UNIVERZITET U BEOGRADU

HEMIJSKI FAKULTET

Sanja M. Stojadinović

ORGANSKO-GEOHEMIJSKI PRISTUPI U DEFINISANJU ZONE GENERISANJA NAFTE U PANONSKOM BASENU SRBIJE

doktorska disertacija

Beograd, 2016.

UNIVERSITY OF BELGRADE

FACULTY OF CHEMISTRY

Sanja M. Stojadinović

ORGANIC-GEOCHEMICAL APPROACHES IN DEFINING OIL GENERATION ZONE IN THE PANNONIAN BASIN IN SERBIA

Doctoral Dissertation

Belgrade, 2016

Mentori:

dr Ksenija Stojanović, vanredni profesor Hemijskog fakulteta Univerziteta u Beogradu

dr Aleksandar Kostić, redovni profesor Rudarsko-geološkog fakulteta Univerziteta u Beogradu

Članovi komisije:

dr Branimir Jovančićević, redovni profesor Hemijskog fakulteta Univerziteta u Beogradu

dr Aleksandra Šajnović, viši naučni saradnik Centra za hemiju Instituta za hemiju tehnologiju i metalurgiju Univerziteta u Beogradu

Datum odbrane:

Uni i Iliji

Zahvalnica

Ova disertacija je sažetak jednog istraživanja – ona je za mene stizanje na kraj puta koji je obeležen mnogim lepim, ponekad napornim trenucima, ali i mnogim dobrim ljudima i brojnim prijatnim iskustvima. Stoga, na ovoj stranici želim da se zahvalim osobama koje su na bilo koji način prethodnih godina učestovale u ovom izazovu.

Disertacija je urađena u okviru realizacije projekta Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije br. 176006 "Geohemijska ispitivanja sedimenata - fosilna goriva i zagađivači životne sredine". Zahvaljujem se rukovodiocu projekata i članu komisije, dr Branimiru Jovančićeviću na bezrezervnoj podršci, razumevanju i nesebičnoj pomoći tokom svih faza izrade ove disertacije.

Mentorki dr Kseniji Stojanović se najsrdačnije i najiskrenije zahvaljujem na ukazanom poverenju, uloženom trudu, beskrajnom strpljenju i ljudskom razumevanju. Njeni brojni stručni saveti, sugestije i pomoć koje mi je pružala tokom eksperimentalnog rada, analize rezultata, kao i pisanja ove doktorske disertacije bili su od nemerljivog značaja.

Mentoru dr Aleksandru Kostiću se zahvaljujem na velikoj posvećenosti pri izradi ove disertacije, kao i na korisnim savetima i sugestijama tokom finalizacije doktorske disertacije. Profesoru Kostiću posebnu zahvalnost dugujem jer je omogućio da dobijem kvalitetne uzorke za ispitivanje, ali i što me je uveo u "tajne" istraživanja nafte i gasa sa geološkog aspekta.

Najsrdačnije se zahvaljujem dr Aleksandri Šajnović za svesrdnu pomoć i podršku, koji su mi bili od velikog značaja tokom svih faza izrade disertacije, a posebno u početnim usmeravanjima pri analizi rezultata.

Dr Peteru Nytoftu iz "Geological Survey of Denmark and Greenland" (Kopenhagen, Danska) izražavam posebnu zahvalnost na omogućenom snimanju GC-MS-MS analiza, kao i na korisnim sugestijama u toku analize rezultata.

Tokom doktroskog istraživanja sarađivala sam sa većinom kolega iz grupe za Organsku geohemiju, te se svima njima zahvaljujem na pomoći i savetima. Posebno hvala Gordani Gajici, dr Milici Kašanin Grubin, Gorici Veselinović, Nikoli Vukoviću, Peri Arsiću ... Oni zaslužuju HVALA i za prijatnu atmosferu, ne samo tokom rada, već i u pauzama.

Veliko HVALA i kolegama dr Olgi Cvetković, dr Gordani Dević i dr Konstantinu Ilijeviću na ugodnoj radnoj laboratorijskoj atmosferi, kao i na neizmernoj prijateljskoj podršci i razmevanju za potreban proširen prostor pri izradi eksperimentalnog dela, kao i neophodnu prijatnu tišinu u fazama analize podataka i pisanja same disertacije. Zahvaljujem svim dragim ljudima i prijateljima koji su mi iskrenom verom i podrškom pružali "vetar u leđa" da ova disertacija ugleda svetlost dana.

Iskrenu zahvalnost osećam i prema dr Milki Jadranin, mojoj kumi - za odanost, divno prijateljstvo, podršku i razumevanje.

Beskrajno hvala mojim roditeljima i braći za pruženu podršku, bezgraničnu ljubav, veru i moralnu potporu tokom svih ovih godina školovanja i usavršavanja. Mama, tata, moje bate -najlepše vam HVALA!

Od sveg srca HVALA mom suprugu na bezrezervnoj ljubavi, veri, razumevanju i podršci, čime je uveliko olakšao moj put ka ostvarenju ovog cilja.

Na samom kraju, zahvaljujem se svima koji su pomogli da Una i Ilija što manje osete moje odsustvo u finalizaciji ovog rada, a da ja bezbrižno radim znajući da su oni u sigurnom i voljenom društvu.

Sanja Stojadinović

Izvod

Organsko-geohemijski pristupi u definisanju zone generisanja nafte u Panonskom basenu Srbije

Tokom rada na disertaciji ispitivana su 33 uzorka mogućih matičnih stena iz tri najznačajnije lokalne generativne depresije našeg dela Panonskog basena: Banatsko Aranđelovo, Srpska Crnja i Zrenjanin. Devet ispitivanih uzoraka je bilo iz srednjeg miocena (baden i sarmat), 16 uzoraka je iz gornjeg miocena (panon i pont), sedam uzoraka iz nedefinisanog miocena (srednji miocen ili panon) i jedan uzorak je nepoznate stratigrafske pripadnosti. Uzorci potiču sa relativnih dubina od 1540 do 3420 m, na kojima temperature iznose 88-175 °C. Ispitivano područje se odlikuje specifičnim geotermičkim karakteristikama: povišenim geotermalnim gradijentom (4,0 – 7,5 °C/100m), toplotnim tokovima visokog intenziteta (90 – 110 mW/m²) i veoma velikim brzinama zagrevanja sedimenata srednjeg i gornjeg miocena (9 – 22 °C/milion godina).

Osnovni predmet disertacije bio je definisanje zone generisanja nafte u Panonskom basenu Srbije, odnosno definisanje "naftnog prozora" na osnovu detaljnih geohemijskih istraživanja u kombinaciji sa već poznatim geološkim podacima. Ciljevi ove teze bili su i utvrđivanje porekla, sredine taloženja i zrelosti organske supstance ispitivanih matičnih stena, kao i utvrđivanje primenljivosti maturacionih parametara i jednačina za izračunavanje refleksije vitrinita za uzorke matičnih stena iz hipertermalnog basena. Na osnovu korelacije biomarkerskih parametara procenjena je i starost za sedam uzoraka iz nedefinisanog miocena.

Opšta karakterizacija organske supstance podrazumevala je elementarnu analizu i Rock-Eval pirolizu, a refleksija vitrinita je korišćena za utvrđivanje stepena zrelosti kerogena. Rastvorna organska supstanca je izolovana ekstrakcijom po Soksletu (Soxhlet), a zatim je razdvojena na ugljovodonični deo i polarni ostatak. Za analizu individualnih biomarkera (*n*-alkani, izoprenoidni alifatični alkani, sterani i terpani) i aromatičnih jedinjenja (derivati naftalena, fenantrena i dibenzotiofena) primenjene su savremene instrumentalne metode gasna hromatografija sa masenom spektrometrijom (GC-MS) i gasna hromatografija sa tandemskom masenom spektrometrijom (GC-MS).

Organska supstanca je mešovitog drvenasto-algalnog porekla, pretežno sačinjena od kerogena tipa II. Taloženje organske supstance se odvijalo u promenljivim uslovima, od redukcionih do suboksičnih, pri čemu se salinitet paleosredine postepeno smanjivao od srednjeg ka gornjem miocenu.

Početak generisanja nafte odgovara temperaturi 110-120 °C i dubini od 1850 do 2100 m, pri refleksiji vitrinita, Rc \approx 0,53-0,58 %. "Naftni prozor" dostiže maksimum na oko 145-150 °C, pri Rc \approx 0,72-0,75 %, na dubinama od 2600 do 2900 m. Kraj "naftnog prozora" je na 170-175 °C, pri Rc \approx 0,89-0,93 %, i dubini od oko 3500 m. Izvedena je i aproksimativna kalibracija vrednosti biomarkerskih maturacionih parametara u odnosu na "naftni prozor". Pri tome je definisana i moguća primena dva, u organsko-geohemijskoj literaturi, relativno nova biomarkera, "rano eluirajućih" hopana (čija struktura je pretpostavljena, ali ne i u potpunosti potvrđena) i C(14a)-homo-nor-17 α (H)hopana.

Kada je reč o primenljivosti maturacionih parametara i jednačina za izračunavanje refleksije vitrinita na uzorcima matičnih stena iz hipertermalnog basena ustanovljeno je da su najprimenljivije jednačine zasnovane na savremenoj temperaturi, steranskim i dibenzotiofenskim maturacionim parametrima i maturacionom parametru predloženom u ovoj disertaciji koji predstavlja odnos C(14a)-homo-nor-17 α (H)-hopana i C₃₀ 17 α (H),21 β (H)-hopana. Takođe, po prvi put su ustanovljene linearna i logaritamska jednačina koje povezuju refleksiju vitrinita sa vrednostima steranskog maturacionog parametra C₂₉ $\beta\beta$ (R)/C₂₉($\beta\beta$ (R)+ $\alpha\alpha$ (R)). **Ključne reči**: matične stene, Panonski basen, Banatska depresija, hipertermalni basen, zona generisanja nafte, Rock-Eval, refleksija vitrinita, biomarkeri, alkilaromati.

Naučna oblast: Hemija Uža naučna oblast: Geohemija UDK:

Abstract

Organic geochemical approaches in defining oil generation zone in the Pannonian Basin in Serbia

In this thesis 33 samples of potential source rocks taken from three most important local generative depressions in the Serbian part of the Pannonian Basin, Banatsko Aranđelovo, Srpska Crnja and Zrenjanin were investigated. Nine samples were from Middle Miocene (Badenian and Sarmatian), 16 were from Upper Miocene (Pannonian and Pontian), 7 samples were from undefined Miocene (Middle Miocene or Pannonian) and for one sample age was unknown. Samples were taken from relative depths from 1540 to 3420 m at which subsurface temperatures ranges from 88 to 175 °C, respectively. The investigated area is characterized by specific geotermal characteristics: high geothermal gradients (4.0 - 7.5 °C/100m), high heat flow (90 - 110 mW/m²) and the exceptionally high heating rate of Middle and Upper Miocene sediments (9 - 22 °C/Ma).

The main objective of this thesis was to determine oil generation zone in the Pannonian Basin in Serbia, i.e. to define "oil window" based on comprehensive geochemical research in combination with already known geological data. The goals of this thesis were to determine the origin, depositional environment and maturity of organic matter of investigated source rocks, as well as applicability of maturation parameters and equations for calculation of vitrinite reflectance for source rocks' samples from a hyperthermal basen. The age of seven samples from undefined Miocene was estimated based on correlation of biomarker parameters.

General characterisation of organic matter was done by elemental analysis and Rock-Eval pyrolysis, whereas vitrinite reflectance was used for determination of kerogen maturity. The extractable organic matter was isolated using the Soxhlet method and then it was separated into hydrocarbons and polar residue. For analysis of individual biomarkers (*n*-alkanes, isoprenoid aliphatic alkanes, steranes and terpanes) and aromatic compounds (derivatives of naphthalene, phenanthrene and dibenzothiophene) the modern instrumental techniques, gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS) were used.

The organic matter is of mixed woody-algal origin and consists predominantly of Type II kerogen. Organic matter was deposited under variable conditions from reducing to sub-oxic. Salinity of the palaeoenvironment gradualy decreased from Middle to Upper Miocene.

The oil generation begins at the temperature of 110-120 °C and % Rc \approx 0.53-0.58 %, "oil window" peaks at ca. 145-150 °C and % Rc \approx 0.72-0.75 %, and it ends at 170-175 °C and % Rc \approx 0.89-0.93 %, which corresponds to the relative depths of 1850–2100 m, 2600–2900 m and ca. 3500 m, respectively. An approximate calibration of the values of biomarker ratios relative to "oil window" was proposed. The possible applicability of two relatively novel biomarkers in organic geochemical literature "early eluting hopanes", which structure is proposed - but not entirely proven, and C(14a)-homo-nor-17 α (H)-hopane was established.

Concerning the applicability of maturity parameters and equations for calculation of vitrinite reflectance for the source rocks' samples from a hyperthermal basin, the obtained results indicated that the most relevant are equations based on maximal palaeotemperature, sterane and dibenzothiophene maturity parameters and maturity parameter proposed in this thesis, which represents the ratio of C(14a)-homo-nor-17 α (H)-hopane and C₃₀ 17 α (H),21 β (H)-hopane. Also, linear and logarithmic equations, connecting vitrinite reflectance and values of the sterane maturity parameter, C₂₉ $\beta\beta$ (R)/C₂₉($\beta\beta$ (R)+ $\alpha\alpha$ (R)), have been established for the first time.

Key words: Source rocks, Pannonian Basin, Banat Depression, hyperthermal basin, oil generation zone, Rock-Eval, vitrinite reflectance, biomarkers, alkylaromatics.

Scientific field: Chemistry Specific Scientific field: Geochemistry UDK:

SADRŽAJ

1.	UVOD	1
2.	TEORIJSKI DEO	5
2.1.	Matične stene za naftu i gas	5
2.1.1.	Kriterijumi za utvrđivanje potencijalnosti matičnih stena	12
2.2.	Kerogen matičnih stena	15
2.2.1.	Elementarna analiza	15
2.2.2.	Nuklearno-magnetna rezonanca (NMR) i infracrvena spektroskopija (IC)	17
2.2.3.	Mikroskopska analiza	20
2.2.3.1.	Analiza količine i tipa organske supstance	21
2.2.3.2.	Refleksija vitrinita	23
2.2.3.3.	Indeks termičkih promena (TAI)	28
2.2.4.	Rock-Eval piroliza	30
2.2.4.1.	Procena potencijalnosti stena na osnovu Rock-Eval pirolize	34
2.3.	Rastvorna organska supstanca (bitumen) matičnih stena	37
2.3.1.	n-Alkani i izoprenoidni alifatični alkani	38
2.3.2.	Policiklični alkani tipa terpana	42
2.3.2.1.	Triciklični i tetraciklični terpani	42
2.3.2.2.	Pentaciklični terpani	47
2.3.3.	Policiklični alkani tipa sterana	58
2.3.3.1.	C ₂₇ -C ₂₉ sterani	59
2.3.3.2.	C ₂₁ i C ₂₂ sterani	64
2.3.3.3.	C ₂₆ sterani	65
2.3.3.4.	C ₃₀ sterani	68
2.3.4.	Aromatični ugljovodonici	69
2.3.4.1.	Diciklični aromatični ugljovodonici	70
2.3.4.2.	Triciklični aromatični ugljovodonici	73
2.3.4.3.	Sumporna aromatična jedinjenja	76
3.	GEOLOŠKE KARAKTERISTIKE ISPITIVANOG PODRUČJA	79
3.1.	Geološka evolucija i matične stene Panonskog basena	79

3.1.1.	Geološka evolucija	79				
3.1.2.	Stratigrafski i litološki prikaz tercijara	82				
3.1.3.	Matične stene	83				
3.2.	Geotermičke karakteristike Panonskog basena Srbije	84				
3.3.	Generativne depresije Panonskog basena Srbije	87				
3.3.1.	Zone generisanja ugljovodonika u severnom i središnjem delu Banatske depresije					
3.3.1.1.	Lokalna depresija Banatsko Aranđelovo	88				
3.3.1.2.	Lokalna depresija Srpska Crnja	93				
3.3.1.3.	Lokalna depresija Zrenjanin	96				
4.	PLAN I CILJ ISTRAŽIVANJA	100				
5.	EKSPERIMENTALNI DEO	107				
5.1.	Refleksija vitrinita	107				
5.2.	Rock-Eval piroliza	107				
5.3.	Elementarna analiza	107				
5.4.	Izolovanje i frakcionisanje bitumena	108				
5.5.	Gasnohromatografsko-masenospektrometrijska (GC-MS) analiza	109				
5.6.	Gasnohromatografsko-masenospektrometrijska- masenospektrometrijska (GC-MS-MS)	110				
6.	REZULTATI I DISKUSIJA	112				
6.1.	Procena generativnog potencijala	112				
6.2.	Analiza porekla i sredine taloženja organske supstance	119				
6.3.	Procena zrelosti organske supstance i primenljivosti specifičnih maturacionih organsko-geohemijskih parametara u hipertermalnim basenima	142				
6.3.1.	n-Alkani i izoprenoidi	144				
6.3.2.	Sterani i hopani	144				
6.3.3.	Alkilnaftaleni, alkilfenantreni i dibenzotiofeni	148				
6.4.	Korelacija izmerene i na osnovu organsko-geohemijskih parametara izračunate refleksije vitrinita	156				
6.5.	Zona generisanja nafte u Banatskoj depresiji	160				
7.	ZAKLJUČCI	164				
8.	LITERATURA	169				

1. UVOD

Jedna od najznačajnijih oblasti organske geohemije je karakterizacija naftno-gasonosnih basena, ako su otkriveni. U tom cilju detaljno se analizira organska supstanca u potencijalnim i efektivnim matičnim stenama, kao i sastav sirovih nafti. U praksi se često dešava da se rezervoar stene sa naftom otkriju pre pronalaženja i definisanja matičnih stena. Međutim, ni u takvim slučajevima interes za otkrivanjem matičnih stena se ne smanjuje, s obzirom na to da je pronalaženje matičnih stena od izuzetnog značaja za definisanje potencijala basena i nastavak istraživanja.

Prvi korak u tom ispitivanju je utvrđivanje količine organske supstance. Sadržaj od minimum 0,5% organskog ugljenika smatra se graničnim da bi stena mogla imati naftno-gasni potencijal. Sledeći korak je utvrđivanje tipa kerogena. Poznato je da kerogen tipa I i/ili II ima dobar potencijal za stvaranje ugljovodonika. Najzad, organska supstanca mora da bude na dovoljnom stepenu termičke zrelosti, da bi generisala dovoljnu količinu ugljovodonika.

Pri ispitivanju organske supstance matičnih stena najpre se određuje njena količina, a zatim se u slučaju zadovoljavajućeg rezultata analiziraju kerogen i bitumen. Kerogen se analizira mikroskopskim, hemijskim i pirolitičkim tehnikama. Jedan od najvažnijih parametara u ispitivanju zrelosti kerogena je merenje indeksa refleksije huminita/vitrinita, koji ima primenu u većem maturacionom opsegu od bilo kog drugog indikatora zrelosti. U bitumenima, pomoću savremenih instrumentalnih metoda, kao što su gasna hromatografija (GC), gasna hromatografija sa masenom spektrometrijom (GC-MS) i gasna hromatografija sa tandemnom masenom spektrometrijom (GC-MS) analiziraju se biomarkeri i aromatični ugljovodonici. Raspodele i obilnosti ovih jedinjenja ukazuju na poreklo, stepen zrelosti, karakteristike depozicione sredine, ali i na relativnu geološku starost. Svi ovi rezultati, kombinovani sa rezultatima geoloških i geofizičkih proučavanja pružaju značajne podatke na osnovu kojih se mogu proceniti ukupni resursi, i usmeriti istraživanja nafte i gasa na perspektivne delove basena. U ovoj disertaciji su po prvi put detaljno geohemijski okarakterisane matične stene za naftu u severnom i u središnjem delu Banatske depresije, gde se nalaze najznačajnija ležišta nafte i gasa u delu Panonskog basena koji pripada teritoriji Srbije. Panonski basen Srbije je bio predmet mnogih geoloških ispitivanja zasnovanih, pre svega, na proučavanju termičke evolucije organske supstance i geneze nafte i gasa u našem delu Panonskog basena (Ercegovac i Vitorović, 1984; Ercegovac i Hagemann, 1992; Kostić, 1999, 2000a,b, 2010a,b; Ercegovac i Kostić, 1996; Ercegovac *et al.*, 2003). Dosadašnja istraživanja stena ovog područja nisu obuhvatala ispitivanje biomarkera i aromatičnih jedinjenja, pa samim tim ni veze između njih i geotermičkih karakteristika (Kostić, 2010a).

Primarni cilj ove disertacije bio je da se na osnovu vrednosti parametara Rock-Eval pirolize i biomarkerskih maturacionih odnosa ustanovi zona generisanja nafte u Panonskom basenu Srbije, odnosno da se definiše "naftni prozor" u ovom području. Pored toga, cilj disertacije se sastojao i u utvrđivanju primenljivosti različitih maturacionih parametara na uzorcima koji potiču iz hipertermalnog basena sa visokim prosečnim brzinama zagrevanja za koji se očekuje da "naftni prozor" odgovara znatno užem opsegu refleksije vitrinita i njenim nižim vrednostima. Takođe, tražena je i aproksimativna kalibracija vrednosti biomarkerskih parametara u odnosu na "naftni prozor". Kao poseban cilj disertacije izdvojila su se ispitivanja pouzdanosti primene izračunate refleksije vitrinita za organsku supstancu matičnih stena (kerogen tipa II, širokog opsega zrelosti) iz hipertermalnih basena sa velikom brzinom zagrevanja sedimenata na osnovu korelacije tako izračunatih vrednosti i izmerenih refleksija vitrinita. Ovo je bilo posebno značajno, s obzirom na kompleksnost merenja refleksije vitrinita u matičnim stenama koje sadrže pretežno kerogen tipa I i/ili II, a koje su siromašne vitrinitom. Osim toga, u ovom radu definisana je moguća primena dva, u organsko-geohemijskoj literaturi, relativno nova biomarkerska jedinjenja ("rano eluirajućih" hopana, čija je struktura pretpostavljena, ali ne i u potpunosti potvrđena) i C(14a)-homonor-17α(H)-hopana, koji sadrži sedam atoma ugljenika u prstenu C.

Nakon primene uobičajenih metoda izolovanja zasićenih, di- i tricikličnih aromatičnih ugljovodonika iz nafti, dobijene frakcije analizirane su instrumentalnim metodama. *n*-Alkanske frakcije ispitivanih uzoraka sedimenata, kao i frakcije di- i tricikličnih aromatičnih ugljovodonika analizirane su gasnohromatografsko-masenospektrometrijski (GC-MS), dok su analizirane terpanska i steranska frakcija i gasnohromatografskomasenospektrometrijsko-masenospektrometrijski (GC-MS-MS).

U teorijskom delu disertacije opisan je postanak, osobine i sastav organske supstance matičnih stena za naftu, kao i kriterijumi koje neki sediment mora da zadovolji da bi bio matična stena za naftu. Dat je prikaz najznačajnijih tehnika koje se koriste za karakterizaciju kerogena. Takođe je dat i pregled osnovnih literaturnih saznanja o biomarkerima i aromatičnim jedinjenjima nafti i sedimenata, koji se kasnije koriste u diskusiji rezulatata.

U trećem delu disertacije prikazane su opšte geološke karakteristike Panonskog basena sa posebnim osvrtom na Banatsku depresiju i lokalne depresije Banatskog Aranđelova, Srpske Crnje i Zrenjanina, koje su u ovoj disertaciji detaljno geohemijski ispitivane.

Diskusija o rezultatima obuhvata interpretaciju grupnih i specifičnih geohemijskih parametara ispitivanih matičnih stena na osnovu kojih se procenjuju potencijalnost, poreklo, sredina taloženja i stepen zrelosti organske supstance. Pored toga, u ovom poglavlju su diskutovane i korelacije izmerene i na osnovu organsko-geohemijskih parametara izračunate refleksije vitrinita. Kao poseban, i možda najvažniji deo u diskusiji izdvaja se definisanje zone generisanja nafte u Panonskom basenu Srbije na osnovu obrađenih podataka u prethodnom delu disertacije. Pre navođenja liste korišćenih literaturnih navoda, celokupna diskusija o rezultatima je sažeta u zaključcima ove disertacije.

2. TEORIJSKI DEO

U ovom poglavlju detaljno je izložen pregled literaturnih podataka o organskoj supstanci u matičnim stenama za naftu. Opisane su faze geološke evolucije i postanak matičnih stena za naftu, objašnjeni su kriterijumi koje stena mora da ispunjava da bi bila matična stena za naftu i data klasifikacija matičnih stena. U posebnim celinama su obrađeni kerogen (nerastvorna organska supstanca) i bitumen (rastvorna organska supstanca). Opisane su hemijske, fizičko-hemijske i mikroskopske metode koje se koriste za ispitivanje kerogena, objašnjeni rezultati do kojih se na osnovu njih dolazi i istaknute njihove prednosti i ograničenja.

2.1. Matične stene za naftu i gas

Matična stena je stena koja ima sposobnost generisanja i otpuštanja dovoljne količine ugljovodonika za nastajanje ekonomskih akumulacija nafte i gasa (Tissot i Welte, 1984). To su finozrne sedimentne stene tipa glinaca, laporaca i krečnjaka, bogate dispergovanom organskom supstancom. Organska supstanca se u njima taložila kad i sama matična stena i potiče prvenstveno od ostataka planktonskih organizama, algi i bakterija, ali i od kopnenih biljaka.

U toku dijageneze očuvana organska supstanca ima dva osnovna načina transformacije, ili podleže reakcijama hidrolize, defunkcionalizacije, hidrogenizacije, aromatizacije i izomerizacije pri čemu nastaje "nasleđeni" (primarni) bitumen, koji čini znatno manji deo organske supstrance, ili se ugrađuje u složene makromolekulske strukture huminskih supstanci i kerogena. Nastale huminske supstance se dalje usložnjavaju i umrežavaju i nastaje krajnji proizvod dijageneze – kerogen (*Slika 1*). Kerogen je po definiciji disperzan oblik organske supstance geosfere koji je nerastvoran u

konvencionalnim organskim i neorganskim rastvaračima, što je posledica njegove složene makromolekulske prirode. Pored kerogena i huminskih supstanci, u dijagenezi kao rezultat mikrobioloških procesa nastaje i metan. U narednoj fazi transformacije organske supstance, katagenezi, dospevanjem sedimenata na veću dubinu, oni bivaju izloženi višim temperaturama i pritiscima, što uz dejstvo mineralnih katalizatora dovodi do krakovanja makromolekulskog kerogena pri čemu nastaje nova količina bitumena koji se meša sa "nasleđenim" bitumenom uz oslobađanje i izvesne količine gasa. Proces transformacije kerogena u naftu i gas se označava kao generisanje nafte i gasa. Cepanje heteroatomskih veza koje se odvija pri krakovanju, vodi ka smanjenju količine kiseonika i porastu količine ugljenika, zbog čega opadaju O/C odnos i H/C odnos. Vertikalni interval zone generisanja nafte se u literaturi označava kao "naftni prozor" (engl. "oil window"), a područje sa zrelim efektivnim matičnim stenama predstavlja "generativnu depresiju" (Tissot i Welte, 1984; Rullkötter, 1993).

U poslednjoj fazi evolucije organske supstance, u **metagenezi** ostatak kerogena se degraduje u uslovima najviših temperatura i pritiska. Krajnji proizvod ove faze je **grafit**, odnosno "dead carbon". Nagomilavanjem bitumena u matičnim stenama tokom faze katageneze stvaraju se uslovi za njegovu migraciju. Kako količina bitumena u steni raste, raste i pritisak kojem je bitumen izložen, što inicira pokretanje bitumena kroz postojeće šupljine i novonastale mikrofakture. Kao rezultat migracije, jedan deo od ukupne količine generisanog bitumena biva istisnut iz matične stene. Kretanje bitumena kroz samu matičnu stenu u kojoj je i stvoren se označava kao primarana migracija. Nakon primarne, započinje sekundarna migracija koja podrazumeva dalje kretanje nafte po napuštanju stene u kojoj je bitumen nastao. Sekundarna migracija se odvija sve dok nafta ne dospe do barijere specifičnog oblika, tzv. zamke, gde počinje da se akumulira i formira ležište nafte. Stene u kojima se

Slika **1.** Šema transformacije organske supstance u sedimentima (*Tissot i Welte, 1984*).

Slika 2. Uprošćen prikaz rezervoar stene za naftu (http://mpgpetroleum.com/fundamentals.html).

Za proces akumulacije ugljovodonika, pored rezervoar stene bitno je i postojanje **zaštitne (nepropusne) stene**, koja sprečava dalju migraciju. U kretanju nafte od matične stene do rezervoar stene, nafta zamenjuje vodu i u rezervoaru se iznad vode akumulira specifički lakša **nafta** (*Slika* 2).

Na *slici* 3 je predstavljen uprošćeni grafički prikaz puta organske supstance od marinskih organizama do nafte, praćen kroz dugo geološko vreme.

Slika 3. Prikaz nastanka nafte kroz dugo geološko vreme (prilagođeno sa http://gemsresource.com/gems/article/oil-and-natural-gas-howdo-they-form-and-accumulate).

"Naftni prozor" u sedimentnim basenima se teorijski obično nalazi u temperaturnom opsegu 60-160°C. Generisanje nafte i gasa se, međutim najčešće, odvija na temperaturama od preko 100 ili 120 °C, a u zavisnosti od geotermalnog gradijenta u konkretnom sedimentnom basenu, ova temperatura odgovara različitoj relativnoj dubini, uglavnom između 2000 i 4000 metara (*Slika 4*). Ukoliko u sedimentnom basenu u geološkoj prošlosti, matične stene nisu dospele na dovoljno velike dubine i temperature, ili nisu bile istaložene, onda ne dolazi do generisanja nafte i gasa. Za generisanje ugljovodonika u matičnim stenama od presudnog značaja su količina i tip organske supstance u njima, kao i stepen njene termičke zrelosti.

Naftno / gasni prozor	Dubina (km)	Temp(°C)	Refleksija vitrinita	Podpovršinski procesi
Kerogen	- 1 -	30°C		Dijageneza
	- 2 -	60°C	- 0,5 -	
Nafta	- 3 -	90°C		Katawasa
	- 4 -	120ºC	- 1,2 -	Kalegeneza
Gas	- 5 -	150°C	- 2,0 -	
				Metageneza

Generisanje ugljovodonika

Slika 4. "Naftni prozor" u uslovima normalnog geotermalnog gradijenta (Prilagođeno prema http://oilandgasgeology.com/).

Kao što je već pomenuto, geotermičke karakteristike basena imaju veliki uticaj na generisanje nafte i gasa, što je istaknuto na *slici 5*, gde je prikazan uticaj geotermalnog gradijenta na transformacije različitih tipova kerogena u naftu u dva basena iste starosti i konsedimentacione istorije, ali sa različitim geotermalnim gradijentima (Hunt, 1996).

Ukoliko se posmatra kerogen tipa II, odnosno njegovi podtipovi prema sadržaju sumpora, zapaža se da u basenima sa brzim zagrevanjem najveća razlika u dubini gornje granice naftnog prozora iznosi 1650 m, a u sporo zagrevanim basenima ona iznosi čak 2800 m (između podtipova kerogena IIA i IID). Kod podtipova kerogena IA i IC, razlika u dubini početka generisanja iznosi od 1100 u "toplim" do 2000 m u "hladnim" basenima (Hunt, 1996).

Slika 5. Kumulativne krive transformacije različitih tipova kerogena u naftu u basenu sa geotermalnim gradijentom od 4,5°C/100m (a) i 2,5°C/100m (b). (Hunt, 1996) Rimskim brojevima i velikim slovima označen je tip/podtip kerogena.

2.1.1. Kriterijumi za utvrđivanje potencijalnosti matičnih stena

Na osnovu velikog broja organsko-geohemijskih ispitivanja različitih tipova sedimentnih stena i nafti utvrđeni su kriterijumi koje neka stena mora da zadovolji da bi se smatrala matičnom stenom za naftu (Peters *et al.,* 2005a):

• Stena mora da sadrži određenu, minimalnu količinu organske supstance. Ona se prikazuje preko ukupnog organskog ugljenika – TOC (od *engl.* "Total Organic Carbon") izraženog u masenim procentima na suv uzorak sedimentne stene. Po konvencionalnoj klasifikaciji, na osnovu sadržaja TOC, kvalitet matičnih stena se deli na (Tissot i Welte, 1984) :

- loš (< 0,5 %),
- srednji (0,5 1,0 %),
- dobar (1,0 2,0 %),
- odličan (> 2,0%).

• Organska supstanca stene mora da bude na određenom stupnju termičke zrelosti, odnosno mora da se nalazi u katagenezi.

• Tip kerogena mora biti povoljan, odnosno mora da pokazuje potencijal za stvaranje tečnih ugljovodonika. Naime, utvrđeno je da postoje tri osnovna tipa organske supstance i na osnovu toga se kerogen klasifikuje na tip I, II i III (Durand i Espitalié, 1973; Tissot, 1980). Naknadnim ispitivanjima identifikovan je i kerogen tipa IV (Demaison *et al.*, 1983). Da bi neka stena bila i matična stena za naftu mora da sadrži kerogen tipa I ili II. Ova klasifikacija kerogena je utvrđena na osnovu sadržaja tri elementa: ugljenika (C), kiseonika (O) i vodonika (H), odnosno na osnovu njihovih atomskih odnosa. Na osnovu atomskih H/C i O/C odnosa dobijene su krive koje se koriste za klasifikovanje kerogena u tri navedena osnovna tipa kerogena – van Krevelenov dijagram (*Slika 6*) (Durand, 1980; Tissot i Welte, 1984). Ovaj dijagram je prvo korišćen za karakterizaciju uglja (van Krevelen, 1950, 1961), a naknadno je uz manje izmene počeo da se upotrebljava i za klasifikaciju tipova kerogena. Na *slici 6* prikazan je

i opšti, hemijski smisao van Krevelenovog dijagrama, gde je istaknuto da je kerogen tipa I pretežno alifatične, a tipa III pretežno aromatične strukture, dok se kerogen tipa II sastoji od promenljivih količina alifatičnih, alicikličnih i aromatičnih struktura.

Slika 6. Van-Krevelenov dijagram (prilagođeno prema Durand, 1980).

Sastav kerogena, odnosno tip zavise od prekursorske biomase i sredine taloženja organske supstance. Značaj kvaliteta organske supstance za stvaranje nafte i gasa predstavljen je na *slici 7*, gde su prikazane transfromacije tri različita tipa kerogena približno istog stepena maturisanosti (10% kerogena je konvertovano u bitumen) (Jones, 1984). Sa slike je uočljivo da kerogen tipa I ima sposobnost da daje najviše tečnih ugljovodonika ("oil prone"), dok kerogen tipa III pretežno generiše gas ("gas prone").

Slika 7. Poređenje transfromacije različitih tipova kerogena (K) u sedimentnim stenama koje sadrže istu količinu bitumena (podaci prema Jones, 1984).

Matične stene se klasifikuju na više načina, a najstarije klasifikacije (Dow, 1977; Barker, 1979) s manjim izmenama su i danas u upotrebi. U zavisnosti od stadijuma zrelosti na kojem se organska supstanca nalazi, matične stene se klasifikuju na:

• **Potencijalne matične stene** – stene koje imaju sposobnost generisanja dovoljne količine nafte i gasa. Međutim, ove stene još nisu realizovane s obzirom da još nisu dostigle dovoljnu termičku zrelost.

• Aktivne ili efektivne matične stene – stene u kojima se bitumen/nafta stvaraju u dovoljnoj količini za migraciju. U ovim stenama se kerogen nalazi u fazi generisanja ugljovodonika.

 Neaktivne matične stene – stene koje su u određenom geološkom periodu bile aktivne, ali je proces generisanja ugljovodonika zaustavljen pre potpunog iscrpljenja najčešće usled tektonskih pokreta. Ove stene bi ponovo mogle stvarati ugljovodonike ako bi se našle u povoljnom geološkom okruženju. Istrošene matične stene – stene u kojima je generisanje ugljovodonika završeno. One su nekada imale visok potencijal, koji je vremenom "istrošen". Sa tačke gledišta prospekcijskih istraživanja nafte i gasa pronalaženje ovih stena je od najvećeg značaja, s obzirom da se na većoj ili manjoj udaljenosti od njih mogu naći ležišta.

• Ograničene ili limitirane matične stene – stene koje imaju sve karakteristike matične stene, ali su male zapremine i njihov ukupni generativni potencijal je nizak.

2.2. Kerogen matičnih stena

Ispitivanje hemijskog sastava kerogena i njegove strukture je vrlo složen posao i zahteva primenu velikog broja različitih metoda, koje se međusobno nadopunjuju (Vandenbroucke i Largeau, 2007).

2.2.1. Elementarna analiza

Elementarna analiza je najčešće primenjivana hemijska metoda za analizu kerogena. Samoj elementarnoj analizi prethodi priprema uzorka. Iz uzorka se prvo uklanja rastvorna organska supstanca (bitumen), ekstrakcijom sa organskim rastvaračima (hloroformom, dihlormetanom ili azeotropnom smešom dihlormetana i metanola). Uzorak se dalje tretira hlorovodoničnom kiselinom radi odstranjivanja karbonata. Silikati se uklanjaju smešom hlorovodonične i fluorovodonične kiseline. U samoj elementarnoj analizi koristi se homogenizovani, sprašeni, suv uzorak kerogenskog koncentrata. Određivanje glavnih elemenata, H, C, O, N i S, omogućava procenu tipa kerogena u van Krevelenovom dijagramu. Van Krevelenov dijagram se konstruiše (*Slika 6*) na osnovu atomskih H/C- i O/C- odnosa iz elementarne analize. Na pouzdanost rezultata elementarne analize utiče više faktora, kao što su vrsta i osobine uzorka, način pripreme kerogenskog koncentrata, vrsta i količina primesa, kao i primenjene analitičke metode. Ukoliko koncentrat sadrži veću količinu pirita, elementarna analiza gubi na značaju (Durand i Monin, 1980). Za odstranjivanje pirita se upotrebljavaju različiti reagensi (nascentni vodonik, litijum-aluminijum-hidrid, natrijum-bor-hidrid, azotna kiselina, Fe(III)-soli), čiji je osnovni nedostatak u tome što reaguju i sa kerogenom. Stoga, je u novije vreme za odstranjivanje pirita predložena zametnija, ali bolja i efikasnija, mikrobiološka metoda. Ona podrazumeva uklanjanje pirita pomoću bakterije *Thiobacillus ferrooxidans*, koja i u prirodnim uslovima, čak i pri pH = 2, oksiduje pirit. U istom smislu predlagano je i delimično odstranjivanje silikata pomoću bakterije *Bacillus circulans* (Jovančićević i Vitorović, 2005).

Elementarna analiza pokazuje ograničenje i u identifikaciji visokotermičkih izmenjenih tipova kerogena, s obzirom da imaju prilično sličan elementaran sastav (Barić, 2006).

Jedna od najosetljivijih stavki u elementarnoj analizi je određivanje sadržaja kiseonika, jer se on najčešće izračunava iz razlike, po određivanju C, H, N i S. Znatno pouzdaniji način za određivanje sadržaja kiseonika je direktno određivanje kiseonika, uz upotrebu Unterzauherove metode (Unterzaucher), koja se sastoji u pirolitičkom pretvaranju kiseonika, sa ugljenikom iz kerogena, u inertnoj atmosferi, u ugljen-monoksid, koji se meri (Durand i Monin, 1980).

I pored toga što elementarna analiza daje samo sliku prosečnog sastava i strukture kerogena, a ne i strukture pojedinih sastojaka kerogena, ona ipak pruža dovoljno važnih osnovnih informacija o osobinama kerogena i o njegovom poreklu. Ono što je za praksu i najvažnije je da poznavanje elementarnog sastava omogućava procenu potencijalnosti kerogena za generisanje nafte i gasa u katagenetskoj odnosno metagenetskoj fazi. Hemijske metode u odnosu na elementarnu analizu daju detaljnije i preciznije podatke koji su od značaja za strukturnu interpretaciju kerogena od atomskih H/C i O/C odnosa, koji se dobijaju elementarnom analizom. S obzirom da se lakše i brže u odnosu na rezultate hemijskih metoda dolazi do osnovnih podataka (prvenstveno o tipu kerogena), ova metoda je od velikog značaja za prospekcijska istraživanja nafte i gasa u kojima je tip kerogena jedan od najvažnijih faktora od kojih zavisi produkcija tečnih ugljovodonika u katagenetskoj fazi.

2.2.2. Nuklearno-magnetna rezonanca (NMR) i infracrvena spektroskopija (IC)

S obzirom na kompleksnost, heterogensot i nerastvorljivost, kerogen predstavlja veliki izazov za karakterizaciju, pa su metode kao što su nuklearnomagnetna rezonanca (NMR) i infracrvena spektroskopija (IC) našle svoju primenu u analizi ovih kompleksnih struktura (Whelan i Thompson-Rizer, 1993). Klasične metode za karakterizaciju kerogena (mikroskopske metode i elementarna analiza) ne mogu da pruže dovoljno detalja o tipovima veza između ugljenika i drugih elemenata (posebno vodonika i kiseonika) u kerogenu (Larter i Senftle, 1985). NMR i IC mogu biti od značaja pri proceni opšte prirode nekog kerogena, porekla, vrste prekursorskog materijala, kao i maturacionih promena. Pomoću ove dve metode se mogu dobiti podaci o prosečnoj kvantitativnoj zastupljenosti strukturnih elemenata u kerogenu, npr. zasićenih i aromatičnih struktura, hidroksilnih, karbonilnih, karboksilnih, estarskih ili nekih drugih funkcionlnih grupa, koje zavise od porekla, ali i od evolucionog stupnja u kome se kerogen nalazi, s obzirom da tokom zrenja kerogena dolazi do intenzivne defunkcionalizacije, a potom i aromatizacije.

Vučelić *et al.*, 1979 su pokazali da je "Solid-state ¹³C NMR" metoda pogodna metoda za određivanje tipa kerogena, s obzirom da se trend smanjenja alifatičnosti i povećanja aromatičnosti može pratiti ovom metodom. Međutim, šira primena NMR tehnike u ispitivanju kerogena dobila je na punom značaju tek sa razvojem sofisticiranijih NMR tehnika, kao što je ¹³C CP/MAS (¹³C Cross Polarization/Magic Angle Spinning; *Slika 8*) (Werner-Zwanziger *et al.*, 2005). Primena ove tehnike je dosta pomogla u razumevanju strukture kerogena. Ove tehnike su mogle da identifikuju specifične funkcionalne grupe, domene strukture i heterogenosti, kao i da obezbede kvantitativne strukturne informacije (Mao *et al.*, 2010).

Slika 8. ¹³C CP/MAS NMR spektar kerogena različitih vrednosti refleksije vitrinita, Ro (Werner-Zwanziger et al., 2005).

"Solid-state" tehnika NMR je od posebnog značaja za određivanje termalne maturisanosti kerogena koji su marinskog porekla, kod kojih je vitrinit ili odsutan ili je prisutan u veoma malim količinama (Werner-Zwanziger *et al.*, 2005). Značaj ovih tehnika sastoji se u tome što se mala količina uzorka može ispitivati u nativnom obliku, bez neke veće i složene pripreme.

Infracrvena spektroskopija je našla primenu pre svega u određivanju funkcionalnih grupa i stepena nezasićenosti u kerogenu (*Slika 9*). Infracrvena spektroskopija sa Fourierov-om transformacijom (FTIC), takođe, može biti od značaja i za razlikovanje tipova macerala (*Slika 10*, Chen *et al.*, 2015), ali i za praćenje promena na kerogenu do kojih dolazi usled zagrevanja (Zeng *et al.*, 2007).

Slika 9. Mikro –FTIR spektar kerogena (Zeng et al., 2007).

Slika 10. *Mikro-FT IC spektar liptinita, inertinita i vitrinita (Chen et al., 2015).*

2.2.3 Mikroskopska analiza

Mikroskopska analiza pruža neposredan uvid u vrstu i karakteristike organske supstance, kao i o načinu njenog pojavljivanja u steni, ali daje i podatke o stepenu termičkih promena organske supstance (Whelan i Thompson-Rizer, 1993). Ove analize se zasnivaju na optičkim proučavanjima različitih preparata u propuštenoj i odbijenoj, normalnoj, ultraljubičastoj i plavoj svetlosti (*Slika 11*).

Najznačajnije vrste mikroskopske analize podrazumevaju:

- analizu količine i tipa organske supstance,
- merenje refleksije vitrinita,
- određivanje indeksa termičkih promena.

