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ABSTRACT 

Bone macromorphology at muscle attachment sites: its relationship with the 

microarchitecture of the underlying bone and possible implications for the 

reconstruction of habitual physical activities of past populations 

Background: The term “enthesis” is usually used to mark the sites of muscle 

attachments, as well as attachments of ligaments and joint capsules to bones. In the last 

three decades, studies concerning entheses in human skeletal remains have attempted to 

reconstruct the habitual physical activities of past populations. The evaluation of 

entheseal morphological appearance was suggested for the identification of gross 

workload patterns, which could be used in the interpretation of labour division on a 

gender, age or social basis in ancient populations.  

There have been four major research streams in literature with regard to entheses and 

entheseal changes (EC). The first group of studies mainly focused on the analysis of the 

histological structure of the attachment site. The second group of studies focused of 

visual scoring methods based on the macromorphological features of the attachment 

surface with the aim of evaluating the degree of muscle use. The third group included 

studies dealing with the relationship between EC and the biomechanical properties of 

long bones, while a fourth group of studies was aimed at reconstructing the habitual 

physical activities of past populations, using visual scoring methods.  

Regardless of the fact that habitual physical activities or stress patterns of past 

populations are frequently reconstructed based on EC, there is no direct experimental 

evidence for the relationship between muscular activity and particular macroscopic 

entheseal scores.  

Although entheses were investigated from macroscopic, histological and biomechanical 

aspects, it is surprising that microarchitectural studies of the underlying bone are still 

lacking, despite the well-known potential of bone microarchitecture to reflect 

mechanical loading. It is widely accepted that the bone adapts its structure to changes in 

its mechanical environment, and a number of studies have reported the relationship 

between bone microarchitecture and loading patterns in different skeletal sites. 

However, despite numerous studies reporting that bone morphology is affected by 

mechanical loads and that bone has a self-optimising capability, there is no 



comprehensive study dealing with this issue in the region of the entheses. Specifically, 

it is not known if different macromorphological expressions of muscle attachment sites 

correlate with the microstructural characteristics of the underlining bone.  

The present study analysed the macromorphological and microstructural characteristics 

of the bone at the muscle attachment sites, hypothesising that mechanical loading 

influences the microarchitecture and macromorphology of the bone at the entheses. 

Previous studies mostly focused only on the macroscopic appearance of entheses and it 

is unknown whether different morphological expressions of muscle attachment sites 

correlate with the microstructural characteristics of the bone. Therefore, the reliability 

of interpretation of widely used macroscopic scores of EC is questionable. A 

microstructural evaluation of entheseal morphology will ensure a more reliable 

methodology for the interpretation of labour division on a gender, age or social basis of 

archaeological populations. Also, when analysing the differences in the macroscopic 

morphological appearance of EC between the medieval Avarian population of horse 

riders and the agricultural population of medieval Vinča and Sirmium, the criteria for 

the identification of horse riders in human skeletal remains was investigated.  

The microstructural assessment of the entheses may contribute to the understanding of 

the biomechanical relevance of entheseal gross morphology, further clarifying the role 

of EC morphology in the interpretation of the habitual physical activities of past 

populations. 

Hypotheses: Our hypotheses were that the bone morphological changes of muscle 

attachment sites follow the overall bone adaptation to different mechanical loadings; 

also that macroscopic changes of the bone on the muscle attachment site correlate with 

microarchitectural changes in the underlying bone; and that the different morphological 

appearances of the muscle attachment sites in human skeletal remains are the 

consequence of different muscle activities and, therefore, could be helpful in the 

reconstruction of the habitual physical activities of past populations. 

Material and method: The skeletal material used in this study derives from four 

medieval cemeteries: Pionirska Ulica and Čik in Bečej, Vinča and Sirmium. The 

published archaeological reports indicate that the sites of Pionirska Ulica and Čik are 

medieval Avarian populations of horse riders while the medieval cemeteries of Vinča 



and Sirmium consist of an agricultural population. The anthropological and macro-

structural analysis of entheses in human skeletal remains was conducted in the 

Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of 

Belgrade. Anthropological analyses included the estimation of sex and age at the 

moment of death, palaeopathological examination, as well as the assessment of dental 

status. Palaeopathological analyses included macroscopic observation and radiographic 

analysis. 

For the purpose of macrostructural analysis of EC, 19 muscle attachments on the lower 

and upper limbs were evaluated using the visual three-stage scoring system, proposed 

by Villotte (2006, 2010).  

The microstructural analyses of entheses were carried out in the Laboratory for 

Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade and at 

University Medical Center Hamburg-Eppendorf. 

The bone samples were harvested using a slow rotating medical saw. The specimens 

were scanned using micro-computed tomography (Scanco µCT 40, Scanco Medical, 

Switzerland and SkyScan µCT 1172, Bruker, Belgium) with an isotropic resolution of 

10 μm. The microarchitecture of the cortical and trabecular bone was evaluated 

automatically using a micro-CT evaluation program with direct 3D morphometry. In 

order to evaluate the normality of data distribution, a Kolmogorov-Smirnov test was 

performed. The Pearson’s Chi-Square test was used for comparing non-parametric 

features between different groups. The relationship between the obtained data and age 

was tested by Pearson correlation or Spearman correlation, depending on data 

distribution. The relationship between the macroscopic stages (“stage” and “site” 

selected as factors) and the microscopic parameters (selected as “dependent variable”) 

was assessed using analysis of variance (ANOVA) for parametric data, while in the case 

of  non-Gaussian, the distribution of data was assessed using the Kruskal–Wallis test. 

Bivariate correlation analysis was performed to determine the association between 

various cortical and trabecular microarchitectural parameters in each of the macroscopic 

stages.  

The statistical significance was set at a level of 0.05. All statistical analyses were 

performed using SPSS for Windows, version 15. 



Results and conclusions: The results suggest that with horse riders the physical 

activities of the upper limbs were more or less consistent, i.e. performed from younger 

to older age, while  the activity of the lower limbs are related to the intensive use of 

these muscles in younger individuals. Among the agricultural population, the results 

show that the entheseal changes are more pronounced in the older age categories. 

Sexual dimorphism of EC scores in the group of horse riders was noted on the lower 

limbs only, while in the group of agriculturals it was noted on both the lower and upper 

limbs. All attachment sites which demonstrated significant differences, showed greater 

markers of stress in males. A statistically significant difference of the entheseal 

morphological appearance between the riders’ and the agricultural population was found 

in the upper limbs only in the subscapularis muscle, indicating a greater exposure to 

stress for the riders’ population group, while in the lower limbs only the muscles which 

are specific for horse riders were singled out. In a further study, the possible successive 

nature of the widely used three-stage scoring system of entheseal macroscopic changes 

was investigated, by comparing EC scores with the microarchitectural features at the 

musculoskeletal attachment sites. Overall, comparing EC scores with the 

microarchitectural features at the musculoskeletal attachment sites showed a lack of 

consistent correlation between the established stages of the macroscopic scoring system 

and the microarchitecture at the entheses, suggesting that the macroscopic entheseal 

stages might not represent distinct successive phases in bone adaptation to mechanical 

loading. Microscopic analyses of the differences between the “proliferative” and 

“resorptive” phases of entheseal changes demonstrated that from the initial flat surfaces 

at the point of the muscle attachment site, two directions of EC can be developed.  

However, the bony part of the entheses has not received due consideration in literature. 

In particular, in order to profoundly comprehend the bone’s microstructural adaptation 

to mechanical loading by the muscle, the stress transfer between muscle and bone has to 

be understood. Further studies are needed to demonstrate how the stress transfer process 

is influenced by the bone microstructure of the entheses.  

 

 



Keywords: enthesis, entheseal changes, micro CT, horse riders, everyday activities, 

past population. 

 

RESEARCH FIELD: MEDICINE – Skeletal Biology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REZIME 

Makromorfološki izgled kosti na mestu mišićnih pripoja: odnos makromorfologije 

i mikroarhitekture kosti na mestu pripoja i moguće implikacije na rekonstrukciju 

svakodnevih fizičkih aktivnost drevnih populacija 

Uvod: termin enteze se koristi da označi mesto na kome se za kost pripajaju mišić, 

ligament ili zglobna kapsula. U studijama koje se bave proučavanjem skeletnih ostataka 

humanog porekla istraživanja enteza se uglavnom sprovode sa ciljem da se rekonstruiše 

svakodnevna fizička aktivnost drevnih populacija. Proučavanje morfološkog izgleda 

enteza je predlagano kao metod pomoću koga možemo da pretpostavimo pojedine 

obrasce fizičke aktivnosti koji u kasnijoj interpretaciji mogu da nam sugerišu kakva je 

bila podela rada u odnosu na pol, godine starosti ili socijalni status pojedinca u jednoj 

populaciji.  

U stručnoj literaturi postoje četiri osnovne grupe istraživanja koja se bave proučavanjem 

enteza i entezalnim promenama. Prvu grupu čine studije koje se uglavnom fokusiraju na 

istraživanje histološke strukture tkiva na mestu pripoja. U drugu grupu se ubrajaju 

studije koje imaju za cilj da uspostave vizuelni skoring sistem koji je baziran na 

promenama u morfološkom izgledu koštanog dela enteze. Treća grupa su studije koje 

istražuju vezu između morfoloških promena enteze i biomehaničkih karakteristika dugih 

kostiju, dok četvrtu grupu čine studije koje na osnovu promena u morfološkom izgledu 

kosti na mestu mišićnog pripoja pokušavaju da rekonstruišu obrasce ponašanja koji su 

dominirali u svakodnevnim fizičkim aktivnostima arheoloških populacija.   

Uprkos činjenici da je svakodnevna fizička aktivnost drevnih populacija često 

rekonstruisana na osnovu promena morfološkog izgleda enteza, ne postoje direktni 

eksperimentalni dokazi koji bi potvrdili povezanost između određene fizičke aktivnosti i 

specifične morfološke promene na mestu pripoja mišića.   

Iako su enteze do sada bile istraživane sa aspekta histologije, biomehanike, kao i sa 

stanovišta morfoloških promena koje se javljaju na mestu pripoja, iznenađuje činjenica 

da istraživanja mikroarhitektonskih promena koje se događaju unutar kosti, još uvek 

nedostaju uprkos dobro poznatoj činjenici da mehanička sila koja deluje na kost utiče i 

na promene koje se događaju u mikroarhitekturi kosti.  



U stručnoj literaturi široko je prihvaćena činjenica da se kost strukturno prilagođava 

promenama u njenom biomehaničkom okruženju.  Međutim, uprkos brojnim studijama 

koje sugerišu da se morfologija kosti menja u skladu sa mehaničkom silom koja deluje 

na nju, kao i da kost ima sposobnost remodelovanja, ne postoji sveobuhvatna studija 

koja se bavi ovom problematikom na mestu enteza.  

Naročito, za sada ostaje nepoznato da li različit morfološki izgled na mestu mišićnog 

pripoja korelira sa mikrostrukturnim promenama koje se događaju u kosti na tom mestu. 

Hipoteze: Naše hipoteze su bile da morfološke promene kostiju na mestu pripoja mišića 

prate sveobuhvatan obrazac adaptacije kosti na različitu mehaničku silu; zatim, da 

makromorfološke promene na mestu pripoja mišića prate mikroarhitekturne promene u 

kosti na mestu pripoja; kao i da različit morfološki izgled mesta pripoja mišića je 

direktna posledica različite mišićne aktivnosti, i zbog toga nam može pomoći u 

rekonstrukciji svakodnevnih fizičkih aktivnosti arheoloških populacija. 

Meterijal i metod: Skeletni materijal koji je korišćen u ovoj studiji potiče sa četiri 

srednjovekovne nekropole: Pionirska ulica i Čik u Bečeju, Sirmium u Sremskoj 

mitrovici i Vinča nadomak Beograda. Na osnovu objavljenih arheoloških podataka 

Pionirska ulica i Čik su srednjovekovne avarske nekropole konjanika, dok je na 

srednjovekovnim nekropolama u Sirmijumu i Vinči sahranjena uglanom zemljoradnička 

populacija. Antropološka analiza skeltnih ostataka, kao i analiza markera stresa 

obavljena je u Laboratoriji za antropologiju Instituta za anatomiju Medicinskog 

fakulteta u Beogradu. Antropološka analiza podrazumevala je odredjivanje pola i 

starosti individua u momentu smrti, palopatološku analizu, kao i analizu dentalnog 

statusa individue. Paleopatološka analiza podrazumevala je makroskopsku i radiološku 

analizu potencijalnih patoloških promena. Kada govorimo o makroskopskoj analizi 

markera stresa posmatrali smo 19 mišićnih pripoja na gornjim i donjim ekstremitetima u 

skladu sa preporukama Villotta (2006, 2010). Mikrostrukturalna analiza enteza 

obavljena u Laboratoriji za antropologiju Instituta za anatomiju Medicinskog fakulteta u 

Beogradu, i na Institutu za osteologiju i biomehaniku u Hamburgu. Sečenje i priprema 

koštanih uzoraka obavljena je spororotirajućom medicinskom testerom. Uzorci su 

skenirani primenom mikrokompjuterizovane tomografije (micro-CT: Scanco Medical 

µCT 40, Switzerland i SkyScan µCT 1172, Bruker, Belgium) sa izotropnom 



rezolucijom od 10 µm. Mikroarhitektonske karakteristike kortikalne i trabekularne kosti 

evaluirane su korišćenjem automatskog mikro-CT programa za evaluaciju i 3D 

rekonstrukciju. Za statističku obradu podataka u slučaju  procene normalnosti raspodele 

podataka primenjen je Kolmogorov-Smirnov test. U zavisnosti od dobijenog rezultata, 

primenjeni su parametarski, odnosno neparametarski statistički testovi.  Pirsonov hi-

kvadrat test korišćen je za poređenje neparametarskih podataka između različitih  grupa. 

Odnos između dobijenih parametarskih podataka i godina individua testiran je 

korišćenjem Pirsonovom ili Spirmanovom korelacijom u zavisnosti od raspodele 

dobijenih podataka. Odnos između makroskopskih faza (faza ili lokacija označena kao 

zavisna varijabla) i mikroarhitektonskih karakteristika (nezavisna varijabla) kostiju 

testiran je primenom analize varijanse (ANOVA) za parametarske podatke ili primenom 

Kruskal–Wallis testa za neparametarske podatke. Dvosmerna analiza kovarijanse 

primenjena je prilikom računanja povezanosti između različitih kortikalnih i 

trabekularnih mikroarhitektonskih parametara u svakoj makroskopskoj fazi. 

Statističke analize su sprovedene u programu SPSS, verzija 15, za Windows operativni 

sistem. Sve analize su sprovedene na nivou značajnosti od 0,05. 

Rezultati i zaključci: Sa pretpostavkom da mehanička sila koju mišić ili tetiva proizvode 

prouzrokuju promene na makro i mikro planu u zoni enteze ova studija je analizirala 

makro-morfološke i mikro-arhitektonske karakteristike kosti na mestu pripoja mišića. 

Naši rezultati sugerišu da je fizička aktivnost kod konjanika, u slučaju gornjih 

ekstremiteta, bila uglavnom konzistentna tj. kada jedna aktivnost počne da se koristi u 

mlađem starosnom dobu nastavlja se sa istom i u starijim starosnim dobima na veoma 

sličan način. Međutim, kada govorimo o mišićnim pripojima na donjim ekstremitetima 

uočava se intenzivnija upotreba u mlađim u odnosu na starija starosna doba. Kod 

pripadnika zemljoradničke populacije entezalne promene su daleko izraženije kod 

starijih individua. Kada govorimo o podeli rada koja je bazirana na polnim razlikama, 

naši rezultati sugerišu da su enezalne promene na donjim ekstremitetima konjanika 

specifičnije za muski pol, dok su u grupi zemljoradnika muškarci imali izraženije 

mišićne pripoje i kod gornjih i kod donjih ekstremiteta. Značajna statistička razlika 

između morfološkog izgleda mišićnih pripoja kod konjanika i  zemljoradnika sugeriše 

da su konjanici u odnosu na zemljoradnike imali izraženije mišićne pripoje gornjih 

ekstremiteta, dok je u slučaju donjih ekstremiteta signifikantna razlika uočena u slučaju 



mišića koji imponuju jahanju. Dalje, poredeći entezalne promene i mikroarhitekturu na 

mestu mišićnog pripoja istraživali smo moguću sukcesivnu prirodu široko 

primenjivanog trostepenog skoring sistema. Ustanovili smo da je korelacija između 

stepena izraženosti mišićih pripoja i mikrostrukturnih promena na mestu pripoja 

izostala, kao i da procena makromorfoloskog izgleda u skladu sa preporučenom 

metodologijom najverovatnije ne prati sukcesivne faze u procesu adaptacije kosti na 

dejstvo mehaničke sile. Analiza mikrostrukture u okviru “proliferative” i “resorptivne” 

faze entezalnih promena pokazala je da možemo razlikovati dva razvojna smera 

entezalnih promena.  

Iako se enteze do sada zauzele značajno mesto u antropološkoj i medicinskoj literaturi, 

ipak još uvek ostaje nekoloko nerešenih pitanja. Posebno je važno napomenuti da je 

povezanost imeđu morfoloških promena na mestu pripoja mišića koje nastaju kao 

posledica mišićne aktivnosti i mikrostrukturne promene koje se na mestu pripoja 

događaju kao odgovor na dejstvo mehaničke sile, još uvek nejasna.  

  

Ključne reči: mišićni pripoj, enteze, entezalne promene, mikro-CT, fizička aktivnost,  

konjanici  

 

NAUČNA OBLAST: MEDICINA – Biologija skeleta. 
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1. INTRODUCTION 

The term “enthesis” is usually used to mark the sites of attachment of muscles, 

ligaments and joint capsules on bones, although some authors consider “enthesis” only 

as the site of muscle attachment (1). It is also called an insertion site, osteotendinous or 

osteoligamentous junction (2). Benjamin and McGonagle (2001) established the term 

‘enthesis organ’ to define a collection of structures adjacent to, and associated with, the 

enthesis itself, that help to reduce stress concentration at the attachment site  (3). They 

also introduced the term ‘functional enthesis’ to describe the wrap-around regions of 

tendons or ligaments (4). Functionally, entheses provide strong and stable anchorages 

that promote musculoskeletal movement with concomitant joint integrity. However, 

they must serve as more than simple anchors because, in linking soft to hard tissue, 

entheses also need to minimise the risk of damage in the face of high levels of 

mechanical loading, by allowing the smooth transfer of force between soft and hard 

tissue (2, 5, 6).  

In medicine, entheses are of particular concern to orthopaedic surgeons because of the 

need to re-attach a tendon or a ligament to a bone. Injury and damage to connective 

tissues, specifically to tendons and ligaments are common conditions in orthopaedics 

and often require operative intervention. It is uniquely challenging to recreate the 

natural smooth transfer of load from a tendon/ligament to a bone that simulates the 

healthy, original attachment site (7). A variety of surgical techniques have been 

pioneered that attempt to do so, but most simply involve stapling the tendon/ligament to 

the bone (2).These procedures are often associated with high failure rates and, 

consequently, require revision procedures. The management of tendinous injuries and 

the reconstruction of the insertion site is becoming a popular topic in the field of 

orthopaedic medicine. 

