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Title:

SIMPLICIAL COMPLEXES AND COMPLEX NETWORKS:

the influence of higher-order (sub)structures on network properties

Abstract

In modern theoretical physics (quantum gravity, computational electromagnetism,
gauge theories, elasticity, to name a few) simplicial complexes have become an im-
portant objects due to their computational convenience and power of algebraic topo-
logical concepts. On the other hand, physics (and mathematics) of complex systems
formed by the large number of elements interacting through pairwise interactions in
highly irregular manner, is the most commonly restricted to concepts and methods
of the graph theory. Such systems are called complex networks and notions of graph
and complex network are used interchangeably. The achievements of the complex
networks research are important for modern world and largely reshape our notion
of a large class of complex phenomena, primarily because seemingly random and
disorganized phenomena display meaningful structure and organization. The same
stands also for the aggregations of complex network’s elements into communities
(modules or clusters), which as a major drawback has that they are restricted to
the collections of pairwise interactions.

In this thesis to the notions of structure and substructure of complex systems,
exemplified by complex networks, are given a new meaning through the changing the
notion of community, by defining a simplicial community. Unlike the common notion
of community, simplicial community is characterized by higher-order aggregations
of complex network’s elements. Namely, starting from typical properties of complex
systems it was shown that the natural substructure of complex networks emerges
like the aggregations of a multidimensional simplices. It was further shown that
simplicial complexes may be constructed from complex networks in several different
ways, indicating the possible different hidden organizational patterns leading to
the final structure of complex network and which are responsible for the network
properties. In this thesis two simplicial complexes obtained from complex networks
are studied: the neighborhood and the clique complex.

Relying on the combinatorial algebraic topology concepts a unified mathematical
framework for the study of their properties is proposed. The topological quantities,
like structure vectors, Betti numbers, combinatorial Laplacian operator are calcu-

lated for diverse models real-world networks. Properties of spectra of combinatorial
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Laplacian operator of simplicial complexes are explored, and the necessity of higher
order spectral analysis is discussed and compared with results for ordinary graphs.
The relationship of properties resulting from combinatorial Laplacian spectra with
connectivity properties stored in the Q-vector is analyzed and discussed. The basic
statistical features of complex networks are preserved by algebraic topological quan-
tities of simplicial complexes, indicating possible presence of the so far unknown
generic mechanisms in the complex networks formation. The spectral entropy is
proposed as a measure of complexity which is determined by the eigenvalues of
combinatorial Laplacian. All results support the necessity of developing a novel re-
search field, called statistical mechanics of simplicial complexes as a unifying theory

of the complex systems represented by simplicial complexes.

Keywords:
statistical mechanics, complex systems, graph, complex networks, combinatorial al-
gebraic topology, simplicial complexes, topological invariant, combinatorial Lapla-

cian, entropy

Scientific field:
physics

Specific scientific field:
statistical physics

UDC number: 533.9(043.3)
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Naslov:

SIMPLICIJALNI KOMPLEKSI I KOMPLEKSNE MREZE:

uticaj (pod)struktura viSeg reda na karakteristike mreze

Rezime

U savremenoj teorijskoj fizici (na primer, kvantnoj gravitaciji, racunskom elek-
tromagnetizmu, gejdz teoriji, elasticnosti) simplicijalni kompleksi su postali vazni
objekti zbog njihove racunske pogodnosti i modéi koncepata algebarske topologije.
Sa druge strane, fizika (i matematika) kompleksnih sistema formiranih od velikog
broja elemenata koji interaguju parnim interakcijama na izrazito neregularan nacin,
najcesce je ogranicena na koncepte i metode teorije grafova. Takvi sistemi se nazi-
vaju kompleksne mreze i pojmovi graf i kompleksna mreza se poistove¢uju. Dopri-
nosi istrazivanja kompleksnih mreza su vazni za savremeni svet i umnogome pre-
oblikuju nase poimanje velike klase kompleksnih fenomena, pre svega zbog toga
Sto naizgled slucajni i neuredeni fenomeni pokazuju smislenu strukturu i organi-
zaciju. Isto vazi i za agregacije elemenata kompleksne mreze u zajednice (module ili
klastere), koje kao najveéi nedostatak imaju osobinu da su ogranicene na kolekcije
parnih interakcija.

U ovoj tezi pojmovima strukture i podstrukture kompleksnog sistema, kroz
primer kompleksne mreze, dato je novo znacenje menjanjem pojma zajednice, defin-
isanjem simplicijalne zajednice. Za razliku od uobicajenog pojma zajednice, sim-
plicijalna zajednica je karakterisana sa agregacijama viseg reda elemenata mreze.
Naime, posavsi od tipicnih osobina kompleksnih sistema pokazano je da se kao
prirodna podstruktura kompleksne mreze pojavljuju agregacije multidimenzionalnih
simpleksa. Pokazano je, dalje, da se simplicijalni kompleksi mogu iz kompleksnih
mreza konstruisati na nekoliko razlic¢itih nacina, ukazujuc¢i na postojanje razlic¢itih
skrivenih organizacionih obrazaca koji vode do konacne strukture kompleksne mreze
i koji su odgovorni za osobine mreze. U ovoj tezi su razmatrana dva simplicijalna
kompleksa dobijena iz kompleksne mreze: kompleks susedstva i klika kompleks.

Oslanjajuci se na koncepte kombinatorijalne algebarske topologije predlozen je
objedinjeni matematicki okvir za proucavanje njihovih osobina. Topoloske veli¢ine,
kao sto su strukturni vektori, Betti brojevi, operator kombinatorni laplasijan, racunate
su za razlicite modele realnih mreza. Ispitivane su osobine spektra operatora kombi-
natorni laplasijan simplicijalnog kompleksa, i razmatrana je neophodnost spektralne

analize viseg reda koja je poredena sa rezultatima za obicne grafove. Analizirana je i



razmatrana veza osobina dobijenih iz spektra kombinatorijalnog laplasijana sa osobi-
nama povezanosti sadrzanih u Q-vektoru. Osnovne statisticke osobine kompleksnih
mreza su ocuvane kod simplicijalnih kompleksa kroz velicine algebarske topologije,
ukazujuéi na moguce postojanje do sada nepoznatih generickih mehanizama u formi-
ranju kompleksne mreze. Kao mera kompleksnosti predlozena je spektralna en-
tropija koja je definisana preko svojstvenih vrednosti kombinatorijalnog laplasijana.
Svi rezultati podrzavaju neophodnost razvoja novog polja istrazivanja, nazvanog
statisticka mehanika simplicijalnih kompleksa, kao objedinjujuce teorije komplek-

snih sistema predstavljenih kao simplicijalni kompleksi.
Kljucne reci:
statisticka mehanika, kompleksni sistemi, graf, kompleksne mreze, kombinatorna

algebarska topologija, simplicijalni kompleksi, topoloska invarijanta, kombinatorni

laplasijan, entropija
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fizika
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Chapter 1
Introduction

Complexity is a very intriguing concept which attracts attention and hence the re-
search interest of scientists from different disciplines. Some kind of common purpose
unified their efforts in formulation of a unique, up to some specific differences, the-
ory of complex systems, which could be applied to diverse systems appearing in
physical, social, biological, technological, informational, and many other phenom-
ena. This approach is rather familiar in physics, particulary in the field of critical
phenomena where the concept of "universality” [1] means that physical systems
formed by the different elements will have the same behavior near critical point if
they have the same numerical value of the so called critical exponents. Hence, it is
not coincidence that the statistical physics had the largest influence on the sudden
burst of important results, which reshaped our image about complex systems, and
especially about complex networks.

However, if we want to begin the formulation of complex systems theory by
introducing the definitions upon which we can build further theory, and primarily,
definition of what complex system is, we face the problems: there is not a unique and
widely accepted definition of a complex system [2]. This seemingly essential obstacle
does not prevent researchers to adapt concepts and methods from their disciplines on
a specific complex system, and as a result give informative and practical description
of their behavior. Nevertheless, one large subset of complex systems singles out
due to the specific mathematical framework within which problems related to those
complex systems can be tackled. The characteristic of those systems is that they are
formed by the large number of elements which interact among themselves through
pairwise interactions. The easiest way to represent mathematically such complex
system is by a graph, associating the elements with the nodes or vertices, and
their interactions with the links or edges of a graph forming a complex network

[3].  Although the underlying assumptions of research that led to the results in



this thesis did not rely on any rigorous definition of a complex system, we have
accepted some qualitative and most common properties which characterize complex
systems in general. Based on these properties we have developed a characterization
of complex system by a suitable mathematical framework.

In general, the line of reasoning was the following: complex networks are es-
sentially a complex systems, and as such they should obey qualitative properties
of complex systems. First property is that complex systems, despite their great
irregularity, display some sort of organization which can be termed as an ”organized
complexity” [4], and we assume that this is true for complex networks. The last
assumption is proved in numerous research articles through the analysis of complex
networks by representing them as a graphs (for example, [5], [6], [7]). Second prop-
erty is that any collection of elements of a complex system which are related by
certain rules displays a qualitatively different behavior than the mere sum of those
elements [8], and this has to be captured in mathematically rigorous fashion. Here
is a very simple example: hot coffee is a collection of, say, four ingredients coffee
powder, water, milk, and sugar, and knowing the flavor of each ingredient can not
help us a lot in knowing the flavor of their mix in the hot coffee. Moreover, the same
is true for any collection of three ingredients, or for any collection of two ingredients.
Hence, such phenomena have to be mapped onto a suitable mathematical framework
which captures these properties. This second property has to be further explained
in the context of complex networks. Consider, say four people seated at the table
and engaged in a group conversation so that each person may hear everyone else.
A complete graph consisting of four nodes would be immediately assumed as an
adequate mathematical framework for this relationship. Consider now the situation
in which each person may only whisper in the ear of another person. Again, the
only applicable graph model is the complete four node graph although the situa-
tion is completely different. The model is not adequate since the conversation of
the group as an entity is not captured by the (1-dimensional) graph model which
can not make distinction between a four-person group conversation and a set of six
pairwise conversations. Hence, the behavior of a complex network can not be antic-
ipated by knowing only the pairwise relationships between its elements, but it is to
the large extent influenced by the structure built by those elements and their rela-
tions. The network of streets underlies the traffic carried by vehicles, and it is often
hard to predict occurrence of, for example, traffic jams. Nevertheless, knowledge of
the structure, or connectivity, or the hidden organizational patterns of the streets
can be very informative in the prediction of possible jams. Of course, following

the same reasoning, the similar problems can occur in the cases like the Internet



(as a physical connections between computers) or the Power Grids or the network
of neurons connected by synapses. By eliminating or adding new elements and/or
connections, the structure may change, and it further affects the traffic through the
networks. Finally, the third property is that the complex system possess an intrin-
sic hidden hierarchical organization which is responsible for the appearance of the
system as it is [9]. Again, we can consider an example in order to give a clarification
of this assumption: take for example a large company which is divided into sectors
which are further divided into subsectors, which are divided into subsubsectors, and
so on. Furthermore, the building blocks of a complex system are arranged in an
irregular yet meaningful way which is revealed through the hidden organizational
patterns which appear on different hierarchical levels characterized by aggregations
of complex system’s elements.

These typical properties of complex systems can be easily captured by simpli-
cial complexes, i.e., a set of connected polyhedra which build a higher dimensional
discrete geometrical space. An example of the formation of the simplicial complex

is presented in Figure 1.1 by gluing simplices (polyhedra).

v

@ (b)

Figure 1.1: An example of gluing polyhedra (a) along common faces in forming the
simplicial complex (b).

Therefore, we will place the problem of the hierarchical organization of intrin-
sic substructures of complex networks into suitable mathematical framework most
adequate for the analysis of simplicial complexes, that is, combinatorial algebraic
topology [10]. The idea of modeling complex systems by analyzing its elements rep-
resented by simplices is not a new one. Namely, Ron Atkin [11], [12], following the
ideas of Dowker [13] of building a simplicial complex from the relations between the
elements of two sets (or the same set), have introduced the method of Q-analysis
[14]. Researchers have sporadically used the methods of Q-analysis for the analysis
of specific systems, often with small number of elements. Such cases span from
studying qualitative and quantitative structure of television program [15], analysis
of the content of newspaper stories [16], social networks [17], [18], [19], [20], urban
planning [21], [22], relationships among geological regions [23], distribution systems

[24], decision making [25], diagnosis of failure in large systems [26], to mention a few.

