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Modeling and optimization of transport processes in

modern nanoelectronic devices

Abstract

A functionality of modern nanoelectronic devices cannot be precisely described

without using appropriate statistical methods and models needed for understanding

di�erent transport properties in those devices. Therefore, in this thesis we de-

velop and integrate di�erent numerical approaches for modeling and optimization of

transport processes, such as algorithms for percolation detection, conjugate gradient

methods, and simulated annealing algorithms. Using these methods and algorithms

we propose di�erent models that describe and optimize e�ects of structural and geo-

metrical parameters on transport properties of modern nanoelectronic devices, such

as transparent conducting nanowire networks, thin-�lm carbon nanotube transis-

tors, and quantum cascade lasers. For transparent networks of randomly distributed

conducting nanowires, we propose an electrical conductivity model that explicitly

depends on the nanowire density and junction-to-nanowire conductance ratio. Us-

ing the proposed model we quantify a relationship between the optical transparency

and the electrical conductivity of the transparent nanowire networks. For thin-�lm

transistors based on random networks of as-grown single-walled carbon nanotubes,

we determine the carbon nanotube density, length, and channel dimensions under

which the transistors simultaneously attain high on-current and high on/o� ratio.

Finally, we show that the decrease in the output characteristics of GaAs/AlGaAs

quantum cascade laser in the presence of an intense external magnetic �eld is signi�-

cantly moderated by the presence of interface roughness scattering. We also present

an e�cient numerical algorithm for optimization of quantum cascade laser active

region parameters and calculation of its output characteristics in a magnetic �eld.

Keywords: transport processes, percolation theory, random nanowire networks,

transparent conductors, random carbon nanotube networks, thin-�lm transistors,

interface roughness scattering, quantum cascade lasers
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Modelova�e i optimizacija transportnih procesa u

savremenim nanoelektronskim ure�ajima

Sa�etak

Funkcionalnost savremenih nanoelektronskih ure�aja se ne mo�e precizno

opisati bez korix�e�a odgovaraju�ih statistiqkih metoda i modela potre-

bnih za opisiva�e raznovrsnih transportnih procesa u tim ure�ajima. Zbog

toga smo u ovoj tezi razvili i integrisali razliqite numeriqke pristupe

za modelova�e i optimizaciju transportnih procesa, kao xto su algoritmi

za detektova�e perkolacije, konjugovani gradijentni metodi i algoritmi za

simulirano odgreva�e. Na osnovu ovih metoda i algoritama predlo�ili smo

razliqite modele koji opisuju i optimizuju uticaj strukturnih i geometri-

jskih parametara na transportna svojstva savremenih nanoelektronskih ure-

�aja, kao xto su prozirni provodnici sa mre�ama nano�ica, tankoslojni

tranzistori sa ug	eniqnim nanotubama i kvantni kaskadni laseri. Za prozirne

mre�e nasumiqno raspore�enih provodnih nano�ica, predlo�ili smo model

elektriqne provodnosti koji eksplicitno zavisi od gustine nano�ica i odnosa

provodnosti kontakta i nano�ice. Koriste�i predlo�eni model kvantifiko-

vali smo odnos izme�u optiqke transparentnosti i elektriqne provodnosti

prozirne mre�e nano�ica. Za tankoslojne tranzistore zasnovane na sluqa-

jnim mre�ama neselektovanih jednozidnih ug	eniqnih nanotuba, odredili smo

�ihovu gustinu, du�inu i dimenzije kanala pri kojima tranzistori istovre-

meno dosti�u visoku struju provo�e�a i visok odnos struje provo�e�a i struje

cure�a. Konaqno, pokazali smo da je slab	e�e izlaznih svojstava GaAs/AlGaAs

kvantnog kaskadnog lasera u prisustvu jakog spo	ax�eg magnetnog po	a znaqa-

jno odre�eno prisustvom raseja�a na povrxinskim neravninama. Tako�e, pred-

stavili smo efikasan numeriqki algoritam za optimizaciju parametara akti-

vnog regiona kvantnog kaskadnog lasera i izraqunava�e �egovih izlaznih

karakteristika u magnetnom po	u.



K	uqne reqi: transportni procesi, perkolaciona teorija, neure�ene mre�e

nano�ica, prozirni provodnici, neure�ene mre�e ug	eniqnih nanotuba, tanko-
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Chapter 1 Introduction

Transport processes are very important for understanding and modeling of a

wide variety of phenomena, not only in modern nanoelectronic devices, but also in

physics, biology, chemistry, and neuroscience [1�3]. Typical examples of transport

processes in nanoelectronic devices include hopping transport in semiconductor sys-

tems, di�usion in porous materials, electrical or thermal conduction in composite

solids, optical processes in heterogeneous materials, etc. [1]. With the advent of

powerful computers, e�cient computational algorithms have been developed for es-

timating transport properties at the macroscopic level [1, 2]. These computational

algorithms are usually based on numerically solving large systems of (non)linear

equations obtained from the physical laws that determine the transport processes

at microscopic level [1�3].

Here we develop and integrate di�erent numerical approaches for modeling and

optimization of transport processes in materials of complex and disordered mor-

phology, such as algorithms for percolation detection [4], conjugate gradient meth-

ods [5, 6], and simulated annealing algorithms [7, 8]. An important tool for de-

scribing e�ects of connectivity in a disordered material on its transport properties is

percolation theory [1, 2]. For instance, percolation theory precisely quanti�es how

the conducting components of a composite material, that consists of conducting and

insulating phases, cluster together and form spanning paths for transport of current,

heat, or stress across the material [1, 2]. Therefore, algorithms for percolation de-

tection, based on the percolation theory, are used to determine connectedness of a

complex and disordered network considering connectivity of its individual elements.

The conjugate gradient method is most prominent iterative method for solving a

sparse system of linear equations [9], while the simulated annealing algorithm be-

longs to a class of stochastic global optimization methods based on the Metropolis

1



1. Introduction

function for the acceptance probability [10]. Using these methods and algorithms

we propose here di�erent models to describe and optimize e�ects of structural and

geometrical parameters on transport properties of modern nanoelectronic devices,

such as transparent conducting nanowire networks, thin-�lm carbon nanotube tran-

sistors, and quantum cascade lasers.

The transparent conducting nanowire networks are thin �lms of randomly dis-

tributed metallic (usually Ag) nanowires. The thin-�lm carbon nanotube transistors

are (quasi-)two-dimensional networks of randomly distributed single-walled carbon

nanotubes. Nanowires and single-walled carbon nanotubes are rodlike nanoparticles

that can be regarded as widthless sticks, because their length is much larger than

their diameter1. Therefore, the connectedness of complex and disordered systems,

such as random networks of nanowires and random networks of carbon nanotubes,

can be characterized by applying the concepts of percolation theory to the systems

of randomly distributed sticks. For that reason, we have also developed an e�-

cient numerical algorithm for the stick-percolation detection. Using this algorithm

we have investigated �nite-size scaling e�ects in percolating widthless stick systems

through an extensive Monte Carlo simulation study. A generalized scaling func-

tion for two-dimensional stick systems is introduced to describe the scaling behavior

of the �rst two percolation probability moments. This generalized scaling function,

with geometry-dependent prefactors and constant exponents in its expansion, is used

to propose an analytic model of the percolation probability function. The analytic

model is used to estimate an optimal density of random carbon nanotubes for which

their thin-�lm networks exhibit excellent transistor performance. Also, we have de-

veloped an algorithm for calculating the electrical conductivity of two-dimensional

systems comprised of randomly distributed sticks. This algorithm is based on the

conjugate gradient method for solving large systems of linear equations. Using this

algorithm we obtain electrical conductivity dependence of transparent conducting

nanowire networks on the nanowire density and junction-to-nanowire conductance
1Single-walled carbon nanotubes have the smallest diameter of all carbon nanotubes, dis-

tributed within a narrow range (0.8 − 5 nm), and a length from tens of nanometers to millime-
ters [11], whereas nanowires have a larger diameter (∼ 10 to > 100 nm) and lengths similar to
those of carbon nanotubes [12].

2



1. Introduction

ratio. Also, using this algorithm we have calculated electrical properties of thin-�lm

carbon nanotube transistors in on- and o�-state for di�erent channel dimensions

and di�erent lengths of carbon nanotubes. We have also de�ned acceptable ranges

of these geometrical parameters for which the transistors simultaneously attain high

on-conductance and high on/o� conductance ratio.

Finally, we note that many materials have a very rough surface, where the rough-

ness follows a very complex pattern. The quantum cascade lasers are nanoelectronic

devices based on parallel semiconductor layers with in-plane terrace-like surface de-

fects at the interfaces between the layers. We have studied here e�ects of the interface

roughness scattering on electron transport and output characteristics of quantum

cascade laser in a magnetic �eld by solving the full set of nonlinear rate equations

that describe electron transitions between di�erent energy levels. The system of

nonlinear rate equations can be successively solved by solving the corresponding

system of linear equations in each of the successive steps. The conjugate gradient

method can be separately applied in each step for solving the obtained systems of

linear equations. Also, the optimization of the quantum-cascade-laser performance

at a selected wavelength can be performed at the entire free-parameters space using

simulated annealing algorithm.

The rest of this thesis is organized as follows. A brief overview of the most im-

portant transport processes in each of the considered nanoelectronic devices is given

in the rest of this Chapter. In Chapter 2 we investigate the �nite-size scaling e�ects

in the percolating widthless stick systems with variable aspect ratios through an

extensive Monte Carlo simulation study. In Chapter 3 we numerically investigate

electrical conductivity of two-dimensional random nanowire networks from the per-

colation threshold up to ten times the percolation threshold density. We propose

a conductivity model explicitly dependent on the nanowire density and nanowire-

to-stick conductance ratio. Using the proposed model we quantify a relationship

between the optical transmittance and the electrical conductivity of the random

nanowire networks. In Chapter 4 we numerically study the e�ects of geometrical

and structural parameters of the thin-�lm carbon nanotube networks on their elec-

trical properties in order to obtain an optimized and uniform transistor performance

3



1. Introduction

without using any post-growth treatment. Finally, in Chapter 5 we investigate an in-

�uence of interface roughness scattering on output characteristics of GaAs/AlGaAs

quantum cascade laser in a magnetic �eld. Also, we describe an e�cient numerical

algorithm for optimization of GaAs/AlGaAs quantum cascade laser active region

parameters and calculation of its output characteristics in a magnetic �eld.

1.1 Electrical conductivity vs. optical transparency of ran-

dom nanowire networks

Randomly distributed nanowires (NWs) networks are �exible, electrically active ma-

terials with great promise for use as an active medium of transparent-conductor

applications [13�15], thin-�lm solar cells [16], and sensor devices [17]. The imple-

mentation of NWs for any of these applications assumes the activation of junctions

between wires in the network, which is typically accomplished by using heat [18],

pressure [19], or electrical stress [20]. As a result, the random NW networks are

established as electrically active materials with high electrical conductivity and well-

preserved optical transparency as two most important critical performance criteria

for the transparent-conductor applications [21]. Many studies [13, 21�23] have re-

vealed a trade-o� between high electrical conductivity and high optical transparency

of random NW transparent conductors. Therefore, the electrical conductivity depen-

dence and optical transparency dependence on the NW density and system geometry

needs to be taken into account in any random NW design [24]. Nanowires are most

typically comprised of metallic NWs, which can be regarded as conductive widthless

sticks, because they are straight and rigid rodlike nanoparticles whose length is much

larger than their diameter [12, 25]. The percolation models [2, 26] are often used

to model an onset of the high electrical conductivity in the composites consisting of

the conductive widthless sticks in the insulating matrices [13, 15, 27�29].

The percolation theory predicts that the electrical conductivity of the composite

materials with the conductive �ller density n above, but close to the percolation

threshold nc, increases with the density by a power scaling law σ ∼ (n− nc)
t, with

the universal conductivity exponent t ≈ 1.29 for two-dimensional (2D) systems [2].

4



1. Introduction

While the conductivity scaling law is expected to be applicable only near the perco-

lation threshold, in many experiments the scaling law was used over a much larger

range of concentrations, but with the nonuniversal values of the conductivity expo-

nent [18, 28�30]. Madaria et al. [18] used the conductivity scaling law to extract

the conductivity exponent of highly conductive Ag nanowire networks. However,

�tting the experimental data in a very broad density range, from the percolation

threshold up to more than ten times the percolation threshold density, they ob-

tained the nonuniversal value 1.42 for the conductivity exponent. Hu et al. [28] also

obtained the nonuniversal value 1.5 for the conductivity exponent using the conduc-

tivity scaling law for �tting the experimental data for ultrathin carbon nanotube

networks operating from the percolation threshold up to about ten times the perco-

lation threshold density. At the same time, several numerical studies con�rmed the

observed nonuniversality of the conductivity exponent when the stick density was

well above the percolation threshold [31�33]. Keblinski et al. [31] demonstrated that

the universal power law holds from the percolation threshold nc, to about twice its

value 2nc. For higher stick density, n > 2nc, they observed that the conductivity

scaling exponent in the following cases becomes: (i) slightly higher than 1 when

junctions are superconductive and only the stick conductance is the limiting factor

for the current �ow through the system; and (ii) close to 1.75 when the sticks are

superconductive and the contact conductance is the limiting factor. Li et al. [33]

showed that the conductivity exponent signi�cantly varies with the junction-to-stick

conductance ratio for lower stick densities, up to 2nc. The broad range applicability

of the conductivity scaling law was explained by the presence of long-range correla-

tions in the distribution of conductive sticks in the system [1].

In Chapter 3, we will demonstrate that the nonuniversality of the conductivity

exponents is a consequence of a transition from the percolating to dense NW net-

works. We will numerically investigate the conductivity of the randomly distributed

NWs networks from the percolation threshold up to ten times the percolation thresh-

old density. We will show that it is not appropriate to use a simple scaling law to

describe the conductivity dependence on the density, both for �nite and dense net-

works. Based on our Monte Carlo simulation results, we will propose a conductivity

5



1. Introduction

model that describes the electrical conductivity dependence on the NW density and

the di�erent junction-to-NW conductance ratios. The model is motivated by the

observed structural characteristic (i.e., the density of total NWs and NW-to-NW

contacts involved in the current �ow through the system). The �nite-size e�ects,

especially pronounced in the vicinity of the percolation threshold, are also included

in the generic description for the conductivity of random NW networks. Finally, us-

ing the proposed model and an analytical approximation for the density-dependent

optical transmittance, we will quantify the dependence of the optical transparency

on the electrical conductivity for random NW networks. Also, we will show that

random NW networks can be used as high-performance transparent conductors only

if the length-to-diameter aspect ratio of constituent NWs is higher than 100.

1.2 Electrical transport in random carbon nanotube networks

Recently, random carbon nanotube (CNT) networks have been demonstrated as po-

tentially useful active materials in electronics applications [34], optoelectronics [35],

sensors [36], and memory cells [37]. CNT thin-�lm transistors (TFTs) are expected

to enable fabrication of high-performance, �exible, and transparent devices using

relatively simple techniques [11, 38�46]. As-grown networks of single-walled (SW)

CNTs contain both metallic (m-CNTs) and semiconducting (s-CNTs) nanotubes in

an approximate ratio 1:2, which leads to a trade-o� between on-conductance and

the on/o� conductance ratio [47�50]. If the density of CNTs in a TFT is su�ciently

high so that m-CNTs exceed the percolation threshold, the CNT network will be-

come predominantly metallic and, hence, the on/o� ratio will be very small [50]. In

contrast, if the CNT density is so low that a conduction path through m-CNTs does

not exist, a high on/o� ratio can be attained, but under such circumstances the low

on-conductance is disadvantage [50, 51].

Various experimental e�orts have been made to improve di�erent transport pro-

cesses in random CNT TFTs. A simultaneous increase of on-conductance and

the on/o� ratio is one of the most important requirements for achieving high-

performance transistor devices. With roughly 1/3 of as-grown CNTs being metallic,

6
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extra steps, such as electrical burning of m-CNTs via an electrical breakdown method

[52], are used in order to cut the metallic paths through the transistors. However,

such breakdown also removes some s-CNT pathways, leading to a decrease of the on-

conductance. If the breakdown is applied when s-CNTs in the network are gated to

the o�-state, most of s-CNTs will be well preserved and the on-conductance will not

be much a�ected [37]. However, using additional steps after the CNTs synthesis pro-

cess, such as electrical breakdown methods, prolongs the production time and thus

increases production costs. Other researchers have used semiconducting enriched

CNTs in order to enhance the performance of CNT TFTs. For example, methods

that separate CNTs by electronic type, such us density-gradient ultracentrifuga-

tion [53] or the gas-phase plasma hydrocarbonation reaction techniques [54] are used

after or during the CNTs synthesis process in order to obtain pure semiconducting

nanotubes. However, these techniques also create defects in the remaining CNT

networks and add impurities, which degrade the overall performance of TFTs [55�

57]. This approach also increases the di�culties in the fabrication process, and the

repeatability and uniformity of devices are uncertain [55].

The e�ects of m-CNTs in a random network can be reduced by carefully control-

ling the CNT density, length, and device geometry, such that the metallic fraction of

CNTs is below the percolation threshold [34], i.e., each conducting path contains at

least one semiconducting CNT. An optimized device, i.e., one with the highest pos-

sible on-conductance at a given on/o� ratio, has a total density of CNTs above the

percolation threshold and a density of m-CNTs below the percolation threshold. Al-

though such high-quality devices have been reported in the literature [50, 51, 58, 59],

numerical simulations and experiments to determine the CNT density, channel size,

and CNT length for optimum device performance, fabricated at industrial yield rates

are still lacking.

In Chapter 4, we will study e�ects of device parameters (density of CNTs, channel

dimensions and CNT length) on their electrical transport processes, i.e., on the on-

conductance and on/o� ratio, in order to design an optimized and uniform device

performance without using any post-growth treatment. Using a realistic numerical

approach, we determine the CNT density, length, and channel dimensions for which

7
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CNT thin-�lm transistors simultaneously attain on-conductance higher than 1 µS

and an on/o� ratio higher than 104. We show that a realization probability of

desired characteristics higher than 99% is obtained for the channels with aspect

ratio LCH/WCH < 1.2 and normalized size LCHWCH/l
2
CNT > 250 when the CNT

length is lCNT = 4 − 20 µm and the normalized density of CNTs is close to the

value where the probability of percolation only through s-CNT pathways reaches its

maximum.

1.3 Electron transport in quantum cascade laser in a magne-

tic �eld

In recent years, quantum cascade lasers (QCLs) have become light sources of choice

for a broad variety of applications including high-precision gas sensing, infrared

imaging, military countermeasures, security monitoring, non-invasive medical di-

agnostics, optical communications [60�74]. In the mid- and far-infrared spectral

range, these powerful light sources are particularly appreciated for the wide scope

of operating wavelengths, which can be achieved by using the same heterostruc-

ture material combination. Some of the features that make this kind of devices so

unique are: unipolarity, the population inversion achieved through careful quan-

tum engineering of lifetimes of the states (typically in the picoseconds range), and

the electron recycling due to the cascading scheme. Their performance under the

in�uence of a high magnetic �eld has been intensively studied as well, due to the

fact that magnetic �eld may serve as an e�cient tool to determine the nature and

magnitude of scattering mechanisms in the active region [63�66, 75�79]. Early ex-

periments have demonstrated QCL emission enhancement and a magneto-phonon-

resonance e�ects [63�65], which have led to a deeper insight into the physics of

intersubband lasers. Furthermore, in the THz frequency range, where the perfor-

mance of QCLs deteriorate rapidly with temperature, due to detrimental thermal

activation of non-radiative losses, the highest operating temperature of 225 K is

reported for the structure assisted by external magnetic �eld for additional carrier

con�nement [76]. Recently, a portable QCL-based infrared magnetospectrometer

8



1. Introduction

covering the spectral range from 5 to 120 µm has been constructed, for applications

in cyclotron-resonance spectroscopy measurements where high magnetic �elds (up

to 60 T) are required [67]. Hence, a detailed understanding of various scattering

mechanisms under the in�uence of a strong magnetic �eld is an important factor for

improving QCL performance and applicability.

The typical design of the QCL active region entails a three-level system. The

transport of carriers, i.e., electrons, between these levels can be explained as follows.

The electrons are injected into the upper laser state, from which they can relax

into the lower state by means of photon-assisted transition or by scattering, mainly

by interactions with longitudinal optical (LO) phonons. In order to achieve the

population inversion, the lifetimes of electrons in the corresponding quantum states

must satisfy the following relation τ32 > τ21. This relation is achieved by means of

two key points:

(1) the lifetime τ32 is increased by employing a transition with a reduced spatial

overlap of the wavefunctions; and

(2) the lifetime τ21 is reduced by making the energy E21 resonant with the optical

phonon energy, which is the most e�cient scattering mechanism.

Further extension of otherwise short carrier lifetime (of the order of 1 ps) is

achieved using an intense magnetic �eld parallel to the growth direction of semi-

conductor layers [64�66, 75]. The magnetic �eld breaks the two-dimensional (2D)

in-plane continuous energy subbands into discrete Landau levels. The lifetime of

electrons in the excited laser state is strongly modulated by the applied magnetic

�eld. The dependence of the electron lifetime on the magnetic �eld strength results

in oscillations in the laser emission intensity. The inelastic scattering by LO-phonons

and elastic scattering by the interface roughness were identi�ed as main mechanisms

behind this e�ect by Leuliet et al. [66]. Given that the scattering processes between

the two states depend on their energy spacing, certain relaxation mechanisms can

be enhanced or inhibited by varying the magnetic �eld strength, although they may

be in�uenced by the operating temperature as well. LO-phonon scattering is well

explained in previous theoretical and experimental works [64�66, 75, 80]. Increas-

ing the magnetic �eld reduces the number of relevant Landau levels and changes

9



1. Introduction

energy di�erences between individual levels, thus a�ecting the lifetime of carriers in

higher states. On the other hand, the strength of the interface roughness scatter-

ing in a particular sample is determined by the morphology of the interfaces [7, 8].

In contrast to LO-phonon, the interface roughness scattering does not depend on

the temperature. As a result, the e�ciency of the interface roughness scattering

mechanism remains constant with increasing temperature, while the e�ciency of

the LO-phonon scattering is reduced due to their higher absorption rates [81].

In Chapter 5, we will present a theoretical description of a realistic QCL ac-

tive region and introduce models for LO-phonon scattering and interface roughness

scattering rate with and without a presence of an external magnetic �eld parallel to

the con�nement direction. We will study the electron relaxation rates for the upper

state of the laser transition, due to electron�LO-phonon interactions and interface

roughness scattering. To understand the e�ects of interface roughness scattering and

compare them with the LO-phonon scattering, we will study relaxation times and

optical gain for di�erent temperatures and magnetic �elds. The electron distribution

over the states of the system can be found by solving the full set of rate equations

that describe the electron transport between levels, and subsequently used to deter-

mine the optical gain. For both the population inversion and the optical gain, the

interface roughness scattering will be shown to have a signi�cant in�uence in terms

of reducing the predicted magnitude, especially at low temperatures. Finally, we will

describe an e�cient numerical algorithm for optimization of GaAs/AlGaAs quantum

cascade laser active region parameters and calculation of its output characteristics

in a magnetic �eld.
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Chapter 2 Finite-size scaling in asymmetric systems

of percolating sticks

As already noted, there has been an increasing interest in the randomly dis-

tributed stick particles [27, 32, 51, 82, 83], due to promising developments in the

area of the conducting rodlike nanoparticle networks, such as carbon nanotubes and

silicon, copper, and silver nanowires, with applications in electronics [51, 84, 85],

optoelectronics [28], and sensors [34, 86]. We note that most of the theoretical work

in the �eld of percolation of random systems has been done for lattice percola-

tion [2, 87�93]. The random stick networks are an important representative of the

continuum percolation [26, 94�96]. The random stick percolation and lattice perco-

lation fall into the same universality class having the same critical exponents [26],

because all random systems fall on the same scaling function if dimensionality of

the system, percolation rule, boundary conditions, and aspect ratio are �xed [91].

In real applications, the aspect ratio of the rectangular system is usually variable

parameter, e.g., the geometry of the transistor gate channel in the carbon nanotube

transistors is not �xed [51, 83]. Therefore, the objective of this Chapter is to describe

in a consistent way �nite-size scaling of average percolation density and standard

deviation for the asymmetric rectangular stick systems with free boundaries and

following that, to propose an analytic model of the percolation probability function.