Skeletal attachment sites have also long been of interest to bio-anthropologists and 

archaeologists in relation to physical activity. It has been widely accepted in 

anthropological literature that habitual physical activities of past populations can be 

reconstructed based on musculoskeletal markers in human skeletal remains, i.e., 

particular morphological features of muscles attachment sites (8-13). Osteological 

studies are based exclusively on the fact that it is sometimes possible to ‘read’ dried 
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bones in a macerated skeleton with the assumption that greater physical activity (e.g. 

when comparing males to females) is reflected by different enthesis markings. The 

constant stressing of a muscle during daily repetitive tasks of various types, gives bio-

anthropologists and archaeologist skeletal marks which reflect habitual activity patterns 

and this has contributed to the understanding of a wide range of issues related to ancient 

populations. The evaluation of the so called "Musculoskeletal Stress Markers" (MSM) 

was suggested for the identification of gross workload patterns, which could be used in 

the interpretation of division of labour on a gender or social basis (14, 15). For instance, 

studying health changes at the Dickson Mounds population, Goodman et al. (1984) 

suggested an increase in physical stress with the adoption of agriculture and a sex-

dependent pattern of physical stress. Similarly, through analysis of MSMs of the upper 

limb, it was reported that physical stress increased with the adoption of agriculture, as 

the mean MSM scores were higher in the Neolithic populations compared to the 

Natufian in Levant (9). Based on social character and sexual dimorphism, Havelkova et 

al. (2011) investigated the prevalence of enthesopathies among individuals living in 

different everyday environments in the early medieval Great Moravian population. 

Authors found significant differences in the occurrence of enthesopathies between the 

population who lived in the castle zone and those who lived in the hinterland (12). In 

their most recent paper, Villotte and Knüsel (2014) presented the results of an analysis 

of enthesopathies of the elbow in three time-successive population samples which 

comprised the prehistoric, pre-industrial historic, and modern European eras. The 

authors postulated the existence of a persistent sexual division of labour in these 

European populations involving one or several strenuous activities linked to unilateral 

limb use (13). Regardless of the fact that habitual physical activities or stress patterns of 

past populations are frequently reconstructed based on musculoskeletal markers (MSM), 

there is no direct experimental evidence for the relationship between muscular activity 

and particular macroscopic entheseal scores, although a number of studies have reported 

the relationship between bone micro architecture and loading patterns in various skeletal 

sites, excluding entheses (16-19). Nevertheless, an experimental study on an animal 

model showed no significant effect of exercise treatment on enthesis morphology (20). 

Niinimaki (21) analysed the effects of physical activity on bone structural adaptations 

by studying the relationship between MSM and the cross-sectional geometry of humeral 
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diaphysis  (average bending rigidity). She distinguished that covariance between the 

polar second moment of area and MSM exists at cross-sectional locations under muscle 

insertions as well as at more distant locations. These results demonstrate both the direct 

and general effects of muscular loadings applied to diaphyses. Furthermore, Hirschberg 

(2005) provided a profound study investigating the biomechanical basis for the 

development of a tubercle or a pit at the position of the muscle attachment site.   

1.1 Historical Note on Terminology  

The earliest origin of the word ‘enthesis’ is unclear. However, Khan (2002) considers 

that the word is derived from the adjective enthetic. According to the Greek roots of this 

adjective, this means ‘fit for implanting’. Also, he states that the term enthetic was 

initially used in the l9th century to refer to diseases which had been inoculated or 

entrenched into a human body from some external source (e. g. infections). During the 

following century, the use of the adjective reduced, so the noun enthesis was used as a 

synonym of artificial materials used to repair a defect (2). Given that the term enthesis 

was initially used to determine some phenomenon other than a muscle attachment site, it 

is clear that an enthesis has much more recently come to mean the site where a tendon 

or ligament attaches to a bone. Such a meaning originated in rheumatology, but the 

usage is now common and has spread to many other branches of medicine and 

anthropology. One of the very first descriptions of musculoskeletal attachment sites was 

given by Dolgo-Saburoff (1929) (2). He described the anatomy of a cat’s patellar 

ligament and its multilayered appearance (2). In 1959, G. La Cava used the term 

"enthesis" in order to create the notion of "enthesitis". His term "enthesitis" was 

designed to denote inflammation of tendon attachments onto bones. Subsequently, in 

the 1970s, authors proposed using the word "enthesis" to designate the area where a 

tendon, a capsule or a ligament attaches to a bone and "enthesopathy" to indicate any 

pathological changes of this structure (22).  

In bio-anthropology, as researchers have begun a more intensive engagement in the 

study of these types of morphological features, a variety of terms have been proposed 

and used. In 1986, Dutour suggested the term enthesopathies, Robb (1998), muscle 

markings, while muscle crests was proposed by Angel et al. (1987). However, the most 

well known and widely used terminology was provided by Hawkey and Merbs’ 
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publication (1995), in which they proposed the term Musculoskeletal Stress Markers 

(MSM) (23-26).  Terms such as “Evidence for Occupation”, “Skeletal Markers of 

Occupational Stress” and “Activity-Induced Stress Markers” were also in use until the 

mid-nineties (22). Although it is inherently imprecise and in some ways misleading, the 

use of the terminologically referent “MSM” has increased in popularity over time. 

However, the most unsuitable aspect of the MSM terminology is that it presupposes the 

involvement of a primary etiological agent. The terminological problem has become 

increasingly common with the more comprehensive reassessment of entheseal changes. 

Thus, it is suggested that, while simple, popular, and easily remembered, the “MSM” 

terminology be replaced with something that is both less biased and more accurately 

descriptive. Research into several terms was carried out using ScienceDirect (from 

September 25, 2009) (22). However, among researchers the prevailing opinion is that 

for terminology which could be used for both pathological and non-pathological cases, 

"entheseal change" or "entheseal changes" appear to be the most neutral. The term 

entheseal changes (EC) does not actually imply a causal agent (stress, for instance), a 

specific nature (e.g. degenerative) or a specific aspect (entheseal new bone formation) 

(22). Also, researchers have unanimously agreed (International Journal of 

Osteoarchaeology, special issue for 2013) that entheseal changes abbreviated as EC 

instead of musculoskeletal markers abbreviated as MSM should be used, as this change 

in terminology is accompanied by a changed perception of the causal factors behind 

entheseal changes.  

1.2 Anatomical background 

1.2.1 A brief overview of entheseal types 

According to the characteristics of the tissue at the point where tendons and ligaments 

meet bone, entheses may be classified into two main groups: fibrous and 

fibrocartilaginous entheses (5, 27). Although the division between fibrous and 

fibrocartilaginous entheses seems clear enough, some additional considerations 

regarding their apparent distinctiveness have been made. Consequently, Villotte et al. 

(2013) strongly suggest that changes in the two main types of enthesis do not indicate 

the same phenomena, and it is to be expected that biological anthropologists will no 

longer combine them in a single study (28). It should be noted that some attachments 
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are actually ‘mixed’ (28). For instance, the majority of the entheses of the masticatory 

muscles are of this type. Thus, the insertion of the m. masseter is partly periosteal, 

partly osseous and partly fibrocartilaginous (28, 29). In a fibrocartilaginous enthesis, the 

periphery may have little or no fibrocartilage (5, 27). Also, fibrocartilage may exist in a 

small amount at a fibrous enthesis, particularly on the metaphysic, an example of which 

is the m. pectoralis major insertion on the humerus (5, 27). Finally, the example of the 

fibrocartilaginous attachment site of the m. iliopsoas located on the lesser trochanter 

shows that the most distal part of this insertion, at the junction between the lesser 

trochanter and the femoral shaft, may correspond to the variety of fibrous insertions of 

the m. iliacus and, as a consequence, this region is highly variable (28). However, the 

distinction between enthesis into fibrous and fibrocartilaginous entheses is widely 

accepted and well established in the literature. 

1.2.1.1 Fibrous enthesis 

In contrast to fibrocartilaginous attachments, anatomical and histological descriptions 

for fibrous entheses are particularly rare. They attach soft tissues to bone directly or via 

a mediating layer of periosteum (5) (Fig. 1). Therefore, fibrous entheses may be 

subdivided into two categories: periosteal and bony where there is no intervening layer 

of cartilage between the tendon and bone surface (5, 27). In periosteal fibrous entheses 

the tendon attaches to the periosteum, which consequently indirectly attaches the tendon 

to the bone. In bony fibrous entheses the periosteum is absent and the tendon inserts 

directly into the bone itself. In some ways it could be suitable to classify these fibrous 

attachments as ‘indirect’(periosteal) and ‘direct’ (bony), respectively (5). The division 

of fibrous entheses into these two subcategories based on the tissue type in the 

interspaces seems to remain inconsistent. Evidently,  a periosteal fibrous enthesis can 

become a bony one with age, as the periosteum disappears from the attachment site with 

skeletal maturity (30). However, some fibrous entheses continue to be periosteal 

throughout life (5). Anchorage at a point of fibrous entheses is achieved through 

collagen fibres, the so called “Sharpey’s fibres” comprising periosteum, tendon or 

ligament, which are embedded into the bone (31). At fibrous entheses, blood vessels 

from the tendon or the ligament may anastomose with those of the bone (28). In medical 

and bio-anthropological literature, even though they are associated with some of the 

largest and most powerful muscles in the human body (the deltoid muscle or some large  
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Figure 1. Histological picture of fibrous (attachment site of m. adductor magnus) and fibrocartilaginous 

(attachment site of m. iliopsoas)  enthesis: a) Hematoxilin impregnation, scale bare 200 µm (B-bone; CF-

fibrocartilage; T-tidemark; UF-uncalcified fibrocartilage; TD-tendon), b) Masson's trichrome 

impregnation, scale bare 50 µm (B-bone; CF-fibrocartilage; T-tidemark; UF-uncalcified fibrocartilage; 

TD-tendon), c) Silver impregnation, scale bare 50 µm (B-bone; CF-fibrocartilage; T-tidemark; UF-

uncalcified fibrocartilage; TD-tendon), d) Hematoxilin impregnation, scale bare 100 µm (B-bone; TD-

tendon), e) Masson's trichrome impregnation, scale bare 100 µm (B-bone; TD-tendon), f) Silver 

impregnation, scale bare 50 µm (B-bone; TD-tendon). 
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muscles that are attached to the linea aspera of the femur), relatively little attention has 

been paid to fibrous entheses (5, 27, 28). This partly reflects a clinical bias toward 

fibrocartilaginous entheses which represent tissue more vulnerable to overuse injuries. 

Also, the attraction of working with the richer variety of tissues that fibrocartilaginous 

entheses can offer shouldn’t be neglected (5). One should, however, note that when a 

tendon is surgically reattached to the bone, the newly formed enthesis is initially fibrous 

even though fibrocartilage may finally be re-formed (5, 32, 33). 

The enthesis is usually fibrous at the diaphyses of long bones and on the vertebral 

column, generally at those points where there are substantial quantities of compact 

cortical bone (5, 28). Areas of fibrous entheses are often far more extensive than 

fibrocartilaginous attachments and the boundaries of fibrous attachment sites are less 

well defined. Where periosteal fibrous entheses predominate, markings on bones are 

mostly smooth (29). Bony fibrous attachments are those which are associated with 

raised ridges, or a definite roughening of the bone (e.g. the deltoid tuberosity on the 

humerus or the inferior temporal line) (5) (Fig. 2). 

 

1.2.1.2 Fibrocartilaginous entheses 

A fibrocartilaginous enthesis shows a gradual shift from tendinous to bony tissue and is 

organised histologically in four zones with different cellular and extracellular 

Figure 2. The deltoid tuberosity on the 

humerus. 
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properties: dense fibrous connective tissue, uncalcified fibrocartilage, calcified 

fibrocartilage and bone (5) (Fig. 1). At the point of fibrocartilaginous attachment sites 

there is no periosteum, although, for instance in rats, some tendons that develop to have 

fibrocartilaginous entheses in adulthood attach to the perichondrium in early 

development (34). Fibrocartilaginous entheses occur close to the joints of the long 

bones, but also on short bones and some parts of vertebrae (28).  The zones of 

uncalcified fibrocartilage and calcified fibrocartilage are avascular  and are separated 

from each other by a basophilic line called the tidemark which represents a calcification 

front (5). The tidemark is practically the mechanical boundary between soft and hard 

tissues and the widespread view of its significance is largely based on observations of 

comparable tidemark zones in articular cartilage (5). The tidemark is relatively 

rectilinear, suggesting that the mineralisation process generally produces a flat surface 

and is not crossed by blood vessels (28).  This is clearly important for minimising the 

risk of damage to the soft tissues at any enthesis where tendons change their insertional 

angle with joint movement. In contrast to the tidemark, the junction between the 

calcified fibrocartilage and subchondral bone is highly irregular (5). The collagen fibres 

of the tendon continue across the tidemark, as they change from uncalcified 

fibrocartilage to calcified fibrocartilage. The fibres generally cross the tidemark at right 

angles. If the enthesis is immediately adjacent to an articular cartilage, the tidemark is 

continuous across both (27). In some cases the tidemark may be duplicated. This has 

been interpreted in articular cartilage as a consequence of ‘start-stop’ phases of 

calcification (5).  

It is not complicated to decide whether a particular type of bony imprint strongly 

suggests a fibrocartilaginous enthesis. As the tidemark represents the point at which soft 

tissues are removed during maceration and is relatively straight with the fibrocartilage 

zones avascular, the site of attachment in a healthy enthesis should be smooth, well 

circumscribed and devoid of vascular foramina (e.g. as in the markings left by the 

supraspinatus, popliteus and Achilles tendons) (27) (Fig. 3). 
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1.2.2 The concept of an ‘enthesis organ’  

Numerous authors have discussed the boundaries of the concept of enthesis (for 

fibrocartilaginous attachments), and all agree that it cannot be reduced to the attachment 

of a tendon or ligament. Benjamin et al. (2002, 2004) formalised this idea defining the 

concept of ‘enthesis organ’ with the aim to denote a collection of structures adjacent to 

the attachment site itself, which are functionally associated with the enthesis and which 

also play an important part in reducing stress concentration at the soft hard tissue 

interface (4, 5). The idea that there is more to an enthesis than just the attachment site 

itself appears to have been first considered by Niepel and Sit’aj (1979) (35), however, 

it’s full attention in literature was obtained over a quarter of a century later.  

Many entheses have bursae and fat near the insertion site and both of these serve to 

promote frictionless movement. Collectively, the fibrocartilages, bursa, fat pad and the 

enthesis itself constitute the enthesis organ. The archetypal enthesis organ is that of the 

Achilles tendon, where intermittent contact between tendon and bone immediately 

proximal to the enthesis leads to the formation of fibrocartilages on the deep surface of 

the tendon and on the opposing calcaneal tuberosity, but similar functional 

modifications are widespread throughout the skeleton (36). The concept of an enthesis 

organ is of general significance in understanding attachment sites and may explain the 

Figure 3. Attachment site of musculus 

supraspinatus. 
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diverse pathological changes, including synovitis, bursitis, and extracapsular changes, 

seen adjacent to tendon/ligament entheses in spondylarthropathies (4).  

1.3 Entheseal changes through life: the effects of sex, age and hormones  

Although in anthropological and archaeological literature skeletal changes associated 

with different life styles in past populations are considered to be an important source of 

knowledge, there are several limitations to studies of entheseal changes as occupational 

stress markers. One should not ignore the fact that the position of musculoskeletal 

attachment sites is a multi-factorial zone where conditions are modifiable depending on 

various circumstances. Throughout literature scholars have mainly analysed the 

influence of different confounding factors, such as age, sex and body size, on different 

morphological expressions of muscle attachments sites (26, 37-39). During aging, bones 

gradually become thinner and weaker both in men and women. Bone resorption on the 

endocortical, intracortical, and trabecular surfaces reduces the amount of bone, while 

simultaneously periosteal bone formation partly offsets the removal of bone on the inner 

surface. The absolute and relative movement of the periosteal and endosteal surfaces 

produced by bone formation and bone resorption during growth and aging determine the 

size, mass, geometry and architecture of the skeleton, as well as its strength (40). The 

net loss of bone changes through life because of numerous factors such as periosteal 

apposition, subendocortical resorption, cortical porosity, and trabecular volumetric bone 

mineral density (41). For instance, the net loss of bone is lower in men than in women 

because periostal apposition is greater in men (42). Also, the process of bone turnover is 

increased in menopausal women as well as during pregnancy, when sex hormone levels 

are significantly changed (43-45). Changes in the qualitative patterns of the bones 

during aging have a great influence on the bone transformation at the point of an 

entheses. Therefore, one should keep in mind that even though numerous authors 

reported more pronounced EC in the elderly, this cannot be exclusively caused by long-

term use of muscle.  

Other hormonal disorders could affect bone turnover, such as changes in the levels of 

parathormone (PTH). For instance, in this milder form of the primary 

hyperparathyroidism, bone density is typically reduced with a proclivity for the greatest 

reduction at the 1/3 radius, a site of cortical bone. The lumbar spine, a site comprised 
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predominantly of cancellous bone, tends to be preserved and similar to age-matched 

control subjects (46). 

1.4 Enthesopathies 

Entheses are vulnerable to overuse injuries and these present as a number of poorly 

understood, pathological changes that are collectively referred to as enthesopathies. Any 

such injury can have a significant impact on the lifestyle of the general population and 

on the ability of athletes to pursue their sport.  

Enthesopathies consist both of degenerative-reparative phenomena (fibro-ostosis) and 

inflammatory reactions (fibro-ostitis) (47). Both processes can lead to hyperostosis with 

spur formation, as well as to osseous resorption. The corresponding osseous changes in 

the spine are referred to as syndesmophytes and parasyndesmophytes. Fibro-ostosis is a 

traumatic or degenerative enthesopathy (47). It also occurs with sclerosis and 

acromegaly. An especially extensive manifestation is diffuse idiopathic skeletal 

hyperostosis (DISH). Pathologic findings, clinical presentation, and imaging features 

depend on the duration, location, and extent of the change. Repetitive trauma also 

causes changes on entheseal sites including 'inflammatory' tissue reactions with 

lymphocytic infiltration, edema, and resorptive changes in the bone. This can progress 

to calcifications and cystic bone defects. The typical location of these types of 

enthesopathies are calcaneus (posterior and plantar calcaneal spur), greater trochanler, 

ischial tuberusity, olecranon, and iliac crest, whilst other locations are less common 

(47). In the second type of enthesopathy –fibro-ostitis, two forms are distinguished: 

productive fibro-ostitis (new bone formation), and rarefying fibro-ostitis (inflammatory 

insertion erosions). Fibro-ostitis is a sign of inflammatory joint disease, especially 

common in psoriatic arthritis, Reiter syndrome and ankylosing spondylitis (47).  