3



From this short overview of the applications we can see the wide range of systems to
which Q-analysis can be applied. Recently Atkin’s methodology received a further
development in the work of Barcelo and Laubenbacher [27], naming their theory an
A-homotopy theory in honor of Atkin.

In modern theoretical physics simplicial complexes are recognized as important
and convenient objects [28], [29], [30] due to their analytical and computational
convenience. The language of modern physics is based on the calculus on manifolds
which are discretized using simplicial complexes. Reversely, simplicial complexes
can be used for the study of topological properties of a manifold obtained from
experimental data [31]. Also, the use of simplicial complexes in discretization of
exterior differential forms is extremely important. It is now widely recognized that
geometry and topology are at the foundation of many physical theories such as gen-
eral relativity [32], [33], electromagnetism [34], gauge theory [35], elasticity [36], to
mention a few. For example, the development of simplicial quantum gravity [37]
depends on the results of the Regge calculus [38], which, in turn, was developed
by approximating smooth 4-dimensional manifold by rigid simplices. On the other
hand, in the computational electromagnetism [39], [40], [41] Maxwell’s equations
can be directly expressed in terms of discrete differential forms which are defined as
cochains on simplicial complexes. Generally, the geometric and topological nature
of such theories is often obscured by their formulation in vectorial and tensorial
forms due to unavoidable use of coordinate systems so that the complete topological
and geometrical nature is obscured hiding for example, local and global invariants.
Exterior derivative of differential forms is, on the other hand, invariant under a co-
ordinate system change and since every differential equation may be expressed in
terms of exterior derivative of differential forms [42], many physical laws may be
expressed in terms of differential forms. Discretization of differential forms using
finite differences, for example, and using their coordinate values leads to numer-
ical invalidation of some basic theorems (Stokes, for example) making traditional
discretization methods futile. It turns out that proper discretization of differential
forms that preserves all the fundamental differential properties is possible only on
simplicial complexes [43]. As a curiosity let us mention that there are some at-
tempts to formulate physical theories in a completely discrete fashion [44], [45], [46],
[47], with emphasis on simplicial complexes. Considering the importance of simpli-
cial complexes in the fundamental theories, we may consider simplicial complexes as
universal tools for comprehensive and wide encompassing study of complex systems.

This ”simplexication of sciences” and ”complexication in sciences” naturally led

to the ideas of relating concepts of statistical mechanics and algebraic topology [48],



[49], [50], [51], [52]. Namely, it turns out that essential characteristics of complex
systems exemplified by complex networks, like the behavior of degree distribution
is preserved when we calculate distributions of algebraic topological quantities of
simplicial complex obtained from complex network. This further implies that we
have to look for the additional rules which lead to the structure of complex network
as it is, and relying on the substructures revealed through the algebraic topology
concepts. Therefore, we have to turn our attention to those substructures and verify
their validity within the structure of a complex network. So far the substructures in
complex networks called communities (or modules, or clusters) [53] are considered
as aggregations of pairwise interactions of network’s elements based on certain rule,
with the most general requirement that the density of the node connectivity within
the community is higher then the connectivity among communities. The lack of a
precise and widely accepted definition of what community is resulted in a diversity
of definitions mostly as a consequence of a detection algorithm [54]. The detection
of communities and their definitions includes node-based methods [55], link-based
methods [56], [57], clique-based methods [58], [59], [60], to mention the most impor-
tant ones. The link-based methods [56], [57] and clique-based methods [58], [59], [60]
have been successful in capturing important properties of substructures related to
the sharing of common nodes (and links) between different communities, that is the
overlapping property. Recently, the attention has been shifted from the community
detection to the so called structural group [61] defined as the aggregation of nodes
with common structural properties.

In the approach introduced in this thesis the notion of community has an essen-
tially different meaning. The definition of a simplicial community depends on the
context determined by relationship between network elements including the process
of the simplicial complex (i.e. the network). Introducing the general notion of sim-
plicial community in the framework of combinatorial algebraic topology, we define
and show that different substructures emerge in complex networks by mapping a
complex networks into diverse discrete topological spaces. In some cases the ap-
proach is an extension and upgrade of the present community definitions, such as
the case of k-clique communities [59].

Partitioning a simplicial complex, constructed from the initial complex network
into mesoscale structures which capture relationships between simplices and their
overlappings (called faces) and arranging them into levels defined by their corre-
sponding dimensions [48], [49], we obtain a hierarchical description of simplicial
complex connectivity. This representation is then compared, analyzed and inter-

preted by the spectrum of the (higher dimensional) combinatorial Laplacian of the



corresponding simplicial complex [62], [63], which also has a hierarchical structure
defined by the dimension of the simplicial complex [64]. Since the graph itself
is a 1-dimensional simplicial complex the combinatorial Laplacian of the underly-
ing graph is the 0 order combinatorial Laplacian of the corresponding simplicial
(clique) complex. Hence, the combinatorial Laplacian of simplicial complex repre-
sents generalization of the graph Laplacian. Properties of the spectrum of the graph
Laplacian are well known (see for example [65]), and they are important for the
study of dynamic processes taking place on the complex network [66], among other
applications. Although much less known, combinatorial Laplacian of a simplicial
complexes represents an area of active mathematical research [62], [67], [68].

In order to measure ”complexity” of complex networks several entropic measures
has been proposed following information theoretical and statistical mechanics for-
malisms related to the structure and organization of complex networks. The Shan-
non entropy was derived under given structural constraints [69], [70], [71]. The von
Neumann entropy (spectral entropy) proportional to the logarithm of eigenvalues
of the density matrix p which quantifies the degree of mixedness of quantum states
was defined in [72] and [73]. A density matrix p is said to be pure if Tr(p?) = 1,
or equivalently if p = p?, and mixed otherwise. Laplacian matrix of a graph scaled
by the sum of graph degrees is positive, symmetric with trace equal to 1 and hence
equal to the density matrix. In this thesis we define the spectral entropy of the sim-
plicial complex derived from the underlying graph as a vector whose components
are spectral entropies defined for each dimension ¢ of the simplicial complex. This
entropy is proportional to the logarithm of the probability of the appearance of the
eigenvalue of the ¢ higher dimensional combinatorial Laplacian. With adequate
normalization the ¢'* entropy quantifies the difference of the simplicial subcomplex

at each dimension from the set of disconnected g-simplices [74].



Chapter 2
Properties of a simplicial complex

This chapter is devoted to definitions, concepts, and quantities related to simplicial
complexes. Although this chapter is purely mathematical, rigorous definitions and

proofs are avoided where unnecessary.

2.1 Definition of simplicial complex

Let us start with a finite set B = {by, ba, ..., b, }, whose elements we call vertices. A
convex hull of ¢ + 1 elements {bs,, ba,, ..., ba, } Of the set B is called a g-dimensional
simplez, or just a g-simplex [75]. Geometrical realization of a g-simplex is through
the polyhedra embedded in d-dimensional R? space, where ¢ < d, and the rigorous
proof of this realization can be found in [75]. Hence, simplices can be understood

as a higher-dimensional generalizations of a point, a line, a triangle, a pyramid, and

so on. Figure 2.1 left, illustrates geometrical realization of g-simplices for various
q, of the set B = {1,2,3,4,5,6,7,8,9,10,11, 12,13, 14} with subsets: {1,2,3,4,5},
{2,3,5,6}, {6,8}, {2,7}, {7,8,9}, {8,9,10} and {11,12,13,14}.

Figure 2.1: Formation of simplicial complex on the right from simplices on the left part
of the picture.

In the following we will label a ¢-dimensional simplex as o,. A p-simplex o,

is a p-face of a g-simplex o,, denoted by o, < 0, if every vertex of o, is also a

7



vertex of o,. Therefore, if two simplices o, and o, share p + 1 common vertices,
then they share a p-face. From the Figure 2.1 left we can see that subset {2, 3,5} of
a simplex {1,2,3,4,5} is also a subset of a simplex {2,3,5,6}, meaning that these
two simplices share a 2-face. Also, the definition of a simplex implies that a 2-face
{2,3,5} is also a simplex. Defined in this way, simplices are the maximal subsets
(simplices), in the sense that they are not face of any other simplex.

Collection of simplices together with all their faces is called a simplicial complez.
In more formal terms a simplicial complex K on a finite set B = {by,bo,..., b, } of
vertices is a nonempty subset of the power set of B, such that K is closed under
the formation of subsets [75]. The maximal dimension of a simplex in K determines
the dimension of the whole simplicial complex, D = dim(K). Figure 2.1 (right)
illustrates how simplices on the left side form the 4-dimensional simplicial complex.

The above definition of simplicial complex is the abstract onelacking the mean-
ing of vertex aggregations into subsets of B. Namely, for practical purposes when
we are dealing with a concrete elements by, bo, ..., b, we must have some rule ac-
cording to which we aggregate elements into subsets which form simplices, and
we must know what these simplices actually represent. Let us introduce a new
set A = {ay,a9,...,a,} and a binary relation A\, which together with the set
B ={by,bs,...,by,} contribute to the formation of two simplicial complexes [13]. We
will introduce these two simplicial complexes leaning on the concepts of Q-analysis
developed by R. Atkin [14], [11], [76], [77], and further developed by J. Johnson [78],
[79], [80]. The binary relation A by some rule or property assigns to every element
in A one or more elements in B, i.e., for every a; € A there exists b; € B such that
a;\bj. The set A and the relation A\ determine the subset K of the power set of B
and we label each element {bs,,ba,, .., ba, } € K (¢ < m) by the element a; € A for
which @;Aba,, @;Abqy, ..., @;Aby,. To distinguish the element a; from the set A and
its associated element from the set K due to the relation A, the element of the set K
will be labeled as o(a;). Therefore, the notation o4(a;) = (bag;bay,bass - - - bay) [78]
means that an element a; of the set A is A-related to ¢ elements {bag, ba,, bass - - -5 bay }
of the set B. The elements of the set B are called vertices, whereas the elements of
the set K are called q-dimensional simplices or just q-simplices. Further, an element
a; is A-related to any subset of the set {bag, ba,, bass - - - » ba, }, and hence, every subset
of {bag,baysbay,---,ba,} is also a simplex, meaning that any such subset is a face
of simplex, due to the definition of g-face. Since each a; € A identifies a g-simplex
o4(a;) (for some q) together with all its faces, this collection of simplices is called a
simplicial complex K, which we will denote K4(B, \) [12].

To illustrate the construction of simplicial complex from two sets let us in-



troduce a set A = {a,b,c,d,e, f, g}, together we previously introduced set B =
{1,2,3,4,5,6,7,8,9,10,11,12, 13,14}, and suppose that the elements of the set A
are A-related to the elements of the set B. For example, the letters from the set
A may correspond to the individuals the numerals from the set B may correspond
to the diverse interests of each individual and the relation A may correspond to the
property "person a has an interest in 1”7. As another example, we may assume that
the letters from the set A correspond to patients, whereas numerals from the set B
correspond to diverse clinical symptoms, and the relation A\ corresponds to the prop-
erty ”patient a has a symptom 1”. Or, the letters from the set A may correspond to
the city streets whereas the numerals from the set B may correspond to the diverse
junctions and the relation A may correspond to the property ”street a contains a
junction 1”7. As another example consider that letters from the set A correspond
to the TV shows whereas the numerals from the set B correspond to the diverse
subjects, covered by the show and the relation A corresponds to the property ”TV
show a has a subject 17. In the context of social issues the letters from the set A
may correspond to the social groups, the numerals from the set B may correspond
to the diverse persons, and the relation A may correspond to the property ”social
group a has as a member person 1”. As a final example, the letters from the set
A may correspond to the geological regions, whereas the numerals from the set B

may correspond to the diverse rock types, and the relation A may correspond to the

property ”geological region a has a rock type 1”7, and so on.

