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Modeling and optimization of transport processes in
modern nanoelectronic devices

Abstract

A functionality of modern nanoelectronic devices cannot be precisely described
without using appropriate statistical methods and models needed for understanding
different transport properties in those devices. Therefore, in this thesis we de-
velop and integrate different numerical approaches for modeling and optimization of
transport processes, such as algorithms for percolation detection, conjugate gradient
methods, and simulated annealing algorithms. Using these methods and algorithms
we propose different models that describe and optimize effects of structural and geo-
metrical parameters on transport properties of modern nanoelectronic devices, such
as transparent conducting nanowire networks, thin-film carbon nanotube transis-
tors, and quantum cascade lasers. For transparent networks of randomly distributed
conducting nanowires, we propose an electrical conductivity model that explicitly
depends on the nanowire density and junction-to-nanowire conductance ratio. Us-
ing the proposed model we quantify a relationship between the optical transparency
and the electrical conductivity of the transparent nanowire networks. For thin-film
transistors based on random networks of as-grown single-walled carbon nanotubes,
we determine the carbon nanotube density, length, and channel dimensions under
which the transistors simultaneously attain high on-current and high on/off ratio.
Finally, we show that the decrease in the output characteristics of GaAs/AlGaAs
quantum cascade laser in the presence of an intense external magnetic field is signifi-
cantly moderated by the presence of interface roughness scattering. We also present
an efficient numerical algorithm for optimization of quantum cascade laser active

region parameters and calculation of its output characteristics in a magnetic field.

Keywords: transport processes, percolation theory, random nanowire networks,
transparent conductors, random carbon nanotube networks, thin-film transistors,

interface roughness scattering, quantum cascade lasers
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MopgenoBame 1 ONTHMHU3AINMja TPAHCIOPTHUX IIPOIIEca y
caBpeMEHNM HAaHOEJIEeKTPOHCKMM ypehajuma

Caxerak

QYHKIMOHAJTHOCT CaBPeMEHUX HAHOEJEKTPOHCKHUX ypehaja ce He MoKe Mperu3Ho
omucaru 6e3 Kopuiihema oAroBapajyiux CTaTHCTHIKUX MeTOJa U MOJes]a IMOoTpe-
OHEX 3a ONHCHBAHE PA3SHOBPCHUX TPAHCIOPTHUX HPOIEca y THM ypehajuma. 300r
TOra, CMO y OBOj Te3W Pa3BW/IM W WHTETPHUCAIN PA3JIUINTE HYMEPUUYKE MPUCTYIe
3a MOJIEJIOBAIbE U ONTUMH3AIHU]Y TPAHCIIOPTHUX IIPOIeca, Kao IITO Cy aJTOPUTMHU
3a JETEKTOBAILE MMEPKOJIAIN]e, KOHjyIrOBAHU IPAJIUJEHTHH METO/M U AJTOPUTMHU 33
CUMYJIUPAHO O/irpeBame. Ha OCHOBY OBMX MeTOJa W aJropuramMa MpeIoKUIn CMO
pa3anduTe MOJiesie KOjH ONUCY]Y W ONTUMHU3Y]y YTHIQ] CTPYKTYPHUX U Te€OMeTPH-
JCKHX TapaMeTapa Ha TPAHCIOPTHA CBOjCTBA CaBPEMEHHUX HAHOEJIEKTPOHCKHUX ype-
baja, ka0 1ITO Cy NPO3UPHU NPOBOJIHUIK CA MpeKama HAHOXKUIA, TAHKOCJIOjHU
TPAH3UCTOPH Ca YI/BeHUIHNM HAHOTYOAMa 1 KBAHTHH KACKAIHU JIACEPH. 32 IIPO3UPHE
MpezKe HACYMHYHO pacrnopeheHuX MPOBOTHUX HAHOXKUIA, MPEIJIOXKUIH CMO MOIE
eJICKTPUUIHE IIPOBOJHOCTH KOjJU €KCILJIMIUTHO 3aBUCHU OJ I'yCTUHE HAHOZKUIA U OJHOCA
MPOBOJIHOCTH KOHTAKTA U HaHOXKUIE. Kopucrehu npejioxkenn Mojies1 KBAHTUMOUKO-
BaJId CMO OJIHOC u3Mely OITHYKe TPaHCIAPEHTHOCTH U €JeKTPUYHE HMPOBOIHOCTH
IPO3UPHE MperKe HAHOXKHUIA. 3a TAHKOCJIOjHE TPAH3UCTOpPE 3aCHOBaHE Ha, CIyda-
jHUM MpekaMa HeCeTeKTOBAHUX je/IHO3M/IHUX YI/beHHIHUX HAHOTYDA, Ope i CMO
IBUXOBY TYCTHHY, JIYKWHY U JUMEH3Wje KaHaJa MPHU KOJUMa TPAH3UCTOPY UCTOBPE-
MEHO JOCTHUKY BHCOKY CTPY]V IIPOBOherba U BUCOK OJHOC CTPYje IPpOBOhema u cTpyje
uypema. Konauno, nokasaJiu cMo Jia je ciabiberbe udjasuux csojcrasa GaAs/AlGaAs
KBaHTHOT KACKaHOT jlacepa y MPUCYCTBY jaKOT CIOJbAIllFHel MArHETHOT TI0/ha 3HaAYa-
jHO ojipeheHo MPHUCYCTBOM pacejarba Ha MOBPIIMHCKUM HepaBHUHaMAa. Takobe, mpe/-
CTABIJIM ¢MO e(pUKACAH HYMEPUIKHU AJTOPHTAM 33 ONTHMHUBAIN]Y apaMeTapa aKTH-
BHOI' PErMOHA KBAHTHOI KACKAIHOT Jiacepa W W3PAIyHABAHE FHETOBHX H3JIAa3HUX

KapaKTepUCTUKa Yy MarHeTHOM II0JbY.
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Chapter 1 Introduction

Transport processes are very important for understanding and modeling of a
wide variety of phenomena, not only in modern nanoelectronic devices, but also in
physics, biology, chemistry, and neuroscience [1-3]. Typical examples of transport
processes in nanoelectronic devices include hopping transport in semiconductor sys-
tems, diffusion in porous materials, electrical or thermal conduction in composite
solids, optical processes in heterogeneous materials, etc. [1]. With the advent of
powerful computers, efficient computational algorithms have been developed for es-
timating transport properties at the macroscopic level |1, 2|. These computational
algorithms are usually based on numerically solving large systems of (non)linear
equations obtained from the physical laws that determine the transport processes
at microscopic level [1-3].

Here we develop and integrate different numerical approaches for modeling and
optimization of transport processes in materials of complex and disordered mor-
phology, such as algorithms for percolation detection [4], conjugate gradient meth-
ods [5, 6], and simulated annealing algorithms [7, 8]. An important tool for de-
scribing effects of connectivity in a disordered material on its transport properties is
percolation theory [1, 2|. For instance, percolation theory precisely quantifies how
the conducting components of a composite material, that consists of conducting and
insulating phases, cluster together and form spanning paths for transport of current,
heat, or stress across the material |1, 2|. Therefore, algorithms for percolation de-
tection, based on the percolation theory, are used to determine connectedness of a
complex and disordered network considering connectivity of its individual elements.
The conjugate gradient method is most prominent iterative method for solving a
sparse system of linear equations [9], while the simulated annealing algorithm be-

longs to a class of stochastic global optimization methods based on the Metropolis
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function for the acceptance probability [10]. Using these methods and algorithms
we propose here different models to describe and optimize effects of structural and
geometrical parameters on transport properties of modern nanoelectronic devices,
such as transparent conducting nanowire networks, thin-film carbon nanotube tran-
sistors, and quantum cascade lasers.

The transparent conducting nanowire networks are thin films of randomly dis-
tributed metallic (usually Ag) nanowires. The thin-film carbon nanotube transistors
are (quasi-)two-dimensional networks of randomly distributed single-walled carbon
nanotubes. Nanowires and single-walled carbon nanotubes are rodlike nanoparticles
that can be regarded as widthless sticks, because their length is much larger than
their diameter'. Therefore, the connectedness of complex and disordered systems,
such as random networks of nanowires and random networks of carbon nanotubes,
can be characterized by applying the concepts of percolation theory to the systems
of randomly distributed sticks. For that reason, we have also developed an effi-
cient numerical algorithm for the stick-percolation detection. Using this algorithm
we have investigated finite-size scaling effects in percolating widthless stick systems
through an extensive Monte Carlo simulation study. A generalized scaling func-
tion for two-dimensional stick systems is introduced to describe the scaling behavior
of the first two percolation probability moments. This generalized scaling function,
with geometry-dependent prefactors and constant exponents in its expansion, is used
to propose an analytic model of the percolation probability function. The analytic
model is used to estimate an optimal density of random carbon nanotubes for which
their thin-film networks exhibit excellent transistor performance. Also, we have de-
veloped an algorithm for calculating the electrical conductivity of two-dimensional
systems comprised of randomly distributed sticks. This algorithm is based on the
conjugate gradient method for solving large systems of linear equations. Using this
algorithm we obtain electrical conductivity dependence of transparent conducting

nanowire networks on the nanowire density and junction-to-nanowire conductance

!Single-walled carbon nanotubes have the smallest diameter of all carbon nanotubes, dis-
tributed within a narrow range (0.8 — 5 nm), and a length from tens of nanometers to millime-
ters [11], whereas nanowires have a larger diameter (~ 10 to > 100 nm) and lengths similar to
those of carbon nanotubes [12].
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ratio. Also, using this algorithm we have calculated electrical properties of thin-film
carbon nanotube transistors in on- and off-state for different channel dimensions
and different lengths of carbon nanotubes. We have also defined acceptable ranges
of these geometrical parameters for which the transistors simultaneously attain high
on-conductance and high on/off conductance ratio.

Finally, we note that many materials have a very rough surface, where the rough-
ness follows a very complex pattern. The quantum cascade lasers are nanoelectronic
devices based on parallel semiconductor layers with in-plane terrace-like surface de-
fects at the interfaces between the layers. We have studied here effects of the interface
roughness scattering on electron transport and output characteristics of quantum
cascade laser in a magnetic field by solving the full set of nonlinear rate equations
that describe electron transitions between different energy levels. The system of
nonlinear rate equations can be successively solved by solving the corresponding
system of linear equations in each of the successive steps. The conjugate gradient
method can be separately applied in each step for solving the obtained systems of
linear equations. Also, the optimization of the quantum-cascade-laser performance
at a selected wavelength can be performed at the entire free-parameters space using
simulated annealing algorithm.

The rest of this thesis is organized as follows. A brief overview of the most im-
portant transport processes in each of the considered nanoelectronic devices is given
in the rest of this Chapter. In Chapter 2 we investigate the finite-size scaling effects
in the percolating widthless stick systems with variable aspect ratios through an
extensive Monte Carlo simulation study. In Chapter 3 we numerically investigate
electrical conductivity of two-dimensional random nanowire networks from the per-
colation threshold up to ten times the percolation threshold density. We propose
a conductivity model explicitly dependent on the nanowire density and nanowire-
to-stick conductance ratio. Using the proposed model we quantify a relationship
between the optical transmittance and the electrical conductivity of the random
nanowire networks. In Chapter 4 we numerically study the effects of geometrical
and structural parameters of the thin-film carbon nanotube networks on their elec-

trical properties in order to obtain an optimized and uniform transistor performance
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without using any post-growth treatment. Finally, in Chapter 5 we investigate an in-
fluence of interface roughness scattering on output characteristics of GaAs/AlGaAs
quantum cascade laser in a magnetic field. Also, we describe an efficient numerical
algorithm for optimization of GaAs/AlGaAs quantum cascade laser active region

parameters and calculation of its output characteristics in a magnetic field.

1.1 Electrical conductivity vs. optical transparency of ran-

dom nanowire networks

Randomly distributed nanowires (NWs) networks are flexible, electrically active ma-
terials with great promise for use as an active medium of transparent-conductor
applications [13-15|, thin-film solar cells [16], and sensor devices [17]. The imple-
mentation of NWs for any of these applications assumes the activation of junctions
between wires in the network, which is typically accomplished by using heat [18],
pressure [19], or electrical stress [20]. As a result, the random NW networks are
established as electrically active materials with high electrical conductivity and well-
preserved optical transparency as two most important critical performance criteria
for the transparent-conductor applications [21]. Many studies [13, 21-23| have re-
vealed a trade-off between high electrical conductivity and high optical transparency
of random NW transparent conductors. Therefore, the electrical conductivity depen-
dence and optical transparency dependence on the NW density and system geometry
needs to be taken into account in any random NW design [24]. Nanowires are most
typically comprised of metallic NWs, which can be regarded as conductive widthless
sticks, because they are straight and rigid rodlike nanoparticles whose length is much
larger than their diameter [12, 25]. The percolation models |2, 26] are often used
to model an onset of the high electrical conductivity in the composites consisting of
the conductive widthless sticks in the insulating matrices [13, 15, 27-29].

The percolation theory predicts that the electrical conductivity of the composite
materials with the conductive filler density n above, but close to the percolation
threshold n., increases with the density by a power scaling law o ~ (n — n)", with

the universal conductivity exponent ¢ ~ 1.29 for two-dimensional (2D) systems |2].
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While the conductivity scaling law is expected to be applicable only near the perco-
lation threshold, in many experiments the scaling law was used over a much larger
range of concentrations, but with the nonuniversal values of the conductivity expo-
nent [18, 28-30]. Madaria et al. [18] used the conductivity scaling law to extract
the conductivity exponent of highly conductive Ag nanowire networks. However,
fitting the experimental data in a very broad density range, from the percolation
threshold up to more than ten times the percolation threshold density, they ob-
tained the nonuniversal value 1.42 for the conductivity exponent. Hu et al. |28] also
obtained the nonuniversal value 1.5 for the conductivity exponent using the conduc-
tivity scaling law for fitting the experimental data for ultrathin carbon nanotube
networks operating from the percolation threshold up to about ten times the perco-
lation threshold density. At the same time, several numerical studies confirmed the
observed nonuniversality of the conductivity exponent when the stick density was
well above the percolation threshold [31-33]. Keblinski et al. [31] demonstrated that
the universal power law holds from the percolation threshold n., to about twice its
value 2n.. For higher stick density, n > 2n., they observed that the conductivity
scaling exponent in the following cases becomes: (i) slightly higher than 1 when
junctions are superconductive and only the stick conductance is the limiting factor
for the current flow through the system; and (ii) close to 1.75 when the sticks are
superconductive and the contact conductance is the limiting factor. Li et al. [33]
showed that the conductivity exponent significantly varies with the junction-to-stick
conductance ratio for lower stick densities, up to 2n.. The broad range applicability
of the conductivity scaling law was explained by the presence of long-range correla-
tions in the distribution of conductive sticks in the system [1].

In Chapter 3, we will demonstrate that the nonuniversality of the conductivity
exponents is a consequence of a transition from the percolating to dense NW net-
works. We will numerically investigate the conductivity of the randomly distributed
NWs networks from the percolation threshold up to ten times the percolation thresh-
old density. We will show that it is not appropriate to use a simple scaling law to
describe the conductivity dependence on the density, both for finite and dense net-

works. Based on our Monte Carlo simulation results, we will propose a conductivity
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model that describes the electrical conductivity dependence on the NW density and
the different junction-to-NW conductance ratios. The model is motivated by the
observed structural characteristic (i.e., the density of total NWs and NW-to-NW
contacts involved in the current flow through the system). The finite-size effects,
especially pronounced in the vicinity of the percolation threshold, are also included
in the generic description for the conductivity of random NW networks. Finally, us-
ing the proposed model and an analytical approximation for the density-dependent
optical transmittance, we will quantify the dependence of the optical transparency
on the electrical conductivity for random NW networks. Also, we will show that
random NW networks can be used as high-performance transparent conductors only

if the length-to-diameter aspect ratio of constituent NWs is higher than 100.

1.2 Electrical transport in random carbon nanotube networks

Recently, random carbon nanotube (CNT) networks have been demonstrated as po-
tentially useful active materials in electronics applications [34], optoelectronics [35],
sensors [36], and memory cells [37]. CNT thin-film transistors (TFTs) are expected
to enable fabrication of high-performance, flexible, and transparent devices using
relatively simple techniques [11, 38-46]. As-grown networks of single-walled (SW)
CNTs contain both metallic (m-CNTs) and semiconducting (s-CNTs) nanotubes in
an approximate ratio 1:2, which leads to a trade-off between on-conductance and
the on/off conductance ratio [47-50]. If the density of CNTs in a TFT is sufficiently
high so that m-CNTs exceed the percolation threshold, the CNT network will be-
come predominantly metallic and, hence, the on/off ratio will be very small [50]. In
contrast, if the CN'T density is so low that a conduction path through m-CNTs does
not exist, a high on/off ratio can be attained, but under such circumstances the low
on-conductance is disadvantage [50, 51].

Various experimental efforts have been made to improve different transport pro-
cesses in random CNT TFTs. A simultaneous increase of on-conductance and
the on/off ratio is one of the most important requirements for achieving high-

performance transistor devices. With roughly 1/3 of as-grown CNTs being metallic,
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extra steps, such as electrical burning of m-CNTs via an electrical breakdown method
[52], are used in order to cut the metallic paths through the transistors. However,
such breakdown also removes some s-CN'T pathways, leading to a decrease of the on-
conductance. If the breakdown is applied when s-CNTs in the network are gated to
the off-state, most of s-CNTs will be well preserved and the on-conductance will not
be much affected [37]. However, using additional steps after the CNTs synthesis pro-
cess, such as electrical breakdown methods, prolongs the production time and thus
increases production costs. Other researchers have used semiconducting enriched
CNTs in order to enhance the performance of CNT TFTs. For example, methods
that separate CN'Ts by electronic type, such us density-gradient ultracentrifuga-
tion [53] or the gas-phase plasma hydrocarbonation reaction techniques [54] are used
after or during the CN'Ts synthesis process in order to obtain pure semiconducting
nanotubes. However, these techniques also create defects in the remaining CNT
networks and add impurities, which degrade the overall performance of TFTs [55—
57]. This approach also increases the difficulties in the fabrication process, and the
repeatability and uniformity of devices are uncertain [55].

The effects of m-CN'Ts in a random network can be reduced by carefully control-
ling the CNT density, length, and device geometry, such that the metallic fraction of
CNTs is below the percolation threshold [34], i.e., each conducting path contains at
least one semiconducting CNT. An optimized device, i.e., one with the highest pos-
sible on-conductance at a given on/off ratio, has a total density of CNTs above the
percolation threshold and a density of m-CNTs below the percolation threshold. Al-
though such high-quality devices have been reported in the literature [50, 51, 58, 59|,
numerical simulations and experiments to determine the CN'T density, channel size,
and CNT length for optimum device performance, fabricated at industrial yield rates
are still lacking.

In Chapter 4, we will study effects of device parameters (density of CN'Ts, channel
dimensions and CNT length) on their electrical transport processes, i.e., on the on-
conductance and on/off ratio, in order to design an optimized and uniform device
performance without using any post-growth treatment. Using a realistic numerical

approach, we determine the CNT density, length, and channel dimensions for which
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CNT thin-film transistors simultaneously attain on-conductance higher than 1 uS
and an on/off ratio higher than 10*. We show that a realization probability of
desired characteristics higher than 99% is obtained for the channels with aspect
ratio Lep/Wen < 1.2 and normalized size LegWen/lnt > 250 when the CNT
length is lont = 4 — 20 pm and the normalized density of CNTs is close to the
value where the probability of percolation only through s-CNT pathways reaches its

maximum.

1.3 Electron transport in quantum cascade laser in a magne-

tic field

In recent years, quantum cascade lasers (QCLs) have become light sources of choice
for a broad variety of applications including high-precision gas sensing, infrared
imaging, military countermeasures, security monitoring, non-invasive medical di-
agnostics, optical communications [60-74]. In the mid- and far-infrared spectral
range, these powerful light sources are particularly appreciated for the wide scope
of operating wavelengths, which can be achieved by using the same heterostruc-
ture material combination. Some of the features that make this kind of devices so
unique are: unipolarity, the population inversion achieved through careful quan-
tum engineering of lifetimes of the states (typically in the picoseconds range), and
the electron recycling due to the cascading scheme. Their performance under the
influence of a high magnetic field has been intensively studied as well, due to the
fact that magnetic field may serve as an efficient tool to determine the nature and
magnitude of scattering mechanisms in the active region |63-66, 75-79]. Early ex-
periments have demonstrated QCL emission enhancement and a magneto-phonon-
resonance effects [63—-65|, which have led to a deeper insight into the physics of
intersubband lasers. Furthermore, in the THz frequency range, where the perfor-
mance of QCLs deteriorate rapidly with temperature, due to detrimental thermal
activation of non-radiative losses, the highest operating temperature of 225 K is
reported for the structure assisted by external magnetic field for additional carrier

confinement |76]. Recently, a portable QCL-based infrared magnetospectrometer
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covering the spectral range from 5 to 120 um has been constructed, for applications
in cyclotron-resonance spectroscopy measurements where high magnetic fields (up
to 60 T) are required [67]. Hence, a detailed understanding of various scattering
mechanisms under the influence of a strong magnetic field is an important factor for
improving QCL performance and applicability.

The typical design of the QCL active region entails a three-level system. The
transport of carriers, i.e., electrons, between these levels can be explained as follows.
The electrons are injected into the upper laser state, from which they can relax
into the lower state by means of photon-assisted transition or by scattering, mainly
by interactions with longitudinal optical (LO) phonons. In order to achieve the
population inversion, the lifetimes of electrons in the corresponding quantum states
must satisfy the following relation 735 > 75;. This relation is achieved by means of
two key points:

(1) the lifetime 735 is increased by employing a transition with a reduced spatial
overlap of the wavefunctions; and

(2) the lifetime 75; is reduced by making the energy Es; resonant with the optical
phonon energy, which is the most efficient scattering mechanism.

Further extension of otherwise short carrier lifetime (of the order of 1 ps) is
achieved using an intense magnetic field parallel to the growth direction of semi-
conductor layers [64-66, 75|. The magnetic field breaks the two-dimensional (2D)
in-plane continuous energy subbands into discrete Landau levels. The lifetime of
electrons in the excited laser state is strongly modulated by the applied magnetic
field. The dependence of the electron lifetime on the magnetic field strength results
in oscillations in the laser emission intensity. The inelastic scattering by LO-phonons
and elastic scattering by the interface roughness were identified as main mechanisms
behind this effect by Leuliet et al. [66]. Given that the scattering processes between
the two states depend on their energy spacing, certain relaxation mechanisms can
be enhanced or inhibited by varying the magnetic field strength, although they may
be influenced by the operating temperature as well. LO-phonon scattering is well
explained in previous theoretical and experimental works [64-66, 75, 80]. Increas-

ing the magnetic field reduces the number of relevant Landau levels and changes



1. Introduction

energy differences between individual levels, thus affecting the lifetime of carriers in
higher states. On the other hand, the strength of the interface roughness scatter-
ing in a particular sample is determined by the morphology of the interfaces |7, 8.
In contrast to LO-phonon, the interface roughness scattering does not depend on
the temperature. As a result, the efficiency of the interface roughness scattering
mechanism remains constant with increasing temperature, while the efficiency of
the LO-phonon scattering is reduced due to their higher absorption rates [81].