In physical anthropology, enthesopathies are often considered as ‘‘musculoskeletal 

stress markers’’, and are assumed to reflect the activity of the attaching musculature 

(11, 12, 48). However, as enthesopathy surely includes a pathologically altered 

condition, can we still consider them as ‘‘musculoskeletal stress markers’’? Even if it is 

assumed that some enthesopathies could be caused by extreme or repeated muscles use, 

the further development of this state can be conditioned by various circumstances. For 

instance, the trauma of the bone of one side limb (e.g. femur) will probably cause a 
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forced use of the other limb. Therefore, scholars should evaluate all issues related with 

one individual skeleton before an analysis of the morphological appearance of the EC. 

1.5 Brief methodological introduction 

Understanding the particulars of people’s daily lives is a key goal of bio-anthropological 

and archaeological research. As part of this, the reconstruction of habitual physical 

activities through entheseal changes (EC) has been widely undertaken in the last 20 

years or so. In order to investigate the physical activities of a past population, EC 

studies have been the most commonly used method. Most EC studies have been 

performed on archaeological skeletal samples (23, 26, 49-51) as well as those 

undertaken on skeletons of individuals with known occupational backgrounds, but most 

have focused on developing and testing methods (10, 48). The studies based on samples 

with a known occupational history are of vital importance in determining whether the 

interpretations of EC are valid. The studies aimed at searching for the most effective 

methodological approach were mainly focused on visual scoring methods based on the 

macromorphological features of the attachment surface (1, 24, 26, 48). However, Villote 

(11) noted that all these scoring methods are prone to methodological shortcomings due 

to the neglect of novel data regarding histological types and the organisation of 

entheses. As such, according to the characteristics of the tissue at the bone-tendon 

interface, tendon entheses may be classified into two groups: fibrous and 

fibrocartilaginous entheses (5). Taking into account these facts, Villotte recommended a 

visual scoring system for both types of entheses, fibrous and fibrocartilaginous (10, 11, 

52).  

Such studies frequently considered several morphological grades (phases, stages) of 

muscle attachment sites, suggesting that macroscopically more pronounced muscular 

insertions (higher scores, stages) reflect increased activity of the associated muscles (1, 

10, 24, 26, 48, 52). However, macroscopic scoring systems were not validated against 

absolute muscle activities, and there is no direct data indicating that different 

macroscopic “stages” (scores) are really the successive/temporal stages in the process of 

activity related enthesis development.  

Previous anthropological studies of ECs focused only on the macroscopic appearance of 

entheses and, hitherto, it has been unclear whether different morphological expressions 
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of muscle attachment sites correlate with the microstructural characteristics of the bone. 

Consequently, it would appear important to note whether the interpretation of widely 

used macroscopic scores of EC can be deemed reliable. Therefore, one of the goals of 

this current thesis is to analyse bone microstructural characteristics at the muscle 

attachment sites and correlate these features with EC macroscopic scores. It was 

speculated that a microstructural assessment of entheses may contribute to 

understanding the biomechanical relevance of entheseal gross morphology and further 

clarify the role of the ECs’ morphology in the interpretation of habitual physical 

activities of past populations.  

The investigation of macromorphological and microstructural patterns of entheses in 

this study was based on research hypotheses that the bone morphological changes of 

muscle attachment sites follow the overall bone adaptation to different mechanical 

loadings. Also, macroscopic changes of the bone on the muscle attachment site correlate 

with microarchitectural changes in the underlying bone. It was assumed that the 

different morphological appearances of the muscle attachment sites in human skeletal 

remains are the consequence of different muscle activities and, therefore, could be 

helpful in the reconstruction of the habitual physical activities of past populations. 
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2. RESEARCH GOALS 

In order to investigate bone macromorphology at muscle attachment sites and its 

relationship with the microarchitecture of the underlying bone the specific aims of the 

current thesis are:  

1) To observe whether the macroscopic morphological appearance of EC is related 

to the age and sex of individuals in the investigated archaeological population. 

2) To investigate whether different habitual activities influence the morphology of 

the muscle attachment sites by comparing the macroscopic morphological appearance of 

EC of the medieval Avarian population of horse riders and the agricultural population of 

medieval Vinca.   

3) To examine if the  macroscopic changes of the bone on the muscle attachment 

site correlate with microarchitectural changes in the underlying bone through analysis of 

the structure of four selected entheseal sites on lower extremities.  

4) To investigate the possible successive nature of the widely used three-stage 

scoring system of entheseal macroscopic changes, by comparing EC scores with the 

microarchitectural features at the musculoskeletal attachment sites. 

5) To investigate whether different attachment sites demonstrate different patterns 

of morphological changes at a macroscopic and microscopic level. 
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3. MATERIAL AND METHODS 

3.1 Study sample 

The skeletal material used in this study derives from four medieval cemeteries: 

Pionirska Ulica and Čik in Bečej, Vinča near Belgrade and Sirmium (site No 85) in 

Sremska Mitrovica (Fig. 4). The published archaeological reports indicate that the sites 

of Pionirska Ulica and Čik are Medieval Avarian populations of horse riders (53, 54) 

while the medieval cemeteries of Vinča and Sirmium (site No 85) consist of an 

agricultural population (55)1.  

 

Figure 4. Location of the archaeological sites. 

                                                      
1 Information related to the medieval necropolis of Vinča was obtained from a personal comunication 
with Prof. Dr Nenad Tasic, Department of Archaeology, Faculty of Philosophy at the University of 
Belgrade.        
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3.1.1 Pionirska Ulica sample 

Pionirska Ulica is an archaeological site located on the southern periphery of the city of 

Bečej, within the city zone. Archaeological excavations were conducted on three 

occasions 1979, 1988 and 2003.  Excavations were led by the Bečej City Museum. The 

necropolis of Pionirska Ulica is dated between the 6th and 8th century (53). 

3.1.2 Čik sample 

The archaeological site of Čik lies between two roads in the area of Bačko Petrovo Selo, 

on a hill beside a stream that bears the same name. The village of Bačko Petrovo Selo is 

situated at the point where the Čik rivulet flows into the Tisza River, in the far eastern 

part of Bačka, northern Serbia. This area represents an excellent example of a place that 

served as a settlement during several prehistoric and historic periods (54). Systematic 

archaeological excavations were conducted from 1968 to 1972 by the Provincial 

Cultural Heritage Preservation Institute in Novi Sad as well as the Department of 

Archaeology, Faculty of Philosophy (University of Belgrade) (54). The majority of this 

multifaceted site represents an Avar necropolis from a settlement which is dated 

between the 6th and 7th century (567-670 AD). During excavations in this locality, 134 

graves (118 Avar and 16 Sarmatian) were explored, under the supervision of Professor 

Jovan Kovačević (54). Although there were 16 Sarmatian graves in all (11.94% of the 

total number of explored graves on the site) in the Čik necropolis (54), for the purposes 

of this study only those graves identified as Avarian were considered.  

3.1.3 Vinča sample 

The archaeological site of Vinča is located in the village of Vinča, just a few miles from 

Belgrade, on the coastline of the Danube. This archaeological site is famous as being 

one of the largest prehistoric Neolithic settlements in Europe. The medieval necropolis 

of Vinča was first discovered in 1906 above the prehistoric settlement. The first 

systematic archaeological excavations were conducted in 1911 (56). Investigations have 

continued, with interruptions, until the present day. The human skeletal remains used in 

this study derive from the medieval necropolis excavated between 2011 and 2014. 

According to archaeological findings, this necropolis was dated to the period between 

the 11th and 14th centuries1. 
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3.1.4 Sirmium sample (Site No. 85) 

Site No. 85 is located at the corner of Vuk Karadžić and Saint Sava Street in the area of 

a demolished prison in the centre of Sremska Mitrovica, ancient Sirmium (Serbia). 

Systematic archaeological excavations have been conducted since 2002, by the Institute 

of Archaeology in Belgrade. On these occasions a part of the Sirmium imperial complex 

was explored, along with a Gepidian cultural layer from the 5th century and parts  of two 

medieval necropolises with skeletal burials between the 10th and 12th century and 

between the 13th and 16th century (55). 

The human osteological material used in this study is a part of a medieval necropolis 

from the 13th to 16th century and was excavated in 2015 (systematic archaeological 

excavations have been conducted by the Institute of Archaeology, Belgrade). In this 

territory, during the 13th century, a new medieval settlement of artisans and traders was 

formed and Sirmium was given a new name after the monastery dedicated to the town 

patron St. Demetrius – Civitas Sancti Demetrii (55). 

3.1.5 Sample selection 

During macromorphological and microstructural analyses, individuals showing 

pathological changes that could affect the results, such as DISH, osteoarthritis or other 

arthropathies involving vertebrae and the major joints of lower extremities were 

excluded. Additionally, no skeletal signs of hyperparathyroidism were found in the 

included individuals.   

To observe whether the macroscopic morphological appearance of EC is related to the 

age and sex of the individuals in the investigated archaeological population, as well as 

to investigate whether different habitual activities influence the morphology of the 

muscle attachment sites of the medieval Avarian population of horse riders and the 

agricultural populations of medieval Vinča and Sirmium, only adult individuals were 

selected. In further analyses the functional sample size was 82 individuals: 33 females 

and 49 males.  

With the aim to avoid the possible effects of hormonal status on bone structure during 

menopause and pregnancy (28, 43-45), only adult male skeletons were selected for 

microstructural analyses. Also, to avoid age and sex as confounders, women, children, 
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adolescents and elderly individuals were excluded, as were individuals showing 

pathological changes. 

In order to compare the relationship between the macroscopic scores of the entheses and 

their cortical and trabecular microstructural design and to investigate whether different 

attachment sites demonstrate different patterns of morphological changes at a 

microscopic level, four insertions on the femur and tibia were evaluated using the EC 

score visual reference system proposed by Villotte (2006) (10) for the fibrous and 

Villotte (2013) (52) for the fibrocartilaginous entheses (Fig. 5). The bone samples were 

taken from 24 male individuals with different macroscopic expression scores of EC: 8 

specimens with entheses scored as macroscopic stage A, 8 with stage B, and 8 with 

stage C. Also, given that the morphological expression of enthesis in stages B and C 

involves changes which mainly show signs of bone formation (stage B(a) and stage 

C(a)) as well as bone resorption (stage B(b); stage C(b)), in this part of the study only 

stages B(a) and C(a) were chosen, as they were expected to show the most 

straightforward relationship with microarchitecture. It was assumed that such sample 

homogeneity might provide a better and clearer standpoint for micro-CT analyses.    

The morphological expression of enthesis in stages B and C involved changes mainly 

showing either signs of “bony formation” (stage B(a) and stage C(a)) or “bony 

resorption” (stage B(b); stage C(b)). The micro-CT analyses of the gluteus maximus 

enthesis were performed with the aim of investigating the relationship between phases 

of bone formation and bone resorption and the microarchitectural design of entheses. 

According to the type of tissue at the attachment site of the gluteus maximus muscle, it 

belongs to the group of fibrous entheses (Fig. 6). This means that in the interspace 

between the tendon and the bone fibrous tissue dominates. 

Bone specimens from 16 femurs were included. For the purpose of micro-CT analyses 

of the gluteus maximus only adult males individuals were selected. A 

macromorphological analysis of those specimens was carried out using the EC score 

visual reference system proposed by Villotte for the fibrocartilaginous entheses (28). 
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It should be noted that, regardless of the possible influence of genetic and body mass as 

confounding factors, osseous modifications of fibrous types of entheses appears to be 

somewhat more complex than fibrocartilaginous when analysing entheseal structure as 

indicators of stress applied to the bone (11).    

Furthermore, an additional classification of the macroscopic entheseal morphology into 

two stages was used, i.e., the lesions scored as present/absent, according to recent 

recommendations (57). In this simplified classification, stage A represents an absence of 

any changes, while the combination of stages B and C, present another category where 

any type of change is present. 

 

Figure 5. Investigated muscle attachment 

sites: macroscopic entheseal stages: 

A - stage A (see classification in material and 

method section). 

B - stage B (see classification in material and 

method section). 

C - stage C (see classification in material and 

method section). 

a - insertion of gluteus maximus on 

gluteal tuberosity 

b - insertion of iliopsoas muscle on 

lesser trochanter 

c - insertion of adductor magnus 

muscle on tuberculum adductorium 

d - origin of soleus muscle on soleal 

line. 



 

20 
 

 

 

 

 

 

 

 

 

Figure 6. Histological picture of 

attachment site of m. gluteus maximus: 

a) Hematoxilin impregnation, scale bare 

50 µm (B-bone; TD-tendon),  

b) Masson's trichrome impregnation, 

scale bare 100 µm (B-bone; TD-tendon), 

c) Silver impregnation, scale bare 100 

µm (B-bone; TD-tendon). 
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3.2 Anthropological and paleopathological analysis  

The anthropological and paleopathological analysis of human skeletal remains was 

conducted in the Laboratory for Anthropology, Institute of Anatomy, School of 

Medicine, University of Belgrade. 

After archaeological excavation, the bones were washed and cleaned using moderately 

warm water and small dental instruments. 

For the purpose of this study, the anthropological analyses included an estimation of sex 

and age at the moment of death and a paleopathological examination.  

Since hip bones present the most reliable indicators of sex in the human skeleton (58), 

in this study sex determination was primarily based on the dimorphic features of the os 

coxae (59). An additional method for sex assessment in this study was based on cranial 

morphology and standard anthropological criteria were followed (59).  

The age assessment of adults was based on the morphological appearance of the pubic 

simphysis in accordance with the recommendations of the Suchey-Brooks (60) age 

scheme. However, the final estimation also included Iscan’s methods (61, 62) based on 

the appearance of the sternal end of the ribs, the cranial suture closure (63), dental wear 

(64) and degenerative changes of the skeletons.  

Finally, individual skeletons were distributed into seven age categories (65): 

Infans I – 0-7 (years) 

Infans II – 8-14 (years) 

Juvenilis – 15-22 (years) 

Adults – 23-39 (years) 

Maturus – 40-59 (years) 

Senilis I – 60-70 (years) 

Senilis II – over 70 years 
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Occlusal dental wear was scored by dividing cases into four categories, following the 

recommendations of Gustafson (1950) (64): 

1 – no attrition, 

2 – attrition within enamel, 

3 – attrition reaching dentin, and 

4 – attrition reaching pulp. 

Age at death estimation of non-adults followed standard osteological procedures based 

on the epiphyseal union method (66), diaphyseal length measurement (67, 68) and 

dental age estimation, based on macroscopic analyses of tooth eruption (69), as well as 

dental age estimation based on radiographic methods (70, 71).  

The skeletons were analysed for signs of bone disease, using diagnostic 

paleopathological procedures comprising gross examination and digital radiography. 

Gross examination was based on the macroscopic observation of each bone, including 

detailed written and photographic descriptions, while radiographs were taken in all 

cases where pathological changes were observed or suspected.  

3.3 Macrostructural analysis of entheses 

For the purpose of the macrostructural analysis of EC 19 muscle attachments (Table 1) 

on the upper and lower limbs, evaluations using the visual three stage scoring system 

proposed by Villotte (10, 52) were employed.  

On the upper limbs the following muscles were analysed: on the humerus,                             

the m. supscapularis, mm. supraspinatus and infraspinatus, m. pectoralis major, m. 

deltoideus, m. flexor carpi radialis, m. palmaris longus, m. flexor carpi ulnaris, m. flexor 

digitorum superficialis, m. extensor digitorum, m. extensor digiti minimi, m. extensor 

carpi ulnaris and m. supinator; on the radius, the m. biceps brachii and m. pronator 

teres; and on the ulna, the m. triceps brahii. On the lower limbs the following muscles 

were analysed: on the pelvic bones, the m. biceps femoris (Caput longum), m. 

semimembranosus and m. semitendinosus; on the femur, the m. gluteus minimus, m. 

gluteus medius, m. gluteus maximus, m. iliopsoas, m. adductor brevis, m. adductor 
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longus and m. adductor magnus; on the tibia m. soleus; on the patella, the m. quadriceps 

femoris and on the calcaneus, the m. triceps surae.  

3.3.1 Macrostructural analysis of fibrocartilaginous entheses 

For the fibrocartilaginous entheses the following EC expression scores were assigned, 

taking into account changes on the inner part of the attachment site as well as on the 

outer part of the entheses. On the inner part, three scores were defined: 0 – absent, 

attachment surface is regular without foramina or cysts; 1 – minor changes, this phase is 

divided into two sub-phases (a – the entire surface presents a slight irregularity, and b – 

less than half of the surface is affected by another type of change, such as bone 

production or erosion, etc); 2 – more than half of the surface is affected by major 

changes.  

On the outer part also, three scores are defined: 0 – absent, attachment site characterised 

with a regular margin; 1 – minor changes with a salient or irregular margin, and 2 – 

major changes, involving entheses with present enthesophytes. The final stages for the 

fibrocartilaginous entheses were obtained using the sum of the values for the inner and 

the outer part, representing the following stages: stage A = 0; stage B = 1 - 2; and stage 

C = 3 - 4 (52).  

3.3.2 Macrostructural analysis of fibrous entheses 

For the fibrous entheses, the following EC expression scores were assigned: A – surface 

is globally regular; B – (a) presence of significant irregularity in most of the insertion 

zone, absence of enthesophytes  and (b) presence of lacuna of cortical bone with length 

less than 20 mm; C – (a) presence of a significant irregularity in most of the insertion 

zone, presence of one large or several smaller reliefs distinguished from the insertion 

zone and (b) presence of lacuna of cortical bone with length greater than or equal to 20 

mm (10).  

3.4 Microstructural analyses of entheses 

3.4.1 Preparation of specimens 

After archaeological excavation, the bones were washed and cleaned using moderately 

warm water and small dental instruments. The bone samples were harvested using a 

slow rotating medical saw. The specimen size was adjusted to a size of 1 cm².  
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3.4.2 Micro-CT scanning procedure 

The microstructural analysis of entheses was carried out in the Laboratory for 

Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade and at 

the University Medical Centar Hamburg-Eppendorf. 

The specimens were scanned using micro-computed tomography (Scanco µCT 40, 

Scanco Medical, Switzerland and SkyScan µCT 1172, Bruker, Belgium). 

Each bone specimen was attached to a sample holder of the micro-CT with a consistent 

proximal-distal orientation and was scanned in dry conditions. The trabecular and 

cortical bone of the whole specimen was scanned using micro-computed tomography. 

Movement artifacts during scanning were prevented by fixing the specimens with foam 

inside the specimen holder. The micro-CT was operated at 55 kVp and 144 μA, with an 

isotropic resolution of 10 μm, 2048×2048 pixels per slice and a 200 ms integration time 

per projection. 

3.4.3 Micro-CT evaluation procedure 

The segmentation procedure comprised a manual marking of the contours of the region 

of interest (ROI) on various slices, and used the Morph function of the micro-CT 

program to interpolate the contours of all slices, and in such a way the volume of 

interest (VOI) was produced. In further analyses, the microarchitecture of the cortical 

and trabecular bone was evaluated automatically using the micro-CT evaluation 

program V6.5-1 with direct 3D morphometry.  