Figure 2.2: Formation of the simplicial complex from Figure 2.1, but now the simplices
are labeled.

Figure 2.2 left illustrates polyhedral representation of simplices obtained by the
elements from the set A, which are A-related to the elements of the set B. For
example, an element a is A-related to the elements {1,2,3,4,5}. The obtained
simplices are:

o(a) =(1,2,3,4,5)
o(b) =(2,3,5,6)



o(c) = (6,8)
o(d) = (2,7)
o(e) =(7,8,9)
a(f) = (8,9,10)

olg) = (11,12,13,14).
Figure 2.2 illustrates the simplicial complex formed by ”gluing” simplices along their
shared faces. By simple inspection of left and right sides of Figures 2.1 and 2.2 we can
see that simplicial complexes are the same with a slight difference: the simplices from
Figure 2.2 are labeled and a meaning is attached to them. For example, consider a
simplicial complex of streets (simplices) and junctions (vertices) in an urban area.
Then from the above example, street a contains junctions 1, 2, 3, 4 and 5, whereas
street b contains junctions 2, 3, 5 and 6, and these two streets share junctions 2, 3
and 5. Hence, it is easy to comprehend how simplicial complex from Figure 2.2 can
capture the complicated relationships between streets through common junctions.
Obviously, if we do not assign a street name with the corresponding junction, we
would lose an important information.

Since the relation A relates the elements of the set A with elements of the set
B, there must be some relation which does the reverse, i.e., relates the elements of
the set B with the elements of the set A. That role is taken by the inverse relation
A1 [14], [78] of A which relates the elements of the set B with the elements of the
set A: 1X"ta, 227ta, 227th, 207td, 3X"ta, 3A7'b, and so on. Following the same
procedure, we form a simplicial complex Kg(A, A™!) on the vertex set A defined by
the relation A\~!, represented in Figure 2.3. Note that the elements of sets A and
B have changed their roles, and in the complex Kp(A, A\™!) simplices are from the
set B whereas the vertices are from the set A. Now we can generalize these results
to the simplicial complex defined by two arbitrary sets A = {aj,as,...,a,} and
B = {b1,by,...,by} and relation . Then simplicial complex Kpz(A, A\™!) defined
on the sets A = {ay,as,...,a,} and B = {by, by, ...,b,} by the inverse relation A~
of the relation \ is called the conjugate complex of the simplicial complex K4(B, \)
[14], [78]. In order to clarify the importance of the simplicial complex and its con-
jugate, let us consider an example where the elements of the set A are patients, and
the elements of the set B are clinical symptoms. Then the simplicial complex repre-
sents a collection of patients sharing the symptoms, whereas its conjugate complex
represents a collection of clinical symptoms sharing the patients which have them.

Finally we would like to emphasize, that the simplicial complex can be created
on a single set, that is, following the above notation A = B, and, hence, K4(A, \).

In this case the simplicial complex and its conjugate complex are the same.
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o(3), o(5)

o(1), 5(4) y o(7)

o(11), 5(12)
o(13), 5(14)

Figure 2.3: Conjugate complex of the simplicial complex from Figure 2.2.

The geometrical representation of the simplicial complex is not the practical way
to represent the relation between two sets. The more practical representation is by
the so called incidence matriz [14], [78] A. The rows of this matrix are associated
with the simplices and columns are associated with the vertices, and the matrix
entry [Al];; is equal to 1 if simplex o (i) contains a vertex j and otherwise it is equal
to 0. Hence, for the above example rows correspond to the elements of the set A,
columns correspond to the elements of the set B and a matrix element [A];; is equal
to 1 if an element a; € A is A-related to the element b; € B:

A1 23 45 6 7 8 9 10 11 12 13 14
af1 1 1 1 10000 0 0 0 0 O
b{o 11011000 0O O O O O
cl0O0O0O0O0O1O0OT1TO0O0O O O 0 O
A=d|l0 1 000O0OT1O0O0OTO0O O O O O
el0OOO0OO0OO0OT1T1TT1T 0O O 0 0 O
flfo 0 0o o 00011 1 0 0 0 O
g\0 0 00OOO0OOO O I 1 1 1

The matrix representation of the conjugate complex Kp(A, A1) of the simplicial
complex K 4(B,\) is the transpose matrix of A (AT). The matrix that captures the
relationships between simplices, and hence, the properties of simplicial complex is

the so called connectivity matriz defined as:
M=A-A"-Q, (2.1)

where A is the incidence matrix, and {2 is matrix with all entries equal to 1. Rows

and columns of the matrix II are associated to the simplices, the diagonal elements
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represent the dimension of simplices, whereas the non-diagonal elements represent
the dimensionality of faces which simplices share. By convention, the entry [II], ;=
—1 (i # 7) means that two simplices do not share face. For the example of simplicial

complex in Figure 2.1, the connectivity matrix has the following form:

a b c d e f g
a 2 -1 -1 -1 -1
b 2 3 o -1 -1 -1 -1
cl -1 0 -1 0 0 -1

2.2 Chains of connectivity and structure vectors

So far we have introduced the dimension of the simplex and the relationship (or ad-
jacency) between two simplices through the shared common face, which are stored
in the connectivity matrix. Now we will introduce a higher aggregations of simplices
induced through the shared face and, further, how they induce the intrinsic hier-
archical multilevel and multidimensional organization of simplicial complex. The
property that any subsimplex of a simplex is also a simplex induces various levels of
adjacency between simplices, and also various levels of connectivity between collec-
tions of simplices. Two simplices are g-near if they share a ¢-dimensional face (see

Figure 2.4), and hence, they are also (¢ — 1)-, (¢ — 2)-, ..., 1- and O-near.

Figure 2.4: An example of g-nearness between simplices. Two simplices are: (a) O-near,
(b) 1-near, and (c) 2-near.

The collection of simplices in which any pair of simplices is connected by a
sequence of simplices where a pair of successive simplices is g-near is called the

g-connected component. More formally, two simplices o and p are ¢ — connected

12



[11] if there is a sequence of simplices o,0(1),0(2),...,0(n), p, such that any two

consecutive ones share at least a ¢g-face. As an example of g-connectivity see Figure

2.5. Note that if two simplices o, and o, are g-connected, they are also (¢ — 1)—,
(g —2)—, ..., 1, O-connected in K.

(b)

Figure 2.5: An example of g-connectedness: (a) green and red simplices are 0-connected,
and (b) green and yellow simplices are 1-connected.

The g-connectivity between simplices induces an equivalence relation on simplices
of a complex K, since it is reflexive, symmetric, and transitive. This equivalence

relation will be denoted by 7, so that
(0(i),0(j)) € v, if and only if o(4) is g-connected to o (7).

Let K, be the set of simplices in K with dimension greater than or equal to g. Then
v, bartitions K, into equivalence classes of g-connected simplices. These equivalence
classes are members of the quotient set K, /v, and they are called the ¢-connected
components of K. Every simplex in a g-component is g-connected to every other
simplex in that component, but no simplex in one g-component is g-connected to any
simplex on a distinct g-connected component. The cardinality of K/, is denoted
(), and is the number of distinct g-connected components in K. The value @) is
the ¢'" entry of the so called Q-vector [74] (first structure vector [78]), an integer
vector with the length dim(K) + 1. The values of the Q-vector entries are usually
written starting from the number of connected components for the largest dimension

in descending order, i.e.:

Q:{Qdim(K) Qdim(K)fl o @ Qo}-
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An example illustrating the partitioning of the simplicial complex into g-connectivity
classes and QQ-vector for the example from Figure 2.1 is presented in Figure 2.6, with

Q-vector entries:

Q={1 3 4 5 2}.

A
A
-4 =
A
g1 @:&
A

Figure 2.6: Q-vector of simplicial complex from Figure 2.1.

Another vector-based quantity is the so called second structure vector [78]

n:{ndim(K) Ndim(K)-1 -~ T no}>

which is an integer vector with dim(K) + 1 components, like the Q-vector, and the
g-th entry, n,, is equal to the number of simplices with dimension larger or equal to
q, that is, it is equal to the number of simplices at the g-level. For the example of

simplicial complex from the Figure 2.1, whose Q-vector components are presented
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at the Figure 2.6, the second structure vector goes is:
n={1 3 5 7 T}

Finally, the entries of the third structure vector @q are defined in the following

way [81]:

Q,=1- iy (2.2)

fq
where (), is g-th entry of the first structure vector, and f, is ¢g-th entry of the second
structure vector. The third structure vector measures the degree of connectedness
on each g-level, or in other words, it measures the number ¢g-connected components

per number of simplices.

2.3 Homology groups and Betti numbers

So far, structural properties of simplicial complex have been explored only through
the connectivity of simplices deduced from the relationship between two sets. We
now concentrate on the topological properties of simplicial complex and take into
account a key property of the simplicial complex definition - that the power set of the
set on which simplicial complex is defined is closed under the formation of subsets.
In other words, every subsimplex, that is the face, is also a simplex in simplicial
complex. Hence, when we say ”¢-simplices”, we mean ”all maximal ¢g-dimensional
simplices and all ¢-dimensional faces”.

Let us start again with a finite vertex set B = {by,bs,...,b,}. An arbitrary
ordering of vertices {bqy, b, ---, Do, } Of a simplex defines an oriented g-simplex which
we denote [bag,ba,; .- bo,], and we say that simplicial complex K is oriented if
all simplices in K are oriented. Note that an unoriented simplex was denoted as
(bags Days -5 bay)- An example of oriented 0-, 1-, 2-, and 3-simplices is illustrated in
Figure 2.7, and by convention 0-simplex does not have an orientation.

Let C,(K) (for each ¢ > 0) be the vector space whose bases is the set of all
g-simplices of an oriented simplicial complex K, and the elements are the linear
combinations of bases vectors, called chains. Accordingly C,(K) is called a chain
group [75] (the term chain group is accepted for traditional reasons, regardless of
the vector space properties of C,(K), nevertheless C,(K) is still a group). The
dimension of C,(K) is equal to the ¢'" entry of an important topological invariant,
the f-vector, f = (fo, f1,...fq---fn). In this expression f, is equal to the number of
g-dimensional simplices of the simplicial complex K, i.e. fy represents the number

of vertices, f; number of edges and so on. For ¢ larger than the dimension of K,
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] ® > ®

0-simplex I-simplex

2-simplex 3-simplex

Figure 2.7: Examples of orientation of 0-, 1-, 2-, and 3-simplex.

vector space C,(K) is trivial and equals to 0. For a set of vector spaces C,(K') with
0 < ¢ < dim(K) the linear transformation 0, : Cy(K) — Cy—1(K) called boundary

operator acts on the bases vectors (va,,Vay, .-, Ua,) in the following way [75]

q

0q(Vag, Vay s -+ Vay) = Z(_l)i(vao, s Vay 1> Vagyrs - Vay) -

1=0

An example of the action of the boundary operator on a 3-simplex and its subsim-
plices from Figure 2.1 is illustrated in Figure 2.8.
Taking a sequence of chain groups C,(K’) connected through the boundary op-

erators J, the so-called chain complez is defined in the following way

It Lo o n,

(Z) — Cq 84 qul
with 9,0,41 = 0 for all g. The kernel of 9, is the set of ¢-chains with empty boundary
while a ¢ -cycle, denoted by Z,, is a g-chain in the kernel of 9,. The image of 9, is the
set of (¢ — 1)-chains which are boundaries of g-chains with a ¢-boundary, denoted
by By, being a ¢ -chain in the image of d,,1. The ¢'" homology group [75] is defined
as

H, = ker 0,/im 0441 = Z,/B,.