Slika 11. Mikroskopska analiza kerogena pod: plavom svetlošću (a) i normalnom svetlošću (b).

2.2.3.1. Analiza količine i tipa organske supstance

Analiza količine i tipa organske supstance se vrši mikroskopski u normalnoj (odbijenoj i propuštenoj svetlosti) ili se određuje fluorescencijom (u plavoj ili ultraljubičastoj svetlosti). Na osnovu optičkog ispitivanja, odnosno oblika kerogenskih čestica u propuštenoj, odbijenoj i fluorescentnoj svetlosti mikroskopa (Durand, 1980) uspostavljena je i optička klasifikacija kerogena. S obzirom da kerogen predstavlja asocijaciju različitih organskih ostataka, optičkim ispitivanjem se mogu prepoznati pojedinačne komponente, odnosno fragmenti terestričnih biljaka, algi, ali i amorfne frakcije (Smith, 1984). Mikroskopski prepoznatljivi konstituenti u kerogenu, koji se morfološki razlikuju, a upućuju na izvorni organski materijal, nazivaju se macerali. Osnovne grupe macerala su: alginit, liptinit, egzinit, vitrinit i inertinit (*Slika 12*). Alginiti i liptiniti su predstavnici kerogena tipa I i II, egzinit je predstavnik kerogena tipa II, vitrinit kerogena tipa III, a inertinit kerogena tipa IV. S obzirom na izuzetno dobro slaganje vrednosti atomskih H/C i O/C odnosa u pojedinim uzorcima kerogena i odgovarajućih macerala često se tipovi kerogena identifikuju sa odgovarajućim tipom macerala, što potvrđuje i van Krevelenov dijagram za macerale (*Slika* 12).

Predstavnici kerogena tipa III, odnosno huminiti i vitriniti se proučavaju samo pri normalnoj svetlosti, dok se alginitski i liptinitski kerogen, odnosno predstavnici kerogena tipa I i II ispituju preko fluorescencije. Stoga je neophodno ispitivanje uzoraka vršiti pri oba izvora svetlosti.

Ispitivanje u fluorescenciji se može koristiti samo do određene termičke zrelosti, tako da se često koristi i za procenu zrelosti kerogena. Kod nezrelog kerogena, fluoescencija je vrlo intenzivna, na stadijumu većeg dela katageneze opada s porastom zrelosti, da bi potpuno nestala u završnoj fazi katageneze ili početkom metageneze (Khavari Khorasani, 1987; Xiao *et al.*, 1998; Chang *et al.*, 2008, Landis, *et al*, 1987). Boja fluorescencije se menja sa porastom zrelosti. od zelene preko žute do narandžaste.

Slika 12. Van Krevelenov dijagram za macerale (Prilagođeno prema van Krevelen, 1961).
2.2.3.2. Refleksija vitrinita

Refleksija vitrinita je jedan od najčešće određivanih parametara pri ispitivanju zrelosti kerogena s obzirom da je dobar pokazatelj termičkih promena. Koristi se za opisivanje uticaja toplote i geološkog vremena na termičku maturisanost sedimentnog organskog materijala. Primenljiviji je u širem maturacionom opsegu od bilo kog drugog maturacionog indikatora, pa predstavlja standardni pokazatelj zrelosti. Refleksija vitrinita postepeno raste tokom starenja organske supstance, a posledica je kompleksnih, ireverzibilnih reakcija aromatizacije, pri čemu nastaju kondenzovane aromatične strukrure.

Sama analiza određivanja refleksije vitrinita se zasniva na upoređivanju normalne svetlosti koja se pod mikroskopom sa uljno inverzionim objektivima reflektuje sa uglačane površine čestica huminita ili vitrinita, sa svetlošću koja se odbija sa površine nekog standarda, čija je refleksija poznata (Kostić, 2015). Kao petrografski preparati se mogu koristiti uzorci "cele stene" (usitnjena zrna) ili kerogenski koncentrati. Merenje na preparatima "cele stene" je znatno pouzdanije, s obzirom da se autohtone čestice vitrinita lakše detektuju u svom prirodnom okruženju. Međutim, merenje na zrnima stena ponekad daje 0,05 do 0,25% niže vrednosti od merenja na kerogenskom koncentratu. Ako su uzorci siromašni vitrinitom, merenje na kerogenskom koncentratu je preporučljivije. Oznaka za izmerene vrednosti refleksije vitrinita, može biti Ro, Ra, Rm, Rmin, Rmax i Rr, u zavisnosti od načina merenja. Ro ističe da je merenje rađeno u imerzionom ulju ("oil" - eng. ulje), Ra ("air" - eng. vazduh) ističe da je merenje rađeno bez ulja, tj. u vazduhu. Merenje u imerzionom ulju se vrši na talasnoj dužini od 546 nm, a meri se procenat upadnog zraka, koji se reflektuje od čestica vitrinita. Visoka tačnost rezultata se postiže merenjem refleksije na velikom broju vitrinitnih čestica (50 do 100 čestica). Nakon merenja se izrađuju dijagrami distribucije refleksije čestica, i na kraju se dobijeni podaci statistički obrade. Rm ("mean" - eng. srednje) označava srednju vrednost refleksije reprezentativne populacije vitrinita. Rmin i Rmax predstavljaju minimalne i maksimalne vrednosti izmerene refleksije vitrinita. Ukoliko se koristi oznaka

Rr, to znači da je merena slučajna refleksija vitrinita ("random" - eng. nasumična), što se koristi kao standard.

S obzirom da je sadžaj vitrinita u matičnim stenama za naftu najčešće veoma mali, a same čestice mogu biti veoma sitne, merenje refleksije vitrinita u matičnim stenama koje sadrže kerogen tipa I i II je kompleksno. Dodatni problem može biti i postojanje različitih podtipova vitrinita, koji pokazuju znatno nižu refleksiju pri istom stepenu zrelosti. Tako je pokazano da je refleksija vitrinita u marinskim i jezerskim šejlovima (i jezerskim ugljevima) često mnogo niža od refleksije vitrinita u humusnim ugljevima, koji se mogu nalaziti u njihovoj neposrednoj povlati ili podini (Kostić, 2010a). U domenu naftnog prozora "sniženje" refleksije vitrinita može iznositi od 0,15 do čak 0,55 %Rr, zato se meri na uzorcima koji nisu matične stene.

Vitrinit je glavni maceral ugljeva, ali se nalazi u vidu rasejanih čestica i u skoro svim sedimentnim stenama od devona, što omogućava širu primenu ovog parametra. Sam vitrinit nastaje pretežno u toku karbonifikacije od lignina i celuloze i drugih delova viših biljaka. Tokom dijageneze lignin, celuloza i drugi delovi viših biljaka podležu fizičkim i hemijskim promenama zbog dugotrajne izloženosti visokom pritisku i povišenoj temperaturi, pri čemu se obrazuje huminit. Huminit je u rangu mrkih ugljeva i njegova vrednost refleksije vitrinita je manja od 0,5 %. Katagenetski ekvivalent huminita, vitrinit, odgovara rangu kamenih ugljeva, odnosno Rr je veće od 0,5% (Kostić, 2015).

Granične vrednosti refleksije vitrinita nisu strogo određene budući da zrelost matične stene i nastanak ugljovodonika zavise od ishodne organske supstance, tj. tipa kerogena, ali i od niza drugih uticaja, kao što su temperatura, pritisak i vreme. U literaturi se često mogu naći protivrečne granične vrednosti refleksije vitrinita za početak, maksimum i kraj generisanja ugljovodonika. Kao najčešće korišćena vrednost za početni nivo zrelosti za stvaranje i oslobađanje dovoljne količine nafte uzima se vrednost od Ro~0,6%. Ova vrednost se takođe koristi i pri preliminarnim modelovanjima, ukoliko se ne raspolaže pouzdanim podacima. Smatra se da je pik generisanja nafte u basenima sa prosečnim i manjim brzinama zagrevanja na Ro~0,75 - 1,0%, pri čemu su najčešće vrednosti na 0,8 - 0,9% Ro. Generisanje nafte se završava već pri refleksiji vitrinita od 1,0 ili 1,1 % Rr. Na oko 2,0 % Rr je završetak generisanja kondenzata, a na oko 3,5% Rr je završetak generisanja suvog gasa. Ove vrednosti su karakteristične za basene sa sporijim zagrevanjem (~1°C/Ma).

Za razliku od basena sa sporijim zagrevanjem (1-2°C/Ma), gde je "naftni prozor" širok (*Slika 13*), u basenima sa brzim zagrevanjem (> 6°C/Ma) "naftni prozor" odgovara znatno užem opsegu refleksije vitrinita i njenim nižim vrednostima (0,5-0,8 % Rr). Ove niže vrednosti refleksije vitrinita u basenima sa bržim zagrevanjem su praćene znatno višim temperaturama kojima su sedimenti bili izloženi u odnosu na sporo zagrevane basene i njihove vrednosti refleksije vitrinita. Baseni sa malim brzinama zagrevanja (<1°C/Ma) pokazuju veoma širok opseg refleksije, koji je znatno širi u odnosu na opseg refleksije kod basena sa srednjim i brzim zagrevanjem (*Slika 13*), a to je naravno, praćeno i nižim temperaturama (Welte, 1989).

Slika 13. Uticaj brzine geološkog zagrevanja na položaj "naftnog prozora" i generisanje nafte prema refleksiji vitrinita (Welte, 1989).

Kinetički model refleksije vitrinita EASY %R_o (Sweeney i Burnhan, 1990) je potvrdio da je refleksija vitrinita u basenima sa bržim zagrevanjem praćena višim temperaturama (*Slika 14*). Sweeney i Burnhan (1989) su zavisnost refleksije vitrinita od maksimalne paleotemperature predstavili na tri basena, dva sa nižim brzinama geološkog zagrevanja (1°C/Ma) i jednim, sa velikim brzinama zagrevanja (30 - 50 °C/Ma; Panonski basen).

Legenda:

- Severno more 1°C/Ma
- ▲ Škotski self
- + Panonski basen 30-50 °C/Ma

Slika 14. Refleksije vitrinita izmerene u području Škotskog šelfa (trouglovi), Severnog mora (kružići, 1 °C/Ma) i Panonskog basena (krstići, 30-50 °C/Ma) (Burnham i Sweeney, 1989). Refleksija vitrinita je zavisna od temperature, pritiska, geološkog vremena i procenta vodonika u prekursorskoj organskoj supstanci (Dow, 1977), a zanemarljivu ulogu u razvoju refleksije vitrinita imaju karakteristike fluida (pH, Eh, salinitet), parcijalni pritisak ugljendioksida i metana, kao i organski i neorganski mineralni matriks (Huang, 1996).

Poznavanje vrednosti refleksije vitrinita je od značaja za primenu u proceni termičke zrelosti, kao i procenu temperaturnog intervala stvaranja ugljovodonika u matičnim stenama. Procenjena vrednost temperaturnog intervala stvaranja ugljovodonika u sedimentnim stenama je prikazana jednačinom (Barker, Pawlewicz, 1994):

 $T = (\ln Rr + 1,68)/0,0124$

Rekonstrukcija termičke istorije kerogena zahteva i poznavanje geotermlnog gradijenta, koji se tokom istorije može značajno menjati sa dubinom i vremenom, ali usled magmatskih i/ili orogenih procesa može biti i značajno povećan (Killops i Killops, 2005). Uz poznavanje geotermalnog gradijenta u nekom regionu i poznavanje Rr (ili Rc, eng."calculated" izračunat) moguće je proceniti i dubinu na kojoj se danas nalaze matične stene ispitivanih nafti (*Slika 15*; Suggate, 1998).

Pored pomenutih merenih vrednosti refleksije vitrinita, u praksi se često koriste i vrednosti koje nisu dobijene neposednim merenjem i one se označavaju sa Rc ("c"- calculated) i Re ("e"- equivalent). Ove vrednosti su dobijene utvrđivanjem zavisnosti između refleksije vitrinita i maturacionih biomarkerskih, kao i parametara zasnovanih na alkilaromatima u bitumenu i nafti. Tokom proteklih decenija učinjeni su brojni pokušaji u pronalaženju ovakvih zavisnosti (Weiss, 1985; Boreham *et al.*, 1988; Radke *et al.*, 1984, 1986, 1988; Sofer *et al.*, 1993; Dzou *et al.*, 1995; Stojadinović *et al.*, 2015).

Slika 15. Dijagram zavisnosti dubine matičnih stena, refleksije vitrinita i geotermalnog gradijenta (Suggate, 1998).

2.2.3.3. Indeks termičkih promena (TAI)

Sa porastom termičke zrelosti dolazi do izmena strukture palinomorfa (ostaci spora i polena u kerogenskom koncentratu) što uzrokuje i promenu njihove boje, koja je zavisna od stepena karbonizacije. Sa porastom maturisanosti, spore, polen i drugi mikrofosili progresivno menjaju boju, od žute u ranoj dijagenezi, preko narandžaste ili mrko-žute u kasnoj dijagenezi, mrke u katagenezi , da bi u metagenezi dostigli crnu boju. Promena boje palinomorfa izražava se indeksom termičke promene (Thermal Alteration Index, TAI). Odgovarajuću numeričku skalu, od 1 do 5, uveo je Staplin (1969), gde vrednosti pokazuju termički nivo izmenjene organske supstance (*Slika 16; Tabela 1*). Pri proceni boje mikrofosila, koriste se standardi istih vrsta mikrofosila iz kerogena za koje je tačno poznat stepen zrelosti (određen uz primenu nekih drugih metoda).

TAI	Stepen termičke izmene kerogena
1,0 – 1,5	Nezrelo
1,5 – 2,1	Početak generisanja nafte
2,2	Maksimum generisanja nafte
2,5 – 2,7	Maksimalna količina nafte i početak ekspluzije
3,0	Maksimum generisanja vlažnog gasa
3,7	Maksimum generisanja suvog gasa
4,0 - 5,0	Prezrelo

Tabela 1. Numeričke vrednosti termičkog alteracionog indeksa (TAI) i odgovarajućinivo zrelosti (Barić, 2006)

Uz indeks termičkih promena, u upotrebi su i indeks obojenosti spora (Spore Colouration index, SCI), i index izmenjenosti konodonata (Conodont Altration Index, CAI). Indeks obojenosti spora se smatra pouzdanim parametrom zbog ujednačene veličine izvojenih čestica spora i njihove dobre propusnosti. Indeks izmenjenosti konodonta se zasniva na promeni boje organskih inkluzija na apatitu, a rezultat je karbonizacije tokom katageneze i metageneze. Ova metoda je posebno značajna za određivanje zrelosti stena starijih od devona, s obzirom da pre ovog geološkog doba nije postojalo više kopneno bilje, a samim tim ni spore, polen ili macerali uglja. Od svih pomenutih metoda ispitivanja zrelosti palinomorfa u propuštenoj svetlosti najviše se koristi indeks termičkih promena (TAI), jer je izdvajanje kerogena iz mineralnog matriksa brzo, jednostavno i jeftino. Međutim i ova metoda ima više nedostataka, a jedan od nedostataka je moguća subjektivnost istraživača pri proceni boje. Pažljiva upotreba etalona i istih palinomorfi značajno doprinosi reproduktivnosti rezultata. Kao ograničenje metode, mogu se navesti i mogući nedostatak spora i polena u ispitivanom uzorku, kao i ograničenost primene parametra pri visokim stupnjevima termičke izmene. Druge dve

pomenute metode, takođe, uključuju subjektivnost analitičara u opisivanju boje, ali zahtevaju dugotrajan postupak izdvajanja pojedinih čestica iz maceralnog kompleksa (Senftle *et al.*, 1993).

Slika 16. *Skala termičkog alteracionog indeksa u zavisnosti od faza termičke izmenjenosti i refleksije vitrinita (Chiaghanam et al., 2014, prema Pearson, 1994).*

2.2.4. Rock-Eval piroliza

Pirolitička metoda koja omogućava najbržu analizu organske supstance sedimenta je Rock-Eval piroliza (od engl. "Rock evaluation"). Početak primene metode datira iz 1977. godine, kada je Espitalié sa saradnicima konstruisao prvi Rock-Eval instrument (Espitalié *et al.*, 1977) i ona i danas ima široku primenu u naftnoj geohemiji. Kasnije generacije Rock-Eval aparatura su pratile razvoj tehnologije što je vodilo ka unapređenju karakteristika instrumenta i metode u smislu povećanja broja određivanih parametara, kao i povećanja tačnosti. Današnja generacija Rock-Eval instrumenata nosi oznaku "Rock-Eval 6" i karakterišu je automatizacija, brzina, jednostavnost i relativno niska cena. Sve ovo čini da se ova metoda danas rutinski koristi za određivanje sadržaja ukupnog organskog ugljenika (TOC), kao i za procenu stepena zrelosti, tipa i produktivnosti kerogena.

Šema Rock-Eval pirolizera je prikazana na *slici 17*. Rock-Eval analizi prethodi priprema uzorka koja obuhvata samo usitnjavanje uzorka. Za samu analizu je dovoljno oko 100 mg usitnjenog uzorka, koji se programirano zagreva brzinom od 25 °C/min u temperaturnom intervalu 100 - 850 °C u struji inertnog gasa, azota ili helijuma.

Slika 17. *Šema Rock-Eval aparature.*

Na temperaturi od 300 °C iz uzorka isparavaju slobodni i adsorbovani ugljovodonici i druga jedinjenja i njihova ukupna količina (pik S1) se meri plameno-jonizujućim detektorom (flame ionization detector, FID). Dalje zagrevanje na temperature 300 – 850 °C dovodi do pirolitičkog razlaganja kerogena pri čemu nastaje bitumen, ali i ugljen-dioksid i voda. Nastali ugljovodonici (pik S2) se detektuju FID detektorom, dok se nastali ugljenmonoksid i ugljen-dioksid (pikovi S3, S4, S5) detektuje infracrvenim detektorom. Ugljen-dioksid se meri tek posle određene temperature, jer je cilj detektovati samo CO₂ nastao pri krakovanju kerogena, a ne i CO₂ nastao razlaganjem karbonata. Stoga je pik S3 proporcionalan sadržaju kiseonika u kerogenu.

Kao rezultat Rock-Eval pirolize dobija se veliki broj parametara, od kojih su najznačajniji:

• Ukupni organski ugljenik (TOC, mas. %) – pokazatelj količine organske supstance u steni.

• Količina slobodnih ugljovodonika (S1, mgUV/g stene) pokazatelj količine neistisnutih ugljovodonika u matičnim stenama ili domigriranih ugljovodonika. Ovaj parametar iz Rock – Eval analize odgovara količini slobodnog bitumena koji se dobija ekstrakcijom sedimenata organskim rastvaračima. Registruje se na temperaturi od 300°C, na kojoj piroliza standardno i počinje.

• Količina generisanih ugljovodonika (S2, mgUV/g stene) pokazatelj preostalog generativnog potencijala kerogena. Odgovara količini ugljovodonika koja nastaje pirolizom kerogena pri porastu temperature od 300°C na 650°C.

• Količina CO i CO₂ generisanih iz organske materije (S3, S4, mg/g TOC),

Temperatura maksimalnog generisanja ugljovodonika (T_{max}, °C)
 pokazatelj stepena zrelosti kerogena. Temperatura koja odgovara maksimumu pika S2 , tj. temperatura na kojoj nastaje maksimalna količina

bitumena je parametar T_{max} . Granične vrednosti parametra T_{max} odgovaraju početku generisanja nafte i određene su empirijski. Početak generisanja nafte odgovara vrednostima T_{max} 430-435 °C u slučaju kerogena tipa II i III, odnosno 440-442 °C kod kerogena tipa I. U prirodnim uslovima u basenu, pri dugom geološkom zagrevanju, temperature su višestruko niže (100 - 120 °C).

• Ukupni neorganski ugljenik (MINC, mas.%) – pokazatelj učešća karbonata u steni. Značajan za litološku odredbu stene. Oblici krive na dijagramu ukazuju na vrstu karbonatnog minerala (kalcit, dolomit, siderit).

Na osnovu navedenih parametara Rock-Eval analize izračunavaju se indeksi koji su od značaja za interpretaciju rezultata, odnosno za određivanje potencijalnosti stene (Peters *et al.*, 2005a):

 Vodonični indeks, HI – pokazuje količinu ugljovodonika koju može da generiše gram organskog ugljenika iz kerogena (izražava se u mgUV/gTOC)

HI = S2*100/TOC

Vrednost vodoničnog indeksa proporcionalna je kvalitetu kerogena, odnosno potencijalnosti ispitivane sedimentne stene za produkciju tečnih ugljovodonika

• **Produkcioni indeks, PI** – pokazatelj efektivnosti matičnih stena, maturacije i zone istiskivanja ugljovodonika.

$$PI = S1/(S1+S2)$$

 Kiseonični indeks, OI – predstavlja količinu ugljen-dioksida i ugljen-monoksida koji su generisani iz organske materije, a matematički se određuje na osnovu sadržaja S3 i TOC:

OI = S3*100/TOC

2.2.4.1 Procena potencijalnosti stena na osnovu Rock-Eval analize

Procena potencijalnosti stena i stepena zrelosti organske supstance sedimentnih stena se izvodi na osnovu sveobuhvatnog posmatranja svih pomenutih Rock-Eval parametara. U *tabelama 2, 3 i 4* date su granične vrednosti Rock-Eval parametara koje su od značaja pri ovoj proceni. Dobijene granične vrednosti su rezultat ispitivanja velikog broja sedimentnih stena iz celog sveta (Peters *et al.,* 2005a) i predstavljaju osnovu za određivanje potencijalnosti stene.

Tip kerogena je moguće definisati na osnovu vodoničnog indeksa, HI i kiseoničnog indeksa, OI (*Tabela 2; Slika 18*). Kako su oba rezultata u dobroj korelaciji sa rezultatima elementarne analize, tj. vodonični indeks je u dobroj korelacji sa atomskim H/C- odnosom, a kiseonični sa atomskim O/C-odnosom, moguće je na osnovu HI i OI konstruisati dijagram sličan van-Krevelenovom dijagramu (tkzv. modifikovani van-Krevelenov dijagram; *Slika 18*). Na osnovu položaja uzorka u dijagramu može proceniti tip kerogena i faza evolucije u kojoj se nalazi (*Slika 18*).

Potencijal (kvalitet)	TOC (%)	S1 (mg UV/g stene)	S2 (mg UV/g stene)	Bitumen (ppm)	UV (ppm)
Nizak	<0,5	<0,5	<2,5	<500	<300
Srednji	0,5-1	0,5-1	2,5-5	500-1000	300-600
Dobar	1-2	1-2	5-10	1000-2000	600-1200
Veoma dobar	2-4	2-4	10-20	2000-4000	1200-2400
Odličan	>4	>4	>20	>4000	>2400

Tabela 2. Granične vrednosti parametara Rock-Eval pirolize i grupnih organskogeohemijskih parametara koje određuju potencijal za stvaranje tečnih ugljovodonika (odnosi se na matične stene na početku katageneze; Peters et al., 2005a)

UV – ugljovodonici.

Slika 18. Klasifikacija i karakterizacija kerogena zasnovana na elementarnoj analizi (a) i Rock-Eval analizi (b) (Jovančićević, Vitorović, 2005).

Tip kerogena	Vodonični indeks, HI (mg UV/g TOC)	Indeks tipa ugljenika, S2/S3	Atomski H/C odnos	Glavni proizvod
Ι	>600	>15	>1,5	Nafta
II	300-600	10-15	1,2-1,5	Nafta
II/III	200-300	5-10	1,0-1,2	Nafta / gas
III	50-200	1-5	0,7-1,0	Gas
IV	<50	<1	<0,7	Bez potencijala

Tabela 3. Granične vrednosti vodoničnog indeksa, S2/S3 odnosa (Rock-Eval parametri) i H/C odnosa (elementarna analiza) za različite tipove kerogena na početku katageneze (Peters et al., 2005a)

Stepen maturisanosti	Ro(%)	Produkcioni odnos (S1/(S1+S2))	T _{max} (°C) za kerogen tipa I	T _{max} (°C) za kerogen tipa II	T _{max} (°C) za kerogen tipa III
Nezrelo	0,20-0,60	<0,10	<445	<435	<440
Zrelo	1,6-1,35	0,10-0,40	445-455	435-460	440-470
Prezrelo	>1,35	>0,40	>455	>460	>470

Tabela 4. Granične vrednosti parametara termičke zrelosti organske supstance (Peterset al., 2005a)

Na *slici 19* (Peters *et al.*, 2005a) je prikazano kako tip organske supstance utiče na potencijalnost uzorka, odnosno prikazana su dva uzorka koja imaju približno isti sadržaj ukupnog organskog ugljenika (TOC). Količina ugljenika u oba uzorka je veoma zadovoljavajuća, i samo na osnovu ovog parametra bi se uzorci mogli svrstati u uzorke sa veoma dobrim potencijalom za generisanje ugljovodonika (*Tabela 2*). Međutim, vodonični potencijal drugog uzorka je veoma mali, jer ovaj uzorak većim delom sadrži inertni ugljenik, odnosno sačinjen je od kerogena tipa III. S druge strane, uzorak koji ima dobar potencijal za produkciju tečnih ugljovodonika sačinjen je pretežno od kerogena tipa II, koji sadrži znatno veću količinu reaktivnog ugljenika.

U *tabelama* 2-4 su prikazane granične i uobičajene vrednosti pojedinih parametara, na osnovu kojih je moguće uraditi procenu potencijalnosti stene, kvaliteta kerogena, zrelosti organske supstance, ali njihovo pojedinačno, rutinsko tumačenje bez sagledavanja svih poznatih aspekata može navesti na pogrešan zaklučak.

Rock-Eval pirolitička tehnika, kao i ostale pomenute tehnike ima određene nedostatke i ograničenja, tako da interpretacija rezultata može biti prilično složena. Tačnije, svi dobijeni podaci iz analiza opisanih u poglavlju 2.2., kao i svi već ranije poznati podaci o uzorcima moraju biti uzeti u obzir.

Slika 19. Ukupni organski ugljenik (TOC) kao indirektno merilo količine, ali ne i kvaliteta organske supstance (Peters et al., 2005a).

Precizna interpretacija rezultata o sedimentacionoj sredini zahteva ispitivanje i kerogena i bitumena i tek ako se vrednosti svih parametara "slože" sa sigurnošću se može tvrditi da li je reč o matičnoj steni i proceniti njen potencijal. Tako na primer, niske vrednosti sadržaja bitumena i ugljovodonika mogu ukazati na slabu potencijalnost stene, ali to ne znači da analizirana stena u prošlosti nije imala dobar potencijal za generisanje ugljovodonika. Naime, niske vrednosti sadržaja bitumena i ugljovodonika mogu biti posledica nezrelosti, ali i istrošenosti matične stene iz koje je najveća količina bitumena izmigrirala.

2.3. Rastvorna organska supstanca (bitumen) matičnih stena

U odeljku koji se odnosi na bitumen posebna pažnja je posvećena biomarkerima i aromatičnim jedinjenjma koji su korišćeni u interpretaciji rezultata doktorske disertacije. Dat je prikaz njihove geneze iz bioloških prekursora i daljih transformacija u geosferi. Navedene su metode za identifikaciju. Posebna pažnja posvećena je maturacionim parametrima koji se izračunavaju iz raspodele i obilnosti biomarkera i aromatičnih ugljovodonika i naglašene su njihove prednosti i mane.

2.3.1. *n*-Alkani i izoprenoidni alifatični alkani

n-Alkani su sastavne komponente bitumena sedimenata i nafti svih geoloških doba i predstavljaju najzastupljenije ugljovodonike u nebiodegradovanim naftama i zrelim matičnim stenama (Tissot, Welte, 1984; Peters et al., 2005b). Određuju se gasnohromatografskom (GC) i gasnohromatografsko-masenospektrometrijskom (GC-MS) analizom (na osnovu fragmentograma jona m/z 71, 85 ili 99, najčešće m/z 71) zasićene frakcije (Slika 19). U bitumenima su primenom ovih metoda identifikovani n-alkani do C₄₀, a razvoj instrumentalnih tehnika omogućio je identifikaciju *n*-alkana koji sadrže i do 120 C-atoma (Del Rio i Philp, 1992; Philp, 1984). U organskogeohemijskim ispitivanjima bitumena najčešće se upotrebljava opseg *n*-alkana C₁₂-C₃₅.

Prekursori ovih bioloških markera su: voskovi, zasićene i nezasićene masne kiseline, viši alkoholi, aldehidi i ketoni. Međutim, daleko najveća količina *n*-alkana u naftama nastaje tokom katageneze degradacijom makromolekulskog kerogena (Peters *et al.*, 2005b). Dominacija neparnih homologa, n-C₂₇, n-C₂₉ i n-C₃₁ u *n*-alkanskoj raspodeli upućuje na terestrično poreklo. Međutim i u sedimentima u kojima dominira organska supstanca jezerskog algalnog porekla (na primer: *Botryococcus braunii*) uočena je slična raspodela *n*-alkana (McKirdy *et al.*, 1986; Powel, 1986; Lichtfouse *et al.*, 1994). Dominacija viših neparnih alkana, n-C₂₁, n-C₂₃ i n-C₂₅ ukazuje na poreklo od *n*-alkana trava iz priobalne marinske i oslanjene sredine (Hunt, 1979), dok neparni članovi *n*-alkana u opsegu n-C₂₃ - n-C₂₉ mogu poticati i od nekih kvasaca, mikroalgi, cijanobakterija i zelenih algi (Volkman *et al.*, 1986). U algalnoj organskoj supstanci, obično su obilniji niži članovi homologog niza, sa

maksimumom na n-C₁₅, n-C₁₇ i n-C₂₂. Dominacija n-C₂₂ alkana može biti indikator slane sredine taloženja (Powel i McKirdy, 1973). U organskoj supstanci algalnog porekla ravnomerno su zastupljeni n-alkani sa neparnim i parnim brojem C-atoma (Waples, 1985).

Tokom geološke istorije dolazi do promena u raspodeli i obilnosti *n*alkana, kao posledica defunkcionalizacije (u dijagenezi) i krakovanja (u katagenezi), pri čemu se *n*-alkanima već prisutnim u zrelim sedimentima pridružuju *n*-alkani nastali krakovanjem kerogena. Promene u raspodeli *n*alkana se mogu pratiti promenom najobilnijeg *n*-alkana i promenom odnosa *n*alkana sa neparnim i parnim brojem C atoma, to jest vrednostima CPI (eng. Carbon Preference Index). U literaturi je predloženo nekoliko načina za izračunavanje CPI (Bray i Evans 1961, Philippi, 1965), a često se za izračunavanje koristi i ceo opseg *n*-alkana.

Sa povećanjem stepena maturisanosti, koncentracije *n*-alkana sa parnim i neparnim brojem ugljenikovih atoma se izjednačavaju, povećava se koncentracija normalnih alkana do C₂₀, a istovremeno se smanjuje koncentracija *n*-alkana sa više od 25 C-atoma i izčezava dominanacija *n*-alkana karakterističnih za određene biogene prekursore. Navedene promene uzrokuju približavanje CPI-vrednosti jedinici, ili čak vrednostima nižim od 1.

Iako se navedeni *n*-alkanski parametri rutinski primenjuju za procenu porekla bitumena i nafti i stepena termičke maturisanosti, iz svega navedenog može se zaključiti da je samo na osnovu raspodele *n*-alkana, CPI i *n*-alkanskog maksimuma teško izvesti neke pouzdanije zaključke o poreklu organske supstance, sem u slučaju kada je CPI iznad 1, i kada u *n*-alkanskoj frakciji postoji neki obilniji pik na neparnom homologu iznad C₂₂. U tom slučaju se može zaključiti da je u formiranju nafte sigurno u izvesnoj meri učestvovala i organska supstanca kopnenog porekla (Tissot, Welte, 1984). Sa druge strane dominacija nižih parnih homologa uz CPI vrednosti < 0,8 smatra se indikatorom algalne organske supstance iz redukcionih hiperslanih paleosredina (Peters *et al.*, 2005b).

Slika 20. Tipična raspodela n-alkana u zasićenoj frakciji nafte (Stojanović, 2004) Pr – pristan; Fit – fitan.

U većini bitumena zrelih matičnih stena i nafti najobilniji ugljovodonici posle *n*-alkana su izoprenoidni alifatični alkani. U naftama, kao i u bitumenima identifikovani su izoprenoidi (*Slika 21*) koji se na osnovu vrste izoprenskog vezivanja mogu podeliti na:

• Regularni izoprenoidi - karakterišu se "glava-rep" izoprenskim vezivanjem. To su farnezan (C₁₅), izoprenoid sa 16 C-atoma, norpristan (C₁₈), pristan (C₁₉), fitan (C₂₀), i ostali homolozi do C₄₅,

 Neregularni izoprenoidi - imaju jednu "rep-rep" vezu ili jednu "glava-glava" vezu u seriji "glava-rep" vezivanja. Najpoznatiji među njima su skvalan, perhidro-β-karotan, likopan (sadrže vezu "rep-rep") i 3,7,11,15,18,22,26,30-oktametil-dotriakontan (sadrži "glava-glava" vezu).

Slika 21. Najznačajniji regularni i neregularni izoprenoidi (Peters, Moldowan, 1993).

Farnezan, izoprenoid C₁₅, postaje od hlorofila bakterija, C₁₆-C₂₀ regularni izoprenoidi od hlorofila *a*, dok je za C₂₅-C₄₅ izoprenoide dokazano je da vode poreklo od izoprenoida dugog niza viših suvozemnih biljaka. Za neregularne izoprenoide sa tipom veze "rep-rep" smatra se da imaju algalno, a za neregularne izoprenoide sa jednim "glava-glava" vezivanjem bakterijsko poreklo (Albaiges *et al.*, 1985; Petrov *et al.*, 1990).

Pored izoprenoida nasleđenih od živih organizama, koji čine deo bitumena u dijagenetskoj fazi, u toku katageneze bitumen se obogaćuje novim izoprenoidnim molekulima koji postaju pri termičkoj degradaciji kerogena. U najvećem broju slučajeva, čak i u bitumenima recentnih sedimenata ne dolazi do proste akumulacije biolipidnih izoprenoida. Naime, već u dijagenezi, prekurskorski biomolekuli transformišu se u zasićene ugljovodonične, oblike kakvi su identifikovani u geolipidnim frakcijama. (Peters *et al.*, 2005b).

Izoprenoidni ugljovodonici se kvalitativno i kvantitativno određuju GC ili GC-MS analizom (fragmentogram jona m/z 183 ili, radi poređenja sa n-alkanima m/z 71) frakcije zasićenih ugljovodonika izolovane iz nafte ili bitumena (Philp, 1985).

Najznačajniji izoprenoidi za geohemijska istraživanja su pristan (Pr) i fitan (Fit). Njihov međusobni odnos, Pr/Fit koristi se kao indikator redoks

uslova sredine taloženja jer pristan nastaje iz fitola u oksidacionoj, a fitan u redukcionoj sredini. Relativni odnos koncentracija pristana i fitana može se upotrebljavati i pri određivanju stepena maturisanosti, pošto je uočeno da u toku maturacije pristan postaje nešto brže od fitana. To znači da u uzorcima staloženim pri istim oksido-redukcionim uslovima, vrednost Pr/Fit raste sa stepenom maturisanosti (Tissot, Welte, 1984).

U organsko-geohemijskim ispitivanjima vrlo često se primenjuje i odnos pristana prema *n*-alkanu sa 17 C-atoma (Pr/n- C_{17}), kao i odnos fitana i *n*-alkana sa 18 C-atoma (Fit/*n*- C_{18}). Ovi parovi jedinjenja imaju slična retenciona vremena tako da njihovi pikovi u gasnim hromatogramima zasićene frakcije bitumena i nafti daju vrlo karakteristične i lako prepoznatljive dublete (*Slika 20*). U toku katageneze količina *n*-alkana C_{17} i C_{18} raste u značajnijoj meri od količine pristana i fitana, te se vrednosti ovih parametara kod uzoraka staloženih pod sličnim redoks uslovima sa porastom stepena zrelosti snižavaju (Tissot, Welte, 1984).

2.3.2. Policiklični alkani tipa terpana

2.3.2.1. Triciklični i tetraciklični terpani

Glavni prekursori terpana su biolipidi prokariotskih organizama. U geološkim uzorcima različite starosti identifikovani su tri-, tetra- i pentaciklični terpani (Tissot, Welte, 1984).

2.3.2.1.1. Triciklični terpani

Triciklični terpani (*Slika* 22) su identifikovani u opsegu od C_{19} do C_{43} (Connan *et al.*, 1980; Moldowan *et al.*, 1983; De Grande *et al.*, 1993). Smatra se da triciklični terpani sa manje od 30 C atoma potiču iz membrana prokariotskih organizama (Ourisson *et al.*, 1982), ali su neka ispitivanja pokazala da mogu poticati i iz algi (Azevedo *et al.*, 1992). Visoke koncentracije tricikličnih terpana

su identifikovane u uljnim šejlovima bogatim tasmanitom, pa se njihovo poreklo dovodi i u vezu sa familijom algi *Tasmanites*.

Slika 22. *Strukturna formula tricikličnih terpana.*

Svi mogući izomeri tricikličnih terpana 13 β (H),14 α (H), 13 α (H),14 α (H), 13 α (H),14 α (H), 13 α (H),14 β (H) i 13 β (H),14 β (H) su nađeni u sedimentima. Katagenetskom transformacijom, termodinamički manje stabilni 13 α (H)14 α (H)-triciklični terpani izomerizuju u odgovarajuće stabilnije 13 β (H)14 α (H)-izomere (Chicarelli *et al.*, 1988).

Triciklični terpani se kvalitativno i kvantitativno mogu odrediti GC-MS analizom (fragmentogram jona *m/z* 191; Philp, 1985) frakcije zasićenih ugljovodonika (*Slika* 23; Jincai, 1999). Međutim, sve više je u upotrebi savremenija tandemska masena spektrometrija u kombinaciji sa GC (GC-MS-MS) kojom se postiže razdvajanje svih jedinjenja prema broju ugljenikovih atoma, što omogućava preciznu identifikaciju i kvantifikaciju svih izomera (*Tabela 5; Slika 24*).

Retenciono vreme (min)

Slika 23. Maseni hromatogram m/z 191 tricikličnih terpana jezerskih karbonata iz Bijang depresije, Kina (Jincai, 1999). Identifikacija pikova je data u 5.

Kako je C₂₃-triciklični terpan u većini nafti najobilniji, odnos C₂₃13 β (H)14 α (H)-triciklični terpan/C₂₃13 α (H)14 α (H)-triciklični terpan, C₂₃ $\beta\alpha/\alpha\alpha$ je našao svoju primenu kao maturacioni parametar (Aquino Neto, *et al.*, 1986; Li *et al.*, 2003). Odnos C₂₃ $\beta\alpha/\alpha\alpha$ se u početnoj fazi katageneze ne menja, jer u toj fazi transformacije organske supstance koncentracije oba izomera rastu, da bi u prvoj polovini naftnog prozora došlo do intenzivnog rasta koncentracije C₂₃ $\beta\alpha$ -terpana i istovremenog pada koncentracije C₂₃ $\alpha\alpha$ -terpana. Ove promene koncentracija su posledica direktne izomerizacije ova

dva izomera, ali i intenzivnog generisanja C₂₃ $\beta\alpha$ -terpana iz kerogena, kao i degradacije 13 α (H)14 α (H)-terpana (Farrimond *et al.*, 1999).

Jedinjenje
C ₁₉ 14β(metil) - Triciklični terpan
$C_{20}13\beta(H)$, 14 β (H) – Triciklični terpan
$C_{20}13\alpha(H)$, 14 β (H) – Triciklični terpan
$C_{20}13\beta(H)$, 14 α (H) – Triciklični terpan
C ₂₀ 13a(H), 14 a (H) – Triciklični terpan
C_{21} 13 β (H), 14 β (H) – Triciklični terpan
C ₂₁ 13 α(H), 14β (H) – Triciklični terpan
C_{21} 13 β (H), 14 α (H) – Triciklični terpan
C ₂₁ 13 a (H), 14 a (H) – Triciklični terpan
C ₂₂ 13β, 14 α (H) – Triciklični terpan
C ₂₂ 13 a, 14 β (H) – Triciklični terpan
C ₂₃ 13β, 14 α (H) – Triciklični terpan
C ₂₃ 13a, 14 a (H) – Triciklični terpan
C ₂₄ 13 β, 14 α (H) – Triciklični terpan
C ₂₄ 13a, 14 a (H) – Triciklični terpan
C ₂₃ Tetraciklični terpan
C ₂₅ 13 β, 14 α (H) – Triciklični terpan
C ₂₅ 13a, 14 a (H) – Triciklični terpan
C ₂₄ Tetraciklični terpan
C_{26} 13 β , 14 α (H) (24S)– Triciklični terpan
C ₂₆ 13 β, 14 α (H) (24R)– Triciklični terpan
C ₂₆ 13 a, 14 a (H) (24S)– Triciklični terpan
C ₂₈ 13 β, 14 α (H) (24S)– Triciklični terpan
$C_{28}13 \beta$, 14 a (H) (24R)– Triciklični terpan
C ₂₇ Tetraciklični terpan
C ₂₉ 13 β, 14 α (H) (24S)– Triciklični terpan
C ₂₉ 13 β , 14 α (H) (24R)– Triciklični terpan

Tabela 5. Identifikacija triciklični terpana sa slike 23 (Jincai, 1999)

Kao maturacioni odnosi primenjuju se i odnosi C_{21}/C_{23} i $C_{23}/C_{26} \beta \alpha / \alpha \alpha$ izomera (Farrimond *et al.*, 1999, Samuel *et al.*, 2010).

Kao maturacioni parametar često se koristi i odnos Σ triciklični/ Σ pentaiklični terpani (Farrimond *et al.*, 1999), s obzirom na znatno intenzivnije generisanje tricikličnih terpana, u poređenju sa hopanima, iz kerogena tokom termičke evolucije, ali i zbog činjenice da su triciklični terpani termodinamički stabilniji od hopana (Farrimond *et al.*, 1999). Mora se naglasiti da pri primeni ovog parametra treba biti obazriv, s obzirom da su prekursori ove dve grupe terpana različiti (van Graas *et al.*, 1990).

Retenciono vreme (min)

Slika 24. Tipična GC-MS-MS raspodela C_{19} - C_{26} tricikličnih terpana i C_{24} tetracikličnog terpana.TT – $13\beta(H)14a(H)$ -tricklični terpani; (S) i (R) označavaju konfiguraciju na C-22 u C_{25} i C_{26} tricikličnim terpanima, Tet – tetraciklični terpan. (Al –Arouri, 1996).

2.3.2.1.2. Tetraciklični terpani

Tetraciklični terpani (*Slika 25*) su u geološkim uzorcima znatno manje zastupljeni od pentacikličnih terpana. Nađeni su u bitumenima i naftama kako marinskog, tako i pretežno terestričnog porekla (Connan *et al.*, 1986, Philp i Gilbert, 1986).

Identifikovani su u opsegu C₂₄-C₂₇, a homolog C₂₄ je najobilniji (Aquino Neto *et al.*, 1983).

Slika 25. *Strukturna formula tetracikličnih terpana.*

Trendel *et al.* (1982) su utvrdili da su tetraciklični terpani termodinamički stabilniji od pentacikličnih hopana. Međutim, s obzirom da putevi geneze tetracikličnih terpana još uvek nisu u potpunosti rasvetljeni, ovi biomarkeri nisu našli važniju primenu u geohemijskim istraživanjima (Gordzadze, 2002).

2.3.2.2. Pentaciklični terpani

Najzastupljeniji terpani u alkanskoj frakciji bitumena i nafti su pentaciklični terpani sa hopanoidnim skeletom - hopani. Glavni prekursor ovih ugljovodonika je tetraoksibakteriohopan, učvršćivač ćelijskih membrana različitih vrsta mikroorganizama, koji u dijagenetskoj fazi učestvuju u razgradnji organske supstance. Pored toga, mogući prekursori pentacikličnih terpana su hopanoidne kiseline, gradivne komponente viših biljaka (Tissot i Welte, 1984; Peters i Moldowan, 1993). Strukturna formula hopana data je na *slici 26.*

Slika 26. Strukturne formule hopana, 25- i 30-norhopana, diahopana, neohopana i izohopana.

Hopani se kvalitativno i kvantitativno mogu odrediti GC-MS analizom (fragmentogram jona *m*/*z* 191; Philp, 1985) frakcije zasićenih ugljovodonika (*Slika 27*). S obzirom da pri GC-MS analizi neki izomeri hopana koeluiraju, poslednjih godina je sve više u upotrebi savremenija tandemska masena spektrometrija u kombinaciji sa GC (GC-MS-MS) kojom se postiže razdvajanje svih jedinjenja prema broju ugljenikovih atoma (*Slika 28*; Šolević, 2008).

