosti poroznosti manje od 0,5. Vrednosti poroznosti pri minimalnoj fluidizaciji su upravo uvek manje od vrednosti 0,5. Jedino jednačina (jedn. 3.17) je definisana u tački minimalne fluidizacije. Iako modeli daju odlična slaganja sa eksperimentalnim podacima, da bi se došlo do željenih podataka koje se ne mogu izračunati iz modela, potrebno je deo funkcije zameniti funkcijom koja je pogodnija (u daljem tekstu funkcija zamene). Funkcija zamene mora na datom opsegu poroznosti što tačnije da odgovara orginalnoj funkciji. Funkcija zamene je prikazana na slici 3.71.

Slika 3.71. Funkcija zamene za bezdimenzioni član $\frac{\sqrt{1-\varepsilon}}{\varepsilon}$

Funkcija zamene koja je prikazana na slici 3.71, zadovoljavajuće menja osnovnu funkciju i definisana je preko jednačine:

$$f(\varepsilon) = 7,54e^{-3,30\varepsilon} \approx \frac{\sqrt{1-\varepsilon}}{\varepsilon}$$
(3.59)

Mogu se izvesti još tačnije jednačine funkcije zamene koje su složenije po obliku, ali je jednačina (3.59) relativno prosta i zadovoljavajuće tačna, pa je uzeta kao kompromisno rešenje. Jednačine modela (3.17) i (3.37) postaju:

$$j_{H} = 7,10 \cdot K_{p} \cdot e^{-3,3\varepsilon} \cdot \operatorname{Re}_{p}^{-1/2}$$
 (3.60)

$$j_D = 7,10 \cdot e^{-3,3\varepsilon} \cdot \operatorname{Re}_p^{-1/2}$$
(3.61)

Ove jednačine se mogu koristiti takođe za predviđanje vrednosti faktora prenosa toplote i mase pri brzini odnošenja. Kada se uvrsti da je $\varepsilon = 1$ (uzimajući u obzir kompleksnost K_p) izrazi (3.60) i (3.61) postaju:

$$j_{H1} = \frac{0,262}{K} \cdot \operatorname{Re}_{t}^{-1/2}$$
(3.62)

$$j_{D1} = 0,262 \cdot \operatorname{Re}_{t}^{-1/2}$$
(3.63)

Kada se posmatraju ove vrednosti u tački minimalne fluidizacije, problem postaje komplikovaniji, jer se za prenos toplote ne može odrediti faktor prenosa u tački minimalne fluidizacije. Jedino se može odrediti za faktor prenosa mase i to u oba slučaja (3.17) i (3.61), pa je tako:

$$j_{Dmf} = 0,942 \cdot \frac{\sqrt{1 - \varepsilon_{mf}}}{\varepsilon_{mf}} \cdot \operatorname{Re}_{mf}^{-1/2}$$
(3.64)

ili

$$j_{Dmf} = 7,10 \cdot e^{-3,3\varepsilon_{mf}} \cdot \text{Re}_{mf}^{-1/2}$$
(3.65)

Vrednosti za j_{Hmf} se dobijaju množenjem izraza (3.64) i (3.65) sa K_p . Vrednosti koje su u eksperimentu dobijene za faktor prenosa toplote u tačkama minimalne fluidizacije i odnošenja, kao i vrednosti koje su dobijene preko jednačine 3.62 su date u tabeli 3.13.

d _m mm	inne (eksn. nodaci)	<i>im</i> , (eksn. nodaci)	<i>im</i> (iedn 3 62)	
мр, шш	Jam, (ensp. poulei)	Jni, (ensp. poulei)	<i>Jni</i> , (Jcan.0.02)	
0,803	0,268	0,0197	0,0146	
1,20	0,233	0,0124	0,0128	
1,94	0,165	0,0113	0,0108	
2,98	0,105	0,0114	0,00903	

Tabela 3.13. Eksperimentalno određene vrednosti i vrednosti koje predviđa jednačina za faktor prenosa toplote u tačkama minimalne fluidizacije i odnošenja

Eksperimentalne i izračunate vrednosti (jedn. 3.63-3.65) za faktor prenosa mase u tačkama minimalne fluidizacije i tački odnošenja su date u tabeli 3.14.

Tabela 3.14. Eksperimentalno određene vrednosti i vrednosti koje predviđaju jednačine(3.63-3.65) za prenos mase u tačkama minimalne fluidizacije i odnošenja

<i>d_p</i> , mm	<i>j_{Dmf}</i> eksperiment	<i>j_{Dmf}</i> jedn.(3.65)	<i>j_{Dmf}</i> jedn.(3.64)	<i>j</i> _{D1} eksperiment	<i>j</i> _{D1} jedn.(3.63)
1,20	0,542	0,472	0,455	0,0200	0,0176
1,94	0,300	0,252	0,243	0,0165	0,0108
2,98	0,221	0,158	0,152	0,0107	0,00774

Srednje apsolutno odstupanje između eksperimentalno određenih vrednosti u tački odnošenja i vrednosti koje predviđa jednačina 3.62 za prenos toplote iznosi 13,4%. Srednje apsolutno odstupanje između eksperimentalno određenih vrednosti u tački odnošenja i vrednosti koju predviđa jednačina 3.63 za prenos mase iznosi 24,7%. Srednje apsolutno odstupanje za faktor prenos mase u tački minimalne fluidizacije između eksperimentalnih podataka i jednačina 3.64 i 3.65 je 22,1% i 19,1%, respektivno. Srednje apsolutno odstupanje svih eksperimentalnih podataka od vrednosti koje predviđaju modeli 3.62-3.65 je 16,8%.

Na slici 3.72 prikazane su eksperimentalne vrednosti normalizovanog faktora prenosa toplote, mase i koeficijenta trenja fluid-čestica od bezdimenzione poroznosti. Takođe su prikazane vrednosti za normalizovan faktor prenosa toplote koji je izračunat pomoću jednačina (3.60-3.65), kao i teorijski izračunata vrednost bezdimenzionog koeficijenta trenja fluid-čestice (jedn. 1.88).

Slika 3.72. Zavisnost bezdimenzionog faktora prenosa mase, toplote i koeficijenta trenja fluid-čestice od bezdimenzione poroznosti.

Na slici 3.72 prikazani su rezultati dobijeni u fluidizovanim slojevima sa česticama prečnika 0,8-2,98 mm. Zbog razlike u načinu određivanja elemenata bezdimenzionih veličina postoje i razlike u konačno dobijenim vrednostima za j_D^* i j_H^* . Srednje apsolutno odstupanje bezdimenzionih veličina dobijenih eksperimentalno i pomoću primenjenih jednačina (3.60-3.65 i 1.88) dato je u tabeli 3.15.

Normalizovani faktor prenosa	Srednje apsolutno odstupanje, %
j_{H}^{*}	16,8
j_D^*	18,2
eta^*	4,14

Tabela 3.15. Srednje apsolutno odstupanje eksperimentalnih i izračunatih vrednosti normalizovanih veličina

Jednačine za izračunavanje faktora prenosa toplote i mase u tačkama minimalne fluidizacije i odnošenja (3.60-3.65) daju dobra slaganja sa eksperimentalno određenim vrednostima sa srednjim apsolutnim odstupanjem od oko 17,5%.

3.5.2. Analogija prenosa mase i toplote u fluidizovanim sistemima

- Fluidizovani sistemimi bez hemijske reakcije

Drugi pristup postavljanja analogija prenosa zasniva se na izvedenom modelu (jedn. 3.17 i 3.37). Jednačine koje određuju prenose mase i toplote uporedo su prikazane u tabeli 3.16. Ovom analizom nije obuhvaćen prenos količine kretanja tako da je ovde napravljeno poređenje samo između prenosa mase i toplote.

Tabela 3.16. Uporedni prikaz izvedenih jednačina koje definišu prenos toplote i mase

	Prenos toplote	Prenos mase		
Koeficijent prelaza	$\alpha = 0,942 \cdot K_p \cdot \frac{\lambda}{d_p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$	$k = 0,942 \frac{D_{AB}}{d_p} \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$		
Kriterijalna jednačina	$Nu_p = 0,942 \cdot K_p \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$	$Sh_p = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$		
Faktor prelaza	$j_H = 0,942 \cdot K_p \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{-1/2}$	$j_D = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{-1/2}$		

Sličnost datih jednačina je očigledna, tako da se može postaviti analogija između prenosa toplote i mase:

$$j_{H} = K_{p} \cdot j_{D} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.66)

Na slikama 3.73-3.75 prikazane su eksperimentalne vrednosti faktora prenosa mase i toplote, kao i vrednosti dobijene preko jednačine 3.66.

Kao što se vidi sa slika 3.73.-3.75, direktna analogija ne postoji između veličina j_D i j_H u fluidizovanom sloju. Faktor prenosa mase ima veće vrednosti od faktora prenosa toplote za iste vrednosti poroznosti, međutim kada se u analizu uvede koeficijent K_p analogija se ipak može definisati (jedn. 3.66).

Slika 3.73. Analogija između prenosa toplote i mase za čestice prečnika 1,20 mm.

Slika 3.74. Analogija između prenosa toplote i mase za čestice prečnika 1,94mm.

Slika 3.75. Analogija između prenosa toplote i mase za čestice prečnika 2,98 mm.

- Fluidizovani sistemimi sa hemijskom reakcijom

Kao deo analogije prenosa količine kretanja i mase sada se može definisati i normalizovana vrednost faktora prenosa mase u sistemu sa hemijskom reakcijom:

$$j_{D,r}^{*} = \frac{j_{D,r} - j_{D1,r}}{j_{Dmf,r} - j_{D1,r}} = \frac{F \cdot j_{D} - F \cdot j_{D1}}{F \cdot j_{Dmf} - F \cdot j_{D1}} = j_{D}^{*}$$
(3.67)

Vrednosti j_D se mogu izračunati preko jednačine 3.17 i 3.61. j_{DI} i j_{Dmf} se mogu izračunati preko jednačina 3.63-3.65, dok se vrednost za faktor prenosa mase u fluidizovanom sistemu sa brzom i nepovratnom hemijskom reakcijom može odrediti preko jednačine (3.53). Takođe se sve nabrojane veličine mogu odrediti eksperimentalno za sistem bez i sa hemijskom reakcijom.

Iz jednačina (3.67) i (1.159) se može postaviti analogija data u normalizovanom obliku između prenosa količine kretanja i mase za fluidizovan sistem sa brzom i nepovratnom hemijskom reakcijom.

$$\beta^* = j_D^* = j_{D,r}^* \tag{3.68}$$

Pomoću eksperimentalnih podataka određeni su faktori prenosa mase pri brzini minimalne fluidizacije i brzini odnošenja. Grafičko određivanje je prikazano na slici 3.76.

U tabeli 3.17. prikazane su eksperimentalne i izračunate vrednosti j_{Dmf} i j_{D1} u fluidizovanim sistemima sa hemijskom reakcijom i može se primetiti da jednačine relativno dobro predviđaju ove vrednosti.

Slika 3.76. Određivanje faktora prenosa mase pri brzini minimalne fluidizacije i brzini odnošenja za čestice prečnika $d_p=1,20$ mm, 1,94 mm, 2,98 mm, u eksperimentima sa hemijskom reakcijom.

d_p , mm	$j_{\rm Dmf}$, eks.	j_{Dmf} (jedn.3.64)	$\sigma_A, \%$	j_{D1} ,eks.	j_{D1} (jedn.3.63)	$\sigma_A, \%$
1,20	0,406	0,432	6,4	0,0259	0,0167	35,5
1,94	0,341	0,230	32,5	0,0146	0,0102	30,1
2,98	0,233	0,149	36	0,00751	0,00755	0,53

Tabela 3.17. Vrednosti za j_{Dmf} i j_{D1} određene ekstrapolacijom i preko jednačina 3.53, 3.63 i 3.64 u sistemu sa hemijskom reakcijom.

Na osnovu ekperimentalnih i izračunatih podataka (jedn. 3.67) za bezdimenzioni faktor prenosa mase u fluidizovanom sistemu sa hemijskom reakcijom može se predstaviti zavisnost na slici 3.77.

Slika 3.77. Analogija prenosa u bezdimenzionom obliku između količine kretanja i mase za fluidizovan sistem sa hemijskom reakcijom.

Slaganje eksperimentalnih vrednosti za faktor prenosa mase sa hemijskom reakcijom (sl. 3.77), u odnosu na izračunate vrednosti preko modela (jedn. 3.67) je dobro, srednje apsolutno odstupanje je 10,8%.

Zaključci

Osnovni ciljevi ovog rada su uspostavljanje veze između graničnog sloja i prenosa količine kretanja, toplote i mase u disperznim sistemima tečnost-čestice i uspostavljanje analogije u ovakvim sistemima. U tu svrhu obavljena su mnogobrojna merenja i analize u sledećim sistemima: fluidizovan sloj bez i sa hemijskom reakcijom, pakovan sloj, vertikalni hidrotransport. Eksperimentalno je ispitivan prenos količine kretanja, toplote i mase; analiziran je hidrodinamički, termički i difuzioni granični sloj u disperznim sistemima.

– Prenos količine kretanja

Ispitivanja prenosa količine kretanja u disperznim sistemima tečnost-čestice rezultirala

su sledećim, najvažnijim zaključcima:

Urađena je teorijska analiza i potpuno novi pristup formiranja hidrodinamičkog graničnog sloja. Pretpostavljeno je da čestice od sudara do sudara formiraju i prekidaju granični sloj. Rezultat toga je da je granični sloj mnogo kraći i ima manju debljinu, samim tim prenosi količine kretanja su bolji. Rezultat ovog istraživanja je jednačina koja definiše debljinu hidrodinamičkog graničnog sloja u disperznim sistemima u odnosu na debljinu graničnog sloja pri strujanju preko ravne površine:

$$\delta_n = \varepsilon \cdot \delta \tag{3.6}$$

Jednačina (3.6) je osnov analize prenosa toplote i mase.

- Prenos mase

U toku istraživanja prenosa mase došlo se do sledećih rezultata:

 Urađena je teorijska analiza difuzionog graničnog sloja u disperznim sistemima tečnost-čestice. Difuzioni granični sloj je upoređen sa hidrodinamičkim slojem u fluidizovanim sistemima, pa je teorijski definisana debljina difuzionog graničnog sloja:

$$\delta_{Dp} = 1,061 \frac{\varepsilon}{\sqrt{1-\varepsilon}} d_p \operatorname{Re}_p^{-1/2} Sc^{-1/3}$$
(3.12)

- U fluidizovanim sistemima teorijski su izvedene jednačine za koeficijent prelaza mase, Sherwood-ov broj za česticu i faktor prenosa mase (respektivno):

$$k = 0,942 \frac{D_{AB}}{d_p} \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$$
(3.15)

$$Sh_p = \frac{k d_p}{D} = 0.942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_p^{1/2} Sc^{1/3}$$
(3.16)

$$j_{D} = \frac{Sh_{p}}{\operatorname{Re}_{p} Sc^{1/3}} = 0,942 \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.17)

Kod sistema sa brzom i nepovratnom hemijskom reakcijom pokazano je da se iste jednačine koje se koriste za prenos mase bez hemijske reakcije mogu koristiti i za prenos mase sa hemijskom reakcijom uvećane F puta faktorom uvećanja. Zaključeno je da teorijski izvedene jednačine za prenos mase u fluidizovanim sistemima se mogu koristiti za približno određivanje prenosa mase u pakovanim slojevima i transportnim sistemima. Slaganje u pakovanim sistememima je nešto bolje nego sa transportnim sistemima, srednje aposlutno odstupanje je oko 20%, što govori o sličnosti mehanizma prenosa između ovih sistema.

- Prenos toplote

Proučavanjem prenosa toplote u disperznim sistemima tečnost-čestice došlo se do sledećih rezultata:

- Urađena je teorijska analiza termičkog graničnog sloja u disperznim sistemima, koji je upoređen sa hidrodinamičkim graničnim slojem, ova analiza je rezultirala jednačinom za debljinu termičkog graničnog sloja u fluidizovanim sistemima:

$$\delta_{Tp} = 1,061 \frac{\varepsilon}{1-\varepsilon} v^{1/2} U_0^{-1/2} d_p^{1/2} \operatorname{Pr}^{-1/3}$$
(3.19)

- Takođe se teorijskom analizom došlo do jednačine koja definiše koeficijent prelaza toplote:

$$\alpha = 0,942 \cdot K_p \cdot \frac{\lambda}{d_p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$$
(3.35)

kao i jednačine za Nusselt-ov broj za česticu i faktor prenosa toplote:

$$Nu_{p} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \cdot \operatorname{Re}_{p}^{1/2} \operatorname{Pr}^{1/3}$$
(3.36)

$$j_{H} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.37)

- Teorijski je definisana vrednost poroznosti pri kojoj dolazi do maksimalnog prenosa toplote:

$$\varepsilon_{\max} = \frac{(3n-7) \pm \sqrt{n^2 - 2n + 17}}{2(2n-2)} \tag{3.38}$$

čija se vrednost računa preko jednačine:

$$\alpha_{\max} = \frac{0.942}{K} \frac{\lambda}{d_p} \frac{2\varepsilon_{\max} - 1}{\varepsilon_{\max}} \frac{\sqrt{1 - \varepsilon_{\max}}}{\varepsilon_{\max}} \operatorname{Re}_p^{1/2} \operatorname{Pr}^{1/3}$$
(3.39)

 Pokazano je teorijski da se maksimum prenosa toplote javlja pri poroznosti 0,78, što se slaže sa literaturnim podacima.

Analogije prenosa

Pri istraživanju analogija između prenosa dobijeni su sledeći rezultati:

 Urađena je dopuna analogije prikazene u normalizovanom obliku između prenosa količine kretanja i mase, dopuna je urađena dodatkom dela za toplotu prikazana takođe u normalizovanom obliku:

$$\beta^* = j_H^* = j_D^* \tag{3.58}$$

odnosno

$$j_{H}^{*} = \frac{j_{H} - j_{H1}}{j_{Hnf} - j_{H1}} = 1 - C_{2} + \frac{1}{\lambda} \left[1 - \left(\lambda \frac{\varepsilon - \varepsilon_{mf}}{1 - \varepsilon_{mf}} + C_{1} \right)^{2} \right]^{1/2}$$
(3.56)

- U radu je postavljena analogija u fluidizovanom sistemu sa hemijskom reakcijom između količine kretanja i mase u normalizovanom obliku:

$$\beta^* = j_D^* = j_{D,r}^* \tag{3.68}$$

- Pomoću teorijski izvedenih jednačina za prenos mase i funkcije zamene definisane su vrednosti za prenos mase u tački minimalne fluidizacije:

$$j_{Dmf} = 0,942 \cdot \frac{\sqrt{1 - \varepsilon_{mf}}}{\varepsilon_{mf}} \cdot \operatorname{Re}_{mf}^{-1/2}$$
(3.64)

i

$$j_{Dmf} = 7,10 \cdot e^{-3,3\varepsilon_{mf}} \cdot \operatorname{Re}_{mf}^{-1/2}$$
 (3.65)

 Pomoću teorijski izvedenih jednačina za prenos mase, toplote i funkcije zamene definisane su vrednosti za prenos mase i toplote pri brzini odnošenja:

$$j_{HI} = \frac{0,262}{K} \cdot \operatorname{Re}_{t}^{-1/2}$$
(3.62)

$$j_{D1} = 0,262 \cdot \operatorname{Re}_{t}^{-1/2}$$
(3.63)

Jednačine 3.62-3.65 olakšavaju izračunavanje i primenu analogije u normalizovanom obliku (jedn. 3.58)

 Pomoću izvedenih jednačina za prenos mase i toplote postavljen je novi tip analogija između prenosa mase i toplote:

$$j_{H} = K_{p} \cdot j_{D} = 0,942 \cdot K_{p} \cdot \frac{\sqrt{1-\varepsilon}}{\varepsilon} \operatorname{Re}_{p}^{-1/2}$$
(3.66)

Primenjujući prethodno navedene jednačine višestruko se olakšava rad na polju prenosa količine kretanja, toplote i mase, kao i postavljanju analogija između ovih prenosa. Takođe se uvodi drugačiji pristup formiranja graničnog sloja u disperznim sistemima i ostvaruje se veza između graničnog sloja i prenosa količine kretanja, toplote i mase u disperznim sistemima.