The rank of the ¢"* homology group 8, = rank(H,) or 8, = dim(H,) is topological
invariant called the ¢*" Betti number and is equal to the number of ¢-dimensional
holes in simplicial complex. Since it is a topological invariant it is used to distinguish
topological spaces one from another. For example, the value of 3y is the number
of connected components of simplicial complex, 8, is the number of tunnels, S5 is
the number of voids, etc. In the simplicial complex presented in Figure 2.1 right
we can see that there are two connected components, hence S, = 2, and one 1-

dimensional hole bounded by 1-dimensional simplices [2, 6], [2,7], [7,8], and [7, 8],
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Figure 2.8: The action of boundary operator on the 3-, 2-, and 1-simplices.

hence f; = 1. As R. Atkin pointed out [12] the zeroth Betti number is equal to Q,
nevertheless, the higher-order Betti numbers are not equal to the higher order Q-
vector entries. Therefore, the analysis presented in the previous section (Q-vector)
gives a generalization of the zeroth order Betti number, although different from the
homology theory. The values of Betti numbers of simplicial complex from Figure
2.2 are preserved for its conjugate complex (see Figure 2.3), and Dowker [13] have
proved that the homology groups of simplicial complex and its conjugate complex
are isomorphic.

Each boundary operator 0, has its matrix representation B, with respect to
bases of vector spaces C,(K) and C,_;(K), with rows associated with the number
of (¢ — 1)-simplices and the columns associated with the number of g-simplices.
To each boundary operator d, corresponds an adjoint operator J : Co1(K) —
C,(K) with the associated matrix representation equal to the transpose of matrix
representation of boundary operator J,, that is BqT. It is important to mention that
the ¢*" adjoint boundary operator is in fact the same as the ¢** coboundary operator
8y : C17HK) — CYK) [63], whereas, their matrix representations coincide when

proper scalar products are chosen for the definition of 9.
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3-simplices <0,1,2,3> and <1,2,3,4> are
lower adjacent since they share common
2-face <1,2,3>

2-simplices <0,1,2> and <1,2,3> are
upper adjacent since they are both faces
of 3-simplex <0,1,2,3>

Figure 2.9: An example of adjacency between two 3-simplices.

2.4 Combinatorial Laplacian

Since we have defined an oriented simplicial complex and boundary operator, we are
prepared to introduce new concepts. For two g-simplices o (i) and o(j) of an oriented
simplicial complex K we say that they are upper adjacent, denoted o(i)~po(j), if
they are both faces of some (¢ + 1)-simplex in K. The upper degree of a g-simplex
o in K, denoted degy (o), is the number of (¢ + 1)-simplices in K of which o is a
face. If oriented g-simplices (i) and o(j) are upper adjacent and have a common
(¢ + 1)-simplex 7, we say that o(i) and o(j) are similarly oriented if orientations of
o(i) and o(j) agree with the ones induced by 7. For two g-simplices o (i) and o(j)
of an oriented simplicial complex K we say that they are lower adjacent, denoted
o(i)~ro(j), if they have common (¢ — 1)-face (that is (¢ — 1)-simplex as a face).
Hence, the lower degree (degr (o)) of a g-simplex is defined as the number of (¢ —1)-
faces in o, which is always equal to ¢ + 1. Example of upper/lower adjacency is
illustrated in Figure 2.9.

Defining the boundary operator and its adjoint we have provided necessary con-
ditions for the definition of combinatorial Laplacian of simplicial complex. Namely,
for a simplicial complex K and an integer ¢ > 0, the ¢"* combinatorial Laplacian
is linear operator (since the composition of linear maps is a linear map) defined as

L,: C, — C, and given by [62]
Ly= 041100, +0,00,.
A convenient notation to use is
LgP = 044100, and LqDN = 0,00y,

where LU is referred to as the upper combinatorial Laplacian and LYY is the

down combinatorial Laplacian. Corresponding matrix representation relative to
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some ordering of the standard bases for C, and C,_; for the ¢'" Laplacian matriz of
K is

L,=By1BL,+ B]B,.
As in the case of the Laplacian operator we may use the following notation for
convenience

LI = BBl and LN =BIB,.

Clearly, graph represents a 1-dimensional simplicial complex since links (1-dim sim-
plices) connect nodes (0-dimensional simplices) and the largest dimension of a sim-
plex in the complex is 1. We now apply this fact to obtain the combinatorial Lapla-
cian of a graph. The 0-dimensional combinatorial Laplacian of simplicial complex
K is a linear map Ly : Co(K) — Co(K), and since the maps dy and J; are assumed

to be zero maps, it follows that
LO == 81 o 81" 5

where the boundary operator 0, : C1(K) — Cy(K) maps edges to vertices. Since
in matrix representation B; of boundary operator 0; the rows are associated with
edges and the columns are associated with vertices, it is obvious that the matrix B is
equal to the incidence matrix of an oriented graph. Therefore matrix representation

of combinatorial Laplacian is £y = By BY, and the matrix elements are

deg(v;), ifi=j
(Lo)ij = —1, if v; ~ v, (2.3)

0, otherwise

where deg(v;) is vertex degree (that is number of neighbors of a vertex v;) and the
relation v; ~ v; is the adjacency relation between vertices v; and v;, and is the same
as upper adjacency v;~yv;. Clearly, the entries of the O-dimensional combinatorial
Laplacian are the same as the graph Laplacian entries defined in the usual way via
expression Ly, = D — A, where diagonal entries of matrix D are equal to the
vertex degrees (D;; = deg(v;)) and nondiagonal entries are zeros, and the entries of
matrix A are (4); = 1 if v; ~ v;, (4)
and (A)
[65].

For the general case let us assume that K is an oriented simplicial complex, ¢ is

;=10 if vertices v; and v; are not neighbors,

., = 0 (undirected, unweighted, without loops and multiple edges graph)

an integer with 0 < ¢ < dim(K), and let {c',0?,...,0"} denote the g-simplices of
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complex K, then it is not difficult to deduce from £, = LYF + LPV that

'degU(ai)—i—qul, ifi=j

1, if i # j and o’ and o7 are not upper adjacent but have
a similar common lower simplex

(Ly)ij = -1, if i # j and o and o7 are not upper adjacent but have
a dissimilar common lower simplex

0, if i # j and o’ and o7 are upper adjacent or are not

lower adjacent

\

(2.4)
since (LJF)i = degy(o’) and (LPN) = degp(o’). Detailed proof of the above ex-
pression is straightforward [63]. For later use it would be useful to notice that
(L) = degy () + degr(c') = degy(o’) + g + 1 since every simplex of dimension
g > 0 has exactly ¢+ 1 (¢ — 1)-faces. Clearly, for ¢ = 0 Laplacian matrix of general
simplicial complex reduces to graph Laplacian.

Let us focus now on the eigenvalues and eigenvectors of ¢"* combinatorial Lapla-
cian L,. For an oriented simplicial complex K and an integer ¢ with 0 < ¢ <
dim(K), the ¢ Laplacian spectrum is denoted as S(L,(K)). It represents set of
cigenvalues of L,(K) together with their multiplicities and is independent on the
choice of orientation of g-simplices in the complex K. Since the ¢'* Laplacian ma-
trix is positive semidefinite, all its eigenvalues are nonnegative. The null space of
N(L,(K)) is the eigenspace of L,(K) and corresponds to the zero eigenvalues. The
combinatorial Hodge theorem states that the ¢ homology group H,(K) is isomor-

phic to the null space of ¢'* combinatorial Laplacian [82], that is

for each integer ¢ with 0 < ¢ < dim(K). Therefore, the multiplicity of zero eigen-
values of ¢*"* combinatorial Laplacian is equal to the number of the g-dimensional
holes in a simplicial complex, i.e. a Betti number. This is a very useful expression
providing a practical method for calculation of Betti numbers [83].

In the following we introduce some properties of the spectra of the ¢** combinato-
rial Laplacian which will be useful for the analysis and interpretation of our results.
If simplicial complex K consists of disconnected components which are themselves
simplicial complexes K, Ko, ..., K,,, then the spectra of ¢'* combinatorial Laplacian

L,(K) of K for each ¢ with 0 < ¢ < dim(K) are equal to the union of spectra of
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each L,(K;) for i = 1,...,n separately [63], that is
S(Lq(K)) = S(Lq(K1)) US(Ly(K2)) U ... US(Ly(Kn)).

Another very important property is that if simplicial complex K is formed by
gluing two simplicial complexes K; and K5 along a g-face, then the spectrum S is the
union of spectra of K, and Ky, i.e. S(L;(K)) = S(L;(K1))US(L;(K»)) for alli > g+2
[63]. Since we are dealing here with the simplicial complex formed from the cliques
of a graph, we want to emphasis that the spectrum of a single k-clique, denoted by
G, is S(Lo(G)) = {0, [k]*"1} [85], which is equivalent to S(Lo(G)) = {0, [k]/o~1},
and S(L;(@)) = {[k}/1}, where i = 2,....k, and fy, f1,..., fr_1 are the entries of
f-vector, and the exponent of [k] means the multiplicity of an eigenvalue k. These
properties are consequences of (2.3) and (2.4). Namely, every vertex in a k-clique G
has upper degree k — 1 and every pair of distinct vertices has a dissimilar common

lower simplex (an edge), hence for ¢ = 0 from (2.3) implies that

so solving the eigenvalue problem of L£o(G) implies that S(Lo(G)) = {0, [k]*~'}, and
since the 0" entry of f-vector is equal to the number of vertices in a complex f, = k,
we can write the general expression S(Lo(G)) = {0, [k]/°~1}. For (k—1) > ¢ > 0,
every g-simplex o' in G has upper degree equal to degy (') = (k— 1) — q and every
pair of distinct ¢g-simplices o' and ¢/ are upper adjacent, hence from (2.4) implies
that for ¢ > 0

0O ... O
0 &£ ... 0

Eq(G):
0O 0 .. k

faxfq
The eigenvalue spectra has only one eigenvalue A = k with multiplicity equal to
the number of g-simplices which is equal to f,, the ¢ entry of f-vector, so that
S(Ly(G)) = {[k}s}. For a single (k — 1)-simplex f, is equal to the number of

g-dimensional faces, that is

k!

K PRV
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An example of the properties of combinatorial Laplacian spectra is illustrated
in Figure 2.10 where Sq denotes the ¢'* component of the spectrum. In a) the
complex consisting of two disjointed simplices is presented with the corresponding
spectra and in b) through d) the two simplices are first joined along a 0-dimensional
face (case (b)), followed by attachment along a 1-dimensional face (case (c)) and

completing the process with attachment along a 2-dimensional face.

Figure 2.10: Spectrum of simplicial complex formed by 4-simplex and 3-simplex, when
they share: (a) (-1)-face; (b) 0-face; (c) 1-face; (d) 2-face.

We must utilize some more practical methods in order to compare eigenvalue
spectra of combinatorial Laplacian for different simplicial complexes, and the most
transparent mode is visualization. To avoid problems which emerge from histogram
or relative frequency plots due to the choice of the number of bins and their size
and since we are dealing with dim(K') + 1 eigenvalue spectra for a single simplicial
complex (a fairly large number), we need a visualization method which depends on
a single valued parameter unique for all the plots. For that purpose we use the
convolution of the spectral density represented by Dirac delta function Y ,6(X, X))
with a smooth kernel g(x, ) so that the density function [84]

f@) = [ e NI = Y g ).
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has advantageous visual properties. In the above expression )\f] is i"" eigenvalue of
the ¢'* combinatorial Laplacian. Many kernels may be rendered useful in forming

the density function, such as the Cauchy-Lorentz distribution %m or the

>. Our choice here is the Cauchy-Lorentz

To 20’2

. . . . T—1mp)2
Gaussian distribution X/%exp(_g
kernel yielding the following density function

y
x) = . ,
/(@) ;(/\; —x)% + 2
where v is a fixed parameter which regulates the resolution (the level of detail in
the plot) so that a too high value blurs the spectrum while too low value disguises
it. In all spectra presented here the value v = 0.03 was used chosen after careful

consideration of a number of different y-values.
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Chapter 3

From complex networks to

simplicial complexes and back

This section is devoted to the definitions of simplicial communities in complex net-
works. It will be shown there are various types of simplicial communities depending
on the simplicial complex representation of the complex network. The term ”simpli-
cial community” is defined with reference to the definition of g-connectivity classes

of simplicial complex.