In Chapter 5, we will present a theoretical description of a realistic QCL ac-
tive region and introduce models for LO-phonon scattering and interface roughness
scattering rate with and without a presence of an external magnetic field parallel to
the confinement direction. We will study the electron relaxation rates for the upper
state of the laser transition, due to electron—-LO-phonon interactions and interface
roughness scattering. To understand the effects of interface roughness scattering and
compare them with the LO-phonon scattering, we will study relaxation times and
optical gain for different temperatures and magnetic fields. The electron distribution
over the states of the system can be found by solving the full set of rate equations
that describe the electron transport between levels, and subsequently used to deter-
mine the optical gain. For both the population inversion and the optical gain, the
interface roughness scattering will be shown to have a significant influence in terms
of reducing the predicted magnitude, especially at low temperatures. Finally, we will
describe an efficient numerical algorithm for optimization of GaAs/AlGaAs quantum
cascade laser active region parameters and calculation of its output characteristics

in a magnetic field.
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Chapter 2 Finite-size scaling in asymmetric systems

of percolating sticks

As already noted, there has been an increasing interest in the randomly dis-
tributed stick particles [27, 32, 51, 82, 83], due to promising developments in the
area of the conducting rodlike nanoparticle networks, such as carbon nanotubes and
silicon, copper, and silver nanowires, with applications in electronics [51, 84, 85|,
optoelectronics 28], and sensors [34, 86]. We note that most of the theoretical work
in the field of percolation of random systems has been done for lattice percola-
tion [2, 87-93]. The random stick networks are an important representative of the
continuum percolation [26, 94-96]. The random stick percolation and lattice perco-
lation fall into the same universality class having the same critical exponents [26],
because all random systems fall on the same scaling function if dimensionality of
the system, percolation rule, boundary conditions, and aspect ratio are fixed [91].
In real applications, the aspect ratio of the rectangular system is usually variable
parameter, e.g., the geometry of the transistor gate channel in the carbon nanotube
transistors is not fixed [51, 83]. Therefore, the objective of this Chapter is to describe
in a consistent way finite-size scaling of average percolation density and standard
deviation for the asymmetric rectangular stick systems with free boundaries and
following that, to propose an analytic model of the percolation probability function.
From general scaling arguments one would expect that for all finite-size systems their
convergence is governed by an exponent —1/v [2|. For two-dimensional (2D) sys-
tems v = 4/3 |2]. Following Ziff’s initial publication [89], Hovi and Aharony [90, 91]
argued that the irrelevant scaling variables in the renormalization-group treatment
of percolation imply a slower leading-order convergence of percolation probability
to its infinite-system value, characterized by an exponent —1/v — 6, whose value

was deducted from the Monte Carlo work of Stauffer to be § ~ 0.85 |87]. Further

11



2. Finite-size scaling in asymmetric systems of percolating sticks

it was shown that for lattice percolation on the square system the leading expo-
nent of the average density at which percolation first occurs is —1/v — 6, where
6 ~ 0.9 [93]. All the previous studies were performed for symmetric systems. We
show that only in the symmetric case the exponent of average percolation density
is —1/v — 6. In asymmetric systems, we observe a leading —1/v exponent. Another
quantity, the percolation probability at the percolation threshold in symmetric bond
percolating systems, is size independent, i.e., scale invariant [97]. Until now, this
behavior has not been observed in other types of random percolating systems. We
will demonstrate that asymmetric systems can exhibit scale-invariant behavior.

In this Chapter, we investigate finite-size scaling of the asymmetric rectangular
stick systems with free boundaries. Both from renormalization group considerations
and in the simulations, we find that the aspect ratio strongly influences scaling
behavior of the percolation probability distribution function moments, i.e., average
density of sticks at which percolation first occurs and variance of the percolation
probability distribution function. A generalized scaling function is introduced, with
aspect-ratio-dependent prefactors and constant exponents in its expansion. Also,
an analytic model of the percolation probability function is proposed. Finally, it is
shown that the percolation probability of the asymmetric infinite stick system at

the critical threshold density agrees with Cardy’s analytic formula [88].

2.1 Numerical method for calculation of stick percolation

probability

Monte Carlo simulations, coupled with an efficient cluster analysis algorithm and
implemented on a grid platform, are used to investigate the stick percolation [98—
101]. A detailed description of the algorithm for stick-percolation detection is given
below. We consider two-dimensional (2D) systems with isotropically placed width-
less sticks of length [;. The sticks are randomly positioned and oriented inside the
rectangular system of length Lg and width Ws. For simplicity, the finite-size scaling
effects will be further analyzed in terms of the system dimensions normalized by the

stick length [;. Therefore, the normalized system length is L = Lg/l;, its width is

12



2. Finite-size scaling in asymmetric systems of percolating sticks

W = Ws/ls, and the normalized sticks have unit length, i.e., | = 1, see Fig. 2.1(a).
Two sticks lie in the same cluster if they intersect. The system percolates if two
opposite boundaries perpendicular to the percolating direction (the left and right
ones) are connected with the same cluster, see Fig. 2.1(b). The boundaries parallel
to the percolating direction (the top and bottom ones) are free. The aspect ratio r
is defined as the length of the rectangular system in the percolating direction (the
x direction) divided by the length in the perpendicular direction (the y direction),
i.e., in this case r = L/W. We only consider long-system limits (L > [) where an
one-stick connection of system boundaries is impossible. We define the normalized
system size as a square root of the rectangular area £ = /LW (geometric average).
The behavior of stick percolation is studied in terms of the number stick density
n = N/L?%. The percolation threshold of the infinite system is defined by the critical
density n. ~ 5.63726 [4, 101].

2.1.1 Algorithm for stick-percolation detection

The algorithm starts with a blank rectangular system assuming that the length
direction at the same time represents the percolating direction, see Fig. 2.1(b). A
similar algorithm was discussed in Ref. [98], where the lattice percolation was studied
and in Ref. [101], where symmetric stick systems were analyzed. Two sticks lie in
the same cluster if they intersect. A tree structure is used to store these clusters,
as already shown in Ref. [98]. In each cluster, one stick is chosen to be the “root
stick”. All other sticks in the cluster have pointers which point either directly to the
root stick or to another stick in the cluster. It implies that any stick in the cluster
points directly or indirectly (through a path comprising other sticks) to the root
stick and therefore, all sticks in the same cluster have the identical root stick. We
note that a cluster percolates if and only if its orthogonal projection along the z-axis
completely covers the bottom boundary of the system. For simplicity, this condition
can be used for percolation detection in the rectangular stick system. In order to
further simplify the percolation detection, the minimum and maximum value of the

cluster projection along the z-axis should be stored for each cluster.
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2. Finite-size scaling in asymmetric systems of percolating sticks

(c)

Figure 2.1: Schematic illustration of stick percolation on a rectangular system with
normalized length L = 3 and width W = 4. (a) The rectangular stick system bellow
the percolation density. Each stick is of unity length [ = 1 and described by its
center point C and orientation . The end points of a stick are denoted as A (closer
to the left boundary) and B (closer to the right boundary). The system boundaries
(the left and the right) are shown as vertical bold red lines. (b) The rectangular stick
system at the percolation density. The sticks that belong to the percolating cluster
are denoted with red color. (c¢) The system is virtually divided into |L] x |W|
subcells (dashed white lattices) with size L/|L| x W/|W |. Each stick is registered
in the subcell where its center lies. It is explicitly shown that a stick in a subcell
(bold white boundaries) is impossible to intersect any stick at other subcells than

the sticks at the same subcell or its neighbors (the gray subcells).

The system is virtually divided into | L| x | W | subcells (or sub-rectangles) with
size L/|L| x W/|W |, as shown by the dashed lattices in Fig. 2.1(c). Note that when
the normalized system length L and width W are integers the system is divided into
L x W sub-squares with unity length [ = 1. With these preparations, a random
normal stick is generated by producing a random point (z¢, yc) for its center point
and a random angle ¢ with respect to the horizontal direction for its orientation, see
Fig. 2.1(a). Note that 0 < z¢ < L, 0 < yc < W, and —7/2 < ¢ < 7/2. The stick
is first treated as an one-stick cluster with itself as the root stick and registered into
the subcell in which the point (z¢,yc) lies. In this work each stick is registered in
a subcell indexed as (|zc¢|L]/L]|, [yc|W]/W]). According to this rule, a stick even
centered exactly on a subcell boundary is also registered into a specific subcell. For

the one-stick cluster minimum value of its component in the z-direction corresponds

L2 ] denotes the largest integer no greater than x.
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2. Finite-size scaling in asymmetric systems of percolating sticks

to the point A (which is closer to the left boundary) za = xz¢ — [/2cos(p), while
maximum value corresponds to the point B (which is closer to the right boundary)
rp = xc + /2 cos(p), since cos(p) > 0 for —m/2 < ¢ < 7/2. As already noted,
these values should be initially stored for each one-stick cluster.

According to such a registration, a stick in a subcell (e.g., the one with bold
white boundaries in Fig. 2.1(c)) is only possible to intersect sticks in the same
or the neighboring subcells (the gray subcells in Fig. 2.1(c)) since the distance d
between its center and any stick center in other sub-cells is greater than [ = 1, i.e.,
the maximum possible center distance of two intersecting sticks. Then, it is only
needed to check the connectivity property between the newly generated stick and
those sticks belonging to the same or neighboring subcells. For algorithmic purposes,
a stick can be presented as a vector z@ Two sticks, presented as ﬁ and 1?2_352),

intersect if the following conditions are simultaneously satisfied

(7B ) o (B FE) 5 0
(@xﬂ)o(ﬁxﬁ) <0 (2.1)

Note that these inequalities presented in a scalar form do not contain trigonometric
functions. This significantly reduce a computing time required for checking a stick
connectivity. When two sticks intersect, if they have the same root stick, i.e., be-
longing to the same cluster, nothing needs to be done; if not, the two corresponding
clusters should be merged simply by adding a pointer from the root stick of the
smaller cluster to that of the larger. It is known as a “weighted union” algorithm
explained in Ref. [98]. Also, the z-component of a merged cluster should be ob-
tained by overlapping the z-components of all clusters participating in the merger.
In order to expedite the merging a “find with path compression” algorithm is also
applied as in Ref. [98]. Following these processes, we repeat adding a random stick,
registering it in an appropriate subcell, checking its connectivity with other sticks
in the same and neighboring subcells, and merging, if necessary, the clusters until
the x-component of a merged cluster completely covers the bottom boundary of the

system. In this case, the system percolates for the first time and the total number
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.2: The average CPU time T for a single MC realization of a rectangular
system with area £2 up to the percolation transition shown in logarithmic scale for
three aspect ratios r = 1,2, and 5. The simulations were run on a computer cluster
configured with Intel Xeon CPUs with 2.33 GHz and 8 GB RAM. The solid lines
T ~ L2 are only guides for the eye. As one can see, the running time depends
linearly on the system area (T' ~ £? ~ N,) when the area is £? < 10%. The slope
increases when the system can no longer fit entirely into the cache memory, forcing
the CPU to access to slower RAM memory. With further increase of the system size,
cache efficiency effects diminished and therefore, the running time becomes linear
again (for £2 > 10%).

of sticks is then recorded as N,. By now, the whole simulation procedure for one
realization is accomplished.

After performing the simulation procedure for Nyc realizations the different
percolation properties can be obtained using appropriate statistical methods which
will be explained bellow. In order to ensure the same precision for small and large
systems we collected more than Nyc = 10° Monte Carlo realizations for small
systems £ < 10, down to Nyc = 107 for the largest system £ = 320. These
simulations are performed for a wide range of the aspect ratios, 0.1 < r < 10. As
one can see in Fig. 2.2, the algorithm running time until the system percolates for

the first time is linearly dependent on the number of sticks at the criticality IV,
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2. Finite-size scaling in asymmetric systems of percolating sticks

i.e., linearly dependent on the system area L£?, because N, ~ L2 The running
time slows down when the computer is forced to access to its slower memory parts,
causing higher slope with increase of the system size £. With further increase of
the system size, cache efficiency effects diminished and therefore, the running time
becomes linear again (for £2 > 10%). The running time behavior is almost identical

for rectangular systems with different aspect ratios r, as shown in Fig. 2.2.

2.1.2 Calculation of average stick percolation density and

standard deviation

Percolation probability function Ry, is the probability that the system with N
sticks, normalized size £, and aspect ratio r percolates. The percolating probability
function Ry, for N sticks can be simply obtained by dividing the number of
realizations that satisfy the following condition /N, < N by the total number of
realizations Nyc. It is convenient to pass from the discrete percolation probability
function Ry ¢, for N sticks to a probability function R, ., for arbitrary stick density
n, see Ref. [101]. This discrete-to-continuum transition cannot be obtained with
arbitrary precision simply using the relation n = N/£?%. In continuum-percolation
processes this can be resolved by convolving all the measured observables with the
Poisson distribution in order to generate a common “canonical ensemble” for any

value of the stick density n, as shown in Ref. [101], so

. (nL2 Nefnﬁ2
Rn,L',r = Z %RN,L,T‘ (22)
N=0 ’

Using the percolation probability distribution function defined as P, ¢, = OR,, 1 /0On,
the average stick percolation density at which, for the first time, a percolating cluster

connects boundaries of the system is

[e's} 1 o0
<n>L,r = /0v nPn,L,rdn = E Z(l - RN,L,T)7 (23)

N=0

where the last equality follows from integrating by parts. Another important param-

eter of the probability distribution function, P, ¢, is variance A7 . = (n*)¢,—(n)7 .,
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2. Finite-size scaling in asymmetric systems of percolating sticks

where (n?)., is calculated as

o0 2 0
() ey = [ 0P dn =5 S N +1)(1 =Rz, (24)

N=0

Equations (2.3) and (2.4) allow calculations of the first two moments directly from
discrete percolation probability function Ry ¢ ,. This is computationally more effi-
cient since it avoids calculation of function R, ;, with a high resolution. Detailed
derivations of Eqgs. (2.3) and (2.4) are given in Appendix A. Also, the standard errors

propagations of the analyzed variables are given in Appendix B.

2.2 Generalized scaling function for percolation moments

The percolation probability function is related to the universal scaling function [91]

Rn,L,r - F(iu {gz}7 2) (25)

~

The arguments of the universal scaling function F are & = A(n — no) LYY, §; =
Biw;£L7%, and 2 = C'In(r), where A, {B;}, and C are the nonuniversal metric factors,
{w;} are the irrelevant variables, and {6;} are the corrections to scaling exponents,
(1 =1,2,...). Using free boundary conditions and considering two complementary
systems — the sticks and empty space around the sticks — we can conclude that either
the sticks percolate in one direction or the empty space percolates in the opposite

direction:

F(2,{9:},2) + F7 (27 {97}, 27) = 1, (2.6)

where quantities denoted by star refer to the empty space. The sticks and empty
space around the sticks are dual systems. Hence, the empty space occupancy n* can
be presented as n* = n,, —n, and the critical occupancy of the empty space is then
N’ = Noo —Ne, Where ny, — 00 is the total space occupancy. Using the universality of
the percolation probability function, which predicts that for dual systems universal
scaling functions ' and F* are equal, and noting that i* = A*(n* — n})LV" =

A* (Moo — 1 — (N — nc))Ll/V = —(A*/A)z, gr = (Bf/B;)y;, and z2* = C*In(1/r) =
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2. Finite-size scaling in asymmetric systems of percolating sticks

—(C*/C)z, we may rewrite the previous equation in the form

F(,{9:},2) + F(=(A"/A)2, {(B]/ Bi)gi}, =(C"/C)2) = 1. (2.7)

Taking the derivative with respect to z, y;, or 2 and evaluating the derivatives at

T =19; = 2 =0, we find that nonuniversal metric factors for dual systems satisfy

A = A,
B:< - —Bi,
cr = C. (2.8)

Finally, we obtain that the universal scaling function behaves as

Evaluating the previous expression at £ = ¢; = 2 =0, i.e., at n = n., L — oo, r =1,
we obtain

F(0,{0},0) = % (2.10)

This is in agreement with Cardy’s analytical model [88], which predicts that the
percolation probability at the percolation threshold n. for infinitely large L — oo
and symmetric system r = 1 is equal to 1/2. This property will be discussed in
more detail in section 2.5.

Taking the derivative of Eq. (2.9) with respect to Z, ;, and Z and evaluating the

derivatives at & = ¢; = 2 = 0, we conclude that 0™ F/0#799}" ... 03"

o = 0, for m
even, where m = j+ >, k;+ 1 > 0. Expanding the percolation probability function

near the critical point we find that

F(#,{4;},2)=F(0,{0},0)+ fo(z, z)+z fi(@, 2)0i+ ... (2.11)
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2. Finite-size scaling in asymmetric systems of percolating sticks

where the functions fy(z,2) and f;(z, 2) are defined by

o2, 2) i L OF | 20 for j 41 odd (2.12)
T,2) = —_— , 272", for odd, .
R BT TR e M
and
.1 QiR ‘
i(Z,2) = — | #2 for j41 . 2.13
fi(z,2) NZO 1 9290§,071 Ox 2", for 5 + 1 even ( )

Since the percolation probability distribution function P, ¢, = OR,, 1 /On gives
the probability distribution for a system of size £ and aspect ratio r to percolate

for the first time at stick density n, we can define the moments of this distribution

i = / (n — nc)k%dn. (2.14)
0

The percolation probability distribution function for the infinite £ — oo and almost
symmetric system r — 1 can be approximated with zero when the stick density n
is outside én — 0 region around nc, i.e., Pp_n >oncos0rs1 = 0, see Fig. 2.3(e).

Therefore, the kth percolation moment near the critical point can be determined as

ne+on OR
e = / (n— nc)ka—?f’rdn. (2.15)

c—o0n

Finally, using the universal scaling function F' with appropriate arguments z, {y;},
and Z, the above expression becomes

Adn LtV N OF

:A’“L’“/”/ 7 di. 2.16
i —A(SnLl/Vx o ! ( )

Substituting Eqs. (2.11)-(2.13) into Eq. (2.16) we obtain the generalized scaling

function for the kth percolation distribution moment:

({3}, 2) = L7 (90(73) + Zgl(’%)gz + ) , (2.17)
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where we introduce general function go(Z2)

( ) A k f: 1 0j+lF j Jj+k Aometr l f 1 odd ( )
go(2) = A~ — : z z,forg+1lo 2.18
oy N 03I0Z |y 5 + K —Abn L1/
and general functions g;(2)
>~ q It j - AdnLt/v l
gi(3)=A7" _ | - 2t 2", for j +1 even. 2.19
jJZ:O U 0290y;02t |, j +k ASnol/v (2.19)

Nonzero values of the general functions given by Eqs. (2.18) are obtained only for
j + k odd. Therefore, for odd k, j is even, and then go(2) is an odd function and
gi(2) are even functions of 2. On the other hand, for even k, j is odd, and then go(2)
is even and g;(2) are odd functions. Therefore, the observed parity of prefactors in
respect to Z should be independent of the type of the system.

From Eq. (2.17) the scaling behavior of the (n);, can be described by the gen-

eralized scaling function with aspect-ratio-dependent coefficients
(ew=ne+ L7 ai(r) L™ (2.20)

1=0

where {6;} are the corrections to scaling exponents. The zeroth-order correction to
exponent 6y should be zero [2]. In analogy to (n)s ., for variance A%’T we introduce

the following expansion
A7, =L " by(r) L (2.21)
i=0

From Eq. (2.17) and the parity of go(2) and g;(2), we can estimate the zeroth-order

and the first-order prefactors for (n) ., and A%  nearIn(r) =0, i.e., 2 = 0, as follows

ap(r) =~ ao,oln(r)+a0,11n3(r),

a(r) = ayg+ a1 In’(r), (2.22)
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and

bo(’f’) ~ b()’o + bO,l an (7“)7
b1 (T) ~ bl,O 111(7“) + b171 1H3(7’)7 (223)

where a; ; and b; ; are nonuniversal coefficients.

2.3 Finite-size scaling of average stick percolation density

and standard deviation

The results for percolation probability R, , and distribution P, ., function are
shown in Fig. 2.3. One observes that the slope of percolation probability function
R, ;, increases with the increase of the system size. The percolation probability
function curves intersect approximately at n.. The fine behavior of percolation prob-
ability function at n. (see insets of Fig. 2.3) will be discussed in section 2.5. With the
increasing system size, the standard deviation of probability distribution function
decreases to zero. Also, average stick percolation density (n). ., which corresponds
roughly to maximum of probability distribution function P, ¢ ,, approaches to the
percolation threshold n.. For r < 1, (n);, converges to n. from below with in-
crease of the system size £. The reason for this is that narrow finite systems will be
spanned already at lower densities than n.. For r > 1, (n)., converges from above,
while for symmetric systems (r = 1) is roughly centered at n., see Fig. 2.3.

From Fig. 2.4, one can see that average stick percolation density (n)s, for as-
pect ratio higher than 1 is a monotonically decreasing function of the system size L.
Somewhat surprising, for aspect ratios lower than 1, (n)., is not a monotonic func-
tion and has a local minimum; i.e., for small systems (n)., is a decreasing function,
which passes through n., reaches a minimum, and after that converges to n. from
below. In the inset of Fig. 2.4, one can see that for large system sizes all the curves
show power-law convergence to the percolation threshold n. with exponent —1/v,
except in the symmetric case, i.e., r = 1, where the exponent is —1 /v —6;. Absolute

values of the leading-order prefactors are the same for aspect ratios r and 1/r, which
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Figure 2.3: Percolation probability function R, ., (a), (b), and (c) and probability
distribution function P, ¢, (d), (e), and (f) for stick percolation on rectangular
systems with free boundary conditions and increasing system size from £ = 20 to
200 for three aspect ratios r = 0.5,1, and 2. The direction of the increase of £ is
indicated on graphs. The vertical dashed lines denote the value for the percolation
threshold n., while the horizontal dashed lines denote the percolation probability
of the infinite systems at the percolation threshold R, ¢ ,. Insets: The fine

behavior of percolation probability function at the critical point ne.

is in accordance with the prefactors parity explained in the previous section.

The higher exponent of symmetric systems comes from the basic physics of per-
colation, that is, connectedness. We can illustrate this using a simplified image of
site percolation by introducing the quantity R(p) as the probability that the sites
with occupancy p form a spanning path. The percolation probability R(p) and
occupancy p are equivalent to the percolation probability function R, ¢, and stick
density n, respectively. In this image, a cell coming out of the renormalization trans-
formation (coarse graining) is occupied only if it contains a set of sites that span this
cell. The universal scaling function introduced in the previous section reflects the
fact that the probability of the spanning system at the percolation threshold R(p.)

remains unaltered under this transformation [2]. Therefore, the fixed point of this
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Figure 2.4: The dependence of the average stick percolation density (n);, on
the system size £ and aspect ratio r. The points are obtained from Monte
Carlo simulations and calculated using Eq. (2.3). The values are given for as-
pect ratios r = 0.7,0.8,0.9,0.95,0.98,1 (filled) and their inverse values r =
1/0.7,1/0.8,1/0.9,1/0.95,1/0.98 (transparent). The horizontal bold line denotes
the expected value for the percolation threshold n.. The lines represent the average
stick percolation density (n). , modeled using Eqgs. (2.20) and (2.22), coefficients a; ;
given in Table 2.1, and the corrections to scaling exponents 6, = 0 and 6; = 0.82.
Inset: The same data are shown in logarithmic scale to demonstrate the same power

law convergence of the r and 1/r pairs.

system, i.e., the critical percolation threshold, p. should satisfy relation p. = R(p.).
We can expand the percolation probability around the percolation threshold p.,
|R(p) — R(p.)| = dR/dpl|p.|p — pc|- Also, if we renormalize the lattice close to p. by
a length factor b, the characteristic length changes as £/b. Since & ~ |p — p.|77, we
can write another relation, |R(p) — R(p.)|™" = |p—p.| ™7 /b, connecting characteristic
lengths before and after renormalization. From these two relations one can conclude

that the critical exponent should be

IndR/dp,
—1/y~ ———*=. 2.24
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Figure 2.5: The dependence of the the percolation probability distribution function
variance A%m on the system size £ and aspect ratio r. The points are obtained from
Monte Carlo simulations and calculated using Eqgs. (2.3) and (2.4). The values are
given for aspect ratios r = 0.2,0.25,0.4,0.6,0.9,1 (filled) and their inverse values
r=1/0.2,1/0.25,1/0.4,1/0.6,1/0.9 (transparent). The lines represent the variance
A7, modeled using Eqgs. (2.21) and (2.23), coefficients b;; given in Table 2.1, and
the corrections to scaling exponents 6y = 0 and ¢, = 0.82. Inset: The same data are
shown in logarithmic scale to demonstrate the same power law convergence for all

aspect ratios r.