Literatura

- Abdulla A. H., Calculation Heat Transfer Coefficient in Fluidized Bed, International Journal of Enhanced Research in Science Technology & Engineering, 4 (3), 2015, pp. 36-46.
- Achenbach, E., Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech, 54 (3), 1972, pp. 565-575.
- Achenbach, E., Vortex shedding from spheres, Journal of Fluid Mechanics, 62 (02), 1974, pp. 209-221.
- Agarwal K. Pradeep, Mitchell J. William, Transport phenomena in multi-particle systems—III, Active particle mass transfer in fluidized beds of inert particles, Chemical Engineering Science, 43 (9), 1988, pp. 2511-2521.
- Aghajani, M., Müller Steinhagen, H., & Jamialahmadi, M., Heat Transfer of Liquid/Solid Fluidized Beds for Newtonian and Non-Newtonian Fluids, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 23(1), 2004, pp. 119-130.
- Aguiar, C. E. Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani (Programa de Pós-Graduação em Ensino de Física.), 2006.
- Al-Enezi G.A. & Abdo M.S.E., Mass transfer measurements around a single cylinder in cross flow at low Reynolds numbers, Chemie Ingenieur Technik 63 (4), 1991, pp. 381–384.
- Allaire, G., & Amar, M., Boundary layer tails in periodic homogenization. ESAIM: Control, Optimisation and Calculus of Variations, 4, 1999, pp. 209-243.
- Anderson, E. J., Mcgillis, W. R., & Grosenbaugh, M. A., The boundary layer of swimming fish. Journal of Experimental Biology, 204(1), 2001, pp. 81-102.
- Anderson, J. D., Ludwig Prandtl's boundary layer, Physics Today, 58(12), 2005, pp. 42-48.
- Arakeri, J. H., & Shankar, P. N., Ludwig Prandtl and boundary layers in fluid flow. Resonance, 5 (12), 2000, pp. 48-63.
- Arpaci, V., Larsen, P., Convection Heat Transfer, Prentice-Hall, New Jersey, 1984, 512 pag.

- Ašković, R., An approximate solution of the boundary layer on a body started from certain preceding non-steady motions. Publications de l'Institut Mathématique [Elektronische Ressource], 8 (22), 1968, pp. 51-65.
- Atmakidis T., Kenig Y. E., Numerical analysis of mass transfer in packed-bed reactors with irregular particle arrangements, Chemical Engineering Science, Volume 81, 2012, pp. 77-83.
- Auregan, Y., & Depollier, C., Snoring: Linear stability analysis and invitroexperiments, Journal of Sound and Vibration, 188(1), 1995, pp. 39-53.
- Banks, W. H. H., The boundary layer on a rotating sphere, The Quarterly Journal of Mechanics and Applied Mathematics, 18(4), 1965, pp. 443-454.
- Bejan, A., Convection Heat Transfer, 4th Edition, John Wiley & Sons, 2013, 696 pag.
- Bennett, C. O., & Myers, J. E. (1962). Momentum, heat, and mass transfer (Vol. 164). New York: McGraw-Hill, 1962, 697 pag.
- Bi, H. T., Zhou, J., Qin, S. Z., & Grace, J. R., Annular wall layer thickness in circulating fluidized bed risers. The Canadian Journal of Chemical Engineering, 74(5), 1996, pp. 811-814.
- Bu S.S., Yang J., Zhou M., Li S.Y., Wang Q.W., Guo Z.X., On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres, Nuclear Engineering and Design 270, 2014, pp. 21–33.
- Bird, B., Stewart, W., Lightfoot, E., Transport Phenomena, John Wiley & Sons, Inc., 2002, 914 pag.
- Blasius H., Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z.Math. und Phys. 56, 1908, pp. 1- 37.
- Bošković, N., Grbavčić, B.Ž., Vuković, V.D., Marković-Grbavčić, M., Mass Transfer between Fluid and Immersed Surfaces in Liquid Fluidized beds of Coarse Spherical Inert Particles, Powder Technol., 79 (3), 1994, 217-225.
- Bošković-Vragolović, N., Analogija preosa količine kretanja, toplote i mase u sistemima tečnost-čvrsto, Doktorska disertacija, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, 2002.
- Bošković-Vragolović, N., Brzić, D., Grbavčić, Ž., Mass transfer between a fluid and an immersed object in liquid-solid packed and fluidized beds, J. Serb. Chem. Soc. 70 (11), 2005, pp. 1373–1379.

- Bošković–vragolović N., Garić–Grulović R.& Grbavčić Ž., Wall-to-liquid mass transfer in fluidized beds and vertical transport of inert particles, J. Serb. Chem. Soc. 72 (11), 2007, pp. 1103–1113.
- Bošković-Vragolović N., Garić-Grulović R., Pjanović R. I Grbavčić Ž., Mass transfer and fluid flow visualization for single cylinder by the adsorption method, International Journal of Heat and Mass Transfer 59, 2013, pp. 155–160.
- Bogdonoff, S. M., Separation of a supersonic turbulent boundary layer. Journal of the Aeronautical Sciences, 22(6), 1955, pp. 414-430.
- Bognár, G., & Csáti, Z., Numerical solution to boundary layer problems over moving flat plate in non-Newtonian media. Journal of Applied Mathematics and Physics, 2(01), 2014, pp. 8-13.
- Boričić, A., Univerzalne metode u istraživanju nestacionarnog ravanskog laminarnog strujanja nestišljivog provodnog fluida, u spregnutim mhd, dinamičkim, toplotnim i difuzionim graničnim slojevima, Doktorska disertacija, Niš, 2014.
- Brodkey, R., Hershey, H., TRANSPORT PHENOMENA: A Unified Approach, McGraw-Hill, 1988, 847 pag.
- Brea F. M., Hamilton W., Heat transfer in liquid fluidized beds with a concentric heater, 49, 1971, pp. 196–203.
- Carberry, J. J., A boundary-layer model of fluid-particle mass transfer in fixed beds, AIChE Journal, 6(3), 1960, pp. 460-463.
- Carlos^a, C. R., & Richardson, J. F., Solids movement in liquid fluidised beds I Particle velocity distribution. Chemical Engineering Science, 23(8), 1968, pp. 813-824.
- Carlos^b, C. R., & Richardson, J. F., Solids movement in liquid fluidised beds II Measurements of axial mixing coefficients. Chemical Engineering Science, 23(8), 1968, pp. 825-831.
- Capes, C.E., Nakamura, K., Vertical Pneumatic Conveying: An Experimental Study with Particles in the Intermediate and Turbulent Flow Regimes, Can. J. Chem. Engng.,51 (2), 1973, 31-38.
- Cebeci, T., Calculation of laminar and turbulent boundary layers for twodimensional time-dependent flows, National Aeronautics and Space Administration, CR-2820, Washington, D. C., 1977.

- Cebeci, T., & Bradshaw, P., Momentum transfer in boundary layers. Washington, DC, Hemisphere Publishing Corp.; New York, McGraw-Hill Book Co., 1977, 407 pag.
- Cebeci, T., Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer Science & Business Media, 2012, 487 pag.
- Cebeci, T., & Carr, L. W. A., A computer program for calculating laminar and turbulent boundary layers for two-dimensional time-dependent flows. NASA STI/Recon Technical Report N, 78, 1978.
- Chilton, T.P., Colburn, A.P., Mass Transfer (Absorption) Coefficient Prediction from Data on Heat Transfer and Fluid Friction, Ind. Engng. Chem., 26, 1934, pp. 1183-1187.
- Chabert, T., Dandois, J., Garnier, E., & Jacquin, L, Experimental detection of a periodically forced turbulent boundary layer separation. Experiments in fluids, 54 (2), 2013, pp. 1-14.
- Chen C. J., Grace R. J., Golriz R. M., Heat transfer in fluidized beds: design methods, Powder Technology 150, 2005, pp. 123 132.
- Chu, J.C., Kalil, J., Wetteroth, W.A., " Mass Transfer in a Fluidized Bed", Chem. Enger. Prog., 49 (3), 1953, pp. 141-149.
- Chhabra, R. P., Richardson, J. F., Non-Newtonian Flow and Applied Rheology, 2nd Edition, Engineering Applications, Elsevier Ltd., 2008, 536 pag.
- Chandarana, D.I., Gavin, A., Establishing thermal processes for heterogeneous foods to be processed aseptically: a theoretical comparison of process development methods, J. Food Sci., 54 (1), 1989, pp. 198-204.
- Cijan, B., Metoda za rešavanje temperaturskog graničnog sloja pri nestacionarnom laminarnom ravanskom strujanju nestišljive tečnosti, Doc. Dis., Prirosno-matematički Fakultet, Univerzitet u Beogradu, 1972.
- Clark, R. K., An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer (Vol. 7180). National Aeronautics and Space Administration, 1973.
- Clauser, F. H., Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical Sciences, 1954, pp. 91-108.
- Covert, D. S., Kapustin, V. N., Quinn, P. K., & Bates, T. S., New particle formation in the marine boundary layer, Journal of Geophysical Research: Atmospheres, 97(D18), 1992, pp. 20581-20589.

- Cvijović, S., Bošković-Vragolović, N., Fenomeni prenosa, Akademska Misao, Beograd, 2015, 350 str.
- Darby, R., Chemical Engineering Fluid Mechanics, Marcel Dekker, Inc., New York, 2001, 576 pag.
- Damronglerd, S., Couderc, J.P., Angelino, H., Mass Transfer in Particulate Fluidization, Prans. Inst. Chem. Engrs., 53 (3), 1975, pp. 175-180.
- Davids, N., & Cheng, R. C., Transient laminar flow in ducts of arbitrary crosssection by finite element methods. Journal of biomechanics, 5(5), 1972, pp. 485-499.
- Del Pozo M., Chiu K., Brens C.L., Particle-liquid heat and mass transfer in three-phase fluidized beds. La fluidization, Recent progress en genie procedes, C. Laguerie et P. Guigon Eds., 5 (11), 1991, pp. 323-330.
- De Ruyter, P.W., Brunet, R., Estimation of process conditions for continuous sterilization of foods containing particulates, Food Technol., 27 (7), 1973, pp. 44-51.
- Davy, R., & Esau, I., Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nature Communications, 7, 2016.
- Douglas, J., Gasiorek, J., Swaffield, J., Jack L., Fluid Mechanics, Fifth Ed., Pearson/Prentice Hall, 2005, 993 pag.
- Dubs, W. R., Über den Einfluss laminarer und turbulenter Strömung auf das Röntgenstreubild von Wasser und Nitrobenzol (Doctoral dissertation, Diss. Techn. Wiss. ETH Zürich, Nr. 1053, 0000. Ref.: Scherrer, P.; Korref.: Ackeret, J.), 1939.
- Duque-Daza, C., Lockerby, D., & Galeano, C., Numerical solution of the Falkner-Skan equation using third-order and high-order-compact finite difference schemes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33(4), 2011, pp. 381-392.
- Dwivedi, P. N., & Upadhyay, S. N., Particle-fluid mass transfer in fixed and fluidized beds, Industrial & Engineering Chemistry Process Design and Development, 16(2), 1977, pp. 157-165.
- Đurić, M., Unsteady laminar boundary layer on a rotational body which is put to spiral motion, Publications de de l'institut mathématique, 5 (19), 1965.
- Đurić, M., A method for solution of unsteady incopressible boundary layers, Publications de de l'institut mathématique, 6 (20), 1966, pp. 29-55.

- Durić, M. D., On The Universal Form Of Unsteady Incompressible Boundary-Layer Equation And It's Solution, Publications de l'Institut Mathématique, 9(29), 1969, pp.123-134.
- Eckert, E. R., & Jackson, T. W., Analysis of turbulent free-convection boundary layer on flat plate (No. NACA-TN-2207). National Aeronautics and Space Administration Washington DC, 1950.
- Eckert, E. R., & Livingood, J. N., Method for calculation of laminar heat transfer in air flow around cylinders of arbitrary cross section (including large temperature differences and transpiration cooling), No. NACA-TR-1118, 1953.
- Elgazery, N. S., Numerical solution for the Falkner–Skan equation. Chaos, Solitons & Fractals, 35(4), 2008, pp. 738-746.
- Emmons, H. W., The laminar-turbulent transition in a boundary layer-Part I, Journal of the Aeronautical Sciences, Vol. 18, No. 7, 1951, pp. 490-498.
- Ergun, S., Fluid Flow Through Packed Columns, Chem. Engng. Progr., 48 (2), 1952, pp. 89-94.
- Evans G.C., Gerald C.F., Mass Transfer from Benzoic acid granules to water in fixed and fluidized beds at low Reynolds numbers, Chem.Eng. Prog, 49(3), 1953, pp. 135-140.
- Falkner, V. M., & Skan, S. W., LXXXV. solutions of the boundary-layer equations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(80), 1931, pp. 865-896.
- Falkner, V., A further investigation of solution of boundary equations, ARC Repta and Memo., No. 1884, 1939.
- Fan, L. S., Yang, C., Wen, C. Y., Mass transfer in semifluidized beds for solidliquid systems, AIChE J., 6, 1960, pp. 482–487.
- Fang, T., & Zhang, J., An exact analytical solution of the Falkner-Skan equation with mass transfer and wall stretching. International Journal of Non-Linear Mechanics, 43(9), 2008, pp. 1000-1006.
- Fasel, H., & Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 1990, pp. 311-347.
- Fredsøe, J., Turbulent boundary layer in wave-current motion, Journal of Hydraulic Engineering, 110(8), 1984, pp. 1103-1120.
- Frössling N., Gerlands Beitr. Geophys., 52, 1938, p. 170.
- Frössling N., Verdunstung, wärmeübergang und geschwindigkeitsverteilung bei zweidimensionaler und rotationssymmetrischer laminarer grenzschichströmung, Lunds Universitates Arsskrift, N. F. Avd. 2, Bd. 36, Nr. 4, 1940, pp. 1-31.
- Grbavčić, Ž.B., Ispitivanje mehanike fontanskog sloja niskog pada pritiska sa kontrolisanim kretanjem čestica, doktorska disertacija, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, 1989.
- Grbavčić, Z. B., Garić, R. V., Hadžismajlović, D. E., Jovanović, S., Vuković, D. V., Littman, H., & Morgan, M. H. (1991). Variational model for prediction of the fluid-particle interphase drag coefficient and particulate expansion of fluidized and sedimenting beds. Powder technology, 68(3), 1991, pp. 199-211.
- Grbavčić Ž.B, Garić R.V, Vuković D.V., Hadžismajlović Dž.E., Hydrodynamic modeling of vertical liquid-solids flow, Powder Technology, 72 (2), 1992, pp. 183-191.
- Garić, R., Grbavčić, Ž., Rožić, Lj., Indirect determination of the particle-wall friction coefficient in the vertical pneumatic and hydraulic conveying of coarse particles, J. Serb. Chem. Soc., 61, 1996, pp. 391-400.
- Garić-Grulović. R.V., Grbavčić. Ž.B., Arsenijević Z.Lj., Heat transfer and flow pattern in vertical liquid-solids flow, Powder Technology, 145 (3), 2004, pp. 163-171.
- Garić-Grulović R., Grbavčić Ž. & Arsenijević Z., A pseudo-fluid representation of vertical liquid–coarse solids flow, J. Serb. Chem. Soc. 70 (5), 2005, pp. 775–784.
- Garić-Grulović R., Analogija između prenosa količine kretanja, toplote i mase u vertikalnom dvofaznom toku tečnost-čestice,Doktorska disertacija, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Beograd, 2006.
- Garić-Grulović, R., Grbavčić, Ž., Bošković-Vragolović, N., Arsenijević, Z., Mass transfer in vertical liquid-solids flow of coarse particles, Powder Technology 189, 2009, pp. 130–136.
- Garim, M.M., Freire, J.T., Goldstein-Garim, R.J., Local mass transfer coefficients around a cylinder in a fluidized bed", Powder Technol., 101 (2), 1999, pp. 134-141.
- Galli, C., Experimental determination of the diffusion boundary layer width of micron and submicron particles, International journal of pharmaceutics, 313(1), 2006, pp. 114-122.

- Garratt, J. R., Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments-A review, Journal of Climate, 6(3), 1993, pp. 419-448.
- Garratt, J. R., Review: the atmospheric boundary layer. Earth-Science Reviews, 37(1-2), 1994, pp. 89-134.
- Geankoplis C.J., Mass Transport Phenomena, Holt, Rinehart and Winston, New York, 1972.
- Gelperin N.I., Einstein V.G., Heat transfer in fluidized beds, Fluidization, Academic Press, London, 1971.
- Görtler H., Verdrägungswirkung der laminaren Grenzschicht und Druckwiderstand, Ing.Arsc. 14, 1944.
- Görtler H., Zahlentafeln universeller Funktionen zur neuen Reihe für die Berechnung laminarer Grenzschichten, Bericht der Deutschen Versuchsantalt für Luftfart, No 34, 1957.
- Görtler, H., A new series for the calculation of steady laminar boundary layer flows, J. Math. Mech, 6(1), 1957, pp. 1-66; original German paper: ZAMM, Vol. 32, 1952, pp. 270-271.
- Goldstein, S., Concerning some solutions of the boundary layer equations in hydrodynamics. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Vol. 26, No. 01, 1930, pp. 1-30.
- Goldstein, S., On laminar boundary-layer flow near a position of separation, The Quarterly Journal of Mechanics and Applied Mathematics, 1(1), 1948, pp. 43-69.
- Goldstein, S., & Rosenhead, L., Boundary layer growth. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 32(3), 1936, pp. 392-401.
- Goldstein, S., A note on the boundary layer equations, In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Vol. 35, No. 02, 1939, pp. 338-340.
- Goldstein, R., Fluid Mechanics Measurements, Second Edition, CRC Press, 1996, 600 pag.
- Granlund, K., Ol, M. V., & Bernal, L., Experiments on pitching plates: force and flowfield measurements at low Reynolds numbers, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, pp. 872-1 872-18.

- Guardoa, M. Coussiratb, M.A. Larrayoza, F. Recasensa, E. Egusquizab, Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds, Chemical Engineering Science, 60, 2005, pp. 1733 – 1742.
- Guardoa, M. Coussiratb, F. Recasensa, M.A. Larrayoza, X. Escalerb, CFD study on particle-to-fluid heat transfer in fixed bed reactors: Convective heat transfer at low and high pressure, Chemical Engineering Science, 61, 2006, pp. 4341 4353.
- Gunn D.J., Transfer of heat or mass to particles in fixed and fluidsed beds, International Journal of Heat and Mass Transfer, 21 (4), 1978, pp. 467-476.
- Grundmann, R., Boundary layer equations and methods of solution, Chapter 8 in Computational Fluid Dynamics, 3rd ed., J.F. Wendt (ed.), Springer-Verlag Berlin Heidelberg, 2009, pp 153-181.
- Haid M., Martin H., Müller-Steinhagen H., Heat transfer to liquid—solid fluidized beds, Chemical Engineering and Processing: Process Intensification, 33 (4), 1994, pp. 211-225.
- Hamilton, W., A correlation for heat transfer in liquid fluidized beds, Can. J. Chem. Engng., 48 (1), 1970, pp. 52–56.
- Harlow, F. H., & Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of fluids, 8(12), 1965, pp. 2182-2189.
- Harris, S. D., Ingham, D. B., & Pop, I., Unsteady heat transfer in impulsive Falkner–Skan flows: constant wall temperature case. European Journal of Mechanics-B/Fluids, 21(4), 2002, pp. 447-468.
- Hartree, D. R., On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Math Proc Cambridge Philo Soci, 33(2), 1937, pp. 223-239.
- Hasheminejad, S. M., Mitsudharmadi, H., & Winoto, S. H., Effect of flat plate leading edge pattern on structure of streamwise vortices generated in its boundary layer. Journal of Flow Control, Measurement & Visualization, 2014.
- Hawkins, G. S., A study of tektites, Journal of Geophysical Research, 68(3), 1963, pp. 895-910.
- He, G., Wang, J., & Pan, C., Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake, Journal of Fluid Mechanics, 718, 2013, pp. 116-130.

- He, G. S., Pan, C., Feng, L. H., Gao, Q., & Wang, J. J., Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, Journal of Fluid Mechanics, 792, 2016, pp. 274-306.
- Head, M. R., An approximate method of calculating the laminar boundary layer in two-dimensional incompressible flow. Aeronautical Research Council, 1957.
- Heppel, N.J., Measurement of the liquid-solid heat transfer coefficient during continuous sterilization of liquids containing particles, Presented at the 4th Intl. Cong. on engineering and food, Edmonton, Alberta, Canada ,1985.
- Hiemenz, K., The boundary layer on a circular cylinder in uniform flow, Dingl. Polytec. J, 326, 1911, pp. 321-328.
- Holstein, H., Bohlen, T., Ein einfaches Verfahren zur Berechnung laminarer Reibungsschichten, die dem Näherungsverfahren von K. Pohlhausen genügen, Ber. Lilienthal Ges. Luftfahrtforsch. S-10, 1940, pp. 5–16.
- Hossain, M. S., Samand, M. A., & Mohebujjaman, M., Heat and mass transfer of an mhd forced convection flow along a stretching sheet with chemical reaction, radiation and heat generation in presence of magnetic field, Research Journal of Mathematics and Statistics 5(1-2), 2013, pp. 5 17.
- Howarth, L., On the calculation of steady flow in the boundary layer near the surface of a cylinder in a stream (No. ARC-R/M-1632), AERONAUTICAL RESEARCH COUNCIL LONDON, UNITED KINGDOM, 1934, 68 pag.
- Howarth, L., On the solution of the laminar boundary layer equations, Proc.Roy.Soc., A 164, 1938, pp. 547-579.
- Huang, W., Bhullar, R. S., & Fung, Y. C., The surface-tension-driven flow of blood from a droplet into a capillary tube. Journal of biomechanical engineering, 123(5), 2001, pp. 446-454.
- Huang, Z., & Wu, X., Non-Parallel-Flow Effect on Compressible Boundary Layer on a Flat Plate. Procedia Engineering, 126, 2015, pp. 78-82.
- Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S., Fundamentals of Heat and Mass Transfer. Jon Wiley & Sons. Inc., 2007, 997 pag.
- Ishak, A., Nazar, R., & Pop, I., Falkner-Skan equation for flow past a moving wedge with suction or injection. Journal of Applied Mathematics and Computing, 25(1-2), 2007, pp. 67-83.
- Ishigaki, H., Periodic boundary layer near a two-dimensional stagnation point. Journal of Fluid Mechanics, 43(03), 1970, pp. 477-486.