3.1 Simplicial complexes of complex networks

From the simplicial complex’s properties, introduced in the previous chapter, we
notice that relationships as well as the aggregations of simplices are strongly de-
pendent on various dimensions. The aggregations of simplices at various dimen-
sions, namely the ¢-levels, we will call ¢-dimensional simplicial communities. In this
way the ¢-dimensional simplicial communities are identified by the g-connectivity
classes, although the term ”community” will be made more clear when different
types of simplicial complexes that may be constructed from complex networks are
presented in detail. Our aim is to show that the formation, identification, overlap-
ping and merging of simplicial communities are captured by the structure vectors
and combinatorial Laplacian.

The versatility of simplicial complex representations of complex networks enables
us to investigate topological properties of different substructures emerging from their
relationships and whose interconnectidness forms the overall structure of complex
networks. As a result we have an insight into the impact of aggregations of simplicial
communities on the overall structure of the complex network. There are several types

of simplicial complexes that may be constructed from graphs. We mention here the
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most important ones:

e Clique complez [10]: the vertices of clique complex are nodes of the underlying
graph G, and simplices are all maximal cliques (together with all their subcliques);

e Neighborhood complex [48], [49]: the vertices of neighborhood complex are
nodes of the underlying graph G, and to each vertex v of graph GG corresponds a
simplex which contains a vertex v and all of its neighboring vertices, that is simplices
are all the subsets of the vertex set of G that have a common neighbor;

e [ndependence complex [10]: the vertices of independence complex are nodes of
the underlying graph G, whereas simplices are maximal cliques (together with all
their subcliques) of the complement graph of G (a graph in which two nodes are
adjacent if they are not adjacent in graph G, and vice versa), that is simplices are
all the independent sets (anticliques) of G

e Matching complex [86]: the vertices of matching complex are the edges of the
underlying graph G and simplices are sets of edges of G with no two edges having
a common vertex; in other words, the matching complex is a clique complex of the
complement graph of the line graph of G.

Since there are different simplicial complex representations of the complex net-
work, different substructures emerge. In the present paper we focus on the properties
of two simplicial complex representations of complex networks: the clique complex
and the neighborhood complex. In the case of the clique complex we are actually
"filling” a k-clique (complete graph with & vertices) and form a (k — 1)-dimensional
polyhedra (embedded in a (k — 1)-dimensional space) The formation of simplicial
communities has similarity with the formation of k-clique communities [59]. Never-
theless, there are differences. In k-clique communities cliques are adjacent if they
share k — 1 vertices. In the case of clique simplicial communities, in a g-connectivity
component, clique simplices have dimension larger or equal than ¢ and two clique
simplices are adjacent if they share ¢ + 1 vertices. However some pairs of clique
simplices may share g + 2, ¢+ 3, ..., dim(K) vertices. Consequently, k-clique com-
munities are contained in the clique simplicial communities, and the overlapping
between two clique simplicial communities is encoded in the transition from the ¢-
level to the (¢—1)-level. In Fig. 3.1, the appearance of clique simplicial communities
at three g-levels (¢ = 4,3,2) of the coauthorship network of scientists working on
network theory and experiment, as compiled by M. Newman [87] is presented. Due
to the lack of space not all simplicial communities (including those which contain
a single simplex) on either g-level are presented, but only those which participate
in the formation of a large clique simplicial community. At the 4-level two clique

simplices of different dimensions (one has dimension ¢ = 5 and the other ¢ = 7)
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form a clique simplicial community. At the 3-level a 4-dimensional clique simplex
(which appears at the 4-level) joins the clique simplicial community by sharing four
vertices (i.e. 3-dimensional face) with one of the clique simplices in simplicial com-
munity. Finally, at the 2-level 3-dimensional simplex (appearing as single simplicial
community at 3-level) joins a clique simplicial community by sharing three vertices
(i.e. 2-face) with one of the clique simplices in simplicial community. From this
simple example we can see the these kind of communities formed by cliques could
not be detected by the Clique percolation method, and the restriction to the fixed

k in k-clique communities is not necessary.
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Figure 3.1: A sample of the clique simplicial communities at three g-levels (¢ = 4, 3,2) of
the coauthorship network.

Another advantage of the clique simplicial community approach as compared
with the k-clique communities is in the complementary nature of simplicial complex
and its conjugate. In the case of social network, simplicial communities of the
conjugate complex are formed by the polyhedra which represent agents, whereas the
vertices polyhedra are graph (network) vertices which are associated with network

cliques to which agents belong. From the definition of g-nearness, it is obvious
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that two agent-polyhedra are adjacent if they belong to the same cliques. Such
representation of substructures (related to cliques) have been useful in the analysis of
cooperation and conflict in social networks [64]. For the above coauthorship network
simplices in conjugate clique complex are associated to the authors, and vertices
are associated to the papers which theycoauthored, as in Fig. 2.3. Among many
simplicial communities appearing at g-levels, for example at the 4-level, we have
detected two simplicial communities, one formed by simplices of different dimensions
{Barabdsi, A.-L., Jeong, H, Oltvai, Z}, and the other { Krapivski, P, Redner, S},
containing the names of authors who appear jointly in a number of publications.

The polyhedra (i) in the neighborhood complex is formed by ”filling” the space
between the corresponding node ¢ and the neighboring nodes and two polyhedra
o(i) and o(j) in the neighborhood complex are g-near if their corresponding nodes
(¢ and j, respectively) have ¢ common neighbors. Since the simplicial complex
analysis strongly depends on dimension of simplices and of their faces, the analysis
of higher order structure properties of the neighborhood complex are particulary
interesting, since important quantities characterizing complex networks depend on
degrees of the nodes. Namely, dimension ¢; of simplex (i) is equal to the degree k;
of the node ¢ in the corresponding complex network.

As an example of the neighborhood complex we use the so called Brain net-
work [88] in which nodes represent brain areas and links communication between
them. This network! (Fig. 3.2) was obtained using the Planar Maximally Filtered
Graph (PMFG) [89] from the correlation matrix of the time series collected by fMRI
measurements of the brain areas activity while the people are asked to do two dif-
ferent tasks assessing short-term, that is episodic, memory. We avoid the detailed
analysis of the methods for calculation of the correlation matrix and focus only on
the obtained final network. In Fig. 3.2 we present the aggregation of nodes in the
neighborhood simplicial communities at four g-levels (¢ = 9,8, 7,6) using the follow-
ing procedure: brain network — neighborhood complex — neighborhood simplicial
communities — brain network. At the 9-level two brain areas Superior Frontal
Gyrus and Middle Frontal Gyrus form a simplicial community, and their functions
(among others) are self-awareness, and a role in sustaining attention and working
memory, respectively. Shifting to the next 8-level the another brain area Superior
Parietal Lobule, responsible for the spatial orientation and receives a large portion of
visual input, joins this simplicial community. At the 7-level another neighborhood
simplicial community is formed containing Inferior Occipital Gyrus and Middle Oc-

cipital Gyrus, both parts of the larger Occipital Lobe, responsible for processing

T thank J.-P. Schmidt for providing the data.
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I-Anterior Cingulate; 2-Superior Frontal Gyrus; 3-Middle Frontal Gyrus; 4-Inferior Frontal
Gyrus; 5-Medial Frontal Gyrus; 6-Insular Cortex; 7-Parahippocampnal Gyrus; 8-Superior Temporal
Gyrus; 9-Inferior Temporal Gyrus; 10- Middle Temporal Gyrus; 11-Cingulate Gyrus; 12-Postcentral
Gyrus; 13- Precentral Gyrus; 14-Inferior Parietal Lobule; 15-Superior Parietal Lobule; 16-Precuneus;
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17-Cuneus; 18-Lingual Gyrus; 19-Fusiform Gyrus; 20-Inferior Occipital Gyrus; 21-Middle Occipital
Gyrus; 22-Posterior Cingulate; 23-Unicate Fasciculus; 24-Lenticular Nucleus; 25-Thalamus; 26-Caudal

Figure 3.2: Neighborhood simplicial communities at four g-levels (¢ = 9,8,7,6) of the
brain network.

visual information. Finally, at the 6-level the two neighborhood communities merge
into the large one, together with three more brain areas, namely Inferior Frontal
Gyrus, Medial Frontal Gyrus and Cuneus. Even from this simple analysis we can
anticipate the importance of aggregation of brain areas at different levels in order

to perform tasks related to the short-term (or analogously long-term) memory.
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Chapter 4

Results - preliminary and

illustrative

We have found that for some characteristic networks topological quantity (Q-vector)
of clique (and its conjugate) complex and neighborhood complex representation
satisfy the statistical invariance, in the sense that it follows the behavior of degree
distribution of the underlying complex network. For finding all maximal cliques we
have used Bron-Kerbosch algorithm [90]. The values of the entries of Q-vector of
Barabasi-Albert complex network [91] clique complex representation is presented in
Figure 4.1 left, whereas the right part of Figure 4.1 represents the values of Q-vector

of conjugate clique complex and neighborhood complex.
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Figure 4.1: Q-vector entries of Barabési-Albert scale-free network: clique complex repre-
sentation (left), and conjugate clique complex and neighborhood complex (right).

In Figure 4.2 left we have presented on double logarithmic scale the values of
Q-vector entries of clique complex of protein-protein interaction complex network

in yeast S. cerevisiae [92], whereas on right part of Figure 4.2 Q-vector values of
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conjugate clique complex and neighborhood complex on double logarithmic scale are

presented. The degree distribution of protein-protein interaction complex network

in yeast displays a power-law.

Since these two networks satisfy statistical invariance, we have tested this be-

havior on several other generated and real-world networks, and it turns out that in

each case QQ-vector follows the behavior of the degree distribution.
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Figure 4.2: Q-vector entries of protein-protein interaction complex network in yeast:
clique complex representation (left), and conjugate clique complex and neighborhood com-

plex (right).

Betti numbers calculation of clique complexes of Barabasi-Albert and protein-

protein interaction complex network revealed that nonzero values appear only for

dimensions ¢ = 0, 1,2 due to the small clique complex dimension (see left parts of

Figures 4.1 and 4.2). Nevertheless, since the (3 is related to the 1-dimensional ”is-

lands” of obstructions in discrete topological space defined through the clique com-

plex of corresponding network, the determination of these "islands” is important for

the traffic which flows through the network. The calculation of Betti numbers can

be done by solving of the eigenvalue problem of higher-order combinatorial Lapla-

cians [64] (and references therein), and the determination of ”islands” of obstruction

can be detected by considering eigenvectors of higher-order combinatorial Laplacian

[64]. To track the changes of the number of tunnels (or ”islands”), that is the val-

ues of (1, depending on the scaling exponent 7 of networks displaying power-law

degree distribution, we have generated several generalized random networks [93] for

different v and represented them as clique complex. The dependence of number of

1-dimension holes (f;) on the scaling exponent v is presented in Figure 4.3, display-

ing the decrease in the number of 1-dimensional holes by increasing . Since the

large number of real-world networks display power-law degree distribution with the

exponent in the range v € [2, 3], it is important to notice that the decrease of (3 is
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Figure 4.3: The dependence of number of 1-dimension holes (1) on the scaling exponent
~ for clique complex of generalized random network with power-law degree distribution.

more rapid in this range then for v > 3.

31



Chapter 5

Results - The neighborhood

complex

This chapter is devoted to presentation of results related to the topological proper-
ties of the neighborhood complex of various complex networks [48], [50]. They are

confirming the conclusions of the previous chapter.

5.1 Random network

The simplest type (and model) of a network, despite of its inadequacy for explaining
the real world networks, is examined from the aspect of the simplicial complex
representation, more concretely, from the aspect of the associated neighborhood
complex NC. This is done for comparison as well as an illustration of the concepts
and measures defined in the previous sections. The random network under study
consists of 2000 nodes, with probability p = 0.005 that two nodes have a link.
As mentioned before there is straightforward relationship between the degree of
the node and the dimension of the corresponding simplex. That implicates the
equivalence between degree distribution and dimension distribution. Furthermore,
we expect that dimension distribution follows the well known bell-shaped form,
which is characteristic of random networks. This property is presented at the Figure
5.1.