From general scaling arguments one would expect that for all �nite-size systems their

convergence is governed by an exponent −1/ν [2]. For two-dimensional (2D) sys-

tems ν = 4/3 [2]. Following Zi�'s initial publication [89], Hovi and Aharony [90, 91]

argued that the irrelevant scaling variables in the renormalization-group treatment

of percolation imply a slower leading-order convergence of percolation probability

to its in�nite-system value, characterized by an exponent −1/ν − θ, whose value

was deducted from the Monte Carlo work of Stau�er to be θ ≈ 0.85 [87]. Further
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2. Finite-size scaling in asymmetric systems of percolating sticks

it was shown that for lattice percolation on the square system the leading expo-

nent of the average density at which percolation �rst occurs is −1/ν − θ, where

θ ≈ 0.9 [93]. All the previous studies were performed for symmetric systems. We

show that only in the symmetric case the exponent of average percolation density

is −1/ν− θ. In asymmetric systems, we observe a leading −1/ν exponent. Another

quantity, the percolation probability at the percolation threshold in symmetric bond

percolating systems, is size independent, i.e., scale invariant [97]. Until now, this

behavior has not been observed in other types of random percolating systems. We

will demonstrate that asymmetric systems can exhibit scale-invariant behavior.

In this Chapter, we investigate �nite-size scaling of the asymmetric rectangular

stick systems with free boundaries. Both from renormalization group considerations

and in the simulations, we �nd that the aspect ratio strongly in�uences scaling

behavior of the percolation probability distribution function moments, i.e., average

density of sticks at which percolation �rst occurs and variance of the percolation

probability distribution function. A generalized scaling function is introduced, with

aspect-ratio-dependent prefactors and constant exponents in its expansion. Also,

an analytic model of the percolation probability function is proposed. Finally, it is

shown that the percolation probability of the asymmetric in�nite stick system at

the critical threshold density agrees with Cardy's analytic formula [88].

2.1 Numerical method for calculation of stick percolation

probability

Monte Carlo simulations, coupled with an e�cient cluster analysis algorithm and

implemented on a grid platform, are used to investigate the stick percolation [98�

101]. A detailed description of the algorithm for stick-percolation detection is given

below. We consider two-dimensional (2D) systems with isotropically placed width-

less sticks of length ls. The sticks are randomly positioned and oriented inside the

rectangular system of length LS and width WS. For simplicity, the �nite-size scaling

e�ects will be further analyzed in terms of the system dimensions normalized by the

stick length ls. Therefore, the normalized system length is L = LS/ls, its width is
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2. Finite-size scaling in asymmetric systems of percolating sticks

W = WS/ls, and the normalized sticks have unit length, i.e., l = 1, see Fig. 2.1(a).

Two sticks lie in the same cluster if they intersect. The system percolates if two

opposite boundaries perpendicular to the percolating direction (the left and right

ones) are connected with the same cluster, see Fig. 2.1(b). The boundaries parallel

to the percolating direction (the top and bottom ones) are free. The aspect ratio r

is de�ned as the length of the rectangular system in the percolating direction (the

x direction) divided by the length in the perpendicular direction (the y direction),

i.e., in this case r = L/W . We only consider long-system limits (L > l) where an

one-stick connection of system boundaries is impossible. We de�ne the normalized

system size as a square root of the rectangular area L =
√
LW (geometric average).

The behavior of stick percolation is studied in terms of the number stick density

n = N/L2. The percolation threshold of the in�nite system is de�ned by the critical

density nc ≈ 5.63726 [4, 101].

2.1.1 Algorithm for stick-percolation detection

The algorithm starts with a blank rectangular system assuming that the length

direction at the same time represents the percolating direction, see Fig. 2.1(b). A

similar algorithm was discussed in Ref. [98], where the lattice percolation was studied

and in Ref. [101], where symmetric stick systems were analyzed. Two sticks lie in

the same cluster if they intersect. A tree structure is used to store these clusters,

as already shown in Ref. [98]. In each cluster, one stick is chosen to be the �root

stick�. All other sticks in the cluster have pointers which point either directly to the

root stick or to another stick in the cluster. It implies that any stick in the cluster

points directly or indirectly (through a path comprising other sticks) to the root

stick and therefore, all sticks in the same cluster have the identical root stick. We

note that a cluster percolates if and only if its orthogonal projection along the x-axis

completely covers the bottom boundary of the system. For simplicity, this condition

can be used for percolation detection in the rectangular stick system. In order to

further simplify the percolation detection, the minimum and maximum value of the

cluster projection along the x-axis should be stored for each cluster.
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.1: Schematic illustration of stick percolation on a rectangular system with
normalized length L = 3 and width W = 4. (a) The rectangular stick system bellow
the percolation density. Each stick is of unity length l = 1 and described by its
center point C and orientation ϕ. The end points of a stick are denoted as A (closer
to the left boundary) and B (closer to the right boundary). The system boundaries
(the left and the right) are shown as vertical bold red lines. (b) The rectangular stick
system at the percolation density. The sticks that belong to the percolating cluster
are denoted with red color. (c) The system is virtually divided into bLc × bW c
subcells (dashed white lattices) with size L/bLc ×W/bW c. Each stick is registered
in the subcell where its center lies. It is explicitly shown that a stick in a subcell
(bold white boundaries) is impossible to intersect any stick at other subcells than
the sticks at the same subcell or its neighbors (the gray subcells).

The system is virtually divided into bLc×bW c subcells1 (or sub-rectangles) with

size L/bLc×W/bW c, as shown by the dashed lattices in Fig. 2.1(c). Note that when

the normalized system length L and widthW are integers the system is divided into

L ×W sub-squares with unity length l = 1. With these preparations, a random

normal stick is generated by producing a random point (xC, yC) for its center point

and a random angle ϕ with respect to the horizontal direction for its orientation, see

Fig. 2.1(a). Note that 0 ≤ xC ≤ L, 0 ≤ yC ≤ W , and −π/2 ≤ ϕ ≤ π/2. The stick

is �rst treated as an one-stick cluster with itself as the root stick and registered into

the subcell in which the point (xC, yC) lies. In this work each stick is registered in

a subcell indexed as (bxCbLc/Lc, byCbW c/W c). According to this rule, a stick even

centered exactly on a subcell boundary is also registered into a speci�c subcell. For

the one-stick cluster minimum value of its component in the x-direction corresponds
1bxc denotes the largest integer no greater than x.

14



2. Finite-size scaling in asymmetric systems of percolating sticks

to the point A (which is closer to the left boundary) xA = xC − l/2 cos(ϕ), while

maximum value corresponds to the point B (which is closer to the right boundary)

xB = xC + l/2 cos(ϕ), since cos(ϕ) ≥ 0 for −π/2 ≤ ϕ ≤ π/2. As already noted,

these values should be initially stored for each one-stick cluster.

According to such a registration, a stick in a subcell (e.g., the one with bold

white boundaries in Fig. 2.1(c)) is only possible to intersect sticks in the same

or the neighboring subcells (the gray subcells in Fig. 2.1(c)) since the distance d

between its center and any stick center in other sub-cells is greater than l = 1, i.e.,

the maximum possible center distance of two intersecting sticks. Then, it is only

needed to check the connectivity property between the newly generated stick and

those sticks belonging to the same or neighboring subcells. For algorithmic purposes,

a stick can be presented as a vector
−→
AB. Two sticks, presented as

−−−→
A1B1 and

−−−→
A2B2,

intersect if the following conditions are simultaneously satis�ed

(−−−→
A1B1 ×

−−−→
A1A2

)
◦
(−−−→
A1B1 ×

−−−→
A1B2

)
≤ 0,(−−−→

A2B2 ×
−−−→
A2A1

)
◦
(−−−→
A2B2 ×

−−−→
A2B1

)
≤ 0. (2.1)

Note that these inequalities presented in a scalar form do not contain trigonometric

functions. This signi�cantly reduce a computing time required for checking a stick

connectivity. When two sticks intersect, if they have the same root stick, i.e., be-

longing to the same cluster, nothing needs to be done; if not, the two corresponding

clusters should be merged simply by adding a pointer from the root stick of the

smaller cluster to that of the larger. It is known as a �weighted union� algorithm

explained in Ref. [98]. Also, the x-component of a merged cluster should be ob-

tained by overlapping the x-components of all clusters participating in the merger.

In order to expedite the merging a ��nd with path compression� algorithm is also

applied as in Ref. [98]. Following these processes, we repeat adding a random stick,

registering it in an appropriate subcell, checking its connectivity with other sticks

in the same and neighboring subcells, and merging, if necessary, the clusters until

the x-component of a merged cluster completely covers the bottom boundary of the

system. In this case, the system percolates for the �rst time and the total number
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Figure 2.2: The average CPU time T for a single MC realization of a rectangular
system with area L2 up to the percolation transition shown in logarithmic scale for
three aspect ratios r = 1, 2, and 5. The simulations were run on a computer cluster
con�gured with Intel Xeon CPUs with 2.33 GHz and 8 GB RAM. The solid lines
T ∼ L2 are only guides for the eye. As one can see, the running time depends
linearly on the system area (T ∼ L2 ∼ Np) when the area is L2 < 103. The slope
increases when the system can no longer �t entirely into the cache memory, forcing
the CPU to access to slower RAM memory. With further increase of the system size,
cache e�ciency e�ects diminished and therefore, the running time becomes linear
again (for L2 > 104).

of sticks is then recorded as Np. By now, the whole simulation procedure for one

realization is accomplished.

After performing the simulation procedure for NMC realizations the di�erent

percolation properties can be obtained using appropriate statistical methods which

will be explained bellow. In order to ensure the same precision for small and large

systems we collected more than NMC = 109 Monte Carlo realizations for small

systems L < 10, down to NMC = 107 for the largest system L = 320. These

simulations are performed for a wide range of the aspect ratios, 0.1 ≤ r ≤ 10. As

one can see in Fig. 2.2, the algorithm running time until the system percolates for

the �rst time is linearly dependent on the number of sticks at the criticality Np,
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2. Finite-size scaling in asymmetric systems of percolating sticks

i.e., linearly dependent on the system area L2, because Np ∼ L2. The running

time slows down when the computer is forced to access to its slower memory parts,

causing higher slope with increase of the system size L. With further increase of

the system size, cache e�ciency e�ects diminished and therefore, the running time

becomes linear again (for L2 > 104). The running time behavior is almost identical

for rectangular systems with di�erent aspect ratios r, as shown in Fig. 2.2.

2.1.2 Calculation of average stick percolation density and

standard deviation

Percolation probability function RN,L,r is the probability that the system with N

sticks, normalized size L, and aspect ratio r percolates. The percolating probability

function RN,L,r for N sticks can be simply obtained by dividing the number of

realizations that satisfy the following condition Np ≤ N by the total number of

realizations NMC. It is convenient to pass from the discrete percolation probability

function RN,L,r for N sticks to a probability function Rn,L,r for arbitrary stick density

n, see Ref. [101]. This discrete-to-continuum transition cannot be obtained with

arbitrary precision simply using the relation n = N/L2. In continuum-percolation

processes this can be resolved by convolving all the measured observables with the

Poisson distribution in order to generate a common �canonical ensemble� for any

value of the stick density n, as shown in Ref. [101], so

Rn,L,r =
∞∑
N=0

(nL2)Ne−nL
2

N !
RN,L,r. (2.2)

Using the percolation probability distribution function de�ned as Pn,L,r = ∂Rn,L,r/∂n,

the average stick percolation density at which, for the �rst time, a percolating cluster

connects boundaries of the system is

〈n〉L,r =

∫ ∞
0

nPn,L,rdn =
1

L2

∞∑
N=0

(1−RN,L,r), (2.3)

where the last equality follows from integrating by parts. Another important param-

eter of the probability distribution function, Pn,L,r, is variance ∆2
L,r = 〈n2〉L,r−〈n〉2L,r,
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2. Finite-size scaling in asymmetric systems of percolating sticks

where 〈n2〉L,r is calculated as

〈n2〉L,r=

∫ ∞
0

n2Pn,L,rdn=
2

L4

∞∑
N=0

(N+1)(1−RN,L,r). (2.4)

Equations (2.3) and (2.4) allow calculations of the �rst two moments directly from

discrete percolation probability function RN,L,r. This is computationally more e�-

cient since it avoids calculation of function Rn,L,r with a high resolution. Detailed

derivations of Eqs. (2.3) and (2.4) are given in Appendix A. Also, the standard errors

propagations of the analyzed variables are given in Appendix B.

2.2 Generalized scaling function for percolation moments

The percolation probability function is related to the universal scaling function [91]

Rn,L,r = F (x̂, {ŷi}, ẑ). (2.5)

The arguments of the universal scaling function F are x̂ = A(n − nc)L
1/ν , ŷi =

BiωiL
−θi , and ẑ = C ln(r), where A, {Bi}, and C are the nonuniversal metric factors,

{ωi} are the irrelevant variables, and {θi} are the corrections to scaling exponents,

(i = 1, 2, ...). Using free boundary conditions and considering two complementary

systems � the sticks and empty space around the sticks � we can conclude that either

the sticks percolate in one direction or the empty space percolates in the opposite

direction:

F (x̂, {ŷi}, ẑ) + F ∗(x̂∗, {ŷ∗i }, ẑ∗) = 1, (2.6)

where quantities denoted by star refer to the empty space. The sticks and empty

space around the sticks are dual systems. Hence, the empty space occupancy n∗ can

be presented as n∗ = n∞− n, and the critical occupancy of the empty space is then

n∗c = n∞−nc, where n∞ →∞ is the total space occupancy. Using the universality of

the percolation probability function, which predicts that for dual systems universal

scaling functions F and F ∗ are equal, and noting that x̂∗ = A∗(n∗ − n∗c)L1/ν =

A∗(n∞ − n− (n∞ − nc))L
1/ν = −(A∗/A)x̂, ŷ∗i = (B∗i /Bi)ŷi, and ẑ∗ = C∗ ln(1/r) =
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−(C∗/C)ẑ, we may rewrite the previous equation in the form

F (x̂, {ŷi}, ẑ) + F (−(A∗/A)x̂, {(B∗i /Bi)ŷi},−(C∗/C)ẑ) = 1. (2.7)

Taking the derivative with respect to x̂, ŷi, or ẑ and evaluating the derivatives at

x̂ = ŷi = ẑ = 0, we �nd that nonuniversal metric factors for dual systems satisfy

A∗ = A,

B∗i = −Bi,

C∗ = C. (2.8)

Finally, we obtain that the universal scaling function behaves as

F (x̂, {ŷi}, ẑ) + F (−x̂, {−ŷi},−ẑ) = 1. (2.9)

Evaluating the previous expression at x̂ = ŷi = ẑ = 0, i.e., at n = nc,L→∞, r = 1,

we obtain

F (0, {0}, 0) =
1

2
. (2.10)

This is in agreement with Cardy's analytical model [88], which predicts that the

percolation probability at the percolation threshold nc for in�nitely large L → ∞

and symmetric system r = 1 is equal to 1/2. This property will be discussed in

more detail in section 2.5.

Taking the derivative of Eq. (2.9) with respect to x̂, ŷi, and ẑ and evaluating the

derivatives at x̂ = ŷi = ẑ = 0, we conclude that ∂mF/∂x̂j∂ŷk1
1 ... ∂ẑ

l
∣∣
0

= 0, for m

even, where m = j +
∑

i ki + l > 0. Expanding the percolation probability function

near the critical point we �nd that

F (x̂, {ŷi}, ẑ)=F (0, {0}, 0)+f0(x̂, ẑ)+
∞∑
i=1

fi(x̂, ẑ)ŷi+.... (2.11)
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2. Finite-size scaling in asymmetric systems of percolating sticks

where the functions f0(x̂, ẑ) and fi(x̂, ẑ) are de�ned by

f0(x̂, ẑ) =
∞∑
j,l=0

1

j!l!

∂j+lF

∂x̂j∂ẑl

∣∣∣∣
0

x̂j ẑl, for j + l odd, (2.12)

and

fi(x̂, ẑ) =
∞∑
j,l=0

1

j!l!

∂j+l+1F

∂x̂j∂ŷi∂ẑl

∣∣∣∣
0

x̂j ẑl, for j + l even. (2.13)

Since the percolation probability distribution function Pn,L,r = ∂Rn,L,r/∂n gives

the probability distribution for a system of size L and aspect ratio r to percolate

for the �rst time at stick density n, we can de�ne the moments of this distribution

µk =

∫ ∞
0

(n− nc)
k ∂Rn,L,r

∂n
dn. (2.14)

The percolation probability distribution function for the in�nite L→∞ and almost

symmetric system r → 1 can be approximated with zero when the stick density n

is outside δn → 0 region around nc, i.e., P|n−nc|>δn,L→∞,r→1 ≈ 0, see Fig. 2.3(e).

Therefore, the kth percolation moment near the critical point can be determined as

µk =

∫ nc+δn

nc−δn
(n− nc)

k ∂Rn,L,r

∂n
dn. (2.15)

Finally, using the universal scaling function F with appropriate arguments x̂, {ŷi},

and ẑ, the above expression becomes

µk = A−kL−k/ν
∫ AδnL1/ν

−AδnL1/ν

x̂k
∂F

∂x̂
dx̂. (2.16)

Substituting Eqs. (2.11)-(2.13) into Eq. (2.16) we obtain the generalized scaling

function for the kth percolation distribution moment:

µk({ŷi}, ẑ) = L−k/ν

(
g0(ẑ) +

∞∑
i=1

gi(ẑ)ŷi + ...

)
, (2.17)
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where we introduce general function g0(ẑ)

g0(ẑ) = A−k
∞∑
j,l=0

1

j!l!

∂j+lF

∂x̂j∂ẑl

∣∣∣∣
0

j

j + k
x̂j+k

∣∣∣∣AδnL1/ν

−AδnL1/ν

ẑl, for j + l odd (2.18)

and general functions gi(ẑ)

gi(ẑ) = A−k
∞∑
j,l=0

1

j!l!

∂j+l+1F

∂x̂j∂ŷi∂ẑl

∣∣∣∣
0

j

j + k
x̂j+k

∣∣∣∣AδnL1/ν

−AδnL1/ν

ẑl, for j + l even. (2.19)

Nonzero values of the general functions given by Eqs. (2.18) are obtained only for

j + k odd. Therefore, for odd k, j is even, and then g0(ẑ) is an odd function and

gi(ẑ) are even functions of ẑ. On the other hand, for even k, j is odd, and then g0(ẑ)

is even and gi(ẑ) are odd functions. Therefore, the observed parity of prefactors in

respect to ẑ should be independent of the type of the system.

From Eq. (2.17) the scaling behavior of the 〈n〉L,r can be described by the gen-

eralized scaling function with aspect-ratio-dependent coe�cients

〈n〉L,r = nc + L−1/ν

∞∑
i=0

ai(r)L
−θi . (2.20)

where {θi} are the corrections to scaling exponents. The zeroth-order correction to

exponent θ0 should be zero [2]. In analogy to 〈n〉L,r, for variance ∆2
L,r we introduce

the following expansion

∆2
L,r = L−2/ν

∞∑
i=0

bi(r)L
−θi . (2.21)

From Eq. (2.17) and the parity of g0(ẑ) and gi(ẑ), we can estimate the zeroth-order

and the �rst-order prefactors for 〈n〉L,r and ∆2
L,r near ln(r) = 0, i.e., ẑ = 0, as follows

a0(r) ≈ a0,0 ln(r) + a0,1 ln3(r),

a1(r) ≈ a1,0 + a1,1 ln2(r), (2.22)
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and

b0(r) ≈ b0,0 + b0,1 ln2(r),

b1(r) ≈ b1,0 ln(r) + b1,1 ln3(r), (2.23)

where ai,j and bi,j are nonuniversal coe�cients.

2.3 Finite-size scaling of average stick percolation density

and standard deviation

The results for percolation probability Rn,L,r and distribution Pn,L,r function are

shown in Fig. 2.3. One observes that the slope of percolation probability function

Rn,L,r increases with the increase of the system size. The percolation probability

function curves intersect approximately at nc. The �ne behavior of percolation prob-

ability function at nc (see insets of Fig. 2.3) will be discussed in section 2.5. With the

increasing system size, the standard deviation of probability distribution function

decreases to zero. Also, average stick percolation density 〈n〉L,r, which corresponds

roughly to maximum of probability distribution function Pn,L,r, approaches to the

percolation threshold nc. For r < 1, 〈n〉L,r converges to nc from below with in-

crease of the system size L. The reason for this is that narrow �nite systems will be

spanned already at lower densities than nc. For r > 1, 〈n〉L,r converges from above,

while for symmetric systems (r = 1) is roughly centered at nc, see Fig. 2.3.

From Fig. 2.4, one can see that average stick percolation density 〈n〉L,r for as-

pect ratio higher than 1 is a monotonically decreasing function of the system size L.

Somewhat surprising, for aspect ratios lower than 1, 〈n〉L,r is not a monotonic func-

tion and has a local minimum; i.e., for small systems 〈n〉L,r is a decreasing function,

which passes through nc, reaches a minimum, and after that converges to nc from

below. In the inset of Fig. 2.4, one can see that for large system sizes all the curves

show power-law convergence to the percolation threshold nc with exponent −1/ν,

except in the symmetric case, i.e., r = 1, where the exponent is −1/ν−θ1. Absolute

values of the leading-order prefactors are the same for aspect ratios r and 1/r, which
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.3: Percolation probability function Rn,L,r (a), (b), and (c) and probability
distribution function Pn,L,r (d), (e), and (f) for stick percolation on rectangular
systems with free boundary conditions and increasing system size from L = 20 to
200 for three aspect ratios r = 0.5, 1, and 2. The direction of the increase of L is
indicated on graphs. The vertical dashed lines denote the value for the percolation
threshold nc, while the horizontal dashed lines denote the percolation probability
of the in�nite systems at the percolation threshold Rnc,L→∞,r. Insets: The �ne
behavior of percolation probability function at the critical point nc.

is in accordance with the prefactors parity explained in the previous section.

The higher exponent of symmetric systems comes from the basic physics of per-

colation, that is, connectedness. We can illustrate this using a simpli�ed image of

site percolation by introducing the quantity R(p) as the probability that the sites

with occupancy p form a spanning path. The percolation probability R(p) and

occupancy p are equivalent to the percolation probability function Rn,L,r and stick

density n, respectively. In this image, a cell coming out of the renormalization trans-

formation (coarse graining) is occupied only if it contains a set of sites that span this

cell. The universal scaling function introduced in the previous section re�ects the

fact that the probability of the spanning system at the percolation threshold R(pc)

remains unaltered under this transformation [2]. Therefore, the �xed point of this
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.4: The dependence of the average stick percolation density 〈n〉L,r on
the system size L and aspect ratio r. The points are obtained from Monte
Carlo simulations and calculated using Eq. (2.3). The values are given for as-
pect ratios r = 0.7, 0.8, 0.9, 0.95, 0.98, 1 (�lled) and their inverse values r =

1/0.7, 1/0.8, 1/0.9, 1/0.95, 1/0.98 (transparent). The horizontal bold line denotes
the expected value for the percolation threshold nc. The lines represent the average
stick percolation density 〈n〉L,r modeled using Eqs. (2.20) and (2.22), coe�cients ai,j
given in Table 2.1, and the corrections to scaling exponents θ0 = 0 and θ1 = 0.82.
Inset: The same data are shown in logarithmic scale to demonstrate the same power
law convergence of the r and 1/r pairs.

system, i.e., the critical percolation threshold, pc should satisfy relation pc = R(pc).

We can expand the percolation probability around the percolation threshold pc,

|R(p)−R(pc)| ≈ dR/dp|pc |p− pc|. Also, if we renormalize the lattice close to pc by

a length factor b, the characteristic length changes as ξ/b. Since ξ ∼ |p− pc|−γ, we

can write another relation, |R(p)−R(pc)|−γ ≈ |p−pc|−γ/b, connecting characteristic

lengths before and after renormalization. From these two relations one can conclude

that the critical exponent should be

−1/γ ≈ ln dR/dp|pc

ln 1/b
. (2.24)
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Figure 2.5: The dependence of the the percolation probability distribution function
variance ∆2

L,r on the system size L and aspect ratio r. The points are obtained from
Monte Carlo simulations and calculated using Eqs. (2.3) and (2.4). The values are
given for aspect ratios r = 0.2, 0.25, 0.4, 0.6, 0.9, 1 (�lled) and their inverse values
r = 1/0.2, 1/0.25, 1/0.4, 1/0.6, 1/0.9 (transparent). The lines represent the variance
∆2

L,r modeled using Eqs. (2.21) and (2.23), coe�cients bi,j given in Table 2.1, and
the corrections to scaling exponents θ0 = 0 and θ1 = 0.82. Inset: The same data are
shown in logarithmic scale to demonstrate the same power law convergence for all
aspect ratios r.

From Fig. 2.3, one can see that probability density Pnc,L,r which is derivative of

Rn,L,r at nc is always larger for symmetric systems than for asymmetric systems

of the same size. Therefore, from Eq. (2.24), one expects higher absolute value of

the exponent in symmetric compared to asymmetric systems. Another conclusion

one can draw from this analysis is that the observed exponents are a result of the

interplay of the characteristic length and the system shape. Usually, such behavior

is attributed to a competition between two-dimensional and three-dimensional (or

one-dimensional and two-dimensional), e.g., in the Ising model for slab geometries;

see Ref [3]. In this system we observe that there is sharp transition in the nature of

scaling when we pass from the symmetric to asymmetric system, and a competition

between exponents characteristic for symmetric and asymmetric systems.
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2. Finite-size scaling in asymmetric systems of percolating sticks

As illustrated in Fig. 2.5, the variance of percolation probability distribution

function ∆2
L,r for all aspect ratios r is a monotonically decreasing function of the

system size L. We note that the variance of narrow systems ∆2
L,r<1 is approximately

equal to the variance of symmetric systems ∆2
L,r=1 with the same size L. In the inset

of Fig. 2.5, one can see that all presented curves show power-law convergence to zero

with exponent −2/ν, which is in accordance with Eqs. (2.21) and (2.23).