From Fig. 2.3, one can see that probability density P, ., which is derivative of
R, ¢, at n. is always larger for symmetric systems than for asymmetric systems
of the same size. Therefore, from Eq. (2.24), one expects higher absolute value of
the exponent in symmetric compared to asymmetric systems. Another conclusion
one can draw from this analysis is that the observed exponents are a result of the
interplay of the characteristic length and the system shape. Usually, such behavior
is attributed to a competition between two-dimensional and three-dimensional (or
one-dimensional and two-dimensional), e.g., in the Ising model for slab geometries;
see Ref [3]. In this system we observe that there is sharp transition in the nature of
scaling when we pass from the symmetric to asymmetric system, and a competition

between exponents characteristic for symmetric and asymmetric systems.
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2. Finite-size scaling in asymmetric systems of percolating sticks

As illustrated in Fig. 2.5, the variance of percolation probability distribution
function A%,T for all aspect ratios r is a monotonically decreasing function of the
system size £. We note that the variance of narrow systems A7 . is approximately
equal to the variance of symmetric systems A7 ._, with the same size £. In the inset
of Fig. 2.5, one can see that all presented curves show power-law convergence to zero

with exponent —2/v, which is in accordance with Eqgs. (2.21) and (2.23).

2.4 Prefactors and exponents of average stick percolation

density and standard deviation

From Monte Carlo simulation data we have obtained the two leading-order terms of
(n)sr in Eq. (2.20) by fitting. A detailed description of the fitting analysis is given
in Appendix C. The results of the analysis are shown in Fig. 2.6. The zeroth-order
prefactor ag(r) is zero for symmetric system r = 1, and it is an odd function on
a logarithmic scale, i.e., ag(r) = —ag(1/r), as shown in detail in Appendix C. The
first-order prefactor a;(r) is an even function, i.e., a;(r) = a;(1/r), as also shown in
Appendix C. The fitting coefficients a; ; for prefactors ay and a;, given in Table 2.1,
are calculated using the least-squares fitting methods. The influence of higher order
terms of (n);, was comparable to or smaller than the simulation data error and
we could not extract them with sufficient precision. As shown in Fig. 2.6(b), the
zeroth-order correction 6y = 0 is equal to zero, while for the first-order correction
we obtain #; = 0.82(2) for » = 1, which is consistent with Refs. [87, 89|. The
residual aspect ratio dependence of #; cannot be further analyzed without provision
of retaining the first two terms in Eq. (2.20). However, for all studied values of
aspect ratio 0.1 < r < 10, the average stick percolation density (n)c,, modeled
using the two leading-order terms in Egs. (2.20) and (2.22), coefficients a; ; given in
Table 2.1, and the corrections to scaling exponents #y = 0 and #; = 0.82, shows an
excellent agreement with the MC results over the whole range of the system size £,
see Fig. 2.4.

From Eq. (2.20) one can see that the system size where the average stick per-

1/61
?

colation density reaches its minimum is L, ~ (—aq(r)/ao(r)(1 + vb)) see
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.6: Prefactors (a) and exponents (b) are shown for the two leading-order
terms of generalized scaling function for average stick percolation density (n)g.,
given by Eq. (2.20). The zeroth-order prefactor is an odd function on a logarithmic
scale, i.e., ag(r) = —ag(1/r), and the zeroth-order exponent is —1/v (solid lines).
The first-order prefactor is an even function, i.e., a;(r) = a1(1/r), and the first-order

correction to the scaling exponent is ¢, = 0.82(2) for r = 1 (dashed lines).

Fig. 2.4. The size L, is a real number only for narrow systems, i.e., r < 1, because
the prefactors ag(r) and a;(r) have different signs only in that case, see Fig. 2.6(a).
When r approaches one from bellow, i.e., » — 17, the two leading-order prefactors
converge to ag(r) — apoln(r) and a;(r) — a1 (see Eq. (2.22)) and consequently,
Lmin diverges as 1/1In(r), i.e., Lin ~ 1/In(r) — oo. In that case, for small system
sizes £ < Lyin, the first-order term of the average stick percolation density (n) . is

dominant compared to the zeroth-order term, see Fig. 2.4.

Table 2.1: The improved values of the coefficients a; ; and b; ;, where 7,5 € {0, 1},
compared to those given in our previously published paper [4]. The improved values

are obtained using the least-squares fitting method as explained in Appendix C.

—_

0,0 0, 1 L0 | 1,
a;; | 4.861(6) | 0.310(4) | 1.48(5) | 2.1(2)
bi; || 13.98(7) | 2.24(4) | 15.4(3) | 3.2(2)
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2. Finite-size scaling in asymmetric systems of percolating sticks
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Figure 2.7: Prefactors (a) and exponents (b) are shown for the two leading-order
terms of generalized scaling function for stick percolation density variance A%m given
by Eq. (2.21). The zeroth-order prefactor is an even function on a logarithmic scale,
i.e., bo(r) = bo(1/r), and the zeroth-order exponent is —2/v (solid lines). The
first-order prefactor is an odd function, i.e., bj(r) = —b;(1/r), and the first-order

correction to the scaling exponent is ¢, = 0.80(5) for r = 0.95 (dashed lines).

The prefactors and exponents of stick percolation density variance A%m for the
two leading-order terms in Eq. (2.21) are shown in Fig. 2.7. The prefactors and
exponents are obtained by fitting, as explained in Appendix C. The fitting coeffi-
cients b; ; for prefactors by and b, are given in Table 2.1 and the obtained prefactor
dependences on the system aspect ratio r are shown in Fig. 2.7(a). The zeroth-order
prefactor of A% . is an even function on a logarithmic scale, i.e., by(r) = bo(1/7), as
one can also see from a coarse observation of the percolation probability distribution
function in Fig. 2.3. Asymmetry of the variance, i.e., A = # A7, is the first-order
effect, because the first-order prefactor is an odd function on a logarithmic scale,
i.e., by(r) = —by(1/r), as shown in Appendix C. Also, for all studied values of the
aspect ratio 0.1 < r < 10, the stick percolation density variance A%ﬂﬂ, modeled using
the first two terms in Eqs. (2.21) and (2.23), coefficients b; ; given in Table 2.1, and
corrections to scaling exponents 6y = 0 and 6, = 0.82, shows an excellent agreement

with the MC results over the whole range of the system size £, see Fig. 2.5.
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2. Finite-size scaling in asymmetric systems of percolating sticks

2.5 Percolation probability function at percolation threshold

We also investigate the scaling behavior of the percolation probability at the perco-
lation threshold R, ., expanding the universal scaling function F(0,{g;}, 2) near

the infinite-size system, i.e., L — oo, as follows
S s~ OF
F(0.{g:},2)=F(0,{0},2)+> A (2.25)
i=1 7!
This relation is equivalent to the following scaling function
Rocer = R omsoor +_ci(r) L7+, (2.26)
i=1

where ¢;(r) are aspect-ratio-dependent scaling prefactors. Instead of the previous
expansion, in Ref. |93] was found that the best fit for the percolation probability

function at the percolation threshold n. is given by

ci(r)  eo(r)

L L2

RnC,L,r = Rnc,L%oo,r + (227)

We suppose that the higher order terms in the generalized scaling function given
by Eq. (2.26) cannot be neglected and their comprehensive influence is probably
superposed resulting in only two terms, as shown in Eq. (2.27). In order to confirm
that, we find that the previous equation represents an excellent fit to the percolation
probability values at the percolation threshold R, ., for all analyzed system sizes
L and aspect ratios r. Therefore, the results for prefactors ¢;(r) and co(r) obtained
using Eq. (2.27) for fitting data are shown in Fig. 2.8. For the two limiting cases
(r < 0.1 and r > 10), the prefactors are close to zero, which is consistent with the
behavior observed in Fig. 2.3. Between these two limiting cases, one can observe that
both prefactors are close to zero for r = 2.25(5). This means that the percolation
probability at the percolation threshold is independent of the system size £ when
the system aspect ratio r is approximately equal to 2.25, i.e., R, ¢ ~225 ~ 0.135.
The scale invariance, i.e., R, c, = Rp ooy, has been already seen and intuitively

understood for bond percolation in symmetric systems, where R, —¢5,-1 = 1/2 is
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Figure 2.8: (a) Prefactors for finite-size scaling of the percolation probability at the
percolation threshold R, ., are shown for the two leading-order terms. (b) The
percolation probability at the percolation threshold for infinitely large systems
R, t—c0r- The points represent Monte Carlo data for stick percolation, while the
line represents results of Cardy’s model for the lattice percolation. The error bars

are much smaller than the size of the points for all r.

also independent of the system size £; see Ref. [97]. The reason for the observed
system size invariance of percolation probability at the threshold in the asymmetric
stick system is the existence of multiple zeros of at least second order at this point
in the universal scaling function. We note that this invariance can also be observed
in insets of Fig. 2.3 where the fine behavior of percolation probability function at
the critical point n. is shown for different system sizes from £ = 20 to 200. For
narrow systems (r = 0.5) shown in Fig. 2.3(a), as well as symmetric ones (r = 1)
shown in Fig. 2.3(b), the percolation probability at the percolation threshold n.
approaches to its infinite-size value R,,_ ;o , With increasing system size £. On the
other hand, for the systems shown in Fig. 2.3(c), which have the aspect ratio r = 2
close to its critical value 2.25(5), all percolation probability function curves intersect
approximately at the same point, see inset of Fig. 2.3(c).

Finally, regarding the value of the percolation probability at the percolation
threshold of the infinite system, we find that Cardy’s analytical model derived for
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2. Finite-size scaling in asymmetric systems of percolating sticks

the lattice percolation also describes our simulation data; see Fig. 2.8(b). The devi-
ation between the analytical values for lattice and the Monte Carlo values for stick
percolation is less than the statistical error of the simulation data, i.e., less than 107°.
The percolation probability for the 2D stick system therefore satisfies R, ¢—o0r +
Ry tsoca/r = 1. This relation can also be obtained from Eq. (2.9) considering
duality of infinite-size systems at the percolation threshold, i.e., F(0,{0},2) +
F(0,{0},—2) =1.

2.6 Analytic model for the percolation probability function

Finally, we propose an analytic model for calculating the percolation probability

function R, ., using a cumulative distribution function [50, 102]

1 n—(n}Lrﬂ
Ryor—=—|1+4erf [ 2V2803 1 2.98
] s 029

where (n), is the average stick percolation density modeled using Egs. (2.20) and
(2.22) and coefficients a;; given in Table 2.1, A, is the the percolation density
standard deviation modeled using Eqs. (2.21) and (2.23) and coefficients b; ; given
in Table 2.1, whereas erf(x) = 2 [ e~ dt// is the Gaussian error function.

The percolation probability functions R, ¢, for different aspect ratios and nor-
malized system sizes are shown in Fig. 2.9. As already noted, the percolation prob-
ability function moves toward higher densities with increasing system aspect ratio r
and becomes steeper with increasing normalized system size £. As demonstrated in
Fig. 2.9, the values obtained using the proposed model given by Eq. (2.28) represent
an excellent fit to the data calculated using MC simulations, even for the systems
with a relatively small normalized size £ > 5. Therefore, we conclude that the pro-
posed analytic model can be used as an excellent approximation of the percolation
probability function for all studied systems sizes with £ > 5 and all studied aspect

ratios 0.1 < r < 10.

31



2. Finite-size scaling in asymmetric systems of percolating sticks

(a) r =025

Figure 2.9: The percolation probability functions for different aspect ratios (a) r =
0.25, (b) 1, and (c) 4 and for three normalized system size values £ = 6, 20, and
160. The points are obtained from the MC simulations and calculated using Eq. 2.2.
The solid lines denote values obtained from our analytic model for the percolation
probability functions given by Eq. (2.28). The vertical dashed lines denote the

percolation threshold value n..

2.7 Conclusions

In summary, based on the analysis of finite-size scaling in continuum two-dimensional
systems, the generalized scaling law is introduced for average percolation density,
standard deviation, and percolation probability at the percolation threshold. The
presented methodology could be used to model accurately these properties for any
percolating system. According to the generalized scaling function, an analytic model
of the percolation probability function for two-dimensional systems is also proposed.
We find that the zeroth-order prefactor of average percolation density is an odd func-
tion with respect to In(r). This explains the faster convergence of average percolation
density for symmetric systems than expected from general scaling arguments. We
also observe that there is a characteristic aspect ratio for which percolation proba-
bility at the percolation threshold is system-size independent. In addition, for the

infinite system, we find that the percolation probability at the critical threshold den-
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2. Finite-size scaling in asymmetric systems of percolating sticks

sity shows excellent agreement with Cardy’s prediction for lattice percolation. The
presented results confirm that continuum percolation belongs to the same universal-
ity class as lattice percolation in the sense that the value of percolation probability at
the threshold for infinitely large systems is the same for lattice and continuum per-
colation. One should note that a number of other features observed in this Chapter
should be a common characteristic within the class, e.g., the existence of the aspect
ratio where the percolation probability at the threshold is scale invariant and parity
of the moments of the percolation probability distribution function. This opens up
the question of the particle shape influence on prefactors, whether it is possible to
find systems where the observed behaviors are more pronounced, and finally the

question of the general form of the prefactors for describing different systems.
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Chapter 3 From percolating to dense random nano-
wire networks: electrical conductivity and

optical transparency investigation

Across different application areas, such as thin-film solar cells, organic light emit-
ting diodes, and many touch screen applications, two critical performance criteria for
the transparent conductors are their electrical conductivity and optical transparency.
Therefore, the electrical conductivity and optical transparency dependencies on the
NW density and system geometry needs to be taken into account in any device
design based on random NW networks [24]. The percolation theory predicts that
the electrical conductivity of the composite materials with the conductive filler den-
sity n above, but close to the percolation threshold n., increases with the density
by a power scaling law o ~ (n — n.)", with the universal conductivity exponent
t ~ 1.29 for two-dimensional (2D) systems [2]. While the conductivity scaling law is
expected to be applicable only near the percolation threshold, in many experiments
the scaling law was used over a much larger range of concentrations, but with the
nonuniversal values of the conductivity exponent [18, 28-30)].

In this Chapter, the conductivity of two-dimensional random NW networks is
investigated from the percolation threshold up to ten times the percolation thresh-
old density using an extensive Monte Carlo simulation study. We show that it is
not appropriate to use a simple scaling law to describe the conductivity dependence
on the density, both for finite and dense networks. Based on our Monte Carlo sim-
ulation results, we propose a model that explicitly depends on the NW density and
junction-to-NW conductance ratio. The model describes the transition from the
conductivity determined by the structure of a percolating cluster to the conductiv-

ity of the dense random NW networks. The proposed model is motivated by the
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3. From percolating to dense random N'W networks

observed structural characteristic of the random NW networks (i.e., the density of
total NWs and contacts involved in the current flow through the system). The model
is also valid for the different stick-like nanoparticles. The finite-size scaling effects
are also included in the description. Finally, using the proposed model and an ana-
lytical approximation for the density-dependent optical transmittance, we quantify
a dependence of the optical transmittance on the electrical conductivity for random
NW networks. We also propose a procedure for estimating values of all relevant
geometrical and electrical parameters of random NW networks required for using

these networks as high performance transparent conductors.

3.1 Numerical method for conductivity calculation

Monte Carlo (MC) simulations are coupled with an efficient iterative algorithm im-
plemented on the grid platform and used to investigate the conductivity of randomly
distributed NWs networks [33, 99, 103]. We have considered the two-dimensional
systems with isotropically placed NWs modeled as widthless sticks with a fixed
length [;. The centers of the NWs are randomly positioned and oriented inside the
square system with size Ls. Two electrodes (i.e., conducting bars) are placed at
the left and right sides. The top and bottom boundaries of the system are free
and nonconducting, because free boundary conditions are more consistent with NW
networks in practice. Two sticks (NWs) belong to the same cluster if they intersect.
The system percolates (conduct) if the electrodes are connected with the same clus-
ter. The behavior of the NW percolation is studied in terms of the normalized NW
density n = N/L? where N is the total number of NWs and £ = Lg/I; is the nor-
malized system size. As determined in Chapter 2, the percolation threshold of the
infinite-size stick system is defined by the critical density n. ~ 5.63726. To evaluate
the conductivity of the NW networks we introduce two different conductances:

(1) the conductance of the entire NW Gg; and

(2) the conductance due to the NW-to-NW junction G;.
We assume diffusive electrical transport through the NW, which is typical for the

rodlike nanostructures whose length is larger than the mean free path of the elec-
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3. From percolating to dense random N'W networks

trons [104, 105]. According to the diffusive electrical transport the electrical con-
ductance of a NW segment G is inversely proportional to its length Iy, and can

be calculated as follows
ls

lseg

Geeg = G (3.1)

In our simulations, each NW-NW junction is modeled by an effective contact con-
ductance regardless of the type of the junction, following the simplified approach of
the authors of Refs. [15, 21, 33]. Therefore, if two NWs intersect a junction with
the fixed conductance Gj is created at the intersection point. The created NW-NW
junction conductance Gj connects two virtually created nodes positioned at the in-
tersection point, as shown in Fig. 3.1. Each of these two nodes belongs to one of
the two intersecting sticks, see Fig. 3.1. Therefore, the entire network of randomly
distributed NWs is modeled by the electrical conductances of NW segments and
NW-NW junctions created between the nodes positioned at the interaction points,
see Fig. 3.1. As shown in Fig. 3.1, a node indexed by k can have maximum 2 neigh-
boring nodes indexed by l; and [ belonging to the same NW as the node k (ith
NW), as well as one neighboring node indexed by I3 belonging to different NW (jth
NW). The segment conductances Gy, and Gy, are determined from Eq. (3.1) where
appropriate segment lengths are distances between the pairs of neighboring nodes
(k,1y) and (k,ly), respectively.

Nodes that are positioned between the left and right electrodes of the system
represent internal nodes of the electrical network. FEach internal node £ is associated
with a electrical potential Vj, where £ = 1,2,..., N, and N, is the total number
of internal nodes. The electrical potentials of internal nodes are initially unknown
and they should be calculated in order to determine the electrical conductivity of
the network. However, when a NW intersects the left or right system electrode,
an external node is created at the intersection point. If the NW intersects the left
(right) electrode, the electrical potential of the created external node is set to 0 (1),
according to a realistic assumption that the system electrodes are highly conductive
and that the contact resistance between a NW and an electrode can be neglected [33].
Hence, the external nodes are the only nodes in the network that have known and

fixed potentials (0 or V).

36



3. From percolating to dense random N'W networks

&

)
QOOLI/].
e

N

Figure 3.1: Schematic illustration of an electrical network of randomly distributed
NWs where conductances of NW segments (black) and NW-NW junctions (red) are
presented. A junction with the fixed conductance Gj is created at the intersection
point between two virtually created nodes. Each of these two nodes belongs to one
of two intersecting NWs. One node (k) can have maximum 3 neighboring nodes (I,
lo, and [3), i.e., maximum 2 nodes belonging to the opposite sides of the same NW
(I; and [y at ith NW) and 1 node belonging to different NW (I3 at jth NW).

As shown in Fig. 3.1, an arbitrary internal node k£ can have maximum 3 internal
neighboring nodes [y, I, and [3. Kirchhoff’s current law is used to balance the

current flow through the internal node k as follows

l3
Y CGu(Vi=V) =1L, (3.2)

1=l
where (G, is the conductance between the internal nodes k£ and [ and [}, is the current
flowing into the internal node k. If the internal node k£ has only internal nodes as its
neighbors (maximum 3 of them), the current [, is equal to 0. If the internal node
k has an external node as one of its neighbors, the current [ is different from 0. In
that case, the current [ flowing into the internal node & is I = G (Ve — Vi), where

G is conductance between the internal node k and its neighboring external node, if
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3. From percolating to dense random N'W networks

such exists, given by Eq. (3.1), whereby the voltage V, is equal to 0 or V' depending
on whether the external node is created at the left- or right-electrode intersection.
Kirchhoft’s current law given by Eq. (3.2) and applied to all IV, internal nodes

of the electrical network can be presented in the matrix form:

Gv =1, (3.3)

where the square N, x N, matrix G represents a conductance matrix:

GH —G12 c. —le ce _Gll . —Gan
—Ggl G22 e —ng ce —Ggl ce _GQNH
—le —Gkg Ce Gkk c. —le c. —Gan
G = :
_Gll —Glg R —le e Gll R —Gan
_—Gan _GNI,2 c. _GNnk ce _GNDZ . GNnNn i

with the diagonal elements equal to

Nn
Grr = Z Gu + G, (3.4)
1=1, 1k
where G is the conductance between the internal node k£ and its neighboring exter-
nal node, if such exists, otherwise G, = 0. We note that a diagonal element Gy, of
conductance matrix G presents sum of all conductances that have an internal node k
as a common node, regardless of the type (internal or external) of their non-common
nodes. Also, we note that a conductance between two non-neighboring nodes k and
[ is by default equal to 0 in the conductance matrix G. The column vector v presents

an unknown vector of the electrical potentials of all internal nodes:
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Vi
Va

Vi,
whereas the column vector ¢ presents a known vector which is determined by the
electrical potential V' applied to the right electrode, i.e., to the appropriate right-

electrode external nodes:

G
G

G

Gy

Gn,

where (i is the conductance between the internal node k and its neighboring right-
electrode external node, if such exists, otherwise G}, = 0.

The conductance matrix GG is a square matrix with the total number of elements
equal to the squared number of total internal nodes N2. The total number of internal
nodes is higher than 10° in the real systems. Therefore, the crucial significance for
solving so large systems of linear equations given by Eq. (3.3) is the sparseness of
their matrices G, which have maximum 4 non-zero elements in each raw (maximum
3 non-zero neighboring conductances + one diagonal element). Also, we note that
the system matrix G is symmetric G = G, because G, = Gy, as well as positive-
definite, because Gy > 0 and Gy, > Zl#k |G| for all k and its total sum is positive
> k1 G > 0, see Ref. [106].
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3. From percolating to dense random N'W networks

Since the system matrix G is sparse, square, symmetric, and positive-definite
an iterative equation solver (i.e., conjugate gradient method (CGM) with Jacobi
preconditioner) has been employed to solve the large system of linear equations as
explained in detail in Appendix D. In order to improve the simulation efficiency, the
following optimizations have been performed before the iterative equation solver is
employed to solve the system:

i) During the determination of the NW connectivities, each NW is first registered
into a subcell in which its center lies, as described in section 2.1. As it was explained
there, it is only necessary to check the connectivity between a chosen NW and any
of those NWs belonging to the same subcell or the neighboring subcells.

ii) Before applying Kirchhoff’s current law to the internal nodes, it should be
checked does the analyzed NW network percolate. If the NW network does not
percolate its conductivity is equal to 0 and, therefore, there is no need for solving
Kirchhoff’s current law equations.

iii) If the NW network percolates, all dangling NWs, with the corresponding
junctions, that do not carry any current should be deleted before the iterative solver
is applied, see Ref. [33].

iv) In order to reduce the total number of iterations, starting values for the
electrical potentials V0 should be proportional to their distances z; from the left
electrode, i.e., V2 = 2V, because this starting values present a good estimate of
the final potentials Vj, see Ref. [107].

After solving this large system of linear equations and obtaining the potentials of
all internal nodes, the total current [ is easily determined as the sum of the currents
flowing into (out of) all external nodes connecting the left (right) electrode. After
obtaining the total current I under an applied voltage between the electrodes V' the
macroscopic electrical conductivity! of the system is evaluated as o = I/V. Monte

Carlo simulations have been performed for a wide range (i.e., Gj/Gs = 0.001 to

LFor a rectangular system of size L x W, where L is the distance between the electrodes and
W is their length, the relation between the system conductance G and conductivity o is according
to Ohm’s law given by G = ¢W/L. In this Chapter the system is the square-shaped L = W, which
implies G = o. Although in the square system conductance is equal to the system conductivity, in
this Chapter for clarity we have assumed terminology in which the conductance is used for denoting
a single conductive element (NW or junction) while the conductivity is related to the entire system.
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3. From percolating to dense random N'W networks

1000) of junction-to-NW conductance ratios'. Finally, for each set of the system
parameters, the electrical conductivity is averaged over the Nyc independent MC
realizations. To obtain the same precision for the finite-size systems Nyc = 64000
realizations are used for the systems with normalized size £ = 10 down to Ny =
4000 for the largest system £ = 40 studied. Using the appropriate functions for
the fitting data and the least-squares fitting methodology [4], good fits with high
correlation factors (R? > 0.998) were obtained for all analyzed systems.