3.4.3.1 Trabecular microarchitectural parameters 

The microarchitectural parameters of cancellous bone included:  

- trabecular bone volume fraction (BV/TV, %) which represents the ratio of 

the bone volume (without voids) to the total volume of the region of interest 

(bone plus voids), 

- trabecular number (Tb.N, 1/mm) is a measure of the average number of 

trabeculae per unit length, 

- trabecular thickness (Tb.Th, mm) represents the mean thickness of 

trabeculae, assessed using direct 3D methods, 

- trabecular separation (Tb.Sp, mm) is the mean distance between trabeculae, 

assessed using direct 3D methods, 
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- structure model index (SMI) is an indicator of the shape of trabeculae; SMI 

will be close to 0 if parallel plates predominate and closer to 3 if cylindrical 

rods predominate, while negative values indicate a dominance of concave 

trabecular surfaces. It is worth noting that plate-like trabeculae develop in 

high stress regions while rod like trabeculae develop in low stress areas (72). 

- connectivity density (Conn.D, 1/mm3) is a measure of the degree of 

connectivity of trabeculae normalised by tissue volume, 

- degree of anisotropy (DA) describes the orientation of trabeculae, where 

lower values reflect an isotropic and higher values depict an anisotropic 

orientation of trabeculae (16, 73). 

3.4.3.2 Cortical microarchitectural parameters 

The following microarchitectural parameters were determined for cortical bone:  

- cortical bone volume per tissue volume (Ct.BV/TV, %) represents the ratio 

of the bone volume (without voids) to the total volume of the region of 

interest (bone plus voids), 

- cortical porosity (Ct.Po, %),  in a given cortical region represents the volume 

of pores (Po.V, mm3) divided by the total volume of the cortical bone 

compartment (Ct.V, mm3), 

- cortical pore diameter (Po.Dm, mm) represents the mean diameter of the 

cortical pores, assessed using direct 3D methods,  

- cortical pore separation (Po.Sp, mm) is the mean distance between the 

cortical pores, assessed using direct 3D methods, 

- mean cortical thickness (Ct.Th, mm), which represents the average cortical 

thickness at the enthesis, 

- minimum cortical thickness along enthesis (min Ct.Th, mm), 

- maximum cortical thickness along each enthesis (max Ct.Th, mm). 

3.5 Statistical analyses 

The Kolmogorov-Smirnov test was used to assess the normality of the data distribution 

of macromorphological and microstructural parameters.  

To observe whether the macroscopic morphological appearance of EC is related to age 

and sex, as well as whether different habitual activities influence the morphology of the 
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muscle attachment sites by comparing macroscopic morphological appearance of EC 

between the two investigated populations, the data acquired is categorical and ordinal. 

Accordingly, non-parametric tests were predominantly used for the statistical 

calculations. In order to compare the relationship between the different macroscopic 

appearances of enthesis and age groups, the Kruskal–Wallis test was performed. To 

investigate different macroscopic appearances of enthesis among all three age groups, 

the Mann–Whitney U test was applied. For post-hoc comparisons, the Bonferroni 

correction was applied. To analyse differences between EC scores and sexes, the Chi-

squared test was used. The Wilcoxon signed-rank test was applied to evaluate the 

relationship between the different macroscopic stages of the upper and lower limbs and 

the different sides. The Chi-squared test was used for the overall evaluation of the 

differences between the population groups. 

The relationship between the macroscopic stages (“stage” and “site” selected as factors) 

and the microscopic parameters (selected as “dependent variable”) was assessed using 

analysis of variance (ANOVA). For post-hoc inter-group comparisons, the Bonferroni 

correction was applied. The bivariate correlation analysis was performed to determine 

the association between the various cortical and trabecular microarchitectural 

parameters in each of the macroscopic stages.  

All statistical analyses were performed using SPSS for Windows, version 15. The null 

hypothesis was rejected at the level of α = 0.05. 
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4. RESULTS 

4.1 Macroscopic morphological analyses 

The macroscopic morphological analysis of the attachment sites encompassed 19 

entheses of the upper and lower limbs, both fibrous and fibrocartilaginous (Table 1). 

The current study analysed the different appearance of EC scores (A, B, C) for a total of 

82 individuals, of which 34 (41.5%) belonged to of the agricultural population and 48 

(58.5%) to the horse rider population.  

Table 1. Entheses under study. 

Limb Bones Entheses F FC 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis  + 

mm. supraspinatus and infraspinatus   + 

muscles attached on the epicondilus medialis humeri  + 

muscles attached on the epicondilus lateralis humeri  + 

m. pectoralis major  +  

m. deltoideus  +  

radius 
m. biceps brachii   + 

m. pronator teres +  

ulna m. triceps brachii   + 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
 + 

femur 

m. gluteus medius   + 

m. gluteus minimus   + 

m. ilio-psoas  + 

m. gluteus maximus  +  

muscles attached on the linea aspera +  

m. adductor magnus +  

tibia m. soleus  +  

patella m. quadriceps femoris  + 

calcaneus m. triceps surae   + 

F-fibrous entheses; FC-fibrocartilaginous entheses.  
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In the horse rider population, females were represented in 56.3% of cases, while males 

comprised 43.7% (Table 2). The senilis age category was the least frequent within the 

horse-rider sample (12.5%), while the adult and maturus age categories encompassed 

39.6% and 47.9%, respectively (Table 3).   

Table 2. Sex distribution among investigated sample. 

Sex 

Sample population 

Horse riders Agricultural 

N % N % 

Males 27 43.7 22 64.7 

Females 21 56.3 12 35.3 

Total 48 100 34 100 

 

Table 3. Distribution of age categories among investigated sample. 

Age group 

Investigated sample 

Horse riders Agricultural 

N % N % 

Adultus 19 39.6 21 61.8 

Maturus 23 47.9 10 29.4 

Senilis 6 12.5 3 8.8 

Total 48 100 34 100 

 

In the agricultural population, females were represented in approximately two thirds of 

cases (64.7%), while males comprised 35.3% (Table 2). The analyses of age distribution 

within the agricultural population sample demonstrated the following results: 61.8% of 

individuals belonged to the adult age category, 29.4% to matures, while only 8.8% 

belonged to the senilis age category (Table 3). 

In order to analyse the difference of the EC scores between the limbs of both sides, the 

Wilcoxon signed-rank test was performed. The results suggested that there is no 
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statistically significant difference between the sides, except in the case of the pectoralis 

major muscle (p=0.047), whose attachment was more pronounced on the right side.   

4.1.1 Relationship between age and EC scores 

The influence of age on the prevalence of the EC scores was studied in the sample of 82 

adult individuals of both sexes. The analysis was conducted on the horse riders as well 

as the agriculturals, separately. The evaluation of the age dependence of the EC scores 

included the limbs of both sides (pooled), with the exception of the pectoralis major 

muscle due to this muscle demonstrating a difference between the sides (p=0.047).   

The significant differences in the EC scores were verified between three age groups 

(Adult, Maturus and Senilis) within the whole sample. As expected, in the majority of 

cases the prevalence of EC scores was higher in individuals of a more advanced age.  

In the group of farmers the statistical analyses demonstrated the age dependence of the 

EC scores among the different age groups. The Kruskal-Wallis One-Way analysis of 

variance was applied to test the prevalence of EC scores between the three investigated 

age groups revealing an age dependence in only three attachment sites: mm. 

supraspinatus and infraspinatus (p=0.019), muscles attached on the epicondilus lateralis 

humeri (p=0.018) and m. gluteus maximus  (p=0.000) (Table 4). The more pronounced 

EC scores of the aforementioned enthesis were recorded in the older age groups. 
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Table 4. Prevalence of EC scores between the three investigated age groups for the 

agricultural population (Kruskal-Wallis One-Way analysis of variance) 

Limb Bones Entheses p 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis 0.637 

mm. supraspinatus and infraspinatus  0.019* 

muscles attached on the epicondilus medialis humeri 0.871 

muscles attached on the epicondilus lateralis humeri 0.018* 

m. deltoideus  0.291 

radius 
m. biceps brachii  0.227 

m. pronator teres 0.162 

ulna m. triceps brachii  0.566 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
0.230 

femur 

m. gluteus medius  0.224 

m. gluteus minimus  0.125 

m. ilio-psoas 0.497 

m. gluteus maximus  0.000* 

muscles attached on the linea aspera 0.176 

m. adductor magnus (tuberculum adductorium) 0.373 

tibia m. soleus  0.305 

patella M. quadriceps femorais 0.472 

calcaneus M. triceps surae  0.165 

* Statistically significant difference. 

In the horse rider population the Kruskal–Wallis One-Way analysis of variance 

demonstrated a significant difference in the EC scores among the age groups between 

the following attachment sites: m. subscapularis (p=0.046), mm. supraspinatus and 

infraspinatus (p=0.036), muscles attached to the epicondilus medialis humeri (p=0.010), 

m. pronator teres (p=0.012), m. soleus (p=0.021), and m. iliopsoas (p=0.029) (Table 5). 

Once again, as expected, the more pronounced EC scores were recorded in the older age 

groups for all attachment sites, except in the case of the iliopsoas muscle. Concerning 

the iliopsoas muscle, the prevalence of traits was predominant in younger ages. 
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Table 5. Prevalence of EC scores between the three investigated age groups for horse 

rider’s population (Kruskal-Wallis One-Way analysis of variance) 

Limb Bones Entheses p 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis 0.046* 

mm. supraspinatus and infraspinatus  0.036* 

muscles attached on the epicondilus medialis humeri 0.010* 

muscles attached on the epicondilus lateralis humeri 0.217 

m. deltoideus  0.332 

radius 
m. biceps brachii  0.138 

m. pronator teres 0.012* 

ulna m. triceps brachii 0.225 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
0.097 

femur 

m. gluteus medius  0.179 

m. gluteus minimus  0.224 

m. ilio-psoas 0.029* 

m. gluteus maximus  0.547 

muscles attached on the linea aspera 0.092 

m. adductor magnus (tuberculum aductorium)  0.399 

tibia m. soleus  0.021* 

patella m. quadriceps femoris  0.656 

calcaneus m. triceps surae 0.165 

* Statistically significant difference. 

4.1.2 Sexual dimorphism 

The differences in the prevalence of EC scores between the sexes of 82 individuals were 

studied separately in the agricultural population and the horse rider population. The 

evaluation of the sex dependence of the EC scores included the limbs of both sides 

(pooled), except the pectoralis major muscle due to this muscle demonstrating a 

difference between the sides (p=0.047).    
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Evaluating the individual morphological appearance of the attachment sites among the 

sexes in the group of the agricultural population, the difference was statistically 

significant only for two entheses. The area of the greater tubercle of the humerus 

(p=0.015) and the insertion of the iliopsoas (p=0.004) muscle suggested a more 

pronounced EC in males (Table 6).  

Table 6. Prevalence of EC scores among sexes for agricultural population (Chi-squared 

test) 

Limb Bones Entheses p 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis 0.229 

mm. supraspinatus and infraspinatus  0.015* 

muscles attached on the epicondilus medialis humeri 0.976 

muscles attached on the epicondilus lateralis humeri 0.418 

m. deltoideus  0.243 

radius 
m. biceps brachii  0.161 

m. pronator teres 0.126 

ulna m. triceps brachii  0.197 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
0.432 

femur 

m. gluteus medius  0.686 

m. gluteus minimus  0.386 

m. ilio-psoas 0.004* 

m. gluteus maximus  0.195 

muscles attached on the linea aspera 0.883 

m. adductor magnus (tuberculum aductorium) 0.850 

tibia m. soleus  0.245 

patella m. quadriceps femoris  0.321 

calcaneus m. triceps surae 0.801 

* Statistically significant difference. 
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Sexual dimorphism was more accentuated in the horse rider sample and reached 

statistical significance only in the lower extremities (Table 7). All attachment sites 

which demonstrated significant differences showed greater markers of EC in the male 

population.  

Table 7. Prevalence of EC scores among sexes for horse rider population (Chi-squared 

test) 

Limb Bones Entheses p 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis 0.272 

mm. supraspinatus and infraspinatus  0.368 

muscles attached on the epicondilus medialis humeri 0.480 

muscles attached on the epicondilus lateralis humeri 0.398 

m. deltoideus  0.189 

radius 
m. biceps brachii  0.121 

m. pronator teres 0.379 

ulna m. triceps brachii 0.318 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
0.025* 

femur 

m. gluteus medius  0.005* 

m. gluteus minimus  0.208 

m. ilio-psoas 0.020* 

m. gluteus maximus  0.114 

muscles attached on the linea aspera 0.022* 

m. adductor magnus (tuberculum aductorium) 0.171 

tibia m. soleus  0.621 

patella m. quadriceps femoris 0.010* 

calcaneus m. triceps surae  0.010* 

* Statistically significant difference. 

4.1.3 Horserider vs. agricultural population  

The analyses of EC scores between individuals (pooled sexes) from the horse rider and 

the agricultural population revealed a statistically significant difference concerning the 



 

34 
 

subscapularis muscle (p=0.009) on the upper limbs, as well as muscles attached at the 

tuberculum ishiadicum (p=0.012), vastus medialis muscle, adductor brevis, and 

adductor longus (p=0.017), and adductor magnus on the lower limbs (p=0.000) (Table 

8). The morphological changes of the aforementioned entheses were more pronounced 

in the male Avarian population of horse riders.  

Table 8. Prevalence of EC scores between horse rider and agricultural populations (Chi-

squared test) 

Limb Bones Entheses p 

U
pp

er
 li

m
bs

 humerus 

m. subscapularis 0.009* 

mm. supraspinatus and infraspinatus  0.223 

muscles attached on the epicondilus medialis humeri 0.487 

muscles attached on the epicondilus lateralis humeri 0.183 

m. deltoideus  0.439 

radius 
m. biceps brachii  0.716 

m. pronator teres 0.247 

ulna m. triceps brachii  0.708 

Lo
w

er
 li

m
bs

 

pelvis 
Common origin of the m. biceps femoris, 

semidenndinosus, semimembranosus   
0.012* 

femur 

m. gluteus medius  0.768 

m. gluteus minimus  0.877 

m. ilio-psoas 0.108 

m. gluteus maximus  0.266 

muscles attached on the linea aspera 0.017* 

m. adductor magnus (tuberculum aductorium) 0.000* 

tibia m. soleus  0.197 

patella m. quadriceps femoris  0.394 

calcaneus m. triceps surae  0.821 

* Statistically significant difference. 
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4.2 Bone microarchitecture at muscle attachment sites 

In a further part of the study, the microarchitecture of the muscle attachment sites of the 

lower extremity was analysed, since it was assumed that these sites should demonstrate 

significant differences in macroscopic appearance between the horse riding and 

agricultural population. 

4.2.1 Internal architecture in various attachment sites of lower limbs and its 

correlation with different macroscopic stages 

To depict the geometry and overall morphology of the entheses, Figs. 7-10  show cross-

sections made at the soleal line (origin of the soleus muscle) (Fig. 7), lesser trochanter 

(insertion of the iliopsoas muscle) (Fig. 8), tuberculum adductorium (insertion of the 

adductor magnus muscle) (Fig. 9) and gluteal tuberosity (insertion of the gluteus 

maximus) (Fig. 10). All these bony prominences, except the soleal line, consist of 

cortical and trabecular bone tissue that protrudes relative to the surrounding bone 

surface.  

 
Figure 7. Cross-sections made at soleal line (origin of soleus muscle): 

A - stage A (see classification in material and method section). 

B - stage B (see classification in material and method section).    

C - stage C (see classification in material and method section). 

*Cross-sections were cut at the most prominent point of the attachment site. 
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Figure 8. Cross-sections made at lesser trochanter (insertion of iliopsoas muscle). 

A - stage A (see classification in material and method section). 

B - stage B (see classification in material and method section).    

C - stage C (see classification in material and method section). 

*Cross-sections were cut at the most prominent point of the attachment site. 

 

 

Figure 9. Cross-sections made at tuberculum adductorium (insertion of adductor magnus muscle). 

A - stage A (see classification in material and method section). 

B - stage B (see classification in material and method section).    

C - stage C (see classification in material and method section). 

*Cross-sections were cut at the most prominent point of the attachment site. 
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Figure 10. Cross-sections made at gluteal tuberosity (insertion of gluteus maximus). 

A - stage A (see classification in material and method section). 

B - stage B (see classification in material and method section).    

C - stage C (see classification in material and method section). 

*Cross-sections were cut at the most prominent point of the attachment site. 

4.2.2 Bone microarchitectural design of entheses and the relationship with the 

macroscopic scores of the entheseal morphology 

The conducted micro-CT analysis of the entheses of different macroscopic stages 

showed an overall lack of dependence of cortical microarchitecture at the attachment 

sites on the macroscopic stages (Table 9). Cortical pore diameter was the only cortical 

microstructural parameter showing a negative trend with an increasing macroscopic 

score of the enthesis, however, statistical significance was not reached.  

ANOVA revealed that cortical thickness expressed significant inter-stage differences 

(Table 9). However, post-hoc tests revealed that stage B presented a significantly higher 

mean cortical thickness than stages A and C (Table 10). In particular, a significant 

decline in stage C in comparison to stage B emphasises the lack of a gradual 

(successive) increase in cortical thickness from macroscopic score A to C. 

Further analysis showed the significant effect of the interaction of “site” and “stage” on 

mean cortical thickness (p<0.001) (Table 9). In this context, the gluteal tuberosity 

(insertion of the gluteus maximus muscle) showed the opposite pattern regarding 

cortical thickness, where macroscopic stage C expressed a thinner cortex than stage A 

(Table 9).  
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Analysis of trabecular microarchitecture (Fig. 11) showed a lack of significant change 

related to the “successive” stages of EC (Table 11). Generally, entheses classified as 

macroscopic stages B and C presented with a higher trabecular number and increased 

trabecular thickness, as well as a decreased trabecular separation than the entheses of 

stage A (Table 11). However, any dependence of these microstructural parameters on 

the macroscopic stages was not found, given that stage C always showed slightly worse 

microarchitecture than stage B. Only the degree of anisotropy seemed to express a 

tendency towards a gradual reduction together with an increase in the macroscopic stage 

of the enthesis (p=0.056).  