2.4 Prefactors and exponents of average stick percolation

density and standard deviation

From Monte Carlo simulation data we have obtained the two leading-order terms of

〈n〉L,r in Eq. (2.20) by �tting. A detailed description of the �tting analysis is given

in Appendix C. The results of the analysis are shown in Fig. 2.6. The zeroth-order

prefactor a0(r) is zero for symmetric system r = 1, and it is an odd function on

a logarithmic scale, i.e., a0(r) = −a0(1/r), as shown in detail in Appendix C. The

�rst-order prefactor a1(r) is an even function, i.e., a1(r) = a1(1/r), as also shown in

Appendix C. The �tting coe�cients ai,j for prefactors a0 and a1, given in Table 2.1,

are calculated using the least-squares �tting methods. The in�uence of higher order

terms of 〈n〉L,r was comparable to or smaller than the simulation data error and

we could not extract them with su�cient precision. As shown in Fig. 2.6(b), the

zeroth-order correction θ0 = 0 is equal to zero, while for the �rst-order correction

we obtain θ1 = 0.82(2) for r = 1, which is consistent with Refs. [87, 89]. The

residual aspect ratio dependence of θ1 cannot be further analyzed without provision

of retaining the �rst two terms in Eq. (2.20). However, for all studied values of

aspect ratio 0.1 < r < 10, the average stick percolation density 〈n〉L,r, modeled

using the two leading-order terms in Eqs. (2.20) and (2.22), coe�cients ai,j given in

Table 2.1, and the corrections to scaling exponents θ0 = 0 and θ1 = 0.82, shows an

excellent agreement with the MC results over the whole range of the system size L,

see Fig. 2.4.

From Eq. (2.20) one can see that the system size where the average stick per-

colation density reaches its minimum is Lmin ≈ (−a1(r)/a0(r)(1 + νθ1))1/θ1 , see
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Figure 2.6: Prefactors (a) and exponents (b) are shown for the two leading-order
terms of generalized scaling function for average stick percolation density 〈n〉L,r
given by Eq. (2.20). The zeroth-order prefactor is an odd function on a logarithmic
scale, i.e., a0(r) = −a0(1/r), and the zeroth-order exponent is −1/ν (solid lines).
The �rst-order prefactor is an even function, i.e., a1(r) = a1(1/r), and the �rst-order
correction to the scaling exponent is θ1 = 0.82(2) for r = 1 (dashed lines).

Fig. 2.4. The size Lmin is a real number only for narrow systems, i.e., r < 1, because

the prefactors a0(r) and a1(r) have di�erent signs only in that case, see Fig. 2.6(a).

When r approaches one from bellow, i.e., r → 1−, the two leading-order prefactors

converge to a0(r) → a0,0 ln(r) and a1(r) → a1,0 (see Eq. (2.22)) and consequently,

Lmin diverges as 1/ ln(r), i.e., Lmin ∼ 1/ ln(r) → ∞. In that case, for small system

sizes L < Lmin, the �rst-order term of the average stick percolation density 〈n〉L,r is

dominant compared to the zeroth-order term, see Fig. 2.4.

Table 2.1: The improved values of the coe�cients ai,j and bi,j, where i, j ∈ {0, 1},
compared to those given in our previously published paper [4]. The improved values
are obtained using the least-squares �tting method as explained in Appendix C.

0, 0 0, 1 1, 0 1, 1

ai,j 4.861(6) 0.310(4) 1.48(5) 2.1(2)

bi,j 13.98(7) 2.24(4) 15.4(3) 3.2(2)
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Figure 2.7: Prefactors (a) and exponents (b) are shown for the two leading-order
terms of generalized scaling function for stick percolation density variance ∆2

L,r given
by Eq. (2.21). The zeroth-order prefactor is an even function on a logarithmic scale,
i.e., b0(r) = b0(1/r), and the zeroth-order exponent is −2/ν (solid lines). The
�rst-order prefactor is an odd function, i.e., b1(r) = −b1(1/r), and the �rst-order
correction to the scaling exponent is θ1 = 0.80(5) for r = 0.95 (dashed lines).

The prefactors and exponents of stick percolation density variance ∆2
L,r for the

two leading-order terms in Eq. (2.21) are shown in Fig. 2.7. The prefactors and

exponents are obtained by �tting, as explained in Appendix C. The �tting coe�-

cients bi,j for prefactors b0 and b1 are given in Table 2.1 and the obtained prefactor

dependences on the system aspect ratio r are shown in Fig. 2.7(a). The zeroth-order

prefactor of ∆2
L,r is an even function on a logarithmic scale, i.e., b0(r) = b0(1/r), as

one can also see from a coarse observation of the percolation probability distribution

function in Fig. 2.3. Asymmetry of the variance, i.e., ∆2
L,r 6= ∆2

L,1/r, is the �rst-order

e�ect, because the �rst-order prefactor is an odd function on a logarithmic scale,

i.e., b1(r) = −b1(1/r), as shown in Appendix C. Also, for all studied values of the

aspect ratio 0.1 < r < 10, the stick percolation density variance ∆2
L,r, modeled using

the �rst two terms in Eqs. (2.21) and (2.23), coe�cients bi,j given in Table 2.1, and

corrections to scaling exponents θ0 = 0 and θ1 = 0.82, shows an excellent agreement

with the MC results over the whole range of the system size L, see Fig. 2.5.
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2. Finite-size scaling in asymmetric systems of percolating sticks

2.5 Percolation probability function at percolation threshold

We also investigate the scaling behavior of the percolation probability at the perco-

lation threshold Rnc,L,r expanding the universal scaling function F (0, {ŷi}, ẑ) near

the in�nite-size system, i.e., L→∞, as follows

F (0, {ŷi}, ẑ)=F (0, {0}, ẑ)+
∞∑
i=1

∂F

∂ŷi
ŷi+... . (2.25)

This relation is equivalent to the following scaling function

Rnc,L,r = Rnc,L→∞,r +
∞∑
i=1

ci(r)L
−θi+..., (2.26)

where ci(r) are aspect-ratio-dependent scaling prefactors. Instead of the previous

expansion, in Ref. [93] was found that the best �t for the percolation probability

function at the percolation threshold nc is given by

Rnc,L,r = Rnc,L→∞,r +
c1(r)

L
+
c2(r)

L2
. (2.27)

We suppose that the higher order terms in the generalized scaling function given

by Eq. (2.26) cannot be neglected and their comprehensive in�uence is probably

superposed resulting in only two terms, as shown in Eq. (2.27). In order to con�rm

that, we �nd that the previous equation represents an excellent �t to the percolation

probability values at the percolation threshold Rnc,L,r for all analyzed system sizes

L and aspect ratios r. Therefore, the results for prefactors c1(r) and c2(r) obtained

using Eq. (2.27) for �tting data are shown in Fig. 2.8. For the two limiting cases

(r < 0.1 and r > 10), the prefactors are close to zero, which is consistent with the

behavior observed in Fig. 2.3. Between these two limiting cases, one can observe that

both prefactors are close to zero for r = 2.25(5). This means that the percolation

probability at the percolation threshold is independent of the system size L when

the system aspect ratio r is approximately equal to 2.25, i.e., Rnc,L,r≈2.25 ≈ 0.135.

The scale invariance, i.e., Rnc,L,r = Rnc,∞,r, has been already seen and intuitively

understood for bond percolation in symmetric systems, where Rpc=0.5,r=1 = 1/2 is
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Figure 2.8: (a) Prefactors for �nite-size scaling of the percolation probability at the
percolation threshold Rnc,L,r are shown for the two leading-order terms. (b) The
percolation probability at the percolation threshold for in�nitely large systems
Rnc,L→∞,r. The points represent Monte Carlo data for stick percolation, while the
line represents results of Cardy's model for the lattice percolation. The error bars
are much smaller than the size of the points for all r.

also independent of the system size L; see Ref. [97]. The reason for the observed

system size invariance of percolation probability at the threshold in the asymmetric

stick system is the existence of multiple zeros of at least second order at this point

in the universal scaling function. We note that this invariance can also be observed

in insets of Fig. 2.3 where the �ne behavior of percolation probability function at

the critical point nc is shown for di�erent system sizes from L = 20 to 200. For

narrow systems (r = 0.5) shown in Fig. 2.3(a), as well as symmetric ones (r = 1)

shown in Fig. 2.3(b), the percolation probability at the percolation threshold nc

approaches to its in�nite-size value Rnc,L→∞,r with increasing system size L. On the

other hand, for the systems shown in Fig. 2.3(c), which have the aspect ratio r = 2

close to its critical value 2.25(5), all percolation probability function curves intersect

approximately at the same point, see inset of Fig. 2.3(c).

Finally, regarding the value of the percolation probability at the percolation

threshold of the in�nite system, we �nd that Cardy's analytical model derived for
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2. Finite-size scaling in asymmetric systems of percolating sticks

the lattice percolation also describes our simulation data; see Fig. 2.8(b). The devi-

ation between the analytical values for lattice and the Monte Carlo values for stick

percolation is less than the statistical error of the simulation data, i.e., less than 10−5.

The percolation probability for the 2D stick system therefore satis�es Rnc,L→∞,r +

Rnc,L→∞,1/r = 1. This relation can also be obtained from Eq. (2.9) considering

duality of in�nite-size systems at the percolation threshold, i.e., F (0, {0}, ẑ) +

F (0, {0},−ẑ) = 1.

2.6 Analytic model for the percolation probability function

Finally, we propose an analytic model for calculating the percolation probability

function Rn,L,r using a cumulative distribution function [50, 102]

Rn,L,r =
1

2

[
1 + erf

(
n− 〈n〉L,r√

2∆L,r

)]
, (2.28)

where 〈n〉L,r is the average stick percolation density modeled using Eqs. (2.20) and

(2.22) and coe�cients ai,j given in Table 2.1, ∆L,r is the the percolation density

standard deviation modeled using Eqs. (2.21) and (2.23) and coe�cients bi,j given

in Table 2.1, whereas erf(x) = 2
∫ x

0
e−t

2
dt/
√
π is the Gaussian error function.

The percolation probability functions Rn,L,r for di�erent aspect ratios and nor-

malized system sizes are shown in Fig. 2.9. As already noted, the percolation prob-

ability function moves toward higher densities with increasing system aspect ratio r

and becomes steeper with increasing normalized system size L. As demonstrated in

Fig. 2.9, the values obtained using the proposed model given by Eq. (2.28) represent

an excellent �t to the data calculated using MC simulations, even for the systems

with a relatively small normalized size L > 5. Therefore, we conclude that the pro-

posed analytic model can be used as an excellent approximation of the percolation

probability function for all studied systems sizes with L > 5 and all studied aspect

ratios 0.1 < r < 10.
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Figure 2.9: The percolation probability functions for di�erent aspect ratios (a) r =

0.25, (b) 1, and (c) 4 and for three normalized system size values L = 6, 20, and
160. The points are obtained from the MC simulations and calculated using Eq. 2.2.
The solid lines denote values obtained from our analytic model for the percolation
probability functions given by Eq. (2.28). The vertical dashed lines denote the
percolation threshold value nc.

2.7 Conclusions

In summary, based on the analysis of �nite-size scaling in continuum two-dimensional

systems, the generalized scaling law is introduced for average percolation density,

standard deviation, and percolation probability at the percolation threshold. The

presented methodology could be used to model accurately these properties for any

percolating system. According to the generalized scaling function, an analytic model

of the percolation probability function for two-dimensional systems is also proposed.

We �nd that the zeroth-order prefactor of average percolation density is an odd func-

tion with respect to ln(r). This explains the faster convergence of average percolation

density for symmetric systems than expected from general scaling arguments. We

also observe that there is a characteristic aspect ratio for which percolation proba-

bility at the percolation threshold is system-size independent. In addition, for the

in�nite system, we �nd that the percolation probability at the critical threshold den-
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sity shows excellent agreement with Cardy's prediction for lattice percolation. The

presented results con�rm that continuum percolation belongs to the same universal-

ity class as lattice percolation in the sense that the value of percolation probability at

the threshold for in�nitely large systems is the same for lattice and continuum per-

colation. One should note that a number of other features observed in this Chapter

should be a common characteristic within the class, e.g., the existence of the aspect

ratio where the percolation probability at the threshold is scale invariant and parity

of the moments of the percolation probability distribution function. This opens up

the question of the particle shape in�uence on prefactors, whether it is possible to

�nd systems where the observed behaviors are more pronounced, and �nally the

question of the general form of the prefactors for describing di�erent systems.
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Chapter 3 From percolating to dense random nano-

wire networks: electrical conductivity and

optical transparency investigation

Across di�erent application areas, such as thin-�lm solar cells, organic light emit-

ting diodes, and many touch screen applications, two critical performance criteria for

the transparent conductors are their electrical conductivity and optical transparency.

Therefore, the electrical conductivity and optical transparency dependencies on the

NW density and system geometry needs to be taken into account in any device

design based on random NW networks [24]. The percolation theory predicts that

the electrical conductivity of the composite materials with the conductive �ller den-

sity n above, but close to the percolation threshold nc, increases with the density

by a power scaling law σ ∼ (n − nc)
t, with the universal conductivity exponent

t ≈ 1.29 for two-dimensional (2D) systems [2]. While the conductivity scaling law is

expected to be applicable only near the percolation threshold, in many experiments

the scaling law was used over a much larger range of concentrations, but with the

nonuniversal values of the conductivity exponent [18, 28�30].

In this Chapter, the conductivity of two-dimensional random NW networks is

investigated from the percolation threshold up to ten times the percolation thresh-

old density using an extensive Monte Carlo simulation study. We show that it is

not appropriate to use a simple scaling law to describe the conductivity dependence

on the density, both for �nite and dense networks. Based on our Monte Carlo sim-

ulation results, we propose a model that explicitly depends on the NW density and

junction-to-NW conductance ratio. The model describes the transition from the

conductivity determined by the structure of a percolating cluster to the conductiv-

ity of the dense random NW networks. The proposed model is motivated by the
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3. From percolating to dense random NW networks

observed structural characteristic of the random NW networks (i.e., the density of

total NWs and contacts involved in the current �ow through the system). The model

is also valid for the di�erent stick-like nanoparticles. The �nite-size scaling e�ects

are also included in the description. Finally, using the proposed model and an ana-

lytical approximation for the density-dependent optical transmittance, we quantify

a dependence of the optical transmittance on the electrical conductivity for random

NW networks. We also propose a procedure for estimating values of all relevant

geometrical and electrical parameters of random NW networks required for using

these networks as high performance transparent conductors.

3.1 Numerical method for conductivity calculation

Monte Carlo (MC) simulations are coupled with an e�cient iterative algorithm im-

plemented on the grid platform and used to investigate the conductivity of randomly

distributed NWs networks [33, 99, 103]. We have considered the two-dimensional

systems with isotropically placed NWs modeled as widthless sticks with a �xed

length ls. The centers of the NWs are randomly positioned and oriented inside the

square system with size LS. Two electrodes (i.e., conducting bars) are placed at

the left and right sides. The top and bottom boundaries of the system are free

and nonconducting, because free boundary conditions are more consistent with NW

networks in practice. Two sticks (NWs) belong to the same cluster if they intersect.

The system percolates (conduct) if the electrodes are connected with the same clus-

ter. The behavior of the NW percolation is studied in terms of the normalized NW

density n = N/L2, where N is the total number of NWs and L = LS/ls is the nor-

malized system size. As determined in Chapter 2, the percolation threshold of the

in�nite-size stick system is de�ned by the critical density nc ≈ 5.63726. To evaluate

the conductivity of the NW networks we introduce two di�erent conductances:

(1) the conductance of the entire NW Gs; and

(2) the conductance due to the NW-to-NW junction Gj.

We assume di�usive electrical transport through the NW, which is typical for the

rodlike nanostructures whose length is larger than the mean free path of the elec-
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trons [104, 105]. According to the di�usive electrical transport the electrical con-

ductance of a NW segment Gseg is inversely proportional to its length lseg and can

be calculated as follows

Gseg = Gs
ls
lseg

. (3.1)

In our simulations, each NW-NW junction is modeled by an e�ective contact con-

ductance regardless of the type of the junction, following the simpli�ed approach of

the authors of Refs. [15, 21, 33]. Therefore, if two NWs intersect a junction with

the �xed conductance Gj is created at the intersection point. The created NW-NW

junction conductance Gj connects two virtually created nodes positioned at the in-

tersection point, as shown in Fig. 3.1. Each of these two nodes belongs to one of

the two intersecting sticks, see Fig. 3.1. Therefore, the entire network of randomly

distributed NWs is modeled by the electrical conductances of NW segments and

NW-NW junctions created between the nodes positioned at the interaction points,

see Fig. 3.1. As shown in Fig. 3.1, a node indexed by k can have maximum 2 neigh-

boring nodes indexed by l1 and l2 belonging to the same NW as the node k (ith

NW), as well as one neighboring node indexed by l3 belonging to di�erent NW (jth

NW). The segment conductances Gkl1 and Gkl2 are determined from Eq. (3.1) where

appropriate segment lengths are distances between the pairs of neighboring nodes

(k, l1) and (k, l2), respectively.

Nodes that are positioned between the left and right electrodes of the system

represent internal nodes of the electrical network. Each internal node k is associated

with a electrical potential Vk, where k = 1, 2, . . . , Nn and Nn is the total number

of internal nodes. The electrical potentials of internal nodes are initially unknown

and they should be calculated in order to determine the electrical conductivity of

the network. However, when a NW intersects the left or right system electrode,

an external node is created at the intersection point. If the NW intersects the left

(right) electrode, the electrical potential of the created external node is set to 0 (V ),

according to a realistic assumption that the system electrodes are highly conductive

and that the contact resistance between a NW and an electrode can be neglected [33].

Hence, the external nodes are the only nodes in the network that have known and

�xed potentials (0 or V ).

36



3. From percolating to dense random NW networks

� �

��

�

��

����

��

��

����
����

�����	�
��
�

�����	�
��
���

��
��

Figure 3.1: Schematic illustration of an electrical network of randomly distributed
NWs where conductances of NW segments (black) and NW-NW junctions (red) are
presented. A junction with the �xed conductance Gj is created at the intersection
point between two virtually created nodes. Each of these two nodes belongs to one
of two intersecting NWs. One node (k) can have maximum 3 neighboring nodes (l1,
l2, and l3), i.e., maximum 2 nodes belonging to the opposite sides of the same NW
(l1 and l2 at ith NW) and 1 node belonging to di�erent NW (l3 at jth NW).

As shown in Fig. 3.1, an arbitrary internal node k can have maximum 3 internal

neighboring nodes l1, l2, and l3. Kirchho�'s current law is used to balance the

current �ow through the internal node k as follows

l3∑
l=l1

Gkl (Vk − Vl) = Ik, (3.2)

where Gkl is the conductance between the internal nodes k and l and Ik is the current

�owing into the internal node k. If the internal node k has only internal nodes as its

neighbors (maximum 3 of them), the current Ik is equal to 0. If the internal node

k has an external node as one of its neighbors, the current Ik is di�erent from 0. In

that case, the current Ik �owing into the internal node k is Ik = Gk(Ve− Vk), where

Gk is conductance between the internal node k and its neighboring external node, if
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3. From percolating to dense random NW networks

such exists, given by Eq. (3.1), whereby the voltage Ve is equal to 0 or V depending

on whether the external node is created at the left- or right-electrode intersection.

Kirchho�'s current law given by Eq. (3.2) and applied to all Nn internal nodes

of the electrical network can be presented in the matrix form:

Gv = i, (3.3)

where the square Nn ×Nn matrix G represents a conductance matrix:

G =



G11 −G12 . . . −G1k . . . −G1l . . . −G1Nn

−G21 G22 . . . −G2k . . . −G2l . . . −G2Nn

...
...

...

−Gk1 −Gk2 . . . Gkk . . . −Gkl . . . −GkNn

...
...

...

−Gl1 −Gl2 . . . −Glk . . . Gll . . . −GlNn

...
...

...

−GNn1 −GNn2 . . . −GNnk . . . −GNnl . . . GNnNn



,

with the diagonal elements equal to

Gkk =
Nn∑

l=1, l 6=k

Gkl +Gk, (3.4)

where Gk is the conductance between the internal node k and its neighboring exter-

nal node, if such exists, otherwise Gk = 0. We note that a diagonal element Gkk of

conductance matrix G presents sum of all conductances that have an internal node k

as a common node, regardless of the type (internal or external) of their non-common

nodes. Also, we note that a conductance between two non-neighboring nodes k and

l is by default equal to 0 in the conductance matrix G. The column vector v presents

an unknown vector of the electrical potentials of all internal nodes:
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v =



V1

V2

...

Vk
...

Vl
...

VNn



,

whereas the column vector i presents a known vector which is determined by the

electrical potential V applied to the right electrode, i.e., to the appropriate right-

electrode external nodes:

i = V



G1

G2

...

Gk

...

Gl

...

GNn



,

where Gk is the conductance between the internal node k and its neighboring right-

electrode external node, if such exists, otherwise Gk = 0.

The conductance matrix G is a square matrix with the total number of elements

equal to the squared number of total internal nodes N2
n . The total number of internal

nodes is higher than 106 in the real systems. Therefore, the crucial signi�cance for

solving so large systems of linear equations given by Eq. (3.3) is the sparseness of

their matrices G, which have maximum 4 non-zero elements in each raw (maximum

3 non-zero neighboring conductances + one diagonal element). Also, we note that

the system matrix G is symmetric G = GT, because Gkl = Glk, as well as positive-

de�nite, because Gkk > 0 and Gkk ≥
∑

l 6=k |Glk| for all k and its total sum is positive∑
k,lGk,l > 0, see Ref. [106].
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Since the system matrix G is sparse, square, symmetric, and positive-de�nite

an iterative equation solver (i.e., conjugate gradient method (CGM) with Jacobi

preconditioner) has been employed to solve the large system of linear equations as

explained in detail in Appendix D. In order to improve the simulation e�ciency, the

following optimizations have been performed before the iterative equation solver is

employed to solve the system:

i) During the determination of the NW connectivities, each NW is �rst registered

into a subcell in which its center lies, as described in section 2.1. As it was explained

there, it is only necessary to check the connectivity between a chosen NW and any

of those NWs belonging to the same subcell or the neighboring subcells.

ii) Before applying Kirchho�'s current law to the internal nodes, it should be

checked does the analyzed NW network percolate. If the NW network does not

percolate its conductivity is equal to 0 and, therefore, there is no need for solving

Kirchho�'s current law equations.

iii) If the NW network percolates, all dangling NWs, with the corresponding

junctions, that do not carry any current should be deleted before the iterative solver

is applied, see Ref. [33].

iv) In order to reduce the total number of iterations, starting values for the

electrical potentials V 0
k should be proportional to their distances xk from the left

electrode, i.e., V 0
k = xk

L
V , because this starting values present a good estimate of

the �nal potentials Vk, see Ref. [107].

After solving this large system of linear equations and obtaining the potentials of

all internal nodes, the total current I is easily determined as the sum of the currents

�owing into (out of) all external nodes connecting the left (right) electrode. After

obtaining the total current I under an applied voltage between the electrodes V the

macroscopic electrical conductivity1 of the system is evaluated as σ = I/V . Monte

Carlo simulations have been performed for a wide range (i.e., Gj/Gs = 0.001 to

1For a rectangular system of size L ×W , where L is the distance between the electrodes and
W is their length, the relation between the system conductance G and conductivity σ is according
to Ohm's law given by G = σW/L. In this Chapter the system is the square-shaped L =W , which
implies G = σ. Although in the square system conductance is equal to the system conductivity, in
this Chapter for clarity we have assumed terminology in which the conductance is used for denoting
a single conductive element (NW or junction) while the conductivity is related to the entire system.
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3. From percolating to dense random NW networks

1000) of junction-to-NW conductance ratios1. Finally, for each set of the system

parameters, the electrical conductivity is averaged over the NMC independent MC

realizations. To obtain the same precision for the �nite-size systems NMC = 64000

realizations are used for the systems with normalized size L = 10 down to NMC =

4000 for the largest system L = 40 studied. Using the appropriate functions for

the �tting data and the least-squares �tting methodology [4], good �ts with high

correlation factors (R2 > 0.998) were obtained for all analyzed systems.

As one can see in Fig. 3.2, the algorithm running time needed for conductivity

calculation using CGM with Jacobi preconditioner for a single MC realization of a

random NW network depends on the square of normalized NW density, i.e., on the

total number of internal nodes, by a power law with the exponent equal to a value

of 3/2, i.e., (T ∼ (n2)
3/2 ∼ N

3/2
n ), when the NW density is n > 10. The power-law

dependency of the running time with the exponent 3/2 for CGM is explained in detail

in Appendix D. We note that for higher NW densities n almost all junctions and

NWs will be involved in the current �ow through the system, as shown in Fig. 3.4.