A random network has a characteristic scale in its node connectivity reflected
by the peak of the distribution which corresponds to the number of nodes with the
average number of links. Because of the equivalence of the distributions of degrees
and dimensions, this property holds also for the corresponding simplicial complex
representation.

The distribution of vector valued measures is illustrated by distributions of the
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Figure 5.1: Distribution of dimensions of random network with N = 2000 nodes and
probability p = 0.005 that two nodes have a link.
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Figure 5.2: Values of first and second structure vectors for random network with N' = 2000
nodes and linkage probability p = 0.005.

33



1,0 4 ; I '7.7 third Istructurc Ve::tor b
\

0,8 " b

0,6 4 4

0,44 4

0,2 4

0,04 -3 g m-E-E-E-E-E-E-E-E-E-E-E-E-E-E-N e

T T T T T T T T T
0 5 10 15 20
g-level

Figure 5.3: Values of third structure vector for random network with N = 2000 nodes
and linkage probability p = 0.005.

first and second structure vector (Figure 5.2), as well as third structure vector (Fig-
ure 5.3).

The graphics of structure vectors indicate an interesting property of the structure
of simplicial complex representation of random networks. From the highest up to
the third level the structure is not connected, and then there is a jump in the
connectivity of structure. The structure, observing it globally, is homogenous and

there is not any preferential pattern of formation of connectivity classes.

5.2 Barabasi-Albert model of scale-free networks

Following the algorithm introduced in [91], the scale-free network is generated. At
this moment we will repeat just important features of this algorithm. Starting with
mg randomly connected nodes, at each time step we add one new node which can
be linked to m nodes already present in the network. The probability of connection

to some old node i depends on its number of links k; as

ijj '

TI(:)

In this way two properties of real world network are captured: growth and
preferential attachment. In this paper we have chosen my = 5 and m = 3 values of
parameters, and following the above procedure the network with N = 5000 nodes
was generated. As it is already mentioned there is equivalence between degree

distribution of complex network and dimension distribution of its corresponding
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Figure 5.4: Dimension distribution of Barabdsi-Albert scale-free network type with N =
5000 nodes and parameters mg = 5 and m = 3.
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Figure 5.5: First (left) and second (right) structure vector values for Barabasi-Albert
scale-free network type with N = 5000 nodes and parameters mg =5 and m = 3.

neighborhood complex NCj. In Figure 5.4 the dimension distribution is presented.

The vector valued distributions of the first, the second, and the third structure

vectors are presented in Figure 5.5 left, Figure 5.5 right, and Figure 5.6, respectively.

We can notice that the first and the second structure vectors in Figure 5.5 follow
power-law behavior over few decades. The discrepancy from the power-law behavior
for dimension distribution over the whole range comes from the finiteness of the
network, as well as because of the randomness of the linking process. We can
assume that these features have influence on the behavior of the first and the second

structure vectors.
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Figure 5.6: Third structure vector values for Barabdsi-Albert scale-free network type with
N = 5000 nodes and parameters mg = 5 and m = 3.

By definition the length of the third structure vector is equal to the length of the
first and the second, hence, from Figure 5.6 we can conclude that from the highest

to the 14th level the structure is disconnected.

5.3 Exponential network

It is already mentioned that the majority of the real world networks have power-law
degree distribution as its main characteristic. Nevertheless, there are some networks
which have exponential degree distribution. An illustrative example of this type
of network is the US Power Grid [3]. The nodes of this network are generators,
transformers, and substations, and links are high-voltage transmission lines. We
analyzed a US power grid network of the western United States which consists of
4941 nodes [94]. The dimension distribution, as well as the vector valued measures
(normalized values of the 1st- and the 2nd-structure vectors) are illustrated in Figure
5.7 left, and the third structure vector is presented in Figure 5.7 (right). As can be

seen from these figures all four measures are well fitted to the exponential function.

5.4 Scale-free networks

As an example of network with power-law degree (i.e. dimension) distribution an
information type of network will be considered. We use epa to label this network,
and it represents pages linking to www.epa.gov, and consists of N = 4772 nodes

[94]. ”This graph was constructed by expanding a 200-page response set to a search
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Figure 5.7: Degree (dimension) distribution, first, and second structure vectors (left) and
third structure vector (right) for exponential US Power grid network. The exponential fit
is indicated.

engine query, as in the hub/authority algorithm.” [94]
The distribution of dimensions of epa network is presented in Figure 5.8 left.
Vector valued measures of the 1st and the 2nd structure vectors are illustrated
in Figure 5.8 right, and the 3rd structure vector is presented in Figure 5.9. The
connectivity levels are filled with simplices but they are not g-connected up to a
certain value of the g-level. This level is rather high compared to other types of

simplicial complex representations of complex networks studied in previous sections.
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Chapter 6
Results - The clique complex

The results of this chapter highlight the properties of the clique complex represen-
tation of complex networks [64] and their advantages in revealing the complexity of

the underlying complex network [74].

6.1 The Zachary karate club

This network is formed by the members of karate club whose activities and relation-
ships were observed by Zachary [95] over the time period of two years. During this
time period the conflicting situation between the Instructor and the Administrator
caused partition of club members into two fractions, each fraction supporting one
of them. The Instructor and the Administrator are not in direct contact since their
corresponding nodes are not nearest neighbors. Nevertheless, we may assume that
they have been connected before the conflict. This network represents thus, a good
example of a social network in which conflict causes changes in network’s topology.
The following analysis will show some properties of simplicial communities formed
by the members of the club (clique complex analysis) and simplices associated to the
members of the club formed by the cliques to which they belong (conjugate clique

complex analysis).

6.1.1 Analysis of the clique complex

Simplices of the clique complex created from the Zachary karate club network are
formed by members of the club together with all their subcliques. Initially all
maximal cliques were found using the Bron-Kerbosch algorithm [90] and Q-vector
components were determined whose graphical representation is presented in Figs.

6.1 and 6.2. The 0O-level component is omitted since only one connectivity class
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Figure 6.1: Graphical representation of the connectivity classes at 4- and 3-levels for
clique complex of the Zachary karate club.

represented by the underlying graph exists at that level. At the highest g-level two
4-simplices (5-cliques) o! and o2 appear (Fig. 6.1) and the Instructor (node labeled
by 1) is part of each of them. Going to the next g-level (3-level) two more simplices
02 and ¢3! appear (Fig. 6.1), and the Administrator (node labeled by 34) is part of

Land o2 merge into a single connectivity class,

each of them. However, simplices o
indicating the existence of a strong group of Instructor’s supporters since simplices
o' and o2 share the face of dimension one less than their simplex dimensions. At the
2-level (Fig. 6.2 left) many 2-simplices appear formed by supporters of either the
Instructor or the Administrator (clustering), irrsepective of whether they contain
either the Instructor or the Administrator vertex. The important transition occurs
from 2-level to 1-level (Fig. 6.2), where simplices o', 0%, 02 and ¢3' merge into
a single connectivity class together with majority of 2-simplices. Visual inspection
also suggest that 2-simplices of supporters accumulate around the Instructor and
the Administrator. At 1-level (Fig. 6.2 right) there is one more connectivity class,
disconnected from the large one, of the Instructor’s supporters formed by simplices
o8, 0%, oY o' and 0.

Note that any subsimplex (face) of a simplex is also simplex and therefore any
subclique of a maximal clique is also a clique. The analogous concept in the con-
text of communities is nested communities, or communities inside communities. In
the settings of the karate club this means that there are relationships between var-
ious subcliques of supporters. These subtle relationships can not be seen from the
properties of g-connectivity and the Q-analysis, however, information about nested
cliques (communities) is stored in the matrix of the ¢** combinatorial Laplacian. Let

us recall that diagonal elements £;; are equal to the total number of (¢ —1)-simplices

40



o

Figure 6.2: Graphical representation of the connectivity classes at 2- and 1-levels for
clique complex of the Zachary karate club.

and (¢ + 1)-simplices attached to the g-simplex ¢, and offdiagonal elements L;; are
nonzero if ¢ and j ¢g-simplices have a common (g — 1)-simplex. Consequently, infor-
mation about relationship between cliques (simplices) is reflected in the eigenvalues
of the ¢'* combinatorial Laplacian.

The plots of combinatorial Laplacian eigenvalues of the clique complex obtained
from the Zachary karate club network are presented in Figs 6.3, 6.4 and 6.5 for
g-dimensions arranged in descending order from ¢ = 4 to ¢ = 0. In order to un-
derstand the meaning of the eigenvalues we will use the plots of simplices in Figs.
6.1 and 6.2. Consider two simplices at the highest 4-level (Fig. 6.1) and observe
two eigenvalues of the 4-dimensional combinatorial Laplacian in Fig. 6.3 (left plot
corresponding to ¢ = 4). They share one 3-face ((1,2,3,4)) and the result is the
formation of a connectivity class at 3-level, as reflected in two eigenvalues \] =
and A2 = 6 in Fig. 6.3 left (as mentioned in Chapter 2 subscript marks dimension
of the simplex and superscript represents the index). If these two simplices were
not sharing a 3-face we would see only one peak at eigenvalue \y = 5 as a conse-
quence of the property of the spectrum formed by disconnected cliques of the same
size (see Chapter 2). At the next lower g-level (3-level) we see that there are three
connectivity classes: one formed by two 4-simplices (0! and ¢?) sharing a 3-face and

1 20

two classes formed by each of the simplices 0?° and o3!. Since simplices ¢2° and
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Figure 6.3: Spectral plots of clique complex of Zachary karate club for dimensions ¢ = 4
and g = 3.
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Figure 6.4: Spectral plots of clique complex of Zachary karate club for dimensions ¢ = 2
and g = 1.

03! do not share 2-face at the 2-level they still form separate connectivity classes,
and they contribute to the eigenvalue spectra of 3-dimensional combinatorial Lapla-
cian by a single eigenvalue A} = 4. Subsimplices of dimension 3 (3-simplices) of
4-simplices o' and o? mutually share 2-face, contributing to the ¢ = 3 spectrum
with eigenvalues A2 = 4 and A3 = 6. Consequently, the multiplicity of eigenvalues 4
and 6 is increased as seen in the increased heights of two peaks in Fig 6.3 right. The
same type of analysis can be continued to other lower ¢-levels all the way to level
0. At lower connectivity levels the analysis becomes complicated due the increasing
number of lower-dimensional simplices and their mutual connectivities. In spite of
that, persistent presence of eigenvalues 4 and 6 is easily noticed in Figs 6.3 and 6.4,
corresponding to ¢-dimensions 4, 3,2 and 1, originating from the 4- and 3-simplices
mentioned above. However, for ¢ = 0 these two obviously important eigenvalues do
not exist in the spectrum indicating that consideration of only the graph (0" order
combinatorial) Laplacian no information about larger communities and (overlap-
ping) subcommunities is available. Furthermore, the origin of the eigenvalue Ag = 2
which is dominant at the 0'-dimension (Fig. 6.5) is more clear if we observe what
is happening at dimensions ¢ = 2 and ¢ = 1. Its appearance at dimension ¢ = 2
(Fig. 6.4 left) stems from 1-faces shared between (sub)simplices of dimension g = 2,

while at 1-level its multiplicity originates due to appearance of 1-simplices.
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Figure 6.5: Spectral plots of clique complex of Zachary karate club for dimension ¢ = 0.

6.1.2 Analysis of the conjugate complex

In the conjugate Zachary karate club clique complex (high dimensional) individuals
are defined by the cliques to which each of them belongs in contrast to the original ap-
proach were cliques were composed of individuals from the club. From the simplicial
clique complex K we have formed its conjugate complex K ~! in which simplices and
vertices exchange roles, i.e. simplices are the individuals defined by cliques (vertices)
to which they belong. For example, simplices 7, and 75 (we use 7 to mark sim-
plices in the conjugate complex) are the 12-simplex and 13-simplex associated to the
Instructor and the Administrator, respectively, and they are defined by the maximal
cliques to which they belong. Hence, the simplex 775 associated to the Administrator
is defined by 14 vertices {20, 21,22, 23,24, 25, 26,27, 28, 30, 31, 34, 35,36} which are
associated to the cliques {020, 0%, 022,023 0%, 0% 0%, 027,028 030, 03, 034, 635 030},
and similarly for the Instructor 12-simplex.