With the simplified macroscopic scoring (“no changes” corresponding to the original 

stage A vs. “any type of change present” corresponding to the original stages B and C 

combined), cortical pore diameter showed a tendency towards decreased values in the 

case of entheseal changes (p=0.087), whereas the degree of anisotropy showed a 

significant decrease in entheseal changes (p=0.015).  
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Table 9. Cortical microarchitectural parameters in entheses of macroscopic stages A, B and C (Analysis of variance) 

 
Stage 

Gluteal tuberosity Lesser  trochanter Soleal line Tuberculum adductorium All sites 
ANOVA1 (p) 

 Mean Mean Mean Mean Mean SE 95% CI (lower, upper) Min Max 

Cortical bone 

volume fraction 

A 0.934 0.907 0.890 0.882 0.903 0.017 0.862 0.944 0.825 0.903 

0.738 B 0.920 0.879 0.967 0.820 0.873 0.029 0.804 0.942 0.730 0.873 

C 0.913 0.930 0.946 0.868 0.918 0.014 0.885 0.951 0.862 0.918 

Cortical porosity 

[%] 

A 0.066 0.093 0.110 0.118 0.097 0.017 0.056 0.138 0.036 0.097 

0.738 B 0.080 0.121 0.033 0.180 0.127 0.029 0.058 0.196 0.032 0.127 

C 0.087 0.070 0.054 0.132 0.082 0.014 0.049 0.115 0.024 0.082 

Pore separation 

[mm] 

A 0.485 0.336 0.521 0.299 0.410 0.052 0.286 0.534 0.205 0.410 

0.337 B 0.287 0.406 0.395 0.207 0.329 0.034 0.248 0.410 0.163 0.329 

C 0.243 0.504 0.527 0.348 0.398 0.049 0.283 0.512 0.190 0.398 

Pore diameter [mm] 

A 0.217 0.136 0.212 0.140 0.176 0.036 0.091 0.261 0.057 0.176 

0.372 B 0.149 0.155 0.069 0.126 0.140 0.024 0.085 0.196 0.058 0.140 

C 0.065 0.123 0.128 0.161 0.110 0.018 0.068 0.152 0.057 0.110 

Mean  

cortical thickness  

[mm] 

A 3.034 0.496 1.995 0.585 1.527 0.408 0.563 2.492 0.338 1.527 

0.003 2* B 5.408 0.923 3.207 0.383 2.347 0.701 0.690 4.003 0.262 2.347 

C 0.363 1.426 3.047 1.102 2.047 0.847 0.045 4.049 0.271 2.047 

Minimum  

cortical thickness  

[mm] 

A 2.023 0.097 1.426 0.263 0.952 0.320 0.195 1.709 0.080 0.952 

0.003* B 4.130 0.196 2.467 0.097 1.555 0.575 0.196 2.915 0.072 1.555 

C 0.174 0.556 1.757 0.464 1.342 0.773 -0.485 3.169 0.100 1.342 

Maximum  

cortical thickness  

[mm] 

A 4.228 1.435 2.809 0.964 2.359 0.497 1.183 3.535 0.827 2.359 

0.02* B 6.313 1.944 4.045 1.182 3.315 0.755 1.529 5.101 0.543 3.315 

C 0.869 2.680 4.182 1.734 2.903 0.889 0.801 5.006 0.757 2.903 

1 Analysis of variance (ANOVA): overall difference between the stages A, B and C (irrespective of the site) (for post-hoc tests see Table 10) 
2 In addition, there was also a significant effect of interaction of stage and site on mean cortical thickness (p<0.001). Note that gluteus maximus showed a different pattern of relationship between the cortical thickness 

and EC stages 

* Statistically significant difference. 
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Figure 11. Presentation of 3D reconstruction of trabecular bone in the region of the lesser trochanter. 

a - stage A 

b - stage B 

c - stage C  

*The top slice is marked in red. 

Table 10. Post-hoc Bonferroni pairwise comparisons of the cortical microarchitectural 

parameters between the entheseal macroscopic stages A, B and C (irrespective of the site) 

Parameter Inter-stage comparison Direction of differences p 

Mean cortical thickness [mm] 

A vs. B A < B 0.007* 

A vs. C  1 

B vs. C B > C 0.007* 

Minimum cortical thickness [mm] 

A vs. B A < B 0.012* 

A vs. C  0.981 

B vs. C B > C 0.003* 

Maximum cortical thickness [mm] 

A vs. B A < B 0.034* 

A vs. C  1 

B vs. C B > C 0.047* 

*Statistical significant difference.
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Table 11. Trabecular microarchitectural parameters in entheses of macroscopic stages A, B and C (Analysis of variance) 

 Stage 
Gluteal tuberosity Lesser  trochanter Soleal line Tuberculum adductorium All sites 

ANOVA1 (p) 
Mean Mean Mean Mean Mean SE 95% CI (lower, upper) Min Max 

Trabecular bone 

volume fraction 

A 0.262 0.184 0.380 0.383 0.302 0.049 0.186 0.418 0.166 0.554 

0.911 B 0.331 0.333 0.318 0.257 0.307 0.027 0.242 0.372 0.210 0.410 

C 0.419 0.316 0.213 0.365 0.344 0.038 0.252 0.436 0.213 0.472 

Connectivity 

density [1/mm3] 

A 11.775 10.897 43.893 35.940 25.626 10.998 -0.379 51.631 4.134 82.394 

0.295 B 35.589 30.166 84.290 13.260 41.574 12.858 10.111 73.038 8.470 108.000 

C 36.144 21.013 5.815 7.241 19.230 5.029 6.923 31.536 5.815 37.349 

Structure model 

index 

A -1.219 -0.395 -5.735 -2.006 -2.339 1.334 -5.494 0.817 -11 0.138 

0.305 B -3.122 -0.523 4.153 -0.019 0.586 1.143 -2.211 3.382 -3.122 6.411 

C -1.186 -3.019 1.243 -0.765 -1.242 0.618 -2.754 0.270 -3.672 1.243 

Trabecular 

number [1/mm] 

A 1.626 1.494 2.506 1.869 1.874 0.276 1.220 2.527 1.191 3.550 

0.717 B 2.126 1.996 2.886 1.749 2.198 0.285 1.500 2.897 1.650 3.815 

C 2.805 1.760 1.543 1.748 2.024 0.218 1.490 2.558 1.543 3.123 

Trabecular 

thickness [mm] 

A 0.207 0.138 0.207 0.248 0.200 0.017 0.159 0.241 0.138 0.260 

0.594 B 0.170 0.221 0.237 0.177 0.206 0.014 0.172 0.240 0.150 0.247 

C 0.208 0.190 1.184 0.240 0.352 0.139 0.010 0.693 0.183 1.184 

Trabecular 

separation [mm] 

A 0.828 0.712 0.611 0.662 0.703 0.063 0.555 0.851 0.430 1.031 

0.470* B 0.614 0.672 0.478 0.649 0.602 0.054 0.469 0.734 0.337 0.808 

C 0.473 0.733 0.642 0.638 0.619 0.043 0.512 0.725 0.445 0.737 

Degree of 

anisotropy 

A 2.234 1.738 2.111 1.442 1.881 0.162 1.497 2.265 1.240 2.585 

0.056 B 2.045 1.219 1.481 1.651 1.535 0.110 1.267 1.804 1.146 2.045 

C 1.219 1.121 1.968 1.715 1.440 0.133 1.115 1.765 1.088 1.968 

1 Analysis of variance (ANOVA): overall difference between the stages A, B and C (irrespective of the site).  

* Statistical significant difference. 
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4.2.3 Correlations between microarchitectural parameters 

Correlation analysis of microarchitectural parameters in entheses of macroscopic stage 

A showed that cortical thickness was directly related only with cortical 

microarchitecture, reaching statistical significance in the case of separation between 

cortical pores (for mean Ct.Th: R=0.725, p=0.042; min Ct.Th:  R=0.8, p=0.017; max 

Ct.Th: R=0.714, p=0.047). There was no relationship between the cortical and 

trabecular microarchitectural parameters (Table 12). 

In stage B entheses, cortical pore diameter correlated with cortical porosity (R=0.812, 

p=0.014). Cancellous bone volume fraction correlated with the trabecular number 

(R=0.763, p=0.046). The trabecular number also correlated positively with the 

trabecular connectivity (R=0.824, p=0.023), and negatively with trabecular separation 

(R=-0.917, p=0.004). However, again, no cortical – trabecular associations were found 

(Table 13). 

In stage C entheses, cortical thickness showed a tendency towards a positive correlation 

with cortical BV/TV (mean Ct.Th: R=0.669, p=0.069; min Ct.Th:  R=0.659, p=0.075; 

max Ct.Th: R=0.695, p=0.056). Moreover, cortical thickness showed a significant direct 

relationship with trabecular thickness (mean Ct.Th: R=0.839, p=0.018; min Ct.Th:  

R=0.921, p=0.003; max Ct.Th: R=0.758, p=0.048), while trabecular connectivity was 

correlated negatively with cortical pore diameter (R=-0.775, p=0.041), both indicating 

that the cortex and trabeculae follow the same adaptation patterns in stage C entheses 

(Table 14).  
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Table 12. Bivariate correlations between the cortical and trabecular parameters in entheseal changes stage A (R – coefficient of correlation, 

p – significance level) 

 
trabecular bone 

volume fraction 

connectivity 

density 

structure 

model index 

trabecular 

number 

trabecular 

thickness 

trabecular 

separation 

degree of 

anisotropy 

Cortical bone 

volume fraction 

R 0.114 0.111 -0.296 0.151 0.213 0.153 -0.028 

p 0.787 0.793 0.476 0.722 0.613 0.718 0.947 

Cortical  

porosity 

R -0.114 -0.111 0.296 -0.151 -0.213 -0.153 0.028 

p 0.787 0.793 0.476 0.722 0.613 0.718 0.947 

Pore  

separation 

R 0.349 0.243 -0.559 0.462 0.290 -0.155 0.287 

p 0.397 0.563 0.150 0.249 0.486 0.714 0.491 

Pore  

diameter 

R -0.167 -0.288 0.238 -0.080 -0.329 -0.149 0.395 

p 0.693 0.489 0.570 0.850 0.427 0.725 0.333 

Mean cortical 

thickness 

R 0.129 0.006 -0.248 0.196 0.218 0.152 0.569 

p 0.760 0.989 0.553 0.642 0.604 0.719 0.141 

Minimum cortical 

thickness 

R 0.189 0.077 -0.324 0.234 0.332 0.187 0.572 

p 0.653 0.856 0.434 0.577 0.422 0.657 0.139 

Maximum cortical 

thickness 

R 0.091 0.014 -0.257 0.216 0.097 0.113 0.529 

p 0.831 0.974 0.540 0.608 0.820 0.789 0.177 
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Table 13. Bivariate correlations between the cortical and trabecular parameters in entheseal changes stage B (R – coefficient of correlation, 

p – significance level) 

 
trabecular bone 

volume fraction 

connectivity 

density 

structure 

model index 

trabecular 

number 

trabecular 

thickness 

trabecular 

separation 

degree of 

anisotropy 

Cortical bone 

volume fraction 

R 0.224 0.839 0.508 0.514 0.557 -0.369 0.024 

p 0.629 0.018* 0.244 0.238 0.194 0.415 0.959 

Cortical  

porosity 

R -0.224 -0.839 -0.508 -0.514 -0.557 0.369 -0.024 

p 0.629 0.018* 0.244 0.238 0.194 0.415 0.959 

Pore  

separation 

R 0.407 0.610 0.277 0.288 0.897 0.028 -0.542 

p 0.364 0.146 0.547 0.532 0.006* 0.953 0.208 

Pore  

diameter 

R 0.067 -0.698 -0.750 -0.586 -0.187 0.663 -0.028 

p 0.887 0.081 0.052 0.167 0.688 0.105 0.953 

Mean cortical 

thickness 

R 0.133 0.418 0.083 0.248 0.069 -0.241 0.553 

p 0.776 0.351 0.859 0.591 0.883 0.603 0.198 

Minimum cortical 

thickness 

R 0.063 0.434 0.146 0.236 0.064 -0.239 0.596 

p 0.893 0.330 0.754 0.611 0.891 0.606 0.158 

Maximum cortical 

thickness 

R 0.181 0.374 0.054 0.234 0.116 -0.228 0.485 

p 0.698 0.408 0.908 0.614 0.804 0.622 0.270 

 * Statistical significant difference. 
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Table 14. Bivariate correlations between the cortical and trabecular parameters in entheseal changes stage C (R – coefficient of correlation, 

p – significance level) 

 
trabecular bone 

volume fraction 

connectivity 

density 

structure model 

index 

trabecular 

number 

trabecular 

thickness 

trabecular 

separation 

degree of 

anisotropy 

Cortical bone 

volume fraction 

R -0.304 0.240 -0.072 0.108 0.424 0.104 -0.251 

p 0.507 0.604 0.878 0.818 0.343 0.825 0.587 

Cortical porosity 
R 0.304 -0.240 0.072 -0.108 -0.424 -0.104 0.251 

p 0.507 0.604 0.878 0.818 0.343 0.825 0.587 

Pore separation 
R -0.190 -0.491 -0.296 -0.522 0.444 0.529 0.080 

p 0.682 0.263 0.519 0.230 0.318 0.222 0.865 

Pore diameter 
R 0.131 -0.775 -0.131 -0.550 0.160 0.346 0.408 

p 0.780 0.041* 0.780 0.201 0.731 0.448 0.363 

Mean cortical 

thickness 

R -0.445 -0.668 0.256 -0.613 0.839 0.395 0.530 

p 0.318 0.101 0.579 0.143 0.018* 0.380 0.221 

Minimum cortical 

thickness 

R -0.424 -0.610 0.393 -0.501 0.921 0.239 0.593 

p 0.343 0.146 0.383 0.252 0.003* 0.606 0.161 

Maximum cortical 

thickness 

R -0.585 -0.615 0.153 -0.711 0.758 0.576 0.400 

p 0.167 0.142 0.744 0.073 0.048* 0.175 0.374 

    * Statistical significant difference. 
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4.2.4 Differences between “proliferative” and “resorptive” entheseal changes at the 
microarchitectural level  
The macroscopic appearance of entheses in stages B and C involves morphological 

changes showing either predominant signs of “bony formation” (stage B(a) and stage 

C(a)) or pronounced signs of bony resorption (stage B (b); stage C (b)). To investigate 

the differences between the “proliferative” and “resorptive” phases of entheseal 

changes, we further performed micro-CT analyses of the gluteus maximus attachment 

site with predominant signs of “bone formation” (i.e. “bony proliferation”) and those 

with dominant traces of “bone resorption” at the level of macromorphological entheseal 

appearance (stage B(a); stage B(b); stage C(a) and stage C(b)). 

The results suggested that the microarchitectural parameters of cortical bone in entheses 

of the gluteus maximus muscle did not demonstrate any general trend between the 

”proliferative” and ”resorptive” entheseal changes (Table 15). In stages B (Ba vs. Bb) 

there was a trend of a 30% increase in cortical porosity in the �resorptive” phase of 

stage B, whereas in stage C (Ca vs Cb) there was a 47.27 % reduction in cortical 

porosity in the bony �resorptive” phase (Chart 1).  

Table 15. Cortical microarchitectural parameters in entheses of gluteus maximus muscle 

among different macroscopic stages (mean value) 

 MACROSCOPIC STAGE 

B(a) B(b) C(a) C(b) 

Cortical bone volume fraction [%] 62.130 50.149 42.155 69.498 

Cortical porosity [%] 37.869 49.851 57.845 30.502 

Pore diameter [mm] 0.543 0.974 0.630 0.483 

B(a) - stage B(a) (see classification in material and method section). 

B(b) - stage B(b) (see classification in material and method section). 

C(a) - stage C(a) (see classification in material and method section). 

C(b) - stage C(b) (see classification in material and method section). 

 

 

 



 

47 
 

Chart 1. Microarchitectural parameters of the cortical bone: Percentage of difference 

between the “resorptive” and “proliferative” entheseal phases.       

 

B - stages B(a) and B(b) (see classification in material and method section). 

C - stages C(a) and C(b) (see classification in material and method section). 

 

A somewhat similar situation was also observed in the case of the trabecular 

microarchitectural parameters. Analysing microarchitectural parameters of the 

trabecular bone in entheses of the gluteus maximus muscle, the only regularity between 

“resorptive” and “proliferative” entheseal phases was observed in the case of 

connectivity density. The connectivity density shows higher values in stages of “bony 

resorption” compared to the stages of “bony formation” (Table 16). Analysis of the 

percentage of difference in different micro-CT parameters of trabecular bone between 

“bony formation” and “bony resorption” phase suggested that the most significant 

difference was found in the structure model index (Chart 2). In stage B, the structure 

model index was significantly higher in the phase of “bony proliferation”, while in stage 

C, the percentage of difference was lower in the “proliferative” phase.  
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Table 16. Trabecular microarchitectural parameters in entheses of gluteus maximus 

muscle among different macroscopic stages (mean value) 

 MACROSCOPIC STAGE 

B(a) B(b) C(a) C(b) 

Trabecular bone volume fraction [%] 21.743 22.807 26.890 25.730 

Connectivity density [1/mm3] 14.754 17.990 15.572 17.003 

Structure model index 0.883 -1.071 -2.483 -1.509 

Trabecular number [1/mm] 1.028 1.316 1.425 1.347 

Trabecular thickness [mm] 0.211 0.177 0.189 0.195 

Trabecular separation [mm] 0.590 0.830 0.863 0.834 

Degree of anisotropy 2.863 1.938 2.006 2.431 

 

Chart 2. Microarchitectural parameters of the trabecular bone: Percentage of difference 

between the “resorptive” and “proliferative” entheseal phases.       

 

B - stages B(a) and B(b) (see classification in material and method section). 

C - stages C(a) and C(b) (see classification in material and method section). 



 

49 
 

Analyses of bone volume per tissue volume and the total porosity of the whole 

specimen in entheses of the gluteus maximus muscle in the “resorptive” and 

“proliferative” phases demonstrated no regularity in the results (Table 17). The 

percentage of difference between the different micro-parameters of the “bony 

formation” and “bony resorption” phases in the whole entheses showed an 87.34 % 

increase in porosity in stage B and a 42.48 % decrease in stage C.  

Table 17. Bone volume per tissue volume and total porosity of the whole specimen in 

entheses of gluteus maximus muscle among different macroscopic stages (mean value) 

 MACROSCOPIC STAGE 

B(a) B(b) C(a) C(b) 

Bone volume per tissue volume [%] 37.457 39.331 30.041 40.070 

Total porosity [%] 52.370 63.418 62.010 57.731 

 

Chart 3. Percentage of difference in different mct-parameters between “bony formation” 

and “bony resorption” phases in whole entheses.  

 

B - stages B(a) and B(b) (see classification in material and method section). 

C - stages C(a) and C(b) (see classification in material and method section). 

It was expected that bone volume per tissue volume of the whole specimen would grow 

in proportion to the stages that maintain higher physical activity; however, proof of this 
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was not obtained. In order to analyse this situation, the mean value of bone volume per 

tissue volume of the whole enthesis was set to grow from the lowest to the highest 

value. It was expected that stage A should be at the lowest position while stage C(b) 

should take the highest position. Stage A clearly showed a higher BV/TV than all other 

stages, however, there was no regular pattern of relationship between all stages and 

bone volume per tissue volume (Chart 4). Additionally, the same procedure was 

repeated using the mean value of the degree of anisotropy of the trabecular bone (Chart 

5).  

Chart 4. Bone Volume per tissue volume of all entheses among different EC scores. 

 

BV/TV - Bone Volume per tissue volume 

A - stage A (see classification in material and method section). 

B(a) - stage B(a) (see classification in material and method section). 

B(b) - stage B(b) (see classification in material and method section). 

C(a) - stage C(a) (see classification in material and method section). 

C(b) - stage C(b) (see classification in material and method section). 
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Chart 5. Degree of anisotropy of trabecular bone among different EC scores. 

     

DA - Degree of anisotropy. 

A - stage A (see classification in material and method section). 

B(a) - stage B(a) (see classification in material and method section). 

B(b) - stage B(b) (see classification in material and method section). 

C(a) - stage C(a) (see classification in material and method section). 

C(b) - stage C(b) (see classification in material and method section). 
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5. DISCUSSION 

Historical background of horse riders population: the Avars arrived in the Pannonian 

Basin in the latter part of the seventh decade of the 6th century and, shortly 

afterwards, emerged as a stronger force than the mutually hostile Germanic tribes (54). 