Therefore, for the normalized NW density higher than 10, i.e., n > 10, the number

of internal nodes involved in the current �ow increases with the NW density by a

square power law Nn ∼ n2 and for this reason, we obtain the power-law dependency

T ∼ (n2)3/2 shown in Fig. 3.2. For lower NW densities the number of internal nodes

Nn involved in the current �ow increases rapidly with increasing NW density n, see

Fig. 3.4, and, hence, the running time also increases rapidly with increasing n2, see

Fig. 3.2 for n < 10.
1The choice of an extended range of conductance ratios is based on the experimental measure-

ments on crossed NWs [108], as well as other rodlike nanoparticles, such as CNTs [109, 110]. For
crossed single-walled CNTs the junction conductance is of the order of magnitude 0.1e2/h [109]
(where e is the electron charge, h is Planck's constant, and e2/h ≈ 39 µS) and two orders of
magnitude higher for NW-NW junctions [21, 22, 111]. In the di�usive case, typical for NWs and
CNTs whose length ls is larger than the mean free path of electrons λ, the conductance can be
approximated by Gs ≈ (4e2/h)(λ/ls) [104, 105, 112]. For single-walled CNTs the mean free path of
the electrons is of the order λ ≈ 1 µm [105, 112], while for NWs, the mean free path is considerably
shorter ≈ 40 nm [113], implying that the di�usive conduction model is applicable even for very
short NWs. Therefore, the junction-to-stick conductance ratio Gj/Gs depends on the total stick
length ls. When the stick length is of the order of the mean free path of the electrons the conduc-
tance ratio, especially for CNTs, is Gj/Gs = 0.001 − 0.1. On the other hand, for very long sticks
(i.e., ls > 100λ), the conductance ratio, especially for NWs, becomes higher than 1, Gj/Gs > 1.
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Figure 3.2: The dependence of the average CPU time T needed for conductivity cal-
culation using CGM with Jacobi preconditioner on the square of normalized density
n2 for a single MC realization of a random NW network with the normalized size
L = 20 and junction-to-NW conductance ratio Gj/Gs = 1000. The results are shown
on a logarithmic scale to demonstrate power-low dependence of the running time.
The simulations were run on a computer cluster con�gured with Intel Xeon CPUs
with 2.33 GHz and 8 GB RAM. The solid line T ∼ (n2)

3/2 is only a guide for the
eye. As one can see, the running time depends on the total number of internal nodes
by a power law with the exponent equal to a value of 3/2, i.e., (T ∼ (n2)

3/2 ∼ N
3/2
n ),

when the normalized NW density is n > 10.

3.2 Local conductivity exponent

As already mentioned, the numerical estimates of the conductivity exponent t are

based on the linear �t of the MC results for the logarithms of the conductivity σ

and density n−nc [27, 31�33]. The estimates therefore rely on the assumption that

σ obeys the simple power-law dependence over a quite extended density range. As

there exists no justi�cation of such an assumption, we have investigated in detail

the behavior of the conductivity σ as we move away from the critical point. A local
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Figure 3.3: The dependence of the local conductivity exponent t(n) on the
normalized NW density n and junction-to-NW conductance ratio Gj/Gs. The
points are MC simulation results obtained using Eq. (3.5) for the normalized sys-
tem size L = 20. The values are given for the conductance ratios Gj/Gs =

0.001, 0.01, 0.1, 0.2, 0.5, 1 (�lled), and their inverse values 1000, 100, 10, 5, 2 (trans-
parent). The error bars are smaller than the size of the points. The star marker
denotes the expected universal value for the conductivity exponent at the perco-
lation threshold t(nc). The lines represent the local conductivity exponents t(n)

obtained from the conductivity model for an in�nite-size system, Eq. (3.7).

(density dependent) conductivity exponent is de�ned as t(n) by [97, 114]

t(n) =
n− nc

σ

dσ

dn
. (3.5)

The dependence of the local conductivity exponent t(n) on the NW density n and

the ratio of the NW-NW junction conductance (Gj) to NW conductance (Gs) (i.e.,

Gj/Gs) is shown in Fig. 3.3. As one can see from a coarse observation, when the NW

density approaches the percolation threshold nc from above the local conductivity

exponent converges to the universal value for 2D systems t(nc) ≈ 1.29 for all Gj/Gs

values. The �ne behavior of the local conductivity exponent for �nite-size systems

in the vicinity of the percolation threshold will be discussed later in this Chapter.
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Figure 3.4: The normalized density of junctions nIj and NWs nI involved in the
current �ow through the system is compared with the density of all junctions nj and
NWs n in the system of normalized size L = 20. For higher NW densities n almost
all junctions and NWs will carry some current. The error bars are smaller than
the size of the points. Inset: The density ratio of the current-carrying junctions to
current-carrying NWs nIj /n

I is higher than the density ratio of all junctions to all
NWs nj/n in the system. At the percolation threshold this ratio is about 2, i.e.,
nIj /n

I = 2.0(1).

With the increasing concentration n, the local conductivity exponents t(n) change

quickly from the universal value t(nc), taking the values in a wide range 1 ≤ t(n) ≤

2. From Fig. 3.3, one can see that the local conductivity exponents t(n) for the

conductance ratio higher than 2 (Gj/Gs > 2) is a monotonically decreasing function

of the NW density n which converges to 1 from above. Somewhat surprisingly, for

the conductance ratios lower than 1 (i.e., Gj/Gs < 1), the local exponent t(n) is

not a monotonic function and has a local maximum. The observed density where

the local conductivity exponent reaches a maximum decreases with increasing the

conductance ratio Gj/Gs.

To explain the observed behavior of the exponent t(n) at the higher densities

n > 2nc, one needs to look into the structure of the dense conducting NW networks.

Figure 3.4 shows the normalized densities of the NWs nI and junctions nIj that
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Figure 3.5: Schematic illustration of simpli�ed model of random NW network where
the total number of junction is proportional to the square of normalized NW density
n2 (left panel). The equivalent conductance of the simpli�ed network presented as
serial conductance n NWs in parallel and n2 junctions in parallel (right panel).

carry the current through the system. For su�ciently high NW densities (n > 2nc),

one can see that almost all the NWs and junctions in the system contribute to the

conductivity and that the density of the current-carrying junctions increases with

the NW density n by a square power law nIj ∼ n2. The reason for this is that the

mean number of contacts per NW is proportional to the NW density, see Ref. [115].

Also, for a su�ciently high NW density n the current-carrying NW density nI is

proportional to n.

As illustrated in Fig. 3.5, when the NW density n is well above the percolation

threshold nc, the conductivity of the system can be modeled as an equivalent serial

conductance n NWs in parallel and n2 junctions in parallel

σ ∼ 1

bn−1/Gs + n−2/Gj

, (3.6)

where b is a constant parameter. One can see that the square term n−2/Gj, originat-

ing from the junctions, converges faster to zero than the linear term bn−1/Gs. This

explains the conductivity exponent t(n) approaching to 1 when the NW density is

su�ciently high (i.e., n � Gs/Gj) and the existence of the local exponent maxi-

mum in Fig. 3.3. If the NWs are much more conductive than the junctions (e.g.,

Gj/Gs = 0.01) the density where the local conductivity exponent starts to con-

verge to 1 is high and computationally unreachable in the MC simulations shown
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in Fig. 3.3. Only in the limiting case when the NWs are superconductive and the

conductance ratio approaches zero (i.e., Gj/Gs → 0) should the conductivity ex-

ponent t(n) converge to 2 with the increasing density n, which is consistent with

Keblinski et al. [31]. In the other limit, when the junctions are superconductive

(i.e., Gj/Gs → ∞) the local conductivity exponent t(n) should have the fastest

convergence to 1.

At the densities close to the percolation threshold nc, only a fraction but not

all the NWs and junctions in the system contribute to the conductivity, by carrying

some current. From Fig. 3.4 (inset), one can see that at the percolation threshold

nc, the density of the current-carrying junctions is about two times higher than the

density of the current-carrying NWs, i.e., nIj /n
I = 2.0(1). From the framework of

the percolation theory we cannot determine a density-dependent factor of propor-

tionality in the conductivity power law σ ∼ (n − nc)
t. Instead, we �t the factor of

proportionality with an expression for the dense systems, i.e., with Eq. (3.6), and

obtain 1/ [bnt−1/Gs + (n+ nc)
t−2/Gj]. This relation explicitly includes the previous

observation that there is almost exactly two times more current-carrying junctions

than current-carrying NWs at the percolation threshold. For a general conductivity

description of the in�nite-size systems we obtain

σ = a
(n− nc)

t

bnt−1/Gs + (n+ nc)t−2/Gj

, (3.7)

where a = 0.027(1) and b = 0.061(3) are �tting parameters calculated using the

least-squares �tting methods. The solid lines in Fig. 3.3 denote the local conductivity

exponents t(n) calculated from Eq. (3.5), using the model for an in�nite system

given by Eq. (3.7), for a wide range of conductance ratios Gj/Gs = 0.001 to 1000.

Deviations between the modeled and MC values for local conductivity exponent t(n)

are comparable to the statistical errors.

3.3 Finite-size model for conductivity

Figure 3.6 illustrates the structure of the percolating cluster [Figs. 3.6(a) and 3.6(b)]

and the redistribution of the current in the dense NW networks due to the junction-
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n=8,L=10,Gj/Gs=0.01
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n=8,L=10,Gj/Gs=100
 

 

Figure 3.6: Simulated current (a) and (b) at di�erent system sizes and (c) and (d)
junction-to-NW conductance ratios. The current through a NW I is given relative
to the maximal current in the system Imax. There is a large di�erence in the fraction
of the system involved in the current �ow between the two nominally identical �lms
in term of density (n = nc) and junction-to-NW conductance ratio (Gj/Gs = 1)
for two di�erent system sizes L = 10 and 40. The current redistribution with the
increasing junction-to-NW conductance ratio Gj/Gs is visible from (c) and (d). (c)
If junctions are weakly conductive (i.e., Gj/Gs = 0.01) the maximal current �ows
along the shortest path with the least junctions. (d) For high junction conductance
values (i.e. Gj/Gs = 100), the total current is evenly carried by the larger number
of shortest paths connecting electrodes. This e�ect is only visible at higher densities
(e.g., n = 8) where several paths connecting electrodes exist.

to-NW conductance ratio increase [Figs. 3.6(c) and 3.6(d)]. The current through a

NW I is given relative to the maximal current in the system Imax. As one can see

from Figs. 3.6(a) and 3.6(b), the percolating cluster consists of a few sub-clusters

connected by high current links. This explains why on average more junctions than
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NWs are needed to shortcut the electrodes. For a large, but �nite-size systems at the

percolation threshold, the density of the current-carrying junctions decreases with

normalized system size L as nIj ∼ L−β/ν , where β = 5/36 for 2D systems [2]. Also,

the density of the current-carrying NWs at the percolation threshold is nI ∼ L−β/ν .

As a result the densities of the current-carrying NWs and junctions decrease with

normalized system size, see Figs. 3.6(a) (L = 10) and 3.6(b) (L = 40). Furthermore,

the density ratio nIj /n
I at the percolation threshold converges to a constant value

with the increase of the normalized system size, see Fig. 3.4. At higher NW densities

(i.e., n = 8) one can see that current �ows along many parallel paths connecting

electrodes. An increase of the junction-to-NW conductance ratio Gj/Gs results in

the more uniform redistribution of the current, see Figs. 3.6(c) (Gj/Gs = 0.01)

and 3.6(d) (Gj/Gs = 100). For weakly conductive junctions (i.e., low conductance

ratio Gj/Gs = 0.01), most of the current �ows through a shortest path with the

least junctions along. With the increase of the junction conductance several parallel

paths become visible. As a result, the total current through the system is more

evenly distributed, resulting in the higher conductivity. This is also expected from

Eq. (3.7).

If we compare the in�nite system model prediction and MC simulation results in

Fig. 3.3 close to the percolation threshold, we observe a deviation between the pre-

dicted and simulated values. This deviation is a result of the �nite-size e�ects, since

the MC results in Fig. 3.3 are calculated for the large but �nite-size system (i.e.,

L = 20). The convergence of the local conductivity exponents with increasing sys-

tem size is shown in Fig. 3.7. The points are MC simulation results for the systems

with sizes L = 10, 20, and 40 and the solid line denotes the model for an in�nite sys-

tem given by Eq. (3.7). For the �nite-size systems close to the percolation threshold

we observe a large deviation of the local conductivity exponent t(n) from the model.

The local conductivity exponent decreases with the decreasing system size and can

be even lower then 1, i.e., t(n) < 1. This is result of a nonzero conductivity value for

the �nite-size systems at the percolation threshold [2]. Therefore, the model should

be adapted for the �nite-size systems. The �nite-size scaling arguments [2, 4, 116]
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Figure 3.7: The local conductivity exponents t(n) for the NW networks with in-
creasing normalized system size L = 10, 20, and 40 and for three conductance ratio
values (a) Gj/Gs = 0.01, (b) 1, and (c) 100. The direction of the increase of L
is indicated on the graphs. The points are obtained from the MC simulations and
calculated using Eq. (3.5). The error bars are smaller than the size of the points.
The solid line represents the local conductivity exponent t(n) for the in�nite system
obtained from Eq. (3.7), while the dashed lines denote the local conductivity expo-
nents t(n) obtained from the model that includes �nite-size e�ects, Eq. (3.11). The
star marker denotes the expected value for the conductivity exponent of the in�nite
system at the percolation threshold nc.

suggest that the conductivity σ depends on the system size L as

σ ∼ (n− nc)
tf

[
ξ(n)

L

]
, (3.8)

where ξ(n) ∼ |n − nc|−ν is the correlation length that measures the linear extent

of the largest cluster and f [ξ(n)/L] is the conductivity �nite-size scaling function.

For 2D systems the correlation-length exponent is ν = 4/3, see Ref. [2].

In order to demonstrate the generality of the conductivity �nite-size scaling func-

tion f [ξ(n)/L], the dependence of the normalized conductivity σ/(n − nc)
t, which

is proportional to f [ξ(n)/L], on the normalized correlation length (n − nc)
−ν/L is
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Figure 3.8: The dependence of the conductivity �nite-size scaling function
f [ξ(n)/L], which is according to Eq. (3.8) estimated as σ/(n − nc)

t, on the nor-
malized correlation length ξ(n)/L ∼ (n − nc)

−ν/L. The dependence is shown for
three NW systems with increasing size L = 10, 20, and 40. The points are obtained
from the MC simulations. The solid line represents the �nite-size scaling function
f [ξ(n)/L] calculated from Eq. (3.9).

shown in Fig. 3.8 for di�erent system sizes. As shown in Fig. 3.8, all the points ob-

tained using MC simulations for di�erent system sizes collapse to a common curve.

The collapse of all the calculated data to the same curve, independently of the

system size, shows the generalized behavior of the conductivity �nite-size scaling

function f [ξ(n)/L] for random stick networks.

In order to include the �nite-size scaling e�ects into the comprehensive conduc-

tivity model, two limiting behaviors are observed:

(1) the in�nite system above the percolation threshold; and

(2) the �nite-size systems at the percolation threshold.

For the in�nite system above the percolation threshold, i.e., ξ(n)/L → 0, the con-

ductivity follows the simple scaling law and �nite-size scaling function f [ξ(n)/L]

converges to a constant value, see Fig 3.8. In the other limit, for the �nite-size

systems at the percolation threshold, i.e. ξ(n)/L→∞, conductivity has a nonzero
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3. From percolating to dense random NW networks

value σ ∼ L−t/ν , see Ref. [2]. Therefore, in that case the �nite-size scaling function

should have a form f [ξ(n)/L] ∼ [ξ(n)/L]t/ν to cancel the conductivity dependence

on density in Eq. (3.8). This limiting behavior of the conductivity scaling function

f [ξ(n)/L] is demonstrated in Fig 3.8 as its linear increase with slope t/ν in loga-

rithmic scale when ξ(n)/L → ∞. Since the �nite-size scaling function f [ξ(n)/L]

above the percolation threshold is a continuous and smooth function (see Fig. 3.8),

we approximate it by a combination of its two limiting behaviors

f

[
ξ(n)

L

]
∼ 1 + c

[
(n− nc)

−ν

L

]t/ν
, (3.9)

where c is the �nite-size parameter. As shown in Fig. 3.8, this approximation rep-

resents an excellent �t to the data obtained using numerical simulations when the

parameter c is equal to 2.5. Inserting Eq. (3.9) into Eq. (3.8) the �rst-order approx-

imation of the �nite-size scaling law for conductivity becomes

σ ∼ (n− nc)
t + cL−t/ν . (3.10)

Finally, incorporating the �nite-size e�ects given by Eq. (3.10) into the conductiv-

ity model for an in�nite-size system, Eq. (3.7), we obtain the �nite-size model for

conductivity

σ = a
(n− nc)

t + cL−t/ν

bnt−1/Gs + (n+ nc)t−2/Gj

. (3.11)

The �nite-size parameter for 2D NW networks c = 2.5(1) is calculated using the

least-squares �tting methods. A comparison between the MC results and the values

obtained from the model given by Eq. (3.11) is shown in Fig. 3.7. The dashed lines

in Fig. 3.7 denote the local conductivity exponents t(n) calculated from the model

including �nite-size e�ects, Eq. (3.11), for systems with increasing normalized size

L = 10, 20, and 40 and for three conductance ratio values Gj/Gs = 0.01, 1, and 100.

We see that the introduction of �nite-size e�ects in the model signi�cantly improves

the quantitative description of the system close to the percolation threshold.

Finally, the MC conductivity values normalized with the NW conductance Gs

and �tted by Eq. (3.11) for the systems of normalized size L = 20 and conductance
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Figure 3.9: (a) Conductivity as a function of (n− nc)/nc is obtained from the MC
simulations (points) for the NW network of normalized size L = 20 and the junction-
to-NW conductance ratio from Gj/Gs = 0.001 to 1000 (from bottom to top). The
lines denote values obtained from the conductivity model for the �nite-size systems
given by Eq. (3.11). (b) The conductivity ratio between the MC simulation results
σMC and the values obtained from the model σmodel for corresponding �nite-size
systems, Eq. (3.11). The error bars are smaller than the size of the points.

ratios from Gj/Gs = 0.001 to 1000 are shown in Fig. 3.9(a). For all studied values

of the conductance ratio Gj/Gs the conductivity obtained from the model agrees

with the MC results over the whole range of the NW density n, see Fig. 3.9(a). The

agreement between the MC results and the model is good for higher NW densities

(n > 2nc) (i.e., further away from the percolation threshold), but not so good in

the vicinity of the percolation threshold, see Fig. 3.9(b). Hence, in the vicinity of

the percolation threshold the conductivity ratio between the MC simulation results

and the values obtained from the model is shown in Fig. 3.10 for di�erent system

sizes L = 10, 20, and 40. For all three system sizes in Fig. 3.10 the curves look

qualitatively similar. Only the density where the dense-system behavior becomes

dominant decreases with the normalized system size L. To improve the agreement
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Figure 3.10: The conductivity ratio between the MC simulation results σMC and the
values obtained from the model σmodel given by Eq. (3.11) for di�erent system sizes
(a) L = 10, (b) 20, and (c) 40 and for three conductance ratio values Gj/Gs = 0.01,
1, and 100. The error bars are smaller than the size of the points.

between the MC results and the model close to the percolation threshold one could

consider a further re�nement of the model to include higher order correction for the

�nite-size e�ect. Finally, the proposed model for conductivity gives a good estimate

of the local conductivity exponents, as one can see in Figs. 3.3 and 3.7.

3.4 Random nanowire networks as transparent conductors

The networks of randomly distributed metallic NWs are promising candidates to

replace expensive indium tin oxide as the transparent conducting electrode material

in the next generation devices [14, 21�23, 111]. Two critical performance criteria

for the transparent conductors are their optical transmittance T and electrical con-

ductivity σ [21]. Many studies [13, 21�23] have con�rmed a trade-o� between high

optical transmittance T and high electrical conductivity σ. These quantities are

both well measurable and depend on a variety of independent structural parameters
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including the density of NWs, their length, and diameter.

The relationship between the optical transmittance T and the normalized density

n appears to be linear for the NWs with high length-to-diameter aspect ratio and

can be described by a simple model based on the fractional area coverage of the

NWs, see Refs. [13, 21, 23]. As proposed in Refs. [13, 21, 23], the fractional area

coverage of the NWs in a thin-�lm network can be simply approximated by

Ac =
Nlsds

L2
S

, (3.12)

where ds is the diameter of the NWs [13, 21, 23]. The optical transmittance of the

random NW network, using its fractional area coverage quanti�ed by Eq. (3.12), can

be approximated by

T = 1− Ac = 1− Nlsds

L2
S

(3.13)

and according to our de�nition of the normalized NW density n = Nl2s/L
2
s , the

previous expression can be simpli�ed as

T = 1− n

rs

, (3.14)

where rs = ls/ds is the length-to-diameter aspect ratio of NWs.

We remind that the general conductivity model for random NW networks given

by Eq. (3.11) is developed modeling NWs as widthless-sticks with in�nite aspect

ratio (rs → ∞). Without losing of generality, that conductivity model can also

be used for networks of randomly distributed NWs with �nite but still high aspect

ratio (rs � 1). Therefore, incorporating the conductivity model given by Eq. (3.11)

into the analytical approximation for the density-dependent optical transmittance

given by Eq. (3.14), we obtain a dependence of the optical transmittance T on the

network conductivity σ shown in Fig. 3.11. The expected trade-o� between the

optical transmittance T and the electrical conductivity σ is clearly demonstrated

in Fig. 3.11, because high values of σ correspond to a high normalized density n

with low T , while lower values of σ correspond to a lower normalized density n

with high T . Therefore, an intermediate normalized density n is needed to produce

54



3. From percolating to dense random NW networks

10
−5

10
−3

10
−1

10
1

10
3

0

0.2

0.4

0.6

0.8

1

σ/Gs

T

 

 

0.001

0.01

1000

Figure 3.11: Optical transmittance T of a random NW network as a function of the
network conductivity σ is obtained by incorporating the conductivity model given
by Eq. (3.11) into the density-dependent optical transmittance given by Eq. (3.14)
for the system with normalized size L = 20 and three conductance ratio values
Gj/Gs = 0.001, 0.01, and 1000. The dashed lines represent the optical transmittance
T for randomly distributed NWs with length-to-diameter aspect ratio rs = 100, while
solid lines denote the optical transmittance for NWs with aspect ratio rs = 1000.

random NW transparent conductors that achieve both acceptable values of T and

σ. Also, we note that increase of length-to-diameter aspect ratio rs and junction-to-

NW conductance ratio Gj/Gs is generally advantageous for increasing T at a �xed

σ/Gs, see Fig. 3.11.

Acceptable values of the optical transmittance T and the electrical conductivity

σ for the most of practical applications are T > 0.9 and σ > 0.1 S, because trans-

mittance lower than 0.9 and conductivity lower than 0.1 S result in signi�cant power

losses, see Refs. [12, 13, 21, 23]. From the transmittance constraint T > 0.9 and the

requirement for achieving a percolation through the network, we obtain that the nor-

malized density of NWs should belong to the range determined by nc < n < rs/10,

see Eq. (3.14). This condition is satis�ed only when nc < rs/10, i.e., when the
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length-to-diameter aspect ratio of NWs is rs > 10nc, which is roughly rs > 100.

Finally, practically acceptable values of junction-to-NW conductance ratio Gj/Gs

can be determined applying the conductivity constraint to the expression obtained

from Eq. (3.11) at the high-bound density rs/10, i.e., σ(rs/10) > 0.1 S.

3.5 Conclusions

In this Chapter, we present the results of the numerical Monte Carlo study of the

conductivity of random NW networks for the wide range of densities and junction-

to-NW conductance ratios. We observe the transition from the conductivity of the

percolating cluster to the conductivity of the dense random NW networks with in-

creasing density. Three limiting cases are identi�ed for the conductivity of whole

system: one in the vicinity of the percolation threshold, and two for high densities

when either the junctions or NWs are superconductive. Each of these cases has a

di�erent exponent governing the power-law dependence of the conductivity on den-

sity (i.e., 1.29, 1, and 2, respectively). As a result, the exponent can take values

anywhere in the range (1, 2) depending on the junction-to-NW conductance ratio.