Regularni hopani

U maturisanim bitumenima i naftama su identifikovani C₂₇-C₄₀ 17 α (H)21 β (H)-hopani (Farrimond *et al.*, 1990) i C₂₉-C₃₅17 β (H)21 α (H)-moretani (Larcher *et al.*, 1987; Kvenvolden i Simoneit, 1990). Kod homologa sa više od 30 C atoma i u slučaju moretana i u slučaju hopana prisutna su oba epimera, 22R i 22S. S obzirom da su najobilniji terpani u naftama i bitumenima C₂₇, C₂₉-C₃₅ hopani i C₂₉ i C₃₀ moretani, oni se najčešće i koriste u organsko-geohemijskim ispitivanjima (Seifert i Moldowan, 1986).

Slika 27. Tipična terpanska raspodela u nafti (Stojanović, 2004). Identifikacija pikova je data u tabeli 6.

Pik	Jedinjenje
1	C ₁₉ -triciklični terpan
2	C ₂₀ -triciklični terpan
3	C ₂₁ -triciklični terpan
4	C ₂₃ -triciklični terpan
5	C ₂₄ -triciklični terpan
6	C ₂₅ -triciklični terpan
7	C ₂₄ -tetraciklični terpan
8	C ₂₆ 22(S)-triciklični terpan
9	C ₂₆ 22(R)-triciklični terpan
10	C ₂₈ 22(S)-triciklični terpan
11	C ₂₈ 22(R)-triciklični terpan
12	C ₂₉ 22(S)-triciklični trepan
13	C ₂₉ 22(R)-triciklični terpan
14	C_{27} 18 α (H),22,29,30-trisnorneohopan, Ts
15	C ₂₇ 17α(H),22,29,30-trisnorhopan, Tm
16	$C_{29}17\alpha(H)21\beta(H)$ -hopan
17	C ₂₉ 18α(H),30-norneohopan, C ₂₉ Ts
18	C_{30} 17 α (H)-diahopan
19	$C_{29}17\beta(H)21\alpha(H)$ -moretan
20	Oleanan
21	$C_{30} 17 \alpha(H) 21 \beta(H)$ -hopan
22	$C_{30}7\beta(H)21\alpha(H)$ -moretan
23	$C_{31}17\alpha(H)21\beta(H)22(S)$ -hopan
24	$C_{31}17\alpha(H)21\beta(H)22(R)$ -hopan
25	Gamaceran
26	C ₃₂ 17α(H)21β(H)22(S)-hopan
27	$C_{32}17\alpha(H)21\beta(H)22(R)$ -hopan
28	C ₃₃ 17α(H)21β(H)22(S)-hopan
29	$C_{33} 17\alpha(H) 21\beta(H) 22(R)$ -hopan
30	C ₃₄ 17α(H)21β(H)22(S)-hopan
31	C ₃₄ 17α(H)21β(H)22(R)-hopan
32	C ₃₅ 17α(H)21β(H)22(S)-hopan
33	C ₃₅ 17α(H)21β(H)22(R)-hopan

 Tabela 6. Identifikacija terpana sa slike 27 (Stojanović, 2004)

Hopanski parametri imaju značajnu primenu u interpretaciji tipa prekursorskog sedimentnog organskog materijala (Holba *et al.*, 2003; Moldowan *et al.*, 1985; Volkman, 2003), litologije (Moldowan *et al.*, 1991a) i geološke starosti (Moldowan *et al.*, 1994).

Za procenu maturisanosti bitumena sedimenata i nafti upotrebljavaju se odnosi termodinamički stabilnijih $17\alpha(H)21\beta(H)$ -hopana i manje stabilnih $17\beta(H)21\alpha(H)$ -moretana. Najčešće se koriste homolozi sa 30C atoma. Vrednosti ovog odnosa u maturisanim bitumenima i nafti su niže od 0,3. Ravnoteža u izomerizaciji moretan \rightarrow hopan se uspostavljaja pri vrednosti parametra C_{30} moretan/ C_{30} hopan = 0,05, što u basenima sa normalnom brzinom zagrevanja aproksimativno odgovara refleksiji vitrinita od ~0,70% (Peters *et al.*, 2005b). Smatra se da na odnose moretana (M) i hopana (H) veliki uticaj ima i prekursorski materijal. To je verovatno razlog za slabu korelaciju odnosa M/H i refleksije vitrinita, koja je zapažena u nekim radovima (Goodarzi *et al.*, 1989). Dodatno, na količinu C_{29} H utiče i litološki sastav (veća obilnost ovog biomarkera uočena je u karbonatima), pa često i analogni odnosi C_{30} M/ C_{30} H i C_{29} M/ C_{29} H pokazuju slabiju saglasnost od očekivane (Gordzadze, 2002).

Odnos termodinamički stabilnijih 22(S)- i termodinamički manje stabilnih 22(R)-epimera C₃₁-C₃₅-hopana (poznatih kao homohopani) takođe se primenjuje u proceni termičke zrelosti. Vrednosti odnosa 22(S)/22(R) za seriju C₃₁-C₃₅ 17 α (H)21 β (H)-hopana su skoro identične (Zumberge, 1987). Međutim, najčešće se upotrebljavaju odnosi C₃₁- ili C₃₂-homologa, s obzirom da su oni u većini bitumena i nafti najzastupljeniji homohopani. Ravnotežna vrednost odnosa 22(S) i 22(R) epimera, 22(S)/22(R) iznosi 1,5. Ravnoteža se uspostavlja na početku katageneze (za C₃₁- i C₃₂-homohopane), što u zavisnosti od geotermalnog gradijenta aproksimativno odgovara refleksiji vitrinita, Rr \approx 0,5-0,6% (Peters i Moldowan, 1991, 1993).

Slika 28. Identifikacija hopana na osnovu GC-MS-MS analize (Šolević, 2008).

Pregrupisani hopani

Premeštanjem metil grupe iz položaja C-18 na C-17, iz regularnih 17α(H)-hopana nastaju termodinamički stabilniji izomeri **18α(H)-neohopani**. Među njima najbolje proučeni i najznačajniji su C₂₇-22,29,30-trisnorneohopan i C₂₉-30-norneohopan, poznati kao Ts i C₂₉Ts (Fazakerley et al., 1959; Moldowan et al., 1991a; Slika 25). Ts i C₂₉Ts su termodinamički stabilniji od regularnih $C_{27}17\alpha(H)$ -hopana (Tm) i $C_{29}17\alpha(H)$, 21 $\beta(H)$ -hopana ($C_{29}H$) (Kolaczkowska *et al.*, 1990), pa se odnosi Ts/(Ts+Tm) i C₂₉Ts/(C₂₉Ts+C₂₉H) koriste u proceni maturisanosti. Ova izomerizacija se odvija u katagenezi, tako da su neohopani karakteristični za zrelu organsku supstancu zrelih bitumena i nafti. U geohemijskim ispitivanjima najčešče se koriste C₂₇ i C₂₉ neohopani (Wang et al., 2016). U odnosu na parametre C_{30} moretan/ C_{30} hopan i $C_{31}22(S)/22(R)$, odnosi neohopana i hopana su znatno primenjiviji u opsegu maturisanosti koji je od intresa za zreo bitumen i naftu, s obzirom da se u reakcijama izomerizacije hopan \rightarrow neohopan ravnoteže ne uspostavljaju ni na najvišim stupnjevima zrelosti. Međutim, upotreba navedenih odnosa termičke u proceni maturisanosti ograničena je na uzorke iz srodnih sedimentacionih sredina, s obzirom da su izomerizacije hopan \rightarrow neohopan u značajnoj meri zavisne od minerala tipa glina (koji na njih imaju katalitičko dejstvo), pH i redoks uslova sredine (Tissot i Welte, 1984).

Među pregrupisanim hopanima značajna je i serija 17 α (H)-diahopana (*Slika 25*). Identifikovani su u opsegu C₂₇, C₂₉-C₃₅. Kao i u slučaju hopana, najobilniji u bitumenima i naftama je C₃₀*17 α (H)-diahopan (C₃₀*dia), koji se najčešće koristi u korelacionim studijama. Smatra se da je visoka obilnost diahopana tipična za organsku supstancu iz suboksičnih-oksičnih sredina, sniženog pH (Volkman *et al.*, 1983; Philp i Gilbert, 1986; Waseda i Nishita, 1998). Moldowan *et al.*, 1991a su ukazali da diahopani kao i regularni hopani mogu biti i bakterijskog porekla, i da nastaju iz regularnih hopana premeštanjem metil-grupe sa C₁₄ na C₁₅ u prisustvu minerala tipa glina. Primenom

molekularno-mehaničkih izračunavanja utvrđeno je da je C_{30} *dia stabilniji od C_{29} Ts i C_{30} H (Peters i Moldowan, 1993). Zbog toga se odnosi C_{30} *dia/ C_{29} Ts i C_{30} *dia/ C_{30} H upotrebljavaju kao maturacioni indikatori (Horstad *et al.*, 1990; Li *et al.*, 2009).

Pregrupisani hopani opsega C₂₉ do C₃₄, nazvani **28-nor-spergulani** (21metil-28-nor-hopani, **28-Nsp**) predstavljaju relativno novu seriju hopanskih biomarkera. Najdominantniji član ove serije hopana je C₂₉-28-norspergulan (*Slika 29*), dok su homolozi sa više od 31 C-atoma nađeni u tragovima. Utvrđeno je da je prisustvo C₂₉-28-norspergulana karakteristično za jezerske sredine različitog saliniteta (Nytoft *et al.*, 2006).

Slika 29. *Strukturna formula* 28-nor-spergulana $(R = H, CH_3, C_2H_5, C_3H_7, C_4H_9 i C_5H_{11} za C_{29} do C_{35} homologe, respektivno).$

Za razliku od regularnih hopana koji sadrže samo jednu metil grupu u bočnom nizu, na C-22 (*Slika 25*), hopani koji u bočnom nizu imaju dodatnu račvu nazivaju se **izohopani** (*Slika 25*). Izohopani su identifikovani u opsegu C_{33} - C_{40} (Nytoft, 2011). Karakteristični su za organsku supstancu terestričnog porekla taloženu u oksičnim sredinama, dok im je koncentracija u sedimentima iz anoksičnih sredina i marinskim naftama niska (Nytoft, 2011). Na *slikama 30 i 31* prikazana je GC-MS-MS raspodela C_{33} i C_{34} izohopana.

Slika **30.** GC-MS-MS fragmentogrami C₃₃ izohopana u ekstraktima kolumbijskog uglja (Nytoft, 2007).

U naftama i ekstraktima starih sedimenata su nađeni i **"rano eluirajući" hopani** (*eng. "early eluted" hopanes*), koji se karakteršu znatno kraćim GC-MS retencionim vremenima u poređenju sa hopanima koji sadrže isti broj C-atoma, po čemu su i dobili naziv (Nytoft *et al.*, 2007). Obično se javljaju u uzorcima koji sadrže diahopane (Moldowan *et al.*, 1991a; Telnæs *et al.*, 1992). Iako nije dokazana precizno NMR analizom, za strukturu C₃₀ "rano eluirajućeg" hopana pretpostavljeno je da odgovara 9,15-dimetil-25,27-bisnorhopanu (*Slika 32*). Struktura ovog hopana predložena je na osnovu sinteze jedinjenja i poređenja njegovog masenog spektra i retencionog vremena sa masenim spektrom i retencionim vremenom C₃₀ "rano eluirajućeg" hopana identifikovanog u naftama i ekstraktima matičnih stena (Nytoft *et al.*, 2007).

Slika 31. GC-MS-MS fragmentogrami C₃₄ izohopana u ekstraktima kolumbijskog uglja (Nytoft, 2007).

Slika 32. Pretpostavljena struktura C₃₀ "rano eluirajućeg" hopana - 9,15dimetil-25,27-bisnorhopana.

U nekolicini biodegradovanih nafti otkrivena je i neobična serija C_{27} - C_{35} pentacikličnih terpana (Trendel *et al.,* 1993), čije je poreklo nepoznato. NMR

analizom utvrđeno je da struktura C_{30} homologa odgovara **C(14a)-homo-26-nor-17a(H)-hopanu** (*Slika 33*). Za ove biomarkere tipično je da sadrže prsten C koji ima sedam umesto uobičajenih šest C-atoma. Trendel *et al.* (1993) su predložili da je ova hopansku seriju sintetišu bakterije ili da postaje oksidacijom metil grupe na C-26 do alkohola uz premeštanje na C8(14) vezi.

Slika 33. *Strukturna formula* C₃₀ C(14a)-homo-26-nor-17a(H)-hopana.

Pošto se C(14a)-homo-26-nor-17a(H)-hopan karakteriše većom termodinamičkom stabilnošću od odgovarajućeg hopana, smatra se da bi odnos ova dva hopana mogao da se koristi kao indikator maruracije (Trendel *et al.*, 1993; Nytoft i Bojesen-Koefoed, 2001; Peters *et al.*, 2005b). Međutim ova hipoteza još uvek nije potvrđena.

Pored pomenutih pentacikličnih terpana, često prisutni u naftama i bitumenima su i **oleanan** i **gamaceran** (*Slika 34*), koji predstavljaju važne organsko-geohemijske indikatore. Identifikacija oleanana u uzorku dokaz je učešća suvozemne prekursorske biomase, s obzirom da ovaj biomarker vodi poreklo od angiospermi (skrivenosemenica, Moldowan *et al.*, 1994). S druge strane, imajući u vidu da su se tokom evolucije angiosperme pojavile u kasnoj kredi prisustvo ili odsustvo oleanana može da posluži kao pokazatelj geološke starosti. Visoke koncentracije gamacerana tipične su za organsku supstancu taloženu ispod stratifikovanog, anoksičnog stuba vode, što je najčešće posledica hiperslanih uslova ili sezonskih temperaturnih promena u jezerima pri umerenoj klimi (Sinninghe Damsté *et al.*, 1995).

Slika 34. Strukturne formule oleanana (a) i gamacerana (b).

2.3.3. Policiklični alkani tipa sterana

Za razliku od hopana koji vode poreklo od biolipida prokariotskih organizama, sterani vode poreklo od steroida koji su pretežno zastupljeni u eukariotima. Strukturna formula sterana je prikazana na *slici 35*.

Slika 35. *Strukturna formula* C₂₉ *sterana*.

Sterani su važna komponenta zasićene frakcije bitumena i nafti. Identifikovani su opsegu C_{21} - C_{30} . U geološkom supstratima nađeni su i pregrupisani sterani, u istom opsegu, poznati pod nazivom diasterani. Najzastupljeniji među steranima i diasteranima u bitumenima i naftama su C_{27} -
C₂₉ homolozi, i može se reći da je njihova primena u korelacionim studijama već postala rutinska.

Za kvalitativno i kvantitativno određivanje ovih biomarkera neophodna je GC-MS analiza. I sterani i diasterani se identifikuju na osnovu fragmentograma jona m/z = 217 (*Slika 36*), dok su za diasterane tipični i fragmentogrami jona m/z = 218, 232 i 259 (*Tabela 7; Slika 36;* Philp, 1985). Imajući u vidu da pri GC-MS analizi pojedini izomeri C₂₇- i C₂₈-sterana koeluiraju sa C₂₈- i C₂₉-diasteranima (*Slika 36*), znatno preciznija identifikacija i kvantifikacija postiže se primenom tandemske masene spektrometrije u kombinaciji sa GC (GC-MS-MS), (*Slika 37*, Šolević, 2008). Zbog nižih koncentracija u poređenju sa C₂₁-C₂₂ i C₂₇-C₂₉ homolozima, primena ove tehnike neophodna je pri identifikaciji ostalih steranskih homologa, među kojima su za organskogeohemijska istraživanja posebno značajni C₂₆ i C₃₀ sterani i diasterani (Moldowan *et al.*, 1985; Peters *et al.*, 1986; Holba *et al.*, 1998a,b).

2.3.3.1. C₂₇-C₂₉ sterani

Steranske raspodele u maturisanim bitumenima i naftama se karakterišu prisustvom onih jedinjenja koja nastaju u fazi katageneze, tako da se u hromatogramima mogu detektovati kako sterani sa biološkom $14\alpha(H)$,17 $\alpha(H)$ 20R-konfiguracijom (regularni sterani), tako i termodinamički stabilniji izomeri (neregularni sterani) sa $14\alpha(H)$, $17\alpha(H)$ 20S, $14\beta(H)$, $17\beta(H)$ 20R i 14 β (H),17 β (H)20S konfiguracijama (*Slike 36 i 37*). Pored toga, većina nafti i bitumena starih sedimenata takođe, sadrži i tipične geoizomere diasterane, koji kao i neregularni sterani predstavljaju proizvod katagenetskih transformacija prekursorskih steroida. Navedene katagenetske promene se odvijaju kako na "slobodnim" steranskim molekulima (sastojci bitumena), tako i na steranskim strukturama koje su još uvek vezane za kerogenski matriks (Peters et al., 2005b). U živom svetu nema diasteranskih konfiguracija, već su one tipične samo za geološke supstrate, gde se najčešće nalaze kao $13\beta(H)$, $17\alpha(H)20R$ ili 20S izomeri,

dok su $13\alpha(H)$, $17\beta(H)20R$ ili 20S izomeri prisutni u manjim količinama (Philp, 1985; George *et al.*, 1998). Navedene izomerizacije u termodinamički stabilnije oblike odvijaju se i u rezervoar stenama, ukoliko ravnoteže u njima nisu dostignute na "bitumenskom" stadijumu.

Slika 36. Tipična raspodela sterana i diasterana u nafti (Stojanović, 2004). Identifikacija pikova je data u tabeli 7. Odnosi termodinamički stabilnijih $14\alpha(H)$, $17\alpha(H)20(S)$ i $14\beta(H)$, $17\beta(H)20(R)$ i manje stabilnih $14\alpha(H)$, $17\alpha(H)20(R)$ -izomera sterana sa istim brojem C-atoma (najčešće C₂₉ zbog najboljeg razdvajanja pikova pri GC-MS analizi), kao i odnosi diasterana i regularnih, $14\alpha(H)$, $17\alpha(H)20(R)$ -sterana koriste se za procenu stepena maturisanosti bitumena i nafte

(Seifert i Moldowan, 1986).

Analizom velikog broja uzoraka nađeno je da se ravnoteže u izomerizacionim reakcijama $\alpha\alpha(R) \rightarrow \alpha\alpha(S)$ i $\alpha\alpha(R) \rightarrow \beta\beta(R)$ uspostavljaju pri vrednostima parametara $\alpha\alpha(S)/(\alpha\alpha(R)+\alpha\alpha(S)) = 0,52-0,55$ i $\beta\beta(R)/(\alpha\alpha(R)+\beta\beta(R)) = 0,67-0,71$. U slučaju prvog parametra uspostavljanje ravnoteže približno odgovara maksimumu "naftnog prozora", odnosno opsegu indeksa refleksije vitrinita, Rr = 0,80-0,90% u basenima sa normalnom brzinom zagravanja. Odnos $\beta\beta(R)/(\alpha\alpha(R)+\beta\beta(R))$ dostiže ravnotežu u kasnoj fazi "naftnog prozora" što u basenima sa normalnom brzinom zagravanja odgovara refleksiji vitrinita, Rr = 0,90-0,95% (Peters *et al.*, 2005b).

Pik	Jedinjenje
1	$C_{27}13\beta(H)17\alpha(H)20(S)$ -diasteran
2	$C_{27}13\beta(H)17\alpha(H)20(R)$ -diasteran
3	$C_{27}13\alpha(H)17\beta(H)20(S)$ -diasteran
4	$C_{27}13\alpha(H)17\beta(H)20(R)$ -diasteran
5a	$C_{28}13\beta(H)17\alpha(H)20(S)24(S)$ -diasteran
5b	$C_{28}13\beta(H)17\alpha(H)20(S)24(R)$ -diasteran
6a	$C_{28}13\beta(H)17\alpha(H)20(R)24(S)$ -diasteran
6b	C_{28} 13 β (H)17 α (H)20(R)24(R)-diasteran
7	$C_{28}13\alpha(H)17\beta(H)20(S)$ -diasteran + $C_{27}14\alpha(H)17\alpha(H)20(S)$ -steran
8	$C_{29}13\beta(H)17\alpha(H)20(S)$ -diasteran + $C_{27}14\beta(H)17\beta(H)20(R)$ -steran
9	$C_{28}13\alpha(H)17\beta(H)20(R)$ -diasteran + $C_{27}14\beta(H)17\beta(H)20(S)$ -steran
10	$C_{27}14\alpha(H)17\alpha(H)20(R)$ -steran
11	$C_{29}13\beta(H)17\alpha(H)20(R)$ -diasteran
12	$C_{29}13\alpha(H)17\beta(H)20(S)$ -diasteran
13	C ₂₈ 14α(H)17α(H)20(S)-steran
14	$C_{29}13\alpha(H)17\beta(H)20(R)$ -diasteran + $C_{28}14\beta(H)17\beta(H)20(R)$ -steran
15	$C_{28}14\beta(H)17\beta(H)20(S)$ -steran
16	$C_{28}14\alpha(H)17\alpha(H)20(R)$ -steran
17	C ₂₉ 14α(H)17α(H)20(S)-steran
18	C ₂₉ 14β(H)17β(H)20(R)-steran
19	$C_{29}14\beta(H)17\beta(H)20(S)$ -steran
20	$C_{29}14\alpha(H)17\alpha(H)20(R)$ -steran

Tabela 7. Identifikacija sterana i diasterana sa slike 36 (Stojanović, 2004)

Slika 37. Identifikacija sterana i diasterana na osnovu GC-MS-MS analize (Šolević, 2008).

Za procenu zrelosti bitumena i nafti upotrebljava se odnos tipičnih geoizomera diasterana i sterana. On se može izraziti na tri načina:

1) $C_{27}13\beta(H)17\alpha(H)20(S)$ -diasteran/($C_{27}13\beta(H)17\alpha(H)20(S)$ -diasteran + $C_{27}14\alpha(H)17\alpha(H)20(R)$ -steran);

2) $C_{27}13\beta(H)17\alpha(H)20(R+S)$ -diasterani/ $C_{29}14\alpha(H)17\alpha(H)20(R+S)$ -sterani;

3) $\Sigma C_{27}-C_{29}13\beta(H)17\alpha(H)20(R+S)$ -diasterani/ $\Sigma C_{27}-C_{29}14\alpha(H)17\alpha(H)20(R+S)$ -sterani (Peters i Moldowan, 1993).

Najčešće se upotrebljava prvi odnos jer na njega ne utiče koeluiranje sterana sa diasteranima C_{28} i C_{29} pri rutinskoj GC-MS-analizi. Međutim, primena ovog odnosa kao maturacionog indikatora, uprkos činjenici da on ne dostiže ravnotežu ni u kasnoj fazi "naftnog prozora", ima ograničenja s obzirom da je obilnost diasterana pored maturacije kontrolisana litologijom (minerali tipa glina favorizuju stvaranje diasterana, Rubinstein *et al.*, 1975; Mello *et al.*, 1988), redoks potencijalom i pH paleosredine (veća obilnost diasterana je tipična za suboksične-oksične sredine, nižeg pH, Peters *et al.*, 2005b).

Procenat zastupljenosti pojedinačnih izomera C₂₇, C₂₈ i C₂₉ 14α(H),17α(H)20R sterana u njihovoj sumi primenjuje se za procenu porekla i sredine taloženja organske supstance (Moldowan *et al.*, 1985). Primena raspodele C₂₇-C₂₉ 14α(H)17α(H)20(R) sterana kao izvornog parametra zasnovana je na saznanju da C₂₇ sterani potiču uglavnom od marinskih planktona, C₂₈ homolozi iz kvasaca, gljiva, plankona i algi (Volkman, 2003), dok je za C₂₉ sterane karakteristično da potiču iz viših biljaka (Volkman, 1986). Međutim, upotreba ovog steranskog parametra u proceni porekla ima ograničenja, s obzirom da marinske alge proizvode sterole u opsegu od C₂₇ do C₂₉ (Volkman, 2003).

2.3.3.2. C₂₁ i C₂₂ Sterani

C₂₁ i C₂₂ Sterani (*Slika 38*) se često identifikuju u naftama i bitumenima matičnih stena za naftu. Strukturno se razlikuju od C₂₇-C₃₀ sterana po supstituciji na C-20, pri čemu sadrže ili metil- ili dve metil grupe za razliku od C_{27} do C_{30} sterana koji sadrže bočni lanac sa 5 do 8 C-atoma. Uobičajena imena su im pregnan ($C_{21}5\alpha(H)$, $14\alpha(H)$, $17\alpha(H)$) i diginan ($C_{21}5\alpha(H)$, $14\beta(H)$, $17\beta(H)$), odnosno homopregnan (C_{22} 5 α (H), 14 α (H),17 α (H)) i homodiginan (C_{22} 5 α (H), $14\beta(H)$, $17\beta(H)$), a zajednički naziv im je "kratkolančani" sterani. Pregnan i diginan, kao i homopregnan i homodiginan koeluiraju čak i pri GC-MS-MS analizi (Wingert, Pomeranz, 1986). Isto kao i kod viših homologa, identifikovani C_{21} i C_{22} 13 β (H),17 α (H) diasterani, poznati kao diapregnan i su diahomopregnan, odnosno prediginan i prehomodiginan. Pretpostavlja se da su biološki prekursori "kratkolančanih" sterana hormoni, pregnanol i pregnanon, kao i da tokom dijagenetsko-katagenetske sekvence oni mogu postati i degradacijom viših sterana (Tissot, Welte, 1984).

Visoka obilnost "kratkolančanih" sterana smatra se indikatorom hiperslanih depozicionih sredina (ten Haven *et al.*, 1985). Sa druge strane, odnos kratkolančanih C_{21} i C_{22} sterana prema dugolančanim C_{27} - C_{29} steranima se koristi kao maturacioni parametar, s obzirom da je zapaženo da se ovaj odnos povećava sa porastom maturisanosti (Wingert i Pomerantz, 1986). Pretpostavlja se da je povećanje koncentracije ovih sterana u odnosu na C_{27} – C_{29} sterane uzrokovano degradacijom viših homologa (Requejo, 1997).

Slika 38. *Strukturne formule* C_{21} *i* C_{22} *sterana*.

2.3.3.3. C₂₆ Sterani

C₂₆ sterani (*Slika 39*) obuhvataju relativno mali procenat (u proseku čine 6%) od ukupne količine sterana. Zbog niske koncentracije za njihovu identifikaciju neophodna je GC-MS-MS analiza (*Slika 40*). U bitumenima i naftama kako marinskog, tako i suvozemnog porekla, identifikovane su tri serije C₂₆-sterana, poznate kao 21-, 24- i 27-norholestani (*Slika 39*; Moldowan *et al.*, 1991b).

24- i 27-Norholestani se javljaju u obliku $14\alpha(H)17\alpha(H)20(R+S)$ - i $14\beta(H)17\beta(H)20(R+S)$ -izomera, kao i regularni sterani. 21-Norholestani nemaju hiralni centar na C₂₀ i karakteriše ih $14\alpha(H)17\alpha(H)$ - ili $14\beta(H)17\beta(H)$ -konfiguracija.

Slika 39. *Strukturne formule* C₂₆-*sterana: a*) C₂₁-*nor, b*) C₂₄-*nor i c*) C₂₇-*nor.*

21- i 27-Norholestani nemaju direktnih prekursora u biosferi i verovatno su proizvodi razgradnje ili demetilovanja viših sterana (Peters i Moldowan, 1993). S druge strane, tragovi prekursora 24-norholestana identifikovani su u algama i invertebratama.

Prisustvo steroidnih kiselina kao što je holestan-21-olska u sirovim naftama (Peters *et al.*, 2005b) ukazuje na pogodne intermedijere koji se mogu dobiti bakterijskom oksidacijom C₂₇ sterola, stanola ili sterena tokom taloženja sedimenta. Dalja dekarboksilacija dovodi do nastanka 21-norholestana (Moldowan *et al.*, 1991b).

Slično kao i u slučaju konvencionalnih C₂₇-C₂₉ steranskih homologa u geološkim supstratima identifikovana je i serija C₂₆ diasterana i to prvenstveno 24- i 27-nordiaholestani.

Dokazano je da termička stabilnost norholestana prati niz: 21-nor->>27nor>24-nor (Moldowan *et al.,* 1991b). Relativna koncentracija C₂₁-norholestana se povećava sa maturacijom, ali takođe može zavisiti od sredine taloženja. U dosadašnjim istraživanjima je dokazano da je koncentracija C₂₁-norholestana visoka u evaporitnim sedimentima jezerskog porekla, što potvrđuje da pored maturisanosti, sredina taloženja igra važnu ulogu u regulaciji koncentracije ovog jedinjenja. Ispitivanjem velikog broja nafti sa različitih lokaliteta (na primer Wyoming i Angola) uočeno je da je odnos C₂₁-norholestan/(C₂₁+C₂₄+C₂₇- norholestani) proporcionalan maturisanosti naročito, na maksimumu i u drugoj polovini "naftnog prozora" (Peters i Moldowan, 1993).

Slika **40***. Identifikacija C*₂₆ *sterana GC-MS-MS analizom* (*Stojanović*, 2014).

U sedimentnim stenama iz doba paleozoika i stena koje potiču iz još starijih perioda, skoro da nema 24-norholestana. On se u većim količinama može naći u sedimentima iz perioda jure i mlađim.

Nordiaholestanski odnos (NDR) zasnovan je na odnosu zastupljenosti C_{26} 24-nordiaholestana i C_{26} 27-nordiaholestana. Primena NDR kao indikatora geološke starosti zasnovana je na dokazima da C_{26} 24-nordiaholestani, direktno ili indirektno, potiču od dijatomejskih algi. Vrednosti NDR odnosa mogu se koristiti za razlikovanje uzoraka starosti jure (NDR > 0,20), krede (NDR > 0,25),

odnosno, oligocena ili mlađih geoloških doba (NDR > 0,50; Holba *et al.*, 1998a,b).

2.3.3.4. C₃₀ Sterani

C₃₀-Sterani obuhvataju C₃₀-4-des-metil-24-*n*-propilholestane i sterane sa metil-grupom u položajima 2, 3 ili 4. 2-Metil sterani imaju α -konfiguraciju, dok se 3-metil sterani karakterišu β -konfiguracijom. 4-Metilsterani imaju α konfiguraciju i dele se na dve grupe: 1) C₂₈-C₃₀-4 α -metilsterani kojima pripada 4 α -metil-24-etilholestan i 2) C₃₀-dinosterani kojima pripada 4 α ,23,24trimetilholestan (*Slika* 41).

Za identifikaciju C₃₀-sterana neophodna je GC-MS-MS analiza. Primenom ove metode u bitumenima i naftama su identifikovani metilsterani i C₃₀-4-des-metil-24-*n*-propilholestani. Za metil-sterane tipičan prelaz je iz m/z414 u m/z 231, dok se C₃₀-4-des-metil-24-*n*-propilholestani karakterišu prelazom iz roditeljskog jona m/z 414 u tipični steranski jon m/z 217 (*Slika* 37).

Slika 41. Strukturne formule C_{30} -4-des-metil-24-n-propilholestana (a), C_{30} -4 α -metilsterana (b) i C_{30} -dinosterana (c).

 4α -Metil-24-etilholestan se pojavljuje u velikoj koncentraciji u sedimentnim stenama iz tercijara, dok su dinosterani identifikovani u naftama koje potiču iz perioda pre trijasa. Prisustvo C₃₀-sterana (4-des-metilsterana) je dokaz učešća marinskog organskog materijala u formiranju organske supstance sedimenta (Peters i Moldowan, 1993), dok je visoka vrednost odnosa 4-metilsteran/4-des-metilsteran karakteristična za nafte jezerskog porekla (Holba *et al.*, 2003). Sve tri serije metil-sterana (2, 3 i 4) nađene su u ekstraktima kambrijumskih i ordovicijumskih izvornih stena u Kini, te je teško izvesti povezivanost ovih biomarkera sa stratigrafskom pripadnošću (Zhang *et al.*, 2002).

C₃₀ sterani su našli primenu u proceni porekla i uslova sredine taloženja organske supstance. Međutim, njihova značajnija povezanost sa maturacijom do sada nije utvrđena (Moldowan *et al.*, 1992; Al-Arouri *et al.*, 1998). Pozitivna korelacija između odnosa C₃₀-4 α -metilsterani/(C₂₉ $\alpha\alpha(R)+\alpha\alpha(S)$)-sterani i steranskog maturacionog parametra C₂₉ $\alpha\alpha(S)/(\alpha\alpha(R)+\alpha\alpha(S))$ zapažena je samo kod izrazito nematurisanih uzoraka. Već pri vrednostima parametra C₂₉ $\alpha\alpha(S)/(\alpha\alpha(R)+\alpha\alpha(S)) \ge 0,2$, a pogotovu na višim stupnjevima termičke zrelosti, koji su od interesa za nafte, uočen je opadajući trend sadržaja C₃₀-4 α metilsterana sa maturisanošću (Huang *et al.*, 1994).

2.3.4. Aromatični ugljovodonici

Aromatičnu frakciju bitumena i nafti čine aromatični ugljovodonici i heterociklična (u najvećoj meri sumporna) jedinjenja manjih molekulskih masa. Aromatična jedinjenja su u naftama i starim sedimentima znatno obilnija nego u recentnim sedimentima i uglavnom ih čine mono-, di-, tri- i policiklični aromatični ugljovodonici. Među njima dominiraju alkilaromati, i to oni sa metil supstituentima na aromatičnom prstenu. Dokazano je da je porast produkcije tečnih ugljovodonika u toku katageneze uvek praćen i značajnim porastom količine alkilaromata (Radke, 1987; Peters *et al.*, 2005b).

Aromatična jedinjenja, uglavnom, vode poreklo od bioloških prekursora lipidnog tipa, pre svega steroida i terpenoida, koji tokom dijageneze podležu delimičnoj aromatizaciji. Međutim, neuporedivo veća količina aromatičnih jedinjenja u bitumenu, odnosno nafti nastaje degradacijom kerogena. Zbog značajno izmenjene strukture u odnosu na prekursorske molekule, alkilaromati se relativno teško dovode u vezu sa nekim konkretnim biološkim prekursorom. Stoga se u klasične biomarkere, među aromatičnim ugljovodonicima, svrstavaju samo mono- i triaromatični sterani (Peters *et al.*, 2005b).

Iako nemaju velikog značaja kao izvorni parametri, analiza alkilaromata u bitumenima i naftama je veoma značajna, jer omoguća određivanje stepena termičke zrelosti matičnih stena u trenutku istiskivanja nafte, a time i grubu procenu preostalog naftnog potencijala. Takođe, ove analize mogu doprineti i u prognozi akumulacija ugljovodonika u dubljim ili neispitanim delovima naftnih basena (Peters i Fowler, 2002).

2.3.4.1. Diciklični aromatični ugljovodonici

U ukupnom sadržaju dicikličnih aromatičnih ugljovodonika u bitumenima matičnih stena i naftama dominiraju alkilnaftaleni (i do 90%; *Slika* 42), a pored njih prisutni su u maloj količini difenili, difenilalkani i naftenodiaromatična jedinjanja (Grice *et al.*, 1999).

Slika 42. Strukturna formula naftalena.

Alkilnaftaleni u naftama i starim sedimentima su uglavnom zastupljeni u obliku metil-izomera i sadrže jednu do pet metil grupa direktno vezanih za aromatični prsten (Radke *et al.*, 1982b; Alexander *et al.*, 1984, 1985; Strachan *et al.*, 1988; Bastow *et al.*, 1998). Pored metilnaftalena, u bitumenima i naftama su značajnijoj količini prisutni etilnaftaleni (*Tabela 8; Slike 43, 45*), propilnaftaleni i butilnaftaleni, a identifikovana je i cela serija *n*-alkilnaftalena zaključno sa homologom koji u bočnom nizu sadrži 24 C-atoma (Ellis *et al.*, 1999). Sem toga, u naftama su u maloj količini identifikovani i alkilnaftaleni sa izoprenoidnim bočnim nizom i naftalenski derivati koji na aromatičnom prstenu sadrže različite alkil grupe najčešće, metil i etil ili metil i *izo*propil (Singh *et al.*, 1994).

Za identifikaciju i kvantifikaciju dicikličnih aromatičnih jedinjenja mogu se koristiti GC- i GC-MS analiza (*Slika 43*). Međutim za analizu tetrametil- i pentametilnaftalena neophodna je primena GC-MS tehnike. Pregled najzastupljenijih alkilnaftalena u aromatičnoj frakciji bitumena matičnih stena i nafti, zajedno sa karakterističnim m/z vrednostima fragmentograma jona koji se koriste za njihovu identifikaciju dat je u *Tabeli 8* (Alexander *et al.*, 1994; Singh *et al.*, 1994; Bastow *et al.*, 1998; Grice *et al.*, 1999).

Jedinjenje (Skraćenica)	Tipična <i>m/z</i> vrednost	Izomeri		
Metilnaftaleni (MN)	142	1- i 2-MN		
Dimetilnaftaleni (DMN)	156	1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 1,8-, 2,3-, 2,6- i 2,7-DMN		
Trimetilnaftaleni (TMN)	170	1,2,4-, 1,2,5-, 1,2,6-, 1,2,7-, 1,3,5-, 1,3,6-, 1,3,7-, 1,6,7- i 2,3,6-TMN		
Tetrametilnaftaleni (TeMN)	184	1,2,3,5-, 1,2,3,6-, 1,2,3,7-, 1,2,4,6-, 1,2,4,7-, 1,2,5,6-, 1,2,5,7-, 1,2,6,7-, 1,3,5,7- ,1,3,6,7-, 1,4,6,7- i 2,3,6,7- TeMN		
Pentametilnaftaleni (PMN)	198	1,2,3,5,6-, 1,2,3,5,7-, 1,2,3,6,7- i 1,2,4,6,7-PMN		
Etilnaftaleni (EN)	156	1- i 2-EN		

Tabela 8. Pregled najzastupljenijih alkilnaftalena u aromatičnoj frakciji bitumena i nafti

Alkilnaftaleni nemaju bitniju ulogu u određivanju porekla organske supstance, ali su značajni za procenu termičke zrelosti. Maturacioni parametri najčešće predstavljaju odnose termodinamički stabilnijih β - i manje stabilnih α izomera alkilnaftalena (Radke *et al.*, 1982b; Radke, 1987). Pregled najznačajnijih naftalenskih maturacionih parametara prikazan je u *tabeli 9*.

Parametar	Skraćenica	Formula	Autor
Metilnaftalenski odnos	MNR	2-MN/1-MN	Radke <i>et al.,</i> 1982b
Dimetilnaftalenski odnos 1	DNR 1	1,8-DMN/ΣDMN	Alexander et al., 1984
Dimetilnaftalenski odnos 2	DNR 2	(2,6-+2,7-DMN)/1,5-DMN	Radke <i>et al.,</i> 1982b
Dimetilnaftalenski odnos	DMNR	(2,6-+2,7-DMN)/(1,4-+1,5- + 1,6-+2,3-+2,6-+2,7-DMN)	Yawanarajah i Kruge, 1994
α/β Dimetilnaftalenski indeks 1	α/β DN 1	(1,4-+1,5-+1,8-DMN)/ (2,3-+2,6-+2,7-DMN)	Golovko, 1997
Dimetilnaftalenski odnos	DNr-x	(2,6-+2,7-DMN)/1,6-DMN	Ahmed i George, 1999
Trimetilnaftalenski odnos 1	TNR 1	2,3,6-TMN/ (1,3,5-+1,4,6-TMN)	Alexander et al., 1985
Trimetilnaftalenski odnos 2	TNR 2	(1,3,7-+2,3,6-TMN)/ (1,3,5-+1,3,6-+1,4,6-TMN)	Radke <i>et al.,</i> 1986
Trimetilnaftalenski odnos 3	TNR 3	1,3,6-TMN/1,2,5-TMN	Strachan <i>et al.,</i> 1988
α/β Trimetilnaftalenski indeks 1	$\alpha/\beta TN 1$	(1,2,4-+1,2,5-TMN)/ (2,3,6-+1,2,7-+1,6,7-TMN)	Golovko, 1997
α/β Trimetilnaftalenski indeks 2	$\alpha/\beta TN 2$	1,2,5-TMN/1,2,7-TMN	Golovko, 1997
Trimetilnaftalenski odnos	TMNr	1,3,7-TMN/ (1,2,5-+1,3,7-TMN)	van Aarssen <i>et al.,</i> 1999
Tetrametilnaftalenski odnos	TeMNR	2,3,6,7-TeMN/1,2,3,6- TeMN	George <i>et al.,</i> 1998
Tetrametilnaftalenski odnos	TeMNr	1,3,6,7-TeMN/(1,2,3,5-+ 1,2,5,6-+1,3,6,7-TeMN)	George <i>et al.,</i> 1998
Pentametilnaftalenski odnos	PNR	1,2,4,6,7-PMN/ (1,2,3,5,6-+1,2,4,6,7-PMN)	Bastow et al., 1998
Etilnaftalenski odnos	ENR	2-EN/1-EN	Radke <i>et al.,</i> 1982b

Tabela 9. Pregled naftalenskih maturacionih parametara

Slika 43. Tipična GC-MS raspodela alkilnaftalena u nafti (George et al., 2002). MN – metilnaftalen, DMN – dimetilnaftalen, EN – etilnaftalen, TMN – trimetilnaftalen, TeMN – tetrametilnaftalen.

2.3.4.2. Triciklični aromatični ugljovodonici

Triciklični aromatični ugljovodonici su, kao i diciklični, od izuzetnog značaja za procenu termičke zrelosti nafti i organske supstance matičnih stena (Stojanović, 2004).

Od tricikličnih aromatičnih ugljovodonika u naftama su prisutni fenantren, antracen kao i njihovi alkil-derivati (*Slika 44*) i triaromatični sterani. Fenantren je termodinamički znatno stabilniji od antracena, pa je sadržaj ukupnih ugljovodonika sa fenantrenskim skeletom u naftama i do 50 puta veći u odnosu na ugljovodonike sa antracenskim skeletom (Kamyanov *et al.*, 1982). Dakle, najzastupljeniji triciklični aromatični ugljovodonici u bitumenima i naftama su derivati fenantrena, a među dominiraju metil-derivati. Njihov pregled dat je u *tabeli 10*.

Slika 44. *Strukturne formule fenantrena (a) i antracena (b).*

Jedinjenje (Skraćenica)	Tipična <i>m/z</i> vrednost	Izomeri		
Metilfenantreni (MP)	192	1-, 2-, 3-, 4- i 9-MP		
Dimetilfenantreni (DMP)	206	1,2-, 1,3-, 1,6-, 1,7-, 1,8-, 1,9-, 2,3-, 2,6-, 2,7-, 2,9-, 2,10-, 3,5-, 3,6-, 3,9-, 3,10- i 4,9-DMP		
Trimetilfenantreni (TMP)	220	1,2,3-, 1,2,8-, 1,3,6-, 1,3,7-, 1,3,8-, 1,3,9-, 1,7,10-, 2,3,6-, 2,3,7-, 2,3,10-, 2,6,10-, 2,7,10-, 2,8,10- i 3,8,10-TMP		
Etilfenantreni (EP)	206	1-, 2-, 3- i 9-EP		

Tabela 10. Pregled najzastupljenijih alkilfenantrena u aromatičnoj frakciji bitumena i nafti

Za identifikaciju i kvantifikaciju tricikličnih aromatičnih jedinjenja mogu se koristiti GC- i GC-MS analiza (*Slika 45*). Budući da kondenzovani aromatični sistemi teško podležu fragmentaciji (Radke *et al.*, 1986; Ivanov i Golovko, 1992), tipični fragmentogrami jona m/z 178 za fenantren, m/z 192 za metilfenantrene, m/z 206 za dimetilfenantrene i etilfenantrene i m/z 220 za trimetilfenantrene, odgovaraju zapravo njihovim molekulskim jonima (*Slika 45*; Simons *et al.*, 2003; *Tabela 10*). Zbog velikog broja mogućih izomera, trimetil-, a posebno tetrametilfenantreni se teško razdvajaju kao individualna jedinjenja na kapilarnim kolonama tokom GC- i GC-MS analize, pa je njihova primena u korelacionim studijama ograničena (Golovko, 1997; Jiang i Guan, 1999).

Slika 45. Tipična *GC-MS* raspodela alkilfenantrena u nafti (George et al., 2002). MP – metilfenantren, DMP – dimetilfenantren, EP – etilfenantren.