They established the Avar Khaganate, which spanned the Pannonian Basin and 

considerable areas of Central and Eastern Europe from the late 6th to the early 9th 

century. They were ruled by a khagan, who was assisted by an entourage of professional 

warriors (74). In history and archaeology Avars are known as the people whose 

equestrian skills were very well developed. In Avarian society the horse-riders were a 

very important part not only during warlike activities but also in complex economic and 

social circumstances. The importance of the horse did not decrease, even after arriving 

in the Pannonian Basin, although in that moment, the Avars crossed from a nomadic life  

to a sedentary economy. This important role of horses in the Avar Khaganate is 

certainly caused by the fact that the main Khaganate power lies in military organisation, 

where the cavalry has a primary role. Since the need for horses was particularly 

significant for the Avars in the Pannonian Basin, an intensive rearing of horses was well 

developed (74). They mostly used fast and durable tarpan whose trappings consisted 

mostly of the saddle, stirrups, bridles, halters, reins, bits, harnesses and breastplates 

(74).  

For certain, the tactics used by Avars considerably influenced their daily life and 

physical particularities. Similar to most of the steppe peoples, the bulk of the Avar 

combatant force was formed of the heavily armoured (horse) lancers and lightly 

armoured horse archers, together with a number of foot archers. The tactics of most of 

the steppe peoples was essentially marked by the hit-and-run use of the horse archers 

and a final rush by heavy lancers, which occurred only after the enemy was reduced 

enough by the previous offensive. However, unlike this practice, it seems that the 

mainstream of Avar tactics was different. In almost all battle descriptions preserved in 

contemporary Greek and Latin sources, the Avars are primarily depicted as heavy 

lancers storming at the enemy from the very beginning of the battle, and their horse and 

foot archers are usually shown as a background support to the lancers. This predominant 

use of heavy lancers certainly contributed to the Avarian ability to engage with the 
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heavy Byzantine and Lombard cavalry. Even before settling in Pannonia, the heavy 

lancers` attack appears as the main battle tactic, particularly of the Avars, as seen in 

their battles with the Austrasian Franks in 562 (at Regensburg) and ca. 568, in which 

they were repelled by King Sigebert I (Greg. Tur. IV.29)2. In these battles, the Avars 

were engaged by the heavy Frankish infantry, on soil relatively unfavourable for 

cavalry. Their settlement and temporary alliance with the Byzantine Empire in 578 was 

succeeded by the great series of campaigns of the emperor Mauricius. In the battle of 

Tomi (598), the Avars smashed the Byzantine army (commanded by the Patricius 

Comentiolus) with their immediate heavy lancer’s charge (Theoph. Sym. VII.13-14)3. 

This Byzantine force, sent by the Emperor to help Patricius Priscus besieged in Tomi, 

was unable to withstand the swiftness and shocking force of the Avar cavalry, as the 

source clearly points out. In the next battle with Mauricius` armies, on the banks of The 

Danube, opposite Viminacium (599), the Avars also started the battle with a heavy 

cavalry charge, but were beaten by Patricius Priscus (Ibid, VIII.2-3). The source shows 

that this defeat was due to the ingenuity of Priscus who, using special set of 

manoeuvres, induced the Avars to cross terrain less favourable to them. Despite the 

ground being relatively unfavourable for an equestrian frontal shock attack, the Avars 

decided to put all of their trust in a heavy lancers charge. After having been pursued by 

Priscus for two weeks, the Avars formed a defensive position (near the Tisza), but were 

defeated by a Byzantine heavy cavalry attack. Two decades later, there was an Avarian 

attempt to conquer Northern Italy. After their battlefield victory (ca. 611) over Gisulf II, 

the Lombardian Duke of Friuli, and while struggling around the Cividale fortress, the 

Avarian khagan and his entourage are depicted as armoured cavalrymen, charging with 

lances (Paul Diac. IV.37)4. About half a century later, King Grimoald I of the Lombards 

was forced to call upon the Avars to punish Lupus, the rebel Duke of Friuli, to whom he 

had temporarily entrusted the government of the northern parts of his kingdom, while he 

was fighting the Byzantines. The source clearly shows that during the three-day battle of 

Flovius (ca. 666), the Avars were using cavalry charges against the troops of Lupus, 
                                                      
2 (Greg. Tur. IV.29) – Gregorii episcopi Turonensis libri historiarum, ed. B. Krusch - W. Levison, 
Hannover 1951. 

3 (Theoph. Sym. VII.13-14) – Theophylacti Simocattae historia, ed. C. de Boor, Stuttgart 1972. 

4 (Paul Diac. IV.37) – Pauli historia Langobardorum, ed. L. Bethman - G. Waitz, Hannover 1878. 
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bringing him ultimately to defeat and death (Ibid, V.19). A rare mention of the Avarian 

infantry in contemporary written sources can be traced in a description of the great 

perso-avarian siege of Constantinople (626), where the Avarian cavalry and infantry is 

mentioned as being transported and deployed by the Khagan (Syncellus VIII)5, but it is 

uncertain if it refers to Avarian infantry as such or to Avar-dependent Slav infantry. 

Like the contemporary battle descriptions, the only preserved contemporary theoretical 

sketches of Avarian armament and tactics show the predominant role of the Avarian 

lancers. The Strategicon of Pseudo-Mauricius asserts the equestrian lance with a belt on 

it as the main Avarian weapon, recommending that Byzantine cavalrymen should also 

possess it. It is not clear what the exact function of this belt was, but as contemporary 

lances were still used in uncouched fashion, there are three main possibilities, all 

concerning better balance - function to tie the middle zone of the lance to the elbow 

(most probable), to tie the lance to the wrist, or to secure the lance to the shoulder 

(whereby lance is still used at waist height, using a belt as a means to transfer part of its 

burden of weight to the shoulder). As peculiar pieces of Avarian armour, this manual 

mentions the cord-dangling collets and wide, thick-padded tunics, with linen on the 

outside and wool on the inside, which he also recommended to the Roman lancers 

(Strategikon I.2)6. Thick-padded tunics, if worn as external armour, are known to be one 

of the most effective protection from arrows; they were relatively rare in contemporary 

Europe and in the Middle East, but were much more common in Central and Eastern 

Asia, from where the Avars certainly adopted it. Iron and felt horse breast-armour, 

which the author also ascribes to Avarian cavalrymen, is typical for contemporary 

heavy lancers whose only attacking direction was frontal (unlike the horse archers, who 

could attack from both sides and even from the back, and whose horses therefore had 

padded protection from all sides or had no armour protection at all). The widespread use 

of armour among the Avars, which the author stresses, most probably refers to both 

lamellar and thick-padded linen/woollen armour, usual for steppe cavalry. The 

previously mentioned collets, judging by their description, seem very much like the 

famous Avarian waistbands, protective belts with a ranking insignial function. 

                                                      
5 (Syncellus VIII) – Theodori Syncelli Homilia, ed. F. Combefisius, Paris 1648. 

6 (Strategikon I.2) – Das Strategikon des Maurikios, ed. G. Dennis - E. Gamillscheg, Wien 1981 
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However, the manual defines them as necklets, which leaves two main possibilities - 

that the said collets were part of the neck and breast armour, or they were the waistbelts 

whose thick dangling cords resembled the Byzantine necklets. The author stresses that 

most of the Avarian horsemen were simultaneously skilled in lance and bow use, 

preferring to attack from a distance if possible, but admits that a frontal cavalry charge 

was their most preferred combat practice, if the terrain was suitable (Ibid, XI.2). He 

hints that the Avars used a special type of bow, but doesn’t give details regarding its 

precise structure or specific method of use. As an equestrian bow, it certainly had a 

smaller range than those of the infantry. Thus, a need to engage the enemy infantry 

archers was the most probable reason for the Avars to develop their own, as the Huns 

did (who existed independently from the Avarian-dependent Slav infantry). Finally, the 

said manual does not denote stirrups as military items of an Avarian style, as in the case 

of the Avarian fashioned lance, padded tunic, collet and tent, which suggests the 

possibility that stirrups were adopted by the Byzantine army from some other foreign 

force, prior to the Avars. The evidence of the Avarian use of stirrups entirely relies on 

material evidence, which is quite abundant; the same is true of the matter of the Avarian 

saddle. It is undisputable, however, that both of them enabled a greater shock force for 

the Avarian lancers, and greater stability and shooting durability for the Avarian cavalry 

archers. 

Historical background of agricultural population (Vinča sample): the Byzantine 

authority was restored in Belgrade and its hinterland (including Vinča) by 1018, and 

lasted until 1195, when it was taken by the Bulgarians (56). From then, Bulgarian and 

Hungarian authority over Belgrade changed several times until 1246, when it finally 

became part of the Kingdom of Hungary. The period of the late 13th and early 14th 

century was characterised by the increased progress of Belgrade, Vinča and the wider 

region. During this time, this area was an integral part of the territory historically known 

as Northern Serbia (Regnum Sesvie), ruled by King Dragutin (56).  

The particular quality of some grave goods, especially silver jewellery, indicates that 

Vinča in the 11th and 12th centuries had to have been economically well developed. 

Since the settlement and its surroundings lay on fertile land along the river, the 

inhabitants were mainly engaged in farming, livestock breeding and fishing. In graves 
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from the 13th and 15th centuries, archaeologists have discovered an extremely low 

number of grave finds. This could point to a general impoverishment of the Vinča 

inhabitants (56).  

Although the series of human osteological excavations conducted before 2011 were 

anthropologically processed, information about the health status of the medieval Vinča 

population is, unfortunately, quite poor. According to the findings in the osteological 

material excavated in the time between 2011 and 2014, almost 25% of the full sample 

were non adults. The majority of pathological conditions were trauma and degenerative 

changes, while enamel hypoplasia (31.3%) and caries (34.4%) appear occasionally. 

When summarising the preliminary data regarding the health status of the medieval 

Vinča population, it can be concluded that the health status of this population was of a 

relatively high level. 

Historical background of agricultural population (Sirmium sample): during the 12th 

century, the history of the Balkan Peninsula was filled with the difficult struggle of the 

Byzantium Empire to suppress the influence of the regions of Hungary and to 

consolidate the boundaries of its territory. However, the power of the Byzantines in 

Srem lasted only until the end of the reign of Emperor Manuel I Comnenus. Shortly 

after the change on the throne, the Hungarian King Bela III resigned as patron of 

Manuel’s son Alexius II, and attacked the Byzantine assets, taking Sirmium first (75). In 

the territory of Sirmium, during the 13th century, a new medieval settlement of artisans 

and traders was formed and Sirmium was given a new name, after the monastery 

dedicated to the town patron St. Demetrius, Civitas Sancti Demetrii (55). The basic core 

of the village in the 13th century represented a monastery, officials and dependent 

people. In the beginning it was a village of farmers who were joined over time by 

"guests" (hospites), merchants and craftsmen and sometimes immigrants from distant 

places (76). The most favourable period in the development of Sirmium as a commercial 

centre was created in 1358, when Dubrovnik came under the rule of the Hungarian 

kings. This political change made it easier for the people of Dubrovnik, who had already 

been tied to the business of mining sections of Serbia and Bosnia, to expand their 

operations to the opposite bank of The Sava and to link Srem to the Adriatic coast. 

Dubrovnik, then in Srem, created the first and the largest colony in the Hungarian 
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Empire (76). Mitrovica was destroyed shortly after the great battle of Nikopol on 25 

September 1396, which completed the heavy defeat of the Christian army. The Turks 

crossed the Sava River near Mitrovica and occupied the town. Mitrovica, on that 

occasion, was burned and devastated, while a large proportion of the population was 

taken into slavery, together with Christians from other devastated areas (76). From the 

15th century, there is more data regarding political and military developments around 

Mitrovica. On several occasions a castle was mentioned. The castle belonged to King 

Sigismund, but later, although it is not possible to determine exactly when, Mitrovica 

came into the possession of Despot Đurađ Branković. It is assumed to have been in his 

hands from 1451 until 1458, when it again came under the direct rule of the king (76). 

In a large Turkish offensive in the summer of 1521, during which Šabac and Belgrade 

fell, the Turks crossed Srem and captured its cities. Soldiers from Mitrovica tried to 

disrupt the construction of the bridge near Šabac, but without success. It was the last 

desperate attempt of active resistance. After the construction of the bridge, it would only 

be a matter of time before Mitrovica would fall into Turkish hands. Mitrovica finally 

fell under Turkish rule in 1526 (76).  

In contrast to the very scant information regarding the health of the medieval Vinča 

population, we have many more details about Sirmium citizens. In the area of Sirmium, 

historical sources state that, in the year 1202, many people died due to infectious 

diseases. It was also noted that there was a famine during 1217. In 1242, during the 

Tartar invasion, a tremendous famine ensued, the likes of which the chroniclers had 

never before witnessed. “There were numerous instances of people committing suicide 

in order to provide meat. Corpses of people murdered by the Tartars, or who had died of 

hunger were scattered everywhere. Animals which fed on human flesh multiplied. 

Unburied corpses were rotting, causing an unbearable stench, while poisoning and 

disease spread quickly. The famine was so intense that human flesh was being sold in 

markets. This state of affairs lasted for three years” (77). In the years 1263, 1264, 1270 

and 1305, a great famine and plague surfaced. In 1311, the Danube rose after heavy 

floods, polluting drinking water. Malaria, dysentery and enteric fever ensued. In the 

following years, plague existed in these parts, but never to such an extent as in the rest 

of Europe. During the years 1365, 1375, 1386, 1410 and 1435, famine and contagious 

diseases returned (77). In the years 1444 and 1456, the plague raged throughout the 
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Balkans. It arrived in Vojvodina via Belgrade. After the crusaders’ victory over the 

Turks in 1456, the plague decimated the victorious army. There was a severe drought in 

1473 and a few years later, in 1479, the plague resurfaced. In 1485, an unidentified 

disease struck (Sudor anglicus, English sweating sickness), with written records from 

1486 mentioning scurvy, whilst in 1495 and 1509–1511, the plague, once again, re-

emerged (77). 

Horse-riding as a general activity pattern: during prehistoric and historic periods, horse 

riding was a very common activity. Horses were not only used in battle, but also for 

agricultural work, transport, hunting, and even for pleasure. This need for horses in 

everyday life made them very valuable and cherished animals. As well as direct care, 

such as daily feeding, cleaning and treatment, the horse was given additional attention, 

which would have included training. In order to be useful the horse had to be healthy 

and in good shape.   

The western steppe peoples of Classical and Late Antiquity (such as the Scythians, the 

Sarmatians, the Alans, the Huns or the Avars) are well known for the dominant role of 

horse riding in their wartime and daily life. The possession of one or more horses was 

exclusive to the higher social strata of society. However, someone had to take care of 

these horses and also to train them.  Consequently, the use and, therefore, the training of 

horses for various activities was, in many ways, a complex process that certainly 

involved more than one person. The burials of some of the riders’ population reflect the 

importance of their horses. The remains of horses have been recovered from Scythian 

royal tombs, decorated in ornamental bridles. The importance of the role of the horses is 

also reflected in the fact that they were even embalmed as part of the 40-day-long 

celebrations following the death of important rulers (78). In the Avarian population, 

horse sacrifice stems from the belief that a warrior needed a horse in the afterlife (74). 

The horse was buried at the same time as its owner. Several necropolises are known in 

Avarian archaeology where equestrian graves have been discovered. These include 

Sturovo in Slovakia, Bolj in Hungary and Vojka (74) and Čenej in Serbia. The practice 

of burials including a horse or even graves of horses without a person is very common 

in the Indo-European such as for instance Turkish peoples etc. However, if we do not 



 

59 
 

have a horse burial connected with human graves or grave goods connected with riding, 

can we even assume horse riding practices based on skeletal remains?  

Riding requires very different muscle actions (79). Horse riding uses all of the body’s 

muscle groups, but specifically requires very strong and athletic postural muscles.  

During riding, the body activates the muscles of the abdominal musculature, some back 

muscles and the muscles of the upper and lower limbs. Horse riding is a combination of 

static postures (dressage or riding for pleasure) and dynamic postures (jumping, hunting 

and combat riding) (79). The muscular action depends on the rider’s style. Different 

movements of the horse require different muscular acts (Fig. 12). Nevertheless, in every 

rider’s style the lower limb muscles are certainly involved and some could be 

considered as specific for riding. Riding involves profound symmetrical stresses 

between the left and right side musculature, as both legs are responsible for riding 

movements. The main muscles of the lower extremities used in riding are: the 

quadriceps muscle, the hamstrings (posterior femoral muscles), the gluteals, the 

adductors, the hip rotators and the calf muscle (Figs. 13 and 14) (79). 

 

Figure 12. Some horse riding styles. 

All parts of the quadriceps femoris extend the knee (Fig. 15). In addition, the rectus 

femoris helps to flex the thigh in relation to the pelvis and, if the thigh is fixed, it helps 

to flex the pelvis in relation to the thigh. The rectus can flex the hip and extend the knee 

simultaneously. There is little or no activity in the quadriceps during standing.  

When riding with long stirrups the heels are pushed down by putting more weight 

through the stirrups. In short stirrups, the quads work extremely hard to hold the body 

weight and control the position of the seat in and out of the saddle. Basically, training 

the quads in sustained postures should improve stability, especially when jumping (79).  
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Figure 13. Muscles of lower limb active during horse riding (frontal view). 
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Figure 14. Muscles of lower limb active during horse riding (profile view). 
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The hamstrings are situated in the posterior compartment and comprise three separate 

muscles: the biceps femoris, semitendinosus and semimembranosus (Fig. 16). The 

hamstrings basically bend the knee and extend the hip (79). Acting from above, the 

posterior femoral muscles flex the knee and, acting from below, they extend the hip 

joint, pulling the trunk upright from a stooping posture against the influence of gravity, 

with the biceps being the main agent. When the knee is semiflexed, the biceps femoris 

can act as a lateral rotator and the semimembranosus and semitendinosus as the medial 

rotators of the lower leg. When the hip is extended, the biceps is a lateral rotator and the 

semimembranosus and semitendinosus are the medial rotators of the thigh. However, 

any action that moves the centre of gravity in front of a transverse axis through the hip 

joints, (e.g. a forward sway at the ankle joints or a forward bending at the hips), is 

immediately accompanied by a strong contraction of the hamstrings (80).    

 

Figure 15. Muscles of upper lower limb (frontal view). 
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Figure 16. Muscles of upper lower limb (posterior view). 

During riding the hamstrings are essential for obtaining a deep stable seat. By stabilising 

the heel and lower leg against the horse’s side, the hamstrings are used to keep the seat 

deep in the saddle in combination with the abdominal muscles (79). 