As one can see in Fig. 3.2, the algorithm running time needed for conductivity
calculation using CGM with Jacobi preconditioner for a single MC realization of a
random NW network depends on the square of normalized NW density, i.e., on the
total number of internal nodes, by a power law with the exponent equal to a value
of 3/2, i.e., (T ~ (n2)3/2 ~ NI?/Q), when the NW density is n > 10. The power-law
dependency of the running time with the exponent 3/2 for CGM is explained in detail
in Appendix D. We note that for higher NW densities n almost all junctions and
NWs will be involved in the current flow through the system, as shown in Fig. 3.4.
Therefore, for the normalized NW density higher than 10, i.e., n > 10, the number
of internal nodes involved in the current flow increases with the NW density by a
square power law N, ~ n? and for this reason, we obtain the power-law dependency
T ~ (n?)%?2 shown in Fig. 3.2. For lower NW densities the number of internal nodes
N, involved in the current flow increases rapidly with increasing NW density n, see
Fig. 3.4, and, hence, the running time also increases rapidly with increasing n?, see

Fig. 3.2 for n < 10.

I The choice of an extended range of conductance ratios is based on the experimental measure-
ments on crossed NWs [108], as well as other rodlike nanoparticles, such as CNTs [109, 110]. For
crossed single-walled CNTs the junction conductance is of the order of magnitude 0.1e?/h [109]
(where e is the electron charge, h is Planck’s constant, and e?/h ~ 39 pS) and two orders of
magnitude higher for NW-NW junctions [21, 22, 111]. In the diffusive case, typical for NWs and
CNTs whose length [ is larger than the mean free path of electrons A, the conductance can be
approximated by Gs ~ (4e%/h)()\/ls) [104, 105, 112]. For single-walled CNTs the mean free path of
the electrons is of the order A ~ 1 pm [105, 112], while for NWs, the mean free path is considerably
shorter ~ 40 nm [113], implying that the diffusive conduction model is applicable even for very
short NWs. Therefore, the junction-to-stick conductance ratio G;/Gs depends on the total stick
length ls. When the stick length is of the order of the mean free path of the electrons the conduc-
tance ratio, especially for CNTs, is Gj/Gs = 0.001 — 0.1. On the other hand, for very long sticks
(i.e., s > 100X), the conductance ratio, especially for NWs, becomes higher than 1, G;/Gs > 1.

41



3. From percolating to dense random N'W networks

—
=}
T )

[\

CPU time in seconds
[E—
o

—
O}—A
T

0 H
10 - -
10" 10° 10° 10"

Figure 3.2: The dependence of the average CPU time T" needed for conductivity cal-
culation using CGM with Jacobi preconditioner on the square of normalized density
n? for a single MC realization of a random NW network with the normalized size
L = 20 and junction-to-N'W conductance ratio Gj/G5 = 1000. The results are shown
on a logarithmic scale to demonstrate power-low dependence of the running time.
The simulations were run on a computer cluster configured with Intel Xeon CPUs
with 2.33 GHz and 8 GB RAM. The solid line 7' ~ (n2)*? is only a guide for the
eye. As one can see, the running time depends on the total number of internal nodes
by a power law with the exponent equal to a value of 3/2, i.e., (T ~ (n2)3/2 ~ NS/Q),
when the normalized NW density is n > 10.

3.2 Local conductivity exponent

As already mentioned, the numerical estimates of the conductivity exponent ¢ are
based on the linear fit of the MC results for the logarithms of the conductivity o
and density n —n. |27, 31-33]. The estimates therefore rely on the assumption that
o obeys the simple power-law dependence over a quite extended density range. As
there exists no justification of such an assumption, we have investigated in detail

the behavior of the conductivity o as we move away from the critical point. A local
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Figure 3.3: The dependence of the local conductivity exponent ¢(n) on the
normalized NW density n and junction-to-NW conductance ratio G;/Gs. The
points are MC simulation results obtained using Eq. (3.5) for the normalized sys-
tem size L = 20. The values are given for the conductance ratios G;/Gs =
0.001,0.01,0.1,0.2,0.5, 1 (filled), and their inverse values 1000, 100, 10, 5,2 (trans-
parent). The error bars are smaller than the size of the points. The star marker
denotes the expected universal value for the conductivity exponent at the perco-
lation threshold ¢(n.). The lines represent the local conductivity exponents ¢(n)

obtained from the conductivity model for an infinite-size system, Eq. (3.7).

(density dependent) conductivity exponent is defined as ¢(n) by [97, 114]

n—n.do

The dependence of the local conductivity exponent £(n) on the NW density n and
the ratio of the NW-NW junction conductance (Gj) to NW conductance (Gs) (i.e.,
G;/Gs) is shown in Fig. 3.3. As one can see from a coarse observation, when the NW
density approaches the percolation threshold n. from above the local conductivity
exponent converges to the universal value for 2D systems ¢(n.) ~ 1.29 for all G;/Gs
values. The fine behavior of the local conductivity exponent for finite-size systems

in the vicinity of the percolation threshold will be discussed later in this Chapter.
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Figure 3.4: The normalized density of junctions n{ and NWs n' involved in the

current flow through the system is compared with the density of all junctions n; and
NWs n in the system of normalized size £ = 20. For higher NW densities n almost
all junctions and NWs will carry some current. The error bars are smaller than
the size of the points. Inset: The density ratio of the current-carrying junctions to
current-carrying NWs n//n’ is higher than the density ratio of all junctions to all
NWs n;/n in the system. At the percolation threshold this ratio is about 2, i.e.,
nf/n' =2.0(1).

With the increasing concentration n, the local conductivity exponents t(n) change
quickly from the universal value ¢(n.), taking the values in a wide range 1 < ¢(n) <
2. From Fig. 3.3, one can see that the local conductivity exponents t(n) for the
conductance ratio higher than 2 (G;/Gs > 2) is a monotonically decreasing function
of the NW density n which converges to 1 from above. Somewhat surprisingly, for
the conductance ratios lower than 1 (i.e., Gj/Gs < 1), the local exponent ¢(n) is
not a monotonic function and has a local maximum. The observed density where
the local conductivity exponent reaches a maximum decreases with increasing the
conductance ratio Gj/Gs.

To explain the observed behavior of the exponent t(n) at the higher densities
n > 2n., one needs to look into the structure of the dense conducting NW networks.

Figure 3.4 shows the normalized densities of the NWs n’ and junctions n/ that
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Figure 3.5: Schematic illustration of simplified model of random NW network where

\

the total number of junction is proportional to the square of normalized NW density
n? (left panel). The equivalent conductance of the simplified network presented as

serial conductance n NWs in parallel and n? junctions in parallel (right panel).

carry the current through the system. For sufficiently high NW densities (n > 2n.),
one can see that almost all the NWs and junctions in the system contribute to the
conductivity and that the density of the current-carrying junctions increases with
the NW density n by a square power law n{ ~ n?. The reason for this is that the
mean number of contacts per NW is proportional to the NW density, see Ref. [115].
Also, for a sufficiently high NW density n the current-carrying NW density n’ is
proportional to n.

As illustrated in Fig. 3.5, when the NW density n is well above the percolation

threshold n., the conductivity of the system can be modeled as an equivalent serial

conductance n NWs in parallel and n? junctions in parallel

1
"o 1/G, + n2)Gy

(3.6)

g

where b is a constant parameter. One can see that the square term n=2/G;, originat-
ing from the junctions, converges faster to zero than the linear term bn~'/G,. This
explains the conductivity exponent ¢(n) approaching to 1 when the NW density is
sufficiently high (i.e., n > G5/Gj) and the existence of the local exponent maxi-
mum in Fig. 3.3. If the NWs are much more conductive than the junctions (e.g.,
G;/Gs = 0.01) the density where the local conductivity exponent starts to con-

verge to 1 is high and computationally unreachable in the MC simulations shown
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in Fig. 3.3. Only in the limiting case when the NWs are superconductive and the
conductance ratio approaches zero (i.e., Gj/Gs — 0) should the conductivity ex-
ponent ¢(n) converge to 2 with the increasing density n, which is consistent with
Keblinski et al. [31]. In the other limit, when the junctions are superconductive
(i.e., Gj/Gs — o0) the local conductivity exponent t(n) should have the fastest
convergence to 1.

At the densities close to the percolation threshold n., only a fraction but not
all the NWs and junctions in the system contribute to the conductivity, by carrying
some current. From Fig. 3.4 (inset), one can see that at the percolation threshold
ne, the density of the current-carrying junctions is about two times higher than the
density of the current-carrying NWs, i.e., n{/n’ = 2.0(1). From the framework of
the percolation theory we cannot determine a density-dependent factor of propor-
tionality in the conductivity power law o ~ (n — n.)". Instead, we fit the factor of
proportionality with an expression for the dense systems, i.e., with Eq. (3.6), and
obtain 1/ [bn'~1/Gs + (n + n.)"?/Gj]. This relation explicitly includes the previous
observation that there is almost exactly two times more current-carrying junctions
than current-carrying NWs at the percolation threshold. For a general conductivity

description of the infinite-size systems we obtain

oc=a (n — ne)
Ut G+ (4 ne)t2)Gy

(3.7)

where a = 0.027(1) and b = 0.061(3) are fitting parameters calculated using the
least-squares fitting methods. The solid lines in Fig. 3.3 denote the local conductivity
exponents t(n) calculated from Eq. (3.5), using the model for an infinite system
given by Eq. (3.7), for a wide range of conductance ratios G;/Gs = 0.001 to 1000.
Deviations between the modeled and MC values for local conductivity exponent £(n)

are comparable to the statistical errors.

3.3 Finite-size model for conductivity

Figure 3.6 illustrates the structure of the percolating cluster |Figs. 3.6(a) and 3.6(b)]

and the redistribution of the current in the dense NW networks due to the junction-
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Figure 3.6: Simulated current (a) and (b) at different system sizes and (c) and (d)
junction-to-NW conductance ratios. The current through a NW [ is given relative
to the maximal current in the system [,,... There is a large difference in the fraction
of the system involved in the current flow between the two nominally identical films
in term of density (n = n.) and junction-to-NW conductance ratio (G;/Gs = 1)
for two different system sizes L = 10 and 40. The current redistribution with the
increasing junction-to-NW conductance ratio Gj/Gj is visible from (c) and (d). (c)
If junctions are weakly conductive (i.e., Gj/Gs = 0.01) the maximal current flows
along the shortest path with the least junctions. (d) For high junction conductance
values (i.e. Gj/Gs = 100), the total current is evenly carried by the larger number
of shortest paths connecting electrodes. This effect is only visible at higher densities

(e.g., n = 8) where several paths connecting electrodes exist.

to-NW conductance ratio increase |Figs. 3.6(c) and 3.6(d)|. The current through a
NW [ is given relative to the maximal current in the system I;,,. As one can see
from Figs. 3.6(a) and 3.6(b), the percolating cluster consists of a few sub-clusters

connected by high current links. This explains why on average more junctions than
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NWs are needed to shortcut the electrodes. For a large, but finite-size systems at the
percolation threshold, the density of the current-carrying junctions decreases with
normalized system size £ as nf ~ L%/ where § = 5/36 for 2D systems [2]. Also,
the density of the current-carrying NWs at the percolation threshold is n! ~ £=8/v.
As a result the densities of the current-carrying NWs and junctions decrease with
normalized system size, see Figs. 3.6(a) (£ = 10) and 3.6(b) (£ = 40). Furthermore,
the density ratio nJI /n! at the percolation threshold converges to a constant value
with the increase of the normalized system size, see Fig. 3.4. At higher NW densities
(i.e., n = 8) one can see that current flows along many parallel paths connecting
electrodes. An increase of the junction-to-NW conductance ratio Gj/Gs results in
the more uniform redistribution of the current, see Figs. 3.6(c) (G;/Gs = 0.01)
and 3.6(d) (G;/Gs = 100). For weakly conductive junctions (i.e., low conductance
ratio G;/Gs = 0.01), most of the current flows through a shortest path with the
least junctions along. With the increase of the junction conductance several parallel
paths become visible. As a result, the total current through the system is more
evenly distributed, resulting in the higher conductivity. This is also expected from
Eq. (3.7).

If we compare the infinite system model prediction and MC simulation results in
Fig. 3.3 close to the percolation threshold, we observe a deviation between the pre-
dicted and simulated values. This deviation is a result of the finite-size effects, since
the MC results in Fig. 3.3 are calculated for the large but finite-size system (i.e.,
L = 20). The convergence of the local conductivity exponents with increasing sys-
tem size is shown in Fig. 3.7. The points are MC simulation results for the systems
with sizes £ = 10, 20, and 40 and the solid line denotes the model for an infinite sys-
tem given by Eq. (3.7). For the finite-size systems close to the percolation threshold
we observe a large deviation of the local conductivity exponent ¢(n) from the model.
The local conductivity exponent decreases with the decreasing system size and can
be even lower then 1, i.e., t¢(n) < 1. This is result of a nonzero conductivity value for
the finite-size systems at the percolation threshold |2]. Therefore, the model should
be adapted for the finite-size systems. The finite-size scaling arguments |2, 4, 116]
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G;/Gs = 100 |
10 11

Figure 3.7: The local conductivity exponents t(n) for the NW networks with in-
creasing normalized system size £ = 10,20, and 40 and for three conductance ratio
values (a) Gj/Gs = 0.01, (b) 1, and (c) 100. The direction of the increase of £
is indicated on the graphs. The points are obtained from the MC simulations and
calculated using Eq. (3.5). The error bars are smaller than the size of the points.
The solid line represents the local conductivity exponent ¢(n) for the infinite system
obtained from Eq. (3.7), while the dashed lines denote the local conductivity expo-
nents t(n) obtained from the model that includes finite-size effects, Eq. (3.11). The
star marker denotes the expected value for the conductivity exponent of the infinite

system at the percolation threshold n..

suggest that the conductivity o depends on the system size £ as

o~ (=m0 (33)

where £(n) ~ |n — ne|™" is the correlation length that measures the linear extent
of the largest cluster and f[£(n)/L] is the conductivity finite-size scaling function.
For 2D systems the correlation-length exponent is v = 4/3, see Ref. [2].

In order to demonstrate the generality of the conductivity finite-size scaling func-
tion f[£(n)/L], the dependence of the normalized conductivity o/(n — n.)!, which

is proportional to f [¢(n)/L], on the normalized correlation length (n —n.)™ /£ is
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Figure 3.8: The dependence of the conductivity finite-size scaling function
f[€(n)/L], which is according to Eq. (3.8) estimated as o/(n — n.)', on the nor-
malized correlation length £(n)/L ~ (n —n.)7"/L. The dependence is shown for
three NW systems with increasing size £ = 10, 20, and 40. The points are obtained
from the MC simulations. The solid line represents the finite-size scaling function
f1&(n)/L] calculated from Eq. (3.9).

shown in Fig. 3.8 for different system sizes. As shown in Fig. 3.8, all the points ob-
tained using MC simulations for different system sizes collapse to a common curve.
The collapse of all the calculated data to the same curve, independently of the
system size, shows the generalized behavior of the conductivity finite-size scaling
function f [£(n)/L] for random stick networks.

In order to include the finite-size scaling effects into the comprehensive conduc-
tivity model, two limiting behaviors are observed:

(1) the infinite system above the percolation threshold; and

(2) the finite-size systems at the percolation threshold.
For the infinite system above the percolation threshold, i.e., £(n)/L — 0, the con-
ductivity follows the simple scaling law and finite-size scaling function f[£(n)/L]
converges to a constant value, see Fig 3.8. In the other limit, for the finite-size

systems at the percolation threshold, i.e. £(n)/L — oo, conductivity has a nonzero
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value o ~ L7V see Ref. |2|. Therefore, in that case the finite-size scaling function
should have a form f[£(n)/£] ~ [¢(n)/£]"" to cancel the conductivity dependence
on density in Eq. (3.8). This limiting behavior of the conductivity scaling function
fl¢(n)/L] is demonstrated in Fig 3.8 as its linear increase with slope ¢/v in loga-
rithmic scale when &(n)/L — oco. Since the finite-size scaling function f[£(n)/L]
above the percolation threshold is a continuous and smooth function (see Fig. 3.8),

we approximate it by a combination of its two limiting behaviors

S R CETER 59

where c is the finite-size parameter. As shown in Fig. 3.8, this approximation rep-
resents an excellent fit to the data obtained using numerical simulations when the
parameter ¢ is equal to 2.5. Inserting Eq. (3.9) into Eq. (3.8) the first-order approx-

imation of the finite-size scaling law for conductivity becomes
o~ (n—n)t 4L (3.10)

Finally, incorporating the finite-size effects given by Eq. (3.10) into the conductiv-
ity model for an infinite-size system, Eq. (3.7), we obtain the finite-size model for

conductivity
(n —ne)t + L7
oc=a .
nt=1/Gs + (n 4+ n. )2/ G;

(3.11)

The finite-size parameter for 2D NW networks ¢ = 2.5(1) is calculated using the
least-squares fitting methods. A comparison between the MC results and the values
obtained from the model given by Eq. (3.11) is shown in Fig. 3.7. The dashed lines
in Fig. 3.7 denote the local conductivity exponents t(n) calculated from the model
including finite-size effects, Eq. (3.11), for systems with increasing normalized size
L =10, 20, and 40 and for three conductance ratio values G;/Gs = 0.01, 1, and 100.
We see that the introduction of finite-size effects in the model significantly improves
the quantitative description of the system close to the percolation threshold.
Finally, the MC conductivity values normalized with the NW conductance Gy
and fitted by Eq. (3.11) for the systems of normalized size £ = 20 and conductance
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Figure 3.9: (a) Conductivity as a function of (n — n.)/n. is obtained from the MC
simulations (points) for the NW network of normalized size £ = 20 and the junction-
to-NW conductance ratio from G;/Gs = 0.001 to 1000 (from bottom to top). The
lines denote values obtained from the conductivity model for the finite-size systems
given by Eq. (3.11). (b) The conductivity ratio between the MC simulation results
omc and the values obtained from the model 0,040 for corresponding finite-size

systems, Eq. (3.11). The error bars are smaller than the size of the points.

ratios from G;/Gs = 0.001 to 1000 are shown in Fig. 3.9(a). For all studied values
of the conductance ratio Gj/G5 the conductivity obtained from the model agrees
with the MC results over the whole range of the NW density n, see Fig. 3.9(a). The
agreement between the MC results and the model is good for higher NW densities
(n > 2n.) (i.e., further away from the percolation threshold), but not so good in
the vicinity of the percolation threshold, see Fig. 3.9(b). Hence, in the vicinity of
the percolation threshold the conductivity ratio between the MC simulation results
and the values obtained from the model is shown in Fig. 3.10 for different system
sizes £ = 10, 20, and 40. For all three system sizes in Fig. 3.10 the curves look
qualitatively similar. Only the density where the dense-system behavior becomes

dominant decreases with the normalized system size £. To improve the agreement
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Figure 3.10: The conductivity ratio between the MC simulation results oy and the
values obtained from the model 0y,0qe given by Eq. (3.11) for different system sizes
(a) £ =10, (b) 20, and (c) 40 and for three conductance ratio values G;/G;s = 0.01,

1, and 100. The error bars are smaller than the size of the points.

between the MC results and the model close to the percolation threshold one could
consider a further refinement of the model to include higher order correction for the
finite-size effect. Finally, the proposed model for conductivity gives a good estimate

of the local conductivity exponents, as one can see in Figs. 3.3 and 3.7.

3.4 Random nanowire networks as transparent conductors

The networks of randomly distributed metallic NWs are promising candidates to
replace expensive indium tin oxide as the transparent conducting electrode material
in the next generation devices [14, 21-23, 111]. Two critical performance criteria
for the transparent conductors are their optical transmittance 7" and electrical con-
ductivity o [21]. Many studies [13, 21-23] have confirmed a trade-off between high
optical transmittance T and high electrical conductivity o. These quantities are

both well measurable and depend on a variety of independent structural parameters
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including the density of NWs, their length, and diameter.

The relationship between the optical transmittance 7" and the normalized density
n appears to be linear for the NWs with high length-to-diameter aspect ratio and
can be described by a simple model based on the fractional area coverage of the
NWs, see Refs. [13, 21, 23]. As proposed in Refs. [13, 21, 23|, the fractional area
coverage of the NWs in a thin-film network can be simply approximated by

Nlyd
AC: S b’
L

(3.12)

where dg is the diameter of the NWs [13, 21, 23|. The optical transmittance of the
random N'W network, using its fractional area coverage quantified by Eq. (3.12), can

be approximated by
Nlgdy

T=1-A,=1—
L}

(3.13)

and according to our definition of the normalized NW density n = NI2/L2, the

previous expression can be simplified as

T=1-2, (3.14)

T's

where rg = [;/ds is the length-to-diameter aspect ratio of NWs.

We remind that the general conductivity model for random NW networks given
by Eq. (3.11) is developed modeling NWs as widthless-sticks with infinite aspect
ratio (rs — 00). Without losing of generality, that conductivity model can also
be used for networks of randomly distributed NWs with finite but still high aspect
ratio (rs > 1). Therefore, incorporating the conductivity model given by Eq. (3.11)
into the analytical approximation for the density-dependent optical transmittance
given by Eq. (3.14), we obtain a dependence of the optical transmittance T' on the
network conductivity o shown in Fig. 3.11. The expected trade-off between the
optical transmittance 7" and the electrical conductivity o is clearly demonstrated
in Fig. 3.11, because high values of o correspond to a high normalized density n
with low 7', while lower values of ¢ correspond to a lower normalized density n

with high T'. Therefore, an intermediate normalized density n is needed to produce
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Figure 3.11: Optical transmittance 7" of a random NW network as a function of the
network conductivity o is obtained by incorporating the conductivity model given
by Eq. (3.11) into the density-dependent optical transmittance given by Eq. (3.14)
for the system with normalized size L = 20 and three conductance ratio values
G/Gs = 0.001, 0.01, and 1000. The dashed lines represent the optical transmittance
T for randomly distributed NWs with length-to-diameter aspect ratio s = 100, while

solid lines denote the optical transmittance for NWs with aspect ratio ry = 1000.

random NW transparent conductors that achieve both acceptable values of T" and
o. Also, we note that increase of length-to-diameter aspect ratio r; and junction-to-
NW conductance ratio G;/Gs is generally advantageous for increasing 7" at a fixed
0/Gs, see Fig. 3.11.

Acceptable values of the optical transmittance T and the electrical conductivity
o for the most of practical applications are T' > 0.9 and o > 0.1 S, because trans-
mittance lower than 0.9 and conductivity lower than 0.1 S result in significant power
losses, see Refs. [12, 13, 21, 23]. From the transmittance constraint 7' > 0.9 and the
requirement for achieving a percolation through the network, we obtain that the nor-
malized density of NWs should belong to the range determined by n. < n < rg/10,
see Eq. (3.14). This condition is satisfied only when n. < 7/10, i.e., when the
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length-to-diameter aspect ratio of NWs is ry > 10n., which is roughly r, > 100.
Finally, practically acceptable values of junction-to-NW conductance ratio G;/Gs
can be determined applying the conductivity constraint to the expression obtained

from Eq. (3.11) at the high-bound density r,/10, i.e., o(rs/10) > 0.1 S.