- Islam, M., & Nahin, M., Finite Volume Study of Laminar Boundary Layer Properties for Flow Over a Flat Plate at Zero Angle of Incidence. Global Journal of Research In Engineering, 13(5), 2013, pp. 41-48.
- Jamialahmadi M., Malayeri R.M., Muller-Steinhagen H., Prediction of Heat Transfer to liquid-solid Fluidized Beds, Can. J. Chem. Eng., 73, 1995, pp. 444-455.
- Janna, W., Introduction to Fluid Mechanics, Fourth Edition, CRC Press, Taylor & Francis Group, 2010, 740 pag.
- Kakac, S., Yener Y., Pramuanjaroenkij, A., Convective Heat Transfer (Third Ed.), CRC Press. 2013, 622 pag.
- Kato, Y., Uchida, K., Kago, T., Marooka, S., Liquid Holdup and Heat Transfer Coefficient between Bed and Wall in Liquid-Solid and Gas-Liquid-Solid Fluidized Beds, Powder Technol., 28, 1981, pp. 173-179.
- Kalaga V. D., Anu Dhar, Dalvi S.V, Joshi. J. B., Particle-liquid mass transfer in solid–liquid fluidized beds, Chemical Engineering Journal, 245, 2014, pp. 323-341.
- Kang Y., Fan L. T., Kim S. D., Immersed heater-to-bed heat transfer in liquidsolid fluidized beds, AIChE Jornal, 37 (7), 1991, pp. 1101–1106.
- Kumar, S., Upadhyay N.S., Mathur K.V., On the Solubility of Benzoic Acid in Aqueous Carboxymethylcellulose Solutions, J.Chem. Engng. Data, 23 (2), 1978, pp. 139-141.
- Kumar, S., & Upadhyay, S. N. (1981). Mass and momentum transfer to Newtonian and non-Newtonian fluids in fixed and fluidized beds. Industrial & Engineering Chemistry Fundamentals, 20(3), 1981, pp. 186-195.
- Kunii, D., & Levenspiel, O, Fluidization engineering, Butterworth-Heinemann, a division of Reed Publishing (USA) 1991.
- Khalili, M., Larsson, M., & Müller, B., Interaction between a simplified soft palate and compressible viscous flow. Journal of Fluids and Structures, 67, 2016, pp. 85-105.
- Khan A.R. & Elkamel A., Mathematical model for heat transfer mechanism for particulate system, Applied Mathematics and Computation 129, 2002, pp. 295–316.
- Kline, S. J., Reynolds, W. C., Schraub, F. A., & Runstadler, P. W., The structure of turbulent boundary layers, Journal of Fluid Mechanics, 30(04), 1967, pp. 741-773.

- Kim, S.D., Kang, Y., Kwon, H.K., Heat transfer characteristics in two- and threephase slurry-fluidized beds, AIChE J., 32 (8), 1986, pp. 1397-1400.
- Kitamura K., Mitsuishi A., Suzuki T., Misumi T., Fluid flow and heat transfer of high-Rayleigh-number natural convection around heated spheres, International Journal of Heat and Mass Transfer, 86, 2015, pp. 149–157.
- Kmiec, A., Particle distribution and dynamics of particle movement in solidliquid fluidized beds, Chem. Engng. J., 15 (1), 1978, pp. 1-12.
- Кочин, Н.Е., Лойцянский, Л.Г., Об одном приближенном методе расчета ламинарного пограничного слоя, ДАН СССР, Т-36, Но 9, 1942.
- Kopko, R.J., Barton, P., Mc Cormick, R.H., Hydrodynamics of vertical liquidsolids transport, Ind. Eng. Chem. Proc. Des. Dev., 14, 1975, pp. 264-269.
- Kondo, J., Kanechika, O., & Yasuda, N., Heat and momentum transfers under strong stability in the atmospheric surface layer. Journal of the atmospheric sciences, 35(6), 1978, pp. 1012-1021.
- Kostich, S. T., Multiparameter boundary layer method for slender bodies of revolution, Fluid dynamics, 26(6), 1991, pp. 812-816.
- Kramers, H., Heat transfer from spheres to flowing media. Physica, 12(2-3), 1946, pp. 61-80.
- Lareo, C.A., Fryer, P.J., Vertical Flows of Solid-Liquid Food Mixtures, J. Food Engng., 36, 1998, pp. 417-443.
- Leble, S., & Lewandowski, W. M., (2012). On analytical solution of stationary two dimensional boundary problem of natural convection, arXiv preprint arXiv:, 2012, pp. 1210.5529.
- Lee, C. B., & Wu, J. Z., Transition in wall-bounded flows. Applied Mechanics Reviews, 61(3), 2008, pp. 030802-1 . 030802-21.
- Lenschow, D. H., Airplane measurements of planetary boundary layer structure, Journal of Applied Meteorology, 9(6), 1970, pp. 874-884.
- Levins D.M., Glastonbury, J.R., "Particle-liquid hydrodynamics and mass transfer in a stirred vessel. Part II—Mass transfer", Transactions of the Institution of Chem. Engrs, 50, 1972, pp. 132-146.
- Lew, H. S., & Fung, Y. C., Entry flow into blood vessels at arbitrary Reynolds number, Journal of biomechanics, 3(1), 1970, pp. 23-38.
- Lefroy, G. A., Davidson, J.F., The Mechanics of Spouted Beds, Trans. Inst. Chem. Engrs., 47, 1969, T120.

- Leung, L.S., The Ups and Down of Gas-Solids Flow A Review, in "Fluidization", 3rd Eng. Found. Conf., Proc., N.H. Henniker, (J. Matsen, J.H. Grace, Ed.), 25-68, Plenum Press, New York, 1980.
- Lighthill, M. J., The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 224, No. 1156, 1954, pp. 1-23.
- Lin, C. C., Motion in the boundary layer with a rapidly oscillating external flow, In Proceedings of the 9th International Congress on Applied Mechanics, 1957, pp. 155-167.
- Linton W.H. & Sherwood T.E., Mass transfer from solid shapes to water in streamline and turbulent flow, Chem. Eng. Prog. 46 (5), 1950, pp. 258–264.
- Linton M. & Sutherland K.L., Transfer from a sphere into a fluid in laminar flow, Chem. Eng. Sci. 12, 1960, pp. 214–229.
- Лойцянский, Л.Г., Универсальные уравнения и параметрические прближения в теории ламинарного пограничного слоя, ДАН СССР, Прикладная математика и механика, Т-29, В.1, 1965, pp. 70-87.
- Лойцянский, Л.Г., Введение идея подобия в приближенних методах теории пограничного слоя, Проблемы гидродинамики и механики сплошной среды, Москва, 1969.
- Лойцянский, Л.Г., Методы подобия в теории интегрования уравнений пограничного слоя, Вапросы математической физики, Ленинград, 1976.
- Lorke, A., Muller, B., Maerki, M., & Wuest, A., Breathing sediments: The control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnology and Oceanography, 48(6), 2003, pp. 2077-2085.
- Luchini, P., & Bottaro, A., Linear stability and receptivity analyses of the Stokes layer produced by an impulsively started plate. Physics of Fluids (1994-present), 13(6), 2001, pp. 1668-1678.
- Lund, T. S., Wu, X., & Squires, K. D., Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics, 140(2), 1998, pp. 233-258.
- Maesmans G., Hendrickx M., Decordt S., Fransis A., Tobback P., Fluid-toparticle heat transfer coefficient determination of heterogeneous foods: A review, 16 (1), 1992, pp. 29–69.

- Magyari, E., & Keller, B., Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. European Journal of Mechanics-B/Fluids, 19(1), 2000, pp. 109-122.
- Manson, J.E., Cullen, J.F., Thermal process simulation for aseptic processing of foods containing discrete particulate matter, J. Food Sci., 39, 1974, pp. 1084-1089.
- Mangler, W., Die "ähnlichen" Lösungen der Prandtlschen Grenzschichtgleichungen. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 23(5), 1943, pp. 241-251.
- Mankad, S., & Fryer, P. J., A heterogeneous flow model for the effect of slip and flow velocities on food steriliser design, Chemical Engineering Science, 52 (12), 1997, pp. 1835-1843.
- Marinca, V., Ene, R. D., & Marinca, B., Analytic approximate solution for Falkner-Skan equation, The Scientific World Journal, Volume 2014, Article ID 617453, 2014, 22 pag.
- Martin, M. J., & Boyd, I. D., Momentum and heat transfer in a laminar boundary layer with slip flow, Journal of thermophysics and heat transfer, 20(4), 2006, pp. 710-719.
- Mathers, W. G., Madden, A. J., & Piret, E. L, Simultaneous heat and mass transfer in free convection, Industrial & Engineering Chemistry, 49(6), 1957, pp. 961-968.
- Matović, M., Ispitivanje prenosa mase u fluidizovanom sloju tečnost čestice, Diplomski rad, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, 2001.
- Maxworthy, T., Experiments on the flow around a sphere at high Reynolds numbers, Journal of Applied Mechanics, 36(3), 1969, pp. 598-607.
- MacCune L.K., Wilhelm R.H., Mass and Momentum transfer in Solid-Liquid System. Fixed and Fluidized Beds, Ind. Engng. Chem., 41, 1949, pp. 1124-1135.
- Menon, K. R., & Jain, A. C., Görtler's Series Solution of Laminar Boundary Layer Equations with Suction or Injection. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 51(4), 1971, pp. 245-254.
- Meewisse, J.W., Ferreira, C.A.I., Validation of the use of heat transfer models in liquid/solid fluidized beds for ice slurry generation, Int. J. Heat Mass Transfer, 46, 2003, pp. 3683-3695.

- Midoux, N., Wild, G., Purwasasmita, M., Charpentier, J. C., & Martin, H., Zum Flüssigkeitsinhalt und zum Wärmeübergang in Rieselbettreaktoren bei hoher Wechselwirkung des Gases und der Flüssigkeit. Chemie Ingenieur Technik, 58(2), 1986, pp. 142-143.
- Morgan V.T., The forced convective heat transfer from an insulated circular cylindrical conductor in air, Int. Comm. Heat Mass Transfer, Vol. 17, 1990, pp. 367-376.
- Moore, F. K., Unsteady laminar boundary-layer flow (No. NACA-TN-2471). NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON DC.,1951.
- Mickley H. S., Fairbanks D. F., Mechanism of heat transfer to fluidized beds, AIChE J., 1 (3), 1955, pp. 374–384.
- Muroyama K., Fukuma M., Yasunichi A., Wall-to-Bed Heat Transfer in Liquid-Solid and Gas-Liquid-Solid Fluidized Beds - Part I: Liquid-Solid Fluidized Beds, Can. J. Chem.Eng., 64, 1986, pp. 399-408.
- Nakamura, K., Capes, C.E., Vertical Pneumatic Conveying: A Theoretical Study of Uniform and Annular Flow Models, Can. J. Chem. Engng., 51, 1973, pp. 39-46.
- Neiland V. Ya., Theory of laminar boundary layer separation in supersonic flow, Fluid Dynamics, 4 (4), 1969, pp. 33–35.
- Nishioka, M., & Morkovin, M. V., Boundary-layer receptivity to unsteady pressure gradients: experiments and overview. Journal of Fluid Mechanics, 171, 1986, pp. 219-261.
- Nijemeisland M. & Dixon G. A., Catalyst design by CFD for heat transfer and reaction in steam reforming, 59 (22–23), 2004, pp. 5185-5191.
- Nobel, P. S., Boundary layers of air adjacent to cylinders Estimation of effective thickness and measurements on plant material. Plant Physiology, 54(2), 1974, pp. 177-181.
- Noro, S., Shigeta, M., Izawa, S., & Fukunishi, Y., Numerical Study on Receptivity of Flat-Plate Boundary Layer to External Disturbances. Theoretical and Applied Mechanics Japan, 62(0), 2014, pp. 3-12.
- Oka N. Simeon, Sagorevanje u fluidizovanom sloju, Beograd, 1994.
- Oke, T. R., Boundary layer climates, Routledge, 2002, 464 pag.

- Ookawara S., Kuroki M., Street D., Ogawa K., High-fidelity DEM-CFD modeling of packed bed reactors for process intensification, Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 2007, pp. 16-20.
- Oosthuizen, P., Naylor, D., Introduction to Convective Heat Transfer Analysis, WCB/McGraw Hill, 1999, 620 pag.
- Ovchinnikov, V., Piomelli, U., & Choudhari, M. M., Numerical simulations of boundary-layer transition induced by a cylinder wake, Journal of Fluid Mechanics, 547, 2006, pp. 413-441.
- Pan, C., Wang, J. J., Zhang, P. F., & Feng, L. H., Coherent structures in bypass transition induced by a cylinder wake, Journal of Fluid Mechanics, 603, 2008, pp. 367-389.
- Папков, Н.А., Метод локальной автомоделноси расщота карактеристик ламинарного пограничного слоя. Авиационая техника Но 2, 1976.
- Папков, Н.А., Параметрические уравнения ламинарного пограничного слоя и методи расщота, основание на их решениях, Авиационая техника, Но 4, 1979.
- Pavlović, M., Universal solutions of the incompressible laminar temperature boundary layer on a rotating surface. Nis, University, Facta Universitatis, Series: Mechanics, Automatic Control and Robotics, 2(7), 1997, pp. 391-400.
- Perry, R. H., Green, D., Perry's Chemical Engineers' Handbook, 7th Ed.; McGraw-Hill: New York, 1999.
- Petrovic L.J., Thodos G., Mass transfer in flow of gases through packed beds. Low Reynolds number region, Industrial & Engineering Chemistry, 7 (2), 1968, pp. 274-280.
- Pešić R., Prenos količine kretanja i toplote na uronjenu sferu u pakovanim i fluidizovanim slojevima gas-čestice,Doktorska disertacija, Beograd, 2016.
- Pickett, D. J., & Design, E. R., Electrochemical Reactor Design, Elsevier Scientific Publishing Company, 1977.
- Pohlhausen, E., Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1(2), 1921, pp. 115-121.
- Potter, O., Chemical reaction on the laminar boundary layer-instantaneous reaction. Trans. Instn. Chem. Engrs, 1958, pp. 36, 415.

- Prandtl, L., Über Flüssigkeitsbewegungen bei sehr kleiner Reibung, Verhandlg. III Intern. Math. Kongr, Heidelberg, 1904, pp. 484–491.
- Prandtl L., Der Luftwiderstand von Kugeln (The Air Resistance Of Balls), Göttinger Nachrichten, mathematisch-physikalische Klasse, 1914, pp. 177-190.
- Prandtl, L., Ergeb. Aerodyn. Versuchamtalt, Goettingen 3: 1,1927.
- Prandtl, L., & Betz, A., Vier Abhandlungen zur Hydrodynamik und Aerodynamik (Vol. 3). Universitätsverlag Göttingen, 2010, 116 pag.
- Prasad, S. B., Saini, J. S., & Singh, K. M., Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material. Solar Energy, 83(5), 2009, pp. 773-783.
- Prins, J. A., Mulder, J., & Schenk, J., Heat transfer in laminary flow between parallel plates. Applied Scientific Research, 2(1), 1951, pp. 431-438.
- Pries, A. R., & Secomb, T. W., Microvascular blood viscosity in vivo and the endothelial surface layer, American Journal of Physiology-Heart and Circulatory Physiology, 289(6), 2005, H2657-H2664.
- Puttkammer, P. P., Boundary layer over a flat plate, Bachelor's thesis, University of Twente, 2013, 49 pag.
- Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J., & Schmidt, L. D., A critical evaluation of Navier–Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today, 59(1), 2000, pp. 47-60.
- Rana, K., & Neeves, K. B., Blood flow and mass transfer regulation of coagulation, Blood Reviews 30, 2016, pp. 357–368.
- Ranz^a, W. E., & Marshall, W. R. (1952). Evaporation from drops, Part I, Chem. Eng. Prog, 48(3), 1952, pp. 141-146.
- Ranz^b W.E. & Marshall W.R., Evaporation from drops, Part II, Chem. Eng. Prog. 48 (4), 1952, pp. 173–180.
- Reshotko, E., Boundary-layer stability and transition, Annual Review of Fluid Mechanics, 8(1), 1976, pp. 311-349.
- Reynolds, O., On the extent and action of the heating surface of steam boilers; Proc. Manchester Lit. Phil. Soc., 8, 1874.

- Riba J.P., Routie R., Couderc J.P., Mass Transfer from a Fixed Sphere to a Liquid in a Fluidized Bed, FLUIDIZATION, J.F. Davidson & D.L. Keairnis, Eds Cambridge, U. Press, Cambridge, England, 1979, pp. 157-162.
- Riba J.P., Couderc J.P., Transfert De Matiere Autour D'Une Sphere Immergee Dans Une Couche Fluidisee Par un Liquide, Int. J. Heat Mass Transfer, 23 (7), 1980, pp. 909-917.
- Richmond, R. L., Experimental Investigation of Thick, Axially Symmetric Boundary Layers on Cylinders at Subsonic and Hypersonic Speeds, 1957, 87 pag.
- Richardson J.F., Romani M.N., Shakiri K.J., Heat Transfer from immersed Surfices in Liquid Fluidized Beds, Chem. Eng. Sci., 31 (8), 1976, pp. 619-624.
- Richardson, J.F., Zaki, W.N., Sedimentation and fluidisation: Part 1, Trans. Instn. Chem. Engrs., 32, 1954, pp. 35-53.
- Rienstra, S. W., & Darau, M., Boundary-layer thickness effects of the hydrodynamic instability along an impedance wall, Journal of Fluid Mechanics, 671, 2011, pp. 559-573.
- Rozin, L., An approximation method for the integration of the equations of a nonstationary laminar boundary layer in an incompressible fluid, NASA, 19980228465 (Translated from: Приближенний метод интегрирования уравнений нестационарного пограничного слоя в несжимаемой жидксти, Прикл.мат.и механика, 21 В-5, 1957), 1960, pp. 615-623.
- Rostami, A. A., & Mortazavi, S. S., Analytical prediction of Nusselt number in a simultaneously developing laminar flow between parallel plates, International journal of heat and fluid flow, 11(1), 1990, pp. 44-47.
- Romkes S.J.P, Dautzenberg F.M., Calis H.P.A, CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio, 96 (1-3), 2003, pp. 3-13.
- Stephenson P. L., A theoretical study of heat transfer in two-dimensional turbulent flow in a circular pipe and between parallel and diverging plates, Central Electricity Research Laboratories, Kelvin Avenue, Leatherhead, Surrey, England, 1975.
- Sanitjai S. & Goldstein R.J., (Forced convection heat transfer from a circular cylinder in crossflow to air and liquids, International Journal of Heat and Mass Transfer 47, 2004, pp. 4795–4805.
- Sadeque, M. A., Rajaratnam, N., & Loewen, M. R., Flow around cylinders in open channels, Journal of engineering mechanics, 134(1), 2008, pp. 60-71.