Kao i alkilnaftaleni, alkilfenantreni nemaju bitniju ulogu u određivanju porekla organske supstance, ali su značajni za procenu termičke zrelosti. Za procenu termičke zrelosti nafti i organske supstance matičnih stena koriste se parametri zasnovani na izomerizaciji termodinamički manje stabilnih α - u β metil izomere (Radke, 1987; Radke *et al.*, 1982a i b, Kvalheim *et al.*, 1987) kao i parametri zasnovani na dealkilacionim reakcijama metilfenantrena (Ishiwatari i Fukushima, 1979; Stojanović *et al.*, 2001; Wang *et al.*, 2016).

Pregled najčešće korišćenih fenantrenskih maturacionih parametara dat je u *Tabeli 11.*

Parametar	Skraćenica	Formula	Autor	
Metilfenantrenski indeks 1	MPI 1	1,5 x (2-+3-MP)/(1-+9-MP+P)	Radke <i>et al.,</i> 1982a	
Metilfenantrenski indeks 2	MPI 2	3 x 2-MP/(1-+9-MP+P)	Radke, 1987; Garrigues <i>et al.</i> , 1988	
Metilfenantrenski indeks 3	MPI 3	(2-+3-MP)/(1-+9-MP)	Angelin <i>et al.,</i> 1983; Radke, 1987	
Udeo β-metilfenantrena u sumi svih metilfenantrenskih izomera	MPDF	(2-+3-MP)/(1-+2-+3-+9-MP)	Kvalheim <i>et al.,</i> 1987	
Metilfenantrenski odnos 1	MPR 1	2-MP/1-MP	Radke <i>et al.,</i> 1982b	
Metilfenantrenski odnos 2	MPR 2 2-MP/9-MP		Radke <i>et al.,</i> 1982b	
Dimetilfenantrenski indeks 1	DMPI 1	4 x (2,6-+2,7-+3,5-+3,6-DMP+1- +2-+9-EP)/(P+1,3-+1,6-+1,7- +2,5-+2,9-+2,10-+3,9-+3,10-DMP)	Radke <i>et al.,</i> 1982a	
Dimetlfenantrenski indeks 2	DMPI 2	(2,6-+2,7-+3,5-DMP)/(1,3-+1,6- +2,5-+2,9-+2,10-+3,9-+3,10-DMP)	Radke <i>et al.,</i> 1982b	
Indeks alkilovanja fenantrena 1	PAI 1	$\Sigma MP/P$	Ishiwatari i Fukushima, 1979	
Indeks alkilovanja fenantrena 2	PAI 2	ΣDMP/P	Ishiwatari i Fukushima, 1979	
Indeks alkilovanja fenantrena 3	PAI 3	ΣTMP/P	Ishiwatari i Fukushima, 1979	
Sadržaj fenantrena u tricikličnoj aromatičnoj frakciji (%)	[P]	Ρ/(ΣΜΡ+ΣDMP+ΣTMP+ΣΕΡ)	Stojanović et al., 2001	

Tabela 11. Pregled fenatrenskih maturacionih parametara

2.3.4.3. Sumporna aromatična jedinjenja

Najzastupljenija sumporna aromatična jedinjenja u bitumenima matičnih stena i naftama su benzotiofen (BT) i dibenzotiofen (DBT) (*Slika 46*) i njihovi metilovani derivati koji sadrže do tri metil-grupe (Peters *et al.,* 2005b).

Slika 46. Strukturne formule benzotiofena (a) i dibenzotiofena (b).

Parametri zasnovani na raspodeli i obilnosti jedinjenja sa benzotiofenskim skeletom imaju relativno malu primenu u organskogeohemijskim studijama, i to isključivo u interpretaciji ranih faza termičke zrelosti sedimentne organske supstance, s obzirom da pokazuju izraženu zavisnost od litologije (Chakhmakhchev i Suzuki, 1995a). Međutim, čak i slučajevima kada se primenjuju na uzorke iz kasne dijageneze ili rane katageneze preporučljivo je da se koriste u kombinaciji sa drugim maturacionim parametrima.

Nasuprot parametrima zasnovanim na BT derivatima, parametri zasnovani na raspodeli i obilnosti metil- i dimetildibenzotiofenskih izomera su veoma korisni indikatori maturacije koji se mogu se primenjivati u širokom opsegu zrelosti organske supstance (Chakhmakhchev i Suzuki, 1995b, Goncharov *et al.*, 2015). Tri najznačajnija maturaciona parametra zasnovana na obilnosti metil- (MDBT) i dimetil- (DMDBT) derivata dibenzotiofena data su u *tabeli 12*, a njihova raspodela je prikazana na *slici 47*. Oni su zasnovani na saznanjima da se sa povećanjem termičke zrelosti bitumena i nafti smanjuje obilnost termodinamički manje stabilnog, α-supstituisanog izomera (1-MDBT) u poređenju sa stabilnijim, β-supstituisanim izomerom (4-MDBT), kao i da u slučaju dimetil supstituisanih dibenzotiofena, redosleda stabilnosti pojedinih supstituicionih položaja opada u nizu: $4- \approx 6- >2- >3- > 1$ (Radke, 1988).

Parametar	Formula	Literatura
MDR	4-MDBT/1-MDBT	Radke <i>et al.,</i> 1986
DMDR 1	4,6-DMDBT/1,4-DMDBT	Chakhmakhchev et al., 1997
DMDR 2	2,4- DMDBT/1,4-DMDBT	Chakhmakhchev et al., 1997

Tabela 12. Pregled dibenzotiofenskih maturacionih parametara.

Za sve dibenzotiofenske maturacione parametre je karakteristično postepeno povećanje u intervalu niske i umerene termičke zrelosti, a zatim nagli porast u kasnijim fazama maturacije. Najviši stepen maturisanosti koji može biti indikovan na osnovu raspodele policikličnih aromatičnih sumpornih jedinjenja odgovara vrednosti refleksije vitrinita Rr \approx 1,3 – 1,5 %, a uslovljen je odsustvom termodinamički manje stabilnih izomera na stupnjevima termičke zrelosti višim od navedene (Chakhmakhchev *et al.*, 1997).

Slika 47. GC-MS hromatogrami dibenzotiofena (m/z = 184), metildibenzotiofena (m/z = 198), dimetildibenzotiofena i etildibenzotiofena (m/z = 212) (Šolević, 2008).

3. GEOLOŠKE KARAKTERISTIKE ISPITIVANOG PODRUČJA

Panonski basen se prostire na području 7 država: Mađarske, Ukrajine, Rumunije, Srbije, Bosne i Hercegovine, Hrvatske, Slovenije, Austrije i Slovačke. Okružen je Karpatima na severu i istoku, istočnim i južnim Alpima na zapadu i Dinaridima na jugu (*Slika 48*). Krajnji jugoistočni deo Panonskog basena ukupne površine 26000 km² pripada Srbiji.

3.1. Geološka evolucija i matične stene Panonskog basena

3.1.1. Geološka evolucija

Područje Panonskog tercijarnog basena je sastavni deo planinskih venaca centralno-istočne Evrope koji su nastali tokom alpske orogeneze. Planinski venci koji ga okružuju su nastali tokom zatvaranja Tetiskog okeana usled konvergencije Evropske i Afričke ploče.

Kao deo centralnog Paratetisa, u vreme starijeg badena Panonsko more je bilo preko različitih moreuza povezano sa Mediteranskim morem. U drugoj polovini **badena** (mlađi baden), usled izdizanja Alpa i Karpata ta veza sa Mediternom na jugoozapadu se prekida, a istovremeno se stvara nova veza prema Aralsko-Kaspijskom basenu na jugoistoku (Kostić, 2010a).

Slika 48. Prikaz Panonskog basena: a) Reljefna karta Panonskog basena (modifikovano prema http://lazarus.elte.hu/hun/summer.jpg; b) Granice Panonskog basena (modifikovano prema Dolton, 2006); c) Srpski deo Panonskog basena (modifikovano prema Golonka, Picha, 2006); zelene površine označavaju područje Panonskog basena.

Sarmat se karakteriše brakičnom sedimentacijom, kao i kraćim prestankom sedimentacije u Velikoj Mađarskoj ravnici i u severnim delovima Banatske depresije. Kao posledica kombinacije izdizanja i globalnog pada nivoa

mora, došlo je i do značajne erozije u mnogim područjima. U brakičnim sarmatskim vodama u celom Panonskom basenu se razvija dramatični endemizam živog sveta (Horváth, 1995). **Krajem sarmata**, usled tektonskih pokreta i procesa kompresija i izdizanja, svi moreuzi su zatvoreni i obrazovan je sistem međusobno povezanih Panonskih jezera. Rezultat izolovanja jezera od svetskih mora je i dramatično smanjenje saliniteta vode (Vakarcs *et al.*, 1994; Horváth, 1995). Ove drastične promene u paleosredini, dovode do izumiranja velikog broja organizama i taloženja sedimenata bogatih organskom supstancom (Kázmer, 1990). Novonastala ostrvska izdignuća su prekrivena vodom **početkom panona**, kada je ponovo došlo do regionalnog spuštanja čitavog basena. U tom periodu je čitavo Karpatsko područje bilo ispod nivoa mora, pa se obrazovalo veliko Panonsko jezero, a izdignuti Karpatski luk je postao glavni izvor klastičnog materijala koji je transportovan rečnim tokovima.

Krajem donjeg ponta, ponovo dolazi do naglog pada nivoa vode, a kasnije i porasta, koji je brzo kompenzovan sedimentacijom. Od gornjeg ponta se talože isključivo plitkovodni sedimenti. Kako je kompenzaciona ravnoteža trajala nekoliko miliona godina, mestimično je akumulirano i preko 2000 m plitkovodnih jezerskih sedimenata. Do kraja pliocena Panonska jezera se potpuno ispunjavaju sedimentima i iščezavaju, i dolazi do subaerske erozije i deponovanja kvartarnih terestričnih i fluvijalnih sedimenata. Istovremeno se žarka i suva klima menja u toplu i vlažnu.

Poslednji, a smatra se i još uvek aktuelni događaj u Panonskom basenu je kompresija koja je otpočela **krajem pliocena**, a odgovorna je za kvartarnu subsidenciju u mnogim područjima, uključujući severni Banat i severnu Bačku, ali i izdizanja u rubnim područjima Panonskog basena, kao i aktiviranja reversnih raseda (Kostić, 2010a).

Panonski basen karakteriše tanka Zemljina kora, izdignuta astenosfera, visoke temperature i povišeni toplotni tokovi, kao i intenzivni vulkanizam. Sve

ove karakteristike su u vezi sa njegovim nastankom i ograničene su na njegove geološke granice.

Poznato je da je **u miocenu** došlo do ekstenzije od oko 100 km u pravcu istok-zapad. Debljina Zemljine kore u Panonskom basenu pre ekstenzije bila je slična današnjoj u području Alpa i Karpata, odnosno oko 40 km, ali se kasnije znatno istanjila (23 - 28 km). Smatra se da je usled visokih koeficijenata istezanja došlo do tolikog istanjivanja Zemljine kore, da je njena najmanja debljina samo 16 km. Anomalno mala debljina litosfere ima za posledicu visoke vrednosti toplotnog toka, koje se kreću od 70 do preko 100 mW/m² (Kostić, 2010a).

3.1.2. Stratigrafski i litološki prikaz tercijara

Po građi, litološkom sastavu i stepenu dislociranosti, sedimentne tvorevine Panonskog basena se mogu podeliti na tri osnovna kompleksa (Kostić, 2010a):

- Kasnovariscijsko-ranoalpski obuhvata sedimente starosti od karbona do donje krede. Stene ovog kompleksa nisu metamorfisane već ih čine sedimenti različitog katagenetskog stadijuma.
- Srednjoalpski obuhvata gornjokredne i paleogene tvorevine.
- Kasnoalpski obuhvata neogene klastite debljine do 7500 m, koje uglavnom sa izraženom diskordancijom prekrivaju starije komplekse.

Stratigrafsko raščlanjenje tercijara, određivanje apsolutnih starosti izdvojenih jedinica i njihova korelacija na širem prostoru su u praksi često otežani, ali je na osnovu stratigrafske skale Rögla (1996), rezultata ispitivanja apsolutne starosti u Mađarskom delu Panonskog basena (Horváth i Pogácsás, 1988), i saznanja o starosti panona i ponta zaključeno da su vremenski intervali izdvojenih hronostratigrafskih jedinica u našem delu Panonskog basena sledeći (Kostić, 2010a): Kvartar – 0 d 2,0 Mabp Pliocen – 5,3 – 2,0 Mabp Gornji pont – 7,3 – 5,3 Mabp Donji pont – 9,0 – 7,3 Mabp Panon – 11,5 – 9,0 Mabp Sarmat – 13,0 – 11,5 Mabp Baden – 16,4 – 13,0 Mabp Ontang-karpat – 18,3 – 16,4 Mabp Egenburg – 22 – 18,3 Mabp.

3.1.3. Matične stene

Poreklo nafte u Panonskom basenu je nedvosmisleno utvrđeno u poslednje tri decenije, pri čemu su rezultati velikog broja geoloških i geohemijskih istraživanja pokazali da su matične stene za naftu i gas u ovoj oblasti najčešće miocenske starosti (Szalay, 1988; Horváth *et al.*, 1988; Dank, 1988; Britvić *et al.*, 1989; Clayton *et al.*, 1994a,b; Ercegovac i Kostić, 1996; Barić *et al.*, 1998, 2000; Kostić 2000a,b; Hasenhüttl *et al.*, 2001; Mrkić *et al.*, 2011).

U Mađarskoj su kao posebno povoljne matične stene izdvojene matične stene panonske, srednjemiocenske i eocenske starosti, ali su u pojedinim depresijama konstatovane i matične stene mezozoika (trijas i jura). One su postale efektivne matične stene tek posle brzog spuštanja basena i prekrivanja miocenskim sedimentima (Milota, 1991; Clayton i Koncz, 1994; Kokai, 1994; Pogácsás *et al.*, 1996; Seifert, 1996). U Hrvatskoj su kao efektivne matične stene Savske depresije konstatovani badensko-sarmatski i panonski sedimenti, a u Dravskoj panonski i badenski sedimenti. U Sloveniji matične stene Murske depresije (Zala) su potvrđene u okviru karpata i sarmata. U Bečkoj depresiji naftu su generisali gornjojurski laporci, koji su sazreli tokom miocena (Seifert, 1996). Jurske matične stene su konstatovane i u središnjim delovima Panonskog basena (Pogácsás *et al.*, 1996). U istočnom i južnom delu Panonskog basena konstatovane su samo tercijarne matične stene starosti od paleogena do ponta.

3.2. Geotermičke karakteristike Panonskog basena Srbije

Za intenzivno zagrevanje i maturaciju organske supstance u jugoistočnom delu Panonskog basena odgovorne su geotermičke karakteristike ovog basena. Naime, Panonski basen odlikuju toplotni tokovi visokog intenziteta (90 – 110 mW/m²), povišeni termalni gradijent (4,0 – 7,5 °C/100m) i relativno velike brzine zagrevanja sedimenata srednjeg i gornjeg miocena (9 – 22 °C/milion godina) (*Slika 49*; Kostić, 2010a).

Tokom ponta se, kao što je već istaknuto, odvijala intenzivna sedimentacija (1150 m/milion godina) što je doprinelo očuvanju organske supstance i spuštanju ranije stvorenih sedimenata na veće dubine.

Stalno sleganje cele oblasti tokom kenozoika je uslovilo da se matične stene Banatske depresije danas nalaze na velikoj dubini i shodno tome i na maksimalnoj temperaturi tokom svoje geološke istorije (Marović *et al.,* 2002).

Geološke karakteristike ispitivanog područja

Slika 49. Korelacioni prikaz stratigrafskih stubova lokalnih depresija i njihovih prosečnih brzina zagrevanja (vrednosti na vrhu stubova su prosečni termalni gradijenti u depocentrima, objašnjenje skraćenica lokalnih depresija dato je u legendi slike 51) (Kostić, 2010a).

Najniži geotermalni gradijenti u našem delu Panonskog basena odgovaraju središtima dubokih tercijarnih depresija i područjima sa debljim mezozojskim naslagama u podlozi, dok su povišeni gradijenti karakteristični za područja sa izdignutim strukturama koja imaju škriljce u podlozi.

U našem delu panonskog basena, najviši geotermalni gradijent (> 7°C/100m) je izmeren u jugozapadnoj Bačkoj i na srazmerno plitkoj strukturi Velebit. Zapaženo je da postoji relativno dobra korelacija između dubine paleoreljefa i intenziteta toplotnog toka. Porast temperature u prvih 2000 – 2500 m je srazmerno ravnomeran, dok je na većim dubinama uočen pad gradijenta usled povećane provodljivosti sedimenata (*Slika 50*; Kostić, 2010a). Srednji prosečni geotermalni gradijent za celo područje iznosi 5,3 °C/100m, ali ako se razmotri prosečan porast potpovršinskih temperatura dobija se vrednost od 4,7 °C/100m (Kostić, 2010a).

Maksimalna temperatura tercijarnih sedimenata u našem delu Panonskog basena iznosi oko 240-250 °C u Podunavsko-Moravskoj subdepresiji, u kojoj je relativna dubina podloge 5000 m. Visoke temperature se mogu očekivati u i području severnog Banata, kao i u srednjem Banatu, u depocentru južno od naftnog polja "Rusanda" gde maksimalna temperatura verovatno prelazi 205 °C na dubini oko 4000 m. U ostalim lokalnim depresijama maksimalna temperatura tercijarnih sedimenata uglavnom ne prelazi 180 °C, što je važno i sa stanovišta distribucije ugljovodonika. Izolinije temperature veoma dobro odražavaju strukturnu kartu po podini tercijara, što potvrđuje povezanost temperatura sa dubinom paleoreljefa (Kostić, 2010a).

Visoko toplotni tokovi karakteristični za jugoistočni deo Panonskog basena omogućili su intenzivno zagrevanje i maturaciju organske supstance.

86

Slika 50. Porast temperature s dubinom u našem delu Panonskog basena (Kostić, 2010a).

TG – Geotermalni gradijent.

3.3. Generativne depresije Panonskog basena Srbije

U pogledu strukturno-tektonske građe, Panonski basen nije homogena potolina, već predstavlja sistem "sub-basena", odnosno dubokih depresija odvojenih višim blokovima paleoreljefa. Glavne depresije Panonskog basena su: Bečka, Štajerska, Dunavsko-Rabska, Zala, Dravska, Savska, Zakarpatska, Transilvanska, Velike Mađarske ravnice (Royden i Dővény, 1988). Početak i brzina sedimentacije se bitno razlikuju u pojedinim delovima Panonskog basena. Jugoistočni deo Panonskog basena je tektonski vrlo složen i neujednačen, odnosno može se reći da predstavlja čitav Panonski basen "u malom". Karakteriše ga veći broj manjih lokalnih depresija, često razuđenih i bitno različitog razvoja. U Srbiji ima ukupno 17 lokalnih depresija s tercijarnim sedimentima debljim od 2000 m. Imena su dobile prema nazivu najbližeg naseljenog mesta: Banatsko Aranđelovo (BAR), Srpska Crnja (CR), Zrenjanin (ZRE), Čurug (ČUR), Srbobran (SRB), Temerin (TEM), Samoš (SAM), Pančevo (PAN), Plandište-Zagajica (PLA-ZAG), Žednik (ŽED), Sombor (SOM), Odžaci (ODŽ), Sremska depresija (SRM), Drmno (DR), Smederevo (SM), Veliko Gradište (VG) i Markovac (MAR) (*Slika 51*). Depresije su međusobno izolovane ili izolinijama apsolutne dubine podloge tercijara od -2000 m (BAR, CR, ZRE, ČUR, SRB, ŽED, SOM, ODŽ) ili strukturnim uzvišenjima (SRM, TEM, PLA-ZAG, SAM, PAN, SM, DR, VG i MAR).

3.3.1. Zone generisanja ugljovodonika u severnom i središnjem delu Banatske depresije

Najveće i najznačajnije lokalne depresije jugoistočnog dela Panonskog basena su Banatsko Aranđelovo, Srpska Crnja i Zrenjanin, koje su i predmet ispitivanja ove disertacije (Kostić, 2010a). Budući da su uzorci za ovo istraživanje odabrani na osnovu geoloških podataka, tekst o geološkim karakteristikama lokalnih depresija Banatsko Aranđelovo, Srpska Crnja i Zrenjanin preuzet iz monografije "*Termička evolucija organske supstance i modelovanje geneze nafte i gasa u Panonskom basenu (Srbija)*" *autora Aleksandra Kostića*.

3.3.1.1. Lokalna depresija Banatsko Aranđelovo

Lokalna depresija Banatskog Aranđelova (*Slika 52*) se nalazi između Kikindskog horsta i severoistočne Bačke. Na severu se produžava u Mađarsku i Rumuniju, dok je na jugu ograničena relativno izdignutim strukturama "Bočar", "Miloševo" i "Iđoš".

Slika 51. Skica položaja lokalnih depresija u Panonskom basenu Srbije: Banatsko Aranđelovo - BAR; Srpska Crnja -CR; Zrenjanin - ZRE; Čurug - ČUR; Srbobran -.SRB; Temerin - TEM; Samoš - SAM; Pančevo -.PAN; Plandište- Zagajica -PLA-ZAG; Žednik -ŽED; Sombor - SOM; Odžaci - ODŽ; Sremska depresija - SRM; Drmno - DR; Smederevo - SM; Veliko Gradište - VG; Markovac – MAR (Kostić, 2010a).

Geološka građa depresije

Geološku građu depresije Banatskog Aranđelova karakterišu sedimenti badena, sarmata, panona, ponta, pliocena i kvartara, a najintenzivniji razvoj ova depresija je doživela tek od donjeg ponta (*Tabela 13; Slika 52*). Sedimenti panona i starijeg miocena u dubljim delovima depresije su ušli u naftni prozor pre oko 7 miliona godina, dok se danas najveći deo sedimenata donjeg ponta nalazi u katagenezi.

Stratigrafska pripadnost		Aps. starost * trajanje * (Ma)		Litološki sastav	Sredina taloženja	Maksimalna debljina i *rel. dubina * (m)	Max. T(ºC)	Prosečna brzina taloženja (m/Ma)					
HC	DLOCE	PLEISTOCEN	2.0	*2,0*	pesak, šljunak, gline, les	kontinentalna	300		150				
DCEN	U PI2 ROMAN		3.8	*1,8*	gline, peskovi	iezerska	1300		394				
PLIC	PI,	DAK	53	*1,5*	ugalj	J	*1600*	87					
	MA 2	P gornji O	7.3	*2,0*	gline, lapori, peskovi, ugalj	deltna, jezerska	600	116	300				
EN	1113	N T donji	1,5	*1,7*	lapori,peščari laporci	deltna, jezerska	1950	208	1147				
	M_3^{-1}	PANON	11.6	*2,6*	laporci, krečnjaci, peščari	jezersko brakična	250 *4400*		89				
MIOC	M_{2}^{2}	SARMAT					11,0	*1,4*	krečnjaci, laporci, peščari	marinska brakična	4400 50 *4450*	220	35
-			13,0				++00	223					
	M_2^{1}	BADEN	14.0	*1,0*	breče, konglobreče, peščari, laporci	kontinentalna, marinska	200	232	200				
PALEOZOIK		- 14,0		kristalasti škriljci			202						

Tabela 13. Shematski prikaz lokalne depresije Banatskog Aranđelova (Kostić, 2010a)

Sedimente badena u strukturnim minimumima depresije karakteriše gruboklastična bazalna serija (breče, konglomerati, peščari) uz tanje slojeve pelita u južnom strukturnom minimumu ("Crna Bara-jug"), dok im je ukupna debljina oko 200 - 250 metara. Marinski sedimenti badena istaloženi u vidu krečnjaka, laporaca i glinaca, po svom litofacijalnom razvoju i geohemijskim karakteristikama predstavljaju moguće matične stene srednjeg kvaliteta, mada mogu da sadrže i bogatije tanje slojeve ("Crna Bara-jug", "Iđoš-jug").

Sedimenti sarmata su predstavljeni krečnjacima, laporcima i peščarima. S obzirom da su male debljine i lokalnog rasprostranjenja, retko su zahvaćeni jezgrima dosadašnjih bušotina, pa su pouzdano konstatovani samo u južnom delu strukture "Majdan" i u bušotini "Majdan-duboko" (debljine do 20 metara).

Sedimente panona karakterišu tamno sivi do crni tvrdi i ispucali laporci do krečnjaci, a ređe crni glinci do alevroliti. Pored ovakve strukture karakterišu ih i mrlje nafte u pukotinama, što zajedno ukazuje na dobre efektivne matične stene. Maksimalna debljina sedimenata panona je 200 - 250 metara.

Slika 52. Stratigrafski profili lokalne depresije Banatskog Aranđelova (Kostić, 2010a).

Sedimenti donjeg ponta su rasprostranjeni u celom području depresije Banatskog Aranđelova i karakterišu ih tamnosivi i sivi lapori, laporci i peščari. U depocentrima se javljaju na dubini 2200 - 4150 metara. Sa stanovišta matičnih stena, značajni su prvenstveno za generisanje gasa.

Geotermičke karakteristike

Geotermalni gradijenti u lokalnoj depresiji Banatskog Aranđelova variraju u rasponu od 4,7 - 5,0 °C/100 m u središnjem, do preko 6 °C/100 m u rubnom području. Od svih lokalnih depresija Banatske depresije, ova depresija ima najveću debljinu kenozojskih sedimenata - preko 4600 metara.

Karakteristike organske supstance

Prosečni sadržaji ukupnog organskog ugljenika (eng. Total organic Carbon), TOC u do sada ispitivanim uzorcima lokalne depresije Banatsko Aranđelovo sa dubina 1200-3450 m nalaze se u opsegu od 0,48 % (pont) do 0,70 % (panon), dok se vrednosti vodoničnog indeksa nalaze u opsegu 120 mgHC/gTOC (pont) do 310 mgHC/gTOC (panon). Ispitivani uzorci su obuhvatali sedimente ponta, panona, sarmata i badena. Dobijene vrednosti vodoničnog indeksa i TOC nisu visoke ni za jednu stratigrafsku jedinicu, ali mora se imati u vidu da se ove vrednosti odnose na sve rađene analize, uključujući one koje ne potiču iz matičnih stena, kao i one iz uzoraka sa znatnih dubina gde su početni sadržaji bitno promenjeni. Rock-Eval analiza je pokazala da sedimente ponta čine prvenstveno kerogen tipa III ili tipa II/III (Kostić, 2010a). Mali broj analiza uzoraka ponta je sadržao kerogen tipa II i to su uglavnom bili uzorci sa vrlo niskim sadržajem TOC (0,40 - 0,50 %), što potvrđuje da bez obzira na eventualno manje stvaranje nafte mogu da doprinesu samo u oslobađanju gasa (Kostić, 2000b). Sedimente panona karakteriše kerogen tipa II, delom već istrošen (dublji uzorci), a badensko sarmatske sedimente tip II i prelaz II/III.

Prethodna ispitivanja sedimenata depresije Banatskog Aranđelova pokazala su da se u početnoj zoni generisanja nafte (0,50%Rr) nalaze sedimenti ispod dubine 2050 m (0,50 %Rr). Na relativnoj dubini od 2550 m refleksija po trendu iznosi 0,60 %Rr, na 3000 m - 0,70 %Rr, a izlazak iz naftnog prozora (kerogen tipa II), odgovara dubini od oko 3350 metara. Prema dobijenom trendu porasta refleksije s temperaturom, refleksiju vitrinita od preko 0,50 % Rr imaju sedimenti na oko 120 °C, refleksija od 0,60 % Rr odgovara temperaturi 140 °C, a na 170 °C refleksija iznosi 0,80 %Rr. Na temperaturama preko 170-175 °C uglavnom dolazi do naglijeg porasta refleksije vitrinita, tako da na blizu 180 °C, refleksija vitrinita u stenama ove lokalne depresije već prelazi 1,00 %.

3.3.1.2. Lokalna depresija Srpska Crnja

Lokalna depresija Srpske Crnje je najveća od svih lokalnih depresija u našem delu Panonskog basena i zahvata površinu oko 1750 km². Nalazi se južno od depresije Banatskog Aranđelova, između Kikindskog horsta na severu i južnog Banata (*Slike 51, 53; Tabela 15*). Na istoku se produžava u Rumuniju, a na zapadu se graniči sa Zrenjaninskom depresijom. Ovu depresiju karakterišu dva depocentra, odnosno dva strukturna minimuma: severni i središnji. Prosečna debljina kenozojskih sedimenata je oko 2100 metara, dok je njihova maksimalna debljina oko 4000 m u središnjem depocentru i oko 3800 m u južnom.

Geološka građa depresije Srpske Crnje

U geološkoj građi depresije Srpske Crnje, izdvojeni su sedimenti otnanga, zatim tvorevine obično označene kao serija "nedefinisane starosti", "oligomiocen", ili "prebaden", a koji verovatno pripadaju otnang-karpatu, kao i sedimenti badena, sarmata, panona, ponta, pliocena i kvartara.

Severni deo depresije se odlikuje velikom sličnošću sa lokalnom depresijom Banatskog Aranđelova: preko kristalastih škriljaca deponovano je do 200 metara badena, mogućno i tanji sarmat, oko 250 m panona (ispod dubine 3000 m), a intenzivno je razvijen pont (dubine do 3500 m) i, manje, pliocen. S druge strane, središnji deo depresije odlikuje razviće slično Zrenjaninskoj depresiji i lokalnim depresijama južne Bačke, a specifično je da se ispod badenskih sedimenata nalazi otnang-karpat (verovatno do 500 m debljine), kao i da je pliocen znatno tanji. Sedimenti donjeg miocena ušli su u naftni prozor pre oko 5 miliona godina, dok se danas u zoni katageneze nalaze i mlađi miocenski sedimenti, uključujući starije nivoe donjeg ponta, što je utvrđeno modelima sa izvršenom dekompakcijom.

Stratigrafska pripadnost		Aps. Statost * trajanje * (mil. god.)		Litološki sastav Sredina taloženja		Maksimalna debljina i *relativna dubina * (m)		Max. T (°C)	Prosečna brzina taloženja (m/Ma)	
						Središnji deo	Severni deo			
н	DLOCE	PLEISTOCEN	20	*2,0*	pesak, šljunak, glina, les	kontinentalna	200	250		113
CEN	Pl_2	ROMAN	3,8	*1,8*	gline, peskovi	iezerska	1100	1280		360
PLIC	РΙ,	DAK	53	*1,5*	ugalj	,	*1300*	*1530*	70-83	
		P gornji	7.3	*2,0*	gline, lapori, peskovi, ugalj	deltna, jezerska	500	570	92,110	267
	WI3-	N T donji	0.0	*1,7*	peščari, gline, lapori, laporci	deltna, jezerska	1290	1400	150 176	794
N.	M ₃ 1	PANON	11.6	*2,6*	lapori, laporci, krečnjaci, peščari	jezersko brakična	220	280	150-170	96
MIO	M_{2}^{2}	SARMAT	12.0	*1,4*	lapori, glinci, krečnjaci, peščari	marinska brakična	20 0-2	0-20 ?	160 -	14
	M21	BADEN		*3,4*	krečnjaci, glinci, alevroliti peščari, tufovi	marinska	220	220	170 000	65
	M,3	KARPAT	16,4	*0,8*	konglomerati,	marinska, jezerska,	450.2		- 170-200	225
	M,2	OTNANG	17,2	*1,1*	alevroliti, ugalj	subakvatična	*4000* 2	DAL EOZOIK	100.0	236
PALEOZOIK / MEZOZOIK		10,5		kristalasti škriljci, mezozojski sedimenti		MEZOZOIK	PALEOZOIK	190 ? -		

Tabela 14. Shematski prikaz lokalne depresije Srpske Crnje (Kostić, 2010a)

Geotermičke karakteristike

Geotermalni gradijenti su u Crnjanskoj depresiji niži nego u ostalim lokalnim depresijama, a u najvećem delu variraju od 4,4 –4,8 °C/100 m. Posebno su niski uz granicu s Rumunijom, a najviši su u zapadnom području gde zbog magmatskih stena u podlozi dostižu preko 5,5 °C/100 m (Kostić, 2000).

Karakteristike organske supstance

Sedimenti ponta se u depresiji Srpske Crnje prvenstveno karakterišu kerogenom tipa III što, zajedno sa niskim TOC vrednostima, pokazuje da oni mogu na većim dubinama da doprinesu samo generisanju gasa. Sedimente panona i sarmata po pravilu odlikuje kerogen tipa II, ređe tipa I ili prelaz II/I. Sedimenti otnang-karpata se nalaze na visokom stadijumu maturacije i smatra se da sadrže kerogen tipa II. Rezultati analiza Rock-Eval pokazuju da se efektivne matične stene za naftu u severnom depocentru nalaze prvenstveno u okviru sedimenata panona i moguće sarmata, a u središnjem depocentru i u starijim stratigrafskim jedinicama.

Slika 53. Stratigrafski profili lokalne depresije Srpske Crnje (Kostić, 2010a).

U početnoj zoni generisanja nafte (0,50 % Rr) se nalaze sedimenti ispod dubine 1900 m (0,50 %Rr), dubini od 2350 metara odgovara refleksija od 0,60 % Rr, a na 2800 m ona iznosi 0,70 % Rr. Izlazak iz naftnog prozora (za kerogen tipa II) prema trendu odgovara dubini od oko 3350 metara. Ispod dubine od 3300 metara izražen je porast refleksije vitrinita sa dubinom, pa već na 3400 metara %Rr prelazi 1,00. Ovim povišenim vrednostima %Rr se odlikuju sedimenti otang-karpata, koji su bili izloženi višim temperaturama i snažnijim vremenskim uticajima nego mlađi miocenski sedimenti.

Prema dobijenom trendu porasta refleksije s temperaturom, refleksiju vitrinita od preko 0,50 %Rr imaju sedimenti na oko 110°C, refleksija od 0,60 %Rr

odgovara temperaturi 125 °C, a na 160 - 170°C refleksija dostiže vrednosti 0,90 - 1,1 %Rr.

3.3.1.3. Lokalna depresija Zrenjanin

Lokalna depresija Zrenjanina, nalazi se u srednjem Banatu, zapadno od lokalne depresije Srpske Crnje, a zapadno od nje se nalazi Čuruška lokalna depresija (*Slika 51*). U širem južnom području lokalne depresije se nalazi grad Zrenjanin, i u toj oblasti debljina kenozojskih sedimenata iznosi oko 1500 metara. Površina Zrenjaninske depresije, ograničena izolinijom dubine podloge od -2000 m, iznosi oko 340 km². U okviru ove depresije izdvaja se jedan depocentar koji se nalazi jugozapadno od naftnog polja Rusanda, a maksimalna debljina kenozojskih sedimenata u njemu, prema podacima sa seizmičkih profila iznosi oko 4000 m. Sedimenti donjeg miocena u depocentru depresije ušli su u naftni prozor pre oko 7 miliona godina, a do danas su u zonu katageneze dospeli i mlađi miocenski sedimenti, uključujući starije nivoe donjeg ponta.

Geološka građa

U geološkoj građi Zrenjaninske depresije uočeno je da se u podlozi tercijarnih sedimenata nalazi mezozojski sedimentni kompleks, a preko njega su istaložene tvorevine paleogena, zatim otnang-karpata, badena, sarmata, panona, ponta, pliocena i kvartara (*Slika 54; Tabela 15*). Reprezentativne bušotine Zrenjaninske depresije su sa struktura Rusanda-zapad i Mihajlovo-zapad. Obe su završene u sedimentima otnang-karpata. Sedimenti otnang-karpata su u bušotinama konstatovani na dubinama od preko 2700 m, a u depocentru se nalaze ispod oko 3050 m. Do sada ispitivani ontang-karpatski sedimenti su uglavnom predstavljeni gruboklastičnim sedimentima (breče, konglomerati), što ih čini nepovoljnim sa stanovišta generisanja ugljovodonika, a prate ih tanji proslojci alevrolita i glina.

St	ratigra	afska pripadnost	Aps. Statost * trajanje * (mil. god.)	Litološki sastav	Sredina taloženja	Maksimalna debljina i *relativna dubina * (m)	Max. T (°C)	Prosečna brzina taloženja (m/Ma)
но	LOCE	PLEISTOCEN	*2,0*	, pesak, šljunak, glina, les	kontinentalna	150		75
IOCEN	Pl ₂	ROMAN	3,8	, gline, peskovi ugalj	jezerska	850		257
Ч	Ы,	DAK	5.3			*1000*	61	
	MA 2	P gornji	*2,0*	gline, lapori, peskovi, ugalj	deltna, jezerska	400	81	200
	W13-	N T donji	*1,7	, peščari, gline, lapori	deltna, jezerska	1200	141	705
z	M ₃ ¹	PANON	"2,6" "11.6	lapori, peščari	jezersko brakična	200	151	77
MIOC	M22	SARMAT	*1,4*	lapori, krečnjaci	marinska brakična	20 ?	152	
	M21	BADEN	*3.4*	krečnjaci, glinci, alevroliti peščari, tufovi	marinska	230	154	67
	M, ³ KARPAT		*0,8	konglomerati,	marinska, jezerska,	*3050*		473
	M ₁ ² OTNANG		18.3	alevroliti	subakvatična	*2050*	900	
1	Mezozoik / Paleogen		10,0	mezozojski sedimenti i paleogeni fliš		3950	209	

Tabela 15. Shematski prikaz lokalne depresije Zrenjanina (Kostić, 2010a)

Baden Zrenjaninske depresije je uglavnom predstavljen krečnjacima, laporcima i glincima, a u manjoj meri se javljaju i gruboklastični sedimenti. Kako je debljina sarmata i ovde mala često su izdvajani zajedno kao miocen. Ukupna debljina ovih sedimenata dostiže oko 220 metara u depocentru, ali se ka obodu depresije smanjuje na oko sto metara.

Debljina panona Zrenjaninske depresije varira od 80 do 200 metara i prvenstveno je predstavljen laporcima, uz mestimično, ali retko pojavljajivanje i tanjih slojevi peščara. Po pravilu se slojevi panona nalaze ispod dubine od oko 1800 m, a maksimalne dubine u Zrenjaninskoj depresiji ne prelaze 2600 metara

Donji *pont* se u ovoj depresiji nalazi na malim dubinama i nije od većeg značaja za generisanje ugljovodonika, a po razvoju se ne razlikuje od onog u ostalim delovima Banatske depresije.

Karakteristike organske supstance

Direktne indikacije zone generisanja ugljovodonika, u vidu pojava novog gasa u pelitima Zrenjaninske depresije, zapažene su već na dubinama od oko 1900 m (Mihajlovo-zapad-1, Mihz-1) do 2280 m (Rusanda-zapad-1, Rz-1). Prosečni sadržaji organskog ugljenika i vodoničnog indeksa su naročito povoljni u sedimentima panona i neraščlanjenog miocena (baden i sarmat). U području Rusanda-zapad, u početnom stadijumu generisanja nafte nalaze se sedimenti ispod dubina od oko 1920-2100 m (0,50 procenata refleksije), a na oko 3100 m refleksija iznosi 0,80 procenata što približno odgovara završnom stadijumu generisanja nafte.

Prosečni sadržaji organskog ugljenika i vodonični indeks su i u ovoj depresiji naročito povoljni u sedimentima panona i neraščlanjenog miocena (baden i sarmat). Sedimenti panona i sarmata sadrže prvenstveno kerogen tipa II, pri čemu je u sedimentima panona prisutan izuzetno produktivni kerogen tipa II – na prelazu ka tipu I. Sedimente badena karakteriše kerogen tipa II ili prelaz ka II/III. Prebadenske sedimente (otnang-karpat) karakteriše kerogen tipa II i II/III. Vrednosti produkcionih indeksa ukazuju na efektivne matične stene – nižeg stepena maturacije, s tim što su sedimenti donjeg ponta samo gasno generativni (Kostić, 2010a)

U početnoj zoni generisanja nafte (0,50 %Rr) nalaze sedimenti ispod dubine od oko 2150 m. Izlazak iz naftnog prozora (za kerogen tipa II) prema trendu odgovara dubini od oko 3200 metara (Kostić, 2010).

Prema dobijenom trendu porasta refleksije s temperaturom, refleksiju vitrinita od preko 0,50 %Rr imaju sedimenti na oko 110 °C, što je slično rezultatima iz ostale dve depresije. Refleksija od 0,60 %Rr odgovara temperaturi 125 °C, a na 160-170°C refleksija dostiže vrednosti 0,90-1,1 %Rr.

Slika 54. Stratigrafski profili Zrenjaninske lokalne depresije (Kostić, 2010a).

4. PLAN I CILJ ISTRAŽIVANJA

Definisanje naftno-gasonosnih basena je jedna od najznačajnijih oblasti organske geohemije. S tim ciljem detaljno se analizira organska supstanca u potencijalnim i efektivnim matičnim stenama, kao i sastav sirovih nafti.

S obzirom da se zone generisanja i putevi migracije mogu ustanoviti jedino proračunima maturacije, a dokazati analizom odgovarajućih matičnih stena, precizno utvrđivanje područja efektivnih naftno-matičnih stena i njihovo ispitivanje su od neprocenjivog značaja, kako sa fundamentalnog, tako i sa ekonomskog aspekta. Iz ovih razloga smatra se da bi se utvrđivanje zone generisanja nafte u Panonskom basenu Srbije u potpunosti uklopilo u trendove moderne organske geohemije.

U ovom radu detaljno su ispitivana 33 uzorka mogućih matičnih stena za naftu iz srpskog dela Panonskog basena, odnosno iz severnog i središnjeg dela Banatske depresije. Ispitivani uzorci potiču iz tri najveće generativne depresije ovog dela Panonskog basena:

- Banatsko Aranđelovo (9 uzoraka),
- Srpska Crnja (15 uzoraka) i
- Zrenjanin (9 uzoraka).

Budući da su matične stene na ispitivanom lokalitetu relativno tanke, primenjen je lateralni pristup, kako bi imali širok opseg maturacije. Ispitivani uzorci su sa 18 lokaliteta (*Tabela 16; Slika 55*). Starost svih ispitivanih uzoraka je miocenska, pri čemu je osam uzoraka iz srednjeg (baden i sarmat), a 16 uzoraka iz gornjeg miocena (panon i pont). Sedam uzoraka je iz nedefinisanog miocena (srednji miocen ili panon), jedan uzorak je iz srednjeg miocena (baden ili sarmat) i jedan uzorak je nedefinisane stratigrafske pripadnosti. Potiču sa relativnih dubina 1540 do 3420 m, a karakterišu ih temperature ležišta 88 - 175 °C (*Tabela 16; Slika 55*).

Slika 55. Lokacije ispitivanih uzoraka Banatske depresije.

Uzorak	Lokalna depresija	Bušotina	Relativna dubina (m)	Temp. (°C)	Stratigrafska pripadnost	Litologija
1		Čo-3 ("Čoka")	1605	107	Sarmat	Peskoviti glinac
2		Obl-3 ("Obilićevo")	1874	125	Sarmat	Laporac
3		Pad-1 ("Padej")	2103	125	Baden	Peskoviti laporac
4	sko love	CBj-3 ("Crna bara - jug")	3075	155	Panon	Laporac
5	nats nđej	CBj-4 ("Crna bara - jug")	3130	161	Panon	Laporac
6	Bai Arai	CBj-4 ("Crna bara - jug")	3197	165	Panon	Laporac
7	1	CBj-4 ("Crna bara - jug")	3300	169	Panon	Laporac
8		CBj-2 ("Crna bara - jug")	3145	165	Panon	Laporac
9		CBj-2 ("Crna bara - jug")	3205	171	Panon	Alevrolit
10		Kis-4 ("Kikinda - sever")	2352	123	Pont	Laporac
11		VS-4 ("Veliko Selo")	2813	145	Pont	Peskoviti laporac
12		VS-4 ("Veliko Selo")	3305	164	Pont	Peskoviti laporac
13		VS-4 ("Veliko Selo")	3340	165	Miocen	Alevrolit
14		Nak-2 ("Nakovo")	3237	153	Panon	Laporac
15		Nak-3 ("Nakovo")	3282	155	Panon	Laporac
16	rnja	Nak-3 ("Nakovo")	3405	161	Panon	Laporac
17	a C	Kdjs-1 ("Karađorđevo - sever")	2890	148	Panon	Glineni Laporac
18	psk	Its-1 ("Itebej - sever")	2930	140	Miocen	Laporac
19	Sr	VSti-1 ("Vojvoda Stepa - istok")	3025	155	Srednji Miocen	Laporac
20		VSt-4 ("Vojvoda Stepa")	3164	157	Miocen	Laporac
21		Mn-2 ("Molin")	3053	147	Baden	Laporoviti krečnjak
22		Mn-2 ("Molin")	3060	148	Baden	Laporoviti krečnjak
23		NCs-1 ("Nova Crnja - selo")	3066	156	Panon	Laproviti krečnjak
24		NCs-1 ("Nova Crnja - selo")	3420	175	Nepoznato	Glinac
25		El-15 ("Elemir")	1540	88	Miocen	Laporac
26		Ži-2 ("Žitište")	1880	105	Miocen	Laporac
27		Zrs-8 ("Zrenjanin - sever")	2370	130	Baden	Alevrolit
28	nin	Rus-8 ("Rusanda")	2513	140	Miocen	Laporac
29	mja	Rz-1 ("Rusanda - zapad")	2580	139	Miocen	Laporac
30	Zre	Mihz-1 ("Mihajlovo - zapad")	2470	142	Panon	Laporac
31		Mihz-1 ("Mihajlovo - zapad")	2570	147	Panon	Laporac
32		Mihz-1 ("Mihajlovo - zapad")	2589	148	Sarmat	Laporac
33		Mihz-1 ("Mihajlovo - zapad")	2590	148	Sarmat	Laporac

 Tabela 16. Ispitivani uzorci potencijalnih matičnih stena Banatske depresije^a

^{*a*} Srednji miocen odgovara badenu ili sarmatu, miocen ("nedefinisani miocen") odgovara srednjem miocenu ili panonu.