For �nite-size systems the density-dependent exponent can even take values lower

than 1. Therefore, it is not appropriate to use a simple scaling law to describe

the conductivity dependence on the density both for �nite and dense systems. We

instead propose a comprehensive conductivity model, derived from the behavior of

the limiting cases. We �nd that the proposed description gives a satisfactory es-

timation of the conductivity and the local conductivity exponent (which is related

to the �rst derivative of the conductivity) over the whole range of the NW density

values. Finite-size e�ects, important for many practical realizations of the random

conducting networks, are also included in the conductivity model. Finally, using the

proposed model and an analytical approximation for the density-dependent optical

transmittance, we quantify a dependence of the optical transmittance on the elec-

trical conductivity for the random NW networks. The presented methodology could

be used to describe the properties of other conducting systems (i.e., disks, spheres,

and �bers).
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Chapter 4 Random networks of carbon nanotubes

optimized for transistor mass-production

As already noted, as-grown networks of single-walled (SW) CNTs contain both

metallic (m-CNTs) and semiconducting (s-CNTs) nanotubes in an approximate ra-

tio 1:2, which leads to a trade-o� between on-conductance and the on/o� conduc-

tance ratio [6, 47�50]. If the density of CNTs in a TFT is su�ciently high so that

m-CNTs exceed the percolation threshold, the CNT network will become predom-

inantly metallic and, hence, the on/o� ratio will be very small [50]. In contrast,

if the CNT density is so low that a conduction path through m-CNTs does not

exist, a high on/o� ratio can be attained, but under such circumstances the low

on-conductance is disadvantage [50, 51]. In order to suppress a possibility of con-

duction through the m-CNTs, other researchers have used additional steps after or

during the CNT synthesis process. However, all these steps prolongs the production

time and increase the production costs or create defects and add impurities in the

remaining CNT networks.

In this Chapter, we study e�ects of device parameters (density of CNTs, channel

dimensions and CNT length) on their electrical transport processes, i.e., on the

on-conductance and on/of conductance ratio, in order to design an optimized and

uniform device performance without using any post-growth treatment. We identify

the probabilities of di�erent conduction regimes of random CNT networks using the

scaling laws for asymmetric systems of percolating sticks developed in Chapter 2.

Finally, we demonstrate how geometrical aspects contribute to the feasibility of

the random CNT networks as switches with good transistor performance (i.e., high

on-current and on/o� ratio) and the uniform performance of realized devices.
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4. Random networks of CNTs optimized for transistor mass-production

4.1 Numerical method

Monte Carlo (MC) simulations are coupled with an e�cient iterative algorithm im-

plemented on the grid platform and are used to investigate the electrical properties

of CNT networks [4�6, 99, 103]. We consider two-dimensional systems with isotropi-

cally placed CNTs modeled as widthless sticks with a �xed length lCNT, as illustrated

in Fig. 4.1(a). The centers of the CNTs are randomly positioned and oriented in-

side a channel with length LCH and width WCH, see Fig. 4.1(a). Source and drain

electrodes are placed at the left and right sides of the channel. The top and bottom

boundaries of the system are free and nonconducting, because free boundary condi-

tions are more consistent with CNT networks in practice. The behavior of the CNT

network is studied in terms of the normalized CNT density n = N/L2, where N

is the total number of CNTs and L =
√
LW is the normalized channel size, where

L = LCH/lCNT is the normalized channel length and W = WCH/lCNT is the normal-

ized channel width, see Chapter 2. The aspect ratio of the system r is de�ned as the

ratio of the channel length and width r = L/W . Without elaborated post-growth

treatments, the CNTs synthesized using any available method are heterogeneous in

the sense that they are always a mixture of metallic and semiconducting nanotubes

with an approximate ratio of 1:2, i.e., the fraction of m-CNTs is fM = 1/3 and the

rest are s-CNTs with the fraction fS = 2/3, see Refs. [56, 109].

An illustration of transfer characteristics (source-drain current I vs. gate volt-

age VG) for the random CNT TFT with indicated on- ION and o�-current IOFF

is shown in Fig. 4.1(b). Also, output characteristics (source-drain current I vs.

source-drain voltage V ) for the random CNT TFT are illustrated in Fig. 4.1(c).

The illustrated transfer and output characteristics have the same form as the cor-

responding characteristics of standard p-type metal-oxide-semiconductor �eld-e�ect

transistors. In this thesis, we only consider long-channel limits (LCH > lCNT) con-

sistent with macroelectronics [47] and low-bias conditions under which nonlinear

e�ects are negligible [109], i.e., the source-drain current I is proportional to the

source-drain voltage V , as it can be observed in Fig. 4.1(c) when V ≈ 0. For long-

channel limits, conduction in the CNT network is described by percolation theory
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Figure 4.1: (a) Schematic illustration of a random CNT TFT consisting of highly
doped p-type (p+) Si as its back-gate electrode, SiO2 as its gate dielectric, and
randomly distributed as-grown CNTs as its active medium. The reference direc-
tions of gate voltage VG, source-drain voltage V , and source-drain current I are
also indicated. (b) Transfer characteristics of the random CNT TFT (source-drain
current I on a logarithmic scale vs. gate voltage VG) with appropriate on- ION and
o�-current IOFF are illustrated. The direction of the increase of source-drain voltage
V is indicated on the graph. (c) Output characteristics (source-drain current I vs.
source-drain voltage V ) of the random CNT TFT are illustrated. The direction of
the increase of gate voltage VG is indicated on the graph.

as being that of a non-classical two-dimensional conductor, see Chapter 2. Two

sticks (CNTs) belong to the same cluster if they intersect. The system percolates

(conducts) if the electrodes (source and drain) are connected with the same cluster.

The percolation threshold of the in�nite-size stick system is de�ned by the critical

density nc ≈ 5.64. Similarly, the percolation threshold of only s-CNTs (m-CNTs) is

de�ned by the critical density nc/fS ≈ 8.46 (nc/fM ≈ 16.9).
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4. Random networks of CNTs optimized for transistor mass-production

The conductance along a CNT segment in the on-state, Gseg, is assumed to be

uniform and can be calculated using Refs. [50, 59, 117]

Gseg =
4e2

h

λ

λ+ lseg

, (4.1)

where e is the electron charge, h is Planck's constant, lseg is the length of the CNT

segment, and λ is the mean free path of the electrons, which is taken as 1.0 µm for

m-CNTs and 0.3 µm for s-CNTs [118�120]. We consider that the conductance of

an m-CNT is independent of the gate voltage [109] and in the o�-state is also given

by Eq. (4.1). At the same time, we assume that the conductance of an s-CNT in

the o�-state is 106 times lower than in the on-state, since the on/o� ratio is usually

about 106 for well-performing transistors based on individual s-CNTs [121, 122]. We

note here that in real systems, the gate dielectric and gate leakage also contribute to

the o�-current, and thus the on/o� ratio. Equation (4.1) assumes di�usive electrical

transport through the CNTs typical for rodlike nanostructures whose length is larger

than the mean free path of the electrons (lCNT � λ). For the di�usive electrical

transport the electrical conductance of a stick segment is inversely proportional to

the length of the CNT segment (4e2/h)(λ/lseg), see Ref. [105, 112]. The conductance

of a CNT whose length is lower than the mean free path of the electrons (lCNT � λ)

is near the ballistic transport limit 4e2/h and also can be assumed by Eq. (4.1), see

Ref. [118, 122].

Internal nodes for contacts between pairs of CNTs are distinguished from bound-

ary nodes for contacts between CNTs and the source/drain electrodes. The contact

conductances for the internal nodes are assigned the following values: (i) 0.1e2/h

for the junction between two m-CNTs or between two s-CNTs and (ii) 100 times

lower conductance for the junction between one m-CNT and one s-CNT, since we

neglect the rectifying behavior under low-bias conditions [109, 110]. The contact

resistance at the boundary nodes is neglected since electrodes fabricated using, for

example, Ti [58], Au [34], Pd [122], or aligned arrays of m-CNTs [123] yield good

Ohmic contact to CNTs. Therefore, if a CNT intersects an electrode the potential of

the electrode is applied to the intersection point. Kirchho�'s current law was used
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to balance the current �ow through each node of the created network. An iterative

equation solver (i.e., CGM with Jacobi preconditioner explained in Appendix D)

has been employed to solve a large system of linear equations following from Kirch-

ho�'s laws, as it was explained in detail in section 3.1. After obtaining the total

source-drain current I under an applied voltage V the macroscopic electrical con-

ductance of the system is evaluated as G = I/V .1 Finally, for each set of system

parameters, electrical conductances for the on- and o�-state are calculated for more

than 105 independent MC realizations for systems with normalized size L = W = 2,

down to 104 realizations for the largest system L = W = 50 studied. The results

obtained using our conductance model show excellent agreement with recently pub-

lished experimental results, see section 4.4. We note here that our conductance

model can also be applied to random networks of multi-walled (MW) CNTs with a

small diameter2.

4.2 Symmetric-channel results

The randomly generated CNT network, if conducting, belongs to one of three com-

plementary CNT network regimes according to its percolation characteristics: (i)

neither m-CNT nor s-CNT paths exist but the whole network percolates through

a mixed path comprising m- and s-CNTs (SM), (ii) only s-CNT paths exist (SM),

1The on/o� ratio is de�ned as the ratio of the on- and o�-state currents determined at the
same source-drain voltage V , i.e., ION/IOFF. We only consider low-bias conditions, i.e., V ≈ 0,
under which nonlinear e�ects are negligible and the currents are given by ION = GONV and
IOFF = GOFFV , respectively. Hence, the on/o� current ratio ION/IOFF is equal to the on/o�
conductance ratio, i.e., GON/GOFF.

2SW CNTs have the smallest diameter of all CNTs, distributed within a narrow range (dCNT =
0.8− 5 nm), and a length lCNT from tens of nanometers to millimeters, whereas MW CNTs have
a larger diameter (∼ 3 to > 100 nm) and lengths similar to those of SW CNTs, as noted in
[11]. Our scaling model for systems of percolating sticks, which describes the operation regimes
of random CNT TFTs, is valid for both SW and MW CNT networks as long as the CNTs can be
modeled as widthless sticks, i.e., lCNT/dCNT � 1. On the other hand, the electrical characteristics
of individual CNTs are primarily determined by their band gap [11]. It is well known that the
band gap of an s-CNT depends inversely on its diameter. However, this dependence is not highly
pronounced in the case of SW CNTs, since they have small diameters, distributed within a narrow
range [11]. Therefore, our conductance model, which does not include the diameter of CNTs as a
parameter, is applicable to SW CNT networks, as shown in the supplementary material, section 1.
For the same reason, our conductance model is applicable to the random networks of MW CNTs
with small diameters (dCNT < 5 nm), because each individual nanotube in a small-diameter MW
CNT behaves similar to a SW CNT [11].
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and (iii) at least one m-CNT path exists (M).

Figure 4.2 illustrates the structure of the CNT networks and the redistribution

of the currents in on- and o�-state with increasing CNT density n. When the CNT

density n increases the randomly generated CNT network moves from one operation

regime to another. The �rst regime (SM) corresponds to a situation when the density

of CNTs (n = 8) is higher than the percolation threshold of the entire network nc

but lower than the percolation threshold of only s-CNTs (nc < n < nc/fS). In

this situation the percolating network consists mixed m- and s-CNTs. As a result,

the on-conductance GON and resulting on-current ION are reduced by the presence

of the low-conducting s-CNT/m-CNT junctions, see Fig. 4.2(a). At the same time,

since an m-CNT path does not exist, o�-conductance is low and therefore, the on/o�

ratio is high, see Figs. 4.2(a) and (b). The second operation regime (SM) occurs

for the medium CNT density (nc/fS < n < nc/fM) when only s-CNT paths exist,

and the current �ows through high-conducting s-CNT/s-CNT junctions resulting

in a high on-current ION, see Fig. 4.2(c). However, the CNT density (n = 12) is

still lower than the percolation threshold of only m-CNTs and the CNT TFT in

the o�-state is not short-circuited through an m-CNT path. Therefore, the CNT

network can simultaneously achieve high on-conductance GON and a high on/o�

ratio GON/GOFF, see Figs. 4.2(c) and 4.2(d). Finally, the third regime (M) of the

CNT network according to the percolation characteristics occurs at densities close

to and above the percolation threshold of only m-CNTs, i.e., nc/fM. For a high

CNT density (n = 16) at least one m-CNT path exists and a high on-conductance

is obtained, see Fig 4.2(e). On the other hand, in the o�-state the CNT network is

shorted through the m-CNTs and, hence, the on/o� ratio is very low, see Figs. 4.2(e)

and 4.2(f). Therefore, the CNT network in the M operation regime cannot be used

as an active media for transistors with a high switching performance.

According to the determined parameters for moments of the percolation probabil-

ity distribution function given in section 2.4, we will determine a region of the CNT

density n where s-CNT paths are dominant (SM) and, therefore, the on-current and

on/o� ratio are expected to be high. Details of our analytic model for the percolation

probability functions for symmetric channels are given in the next subsection.
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Figure 4.2: Simulated on- ((a), (c), and (e)) and o�-current ((b), (d), and (f))
distributions for di�erent CNT densities. The source-drain voltage is V = 0.1 V, the
CNT length is lCNT = 5 µm, and the channel dimensions are LCH = WCH = 50 µm,
i.e., the normalized system size is L = 10. (a) When the density of CNTs (n = 8) is
signi�cantly lower than the percolation threshold of only s-CNTs (n < nc/fS), the
dominant percolation domain is through mixed paths comprising m- and s-CNTs
(SM). (b) Since there is no percolating path through only m-CNTs the o�-current
is low, i.e., the on/o� ratio is high. (c) For a higher CNT density (n = 12) only
s-CNT paths exist (SM), resulting in a high on-current ION. (d) This CNT density
(n = 12) is still lower than the percolation threshold of only m-CNTs and, therefore,
the CNT TFT is not short-circuited in the o�-state and the on/o� ratio is still high.
(e) For high CNT density (n = 16) the m-CNT network percolates. (f) The CNT
network in the o�-state is shorted through the m-CNTs.
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4.2.1 Symmetric-channel percolation probability

Here we calculate the percolation probability dependence on the system size and

density for three types of CNT networks: SM, SM, and M. For a symmetric-

channel con�guration the normalized length, width, and system size are equal, i.e.,

L = W = L. The percolation probability function Rn,L gives the probability that the

network with the total CNT density n and the normalized system size L percolates

in the source-to-drain direction. Similarly, the corresponding probability of the

CNT network with the density n and the normalized system size L to achieve the

percolation of SM, SM, or M operation regime are RSM
n,L, R

SM
n,L, and R

M
n,L, respectively.

Finally, from the complementarity of SM, SM, and M domains for a randomly

generated CNT network we obtain

RSM
n,L +RSM

n,L +RM
n,L = Rn,L. (4.2)

The percolation probability function Rn,L can be approximated by a cumulative

distribution function given by Eq. (2.28) as it was explained in section 2.6. Similarly,

the percolation probability function of an M con�guration can also be approximated

by Eq. (2.28) as follows

RM
n,L = RfMn,L, (4.3)

while the probability to attain an SM con�guration is

RSM
n,L = RfSn,L (1−RfMn,L) , (4.4)

and �nally for an SM con�guration from Eqs. (4.2), (4.3), and (4.4) we obtain

RSM
n,L = Rn,L −RfSn,L −RfMn,L +RfSn,LRfMn,L. (4.5)

According to Eqs. (2.28) and (4.3)-(4.5) we can approximate the percolation prob-

ability functions for as-grown CNT networks using the normalized system size L,

the density n, and the �nite-size scaling constants for two-dimensional stick systems

given in Table 2.1. This is demonstrated in Fig. 4.3. The derived expressions for
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Figure 4.3: The percolation probability dependence on the normalized density n

for overall percolation Rn,L and di�erent percolation regimes RSM
n,L, R

SM
n,L, and R

M
n,L.

The points are the MC simulation results and the solid lines are obtained using
Eqs. (2.28) and (4.3)-(4.5). (a) For the normalized system size L = 5 percolation
probability variance is comparable to the system size and overlaps exist between SM,
SM, and M regimes. Normalized density nmax

L determines value where percolation
probability through only s-CNT paths RSM

n,L reaches its maximum Rmax
L . (b) When

the normalized system size is larger, L = 20, the percolation regimes become well
de�ned. Values nlow

L,R and nhigh
L,R determine a range of densities where percolation

probability of realizations through only s-CNT paths RSM
n,L is higher than a relative

number R (0 ≤ R ≤ 1).

the percolation probability functions, i.e., Rn,L, RSM
n,L, R

SM
n,L, and R

M
n,L, represent an

excellent �t to the data calculated using our MC simulations.

For a small system size L = 5 the percolation probability variance is large com-

pared to the system size and the overlap exists between SM, SM, and M regimes,

see Fig. 4.3(a). For the densities n < 8 the number of SM realizations is higher than

the number of SM realizations, while the number of realizations with metallic paths

M is negligible. Still, this is far from a satisfactory situation, since the conduction

through a combined network of s- and m-CNTs leads to a degradation of the device

characteristics, i.e., to lower values of the on-conductance GON, see Fig. 4.5(a). The
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Figure 4.4: The dependence of the SM-dominant region on the normalized system
size L, for di�erent tolerances R = 0.7, 0.8, 0.9, and 0.99. The points are the MC
simulation results and the solid lines are obtained using our analytic model given
by Eqs. (2.28) and (4.3)-(4.5). With increasing system size L, the value of CNT
density nmax

L , where the percolation probability only through s-CNT paths RSM
n,L

reaches its maximum, converges to 2nc, the low-bound density nlow
L,R to nc/fS, and

the high-bound density nhigh
L,R to nc/fM.

increase of the normalized system size L is bene�cial for overall transistor perfor-

mance. For L = 20, see Fig. 4.3(b), the three regimes SM, SM, and M become well

resolved. We also note that the maximum of the SM percolation probability Rmax
L

increases with increasing the normalized system size L and converges to a value of

1, see Figs. 4.3(a) and 4.3(b).

Following this, we de�ne a density range with lower nlow
L,R and upper boundary

nhigh
L,R , where the probability of percolation only through s-CNT paths RSM

n,L is higher

than a relative number R (0 ≤ R ≤ 1), see Fig. 4.3. As one would expect, the range

de�ned by nhigh
L,R and nlow

L,R increases with the normalized system size L and decreases

with R, see Fig. 4.4. We can further observe interesting features of the shape of the

SM percolation density range with increasing system size: (i) the position of SM
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percolation probability maximum nmax
L converges to 2nc with increasing system size,

(ii) the low-bound density nlow
L,R decreases and converges to the percolation threshold

of s-CNT paths nc/fS, and (iii) the high-bound density n
high
L,R increases and converges

to the percolation threshold of m-CNT paths nc/fM, see Fig. 4.4.

4.2.2 Symmetric-channel on-conductance and on/o� ratio

In the rest of this section, we will quantify the dependence of the calculated on-

conductance and on/o� ratio on the CNT density, length, and system size. The

aim of this paper is to restrict the ranges of these parameters for which acceptable

transistor characteristics are obtained with a realization probability higher than

99%. For most kinds of integrated circuit applications the acceptable values for

on-conductance and on/o� ratio are 1 µS and 104, respectively [56, 119, 124].

In Fig. 4.5, probability distribution functions of the on-conductance GON and the

on/o� ratio GON/GOFF are given for di�erent CNT densities: n = 8, 12, and 16. For

n = 8, we observe a wide distribution for both the corresponding on-conductance

GON and the on/o� ratio GON/GOFF due to a detrimental in�uence of mixed paths

(SM), see Figs. 4.5(a) and 4.5(d). On the other hand, for n = 12, which roughly

corresponds to 2nc, we observe roughly 10 times higher on-conductance GON and

a narrower distribution of the on/o� ratio GON/GOFF, centered at about 104, see

Figs. 4.5(b) and 4.5(e). However, due to the small system size L = 5 we observe a

number of realizations consisting of m-CNT paths with the on/o� ratio less than 10.

This is an unwanted situation in any application, and it can be resolved by increasing

the normalized system size L. Further increase of the CNT density n only degrades

the switching on/o� performance of random CNT networks. For n = 16, the number

of short-circuited realizations is approaching 50%, see Fig. 4.5(c) and 4.5(f).

The results are shown in Fig. 4.6 as a function of the CNT normalized density

n for lCNT = 5 µm and the system size WCH = LCH = 100 µm, i.e., the normalized

system size L = 20. The on-conductance GON increases with CNT density n and

the 1st and 99th percentiles converge to the median value, see Fig. 4.6(a). The

di�erence between the 99th and 1st percentile of the on/o� ratio GON/GOFF reaches

a minimum close to nmax
20 and rapidly increases when the CNT density n becomes
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Figure 4.5: The probability distribution functions of the on-conductance GON (a),
(b), and (c) and the on/o� ratioGON/GOFF (d), (e), and (f) for overall and particular
conduction regimes SM, SM, and M are given for di�erent CNT densities. The
CNT length is lCNT = 5 µm, the channel length is WCH = LCH = 25 µm, i.e., the
normalized system size is L = 5, and the number of independent MC realization is
higher than 107.

higher than nhigh
20,0.99, see Fig. 4.6(b). For densities higher than n

high
20,0.99 the percolation

probability of M con�gurations RM
n,L is higher than 1%, i.e., RM

n,L > 1%, and therefore

the 1st-percentile realization belongs to the M regime and a sharp decrease in on/o�

behavior is obtained. One can observe that the maximum of the on/o� ratio is

between the densities nlow
20,0.99 and n

high
20,0.99. More than 99% of realized devices exhibit

simultaneously on-conductance higher than 1 µS and an on/o� ratio higher than

104 when the normalized density n is close to nmax
20 , see Figs. 4.6(a) and 4.6(b).

A similar behavior of the on-conductance GON and on/o� ratio GON/GOFF can

be observed in Fig. 4.7(a) with increasing the normalized system size L. While

the percentiles of the on-conductance GON experience continuous convergence to

the in�nite system value, the on/o� ratio exhibits a sharp transition in the 1st-

percentile behavior at the normalized system size L ≈ 7. For a system size bellow

L < 7 the percolation probability of realizations through only m-CNTs is higher than

1%, i.e., RM
n,L > 1%, and therefore the 1st-percentile realization is short-circuited
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Figure 4.6: On-conductance GON (a) and on/o� ratio GON/GOFF (b) as a function
of the normalized CNT density n for a symmetric TFT with the CNT length lCNT =

5 µm and the channel size LCH = WCH = 100 µm, i.e., the normalized system size
L = 20. The solid line represents the 1st percentile, while the dashed and dotted lines
correspond to the median and 99th percentile, respectively, of the device population.
The arrows denote regions where more than 99% of realized devices have: (a) on-
conductance higher than 1 µS (horizontal bold line) or (b) an on/o� ratio higher
than 104 (horizontal bold line). The positions of the lower nlow

20,0.99 and higher nhigh
20,0.99

bounds of the 0.99 percolation probability for the SM regime are also given, as well
as the position of SM probability maximum nmax

20 .

with GON/GOFF < 10, see Fig. 4.5. On the other hand, more than 99% of realized

devices exhibit simultaneous on-conductance higher than 1 µS and an on/o� ratio

higher than 104 when the normalized system size is L > 16, see Fig. 4.7(a).

The in�uence of CNT length lCNT on the transistor performance is explored in

Fig. 4.7(b). Here, the normalized system size is �xed and large, L = 20, in order

to minimize the in�uence of �nite-size scaling e�ects on the transistor performance,

see Ref. [125]. Therefore, on-conductance GON and on/o� ratio GON/GOFF depend

only on the electrical characteristics of individual nanotubes, i.e., their length lCNT,
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Figure 4.7: The dependence of on-conductance GON and the on/o� ratio GON/GOFF

on (a) the normalized system size L for symmetric-channel TFTs with CNT length
lCNT = 5 µm and a normalized density equal to nmax

L and (b) the CNT length
lCNT for a symmetric system with the normalized size L = 20 and a normalized
CNT density n equal to nmax

20 = 11.45. The solid lines represent the 1st percentile,
while the dashed and dotted lines correspond to the median and 99th percentile,
respectively, of the device population. The arrows denote regions where more than
99% of realized devices have on-conductance higher than 1 µS and an on/o� ratio
higher than 104 (horizontal bold lines).

in accordance with Eq. (4.1). When the CNT length lCNT is larger than the electron

mean free path, i.e., lCNT > 1 µm, di�usive transport in CNTs becomes dominant

and the on-conductance GON of the network starts to decrease linearly with the

CNT length, see Fig. 4.7(b). At the same time, due to an increased resistance of

m-CNTs, leak-currents in the o�-state through the m-CNTs decrease and the on/o�

ratio improves with increasing CNT length, see Fig. 4.7(b). It is important to note

that in this trade-o�, the improvement of the on/o� ratio is one order of magnitude

with increasing lCNT from 1 µm to 10 µm while GON decreases only 10%. However,

more than 99% of realized devices exhibit simultaneously high on-conductance and a
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high on/o� ratio when the CNT length is between lCNT = 4−12 µm, see Figs. 4.7(b).

4.3 Asymmetric-channel results

Asymmetric systems have lower �nite-size scaling exponents than symmetric sys-

tems. This results in more pronounced �nite-size scaling behavior than in the sym-

metric case and allows us even more design freedom. In this section we will performed

a parameter study to �nd the optimal channel dimensions for asymmetric-channel

CNT TFTs.