- Sakiadis^a, B. C., Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE Journal, 7(1), 1961, pp. 26-28.
- Sakiadis^b, B.C., Boundary layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface, AIChE J., 7(2), 1961, pp. 221-225.
- Sakiadis^c, B. C., Boundary-layer behavior on continuous solid surfaces: III. The boundary layer on a continuous cylindrical surface, AiChE journal, 7(3), 1961, pp. 467-472.
- Salama, A. A., & Mansour, A. A., Finite-difference method of order six for the two-dimensional steady and unsteady boundary-layer equations. International Journal of Modern Physics C, 16(05), 2005, pp. 757-780.
- Salwe A. M., Pande S.S., Khan J. S., Effect of Velocity and Particle Size on the Coefficient of Heat Transfer in Fluidized Bed Heat Exchanger, International Journal of Engineering Research and General Science, 2 (2), 2014, pp. 230-234.
- Schlichting, H., Berechnung ebener periodischer Grenzschichtströmungen. Phys. Z, 33, 1932, pp. 327-335.
- Schlichting, H., Boundary Layer Theory. Part 2; Turbulent Flows, TECHNICAL MEMORANDUM No. 1218,1949.
- Schlichting, H., & Gersten, K., Boundary-layer theory, 9th Ed., Springer-Verlag Berlin Heidelberg, 2017, 805 pag.
- Schubauer, G. B., & Skramstad, H. K., Laminar-boundary-layer oscillations and transition on a flat plate, National advistory committee ror aeronautics, Report No. 909, 1948, pp. 1-31.
- Schuh H., Calculation of unsteady boundary layers in two-dimensional laminar flow., Zeitschr.f.Flugwiss No 1, 1953, pp 122-131.
- Schmidt S., Buchs J., Born C., Biselli M., A New Correlation for the Wall-to-Fluid Mass Transfer in Liquid-Solid Fluidized Beds, Chem. Eng. Sci.,54, 1999, pp. 829-839.
- Stewartson K., Further solutions of the Falkner-Skan equation, In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 50(3), 1954, pp. 454-465.
- Сальников, В., Ока, С., Об одной вазможной форме универсальних уравнений ламинарного пограничного слоя, Дан СССР, Механика жидкости и газа, В.1, 1969.

- Сальников В., Обобщение универсального уравнения теории ламинарного пограничного слоя Л.Г.Лойцянского, Publication de l'institut Mathematique, T-13 (27), 1972, 105-116.
- Schetz, J. A., & Oh, S. K. Approximate solution of boundary layer problems with injection or suction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(1), 1968, pp. 64-83.
- Seshadri, K., & Williams, F. A., Laminar flow between parallel plates with injection of a reactant at high Reynolds number. International Journal of Heat and Mass Transfer, 21(2), 1978, pp. 251-253.
- Sen Gupta A., Thodos G., Mass and Heat transfer in the Flow of Fluids Through Fixed and Fluidized beds of Spherical Particals, AIChE J., 8(5), 1962, pp. 608-610.
- Sears, W. R., & Telionis, D. P., Boundary-layer separation in unsteady flow, SIAM Journal on Applied Mathematics, 28(1), 1975, pp. 215-235.
- Sparrow, E. M., & Abraham, J. P., Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. International Journal of Heat and Mass Transfer, 48(15), 2005, pp. 3047-3056.
- Struminskii, V. V., Study of Laminar-Turbulent Gas Flow Transition, The Physics of Fluids, 10(9), 1967, pp. S95-S97.
- Struminskii, V. V., The development and substantiation of the kinetic theory of gases in the twentieth century. Journal of applied mathematics and mechanics, 60(6), 1996, pp. 959-968.
- Stull, R. B., An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media, 2012, 670 pag.
- Sutera, S. P., Flow-induced trauma to blood cells. Circulation research, 41(1), 1977, pp. 2-8.
- Talbot, L., Cheng, R. K., Schefer, R. W., & Willis, D. R., Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 101(04), 1980, pp. 737-758.
- Taneda, S. Experimental investigation of the wake behind a sphere at low Reynolds numbers. Journal of the Physical Society of Japan, 11(10), 1956, pp. 1104-1108.
- Taneda, S. Experimental investigation of vortex streets. Journal of the Physical Society of Japan, 20(9), 1965, pp. 1714-1721.

- Tani, I., On the Solution of the Laminar Boundary Layer Equations, J. Phys. Soc., Japan, Vol. 4, 1949, pp. 149-154.
- Tani I., On the Approximate Solution of the Laminar Boundary-Layer Equations, Journal of the Aeronautical Sciences, Vol. 21, No. 7, 1954, pp. 487-495.
- Tani, I., History of boundary layer theory. Annual review of fluid mechanics, 9(1), 1977, pp. 87-111.
- Terrill, R. M., Heat transfer in laminar flow between parallel porous plates. International Journal of Heat and Mass Transfer, 8(12), 1965, pp. 1491-1497.
- Telionis, D. P., & Tsahalis, D. T., Unsteady laminar separation over impulsively moved cylinders. Acta Astronautica, 1(11), 1974, pp. 1487-1505.
- Tetlow, G. A., & Lucey, A. D., Motions of a cantilevered flexible plate in viscous channel flow driven by a constant pressure drop. Communications in Numerical Methods in Engineering, 25(5), 2009, pp. 463-482.
- Tifford, A. N., Heat transfer and frictional effects in laminar boundary layers, Part 4., Universal series solutions., OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS, WADC Tech. Rep., 1954, pp. 53-288.
- Töpfer, K., Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys, 60, 1912, pp. 397-398.
- Tollmien, W., Schlichting, H., & Görtler, H., Ludwig Prandtl Gesammelte Abhandlungen: zur angewandten Mechanik, Hydro-und Aerodynamik. F. W. Riegels (Ed.)., 1961, 1641 pag.
- Tournie, P., Laguerie, C., Couderc, J.P., "Mass Transfer in a Liquid Fluidized Bed at Low Reynolds Numbers", Chem. Engng. Sci., 32 (10), 1977, pp. 1259-1261.
- Turton R. & Levenspiel 0., A Short Note on the Drag Correlation for Spheres, Powder Technology, 47, 1986, pp. 83 86.
- Tulapurkara, E. G., Hundred years of the boundary layer-some aspects, Sadhana, 30(4), 2005, pp. 499-512.
- Trinh K. T., A Derivation of the Colburn Analogy, 2010
- Ulrich, A., Die ebene laminare Reibungsschicht an einem Zylinder, Archiv der Mathematik, 2(1), 1949, pp. 33-41.

- Upadhyay, S. N., & Tripathi, G., Liquid-phase mass transfer in fixed and fluidized beds of large particles. Journal of Chemical and Engineering Data, 20(1), 1975, pp. 20-26.
- Шкадов, В., Об интегровании уравнения пограничного слоя, ДАН СССР, Но 4, 1959.
- Шкадов, В., К решении задач о пограничном слое, ИАН СССР, Механика и машиностроение, Но 3, 1962.
- Шкадов, В., Пограничний слой с градиентом давления в потоке несжимаемой жидкости, ИАН СССР, Механика и машиностроение, Но 2, 1963.
- Van Dyke, M., & Van Dyke, M., An album of fluid motion, (Vol. 176). Stanford: Parabolic Press ,1982.
- Van Driest, E. R., On turbulent flow near a wall, Journal of the Aeronautical Sciences, Vol. 23, No. 11, 1956, pp. 1011-1036.
- Vanadurongwan, V., Laguerie, C., & Couderc, J. P., Influence des propriétés physiques sur le transfert de matiére en fluidisation liquide, The Chemical Engineering Journal, 12(1), 1976, pp. 29-31.
- Watson, F., Boundary layer growth, Proc.Roy.Soc., A-231, 1955.
- Von Kármán, T., Über laminare und turbulente Reibung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1(4), 1921, pp. 233-252.
- Von Kármán, T., The analogy between fluid friction and heat transfer, Trans. ASME, 61, 1939, 705-710.
- Vogel-Prandtl, J., Ludwig Prandtl: a biographical sketch, remembrances and documents, 2004.
- Wang G. Q., Yuan X. G. and Yu K. T., Review of Mass-Transfer Correlations for Packed Columns, Ind. Eng. Chem. Res., 44, 2005, pp. 8715-8729.
- Welty, J. R., Rorrer, G., & Foster, D. G., Fundamentals of momentum, heat, and mass transfer, 6th Edition, John Wiley & Sons, Inc., 2015, 770 pag.
- White, F., Fluid Mechanics, 5th Edition, McGraw-Hill Series in Mechanical Engineering, 2001, 866 pag.
- White, F., Viscous Fluid Flow, Third International Edition, McGraw-Hill Higher Education, 2006, 629 pag.

- Whitaker S., Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE Journal, 18 (2), 1972, pp. 361–371.
- Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A. M., & Ramanathan, V., Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proceedings of the National Academy of Sciences, 113(42), 2016, pp. 11794-11799.
- Winoto, S. H., & Crane, R. I., Vortex structure in laminar boundary layers on a concave wall, International Journal of Heat and Fluid Flow, 2(4), 1980, pp. 221-231.
- Wu, T. Y., Cavity and wake flows. Annual Review of Fluid Mechanics, 4(1), 1972, pp. 243-284.
- Wu, X., Jacobs, R. G., Hunt, J. C., & Durbin, P. A., Simulation of boundary layer transition induced by periodically passing wakes. Journal of Fluid Mechanics, 398, 1999, pp. 109-153.
- Wundt H., Washstum der laminaren Grenzschicht an schäg angeströmten Zylindern bei Anfart aus der Ruhe., Ing.Archiv, 23, No 3, 1955, pp. 218-223.
- Wygnanski, I., Boundary layer and flow control by periodic addition of momentum. AIAA paper, 2117, 1997.
- Zaturska, M. B., & Banks, W. H. H., A new solution branch of the Falkner-Skan equation. Acta Mechanica, 152(1-4), 2001, pp. 197-201.
- Zuritz C. A., Convective heat transfer coefficients for irregular particles immersed in non-newtonian fluid during tube flow, Journal of Food Engineering, 11 (2), 1990, pp. 159-174.
- Zhang, W., Johnsson, F., & Leckner, B., Fluid-dynamic boundary layers in CFB boilers, Chemical Engineering Science, 50(2), 1995, pp. 201-210.
- Zhang, W., Johnsson, F., & Leckner, B., Momentum probe and sampling probe for measurement of particle flow properties in CFB boilers. Chemical engineering science, 52(4), 1997, pp. 497-509.
- Zhang L., Fryer P. J., Food sterilization by electrical heating: Sensitivity to process parameters, AIChE, 40 (5), 1994, pp. 888–898.
- Zhao, Q., Xu, H., & Tao, L., Homogeneous-heterogeneous reactions in boundary layer flow of a nanofluid near the forward stagnation point of a cylinder, Journal of Heat Transfer, 139(3), 2017, pp. 034502-1 034502-4.

- Yagi S., Wakao N., Heat and Mass Transfer from wall to fluid in Packed Beds, AIChE J., 5, 1959, pp. 79-85.
- Yang, W.C., A Correlation for Solids Friction Factor in Vertical Pneumatic Conveying Lines, AIChE J., 24 (3), 1978, pp. 548-552.
- Yutani, N., Ototake, N., Fan, L.T., Statistical Analiysis of Mass Transfe in Liquid-Solid Fluidized Beds, Ind. Engng. Chem. Res., 26, 1987, pp. 343-347.

PRILOZI

Prilog P1 - Pakovani sloj

Ogled B br	H_{sl}	V (1/min)	U (m/s)	-dP/dz	ε	Rep	Re _p '
d = 1.20 mm	(1111)	(1/11111)	(111-5)	(1 @/11)	_		
1	216	0.0027	0.0000	545.00	0.3859	0.042	0.069
2	216	0.0872	0.0012	908.33	0.3859	1.388	2.261
3	216	0.1295	0.0017	1135.42	0.3859	2.061	3.357
4	216	0.1717	0.0023	1226.25	0.3859	2.734	4.453
5	216	0.2140	0.0028	1453.33	0.3859	3.408	5.549
6	216	0.2985	0.0040	1725.83	0.3859	4.754	7.741
7	216	0.3408	0.0045	1952.92	0.3859	5.427	8.837
8	216	0.4253	0.0056	2679.58	0.3859	6.773	11.029
9	216	0.4676	0.0062	3542.50	0.3859	7.446	12.125
10	216	0.5099	0.0068	3951.25	0.3859	8.119	13.221
11	216	0.5944	0.0079	4632.50	0.3859	9.465	15.413
12	216	0.6367	0.0084	5268.33	0.3859	10.138	16.509
13	216	0.6789	0.0090	5949.58	0.3859	10.811	17.605
14	216	0.7635	0.0101	6721.67	0.3859	12.157	19.797
15	216	0.8480	0.0113	8175.00	0.3859	13.503	21.989
16	216	0.5646	0.0075	6267.50	0.3859	8.990	14.640
17	216	0.6010	0.0080	6676.25	0.3859	9.571	15.585
18	216	0.6375	0.0085	6857.92	0.3859	10.151	16.529
19	216	0.6739	0.0089	7130.42	0.3859	10.731	17.474
20	216	0.7103	0.0094	7584.58	0.3859	11.311	18.419
21	216	0.7468	0.0099	7630.00	0.3859	11.891	19.363
22	216	0.7832	0.0104	8175.00	0.3859	12.471	20.308
23	216	0.8196	0.0109	8447.50	0.3859	13.051	21.253
24	216	0.8560	0.0114	8629.17	0.3859	13.631	22.197
<i>d_p</i> =1,94 mm	1	1	1	r	1	r	r
1	230	0.0027	0.0000	127.96	0.4408	0.068	0.122
2	230	0.1717	0.0023	383.87	0.4408	4.421	7.905
3	230	0.2985	0.0040	597.13	0.4408	7.685	13.742
4	230	0.4253	0.0056	810.39	0.4408	10.949	19.580
5	230	0.5944	0.0079	1322.22	0.4408	15.302	27.363
6	230	0.6789	0.0090	1578.13	0.4408	17.478	31.254
7	230	0.7635	0.0101	1834.04	0.4408	19.654	35.146
8	230	0.8903	0.0118	2345.87	0.4408	22.919	40.983

Tabela P1-1 Prenos količine kretanja u normalno pakovanom sloju (eksp.sistem: slika 2.1).

Ogled	H _{st}	Ý	U	-dP/dz	Э	Ren	Re _n '
R. br.	(mm)	(l/min)	(m/s)	(Pa/m)	-	-	-
9	230	10.594	0.0141	2985.65	0.4408	27.271	48.766
10	230	11.862	0.0157	3497.48	0.4408	30.535	54.603
11	230	13.130	0.0174	4009.30	0.4408	33.800	60.441
12	230	0.5646	0.0075	1748.74	0.4408	14.535	25.991
13	230	0.7832	0.0104	2303.22	0.4408	20.162	36.053
14	230	10.018	0.0133	3028.30	0.4408	25.789	46.115
15	230	11.475	0.0152	3582.78	0.4408	29.540	52.824
16	230	12.932	0.0172	4137.26	0.4408	33.291	59.532
17	230	13.661	0.0181	4521.13	0.4408	35.167	62.886
18	230	15.118	0.0201	5160.91	0.4408	38.919	69.594
19	230	16.575	0.0220	6056.61	0.4408	42.670	76.303
20	230	17.304	0.0230	6397.83	0.4408	44.546	79.657
21	230	18.761	0.0249	7208.22	0.4408	48.297	86.365
$d_p=2,98 \text{ mm}$	<u>1</u>	-	-				
1	220	0.0872	0.0012	267.55	0.3625	3.448	5.408
2	220	0.1717	0.0023	356.73	0.3625	6.791	10.651
3	220	0.2563	0.0034	490.50	0.3625	10.134	15.895
4	220	0.3408	0.0045	624.27	0.3625	13.476	21.138
5	220	0.4253	0.0056	802.64	0.3625	16.819	26.381
6	220	0.5099	0.0068	1025.59	0.3625	20.162	31.625
7	220	0.6367	0.0084	1114.77	0.3625	25.176	39.490
8	220	0.7635	0.0101	1159.36	0.3625	30.191	47.355
9	220	0.8903	0.0118	1426.91	0.3625	35.205	55.220
10	220	10.171	0.0135	1694.45	0.3625	40.219	63.085
11	220	11.439	0.0152	2051.18	0.3625	45.233	70.950
12	220	12.707	0.0169	2363.32	0.3625	50.248	78.815
13	220	13.552	0.0180	2586.27	0.3625	53.591	84.058
14	220	14.398	0.0191	2809.23	0.3625	56.933	89.301
15	220	15.666	0.0208	3076.77	0.3625	61.948	97.166
16	220	0.6375	0.0085	1203.95	0.3625	25.207	39.539
17	220	0.8560	0.0114	1516.09	0.3625	33.851	53.096
18	220	10.746	0.0143	2095.77	0.3625	42.495	66.654
19	220	12.204	0.0162	2452.50	0.3625	48.257	75.693
20	220	12.932	0.0172	2630.86	0.3625	51.138	80.212
21	220	14.389	0.0191	3076.77	0.3625	56.901	89.250
22	220	15.847	0.0210	3522.68	0.3625	62.663	98.289
23	220	17.304	0.0230	4057.77	0.3625	68.426	107.327
24	220	18.761	0.0249	4548.27	0.3625	74.188	116.366
25	220	20.218	0.0268	5038.77	0.3625	79.951	125.404
26	220	21.676	0.0288	5618.45	0.3625	85.713	134.443
27	220	23.133	0.0307	6331.91	0.3625	91.476	143.481

Ogled R. br.	H _{sl} (mm)	↓ (l/min)	U (m/s)	<i>-dP/dz</i> (Pa/m)	E -	Re _p	Rep'
28	220	23.862	0.0317	6733.23	0.3625	94.357	148.001
29	220	25.319	0.0336	7179.14	0.3625	100.119	157.039
30	220	26.776	0.0355	8070.95	0.3625	105.882	166.078

Tabela P1-2. Prenos mase u gusto pakovanom sloju (eksp.sistem: slika 2.1)
Vreme merenja prenosa mase: 15 min.
T_{sr}: 25.4 °C
D_p uronjene sfere: 20 mm

Ogled	Ż	U	3	Rep	c _i	c _R	k.10 ⁶	Sc	Shp	jр
R. br.	(l/min)	(m/s)	-	-	(kg/m^3)	(kg/m^3)	(m/s)	-	-	-
$d_p = 1,2$	0 mm									
1	0,816	0,0108	0,428	12,60	0,0119	3,0582	37,8243	1236	54,42	0,4025
2	0,446	0,0059	0,431	7,03	0,0180	3,2533	28,5972	1132	38,42	0,5245
3	0,616	0,0082	0,431	9,58	0,0154	3,1299	34,3341	1195	48,14	0,4736
4	0,277	0,0037	0,428	4,43	0,0231	3,5148	20,9071	1026	25,81	0,5780
5	0,087	0,0012	0,431	1,39	0,0471	3,6251	12,9909	990	15,52	1,1160
6	0,055	0,0007	0,425	0,87	0,0536	4,1025	8,4973	879	8,91	1,0690
$d_p = 1,9$	4 mm									
1	1,355	0,0180	0,448	34,49	0,0086	3,2533	43,0609	1132	93,52	0,2602
2	1,144	0,0152	0,440	29,22	0,0080	3,3040	34,6203	1109	73,92	0,2444
3	0,943	0,0125	0,446	24,09	0,0085	3,3040	31,0888	1109	66,38	0,2662
4	0,690	0,0091	0,446	17,78	0,0127	3,4877	29,8431	1035	60,07	0,3340
5	0,468	0,0062	0,446	12,08	0,0131	3,5695	21,0252	1008	41,27	0,3407
6	0,235	0,0031	0,448	6,08	0,0238	3,7390	18,3602	958	34,30	0,5721
7	0,045	0,0006	0,446	1,16	0,0643	3,4608	9,6260	1045	19,54	1,6638
8	0,045	0,0006	0,448	1,16	0,0378	3,4608	6,1599	1045	12,50	1,0629
$d_p=2,9$	8 mm									
1	2,022	0,0268	0,450	80,28	0,0084	3,7973	54,6524	943	154,28	0,1960
2	1,257	0,0167	0,450	49,85	0,0114	3,8564	43,4265	929	120,61	0,2480
3	1,658	0,0220	0,450	65,74	0,0089	3,8564	46,2511	929	128,45	0,2003
4	0,288	0,0038	0,450	11,10	0,0128	3,1058	14,1863	1209	49,82	0,4214
5	0,499	0,0066	0,450	19,29	0,0097	3,1299	19,1729	1195	66,75	0,3260
6	0,690	0,0091	0,450	26,57	0,0077	3,1058	21,8420	1209	76,70	0,2710
7	0,806	0,0107	0,450	31,05	0,0088	3,1058	26,6967	1209	93,75	0,2834
8	1,440	0,0191	0,450	55,49	0,0058	3,1058	30,1360	1209	105,83	0,1791
9	0,129	0,0017	0,448	5,08	0,0195	3,3040	9,5326	1109	31,26	0,5947

Tabela P1-3. Prenos mase u gusto pakovanom sloju (eksp.sistem: slika 2.1)
Vreme merenja prenosa mase: 15 min.
T_{sr}: 25.6 °C
D_p uronjene sfere: 20 mm