3.5 Conclusions

In this Chapter, we present the results of the numerical Monte Carlo study of the
conductivity of random NW networks for the wide range of densities and junction-
to-NW conductance ratios. We observe the transition from the conductivity of the
percolating cluster to the conductivity of the dense random NW networks with in-
creasing density. Three limiting cases are identified for the conductivity of whole
system: one in the vicinity of the percolation threshold, and two for high densities
when either the junctions or NWs are superconductive. Each of these cases has a
different exponent governing the power-law dependence of the conductivity on den-
sity (i.e., 1.29, 1, and 2, respectively). As a result, the exponent can take values
anywhere in the range (1,2) depending on the junction-to-NW conductance ratio.
For finite-size systems the density-dependent exponent can even take values lower
than 1. Therefore, it is not appropriate to use a simple scaling law to describe
the conductivity dependence on the density both for finite and dense systems. We
instead propose a comprehensive conductivity model, derived from the behavior of
the limiting cases. We find that the proposed description gives a satisfactory es-
timation of the conductivity and the local conductivity exponent (which is related
to the first derivative of the conductivity) over the whole range of the NW density
values. Finite-size effects, important for many practical realizations of the random
conducting networks, are also included in the conductivity model. Finally, using the
proposed model and an analytical approximation for the density-dependent optical
transmittance, we quantify a dependence of the optical transmittance on the elec-
trical conductivity for the random NW networks. The presented methodology could
be used to describe the properties of other conducting systems (i.e., disks, spheres,

and fibers).
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Chapter 4 Random networks of carbon nanotubes

optimized for transistor mass-production

As already noted, as-grown networks of single-walled (SW) CNTs contain both
metallic (m-CNTs) and semiconducting (s-CN'Ts) nanotubes in an approximate ra-
tio 1:2, which leads to a trade-off between on-conductance and the on/off conduc-
tance ratio [6, 47-50|. If the density of CNTs in a TFT is sufficiently high so that
m-CNTs exceed the percolation threshold, the CNT network will become predom-
inantly metallic and, hence, the on/off ratio will be very small [50]. In contrast,
if the CNT density is so low that a conduction path through m-CNTs does not
exist, a high on/off ratio can be attained, but under such circumstances the low
on-conductance is disadvantage [50, 51]. In order to suppress a possibility of con-
duction through the m-CNTs, other researchers have used additional steps after or
during the CNT synthesis process. However, all these steps prolongs the production
time and increase the production costs or create defects and add impurities in the
remaining CN'T networks.

In this Chapter, we study effects of device parameters (density of CNTs, channel
dimensions and CNT length) on their electrical transport processes, i.e., on the
on-conductance and on/of conductance ratio, in order to design an optimized and
uniform device performance without using any post-growth treatment. We identify
the probabilities of different conduction regimes of random CNT networks using the
scaling laws for asymmetric systems of percolating sticks developed in Chapter 2.
Finally, we demonstrate how geometrical aspects contribute to the feasibility of
the random CNT networks as switches with good transistor performance (i.e., high

on-current and on/off ratio) and the uniform performance of realized devices.
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4. Random networks of CNTs optimized for transistor mass-production

4.1 Numerical method

Monte Carlo (MC) simulations are coupled with an efficient iterative algorithm im-
plemented on the grid platform and are used to investigate the electrical properties
of CNT networks [4-6, 99, 103]. We consider two-dimensional systems with isotropi-
cally placed CN'Ts modeled as widthless sticks with a fixed length [N, as illustrated
in Fig. 4.1(a). The centers of the CNTs are randomly positioned and oriented in-
side a channel with length Loy and width Weg, see Fig. 4.1(a). Source and drain
electrodes are placed at the left and right sides of the channel. The top and bottom
boundaries of the system are free and nonconducting, because free boundary condi-
tions are more consistent with CN'T networks in practice. The behavior of the CN'T
network is studied in terms of the normalized CNT density n = N/L? where N
is the total number of CNTs and £ = v/LW is the normalized channel size, where
L = Len/lent is the normalized channel length and W = Wey /lont is the normal-
ized channel width, see Chapter 2. The aspect ratio of the system r is defined as the
ratio of the channel length and width » = L/W. Without elaborated post-growth
treatments, the CN'Ts synthesized using any available method are heterogeneous in
the sense that they are always a mixture of metallic and semiconducting nanotubes
with an approximate ratio of 1:2, i.e., the fraction of m-CNTs is fyy = 1/3 and the
rest are s-CNTs with the fraction fg = 2/3, see Refs. [56, 109].

An illustration of transfer characteristics (source-drain current I vs. gate volt-
age Vg) for the random CNT TFT with indicated on- Ion and off-current Iopg
is shown in Fig. 4.1(b). Also, output characteristics (source-drain current I vs.
source-drain voltage V') for the random CNT TFT are illustrated in Fig. 4.1(c).
The illustrated transfer and output characteristics have the same form as the cor-
responding characteristics of standard p-type metal-oxide-semiconductor field-effect
transistors. In this thesis, we only consider long-channel limits (Lcy > lont) con-
sistent with macroelectronics [47| and low-bias conditions under which nonlinear
effects are negligible [109], i.e., the source-drain current I is proportional to the
source-drain voltage V, as it can be observed in Fig. 4.1(c) when V' ~ 0. For long-

channel limits, conduction in the CNT network is described by percolation theory
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Figure 4.1: (a) Schematic illustration of a random CNT TFT consisting of highly
doped p-type (p+) Si as its back-gate electrode, SiO, as its gate dielectric, and
randomly distributed as-grown CNTs as its active medium. The reference direc-
tions of gate voltage Vi, source-drain voltage V', and source-drain current [ are
also indicated. (b) Transfer characteristics of the random CNT TFT (source-drain
current I on a logarithmic scale vs. gate voltage V) with appropriate on- Ioy and
off-current Iopr are illustrated. The direction of the increase of source-drain voltage
V' is indicated on the graph. (¢) Output characteristics (source-drain current I vs.
source-drain voltage V') of the random CNT TFT are illustrated. The direction of

the increase of gate voltage V(; is indicated on the graph.

as being that of a non-classical two-dimensional conductor, see Chapter 2. Two
sticks (CNTs) belong to the same cluster if they intersect. The system percolates
(conducts) if the electrodes (source and drain) are connected with the same cluster.
The percolation threshold of the infinite-size stick system is defined by the critical
density n. ~ 5.64. Similarly, the percolation threshold of only s-CNTs (m-CNTs) is
defined by the critical density n./fs ~ 8.46 (n./fu ~ 16.9).
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4. Random networks of CNTs optimized for transistor mass-production

The conductance along a CNT segment in the on-state, G, is assumed to be

uniform and can be calculated using Refs. [50, 59, 117]

1
DA leg

Glog = (4.1)

where e is the electron charge, h is Planck’s constant, I is the length of the CNT
segment, and A is the mean free path of the electrons, which is taken as 1.0 ym for
m-CNTs and 0.3 pm for s-CNTs [118-120]. We consider that the conductance of
an m-CNT is independent of the gate voltage [109] and in the off-state is also given
by Eq. (4.1). At the same time, we assume that the conductance of an s-CNT in
the off-state is 10° times lower than in the on-state, since the on/off ratio is usually
about 10° for well-performing transistors based on individual s-CNTs |121, 122|. We
note here that in real systems, the gate dielectric and gate leakage also contribute to
the off-current, and thus the on/off ratio. Equation (4.1) assumes diffusive electrical
transport through the CNTs typical for rodlike nanostructures whose length is larger
than the mean free path of the electrons (lcnyt > A). For the diffusive electrical
transport the electrical conductance of a stick segment is inversely proportional to
the length of the CNT segment (4e?/h)(\/lseg), see Ref. [105, 112]. The conductance
of a CNT whose length is lower than the mean free path of the electrons (lont < A)
is near the ballistic transport limit 4e?/h and also can be assumed by Eq. (4.1), see
Ref. [118, 122].

Internal nodes for contacts between pairs of CN'Ts are distinguished from bound-
ary nodes for contacts between CNTs and the source/drain electrodes. The contact
conductances for the internal nodes are assigned the following values: (i) 0.1¢2/h
for the junction between two m-CNTs or between two s-CNTs and (ii) 100 times
lower conductance for the junction between one m-CNT and one s-CNT, since we
neglect the rectifying behavior under low-bias conditions [109, 110]. The contact
resistance at the boundary nodes is neglected since electrodes fabricated using, for
example, Ti [58], Au [34], Pd [122], or aligned arrays of m-CNTs [123] yield good
Ohmic contact to CNTs. Therefore, if a CNT intersects an electrode the potential of

the electrode is applied to the intersection point. Kirchhoff’s current law was used
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to balance the current flow through each node of the created network. An iterative
equation solver (i.e., CGM with Jacobi preconditioner explained in Appendix D)
has been employed to solve a large system of linear equations following from Kirch-
hoff’s laws, as it was explained in detail in section 3.1. After obtaining the total
source-drain current [ under an applied voltage V' the macroscopic electrical con-
ductance of the system is evaluated as G = I/V." Finally, for each set of system
parameters, electrical conductances for the on- and off-state are calculated for more
than 10° independent MC realizations for systems with normalized size L = W = 2,
down to 10* realizations for the largest system L = W = 50 studied. The results
obtained using our conductance model show excellent agreement with recently pub-
lished experimental results, see section 4.4. We note here that our conductance
model can also be applied to random networks of multi-walled (MW) CNTs with a

small diameter?.

4.2 Symmetric-channel results

The randomly generated CNT network, if conducting, belongs to one of three com-
plementary CNT network regimes according to its percolation characteristics: (i)
neither m-CN'T nor s-CNT paths exist but the whole network percolates through
a mixed path comprising m- and s-CNTs (SM), (ii) only s-CNT paths exist (SM),

!The on/off ratio is defined as the ratio of the on- and off-state currents determined at the
same source-drain voltage V', i.e., Ion/Iorr. We only consider low-bias conditions, i.e., V = 0,
under which nonlinear effects are negligible and the currents are given by Ion = GonxV and
Iorr = GorrV, respectively. Hence, the on/off current ratio Ionx/Iorr is equal to the on/off
conductance ratio, i.e., Gon/GoFF-

2SW CNTs have the smallest diameter of all CNTs, distributed within a narrow range (dont =
0.8 — 5 nm), and a length lcnT from tens of nanometers to millimeters, whereas MW CNTs have
a larger diameter (~ 3 to > 100 nm) and lengths similar to those of SW CNTs, as noted in
[11]. Our scaling model for systems of percolating sticks, which describes the operation regimes
of random CNT TFTs, is valid for both SW and MW CNT networks as long as the CNTs can be
modeled as widthless sticks, i.e., lonT/dont > 1. On the other hand, the electrical characteristics
of individual CNTs are primarily determined by their band gap [11]. It is well known that the
band gap of an s-CNT depends inversely on its diameter. However, this dependence is not highly
pronounced in the case of SW CNTs, since they have small diameters, distributed within a narrow
range [11]. Therefore, our conductance model, which does not include the diameter of CNTs as a
parameter, is applicable to SW CNT networks, as shown in the supplementary material, section 1.
For the same reason, our conductance model is applicable to the random networks of MW CNTs
with small diameters (dent < 5 nm), because each individual nanotube in a small-diameter MW
CNT behaves similar to a SW CNT [11].
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and (iii) at least one m-CNT path exists (M).

Figure 4.2 illustrates the structure of the CNT networks and the redistribution
of the currents in on- and off-state with increasing CNT density n. When the CNT
density n increases the randomly generated CN'T network moves from one operation
regime to another. The first regime (SM) corresponds to a situation when the density
of CNTs (n = 8) is higher than the percolation threshold of the entire network n.
but lower than the percolation threshold of only s-CNTs (n. < n < n./fs). In
this situation the percolating network consists mixed m- and s-CNTs. As a result,
the on-conductance Gon and resulting on-current Ioy are reduced by the presence
of the low-conducting s-CNT /m-CNT junctions, see Fig. 4.2(a). At the same time,
since an m-CNT path does not exist, off-conductance is low and therefore, the on/off
ratio is high, see Figs. 4.2(a) and (b). The second operation regime (SM) occurs
for the medium CNT density (n./fs < n < n./fu) when only s-CNT paths exist,
and the current flows through high-conducting s-CNT/s-CNT junctions resulting
in a high on-current Ioy, see Fig. 4.2(c). However, the CNT density (n = 12) is
still lower than the percolation threshold of only m-CNTs and the CNT TFT in
the off-state is not short-circuited through an m-CNT path. Therefore, the CNT
network can simultaneously achieve high on-conductance Gox and a high on/off
ratio Gon/Gorr, see Figs. 4.2(c) and 4.2(d). Finally, the third regime (M) of the
CNT network according to the percolation characteristics occurs at densities close
to and above the percolation threshold of only m-CNTs, i.e., n./fy. For a high
CNT density (n = 16) at least one m-CNT path exists and a high on-conductance
is obtained, see Fig 4.2(e). On the other hand, in the off-state the CNT network is
shorted through the m-CNTs and, hence, the on/off ratio is very low, see Figs. 4.2(e)
and 4.2(f). Therefore, the CNT network in the M operation regime cannot be used
as an active media for transistors with a high switching performance.

According to the determined parameters for moments of the percolation probabil-
ity distribution function given in section 2.4, we will determine a region of the CNT
density n where s-CNT paths are dominant (SM) and, therefore, the on-current and
on/off ratio are expected to be high. Details of our analytic model for the percolation

probability functions for symmetric channels are given in the next subsection.
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Figure 4.2: Simulated on- ((a), (c), and (e)) and off-current ((b), (d), and (f))
distributions for different CN'T densities. The source-drain voltage is V' = 0.1 V, the
CNT length is lcnT = 5 um, and the channel dimensions are Lcyg = Weg = 50 pm,
i.e., the normalized system size is L = 10. (a) When the density of CNTs (n = 8) is
significantly lower than the percolation threshold of only s-CNTs (n < n./fs), the
dominant percolation domain is through mixed paths comprising m- and s-CNTs
(SM). (b) Since there is no percolating path through only m-CNTs the off-current
is low, i.e., the on/off ratio is high. (c¢) For a higher CNT density (n = 12) only
s-CNT paths exist (SM), resulting in a high on-current Ioy. (d) This CNT density
(n = 12) is still lower than the percolation threshold of only m-CNTs and, therefore,
the CNT TFT is not short-circuited in the off-state and the on/off ratio is still high.
(e) For high CNT density (n = 16) the m-CNT network percolates. (f) The CNT
network in the off-state is shorted through the m-CN'Ts.
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4.2.1 Symmetric-channel percolation probability

Here we calculate the percolation probability dependence on the system size and
density for three types of CNT networks: SM, SM, and M. For a symmetric-
channel configuration the normalized length, width, and system size are equal, i.e.,
L =W = L. The percolation probability function R, ;, gives the probability that the
network with the total CNT density n and the normalized system size L percolates
in the source-to-drain direction. Similarly, the corresponding probability of the
CNT network with the density n and the normalized system size L to achieve the
percolation of SM, SM, or M operation regime are RE}%, RiML, and R%L, respectively.
Finally, from the complementarity of SM, SM, and M domains for a randomly

generated CNT network we obtain
RN+ RM L RM =R, ;. (4.2)

The percolation probability function R, ; can be approximated by a cumulative
distribution function given by Eq. (2.28) as it was explained in section 2.6. Similarly,
the percolation probability function of an M configuration can also be approximated
by Eq. (2.28) as follows

R%L = Ran,La (4~3)

while the probability to attain an SM configuration is
R = Rygni (1= Rpynr) (4.4)
and finally for an SM configuration from Eqs. (4.2), (4.3), and (4.4) we obtain
Ry} = Rur — Ryt — Rpynr + Ry Ryt (4.5)

According to Eqgs. (2.28) and (4.3)-(4.5) we can approximate the percolation prob-
ability functions for as-grown CNT networks using the normalized system size L,
the density n, and the finite-size scaling constants for two-dimensional stick systems

given in Table 2.1. This is demonstrated in Fig. 4.3. The derived expressions for
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Figure 4.3: The percolation probability dependence on the normalized density n
for overall percolation R, ; and different percolation regimes RiML, Rg%, and RTI\{{L.
The points are the MC simulation results and the solid lines are obtained using
Egs. (2.28) and (4.3)-(4.5). (a) For the normalized system size L = 5 percolation
probability variance is comparable to the system size and overlaps exist between SM,
SM, and M regimes. Normalized density n’*®* determines value where percolation
probability through only s-CNT paths RTSLML reaches its maximum R}P**. (b) When
the normalized system size is larger, L = 20, the percolation regimes become well

high . . .
defined. Values n', and n; % determine a range of densities where percolation

probability of realizations through only s-CNT paths REML is higher than a relative

number R (0 < R < 1).

the percolation probability functions, i.e., R, 1, RiML, REE, and R%L, represent an
excellent fit to the data calculated using our MC simulations.

For a small system size L = 5 the percolation probability variance is large com-
pared to the system size and the overlap exists between SM, SM, and M regimes,
see Fig. 4.3(a). For the densities n < 8 the number of SM realizations is higher than
the number of SM realizations, while the number of realizations with metallic paths
M is negligible. Still, this is far from a satisfactory situation, since the conduction
through a combined network of s- and m-CNTs leads to a degradation of the device

characteristics, i.e., to lower values of the on-conductance Goy, see Fig. 4.5(a). The
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Figure 4.4: The dependence of the SM-dominant region on the normalized system
size L, for different tolerances R = 0.7,0.8,0.9, and 0.99. The points are the MC
simulation results and the solid lines are obtained using our analytic model given
by Egs. (2.28) and (4.3)-(4.5). With increasing system size L, the value of CNT

max

density n}7'®*, where the percolation probability only through s-CNT paths R,SLML
reaches its maximum, converges to 2n., the low-bound density nlfvlv% to n./fs, and
the high-bound density n};’% to ne/ fu.

increase of the normalized system size L is beneficial for overall transistor perfor-
mance. For L = 20, see Fig. 4.3(b), the three regimes SM, SM, and M become well
resolved. We also note that the maximum of the SM percolation probability R¥*

increases with increasing the normalized system size L and converges to a value of
1, see Figs. 4.3(a) and 4.3(b).

Following this, we define a density range with lower nlLOVJVL2 and upper boundary

n}Lng}’? , Where the probability of percolation only through s-CN'T paths R;SLML is higher
than a relative number R (0 < R < 1), see Fig. 4.3. As one would expect, the range
defined by nlzi% and nP%; increases with the normalized system size L and decreases

with R, see Fig. 4.4. We can further observe interesting features of the shape of the

SM percolation density range with increasing system size: (i) the position of SM
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max

percolation probability maximum n}'®* converges to 2n, with increasing system size,
(ii) the low-bound density nILO"]V% decreases and converges to the percolation threshold
of s-CNT paths n./ fs, and (iii) the high-bound density n}Llig}? increases and converges

to the percolation threshold of m-CNT paths n./ fy, see Fig. 4.4.

4.2.2 Symmetric-channel on-conductance and on/off ratio

In the rest of this section, we will quantify the dependence of the calculated on-
conductance and on/off ratio on the CNT density, length, and system size. The
aim of this paper is to restrict the ranges of these parameters for which acceptable
transistor characteristics are obtained with a realization probability higher than
99%. For most kinds of integrated circuit applications the acceptable values for
on-conductance and on/off ratio are 1 uS and 10, respectively [56, 119, 124].

In Fig. 4.5, probability distribution functions of the on-conductance Gon and the
on/off ratio Gon/Gorr are given for different CNT densities: n = 8,12, and 16. For
n = 8, we observe a wide distribution for both the corresponding on-conductance
Gon and the on/off ratio Gon/Gorr due to a detrimental influence of mixed paths
(SM), see Figs. 4.5(a) and 4.5(d). On the other hand, for n = 12, which roughly
corresponds to 2n., we observe roughly 10 times higher on-conductance Gon and
a narrower distribution of the on/off ratio Gox/Gorr, centered at about 10%, see
Figs. 4.5(b) and 4.5(e). However, due to the small system size L = 5 we observe a
number of realizations consisting of m-CNT paths with the on/off ratio less than 10.
This is an unwanted situation in any application, and it can be resolved by increasing
the normalized system size L. Further increase of the CN'T density n only degrades
the switching on /off performance of random CNT networks. For n = 16, the number
of short-circuited realizations is approaching 50%, see Fig. 4.5(c) and 4.5(f).

The results are shown in Fig. 4.6 as a function of the CNT normalized density
n for lent = 5 pm and the system size Weyg = Leg = 100 pm, i.e., the normalized
system size L = 20. The on-conductance Goy increases with CNT density n and
the 1st and 99th percentiles converge to the median value, see Fig. 4.6(a). The
difference between the 99th and 1st percentile of the on/off ratio Gon/Gorr reaches

max

a minimum close to nj;™* and rapidly increases when the CNT density n becomes
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Figure 4.5: The probability distribution functions of the on-conductance Gox (a),
(b), and (c) and the on/off ratio Gox/Gorr (d), (e), and (f) for overall and particular
conduction regimes SM, SM, and M are given for different CNT densities. The
CNT length is lcyT = 5 pm, the channel length is Weyg = Leg = 25 pm, i.e., the
normalized system size is L = 5, and the number of independent MC realization is
higher than 107.

higher than ngg)%.gg, see Fig. 4.6(b). For densities higher than ngégvg'gg the percolation
probability of M configurations R%L is higher than 1%), i.e., R%L > 1%, and therefore
the lst-percentile realization belongs to the M regime and a sharp decrease in on/off
behavior is obtained. One can observe that the maximum of the on/off ratio is
between the densities nlz%vfo_gg and ngé%g_gg. More than 99% of realized devices exhibit
simultaneously on-conductance higher than 1 xS and an on/off ratio higher than
10* when the normalized density n is close to n5i*, see Figs. 4.6(a) and 4.6(b).

A similar behavior of the on-conductance Gox and on/off ratio Gon/Gorpr can
be observed in Fig. 4.7(a) with increasing the normalized system size L. While
the percentiles of the on-conductance Gon experience continuous convergence to
the infinite system value, the on/off ratio exhibits a sharp transition in the 1st-
percentile behavior at the normalized system size L =~ 7. For a system size bellow
L < 7 the percolation probability of realizations through only m-CNTs is higher than

1%, i.e., R)'; > 1%, and therefore the Ist-percentile realization is short-circuited
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Figure 4.6: On-conductance Goy (a) and on/off ratio Gon/Gorr (b) as a function
of the normalized CN'T density n for a symmetric TF'T with the CNT length lcnt =
5 pm and the channel size Lcy = Weg = 100 pm, i.e., the normalized system size
L = 20. The solid line represents the 1st percentile, while the dashed and dotted lines
correspond to the median and 99th percentile, respectively, of the device population.
The arrows denote regions where more than 99% of realized devices have: (a) on-

conductance higher than 1 uS (horizontal bold line) or (b) an on/off ratio higher

than 10* (horizontal bold line). The positions of the lower nlgy% oo and higher ny o0

bounds of the 0.99 percolation probability for the SM regime are also given, as well

max

as the position of SM probability maximum niy.

with Gon/Gorr < 10, see Fig. 4.5. On the other hand, more than 99% of realized
devices exhibit simultaneous on-conductance higher than 1 xS and an on/off ratio
higher than 10* when the normalized system size is L > 16, see Fig. 4.7(a).

The influence of CNT length /oyt on the transistor performance is explored in
Fig. 4.7(b). Here, the normalized system size is fixed and large, L = 20, in order
to minimize the influence of finite-size scaling effects on the transistor performance,
see Ref. [125]. Therefore, on-conductance Gon and on/off ratio Gox/Gorr depend

only on the electrical characteristics of individual nanotubes, i.e., their length [cnT,
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Figure 4.7: The dependence of on-conductance Goy and the on/off ratio Gon/Gorr
on (a) the normalized system size L for symmetric-channel TFTs with CNT length
lont = 5 pm and a normalized density equal to n** and (b) the CNT length

lent for a symmetric system with the normalized size L = 20 and a normalized

max

CNT density n equal to ng™ = 11.45. The solid lines represent the 1st percentile,
while the dashed and dotted lines correspond to the median and 99th percentile,
respectively, of the device population. The arrows denote regions where more than
99% of realized devices have on-conductance higher than 1 xS and an on/off ratio
higher than 10* (horizontal bold lines).

in accordance with Eq. (4.1). When the CNT length lcnr is larger than the electron
mean free path, i.e., oyt > 1 pm, diffusive transport in CNTs becomes dominant
and the on-conductance Gon of the network starts to decrease linearly with the
CNT length, see Fig. 4.7(b). At the same time, due to an increased resistance of
m-CNTs, leak-currents in the off-state through the m-CNTs decrease and the on/off
ratio improves with increasing CNT length, see Fig. 4.7(b). It is important to note
that in this trade-off, the improvement of the on/off ratio is one order of magnitude
with increasing lont from 1 pm to 10 pm while Gy decreases only 10%. However,

more than 99% of realized devices exhibit simultaneously high on-conductance and a
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high on/off ratio when the CNT length is between lont = 4—12 pum, see Figs. 4.7(b).