4.3.1 Asymmetric-channel percolation probability

Similarly to the case of the symmetric channel, the overall percolation probability

function of an asymmetric channel Rn,L,W can be approximated by the cumulative

distribution function given by Eq. (2.28) using the average percolation density 〈n〉L,W
given by Eq. (2.20) and the percolation density standard deviation ∆L,W given

by Eq. (2.21), where the corresponding �nite-size scaling exponents are given in

Table (2.1).1 Also, the percolation probability functions for the three regimes of CNT

percolation (M, SM, and SM) can be calculated using Eqs. (4.3), (4.4), and (4.5),

respectively. We have previously found in Chapter 2 that the average percolation

density of asymmetric systems 〈n〉L,W has a lower exponent, i.e., the �rst-order

e�ects are presented through the exponent −1/ν, compared to the second-order

e�ects in the case of symmetric systems and the exponent −1/ν − θ1. This results

in a more pronounced �nite-size scaling behavior in the asymmetric case for the

average percolation density 〈n〉L,W and the percolation density standard deviation

∆L,W .

Using Eqs. (2.28) and (4.3)-(4.5) we can approximate the percolation probability

functions for as-grown CNT networks using the normalized system size L, the aspect

ratio r, the density n, the fraction of the m-CNTs fM, and the �nite-size scaling coef-

�cients and exponents for the two-dimensional stick systems. This is demonstrated
1As already noted, the conversion of the normalized channel length L and width W to the

normalized channel size L and aspect ratio r can be done according to L =
√
LW and r = L/W ,

and in the opposite direction L = L
√
r and W = L/

√
r.
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Figure 4.8: The percolation probability functions of two symmetric (a) and (d)
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shown: for overall CNT percolation Rn,L,W and for three operation regimes RSM
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n,L,W . The points are the MC simulation results and the solid lines
are obtained using Eqs. (2.28) and (4.3)-(4.5).

in Fig. 4.8, where the derived expressions for the percolation probability functions

represent an excellent �t to the data calculated using our MC simulations. Two

symmetric systems with L = 5 and 20 are compared with the asymmetric ones with

the aspect ratios r = 1/4 and 4. The overlap between SM, SM, and M regimes for

the long-channel system with r = 4 is lower in comparison to the narrow-channel

con�guration with r = 1/4, see Figs. 4.8(b) and 4.8(c). Unfortunately, long-channel

con�gurations, e.g., r = 4, su�er from a low on-conductance due to the long path-

ways for the electrical transport in the source-to-drain direction [51, 126]. However,

the CNT density n is proportional to the collection time during a chemical vapor

deposition process and it can be controlled precisely by adjusting the collection time

as shown in Ref. [39]. The precise control of the density n during the CNT synthesis

process enables production of transistors with the narrow SM density regions, i.e.,

narrow channels. Hence, we can conclude that decrease of the channel length L,

i.e., decrease of the aspect ratio r, is a good strategy for the performance improve-

ment for two reasons: (i) the on-conductance increases with decreasing the aspect
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Figure 4.9: The dependence of (a) the normalized density nmax
L,W where the proba-

bility of SM percolation reaches maximum and (b) the ratio between the MC sim-
ulation results nmax

L,W on the values nmodel
L,W obtained using our analytic model given

by Eqs. (2.28) and (4.3)-(4.5) on the normalized channel width W and length L.
The low-bound nlow

L,W,0.99 (c) and high-bound density n
high
L,W,0.99 (d) determine a density

range where the probability of SM realizations is higher than 0.99.

ratio [126] and (ii) the percolation through only s-CNT paths for a narrow-channel

con�guration occurs at lower densities, see Figs. 4.8(b) and 4.8(c), resulting in a

faster production of random CNT TFTs.

For asymmetric-channel con�gurations the dependence of the normalized density

where SM percolation probability reaches its maximum nmax
L,W on the normalized

system dimensions L and W is shown in Fig. 4.9(a). The normalized density nmax
L,W

increases with increasing normalized channel length L and decreases with increasing

width W , see Fig. 4.9(a). The agreement between the MC simulation results nmax
L,W

and the values nmodel
L,W obtained from our analytic model given by Eqs. (2.28) and

(4.3)-(4.5) is better than 1% for the systems with L > 5, see Fig. 4.9(b). From

Figs. 4.9(c) and 4.9(d) we expect to achieve 99% only s-CNTs conducting realizations
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roughly above the line LCHWCH > 250 l2CNT. Within that region we see that nlow
L,W,0.99

primarily depends on the system width W . On the other hand, the upper limit of

the 99% con�dence region, nhigh
L,W,0.99 depends on both the normalized length L and

width W .

4.3.2 Asymmetric-channel on-conductance and on/o� ratio

The random CNT TFTs with an asymmetric channel have similar characteristics of

the on-conductance GON and on/o� ratio GON/GOFF compared to the symmetric-

channel con�gurations, see Figs. 4.6 and 4.10. The on-conductance GON also in-

creases with increasing CNT density n and the 1st and 99th percentiles converge to

the median value, see Fig. 4.10(a). The di�erence between the 99th and 1st per-

centile of the on/o� ratio GON/GOFF also reaches its minimum close to the density

where the probability of SM percolation reaches its maximum, i.e., nmax
8,50 , and rapidly

increases when the CNT density becomes higher than nhigh
8,50,0.99, see Fig. 4.10(b). Sim-

ilarly, the maximum of the on/o� ratio is between densities nlow
8,50,0.99 and nhigh

8,50,0.99,

and more than 99% of realized devices exhibit simultaneously on-conductance higher

than 1 µS and an on/o� ratio higher than 104 when the normalized density n is close

to nmax
8,50 , see Figs. 4.10(a) and 4.10(b). Hence, the density nmax

L,W for asymmetric, as

well as symmetric, con�gurations can be used as a compromise value for obtaining

the optimized transistor performance, see Figs. 4.6 and 4.10. However, narrow-

channel con�gurations generally have a higher on-conductance compared to sym-

metric channels as noted in Ref. [126]. Indeed, as can be seen from Figs. 4.6(a) and

4.10(a), a narrow-channel TFT with the aspect ratio r = 8/50 has roughly 1/r ≈ 6

times higher on-conductance GON compared to the symmetric-channel con�guration

with the same normalized channel size L and CNT length lCNT.

The 1st percentiles of the on-conductance GON and on/o� ratio GON/GOFF are

calculated for the same structural parameters L, W , and nmax
L,W , and di�erent CNT

lengths lCNT = 4, 8, and 12 µm, see Fig. 4.11. In accordance with the results shown

for the symmetric-channel con�guration in Fig. 4.7(b) we note that with increas-

ing CNT length lCNT the on-conductance GON decreases, while the on/o� ratio

GON/GOFF increases, see Fig. 4.11. When the CNT length lCNT is bellow 4 µm
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Figure 4.10: On-conductance GON (a) and on/o� ratio GON/GOFF (b) as a function
of the normalized CNT density n for a narrow-channel TFT with the CNT length
lCNT = 5 µm and the channel dimensions LCH = 40 µm and WCH = 250 µm, i.e.,
the normalized system dimensions L = 8 and W = 50. The solid line represents
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where more than 99% of realized devices have: (a) on-conductance higher than 1 µS
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8,50,0.99 and higher nhigh
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8,50 .

ballistic electrical transport becomes dominant and the on/o� ratio becomes lower

than 104, see Figs. 4.11(b), 4.11(d), and 4.11(f). On the other hand, when lCNT

is higher than 20 µm, high on-conductance can be attained only for a very large

channel with dimensions of the order of 1 mm, see Fig. 4.11(e). Hence, the CNT

length in the range lCNT = 4− 20 µm results in an acceptable balance between the

on-conductance and on/o� performance of CNT TFTs.

Regions A and B in Fig. 4.11 represent the CNT networks with a low 1st-

percentile value of the on-conductance GON. Region A is de�ned as a region where
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4. Random networks of CNTs optimized for transistor mass-production

Figure 4.11: The results for the 1st percentile of the on-conductance GON ((a), (c),
and (e)) and the on/o� ratio GON/GOFF ((b), (d), and (f)) calculated at nmax

L,W as a
function of the normalized channel width W and length L for di�erent CNT lengths
lCNT = 4, 12, and 20 µm. Region A represents CNT TFT con�gurations with a
probability of SM percolation higher than 1%, i.e., RSM

n,L,W > 1%, while region B
represents con�gurations with a high aspect ratio (here r > 2). TFTs in the C
region feature networks with a probability of M percolation higher than 1%, i.e.,
RM
n,L,W > 1%, while the region D denotes networks with a high CNT density (here

n > 15). The area above the dotted lines (LW = 250 and L/W = 1.2) can be used
as an approximation of the region where the random CNT TFTs simultaneously
attain high on-conductance and a high on/o� ratio.

76



4. Random networks of CNTs optimized for transistor mass-production

the probability of SM percolation is higher than 1%, i.e., RSM
n,L,W > 1%, and therefore

the 1st-percentile realization is a mixed path with low-conducting s-CNT/m-CNT

junctions. The realizations in region B have a high value of the aspect ratio r and

therefore a low overall on-conductance [126]. On the other hand, regions C and

D in Fig. 4.11 represent the CNT networks with a low 1st-percentile value of the

on/o� ratio GON/GOFF. The TFTs in region C feature networks with a probability

of percolation through only m-CNTs higher than 1%, i.e., RM
n,L,W > 1%, and there-

fore the 1st-percentile realization is short-circuited having a very low GON/GOFF.

The networks operating in D region are not short-circuited but the on/o� ratio is

low because of high leak-currents in o�-state through the high-density m-CNTs. We

can conclude that the optimal dimensions of the CNT TFT channel regarding the

device switching performance are those outside the regions A, B, C, and D shown

in Fig. 4.11. The dotted lines approximate the region where CNT TFTs attain high

on-conductance and, at the same time, a high on/o� ratio. Therefore, the ran-

dom CNT TFTs with a channel aspect ratio LCH/WCH < 1.2 and a normalized size

LCHWCH/l
2
CNT > 250 with a probability higher than 99% exhibit on-conductance

higher than 1 µS and, at the same time, an on/o� ratio higher than 104.

4.4 Comparison of conductance model and experimental re-

sults

In this section we compare the results obtained using our conductance model with

experimental results from recently published papers of other authors. The experi-

mental results from Ref. [58] (i.e., its Fig. 3) are compared with the results obtained

using our conductance model in Fig. 4.12. The parameters of the model are the same

as those measured in Ref. [58], i.e., the channel length is LCH = 10 µm, its width

is WCH = 35 µm, and the CNT length is lCNT = 2.5 µm. Hence, the normalized

length and width of the network are L = 4 and W = 14, respectively. Since Fig. 3

in [58] shows a gate response of the source-drain current I at applied low voltage

V = 0.1 V, the conversion to on- and o�-conductance is done according to G = I/V

for gate voltages equal to −4 V and 6 V, respectively. The values of CNT densities
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Figure 4.12: On-conductance GON (a) and on/o� ratio GON/GOFF (b) as a function
of the normalized density n. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. [58] (its
Fig. 3). Parameters of the model are the same as those measured in Ref. [58], i.e.,
the channel length is LCH = 10 µm, its width is WCH = 35 µm, and the CNT length
is lCNT = 2.5 µm.

for the experimental points ρ = 1, 3, 3.5, and 4.0 µm−2 are taken from Ref. [47] and

the conversion to the normalized CNT density n is done according to n = ρ l2CNT. As

can be seen in Fig. 4.12, the excellent agreement is obtained between the experimen-

tal points and the results calculated using our conductance model. As expected, the

on-conductance GON increases with the normalized density n, and a sharp drop of

on/o� ratio GON/GOFF is obtained at a high density. The experimental values of the

on-conductance are high, i.e., higher than 1 µS, since the realized networks present

narrow-channel con�gurations with a low value of the aspect ratio r = 2/7, see [126].

As our analytic model, given by Eqs. (2.28) and (4.3)-(4.5), predicts, the probability

of short-circuited realization for the last three experimental points, with the density

n > 15, is higher than 80%, i.e., RM
n>15,4,14 > 80%, and therefore, a low on/o� ratio

GON/GOFF < 20 was obtained in the experiment, as can be seen in Fig. 4.12. For

the �rst experimental point (n ≈ 6), the probability of a short-circuited percolation
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Figure 4.13: On-conductance GON (a) and on/o� ratio GON/GOFF (b) as a function
of the normalized density n. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. [51] (its
Fig. 2(b)). Parameters of the model are the same as those measured in Ref. [51],
i.e., the channel length is LCH = 100 µm, its width is WCH = 50 µm, and the CNT
length is lCNT = 5 µm.

is low, i.e., RM
6,4,14 < 1%, and therefore, a high on/o� ratio GON/GOFF was obtained

in the experiment. However, high probability of SM percolation for the �rst experi-

mental point, i.e., RSM
6,4,14 > 60%, is a reason for a high variance of on/o� ratio, i.e.,

a lower value of its 1st percentile GON/GOFF ∼ 103, see Fig. 4.5(d).

The experimental results from Ref. [51] (i.e., its Fig. 2(b)) are compared with

the results obtained using our conductance model in Fig. 4.13. The parameters of

the model are the same as those measured in Ref. [51], i.e., the channel length is

LCH = 100 µm, its width is WCH = 50 µm, and the CNT length is lCNT = 5 µm.

Hence, the normalized length and width of the network are L = 20 and W = 10,

respectively. The conversion from the CNT density ρ to the normalized CNT density

n is done according to n = ρ l2CNT. As can be seen in Fig. 4.13, a good agreement

is obtained between the experimental results and the results calculated using our

conductance model. As the analytic model predicts (see section 4), the last three
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Figure 4.14: On-conductance GON (a) and on/o� ratio GON/GOFF (b) as a function
of the channel width WCH. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. [34] (its
Fig. 2(a)). Parameters of the model are the same as those measured in [34], i.e., the
channel length is LCH = 100 µm, CNT length is lCNT = 5 µm, and the normalized
density is n = 40.

experimental points, with the density n > 25, have the percolation probability of

short-circuited realizations RM
n>25,20,10 higher than 99% and therefore, low on/o�

ratio GON/GOFF < 20 was obtained, as can be seen in Fig. 4.13. At the same time,

the �rst two experimental results with n < 15 have the probability of short-circuited

realizations RM
n<15,20,10 lower than 1% and therefore, a high on/o� ratio GON/GOFF

was obtained in the experiment.

Finally, the experimental results from Ref. [34] (i.e., its Fig. 2(a)) are compared

with the results obtained using our conductance model in Fig. 4.14. The parameters

of the model are the same as those measured in Ref. [34], i.e., the channel length

is LCH = 100 µm, the CNT length is lCNT = 5 µm, and the normalized density

is n = 40. Hence, the normalized length of the network is L = 20. As can be

seen in Fig. 4.14, the excellent agreement is obtained between the experimental

results and the results calculated using our conductance model. As the analytic
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model predicts (see section 4), the last two experimental points with WCH ≥ 10 µm

(W ≥ 2) have the percolation probability of short-circuited M realizations RM
40,20,W≥2

higher than 95% and, therefore, low on/o� ratio GON/GOFF < 30 was obtained in

the experiment, as can be seen from Fig. 4.14. For the �rst experimental point,

i.e., WCH = 2 µm, the overall percolation probability is lower than 85%, i.e., more

than 15% of all realizations are nonconducting. Therefore, this con�guration is

not applicable for the transistor mass-production because the repeatability and the

uniformity of realized devices are uncertain. Even if nonconducting realizations are

rejected, the on-conductance of remaining realizations is very low, of the order of

0.1 µS, see Fig. 4.14(a). At the end, we note that our conductance model con�rms

linear increase of the on-conductance GON with increasing channel widthWCH when

WCH > 20 µm (i.e., W > 4), see Fig. 4.14(a).

4.5 Conclusions

In this Chapter, we present numerical simulation results for the switching perfor-

mance of transistors based on random networks of as-grown CNTs. The CNT thin

�lms studied here are considered as a suitable material for low-cost, �exible, and

transparent �eld-e�ect transistors. One factor that makes CNT �lms complex is

that they contain both metallic and semiconducting nanotubes. Only the s-CNTs

have highly modulated conductance by the gate and only junctions between CNTs

of the same type are highly conductive. Therefore, the random CNT TFTs that

percolate only through s-CNT paths can simultaneously attain high on-conductance

and a high on/o� ratio. As a result, a key limitation in scaling up the production

of random CNT TFTs with a high on-current and on/o� ratio is a requirement to

achieve uniform performance of the realized devices.

We determine the probabilities of di�erent conduction regimes for as-grown CNT

networks and derive expressions which represent an excellent �t to the data calcu-

lated using numerical simulations. We also show that the fraction of 1:2 of metallic

to semiconducting nanotubes provides su�cient design freedom. We avoid creat-

ing m-CNT paths, while at the same time determine a density range where the
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rate of realizations that percolate only through s-CNT paths is higher than 99%.

Since there is a trade-o� between the on-conductance and on/o� ratio regarding the

CNT density, we show that the position of the only s-CNT percolation probability

maximum can be used as a good balance for the CNT density value. In the CNT

conductance model we have included di�usive electrical transport through CNTs

typical for rodlike nanostructures whose length is larger than the mean free path of

the electrons. This enables us to consider the in�uence of the CNT length on the

device characteristics. When the CNT length increases, di�usive transport in the

CNTs becomes dominant and on-conductance decreases with CNT length. At the

same time, because of the increased resistance of m-CNTs, the leak-currents in the

o�-state through the m-CNTs decrease and the on/o� ratio improves. This results

in a further trade o�, however, the improvement of the on/o� ratio is much larger

than the detrimental loss of the on-conductance.

Asymmetric systems have lower �nite-size scaling exponents than symmetric sys-

tems. This results in more pronounced �nite-size scaling behavior than in the sym-

metric case and enables us even more design freedom. We performed a parameter

study to �nd the optimal channel dimensions for CNT TFTs. We present a region

of the channel dimension where most of the random CNT realizations have satis-

factory transistor performance. According to the criteria of high on-conductance at

the same time as a high on/o� ratio, within the 99% con�dence range, the optimal

region of the channel dimensions can be estimated with aspect ratio LCH/WCH < 1.2

and size LCHWCH/l
2
CNT > 250. This conclusion remains valid when the CNT length

belongs to the range lCNT = 4− 20 µm, resulting in an acceptable balance between

the on-conductance and on/o� performance of the random CNT TFTs. We have also

demonstrated that the on-conductance and on/o� ratio results obtained using our

conductance model show excellent agreement with recently published experimen-

tal results. Hence, we conclude that the channel dimensions LCH and WCH, CNT

length lCNT, and density n are the only parameters needed for the description and

optimization of transport processes in TFTs based on random networks of as-grown

CNTs.
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Chapter 5 Modeling and optimization of quantum

cascade laser characteristics

In recent years the scienti�c community has witnessed rapid progress in the

development of unipolar semiconductor quantum cascade lasers (QCLs) [60, 61, 63�

66, 71�74]. In the mid- and far-infrared spectral range, these powerful light sources

are particularly appreciated for the wide scope of operating wavelengths which can

be achieved by using the same heterostructure material combination. The wave-

length tunability is realized by altering the active region design, i.e., modifying the

layers' widths and composition [63�65]. The QCL emission is based on intersub-

band transitions between speci�c subbands within a multiple quantum well (QW)

heterostructure. The typical design of the QCL active region entails a three-level

system. An intense magnetic �eld parallel to the growth direction of semiconductor

layers breaks the two-dimensional (2D) in-plane continuous energy spectrum into

discrete Landau levels. This results in an increase of otherwise short carrier lifetime

(of the order of 1 ps) in the excited state [64�66, 75]. The desired emission wave-

length de�nes the necessary separations between the active laser energy states, while

the spacing between the lower laser level and the ground state is set by LO-phonon

energy. The lifetime of electrons in the excited laser state is strongly in�uenced

and modulated by the applied magnetic �eld which results in oscillations in the

laser emission intensity. Leuliet et al. [66] attributed this e�ect to two scattering

mechanisms:

(1) inelastic scattering by LO-phonons; and

(2) elastic scattering by interface roughness.

Considering that the scattering processes between the two states depend on their en-

ergy spacing, certain relaxation mechanisms can be enhanced or inhibited by varying

the magnetic �eld strength, although they may be in�uenced by the operating tem-
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perature as well. Hence, detailed understanding of various scattering mechanisms,

relevant for laser operation, may be an important factor in improving its features

and represents a key issue in e�cient design of QCLs. LO-phonon scattering is well

explained in previous theoretical and experimental works [64, 80]. Increasing mag-

netic �eld reduces the number of levels under consideration and changes the energy

di�erences between individual levels, thus a�ecting the lifetime of carriers in higher

states. On the other hand, the in�uence of interface roughness scattering remained

less clear. The strength of the interface roughness scattering in a particular sample

is determined by the actual morphology of the interfaces. The common description

of the e�ects of interface roughness scattering assumes a Gaussian correlation of

interface steps with an average step height and a correlation length [66, 127�130].

In contrast to LO-phonon, interface roughness scattering does not depend on tem-

perature. As a result, e�ciency of the interface roughness scattering mechanism

is expected to remain constant with increasing temperature, while the e�ciency of

LO-phonon scattering is reduced due to their higher absorption [81].

In this Chapter we study the electron relaxation rates for the upper state of the

laser transition, due to electron�LO-phonon interactions and interface roughness

scattering, for a structure subjected to a magnetic �eld parallel to the con�nement

direction. The QCL under consideration comprises a triple quantum well (TQW)

GaAs/Al0.33Ga0.67 and is intended for operation at 11.4 µm. To understand the

e�ects of interface roughness scattering and compare it with LO-phonon scattering,

we have studied relaxation times and optical gain for di�erent temperatures and

magnetic �elds. The electron distribution over the states of the system is found by

solving the full set of rate equations that describe the electron transport between

levels, and subsequently used to determine the optical gain.

In section 5.1, we present a theoretical description of a realistic QCL active region

and introduce models for LO-phonon scattering and interface roughness scattering

rate with and without a presence of an external magnetic �eld. The nonlinear

rate equations which describe population change in each Landau level are presented

as well. The stationary solution of these equations allows evaluating the degree

of population inversion and resulting optical gain. Section 5.2 brings numerical
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results of the scattering rates and the total relaxation rate from the upper laser

state, for a wide range of magnetic �elds 3−60 T and two temperatures T = 77 K

and 300 K. Using the calculated scattering rates as input data, rate equations are

solved and population inversion and the optical gain are obtained. For both the

population inversion and the gain, interface roughness scattering is shown to have

a signi�cant in�uence in terms of reducing the predicted magnitude, especially at

low temperatures. Finally, in section 5.3 we present an e�cient numerical algorithm

for optimization of GaAs/AlGaAs quantum cascade laser active region parameters

considering the combined action of both studied scattering mechanisms.

5.1 Theoretical considerations

The active region of the QCL structure under consideration comprises three coupled

QWs biased by an external electric �eld E as displayed in Fig. 5.1. In the absence

of the magnetic �eld this system has three energy states, i.e. subbands (n = 1, 2,

and 3), and the laser transition occurs between subbands n = 3 and n = 2. This

active region is surrounded by suitable emitter/collector regions in the form of su-

perlattices, designed as Bragg re�ectors, which inject electrons into state n = 3 on

one side, and allow for rapid extraction of carriers from the lowest subband n = 1,

on the other side. The energy di�erence between E2 and E1 should match the LO-

phonon energy in order to ensure fast depopulation via LO-phonon scattering and

maintain a short lifetime for the lower laser level. In addition, we introduce in our

calculations the interface roughness scattering as additional nonradiative relaxation

mechanism. The in�uences of these two mechanisms are compared in the following

section.

The injection of carriers into the active region and extraction from the lower

subband is achieved via resonant tunneling. In the absence of an external magnetic

�eld, the electronic subbands from Fig. 5.1 have a free particle-like energy dispersion

in the direction parallel to the QW planes En + ~2k2
||/2m||n(En), where m||n(En) is

the energy-dependent in-plane e�ective mass and k|| is the in-plane wave vector.

However, when this structure is subjected to a strong magnetic �eld B in the z-

85



5. Modeling and optimization of QCL characteristics

Figure 5.1: The conduction-band diagram of the active region of GaAs/
Al0.33Ga0.67As QCL described in Ref. [64], in an electric �eld of 44 kVcm−1. The
subband positions at zero magnetic �elds, together with the corresponding wave
functions squared, are also displayed.

direction, continuous subbands transform into series of individual (strictly discrete)

states, the total energies of which are [65] En,l ≈ En + (l + 1/2)~ωcn where l =

0, 1, 2, ... is the Landau index, En ≡ En(k|| = 0), the term (l + 1/2)~ωcn originates

from the in-plane kinetic energy part of the subband, and ωcn = eB/m||n is the

corresponding cyclotron frequency. The values of B which give rise to resonant

LO-phonon emission are found by solving the equation E3,0 − En,l = ~ωLO where

n = 1, 2, while ~ωLO is the LO-phonon energy.