Ogled	V	U	3	Rep	ci	c _R	k·10 ⁶	Sc	Shp	jр
R. br.	(l/min)	(m/s)	-	-	(kg/m^3)	(kg/m^3)	(m/s)	-	-	-
$d_p = 1,20$	0 mm									
1	0,721	0,0096	0,324	11	0,0196	3,1542	51,0509	1182	71	0,5966
2	0,763	0,0101	0,324	12	0,0199	3,2533	54,5315	1132	73	0,5849
3	0,806	0,0107	0,324	13	0,0185	3,3040	46,7737	1109	62	0,4688
4	0,933	0,0124	0,324	15	0,0196	3,2533	62,1043	1132	83	0,5453
5	1,059	0,0141	0,324	17	0,0189	3,3040	58,8196	1109	78	0,4484
6	1,144	0,0152	0,324	18	0,0192	3,3040	74,7603	1109	99	0,5278
7	1,228	0,0163	0,324	19	0,0177	3,3040	76,8247	1109	101	0,5051
8	1,313	0,0174	0,324	21	0,0182	3,3554	74,0220	1086	96	0,4492
9	1,397	0,0185	0,324	22	0,0184	3,4077	87,0418	1065	111	0,4898
10	1,482	0,0197	0,324	24	0,0184	3,4077	86,4056	1065	110	0,4585
11	0,783	0,0104	0,318	12	0,0199	3,2034	65,3945	1156	89	0,6935
12	0,929	0,0123	0,318	15	0,0160	3,2533	62,6071	1132	84	0,5519
13	1,293	0,0172	0,318	20	0,0140	3,2034	65,2914	1156	89	0,4194
14	1,585	0,0210	0,318	25	0,0136	3,3554	73,8011	1086	96	0,3711
15	1,803	0,0239	0,318	28	0,0142	3,2533	91,1308	1132	122	0,4138
16	2,022	0,0268	0,318	32	0,0140	3,3040	99,6468	1109	132	0,3980
17	2,240	0,0297	0,318	35	0,0124	3,3040	92,3403	1109	122	0,3329
18	2,386	0,0316	0,318	38	0,0146	3,3554	120,5792	1086	157	0,4026
19	2,459	0,0326	0,318	39	0,0189	3,4077	151,9472	1065	194	0,4859
20	2,750	0,0365	0,318	42	0,0105	3,0582	109,8512	1236	158	0,3469
21	2,896	0,0384	0,318	45	0,0089	3,0582	93,9645	1236	135	0,2818
22	3,188	0,0423	0,318	49	0,0093	3,1058	132,0954	1209	187	0,3545
23	3,333	0,0442	0,318	52	0,0102	3,1542	147,4222	1182	205	0,3727
$d_p=1,94$	4 mm									
1	0,929	0,0123	0,369	23	0,0179	3,1058	55,6235	1209	127	0,5122
2	1,075	0,0143	0,369	27	0,0150	3,2034	59,4440	1156	131	0,4595
3	1,512	0,0201	0,369	38	0,0167	3,2533	83,0179	1132	180	0,4497
4	1,730	0,0230	0,369	44	0,0131	3,3040	78,3578	1109	167	0,3657
5	2,022	0,0268	0,369	52	0,0133	3,3040	88,1561	1109	188	0,3521
6	2,240	0,0297	0,369	57	0,0119	3,3554	85,9157	1086	180	0,3056
7	2,386	0,0316	0,369	61	0,0123	3,3554	93,6701	1086	197	0,3128
8	2,605	0,0345	0,369	67	0,0115	3,3554	102,2228	1086	215	0,3127
9	2,750	0,0365	0,369	70	0,0120	3,3554	106,7029	1086	224	0,3091
10	2,896	0,0384	0,369	74	0,0117	3,4077	114,2037	1065	236	0,3101
11	3,042	0,0403	0,369	78	0,0130	3,4077	133,6585	1065	276	0,3455
12	3,333	0,0442	0,369	86	0,0121	3,4608	129,6637	1045	263	0,3020
13	0,929	0,0123	0,376	24	0,0127	3,6816	34,2682	974	65	0,2732
14	0,929	0,0123	0,376	24	0,0147	3,7973	43,6742	943	80	0,3409
15	0,929	0,0123	0,376	24	0,0166	3,7973	43,4195	943	80	0,3389
16	1,293	0,0172	0,376	33	0,0138	3,8564	56,7441	929	103	0,3149
17	1,585	0,0210	0,376	41	0,0139	4,0395	58,6031	891	101	0,2581

Ogled	V	U	3	Re.	C:	Ср	k∙10 ⁶	Sc	Sh.	İn
R. br.	(l/min)	(m/s)	-	-	(kg/m^3)	(kg/m^3)	(m/s)	-	-	JD -
18	2,022	0,0268	0,376	52	0,0120	4,0395	68,5800	891	118	0,2367
19	2,386	0,0316	0,376	61	0,0135	4,0395	86,0403	891	148	0,2516
20	2,678	0,0355	0,376	69	0,0116	4,0395	92,7954	891	160	0,2419
$d_p=2,9$	8 mm									
1	4,945	0,0656	0,336	191	0,0068	3,1058	112,0705	1209	394	0,1939
2	5,042	0,0669	0,336	195	0,0063	3,1542	98,0618	1182	338	0,1639
3	5,138	0,0681	0,336	200	0,0063	3,2034	107,4798	1156	365	0,1737
4	5,331	0,0707	0,336	208	0,0067	3,2533	115,2534	1132	384	0,1770
5	5,524	0,0733	0,336	217	0,0069	3,3040	115,4469	1109	379	0,1688
6	2,022	0,0268	0,355	75	0,0085	2,8747	64,0655	1362	245	0,2935
7	2,168	0,0287	0,355	81	0,0085	2,8747	65,6544	1362	251	0,2805
8	2,313	0,0307	0,355	86	0,0086	2,8747	73,1160	1362	280	0,2927
9	2,459	0,0326	0,355	93	0,0088	2,9650	74,1238	1296	274	0,2702
10	2,605	0,0345	0,355	99	0,0089	2,9650	89,5636	1296	331	0,3082
11	2,750	0,0365	0,355	105	0,0079	3,0112	78,2908	1266	285	0,2511
12	2,896	0,0384	0,355	111	0,0086	3,0582	80,5826	1236	288	0,2417
13	3,042	0,0403	0,355	117	0,0075	3,0582	86,1940	1236	308	0,2461
14	3,115	0,0413	0,355	120	0,0075	3,1058	86,8447	1209	305	0,2385
15	3,188	0,0423	0,355	123	0,0082	3,1542	86,9265	1182	300	0,2298
16	3,333	0,0442	0,355	129	0,0084	3,1542	87,2545	1182	301	0,2206

Tabela P1-4. Prenos mase u pakovanom i fluidizovanom sloju (eksp.sistem: slika 2.1)
Vreme merenja prenosa mase: 15 min
T_{sr}: 24.5 °C
D_p uronjene sfere: 20 mm

Ogled	V	U	З	Rep	ci	cR	k·106	Sc	Shp	Ĵр
R. br.	(l/min)	(m/s)	-	-	(kg/m3)	(kg/m3)	(m/s)	-	-	-
$d_p=0,80$	03 mm									
1	3,74E-05	0,0298	0,598	24,11	0,0046	2,9015	3,83E-05	1262	39,10	0,1501
2	3,24E-05	0,0258	0,566	21,30	0,0066	2,9742	4,21E-05	1204	41,77	0,1843
3	2,72E-05	0,0216	0,530	18,15	0,0076	3,0393	4,27E-05	1155	41,43	0,2176
4	2,22E-05	0,0177	0,492	15,04	0,0106	3,0962	4,52E-05	1115	42,96	0,2754
5	1,72E-05	0,0137	0,448	11,86	0,0130	3,1542	4,73E-05	1077	44,01	0,3621
6	1,36E-05	0,0108	0,410	9,46	0,0181	3,1984	4,64E-05	1049	42,52	0,4423
7	8,44E-06	0,0067	0,385	5,91	0,0196	3,2332	3,39E-05	1028	30,69	0,5142
8	6,02E-06	0,0048	0,385	4,24	0,0247	3,2533	2,73E-05	1017	24,55	0,5759
9	3,85E-06	0,0031	0,385	2,71	0,0313	3,2583	2,35E-05	1014	21,10	0,7741
10	2,14E-06	0,0017	0,385	1,50	0,0451	3,2133	1,94E-05	1040	17,67	1,1659
11	1,20E-04	0,0953	0,922	80,33	0,0014	3,0558	3,59E-05	1143	34,60	0,0412
12	1,02E-04	0,0808	0,867	69,33	0,0018	3,1251	3,54E-05	1096	33,29	0,0466
13	8,21E-05	0,0653	0,801	56,97	0,0026	3,1935	3,98E-05	1052	36,48	0,0630
14	6,62E-05	0,0527	0,739	46,79	0,0030	3,2684	3,80E-05	1008	33,95	0,0724
15	4,89E-05	0,0389	0,660	35,14	0,0045	3,3477	3,93E-05	965	34,27	0,0987
$d_p = 1,20$	0 mm									
1	2,14E-06	0,0017	0,393	2,18	0,0373	3,5066	1,57E-05	887	17,81	0,8511
2	7,48E-06	0,0060	0,393	7,76	0,0238	3,6000	3,11E-05	846	34,30	0,4671
3	1,37E-05	0,0109	0,393	14,64	0,0188	3,7622	4,34E-05	783	45,63	0,3381
4	2,03E-05	0,0162	0,438	22,10	0,0165	3,8564	5,28E-05	751	54,10	0,2693
5	2,91E-05	0,0232	0,500	31,95	0,0130	3,9044	5,64E-05	735	57,08	0,1980
6	3,97E-05	0,0316	0,560	43,75	0,0083	3,9378	5,53E-05	724	55,45	0,1411
7	4,80E-06	0,0038	0,393	4,18	0,0256	2,8526	2,62E-05	1304	37,31	0,8174
8	1,30E-04	0,1038	0,867	125,93	0,0014	3,2583	3,64E-05	1014	44,70	0,0353
9	1,15E-04	0,0916	0,828	113,08	0,0018	3,3399	3,55E-05	969	42,52	0,0380
10	9,82E-05	0,0782	0,781	97,79	0,0018	3,3998	3,47E-05	938	40,72	0,0425
11	7,91E-05	0,0630	0,721	79,78	0,0028	3,4608	3,98E-05	908	45,76	0,0592
12	6,08E-05	0,0484	0,655	62,13	0,0037	3,5256	4,06E-05	878	45,84	0,0770
13	4,60E-05	0,0367	0,591	47,74	0,0056	3,5972	4,37E-05	848	48,25	0,1068
$d_p = 1,9$	4 mm		÷	÷	•					
1	2,06E-06	0,0016	0,421	3,31	0,0285	2,9559	1,23E-05	1218	30,14	0,8537
2	7,57E-06	0,0060	0,421	12,62	0,0148	3,1058	2,32E-05	1109	53,84	0,4124
3	1,66E-05	0,0132	0,421	28,34	0,0124	3,2108	4,02E-05	1042	89,92	0,3130
4	2,44E-05	0,0194	0,421	42,71	0,0101	3,3091	4,78E-05	985	103,53	0,2436
5	3,34E-05	0,0266	0,448	59,60	0,0083	3,3998	5,29E-05	938	111,14	0,1905
6	3,86E-05	0,0307	0,474	69,56	0,0084	3,4528	5,38E-05	912	111,25	0,1649
7	5,37E-06	0,0043	0,421	8,07	0,0145	2,7275	1,81E-05	1424	48,49	0,5342
8	1,24E-04	0,0984	0,743	195,12	0,0014	2,8971	3,39E-05	1266	85,02	0,0403
9	1,08E-04	0,0862	0,706	175,52	0,0015	2,9973	3,67E-05	1186	88,58	0,0477
10	9,16E-05	0,0729	0,662	152,36	0,0024	3,0962	4,30E-05	1115	100,26	0,0635
11	7,24E-05	0,0577	0,604	123,50	0,0034	3,1984	4,95E-05	1049	111,14	0,0886

Ogled R. br.	℃ (I/min)	U (m/s)	3 -	Rep -	ci (kg/m3)	cR (kg/m3)	k∙106 (m/s)	Sc -	Shp -	јо -
12	5,70E-05	0,0454	0,551	99,52	0,0048	3,3040	5,16E-05	988	111,83	0,1128
13	4,29E-05	0,0342	0,494	76,66	0,0067	3,4077	5,32E-05	934	111,43	0,1487

Ogled R. br.	U (m/s)	ΔTsr,log (°C)	3 -	α (kW/m ² K)	Re -	Re _p	Pr -	Nup	ј н
$d_p=0,803 \text{ mm}$									
1	0.0833	44.09	0.845	3.264	3312.06	104.71	4.17	4.14	0.0245
2	0.0418	34.10	0.652	2.984	1920.78	60.72	3.54	3.72	0.0402
3	0.0484	37.14	0.690	2.930	2144.91	67.81	3.69	3.67	0.0350
4	0.0494	36.05	0.695	3.130	2236.65	70.71	3.60	3.91	0.0360
5	0.0510	35.30	0.700	3.357	2294.68	72.54	3.63	4.19	0.0376
6	0.0533	37.84	0.714	3.117	2346.51	74.18	3.72	3.90	0.0340
7	0.0563	38.53	0.729	3.122	2440.39	77.15	3.78	3.92	0.0326
8	0.0576	39.21	0.737	3.140	2497.48	78.96	3.78	3.94	0.0320
9	0.0599	39.02	0.748	3.253	2607.09	82.42	3.77	4.08	0.0318
10	0.0625	39.49	0.763	3.208	2650.66	83.80	3.88	4.04	0.0306
11	0.0652	39.36	0.771	3.478	2825.72	89.33	3.78	4.36	0.0313
12	0.0678	40.40	0.786	3.276	2829.75	89.46	3.95	4.13	0.0292
13	0.0681	39.88	0.784	3.525	2909.95	92.00	3.85	4.43	0.0307
14	0.0724	40.62	0.805	3.413	2998.47	94.79	3.99	4.30	0.0286
15	0.0734	41.44	0.808	3.589	3111.03	98.35	3.88	4.51	0.0292
16	0.0757	42.28	0.816	3.495	3159.43	99.88	3.95	4.40	0.0279
17	0.0796	44.94	0.834	3.064	3168.06	100.16	4.17	3.88	0.0241
18	0.0810	43.49	0.837	3.356	3273.50	103.49	4.10	4.25	0.0256
19	0.0829	46.56	0.847	2.946	3244.45	102.57	4.25	3.74	0.0225
20	0.0849	46.38	0.851	3.301	3433.18	108.54	4.10	4.17	0.0240
21	0.0882	46.13	0.861	3.305	3508.43	110.92	4.17	4.19	0.0235
22	0.0928	47.58	0.871	3.445	3722.14	117.67	4.14	4.36	0.0231
23	0.0977	46.72	0.881	3.461	3823.81	120.89	4.25	4.39	0.0224
24	0.1030	47.30	0.892	3.683	4063.69	128.47	4.21	4.67	0.0225
25	0.1093	47.87	0.909	3.605	4202.39	132.86	4.34	4.59	0.0212
26	0.1145	49.46	0.916	3.311	4253.25	134.46	4.51	4.23	0.0190
27	0.1195	52.60	0.927	3.163	4396.90	139.00	4.56	4.04	0.0175
28	0.1228	53.05	0.933	3.222	4518.03	142.83	4.56	4.12	0.0174
29	0.1257	53.60	0.937	3.090	4543.37	143.63	4.65	3.96	0.0165
30	0.1307	54.61	0.943	3.063	4678.23	147.90	4.70	3.93	0.0159
31	0.1336	53.70	0.949	3.093	4739.70	149.84	4.75	3.97	0.0158
32	0.1392	56.71	0.952	3.051	4938.16	156.12	4.75	3.92	0.0149
<i>d</i> _{<i>p</i>} =1,20 mm	ſ	T		1	1	r			
1	0.0964	41.32	0.841	3.736	4005.88	173.17	3.99	6.47	0.0235

Tabela P2-1. Prenos toplote u fluidizovanom sloju (eksp. sistem: slika 2.6)

Ogled	U	$\Delta Tsr, log$	3	α	Re	Rep	Pr	Nup	јн
K. Dr.	(m/s)	(*C)	-	(KW/MK)	-	-	-	(24	0.0414
2	0.0482	30.97	0.632	3./14	2342.85	101.28	3.29	6.24	0.0414
3	0.0494	35.69	0.652	3.316	2252.64	97.56	3.57	5.66	0.0380
4	0.0520	33.83	0.669	3.628	2355.94	102.03	3.60	6.20	0.0397
5	0.0546	35.33	0.680	3.535	2439.84	105.66	3.66	6.05	0.0372
6	0.0546	29.77	0.682	4.875	2617.21	113.34	3.38	8.28	0.0487
7	0.0573	36.05	0.697	3.514	2520.33	109.15	3.72	6.03	0.0356
8	0.0582	32.77	0.689	3.920	2739.94	118.44	3.43	6.63	0.0371
9	0.0612	37.46	0.713	3.675	2713.97	117.53	3.69	6.30	0.0347
10	0.0629	36.76	0.722	3.719	2746.20	118.93	3.75	6.38	0.0346
11	0.0632	39.16	0.721	3.539	2770.81	120.00	3.74	6.07	0.0326
12	0.0645	37.46	0.726	3.745	2818.09	122.04	3.75	6.43	0.0339
13	0.0681	39.75	0.746	3.600	2932.06	126.98	3.82	6.19	0.0312
14	0.0692	35.86	0.739	4.165	3236.75	139.92	3.46	7.06	0.0333
15	0.0717	39.49	0.763	3.749	3064.59	132.72	3.85	6.45	0.0310
16	0.0741	39.75	0.770	3.705	3114.86	134.90	3.92	6.39	0.0301
17	0.0750	41.03	0.774	3.706	3180.79	137.75	3.88	6.39	0.0295
18	0.0773	40.80	0.785	3.841	3278.44	141.98	3.88	6.62	0.0297
19	0.0787	41.66	0.791	3.756	3308.67	143.29	3.92	6.48	0.0287
20	0.0800	41.24	0.795	3.713	3311.95	143.43	3.99	6.41	0.0282
21	0.0812	38.19	0.789	3.953	3587.04	155.06	3.71	6.77	0.0282
22	0.0820	42.89	0.803	3.588	3366.99	145.81	4.02	6.20	0.0268
23	0.0846	42.28	0.814	3.607	3419.87	148.10	4.10	6.25	0.0264
24	0.0862	42.47	0.820	3.812	3542.78	153.43	4.02	6.59	0.0270
25	0.0889	43.91	0.825	3.724	3621.93	156.86	4.06	6.45	0.0258
26	0.0898	44.09	0.832	3.522	3573.88	154.77	4.17	6.11	0.0245
27	0.0902	44.25	0.832	3.599	3616.55	156.62	4.14	6.24	0.0248
28	0.0945	45.11	0.842	3.541	3726.13	161.37	4.21	6.15	0.0236
29	0.0951	45.70	0.847	3.598	3783.34	163.85	4.17	6.25	0.0237
30	0.0981	46.42	0.853	3.494	3836.69	166.16	4.25	6.08	0.0226
31	0.1001	46.28	0.856	3.656	3946.85	170.93	4.21	6.35	0.0230
32	0.1033	48.44	0.867	3.449	4008.64	173.60	4.30	6.00	0.0213
33	0.1056	49.12	0.874	3.316	4028.25	174.45	4.38	5.79	0.0203
34	0.1116	49.12	0.886	3.163	4106.20	177.83	4.56	5.54	0.0188
35	0.1132	47.20	0.889	3.788	4354.29	188.57	4.34	6.60	0.0215
36	0.1132	50.68	0.888	3.278	4241.92	183.71	4.47	5.73	0.0189
37	0.1185	50.13	0.900	3.203	4321.16	187.14	4.61	5.62	0.0180
38	0.1195	50.76	0.899	3.277	4396.90	190.42	4.56	5.74	0.0182
39	0.1224	51.23	0.905	3.239	4465.20	193.37	4.61	5.68	0.0176
40	0.1251	52.23	0.912	3.334	4602.82	199.33	4.56	5.84	0.0177
41	0.1336	53.31	0.924	3.209	4784.28	207.19	4.70	5.64	0.0162
42	0.1415	55.38	0.937	3.176	5019.88	217.40	4.75	5.59	0.0153