We omit the graphical presentation of the Q-vector due to its large number of
connectivity levels, however we present it componentwise in Table 1, where each
simplex label, as before, is represented as a superscript.

The spectral plots corresponding to the conjugate clique complex K~! are pre-
sented in Figs. 6.6, 6.7, 6.8 and 6.9 for dimensions ¢ = 13 to ¢ = 0.

The hierarchical structure of the Q-vector and high dimensional combinatorial
Laplacian of the conjugate complex bear qualitative resemblance to the original com-
plex. However, the conjugate simplicial complex may detect possible structural and
g-connectivity sources of conflict between individual 71, labeled as the Instructor,
and individual 734, labeled as the Administrator, features that may remain beyond
the reach of the original complex. As previously mentioned, conflict arises between
these two persons causing Instructor to leave the club and start up a new one. From
the structure of Q-vector (Table 1) and spectral plots (Figs. 6.6, 6.7, 6.8 and 6.9)
it is clear that at dimensions 13 through 8 the Instructor and the Administrator
are the only simplicies due to their association in the highest number of cliques. At

q = 3 level both are parts of two connectivity classes but at level ¢ = 2 the connec-
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Table 6.1: Components of the Q-vector of the conjugate clique complex constructed from

the Zachary karate club network

q=13 734
q=12 Tt 3
qg=11 Tt 3
qg=10 Tt 73
q= 7l 3
q= 7l 8 3
q= 71, r(33,39)
q= 7l 3 7(3334)
q= 7l 72, 3, 7(38,39)
q= 7(12) 73 £(3334)
q= 7(12) 73 732 £(3330)
q=2 7(1234) 76 27 29 124 128 132 1(3334)
g=1 r(-9112430323330) 110 114 720 125 126 728 129 731
q= {all simplices}
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Figure 6.6: Spectral plots of conjugate clique complex of Zachary karate club network for

dimensions from g = 13 through ¢ = 10.
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tivity class with the Instructor grows due to an increasing number of new members.
At ¢ = 1 level connectivity classes containing 7! and 72* merge into one large con-
nectivity class. All other simplices appear either as a separate connectivity class

L or 73 belong to, signaling

or as part of the connectivity classes to which either 7
the polarization of the club members around the Instructor and the Administrator.
Hence, it is clear that 7! and 734 stand out at each level of connectivity as individ-
uals who cause social disintegration in the club. The corresponding eigenvalues of
the combinatorial Laplacian are 13 and 14 which dominate the spectrum even for

q=0.

6.2 Les Miserables

This social network represents a good example of mixed cooperation/conflict inter-
action between the network elements. It is formed of 33 key characters extracted
from the Victor Hugo’s novel Les Miserables due to their co-appearances [96]. By
mixed cooperation/conflict interactions we mean that a single character is in the co-
operation (or friendship) interaction with one person and in the conflict interaction
with another. The example of these mixed interactions is illustrated in Fig. 6.10.

In the following we will use the term cooperation instead of the term friendship.

conflict

friendship,

conflict conflict

T ———— |Javert eration

conflict coop!
1 Enjolras

Figure 6.10: An example of mixed cooperation/conflict interaction between the characters
of Les Miserables.

6.2.1 Analysis of the Les Miserables clique complex

Simplicial communities of the Les Miserables network are the cliques formed by
interactions of the novel’s characters according to their co-appearance. As in the
Zachary karate club case, we first extract all maximal cliques using Bron-Kerbosch
algorithm [90]. In Table 2 all connectivity classes of Q-vector are presented where
each simplex has an integer label represented by the superscript. We omit graphical

representation due to practical reasons.
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Table 6.2: Components of the Q-vector of the clique complex constructed from the Les

Miserables network

q= {o'%}
g=4 {a'}, {0

q= {o11}, {oB3Y, {04}, {16,062}, {7}, {01}, {022}
¢=2 {o'}, {0}, {o*}, {o°}, {0°} {0} {0"}, {010}}{0”} {o"}, {o"},

{516,517, 519,620, 522} {518

g=1 {o', {02}, {03, 0%, 0%, 0", 07 0_8 010 0_16 el o2}, {09}, {011,
{012} {0,13} {014} {0,15} {018} {021}
q=0 {ct,...,0%%},

Dominant simplicies at levels (Table 2) from ¢ = 5 to ¢ = 2 include o'6, 029,

o', 0% and 0?2 whose vertices are members of the revolutionary group called The
Friends of the A B C, (fr. Abaisse, the debased), that is to say, the depraved people.
Thus, each pairwise connection between the individuals is characterized by coop-
eration. If we consider these simplices as ”cells” of an underground organization,
we see that at the 2-level they all aggregate into a single connectivity class through
clustering (aggregation of 2-simplices). Simplex o4 which appears at the 3-level
represents a street gang of murderers and robbers called Patron-Minette, so the
connection between vertices is through cooperation. Two simplices emerging from

1 and o'® respectively, appear at the 3-level and

male and female friendships, o
can be generally assumed as composed of cooperating individuals (vertices). The
simplices formed by exlusively cooperative individuals who are also cooperative as a
group are labeled as cooperation simplices. Note that cooperation simplex assumes
the concept of group cooperation, as well. In a similar manner we define conflict
simplices though no such simplices exist in this network. At levels ¢ = 5 through
q = 3 only cooperation simplices appear. In 2-simplices in which conflict among
individuals is present there is always one cooperation interaction and two conflict
interactions (see example at Fig. 6.10). Hence, cooperation groups are formed by
at least 4 persons, and conflict between certain characters entails that the groups to
which they are associated are formed by 3 persons.
In order to gain a deeper insight into the structure of the network we will analyze
the combinatorial Laplacian spectra, whose plots are presented in Fig. 6.11.
We focus on eigenvalues A! = 4 and A\* = 6 which dominate all spectra, although
not jointly at each dimension. Emergence of the eigenvalue \> = 6 at dimension
= 5 is caused by a single cooperation simplex (Table 2) and it may be explained
by the property of the clique combinatorial Laplacian spectrum (Chapter 2). Both
eigenvalues, A\! = 4 and \?> = 6 appear at dimension ¢ = 4 and one more eigenvalue

16

Al = 4 emerges from the 3-dimensional subsimplex shared by simplices ¢ and
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Figure 6.11: Spectral plots of the clique complex of Les Miserables network for dimensions
from g = 5 through ¢ = 0.

o, Multiplicity of eigenvalue A\' = 4 increases at level ¢ = 3 due to appearance of
cooperative 3-simplices o't, o3, o4, 07, 012 and 2. If solely the graph Laplacian
(02 order combinatorial Laplacian) was considered the origin of this important

eigenvalue would remain inaccessible.

6.2.2 Analysis of the Les Miserables conjugate clique com-

plex

We have reversed the roles of characters and cliques to which they belong, by as-
sociating simplices to individuals and vertices to cliques. Using the Bron-Kerbosch
algorithm [90] all maximal cliques were found and the Q-vector components were
determined (Table 3). The simplex 74 (7 is used to mark simplices in conjugate com-
plex) is associated with the main character of the novel, Valjean and he is present in
the largest number of cliques, however, he is connected to another person through
shared cliques at the 2-level. All cliques to which Valjean belongs are 2-simplices
which, as mentioned earlier, consist of mixed cooperation/conflict relationships while
the simplex 7,% belonging to the same connectivity class as Valjean is represented

by Inspector Javert, another person present exclusively in the cooperation/conflict

48



Table 6.3: Components of the Q-vector of the conjugate clique complex constructed from
the Les Miserables network

q= {r'}

q= {r'}

q= {r'}

q= {7-4}a {7-23}

q= {7_4}7 {7—22}a {7_23}7 {7247727}

q= {7—4}7 {7—22}a {7—23}’ {7247727}

‘- (LT, (1), (2], (%, 72, )
g=1 {r'), {74,718, 714 715 716 710 122 028 124 136 127 120 LB0Y o8] £09) (012
q= {7, ..., 3%}

simplices. Simplex 723 at the 5-level is associated to Enjolras, the leader of the
revolutionary group ”The Friends of the A B C”, who joins the connectivity class
formed by other members of this group at the 2-level.

Spectral plots of the combinatorial Laplacian for dimensions ¢ = 8 through ¢ =0
are presented in Fig. 6.12. A clear dominance of the eigenvalue A = 9, originating
from the simplex 73, that is Valjean, is easily recognized. For dimension ¢ = 0
the dominating eigenvalue is A = 5, originating from simplices associated to the
members of the large cooperation simplicial community (members of The Friends of
the A B C).

6.3 Spectral entropy

The above example illustrates that analysis using both the Q-vector and the spectra
of the higher order combinatorial Laplacian are powerful complementary tools for
the analysis of complex networks in spite of large number of eigenvalues that appear
in the spectrum of ordinary graphs (networks). A careful analysis through various
connectivity levels of the corresponding clique complex reveals simplex communities
as overlapping or disjoint entities. We introduce here another quantity which mea-
sures the degree of overlapping of simplices in the complex in each dimension. Let
)\z be the eigenvalues of ¢ combinatorial Laplacian and i € {1,2, ..., f,}, where f,
is the ¢'* entry of f-vector, that is the number of g-simplices (not maximal). Then

the ¢ spectral entropy H, is defined as

1 fq

Hy=— oa(]. Zp/\ log p(\;) , (6.1)
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where p()\fl) = ﬁ is the eigenvalue probability, which may be understood as
j=1"\q

the contribution of the eigenvalue )\é to the whole spectrum of the ¢** combinato-
1

rial Laplacian. For )\f] = 0 clearly H, = 0 and Toa (7o) is the normalization constant
which restricts the entropy values between 0 and 1 where f; denotes the number of
g-dimensional simplices in the simplicial complex. Namely, if a simplicial complex
is a single vertex, then the spectral entropy is minimal and equal to zero, whereas
when simplicial (sub)complex is formed by the g¢-simplices (where ¢ is the same
for all simplices) and no pairs of different g-simplices share (¢ — 1)-face then ¢
spectral entropy is maximal and equal to 1. Therefore, the maximum of combina-
torial entropy H, for a particular dimension ¢ corresponds to the disconnectivity of
g-simplices at dimension q. Of course, at dimensions smaller than ¢ — 1 any pair of
g-simplices may share ¢ — 2, ¢ — 3, ..., 0 face, and henceforth H, 1, H, o, H, 3, ...,
is different than 1. When simplicial complex is formed by only one g-simplex (that
is one (¢ + 1)-clique) the combinatorial entropy H, is equal to 1 for all ¢, since it is
disconnected from any other ¢-simplex at all dimensions. Hence, any deviation from
H, =1 for specific ¢ indicates that internal (sub)structures of simplicial complex at
dimension ¢ are more or less overlapped.

The dependance of the ¢ spectral entropy on ¢-dimensions for the Zachary
karate club clique complex and its conjugate complex are presented in Figure 6.13
(a) and (b), respectively. Inspection of Figure 6.13 (a) shows that for dimension
q = 4 there are two simplices which share a 3-face, hence Hy # 1 and in the case
that they share {2,1,0, —1}-face instead of 3-face the 4" spectral entropy would
be H, = 1. Moving to the next (lower) dimension (¢ = 3), two new simplices
are added. Nevertheless, since they are not sharing 2-faces the spectral entropy is
increased but it is not equal to 1 since two simplices from the 4-level share 3-face,
and hence their subsimplices (3-simplices) share 2-face. Moving to the next lower
dimension new simplices are added and the ¢'* spectral entropy (¢ < 3) decreases
and thus diverges from the disconnected cliques behavior. From Figure 6.13 (b)
we see that the spectral entropy of the conjugate simplicial complex H, ~ 1 or
H, =1 for dimensions 2 < ¢ < 13 meaning that at these dimensions the complex
behaves like a set of disconnected cliques. This is the consequence of the polarizing
effect of two simplices, the Instructor and the Administrator. The origin of this
property is obvious from the spectral plots (Figures 6.6, 6.7, 6.8 and 6.9) in which
eigenvalue A = 13 appears from the Instructor simplex and eigenvalue A = 14 arises
from the Administrator simplex, both easily recognized at higher dimensional levels.
Furthermore, unlike in the clique complex case, these two dominating eigenvalues

persist for all ¢, including ¢ = 0.
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Chapter 7

The role of simplicial complexes in
the study of complex systems and

perspectives for future research

In this chapter we discuss some of the less familiar applications of simplicial com-
plexes in physics in general and in the field of complex systems in particular. The
list of applications is certainly not exhaustive as, among other reasons, new areas of
utilization of topology in physics and other sciences appear continually. The intent

is to be rather informative than to present a rigorous treatment of the subject.