The gluteal muscles are a group of three muscles which make up the buttocks: 

the gluteus maximus, gluteus medius and gluteus minimus. The gluteus maximus is the 

largest of the gluteal muscles (Fig. 16).  Acting from the pelvis the gluteus maximus can 

extend the flexed thigh and bring it into line with the trunk. Acting from the distal 

attachment, it may prevent the forward momentum of the trunk from producing flexion 

at the supporting hip during a bipedal gait. The muscle is inactive during standing, 

swaying forwards at the ankle, or when bending forwards at the hip joints to touch the 

toes. However, it acts with the hamstrings to raise the trunk after stooping, by rotating 

the pelvis backwards on the head of the femur. It is intermittently active during the 

walking cycle and when climbing stairs, but it is continuously active during the strong 

lateral rotation of the thigh. Its upper fibres are active during the powerful abduction of 
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the thigh. It is also a tensor of the fascia lata and, through the iliotibial tract, it stabilises 

the femur on the tibia when the knee extensor muscles are relaxed (80).  

Both the gluteus medius and minimus, acting from the pelvis, abduct the thigh and their 

anterior fibres rotate it medially. Acting from the femur, they play an essential part in 

holding the trunk upright when the foot of the opposite side is raised from the ground 

during walking and running. In this phase the body weight tends to make the pelvis sag 

downwards on the unsupported side. This is counteracted by the gluteus medius and 

minimus of the supporting side which, acting from below, exert such a powerful traction 

on the hip bone that the pelvis is actually raised a little on the unsupported side (80). 

Additionally, riders use the gluteal muscles in the jumping position and in the rising trot 

(79). 

Although the adductor magnus, longus and brevis can act as adductors, they more 

commonly act as synergists in the complex patterns of gait activity and, to some degree, 

as controllers of posture (Fig. 15). They are active during the flexion and extension of 

the knee. The adductors are inactive during the adduction of the abducted thigh in an 

erect posture (when gravity assists), but active in other postures, such as the supine 

position or during the adduction of the flexed thigh when standing. They are also active 

during the flexion (longus) and extension (magnus) of the thigh at the hip joint. In a 

position of symmetrical standing their activity is minimal (80). It should be kept in mind 

that an extensive or forcible adduction of the femur is not often required (80). Basically, 

these muscles serve the function of keeping the legs pressed against the horse whilst 

riding. This group of muscles, in conjunction with the hip rotators, controls the position 

of the whole leg against the saddle and the horse’s side. Riders tend to over use these 

muscles and grip the saddle in modern riding techniques (79).  

The calf muscle is actually made up of two muscles: the gastrocnemius and soleus 

muscles. These muscles are the primary plantar flexors of the foot. The gastrocnemius is 

also the flexor of the knee. They are usually large and correspondingly powerful. The 

gastrocnemius provides force for propulsion in walking, running and jumping. The 

soleus, acting from below, is more concerned with steadying the leg on the foot while 

standing. This postural role is also indicated by its high content of slow, fatigue-

resistant muscles fibres. In many adult mammals the proportion of this type of fibres in 
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the soleus approaches 100%. However, such a rigid separation of functional roles seems 

unlikely in man: the soleus participates in locomotion, and the gastrocnemius in posture.  

The ankle joint is loose packed in the erect posture and, since the weight of the body 

acts through a vertical line that passes anterior to the joint, a strong brace is required 

behind the joint to maintain stability. Electromyelography shows that these forces are 

supplied mainly by the soleus: during symmetrical standing the soleus is continuously 

active, whereas the gastrocnemius is recruited only intermittently (80). These two 

muscles are mostly used during walking and running, allowing the heel to be pushed 

down below the level of the toes (dorsal flexion). As a result, all riders need this muscle 

to be longer than it is in the general population (79).          

Apart from the fact that, based on the different appearance of a muscle’s bony imprints, 

an assumption can be made regarding a person’s daily activities, it should not be 

forgotten that life on horseback had other associated risks such as injuries. For instance, 

nowadays, horseback riding carries a higher injury rate than motorcycle riding 

(http://www.hughston.com/hha/a.horse.htm 28.10.2015. 15:14). The most common 

location of horse related injuries is in the upper extremities, followed by lower 

extremity injuries, while the head and face sustain 20% of injuries (81). If we assume 

that today's jockeys spend much less time on horseback than the horsemen of ancient 

times, we can also assume that the risk of injury was much higher among the ancients. 

However, a high frequency of calcaneal fractures associated with frequent dismounting 

is noted in the archaeological horseback population (82). Also, when describing the 

lives of two Scythian horsemen from Alexandropol, Wents and Grummond (2009) 

reported fractures of the clavicle and the shaft of the humerus, along with damage of the 

elbow (83). Another bony change that can be related to habitual riding is a variety of 

asymmetries between the two sides of the body.  

Changes in skeletal morphology associated with horseback riding have been noted in 

several studies (83-85). However, are the bony imprints that are indicative of habitual 

riding reliable indicators, and which muscle or muscle groups identify horsemen from 

the other members of the investigated population?  

The interpretation of significant differences among the subgroups can cause problems. 

In this paper, the focus has been on population differences, rather than trying to assign 



 

66 
 

specific occupations to individual skeletons. This has been approached in two ways, 

trying to identify general patterns of activity, and to reconstruct daily activities. The 

attempt to reconstruct daily activities is based on two combined viewpoints: an attempt 

has been made to identify the repetition of motions for specific entheses with a high 

frequency of lesions, and to interpret these body movements.  

Macromorphological analysis of EC (relationship between age and EC): the correlation 

between the occurrence of entheseal morphological changes and biological age has been 

reported in numerous studies worldwide which were based on the evaluation of skeletal 

collections with known ages (1, 12, 48). This correlation has also been analysed in 

skeletal material where the age has been assessed according to some morphological 

characteristics of the skeleton, but has not been documented (24, 51, 86). The majority 

of authors concluded that entheseal changes are more pronounced in older individuals 

(1, 12, 24, 48, 57). The stand point for this assumption is that the muscles of elderly 

people have been in use for a long time, and that more pronounced muscle markers arise 

as a result of continuous and repeated muscular work (39). However, it would be logical 

to suppose that in older individuals the development path of morphological changes 

occurring on the place of muscles attachment sites is actually affected not only by 

mechanical stress but also by the changes in bone quality associated with age. 

Therefore, analyses of the micro structural proprieties of the underlying bone at the 

place of muscle attachment sites could clarify general patterns associated with 

morphological changes of entheses. 

This study has also recorded a statistically significant correlation between some 

attachment sites and age. Analysing horse riders and the agricultural population 

separately, a statistically significant difference between dissimilar EC scores and age 

was noted in both investigated samples. On the horse riders’ upper limbs a statistically 

significant difference between age categories was recorded in the attachment sites of the 

m. subscapularis, mm. supraspinatus and infraspinatus, m. pectoralis major, m. pronator 

teres and muscles attached on the epicondylus medialis humeri. All of these entheses 

show a more pronounced morphological appearance in older age groups. On the lower 

limbs, a statistically significant difference was noted among different age groups only in 

the case of the m. iliopsoas. The results may suggest that the physical activities of the 
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upper limbs were more or less consistent, i.e. performed from younger to older age, 

while the activity of the iliopsoas is, perhaps, related to the intensive use of this muscle 

in younger individuals. The activity of the iliopsoas muscle could be related to 

horseback riding, since this muscle is active in bending the trunk and pelvis forward 

against resistance, as well as in the raising of the trunk from a recumbent to a sitting 

position when undertaking a “sit-up” (80). 

The development of the muscles attached to the lesser trochanter (iliopsoas muscle) is 

reported in, among other activity patterns, horseback riders where the stabilisation of the 

hip is necessary (82). Enthesopathies of this attachment site were found in individuals 

from the predynastic Royal Cemetery of Ur, which suggests that horseback riding and 

cart driving could account for its development (87).  

Among the agricultural population, on the upper limbs a difference is observed only in 

the attachment sites of the m. supraspinatus and infraspinatus, as well as the muscles 

which are attached to the epicondylus lateralis humeri. The activity patterns related to 

the action of the m. supraspinatus and infraspinatus will be explained in more detail 

hereinafter. The activity patterns related to the action of the muscles which are attached 

to the epicondylus lateralis humeri, in anthropological literature, were linked with the 

sling (13). The use of the sling in agricultural communities can be related with the 

herders to tend flocks or with farmers to protect crops from scavengers (13). On the 

lower limbs, only the entheses of the gluteus maximus muscle demonstrate a 

statistically significant difference among the age categories. The results show that the 

entheseal changes are more pronounced in the older age categories. This pattern, which 

suggests that the entheseal changes are always more pronounced in the older age 

category, can point to the assumption that the agrarians’ level of physical activity 

increases with age. An alternative could lead to the conclusion that, during the 

individual’s lifetime, the bone quality reduces with the result that a resulting muscle 

load of the same intensity influences a more dramatic entheseal change in the elderly.  

Macromorphological analysis of EC (relationship between sex and EC scores): sexual 

dimorphism of EC scores in the group of horse-riders was noted on the lower limbs 

only.  All attachment sites which demonstrated significant differences showed greater 

markers of stress in males.   
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According to the literature, the situation where EC scores proved higher for males than 

females, seems to follow a general pattern and was reported in several EC studies (14, 

26, 50, 51, 86). For instance, investigating a gender based division of labour in the 

Natufian and the Neolithic populations, Eshed et al. (2004), found that the males of both 

populations appear to differ significantly in the muscles of the upper extremity attached 

to the humerus (the teres major, the pectoralis major, and the deltoideus) (50). The 

skeletal remains from the Middle Neolithic (2750–2300 BC) burial at Ajvide, Gotland, 

were analysed in order to explore musculoskeletal patterns of this prehistoric 

population, and significant positive correlations were observed in male individuals in 

muscle groups associated with archery and, to some extent, harpooning (51). Bearing in 

mind that the upper limbs have no difference between the sexes and that, in the case of 

the lower extremities, men suffered larger loads, the physical activities which were 

performed by the upper limbs were probably relatively equally represented. In contrary, 

the results for the lower limbs suggested that males were more exposed to greater 

physical activity. If riding was exclusive for Avar men, it could be concluded that this 

physical activity caused these differences. In particular, among other lower limb 

entheses, statistically significant differences were also noted in the cases of muscles that 

are specific for riders. 

In the agricultural population, the area of the greater tubercle of the humerus and the 

insertion of the iliopsoas muscle demonstrates a statistically significant difference 

between the sexes, suggesting more a pronounced EC in males. The mm. supraspinatus 

and infraspinatus, together with the m. subscapularis and m. teres minor (rotator cuff) 

assists in the stabilisation of the head of the humerus in the glenoid fossa during 

shoulder movements (80). Individually, the m. supraspinatus is involved in the 

abduction of the shoulders and assists the deltoid in the abduction thereafter, while the 

m. infraspinatus is a lateral rotator of the humerus (80). The population groups from 

these archaeological sites mainly consisted of individuals whose daily activities were 

associated, probably, with building operations and activities relating to farming. 

However, among those activity patterns, specific behaviours which were often linked 

with  rotator cuff muscles are, for example, archery and harpooning (51). The archer’s 

drawing of the bowstring mainly involves the supraspinatus and infraspinatus of the 

string-arm, while the flexors of the same side would also be active. The deltoideus and 
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triceps brachii are affected in the opposite arm, which would be the arm that extends to 

hold the bow in this movement (51). If we assume that the everyday activities of women 

also involved the aforementioned muscles and if we know that drawing a bowstring 

mainly involves the mm. supraspinatus and infraspinatus of the string arm, it is 

debatable whether this finding is strong enough to conclude that the cause of this 

difference is archery. Moreover, given that in our agricultural sample we do not have 

archaeological findings which imply the frequent or widespread use of archery, the idea 

that this activity pattern causes a more pronounced EC of the greater tubercle of 

the humerus is not sustainable.  

Harpooning mainly uses the deltoideus and pectoralis major muscles and the rotator cuff 

(m. teres minor, mm. supraspinatus and infraspinatus, and m. subscapularis) of the 

working arm (51). Since the investigated archaeological sites are near large rivers (The 

Sava and The Danube), the use of harpoons could have been an everyday activity. 

However, archaeological confirmation of the use of harpoons on these sites is lacking. 

Our results in the lower limbs suggest that only the iliopsoas muscle shows statistically 

significant differences among the sexes, with higher EC scores in men. The activity of 

the iliopsoas muscle has been documented in football players, skiers and horse riders 

(82). However, the activity of the iliopsoas is related to all motions that include flexion 

of the hip joint. The variety of agricultural activities comprising bending the body 

forward (flexion of the hip joint) is significant and it is involved in almost every 

movement in agricultural work. Additionally, riding could also provide this difference 

among the investigated sample. 

Loading of the individual entheses of the upper limbs and the possible associated 

activities: the evaluation of the entheseal changes of the upper limbs can tell us much 

about the everyday physical activities of ancient populations. Most of the muscles of the 

shoulder, elbow and forearm work as functional groups, either as synergists or 

antagonists.  
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Figure 17. Pectoralis major  muscle (frontal view). 

The only difference between the sides in the whole sample was the pectoralis major 

muscle (Fig. 17), which demonstrated predominance on the right side i.e. higher EC 

scores. Furthermore, this difference was found only in the agricultural population. The 

pectoralis muscle assists the humeral adduction and medial rotation (80). In 

anthropological literature, the specific activities which mainly engage the pectoralis 

major muscle and the muscles of the rotator cuff are associated with harpooning (51), 

kayaking using a double-bladed paddle (9, 26), lifting a load from the a squatting 

position (82) and the scraping of animal hides where the opposite arm is holding the 

heavy skins with the humerus adducted toward the chest and the elbow at an obtuse 

angle (26, 82). All of these activities could be part of the everyday activity pattern 

among the analysed population. Side differences found in the EC score of the pectoralis 

major suggests that, in everyday life, agriculturals have different uses of the left and 

right arm. However, when considering kayaking, entheseal changes on both sides 

should be expected and, therefore, an almost equal degree of EC on both sides should 

also be expected. In harpooning, dexterity should probably be considered. Knusel 

(2000) noted that dexterity can be complex to trace in skeletal remains (88). However, it 

can only be assumed that approximately 90% (both today and recorded in historical 

times) of the total population were right handed (51). Lifting a load from a squatting 

position was considered to be a common activity in everyday life, particularly because 

this movement could often be performed in the agricultural community. In literature it is 
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suggested that lifting a load from a squatting position should be associated with the 

activation of the pectoralis major muscle and brachialis muscle (82) and, therefore, 

hypertrophy of both attachment sites should be excepted, but was not found in our 

material. 

 

Figure 18. Subscapularis muscle (frontal view). 

In addition, the scraping of animal hides should include activity of the pectoralis major 

and teres major muscles (82). Given that this activity was very common in the 

prehistoric population with the predominance of a hunter-gatherer economy, in the 

majority of medieval populations it was probably not so customary.  Therefore, the 

possibility of significant EC due to the scraping of animal hides in medieval populations 

was not tenable.   

A statistically significant difference of the entheseal morphological appearance between 

riders and the agricultural population was found in the upper limbs only in the 

subscapularis muscle (Fig. 18), indicating a greater exposure to stress for the riders’ 

population group. Entheseal changes of the attachment sites of the subscapularis, the 

flexors and the extensors of the elbow and wrist occur today in several sports and 

occupations involving repetitive and/or forceful tasks (89). It appears difficult to 

identify specific motions according to the entheseal changes of one attachment site, 

especially because the majority of motions of the upper limbs mobilise several muscles. 
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Loading of the individual entheses of the lower limbs and the possible associated 

activities: most of the attachment sites that showed significant differences in the EC 

score between the two investigated populations were associated with the lower limbs. 

This indicates a greater exposure to load stress among the population of riders compared 

to the agricultural population.  

Due to the lack of studies related to entheses of the lower limbs and the fact that the 

lower limbs are involved in more generic movements, the reconstruction of activities 

associated with the lower limbs is much more complex. In the comparison of 

individuals (pooled sexes) of the horse riders’ and agricultural populations, statistically 

significant differences were noted in muscles attached to the tuberculum ishiadicum 

(hamstrings muscles), vastus medialis muscle, and three adductor muscles.  All these 

entheses show a more pronounced EC in the horse riders’ population. Several 

observations can be made with regard to the anticipated musculature and concomitant 

bony changes associated with horseback riding. 

Since, in the investigated sample, only the muscles which are specific for horse riders 

were singled out, it can be concluded that the Avarian population used riding as an 

everyday physical activity more than the agricultural population. However, can we 

isolate the most important rider muscle group which is used only during riding? 

Although riding is actually a movement supported by several muscles groups, the 

adductors are the most specific for riding. The adductors are the most specific for riding 

because the action of keeping the legs together is not common in everyday activities, 

while during riding this action is almost continuous and every rider has felt pain in these 

muscles after riding (79). 

Bone microarchitecture at muscle attachment sites (development of entheses - lessons 

from embryology): the proper understanding of entheseal morphology and the potential 

relationship to muscle contraction requires the recognition of the developmental 

pathways. In this context, recent developmental studies of mice showed that the 

formation of bone ridges is initiated irrespective of muscles and is governed by 

molecular signals deriving from Scx+ tendon cells which cause BMP4 expressions in 

bone and subsequent entheseal bone growth (90, 91). It seems that bone ridge initiation 

is predetermined, indicating the necessity of the attachment site to provide sufficient 
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initial anchoring capabilities for the muscle. However, when a certain ridge size is 

achieved, the muscle is connected and the further regulation of bone ridge growth 

depends primarily on muscular activity (90). Many bone ridges are formed through the 

endochondral ossification pathway; however, considering the large variability in the 

morphology of bone ridges, it is not known whether they all develop in the same way 

(90, 91). There is some evidence from animal studies that fibrous entheses are formed 

postnatally and that parathyroid hormone related protein (PTHrP) is an essential 

regulator of their development (92); PTHrP is used as a “load-induced modelling tool 

that directs osteoclasts to excavate the root system by which these sites attach to the 

cortical surface” (92, 93). We are just beginning to understand the development of 

entheses, and many questions regarding these processes are still unanswered (91). 

However, the current understanding of entheseal development suggests that their initial 

growth follows a particular genetic program.  

Bone microarchitecture at muscle attachment sites (understanding load transfer to 

bone): a very early mention of the mechanical significance of bone form was done by 

Galileo (1638). He understood that bones in large animals were not simple scaled up 

version of bones in small animals, but they are also a different shape (94).  

The crucial mechanical function of bones is to provide rigid levers for muscles to pull 

against, as well as to remain as light as possible to allow efficient locomotion. 

Consequently, bones must adapt their shape and architecture to make efficient use of 

material. Bone adaptation during skeletal growth and development continuously adjusts 

skeletal mass and architecture to different mechanical environments. There are three 

fundamental rules that manage bone adaptation. First, mechanical adaptation is driven 

by dynamic, rather than static loading. Second, only a short duration of mechanical 

loading is necessary to initiate an adaptive response, and third, bone cells accommodate 

to a customary mechanical loading environment, making them less responsive to routine 

loading signals (95). The famed Wolff's law states that bone in a healthy person will 

adapt to the loads under which it is placed. If loading on a particular bone increases, the 

bone will remodel itself over time to become stronger to resist that type of loading. 

Also, if the loading on a bone decreases, the bone will become less dense and weaker 

due to the lack of the stimulus required for continued remodelling (96). Therefore, the 
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internal architecture undergoes adaptive changes, both in the trabeculae and cortical 

portion of the bone. However, alternative loading directions also can cause internal 

architecture adaptive changes, particularly where the trabeculae realign accordingly. 