Ogled R. br.	U (m/s)	ΔTsr,log (°C)	3 -	α (kW/m ² K)	Re -	Re _p	Pr -	Nup	.јн
43	0.1494	55.38	0.949	2.949	5100.25	220.88	4.96	5.21	0.0138
44	0.1550	55.90	0.955	2.926	5239.33	226.90	5.02	5.17	0.0133
45	0.1586	57.91	0.958	2.994	5414.80	234.50	4.96	5.29	0.0132
46	0.1639	57.95	0.961	2.773	5429.89	235.15	5.13	4.91	0.0121
47	0.1702	58.95	0.967	2.830	5637.05	244.12	5.13	5.01	0.0119
48	0.1741	60.43	0.970	2.716	5709.57	247.27	5.19	4.82	0.0113
49	0.1790	60.43	0.974	2.905	5931.44	256.87	5.13	5.15	0.0116
50	0.1836	59.43	0.977	2.913	6022.58	260.82	5.19	5.17	0.0114
51	0.1876	59.95	0.979	2.715	6026.45	260.99	5.31	4.83	0.0106
52	0.1912	61.47	0.984	2.583	6078.76	263.25	5.38	4.60	0.0100
53	0.1955	61.47	0.984	2.640	6214.77	269.14	5.38	4.70	0.0100
54	0.1975	61.98	0.984	2.525	6211.50	269.00	5.44	4.50	0.0095
55	0.2064	64.49	0.986	2.175	6284.34	272.16	5.64	3.89	0.0080
<i>d_p</i> =1,94 mm									
1	0.1767	56.95	0.911	3.392	6032.67	460.76	4.96	10.56	0.0134
2	0.0602	33.13	0.611	4.359	2748.22	209.90	3.57	13.13	0.0409
3	0.0648	33.51	0.622	4.567	2937.46	224.36	3.60	13.77	0.0401
4	0.0678	36.02	0.634	4.161	3152.77	240.80	3.48	12.47	0.0342
5	0.0691	33.51	0.638	4.945	3153.70	240.87	3.57	14.90	0.0405
6	0.0708	35.64	0.646	4.539	3160.03	241.36	3.66	13.71	0.0369
7	0.0750	35.26	0.662	4.787	3326.80	254.09	3.69	14.47	0.0369
8	0.0773	36.99	0.672	4.625	3403.89	259.98	3.72	13.99	0.0347
9	0.0826	37.91	0.690	4.577	3555.31	271.55	3.82	13.88	0.0327
10	0.0856	41.44	0.699	4.107	3599.39	274.91	3.92	12.49	0.0288
11	0.0862	37.91	0.705	4.862	3739.08	285.58	3.78	14.74	0.0331
12	0.0870	39.68	0.688	4.623	3849.66	294.03	3.70	13.99	0.0308
13	0.0882	39.80	0.712	4.408	3710.14	283.37	3.92	13.41	0.0300
14	0.0918	39.18	0.721	4.836	3922.11	299.56	3.85	14.68	0.0313
15	0.0954	39.10	0.735	4.823	4096.26	312.86	3.84	14.67	0.0299
16	0.0964	39.39	0.737	4.779	4024.85	307.41	3.95	14.55	0.0299
17	0.0971	40.60	0.741	4.401	3957.29	302.25	4.06	13.44	0.0279
18	0.0972	40.50	0.740	5.093	4333.66	331.00	3.67	15.39	0.0302
19	0.1007	41.02	0.751	4.701	4170.60	318.54	3.99	14.32	0.0284
20	0.1027	42.71	0.585	4.743	4430.87	338.42	3.82	14.42	0.0273
21	0.1037	41.19	0.763	4.725	4259.45	325.33	4.02	14.41	0.0279
22	0.1126	43.38	0.772	4.775	4587.77	350.40	4.06	14.58	0.0261
23	0.1141	42.09	0.790	4.716	4662.23	356.09	4.07	14.46	0.0254
24	0.1145	44.52	0.793	4.351	4518.10	345.08	4.21	13.33	0.0239
25	0.1193	45.07	0.793	4.933	4939.59	377.28	4.00	15.09	0.0252
26	0.1211	44.63	0.811	4.387	4698.03	358.83	4.30	13.47	0.0231
27	0.1237	46.09	0.811	4.540	4881.63	372.85	4.21	13.91	0.0231

Ogled R. br.	U (m/s)	ΔTsr,log (°C)	3 -	α (kW/m ² K)	Re -	Re _p	Pr -	Nup	.jн
28	0.1251	46.54	0.820	4.444	4892.42	373.67	4.25	13.63	0.0225
29	0.1300	47.29	0.831	4.239	4956.89	378.60	4.38	13.04	0.0211
30	0.1333	47.55	0.837	4.531	5170.38	394.90	4.30	13.91	0.0217
31	0.1349	46.25	0.839	4.620	5372.72	410.36	4.19	14.22	0.0215
32	0.1376	47.29	0.850	4.269	5154.43	393.68	4.47	13.16	0.0203
33	0.1424	51.59	0.846	4.286	5531.99	422.52	4.32	13.24	0.0192
34	0.1445	50.30	0.861	4.107	5365.46	409.80	4.51	12.67	0.0187
35	0.1446	50.37	0.862	3.999	5323.52	406.60	4.56	12.35	0.0183
36	0.1494	49.83	0.872	4.175	5499.16	420.01	4.56	12.90	0.0185
37	0.1497	50.42	0.872	3.802	5361.70	409.52	4.70	11.78	0.0172
38	0.1514	50.37	0.876	3.961	5471.08	417.87	4.65	12.26	0.0176
39	0.1586	53.37	0.889	3.805	5679.86	433.82	4.70	11.79	0.0162
40	0.1636	53.42	0.895	3.805	5802.05	443.15	4.75	11.80	0.0158
41	0.1646	50.94	0.897	4.015	5837.07	445.82	4.75	12.45	0.0166
42	0.1669	54.70	0.898	3.734	5835.19	445.68	4.83	11.60	0.0154
43	0.1751	54.95	0.910	3.722	6093.66	465.42	4.86	11.57	0.0147
44	0.1774	52.97	0.912	3.787	5995.75	457.94	5.02	11.81	0.0151
45	0.1909	54.98	0.926	4.057	6515.74	497.66	4.96	12.64	0.0149
46	0.2482	60.99	0.976	3.073	7557.24	577.21	5.64	9.69	0.0094
47	0.2682	65.49	0.991	2.168	7635.11	583.15	6.09	6.88	0.0065
48	0.2798	67.47	0.998	2.038	7870.99	601.17	6.17	6.48	0.0059
<i>d_p</i> =2,98 mm									
1	0.1679	46.07	0.842	4.889	6370.89	747.45	4.43	23.28	0.0190
2	0.0554	27.67	0.526	5.078	2721.57	319.30	3.25	23.11	0.0489
3	0.0693	31.27	0.580	4.960	3217.55	377.49	3.49	22.85	0.0399
4	0.0836	39.26	0.623	4.279	3726.05	437.15	3.67	19.86	0.0295
5	0.1017	40.82	0.684	4.871	4471.47	524.61	3.73	22.66	0.0279
6	0.1215	40.68	0.740	5.068	5047.83	592.23	3.99	23.81	0.0253
7	0.1432	43.23	0.791	4.985	5760.84	675.88	4.14	23.53	0.0217

Ogled	U	3	t	Δm	c*	$\mathcal{D}_{AB} \times 10^{10}$	Rep	Re
R. br.	(m/s)	-	(min)	(g)	(kg/m^3)	(m^2/s)	-	-
$d_p = 1,20 \text{ mm}$								
1	0.114	0.912	10.0	0.083	2.929	7.95	126.0	3903
2	0.112	0.906	15.0	0.094	2.983	8.11	126.3	3911
3	0.0826	0.824	17.5	0.053	3.039	8.28	94.24	2918
4	0.0619	0.739	20.0	0.197	3.135	8.57	72.31	2239
5	0.0432	0.642	20.8	0.238	3.397	9.37	53.60	1660
6	0.128	0.933	13.0	0.106	2.902	7.86	140.2	4343
7	0.117	0.916	15.0	0.094	3.049	8.31	133.9	4147
8	0.0577	0.720	16.5	0.16	3.418	9.43	71.95	2228
9	0.0366	0.608	14.8	0.141	3.164	8.66	43.01	1332
10	0.0294	0.558	15.3	0.155	3.233	8.87	35.16	1089
11	0.0209	0.493	10.0	0.134	3.408	9.40	26.06	807.0
12	0.0217	0.503	13.5	0.199	3.304	9.09	26.36	816.2
<i>d_p</i> =1,94 mm								
1	0.169	0.905	13.0	0.103	3.077	8.40	344.5	6037
2	0.114	0.802	14.5	0.112	3.213	8.81	239.2	4192
3	0.0757	0.689	15.4	0.142	2.884	7.81	146.2	2561
4	0.0514	0.588	13.5	0.0980	3.002	8.17	102.6	1798
5	0.0349	0.500	12.0	0.139	3.096	8.46	71.34	1250
6	0.0454	0.550	11.0	0.127	3.106	8.49	92.96	1630
d_p =2,98 mm								
1	0.210	0.9016	10.8	0.0870	3.021	8.23	648.1697	7395.225
2	0.145	0.7998	11.7	0.077	2.902	7.86	432.6493	4936.267
3	0.106	0.7001	13.0	0.122	3.011	8.2	324.9828	3707.858
4	0.0726	0.6027	12.0	0.169	3.002	8.17	222.3141	2536.47
5	0.0481	0.5034	12.0	0.136	3.154	8.63	153.3024	1749.087
6	0.0604	0.5557	12.0	0.139	3.203	8.78	194.8162	2222.736

Tabela P2-2. Prenos mase u fluidizovanom sloju.

P2-2-1a. Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2).

Ogled R. br.	U (m/s)	3	kx10⁵ (m/s)	Sc -	Sh _p	Sh -	jd -
$d_{p}=1,20 \text{ mm}$							
1	0.114	0.912	4.50	1248	62.2	1926	0.0458
2	0.112	0.906	3.26	1204	44.0	1364	0.0328
3	0.0826	0.824	2.24	1162	29.8	921.3	0.0300
4	0.0619	0.739	4.76	1096	70.0	1888	0.0818
5	0.0432	0.642	4.28	943.9	50.1	1552	0.0953
6	0.128	0.933	2.18	1270	30.4	942.2	0.0200
7	0.117	0.916	2.65	1155	35.0	1086	0.0249
8	0.0577	0.720	3.57	933.3	41.6	1288	0.0592
9	0.0366	0.608	4.89	1077	61.9	1918	0.1405
10	0.0294	0.558	4.68	1034	58.0	1795	0.1630
11	0.0209	0.493	5.80	938.6	67.7	2098	0.2655
12	0.0217	0.503	5.89	993.6	71.2	2203	0.2705
$d_p = 1,94 \text{ mm}$							
1	0.169	0.905	4.01	1135	92.60	1623	0.0258
2	0.114	0.802	3.78	1046	83.12	1457	0.0342
3	0.0757	0.689	4.15	1286	103.1	1806	0.0648
4	0.0514	0.588	3.34	1190	79.38	1391	0.0730
5	0.0349	0.500	5.33	1122	122.3	2143	0.1649
6	0.0454	0.550	5.19	1116	118.7	2081	0.1232
$d_p=2,98 \text{ mm}$							
1	0.2105	0.9016	3.62	1176	131.2724	1497.739	0.0192
2	0.1451	0.7998	3.62	1271	137.3551	1567.138	0.0293
3	0.1058	0.7001	4.49	1183	163.0525	1860.331	0.0474
4	0.0725	0.6027	6.24	1190	227.7456	2598.44	0.0967
5	0.0481	0.5034	5.38	1084	185.7414	2119.197	0.118
6	0.0604	0.5557	5.64	1052	191.2317	2181.838	0.0965

P2-2-1b. Prenos mase u fluidizovanom sloju metodom rastvaranja (eksp. sistem: slika 2.2).

Ogled	U	3	Т	Ι	$\mathcal{D}_{AB} \times 10^{10}$	kx10 ⁵	Sc	Shp	JD.exp.
R. br.	(m/s)	-	(°C)	(mA)	(m^2/s)	(m/s)	-	-	-
$d_p = 1,20 \text{ mm}$	1	1	1	1	I	[r	1	1
1	0.0022	0.417	25	55	7.19915	1.73835	1239.51	26.5	0.904
2	0.0055	0.417	27	47.7	7.5882	1.47748	1123.71	21.4	0.287
3	0.0055	0.385	30.2	88	8.22604	3.89858	967.24	52.0	0.692
4	0.0110	0.422	30.9	91.5	8.36777	3.59935	937.10	47.2	0.313
5	0.0118	0.417	29	48.1	7.98483	1.49153	1022.16	20.5	0.127
6	0.0123	0.426	31	50.1	8.38808	1.51239	932.90	19.8	0.116
7	0.0147	0.426	34.8	53.6	9.16941	1.63377	791.38	19.6	0.094
8	0.0147	0.425	33	96	8.79706	3.82284	854.27	47.7	0.234
9	0.0165	0.429	32.9	94.5	8.77649	3.68786	857.97	46.1	0.201
10	0.0184	0.437	32.4	93.9	8.67381	3.54829	876.84	44.9	0.177
11	0.0202	0.460	37.4	55.1	9.71339	1.50414	711.81	17.0	0.059
12	0.0202	0.442	32.4	94.7	8.67381	3.53461	876.84	44.7	0.160
13	0.0239	0.450	32.3	94	8.65332	3.40263	880.68	43.2	0.131
14	0.0274	0.535	37.3	65.2	9.69235	1.45727	714.65	16.5	0.042
15	0.0285	0.542	32.3	116	8.65332	3.61165	880.68	45.8	0.117
16	0.0367	0.599	32.3	123	8.65332	3.44232	880.68	43.7	0.086
17	0.0413	0.629	36.2	72.6	9.46148	1.2982	747.01	15.1	0.025
18	0.0459	0.647	32.2	142	8.63283	4.03695	884.55	51.3	0.081
19	0.0551	0.692	32.1	149	8.61236	4.03566	888.44	51.5	0.068
20	0.0591	0.717	35.2	81.6	9.25265	1.22589	778.32	14.5	0.017
21	0.0661	0.750	32.1	153.3	8.61236	3.80695	888.44	48.5	0.053
22	0.0753	0.782	32.3	165	8.65332	4.24384	880.68	53.8	0.052
23	0.0775	0.794	36	89	9.41963	1.17092	753.12	13.6	0.012
24	0.0810	0.804	36	88.9	9.41963	1.1477	753.12	13.4	0.012
<i>d_p</i> =1,94 mm	-		-	-					
1	0.0018	0.460	32.3	38.8	8.65332	1.02793	880.68	23.0	0.511
2	0.0055	0.252	29.6	93.1	8.10515	7.61829	994.17	182.3	1.377
3	0.0092	0.460	33.6	41.4	8.92076	1.10742	832.53	24.1	0.106
4	0.0110	0.470	33.6	97	8.92076	3.16343	832.53	68.8	0.254
5	0.0143	0.460	33.6	41.5	8.92076	1.11051	832.53	24.2	0.068
6	0.0147	0.483	34.3	99.2	9.0656	3.14314	808.16	67.3	0.186
7	0.0165	0.467	36.4	98.5	9.50337	3.26853	740.97	66.7	0.162
8	0.0178	0.460	34.1	44	9.02416	1.18847	815.02	25.5	0.058
9	0.0184	0.459	36.8	103	9.58726	3.58614	729.10	72.6	0.158
10	0.0202	0.452	33.7	43.5	8.94141	1.20336	828.99	26.1	0.052
11	0.0202	0.467	36.4	102	9.50337	3.4416	740.97	70.3	0.139

P2-2-2. Prenos mase u fluidizovanom sloju elektrohemijskom metodom (eksp. sistem:slika 2.4)

			-	-				-	
Ogled	U (m /r)	3	T	I (mA)	$\mathscr{D}_{AB} \times 10^{10}$	kx10 ⁵	Sc	Shp	j D,exp.
K. Dr.	(m/s)	-	(°C)	(mA)	(m^2/s)	(m/s)	-	-	-
12	0.0215	0.452	38.3	41.5	9.90322	1.13948	686.99	22.3	0.041
13	0.0222	0.460	37.9	41.3	9.81876	1.10434	697.86	21.8	0.039
14	0.0237	0.460	37.7	41.24	9.77659	1.10248	703.39	21.9	0.036
15	0.0239	0.470	36	102.8	9.41963	3.44639	753.12	71.0	0.119
16	0.0270	0.452	37.5	39.3	9.73445	1.07031	708.99	21.3	0.031
17	0.0285	0.475	35.7	100.7	9.35693	3.29219	762.43	68.3	0.097
18	0.0338	0.467	37.4	39	9.71339	1.00885	711.81	20.1	0.023
19	0.0340	0.483	35.2	100	9.25265	3.18055	778.32	66.7	0.079
20	0.0364	0.496	37	39.8	9.62927	0.94515	723.27	19.0	0.021
21	0.0367	0.525	34.4	99	9.08634	2.76569	804.76	59.0	0.065
22	0.0459	0.581	34.8	122	9.16941	3.28028	791.38	69.4	0.061
23	0.0498	0.575	36	45.7	9.41963	0.88812	753.12	18.3	0.015
24	0.0551	0.618	39.5	121	10.1575	2.95429	655.83	56.4	0.040
25	0.0661	0.659	34.1	140	9.02416	3.45213	815.02	74.2	0.046
26	0.0674	0.650	36.7	49.8	9.56627	0.81843	732.04	16.6	0.010
27	0.0753	0.694	34.9	145	9.1902	3.40373	788.09	71.9	0.039
28	0.0759	0.685	36.4	53	9.50337	0.81512	740.97	16.6	0.009
29	0.0915	0.734	36.4	55.5	9.50337	0.77738	740.97	15.9	0.007
30	0.0955	0.761	34.7	165	9.14862	3.83647	794.70	81.4	0.034
31	0.0970	0.751	36.4	55.5	9.50337	0.75034	740.97	15.3	0.006
32	0.1139	0.803	35	168	9.21101	3.67916	784.81	77.5	0.027
33	0.1159	0.799	36.5	41.3	9.52433	0.48228	737.97	9.8	0.003
<i>d_p</i> =2,98 mm									
1	0.0013	0.464	33.2	41.3	8.83824	1.08853	846.94	36.7	0.753
2	0.0055	0.483	34.9	100.7	9.1902	3.21353	788.09	104.2	0.498
3	0.0084	0.456	33.2	42.2	8.83824	1.14501	846.94	38.6	0.120
4	0.0110	0.483	40.1	107.8	10.2851	3.56084	641.03	103.2	0.240
5	0.0118	0.456	33.2	39.9	8.83824	1.07338	846.94	36.2	0.081
6	0.0136	0.456	33.2	41.4	8.83824	1.11995	846.94	37.8	0.073
7	0.0147	0.483	39.4	108.8	10.1362	3.61173	658.35	106.2	0.186
8	0.0156	0.448	35.6	42.3	9.33606	1.17946	765.57	37.6	0.062
9	0.0165	0.483	38.5	103.9	9.94551	3.3671	681.64	100.9	0.158
10	0.0184	0.448	37.5	39.7	9.73445	1.09632	708.99	33.6	0.047
11	0.0184	0.483	38.2	104.4	9.88209	3.39153	689.68	102.3	0.144
12	0.0202	0.483	38.3	105.2	9.90322	3.43086	686.99	103.2	0.132
13	0.0211	0.450	38	37.4	9.83986	1.01849	695.12	30.8	0.037
14	0.0226	0.450	38	35	9.83986	0.94482	695.12	28.6	0.032
15	0.0239	0.483	38.2	104.8	9.88209	3.41116	689.68	102.9	0.112
16	0.0257	0.450	38	34	9.83986	0.91445	695.12	27.7	0.028
17	0.0285	0.483	38.1	103.4	9.86097	3.34279	692.39	101.0	0.092
18	0.0321	0.448	37.5	41.2	9.73445	1.14409	708.99	35.0	0.028