According to Refs. [66, 75], to account for the variations of the well widths, a

Gaussian probability density is introduced:

Π(Li) =
1

σ
√

2π
e−(Li−Li0)2/2σ2

(5.1)

for the ith well width Li, i = 1, 2, 3. In order to keep the results as analytical

as possible, we assume that around a mean value Li0 the energy di�erence varies
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linearly with Li, i.e.,

Eni,li(Li)− Enf ,lf (Li) ≈ Eni,li(Li0)− Enf ,lf (Li0)− γ(Li − Li0). (5.2)

with the factor γ taken the same for all Landau levels, according to [66, 75].

By introducing Eqs. (5.1) and (5.2) into the Fermi golden rule, we obtain the

following function:

J s =

∫ ∞
−∞

Π(Li)δ[Eni,li − Enf ,lf −∆Es]dLi

=
1

δ
√

2π
e−(Eni,li

−Enf ,lf
−∆Es)

2
/2δ2

, (5.3)

where δ = σγ is the width of the Gaussian distribution of energy di�erence Eni
−

Enf
+(liωcni

− lfωcnf
)~+~(ωcni

−ωcnf
)/2−∆Es, and �s� denotes the scattering mech-

anism (electron-LO-phonon scattering (LO) or interface roughness (IR) scattering).

In our notation ∆ELO = ~ωLO and ∆EIR = 0. The terms En,l represent the total

energies of Landau levels and a more detailed explanation of their calculation will

be provided in the continuation of this section, see Eq. (5.19).

5.1.1 Electron-LO-phonon scattering in magnetic �eld

The electron-LO-phonon scattering rates for phonon emission between the initial

state Eni,li and the �nal state Enf ,lf may be found from

1

τLO
(ni,li)→(nf ,lf)

=
2π

~
∑
~q

|〈nf , lf , kxf
, nq + 1|Ĥe−ph(~q)|ni, li, kxi

, nq〉|2JLO. (5.4)

In this expression, electron-LO-phonon Hamiltonian Ĥe−ph(~q) is the sum of the

interaction Hamiltonians with each phonon mode de�ned by its 3D wave vector

~q, see Ref. [75], and kxi
and kxf

are the initial and the �nal state wave vector

components, respectively. From the previous equation one obtains the following
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analytical expression for the scattering rate:

1

τ
LO,{e}
(ni,li)→(nf ,lf)

=
e2ωLO

4ε0

(
1

ε∞
− 1

εs

)
× 1

δ
√

2π
e−(Eni,li

−Enf ,lf
−~ωLO)

2
/2δ2

(nq + 1)

×
∫ ∞

0

|F (q||)|2G(q||)dq||, (5.5)

where ε∞ and εs are the static and the high-frequency relative dielectric constant,

respectively, ε0 is the vacuum dielectric permittivity and nq = [exp(~ωLO/kBT )−1]−1

is the mean number of LO-phonons. Furthermore, q|| is the in-plane component of

the phonon wave vector ~q = (qz, q||) and F (q||) is the lateral overlap integral

|F (q||, li, lf)|2 = e−(q2
||/2β

2) li!

lf !

(
q2
||

2β

)lf−li [
Llf−lili

(
q2
||

2β

)]2

, (5.6)

where β =
√
eB/~ is the magnetic length and Lkm(x) represents the associate La-

guerre polynomial. Finally, G(q||) stands for the form factor given by

G(q||) =

∫ ∫
η∗i (z)ηf(z)ηi(z

′)η∗f (z′)e−q|||z−z
′|dzdz′, (5.7)

where ηi and ηf denote the z-dependent parts of the electronic wave functions. The

electron-LO-phonon scattering rate for phonon absorption [81] is

1

τ
LO,{a}
(nf ,lf)→(ni,li)

=
1

τ
LO,{e}
(ni,li)→(nf ,lf)

1

e~ωLO/kT
. (5.8)

Phonon absorption is signi�cant at room temperature (T = 300 K) and it almost

vanishes at low temperatures (T = 77 K).

5.1.2 Electron-LO-phonon scattering without magnetic �eld

When the magnetic �eld is not present, the electron-LO-phonon scattering rate may

be evaluated from

1

τLO
ni→nf

(B = 0)
=

2π

~
∑
~q

∣∣∣〈nf , ~kf , nq + 1|Ĥe−ph(~q)|ni, ~ki, nq〉
∣∣∣2 JLO. (5.9)
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The Hamiltonian Ĥe−ph is in this case the sum of interaction Hamiltonians with

each phonon mode de�ned by its 3D wave vector ~q, see Ref. [131], and ~ki and ~kf are

the initial and the �nal state in-plane wave vectors, respectively. From the previous

equation one obtains the following expression for the scattering rate in the absence

of magnetic �eld:

1

τLO
ni→nf

(B = 0)
=
e2ωLOm

4π~2ε0

(
1

ε∞
− 1

εs

)
(nq + 1)

∫ π

0

G(q||)

q||
dθ, (5.10)

where G(q||) and q|| are the form factor and the in-plane component of phonon

wave vector, respectively. The form factor is already de�ned in Eq. (5.7) and q2
|| =

2m(Ei − Ef − ~ωLO)/~2.

5.1.3 Interface roughness scattering in magnetic �eld

We use the model for interface roughness scattering proposed by Leuliet et al. in

Ref. [66]. This model assumes the in-plane terasse-like surface defects, as explained

in Ref. [132]. In order to evaluate the interface roughness scattering rate, we in-

troduce spatial distribution of roughness which follows the Gaussian correlation

function [66, 127�130]:

〈∆(~r)∆(~r ′)〉 = ∆2e−|~r−~r
′|2/Λ2

, (5.11)

with ∆ being the mean height of the roughness and Λ the correlation length. We

also introduce the corresponding perturbation Hamiltonian [66],

ĤIR = U0δ(z − zi)∆(x, y), (5.12)

where U0 is the barrier height at interface position zi.

The electron-interface roughness scattering rate can be calculated from:〈
1

τ IR
(ni,li)→(nf ,lf)

(zi)

〉
=

2π

~

〈 ∑
kxi ,kxf

〈
|nf , lf , kxf

|ĤIR|ni, li, kxi
|2
〉〉

J IR. (5.13)

In the above expression, the averaging is performed over space (as follows from
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Eq. (5.11)), and over the initial state wave vector component kxi
:

〈
1

τ IR
(ni,li)→(nf ,lf)

(zi)

〉
=

√
2

~δ
e−

(Eni,li
−Enf ,lf )

2

2δ2 |Fif |2∆2Λα

×
∫ +∞

−∞
e
− (∆kx)2

2

[
2+Λ2β2

2β2

]
ζ(∆kx)d(∆kx). (5.14)

Here, ∆kx = kxi
− kxf

, Fif = U0η
∗
i (zi)ηf(zi) and α = β2/

(
πlf !li!2

lf+li
)
. The form

factor ζ(∆kx) is given by:

ζ(∆kx) =

∫ ∫
exp

(
−β2

[
t2 + (t− ω)2

]
− ω2

Λ2

)
×Hli

[
βt− ∆kx

2β

]
Hli

[
β(t− ω)− ∆kx

2β

]
×Hlf

[
βt+

∆kx
2β

]
Hlf

[
β(t− ω) +

∆kx
2β

]
dtdw (5.15)

and Hj is the Hermite polynomial of order j.

5.1.4 Interface roughness scattering without magnetic �eld

The electron-interface roughness scattering rate can be calculated from:

〈
1

τ IR
ni→nf

(B = 0)
(zi)

〉
=

2π

~

〈∑
~ki,~kf

〈
|nf , ~kf |ĤIR|ni, ~ki|2

〉〉
J IR. (5.16)

The Hamiltonian ĤIR is the same as in the case with magnetic �eld, i.e., Eq. (5.12).

The averaging is performed over space, and over amplitude of the initial ki and the

�nal kf state wavevector. The following expression for interface roughness scattering

rate without magnetic �eld is obtained:

〈
1

τ IR
ni→nf

(B = 0)
(zi)

〉
=

√
2π

4~δ
e−

(∆Eif)
2

2δ2 |Fif |2(∆Λ)2

×
∫ +∞

0

e
−

~4

4m2

2δ2
x2−

[
Λ2

4
−

~2
m ∆Eif

2δ2

]
x

dx, (5.17)

where ∆Eif = Ei−Ef is the energy di�erence between the initial and the �nal state.
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5.1.5 Rate equations and optical gain

The interface roughness scattering takes place at all surfaces in the system, hence we

can write the expression for the total scattering rate of the system using previously

derived expressions for the scattering rates in the presence/absence of magnetic �eld:

1

τ
=

1

τLO
+
∑
zi

〈
1

τ IR
(zi)

〉
. (5.18)

Finally, if one wants to compare the e�ects of electron-LO-phonon scattering and

electron-interface roughness scattering, two things can be noted: (1) due to the

nature of electron-interface roughness interactions, scattering rates for transition

from lower to upper and from upper to lower energy level are equal; and (2) the

LO-phonon scattering has maximum in�uence when the energy di�erence between

two states is close to phonon energy, i.e., ∆ELO = ~ωLO. On the other hand, the

e�ects of interface roughness are maximal when the energy di�erence approaches

zero. Therefore, the two mechanisms of scatterings are complementary.

When the magnetic �eld B is applied, continuous subbands En transform into

discrete Landau levels. The expression for energies En,l is given by Ekenberg [133] as

En,l = En +

(
l +

1

2

)
~eB
m||n

+
[(

8l2 + 8l + 5
)
〈α0〉+

(
l2 + l + 1

)
〈β0〉

] e2B2

2~2
. (5.19)

In Eq. (5.19), m||n represents the parallel e�ective mass of the nth subband in

the absence of the magnetic �eld [133], while α0 and β0 are the nonparabolicity

parameters.

The optical gain corresponds to transitions (3, l)→ (2, l) and is given by [80, 134]

g3→2 =
2e2π2

n̄ε0

d2
3→2

λ

∑
l

δ(E3,l − E2,l − ~ω)(N3,l −N2,l), (5.20)

where n̄ is the material refractive index, λ and ω denote the wavelength and the

frequency of the emitted light, respectively, while N3,l − N2,l represents the degree

of population inversion. The Dirac function in the above equation is replaced in
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numerical calculations by a Lorentzian with the linewidth parameter Γ as follows

δ(E3,l − E2,l − ~ω)→ 1

π

Γ

[E3,l − E2,l − ~ω]2 + Γ2
. (5.21)

The energy di�erence between states is dependent on the Landau index l, E3,l −

E2,l ≈ E3 − E2 +
(
l + 1

2

)
~eB

(
1

m||3
− 1

m||2

)
. Therefore, the Dirac function (i.e. the

Lorentzian) cannot be put in the front of summation in Eq. (5.20). The transition

matrix element is calculated as d3→2 =
∫
η∗3(z)zη2(z)dz, where the wavefunctions ηn

are found by solving the Schrödinger equation in the form [133]

d2

dz2
α0
d2ηn
dz2
− ~2

2

d

dz

1

m

dηn
dz

+ U(z)ηn = Enηn. (5.22)

Here, m represents the e�ective mass at the conduction-band minimum.

To calculate the optical gain we need to �nd the inverse population which is the

solution of a nonlinear system of rate equations:

Ni

∑
j 6=i

f̄j
τi→j

− f̄i
∑
j 6=i

Nj

τj→i
+
Ji
e

= 0, (5.23)

where indices i, j = 1, 2, . . . denote the electronic states sorted by energy and

f̄i = 1− π~
eB

Ni (5.24)

is the probability that the state i is not occupied according to the Fermi-Dirac

distribution. The electrons arrive in the active region by a constant current, and

they are injected only into a limited number of Landau levels of the excited laser

state, i.e. levels (3, 0), . . . , (3, l3,max). The injection current can be represented as

a sum of all currents Ji which inject electrons into levels (3, l3), and in a similar

manner, the extraction current can be expressed as a sum of all currents Ji which

extract the electrons from levels (1, l1). The energy values of maximal Landau levels

for each subband described by l1,max, l2,max and l3,max, are taken in this work to

be roughly E3,0 + 5kBT and it is reasonable to assume that the levels above are

almost empty, see Ref. [80]. The system of nonlinear rate equations (5.23) can be
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5. Modeling and optimization of QCL characteristics

successively solved by solving the corresponding system of linear equations in each

of the successive steps [7, 8]. The CGM explained in Appendix D can be separately

applied in each step for solving the obtained systems of linear equations.

In the absence of an external magnetic �eld, the electronic subbands have free

particle-like energy dispersion in the direction parallel to the QW planes, which in

the parabolic approximation reads as E|| = ~2k2
||/2m

∗, wherem∗ is the e�ective mass

and k|| is the in-plane wave vector. The non-radiative lifetime for the state |3, k||〉

is limited by the electron-LO-phonon scattering into the two lower subbands of the

active region, and the optical gain may be described by the following expression:

g3→2(B = 0) =
e2ω

2n̄ε0c

∫ +∞

0

F3→2|d3→2|2δ(E3 − E2 − ~ω)d(k2
||), (5.25)

where ε0 is the vacuum dielectric permittivity, c is the speed of light in vacuum, ~ω

is the photon energy, F3→2 stands for the di�erence of Fermi-Dirac functions for the

initial and the �nal state, while di→f = 〈ηi|z|ηf〉 is the transition matrix element,

and ηi and ηf denote the z-dependent parts of the wave functions.

5.2 Numerical results

The active region of a QCL based on GaAs/Al0.33Ga0.67As heterostructure, described

in [64] and designed to emit radiation at ∼ 11.2 µm, is displayed in Fig. 5.1. The

layer widths are 56, 19, 11, 58, 11, 49 and 28 Å, going from the emitter towards

the collector barrier, and the electric �eld is 44 kVcm−1. The material parameters

for GaAs used in the calculation are mGaAs = 0.067m0, for AlAs mAlAs = 0.15m0,

and for Al0.33Ga0.67As m = 0.33mAlAs + 0.67mGaAs ≈ 0.094m0 (m0 is the free elec-

tron mass), n̄ = 0.33 and the conduction-band discontinuity between GaAs and

Al0.33Ga0.67As is ∆Ec = 283.4 meV. In the absence of magnetic �eld, the three

subbands are at energies E1 = 44.5 meV, E2 = 81.8 meV and E3 = 192.7 meV,

with the lasing transition energy of E3 − E2 = 110.9 meV, in full agreement with

experimental data [135]. Numerical parameters used in calculations are ε∞ = 10.67,

εs = 12.51, ~ωLO = 36.25 meV, δ = 6 meV, ∆ = 1.5 Å, Λ = 60 Å, and T = 77 K and

300 K, see Refs. [66, 75]. The linewidth parameter of Lorentzian given by Eq. (5.21)
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5. Modeling and optimization of QCL characteristics

Figure 5.2: The total electron relaxation rate due to the electron LO-phonon scat-
tering and interface roughness scattering for transitions from the ground laser level
of the third subband into the two sets of Landau levels of the lower subbands, for
magnetic �elds in the range of B = 3−60 T and at temperature T = 77 K.

in the numerical calculations is taken from Ref. [136] as Γ = 4.25 meV. Nonparabol-

icity parameters α0 and β0 are taken as −2107 eVÅ4 and −2288 eVÅ4 for GaAs

wells and −1164 eVÅ4 and −1585 eVÅ4 for Al0.33Ga0.67As barriers [133].

The scattering rate for the phonon absorption increases exponentially with tem-

perature, see Eq. (5.8). In the following text, we will therefore �rst present results

for the low temperatures (T = 77 K) when the phonon absorption is expected to be

negligible and thereafter at room temperature (T = 300 K) where it is signi�cant.

The total relaxation rate for transitions from the ground Landau level of the third

subband (into which the majority of carriers are injected) into the sets of Landau

levels of the two other subbands is shown in Fig. 5.2, for the magnetic �elds in the

range of B = 3−60 T and temperature T = 77 K. Oscillations of the relaxation

rate with B are very pronounced, and very prominent peaks are found at values of

the magnetic �eld which satisfy the resonance conditions for LO-phonon emission.

If the relaxation rates due to interface roughness and LO-phonon scattering are
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5. Modeling and optimization of QCL characteristics

Figure 5.3: The ratio of the total electron areal densities due to the electron LO-
phonon and interface roughness scattering, in the ground laser levels of the third
and the second subband, as a function of the magnetic �eld and at temperature
T = 77 K.

compared, one can see that the local relaxation rate maximum are of the same order

of magnitude and not correlated with respect to the applied magnetic �eld. This

is due to the fact that interface roughness scattering has the largest in�uence when

the energy di�erence between states is diminishing. In contrast, for LO-phonon

scattering, when the arrangement of laser levels is such that there is a level situated

at ~ωLO below the state (3, 0), this type of scattering is enhanced. One can also see

that the peaks at magnetic �elds B < 20 T are a result of combined action of two

scattering mechanisms. As already pointed out, the interface roughness scattering

is enhanced when the energy spacing between levels is vanishingly small, while the

LO-phonon scattering rates peak if this spacing is close to phonon energy. For that

reason, at magnetic �elds below 10 T, when the energy levels become dense, electron

relaxation rates due to the interface roughness scattering exceed those of LO-phonon

scattering.

Assuming a constant current injection, the modulation of lifetimes of all the

states in the system results in either suppression or an enhancement of population
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Figure 5.4: The optical gain (per unit injection current) as a function of the applied
magnetic �eld in range B = 3−60 T at temperature T = 77 K.

inversion between states (3, 0) and (2, 0), see Fig. 5.3, and therefore in modulation

of the optical gain per unit injection current g = g3→2/J as well, see Fig. 5.4. The

�rst signi�cant minimum of the optical gain is at the magnetic �eld of B = 24.2 T

and the positions of relevant states in this case are displayed in Fig. 5.5. Electron

relaxation from the state (3, 0) is maximized, see Fig. 5.2, because there are two

states (2, 2) and (1, 3) with energies close to E3,0 − ~ωLO, together with the state

(1, 4) very similar to (3, 0), and the lifetime for the upper laser state is as low as

τ3,0 = 0.26 ps. As a result of high relaxation rate, the inverse population is low, see

Fig. 5.3.

Quite a di�erent situation occurs at magnetic �eld around B = 41.4 T. The

con�guration of relevant electronic states, shown in Fig. 5.6, leads to a maximally

suppressed LO-phonon relaxation rate from (3, 0), because there are no lower states

with energy E3,0 − ~ωLO in the proximity, see Fig. 5.6. Still, since the scattering on

interface roughness is also present, the maximums of inverse population and optical

gain are shifted towards the higher values of the magnetic �eld (B = 42.5 T). The

calculated lifetime is τ3,0 = 0.36 ps. The most signi�cant e�ect of the interface
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Figure 5.5: Positions of discrete states in the active region for the magnetic �eld of
B = 24.2 T, where the optical gain has a local minimum.

Figure 5.6: Positions of discrete states in the active region for the magnetic �eld of
B = 41.4 T, where optical gain has a maximum.

roughness scattering is the reduction in the magnitude of inverse population, which

results in reduced optical gain, see Figs. 5.3 and 5.4. Finally, we should note that
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Figure 5.7: The ratio of the total electron areal densities due to the electron LO-
phonon and interface roughness scattering, in the ground laser levels of the third
and the second subband, as a function of the magnetic �eld and at temperature
T = 300 K.

introduction of interface roughness scattering did not create new resonant peaks. It

only resulted in relatively small shift (∼1 T) of the existing peaks.

At room temperature T = 300 K, the total electron relaxation rate due to the

electron LO-phonon scattering is higher (∼1.6 times) than at temperature T = 77 K.

This increase in relaxation rate is caused by the temperature dependence of the

distribution of phonon energies which enters Eq. (5.5). The increase in temperature

has a signi�cant e�ect on the reduction in inversion population due to intensi�ed

absorption of LO-phonons, as well as emission, which is evident from Fig. 5.7. At

the same time, the scattering on interface roughness is independent of temperature.

Consequently, the in�uence of interface roughness scattering on inversion population

is less pronounced at higher temperatures, which can be veri�ed by comparing the

results obtained for the optical gain at 300 K, see Fig. 5.8, with the results from

Fig. 5.4.

Finally, we should note the QCL operating in the mid-infrared spectral range

was chosen to validate our model since experimental data were readily available [64];
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Figure 5.8: The optical gain (per unit injection current) as a function of the applied
magnetic �eld in the range B = 3−60 T at temperature T = 300 K.

however, the calculations could straightforwardly be modi�ed for the THz spectral

range with optimized laser performance at the selected wavelength. The optimiza-

tion procedure of the QCL active region is described in detail in the next subsection.

5.3 Optimization procedure of the QCL active region

In order to optimize the laser performance at selected wavelength, one must con-

sider the entire free-parameters space and this type of search is best performed by

some established method for global optimization, such as simulated annealing algo-

rithm [10] employed in this thesis. This algorithm belongs to the class of stochastic

global optimization methods and uses the Metropolis function for the acceptance

probability. The annealing algorithm in each step randomly generates new con�gu-

rations and calculates a �tness function value. Any downhill step is automatically

accepted while an uphill step may be accepted according to the Metropolis criteria.

The algorithm starts initially with annealing control parameter set to a high value,

and as the annealing proceeds, the value of annealing control parameter declines. In
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this way, the system is expected to wander initially towards a broad region of the

active parameter space containing good solutions and then the search towards min-

imum is narrowed down. One of the most important phases in the implementation

of any simulated annealing algorithm is the selection of a formal �tness function,

which should be de�ned to encompass the goals of optimization. Here, the objective

is to optimize the optical gain at selected wavelength, hence the �tness function is

taken in the following form [8, 137]

F = − g3→2(B = 0)[(
E3−E2

~ω − 1
)2

+ Θ2
] [(

E2−E1

~ωLO
− 1
)2

+ Θ2

] , (5.26)

where the term in the denominator favours achieving speci�ed emission wavelength

(i.e. photon energy ~ω) and the LO-phonon resonance. In addition, Θ is a nonzero

constant, which ensures that F is strongly driven towards resonance in the course

of optimization, while remaining �nite at the exact resonance, and g(B = 0) is the

optical gain in the absence of the magnetic �eld, given by Eq. (5.25). In numerical

calculation, the optical gain can be expressed via the gain coe�cient g∗ = (1 −

τ2→1/τ3→2)τ3|d3→2|2, where τ2→1 and τ3→2 are the scattering times and τ3 is the

upper laser level lifetime.

5.4 Conclusions

We have set up a rate equation-based model and analyzed the optical gain in the

active region of a quantum cascade laser in a magnetic �eld perpendicular to the

structure layers. The magnetic �eld alters the number of relevant in-plane elec-

tronic levels and the corresponding relaxation rates between them, by positioning

some states on or o� resonance with the upper laser level. In this work, LO-phonon

and interface roughness scattering are compared. By examining the model itself,

one could note that the interface roughness relaxation has maximal e�ects when

the energy di�erence between levels is negligible. At the same time, the LO-phonon

scattering is enhanced if energy di�erence is close to resonant phonon energy. From

the numerical result it is evident that the inclusion of interface roughness scat-
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tering does not introduce additional peaks of inverse population and optical gain

with varying magnetic �eld. However, for magnetic �elds smaller then 10 T, when

the energy levels become more closely spaced, the electron relaxation rates due to

the interface roughness scattering become higher in comparison with LO-phonon

relaxation rates. The most prominent e�ect of the interface roughness scattering

is the overall reduction in the inverse population and the optical gain. Obviously,

the operating temperature has an additional in�uence on the balance of the two

scattering mechanisms. While the surface roughness scattering does not depend on

the temperature, absorption/emission of LO-phonons increases exponentially with

temperature. As a consequence, the optical gain resulting from the combined action

of these scattering mechanisms is signi�cantly reduced at higher temperatures. Fi-

nally, we present an e�cient numerical algorithm for optimization of GaAs/AlGaAs

quantum cascade laser active region parameters considering the combined action of

both studied scattering mechanisms.
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Chapter 6 Summary

In this thesis we have proposed di�erent models to describe and optimize ef-

fects of structural and geometrical parameters on transport properties of modern

nanoelectronic devices, such as transparent conducting nanowire networks, thin-

�lm carbon nanotube transistors, and quantum cascade lasers. At the beginning of

Chapter 1 we have presented main results of research in the �eld of transport pro-

cesses and main concepts of appropriate statistical methods and models necessary

for their understanding. A brief overview of the most important transport processes

in each of the considered nanoelectronic devices is presented in the rest of Chapter 1.

In Chapter 2 we have developed an e�cient numerical algorithm for the stick-

percolation detection. Using this algorithm we have investigated the �nite-size scal-

ing e�ects in percolating widthless stick systems with variable aspect ratios through

an extensive Monte Carlo simulation study. A generalized scaling function for rect-

angular stick systems was introduced to describe the scaling behavior of the �rst two

percolation probability moments. This generalized scaling function, with geometry-

dependent prefactors and constant exponents in its expansion, is then used to pro-

pose an analytic percolation probability model based on the Gaussian error function.