Imajući u vidu činjenicu da u ovoj oblasti nisu rađena detaljna organskogeohemijska ispitivanja, planirano je da se u ovoj tezi utvrdi poreklo, sredina taloženja i zrelost organske supstance matičnih stena za naftu miocenske starosti (lokalne depresije Banatsko Aranđelovo, Srpska Crnja i Zrenjanin). Kao poseban i najvažniji cilj ove teze izdvaja se definisanje zone generisanja nafte u središnjem i severnom delu Panonskog basena Srbije, odnosno utvrđivanje početka, maksimuma i kraja "naftnog prozora".

S obzirom na postojanje poteškoća pri merenju refleksije vitrinita na kerogenu matičnih stena u kojem je sadržaj vitrinita obično mali, planira se i utvrđivanje primenljivosti izračunate refleksije vitrinita na kerogenu matičnih stena iz hipertermalnog basena.

Uz sve navedeno, očekuje se da ova teza omogući i identifikaciju nekih novih biomarkera i da definiše njihovu primenu u ispitivanju organske supstance matičnih stena u basenima sa visokim geotermalnim gradijentom, odnosno u basenima sa velikom brzinom zagrevanja.

Kako su litološke i geotermične karakteristike ispitivanih sedimenata od velikog značaja za tumačenje geohemijskih rezultata na *slici 56* je dat prikaz stratigrafskih stubova ispitivanih depresija sa prosečnim geotermalnim gradijentom, kao i prosečne brzine zagrevanja pojedinačnih stratigrafskih jedinica.

U cilju realizacije postavljenih zadataka sačinjen je sledeći plan rada:

- Priprema HCl koncentrata radi uklanjanja karbonata;
- Rock-Eval piroliza sedimenata;
- Merenje refleksije vitrinita;

• Izolovanje rastvorne organske supstance, bitumena ekstrakcijom po Soksletu (Soxhlet);

• Izolovanje ugljovodoničnog koncentrata iz bitumena metodom hromatografije na stubu;

Gasnohromatografsko-masenospektrometrijska (GC-MS) analiza
 n-alkana i izoprenoidnih alifatičnih alkana na osnovu fragmentograma jona *m*/*z* = 71 i 183;

• GC-MS analiza metilnaftalena, dimetilnaftalena i trimetilnaftalena na osnovu fragmentograma jona m/z = 142, 156 i 170.

• GC-MS analiza fenantrena, metilfenantrena i dimetilfenantrena na osnovu fragmentograma jona m/z = 178, 192 i 206;

• GC-MS analiza dibenzotiofena, metildibenzotiofena i dimetildibenzotiofena na osnovu fragmentograma jona m/z = 184, 198 i 212;

• Gasnohromatografsko-masenospektrometrijsko-masenospektrometrijska (GC-MS-MS) analiza C₂₁, C₂₂, C₂₆, C₂₇, C₂₈, C₂₉ i C₃₀ sterana (jonski prelazi m/z 288 \rightarrow 217, m/z 302 \rightarrow 217, m/z 358 \rightarrow 217, m/z 372 \rightarrow 217, m/z386 \rightarrow 217, m/z 400 \rightarrow 217 i m/z 414 \rightarrow 217);

• GC-MS-MS analiza C₂₇, C₂₉, C₃₀, C₃₁, C₃₂, C₃₃, C₃₄ i C₃₅ terpana (jonski prelazi m/z 370 \rightarrow 191, m/z 398 \rightarrow 191, m/z 412 \rightarrow 191, m/z 426 \rightarrow 191, m/z 440 \rightarrow 191, m/z 454 \rightarrow 191, m/z 468 \rightarrow 191 i m/z 482 \rightarrow 191);

• GC-MS-MS analiza C₂₁, C₂₂, C₂₃, C₂₄, C₂₅ i C₂₆ tricikličnih terpana (jonski prelazi m/z 290 \rightarrow 191, m/z 304 \rightarrow 191, m/z 318 \rightarrow 191, m/z 332 \rightarrow 191, m/z 346 \rightarrow 191, m/z 360 \rightarrow 191);

• Primena statističkih metoda u interpretaciji rezultata.

Plan rada sa najznačajnijim metodama šematski je prikazan na slici 57.

Slika 56. Šematski prikaz stratigrafskih stubova tri ispitivane lokalne depresije sa prikazanim uzorcima, kao i prosečnim termalnim gradijentima depocentara.

Slika 57. Šematski prikaz plana rada.

Najveći deo eksperimenata izveden je u laboratorijama grupe za Organsku geohemiju Hemijskog fakulteta, Univerziteta u Beogradu i Centra za hemiju IHTM. Deo istraživanja je urađen na Rudarsko-geološkom fakultetu Univerziteta u Beogradu i u "Geological Survey of Denmark and Greenland" (Kopenhagen, Danska).

5. EKSPERIMENTALNI DEO

5.1. Refleksija vitrinita

Merenje refleksije vitrinita je izvedeno u monohromatskoj svetlosti na talasnoj dužini od 546 nm pri čemu je korišćen LEITZ mikroskop. Kao optički standard korišćeni su standardi refleksije 1,24% i imerziono ulje sa indeksom prelamanja od 1,518%.

5.2. Rock-Eval piroliza

Rock-Eval piroliza je rađena na aparatu Rock-Eval II po metodi JUS ISO/IEC 17025. Za analizu je korišćeno 50 mg uzorka, a za kalibraciju 100 mg standarda IFP 160000.

5.3. Elementarna analiza

Elementarna analiza je dala podatke o sadržaju ugljenika, vodonika, azota i sumpora. Organski ugljenik je određivan po uklanjanju karbonata razblaženom hlorovodoničnom kiselinom(1:3, v/v). Merenja su obavljena na aparatu VARIO EL III, CHNOS Elemental Analyzensysteme GmbH.

5.4. Izolovanje i frakcionisanje bitumena

Rastvorna organska supstanca (bitumen) izolovana je iz pulverizovanih sedimenata ekstrakcijom po Soksletu azeotropnom smešom dihlormetana i metanola, u trajanju od 42 časa. Na osnovu ove analize određen je sadržaj bitumena u ispitivanim uzorcima. Iz bitumena je potom izolovan ugljovodonični koncentrat, primenom hromatografije na koloni. Frakcije su eluirane prema rastućoj polarnosti. Kao adsorbensi korišćeni su SiO2 i Al2O3. Na odmerenih ~ 30 mg bitumena odmeravano je 8,65 g silika-gela i 3,65 g aluminijium-oksida. Hromatografski stub je forimiran u staklenoj koloni unošenjem suspenzije silika-gela u *n*-heksanu, a potom i aluminijium-oksida. Uzorak bitumena je pripremljen u čašici rastvaranjem u minimalnoj količini hloroforma, a potom je prekriven zaštitnim slojem aluminijium-oksida i ostavljen da rastvarač ispari. Tako pripremljen uzorak je nanošen na kolonu. Eluiranje je izvođeno sledećim rastvaračima: 30 ml n-heksana, 90 ml smeše nheksan/benzen u odnosu 3:1, 90 ml smeše n-heksan/benzen u odnosu 1:1, i benzena u količini koja odgovara visini stuba (V=r²πh, gde je r poluprečnik kolone, a h visina stuba adsorbensa). Svi eluati su sakupljani u jedan balon. Po eluiranju, najveća količina rastvarača je uklonjena pomoću rotacionog vakuumuparivača. Ostatak je kvantitativno prenešen u vegeglas poznate mase i poslednji tragovi rastvarača su uklanjani u struji vazduha. Izdvojeni koncentrat je analiziran primenom gasnohromatografsko-masenospektrometrijske (GC-MS) analize i gasnohromatografsko-masenospektrometrijske-masenospektrometrijske (GC-MS-MS) analize.

5.5. Gasnohromatografsko-masenospektrometrijska (GC-MS) analiza

Gasnohromatografsko-masenospektrometrijska (GC-MS) analiza je primenjena za analizu zasićene i aromatične frakcije. Upotrebljeni GC-MS sistem se sastojao od gasnog hromatografa Agilent 7890AGC (kapilarna kolona 30 m x 0,25 mm; stacionarna faza H5-MS, debljina filma 0,25 µm; noseći gas helijum brzine protoka 1,5 cm³/min) kuplovanog sa kvadrupolnim masenim detektorom Agilent 5975C (energija jonizujućih elektrona 70 eV). Kolona je zagrevana u temperaturnom intervalu od 80 °C do 310 °C, brzinom 2 °C/min. Temperatura od 310 °C je održavana još 25 minuta, a ceo program trajao je 132 minuta. Ubrizgavan je 1 µL uzorka rastvorenog u n-heksanu (koncentracija 0,1 mg/µL). Detaljna šema izolovanja i prečišćavanja zasićene frakcije prikazana je na Slici 58. n-Alkani i izoprenoidni alifatični alkani (izoprenoidi) su identifikovani iz jona *m*/*z* 71, metil-, dimetil- i trimetilnaftaleni su identifikovani na osnovu fragmentograma jona m/z 142, 156 i 170, dok su fenantren i njegovi metil- i dimetil- derivati identifikovani na osnovu fragmentograma jona iz m/z178, 192 i 206. Dibenzotiofen, metil- i dimetilbenzotiofeni su identifikovani na osnovu fragmentograma jona m/z 184, 198 i 212. Pojedinačni pikovi su identifikovani poređenjem sa literaturnim podacima (George et al., 1998; Radke, 1987) i na osnovu biblioteke NIST5a.

5.6. Gasnohromatografsko-masenospektrometrijskamasenospektro-metrijska (GC-MS-MS) analiza

Gasnohromatografsko-masenospektrometrijska-masenospektrometrijska (GC-MS-MS) tehnika korišćena je za analizu zasićene frakcije. Za GC-MS-MS analizu korišćen je gasni hromatograf Agilent 6890N povezan sa Waters (Micromass) Quattro Micro GC tandemskim kvadrupolnim masenim spektrometrom. Korišćena je kapilarna kolona Phenomex ZB-5 (30 m x 0,25 mm; debljina filma 0,10 µm). Kolona je zagrevana brzinom od 30 °C/min u temperaturnom intervalu od 70 do 100 °C, a zatim brzinom 4 °C/min u temperaturnom intervalu od 100 do 308 °C. Krajnja temperatura od 308 °C održavana je još 8 minuta. GC-MS-MS analize rađene su za karkteristične jonske prelaze C₂₁-C₂₂, C₂₆-C₃₀ sterana (M⁺ \rightarrow *m/z* 217), C₂₇-C₃₅ terpana (M⁺ \rightarrow *m/z* 191), kao i prelaz 412,41 \rightarrow 369,35 za C₃₀ C(14a)-homo-nor-17 α (H)-hopan. Dodatno, prelaz 412,41 \rightarrow 191,18 (C₃₀ hopan) bio je uključen u analizu sterana radi provere relativnog odziva detektora.

Slika 58. Šema analize rastvorne organske supstance.

6. REZULTATI I DISKUSIJA

6.1. Procena generativnog potencijala

Rezultati Rock-Eval pirolize koji podrazumevaju sadržaj slobodnih ugljovodonika (S1), sadržaj ugljovodonika generisanih krakovanjem kerogena (S2), vodonični indeks (HI), temperaturu koja odgovara maksimumu generisanja ugljovodonika (T_{max}) i produkcioni indeks (PI), kao i vrednosti grupnih organskogeohemijskih parametara, sadržaj ukupnog organskog ugljenika (C_{org}), sadržaj bitumena i ugljovodonika (UV) koji se najčešće primenjuju u organskogeohemijskim studijama date su u *tabeli 17*.

Pri utvrđivanju potencijalnosti neke stene da proizvede naftu prvi korak je određivanje ukupnog organskog ugljenika Rock-Eval analizom, TOC i ukupnog organskog ugljenika elementarnom analizom nakon uklanjanja karbonata, C_{org} . Donja granica sadržaja organskog ugljenika u stenama koje mogu da pokazuju izvesnu potencijalnost da proizvedu naftu je 0,5% (Peters *et al.*, 2005). Ovaj, prvi kriterijum za utvrđivanje potencijalnosti neke stene da količina C_{org} i TOC budu veći od 0,5% nije zadovoljen u uzorcima 10 i 22 (*Tabela 17*), tako da su oni izuzeti iz dalje interpretacije. Nekolicina uzoraka (7, 12, 14, 15 i 16; *Tabela 17*) je uprkos vrednostima za TOC nižim od 0,5 %, ali i relativno niskim vrednostima za vodonični indeks, HI zadržana u daljoj analizi zbog činjenice da se ovi uzorci karakterišu relativno visokim temperaturama T_{max} (*Tabela 17*) i verovatno, višim stepenom zrelosti organske supstance pri kojem navedeni parametri mogu imati i dvostruko niže vrednosti od početnih (Peters *et al.*, 2005a). Ovi uzorci mogu biti veoma značajni sa prospekcijskog aspekta zbog činjenice da oni, mogu biti prezrele

Uzorak	Lokalna depresija	Bušotina	Stratigrafska pripadnost	C _{org} (%)	Bitumen (ppm)	UV (ppm)	TOC (%)	S1 (mg UV/ g stene)	S2 (mg UV/ g stene)	HI (mg UV/ g TOC)	PI	T _{max} (°C)	R _c (%)
1		Čoka-3	Sarmat	13,24	13737	4498	10,98	10,38	74,16	675	0,12	424	0,52
2		Obilićevo-3	Sarmat	2,49	2585	914	2,15	1,08	14,56	677	0,07	434	0,61
3	0/	Padej-1	Baden	1,81	2137	684	1,66	1,07	8,86	533	0,11	434	0,61
4	skc lov	Crna bara - jug-3	Panon	0,86	1576	1116	0,64	0,84	1,46	228	0,37	449	0,78
5	ats đe	Crna bara - jug-4	Panon	1,10	3195	2340	0,93	1,93	1,66	178	0,54	450	0,82
6	an an	Crna bara - jug-4	Panon	1,06	3765	2855	0,87	2,38	1,81	208	0,57	450	0,85
7	B Ar	Crna bara - jug-4	Panon	0,51	1183	934	0,32	0,65	0,43	134	0,60	455	0,88
8		Crna bara - jug-2	Panon	1,67	4802	3260	1,37	2,54	2,90	211	0,47	449	0,85
9		Crna bara – jug-	Panon	1,58	3941	2962	1,42	2,44	2,90	204	0,46	456	0,90
10		Kikinda – sever-4	Pont	0,39	310	29	0,21	0,22	0,14	66	0,61	428	0,59
11		Veliko Selo-4	Pont	1,08	1043	258	0,84	0,31	0,94	111	0,25	438	0,72
12		Veliko Selo-4	Pont	0,72	1074	737	0,46	0,47	0,42	91	0,53	453	0,84
13		Veliko Selo-4	Miocen	1,50	4950	3601	1,19	2,71	2,20	184	0,55	456	0,85
14	_	Nakovo-2	Panon	0,90	571	197	0,45	0,27	0,56	124	0,33	447	0,77
15	nja	Nakovo-3	Panon	0,74	548	154	0,45	0,35	0,47	104	0,43	446	0,79
16	Cr.	Nakovo-3	Panon	0,69	749	410	0,44	0,59	0,46	104	0,57	447	0,82
17	(a	Karađorđevo – sever-1	Panon	1,08	2460	1041	0,86	0,95	3,63	422	0,21	443	0,74
18	lsc	Itebej – sever-1	Miocen	1,67	2644	1233	1,44	0,95	6,41	445	0,13	444	0,69
19	Srl	Vojvoda Stepa – istok-1	Srednji Miocen	1,70	3214	926	1,51	1,07	7,49	496	0,12	444	0,78
20	•••	Vojvoda Stepa-4	Miocen	0,84	1403	644	0,68	0,63	0,76	111	0,46	447	0,80
21		Molin-2	Baden	1,12	3395	1698	0,91	1,30	3,33	365	0,28	448	0,73
22		Molin-2	Baden	0,24	573	272	0,08	0,55	0,26	325	0,69	448	0,74
23		Nova Crnja – selo-1	Panon	1,17	2952	2293	1,05	1,03	3,02	287	0,25	449	0,79
24		Nova Crnja – selo-1	Nepoznato	1,00	1048	374	0,71	0,49	0,33	46	0,60	460	0,93

 Tabela 17. Spisak ispitivanih uzoraka, vrednosti grupnih organsko-geohemijskih parametara i rezultati Rock-Eval analize

Tabela 17. Nastavak

Uzorak	Lokalna depresija	Bušotina	Stratigrafska pripadnost	C _{org} (%)	Bitumen (ppm)	UV (ppm)	TOC (%)	S1 (mg UV/ g stene)	S2 (mg UV/ g stene)	HI (mg UV/ g TOC)	ΡI	T _{max} (°C)	Rc (%)
25		Elemir-15	Miocen	4,69	5664	2018	3,34	6,79	15,57	466	0,30	433	0,44
26	.5	Žitište-2	Miocen	3,56	15976	7762	4,40	2,73	25,07	569	0,10	435	0,49
27	ine	Zrenjanin – sever-8	Baden	3,86	8406	4132	3,49	3,43	23,04	660	0,13	440	0,63
28	injë	Rusanda-8	Miocen	1,29	1693	714	1,03	0,90	5,09	494	0,15	445	0,69
29	Zre	Rusanda – zapad-1	Miocen	1,50	3373	1857	1,31	1,61	6,82	520	0,19	444	0,68
30		Mihajlovo - zapad-1	Panon	0,98	1515	694	0,74	0,68	3,40	459	0,17	442	0,70
31		Mihajlovo - zapad	Panon	2,23	4034	1717	1,97	1,61	11,92	605	0,12	447	0,73
32		Mihajlovo - zapad	Sarmat	2,72	6155	2837	2,55	2,70	13,76	539	0,16	442	0,74
33		Mihajlovo - zapad	Sarmat	1,29	2870	1448	1,09	1,31	5,72	524	0,19	442	0,74

Legenda: C_{org} – sadržaj organskog ugljenika određen elementarnom analizom nakon uklanjanja karbonata; UV – ugljovodonici; TOC – ukupni organski ugljenik određen Rock-Eval pirolizom; S1 – slobodni ugljovodonici; S2 – ugljovodonici generisani pirolizom kerogena; HI – vodonični indeks (HI = S2x100/TOC); PI – produkcioni indeks (PI = S1/(S1+S2)); T_{max} – temperatura koja odgovara maksimumu pika S2; % R_c = 0,2096 x e^{0,085T}.

matične stene, koje su već generisale znatnu količinu nafte, tim pre što se u njihovoj blizini nalaze značajna naftna polja (Kostić, 2010a).

Dobar generativni potencijal za 16 uzoraka se jasno uočava i u logaritamskom dijagramu zavisnosti *ukupni ugljovodonični generativni potencijal (S1+S2)* i *TOC (Slika 59;* Karaktisisios i Rigakis, 2007), koji ove uzorke svrstava u uzorake sa osrednjim do veoma dobrim potencijalom.

Slika 59. Dijagram zavisnosti (S1+S2) i TOC (Karakitsios i Rigakis, 2007).

Na *slici 59* je uočljivo izdvajanje 6 uzoraka koji imaju visok saržaj TOC i odlikuju se visokim ukupnim ugljovodoničnim generativnim potencijalom. To

su uzorci 1, 2, 25-27 i 32 (*Tabela 17*). Uzorci koji imaju visok sadržaj TOC (> 1), ali nešto niži ukupni ugljovodonični generativni potencijal od uzoraka iz prvopomenute grupe su 3, 18, 19, 28, 29, 31 i 33 (*Tabela 17*). I na osnovu ovog dijagrama zapaža se da su uzorci 7, 12 i 14-16 siromašni organskom supstancom, s tim što se na njemu ističe i da je i njihov generativni potencijal, takođe, slab.

Važan kriterijum pri ispitivanju matičnih stena za naftu je procena termičke zrelosti organske supstance (kerogena), kao i određivanje tipa kerogena.

Na osnovu dijagrama zavisnosti *S2 i TOC* i *HI i Tmax (Slike 60 i 61;* Langford i Blanc-Valleron, 1990; Bordenave *et al.*, 1993; Karaktisios i Rigakis, 2007) procenjeno je da je organska supstanca većine ispitivanih uzoraka pretežno sačinjena od kerogena tipa II, kojeg karakteriše dobar potencijal za generisanje tečnih ugljovodonika.

Parametri S2 i TOC pokazali su statistički visoko značajnu linearnu korelaciju (r > 0,95). Vrednost slobodnog člana u linearnoj jednačini koja povezuje vrednosti TOC i S2 (*Slika 60*) može ukazivati na prisustvo izvesne količine inertnog organskog ugljenika (Dahl *et al.*, 2004) i/ili uticaj mineralnog matriksa (minerali tipa glina) na adsorbciju pirolizovanih ugljovodonika (Yalçın Erik *et al.*, 2006).

Na *slikama 60 i 61* jasno se uočava da se organska supstanca izvesnog broja uzoraka karakteriše dominacijom kerogena tipa II/III, odnosno kerogenom tipa III i slabim potencijalom za stvaranje nafte. Ovu grupu uzoraka čine sedimenti pontske starosti 11 i 12, što je u saglasnosti sa rezultatima ranijih analiza uzoraka iz ponta (Kostić, 2010a), kao i još nekoliko uzoraka iz generativne depresije Srpska Crnja (uzorci 14-16 iz panona, bušotina Nakovo; uzorak 20 iz miocena i uzorak 24 iz nedefinisane serije).

Slika 60. Dijagram zavisnosti S2 i TOC (Langford i Blanc-Valleron, 1990).

Slika 61. Dijagram zavisnosti HI i T_{max} (Karakitiosis i Rigakis, 2007).

6.2. Analiza porekla i sredine taloženja organske supstance

Specifični organsko-geohemijski parametri izračunati su na osnovu raspodele i obilnosti biomarkera zasićene frakcije izolovane iz bitumena ispitivanih uzoraka (*Slike 62, 64-67*). Njihove vrednosti su date u *tabelama 18-20*.

Slika 62. Tipični gasno-maseni fragmentogram (m/z 71) n-alkana. n-Alkani su označeni prema broju C-atoma; Pr – pristan; Fit – fitan.

Raspodele *n*-alkana u zasićenoj frakciji većine ispitivanih uzoraka su unimodalne sa *n*-alkanskim maksimumom u opsegu C_{16} - C_{19} i CPI vrednostima koje su bliske jedinici (*Tabela 18; Slike 61, 62*). Ovi podaci upućuju na zaključak da ispitivani sedimenti sadrže organsku supstancu pretežno algalnog porekla i/ili visokog stepena zrelosti, što je i u saglasnosti sa zaključcima izvedenim na osnovu grupnih organsko-geohemijskih parametara. Bimodalna *n*-alkanska raspodela sa maksimumima u opsezima C_{16} - C_{18} i neparnim homolozima C_{25} - C_{29} , u uzorcima sa oznakama 11, 24 i 30 upućuje na pretpostavku da je u fomiranju organske supstance ovih uzoraka značajnog udela imala i terestrična prekursorska biomasa. Za uzorke 11 i 24 ovaj zaključak je u saglasnosti sa tipom kerogena (kerogen tipa III) procenjenim na osnovu dijagrama zavisnosti S2 *i* *TOC* i *HI i T_{max}*, odnosno na osnovu rezultata Rock-Eval analize (*Tabela 17; Slike* 60, 61).

Broj uzorka	CPI	<i>n</i> -Alkanski maksimum	Pr/Fit	Pr/ <i>n</i> -C ₁₇	Fit/ <i>n</i> -C ₁₈	Pr/ <i>n</i> -C ₁₇ + Fit/ <i>n</i> -C ₁₈
1	1,32	C ₁₇	0,74	1,48	2,65	4,13
2	1,15	C ₁₇	2,62	1,45	0,68	2,13
3	1,06	C ₁₆	2,28	1,32	0,73	2,05
4	1,04	C ₁₆	2,05	0,64	0,35	0,99
5	1,08	C ₁₉	1,63	0,50	0,31	0,81
6	1,03	C ₂₅	1,44	0,68	0,38	1,06
7	1,01	C ₂₁	1,06	0,60	0,47	1,07
8	1,03	C ₁₇	1,76	0,59	0,34	0,93
9	1,05	C ₁₇ , C ₁₈	1,79	0,63	0,35	0,98
11	1,09	C ₁₇ , C ₂₅	1,96	1,27	0,69	1,96
12	1,13	C19	1,59	0,34	0,19	0,53
13	1,11	C ₁₉	0,96	0,74	0,76	1,50
14	1,09	C ₁₆	3,51	0,67	0,20	0,87
15	1,08	C ₁₇	3,01	0,75	0,25	1,00
16	1,13	C ₁₇	3,44	0,69	0,24	0,93
17	1,05	C ₁₇	1,95	0,75	0,48	1,23
18	1,09	C ₁₈ , C ₁₉	1,04	0,55	0,50	1,05
19	0,98	C ₁₈	0,87	0,91	1,04	1,95
20	1,16	C ₁₇	1,74	0,56	0,37	0,93
21	1,05	C ₁₈	1,73	0,67	0,36	1,03
23	1,05	C ₁₆	1,85	0,74	0,48	1,22
24	1,08	C ₁₇ , C ₂₅	1,62	0,46	0,34	0,80
25	1,14	C ₁₇	0,91	1,27	1,68	2,95
26	0,96	C ₂₄	0,62	1,38	1,85	3,23
27	0,93	C ₁₈ , C ₂₁	0,64	0,72	0,92	1,64
28	1,06	C ₁₇	0,95	0,50	0,56	1,06
29	1,12	C ₂₉	1,79	0,71	0,42	1,13
30	1,17	C ₁₇ , C ₂₉	1,99	0,94	0,58	1,52
31	1,09	C ₁₉	1,69	0,56	0,32	0,88
32	1,01	C ₁₈	0,71	0,78	1,04	1,82
33	0,98	C ₁₈	0,61	0,58	0,81	1,39

Tabela 18. Vrednosti parametara izračunatih iz raspodele i obilnosti n-alkana iizoprenoida

CPI – "Carbon Preference Index"- određen jednačinom po Bray, Evans-u za ceo opseg n-alkana, $C_{16}-C_{34}$, CPI = 1/2 [Σ neparni($n-C_{17} - n-C_{33}$)/ Σ parni($n-C_{16} - n-C_{32}$) + Σ neparni($n-C_{17} - n-C_{33}$)/ Σ parni ($n-C_{18} - n-C_{34}$)]; Pr – pristan; Fit – fitan.

Slika 63. n-Alkanske raspodele u zasićenoj frakciji ispitivanih uzoraka.

Slika 64. Tipična GC–MS–MS raspodela C_{27} – C_{30} sterana. $\alpha \alpha i \beta \beta označavaju 14a (H)17\alpha (H) i 14\beta (H)17\beta (H) konfiguracije u steranima; <math>\alpha \beta i \beta \alpha$ $označavaju 13\alpha (H)17\beta (H) i 13\beta (H)17\alpha -(H) konfiguracije u diasteranima; (S) i (R)$ označavaju konfiguraciju na C-20 u steranima i diasteranima.

Slika 65. Tipična GC–MS–MS raspodela C_{21} – C_{22} i C_{26} sterana. aa i $\beta\beta$ označavaju 14a (H)17a (H) i 14 β (H)17 β (H) konfiguracije u steranima; $\alpha\beta$ i β a označavaju 13 α (H)17 β (H) i 13 β (H)17 α -(H) konfiguracije u diasteranima; (S) i (R) označavaju konfiguraciju na C-20 u steranima i diasteranima.

Uzorak	%C27	% C ₂₈	%C29	C ₃₀ steranski indeks (%)	C ₃₀ dia (%)	$\begin{array}{l} C_{ZZ}\beta\alpha(S)/\\ (\beta\alpha(S)+\alpha\alpha(R))\end{array}$	$\begin{array}{l} C_{28}\beta\alpha(S)/\\ (\beta\alpha(S)+\alpha\alpha(R))\end{array}$	$\begin{array}{l} C_{29}\beta\alpha(S)/\\ (\beta\alpha(S)+\alpha\alpha(R))\end{array}$	$\frac{C_{29}\alpha\alpha(S)}{(\alpha\alpha(S) + \alpha\alpha(R))}$	$\begin{array}{c} C_{29}\beta\beta(R)/\\ (\beta\beta(R)+\alpha\alpha(R)) \end{array}$	$(C_{21} + C_{22})/$ $\Sigma(C_{27} - C_{29})$	Ster/Hop	NDR	NCR
1	28,85	35,89	35,26	2,09	1,83	0,10	0,09	0,07	0,10	0,30	0,02	34,10	0,72	0,92
2	23,04	55,26	21,71	1,97	1,14	0,28	0,28	0,17	0,33	0,00	0,08	0,85	0,54	0,69
3	37,27	33,36	29,37	2,95	0,64	0,22	0,23	0,16	0,32	0,40	0,11	0,22	0,47	0,66
4	40,18	29,95	29,87	N.O.	N.O.	0,81	0,81	0,75	0,58	0,66	0,25	1,10	0,44	0,66
5	40,32	28,89	30,79	N.O.	N.O:	0,86	0,84	0,79	0,59	0,69	0,38	0,66	0,49	0,63
6	39,64	29,82	30,54	N.O.	N.O.	0,89	0,91	0,83	0,58	0,68	0,59	1,93	0,48	0,65
7	47,89	29,74	22,36	N.O.	N.O.	0,90	0,94	0,92	0,53	0,67	0,51	2,45	0,54	0,58
8	36,59	32,62	30,78	N.O.	N.O.	0,83	0,86	0,77	0,56	0,67	0,63	2,30	0,51	0,70
9	33,21	35,66	31,13	N.O.	N.O.	0,85	0,86	0,78	0,58	0,69	0,62	2,40	0,48	0,64
11	17,57	16,59	65,84	0.56	0,22	0,56	0,56	0,53	0,52	0,40	0,14	0,48	0,41	0,50
12	34,41	17,45	48,14	N.O.	N.O.	0,93	0,92	0,88	0,52	0,65	0,29	0,39	0,45	0,59
13	29,91	34,75	35,35	1,61	3,85	0,27	0,71	0,67	0,59	0,71	0,37	8,04	0,55	0,73
14	37,79	24,14	38,06	N.O.	N.O.	0,80	0,78	0,79	0,53	0,60	0,32	0,18	0,42	0,48
15	37,74	21,65	40,61	N.O.	N.O.	0,81	0,80	0,78	0,51	0,56	0,42	0,20	0,39	0,54
16	23,53	26,24	50,23	N.O.	N.O.	0,94	0,89	0,90	0,55	0,66	0,25	0,27	0,40	0,56
17	41,15	25,77	33,08	N.O.	N.O.	0,60	0,56	0,45	0,55	0,64	0,24	0,08	0,39	0,48
18	26,17	48,23	25,61	1,55	3,05	0,47	0,49	0,37	0,54	0,60	0,20	0,42	0,52	0,79
19	30,96	37,41	31,63	1,50	3,48	0,42	0,38	0,32	0,56	0,64	0,13	4,51	0,58	0,81
20	38,88	28,13	32,99	1,89	2,64	0,94	0,95	0,93	0,55	0,69	0,76	1,55	0,52	0,63
21	28,88	44,34	26,78	2,58	2,59	0,78	0,77	0,72	0,58	0,69	0,16	0,22	0,52	0,63
23	29,74	40,87	29,38	N.O.	N.O.	0,76	0,77	0,69	0,58	0,68	0,36	0,21	0,47	0,62
24	27,64	30,56	41,80	N.O.	N.O.	0,72	0,68	0,76	0,51	0,59	0,51	2,75	0,41	0,61

Tabela 19. Vrednosti parametara izračunatih iz raspodele i obilnosti sterana

Tabela 19. Nastavak

Uzorak	%C ₂₇	%C28	%C29	C ₃₀ steranski indeks (%)	C ₃₀ dia (%)	$C_{27}\beta\alpha(S)/(\beta\alpha(S) + \alpha\alpha(R))$	$\begin{array}{l} C_{28}\beta\alpha(S)/\\ (\beta\alpha(S)+\alpha\alpha(R))\end{array}$	$C_{29}\beta\alpha(S)/(\beta\alpha(S) + \alpha\alpha(R))$	$C_{29}\alpha\alpha(S)/(\alpha\alpha(S) + \alpha\alpha(R))$	$C_{29}\beta\beta(R)/(\beta\beta(R) + \alpha\alpha(R))$	$(C_{21} + C_{22})/\Sigma(C_{27} - C_{29})$	Ster/Hop	NDR	NCR
25	35,41	23,04	41,55	2,66	1,83	0,05	0,06	0,06	0,12	0,28	0,02	9,27	0,56	0,86
26	27,84	29,75	42,40	1,44	1,99	0,36	0,30	0,23	0,54	0,55	0,05	7,42	0,51	0,74
27	29,03	31,87	39,10	2,08	2,77	0,18	0,16	0,14	0,51	0,43	0,04	4,11	0,60	0,90
28	30,77	35,39	33,84	1,33	3,13	0,49	0,43	0,37	0,56	0,64	0,22	0,92	0,51	0,77
29	40,51	28,57	30,92	2,96	2,66	0,48	0,45	0,39	0,55	0,59	0,12	0,17	0,38	0,62
30	43,86	24,19	31,95	2,50	2,39	0,45	0,45	0,32	0,50	0,46	0,10	0,16	0,36	0,50
31	29,49	40,11	30,40	1,83	2,26	0,57	0,58	0,43	0,51	0,58	0,17	0,23	0,60	0,78
32	29,66	34,98	35,37	1,83	2,29	0,27	0,23	0,18	0,54	0,55	0,07	5,35	0,55	0,87
33	28,77	32,88	38,35	1,72	2,59	0,27	0,23	0,19	0,54	0,55	0,06	5,67	0,55	0,86

 $\sqrt[6]{C_{27}} = 100xC_{27}14\alpha(H)17\alpha(H)20(R) - steran/\Sigma(C_{27}-C_{29})14\alpha(H)17\alpha(H)20(R) - sterani;$

 $\% C_{28} = 100 x C_{28} 14 \alpha(H) 17 \alpha(H) 20(R) - steran/\Sigma (C_{27} - C_{29}) 14 \alpha(H) 17 \alpha(H) 20(R) - sterani;$

 $\% C_{29} = 100 x C_{29} 14 a(H) 17 \alpha(H) 20(R) - steran/\Sigma (C_{27} - C_{29}) 14 \alpha(H) 17 \alpha(H) 20(R) - sterani;$

 C_{30} steranski indeks (%) = $100x[C_{30}14\alpha(H)17\alpha(H)20(R+S) + C_{30}14\beta(H)17\beta(H)20(R+S)]$ -sterani/

 $[\Sigma(C_{27}-C_{30})14\alpha(H)17\alpha(H)20(R+S) + \Sigma(C_{27}-C_{30}14\beta(H)17\beta(H)20(R+S)]-sterani;$

 $C_{30} dia(\%) = 100x [C_{30}13\beta(H)17\alpha(H)20(R+S) + C_{30}13\alpha(H)17\beta(H)20(R+S)] - diasterani/[\Sigma(C_{27}-C_{30})13\beta(H)17\alpha(H)20(R+S) + \Sigma(C_{27}-C_{30})13\alpha(H)17\beta(H)20(R+S)] - diasterani;$

 $Ster/Hop = [\Sigma(C_{27}-C_{29})14\alpha(H)17\alpha(H) (20R + 20S) + 14\beta(H)17\beta (20R + 20S) - sterani]/[\Sigma(C_{29}-C_{33})17\alpha(H)21\beta(H) (22R + 22S) - hopani];$

 $NDR = 24 - Nordiaholestanski \ odnos = 13\beta(H) 17\alpha(H) 20(S+R) - 24 - nordiaholestani/(13\beta(H) 17\alpha(H) 20(S+R) - 24 - nordiaholestani + 13\beta(H) 17\alpha(H) 20(S+R) - 27 - nordiaholestani);$

 $NCR = 24 - Norholestanski odnos = (14\alpha(H)17\alpha(H)20(S+R) - 24 - norholestani + 14\beta(H)17\beta(H)20(S+R) - 24 - norholestani)/(14\alpha(H)17\alpha(H)20(S+R) - 24 - norholestani) + 14\beta(H)17\beta(H)20(S+R) - 24 - norholestani + 14\alpha(H)17\alpha(H)20(S+R) - 27 - norholestani + 14\beta(H)17\beta(H)20(S+R) - 27 - norholestani);$

N.O. – nije određivano zbog veoma niskog sadržaja C₃₀ sterana

Oznake pikova su date u legendi slike 64.

E – rano eluirajući hopan; dia – 17α(H)-diahopan; (S) i (R) označavaju konfiguraciju na C-22 u C₃₁ - C₃₅ hopanima; Ts – C₂₇18 α(H)-22,29,30-trisnorneohopan; Tm – C₂₇17α(H)-22,29,30-trisnorhopan; C₂₉H – C₂₉17 α(H)21β(H)-30-norhopan; C₂₉Ts – C₂₉18a(H)-30-norneohopan; Nsp – C₂₉-28-nor-spergulan; C₃₀HH – C(14a)-homo-26-nor-17α(H)-hopan; O – oleanan; C₃₀H – C₃₀17α(H)21β(H)-hopan; C₃₀M – C₃₀17β(H)21α(H)-moretan; C₃₁H(S) – C₃₁17α(H)21β(H)22(S)-hopan; C₃₂H(R) – C₃₂17α(H)21β(H)22(R)-hopan; C₃₃H(S) – C₃₃17α(H)21β(H)22(S)-hopan; C₃₃H(R) – C₃₃17α(H)21β(H)22(S)-hopan; C₃₅H(S) – C₃₅17α(H)21β(H)22(S)-hopan; C₃₅H(R) – C₃₅17α(H)21β(H)22(S)-hopan.

Slika 67. Tipična GC–MS–MS raspodela C_{21} – C_{26} tricikličnih terpana. TT – 13 β (H)14 α (H)- triciklični terpan; (S) i (R) označavaju konfiguraciju na C-22 u C_{25} i C_{26} tricikličnim terpanima.

Broj uzorka	C ₂₉ dia/ C ₂₉ H	C ₃₀ dia/ C ₃₀ H	C ₃₁ dia(S+R)/ C ₃₁ H(S+R)	C ₃₂ dia(S+R)/ C ₃₂ H(S+R)	C ₂₉ Nsp/ C ₂₉ H	10xO/ (O+C ₃₀ H)	10xG/ (G+C ₃₀ H)	C ₃₅ H(S)/ C ₃₄ H(S)	C ₂₆ TT/ C ₂₅ TT	ΣTT/ C ₃₀ H
1	0,00	0,00	0,00	0,00	0,00	2,18	0,33	1,06	0,58	0,10
2	0,02	0,01	0,00	0,00	0,00	0,22	0,42	0,55	1,34	0,04
3	0,02	0,01	0,00	0,00	0,11	0,15	0,87	0,51	1,48	0,03
4	1,68	1,17	0,85	0,63	0,55	1,42	2,28	0,70	1,44	0,44
5	2,68	1,20	0,93	0,59	0,91	1,66	3,52	0,66	1,38	0,46
6	2,78	1,80	1,24	0,92	0,79	2,39	2,36	0,58	1,52	1,15
7	1,40	1,41	1,56	1,75	0,00	6,01	0,89	0,00	N.O.	N.O.
8	3,18	1,71	1,21	0,83	1,07	2,39	2,25	1,04	1,23	1,01
9	2,69	1,52	1,27	0,76	1,18	2,62	2,27	0,83	1,51	1,40
11	0,02	0,03	0,03	0,02	0,00	0,44	0,11	0,37	0,75	0,14
12	0,99	1,25	0,86	0,50	0,17	1,01	2,73	0,49	1,31	0,37
13	0,84	0,35	0,28	0,26	0,21	6,60	0,52	1,44	0,72	2,43
14	0,17	0,25	0,18	0,15	0,00	0,34	1,04	0,42	N.O.	N.O.
15	0,13	0,25	0,18	0,14	0,00	0,39	1,02	0,46	0,56	0,23
16	0,51	0,48	0,36	0,24	0,00	1,06	0,96	0,47	1,31	0,13
17	0,06	0,03	0,03	0,03	0,03	0,16	0,60	0,47	1,15	0,04
18	0,05	0,03	0,00	0,00	0,00	0,30	0,16	0,56	0,72	0,06
19	0,05	0,03	0,03	0,03	0,00	1,94	0,18	1,04	0,58	0,68
20	0,47	0,29	0,31	0,20	0,12	1,77	0,00	0,57	0,85	0,96

Tabela 20. Vrednosti izvornih hopanskih parametara

Tabela 20. Nastavak

Broj uzorka	C ₂₉ dia/ C ₂₉ H	C ₃₀ dia/ C ₃₀ H	C ₃₁ dia(S+R)/ C ₃₁ H(S+R)	C ₃₂ dia(S+R)/ C ₃₂ H(S+R)	C ₂₉ Nsp/ C ₂₉ H	10xO/ (O+C ₃₀ H)	10xG/ (G+C ₃₀ H)	C ₃₅ H(S)/ C ₃₄ H(S)	C ₂₆ TT/ C ₂₅ TT	ΣTT/ C ₃₀ H
21	0,10	0,01	0,07	0,06	0,04	0,33	0,31	0,53	0,95	0,04
23	0,15	0,02	0,08	0,07	0,05	0,31	0,41	0,54	1,13	0,05
24	0,30	0,04	0,21	0,19	0,05	2,88	0,00	0,00	N.O.	N.O.
25	0,00	0,00	0,00	0,00	0,00	1,06	0,30	1,18	1,10	0,11
26	0,07	0,00	0,00	0,00	0,00	2,92	0,38	0,90	0,53	0,50
27	0,02	0,00	0,00	0,00	0,00	2,09	0,22	1,27	0,52	0,18
28	0,06	0,00	0,04	0,04	0,00	0,78	0,46	0,54	0,74	0,17
29	0,05	0,00	0,00	0,00	0,00	0,18	0,42	0,43	1,11	0,03
30	0,02	0,00	0,00	0,00	0,00	0,00	0,51	0,42	1,11	0,03
31	0,03	0,00	0,00	0,00	0,00	0,19	0,00	0,63	0,93	0,03
32	0,00	0,00	0,00	0,00	0,00	2,76	0,33	1,20	0,57	0,41
33	0,00	0,00	0,00	0,00	0,00	2,74	0,33	1,28	0,54	0,27

Oznake pikova su date u legendama slika 66 i 67; $\Sigma TT = \Sigma C_{21} - C_{26}$ -triciklični terpani; N.O. - nije određivano.