Ogled R. br.	U (m/s)	3 -	T (°C)	I (mA)	$\mathscr{D}_{AB} \times 10^{10}$ (m ² /s)	kx10⁵ (m/s)	Sc -	Sh _p	jd,exp. -
19	0.0340	0.483	37.5	104.6	9.73445	3.40133	708.99	104.1	0.080
20	0.0356	0.450	37.5	41.1	9.73445	1.13464	708.99	34.7	0.025
21	0.0367	0.483	37.6	104.4	9.75551	3.39153	706.18	103.6	0.073
22	0.0369	0.450	37.5	34.2	9.73445	0.92054	708.99	28.2	0.020
23	0.0406	0.452	37.5	34.4	9.73445	0.92158	708.99	28.2	0.018
24	0.0446	0.464	37.5	34.3	9.73445	0.88109	708.99	27.0	0.015
25	0.0459	0.490	37.6	105	9.75551	3.34283	706.18	102.1	0.058
26	0.0492	0.514	38.1	35	9.86097	0.77464	692.39	23.4	0.012
27	0.0551	0.549	37.4	114.5	9.71339	3.22488	711.81	98.9	0.047
28	0.0610	0.565	38.1	42	9.86097	0.826478	692.39	25.0	0.010
29	0.0661	0.591	37.4	119	9.71339	3.07187	711.81	94.2	0.037
30	0.0753	0.624	37.4	137.9	9.71339	3.63946	711.81	111.7	0.039
31	0.0770	0.615	38.6	70.4	9.96666	1.36502	679.00	40.8	0.013
32	0.0955	0.680	37.5	151.7	9.73445	3.82601	708.99	117.1	0.032
33	0.0984	0.679	38.4	77.2	9.92436	1.32909	684.31	39.9	0.010
34	0.1139	0.729	37.6	160.6	9.75551	3.86488	706.18	118.1	0.027
35	0.1341	0.776	37.7	170.1	9.77659	3.98406	703.39	121.4	0.024
36	0.1379	0.783	38.3	60	9.90322	0.77670	686.99	23.4	0.004
37	0.1458	0.797	38.5	110	9.94551	1.73198	681.64	51.9	0.009
38	0.1469	0.800	38.4	172.5	9.92436	3.92579	684.31	117.9	0.021
39	0.1515	0.805	38.3	178.8	9.90322	4.22917	686.99	127.3	0.022
Ogled	U	3	∆m	c *	$\mathcal{D}_{\Gamma} \cdot 10^{10}$	$\mathbf{k} \cdot 10^3$	Sc	Shp	j _D
-------------------------	--------	-------	-------	------------	--------------------------------------	-------------------------	--------	--------	----------------
R. br.	(m/s)	-	(g)	(kg/m^3)	(m^2/s)	(m/s)	-	-	-
$d_p = 1,20 \text{ mm}$					• • •				
1	0.0331	0.562	0.619	3.61	10.01	1.19	843.9	1343.3	3.20
2	0.0358	0.609	0.679	3.61	10.01	1.51	843.9	1716.6	3.78
3	0.0538	0.720	0.563	3.61	10.01	1.15	843.9	1311.9	1.91
4	0.0918	0.865	0.736	3.61	10.01	1.15	843.9	1315.0	1.12
5	0.1084	0.891	0.636	3.61	10.01	1.29	843.9	1482.0	1.07
6	0.0439	0.540	0.54	3.02	8.227	1.88	1176.3	2599.2	4.78
7	0.0713	0.725	0.521	3.00	8.170	1.52	1190.3	2124.3	2.40
8	0.0979	0.845	0.549	3.02	8.227	1.47	1176.3	2041.9	1.67
9	0.1032	0.860	0.523	3.08	8.399	1.41	1135.4	1918.8	1.48
$d_p = 1,94 \text{ mm}$									
1	0.0501	0.628	1.528	3.64	10.08	2.03	834.7	4047.2	3.59
2	0.0799	0.739	1.382	3.64	10.08	1.87	834.7	3750.6	2.08
3	0.0955	0.793	0.774	3.60	9.981	1.72	848.6	3479.6	1.61
4	0.1139	0.849	0.901	3.60	9.981	1.64	848.6	3333.8	1.29
5	0.1286	0.874	0.926	3.57	9.882	1.88	862.8	3858.1	1.32
6	0.0428	0.352	0.48	3.02	8.227	2.56	1176.3	6245.6	6.67
7	0.0782	0.572	0.379	3.01	8.198	1.72	1183.2	4242.6	2.47
8	0.1414	0.808	0.371	3.01	8.198	1.96	1183.2	4859.0	1.55
9	0.1455	0.831	0.332	3.04	8.284	1.43	1162.5	3494.8	1.08
d_p =2,98 mm									
1	0.0716	0.640	0.759	3.25	8.933	1.17	1022.5	4053.6	1.66
2	0.0900	0.689	0.751	3.26	8.963	1.64	1016.7	5667.4	1.84
3	0.0422	0.501	0.894	3.25	8.933	2.21	1022.5	7639.4	5.32
4	0.1102	0.746	0.702	3.24	8.902	1.48	1028.4	5182.7	1.37
5	0.1282	0.779	0.737	3.24	8.902	1.67	1028.4	5842.2	1.33

P2-2-3. Prenos mase u fluidizovanom sloju sa hemijskom reakcijom (eksp. sistem:slika 2.3).

Tabela P3-1. Prenos količine kretanja u vertikalnom transportu (eksp. sistem: slika 2.8).									
Ogled R. br.	U (m/s)	G_{f} (kg/s)	G_p (kg/s)	-dp/dz (Pa/m)	3	v (m/s)	režim		
$d_p = 1,20 \text{ mm}$									
1	0.082	0.041	0.0033	3650	0.7942	0.012	t		
2	0.099	0.05	0.0075	3235	0.8176	0.031	t		
3	0.1	0.05	0.0069	3224	0.8183	0.028	t		
4	0.14	0.071	0.0132	2637	0.8516	0.067	t		
5	0.176	0.089	0.0179	2383	0.8664	0.1	t		
6	0.209	0.106	0.025	2314	0.8706	0.145	t		
7	0.237	0.12	0.0271	2153	0.8802	0.169	t		
8	0.281	0.142	0.0332	2119	0.8829	0.212	р		
9	0.297	0.15	0.0354	2050	0.8872	0.235	р		
10	0.298	0.15	0.0355	2119	0.8833	0.227	р		
11	0.312	0.158	0.0357	2003	0.8901	0.243	р		
12	0.383	0.194	0.0433	1923	0.8962	0.312	р		
13	0.392	0.198	0.0436	1842	0.9011	0.329	р		
14	0.416	0.21	0.0441	1854	0.9009	0.333	р		
<i>d_p</i> =1,94 mm									
1	0.09	0.045	0.0004	4134	0.7477	0.001	t		
2	0.097	0.049	0.0023	4030	0.7539	0.007	t		
3	0.099	0.05	0.0038	4099	0.7496	0.012	t		
4	0.108	0.054	0.007	3961	0.7579	0.023	t		
5	0.116	0.058	0.0087	3800	0.7678	0.029	t		
6	0.122	0.061	0.0106	3800	0.7677	0.036	t		
7	0.124	0.062	0.0116	3788	0.7684	0.039	t		
8	0.134	0.068	0.0144	3627	0.7784	0.051	t		
9	0.16	0.081	0.0176	3397	0.7926	0.067	t		
10	0.17	0.086	0.0229	3166	0.8069	0.093	t		
11	0.181	0.091	0.0236	3189	0.8055	0.096	t		
12	0.211	0.106	0.0265	2844	0.8271	0.12	t		
13	0.251	0.127	0.0352	2867	0.8263	0.16	t		
14	0.261	0.132	0.0366	2683	0.8378	0.178	t		
15	0.263	0.133	0.0384	2683	0.8379	0.186	t		
16	0.284	0.143	0.042	2637	0.8411	0.208	t		
17	0.304	0.154	0.0448	2349	0.8592	0.251	р		
18	0.308	0.155	0.0458	2510	0.8494	0.239	р		
L			1	I	I		1		

Prilog P3 - Vertikalni hidraulični transport fluid-čestice

Ogled R br	U (m/s)	G_{f}	$\mathbf{G}_{\mathbf{p}}$	-dp/dz (Pa/m)	3	\mathbf{v}	režim
K. DI. 19	0.311	0.157	0.0461	2533	0.848	0.239	n
20	0.336	0.17	0.0513	2372	0.8585	0.285	p
21	0.351	0.177	0.0505	2499	0.851	0.267	p
22	0.383	0.193	0.0561	2383	0.859	0.313	p
23	0.385	0.195	0.0555	2395	0.8583	0.308	p
24	0.409	0.207	0.0571	2222	0.8696	0.345	p
25	0.438	0.221	0.0546	2061	0.8803	0.359	p
26	0.446	0.225	0.062	2188	0.8727	0.383	p
27	0.471	0.238	0.0658	2303	0.8664	0.388	p
28	0.485	0.245	0.0685	2314	0.8661	0.402	p
29	0.508	0.257	0.073	2291	0.8683	0.436	p
30	0.53	0.268	0.0774	2257	0.8712	0.473	p
31	0.551	0.279	0.0781	2245	0.8726	0.483	p
32	0.552	0.279	0.0794	2291	0.8697	0.48	p
33	0.583	0.295	0.0846	2199	0.8765	0.539	p
34	0.611	0.309	0.0909	2234	0.8754	0.574	p
35	0.666	0.337	0.0932	2234	0.8775	0.599	р
36	0.693	0.35	0.0992	2222	0.8792	0.646	р
37	0.824	0.417	0.1146	2268	0.8822	0.766	р
$d_p=2,98 \text{ mm}$							
1	0.109	0.055	0.003	4732	0.711	0.008	t
2	0.132	0.066	0.0125	4525	0.7236	0.036	t
3	0.157	0.079	0.02	4352	0.7342	0.059	t
4	0.169	0.085	0.0213	4088	0.7506	0.067	t
5	0.203	0.102	0.0295	3869	0.7643	0.099	t
6	0.229	0.115	0.0345	3650	0.7781	0.122	t
7	0.264	0.133	0.0409	3385	0.795	0.157	t
8	0.29	0.146	0.0442	3224	0.8054	0.178	t
9	0.303	0.153	0.0466	3132	0.8113	0.194	t
10	0.331	0.167	0.0515	3086	0.8147	0.219	t
11	0.367	0.186	0.0556	2913	0.8262	0.252	t
12	0.396	0.2	0.0604	2798	0.834	0.286	t
13	0.445	0.225	0.0674	2763	0.8374	0.326	t
14	0.497	0.251	0.0749	2660	0.8454	0.381	p
15	0.00/	0.30/	0.0885	2555	0.8509	0.48/	p n
10	0.719	0.304	0.1194	2519	0.8380	0.004	p n
1/	0./01	0.393	0.1212	2300	0.0019	0.091	l h

Ogled R. br.	U (m/s)	Re	$\Delta T_{\rm sr,fl}$	$\Delta T_{\rm sr,zid}$	ΔT_{ln}	α kW/m ² °C)	Pr -	Nu -	<u>ј</u> н -
$d_{p}=1,20 \text{ mm}$	()								
1	0.082	3323	42.5	87.5	44	3.488	4.123	140.41	0.02639
2	0.099	3719	41.5	88.5	46.35	3.752	4.205	151.43	0.02397
3	0.1	3986	38.25	86.25	47.61	3.424	4.494	139.26	0.02272
4	0.14	4709	32.5	85.5	52.99	3.308	5.101	136.39	0.01684
5	0.176	5718	30.75	86.5	55.75	3.165	5.315	131.07	0.01348
6	0.209	5895	24.5	87.5	62.84	2.239	6.221	94.2	0.0087
7	0.237	6382	22.5	89.5	66.85	1.826	6.566	77.22	0.00665
8	0.281	7643	23	89.5	66.4	2.513	6.477	106.13	0.00745
9	0.297	7605	20.5	89.5	68.85	2.226	6.942	94.64	0.00653
10	0.298	7612	20.5	92	71.43	2.148	6.942	91.33	0.00629
11	0.312	8078	21	90	68.8	2.153	6.845	91.41	0.00613
12	0.383	9429	19	91	71.8	2.111	7.247	90.16	0.00494
13	0.392	9468	18.25	89.5	70.97	1.858	7.407	79.52	0.00431
14	0.416	10433	19.75	87.5	67.41	2.312	7.092	98.51	0.00505
$d_p = 1,94 \text{ mm}$			1	I				1	
1	0.09	4251	52.25	101.5	46.18	5.151	3.438	202.22	0.03201
2	0.097	4386	49.25	99.5	47.55	5.14	3.629	203.44	0.0306
3	0.099	4437	48.75	100	49.13	4.872	3.662	193.09	0.02861
4	0.108	4527	44.5	98	52.16	4.549	3.966	182.24	0.02572
5	0.116	4754	43.25	99.5	55.11	4.433	4.063	178.12	0.02373
6	0.122	4844	41.25	94	51.79	4.632	4.226	187.06	0.02412
7	0.124	4898	41.25	95.25	53.02	4.406	4.226	177.93	0.02269
8	0.134	5217	40	94.5	53.68	4.714	4.334	190.94	0.02266
9	0.16	5810	36.25	94.5	57.9	4.41	4.69	180.22	0.01867
10	0.17	5985	34.75	95	60.12	3.763	4.847	154.32	0.01534
11	0.181	6166	33.25	94.25	60.83	4.061	5.014	167.14	0.01594
12	0.211	6614	29.25	96	66.75	3.313	5.511	137.69	0.01185
13	0.251	7388	26.25	92.25	65.99	3.117	5.942	130.51	0.00979
14	0.261	7678	26.25	91.75	65.49	3.263	5.942	136.65	0.00987
15	0.263	7733	27.75	92	64.24	3.849	5.72	160.55	0.01123
16	0.284	8735	28.25	93	64.74	3.071	5.648	127.97	0.00827
17	0.304	8281	23	91.75	68.7	2.483	6.477	104.88	0.00682
18	0.308	8420	23.25	92	68.7	2.601	6.433	109.76	0.00703
19	0.311	9036	25.75	93.5	67.75	3.584	6.02	150.25	0.00915
20	0.336	8873	21.75	92	70.12	2.213	6.703	93.78	0.00562
21	0.351	9829	24.25	92	67.73	3.414	6.262	143.69	0.00794

Tabela P3-2. Prenos toplote u vertikalnom transportu (eksp. sistem: slika: 2.8).

Ogled R. br	U (m/s)	Re	$\Delta T_{\rm sr,fl}$	$\Delta T_{\rm sr,zid}$	ΔT_{ln}	α	Pr	Nu	jн
22	0.383	0073	(°C) 21.25	(°C) 01.75	(°C) 70.38	2 722	6 707	115.40	0.00613
22	0.385	0024	21.25	02	70.38	2.722	6 803	87.6	0.00015
23	0.385	10606	20.75	95.5	74.36	2.002	6.845	112.08	0.00404
24	0.409	10000	10.75	95.5 80.5	60.53	1.876	7.002	70.05	0.00370
25	0.436	11/77	20.75	0 <i>1</i> .5	73.86	2 773	6 803	117.83	0.005/1
20	0.471	11982	20.75	92.25	71.86	2.7753	6 997	117.03	0.00513
27	0.485	12633	21.25	92.23	70.62	2.755	6 797	122.24	0.00511
20	0.405	12033	19.25	90.75	70.02	2.001	7 195	103.63	0.00427
30	0.500	12964	19.25	89.5	70.43	2.42)	73	96.66	0.00427
31	0.551	12004	20.25	92.5	72.1	3 217	6 992	136.88	0.00511
32	0.552	14302	20.25	91.25	70.06	3 1 5 4	6.845	133.9	0.00493
33	0.552	14534	19.5	88.5	68 73	3.057	7 143	130.35	0.00455
34	0.505	15331	19.75	88	67.87	2 707	7.092	115 36	0.00392
35	0.666	16406	19.75	91.5	72.17	2 215	7 247	94 59	0.00292
36	0.603	17300	19 75	88.75	68 56	3.034	7.002	120.26	0.00298
30	0.093	20157	19.75	86.25	67	2 704	7.092	129.20	0.00307
d -2.08 mm	0.824	20137	10.75	80.23	07	2.704	7.5	115.54	0.00290
<i>u_p-2,98</i> mm	0.109	4561	44.25	87	41.45	5 659	3 985	226.84	0.03142
2	0.109	5043	30.25	88	48.22	1.059	1 4 02	220.04	0.03142
2	0.152	5506	34.5	85.5	50.87	4.90	4.874	105.86	0.02438
3 A	0.157	5949	34.75	86	51.07	5 174	4 847	212.22	0.021
5	0.109	6537	30.5	87	56.49	1 / 38	5 3/6	183.88	0.0211
6	0.203	7100	28 75	86	57.23	4 394	5 579	182.87	0.01453
7	0.229	8125	28.75	87	58.75	4 78	5 648	199.17	0.01378
8	0.201	8515	26.25	84 25	57.93	4 511	5 942	188.9	0.01226
9	0.303	8906	26.25	87	60.72	4 503	5 942	188 59	0.01220
10	0.331	9452	25	86.5	61 41	4 329	6 1 3 9	181.85	0.01052
11	0.367	10175	23 75	85.5	61.6	4 183	6 3 4 7	176.3	0.00936
12	0.396	10848	23.25	87	63.61	4.123	6.433	174.02	0.00863
13	0.445	12035	22.75	86.5	63.61	4.349	6.521	183.79	0.00818
14	0.497	13282	22.25	87.5	65.13	4.438	6.611	187.81	0.00754
15	0.607	15637	20.75	87.5	66.49	4.208	6.893	178.79	0.00601
16	0.719	17831	19.25	83.25	63.62	3.881	7.195	165.61	0.00481
17	0.781	19492	19.25	87	67.23	3.973	7.195	169.55	0.00454

Eksp. R. Br.	U (m/s)	G _f (kg/s)	G _p (kg/s)	-dP/dz (Pa/m)	ε /eksp./	v (m/s)	Režim /eksp./
$d_p = 1.20 \text{ mm}$	1			I		I	I
1	0.090	0.045	0.005	3051	0.8274	0.021	t
2	0.096	0.048	0.006	2925	0.8346	0.027	t
3	0.102	0.052	0.007	2925	0.8347	0.031	t
4	0.130	0.066	0.016	2879	0.8376	0.073	t
5	0.150	0.076	0.017	2579	0.8548	0.085	t
6	0.158	0.080	0.020	2660	0.8503	0.100	t
7	0.175	0.089	0.019	2337	0.8688	0.109	t
8	0.189	0.096	0.024	2453	0.8625	0.132	t
9	0.211	0.107	0.024	2199	0.8772	0.146	t
10	0.224	0.113	0.025	2084	0.8839	0.161	р
11	0.234	0.118	0.026	2119	0.8822	0.167	р
12	0.250	0.126	0.032	2268	0.8740	0.190	р
13	0.307	0.155	0.039	2096	0.8849	0.251	р
14	0.357	0.181	0.038	1796	0.9030	0.293	р
15	0.456	0.231	0.050	1693	0.9115	0.419	р
16	0.476	0.241	0.057	1923	0.8991	0.421	р
17	0.481	0.243	0.053	1670	0.9136	0.460	р
18	0.510	0.258	0.053	1670	0.9145	0.461	р
19	0.560	0.283	0.056	1670	0.9161	0.498	р
20	0.662	0.335	0.064	1647	0.9211	0.610	р
$d_p = 1.94 \text{ mm}$	1		0.000			 .	
1	0.116	0.059	0.008	3742	0.7703	0.027	t
2	0.121	0.061	0.015	3903	0.7604	0.049	t
3	0.129	0.065	0.011	3569	0.7811	0.040	t
4	0.146	0.074	0.018	4421	0.7288	0.051	t
5	0.149	0.075	0.018	3650	0.7764	0.063	t
6	0.165	0.084	0.018	3189	0.8050	0.074	t
/	0.169	0.086	0.023	3328	0.7965	0.089	t
8	0.174	0.088	0.042	4088	0.7498	0.132	l t
9	0.193	0.098	0.025	3837	0.7043	0.085	l í
10	0.201	0.102	0.023	2122	0.8102	0.103	l t
11	0.202	0.102	0.029	2800	0.8091	0.118	l t
12	0.227	0.113	0.020	2890	0.8244	0.118	t t
13	0.203	0.134	0.032	2798	0.8309	0.130	i t
15	0.284	0.145	0.040	2025	0.8320	0.198	t t
16	0.200	0.143	0.039	2760	0.8493	0.203	t t
17	0.200	0.151	0.039	2508	0.8388	0.202	t t
18	0.313	0.151	0.039	2683	0.8390	0.215	t t
10	0.313	0.159	0.043	2579	0.8454	0.219	t t
20	0.314	0.159	0.047	2683	0.8391	0.220	t t
21	0.321	0.162	0.041	2648	0.8413	0.202	t
22	0.322	0.163	0.045	2648	0.8414	0.224	t
23	0.339	0.172	0.046	2591	0.8453	0.234	t
24	0.339	0.172	0.051	2602	0.8447	0.257	p
25	0.342	0.173	0.049	2499	0.8511	0.257	b
26	0.362	0.183	0.049	2568	0.8473	0.253	t
27	0.372	0.188	0.052	2453	0.8547	0.283	b
28	0.375	0.190	0.057	2556	0.8484	0.295	p F
29	0.428	0.217	0.056	2395	0.8599	0.316	p r

Tabela P3-3. Prenos količine kretanja u vertikalnom transportu (eksp. sistem: slika 2.7).