4.3 Asymmetric-channel results

Asymmetric systems have lower finite-size scaling exponents than symmetric sys-
tems. This results in more pronounced finite-size scaling behavior than in the sym-
metric case and allows us even more design freedom. In this section we will performed

a parameter study to find the optimal channel dimensions for asymmetric-channel

CNT TFTs.

4.3.1 Asymmetric-channel percolation probability

Similarly to the case of the symmetric channel, the overall percolation probability
function of an asymmetric channel R, ;  can be approximated by the cumulative
distribution function given by Eq. (2.28) using the average percolation density (n) ., w
given by Eq. (2.20) and the percolation density standard deviation Aj gy given
by Eq. (2.21), where the corresponding finite-size scaling exponents are given in
Table (2.1).1 Also, the percolation probability functions for the three regimes of CNT
percolation (M, SM, and SM) can be calculated using Eqs. (4.3), (4.4), and (4.5),
respectively. We have previously found in Chapter 2 that the average percolation
density of asymmetric systems (n),w has a lower exponent, i.e., the first-order
effects are presented through the exponent —1/v, compared to the second-order
effects in the case of symmetric systems and the exponent —1/v — ;. This results
in a more pronounced finite-size scaling behavior in the asymmetric case for the
average percolation density (n), w and the percolation density standard deviation
Apw.

Using Eqgs. (2.28) and (4.3)-(4.5) we can approximate the percolation probability
functions for as-grown CNT networks using the normalized system size £, the aspect
ratio r, the density n, the fraction of the m-CNTs fyr, and the finite-size scaling coef-

ficients and exponents for the two-dimensional stick systems. This is demonstrated

1 As already noted, the conversion of the normalized channel length L and width W to the
normalized channel size £ and aspect ratio r can be done according to £ = LW and r = L/W,
and in the opposite direction L = £+/r and W = L//r.
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Figure 4.8: The percolation probability functions of two symmetric (a) and (d)
and two asymmetric systems (b) and (c). Different percolation characteristics are
shown: for overall CNT percolation R, 1w and for three operation regimes RE’ML?W,
RE%W, and R%Lw. The points are the MC simulation results and the solid lines
are obtained using Eqgs. (2.28) and (4.3)-(4.5).

in Fig. 4.8, where the derived expressions for the percolation probability functions
represent an excellent fit to the data calculated using our MC simulations. Two
symmetric systems with L = 5 and 20 are compared with the asymmetric ones with
the aspect ratios 7 = 1/4 and 4. The overlap between SM, SM, and M regimes for
the long-channel system with » = 4 is lower in comparison to the narrow-channel
configuration with r» = 1/4, see Figs. 4.8(b) and 4.8(c). Unfortunately, long-channel
configurations, e.g., r = 4, suffer from a low on-conductance due to the long path-
ways for the electrical transport in the source-to-drain direction |51, 126]. However,
the CNT density n is proportional to the collection time during a chemical vapor
deposition process and it can be controlled precisely by adjusting the collection time
as shown in Ref. [39]. The precise control of the density n during the CNT synthesis
process enables production of transistors with the narrow SM density regions, i.e.,
narrow channels. Hence, we can conclude that decrease of the channel length L,
i.e., decrease of the aspect ratio r, is a good strategy for the performance improve-

ment for two reasons: (i) the on-conductance increases with decreasing the aspect
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Figure 4.9: The dependence of (a) the normalized density n}'{j where the proba-

bility of SM percolation reaches maximum and (b) the ratio between the MC sim-

ulation results n3% on the values n¢! obtained using our analytic model given

by Egs. (2.28) and (4.3)-(4.5) on the normalized channel width W and length L.

The low-bound nY, g (¢) and high-bound density n}ii,gé}yo.gg (d) determine a density

range where the probability of SM realizations is higher than 0.99.

ratio [126] and (ii) the percolation through only s-CNT paths for a narrow-channel
configuration occurs at lower densities, see Figs. 4.8(b) and 4.8(c), resulting in a
faster production of random CNT TFTs.

For asymmetric-channel configurations the dependence of the normalized density
where SM percolation probability reaches its maximum ni5 on the normalized
system dimensions L and W is shown in Fig. 4.9(a). The normalized density n'%;
increases with increasing normalized channel length L and decreases with increasing
width W, see Fig. 4.9(a). The agreement between the MC simulation results nf'%;
and the values nf‘{,{‘}el obtained from our analytic model given by Eqgs. (2.28) and

(4.3)-(4.5) is better than 1% for the systems with L > 5, see Fig. 4.9(b). From
Figs. 4.9(c) and 4.9(d) we expect to achieve 99% only s-CNTs conducting realizations

73



4. Random networks of CNTs optimized for transistor mass-production

roughly above the line LcgWen > 250 2. Within that region we see that nlffvmovgg
primarily depends on the system width W. On the other hand, the upper limit of

the 99% confidence region, n}]f’gvl‘}’().gg depends on both the normalized length L and

width W.

4.3.2 Asymmetric-channel on-conductance and on/off ratio

The random CNT TFTs with an asymmetric channel have similar characteristics of
the on-conductance Gox and on/off ratio Gon/Gopr compared to the symmetric-
channel configurations, see Figs. 4.6 and 4.10. The on-conductance Goy also in-
creases with increasing CN'T density n and the 1st and 99th percentiles converge to
the median value, see Fig. 4.10(a). The difference between the 99th and 1st per-
centile of the on/off ratio Gon/Gorr also reaches its minimum close to the density
where the probability of SM percolation reaches its maximum, i.e., ng'sp, and rapidly
increases when the CNT density becomes higher than ngfgﬁio_gg, see Fig. 4.10(b). Sim-
ilarly, the maximum of the on/off ratio is between densities ngfgvo’(],gg and n§f§§70‘99,
and more than 99% of realized devices exhibit simultaneously on-conductance higher
than 1 pS and an on/off ratio higher than 10 when the normalized density n is close
to ngay, see Figs. 4.10(a) and 4.10(b). Hence, the density npj; for asymmetric, as
well as symmetric, configurations can be used as a compromise value for obtaining
the optimized transistor performance, see Figs. 4.6 and 4.10. However, narrow-
channel configurations generally have a higher on-conductance compared to sym-
metric channels as noted in Ref. [126]. Indeed, as can be seen from Figs. 4.6(a) and
4.10(a), a narrow-channel TF'T with the aspect ratio r = 8/50 has roughly 1/r ~ 6
times higher on-conductance Gon compared to the symmetric-channel configuration
with the same normalized channel size £ and CNT length lonr.

The 1st percentiles of the on-conductance Gox and on/off ratio Gon/Gorr are
calculated for the same structural parameters L, W, and n7'%;, and different CNT
lengths lcnt = 4,8, and 12 pm, see Fig. 4.11. In accordance with the results shown
for the symmetric-channel configuration in Fig. 4.7(b) we note that with increas-

ing CNT length lcnyt the on-conductance Gon decreases, while the on/off ratio

Gon/Gorr increases, see Fig. 4.11. When the CNT length Icnt is bellow 4 um
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Figure 4.10: On-conductance Gox (a) and on/off ratio Gon/Gorr (b) as a function
of the normalized CNT density n for a narrow-channel TFT with the CNT length
lent = 5 pm and the channel dimensions Loy = 40 pum and Wey = 250 pum, i.e.,
the normalized system dimensions L = 8 and W = 50. The solid line represents
the 1st percentile, while the dashed and dotted lines correspond to the median and
99th percentile, respectively, of the device population. The arrows denote regions
where more than 99% of realized devices have: (a) on-conductance higher than 1 uS
(horizontal bold line) or (b) on/off ratio higher than 10* (horizontal bold line). The
positions of the lower né‘f‘é”ovolgg and higher n?f&olgg bounds of the 0.99 percolation

probability for SM regime are also given, as well as the position of SM probability

1 max
maximum 7ng'sy.

ballistic electrical transport becomes dominant and the on/off ratio becomes lower
than 10, see Figs. 4.11(b), 4.11(d), and 4.11(f). On the other hand, when lonT
is higher than 20 pm, high on-conductance can be attained only for a very large
channel with dimensions of the order of 1 mm, see Fig. 4.11(e). Hence, the CNT
length in the range lcnt = 4 — 20 pm results in an acceptable balance between the
on-conductance and on/off performance of CNT TFTs.

Regions A and B in Fig. 4.11 represent the CNT networks with a low 1st-

percentile value of the on-conductance Gpon. Region A is defined as a region where
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Figure 4.11: The results for the 1st percentile of the on-conductance Gox ((a), (c),
and (e)) and the on/off ratio Gon/Gorr ((b), (d), and (f)) calculated at n}'3y as a
function of the normalized channel width W and length L for different CNT lengths
lent = 4,12, and 20 um. Region A represents CNT TFT configurations with a
probability of SM percolation higher than 1%, i.e., REEW > 1%, while region B
represents configurations with a high aspect ratio (here r > 2). TFTs in the C
region feature networks with a probability of M percolation higher than 1%, i.e.,
R%L,W > 1%, while the region D denotes networks with a high CNT density (here
n > 15). The area above the dotted lines (LW = 250 and L/W = 1.2) can be used
as an approximation of the region where the random CNT TFTs simultaneously

attain high on-conductance and a high on/off ratio.
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the probability of SM percolation is higher than 1%, i.e., RE}TL{W > 1%, and therefore
the 1st-percentile realization is a mixed path with low-conducting s-CNT/m-CNT
junctions. The realizations in region B have a high value of the aspect ratio r» and
therefore a low overall on-conductance [126]. On the other hand, regions C and
D in Fig. 4.11 represent the CNT networks with a low 1st-percentile value of the
on/off ratio Gox/Gorr. The TFTs in region C feature networks with a probability
of percolation through only m-CNTs higher than 1%, i.e., R%LW > 1%, and there-
fore the 1st-percentile realization is short-circuited having a very low Gon/GoFF-
The networks operating in D region are not short-circuited but the on/off ratio is
low because of high leak-currents in off-state through the high-density m-CN'Ts. We
can conclude that the optimal dimensions of the CNT TFT channel regarding the
device switching performance are those outside the regions A, B, C, and D shown
in Fig. 4.11. The dotted lines approximate the region where CN'T TFTs attain high
on-conductance and, at the same time, a high on/off ratio. Therefore, the ran-
dom CNT TFTs with a channel aspect ratio Leg/Wen < 1.2 and a normalized size
LeaWen/lEnt > 250 with a probability higher than 99% exhibit on-conductance

higher than 1 xS and, at the same time, an on/off ratio higher than 10

4.4 Comparison of conductance model and experimental re-

sults

In this section we compare the results obtained using our conductance model with
experimental results from recently published papers of other authors. The experi-
mental results from Ref. [58| (i.e., its Fig. 3) are compared with the results obtained
using our conductance model in Fig. 4.12. The parameters of the model are the same
as those measured in Ref. [58], i.e., the channel length is Loy = 10 pm, its width
is Wen = 35 pm, and the CNT length is lont = 2.5 um. Hence, the normalized
length and width of the network are L = 4 and W = 14, respectively. Since Fig. 3
in [58] shows a gate response of the source-drain current I at applied low voltage
V = 0.1V, the conversion to on- and off-conductance is done according to G = I/V

for gate voltages equal to —4 V and 6 V, respectively. The values of CNT densities
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Figure 4.12: On-conductance Goy (a) and on/off ratio Gox/Gorr (b) as a function
of the normalized density n. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. 58| (its
Fig. 3). Parameters of the model are the same as those measured in Ref. [58], i.e.,
the channel length is Leyg = 10 pm, its width is Weg = 35 pm, and the CN'T length

is lCNT =2.5 .

for the experimental points p = 1,3,3.5, and 4.0 ym~2 are taken from Ref. [47] and
the conversion to the normalized CNT density n is done according to n = p [Zxp. As
can be seen in Fig. 4.12, the excellent agreement is obtained between the experimen-
tal points and the results calculated using our conductance model. As expected, the
on-conductance Gy increases with the normalized density n, and a sharp drop of
on/off ratio Gon/Gorr is obtained at a high density. The experimental values of the
on-conductance are high, i.e., higher than 1 uS, since the realized networks present
narrow-channel configurations with a low value of the aspect ratio r = 2/7, see [126].
As our analytic model, given by Egs. (2.28) and (4.3)-(4.5), predicts, the probability
of short-circuited realization for the last three experimental points, with the density
n > 15, is higher than 80%, i.e., R} 5 414 > 80%, and therefore, a low on/off ratio
Gon/Gorr < 20 was obtained in the experiment, as can be seen in Fig. 4.12. For

the first experimental point (n & 6), the probability of a short-circuited percolation
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Figure 4.13: On-conductance Gox (a) and on/off ratio Gon/Gorr (b) as a function
of the normalized density n. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. [51] (its
Fig. 2(b)). Parameters of the model are the same as those measured in Ref. [51],
i.e., the channel length is Lcpy = 100 pm, its width is Wey = 50 pm, and the CN'T
length is [gnt = 5 pm.

is low, i.e., ng/f4714 < 1%, and therefore, a high on/off ratio Gon/Gorr Was obtained
in the experiment. However, high probability of SM percolation for the first experi-
mental point, i.e., REX{M > 60%, is a reason for a high variance of on/off ratio, i.e.,
a lower value of its 1st percentile Gon/Gorr ~ 103, see Fig. 4.5(d).

The experimental results from Ref. [51] (i.e., its Fig. 2(b)) are compared with
the results obtained using our conductance model in Fig. 4.13. The parameters of
the model are the same as those measured in Ref. [51], i.e., the channel length is
Leg = 100 pm, its width is Weg = 50 pm, and the CNT length is leyt = 5 pm.
Hence, the normalized length and width of the network are L = 20 and W = 10,
respectively. The conversion from the CN'T density p to the normalized CN'T density
n is done according to n = p [y . As can be seen in Fig. 4.13, a good agreement

is obtained between the experimental results and the results calculated using our

conductance model. As the analytic model predicts (see section 4), the last three
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Figure 4.14: On-conductance Gox (a) and on/off ratio Gon/Gorr (b) as a function
of the channel width Wcy. The lines represent results obtained using our con-
ductance model, while the points represent experimental results from Ref. [34] (its
Fig. 2(a)). Parameters of the model are the same as those measured in [34], i.e., the
channel length is Lecg = 100 pm, CNT length is lcnT = 5 pm, and the normalized
density is n = 40.

experimental points, with the density n > 25, have the percolation probability of
short-circuited realizations R).,; 5010 higher than 99% and therefore, low on/off
ratio Gon/Gorr < 20 was obtained, as can be seen in Fig. 4.13. At the same time,
the first two experimental results with n < 15 have the probability of short-circuited
realizations R71\14<15720710 lower than 1% and therefore, a high on/off ratio Gon/Gorr
was obtained in the experiment.

Finally, the experimental results from Ref. [34] (i.e., its Fig. 2(a)) are compared
with the results obtained using our conductance model in Fig. 4.14. The parameters
of the model are the same as those measured in Ref. [34], i.e., the channel length
is Lcy = 100 pm, the CNT length is lcyt = 5 pm, and the normalized density
is n = 40. Hence, the normalized length of the network is L = 20. As can be
seen in Fig. 4.14, the excellent agreement is obtained between the experimental

results and the results calculated using our conductance model. As the analytic
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model predicts (see section 4), the last two experimental points with Weg > 10 pm
(W > 2) have the percolation probability of short-circuited M realizations R%,zo,wg
higher than 95% and, therefore, low on/off ratio Gon/Gorr < 30 was obtained in
the experiment, as can be seen from Fig. 4.14. For the first experimental point,
i.e., Wepg = 2 pum, the overall percolation probability is lower than 85%, i.e., more
than 15% of all realizations are nonconducting. Therefore, this configuration is
not applicable for the transistor mass-production because the repeatability and the
uniformity of realized devices are uncertain. Even if nonconducting realizations are
rejected, the on-conductance of remaining realizations is very low, of the order of
0.1 uS, see Fig. 4.14(a). At the end, we note that our conductance model confirms
linear increase of the on-conductance Gy with increasing channel width Wey when

Wen > 20 pm (i.e., W > 4), see Fig. 4.14(a).

4.5 Conclusions

In this Chapter, we present numerical simulation results for the switching perfor-
mance of transistors based on random networks of as-grown CNTs. The CNT thin
films studied here are considered as a suitable material for low-cost, flexible, and
transparent field-effect transistors. One factor that makes CNT films complex is
that they contain both metallic and semiconducting nanotubes. Only the s-CNTs
have highly modulated conductance by the gate and only junctions between CNTs
of the same type are highly conductive. Therefore, the random CNT TFTs that
percolate only through s-CN'T paths can simultaneously attain high on-conductance
and a high on/off ratio. As a result, a key limitation in scaling up the production
of random CNT TFTs with a high on-current and on/off ratio is a requirement to
achieve uniform performance of the realized devices.

We determine the probabilities of different conduction regimes for as-grown CNT
networks and derive expressions which represent an excellent fit to the data calcu-
lated using numerical simulations. We also show that the fraction of 1:2 of metallic
to semiconducting nanotubes provides sufficient design freedom. We avoid creat-

ing m-CNT paths, while at the same time determine a density range where the
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rate of realizations that percolate only through s-CNT paths is higher than 99%.
Since there is a trade-off between the on-conductance and on/off ratio regarding the
CNT density, we show that the position of the only s-CN'T percolation probability
maximum can be used as a good balance for the CNT density value. In the CNT
conductance model we have included diffusive electrical transport through CNTs
typical for rodlike nanostructures whose length is larger than the mean free path of
the electrons. This enables us to consider the influence of the CNT length on the
device characteristics. When the CNT length increases, diffusive transport in the
CNTs becomes dominant and on-conductance decreases with CNT length. At the
same time, because of the increased resistance of m-CNTs, the leak-currents in the
off-state through the m-CNTs decrease and the on/off ratio improves. This results
in a further trade off, however, the improvement of the on/off ratio is much larger
than the detrimental loss of the on-conductance.

Asymmetric systems have lower finite-size scaling exponents than symmetric sys-
tems. This results in more pronounced finite-size scaling behavior than in the sym-
metric case and enables us even more design freedom. We performed a parameter
study to find the optimal channel dimensions for CNT TFTs. We present a region
of the channel dimension where most of the random CNT realizations have satis-
factory transistor performance. According to the criteria of high on-conductance at
the same time as a high on/off ratio, within the 99% confidence range, the optimal
region of the channel dimensions can be estimated with aspect ratio Loy/Wen < 1.2
and size LecyWen/ Z%NT > 250. This conclusion remains valid when the CNT length
belongs to the range oyt = 4 — 20 pm, resulting in an acceptable balance between
the on-conductance and on/off performance of the random CNT TEFTs. We have also
demonstrated that the on-conductance and on/off ratio results obtained using our
conductance model show excellent agreement with recently published experimen-
tal results. Hence, we conclude that the channel dimensions Loy and Wey, CNT
length [N, and density n are the only parameters needed for the description and

optimization of transport processes in TFTs based on random networks of as-grown

CNTs.
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Chapter 5 Modeling and optimization of quantum

cascade laser characteristics

In recent years the scientific community has witnessed rapid progress in the
development of unipolar semiconductor quantum cascade lasers (QCLs) [60, 61, 63—
66, 71-74|. In the mid- and far-infrared spectral range, these powerful light sources
are particularly appreciated for the wide scope of operating wavelengths which can
be achieved by using the same heterostructure material combination. The wave-
length tunability is realized by altering the active region design, i.e., modifying the
layers’ widths and composition [63-65]. The QCL emission is based on intersub-
band transitions between specific subbands within a multiple quantum well (QW)
heterostructure. The typical design of the QCL active region entails a three-level
system. An intense magnetic field parallel to the growth direction of semiconductor
layers breaks the two-dimensional (2D) in-plane continuous energy spectrum into
discrete Landau levels. This results in an increase of otherwise short carrier lifetime
(of the order of 1 ps) in the excited state [64-66, 75]. The desired emission wave-
length defines the necessary separations between the active laser energy states, while
the spacing between the lower laser level and the ground state is set by LO-phonon
energy. The lifetime of electrons in the excited laser state is strongly influenced
and modulated by the applied magnetic field which results in oscillations in the
laser emission intensity. Leuliet et al. [66] attributed this effect to two scattering
mechanisms:

(1) inelastic scattering by LO-phonons; and

(2) elastic scattering by interface roughness.

Considering that the scattering processes between the two states depend on their en-
ergy spacing, certain relaxation mechanisms can be enhanced or inhibited by varying

the magnetic field strength, although they may be influenced by the operating tem-
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perature as well. Hence, detailed understanding of various scattering mechanisms,
relevant for laser operation, may be an important factor in improving its features
and represents a key issue in efficient design of QCLs. LO-phonon scattering is well
explained in previous theoretical and experimental works [64, 80]. Increasing mag-
netic field reduces the number of levels under consideration and changes the energy
differences between individual levels, thus affecting the lifetime of carriers in higher
states. On the other hand, the influence of interface roughness scattering remained
less clear. The strength of the interface roughness scattering in a particular sample
is determined by the actual morphology of the interfaces. The common description
of the effects of interface roughness scattering assumes a Gaussian correlation of
interface steps with an average step height and a correlation length [66, 127-130].
In contrast to LO-phonon, interface roughness scattering does not depend on tem-
perature. As a result, efficiency of the interface roughness scattering mechanism
is expected to remain constant with increasing temperature, while the efficiency of
LO-phonon scattering is reduced due to their higher absorption |81].

In this Chapter we study the electron relaxation rates for the upper state of the
laser transition, due to electron—LO-phonon interactions and interface roughness
scattering, for a structure subjected to a magnetic field parallel to the confinement
direction. The QCL under consideration comprises a triple quantum well (TQW)
GaAs/Aly33Gaggr and is intended for operation at 11.4 pum. To understand the
effects of interface roughness scattering and compare it with LO-phonon scattering,
we have studied relaxation times and optical gain for different temperatures and
magnetic fields. The electron distribution over the states of the system is found by
solving the full set of rate equations that describe the electron transport between
levels, and subsequently used to determine the optical gain.

In section 5.1, we present a theoretical description of a realistic QCL active region
and introduce models for LO-phonon scattering and interface roughness scattering
rate with and without a presence of an external magnetic field. The nonlinear
rate equations which describe population change in each Landau level are presented
as well. The stationary solution of these equations allows evaluating the degree

of population inversion and resulting optical gain. Section 5.2 brings numerical
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results of the scattering rates and the total relaxation rate from the upper laser
state, for a wide range of magnetic fields 3—60 T and two temperatures T' = 77 K
and 300 K. Using the calculated scattering rates as input data, rate equations are
solved and population inversion and the optical gain are obtained. For both the
population inversion and the gain, interface roughness scattering is shown to have
a significant influence in terms of reducing the predicted magnitude, especially at
low temperatures. Finally, in section 5.3 we present an efficient numerical algorithm
for optimization of GaAs/AlGaAs quantum cascade laser active region parameters

considering the combined action of both studied scattering mechanisms.

5.1 Theoretical considerations

The active region of the QCL structure under consideration comprises three coupled
QWs biased by an external electric field E as displayed in Fig. 5.1. In the absence
of the magnetic field this system has three energy states, i.e. subbands (n = 1,2,
and 3), and the laser transition occurs between subbands n = 3 and n = 2. This
active region is surrounded by suitable emitter/collector regions in the form of su-
perlattices, designed as Bragg reflectors, which inject electrons into state n = 3 on
one side, and allow for rapid extraction of carriers from the lowest subband n = 1,
on the other side. The energy difference between E5 and E; should match the LO-
phonon energy in order to ensure fast depopulation via LO-phonon scattering and
maintain a short lifetime for the lower laser level. In addition, we introduce in our
calculations the interface roughness scattering as additional nonradiative relaxation
mechanism. The influences of these two mechanisms are compared in the following
sectiomn.

The injection of carriers into the active region and extraction from the lower
subband is achieved via resonant tunneling. In the absence of an external magnetic
field, the electronic subbands from Fig. 5.1 have a free particle-like energy dispersion
in the direction parallel to the QW planes E, + l*kf/2m)},(E,), where my,(E,) is
the energy-dependent in-plane effective mass and k) is the in-plane wave vector.