Broj uzorka	Ts/ (Ts+Tm)	C ₂₇ E/Tm	C ₂₉ Ts/ C ₂₉ H	C ₂₉ E/ C ₂₉ H	C ₃₀ E/ C ₃₀ H	C ₃₀ HH/ C ₃₀ H	C ₃₀ M/ C ₃₀ H	C ₃₁ E(S+R)/ C ₃₁ H(S+R)	C ₃₁ H(S)/ C ₃₁ H(S+R)	C ₃₂ E(S+R)/ C ₃₂ H(S+R)	C ₃₂ (S)/ C ₃₂ H(S+R)
1	0,26	0,00	0,21	0,00	0,00	0,004	0,12	0,00	0,45	0,00	0,40
2	0,37	0,00	0,22	0,00	0,00	0,002	0,08	0,00	0,59	0,00	0,57
3	0,35	0,00	0,21	0,00	0,00	0,003	0,08	0,00	0,59	0,00	0,56
4	0,92	0,18	2,93	0,35	0,31	0,182	0,08	0,21	0,55	0,14	0,61
5	0,96	0,31	3,38	0,45	0,29	0,170	0,06	0,21	0,56	0,12	0,60
6	0,96	0,28	4,30	0,47	0,38	0,338	0,08	0,25	0,61	0,24	0,60
7	0,94	0,00	0,85	0,28	0,49	0,000	0,07	0,62	0,60	0,51	0,59
8	0,96	0,28	3,73	0,53	0,37	0,376	0,05	0,28	0,56	0,21	0,61
9	0,96	0,32	3,65	0,46	0,30	0,350	0,07	0,27	0,60	0,18	0,58
11	0,06	0,00	0,04	0,00	0,00	0,010	0,15	0,00	0,59	0,00	0,60
12	0,88	0,37	2,24	0,05	0,90	0,060	0,05	0,50	0,58	0,28	0,60
13	0,88	0,18	1,44	0,13	0,11	0,109	0,21	0,08	0,61	0,07	0,55
14	0,45	0,05	0,39	0,09	0,18	0,031	0,09	0,11	0,60	0,09	0,61
15	0,38	0,05	0,34	0,10	0,23	0,030	0,10	0,13	0,60	0,11	0,60
16	0,79	0,16	1,23	0,26	0,30	0,048	0,05	0,18	0,59	0,10	0,60
17	0,56	0,00	0,35	0,00	0,00	0,032	0,05	0,00	0,60	0,00	0,60
18	0,46	0,00	0,27	0,00	0,00	0,032	0,06	0,00	0,60	0,00	0,60
19	0,52	0,00	0,32	0,00	0,00	0,036	0,06	0,00	0,60	0,00	0,61
20	0,86	0,14	1,04	0,17	0,10	0,086	0,05	0,10	0,58	0,06	0,61

 Tabela 21. Vrednosti maturacionih hopanskih parametara
Broj uzorka	Ts/ (Ts+Tm)	C ₂₇ E/Tm	C ₂₉ Ts/ C ₂₉ H	C ₂₉ E/ C ₂₉ H	C ₃₀ E/ C ₃₀ H	C ₃₀ HH/ C ₃₀ H	C ₃₀ M/ C ₃₀ H	C ₃₁ E(S+R)/ C ₃₁ H(S+R)	C ₃₁ H(S)/ C ₃₁ H(S+R)	C ₃₂ E(S+R)/ C ₃₂ H(S+R)	C ₃₂ (S)/ C ₃₂ H(S+R)
21	0,61	0,02	0,44	0,02	0,01	0,076	0,04	0,01	0,59	0,00	0,60
23	0,65	0,03	0,55	0,02	0,02	0,065	0,04	0,01	0,60	0,01	0,60
24	0,63	0,00	0,44	0,00	0,04	0,039	0,00	0,00	0,61	0,00	0,60
25	0,14	0,00	0,12	0,00	0,00	0,00	0,12	0,00	0,55	0,00	0,51
26	0,42	0,00	0,33	0,00	0,00	0,022	0,06	0,00	0,60	0,00	0,60
27	0,34	0,00	0,20	0,00	0,00	0,012	0,07	0,00	0,61	0,00	0,60
28	0,54	0,00	0,35	0,00	0,00	0,055	0,06	0,00	0,60	0,00	0,59
29	0,46	0,00	0,29	0,00	0,00	0,019	0,06	0,00	0,60	0,00	0,60
30	0,39	0,00	0,22	0,00	0,00	0,009	0,08	0,00	0,60	0,00	0,59
31	0,43	0,00	0,21	0,00	0,00	0,019	0,06	0,00	0,60	0,00	0,60
32	0,42	0,00	0,23	0,00	0,00	0,026	0,06	0,00	0,61	0,00	0,60
33	0,43	0,00	0,23	0,00	0,00	0,029	0,06	0,00	0,60	0,00	0,61

Tabela 21. Nastavak

Oznake pikova su date u legendi slike 66.

Na mešovito poreklo organske supstance upućuje i raspodela C_{27} - C_{29} regularnih sterana koja je ujednačena kod većine uzoraka (*Tabela 19*; *Slike 64*, *68*).

Slika 68. *Triangularni dijagram raspodele regularnih sterana*.

Izuzetke čine uzorci 11, 12 i 16 koji sadrže kerogen tipa III i II/III, (*Slike* 60, 61) koji imaju viši sadržaj C₂₉ homologa, dok je za uzorke sa oznakama 2 i 7 zapažen povišeni udeo C₂₇, odnosno C₂₈ regularnih sterana (*Tabela 19*). Raspodela C₂₇-C₂₉ 14 α (H)17 α (H)20(R) sterana se koristi za procenu porekla organske supstance, s obzirom da je poznato da C₂₇ regularni sterani potiču od marinskih planktona, C₂₈ iz kvasca, gljiva, planktona i algi (Volkman, 2003), a C₂₉ iz viših biljaka (Volkman, 1986), smeđih i zelenih algi (Volkman, 2003). Međutim, njihova upotreba pokazuje i izvesna ograničenja, s obzirom da marinske alge proizvode sterole sa 27 – 29 C-atoma (Volkman, 2003).

Mešovito poreklo organske supstance ispitivanih uzoraka potvrđuje i prisustvo oleanana, kao indikatora angiospermi (skrivenosemenica, Moldowan *et al.*, 1994) i gamacerana koji je pokazatelj marinskog porekla (Moldowan *et al.*, 1985) i/ili organske supstance koja je staložena ispod stratifikovanog anoksičnog stuba vode (Sinninghe Damsté *et al.*, 1995; *Slika 66*). Gamaceranaski indeks, G x 10/(G + C₃₀ hopan) za većinu uzoraka je prilično ujednačen i ne prelazi vrednost od 0,5, sem kod uzoraka iz bušotina Crna bara jug (uzorci 4 do 9) i Nakovo (uzorci 14 do 16), kao i uzorka pod brojem 12, za koje je gamaceranski indeks u opsegu 1,00 do 3,50 (*Tabela 20*). Relativno visoke vrednosti oleananskog indeksa O x 10/(O + C₃₀ hopan) za većinu uzoraka pod brojem 20).

Svi srednjemiocenski uzorci, odnosno uzorci iz badena i sarmata (1-3, 19, 21, 27, 32 i 33), kao i uzorci nedefinisanog miocena (13, 18, 20, 25, 26, 28 i 29; *Tabele 16, 17*) sadrže C_{30} sterane (4-desmetilsterane) i diasterane (*Tabela 19*), što ukazuje na doprinos marinskih algi u prekursorskom materijalu (Moldowan *et al.,* 1985; Peters *et al.,* 1986). U uzorcima gornjeg miocena, odnosno uzorcima panona i ponta, C_{30} sterani (4-desmetilsterani) i diasterani su identifikovani samo u tri uzorka (11, 30 i 31) ili su prisutni samo u tragovima.

Brojne vrednosti starosnih dijagnostičkih parametara NCR (24-Norholestanski odnos) i NDR (24-Nordiaholestanski odnos) su u saglasnosti sa miocenskom starošću uzoraka (*Tabela 20*; Holba *et al.*, 1998a,b).

Odnos regularnih sterana i 17 α (H) –hopana, Ster/Hop ukazuje na doprinos eukariota (uglavnom algi i viših biljaka) i prokariota (bakterija) u organskoj supstanci (Moldowan *et al.*, 1985; Peters *et al.*, 2005b). U ispitivanim uzorcima, ΣC_{27} - $C_{29}(\alpha\alpha$ (R+S)+ $\beta\beta$ (R+S))-sterani/ ΣC_{29} - C_{33} 17 α (H) -hopani, Ster/Hop odnos varira u širokom opsegu od 0,08 do 34,10 (*Tabela 19*), što ukazuje na različite doprinose eukariota i prokariota organskoj supstanci (Moldowan *et al.*, 1985; Peters *et al.*, 2005b).

Između odnosa Ster/Hop i oleananskog indeksa kao indikatora eukariotskih viših biljaka zapažena je, kao što je i očekivano, dobra korelacija (*Slika* 69).

Slika 69. Dijagrami zavisnosti Ster/Hop i 10 x $O/(O + C_{30}H)$ Skraćenice su prikazane u legendi tabele 19 i slike 66.

Na osnovu dijagrama zavisnosti *Ster/Hop i* C₃₀ *steranskog indeksa* (*Slika* 70) uočeno je razdvajanje uzoraka u tri grupe:

- Grupa I obuhvata skoro sve srednjemiocenske uzorke i tri nedefinisana miocenska uzorka (13, 19, 25-27, 32 i 33).
- Grupa II obuhvata tri srednjemiocenska uzorka, 4 nedefinisana miocenska uzorka i dva uzorka iz panona (2, 3, 18, 20, 21, 28-31).
- Grupa III obuhvata skoro sve uzorke gornjeg miocena, sa izuzetkom dva koja pripadaju grupi II (4-9, 11, 12, 14-17 i 23).

Slika 70. Dijagrami zavisnosti Ster/Hop i C₃₀ steranskog indeksa. (Skraćenice su prikazane u legendi tabele 19 i slike 64).

Uzorke grupa I i II karakteriše kerogen tipa II, dok u uzorcima grupe III dominira kerogen tipa II ili kerogen tipa II/III i III.

Svi uzorci grupe I sadrže C₃₀ sterane i imaju visok Ster/Hop odnos (Ster/Hop > 4; *Tabela 19*), što ukazuje na doprinos eukariotskih algi organskoj supstanci.

U uzorcima grupe II obilnost C₃₀ sterana je slična kao i u grupi I, ali je odnos Ster/Hop znatno niži, tj. u opsegu od 0,16 do 0,85 (*Tabela 19*). Ovako nizak odnos Ster/Hop je verovatno posledica bakterijskog doprinosa organskoj supstanci.

Nizak Ster/Hop odnos (< 0,7) u uzorcima grupe III ukazuje na doprinos prokariotskih organizama organskoj supstanci. Blago povišene vrednosti Ster/Hop > 1 (*Tabela 19; Slike 69, 70*) za nekoliko uzoraka iz panona (4, 6-9) su verovatno posledica povišene maturisanosti (Peters *et al.,* 2005b; Videti Poglavlje 6.3.)

Indikatori sredine taloženja organske supstance

Vrednost Pr/Fit varira u relativno širokom opsegu (0,61-3,51, *Tabela 18*), što ukazuje na promenljive redoks uslove tokom taloženja organske supstance. Kod većine uzoraka (uključujući sve iz grupe II i III; *Tabela 17; Slika 70*) odnos Pr/Fit je veći od 1, što se smatra indikatorom oksičnih uslova tokom depozicije organske supstance (Didyk *et al.* 1978). Posebno visoke vrednosti ovog parametra imaju uzorci iz bušotine Nakovo (14 - 16), kod kojih je ovaj parametar veći od 3.

Međutim, skoro svi uzorci srednjeg miocena (baden i sarmat 1, 19, 27, 32 i 33) i tri uzorka nedefinisanog miocena (13, 25 i 26) koji pripadaju grupi I (*Slika* 70) imaju vrednosti Pr/Fit odnosa manje od 1 (Pr/Fit < 1; *Tabela 18*) što ukazuje na redukcione uslove u sredini taloženja. Ova pretpostavka je dodatno potvrđena vrednostima hopanskog odnosa $C_{35}(S)/C_{34}(S) > 1$ (*Tabela 20*) u ovoj grupi uzoraka. Naime, hopanski odnos $C_{35}(S)/C_{34}(S)$, odnosno C_{35} homohopanski odnos je indikator redoks potencijala u marinskim sedimentima za vreme dijageneze (Peters i Moldowan, 1991) i njegove vrednosti veće od 1 tipične su za redukcione sredine.

Kao što je već pomenuto, grupe uzoraka I i II (Slika 69) sadrže C30 sterane i diasterane (*Tabela 19; Slika 64,*). Njihova relativno niska obilnost (C₃₀ steranski indeks < 3%; C₃₀dia < 4 %; *Tabela 19*) ukazuje da se organska supstanca taložila pod umereno slanim lagunalnim uslovima (Moldowan *et al.,* 1992) ili u brakičnoj sredini (Holba *et al.,* 2003).

Većina ispitivanih uzoraka sadrži triciklične terpane (Slika 67). Uzorci grupe I, sa izuzetkom jednog uzorka (uzorak 25) pokazuju niže vrednosti odnosa tricikličnih terpana C₂₆TT/C₂₅TT (< 0,72), više vrednosti Ster/Hop odnosa (Ster/Hop > 4), više vrednosti odnosa Triciklični terpani/ Hopani, Σ TT/C₃₀H >0,1 u odnosu na uzorke iz grupe II kod kojih je C₂₆TT/C₂₅TT > 0,74, Ster/Hop = 0,16 - 1,55 i Σ TT/C₃₀H < 0,06 (*Tabele 19, 20*). U grupi II od ovih vrednosti odstupa uzorak 18, koji se karakteriše višim stepenom maturisanosti.

Ovo pokazuje da su sedimenti uzoraka grupe I taloženi ne samo u reduktivnoj sredini, već i u više slanoj sredini. Stoga, može se zaključiti da su sedimenti grupe I taloženi u više slanoj, redukcionoj i dubljoj sredini od onih iz grupe II.

Na osnovu vrednosti C_{30} steranskog indeksa koja je približno 0, vrednosti Ster/Hop odnosa niže od 0,7, kao i vrednosti $C_{26}TT/C_{25}TT$ odnosa >1 (*Tabela 19; Slika 70*) može se zaključiti da su uzorci panona i ponta, tj. uzorci grupe III taloženi u slatkovodnoj sredini, što je i u saglasnosti sa geološkom evolucijom Panonskog jezera.

Visok $\Sigma TT/C_{30}H$ odnos za neke uzorke iz panona (uzorci 4-8; *Tabela 20*) je uzrokovan povišenom maturisanošću ovih uzoraka (Videti Poglavlje 6.3.).

Odsustvo pozitivne korelacije oleananskog indeksa, $10xO/(O+C_{30}H)$ sa % $C_{29}14\alpha(H)17\alpha(H)20(R)$ sterana, kao i odsustvo negativne korelacije $10xO/(O+C_{30}H)$ sa % $C_{27}14\alpha(H)$ $17\alpha(H)20(R)$ sterana (*Tabela 22*), takođe je primećeno i tokom ispitivanja sirovih nafti naftnog polja "Velebit" (Šolević, 2008; Šolević *et al.*, 2008) ukazuje na to da je većina uzoraka taložena u brakičnoj ili slatkovodnoj sredini sa dominacijom raznovrsnih algalnih vrsta (u zavisnosti od saliniteta) i sa promenljivim doprinosom terestrične organske supstance.

Skoro svi uzorci sadrže C_{27} , C_{29} i C_{30} diahopane (dia), a njih 18 sadrže i više homologe diahopana (C_{31} - C_{34} ili C_{31} - C_{35}).

	Temperatura	$\mathrm{T}_{\mathrm{max}}$	Η	Id	Pr/Fit	$%C_{27}$	$%C_{28}$	$\%C_{29}$	$\begin{array}{c} C_{27}\beta\alpha(S)/\\ (\beta\alpha(S){+}\alpha\alpha(R)) \end{array}$	$\begin{array}{c} C_{28}\beta\alpha(S)/\\ (\beta\alpha(S){+}\alpha\alpha(R)) \end{array}$	$\begin{array}{c} C_{29}\beta\alpha(S)/\\ (\beta\alpha(S){+}\alpha\alpha(R)) \end{array}$	$\begin{array}{c} C_{29}\alpha\alpha(S) \\ (\alpha\alpha(S) + \alpha\alpha(R)) \end{array}$	$\begin{array}{c} C_{29}\beta\beta(R)/\\ (\beta\beta(R){+}\alpha\alpha(R))\end{array}$	Ts/(Ts+Tm)	C ₂₇ E/Tm	C ₂₉ Ts/C ₂₉ H	$C_{29}E/C_{29}H$	$\mathrm{C}_{30}\mathrm{E}/\mathrm{C}_{30}\mathrm{H}$	C ₃₀ dia/C ₃₀ H
Temperatura	1,00																		
T _{max}	0,91	1,00																	
HI	-0,76	-0,70	1,00																
PI	0,84	0,80	-0,87	1,00															
Pr/Fit	0,15	0,14	-0,40	0,19	1,00														
%C ₂₇	0,26	0,28	-0,22	0,33	0,24	1,00													
%C ₂₈	-0,12	-0,01	0,55	-0,44	-0,28	-0,43	1,00												
%C ₂₉	-0,02	-0,16	-0,28	0,16	-0,18	-0,28	-0,60	1,00											
$C_{27}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$	0,73	0,73	-0,77	0,72	0,44	0,34	-0,32	-0,10	1,00										
$C_{28}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$	0,81	0,83	-0,80	0,79	0,41	0,37	-0,28	-0,14	0,96	1,00									
$C_{29}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$	0,82	0,82	-0,86	0,82	0,40	0,35	-0,36	-0,03	0,96	0,98	1,00								
$C_{29}aa(S)/(aa(S)+aa(R))$	0,53	0,61	-0,29	0,40	-0,02	0,21	0,19	-0,25	0,45	0,50	0,48	1,00							
$C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$	0,76	0,85	-0,56	0,66	0,08	0,33	0,08	-0,28	0,71	0,79	0,76	0,86	1,00						
Ts/(Ts+Tm)	0,83	0,88	-0,55	0,71	0,08	0,38	0,04	-0,30	0,75	0,81	0,77	0,77	0,92	1,00					
C ₂₇ E/Tm	0,68	0,70	-0,62	0,68	0,30	0,28	-0,19	-0,01	0,70	0,78	0,73	0,59	0,73	0,73	1,00				
C ₂₉ Ts/C ₂₉ H	0,82	0,85	-0,63	0,74	0,17	0,36	-0,07	-0,17	0,78	0,84	0,81	0,75	0,89	0,95	0,84	1,00			
C ₂₉ E/C ₂₉ H	0,75	0,74	-0,63	0,77	0,30	0,40	-0,18	-0,19	0,78	0,86	0,81	0,59	0,77	0,80	0,89	0,87	1,00		
C ₃₀ E/C ₃₀ H	0,82	0,82	-0,75	0,85	0,29	0,36	-0,27	-0,06	0,82	0,89	0,87	0,44	0,70	0,79	0,85	0,87	0,93	1,00	
C ₃₀ dia/C ₃₀ H	0,88	0,90	-0,79	0,84	0,34	0,37	-0,19	-0,16	0,87	0,92	0,91	0,59	0,81	0,89	0,79	0,90	0,87	0,91	1,00
C ₃₀ HH/C ₃₀ H	0,71	0,75	-0,50	0,57	0,08	0,16	0,09	-0,09	0,62	0,66	0,63	0,84	0,85	0,83	0,81	0,86	0,71	0,64	0,75
10xO/(O+C ₃₀ H)	0,46	0,34	-0,17	0,41	-0,62	-0,13	0,05	0,29	0,05	0,14	0,16	0,27	0,28	0,36	0,20	0,37	0,32	0,35	0,24
$C_{31}E(S+R)/C_{31}H(S+R)$	0,75	0,75	-0,67	0,77	0,29	0,41	-0,25	-0,14	0,81	0,88	0,84	0,48	0,72	0,78	0,87	0,85	0,96	0,97	0,88
C ₃₁ dia(S+R)/C ₃₁ H(S+R)	0,88	0,85	-0,79	0,86	0,25	0,37	-0,23	-0,07	0,85	0,90	0,89	0,58	0,80	0,86	0,80	0,90	0,90	0,94	0,96
C32E(S+R)/C32H(S+R)	0,76	0,73	-0,66	0,76	0,27	0,45	-0,30	-0,10	0,78	0,85	0,81	0,43	0,66	0,75	0,85	0,82	0,94	0,96	0,86
C32dia(S+R)/C32H(S+R)	0,88	0,86	-0,77	0,86	0,24	0,38	-0,22	-0,09	0,82	0,89	0,87	0,59	0,81	0,87	0,80	0,91	0,91	0,94	0,96
C35H(S)/C34H(S)	-0,14	-0,18	0,50	-0,25	-0,64	-0,21	0,42	0,02	-0,45	-0,37	-0,43	0,21	0,00	-0,02	0,08	-0,04	-0,00	-0,18	-0,29
DMNR	0,36	0,49	-0,09	0,41	-0,08	0,26	0,18	-0,37	0,17	0,24	0,20	0,33	0,39	0,53	0,24	0,46	0,40	0,38	0,40
DNx	0,40	0,56	0,04	0,31	-0,15	0,15	0,40	-0,50	0,17	0,26	0,18	0,47	0,45	0,58	0,28	0,48	0,40	0,35	0,40
DNR-x	0,36	0,47	-0,17	0,44	-0,01	0,26	0,10	-0,31	0,23	0,29	0,25	0,29	0,38	0,53	0,27	0,50	0,44	0,43	0,40
TNR 1	0,38	0,24	-0,63	0,55	0,51	0,28	-0,51	0,16	0,47	0,50	0,51	-0,12	0,12	0,18	0,44	0,30	0,51	0,59	0,50
TNR 3	0,56	0,52	-0,27	0,57	-0,37	0,19	-0,01	0,02	0,25	0,33	0,29	0,37	0,45	0,64	0,43	0,62	0,53	0,58	0,50
α/βTN 1	-0,65	-0,55	0,40	-0,68	0,27	-0,22	0,12	-0,12	-0,36	-0,44	-0,42	-0,37	-0,49	-0,65	-0,55	-0,68	-0,67	-0,69	-0,58
TMNR	0,56	0,53	-0,28	0,59	-0,38	0,16	-0,01	0,04	0,25	0,33	0,30	0,38	0,45	0,64	0,41	0,62	0,52	0,57	0,49
MPI 1	0,58	0,55	-0,39	0,47	-0,12	0,08	-0,10	0,04	0,56	0,50	0,52	0,30	0,34	0,55	0,37	0,56	0,50	0,60	0,59
MPI 3	0,23	0,13	-0,17	0,32	-0,10	-0,06	-0,09	0,10	-0,05	0,02	0,02	-0,16	-0,13	0,05	0,10	0,07	0,24	0,28	0,20
DMPI 1	0,37	0,29	-0,03	0,20	-0,16	0,15	0,03	-0,06	0,29	0,22	0,23	0,23	0,16	0,37	0,14	0,38	0,33	0,36	0,33
PAI 1	0,61	0,63	-0,40	0,51	-0,05	0,24	-0,11	-0,06	0,67	0,59	0,60	0,43	0,50	0,68	0,48	0,68	0,58	0,68	0,67
PAI 2	0,59	0,62	-0,42	0,51	0,03	0,28	-0,18	-0,04	0,68	0,60	0,62	0,36	0,45	0,64	0,46	0,66	0,56	0,67	0,67

Tabela 22. Korelaciona matrica^a

	$C_{30}HH/C_{30}HH/$	10xO/ (O+C ₃₀ H)	C ₃₁ E(S+R)/ C ₃₁ H(S+R)	$\begin{array}{c} C_{31}dia(S+R)/\\ C_{31}H(S+R) \end{array}$	C ₃₂ E(S+R)/ C ₃₂ H(S+R)	C ₃₂ dia(S+R)/ C ₃₂ H(S+R)	$C_{35}H(S)/C_{34}H(S)$	DMNR	DNx	DNR-X	TNR 1	TNR 3	α/βTN 1	TMNR	1 IAM	MPI 3	DMPI 1	PAI 1	PAI 2
Temperatura																			
T _{max}																			
HI																			
PI																			
Pr/Fit																			
%C ₂₇																			
%C ₂₈																			
%C ₂₉																			
$C_{27}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$																			
$C_{28}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$																			
$C_{29}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$																			
$C_{29}\alpha\alpha(S)/(\alpha\alpha(S)+\alpha\alpha(R))$																			
$C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$																			
Ts/(Ts+Tm)																			
C ₂₇ E/Tm																			
C ₂₉ Ts/C ₂₉ H																			
C29E/C29H																			
C ₃₀ E/C ₃₀ H																			
C ₃₀ dia/C ₃₀ H																			
C ₃₀ HH/C ₃₀ H	1,00																		
10xO/(O+C ₃₀ H)	0,30	1,00																	
C ₃₁ E(S+R)/C ₃₁ H(S+R)	0,63	0,29	1,00																
C ₃₁ dia(S+R)/C ₃₁ H(S+R)	0,72	0,38	0,91	1,00															
C32E(S+R)/C32H(S+R)	0,58	0,32	0,98	0,90	1,00														
C32dia(S+R)/C32H(S+R)	0,73	0,39	0,91	1,00	0,89	1,00													
C35H(S)/C34H(S)	0,19	0,48	-0,11	-0,20	-0,09	-0,17	1,00												
DMNR	0,31	0,33	0,33	0,42	0,33	0,45	0,12	1,00											
DNx	0,40	0,33	0,33	0,37	0,33	0,40	0,22	0,86	1,00										
DNR-x	0,30	0,34	0,37	0,48	0,37	0,51	0,06	0,97	0,75	1,00									
TNR 1	0,08	0,02	0,57	0,55	0,58	0,53	-0,42	-0,09	-0,25	0,03	1,00								
TNR 3	0,46	0,76	0,52	0,59	0,55	0,60	0,34	0,66	0,56	0,68	0,13	1,00							
α/βTN 1	-0,51	-0,80	-0,65	-0,69	-0,67	-0,70	-0,33	-0,53	-0,42	-0,58	-0,33	-0,95	1,00						
TMNR	0,46	0,78	0,50	0,59	0,52	0,60	0,33	0,67	0,56	0,69	0,11	0,99	-0,95	1,00					
MPI 1	0,44	0,52	0,55	0,62	0,56	0,61	-0,06	0,36	0,39	0,37	0,14	0,57	-0,58	0,57	1,00				
MPI 3	-0,04	0,51	0,22	0,30	0,28	0,31	0,15	0,49	0,32	0,54	0,37	0,54	-0,54	0,53	0,39	1,00			
DMPI 1	0,23	0,47	0,33	0,36	0,36	0,36	0,07	0,30	0,39	0,27	-0,04	0,47	-0,47	0,47	0,83	0,23	1,00		
PAI 1	0,52	0,40	0,64	0,67	0,63	0,66	-0,12	0,31	0,38	0,30	0,16	0,55	-0,56	0,55	0,92	0,14	0,82	1,00	
PAI 2	0,46	0,33	0,63	0,66	0,63	0,65	-0,21	0,32	0,38	0,33	0,19	0,48	-0,51	0,48	0,91	0,15	0,81	0,98	1,00

Tabela 22. Nastavak

aKorelacije sa r > 0,55 koje odgovaraju nivou značajnosti, p = 0,001 (Spearman test) su boldovane.

Znatan broj uzoraka sadrži i seriju (C₂₇, C₂₉-C₃₄) pregrupisanih, takozvanih, "rano eluirajućih" hopana (E, koji se karakteršu znatno kraćim retencionim vremenima u GC-MS analizi u poređenju sa hopanima koji sadrže isti broj C-atoma), kao i pregrupisani hopan, C₂₉-28-norspergulan (*Tabela 20; Slika* 66).

Iako nije dokazana precizno NMR analizom, za strukturu C_{30} "rano eluirajućeg" hopana pretpostavljeno je da odgovara 9,15-dimetil-25,27bisnorhopanu (*Slika 32*). Struktura ovog hopana pretpostavljena je na osnovu sinteze jedinjenja i poređenja njegovog masenog spektra i retencionog vremena sa masenim spektrom i retencionim vremenom C_{30} "rano eluirajućeg" hopana identifikovanog u naftama i ekstraktima matičnih stena (Nytoft *et al.*, 2007).

Dosadašnja istraživanja su pokazala da je prisustvo gore navedenih pregrupisanih hopana u vezi sa jezerskom sredinom različitog saliniteta, visokim stepenom maturisanosti i stenama bogatim glinom koje su taložene pod suboksičnim uslovima (Killops i Howell, 1991; Telnæs, 1992; Farrimond i Telnæs, 1996; Nytoft *et al.*, 2006, 2007, 2010; Zhu *et al.*, 2007).

Između odnosa: C₂₇, C₂₉-C₃₂ E/H, C₂₉-28-norspergulan/C₂₉hopan i C₂₉-C₃₂ diahopan/hopan (*Tabele 20-22*) je zapažena dobra saglasnost

"Rano eluirajući hopani", C₂₉-28-norspergulan i C₂₉-C₃₂ diahopani su identifikovani i u uzorcima srednjeg miocena i u uzorcima gornjeg miocena, taloženim pod suboksičnim uslovima (sa izuzetkom uzorka 13, i u slučaju diahopana sa više od 30-C atoma, uzorka 19; *Tabela 20*). Ovi rezultati podržavaju pretpostavku da suboksični uslovi pogoduju formiranju ovih jedinjenja.

Međutim, kao što je diskutovano u narednom poglavlju koje se odnosi na maturisanost organske supstance (Poglavlje 6.3.), uočena je i značajna saglasnost između obilnosti diahopana i "rano eluirajućih" hopana i stepena zrelosti.

Često korišćeni indikatori sredine taloženja stena su odnosi dibenzotiofen/fenantren (DBT/P) i pristan/fitan (Pr/Fit) (Hughes *et al.*, 1995). Dijagram zavisnosti ova dva odnosa (*Slika 71*) pokazuje da je organska supstanca taložena u jezerskoj sredini različitog saliniteta i redoks potencijala, dok organska supstanca tri uzorka sa lokaliteta Nakovo (14-16) potiče iz jezersko deltnih/ugljevitih šejlova, što je u saglasnosti sa kerogenom tipa II/III i III (*Slike 60, 61*).

Slika 71. Dijagram zavisnosti odnosa (DBT/P) i Pr/Fit.

Precizno biostratigrafsko određivanje nije bilo dostupno za 7 "nedefinisanih" miocenskih uzoraka (*Tabela 17*). Na osnovu biomarkerskih odnosa (*Slika 70*), 4 uzorka (18, 20, 28 i 29) pripadaju grupi II, u kojoj se nalaze i dva panonska uzorka (30 i 31), kao i 3 uzorka srednjeg miocena (2, 3 i 21). Stoga se za uzorke iz nedefinisanog miocena, odnosno za uzorke grupe II može pretpostaviti granica između srednjeg i gornjeg miocena, što objašnjava nemogućnost da se definiše njihova precizna biostratigrafska pripadnost. Druga tri uzorka nedefinisanog miocena (13, 25 i 26) pripadaju grupi I, zajedno sa većinom srednje miocenskih uzoraka (*Slika 70*). Moglo bi se pretpostaviti da oni takođe pripadaju srednjem miocenu, ali ova hipoteza zahteva dalja istraživanja.

6.3. Procena zrelosti organske supstance i primenljivosti specifičnih maturacionih organsko-geohemijskih parametara u hipertemalnim basenima

Preliminarni, rezultati Rock-Eval analize su pokazali da organska supstanca najvećeg broja uzoraka ima dobar potencijal za generisanje ugljovodonika. Maturacioni parametri, produkcioni indeks (PI) i T_{max} pokazali su dobru korelaciju, kako međusobno, tako i sa dubinom i sadašnjom temperaturom (*Tabela 22; Slika 72*).

Na osnovu dijagrama zavisnosti T_{max} i PI utvrđeno je da se organska supstanca najvećeg broja uzoraka nalazi u glavnoj zoni generisanja nafte (*Slika* 72*f*). I na osnovu ovog dijagrama potvrđen je niži nivo zrelosti za uzorke 1, 3 i 25, dok su visoke vrednosti za PI kod nekolicine uzoraka (5-7, 12, 13, 16 i 24) pokazale da ovi uzorci mogu da sadrže izvesnu količinu neistisnute nafte (Kostić, 2000a) ili alohtonu domigriranu naftu (Peters, 1986; Espitalié i Bordenave, 1993).

Slika 72. Dijagrani zavisnosti dubine, sadašnje temperature, T_{max} i PI.

6.3.1. n-Alkani i izoprenoidi

Kao što je već istaknuto, raspodele *n*-alkana u zasićenoj frakciji većine ispitivanih uzoraka su ujednačene sa *n*-alkanskim maksimumom u opsegu C_{16} - C_{19} i CPI vrednostima koje su bliske jedinici (*Tabela 18; Slike 62, 63*). CPI vrednosti bliske jedinici su odlika maturisanog bitumena i naftne raspodele.

Većina ispitivanih uzoraka karakteriše se vrednostima odnosa $Pr/n-C_{17}$ i Fit/*n*-C₁₈ manjim od 1, što takođe može biti pokazatelj solidnog stepena zrelosti organske supstance (*Tabela 18; Slike 60, 61;* Tissot i Welte, 1984).

Kombinovani "quasi-cracking" parametar ($Pr/n-C_{17} + Fit/n-C_{18}$; Sajgó, 2011 lična komunikacija) je manji od 2, a kod nekolicine uzoraka manji od 1 (*Tabela 18*). Izuzetak čine uzorci 1-3, 11, 25 i 26. Ovi uzorci sadrže kerogen tipa III, i na osnovu Rock-Eval parametara su okarakterisani kao nematurisani (*Tabela 17; Slika 61*). Dobijeni rezultati pokazuju da su vrednosti $Pr/n-C_{17}$ i Fit/ $n-C_{18} > 1$ i ($Pr/n-C_{17} + Fit/n-C_{18}$) > 2 tipične za organsku supstancu čija zrelost je niža ili odgovara samom početku "naftnog prozora".

6.3.2. Sterani i hopani

Raspodele sterana i hopana, kao i vrednosti odgovarajućih maturacionih parametara potvrđuju da se najveći broj ispitivanih uzoraka nalazi u fazi "naftnog prozora" (*Tabele 19, 21; Slike 64, 66*).

Najčešće korišćeni steranski parametri $C_{29}\alpha\alpha(S)/(\alpha\alpha(S)+\alpha\alpha(R))$ i $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ su pokazali statistički značajnu korelaciju kako među sobom, tako i sa sadašnjom temperaturom, T i T_{max} , dok je odnos $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ pokazao statistički značajnu korelaciju i sa PI (*Tabela* 22).

Na osnovu hopanskih maturacionih parametara (*Tabela 21*) može se zaključiti da je termička zrelost uzoraka 1-3 i 25 na nižem stupnju termičke zrelosti s obzirom da parametri C₃₁H(S)/H(S+R), C₃₂H(S)/H(S+R) i C₃₀moretan/ C₃₀hopan nisu dostigli ravnotežne vrednosti. Za sve ostale uzorke ovi odnosi su neupotrebljivi budući da su u odgovarajućim izomerizacijama uspostavljene ravnoteže, što ukazuje da se organska supstanca svih ostalih ispitivanih uzoraka nalazi u fazi "naftnog prozora" Prema izrazito niskim vrednostima steranskog maturacionog parametra $C_{29}\alpha\alpha(S)/(\alpha\alpha(S)+\alpha\alpha(R))$ (< 0,33; *Tabela 19*), izdvajaju se uzorci 1-3 i 25. Ostali uzorci pokazuju uniformne steranske $C_{29}\alpha\alpha(S)/(\alpha\alpha(S)+\alpha\alpha(R))$ vrednosti koje su veoma bliske (uzorci 27, 30 i 31) ili odgovaraju ravnotežnoj vrednosti (*Tabela 19*). Ovo ukazuje da se organska supstanca najvećeg broja uzoraka nalazi na stepenu zrelosti koji odgovara piku generisanja ugljovodonika ili ga je već prošla.

Steranski parametar $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ je primenljiv na višim stupnjevima maturacije. Ovo potvrđuju i znatno viši koeficijenti korelacija ovog parametra sa savremenom temperaturom, T_{max} , i produkcionim indeksom (PI) u poređenju sa steranskim odnosom $C_{29}\alpha\alpha(S)/(\alpha\alpha(S)+\alpha\alpha(R))$ (*Tabela 22*). Prema aproksimativnoj kalibraciji, odnos $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ dostiže ravnotežne vrednosti na početku kasnog stadijuma generisanja ugljovodonika, odnosno na početku kasne faze "naftnog prozora" (Peters et al., 2005b). Stoga se na osnovu vrednosti navedenih steranskih parametra može pretpostaviti da je organska supstanca uzoraka 4-9, 12, 13, 16, 20 i 23 na višem nivou termičke zrelosti tj. da je prošla maksimum "naftnog prozora" ("late oil window"), dok zrelost organske supstance uzoraka 11, 14, 15, 17-19, 21, 24, 26-33 odgovara fazi pika generisanja ugljovodonika (Slika 78). Ukoliko se ovaj rezultat uporedi sa vrednostima savremene temperature u matičnim stenama i parametrima Rock-Eval pirolize, zapaža se relativno dobra saglasnost. Svi uzorci koji su na osnovu vrednosti odnosa $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ klasifikovani u grupu višeg stepena zrelosti karakterišu se savremenim temperaturama višim od 155 °C, kao i T_{max} višim od 447 °C. Svi ovi uzorci potiču sa dubina većih od 3050 m (Tabele 16, 17). Izgleda iznenađujuće da se u ovoj grupi ne nalazi uzorak 24. Ovaj rezultat može se objasniti visokim stepenom zrelosti na kojem se odigrava krakovanja nafte (temperatura 175 °C), što se odražava i na generalno smanjenje koncentracije biomarkera. Stoga se može reći da je parametar $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$, uprkos aproksimativnosti kalibracija maturacionih odnosa u odnosu na "naftni prozor"

potvrdio svoju primenljivost od nematurisanog do maturisanog ranga i na primeru uzoraka iz hipertermalnih basena sa velikom brzinom zagrevanja sedimenata.

Odnosi diasteran/(diasteran+steran), diahopan/hopan, neohopan/hopan, $[(C_{21} + C_{22})$ -sterani/ $\Sigma(C_{27}-C_{29})$ -sterani] zavise od litološkog sastava i redoks uslova u sredini taloženja, a odnos neohopan/hopan zavisi i od pН. Takođe, ie da su odnosi Ts/(Ts+Tm)i poznato diasteran/(diasteran+steran) pokazatelji stepena zrelosti u opsegu celog naftnog prozora za uzorke srodnog porekla (Peters et al., 2005b). Za analizirani set uzoraka nije zapažena statistički značajna korelacija između odnosa C₃₀-C₃₂ diahopan/hopan (dia/H), C₂₇ i C₂₉-C₃₂ "rano eluirajući" hopan/hopan (E/H), Ts/(Ts+Tm), C₂₇-C₂₉ $\beta\alpha$ (S)/($\beta\alpha$ (S)+ $\alpha\alpha$ (R)) i parametara Pr/Fit i C₃₅H(S)/C₃₄H(S) (Tabela 22). Takođe, navedeni odnosi nisu pokazali korelaciju ni sa izvornim steranskim parametrima, kao što je raspodela C27-C29 regularnih sterana (Tabela 22). S druge strane, zapažena je statistički značajna korelacija odnosa C27-C29 $\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R))$, odnosa pregrupisani hopan/hopan i neohopan/hopan, kao i odnosa kratkolančanih i dugolančanih sterana, $[(C_{21} + C_{22})-sterani/\Sigma(C_{27}-$ C₂₉)-sterani] sa temperaturom, maturacionim parametrima Rock-Eval pirolize PI), i steranskim maturacionim (T_{max} i kao sa parametrom $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ (nivo značajnosti p < 0,001; *Tabela 22*). Stoga su odnosi C₂₇ i C₂₉-C₃₂ E/H, C₃₀-C₃₂ dia/H, Ts/(Ts+Tm), C₂₉Ts/C₂₉H, C₂₇-C₂₉ $\beta \alpha(S)/(\beta \alpha(S)+\alpha \alpha(R))$ i $(C_{21}+C_{22})/\Sigma(C_{27}-C_{29})$ mogli biti upotrebljeni i za procenu stepena zrelosti organske supstance.

Detaljnom analizom maturacionih parametara, kao i uticaja porekla i sredine na njihove vrednosti, utvrđeno je da se hopanski odnos C(14a)-homonor-17 α (H)-hopan/C₃₀hopan (C₃₀HH/C₃₀H) može koristiti kao indikator zrelosti. Naime, C(14a)-homo-nor-17 α (H)-hopan (koji u prstenu C ima sedam atoma ugljenika umesto uobičajenih 6) je termodinamički stabilniji od odgovarajućeg $\alpha\beta$ -hopana sa istim brojem (30) C-atoma (Trendel *et al.*, 1993; Nytoft i Bojesen-Koefoed, 2001; Peters *et al.*, 2005b). Odnos C₃₀HH/C₃₀H pokazao je statistički značajnu pozitivnu korelaciju sa temperaturom u matičnoj steni, T_{max} , PI i sa steranskim maturacionim parametrom $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ (p < 0,001; *Tabela 22*). S druge strane, između novopredloženog hopanskog parametra i odnosa Pr/Fit i C₃₅H(S)/C₃₄H(S), kao i raspodele regularnih sterana nije zapažena nikakva zavisnost (*Tabela 22*).

Uzorci sa oznakama 4-9, 12-16, 20, 23 i 24 sadrže seriju "rano eluirajućih" hopana (C₂₇, C₂₉-C₃₂) i imaju povišene vrednosti odnosa Ts/(Ts+Tm) > 0,6, $C_{29}T_{s}/C_{29}H > 0.4, C_{27}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R)) > 0.7, C_{28}-i C_{29}\beta\alpha(S)/(\beta\alpha(S)+\alpha\alpha(R)) > 0.7$ 0,65, C_{30} dia $/C_{30}$ H >0,08 , C_{31} - C_{32} diahopan/hopan > 0,08 i 0,07 i (C_{21} + C_{22} / Σ (C_{27} - C_{29}) >0,25 u poređenju sa ostalim uzorcima (*Tabele 19-21*). U ovoj uzorci koje ie grupi nalaze se svi za na osnovu parametra $C_{29}\beta\beta(R)/(\beta\beta(R)+\alpha\alpha(R))$ procenjeno da zrelost organske supstance odgovara kasnom stadijumu naftnog prozora (Slika 74), uz dodatak uzoraka sa oznakama 14, 15 i 24 koji se karakterišu veoma sličnim, a u slučaju uzorka 24 čak i višim vrednostima temperature i maturacionih parametara Rock-Eval pirolize (temperature matičnih stena i T_{max} više od 153 °C i 447 °C) i potiču sa dubina većih od 3050 m (Tabela 17).

Dakle imajući u vidu sve gore pomenute međusobne korelacije maturacionih parametara, kako literaturno poznatih tako i ovde novoizvedenog maturacionog parametra uočeno je da postoji dobra osetljivost većine parametara za razlikovanje umereno maturisane organske supstance ("peak stage of oil generation") od visoko maturisane organske supstance ("late stage of oil generation") u hipertermalnim basenima sa velikom brzinom zagrevanja sedimenata. Pored toga, na osnovu rezultata Rock-Eval pirolize i biomarkerskih parametara može se pretpostaviti da faza kasnog stadijuma generisanja nafte u severnom i središnjem delu Banatske depresije počinje na temperaturama oko 155 °C i dubini 3050-3100 m u zavisnosti od geotermalnog gradijenta (*Slika 78*). Uzorci koji su po svim do sada diskutovanim parametrima okarakterisani kao nezreli (1-3, 25), kao i uzorci za koje je na osnovu temperature, parametara Rock-Eval pirolize i steranskih maturacionih parametara procenjeno da se nalaze na maksimumu generisanja nafte, ne sadrže "rano eluirajuće" hopane, što ukazuje da ova jedinjenja nisu primenjiva za razlikovanje nematurisanih od umereno maturisanih uzoraka u hipertermalnim basenima sa velikom brzinom zagrevanja sedimenata. Isti zaključak odnosi se i na odnose C_{31} - C_{32} diahopan/hopan, koji za najveći broj umereno zrelih uzoraka kao i za nezrele stene imaju vrednost 0 (*Tabela 21*).