Providing only the horizontal loads are reduced, the vertical trabeculae stay intact, but 

some of the horizontal trabeculae become disconnected and finally resorbed (97). This 

suggests that the trabeculae are mostly aligned with the principal stress direction which 

maintains bone strength (97). For instance, investigating age related changes of the 

proximal femoral cancellous bone, Djuric et al. (2009) found that an increased 

anisotropy in this region suggests that the trabeculae are mostly aligned with the 

principal stress direction (98). 

Bone microarchitecture at muscle attachment sites (mechanical adaptation of the bone 

at an enthesis): it is generally believed that the entheses are structurally designed to 

meet particular mechanical demands (99). It was suggested that the microscopic 

structure of the whole enthesis is “optimized to minimise stress and strain 

concentrations associated with load transfer from the relatively compliant tendon to the 

relatively rigid bone” (100). This is visible in compositional differences of entheseal 

histological layers, ensuring gradual changes in stiffness and accepting/transferring 

mechanical stress from muscle to bone (5). It is believed that differential cortical and 

trabecular microstructural patterns may not only be a consequence of mechanical stress 

but also that they may be directly involved in how the stress is dissipated. In this 

context, it is encouraging that recent studies have started using histomorphometric 

approaches to assess bone turnover history when investigating the relationship between 

mechanical strain and enthesis development (101).  

It is generally believed that bone ridges provide a stable anchoring point for tendons. 

Since most of the load generated by muscle contraction and transduced by the tendon 

encounters the bone ridge before the rest of the bone volume, the bone ridge is likely to 

absorb/dissipate some of the stress concentrated at the hard-soft tissue interface, 

diminishing the risk of avulsion fractures (5, 102, 103). Further simulation studies 

should also clarify whether and how exactly the formation of a bony prominence for 

tendon attachment is mechanically favourable over the direct attachment to the flat bone 

surface.  
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Although muscle activity was frequently linked to overall bone cross-sectional 

geometry (104-106), further experimental or simulation studies are necessary to check 

whether, or how, mechanical strains derived from the muscle contraction dissipate along 

the diaphysis, or if they mostly concentrate at the insertion sites (107). To this end, the 

comparison of cortical thickness between muscle attachments sites and the surrounding 

bone might offer some clues. Using pQCT scanning of humeri, Niinimaki et al. reported 

that cortical thickness of the humeral shaft was greater at muscle attachment sites than 

at non-attachment points (108). However, our findings showed that the cortex is not 

necessarily thicker at the entheseal sites than at non-attachment sites within the same 

cross-section, especially in stage C in the case of the gluteal tuberosity and lesser 

trochanter (see Figures 7-10). Although this might be partly dependent on the type of 

entheses (fibrous vs. fibrocartilaginous) (109), further studies are necessary to clarify 

the origin of variability in cortical thickness within a cross-section. 

Though tubercles are more accepted as occurring on real bones than are pits, pits are not 

rare.  As a response to the stress generated by a tendon attached to them, the existing 

bony tubercles will adapt, with time, in accordance with the changes in the direction of 

pull, Currey (1968). This theory was based on the fact that tubercules adapt their 

morphology to realign their long axis with the new direction of pull. In these 

circumstances bone needs to deposit in the place where the stress is high (110).    

In order to analyse the effect of the shape of the bone on the stress, Hirschberg (2000) 

generated a Flac7 model. Hirschberg studied the effects of the presence of a tubercle on 

longitudinal compressive stress existing in the bone using Algebraic Stress. His findings 

suggest that the stress increases at the bases of tuberculum, but decreases the stress 

within it. The compressive stress reduces with height within the tubercle and, in the area 

near the top of the tubercle, was almost negligible. In the region of the corners beneath 

the tubercle’s base, the stress was slightly increased. Therefore, regardless of the 

existing pattern in the bone, tubercules serve to reduce the stress. The pit has the 

opposite effect. It increases the stress near its lowest part, but reduces the stress at its 

                                                      
7 Fast Largangian Analysis of Continua (Flac) is an explicit finite difference program that performs a 
Largangian analysis to model the behavior of a physical system. In this particular case Flac model 
represents a bar loaded uniformly in compression along the left and right edges, with tubercle or pit in the 
middle of the upper edge.  
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edges. If the edges of a pit are observed as convexities (tubercles), then a stress reducing 

effect in this region is expected. 

This analysis leads to an assumption that if there has been no recent change in loading 

and mechanical equilibrium is achieved, the surface of the bone should be at the 

remodelling threshold. Given that there should be no depositing or resorbing, the bone 

surface stays flat. Also, if a small pit were formed, then the stress in the bottom 

surrounding of the pit would be increased. This new increased stress situation now 

causes bone deposition, so the pit would be eliminated. Otherwise, if a small amount of 

bone were deposited on the surface, it would serve as a tubercle with the aim of 

reducing the stress. This reduced stress would now cause the process of resorption, thus 

eliminating the tubercle. This simple mechanism ensures that a long bone’s surface 

remains flat (110).  

Bone microarchitecture at muscle attachment sites (as incurred pit or tuberculum): 

where tendons attach to bone the state of stress has two main sources: tension (pull of 

the tendon) and longitudinal compression (from joint reaction forces) (110). During the 

movement that is produced by the action of the muscle, if the change in the angulation 

of the tendon to the bone surface is small, then the state of tension may protrude some 

distance into the bone, leading to the formation of the pit (94). This is because the load 

producing tension at the small region of attachment of a large tendon is very much 

greater than the load producing compression resulting from body weight.  Conversely, if 

there is a large change in the angulation of the tendon to the bone surface, then the 

situation may change.  That is, though there will certainly be tension in the tendon some 

distance from the bone, this will be reduced close to the bone because the tendon fibres 

are under compression laterally, being constrained at their attachment. When the larger 

the change in angulation during muscle function the consequence will be development 

of tuberculum at the place of attachment site (94).  

Bone microarchitecture at muscle attachment sites (what can bone microarchitecture 

tell us): analysis of bone microstructure may offer additional clues related to the 

structural effects of muscle loading, given that persistent or repeated mechanical stress 

may drive bone microarchitectural adaptation - as suggested by the “bone functional 

adaptation law” (104, 111-115). In this context, bone microarchitecture may better 
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reflect bone loading history (17, 112, 114), and such a link was evaluated at various 

skeletal sites experiencing different loading conditions (16, 18, 116). However, the 

microarchitecture of the bony parts of entheses has been widely neglected, and the 

relationship between the macroscopic and microscopic appearance at the sites of muscle 

attachments has not been established.  

Relationship between bone macro and microstructure at the enthesis: the 

microarchitectural evaluation of the entheses with various macromorphological 

expressions (stages A, B and C) revealed a lack of any direct and consistent relationship 

between the macro and microstructural features, indicating that macroscopic EC stages 

do not represent distinct successive phases in bone adaptation to mechanical loading. 

Our results demonstrated that macroscopic stage C entheses seemed to show a tendency 

towards an improved cortical and trabecular microarchitecture (higher cortical 

thickness, decreased cortical porosity and pore diameter, increased trabecular bone 

volume fraction and trabecular thickness) in comparison to stage A entheses; however, 

the consideration of all three entheseal stages (A, B, C) showed that microarchitecture 

did not demonstrate consistent trends with increasing macroscopic entheseal scores. 

Particularly, there was a lack of further improvement in the cortical and trabecular 

microarchitecture of entheses in stage C compared to stage B. Specifically, cortical 

thickness differed significantly between the EC macroscopic stages, but there was no 

gradual increase in cortical thickness with increasing entheseal scores, given that stage 

C showed significantly lower thickness than the stage B. Although macroscopic stages 

B and C presented an improved trabecular microarchitecture in comparison with stage 

A, our microarchitecture findings failed to support the successive nature of macroscopic 

stages. Only two parameters showed a tendency (non-significant) to a continuous 

decrease with increasing entheseal scores: cortical pore diameter and trabecular degree 

of anisotropy.  

With simplified macroscopic scoring (“no changes” vs. “any type of change present”), 

only the degree of anisotropy was significantly decreased, suggesting that trabeculae are 

more randomly oriented in the cases of higher entheseal changes.  

 



 

78 
 

Correlations between microarchitectural parameters, depending on EC score: mutual 

relationships between the microarchitectural properties differed depending on the 

macroscopic stage of EC. In stage A entheses, cortical thickness was associated with 

separation between the pores but not with pore diameter, which might indicate that it is 

more associated with the number of pores. Stage B showed that cancellous bone volume 

fraction depended mostly on trabecular number, while cortical porosity was mainly 

determined by the diameter of cortical pores. However, no cortical–trabecular 

associations were ascertainable in stages A and B. Yet, the stage C entheses displayed 

most cortical–trabecular associations: cortical thickness showed a significant direct 

relationship with trabecular thickness, and smaller cortical pores were associated with 

better connected trabeculae, both relationships indicating that the cortex and trabeculae 

follow the same adaptation patterns (positive bone balance) in stage C entheses.  

Therefore, our microstructural findings did not provide support to the theory that 

macroscopic scores A to C really represent different phases (temporal stages) in the 

activity induced entheseal modelling. Moreover, mutual correlations between the 

microarchitectural parameters were not consistent and differed depending on the 

macroscopic stage. Hence, it seems that the relationship between a bone’s 

microstructural design and the macroscopic scores used in anthropological analysis is 

not straightforward, which challenges the established anthropological practice of 

musculoskeletal markers and warrants further investigation of bone adaptation patterns 

to external loading.  

Patterns of microstructural parameters in “proliferative” and “resorptive” phases at 

the enthesis: in further analysis patterns of microstructural parameters were evaluated in 

the “proliferative” and “resorptive” phases at the enthesis. According to Villotte (2006), 

the fibrous entheses among the EC expression scores’ three stages were distinguished 

(stage A; stage B; and stage C). While stage A represents a completely regular surface, 

according to the morphological appearance of bone in stage B, two “subphases” are 

distinguished: B(a) is characterised by the presence of significant irregularity in most of 

the insertion zone and the absence of enthesophytes, while B(b) is characterised by the 

presence of lacuna of cortical bone with a length of less than 20 mm. Likewise, in stage 

C, two “subphases” could be recognised: C(a) with domination of a significant 
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irregularity in most of the insertion zone and the presence of one large or several 

smaller reliefs which are distinguished from the insertion zone; phase C(b) is 

characterised by the presence of lacuna of cortical bone with a length of greater than or 

equal to 20 mm (10). It could be summarised that the macroscopic appearance of 

entheses in stages B and C involves morphological changes showing either predominant 

signs of “bony formation” (stage B(a) and stage C(a)), or pronounced signs of bony 

resorption (stage B (b); stage C (b)) (Fig. 19). It is unclear whether these two “phases” 

result from different loading patterns or they are successive steps in the adaptation to 

mechanical loading at the enthesis. To investigate the internal architectural differences 

between the “proliferative” and “resorptive” phases of entheseal changes, a micro-CT 

analyses was performed of the gluteus maximus attachment sites with predominant 

signs of “bone formation” (i.e. “bony proliferation”) and those with dominant traces of 

“bone resorption” at the level of macromorphological entheseal appearance (stage B(a); 

stage B(b); stage C(a) and stage C(b)). 
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Figure 19. Macromorphological appearance of enthesis in “proliferative” and “resorptive” phases: 

a) Stage B(a) (see classification in material and method section) 

b) stage C(a) (see classification in material and method section) 

c) stage B(b) (see classification in material and method section) 

d) stage C(b) (see classification in material and method section) 
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Comparison between the “proliferative” and “resorptive” phases among different stages 

of EC suggested that there is no consistent difference among them at the level of 

trabecular and cortical microarchitecture (Table 15 and 16). For instance, the 

“resorptive” phase of stage B showed a 30% increase in cortical porosity when 

compared to the corresponding “proliferative” phase, whereas the “resorptive” phase of 

stage C had a 47.27 % reduction in cortical porosity (Chart 1). Actually, in both phases 

of macroscopic stages B and C, the trabecularisation (increased porosity) of cortex 

exists and grows in the following direction: B(a)→B(b)→C(a). However, such a trend 

of growing cortical porosity did not continue to stage C(b), where lower cortical 

porosity was found than in C(a). It was also noticed that behind those macroscopic 

changes whose appearance corresponds to C(b), actually two different 

microarchitectural patterns were evident. The first microarchitectural pattern is 

characterised by the defect of the cortical surface with increased trabecularisation of the 

underlying bone while in the second microarchitectural pattern a defect of the cortex is 

not accompanied by trabecularisation of the underlying bone (Fig. 20).  

Our results could suggest that from the initial flat surfaces at the place of a muscle 

attachment site, two directions of EC development are possible. One is a clearly 

expressed prominence and trabecularisation of the cortical bone inside the prominence. 

This trabecularisation of cortical bone can lead sporadically to visible porosity on the 

cortical external surface. In the second option, a surface cortical bone defect develops 

with the regular cortical bone morphology under the lacuna (Fig. 21).  

 

Figure 20. Two possible directions in the development of EC. 



 

82 
 

 

Figure 21. Volume rendering of acquired micro-CT tomographs: a) trabecularisation of the cortical bone 
under the lacuna b) regular cortical bone morphology under the lacuna. 
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Generally, in line with the bone adaptation principle (111, 113), increased loading 

would be expected to reduce cortical porosity in the case of axial loading. For instance, 

it was shown experimentally on an animal model that a lack of mechanical loading due 

to botulinum induced paralysis caused cortical thinning along with increased cortical 

porosity (117, 118). 

However, our microarchitectural findings in all entheseal stages at the gluteus maximum 

insertion site showed an increased porosity of the cortical bone. This finding may 

suggest that transmission of the load arising from muscle activity on the enthesis 

requires a different structural adaptation than compressive axial loads. In this context, a 

more trabecularised cortex may be a more favourable entheseal microarchitectural 

design for load transfer, reflecting local adaptation to increased strains, as suggested by 

Schlecht (2012) (101).  

Further studies should clarify how, and why, exactly two developmental directions 

occur from the initially flat bone surface. It could be speculated that these differences in 

development of EC are a consequence of variations in magnitude of load, different 

loading pattern or changes in tendon/bone angle during motion.   

Further questions arise (evidence of relationship of muscle activity and bone structure): 

the microstructural effects of a lack of muscle loading were shown on an animal model 

where, a few weeks following the local administration of botulinum toxin to the 

supraspinatus muscle, the muscle volume was decreased, fibrocartilage development 

delayed and the accumulation of mineralised bone was impeded (100). However, 

although the subchondral bone might undergo a functional adaptation to exercise due to 

the changed magnitude and type of load, Frizziero et al. found no significant differences 

in the enthesis area and adjacent subchondral bone volume between trained and 

untrained rats. The authors suggested that “moderate exercise” did not affect the 

subchondral bone volume at the enthesis, however, the tendon thickness was increased 

in trained rats (119). This raises one of the most crucial questions in the field of bone 

structural adaptation: what is the osteogenic potential of high intermittent stresses vs. 

habitual moderate stress, i.e., which type and magnitude of stress drives bone structural 

adaptation (20, 104, 107, 120)? Following this question, another arises as to whether the 

structural adaptation to muscle loads is different across lifespan? Does the entheseal 
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morphology mostly reflect the activities in youth, or do the activities in advanced age 

also determine the appearance of attachment sites, or are both the case (104, 107)? In 

that sense, it seems too simplistic to just observe the general occupation of an individual 

when analysing enthesis morphology, and correct interpretations may require a more 

precise investigation of loading activities. Answering these questions is essential for any 

interpretative approach to entheseal morphology. 

Our findings suggest that the structural patterns of entheses (as well as their relationship 

with muscle activities) are far more complex than usually thought. Specifically, in order 

to profoundly understand the relevance of the macroscopic scoring of entheses (in the 

form of musculoskeletal markers), we have to understand several more issues which are 

important for stress transfer, such as: different histological types of entheses (99, 107), 

the angle of muscle attachment to the bone surface and the pennation angle (100, 121), 

the skeletal region where the enthesis is located, the movement of the enthesis location 

during growth, caused by constant resorption and new deposition (92, 122), the 

difference in body size, and the embryological development of the entheses. Although 

differences in body size may also be important for entheseal morphology, we observed 

that an individual can present different macroscopic stages at different insertion sites 

even on the same bone.  

 

 

 

 

 

 

 

 

 



 

85 
 

6. CONCLUSION 

The present study analysed the macromorphological and microstructural characteristics 

of the bone at the muscle attachment sites, hypothesising that mechanical loading 

influences the microarchitecture and macromorphology of the bone at the entheses.  

1. With horse riders the results suggest that the physical activities of the upper 

limbs were more or less consistent during their whole life, while the activity of 

the lower limbs was related to the intensive use of muscles in younger 

individuals.  

2. Among the agricultural population, the results show that the entheseal changes 

are more pronounced in the older age categories, suggesting that the agrarians’ 

level of physical activity increased with age. An alternative could lead to the 

conclusion that during the individual’s life time the bone quality reduces, with 

the result that an ensuing muscle load of the same intensity influences a more 

dramatic entheseal change in the elderly.  

3. The sexual dimorphism of EC scores was evaluated in both the horse-rider and 

agricultural groups and showed that all attachment sites which demonstrated 

significant differences revealed greater markers of stress in males in both 

investigated groups. 

4. Between the rider and agricultural populations, among the lower limbs, only the 

muscles which are specific for horse riders were singled out, showing a more 

pronounced EC in the horse riders’ population. This suggests that the evaluation 

of attachment sites of adductor muscles can provide the best criteria for the 

identification of riders among the general population. 

5. The possible successive nature of the widely used three-stage scoring system of 

entheseal macroscopic changes was investigated, by comparing EC scores with 

the microarchitectural features at the musculoskeletal attachment sites on the 

lower extremities. Overall, the results showed a lack of a consistent correlation 

between the established stages of the macroscopic scoring system and the 

microarchitecture at the entheses, suggesting that the macroscopic entheseal 
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stages might not represent distinct successive phases in bone adaptation to 

mechanical loading. Therefore, the evaluation of EC should be simplified using 

only two macromorphological stages: complete regular attachment site and 

presence of irregularity at the place of the attachment site. 

6.  The mutual relationships between the microarchitectural properties differed 

depending on the macroscopic stage of EC. Specifically, while in stages A and B 

no significant relationship between the characteristics of cortical and trabecular 

microarchitecture was found, stage C showed significant positive correlations 

between the cortical and trabecular microarchitectural parameters, suggesting 

that both bony compartments still followed the same adaptation pattern.  

7. It was found that from the initial flat surfaces at the point of the muscle 

attachment site, two directions of EC can be developed. One is the clearly 

expressed prominence and trabecularisation of the cortical bone inside the 

prominence. This trabecularisation of the cortical bone can lead to visible 

porosity on the external cortical surface. In the second developmental direction, 

a surface defect exists with the regular cortical bone under the lacuna. It could 

be speculated that these differences in development of EC are a consequence of 

variations in the magnitude of the load, a different loading pattern or changes in 

the tendon/bone angle during the motions. However, further studies are needed 

to demonstrate how the stress transfer process influences the bone 

microstructure of the entheses. 
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