However, when this structure is subjected to a strong magnetic field B in the z-
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Figure 5.1: The conduction-band diagram of the active region of GaAs/
Aly33Gage7As QCL described in Ref. [64], in an electric field of 44 kVem™t. The
subband positions at zero magnetic fields, together with the corresponding wave

functions squared, are also displayed.

direction, continuous subbands transform into series of individual (strictly discrete)
states, the total energies of which are [65] E,; ~ E, + (I + 1/2)hw., where [ =
0,1,2,... is the Landau index, E, = E,(k; = 0), the term (I 4 1/2)Aw,, originates
from the in-plane kinetic energy part of the subband, and w., = eB/my, is the
corresponding cyclotron frequency. The values of B which give rise to resonant
LO-phonon emission are found by solving the equation F3o — E,; = hwro where
n = 1,2, while hwro is the LO-phonon energy.

According to Refs. [66, 75], to account for the variations of the well widths, a

Gaussian probability density is introduced:

1 2
H(Lz> = U 27T6_(Li_Li0)2/20 (51)

for the #th well width L;, ¢ = 1,2,3. In order to keep the results as analytical

as possible, we assume that around a mean value L;y the energy difference varies
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linearly with L, i.e.,
Eni,li(Li) - Eanf(Li) ~ Eni,li(LiO) - Enf,lf(LiO) - ’Y(Ll - LZO) (52)

with the factor v taken the same for all Landau levels, according to |66, 75|.
By introducing Egs. (5.1) and (5.2) into the Fermi golden rule, we obtain the

following function:

o= / T(L)S[En s — Eni, — AEdL;

o0

_ 5\/1%6—(15”1,“—Enfﬁlf—AEs)Q/w7 (5.3)
where § = o7 is the width of the Gaussian distribution of energy difference E,, —
By, + (lhwe,, — liwe, )i+ R(we, —we,, )/2—AFE;, and “s” denotes the scattering mech-
anism (electron-LO-phonon scattering (LO) or interface roughness (IR) scattering).
In our notation ALy = hwio and AE = 0. The terms £, ; represent the total
energies of Landau levels and a more detailed explanation of their calculation will

be provided in the continuation of this section, see Eq. (5.19).

5.1.1 Electron-LO-phonon scattering in magnetic field

The electron-LO-phonon scattering rates for phonon emission between the initial

state I, ;, and the final state F,, ; may be found from

£5lf

1 2m .
Lo  — h Z |(reg, L, N 1|He*ph(®|ni7 li, kwivanHQ‘]Lo' (5.4)
q

T(ni )= (ng,le)

In this expression, electron-LO-phonon Hamiltonian ]':[e,ph((j') is the sum of the
interaction Hamiltonians with each phonon mode defined by its 3D wave vector
¢, see Ref. [75], and k,, and k,, are the initial and the final state wave vector

components, respectively. From the previous equation one obtains the following
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analytical expression for the scattering rate:

— - X —(Eny iy —Eng e~ wLo) /26 1
LO.{e} deg \€x € NS (g +1)

(ni,li)*}(nf,lf)
< [ 1FaPe)an, (5.5
where €., and ¢ are the static and the high-frequency relative dielectric constant,
respectively, € is the vacuum dielectric permittivity and n, = [exp(hwpo/ksT)—1] !

is the mean number of LO-phonons. Furthermore, g is the in-plane component of

the phonon wave vector ¢ = (q., q) and F(g) is the lateral overlap integral

9\ i 9 2
F L 1)? = *(Qﬁ/252)lll ﬂ Llf—li ﬂ 5.6
‘ (qH? 1 f)’ =€ lf' 2/8 I Qﬁ ) ( . )

where 3 = \/eB/h is the magnetic length and L” (x) represents the associate La-
guerre polynomial. Finally, G(g)) stands for the form factor given by

Gla) = [ [ wm@m (e, (5.7)

where n; and 7 denote the zdependent parts of the electronic wave functions. The

electron-LO-phonon scattering rate for phonon absorption [81] is

1 1 1
LO,{a} - L0 fe} ehwro /KT (5.8)
(ng,le) = (ni,li) (ni,li)—(ng,lr)

Phonon absorption is significant at room temperature (7" = 300 K) and it almost

vanishes at low temperatures (T' = 77 K).

5.1.2 Electron-LO-phonon scattering without magnetic field

When the magnetic field is not present, the electron-L.O-phonon scattering rate may

be evaluated from

1 2 — A = 2 LO
m = f; ’(nf,kf,nq—l—1|He_ph(q_)|ni,ki,nq> J. (59)

ni—ng
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The Hamiltonian f[e_ph is in this case the sum of interaction Hamiltonians with
each phonon mode defined by its 3D wave vector ¢, see Ref. [131], and ki and k; are
the initial and the final state in-plane wave vectors, respectively. From the previous
equation one obtains the following expression for the scattering rate in the absence

of magnetic field:

1 wrom (1 1 " Glq)
- - = [ 4 1
7O (B =0) 4mh%e (eoo es) (nq + >/0 q a9, (5.10)

ni—nf

where G(g) and ¢ are the form factor and the in-plane component of phonon
wave vector, respectively. The form factor is already defined in Eq. (5.7) and qﬁ =

2m(E1 — Ef — tho)/hQ.

5.1.3 Interface roughness scattering in magnetic field

We use the model for interface roughness scattering proposed by Leuliet et al. in
Ref. [66]. This model assumes the in-plane terasse-like surface defects, as explained
in Ref. [132]. In order to evaluate the interface roughness scattering rate, we in-
troduce spatial distribution of roughness which follows the Gaussian correlation

function [66, 127-130]:
(AMAT") = Ae A (5.11)

with A being the mean height of the roughness and A the correlation length. We

also introduce the corresponding perturbation Hamiltonian [66],
ﬁIR = Uo(s(Z - Zi)A(I, y), (512)

where Uy is the barrier height at interface position z;.

The electron-interface roughness scattering rate can be calculated from:

2>> J® (5.13)

In the above expression, the averaging is performed over space (as follows from

1 2T N
<,7_IR—(ZZ)> = f < Z <’nf7lf7kxf|HIR|ni;li7kxi
(ne,le)

(ni,li)— by g
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Eq. (5.11)), and over the initial state wave vector component k,,:

By —Ep g ?
T’ 1 (Zz) :Qei( l’11262 tlt) ’F}f‘QAQAOé
T(ns )= (ng )

+00  (Akg)? |:2+A22ﬁ2}
X/ e : 26 C(Akx)d(Akx). (5.14)

(e 9]

Here, Ak, = ky, — ky, Fr = Uon(z:)ne(z) and o = 2/ (wlsll;1275). The form
factor ((Ak,) is given by:

C(Aky) ://exp (—62 [+ (t—w)?] - X—z)

Ak, Ak,
e o= 5 [t - - S
x Hy, {Bt + AQZZ”} H, [B(t —w) + égx] dtdw (5.15)

and H; is the Hermite polynomial of order j.

5.1.4 Interface roughness scattering without magnetic field
The electron-interface roughness scattering rate can be calculated from:

<m<zz)> = 2% <Z <]m, Ef’f{IR’ni, E1!2>> JR. (5.16)

ni—ng - -
ki kg

The Hamiltonian Hig is the same as in the case with magnetic field, i.e., Eq. (5.12).
The averaging is performed over space, and over amplitude of the initial k; and the
final k; state wavevector. The following expression for interface roughness scattering

rate without magnetic field is obtained:

<;:O)(Z")> vor S R aAy

= e
IR
TR, (B 4hd
n 2
+oo _amZ 2 A2 Bam .
262 4 262
X e dz, (5.17)
0

where AFyy = F;— Ef is the energy difference between the initial and the final state.
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5. Modeling and optimization of QCL characteristics

5.1.5 Rate equations and optical gain

The interface roughness scattering takes place at all surfaces in the system, hence we
can write the expression for the total scattering rate of the system using previously

derived expressions for the scattering rates in the presence/absence of magnetic field:

z;
Finally, if one wants to compare the effects of electron-LO-phonon scattering and
electron-interface roughness scattering, two things can be noted: (1) due to the
nature of electron-interface roughness interactions, scattering rates for transition
from lower to upper and from upper to lower energy level are equal; and (2) the
LO-phonon scattering has maximum influence when the energy difference between
two states is close to phonon energy, i.e., AE o = hwro. On the other hand, the
effects of interface roughness are maximal when the energy difference approaches
zero. Therefore, the two mechanisms of scatterings are complementary.

When the magnetic field B is applied, continuous subbands F,, transform into

discrete Landau levels. The expression for energies E,,; is given by Ekenberg [133] as

1\ heB 22
Eny=E, + (z + 5) o~ + [(81% + 81 +5) () + (I + 1+ 1) (5o)] 5 (5:19)

In Eq. (5.19), my, represents the parallel effective mass of the nth subband in
the absence of the magnetic field [133]|, while oy and [y are the nonparabolicity
parameters.

The optical gain corresponds to transitions (3,1) — (2,1) and is given by [80, 134]

g3—2 =

260 i N " 8(Bsy — Eag — hw)(Nay — Nay) (5.20)
T_LE() \ l 3,0 2,1 3,1 2.10) .

where n is the material refractive index, A and w denote the wavelength and the
frequency of the emitted light, respectively, while N3; — Ny ; represents the degree

of population inversion. The Dirac function in the above equation is replaced in
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numerical calculations by a Lorentzian with the linewidth parameter I' as follows

1 r
s [E?),l — E2,l - hCU]z -+ 2 ’

5(E37l — EQ,Z — hw) — (5.21)
The energy difference between states is dependent on the Landau index [, Es3; —
Ey ~ Es — Ey + (l + %) heB (m%m — ﬁ) Therefore, the Dirac function (i.e. the
Lorentzian) cannot be put in the front of summation in Eq. (5.20). The transition
matrix element is calculated as ds_» = [ 75(2)2n2(2)dz, where the wavefunctions 7,
are found by solving the Schrédinger equation in the form [133]

>  d*n, h*d 1dn,

- S — =5 n. .22
szao dz? 2 dzm dz + U () i (5-22)

Here, m represents the effective mass at the conduction-band minimum.
To calculate the optical gain we need to find the inverse population which is the

solution of a nonlinear system of rate equations:

f. _ N. J;
N; Z Ji — fi ~+ = =0, (5.23)
i P
where indices 7,7 = 1,2, ... denote the electronic states sorted by energy and
- mh
. =1— —N; 5.24
f=1-2 (524

is the probability that the state ¢ is not occupied according to the Fermi-Dirac
distribution. The electrons arrive in the active region by a constant current, and
they are injected only into a limited number of Landau levels of the excited laser
state, i.e. levels (3,0),...,(3,l3max). The injection current can be represented as
a sum of all currents .J; which inject electrons into levels (3,[3), and in a similar
manner, the extraction current can be expressed as a sum of all currents J; which
extract the electrons from levels (1,/;). The energy values of maximal Landau levels
for each subband described by [i max,l2.max and l3max, are taken in this work to
be roughly Eso 4+ 5k’ and it is reasonable to assume that the levels above are

almost empty, see Ref. [80]. The system of nonlinear rate equations (5.23) can be
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successively solved by solving the corresponding system of linear equations in each
of the successive steps |7, 8]. The CGM explained in Appendix D can be separately
applied in each step for solving the obtained systems of linear equations.

In the absence of an external magnetic field, the electronic subbands have free
particle-like energy dispersion in the direction parallel to the QW planes, which in
the parabolic approximation reads as F) = thﬁ/2m*, where m* is the effective mass
and k) is the in-plane wave vector. The non-radiative lifetime for the state |3, k)
is limited by the electron-LO-phonon scattering into the two lower subbands of the

active region, and the optical gain may be described by the following expression:

62(,0

B = O =
g3H2< ) 2negc

+oo
/ Fyaldsol?6(Es — By — hu)d(k?), (5.25)
0

where € is the vacuum dielectric permittivity, c is the speed of light in vacuum, hw
is the photon energy, F3 ,o stands for the difference of Fermi-Dirac functions for the
initial and the final state, while d,_,; = (1;|z|ny) is the transition matrix element,

and 7; and 7; denote the z~dependent parts of the wave functions.

5.2 Numerical results

The active region of a QCL based on GaAs/Alj 33Gag 7 As heterostructure, described
in [64] and designed to emit radiation at ~11.2 pum, is displayed in Fig. 5.1. The
layer widths are 56, 19, 11, 58, 11, 49 and 28 A, going from the emitter towards
the collector barrier, and the electric field is 44 kVem™!. The material parameters
for GaAs used in the calculation are mgaas = 0.067mg, for AlAs majas = 0.15my,
and for Aly33GagerAs m = 0.33majas + 0.67maans ~ 0.094mqg (mg is the free elec-
tron mass), 7 = 0.33 and the conduction-band discontinuity between GaAs and
Alg33GaggrAs is AE. = 283.4 meV. In the absence of magnetic field, the three
subbands are at energies £; = 44.5 meV, Fy = 81.8 meV and F5 = 192.7 meV,
with the lasing transition energy of F3 — Ey = 110.9 meV, in full agreement with
experimental data [135]. Numerical parameters used in calculations are €., = 10.67,
€ = 12.51, hwro = 36.25 meV, § =6meV, A=15A, A =60 A, and T = 77 K and
300 K, see Refs. [66, 75]. The linewidth parameter of Lorentzian given by Eq. (5.21)
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Figure 5.2: The total electron relaxation rate due to the electron LO-phonon scat-
tering and interface roughness scattering for transitions from the ground laser level
of the third subband into the two sets of Landau levels of the lower subbands, for

magnetic fields in the range of B = 3—60 T and at temperature 7' = 77 K.

in the numerical calculations is taken from Ref. [136] as I" = 4.25 meV. Nonparabol-
icity parameters oy and [y are taken as —2107 eVA" and —2288 eVA® for GaAs
wells and —1164 eVA* and —1585 eVA® for Alp 33Gag g7 As barriers [133].

The scattering rate for the phonon absorption increases exponentially with tem-
perature, see Eq. (5.8). In the following text, we will therefore first present results
for the low temperatures (T' = 77 K) when the phonon absorption is expected to be
negligible and thereafter at room temperature (7' = 300 K) where it is significant.

The total relaxation rate for transitions from the ground Landau level of the third
subband (into which the majority of carriers are injected) into the sets of Landau
levels of the two other subbands is shown in Fig. 5.2, for the magnetic fields in the
range of B = 3—60 T and temperature 7' = 77 K. Oscillations of the relaxation
rate with B are very pronounced, and very prominent peaks are found at values of
the magnetic field which satisfy the resonance conditions for LO-phonon emission.

If the relaxation rates due to interface roughness and LO-phonon scattering are
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Figure 5.3: The ratio of the total electron areal densities due to the electron LO-
phonon and interface roughness scattering, in the ground laser levels of the third
and the second subband, as a function of the magnetic field and at temperature
T="177K.

compared, one can see that the local relaxation rate maximum are of the same order
of magnitude and not correlated with respect to the applied magnetic field. This
is due to the fact that interface roughness scattering has the largest influence when
the energy difference between states is diminishing. In contrast, for LO-phonon
scattering, when the arrangement of laser levels is such that there is a level situated
at hwro below the state (3,0), this type of scattering is enhanced. One can also see
that the peaks at magnetic fields B < 20 T are a result of combined action of two
scattering mechanisms. As already pointed out, the interface roughness scattering
is enhanced when the energy spacing between levels is vanishingly small, while the
LO-phonon scattering rates peak if this spacing is close to phonon energy. For that
reason, at magnetic fields below 10 T, when the energy levels become dense, electron
relaxation rates due to the interface roughness scattering exceed those of LO-phonon
scattering.

Assuming a constant current injection, the modulation of lifetimes of all the

states in the system results in either suppression or an enhancement of population
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Figure 5.4: The optical gain (per unit injection current) as a function of the applied

magnetic field in range B = 3—60 T at temperature T'= 77 K.

inversion between states (3,0) and (2,0), see Fig. 5.3, and therefore in modulation
of the optical gain per unit injection current g = gs_,o/J as well, see Fig. 5.4. The
first significant minimum of the optical gain is at the magnetic field of B =24.2 T
and the positions of relevant states in this case are displayed in Fig. 5.5. Electron
relaxation from the state (3,0) is maximized, see Fig. 5.2, because there are two
states (2,2) and (1,3) with energies close to Es3o — fuwro, together with the state
(1,4) very similar to (3,0), and the lifetime for the upper laser state is as low as
730 = 0.26 ps. As a result of high relaxation rate, the inverse population is low, see
Fig. 5.3.

Quite a different situation occurs at magnetic field around B = 41.4 T. The
configuration of relevant electronic states, shown in Fig. 5.6, leads to a maximally
suppressed LO-phonon relaxation rate from (3,0), because there are no lower states
with energy Ej5 o — hwpo in the proximity, see Fig. 5.6. Still, since the scattering on
interface roughness is also present, the maximums of inverse population and optical
gain are shifted towards the higher values of the magnetic field (B = 42.5 T). The

calculated lifetime is 739 = 0.36 ps. The most significant effect of the interface
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Figure 5.5: Positions of discrete states in the active region for the magnetic field of

B =242 T, where the optical gain has a local minimum.
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Figure 5.6: Positions of discrete states in the active region for the magnetic field of

B =41.4 T, where optical gain has a maximum.

roughness scattering is the reduction in the magnitude of inverse population, which

results in reduced optical gain, see Figs. 5.3 and 5.4. Finally, we should note that
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Figure 5.7: The ratio of the total electron areal densities due to the electron LO-
phonon and interface roughness scattering, in the ground laser levels of the third

and the second subband, as a function of the magnetic field and at temperature
T =300 K.

introduction of interface roughness scattering did not create new resonant peaks. It
only resulted in relatively small shift (~1 T) of the existing peaks.

At room temperature 7' = 300 K, the total electron relaxation rate due to the
electron LO-phonon scattering is higher (~ 1.6 times) than at temperature 7' = 77 K.
This increase in relaxation rate is caused by the temperature dependence of the
distribution of phonon energies which enters Eq. (5.5). The increase in temperature
has a significant effect on the reduction in inversion population due to intensified
absorption of LO-phonons, as well as emission, which is evident from Fig. 5.7. At
the same time, the scattering on interface roughness is independent of temperature.
Consequently, the influence of interface roughness scattering on inversion population
is less pronounced at higher temperatures, which can be verified by comparing the
results obtained for the optical gain at 300 K, see Fig. 5.8, with the results from
Fig. 5.4.

Finally, we should note the QCL operating in the mid-infrared spectral range

was chosen to validate our model since experimental data were readily available [64];
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Figure 5.8: The optical gain (per unit injection current) as a function of the applied
magnetic field in the range B = 3—60 T at temperature T" = 300 K.

however, the calculations could straightforwardly be modified for the THz spectral
range with optimized laser performance at the selected wavelength. The optimiza-

tion procedure of the QCL active region is described in detail in the next subsection.

5.3 Optimization procedure of the QCL active region

In order to optimize the laser performance at selected wavelength, one must con-
sider the entire free-parameters space and this type of search is best performed by
some established method for global optimization, such as simulated annealing algo-
rithm [10] employed in this thesis. This algorithm belongs to the class of stochastic
global optimization methods and uses the Metropolis function for the acceptance
probability. The annealing algorithm in each step randomly generates new configu-
rations and calculates a fitness function value. Any downhill step is automatically
accepted while an uphill step may be accepted according to the Metropolis criteria.
The algorithm starts initially with annealing control parameter set to a high value,

and as the annealing proceeds, the value of annealing control parameter declines. In
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this way, the system is expected to wander initially towards a broad region of the
active parameter space containing good solutions and then the search towards min-
imum is narrowed down. One of the most important phases in the implementation
of any simulated annealing algorithm is the selection of a formal fitness function,
which should be defined to encompass the goals of optimization. Here, the objective
is to optimize the optical gain at selected wavelength, hence the fitness function is

taken in the following form [8, 137]

g3—2(B =0)
(B2~ 1) + 7] {(b;i 1)+ @2]

F=_— , (5.26)

where the term in the denominator favours achieving specified emission wavelength
(i.e. photon energy hw) and the LO-phonon resonance. In addition, © is a nonzero
constant, which ensures that F' is strongly driven towards resonance in the course
of optimization, while remaining finite at the exact resonance, and g(B = 0) is the
optical gain in the absence of the magnetic field, given by Eq. (5.25). In numerical
calculation, the optical gain can be expressed via the gain coefficient ¢g* = (1 —
Tos1/T352)T3|d3 52|?, where 75,1 and 73 .o are the scattering times and 73 is the

upper laser level lifetime.

5.4 Conclusions

We have set up a rate equation-based model and analyzed the optical gain in the
active region of a quantum cascade laser in a magnetic field perpendicular to the
structure layers. The magnetic field alters the number of relevant in-plane elec-
tronic levels and the corresponding relaxation rates between them, by positioning
some states on or off resonance with the upper laser level. In this work, LO-phonon
and interface roughness scattering are compared. By examining the model itself,
one could note that the interface roughness relaxation has maximal effects when
the energy difference between levels is negligible. At the same time, the LO-phonon
scattering is enhanced if energy difference is close to resonant phonon energy. From

the numerical result it is evident that the inclusion of interface roughness scat-
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tering does not introduce additional peaks of inverse population and optical gain
with varying magnetic field. However, for magnetic fields smaller then 10 T, when
the energy levels become more closely spaced, the electron relaxation rates due to
the interface roughness scattering become higher in comparison with LO-phonon
relaxation rates. The most prominent effect of the interface roughness scattering
is the overall reduction in the inverse population and the optical gain. Obviously,
the operating temperature has an additional influence on the balance of the two
scattering mechanisms. While the surface roughness scattering does not depend on
the temperature, absorption/emission of LO-phonons increases exponentially with
temperature. As a consequence, the optical gain resulting from the combined action
of these scattering mechanisms is significantly reduced at higher temperatures. Fi-
nally, we present an efficient numerical algorithm for optimization of GaAs/AlGaAs
quantum cascade laser active region parameters considering the combined action of

both studied scattering mechanisms.
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Chapter 6 Summary

In this thesis we have proposed different models to describe and optimize ef-
fects of structural and geometrical parameters on transport properties of modern
nanoelectronic devices, such as transparent conducting nanowire networks, thin-
film carbon nanotube transistors, and quantum cascade lasers. At the beginning of
Chapter 1 we have presented main results of research in the field of transport pro-
cesses and main concepts of appropriate statistical methods and models necessary
for their understanding. A brief overview of the most important transport processes
in each of the considered nanoelectronic devices is presented in the rest of Chapter 1.

In Chapter 2 we have developed an efficient numerical algorithm for the stick-
percolation detection. Using this algorithm we have investigated the finite-size scal-
ing effects in percolating widthless stick systems with variable aspect ratios through
an extensive Monte Carlo simulation study. A generalized scaling function for rect-
angular stick systems was introduced to describe the scaling behavior of the first two
percolation probability moments. This generalized scaling function, with geometry-
dependent prefactors and constant exponents in its expansion, is then used to pro-
pose an analytic percolation probability model based on the Gaussian error function.

In Chapter 3 we have developed an efficient numerical algorithm, based on conju-
gate gradient method, for calculating the electrical conductivity of random nanowire
networks. We have proposed a model that explicitly depends on the nanowire den-
sity and junction-to-nanowire conductance ratio based on Monte Carlo simulation
results. The model describes the transition from the conductivity determined by the
structure of a percolating cluster to the conductivity of the dense random nanowire
networks. The finite-size scaling effects were also included in the description. Fi-
nally, using the proposed model and an analytical approximation for the density-

dependent optical transmittance, we have quantified a dependence of the optical
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transmittance on the electrical conductivity for the random nanowire networks.