Prema nižim vrednostima odnosa Ts/(Ts+Tm), C₃₀dia/C₃₀H i C₂₇-C₂₉ βα(S)/(βα(S)+αα(R)), izdvajaju se nematurisani uzorci sa oznakama 1 i 25 (Ts/(Ts+Tm) < 0,25, C₃₀dia/C₃₀H = 0 i C₂₇ βα(S)/(βα(S)+αα(R) < 0,1; C₂₈ βα(S)/(βα(S)+αα(R) < 0,1; i C₂₉ βα(S)/(βα(S)+αα(R) < 0,07; *Tabele 19 i 21*). Međutim, vrednosti Ts/(Ts+Tm), C₃₀dia/C₃₀H, C₂₇-C₂₉ βα(S)/(βα(S)+αα(R)) i (C₂₁ + C₂₂)/Σ(C₂₇-C₂₉) za nezrele uzorke iz oksidativnih sredina (2 i 3; Pr/Fit > 2), koji se karakterišu i nešto višim temperaturama matičnih stena (125 °C, u poređenju sa 88 i 107 °C za uzorke 1 i 25) bliske su vrednostima ovih parametara za umereno zrele uzorke (26, 27, 32, 33) čija je organska supstanca staložena u redukcionim uslovima (Pr/Fit< 1), što potvrđuje da je obilnost neohopana, diahopana, diasterana i kratkolančanih C₂₁-C₂₂ sterana u opsegu od rane do umerene maturisanosti kontrolisana i temperaturom i redoks potencijalom, zbog čega se u ovom opsegu zrelosti oni moraju upotrebljavati sa pažnjom, bez obzira na termalnu istoriju basena (*Tabele 17, 19 - 23; Slika 74*).

6.3.3. Alkilnaftaleni, alkilfenantreni i dibenzotiofeni

Raspodele alkilnaftalena, alkilfenantrena i alkildibezotiofena ispitivanih uzoraka su tipične naftne i date su na *Slike* 73-75.

Vrednosti naftalenskih i fenantrenskih maturacionih parametara date su u *tabelama* 23 *i* 24.

Dimetilnaftalenski (DMN) maturacioni parametri nisu pokazali značajniju primenjivost za procenu maturacije, s obzirom na relativno slabu saglasnost sa savremenom temperaturom, produkcionim indeksom, PI i biomarkerskim maturacionim odnosima (*Tabela 22*). Pozitivna korelacija (ali sa znatno nižim vrednostima za "r") je uočena samo sa T_{max} . S druge strane, trimetilnaftalenski (TMN) i fenantrenski (P) parametri pokazuju nešto bolju korelaciju sa sadašnjom temperaturom, T_{max} , PI i biomarkerskim parametrima u poređenju sa DMN maturacionim odnosima (*Tabela 22*). Ovakav rezultat je u sagalasnosti sa nekim ranijim istraživanjima koja su takođe ukazala na veću primenjivost trimetilnaftalenskih, TMN i fenantrenskih, P parametara u proceni maturisanosti organske supastance u odnosu na dimetilnaftalenske, DMN parametre (Radke *et al.*, 1994).

Slika 73. Tipični GC–MS hromatogram metilnaftalena - MN, m/z 142 (a), dimetilnaftalena - DMN, m/z 156 (b) i trimetilnaftalena - TMN, m/z 170 (c), PrN propil naftalen; EMN - etilmetilnaftalen.

Uzorak	MNR	DMNR	DNx	DNr-x	$\alpha/\beta DN 1$	TNR 1	TNR 3	$\alpha/\beta TN 1$	TMNr
1	N.O.	0,23	1,98	0,58	1,67	2,00	1,15	0,36	0,39
2	0,87	0,27	2,50	0,68	1,19	0,74	0,79	0,61	0,30
3	0,91	0,27	2,08	0,72	1,28	1,13	1,33	0,39	0,41
4	0,81	0,30	2,62	0,76	1,01	1,33	3,73	0,13	0,70
5	0,89	0,34	2,97	0,87	0,83	0,94	3,49	0,14	0,70
6	0,91	0,35	3,12	0,89	0,76	1,12	4,57	0,12	0,75
7	1,10	0,35	2,82	0,93	0,79	1,37	5,68	0,10	0,80
8	0,92	0,35	3,08	0,92	0,74	1,13	5,52	0,10	0,79
9	0,74	0,34	2,97	0,87	0,79	1,22	5,14	0,11	0,77
11	1,05	0,17	1,45	0,49	2,67	1,79	0,55	0,73	0,22
12	0,88	0,23	2,04	0,58	1,61	1,34	1,87	0,25	0,52
13	0,75	0,30	2,72	0,75	1,05	0,88	4,30	0,12	0,74
14	0,83	0,26	2,08	0,68	1,37	1,22	0,76	0,48	0,29
15	N.O.	0,18	1,40	0,52	2,70	1,96	0,78	0,38	0,28
16	1,33	0,23	1,93	0,61	1,65	1,71	1,55	0,24	0,50
17	1,03	0,28	2,28	0,73	1,20	0,89	1,08	0,46	0,37
18	0,71	0,25	2,40	0,62	1,34	0,71	1,00	0,54	0,36
19	N.O.	0,17	1,68	0,43	2,66	0,74	1,19	0,38	0,41
20	1,22	0,24	1,91	0,62	1,64	1,04	1,29	0,34	0,42
21	0,82	0,27	2,49	0,66	1,23	0,79	1,01	0,47	0,37
23	0,86	0,28	2,69	0,68	1,13	0,78	1,21	0,41	0,41
24	0,99	0,38	2,69	1,23	0,80	1,01	4,36	0,14	0,79
25	1,26	0,32	2,21	0,87	1,01	0,96	1,84	0,28	0,54
26	0,80	0,27	2,38	0,69	1,21	0,63	1,83	0,34	0,53
27	0,76	0,27	2,58	0,64	1,18	0,64	1,41	0,38	0,46
28	0,92	0,27	2,40	0,70	1,24	0,73	1,37	0,38	0,45
29	0,69	0,25	2,47	0,58	1,35	0,77	0,79	0,64	0,30
30	0,69	0,23	2,17	0,55	1,62	1,05	0,90	0,53	0,32
31	0,70	0,27	2,64	0,65	1,18	0,66	0,55	0,97	0,23
32	0,69	0,25	2,42	0,60	1,33	0,69	1,59	0,34	0,48
33	0,79	0,24	2,26	0,58	1,47	0,74	1,62	0,32	0,49

Tabela 23. Vrednosti maturacionih parametara izračunatih iz raspodele iobilnosti alkilnaftalena

 $\begin{aligned} MNR &= 2-MN/1-MN \; (Radke \; et \; al., \; 1982b); \; DMNR = (2,6-+2,7-DMN)/(1,4+1,5+1,6+2,3+2,6+2,7-DMN) \; (Yawanarajah \; i \; Kruge, \; 1994); \; DNx = (1,3+1,6+1,7-DMN)/(1,4+1,5+2,3-DMN) \; (Stojanović, \; et \; al., \; 2007); \; DNr-x \; = \; = (2,6+2,7-DMN)/1,6DMN \; (Ahmed \; i \; George, \\ 2004); \; TNR \; 1 \; = \; 2,3,6-TMN/(1,3,5+1,4,6-TMN) \; (Alexander \; et \; al., \; 1985); \; TNR \; 2 \; = \; (1,3,7-TMN + 2,3,6-TMN)/(1,3,5-TMN + 1,3,6-TMN + 1,4,6-TMN) \; (Radke \; et \; al., \; 1986); \; TNR \; 3 \; = \\ 1,3,6-TMN/1,2,5-TMN \; (Strachan \; et \; al., \; 1988); \; \alpha/\beta TN \; 1 \; = \; (1,2,4+1,2,5-TMN)/(1,2,6+1,2,7-+1,6,7+2,3,6-TMN) \; (Golovko, \; 1997); \; TMNr \; = \; 1,3,7-TMN/(1,2,5+1,3,7-TMN) \; (van \; Aarssen \; et \; al., \; 1999); N.O. - nije \; određeno. \end{aligned}$

Slika 74. *Tipični* GC–MS hromatogram fenantrena - P, m/z 178 (a), metilfenantrena - MP, m/z 192 (b), dimetilfenantrena - DMP i etilfenantrena - EP, m/z 206 (c).

Slika 75. Tipični GC-MS hromatogrami DBT, m/z 184 (a), MDBT, m/z 198 (b) i DMDBT, m/z 212 (c). DBT, dibenzotiofen; MDBT, metildibenzotiofen; DMDBT, dimetildibenzotiofen; TeMN, tetrametilnaftalen.

Uzorak	MPI 1	MPI 3	DMPI 1	DMPI 2	PAI1	PAI 2	DBT/P
1	0,35	0,79	0,23	0,29	0,76	0,44	0,22
2	0,44	0,77	0,31	0,22	1,09	0,87	0,10
3	0,37	0,81	0,24	0,27	0,80	0,51	0,09
4	0,60	0,82	0,35	0,26	1,74	1,42	0,04
5	0,63	0,79	0,35	0,23	2,03	1,93	0,01
6	0,73	0,91	0,44	0,26	2,21	2,30	0,00
7	0,77	0,94	0,46	0,29	2,33	2,59	0,03
8	0,69	0,93	0,42	0,29	1,87	1,71	0,03
9	0,68	0,93	0,40	0,28	1,84	1,69	0,03
11	0,46	0,96	0,22	0,32	0,92	0,59	0,03
12	0,58	0,70	0,29	0,21	2,11	1,90	0,03
13	0,21	0,79	0,12	0,25	0,38	0,32	0,00
14	0,50	0,76	0,30	0,26	1,37	1,29	0,03
15	0,52	0,74	0,36	0,26	1,56	1,52	0,03
16	0,50	0,69	0,33	0,24	1,61	1,37	0,04
17	0,41	0,62	0,29	0,19	1,26	1,01	0,04
18	0,44	0,68	0,23	0,20	1,26	0,96	0,08
19	0,51	0,69	0,41	0,20	1,64	1,32	0,14
20	0,42	0,67	0,22	0,23	1,21	0,83	0,04
21	0,46	0,64	0,29	0,18	1,51	1,22	0,07
23	0,42	0,65	0,25	0,19	1,27	0,91	0,06
24	0,73	1,11	0,36	0,38	1,65	1,62	0,06
25	0,39	0,96	0,22	0,35	0,72	0,40	0,10
26	0,53	0,74	0,40	0,20	1,57	1,42	0,08
27	0,50	0,75	0,38	0,20	1,37	1,10	0,23
28	0,51	0,74	0,31	0,21	1,48	1,25	0,01
29	0,41	0,58	0,31	0,17	1,42	1,29	0,03
30	0,39	0,66	0,29	0,23	1,09	0,84	0,04
31	0,46	0,71	0,29	0,20	1,31	1,13	0,04
32	0,50	0,76	0,33	0,23	1,36	0,99	0,11
33	0.52	0.75	0.36	0.23	1.50	1.15	0.09

Tabela 24. Vrednosti maturacionih parametara izračunatih iz raspodele i
obilnosti alkilfenantrena

P - fenantren; MP - metilfenantren; DMP - dimetilfenantren; EP - ethilfenantren; DBT - dibenzotiofen; MPI 1 = 1,5 x (2-+3-MP)/(P+1-+9-MP) (Radke et al., 1982b); MPI 3 = (2-+3-MP)/(1-+9-MP) (Radke, 1987); DMPI 1 = 4 x (2,6-+2,7-+3,5-+3,6-DMP+1-+2-+9-EP)/(P+1,3-+1,6-+1,7-+2,5-+2,9-+2,10-+3,9-+3,10-DMP) (Radke et al., 1982b); DMPI 2 = (2,6-+2,7-+3,5-DMP)/(1,3-+1,6-+2,5-+2,9-+2,10-+3,9-+3,10-DMP) (Radke et al., 1982a); PAI 1 = (1-+2-+3-+9-MP)/P (Ishiwatari i Fukushima, 1979).

Zadovoljavajuća korelacija sa savremenom temperaturom matične stene, T_{max} , i produkcionim indeksom, PI, ali sa znatno nižim vrednostima "r" u odnosu na biomarkerske maturacione indekse (*Tabela 22*) zapažena je za odnose

TNR 3, α/β TN 1, TMNR, MPI 1, PAI 1 i PAI 2 (*Tabele 23-25*). Stoga su oni i primenjeni za procenu zrelosti ispitivanih uzoraka. Na osnovu korelacionih dijagrama trimetilnaftalenskih maturacionih parametara (*Slika 76a,b,e*) izdvojeni su uzorci sa oznakama 4-9, 13 i 24 kao najzreliji, međutim nikakva dalja pouzdanija klasifikacija nije bila moguća. Ovi uzorci istovremeno imaju i najviše vrednosti za većinu dimetilnaftalenskih maturacionih parametara (DMNR > 0,3; α/β DN 1 > 1,05; DNR-x > 0,75; *Tabela 24*).

Prema vrednostima fenantrenskih maturacionih parametara, koji imaju ujednačenije vrednosti u poređenju sa naftalenskim, kao najzreliji izdvajaju se uzorci sa oznakama 5-9, 12 i 24, dok se najmanjom zrelošću karakterišu uzorci sa oznakama 1, 3 i 25 (*Tabela 24; Slika 76c,d,f-h;*). Niske vrednosti fenantrenskih maturacionih parametara u slučaju uzorka 13, s obzirom da je na osnovu svih ostalih indikatora maturacije njegova organska supstanca okarakterisana kao veoma zrela, verovatno su posledica dealkilacionih reakcija koje se takođe odvijaju pri visokim stupnjevima termičke zrelosti. Dakle, naftalenski i fenantrenski maturacioni parametri jasno su izdvojili najzrelije uzorke sa savremenim temperaturama matičnih stena višim od 160 °C i vrednostima T_{max} višim od 449 °C.

Neosetljivost alkilarenskih, posebno naftalenskih parametara, u opsegu maturacije od rane do umerene može biti posledica visokih geotermalnih gradijenata i velike brzine zagrevanja sedimenata, što doprinosi brzom odvijanju izomerizacionih i transalkilacionih procesa. Novija ispitivanja termodinamičke stabilnosti metilfenantrenskih (MP) izomera i kinetike reakcija uključenih u njihovo razlaganje i nastajanje, primenom molekulskog modelovanja, takođe su ukazala na veću primenljivost metilfenantrenskih parametara na višim stupnjevima zrelosti (Szczerba i Rospondek, 2010).

Slika 76. Korelacije između trimetilnaftalenskih i fenantrenskih maturacionih odnosa. Objašnjenje skraćenica dato je u legendi tabela 23 i 24.

Osim toga, poznato je da su raspodele ovih jedinjenja pored maturisanosti u značajnoj meri kontrolisane i poreklom, depozicionom sredinom i litologijom. Tako na primer, obilnosti 2-MN, 1,6-DMN, 1,7-DMN, 1,3,6-TMN, 1,2,5-TMN i 1-MP u geološkim supstratima prvenstveno zavise od prekursorskog materijala (Püttman i Villar, 1987; Alexander *et al.*, 1992; Borrego *et al.*, 1997; Armstroff *et al.*, 2006). Pored toga, gline pokazuju značajan katalitički uticaj na izomerizaciju metil grupa iz α - u β -položaje na aromatičnom prstenu, kao i na reakcije metilovanja/demetilovanja metil- derivata naftalena i fenantrena (Radke, 1987; Alexander *et al.*, 1994; Requejo *et al.*, 1996; van Aarssen *et al.*, 1999, Stojanović *et al.*, 2004).

6.4. Korelacija izmerene i na osnovu organsko-geohemijskih parametara izračunate refleksije vitrinita

Refleksija vitrinita za ispitivane uzorke izračunata je na osnovu 15 formula poznatih u literaturi koje su prikazane u *tabeli 25*. Izračunate vrednosti refleksije su prikazane u *tabeli 28*. Četrnaest od ovih 15 formula se zasnivaju na maturacionim parametrima, dok je jedna zasnovana na maksimalnoj paleotemperaturi, Rc1. Ova jednačina je ustanovljena na osnovu korelacije merenih refleksija vitrinita i maksimalnih temperatura kojima su matične stene bile izložene i izvedena je na osnovu ispitivanja više od 200 uzoraka Banatske depresije stratigrafske pripadnosti od donjeg do gornjeg miocena (pont) (Kostić, 2010a). Maksimalne temperature u Banatskoj depresiji odgovaraju savremenim temperaturama.

Jednačina	Literatura
$Rc1 = 0,2096 \times e^{0,0085T}$	Kostić, 2010a
$Rc2 = 0,49 \times C_{29}\alpha\alpha(S)/C_{29}\alpha\alpha(R) + 0,33$	Sofer <i>et al.,</i> 1993
$Rc3 = 0.09 \times DNR + 0.49$	Weiss, 1985
Rc4 = (DNR + 12)/14.8	Radke <i>et al.</i> , 1984
$Rc5 = 0.6 \times TNR 2 + 0.4$	Radke <i>et al.,</i> 1986
$Rc6 = 0.6 \times MPI 1 + 0.37$	Radke, Welte, 1983
$Rc7 = 0.7 \times MPI 1 + 0.22$	Boreham <i>et al.,</i> 1988
Rc8 = 0,291 x MPI 1 + 0,293	Chandra <i>et al.,</i> 1994
Rc9 = (MPR 1 + 0.77)/0.83	Radke <i>et al.</i> , 1984
$Rc10 = (\log MPR1 + 0.95)/1.01$	Radke <i>et al.</i> , 1984
$Rc11 = (\log DMPI 2 + 0.94)/0.6$	Radke <i>et al.</i> , 1984
$Rc12 = (\log DMPI 2 + 1,21)/0,85$	Radke <i>et al.,</i> 1984
$Rc13 = 0.073 \times MDR + 0.51$	Radke, 1988
Rc14 = 0,2633 x ln MDR + 0,9034	Dzou <i>et al.,</i> 1995
Rc15 = 2,242 x MPDF – 0,166	Kvalheim <i>et al.,</i> 1987

Tabela 25. Pregled jednačina primenjenih za izračunavanje refleksije vitrinita (Rc) zasnovanih na maksimalnoj paleotemperaturi i maturacionim parametrima

Ostalih 14 izračunatih refleksija vitrinita (Rc2-Rc15) koje su zasnovane na maturacionim parametrima generalno pokazuju slabiju korelaciju sa izmerenim vrednostima (Rr; *Tabela 27*), što je najverovatnije povezano sa činjenicom da su u većini slučajeva jednačine za izračunavanje definisane tokom ispitivanja ugljeva koji sadrže kerogen tipa III. Pored toga, može se pretpostaviti da se u hipertermalnim basenima sa velikom brzinom zagrevanja sedimenata intenzivno odvijaju reakcije izomerizacije i transalkilovanja na aromatičnim prstenovima što doprinosi smanjenju osetljivosti parametara zasnovanih na raspodeli i obilnosti alkilnaftalena i alkilfenantrena. Ovakav rezultat je zapažen i u Poglavlju 6.3.3.. Imajući sve ovo u vidu, ne može se očekivati značajno slaganje izmerene vrednosti refleksije vitrinita i ovako izračunatih vrednosti.

Merene i izračunate vrednosti refleksije vitrinita su korelisane u programu SPSS for windows 11.5 i koeficijenti korelacije prema Spearman-u i Pearson-u su prikazani u *tabeli* 27.

Rezultati i diskusija

Broj	Rr	Rc1	Rc2	Rc3	Rc4	Rc5	Rc6	Rc7	Rc8	Rc9	Rc10	Rc11	Rc12	Rc13	Rc14	Rc15
1	0,42	0,52	0,38	0,62	0,91	1,01	0,58	0,47	0,39	1,96	0,88	0,67	0,79	0,55	0,76	0,82
2	0,46	0,61	0,57	0,73	0,99	0,78	0,63	0,53	0,42	2,08	0,92	0,47	0,65	0,59	0,92	0,80
3	0,51	0,61	0,56	0,70	0,97	0,86	0,59	0,48	0,40	2,16	0,95	0,62	0,75	0,60	0,97	0,84
4	0,67	0,78	1,00	0,73	0,99	0,95	0,73	0,64	0,47	2,22	0,97	0,59	0,74	0,95	1,38	0,84
5	0,69	0,82	1,05	0,79	1,03	0,88	0,75	0,66	0,48	2,18	0,96	0,50	0,67	1,34	1,54	0,82
6	0,72	0,85	1,01	0,83	1,06	0,91	0,81	0,73	0,51	2,39	1,02	0,59	0,74	1,53	1,60	0,91
7	0,78	0,88	0,88	0,80	1,05	0,98	0,83	0,76	0,52	2,41	1,03	0,67	0,79	1,77	1,65	0,91
8	0,70	0,85	0,94	0,85	1,08	0,92	0,78	0,70	0,49	2,43	1,04	0,67	0,79	1,24	1,51	0,91
9	0,72	0,90	1,02	0,81	1,05	0,93	0,78	0,70	0,49	2,41	1,03	0,65	0,77	1,26	1,52	0,91
11	0,72	0,72	0,86	0,59	0,88	1,00	0,65	0,54	0,43	2,24	0,98	0,74	0,84	0,76	1,23	0,93
12	0,85	0,84	0,87	0,63	0,91	0,93	0,72	0,63	0,46	2,00	0,89	0,44	0,63	0,78	1,25	0,75
13	0,95	0,85	1,04	0,70	0,96	0,86	0,50	0,37	0,35	2,11	0,93	0,56	0,72	1,76	1,65	0,82
14	0,77	0,77	0,89	0,68	0,95	0,89	0,67	0,57	0,44	1,98	0,88	0,59	0,74	0,76	1,23	0,80
15	0,84	0,79	0,84	0,58	0,88	1,04	0,68	0,58	0,44	1,99	0,89	0,59	0,74	0,77	1,24	0,78
16	0,88	0,82	0,94	0,64	0,92	1,02	0,67	0,57	0,44	1,95	0,87	0,53	0,69	0,75	1,21	0,75
17	0,78	0,74	0,93	0,69	0,96	0,82	0,62	0,51	0,41	1,88	0,84	0,36	0,58	0,70	1,16	0,69
18	0,73	0,69	0,91	0,66	0,94	0,78	0,63	0,53	0,42	2,02	0,90	0,40	0,60	0,63	1,03	0,73
19	0,81	0,78	0,95	0,57	0,87	0,80	0,68	0,58	0,44	1,96	0,88	0,40	0,60	0,65	1,08	0,75
20	0,87	0,80	0,92	0,63	0,91	0,86	0,62	0,51	0,42	1,96	0,88	0,50	0,67	0,78	1,25	0,73
21	0,71	0,73	1,00	0,67	0,95	0,81	0,65	0,54	0,43	1,98	0,88	0,33	0,55	0,69	1,15	0,71
23	0,82	0,79	1,00	0,69	0,96	0,81	0,62	0,51	0,42	1,96	0,88	0,36	0,58	0,73	1,19	0,71
24	0,96	0,93	0,83	0,87	1,09	0,96	0,81	0,73	0,51	2,81	1,13	0,87	0,93	1,15	1,47	1,02
25	0,38	0,44	0,40	0,74	1,00	0,86	0,60	0,49	0,41	2,37	1,02	0,81	0,89	0,63	1,04	0,93
26	0,45	0,49	0,91	0,68	0,95	0,77	0,69	0,59	0,45	2,02	0,90	0,40	0,60	0,68	1,13	0,78
27	0,58	0,63	0,84	0,69	0,96	0,77	0,67	0,57	0,44	2,07	0,92	0,40	0,60	0,60	0,96	0,80
28	0,61	0,69	0,96	0,69	0,96	0,80	0,68	0,58	0,44	2,12	0,94	0,44	0,63	0,83	1,29	0,78
29	0,63	0,68	0,94	0,67	0,94	0,78	0,62	0,51	0,41	1,83	0,82	0,28	0,52	0,69	1,15	0,66
30	0,55	0,70	0,82	0,63	0,92	0,85	0,60	0,49	0,41	1,92	0,86	0,50	0,67	0,65	1,08	0,73
31	0,57	0,73	0,84	0,69	0,96	0,76	0,65	0,54	0,43	2,11	0,93	0,40	0,60	0,68	1,13	0,75
32	0,58	0,74	0,91	0,65	0,93	0,77	0,67	0,57	0,44	2,07	0,92	0,50	0,67	0,65	1,07	0,80
33	0,58	0,74	0,92	0,64	0,92	0,80	0,68	0,58	0,44	2,07	0,92	0,50	0,67	0,68	1,12	0,80

Tabela 26. Vrednosti merene (R_r) i izračunatih refleksija vitrinita (Rc1-Rc15) prema formulama datim u tabeli 25

Poflokcija vitrinita	Spearman test	Pearson test
Kelleksija vitillita	r	r
Rc1	0,77	0,84
Rc2	0,40	0,62
Rc3	-0,07	0,05
Rc4	-0,11	0,03
Rc5	0,44	0,37
Rc6	0,24	0,24
Rc7	0,24	0,23
Rc8	0,25	0,22
Rc9	-0,09	0,11
Rc10	-0,09	0,07
Rc11	0,03	0,04
Rc12	0,03	0,05
Rc13	0,61	0,46
Rc14	0,61	0,60
Rc15	-0,13	-0,01
$C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))$	0,65	0,69

Tabela 27. Rezultati korelacione analize izmerene i izračunatih refleksija vitrinita prema Spearman-ovom i Pearson-ovom testu

r- koeficijent korelacije; granične vrednosti r za značajnost (p) 99,9 %, 99 % i 95 % iznose 0,55, 0,45 i 0,35. Statistički vrlo značajne korelacije (p > 99 %) su boldovane. Objašnjenje skraćenica Rc1-Rc15 dato je u tabeli 25; $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R)) = C_{29}14\beta(H)17\beta(H)20(R)$ -steran/ $C_{29}(14\beta(H)\beta(H)20(R) + 14\alpha(H)17\alpha(H)20(R))$ -sterani (vrednost ovog parametra data je u tabeli 19).

Oba primenjena testa su pokazala da najviše koeficijente korelacije r (koje odgovaraju značajnosti, $p \ge 99$ %) sa merenom refleksijom vitrinita pokazuju izračunate refleksije vitrinita zasnovane na maksimalnoj paleotemperaturi, steranskim i dibenzotiofenskim parametrima (*Tabele 26,27*).

Na osnovu rezultata korelacione analize predložene su linearna i logaritamska jednačina koje omogućavaju izračunavanje refleksije vitrinita na osnovu vrednosti parametra $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R)+\alpha\alpha(R))$ (*Slika* 77).

$$Rc = 0.9173 C_{29}\beta\beta(R) / C_{29}(\beta\beta(R) + \alpha\alpha(R)) + 0.1478 \qquad (r = 0.69)$$

$$Rc = 0.4455 \ln C_{29}\beta\beta(R) / C_{29}(\beta\beta(R) + \alpha\alpha(R)) + 0.9342 \qquad (r = 0.68)$$

Slika 77. *Linearna i logaritamska zavisnost izmerene refleksije vitrinita i steranskog maturacionog parametra* $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R)+\alpha\alpha(R))$.

6.5. Zona generisanja nafte i gasa u Banatskoj depresiji

Organska supstanca matičnih stena se taložila kad i sama stena i u povoljnim uslovima se mogla očuvati, pri čemu je transformisana u kerogen. Kada kerogen dospe na veće dubine, on krakovanjem počinje da se transformiše u naftu i u gas i taj proces se naziva "**generisanje nafte i gasa**". Ovo je proces koji se najčešće odigrava na temperaturama od 100 do 120 °C, koje odgovaraju relativnim dubinama od 2000 do 4000 m u najvećem broju basena, ali je za svaki basen karakterističan.

Na osnovu prethodno poznatih činjenica o ispitivanom području i dobijenih rezultata izloženih u prethodnim poglavljima, kao krajnji cilj ove teze je određena zona generisanja nafte u ispitivanoj oblasti. Kao što je u prethodnim poglavljima izloženo, biomarkerski odnosi i Rock-Eval parametri su pokazali dobru saglasnost i omogućili su definisanje vertikalnog intervala zone generisanja nafte, odnosno konstruisanje "naftnog prozora". On je prikazan na *slici 78*. Zbog malog broja nematurisanih uzoraka i odsustva uzoraka sa visokom temperaturom izuzev uzorka 24, početak i kraj "naftnog prozora" nisu mogli da budu precizno procenjeni. Dobijeni rezultati su pokazali da glavna faza generisanja nafte u severnom i centralnom delu Banatske depresije počinje na 130 °C pri Rc ~ 0,63 %, dostiže maksimum na približno 145 – 150 °C pri Rc 0,72-0,75 %, dok kasna faza generisanja nafte započinje na 155°C pri Rc~0,78%. Ovim vrednostima temperatura i refleksije vitrinita, u zavisnosti od geotermalnog gradijenta, odgovaraju dubine 2100-2300 m, 2600-2900 m i 3050- 3100 m. Početak generisanja nafte verovatno odgovara temperaturi 110 - 120 °C i dubini od 1850 do 2100 m, pri refleksiji vitrinita, Rc ≈ 0,53 - 0,58 % dok je kraj "naftnog prozora" na 170-175 °C, pri Rc ≈ 0,89-0,93 %, i dubini od oko 3500 m.

Novopredloženi maturacioni parametar C_{30} HH/ C_{30} H je klasifikovao uzorke na isti način kao i poznati steranski maturacioni odnos $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R)+\alpha\alpha(R)$ na nezrele, uzorke u piku zone generisanja nafte i uzorke u kasnom stadijumu generisanja nafte (*Tabela 28*).

Stadijum zrelosti organske supstance	Početak "naftnog prozora"	Maksimum "naftnog prozora"	Kasna faza "naftnog prozora"
Uzorci	1-3, 25	11, 14, 15, 17-19, 21, 24, 26-33	4-9, 12, 13, 16, 20, 23
C ₃₀ HH/C ₃₀ H	< 0,003	0,01 - 0,05	> 0,05

Tabela 29. Klasifikacija ispitivanih uzoraka prema vrednostmanovopredloženog maturacionog parametra

Slika 78. Zona generisanja nafte u severnom i centralnom delu Banatske depresije i približne vrednosti biomarkerskih parametara prikazane u odnosu na "naftni prozor". Oznake skraćenica su date u legendama slika 19 i 20.

Dobijeni rezultati za zonu generisanja nafte u središnjem i centralnom delu Banatske depresije su u saglasnosti sa rezultatima ranijih studija Banatske depresije, koja su se zasnivala na merenju refleksije vitrinita, interpretaciji Rock-Eval parametara i brojnim simulacijama i modelovanjima (Kostić, 2000a, 2010a,b). Temperaturni opseg naftnog prozora u Banatskoj depresiji je sličan onom iz Hrvatskog dela (Savska i Dravska depresija) Panonskog basena (Britvić et al., 1989), ali je približno za 15°C niži nego u jugoistočnom delu Mađarske (Sajgó et al., 1988, Sajgó 2000) koji se karakteriše intenzivnijom sedimentacijom i još većom brzinom zagrevanja. U Velikoj Mađarskoj ravnici, gde brzina zagrevanja iznosi i do 50°C/Ma (Quigley et al., 1987) naspram 9-22°C/Ma u maksimum generisanja Banatskoj depresiji, ugljovodonika odgovara temperaturi višoj od 150°C (Sajgó, 2000), kao i u poznatim visokohipertermalnim basenima, Los Anđeloskom i Ventura basenu (Philippi, 1965, 1975).

7. ZAKLJUČCI

Tokom rada na disertaciji detaljno su geohemijski ispitivana 33 uzorka mogućih matičnih stena prvenstveno starosti srednjeg (baden i sarmat) i gornjeg miocena (panon i pont), sa 18 lokaliteta, iz tri najznačajnije generativne depresije jugoistočnog dela Panonskog basena: Banatsko Aranđelovo, Srpska Crnja (severni Banat) i Zrenjanin (srednji Banat). Uzorci potiču sa relativnih dubina od 1540 do 3420 m, na kojima temperature iznose 88 - 175 °C. Ovaj deo Panonskog basena se karakteriše povišenim geotermalnim gradijentom (4,0 – 7,5 °C/100m), toplotnim tokovima visokog intenziteta (90 – 110 mW/m²) i relativno velikim brzinama zagrevanja sedimenata srednjeg i gornjeg miocena (9 – 22 °C/milion godina).

Geohemijska ispitivanja su podrazumevala opštu karakterizaciju organske supstance uz primenu elementarne analize i Rock-Eval pirolize, kao i izolovanje i analizu rastvorne organske supstance. Rastvorna organska supstanca je izolovana ekstrakcijom po Soksletu (Soxhlet), a zatim je razdvojena na ugljovodonični deo i polarni ostatak. Za analizu individualnih biomarkera i aromatičnih jedinjenja primenjene su savremene instrumentalne metode GC-MS i GC-MS-MS. U cilju utvrđivanja stepena zrelosti kerogena ispitivanih matičnih stena određivana je i refleksija vitrinita.

Na osnovu ovako detaljne analize uzoraka potencijalnih matičnih stena, uz primenu organsko-geohemijske interpretacije i korelacione analize velikog broja molekulskih parametara, definisani su poreklo, sredina taloženja i stepen zrelosti organske supstance, kao i opseg refleksije vitrinita za "naftni prozor" u hipertermalnom basenu sa velikom brzinom zagrevanja. Kako ovaj basen karakteriše hipertermalnost, ispitana je i primenljivost različitih geohemijskih maturacionih parametara na uzorcima koji potiču iz ovakvih basena. Utvrđena je zona generisanja nafte u srpskom delu Banatske depresije i izvedena kalibracija vrednosti biomarkerskih maturacionih parametara u odnosu na "naftni prozor". Predložen je novi maturacioni parametar koji predstavlja odnos C(14a)-homo-nor-17 α (H)-hopana i C₃₀ 17 α (H),21 β (H)-hopana i ustanovljena zavisnost između refleksije vitrinita i steranskog maturacionog parametra C₂₉ $\beta\beta$ (R)/C₂₉($\beta\beta$ (R)+ $\alpha\alpha$ (R)).

Na osnovu detaljnog geohemijskog ispitivanja izvedeni su sledeći opšti zaključci:

- Grupni parametri i rezultati Rock-Eval analize su pokazali da, od 33 ispitivana uzorka, 31 uzorak zadovoljava opšte kriterijume za matične stene.
- Rezultati zasnovani na Rock-Eval analizi su ukazali da je organska supstanca većine ispitivanih uzoraka pretežno sačinjena od kerogena tipa II, a manjeg broja uzoraka od kerogena tipa II/III i III (pretežno uzorci pontske starosti).
- biomarkerski Brojni parametri (raspodela $C_{27}-C_{29}$ 14α (H)17α(H)20(R) sterana, oleananski indeks, gamaceranski indeks, odnos sterana i hopana, C₃₀ steranski indeks i C₃₀ diasteranski indeks, odnosi DBT/P, Pr/Fit, C₂₆TT/C₂₅TT, obilnost C29-28-Nsp i C29-C32-diahopana) su ukazali na mešovito drvenasto-algalno poreklo organske supstance taložene u promenljivim uslovima, od redukcionih do suboksičnih. Salinitet paleosredine je opadao od srednjeg ka gornjem miocenu. Gornjemiocenski uzorci su taloženi u suboksičnoj, slatkovodnoj paleosredini. Srednjemiocenski uzorci se dele u dve grupe. Uzorci prve grupe su formirani u dubljoj, slanijoj i reduktivnijoj paleosredini. Srednjemiocenski uzorci druge grupe taloženi su u

plićoj, zaslanjenoj, suboksičnoj paleosredini i karakterišu se značajnim udelom prokariotske prekursorke biomase.

- Na osnovu odnosa Ster/Hop i C₃₀ steranskog indeksa procenjeno je da starost uzoraka 18, 20, 28 i 29 (nedefinisani miocen) verovatno odgovara granici između srednjeg i gornjeg miocena, što objašnjava nemogućnost preciznog biostratigrafskog određivanja. Za druga tri uzorka nedefinisanog miocena (13, 25 i 26) ustanovljena je starost srednjeg miocena.
- *n*-Alkanski maksimumi, CPI vrednosti, odnosi Pr/*n*-C₁₇, Fit/*n*-C₁₈ i kombinovani "quasi-craking" parametar Pr/*n*-C₁₇ + Fit/*n*-C₁₈ su potvrdili da zrelost većine uzoraka odgovara maksuimumu ili kasnoj fazi generisanja nafte.
- Steranski maturacioni parametar C₂₉ββ(R)/(ββ(R)+αα(R)) potvrdio je svoju primenljivost u širokom opsegu maturisanosti, od početka do kasne faze generisanja nafte.
- Odnosi C₂₇ i C₂₉ neohopan/hopan, C₂₇-C₂₉ diasteran/(diasteran+steran) i C₃₀ diahopan/C₃₀ hopan su pokazali osetljivost kao indikatori maturacije za uzorke u kasnom stadijumu generisanja nafte, dok su u opsegu zrelosti od rane do srednje maturisanosti vrednosti ovih parametara kontrolisane i maturacijom i redoks potencijalom paleosredine.
- Odnosi C₂₇, C₂₉-C₃₂ "rano eluirajući" hopan/hopan i C₃₁-C₃₂ diahopan/hopan su pokazali dobru osetljivost samo za razlikovanje umereno maturisane i visoko maturisane organske supstance.
- Naftalenski i fenantrenski maturacioni parametri su pokazali slabiju primenljivost u poređenju sa biomarkerskim maturacionim
odnosima, posebno u opsegu od rane do srednje maturisanosti, s tim što su fenantrenski i trimetilnaftalenski parametri pokazali nešto bolju primenljivost u odnosu na dimetilnaftalenske.

- Merena refleksija vitrinita je pokazala slabu saglasnost sa izračunatim vrednostima refleksije vitrinita zasnovanim na dimetilnaftalenskim i fenantrenskim parametrima, što je najverovatnije uzrokovano činjenicom da su ove jednačine najčešće ustanovljene tokom ispitivanja uglja koji sadrže kerogen tipa III. Sem toga, u hipertermalnim basenima sa velikom brzinom zagrevanja intenzivno se odvijaju reakcije izomerizacije i transalkilovanja aromata, što doprinosi slabijoj osetljivosti maturacionih parametara zasnovanih na njihovoj raspodeli i obilnosti.
- Merena refleksija vitrinita je pokazala dobru saglasnost sa vrednostima refleksije vitrinita koje su izračunate na osnovu maksimalne paleotemperature i maturacionih parametara zasnovanih na raspodeli i obilnosti sterana i metildibenzotiofena.

Interpretacijom rezultata Rock-Eval analize, biomarkerskih parametara i maturacionih odnosa zasnovanih na aromatičnim jedinjenjima, uzimajući u obzir i sve prethodno poznate geološke podatke o proučavanoj oblasti, određena je "zona generisanja nafte" u severnom i centralnom delu Banatske depresije. Glavna faza generisanja nafte u ovom delu Banatske depresije počinje na 130 °C pri Rc ~ 0,63 %, dostiže maksimum na približno 145 – 150 °C pri Rc 0,72-0,75 %, dok kasna faza generisanja nafte započinje na 155°C pri Rc~0,78%. Ovim vrednostima temperature i refleksija vitrinita, u zavisnosti od geotermalnog gradijenta, odgovaraju dubine 2100-2300 m, 2600-2900 m i 3050-3100 m. Početak generisanja nafte verovatno odgovara temperaturi 110 - 120 °C i

dubini od 1850 do 2100 m, pri refleksiji vitrinita, Rc \approx 0,53 - 0,58 % dok je kraj "naftnog prozora" na 170-175 °C, pri Rc \approx 0,89-0,93 %, i dubini od oko 3500 m.

Uz utvrđivanje temperature, refleksije vitrinita i dubine za pojedine faze "naftnog prozora", izvedena je i aproksimativna kalibracija vrednosti biomarkerskih odnosa prema "naftnom prozoru". Takođe je ustanovljeno da u Banatskoj depresiji, kao i u drugim hipertermalnim basenima sa velikom brzinom zagrevanja sedimenata, "naftnom prozoru" odgovara uži opseg i niže vrednosti refleksije vitrinita (0,5 – 0,8 % Rr).

Važan rezultat ovog istraživanja je i definisanje moguće primene dva, u organsko-geohemijskoj literaturi, relativno nova biomarkerska jedinjenja "rano eluirajućih" hopana (čija struktura je pretpostavljena, ali ne i u potpunosti potvrđena) i C(14a)-homo-nor-17 α (H)-hopana, koji sadrži sedmočlani prsten C. Odnos "rano eluirajućih" hopana (C₂₇, C₂₉-C₃₂) i odgovarajućih hopana sa istim brojem C-atoma može se koristiti za razlikovanje umereno maturisane organske supstance ("peak stage of oil generation") od visoko maturisane organske supstance ("late stage of oil generation") u hipertermalnim basenima sa velikom brzinom zagrevanja sedimenata. Parametar predložen u ovom radu, C(14a)-homo-nor-17 α (H)-hopan/C₃₀hopan (C₃₀HH/C₃₀H) pokazao je dobru saglasnost sa većinom poznatih maturacionih parametara i primenljivost u širokom opsegu zrelosti organske supstance (od početka do kasne faze generisanja nafte).

U ovom radu su predložene nove jednačine za izračunavanje refleksije vitrinita na osnovu steranskog maturacionog parametra $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R)+\alpha\alpha(R)).$

8. LITERATURA

- Ahmed, M., George, S.C., 1999. Effects of biodegradation on Australian Permian coals. *Organic Geochemistry* **30**, 1311-1322.
- Ahmed, M., George, S.C., 2004. Changes in the molecular compositions of crude oils during their preparation for GC and GC-MS analyses. *Organic Geochemistry* 35, 137-155.
- Al-Arouri K.R., 1996. *Petroleum geochemistry, source rock evaluation and modeling of hydrocarbon generation in the Southern Taroom Trough*. Doctoral dissertation, University of Adelaide, Australia, pp 277.
- Al-Arouri, K.R., McKirdy, D.M., Boreham, C.J., 1998. Oil-source correlations as a tool in identifying the petroleum systems of the Southern Taroom Trough, Australia. In: Horsfield, B. *et al.* (Eds.) *Advances in Organic Geochemistry* 1997, Part 1. Pergamon Press, Oxford, pp. 713-734.
- Albaigés, J., Borbon, J., Walker, W.H., 1985. Petroleum isoprenoid hydrocarbons derived from catagenic degradation of *Archaebacterial* lipids. *Organic Geochemistry* 8, 293-297.
- Alexander, R., Kagi, R.I., Sheppard, P.N., 1984. 1,8-Dimethylnaphthalene as an indicator of petroleum maturity. *Nature* **308**, 442-443.
- Alexander, R., Kagi, R.I., Rowland, S.J., Sheppard, P.N., Chirila, T.V., 1985. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. *Geochimica et Cosmochimica Acta* **49**, 385-395.
- Alexander, R., Larcher, A.V., Kagi, R.I., Price, P.L., 1992. An oil-source rock correlation study using age specific plant-derived aromatic biomarkers. In: Moldowan, J.M. *et al.* (Eds.) *Biological Markers in Sediments and Petroleum*. Prentice Hall, New Jersey, pp. 201-221.
- Alexander, R., Kagi, R.I., Singh, R.K., Sosrowidjojo, I.B., 1994. The effect of maturity on the relative abundances of cadalene and isocadalene in sediments from the Gippsland Basin, Australia. *Organic Geochemistry* **21**, 115-120.
- Angelin, M.L., Collignan, A., Bellocq, J., Oudin, J.L., Ewald, M., 1983. Investigation of polycyclic aromatic hydrocarbons in source rock bitumens and petroleums by high

pressure liquid chromatography. Comptes Rendues de l'Académie des Sciences Paris, Series II 296, 705-708.

- Aquino Neto, F.R., Trendel, J.M., Restle, A., Connan, J., Albrecht, P.A., 1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In: M. Bjoroy *et al.* (Eds.) *Advances in Organic Geochemistry* 1981, J. Wiley and Sons, Chichester, 659-676.
- Aquino Neto, F.R., Cardoso, J.N., Rodrigues, R., Trinidade, L.A.F., 1986. Evolution of tricyclic alkanes in the Espirito Santo Basin, Brazil. *Geochimica et Cosmochimica Acta* 50, 2069-2072.
- Armstroff, A., Wilkes, H., Schwarzbauer, J., Littke, R., Horsfield, B., 2006. Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. *Palaeo* **240**, 253–274.
- Azevedo, D.A., Aquino Neto, F.R., Simoneit, B.R.T., Pinto, A.C. 1992. Novel series of tryciclic aromatic terpanes characterized in Tasmanian tasmanite. *Organic Geochemistry* 18, 9-16.
- Barić G., 2006. Naftna geokemija, INA Industrija nafte, Zagreb.
- Barić, G., Mesić I., Jungwirth, M., 1998. Petroleum geochemistry of the deep part of the Drava depression, Croatia. *Organic Geochemistry* **29**, 571-582.
- Barić, G., Ivković, Z., Perica R., 2000. The Miocene petroleum system of the Sava depression, Croatia. *Petroleum Geoscience* **6**, 165-173.
- Barker, C., 1979. Organic Geochemistry in Petroleum Exploration. The American Association of Petroleum Geologists, Education Course Note Series #10.
- Barker, C.E., Pawlewicz, M.J., 1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay, P.K., Dow, W.G. (Eds.) *Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations*. American Chemical Society Symposium Series 570, 216-229.
- Bastow, T.P., Alexander, R., Sosrowidjojo, I.B., Kagi, R.I., 1998. Pentamethylnaphthalenes and related compounds in sedimentary organic matter. *Organic Geochemistry* **28**, 585-595.
- Bordenave, M.L., Espitalié, L., Leplat, P., Oudin, J.L., Vandenbroucke, M., 1993. Screening techniques for source rock evaluation. In: Bordenave, M.L. (Ed.) *Applied Petroleum Geochemistry*. Editions Technip, Paris, 217-278.