Eksp.	U	G _f	Gp	-dP/dz	3	V	Režim
R. Br.	(m/s)	(kg/s)	(kg/s)	(Pa/m)	/eksp./	(m/s)	/eksp./
30	0.428	0.217	0.060	2395	0.8599	0.338	p
31	0.430	0.218	0.060	2326	0.8642	0.348	p
32	0.446	0.226	0.062	2360	0.8626	0.353	р
33	0.465	0.235	0.064	2291	0.8674	0.377	р
34	0.473	0.239	0.064	2499	0.8549	0.345	t
35	0.477	0.241	0.066	2349	0.8643	0.385	р
36	0.497	0.252	0.065	2326	0.8663	0.381	р
37	0.517	0.262	0.072	2337	0.8664	0.424	р
38	0.523	0.265	0.069	2268	0.8708	0.423	р
39	0.559	0.283	0.073	2245	0.8735	0.455	р
40	0.559	0.283	0.072	2280	0.8714	0.439	р
41	0.582	0.295	0.078	2314	0.8702	0.476	р
42	0.611	0.310	0.083	2303	0.8720	0.510	р
43	0.614	0.311	0.079	2245	0.8757	0.499	р
44	0.626	0.317	0.085	2326	0.8712	0.518	р
45	0.648	0.328	0.087	2314	0.8728	0.537	р
46	0.649	0.329	0.080	2280	0.8749	0.503	р
4/	0.654	0.331	0.082	2257	0.8765	0.525	p
48	0.660	0.334	0.091	2349	0.8/12	0.557	p
49	0.003	0.330	0.093	2155	0.8832	0.626	p
51	0.078	0.345	0.088	2303	0.8747	0.533	p
52	0.082	0.340	0.093	2349	0.8721	0.572	p
53	0.082	0.343	0.088	2208	0.8770	0.503	p
54	0.090	0.352	0.098	2372	0.8713	0.598	p
55	0.709	0.359	0.087	2199	0.8823	0.585	p
56	0.766	0.388	0.099	2337	0.8763	0.631	p p
57	0.823	0.417	0.105	2337	0.8792	0.682	P p
58	0.882	0.447	0.114	2418	0.8773	0.732	Р р
59	0.931	0.472	0.118	2453	0.8778	0.761	p F
60	1.002	0.507	0.125	2510	0.8781	0.805	p I
61	1.013	0.513	0.128	2211	0.8972	0.979	p
62	1.022	0.518	0.117	2464	0.8823	0.784	р
63	1.068	0.541	0.119	2441	0.8865	0.823	р
64	1.070	0.542	0.131	2550	0.8797	0.856	р
65	1.119	0.567	0.139	2671	0.8752	0.875	р
66	1.179	0.597	0.149	2821	0.8699	0.900	р
67	1.198	0.607	0.153	2902	0.8663	0.903	р
68	1.244	0.630	0.161	3040	0.8609	0.913	р
69	1.359	0.689	0.161	4122	0.8021	0.639	t
$d_p=2.98 \text{ mm}$	1						
1	0.099	0.050	0.001	4490	0.7243	0.004	t
2	0.101	0.051	0.002	4686	0.7120	0.006	t
3	0.121	0.061	0.009	4444	0.7271	0.026	t
4	0.180	0.094	0.027	3984	0.7503	0.000	t _
5	0.191	0.09/	0.032	4134	0.7472	0.099	[+
7	0.243	0.124	0.039	2225	0.7037	0.143	L +
/ Q	0.292	0.140	0.043	3255	0.0043	0.102	ι +
0 Q	0.327	0.100	0.049	2925	0.8255	0.213	t t
10	0.375	0.190	0.055	3051	0.8179	0.249	τ τ
11	0.397	0.201	0.059	2832	0.8320	0.277	t t
12	0.402	0.204	0.060	2821	0.8329	0.281	t
13	0.416	0.211	0.061	2913	0.8276	0.278	t

Eksp. R. Br.	U (m/s)	G _f (kg/s)	G _p (kg/s)	-dP/dz (Pa/m)	е /eksp./	v (m/s)	Režim /eksp./
14	0.424	0.215	0.064	2832	0.8328	0.303	t
15	0.428	0.217	0.063	2775	0.8365	0.304	t
16	0.432	0.219	0.063	2752	0.8380	0.306	t
17	0.444	0.225	0.066	2740	0.8391	0.323	t
18	0.464	0.235	0.069	2752	0.8390	0.335	t
19	0.473	0.240	0.067	2671	0.8443	0.339	t
20	0.474	0.240	0.068	2855	0.8329	0.319	t
21	0.496	0.251	0.072	2660	0.8457	0.365	t
22	0.508	0.257	0.072	2614	0.8490	0.373	t
23	0.515	0.261	0.072	2809	0.8371	0.348	t
24	0.534	0.270	0.075	2637	0.8485	0.388	t
25	0.537	0.272	0.077	2671	0.8465	0.397	t
26	0.538	0.273	0.075	2602	0.8507	0.395	t
27	0.560	0.283	0.078	2591	0.8522	0.416	р
28	0.574	0.290	0.079	2545	0.8556	0.429	р
29	0.591	0.299	0.084	2614	0.8520	0.447	p
30	0.625	0.316	0.088	2602	0.8540	0.473	р
31	0.649	0.329	0.089	2579	0.8565	0.490	р
32	0.695	0.352	0.096	2579	0.8584	0.535	p
33	0.722	0.366	0.099	2614	0.8575	0.548	р
34	0.761	0.385	0.102	2625	0.8585	0.569	p
35	0.769	0.389	0.103	2637	0.8582	0.573	р
36	0.827	0.419	0.111	2648	0.8603	0.624	р
37	0.850	0.430	0.118	2660	0.8607	0.665	р
38	0.883	0.447	0.114	2694	0.8602	0.642	t
39	0.923	0.467	0.119	2717	0.8610	0.674	t
40	0.948	0.480	0.117	2683	0.8644	0.680	t
41	1.006	0.509	0.166	3282	0.8308	0.770	р
42	1.030	0.522	0.135	2902	0.8557	0.738	t
43	1.093	0.553	0.131	2855	0.8621	0.746	t
44	1.173	0.594	0.152	3132	0.8503	0.797	t
45	1.248	0.632	0.164	3351	0.8416	0.817	t
46	1.436	0.727	0.189	3811	0.8266	0.857	t

Ogled	U	Re	c _{izl.} 10 ³	c*	k · 10 ⁵	$\mathcal{D}_{AB} \cdot 10^{10}$	Sc	Sh	j _H
R. br.	(m/s)	-	(kg/m^3)	(kg/m^3)	(m/s)	(m^2/s)	-	-	-
$d_p = 1,20 \text{ mm}$							r		
1	0.09	1826	2.939	2.245	4.026	5.876	2120	1740	0.0742
2	0.096	1934	1.722	2.227	2.535	5.825	2153	1106	0.0443
3	0.102	2076	1.814	2.245	2.824	5.876	2120	1221	0.0458
4	0.13	2598	1.592	2.19	3.253	5.714	2229	1446	0.0426
5	0.15	3022	1.04	2.223	2.402	5.811	2163	1050	0.0269
6	0.158	3143	1.196	2.19	2.957	5.714	2229	1314	0.032
7	0.175	3512	0.739	2.203	2.016	5.754	2201	890	0.0195
8	0.189	3763	1.053	2.184	3.129	5.698	2241	1395	0.0283
9	0.211	4188	0.679	2.184	2.247	5.698	2241	1001	0.0183
10	0.224	4455	0.696	2.186	2.444	5.704	2236	1088	0.0187
11	0.234	4630	0.722	2.173	2.668	5.665	2265	1196	0.0197
12	0.25	4941	0.858	2.173	3.385	5.665	2265	1518	0.0234
13	0.307	6037	0.557	2.16	2.715	5.626	2294	1226	0.0154
14	0.357	7064	0.518	2.17	2.928	5.655	2272	1315	0.0142
15	0.456	8990	0.413	2.163	2.989	5.635	2286	1347	0.0114
16	0.476	9326	0.338	2.148	2.572	5.593	2318	1168	0.0095
17	0.481	9473	0.366	2.163	2.791	5.635	2286	1258	0.0101
18	0.51	10030	0.375	2.156	3.048	5.616	2301	1378	0.0104
19	0.56	10999	0.304	2.156	2.709	5.616	2301	1225	0.0084
20	0.662	12955	0.298	2.146	3.153	5.587	2323	1433	0.0084
<i>d_p</i> =1,94 mm									
1	0.116	2270	1.529	2.136	2.862	5.558	2345	1308	0.0434
2	0.121	2299	1.721	2.078	3.443	5.388	2482	1623	0.0521
3	0.129	2506	1.443	2.136	2.982	5.558	2345	1363	0.0409
4	0.146	2733	1.191	2.046	2.918	5.297	2561	1399	0.0374
5	0.149	2821	1.322	2.071	3.264	5.37	2497	1544	0.0403
6	0.165	3224	1.114	2.136	2.96	5.558	2345	1353	0.0316
7	0.169	3210	1.1	2.071	3.09	5.37	2497	1461	0.0336
8	0.174	3398	1.563	2.136	4.381	5.558	2345	2002	0.0443
9	0.193	3646	1.033	2.071	3.297	5.37	2497	1559	0.0315
10	0.201	3839	0.866	2.091	2.859	5.425	2451	1339	0.0259
11	0.202	3818	1.021	2.065	3.431	5.352	2513	1628	0.0314
12	0.227	4415	0.776	2.133	2.834	5.548	2352	1297	0.0221
13	0.265	5151	0.709	2.13	3.029	5.539	2360	1389	0.0203
14	0.284	5323	0.669	2.046	3.194	5.297	2561	1532	0.021
15	0.286	5387	0.706	2.055	3.381	5.324	2537	1613	0.022
16	0.299	5807	0.393	2.13	1.894	5.539	2360	869	0.0112

Tabela P3-4. Prenos mase u vertikalnom transportu (eksp. sistem: slika: 2.7).

Ogled	U	Re	$c_{izl.} 10^3$	c*	k · 10 ⁵	$\mathcal{D}_{AB} \cdot 10^{10}$	Sc	Sh	j _H
R. br.	(m/s)	-	(kg/m^3)	(kg/m^3)	(m/s)	(m^2/s)	-	-	-
17	0.305	5926	0.572	2.13	2.81	5.539	2360	1289	0.0163
18	0.313	6065	0.622	2.126	3.136	5.529	2367	1441	0.0178
19	0.313	5865	0.666	2.046	3.503	5.297	2561	1680	0.0209
20	0.314	5906	0.586	2.059	3.064	5.333	2529	1459	0.0181
21	0.321	6236	0.71	2.13	3.672	5.539	2360	1684	0.0203
22	0.322	6234	0.654	2.123	3.403	5.52	2375	1566	0.0188
23	0.339	6455	0.489	2.084	2.731	5.407	2466	1283	0.0147
24	0.339	6368	0.608	2.052	3.448	5.315	2545	1648	0.019
25	0.342	6412	0.546	2.046	3.135	5.297	2561	1503	0.0171
26	0.362	7012	0.55	2.123	3.219	5.52	2375	1481	0.0158
27	0.372	6965	0.572	2.046	3.573	5.297	2561	1713	0.018
28	0.375	7036	0.526	2.052	3.294	5.315	2545	1574	0.0164
29	0.428	8168	0.569	2.087	4.007	5.416	2458	1879	0.017
30	0.428	8045	0.485	2.052	3.477	5.315	2545	1662	0.0151
31	0.43	8055	0.502	2.046	3.624	5.297	2561	1738	0.0158
32	0.446	8373	0.452	2.052	3.375	5.315	2545	1613	0.0141
33	0.465	8703	0.474	2.046	3.698	5.297	2561	1773	0.0149
34	0.473	9002	0.444	2.084	3.453	5.407	2466	1622	0.0133
35	0.477	8949	0.428	2.052	3.415	5.315	2545	1632	0.0134
36	0.497	9463	0.488	2.084	3.991	5.407	2466	1875	0.0147
37	0.517	9710	0.446	2.052	3.859	5.315	2545	1844	0.0139
38	0.523	9787	0.445	2.046	3.9	5.297	2561	1870	0.014
39	0.559	10460	0.413	2.046	3.867	5.297	2561	1854	0.013
40	0.559	10657	0.47	2.087	4.32	5.416	2458	2026	0.0141
41	0.582	10926	0.404	2.052	3.932	5.315	2545	1879	0.0126
42	0.611	11447	0.408	2.046	4.183	5.297	2561	2006	0.0128
43	0.614	11490	0.404	2.046	4.158	5.297	2561	1994	0.0127
44	0.626	11722	0.385	2.046	4.04	5.297	2561	1937	0.0121
45	0.648	12127	0.348	2.046	3.786	5.297	2561	1815	0.0109
46	0.649	12343	0.493	2.081	5.281	5.398	2474	2485	0.0149
47	0.654	12477	0.453	2.087	4.868	5.416	2458	2283	0.0136
48	0.66	12343	0.38	2.043	4.216	5.288	2569	2025	0.012
49	0.663	12931	0.427	2.136	4.551	5.558	2345	2080	0.0121
50	0.678	12856	0.409	2.075	4.59	5.379	2490	2167	0.0124
51	0.682	12738	0.368	2.04	4.222	5.279	2577	2032	0.0116
52	0.682	12957	0.463	2.078	5.215	5.388	2482	2458	0.014
53	0.696	12984	0.337	2.04	3.945	5.279	2577	1898	0.0107
54	0.705	13204	0.332	2.046	3.93	5.297	2561	1884	0.0104
55	0.709	13577	0.312	2.097	3.622	5.444	2435	1690	0.0093
56	0.766	15264	0.344	2.19	4.125	5.714	2229	1833	0.0092
57	0.823	15827	0.304	2.107	4.073	5.472	2412	1890	0.0089

Ogled	U	Re	$c_{izl} 10^3$	c [*]	$k \cdot 10^5$	$\mathcal{D}_{AB} \cdot 10^{10}$	Sc	Sh	j _H
R. br.	(m/s)	-	(kg/m^3)	(kg/m^3)	(m/s)	(m^2/s)	-	-	-
58	0.882	16805	0.287	2.084	4.175	5.407	2466	1961	0.0086
59	0.931	17711	0.297	2.081	4.558	5.398	2474	2145	0.009
60	1.002	19025	0.303	2.078	5.014	5.388	2482	2364	0.0092
61	1.013	19241	0.365	2.078	6.115	5.388	2482	2883	0.0111
62	1.022	18965	0.28	2.027	4.846	5.243	2610	2348	0.009
63	1.068	19761	0.277	2.021	5.021	5.225	2627	2441	0.009
64	1.07	20350	0.248	2.081	4.377	5.398	2474	2060	0.0075
65	1.119	21285	0.276	2.081	5.089	5.398	2474	2395	0.0083
66	1.179	22370	0.264	2.075	5.156	5.379	2490	2435	0.008
67	1.198	22470	0.246	2.049	4.93	5.306	2553	2360	0.0077
68	1.244	23192	0.273	2.036	5.722	5.27	2585	2758	0.0087
69	1.359	25601	0.248	2.059	5.631	5.333	2529	2682	0.0077
d_p =2,98 mm									
1	0.099	1887	2.526	2.091	4.099	5.425	2451	1919	0.0754
2	0.101	1948	2.726	2.12	4.445	5.51	2382	2049	0.0788
3	0.121	2339	2.212	2.11	4.368	5.482	2405	2024	0.0646
4	0.186	3552	1.221	2.087	3.74	5.416	2458	1754	0.0366
5	0.191	3741	1.714	2.153	5.211	5.606	2308	2361	0.0478
6	0.245	4675	0.92	2.084	3.721	5.407	2466	1748	0.0277
7	0.292	5540	0.725	2.078	3.493	5.388	2482	1646	0.022
8	0.327	6219	0.664	2.078	3.594	5.388	2482	1694	0.0201
9	0.366	6952	0.612	2.078	3.703	5.388	2482	1745	0.0185
10	0.375	7279	0.915	2.13	5.525	5.539	2360	2534	0.0261
11	0.397	7680	0.484	2.117	3.119	5.501	2390	1440	0.014
12	0.402	7645	0.58	2.078	3.855	5.388	2482	1817	0.0176
13	0.416	8081	0.791	2.13	5.302	5.539	2360	2431	0.0226
14	0.424	8149	0.518	2.104	3.582	5.463	2420	1666	0.0152
15	0.428	8163	0.699	2.087	4.919	5.416	2458	2307	0.0209
16	0.432	8204	0.409	2.078	2.92	5.388	2482	1377	0.0124
17	0.444	8512	0.739	2.097	5.374	5.444	2435	2507	0.0219
18	0.464	8908	0.467	2.104	3.532	5.463	2420	1642	0.0137
19	0.473	8972	0.453	2.075	3.549	5.379	2490	1676	0.0138
20	0.474	9169	0.385	2.12	2.954	5.51	2382	1362	0.0111
21	0.496	9481	0.482	2.094	3.915	5.435	2443	1830	0.0143
22	0.508	9652	0.528	2.078	4.435	5.388	2482	2090	0.016
23	0.515	9952	0.782	2.117	6.53	5.501	2390	3015	0.0227
24	0.534	10204	0.6	2.091	5.264	5.425	2451	2465	0.0179
25	0.537	10294	0.426	2.097	3.747	5.444	2435	1748	0.0126
26	0.538	10405	0.769	2.117	6.711	5.501	2390	3099	0.0223
27	0.56	10658	0.349	2.084	3.214	5.407	2466	1510	0.0105
28	0.574	10862	0.5	2.071	4.757	5.37	2497	2250	0.0153

Ogled	U	Re	c_{izl} 10 ³	c*	k · 10 ⁵	$\mathscr{D}_{AB} \cdot 10^{10}$	Sc	Sh	j _H
R. br.	(m/s)	-	(kg/m^3)	(kg/m^3)	(m/s)	(m^2/s)	-	-	-
29	0.591	11320	0.439	2.097	4.243	5.444	2435	1980	0.013
30	0.625	11965	0.461	2.097	4.713	5.444	2435	2199	0.0137
31	0.649	12401	0.439	2.091	4.677	5.425	2451	2190	0.0131
32	0.695	13202	0.388	2.078	4.456	5.388	2482	2101	0.0118
33	0.722	13716	0.38	2.078	4.536	5.388	2482	2138	0.0115
34	0.761	14514	0.361	2.087	4.522	5.416	2458	2121	0.0108
35	0.769	14691	0.368	2.091	4.652	5.425	2451	2178	0.011
36	0.827	15796	0.35	2.091	4.753	5.425	2451	2225	0.0104
37	0.85	16235	0.337	2.091	4.702	5.425	2451	2201	0.0101
38	0.883	16911	0.342	2.097	4.943	5.444	2435	2306	0.0101
39	0.923	17558	0.263	2.081	4.008	5.398	2474	1886	0.0079
40	0.948	18287	0.452	2.113	6.953	5.491	2397	3216	0.0131
41	1.006	19357	0.331	2.107	5.427	5.472	2412	2519	0.0097
42	1.03	19560	0.348	2.078	5.92	5.388	2482	2791	0.0105
43	1.093	21118	0.41	2.117	7.259	5.501	2390	3352	0.0119
44	1.173	22285	0.355	2.078	6.891	5.388	2482	3248	0.0108
45	1.248	23981	0.323	2.104	6.577	5.463	2420	3058	0.0095
46	1.436	27597	0.258	2.104	6.054	5.463	2420	2815	0.0076

BIOGRAFIJA AUTORA

Darko R. Jaćimovski je rođen 28.11.1977. godine u Pančevu. Osnovnu školu je završio u Kačarevu, dok je srednju Elektrotehničku školu "Nikola Tesla" smer elektronika završio u Pančevu. Tehnološko-Metalurški fakultet u Beogradu upisao je 1996 godine i sa prekidima diplomirao 2010 godine na odseku za hemijsko-inženjerstvo sa prosečnom ocenom 8,08 i ocenom 10 na diplomskom radu sa temom: " Prenos količine kretanja, mase i toplote pri vertikalnom transportu u sistemu tečnost-čestice". Na istom fakultetu školske 2010/2011 godine upisao je doktorske studije na studijskom programu Hemijsko inženjerstvo.

Tokom 2010. godine radio je u industriji skroba "Jabuka" u Pančevu. Od 2011 godine zaposlen je u Institutu za hemiju tehnologiju i metalurgiju-Centar za katalizu i hemijsko inženjerstvo. Na raznim istraživačkim poslovima i projektima radio je počevši kao istraživač pripravnik, a od 2013 kao istraživač saradnik, na istraživanjima osnovnih nauka i primenjenim istraživanjima.

Trenutno je angažovan na projektima: Osnovnih istraživanja " Razvoj efikasnijih hemijsko-inženjerskih procesa zasnovan na istraživanjima fenomena prenosa i principima intezifikacije procesa" i međunarodne (bilateralne) saradnje sa Bugarskom Akademijom Nauka: " Development of advanced catalytic systems applicable to chemical and photochemical processes for neutralization of environmental pollutions". Služi se ruskim i engleskim jezikom.

Прилог 1.

Изјава о ауторству

Потписани-а	Дарко Јађимовски	
број индекса	4040/2010	

Изјављујем

да је докторска дисертација под насловом

Дисконтинуални гранични слој и Аналогије преноса у ПАКованим, Флуидизованим и транспортним системима течност - честице

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, 20.10.2017

Jutunoberen dapro

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора Дарио Зазумовски
Број индекса 4040/2010
Студијски програм Хемијско иннењерство
Наслов рада у приованим, рлуир, изованим и Транспортним счетемина течност-чести
Ментор ПРОФ. Неренка Бошковиз - Враголовиз

Потписани/а Jetusbuus Данно

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног репозиторијума Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

У Београду, 20. 10. 2017

Jahunsberger Depus

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Дисконтинуални гранични слој и аналогије преноса у пачованим, ФЛУЧДИЗОВАНИМ И ТРАНСПОРТНИМ СИСТЕМИМА ТСУНОСТ-ЧВРСТО

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

- 3. Ауторство некомерцијално без прераде
- 4. Ауторство некомерцијално делити под истим условима
- 5. Ауторство без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, 20.10.2017

Jahunobaan Japur

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.