In Chapter 4, the efficient numerical algorithm from Chapter 3 has been adapted
for calculating on-conductance and the on/off ratio of random carbon nanotube thin-
film transistors. Based on this algorithm we have numerically studied effects of the
device parameters (density of carbon nanotubes, channel dimensions and carbon
nanotube length) on the electrical transport in order to obtain an optimized and
uniform device performance (on-conductance and on/off conductance ratio) without
using any post-growth treatment. We have identified the probabilities of different
conduction regimes of random carbon nanotube networks using the scaling laws for
asymmetric systems of percolating sticks from Chapter 2. Finally, we have demon-
strated how geometrical aspects contribute to the feasibility of random carbon nan-
otube networks as switches with good transistor performance (i.e., high on-current
and on/off ratio) and the uniform performance of realized devices.

In Chapter 5, we have presented a detailed theoretical analysis of LO-phonon and
interface roughness scattering influence on the operation of GaAs/AlGaAs quantum
cascade laser with and without a presence of an external magnetic field. We have
demonstrated that the lifetime of the upper state, population inversion and optical
gain show strong oscillations as a function of the magnetic field. These oscillations
and their magnitude have been found to be a result of the combined action of the
two studied mechanisms and strongly affected by temperature. At high tempera-
tures, electrons in the relevant laser states absorb/emit more LO-phonons, which
results in reduction in the optical gain. We have shown that the decrease in the
optical gain is moderated by the occurrence of interface roughness scattering, which
remains unchanged with increasing temperature. Integration of the interface rough-
ness scattering mechanism into the model did not create new resonant peaks in the
optical gain. However, it resulted in shifting the existing peaks positions and overall
reduction in the optical gain. Finally, we have shown that the optimization of the
quantum-cascade-laser performance at a selected wavelength could be performed at

entire free-parameters space using simulated annealing algorithm.
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Appendix A Analytical derivation of the average
stick percolation density and standard

deviation

The first percolation moment, i.e., the average stick percolation density, has been

already defined as

()er = /0 najz;’f’rdn. (A1)

If we apply integrating by parts, where u = n and dv = %dn, and consequently,

n

du = dn and v = R,, ¢ ,, we obtain

n—o0

(n)e, = lim (nR, ¢,) —/ R, ¢ dn. (A.2)
0

Including expression (2.2) into the previous expression and using one of the fun-
damental properties of the percolation probability function lim, . R, c, = 1, the

previous equation becomes:

o0

1 Ry, [ e
(n)er =3 Jim N— > X['f /0 (nLH)Ne " dn. (A.3)
N=0 ’

Introducing a substitution A = nL? and using an identity limy_,oo N = E]OVOZO 1, we

further obtain

1 - RN,L,T
(n)g,r= 72 (1 i IN) ; (A.4)
N=0
where [ is an integral
Iy = / Me ™ d\. (A.5)
0

If we again apply integrating by parts, using now v = AN and dv = e~ *d)\, and
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consequently, du = NAV~1d\ and v = —e?, a recursive expression is obtained
Iy = NIy_;. (A.6)
Since Iy = 1, the previous recursive expression becomes
Iy =N\ (A7)

Finally, incorporating Eq. (A.7) into Eq. (A.4), the average stick percolation density
gets the expected form

1 o0
Lmzzz_g;l-RNﬁr (A.8)

The obtained expression allows calculation of the average stick percolation density
directly from the discrete percolation probability function Ry ¢ ,, which is computa-
tionally more efficient, since it avoids using Eq. (A.1) and calculating the continuum
percolation probability function R, ¢, with a high resolution.

As already noted, the variance of the percolation probability distribution function

can be calculated as A7 . = (n®)¢, — (n)7 ., where

* L0R, ¢
2 20t Lr
e (A9)
If we apply integrating by parts, where u = n? and dv = %dn, and consequently,
du = 2ndn and v = R,, ¢ ,, we obtain
(n*) s, = lim (n*R,z.,) — 2/ nR,, ; rdn. (A.10)
n—o0 0

Including expression (2.2) and using the property lim, ,o R, ¢, = 1, the previous

equation becomes:
1 Ry,
<ﬂwz—th—— Nﬁ/ LN gy (A.11)

Introducing a substitution A=nL? and using an identity limy_,o, N*=2>"%_,(N+a),

105



Appendix A

where a € R, we further obtain

2 — ~ Rygr
Lﬂﬂ = L_ ]VZ: ( N IN+1) y (A12)

where Iy, is an integral

Ingi = / AVFLeAGN, (A.13)
0

Incorporating the previously shown identity Iy,; = (N + 1)! into Eq. (A.12) we

obtain the following expression:
2 [e.e]
w:L—Z (N+a—(N+1)Ryey)- (A.14)
N=0
In order to provide a finite convergence of the previous sum, the real factor a has

to be equal to 1, so finally we get

2

New = o NZ (N+1)(1—Rygn)- (A.15)

Similar to the previous case, the obtained expression allows calculation of the perco-
lation density variance, and consequently the standard deviation, directly from the

discrete percolation probability function Ry ¢ .
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Appendix B Standard errors propagations

The expected statistical error of the discrete percolation probability function
Ry - is known analytically [98], since each realization of the algorithm gives an in-
dependent estimate of Ry ¢, which is either 0 or 1 depending on whether or not per-
colation was occurred in a system with exactly N randomly distributed sticks. If we
perform Ny ¢ independent realizations, the number of realizations that return 1 is bi-
nomially distributed with mean NyicRy ¢, and variance Nyc Ry o (1—Ry ¢ ) [106].
Therefore, our estimate of the standard error of the discrete percolation probability

function Ry, over Ny realizations is obtained from the simple binomial distri-

Ryver(l— Ryco
TRyc, = \/ L <NMC war), (B.1)

bution as

The standard error of the continuum percolation probability R, ;, can be estimated
applying standard error propagation procedure [106] to the convolution Eq. (2.2) and

using the previous standard error estimation of discrete percolation probability:

o0

. 1 nL2)2N
O-Rn,/J,T‘ =€ LQ N Z ( (N'))2 RN,L,T(]- - RN7£‘7T)' (B2)
MC N—0 .

Similarly, the standard error of the average stick percolation density (n);, is esti-

mated from Egs. (2.3) and (B.1) as

1 1
g(”)ﬁ,r = E NI\/IC

Z Ry, (1 — Ry (B.3)

N=0

Finally, the standard error of the percolation density variance A%J is estimated as

oy, =\ Ty, + 4V Tl (B4)
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where o is obtained from Egs. (2.4) and (B.1) as

n2)£,r

(e 9]

D> (N +1)2Ry (1= Rye,p). (B.5)
N=0

2 1
T%er T LI\ Ny

If the number of independent MC realizations Ny ¢ is large enough, the normal distri-
bution can be used as a reasonable approximation of the binomial distribution [106].
Since all analyzed systems in Chapter 2 have more than Ny > 107 independent
realizations, binomially distributed discrete percolation probability Ry ., has an
approximately normal distribution. For that reason, the standard error of the dis-
crete percolation probability og, . , given by Eq (B.1), actually presents its 68%
confidence interval. Therefore, all derived standard errors (B.2)-(B.5) also present
68% confidence intervals for appropriate variables. Finally, standard errors with
95% confidence level, used as the error bars in all figures in Chapter 2, are obtained
simply by multiplying the previously given 68% confidence intervals by factor 1.96,
see Ref. [106].

We note that all fits in this thesis were done using software package MATLAB
R2011b and its built-in least-squares fitting functions. Using appropriate functions
for fitting data and the least-squares fitting methods excellent fits were obtained
(R? > 0.9999) in Chapter 2 for all analyzed systems with £ > 16. All fitting

parameters are estimated within 95% confidence level.
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Appendix C Calculation of prefactors and exponents
of average stick percolation density and

standard deviation

In section 2.2, we have analytically shown that the zeroth-order prefactor ag(r)
of the average stick percolation density (n);, is an odd function on a logarithmic
scale, i.e., ap(r) = —ag(1/r), while the higher order prefactors a;(r), where i > 1,
are even functions, i.e., a;(r) = a;(1/r). Therefore, the zeroth-order term (n)g ¢, of

the average stick percolation density (n)c, can be calculated as

<n>ﬁ,r - <n>L,1/r
2 Y

(C.1)

<n>0,L,7‘ =

because all higher order terms, expanded applying Eq. (2.20) to (n)¢, and (n)¢ 1/r,

should be mutually canceled, resulting in
(n)o,cr = ao(r) L%, (C.2)

Similarly, the first-order term (n); ¢, of the average stick percolation density

(n)s,» can be approximated as

(n)cr + (M)e1yr
5 — Ne.

(C.3)

<n>1,ﬁ,r -

because, in this case, the zeroth-order terms should cancel each other, resulting in

(e = L7 ai(r)L" (C.4)

=1

For sufficiently large system size £, all higher order terms in the previous expression
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Figure C.1: The zeroth-order (n)o ., and the first-order term (n); , of average
stick percolation density (n). . plotted as functions of the system size £ for different
aspect ratios r = 1,1.02,1.25,2, 5, and 10. The points for (n)g ¢, (transparent) and
(n)1,¢, (filled) are obtained from MC simulations and calculated from Egs. (C.1) and
(C.3), respectively. The lines (dashed for (n)¢ ¢, and solid for (n); ¢ ,) are obtained
using the least-squares fitting methods. The data are shown on a logarithmic scale
to demonstrate power-law convergences of (n)g ¢, and (n); z, with slopes —1/v and

—1/v — 604, respectively.

can be neglected and (n); , can be approximated only by the first-order term
()10 & ar(r) L7170 (C.5)

The zeroth-order (n)gc, and the first-order term (n); ., obtained from MC
simulations and calculated using Eqs. (C.1) and (C.3), respectively, are shown in
Fig. C.1 as functions of the normalized system size £ for different aspect ratio r. The
points are plotted on a logarithmic scale to demonstrate the power-low dependences
assumed by Eqs. (C.2) and (C.5), respectively. When the aspect ratio r is fixed, the
zeroth-order terms (n)o ¢, fall on a straight line with the same slope —1/v — 6, for
all r, where 6y = 0, as shown in Fig. C.1. Similarly, the first-order terms (n); ¢,

also fall on straight lines, but with the slope —1/v — 6, where 6, = 0.82(2). At the
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same time, the obtained values of the exponents of (n)o ., and (n); ¢, confirm the
parity assumptions for prefactors a;(r) and ag(r), respectively. The prefactors ag(r)
and aq(r) for systems with » > 1 are determined as y-axis intercepts in Fig. C.1,
while the values for systems with » < 1 are obtained using the previously confirmed
parity conditions, i.e., ag(r) = —ao(1/7) and a;(r) = a1 (1/r).

In analogy to the previous case, the zeroth-order term Aaﬁyr of the stick perco-

lation density variance A7 . can be calculated as

A%,r + A%,1/7”

A2, =
0,L,r 2

(C.6)

because the parity of prefactors by(r) = bo(1/7) and b;(r) = —b;(1/r), where i > 1,
implies that all higher order terms, expanded applying Eq. (2.21) to the previous

expression, should be mutually canceled, resulting in
Al ¢, = bo(r) L0, (C.7)

Similarly, the first-order term A7 ; . of the stick percolation density variance A% ,
can be determined as
A7, — A7

L1)r
A%,L,r = 2 / ) (CS)
because for sufficiently large system size £, all higher order terms in the previous

expression can be neglected and Ai ¢ can be approximated by the first-order term

AL o~ by (r) L2 (C.9)

The zeroth-order Af . . and the first-order term A7 ; ., obtained from MC simu-
lations and calculated using Eqs. (C.6) and (C.8), respectively, are shown in Fig. C.2
as functions of the normalized system size £ for different aspect ratio . The points
are plotted on a logarithmic scale to demonstrate the power-low dependences as-
sumed by Egs. (C.7) and (C.9), respectively. When the aspect ratio r is fixed, the
zeroth-order terms A?M,r fall on a straight line with the same slope —2/v — 6, for
all r, where 6y = 0, as shown in Fig. C.2. Similarly, the first-order terms A ; . also

fall on straight lines, but with the slope —2/v — 6y, where 6; = 0.82(2). At the same
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10 10" 10° 10°

Figure C.2: The zeroth-order Af ;. and the first-order term A7 ; . of the stick per-
colation density variance A%’T plotted as functions of the system size £ for different
aspect ratios r = 1,1.02,1.25,2,5, and 10. The points for A%Ar (transparent) and
A7 ;. (filled) are obtained from MC simulations and calculated using Eqs. (C.1) and
(C.3), respectively. The lines (dashed for Af ;. and solid for A7 ;) are obtained
using the least-squares fitting methods. The data are shown on a logarithmic scale
to demonstrate power-law convergences of Af . = and A? . = with slopes —2/v and

—2/v — 0y, respectively.

time, the obtained values of the exponents of A7 ;. and A? . in Fig. C.2 confirm
the parity assumptions for prefactors b;(r) and by(r), respectively. The prefactors
bo(r) and by(r) for r > 1 are determined as y-axis intercepts in Fig. C.2, while the

values for r < 1 are obtained using the previously confirmed parity conditions, i.e.,

bo(r) = bo(1/r) and by(r) = —by(1/r).
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Appendix D Conjugate gradient method

The Conjugate Gradient Method (CGM) is an iterative method for solving a

sparse system of linear equations given by the following matrix equation
Az =, (D.1)

where A € R™™" is a known, square, symmetric, positive-definite matrix, € R™*!
is an unknown vector, and b € R™*! is a known vector. We note that, a matrix A is

positive-definite if, for every non-zero vector z, is satisfied
2T Az > 0. (D.2)

In order to demonstrate the basic concepts of CGM, we introduce a quadratic form,

that is simply a scalar, i.e., quadratic function of a vector, given by

flz) = %xTAx — b, (D.3)

where A is a square matrix and x and b are column vectors. The quadratic form is

minimized when its gradient
1 T 1

is equal to zero and, at the same time, the matrix A is positive-definite |9, 107]. If

the matrix A is symmetric, i.e., A = A", this equation reduces to
Vf(x)=Ax —Db. (D.5)

Setting this gradient to zero, we obtain Eq. (D.1), i.e., the linear system we wish
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to solve. Therefore, the solution to Ax = b is a critical point of the quadratic form
f(z). If A is positive-definite matrix, as well as symmetric, then this solution is a
minimum of the quadratic form f(z), so Az = b can be solved by finding an vector
x that minimizes the quadratic form f(z) given by Eq. (D.3).

The minimization of the quadratic form f(z) is carried out by generating a suc-
cession of search directions p, and improved minimizers x,. At each iteration a
quantity cay, is found that minimizes f(zy + aupr), and xy is set equal to the new
point xy + agpk. Also, the residual vector ryyq is iteratively determined at each step
as ry — apApg. The pp and xy are built up in such a way that xp,, is also the mini-
mizer of f(z) over the whole vector space of directions already taken, {p1, p2, ..., Dx }-
After some number of iterations the system converges to the minimizer over the
entire vector space, i.e., to the solution to Eq. (D.1).

The described algorithm converges faster, i.e. in fewer steps, if a preconditioner
matrix M is used. The simplest preconditioner is a diagonal matrix whose diagonal
entries are identical to those of the system matrix A. Since a diagonal matrix
is trivial to invert, this preconditioner can be easy numerically implemented. The
process of applying this preconditioner, known as diagonal preconditioning or Jacobi
preconditioning, is equivalent to scaling the quadratic form along the coordinate
axes. Therefore, the size of quantity oy at each iteration using Jacobi preconditioner

can be calculated as in Refs. |9, 107]

Trs—1
ro M~ ry,
o = M T (D.6)
Py Apy,
and the direction vector py,1 can be iteratively obtained as
_ T 1 M i
Pt = M + 2 Dk- (D.7)

As one can see from Egs. (D.6) and (D.7), the dominant operation during an it-
eration is the matrix-vector product Apg. Matrix-vector products generally requires
O(m) operations, where m is the number of non-zero elements in the matrix A. In
this thesis all analyzed system matrices A are sparse and, therefore, the matrix-

vector products have a time complexity of O(n). On the other hand, the minimum
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number of iterations needed to achieve required error tolerance using CGM for two-
dimensional problems is O(n!/?), see Ref. [107]. Therefore, a numerical realization
of the CGM algorithm has the total time complexity of O(n%?).

We also note that the CGM can be used to solve systems where the matrix A
is not symmetric, not positive-definite, and even not square. In that case instead
of Eq. (D.1) we should consider the following expression: ATAz = ATbh. Now, the
new system matrix AT A is square, symmetric, and positive-definite, because for any
non-zero vector z is satisfied 2T AT Az = ||Az||?> > 0. The only difficulty is that the
condition number of created matrix ATA is the square of that of matrix A, so the

overall convergence is significantly slower.
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MU3jaBa o ayTopcTBY

Nme n npesume aytopa: MunaH XXexerb

Bpoj nHpekca: 5043/2009

UsjaBrbyjem

Aa je JoKTopcka aucepTauuja nog HacrnoBom

MopenoBak-e U oNTUMMU3aLMja TPAHCNOPTHUX NMpoLieca y CaBpeMeHuMm
HaHOeNneKTPOHCKUM ypehajuma

® pe3ynTtaTt CONCTBEHOr NCTpaXXnea4vkor paaa;

* [a auceprauuja y UENMHM HU y AenoBUMa Huje buna npegnoxeHa 3a cTiuake
Apyre AunnoMe npema CTYyAUCKUM nporpamuma  ApYyrux BUCOKOLLKONCKUX
yCTaHoBa;

® [a Cy pe3yntath KOPeKTHO HaBeaeHU 1

* [a HUcaM KpLumo/ra ayTopcka npaBa W KOPWUCTWO/Na WHTENEeKTyarnHy CBOjUHY
APYrux nuua.

Mornuc aytopa

Y Beorpagy, (1- 1. LO(C.
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M3jaBa 0 ICTOBETHOCTM LWUITAMNaHe U eNeKTPOHCKe Bep3uje AOKTOPCKor paaa

Wme n npesmme aytopa: MunaH XXexerb
Bbpoj nHpekca: 5043/2009
Ctyaujckm nporpam: HaHoenekTpoHuka U hoToHMKa

Hacnos paga: MogenoBawe M onTUMMU3aLmja TPAHCMOPTHUX npoueca y
caBpeMeHUM HaHOeNeKTPOHCKUM ypehajuma

MeHTOp: npod. ap. JeneHa PagoBaHoBuh

M3jaBrbyjem ga je wramnaHa Bepavja MOr AOKTOPCKOr paja MCTOBETHA enekTPOHCKO]
BEP3Uju KOjy cam npepao/na pagu noxpaweHa y JurutanHom peno3uTopujymy
Yuusepsurteta y Georpaay.

[JosBorbaBam ga ce objaBe MojuU NMUYHW Nojauy BesaHn 3a pobujawe axkagemckor
Ha3unBa [OKTOpa Hayka, Kao LWTO Cy UMe 1 npe3nme, roguHa n Mecto poherwa n gatym
oabpaHe paga.

OBM nu4yHM nogaum Mory ce 00jaBUTM Ha MpPEeXHUM CcTpaHuuama ApurutanHe
BubnuoTteke, y enekTpoHCKOM KaTtanory uy nybnukaumjama YHusepauTeTa y beorpaay.

Motnuc aytopa
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MUzjaBa o kopuwhewy

Osnawhyjem YHusepauteTcky 6ubnuoteky ,Csetosap Mapkosuh* ga y [Jurutanyu
penoauTopujym YHuBepauTeta y Beorpady yHece Mojy AOKTOPCKY AucepTauunjy noa
HacnoBoM:

MopenoBawe U oNTMMMU3aLMja TPAHCNOPTHUX NpoLueca y caBpeMeHUM
HaHoeNneKTPoHCKUM ypehajuma

KOja je Moje ayTopCcKo Aeno.

AucepTaumjy ca cBvM NpuriosuMa npegaoc/na cam y enekTpoHCKoM popmaty norogHoM
3a TpajHO apxuBMpame.

Mojy [OKTOpcKy AucepTauujy noxpaweHy Yy [urutanHom  penosuTopujymy
YHuBepauteTa y Beorpagy v AOCTYynHY y OTBOPEHOM NPUCTYMy MOry Aa KopucTe CBU
Koju nowTyjy oapeabe cagpxaHe y ogabpaHom Tuny nuueHue KpeatusHe 3ajeHuue
(Creative Commons) 3a kojy cam ce ogny4vo/na.

1. Aytopcteo (CC BY)
@AyTOpCTBO — HekomepuumjanHo (CC BY-NC)
3. AyTtopcTBo — HekomepuumjanHo — 6e3 npepaaa (CC BY-NC-ND)
4. AyTOpCTBO — HEKOMepLUmjanHo — agenutu nog uctum ycrnosuma (CC BY-NC-SA)
5. AytopctBo — 6e3 npepaga (CC BY-ND)
6. AytopctBo — genutu nog nctmum ycnosuma (CC BY-SA)

(Monumo fa 3aokpyxute camo jefHy oA WwecT NoHyReHnx nuueHun.
Kpartak onuc nuueHum je cactaBHM 4e0 OBE U3jaBe).

MoTnuc aytopa
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1. AytopcTBO. [l03BOS/baBaTe yMHOXaBawe, AUCTPUBYLM)y W jaBHO caonwiTaBake
[ena, n npepaje, ako ce HaBefe MmMe ayTopa Ha HauiH ofpeheH oA cTpaHe ayTopa
Unu gaeaola nuUeHue, Yak 1 y komepumjanHe cepxe. OBo je HajcnoboaHuja o CBUX
nuueHuw.

2. AyTOpCTBO — HeKomepuujanHo. [lo3BorbaBate yMHOXaBaree, AUCTpUbyuujy u
jaBHO caonwiTaBake Aena, U npepage, ako ce Haseae MMe ayTopa Ha HaunH oapeheH
oA CTpaHe ayTopa unv gasaoua nuueHue. OBa nuueHua He 4o3BOSbaBa KoMepLuyjanHy
ynotpeby pena.

3. AyTopcTBO — HekomepumujanHo — 6e3 npepapa. [lo3sorbaBaTe yMHOXaBake€,
anctpubyunjy 1 jaBHO caonwTaBakwe pAena, 6e3 npomeHa, npeobnukosara UNu
ynotpebe nena y cBOM Aery, ako ce HaBefe Ume aytopa Ha HauuH ogpefeH of cTpaHe
ayTopa nnu gasaoua nuueHue. OBa nuueHLUa He A03BOrbaBa komepuwjanHy ynotpedy
Aena. Y ogHocy Ha cBe ocTane NnuueHLe, OBOM NUUEHLOM ce orpaHuyasa Hajsehu
obum npasa kopuwhera gena.

4. AyTOPCTBO — HEKOMEpLMjanHo — AeNnuTU nog UCTUM ycroBuma. [Jossorbasarte
yMHOXaBame, ANCTpubyumjy 1 jaBHO caonwiTaBake Aena, U npepage, ako ce Haeede
MMe ayTopa Ha HauuH ogpefeH on CTpaHe ayTopa Wnu AasBaoua NuueHLe u ako ce
npepaga AucTpubympa nog WUCTOM UMM CriMYHOM nuueHuom. OBa nuueHua He
[03BOSbaBa komepumjanHy ynotpeby aena u npepaaa.

5. AytopcTBO — 6e3 npepaaa. [lo3BorbaBate yMHOXaBawe, AUCTPUBYLMjy 1 jaBHO
caonwTaBawe aena, 6e3 npomeHa, npeobnukosawa unu ynotpebe aena y ceom aeny,
ako ce HaBede vMMe ayTopa Ha HauuH oppefeH o cTpaHe ayTopa wnu gasaoua
nuueHue. Oea nuueHua fo3BorbaBa koMepuujanHy ynotpeby aena.

6. AyTopcTBO — AOenutu noa MUCTUM ycnoBuma. [lo3BorbasBaTe YMHOXaBawe,
AncTpmbyumnjy 1 jaBHO caonwiTaBawe Aena, u npepaje, ako ce HaBeae nMe ayTopa Ha
HauH oapeheH of CTpaHe ayTopa WM faBaoua fuvUeHUe M ako ce npepaga
avctpubympa nog UCToM wnuv cnmdHoMm  nuvueHuom. OBa nuueHua [03BoSbaBsa
komepuujanHy ynoTtpeby agena u npepaga. CnvyHa je codTBEepckuM nuvueHuama,
OAHOCHO nuiLieHLama OTBOpPEHOr Koaa.
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