- Boreham, C.J., Crick, I.H., Powel, T.G., 1988. Alternative calibration of the Methylphenanthrene Index against vitrinite reflectance: Application to maturity measurements on oils and sediments. *Organic Geochemistry* **12**, 289-294.
- Borrego, A.G., Blanco, C.G., Püttmann, W., 1997. Geochemical significance of the aromatic hydrocarbon distribution in the bitumens of the Puertollano oil shales, Spain. Organic Geochemistry 26, 219-228.
- Bray, E.E., Evans, E.D., 1961. Distribution of *n*-paraffins as a clue to recognition of source beds. *Geochimica et Cosmochimica Acta* **22**, 2-15.
- Britvić, V., Dragaš, M., Skansi, R., 1989. Pirolitičko-volumetrijski model proračuna generativnog potencijala. *Nafta* **40**, 375-391.
- Burnham, A.K.; Sweeney, J.J., 1989. A chemical kinetic model of vitrinite maturation and reflectance. *Geochimica et Cosmochimica Acta* **53**, 2649-2657.
- Chakhmakhchev, A., Suzuki, N., 1995a. Saturate biomarkers and aromatic sulfur compounds in oils and condensates from different source rocks lithologies of Kazakhstan, Japan and Russia. *Organic Geochemisty* **23**, 289-299.
- Chakhmakhchev, A., Suzuki, N., 1995b. Aromatic sulfur compounds as maturity indicators for petroleums from the Buzuluk depression, Russia. *Organic Geochemistry* **23**, 617-625.
- Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. *Organic Geochemistry* **26**, 483-490.
- Chandra, K., Mishra, S., Samanta, U., Gupta, A., Mehrotra, K.L., 1994. Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the Cambay basin. Organic Geochemistry 21, 313-321.
- Chang Y-Z., Huang –L., Hsu, A., Huang, S-Y.,L., 2008. Characterization of kerogens and coals using fluorescence measured *in situ* at elevated temperatures. *International Journal of Coal Geology* **75**, 63-75.
- Chen Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., Tao, T., 2015. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences A Review. *International Journal of Molecular Science*,**16**, 30223-30250.
- Chiaghanam, O.I., Chiadikobi, K.C., Ikegwuonu, O.N., Omoboriowo, A.O., 2014. Palynofacies And Kerogen Analysis Of Upper Cretaceous (Early Campanian To Maatrichtian) Enugu Shale And Mamu Formation In Anambra Basin, South-Eastern, Nigeria. International Journal of scientific & technology Research 2, 87-97.

- Chicarelli, M. I., Aquino Neto, F.R., Albrecht, P., 1988. Occurrence of four stereoisomeric tricyclicterpanes series in immature Brazilian shales. *Geochimica et Cosmochimica Acta* **52**, 1955-1959.
- Clayton, J.L., Koncz, I., 1994. Petroleum geochemistry of the Zala Basin, Hungary. *AAPG Bulletin* **78**, 1-22.
- Clayton, J.L., Koncz, I., King, J.D., Tatár, E., 1994a. Organic geochemistry of crude oils and source rocks, Békés Basin. In: Teleki, P.G., Mattick, R.E., Kókai, J. (Eds.) Basin Analysis in Petroleum Exploration: A Case Study from the Békés Basin. Kluwer Academic Publishers, Hungary: Dordrecht, Netherlands, pp. 161-186.
- Clayton, J.L., Spencer, W.W., Koncz, I., 1994b. Tótkomlós-Szolnok Petroleum System of southeastern Hungary. In: Magoon, L.B., Dow, W.G. (Eds.) The Petroleum System -From Source to Trap. - American Association of Petroleum Geologists Memoir 60, pp.587-598.
- Connan, J., Restle, A., Albrecht P., 1980. Biodegradation of crude oil in the Aquitane basin. *Physics and Chemistry of the Earth* **12**, 29-50.
- Connan, J., Bouroullee, J., Dessort, D., Albrecht, P., 1986. The microbial input in carbonate-anhydrite facies of a Sabkha paleoenvironment from Guatemala: a molecular approach. *Organic Geochemistry* **10**, 29-50.
- Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E., Thomsen, E., 2004. A new approach to interpreting Rock-Eval S₂ and TOC data for kerogen quality assessment. *Organic Geochemistry* **35**, 1461-1477.
- Dank, V., 1988. Petroleum Geology of the Pannonian basin, Hungary: An Overview. In: Royden L.H., Horvatt F., (Eds) Pannonian Basin – A study in Basin Evolution, AAPG Memoir 45, Tulsa, Oklahoma, 319-331.
- de Grande, S.M.B., Aquino Neto, F.R., Mello, M.R., 1993. Extended tricyclic terpanes in sediments and petroleums. *Organic Geochemistry* **20**, 1039-1047.
- Del Rio, J.C., Philp, R.P., 1992. High molecular weight hydrocarbons: a new frontier in organic geochemistry. *Trends in Analytical Chemistry* **5**, 187-193.
- Demaison, G. J., Holck, A. J.J., Jones, R. W., Moore, G.T., 1983. *Predictive source bed stratigraphy; A guide to regional petroleum occurrence*. Proceeding of the 11st World Petroleum Congress, Vol 2, Wiley Chichester, London, 17-29.
- Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. *Nature* **272**, 216-222.

- Dolton, G.L., 2006. Pannonian Basin Province, Central Europe (Province 4808)-Petroleum geology, total petroleum systems, and petroleum resource assessment. U.S. Geological Survey Bulletin 2204-B, U.S. Geological Survey, Reston, Virginia, p.53.
- Dow, W.G., 1977. Kerogen studies and geological interpretations. *Journal of Geocemical Exploration* 7, 79-99.
- Durand, B., Monin, J.C., 1980. Elemental analysis of kerogens (C, H, O, N, S, Fe). In: Durand, B. (Ed.) Kerogen, Insoluble Organic Matter from Sedimentary Rocks Editions Technip, Paris, 113–142.
- Durand, B., Espitalié, J., 1973. Évolution de la matière organique au cours de l'enfouissement des sédiments. *Comptes rendus de l'Académie des Sciences*, **276**, 2253-2256.
- Dzou, L.I.P., Noble, R.A., Senftle, J.T., 1995. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. *Organic Geochemistry* **23**, 681-697.
- Ellis, L., Singh, R.K., Alexander, R., Kagi, R.I., 1999. Long- chain alkylnaphthalenes in crude oils and sediments. In: Abstracts of 19th International Meeting on Organic Geochemistry, Istanbul, September 6-10, 1999. TÜBITAK, Istanbul, pp. 66-67.
- Ercegovac, M., 1992. O problem nastanka i migracije ugljovodonika u Panonskom basenu, *Zapisnici SGD za jubilarnu 1991.godinu*, Beograd, 203-216.
- Ercegovac, M., Vitorović, D., 1984. Mogućnost geneze ugljovodonika u tercijarnim sedimentima Pomoravlja i Podunavlja (Srbija). *Geološki anali Balkanskog poluostrva* XIVIII, 215-230, Beograd.
- Ercegovac, M., Hagemann, H., 1992. Stepen zrelosti kerogena i geotermija neogenih sedimenata Banatske depresije (Panonski basen). *Geološki anali Balkanskog poluostrva* **56**, 305-331.
- Ercegovac, M., Kostić A., 1996. The kerogen maturity of the Neogene sediments in the Drmno Depression (Kostolac, Serbia). *Journal of Serbian Chemical Society* **61**, 1063-1069.
- Ercegovac, M., Kostić, A., Karg, H., Welte, D.H., Littke, R., 2003. Temperature and burial history modelling of the Drmno and Markovac Depressions, SE Pannonian Basin, Serbia. *Journal of Petroleum Geology* 26, 5–27.
- Espitalié J., Laporte J.L., Madec M., Marquis F., Leplat P., Paulet J., Boutefeu A., 1977. Methode rapide de caracterisation des roches meres, de leur potential pétrolier et de leur degré d'évolution, *Revue de L'Institute Francais du Pétrole* **32**, 23-42.

- Espitalié, J., Bordenave, M.L., 1993. Rock Eval pyrolysis. In: Bordenave, M.L. (Ed.) *Applied Petroleum Geochemistry* Editions Technip, Paris, 237–261.
- Farrimond, P., Telnæs, N., 1996. Three series of rearranged hopanes in Toarcian sediments (Northern Italy). *Organic Geochemistry* **25**, 165-177.
- Farrimond, P., Eglinton, G., Brassell, S.C., Jenkyns, H.C., 1990. The Cenomanian/Turonian anoxic event in Europe: an organic geochemical study. *Marine and Petroleum Geology* 7, 78-89.
- Farrimond, P., Bevan, J.C., Bishop, A.N., 1999. Tricyclic terpane maturity parameters: response to heating by an igneous intrusion. *Organic Geochemistry* **30**, 1011-1019.
- Fazakerley, H., Halsall, T.G., Jones, E.R.H., 1959. Triterpenes and related compounds (XXXIV) structure of hydroxyhopanone. *Journal of the Chemical Society* 1877-1883.
- Garrigues, P., De Sury, R., Angelin, M.L., Bellocq, J., Oudin, J.L., Ewald, M., 1988. Relation of the aromatic hydrocarbon distribution pattern to the maturity of organic matter in ancient sediments from the Makaham Delta. *Geochimica et Cosmochimica Acta* **52**, 375-384.
- George, S.C., Lisk, M., Summons, R.E., Quezada, A.R., 1998. Constraining the oil charge history of South Pepper oilfield from the analysis of bearing fluid inclusions. In: Horsfield, B. *et al.* (Eds.) *Advances in Organic Geochemistry* 1997, Part 1. Pergamon Press, Oxford, pp. 631-648.
- George, S.C., Volk, H., Ruble, T.E., Brincat, M.P., 2002. Evidence for a new oil family in the Nancar Trough area, Teamor Sea. *Australian Petroleum Production and Exploration Association Journal*, **42**, 387-404
- Golonka, J., Picha, F.J. (Eds.) 2006. The Carpathians and their foreland: Geology and hydrocarbon resources. *American Association of Petroleum Geologists Memoir* 84, 1-9.
- Golovko, A.K., 1997. *Нефтяные алкилароматические углеводороды*. Докторская диссертация, 02.00.13, Томск.
- Goncharov, I., Samoilenko, V., Oblasov, N., Fadeeva, S., 2015. MDBT estimation ratio for transformation organic matter ratio in Bazhenov Formation of Western Siberia (Tomsk Oblast, Russia). *IOP Conference Series: Earth and Environmental Science* 24, 1-12.
- Goodarzi, F., Brooks, P.W., Embry, A.F., 1989. Regional maturity as determined by organic petrography and geochemistry of the Schei Point Group (Triassic) in the western Sverdrup Basin, Canadian Arctic Archipelago. *Marine and Petroleum Geology* **6**, 290-302.

- Gordzadze, G.N., 2002. Термолиз органического вещества в нефтегазопоисковой геохимии. И.Г. и Р.Г.И., Москва.
- Grice, K., Troilo, R., Fisher, S.J., Alexander, R., Kagi, R.I., 1999. Geochemistry of alkylbiphenyls in crude oils and sediments. In: Abstracts of 19th International Meeting on Organic Geochemistry, Istanbul, September 6-10, 1999. TÜBITAK, Istanbul, pp. 61-62.
- Hasenhüttl, C., Kraljic, M., Sachsenhofer, R.F., Jelen, B., Rieger, R., 2001. Source rocks and hydrocarbon generation in Slovenia (Mura Depression, Pannonian Basin). *Marine and Petroleum Geology* **18**, 115-132.
- Holba, A.G., Tegelaar, E.W., Huizinga, B.J., Moldowan, J.M., Singletary, M.S., McCaffrey, M.A., Dzou, L.I.P., 1998a. 24-norcholestanes as age-sensitive molecular fossils. *Geology* 26, 783–786.
- Holba, A.G., Dzou, L.I.P., Masterson, W.D., Hughes, W.B., Huizinga, B.J., Singletary, M.S., Moldowan, J.M., Mello, M.R., Tegelaar, E., 1998b. Application of 24norcholestanes for constraining source age of petroleum. *Organic Geochemistry* 29, 1269-1283.
- Holba, A.G., Dzou, L.I., Wood, G.D., Ellis, L., Adam, P., Schaeer, P., Albrecht, P., Greene, T., Hughes, W.B., 2003. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. *Organic Geochemistry* 34, 441-469.
- Horstad, I., Larter, S.R., Dypvik, H., Aagaard, P., Bjornvik, A.M., Johansen, P.E., Eriksen, S., 1990. Degradation and maturity controls on oil field petroleum column heterogeneity in the Gullfaks field, Norwegian North Sea. In: Leythaeuser, D.,Rullkötter, J. (Eds.) Advances in Organic Geochemistry, 1989. Pergamon Press, London, 497-510.
- Horváth, F., 1995. Phases in compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. *Marine and Petroleum Geology* **12**, 837-844.
- Horváth, F., Pogácsás, Gy., 1988. Contribution of Seismic Reflection Data to Chronostratigraphy of the Pannonian Basin. In: Royden L.H., Horvatt F. (Eds) *Pannonian Basin – A study in Basin Evolution*, AAPG Memoir 45, Tulsa, Oklahoma, 97-105.
- (http://mpgpetroleum.com/fundamentals.html)
- http://gemsresource.com/gems/article/oil-and-natural-gas-how-do-they-form-and-accumulate)

- Huang, D., Zhang, D., Li, J., 1994. The origin of 4-methyl steranes and pregnanes from Tertiary strata in the Qaidam Basin, China. *Organic Geochemistry* **22**, 343-348.
- Huang, W.L., 1996. Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. *Organic Geochemistry* **24**, 233-241.
- Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenantrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. *Geochimica et Cosmochimica Acta* **59**, 3581-3598.
- Hunt J.M., 1979. Petroleum Geochemistry and Geology. Freeman W. H. & Comp., San Francisko.
- Hunt, J.M., 1996. Petroleum Geochemistry and Geology. 2nd Ed., Freeman, W.H. and Co., New York, 743p.
- Ishiwatari, R., Fukushima, K., 1979. Generation of unsaturated and aromatic hydrocarbons by thermal alteration of young kerogen. *Geochimica et Cosmochimica Acta* **43**, 1343-1349.
- Ivanov, V.I., Golovko, A.K., 1992. Фенантреновые углеводороды в нефтях СССР. Сибирский химический журнал 1, 94-102.
- Jiang, T., Guan, Y., 1999. Analysis of polycyclic aromatic hydrocarbon derivatives by on-line coupled packed capillary high-performance liquid chromatography-high temperature gas chromatography. *Journal of Chromatography Science* **37**, 255-262.
- Jincai, T., Xianbin, W, J., Jianfa C., 1999. Distribution and evolution of tricyclic terpanes in lacustrine carbonates. *Organic Geochemistry* **30**, 1429-1435.
- Jones R. W., 1984 Comparasion of Carbonate and Shale Source Rocks. In: Palacas J. (Ed.) *Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. AAPG Studies in Geology* 18, 163.
- Jovančićević, B., Vitorović, D. *Osnovi organske geohemije*. Hemijski fakultet Univerziteta u Beogradu, Beograd, 2005.
- Катуапоv, V.F., Golovko, A.K., Korobicina, L.L., Kurakolova, E.A., 1982. Высококипящие ароматические углеводороды нефтей. Издательство ТФ СО АН СССР, Томск.
- Karakitsios V., Rigakis N., 2007. Evolution and Petroleum Potential of Western Greece. *Journal of Petroleum Geology* **30**, 197-218.

- Kázmér, M., 1990. Birth, life and death of the Pannonian Lake. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* **79**, 171-188.
- Khavari Khorasani, G., 1987. Novel development in fluorescence microscopy of complex organic mixtures: application in petroleum geochemistry. *Organic Geochemistry* **11**, 157–168.
- Killops, S.D., Howell, V.J., 1991. Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin. *Chemical Geology* **91**, 65-79.
- Killops, S.D., Killops, V.J., 2005. *Introduction to Organic Geochemistry*, 2nd ed. Blackwell Publishing, 350 Main Street, Malden, MA 02148-5020, USA.
- Kókai, J., 1994. Exploration history and future possibilities in Hungary, Chap.5, In: Popescu, B.M. (Ed.) *Hydrocarbons of Eastern Central Europe, Habitat, exploration and production history*. Berlin, Springer-Verlag, 147-173.
- Kolaczkowska, E., Slougui, N.E., Watt, D.S., Marcura, R.E., Moldowan, J.M., 1990. Thermodynamic stability of various alkylated and rearranged 17α- and 17βhopane isomers using molecular mechanics calculations. *Organic Geochemistry* **16**, 1033-1038.
- Kostić, A., 1999. The generative petroleum potential of the Tertiary sediments in the Banat Depression (Pannonian Basin, Yugoslavia). *American Association of Petroleum Geologists Bulletin* **83**, 1889.
- Kostić, A., 2000a. *Generativni naftno-gasni potencijal tercijarnih sedimenata Banatske depresije*. Doktorska disertacija, Rudarsko-geološki fakultet, Univerzitet u Beogradu, Beograd, 318 str.
- Kostić, A., 2000b. The generative petroleum potential of the Tertiary sediments in the Banat Depression (Pannonian Basin). *American Association of Petroleum Geologists Bulletin* **84**, 1866.
- Kostić, A., 2010a. *Termička evolucija organske supstance i modelovanje geneze nafte i gasa u Panonskom basenu (Srbija)*. Rudarsko-geološki fakultet, Univerzitet u Beogradu.
- Kostić, A., 2010b. Generisanje nafte i gasa u jugoistočnom delu Panonskog basena (Srbija) *Tehnika* **4**, RGM, 1–5.
- Kostić A. 2015. *Ležišta i istraživanje nafte i gasa.* Univerzitet u Beogradu, Rudarskogeološki fakultet, Departman za ekonomsku geologiju, Beograd, 259 str.

- Kvalheim, O.M., Christy, A.A., Telnæs, N., Bjørseth, A., 1987. Maturity determination of organic matter in coal using the methylphenanthrene distribution. *Geochimica et Cosmochimica Acta* **51**, 1883-1888.
- Kvenvolden, K.A., Simoneit, B.R.T., 1990. Hydrothermally derived petroleum: examples from Guaymas Basin, Gulf of California, and Escanaba Trough, northeast Pacific Ocean. *American Association of Petroleum Geologists Bulletin* **74**, 223-237.
- Landis, C.R., Sullivan, G.W., Pleil, M.W., Borst, W.L., Crelling, J.C., 1987. Pulsed laser fluorescence microscopy of coal macerals and dispersed organic material. *Fuel* **66**, 984–991.
- Langford, F.F., Blanc-Valleron, M.M., 1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolyzable hydrocarbons *vs.* total organic carbon. *American Association of Petroleum Geologists Bulletin* **74**, 799–804.
- Larcher, A.V., Alexander, R., Kagi, R.I., 1987. Changes in configuration of extended moretanes with increasing sediment maturity. *Organic Geochemistry* **11**, 59-63.
- Larter, S.R., Senftle, J.T., 1985. Improved kerogen typing for petroleum source rock analysis. *Nature* **318**, 277-280.
- Li, M., Wang T., Liu J., Zhang M., Lu, H., Ma, Q., Gao L., 2009. Biomarker 17α(H)diahopane: A geochemical tool to study the petroleum system of a Tertiary lacustrine basin, Northern South China Sea. *Applied Geochemistry* **24**, 172–183.
- Li, S., Pang, X., Li, M., Jin, Z., 2003. Geochemistry of petroleum systems in the Niuyhuang South Slope of Bohai Bay Basin. Part 1: Source rock characterization. *Organic Geochemistry* 34, 389-412.
- Lichtfouse E., Derenne S., Mariotti A., Largeau C., 1994. Possible algal origin of long chain odd *n*-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. *Organic Geochemistry* **22**, 1023-1027.
- Mao J., Fang X., Lan Y., Schimmelmann A., Mastalerz M., Xu L., Schmidt-Rohr K., 2010. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state ¹³C NMR spectroscopy. *Geochimica et Cosmochimica Acta* **74**, 2110-2127.
- Marović, M., Djoković, I., Pešić, L., Radovanović, S., Toljić, M., Gerzina, N., 2002. Neotectonics and seismicity of the southern margin of the Pannonian basin in Serbia. *EGU Stephan Mueller Special Publication Series* **3**, 277–295.
- McKirdy D.M., Cox R.E., Volkman J.K., Howell V.J., 1986. *Botryococcane* in a new class of Australian non-marine crude oils. *Nature* **320**, 57-59.

- Mello, M.R., Telnæs, N., Gaglianone, P.C., Chicarelli, M.I., Brassell, S.C., Maxwell, J.R., 1988. Organic geochemical characterization of depositional paleoenvironments in Brazilian marginal basins. *Organic Geochemistry* 13, 31-46.
- Milota, K., 1991. Petroleum generation history and thermal history of Jurassic sediments in the central part of the Pannonian Basin. In: Manning D. (Ed) *Organic geochemistry, Advances and Applications in the Natural Environment, Manchester University Press, 78-81.*
- Moldowan, J.M., Seifert, W.K., Gallegos, E.J., 1983. Identification of an extended series of tricyclic terpanes in petroleum. *Geochimica et Cosmochimica Acta* **47**, 1531-1534.
- Moldowan, J.M., Seifert, W.K., Galegos, E.J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. *American Association of Petroleum Geologists Bulletin* **69**, 1255-1268.
- Moldowan, J.M., Sundararaman, P., Shoell, M., 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S.W. Germany. *Organic Geochemistry* **10**, 915-926.
- Moldowan, J.M., Fago, F.J., Carlson, R.M. K., Young, D.C., Van Duyne, G., Clardy, J., Schoell, M., Pillinger, C.T., Watt, D.S., 1991a. Rearranged hopanes in sediments and petroleum. *Geochimica et Cosmochimica Acta* 55, 3333–3353.
- Moldowan, J.M., Lee, C.Y., Watt, D.S., Jeganathan, A., Slougui, N.E., Gallegos, E.J., 1991b. Analysis and occurrence of C₂₆-steranes in petroleum and source rocks. *Geochimica et Cosmochimica Acta* **55**, 1065-1081.
- Moldowan, J.M., Sundararaman, P., Salvatori T., Alajbeg, A., Đukić, B., Lee, C.Y., Demaison, G.J., 1992. Source correlation and maturity assessment of select oils and rocks from the central Adriatic Basin (Italy and Yugoslavia). In: Moldowan, J.M., Albrecht, P., Philp, R.P. (Eds.) *Biological Markers in Sediments and Petroleum*. Prentice Hall, New York, pp. 370-401.
- Moldowan, J.M., Dahl, J., Huizinga, B.J., Fago, F.J., Hickey, L.J., Peakman, T.M., Taylor, D.W., 1994. The molecular fossil record of oleanane and its relation to angiosperms. *Science* **265**, 768-771.
- Mrkić, S., Stojanović, K., Kostić, A., Nytoft, H.P., Šajnović, A., 2011. Organic geochemistry of Miocene source rocks from the Banat Depression (S.E. Pannonian Basin, Serbia). Organic Geochemistry 42, 655-677.
- Nytoft, H.P., 2011. Novel side chain methylated and hexacyclic hopanes: Identification by synthesis, distribution in a worldwide set of coals and crude oils and use as markers for oxic depositional environments. *Organic Geochemistry* **42**, 520-539.

- Nytoft, H.P., Bojesen-Koefoed, J.A., 2001. 17α,21α(H)-Hopanes: natural and synthetic. *Organic Geochemistry* **32**, 841-856.
- Nytoft, H.P., Lutnæs, B.F., Johansen, J.E., 2006. 28-Nor-spergulanes, a novel series of rearranged hopanes. Organic Geochemistry 37, 772-786.
- Nytoft, H.P., Lund, K., Corleone Jorgensen, T.K., Thomsen, V.J., Wendel Sorensen, S.,Lutnas, B.F., Kildahl-Andersen, G., Johansen, J.E., 2007. Identification of an Early-Eluting Hopane Series. Synthesis from hop-17(21)-enes and Detection of Intermediates in Sediments. Book of Abstracts. The 23rd International Meeting on Organic Geochemistry. Torquay, England, pp. 1017–1018.
- Nytoft, H.P., Kildahl-Andersen, G., Samuel O.J., 2010. Rearranged oleananes: Structural identification and distribution in a worldwide set of Late Cretaceous/Tertiary oils. *Organic Geochemistry* **41**, 1104-1118.
- Samuel O, J., Kildahl-Andersen, G., Nytoft, H.P., Johansen J. E, Jones, M., 2010. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils: Structural identification, origin and application to petroleum correlation *Organic Geochemistry* **41**, 1326–1337.
- Stojadinović S., Kostić A., Nytoft H.P., Stojanović K., 2015. Applicability of Calculated Vitrinite Reflectance for Assessment of Source Rock's Organic Matter Maturity in Hyperthermal Basins (Banat Depression, Serbia). *Petroleum Chemistry* 55, 444-454.
- Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive microbial biochemistry from molecular fossils to procaryotic membranes. *Trends in Biochemical Sciences* **7**, 236-239.
- Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. *American Association of Petroleum Geologists Bulletin* **70**, 318-386.
- Peters, K.E., Moldowan, J.M., 1991. Effects of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum. *Organic Geochemistry* **17**, 47–61.
- Peters, K.E., Moldowan, J.M., 1993. *The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments*. Prentice Hall, New Jersey.
- Peters, K.E., Fowler, M.G., 2002. Applications of petroleum geochemistry to exploration and reservoir management. *Organic Geochemistry* **33**, 5–36.
- Peters, K.E., Moldowan, J.M., Schoell, M., Hempkins, W.B., 1986. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment. *Organic Geochemistry* **10**, 17-27.

- Peters K., Walters C., Moldowan J., 2005a. *The Biomarker Guide, Volume 1, Biomarkers and Isotopes in the Environment and Human History*. University press, Cambridge.
- Peters, K.E., Walters, C.C., Moldowan, J.M., 2005b. *The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History*. Cambridge University Press, Cambridge, UK.
- Petrov, A.A., Vorobyova, N.S., Zemskova, Z.K., 1990. Isoprenoid alkanes with irregular «head-to-head» linkages. *Organic Geochemistry* **16**, 1001-1005.
- Philippi, G.T., 1965. On the depth, time and mechanism of petroleum generation. *Geochimica et Cosmochimica Acta* **29**, 1021-1049.
- Philippi, G.T., 1975. The deep subsurface temperature controlled origin of thegaseous and gasoline range hydrocarbons of petroleum. *Geochimica et Cosmochimica Acta* **39**, 1353–1373.
- Philp, R.P., 1985. Fossil Fuel Biomarkers. Applications and Spectra. Elsevier, Amsterdam.
- Philp, R.P., 1994. High temperature gas chromatography for the analysis of fossil fuels. *Journal of the High Resolution Chromatography* **17**, 398-406.
- Philp, R.P., Gilbert, T.D., 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. *Organic Geochemistry* **10**, 73-84.
- Pogácás, G., Szalay, Á., Bérczy, I., Bardócz, B., Szaloki, I., Koncz, I., 1996. Hydrocarbons in Hungary-Expolration and development. – In: Wesseley, G., and Liebl, W. (Eds) Oil and gas in Alpidic thrustbelts and basins of central and eastern Europe: Special Publication of the European Association of Petroleum Geoscientists [EAGE], No.5, The Geological Society, London, for the European Association of Geoscientists and Engineers, pp. 37-38.
- Powel T.G., 1986. Petroleum geochemistry and depositional setting of lacustrine source rocks. *Marine and Petroleum Geology* **3**, 200-219.
- Powel T.G., McKirdy D.M., 1973. The effects of source material, rock type and diagenesis on the *n*-alkane content of sediments. *Geochimica et Cosmochimica Acta* 37, 623-633.
- Püttman, W., Villar, H., 1987. Occurrence and geochemical significance of 1,2,5,6-tetramethylnaphthalene. *Geochimica et Cosmochimica Acta* **51**, 3023-3029.

- Quigley, T.M., Mackenzie, A.S., Gray, J.R., 1987. Kinetic theory of petroleum generation. In: Doligez, B. (Ed.) *Migration of hydrocarbons in sedimentary basins*. Editions Technip, Paris, pp. 649-665.
- Radke, M., 1987. Organic geochemistry of aromatic hydrocarbons. In: Radke, M. (Ed.) *Advances in Petroleum Geochemistry*. Academic Press, London, pp.141-205.
- Radke, M., 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. *Marine and Petroleum Geology* **5**, 224-236.
- Radke, M., Welte, D.H., 1983. The methylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In: Bjorøy, M. *et al.* (Eds.) *Advances in Organic Geochemistry* 1981. Wiley and Sons, Chichester, pp. 504-512.
- Radke, M., Welte, D.H., Willsch, H., 1982a. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. *Geochimica et Cosmochimica Acta* **46**, 1-10.
- Radke, M., Willsch, H., Leythaeuser, D., Teichmüller, M., 1982b. Aromatic components of coal: relation of distribution pattern to rank. *Geochimica et Cosmochimica Acta* 46, 1831-1848.
- Radke, M., Leythaeuser, D., Teichmüller, M., 1984. Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. *Organic Geochemistry* 6, 423-430.
- Radke, M., Willsch, H., Welte, D.H., 1986. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. *Organic Geochemistry* **10**, 51-63.
- Radke, M., Rullkötter, J., Vriend, S.P., 1994. Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. *Geochimica et Cosmochimica Acta* 58, 3675-3689.
- Requejo, A.G., Sassen, R., McDonald, T., Denoux, G., Kennicutt, M.C., Brooks, J.M., 1996. Polynuclear aromatic hydrocarbons (PAH) as indicators of the source and maturity of marine crude oils. *Organic Geochemistry* 24, 1017-1033.
- Requejo, A.G., Hieshima, G.B., Hsu, C.S., McDonald, T.J., Sassen, R., 1997. Short chain (C₂₁ and C₂₂) steranes in petroleum and source rocks as indicators of maturity and depositional environment. *Geochimica et Cosmochimica Acta* **61**, 2653-2667.
- Rögl, F., 1996. Stratigraphic correlations of the Paratethys Oligocene and Miocene. *Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten Österreich* **41**, 65–73.

- Royden, L.H., Dővényi, 1988. Variations in Extensional Styles at Depth Across the Pannonian Basin System. In: Royden L.H., Horvatt F. (Eds) *The Pannonian Basin A study in Basin Evolution*. AAPG Memoir 45, Tulsa, Oklahoma, pp. 235-255.
- Rubinstein, I., Sieskind, O., Albrecht, P., 1975. Rearranged steranes in a shale: Occurrence and simulated formations. *Journal of the Chemical Society, Perkin Transaction* **1**, 1833-1836.
- Rullkötter, J., 1993. The Thermal Alternation of Kerogen and Formation of Oil. In: Engel H.E. and Macko S. A. (Eds.) Organic Geochemistry Principles and Applications, Plenum Press, New York and London. 289 - 353
- Sajgó, Cs., Horváth, Z.A., Lefler, J., 1988. An organic maturation study of the Hód-I Borehole (Pannonian Basin). In: Royden, L., Horváth, F. (Eds.) *The Pannonian Basin – a study in basin evolution. AAPG* 45, Tulsa-Oklahoma-Budapest, 297-309.
- Sajgó, Cs., 2000. Assessment of generation temperatures of crude oils. *Organic Geochemistry* **31**, 1301-1323.
- Seifert, P., 1996. Sedimentary-tectonic development and Austrian hydrocarbon potential of the Vienna Basin. In: Wessely, G. And Liebl, W. (Eds): Oil and gas in Alpidic thrustbelts and basins of central and Eastern Europe: Special Publication of the European Association of Petroleum Geoscientists [EAGE] No.5, The Geological Society, London, for the European Association of Geoscientists and Engineers, pp 331-341.
- Seifert, W.K., Moldowan, J.M., 1986. Use of biological markers in petroleum exploration. In: Johns, B.R. (Ed.) *Methods in Geochemistry and Geophysics*, Volume 24. Pergamon Press, Oxford, pp. 261-290.
- Senftle, J., Landis, C.R., McLaughlin, R.L., Organic Petrographic Approach to Kerogen Characterization. Engel M.H. and Macko S. A. (Eds.) Organic Geochemistry Principles and Applications, Plenum Press, New York and London. 355 - 374
- Simons, D-J. H., Kenig, F., Schröder-Adams, C.J., 2003. An organic geochemical study of Cenomanian-Turonian sediments from the Western Interior Seaway, Canada. *Organic Geochemistry* **34**, 1177-1198.
- Singh, R.K., Alexander, R., Kagi, R.I., 1994. Identification and occurrence of norcadalenes and related compounds in crude oils and sediments. *Organic Geochemistry* **21**, 249-256.
- Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M., de Leeuw, J.W., 1995. Evidence for gammacerane as an indicator of water column stratification. *Geochimica et Cosmochimica Acta* **59**, 1895-1900.

- Smith, P.M.R., 1984. The use of fluorescence microscopy in the characterisation of amorphous organic matter. *Organic Geochemistry* **6**, 839-854.
- Sofer, Z., Regan, D.R., Muller, D.S., 1993. Sterane isomerization ratios of oils as maturity indicators and their use as an exploration tool, Neuquen Basin, Argentina. XII Geological Congress, Buenos Aires, Argentina. Book of Proceedings, pp. 407-411.
- Staplin F.L., 1969. Sedimentary organic matter, organic metamorphism and oil and gas occurrence. *The Canadian Petroleum Geologists Bulletin* **17**, 47-66.
- Stojanović K., 2004. Novi pristupi u ispitivanju zrelosti nafti na osnovu raspodele policikličnih zasićenih i aromatičnih ugljovodonika. Doktorska disertacija, Hemijski fakultet, Univerzitet u Beogradu, 281 str.
- Stojanović, K., Jovančićević, B., Pevneva, G.S., Golovko, J.A., Golovko, A.K., Pfendt, P., 2001. Maturity assessment of oils from the Sakhalin oil fields in Russia: phenanthrene content as a tool. *Organic Geochemistry* **32**, 721-731.
- Stojanović, K., Jovančićević, B., Vitorović, D., Golovko, Y., Pevneva, G., Golovko, A., 2007. Evaluation of saturated and aromatic hydrocarbons oil-oil maturity correlation parameters (SE Pannonian Basin, Serbia). *Journal of the Serbian Chemical Society* 72, 1237-1254.
- Strachan, M.G., Alexander, R., Kagi, R.I., 1988. Trimethylnapthalenes in crude oils and sediments: effects of source and maturity. *Geochimica et Cosmochimica Acta* **52**, 1255-1264.
- Suggate, R.P., 1998. Relations between depth of burial, vitrinite reflectance and geothermal gradient. *Journal of Petroleum Geology* **21**, 5-32.
- Sweeney, J.J., Burnhan, A.K. 1990. Evaluation of the simple model of vitrinite reflectance based on Chemical Kinetics. *AAPG Bulletin* **74**, 1559-1570.
- Szalay, Á., 1988. Maturation and migration of hydrocarbons in the Southeastern Pannonian Bassin. In: Royden L.H., Horvatt F. (Eds), *Pannonian Basin – A study in Basin Evolution*. AAPG Memoir 45, Tulsa, Oklahoma, 347-354.
- Szczerba, M., Rospondek, M.J., 2010. Controls on distributions of methylphenanthrenes in sedimentary rock extracts: Critical evaluation of existing geochemical data from molecular modelling. *Organic Geochemistry* **41**, 1297-1311.
- Šolević, T., 2008. Novi pristupi u pronalaženju i karakterizaciji izvornih stena na osnovu raspodele policikličnih zasićenih i aromatičnih ugljovodonika u naftama. Doktorska disertacija, Hemijski fakultet, Univerzitet u Beogradu, 170 str.

- Šolević, T., Stojanović, K., Bojesen-Koefoed, J., Nytoft, H.P., Jovančićević, B., Vitorović, D., 2008. Origin of oils in the Velebit oil-gas field, SE Pannonian Basin, Serbia – Source rocks characterization based on biological marker distributions. Organic Geochemistry 39, 118-134.
- Telnæs, N., Isaksen, G.H., Farrimond, P., 1992. Unusual triterpane distributions in lacustrine oils. *Organic Geochemistry* **18**, 785-789.
- ten Haven H. L., de Leeuw J. W., and Schenck P. A., 1985. Organic-geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment. *Geochimica et Cosmochimica Acta* **49**, 2181-2191.
- Tissot B.P., Welte D.H., 1984. *Petroleum Formation and Occurrence*, 2nd Edition, Springer-Verlag, Heidelberg.
- Tissot, B.P., Demaison, G., Masson, P., Delteil, J.R., Combaz, A., 1980. Paleoenvironment and petroleum potential of Middle Cretaceous black shales in Atlantic Basins. *The American Association of Petroleum Geologists Bulletin* 64, 2051-2063.
- Trendel, J.M., Restle, A., Connan, J., Albrecht, P., 1982. Identification of a novel series of tetracyclicterpene hydrocarbons (C₂₄-C₂₇) in seddiments and petroleums. *Journal of Chemical Communications*, 304-306.
- Trendel, J.M., Graff, R., Wehrung, P., Albrecht, P., Dessort, D., Connan, J., 1993. C(14a)-Homo-26-nor-17α-hopanes, a novel and unexpected series of molecular fossils in biodegraded petroleum. *Journal of the Chemical Society, Chemical Communications* **5**, 461-463.
- Vakarcs, G., Vail, P.R., Tari, G., Pogacsas, Gy., Mattick, R.E., Szabo, A., 1994. Thirdorder Miocene-Pliocene depositional sequences in the prograding delta complex of the Pannonian basin. *Techtonophysics* 240, 81-106.
- van Aarssen, B.G.K., Bastow, T.P., Alexander, R., Kagi, R.I., 1999. Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. *Organic Geochemistry* **30**, 1213-1227.
- van Graas, G.W., 1990. Biomarker maturity parameters for high maturities: calibration of the working range up to the oil/condensate threshold. *Organic Geochemistry* **16**, 1025-1032.
- van Krevelen, D. W., 1950. Graphical-Statistical-Method for the Study of structure and reaction processes of Coal. *Fuel* **29**, 269-284.

- van Krevelen, D. W., 1961. Coal: Typology-Chemistry-Physics' Constitution. Elseiver, Amsterdam.
- Vandenbroucke M., C. Largeau, C., 2007. Kerogen origin, evolution and structure, Review. Organic Geochemistry 38, 719–833.
- Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic matter. *Organic Geochemistry* **9**, 83-99.
- Volkman, J.K., 2003. Sterols in microorganisms. *Applied Microbiology and Biotechnology* **60**, 496-506.
- Volkman, J.K., Alexander, R., Kagi, R.I., Woodhouse, G.W., 1983. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. *Geochimica et Cosmochimica Acta* **47**, 785-794.
- Vučelić D., Juranić N., Vitorović D., 1979. Potential of proton-enhanced ¹³C N.M.R. for the classification of kerogens. *Fuel* **58**, 759-764.
- Wang, Z., Wang, Y., Wu, B., Wang, G., Sun, Z., Xu, L., Zhu, S., Sun, L., Wei, Z., 2016. Novel maturity parameters for mature to over-mature source rocks and oils based on the distribution of phenanthrene series compounds. *Heliyon* 2.
- Waples, D., 1985. *Geochemistry in Petroleum Exploration*. International Human Resources Development Corporation, Boston.
- Waseda, A., Nishita, H., 1998. Geochemical characteristics of terrigenous- and marinesourced oils in Hokkaido, Japan. *Organic Geochemistry* **28**, 27-41.
- Weiss H. M., 1985. Geochemische und petrographische Untersuchungen am organischen Material kretazischer Sedimentgesteine aus dem Deep Basin, Westkanada. Doctoral dissertation, Technical University, Aachen, pp. 261.
- Welte, D.H., 1989. The changing face of geology and future needs. *Geologische Rundschau (International Journal of Earth Sciences)* **78**, 7-20.
- Werner-Zwanziger, U., Lis G., Mastalerz, M., Schimmelmann, A., 2005. Thermal maturity of type II kerogen from the New Albany Shale assessed by C-¹³CP/MAS NMR. *Solid State Nuclear Magnetic Resonance* **27**, 140-148.
- Whelan J.K., Thompson-Rizer, C.L., 1993. Chemical Methods for Assessing Kerogen and Protokerogen types and Maturity. In: Engel M.H. and Macko S. A. (Eds.) Organic Geochemistry Principles and Applications, Plenum Press, New York and London. 289 - 353

- Wingert, W. S. and Pomerantz, M., 1986. Structure and significance of some twenty-one and twenty-two carbon petroleum steranes. *Geochimica et Cosmochimica Acta* **50**, 2763-2769.
- Yalçın, Erik N., Özçelik, O., Altunsoy, M., 2006. Interpreting Rock-Eval pyrolysis data using graphs of S₂ vs. TOC: Middle Triassic-Lower Jurassic units, eastern part of SE Turkey *Journal of Petroleum Science and Engineering* **53**, 34-46.
- Yawanarajah, S.R., Kruge, M.A., 1994. Lacustrine shales and oil shales from Stellarton Basin, Nova Scotia, Canada: organofacies variations and use of polyaromatic hydrocarbons as maturity indicators. *Organic Geochemistry* **21**, 153-170.
- Zeng Y., Wu C., 2007. Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures. *Fuel* **86**, 1192-1200.
- Zhang, S., Digang, L., Li, M., Zhongyao, X., Zhonghua, H., 2002. Molecular fossils and oil-source rock correlations in Tarim Basin, NW China. *Chinese Science Bulletin* **47**, 20-27.
- Zhu, Y., Hao, F., Zou, H., Cai, X., Luo, Y., 2007. Jurassic oils in the central Sichuan basin, southwest China: Unusual biomarker distribution and possible origin. *Organic Geochemistry* **38**, 1884-1896.
- Zumberge, J.E., 1987. Terpenoid biomarker distribution in low maturity crude oils. *Organic Geochemistry* **11**, 479-496.

BIOGRAFIJA

Sanja Stojadinović (rođ. Mrkić) je rođena 10.06.1973. godine u Peći. Osnovnu školu je pohađala u Vučitrnu i Barajevu, a srednju u Beogradu. Školske 1991/92. upisala se na Hemijski fakultet u Beogradu, a diplomirala je jula 1998. sa srednjom ocenom 8,56 tokom studija i ocenom 10 na diplomskom ispitu. Poslediplomske studije na Hemijskom fakultetu u Beogradu, na Katedri za primenjenu hemiju je upisala školske 1999/2000. i završila ih sa prosečnom 10,00. "Ekogeohemijska ocenom Magistarsku tezu pod naslovom karakterizacija aluvijalnih sedimenata mlađeg kvartara Makiškog polja" odbranila je oktobra 2007. godine. Kao stručni saradnik na Katedri za primenjenu hemiju Hemijskog fakulteta u Beogradu zaposlila se marta 1999. godine, a od marta 2000. do marta 2002. je radila kao istraživač-pripravnik.

Od marta 2002. zaposlena je u Centru za hemiju Instituta za hemiju , tehnologiju i metalurgiju u Beogradu kao istraživač-pripravnik, a od 2008. godine kao istraživač-saradnik

U okviru svog naučno-istraživačkog rada bavi se organskogeohemijskim proučavanjem recentnih sedimenata, matičnih stena za naftu, nafti i ugljeva. Прилог 1.

Изјава о ауторству

Потписана Сања Стојадиновић

Изјављујем

да је докторска дисертација под насловом

"Органско-геохемијски приступи у дефинисању зоне генерисања нафте у <u>Панонском басену Србије"</u>

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, <u>09.05.2016.</u>

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора: Сања Стојадиновић

Број индекса /

Студијски програм /

Наслов рада: "Органско-геохемијски приступи у дефинисању зоне генерисања нафте у Панонском басену Србије"

Ментори: др Ксенија Стојановић и др Александар Костић

Потписана: Сања Стојадиновић

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног репозиторијума Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

У Београду, <u>09. 05. 2016.</u>

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

"Органско-геохемијски приступи у дефинисању зоне генерисања нафте у Панонском басену Србије"

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство
- 2. Ауторство некомерцијално

3) Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

- 5. Ауторство без прераде
- 6. Ауторство делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, <u>09.05.2016.</u>