In Chapter 3 we have developed an e�cient numerical algorithm, based on conju-

gate gradient method, for calculating the electrical conductivity of random nanowire

networks. We have proposed a model that explicitly depends on the nanowire den-

sity and junction-to-nanowire conductance ratio based on Monte Carlo simulation

results. The model describes the transition from the conductivity determined by the

structure of a percolating cluster to the conductivity of the dense random nanowire

networks. The �nite-size scaling e�ects were also included in the description. Fi-

nally, using the proposed model and an analytical approximation for the density-

dependent optical transmittance, we have quanti�ed a dependence of the optical
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transmittance on the electrical conductivity for the random nanowire networks.

In Chapter 4, the e�cient numerical algorithm from Chapter 3 has been adapted

for calculating on-conductance and the on/o� ratio of random carbon nanotube thin-

�lm transistors. Based on this algorithm we have numerically studied e�ects of the

device parameters (density of carbon nanotubes, channel dimensions and carbon

nanotube length) on the electrical transport in order to obtain an optimized and

uniform device performance (on-conductance and on/o� conductance ratio) without

using any post-growth treatment. We have identi�ed the probabilities of di�erent

conduction regimes of random carbon nanotube networks using the scaling laws for

asymmetric systems of percolating sticks from Chapter 2. Finally, we have demon-

strated how geometrical aspects contribute to the feasibility of random carbon nan-

otube networks as switches with good transistor performance (i.e., high on-current

and on/o� ratio) and the uniform performance of realized devices.

In Chapter 5, we have presented a detailed theoretical analysis of LO-phonon and

interface roughness scattering in�uence on the operation of GaAs/AlGaAs quantum

cascade laser with and without a presence of an external magnetic �eld. We have

demonstrated that the lifetime of the upper state, population inversion and optical

gain show strong oscillations as a function of the magnetic �eld. These oscillations

and their magnitude have been found to be a result of the combined action of the

two studied mechanisms and strongly a�ected by temperature. At high tempera-

tures, electrons in the relevant laser states absorb/emit more LO-phonons, which

results in reduction in the optical gain. We have shown that the decrease in the

optical gain is moderated by the occurrence of interface roughness scattering, which

remains unchanged with increasing temperature. Integration of the interface rough-

ness scattering mechanism into the model did not create new resonant peaks in the

optical gain. However, it resulted in shifting the existing peaks positions and overall

reduction in the optical gain. Finally, we have shown that the optimization of the

quantum-cascade-laser performance at a selected wavelength could be performed at

entire free-parameters space using simulated annealing algorithm.
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Appendix A Analytical derivation of the average

stick percolation density and standard

deviation

The �rst percolation moment, i.e., the average stick percolation density, has been

already de�ned as

〈n〉L,r =

∫ ∞
0

n
∂Rn,L,r

∂n
dn. (A.1)

If we apply integrating by parts, where u = n and dv =
∂Rn,L,r
∂n

dn, and consequently,

du = dn and v = Rn,L,r, we obtain

〈n〉L,r = lim
n→∞

(nRn,L,r)−
∫ ∞

0

Rn,L,rdn. (A.2)

Including expression (2.2) into the previous expression and using one of the fun-

damental properties of the percolation probability function limn→∞Rn,L,r = 1, the

previous equation becomes:

〈n〉L,r =
1

L2
lim
N→∞

N −
∞∑
N=0

RN,L,r

N !

∫ ∞
0

(nL2)Ne−nL
2

dn. (A.3)

Introducing a substitution λ = nL2 and using an identity limN→∞N =
∑∞

N=0 1, we

further obtain

〈n〉L,r =
1

L2

∞∑
N=0

(
1− RN,L,r

N !
IN

)
, (A.4)

where IN is an integral

IN =

∫ ∞
0

λNe−λdλ. (A.5)

If we again apply integrating by parts, using now u = λN and dv = e−λdλ, and
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consequently, du = NλN−1dλ and v = −eλ, a recursive expression is obtained

IN = NIN−1. (A.6)

Since I0 = 1, the previous recursive expression becomes

IN = N !. (A.7)

Finally, incorporating Eq. (A.7) into Eq. (A.4), the average stick percolation density

gets the expected form

〈n〉L,r =
1

L2

∞∑
N=0

(1−RN,L,r). (A.8)

The obtained expression allows calculation of the average stick percolation density

directly from the discrete percolation probability function RN,L,r, which is computa-

tionally more e�cient, since it avoids using Eq. (A.1) and calculating the continuum

percolation probability function Rn,L,r with a high resolution.

As already noted, the variance of the percolation probability distribution function

can be calculated as ∆2
L,r = 〈n2〉L,r − 〈n〉2L,r, where

〈n2〉L,r =

∫ ∞
0

n2∂Rn,L,r

∂n
dn. (A.9)

If we apply integrating by parts, where u = n2 and dv =
∂Rn,L,r
∂n

dn, and consequently,

du = 2ndn and v = Rn,L,r, we obtain

〈n2〉L,r = lim
n→∞

(n2Rn,L,r)− 2

∫ ∞
0

nRn,L,rdn. (A.10)

Including expression (2.2) and using the property limn→∞Rn,L,r = 1, the previous

equation becomes:

〈n2〉L,r =
1

L4
lim
N→∞

N2 − 2

L2

∞∑
N=0

RN,L,r

N !

∫ ∞
0

(nL2)N+1e−nL
2

dn. (A.11)

Introducing a substitution λ=nL2 and using an identity limN→∞N
2 =2

∑∞
N=0(N+α),
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where α ∈ R, we further obtain

〈n2〉L,r =
2

L4

∞∑
N=0

(
N + α− RN,L,r

N !
IN+1

)
, (A.12)

where IN+1 is an integral

IN+1 =

∫ ∞
0

λN+1e−λdλ. (A.13)

Incorporating the previously shown identity IN+1 = (N + 1)! into Eq. (A.12) we

obtain the following expression:

〈n2〉L,r =
2

L4

∞∑
N=0

(N + α− (N + 1)RN,L,r) . (A.14)

In order to provide a �nite convergence of the previous sum, the real factor α has

to be equal to 1, so �nally we get

〈n2〉L,r =
2

L4

∞∑
N=0

(N + 1) (1−RN,L,r) . (A.15)

Similar to the previous case, the obtained expression allows calculation of the perco-

lation density variance, and consequently the standard deviation, directly from the

discrete percolation probability function RN,L,r.
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Appendix B Standard errors propagations

The expected statistical error of the discrete percolation probability function

RN,L,r is known analytically [98], since each realization of the algorithm gives an in-

dependent estimate of RN,L,r which is either 0 or 1 depending on whether or not per-

colation was occurred in a system with exactly N randomly distributed sticks. If we

perform NMC independent realizations, the number of realizations that return 1 is bi-

nomially distributed with meanNMCRN,L,r and varianceNMCRN,L,r(1−RN,L,r) [106].

Therefore, our estimate of the standard error of the discrete percolation probability

function RN,L,r over NMC realizations is obtained from the simple binomial distri-

bution as

σRN,L,r =

√
RN,L,r(1−RN,L,r)

NMC

. (B.1)

The standard error of the continuum percolation probability Rn,L,r can be estimated

applying standard error propagation procedure [106] to the convolution Eq. (2.2) and

using the previous standard error estimation of discrete percolation probability:

σRn,L,r = e−nL
2

√√√√ 1

NMC

∞∑
N=0

(nL2)2N

(N !)2
RN,L,r(1−RN,L,r). (B.2)

Similarly, the standard error of the average stick percolation density 〈n〉L,r is esti-

mated from Eqs. (2.3) and (B.1) as

σ〈n〉L,r =
1

L2

√√√√ 1

NMC

∞∑
N=0

RN,L,r(1−RN,L,r). (B.3)

Finally, the standard error of the percolation density variance ∆2
L,r is estimated as

σ∆2
L,r

=
√
σ2
〈n2〉L,r + 4〈n〉2L,r σ2

〈n〉L,r , (B.4)
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where σ〈n2〉L,r is obtained from Egs. (2.4) and (B.1) as

σ〈n2〉L,r =
2

L4

√√√√ 1

NMC

∞∑
N=0

(N + 1)2RN,L,r(1−RN,L,r). (B.5)

If the number of independent MC realizationsNMC is large enough, the normal distri-

bution can be used as a reasonable approximation of the binomial distribution [106].

Since all analyzed systems in Chapter 2 have more than NMC > 107 independent

realizations, binomially distributed discrete percolation probability RN,L,r has an

approximately normal distribution. For that reason, the standard error of the dis-

crete percolation probability σRN,L,r , given by Eq (B.1), actually presents its 68%

con�dence interval. Therefore, all derived standard errors (B.2)-(B.5) also present

68% con�dence intervals for appropriate variables. Finally, standard errors with

95% con�dence level, used as the error bars in all �gures in Chapter 2, are obtained

simply by multiplying the previously given 68% con�dence intervals by factor 1.96,

see Ref. [106].

We note that all �ts in this thesis were done using software package MATLAB

R2011b and its built-in least-squares �tting functions. Using appropriate functions

for �tting data and the least-squares �tting methods excellent �ts were obtained

(R2 > 0.9999) in Chapter 2 for all analyzed systems with L ≥ 16. All �tting

parameters are estimated within 95% con�dence level.
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Appendix C Calculation of prefactors and exponents

of average stick percolation density and

standard deviation

In section 2.2, we have analytically shown that the zeroth-order prefactor a0(r)

of the average stick percolation density 〈n〉L,r is an odd function on a logarithmic

scale, i.e., a0(r) = −a0(1/r), while the higher order prefactors ai(r), where i ≥ 1,

are even functions, i.e., ai(r) = ai(1/r). Therefore, the zeroth-order term 〈n〉0,L,r of

the average stick percolation density 〈n〉L,r can be calculated as

〈n〉0,L,r =
〈n〉L,r − 〈n〉L,1/r

2
, (C.1)

because all higher order terms, expanded applying Eq. (2.20) to 〈n〉L,r and 〈n〉L,1/r,

should be mutually canceled, resulting in

〈n〉0,L,r = a0(r)L−1/ν−θ0 . (C.2)

Similarly, the �rst-order term 〈n〉1,L,r of the average stick percolation density

〈n〉L,r can be approximated as

〈n〉1,L,r =
〈n〉L,r + 〈n〉L,1/r

2
− nc. (C.3)

because, in this case, the zeroth-order terms should cancel each other, resulting in

〈n〉1,L,r = L−1/ν

∞∑
i=1

ai(r)L
−θi . (C.4)

For su�ciently large system size L, all higher order terms in the previous expression
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Figure C.1: The zeroth-order 〈n〉0,L,r and the �rst-order term 〈n〉1,L,r of average
stick percolation density 〈n〉L,r plotted as functions of the system size L for di�erent
aspect ratios r = 1, 1.02, 1.25, 2, 5, and 10. The points for 〈n〉0,L,r (transparent) and
〈n〉1,L,r (�lled) are obtained from MC simulations and calculated from Eqs. (C.1) and
(C.3), respectively. The lines (dashed for 〈n〉0,L,r and solid for 〈n〉1,L,r) are obtained
using the least-squares �tting methods. The data are shown on a logarithmic scale
to demonstrate power-law convergences of 〈n〉0,L,r and 〈n〉1,L,r with slopes −1/ν and
−1/ν − θ1, respectively.

can be neglected and 〈n〉1,L,r can be approximated only by the �rst-order term

〈n〉1,L,r ≈ a1(r)L−1/ν−θ1 . (C.5)

The zeroth-order 〈n〉0,L,r and the �rst-order term 〈n〉1,L,r, obtained from MC

simulations and calculated using Eqs. (C.1) and (C.3), respectively, are shown in

Fig. C.1 as functions of the normalized system size L for di�erent aspect ratio r. The

points are plotted on a logarithmic scale to demonstrate the power-low dependences

assumed by Eqs. (C.2) and (C.5), respectively. When the aspect ratio r is �xed, the

zeroth-order terms 〈n〉0,L,r fall on a straight line with the same slope −1/ν − θ0 for

all r, where θ0 = 0, as shown in Fig. C.1. Similarly, the �rst-order terms 〈n〉1,L,r
also fall on straight lines, but with the slope −1/ν − θ1, where θ1 = 0.82(2). At the
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same time, the obtained values of the exponents of 〈n〉0,L,r and 〈n〉1,L,r con�rm the

parity assumptions for prefactors ai(r) and a0(r), respectively. The prefactors a0(r)

and a1(r) for systems with r ≥ 1 are determined as y-axis intercepts in Fig. C.1,

while the values for systems with r < 1 are obtained using the previously con�rmed

parity conditions, i.e., a0(r) = −a0(1/r) and a1(r) = a1(1/r).

In analogy to the previous case, the zeroth-order term ∆2
0,L,r of the stick perco-

lation density variance ∆2
L,r can be calculated as

∆2
0,L,r =

∆2
L,r + ∆2

L,1/r

2
. (C.6)

because the parity of prefactors b0(r) = b0(1/r) and bi(r) = −bi(1/r), where i ≥ 1,

implies that all higher order terms, expanded applying Eq. (2.21) to the previous

expression, should be mutually canceled, resulting in

∆2
0,L,r = b0(r)L−2/ν−θ0 . (C.7)

Similarly, the �rst-order term ∆2
1,L,r of the stick percolation density variance ∆2

L,r

can be determined as

∆2
1,L,r =

∆2
L,r −∆2

L,1/r

2
, (C.8)

because for su�ciently large system size L, all higher order terms in the previous

expression can be neglected and ∆2
1,L,r can be approximated by the �rst-order term

∆2
1,L,r ≈ b1(r)L−2/ν−θ1 . (C.9)

The zeroth-order ∆2
0,L,r and the �rst-order term ∆2

1,L,r, obtained from MC simu-

lations and calculated using Eqs. (C.6) and (C.8), respectively, are shown in Fig. C.2

as functions of the normalized system size L for di�erent aspect ratio r. The points

are plotted on a logarithmic scale to demonstrate the power-low dependences as-

sumed by Eqs. (C.7) and (C.9), respectively. When the aspect ratio r is �xed, the

zeroth-order terms ∆2
0,L,r fall on a straight line with the same slope −2/ν − θ0 for

all r, where θ0 = 0, as shown in Fig. C.2. Similarly, the �rst-order terms ∆2
1,L,r also

fall on straight lines, but with the slope −2/ν−θ1, where θ1 = 0.82(2). At the same
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Figure C.2: The zeroth-order ∆2
0,L,r and the �rst-order term ∆2

1,L,r of the stick per-
colation density variance ∆2

L,r plotted as functions of the system size L for di�erent
aspect ratios r = 1, 1.02, 1.25, 2, 5, and 10. The points for ∆2

0,L,r (transparent) and
∆2

1,L,r (�lled) are obtained from MC simulations and calculated using Eqs. (C.1) and
(C.3), respectively. The lines (dashed for ∆2

0,L,r and solid for ∆2
1,L,r) are obtained

using the least-squares �tting methods. The data are shown on a logarithmic scale
to demonstrate power-law convergences of ∆2

0,L,r and ∆2
1,L,r with slopes −2/ν and

−2/ν − θ1, respectively.

time, the obtained values of the exponents of ∆2
0,L,r and ∆2

1,L,r in Fig. C.2 con�rm

the parity assumptions for prefactors bi(r) and b0(r), respectively. The prefactors

b0(r) and b1(r) for r ≥ 1 are determined as y-axis intercepts in Fig. C.2, while the

values for r < 1 are obtained using the previously con�rmed parity conditions, i.e.,

b0(r) = b0(1/r) and b1(r) = −b1(1/r).
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Appendix D Conjugate gradient method

The Conjugate Gradient Method (CGM) is an iterative method for solving a

sparse system of linear equations given by the following matrix equation

Ax = b, (D.1)

where A ∈ Rn×n is a known, square, symmetric, positive-de�nite matrix, x ∈ Rn×1

is an unknown vector, and b ∈ Rn×1 is a known vector. We note that, a matrix A is

positive-de�nite if, for every non-zero vector z, is satis�ed

zTAz > 0. (D.2)

In order to demonstrate the basic concepts of CGM, we introduce a quadratic form,

that is simply a scalar, i.e., quadratic function of a vector, given by

f(x) =
1

2
xTAx− bTx, (D.3)

where A is a square matrix and x and b are column vectors. The quadratic form is

minimized when its gradient

∇f(x) =
1

2
ATx+

1

2
Ax− b, (D.4)

is equal to zero and, at the same time, the matrix A is positive-de�nite [9, 107]. If

the matrix A is symmetric, i.e., A = AT, this equation reduces to

∇f(x) = Ax− b. (D.5)

Setting this gradient to zero, we obtain Eq. (D.1), i.e., the linear system we wish
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to solve. Therefore, the solution to Ax = b is a critical point of the quadratic form

f(x). If A is positive-de�nite matrix, as well as symmetric, then this solution is a

minimum of the quadratic form f(x), so Ax = b can be solved by �nding an vector

x that minimizes the quadratic form f(x) given by Eq. (D.3).

The minimization of the quadratic form f(x) is carried out by generating a suc-

cession of search directions pk and improved minimizers xk. At each iteration a

quantity αk is found that minimizes f(xk + αkpk), and xk+1 is set equal to the new

point xk +αkpk. Also, the residual vector rk+1 is iteratively determined at each step

as rk − αkApk. The pk and xk are built up in such a way that xk+1 is also the mini-

mizer of f(x) over the whole vector space of directions already taken, {p1, p2, ..., pk}.

After some number of iterations the system converges to the minimizer over the

entire vector space, i.e., to the solution to Eq. (D.1).

The described algorithm converges faster, i.e. in fewer steps, if a preconditioner

matrix M is used. The simplest preconditioner is a diagonal matrix whose diagonal

entries are identical to those of the system matrix A. Since a diagonal matrix

is trivial to invert, this preconditioner can be easy numerically implemented. The

process of applying this preconditioner, known as diagonal preconditioning or Jacobi

preconditioning, is equivalent to scaling the quadratic form along the coordinate

axes. Therefore, the size of quantity αk at each iteration using Jacobi preconditioner

can be calculated as in Refs. [9, 107]

αk =
rT
kM

−1rk
pT
kApk

, (D.6)

and the direction vector pk+1 can be iteratively obtained as

pk+1 = M−1rk+1 +
rTk+1M

−1rk+1

rTkM
−1rk

pk. (D.7)

As one can see from Eqs. (D.6) and (D.7), the dominant operation during an it-

eration is the matrix-vector product Apk. Matrix-vector products generally requires

O(m) operations, where m is the number of non-zero elements in the matrix A. In

this thesis all analyzed system matrices A are sparse and, therefore, the matrix-

vector products have a time complexity of O(n). On the other hand, the minimum
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number of iterations needed to achieve required error tolerance using CGM for two-

dimensional problems is O(n1/2), see Ref. [107]. Therefore, a numerical realization

of the CGM algorithm has the total time complexity of O(n3/2).

We also note that the CGM can be used to solve systems where the matrix A

is not symmetric, not positive-de�nite, and even not square. In that case instead

of Eq. (D.1) we should consider the following expression: ATAx = ATb. Now, the

new system matrix ATA is square, symmetric, and positive-de�nite, because for any

non-zero vector x is satis�ed xTATAx = ||Ax||2 > 0. The only di�culty is that the

condition number of created matrix ATA is the square of that of matrix A, so the

overall convergence is signi�cantly slower.
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M3jaBibyjeM

Aa je floKTOPCKa AMcepTaHMj.a  nod  HacTioBOM

IvloAelioBaibe M on"MM3aLiMja TpaHcnopTHMx npoLieca y caBpeMeHMM
HaHoeiieRTpoHci(i" ypef)ajMMa

•      pe3yJiTaT concTBeHor MCTpaxMBallKor paAa;

•     Aa AMcepTaL+Mja  y  L|eJ""  "  y AeiioBMMa  "je 6Mjia  npeAjioxeHa  3a  CTML+aibe
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ycTaHOBa;

•      fla  cy  pe3y/iTaTM  KopeKTHO  HaBeAeHM  M
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Apy"X JIML|a.
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M3jaBa o  I{opMUFierby

OBJiauf`yjeM   y"Bep3MTeTCKy   6M6i"oTeKy   „CBeTo3ap   MapKOBMh"   fla   y   flM"TaJl"

peno3MTopMjyM   y"Bep3MTeTa   y   Beorpafly   yHece   Mojy   fioKTOPCKy   flMcepTaL+Mjy   nod
HacjioBOM:

Mo4enoBaLbe M on"MM3aL|Mja TpaHcnopTHMx npoL+eca y caBpeMeHMM
HaHoeiieKTpoHci{i" ypeJ)ajMMa

Koja je  Moje  ayToPCKo AeJIO.
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1.   AyTopcTBo.   flo3BojbaBaTe   yMHoxaBaLbe,   AMCTPM6yLiMjy   M   jaBHo   caonuJTaBaH>e

fleJla,  M  npepafle,  aKo  ce  HaBefle  MMe  ayTopa  Ha  HaiiMH  oflpef}eH  qu  cTpaHe  ayTopa
Mr"  AaBaoL+a  iiMLieHHe,  iiaK  M  y  KOMepuMjaiiHe  cBpxe.   OBo  je  Hajcno6oAHMja  ofl  CBMx

JIMHeHHM.

2.   AyTopcTBo   -   Hei{oMepLiMjanHo.   flo3BojbaBaTe   yMHoxaBarbe,   flMCTPM6yL|Mjy   M

jaBHo  CaonLiJTaBatbe  Aejia,  M  npepaAe,  aKo  ce  HaBeAe  MMe  ayTopa  Ha  HaiiMH  OApeDeH
oA  CTpaHe  ayTopa  MJ" flaBaoHa jiMueHL+e.  oBa jiMLieHHa  He flo3BorbaBa  KOMepHMjaJiHy

ynoTpe6y fleJla.

3.   AyTopcTBo   -   Hei{oMepL+MjanHo  -   6e3   npepaAa.   4o3BolbaBaTe   yMHoxaBaLbe,

flMCTPM6yuMjy    M    jaBHo    caonLUTaBarbe    Aeria,    6e3    npoMeHa,    npeo6J"KOBaH>a    MJ"

ynoTpe6e fleiia  y CBOM Aejiy,  aKo  ce  HaBefle  MMe  ayTopa  Ha  HaiiMH  oflpef)eH  ofl CTpaHe
ayTOpa  MrM  flaBaoLia  jiMueHL+e.  OBa  jiMueHLia  He  Ao3BorbaBa  KOMepHMjajiHy  ynoTpe6y

Aerla.   y   oflHocy   Ha   CBe   ocTajie   jiML+eHLie,   OBOM   jiML+eHL+oM   ce   orpaHMiiaBa   HajBehM

o6MM  npaBa  KopMLi]hehoa  f]erla.

4.  AyTopcTBo -Hei{oMepiiMjaiiHo -fleiiM"  nofl  MCTMM  yciioBMMa.  flo3BOJbaBaTe

yMHOxaBarbe,  AMCTPM6yHMjy  M  jaBHo  caoriLi]TaBarbe  Aejia,   M  ripepaAe,  aKo  ce  HaBefle
MMe  ayTopa   Ha   HailMH   oApef]eH   oA  cTpaHe  ayTopa   MT"  flaBaoLia  jiMLieHLie   M   aKo   Ce

npepafla     flMCTPM6yMpa     nofl     MCTOM     MjiM     ciiMiiHOM     j"L+eHL+oM.     OBa    jiML+eHua     He

flo3BOJbaBa  KOMepuMjajiHy ynoTpe6y AeJla  M  npepaf]a.

5.  AyToPCTBo  -  6e3   npepaAa.  flo3BojbaBaTe  yMHoxaBalee,   AMCTPM6yuMj.y   M  jaBHo
caonLi]TaBaLbe  Aejia,  6e3  npoMeHa,  npeo6i"KOBaH]a  Mj"  ynoTpe6e f]eJia  y  CBOM  AeJly,
aKO   Ce   HaBeAe   MMe   ayTopa   Ha   HailMH   oApef)eH   oA   cTpaHe   ayTopa   MJ"   qaBaoL|a

JIMLieHLie.  oBa  jiMueHua Ao3BojbaBa  KOMepLiMjajiHy ynoTpe6y fleJia.

6.    AyTopcTBo   -   4eliM"    no4    MCTMM    yciioBMMa,    flo3BorbaBaTe    yMHoxaBaLbe,
AMCTPM6yuMjy  M jaBHo  caonLijTaBaLbe  qejia,  M  npepafle,  aKo  ce  HaBeAe  MMe  ayTopa  Ha
HallMH    Oflpef)eH    ofl    cTpaHe    ayTopa    M"    AaBaoLia    T"LieHHe    M    aKo    ce    npepaAa

AMCTPM6yMpa     nod     MCTOM     Mj"     cjiMilHOM     jiMHeHHOM.     OBa     /"HeHL+a     Ao3BOJbaBa
KOMepuMjaJIHy   ynoTpe6y   Aejia    M   npepaf]a.    CJ"ilHa   je   codyTBepcKMM   J"ueHuaMa,
oflHocHo  JiMueHLiaMa  oTBopeHor KOAa.
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