7.1 Differential forms and simplicial complexes

We have already emphasised in the Introduction the importance of discrete differ-
ential forms in the modern theoretical physics research and their relationships with
simplicial complexes [30]. Let us recall the main highlights: simplicial complexes
are discretized manifolds, and cochains on such simplicial complexes are discrete
differential forms. Since coboundary operator on simplicial complex can be related
to the discrete exterior derivative, higher-order combinatorial Laplacian represents
a discretized Laplace-Beltrami operator on a manifold. Simplicial complexes, and as
well higher-order combinatorial Laplacians, exist independently on the discretization
procedure, as we have shown in preceding chapters, it would be insightful to examine
the possibility of the reverse procedure. Namely, the reverse procedure would imply
the reconstruction of a manifold and obtaining discrete differential forms from the
knowledge of the simplicial complex and its structure. From graph theory, the graph
Laplacian captures the structural properties of the complex network, and proves to

be convenient for the examination of dynamical processes taking place on complex
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networks [66]. Likewise, we can anticipate that higher-order combinatorial Lapla-
cians, acting as operators on the discrete differential forms, should be convenient for
the examination of dynamical processes on higher-order (sub)structures of complex
networks captured by diverse simplicial complexes. It is important to point that

some attempts in this course already present [97].

7.2 Percolations on simplicial complexes

The percolation theory [98] occurs as an adequate framework for the examination
of the critical phenomena taking place on complex networks [99]. Since complex
networks are highly irregular, the computation of percolating clusters is not simple,
though some algorithms are developed [100]. A new algorithm could be developed by
calculating a Q-vector of the neighborhood complex obtained from complex network,
in which case the connectivity classes at the 0-connectivity level represent percolative
clusters. Hence, the procedure should be as followed: calculate the Q-vector of a
neighborhood complex before occupying nodes, and then, whenever the nodes of
a network are occupied, the Q-vector entries are updated. The advantage of this
procedure is twofold: first, the algorithm for the percolating clusters originates from
the well defined mathematical quantity, and second, we have an insight into the
changes of topological properties depending on the occupation probability.

The above example of the usage of the Q-vector entries is limited to percolations
on complex networks. Nevertheless, the types of percolation processes on simplicial
complexes are far more richer, to mention a few:

e vertices can be occupied;

e simplices can be occupied and vertices can be left unoccupied, unless all simplices
which posses them are occupied;

e simplices and vertices are occupied simultaneously, possible with different proba-
bilities;

e the same as the above, but for a conjugate complex.

These rather complex processes is not easy to analyze, and one possible formalism
for their analysis can be the so called ”algebra of patterns” introduced by Atkin

[76], [77], [78] for the examination of changes on and of simplicial complexes.

7.3 Time evolution of vector-valued quantities

In Chapter 2 the vector-valued quantities like Q-vector, the second and the third

structure vectors, have been introduced for the characterization of the topological
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properties of simplicial complexes. Nevertheless, since real-world complex networks
are changing, like adding or deleting nodes and/or links, simplicial complexes ob-
tained from complex networks experience changes also. Therefore, vector-valued
quantities experience changes too and it would be useful to explore eventual change
patterns through the g-levels. This problem is in a sense related to the previous
one (percolations) since adding or deleting nodes and/or links can be treated as

percolation process.

7.4 Foundations of statistical mechanics of sim-

plicial complexes

In the preceding chapters we have seen that some properties of complex networks are
preserved, such as the behavior of the degree distribution, with algebraic topological
properties of simplicial complexes obtained from those networks. Whereas attempts
for precise formulation of statistical mechanics of complex networks are successful
[5], [66], [101] the field of statistical mechanics of simplicial complexes is still in
its development. The multidimensional and sophisticated structure of simplicial
complexes requires different approach than the one for the complex networks and in

turn offers many advantages and more sophisticated analysis of complex phenomena.

7.5 Construction of simplicial complex from cor-

relation matrix

Reconstructing a graph from the correlation matrix corresponding to the dynamics
of a certain complex system is rather arbitrary, and is based on some threshold
criterion on the values of the correlation matrix entries. The general requirement
for building a graph from correlation matrix entries is the one which maximizes
the sum of the correlations over the connected edges [102]. The simplest method
for extracting a connected graph with all nodes involved is the so called Minimum
Spanning Tree (MST) method [102], by which with respect to the above requirement
the resulting graph has a tree structure, i.e., does not have cycles, or triangles. As
a generalization of MST method the so called Planar Maximally Filtered Graph
(PMFG) [89], which captures more edges, contains cliques, and contains a MST
as a subgraph, was proposed. In the Chapter 3 we have used as an example of
neighborhood complex brain networks obtained from correlation matrix using the

PMFG. In either case the simplicial complex is obtained from the correlation matrix
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indirectly, from a graph. Hence, for capturing algebraic topological properties of a
complex system whose information is stored in the correlation matrix, it is important
to develop a method for construction of simplicial complex directly from a correlation

matrix, depending on the correlation matrix entries.

7.6 Weighted simplicial complexes

Related to the previous section is the problem of topological properties of the
weighted simplicial complex. Namely, a large number of real world complex net-
works, and as well simplicial complexes, are characterized by association of certain
numerical values to the nodes and/or the links of a network, and hence to the ver-
tices, the faces and the simplices of the obtained simplicial complex. Although there
are some attempts in the course of weighted combinatorial Laplacians [67], [68] or
weighted simplicial homology development [103], the methodology applied to the

wide class of complex systems is still lacking.
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Chapter 8
Concluding remarks

Starting from a typical properties of complex systems, the notion of (sub)structure of
complex networks was redefined and combinatorial algebraic topology was proposed
as an adequate mathematical framework for its study. Within the context of alge-
braic topology simplicial complexes have been used for the modeling of the structure
of complex networks, and accordingly, simplicial communities have been introduced
to capture substructure properties. It turns out that thanks to the versatility of sim-
plicial complexes which can be constructed from a single network, different hidden
organizational patterns formed by the relationships between simplicial communities
within complex network can be detected.

The neighborhood complex obtained from diverse modeled and real-world com-
plex networks shows that statistical properties of complex networks have been pre-
served when we do the transition from the graph to simplicial complex representa-
tion. Since the simplices in neighborhood complex are the collections of nodes and
the dimension of a simplex is equal the degree of corresponding node, it indicates
the importance of the taking into account such substructures in complex networks’
evolution models.

The usefulness and adequacy of simplicial complexes to model qualitative fea-
tures of complex networks is demonstrated in the case of clique complexes of two
well known social networks, the Zachary karate club and the co-appearance network
of characters in the Victor Hugo’s novel Les Miserables. It appears that an approach
using both the initial and the conjugate clique complex is particularly informative
for the analysis of social networks. The spectra of the combinatorial Laplacian of
simplicial complexes are deeply related to the connectivity properties of simplicial
complexes and hence not related to their geometrical features. Based on the con-
cept of simplicial community, communities and their interlacing is well reflected in

the spectra and provides precise information on the occurrence of such complex
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structures. Connectivity properties, well captured by the Q-vector, complement the
spectra providing hierarchical description of simplicial complexes and complex net-
works. Finally, it has been demonstrated that although extensively studied and used
in many areas of science, properties of ordinary graph Laplacian are in certain cases
not adequate to capture higher-order information that resides in complex networks.

At the end we can conclude that the results of thesis indicate that striving toward
the consistent and precise theory of complexity can without a doubt be supported
by the formalism coming from the algebraic topology using simplicial complexes
as working objects. Furthermore, the rigorous and sometimes seemingly rigid and
abstract approach of combinatorial algebraic topology proved to be an advantage
rather than the obstacle, and that the ”simplexication” of sciences far transcends

physics.
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Mpwnor 1.

UsjaBa o ayTopcTey

[MoTnucanu Mp CnobogaH ManeTtuh

Bpoj nHaekca D7/2009

UsjaBrbyjem
Aa je foKTOpCcKa AucepTaumja nosa HacnoBoOM

CuMMNAMLnjanHmM KOMNNeKcH 1 KoMAneKkcHe Mpexe: yTuuaj (Moa)cTpykTypa BuLler peaa
Ha KapakTepucTuke Mpesxe

® pPe3yniTaT COncTBEHOr UCTpaknBavkor paaa,

* A3 NpeanoxeHa guceptaumja y UenmHn HU y feroBuMa Huje 6una npeanoxeHa
3a pobujake Guno koje Aunnome Npema cTyaujckuM nporpamMuma apyrux
BMCOKOLLIKOSICKUX yCTaHOBA,

¢ [a Cy pe3yntaTth KOpPeKTHO HaBeaeHu n

® Aa Hucam Kplino/na ayTopcka npaBa WM KOPUCTUO VHTENeKTyanHy CBOjuHy
APYrvx nuua.

MoTnuc gokrTopanpa

Meved”

Y Beorpagy, 27. maj 2013. rog,




Mpwunor 2.

U3jaBa 0 UICTOBETHOCTU LUTaMMaHe U erieKTPOHCKe
Bep3uje OOKTOPCKOr paga

Mme 1 npesnme aytopa Mp CnobogaH Manetuh

Bbpoj nHaekca D7/2009

CTtyamjckn nporpam

Hacnos paga: CumnnuupmjanHyi KOMMMEKCU U KOMMNIEKCHE MpeXKe: yTuLaj
(Nop)CTPYKTypa BULLET peaa Ha KapaKTepUCTUKE MPeXxe

MeHTOp ap Munan Pajkosuh___

[MoTnucanu Mp CnobogaH ManeTuh

M3jaBrbyjem fda je wrtamnaHa Bep3uja MOr OOKTOPCKOr paja WCTOBETHa erleKTPOHCKO]
BEpauju kojy cam npefao/pd  3a objaBrbMBare Ha nopTany [AurutanHor
peno3uTopujyma YHuBep3auteta y beorpany.

[osBorbaBam ga ce objaBe Mojy NMUYHM Nogaumn Be3aHW 3a fobujare akagemckor
3Bakba QOKTOpA Hayka, Kao LUTO Cy UMe U npe3umMe, rogmHa n Mecto pohewa n gatym
oabpaHe paga.

OBM nn4yHM nogaum Mory ce o6jaBUTU Ha MPEeXHUM CTpaHuuama AuruTanHe
oubnuoTeke, y eNeKTPOHCKOM KaTarnory u y nybnukauvjama YHusepauteta y beorpagy.

MoTtnuc gokTtopaHaa

Y beorpagy, _ 27. maj 2013. roa.___ ,




Mpunor 3.

UsjaBa o kopuwhekwy

Osnawhyjem YHuepauteTcky 6ubnuoteky ,CseTtosap MapkoBuh® ga y [Adurutanuyu
penosutopujym YHusepauteta y beorpagy yHece Mojy [OKTOpCKYy AucepTaumjy nop
HaCrnoBOM:

CuyMnnMumjanH KOMNIEKCU U KOMMNEKCHe Mpexe: yTuuaj (Mo4)CTpyKTypa BuLer peaa
Ha KapaKTEPUCTUKE Mpexe

Koja je Moje ayTopCcKo Aeno.

[ucepTauujy ca ceum npurosmma npegao/na cam y enekTpoHCKoM dopmaTy norogHom
3a TpajHO apxvBupaH-e.

Mojy pokTopcky AucepTtauujy noxpaweHy y AurntanHu penosutopujym YHuBepsuteTa
y beorpagy mory ga kopucte cBU Koju nowTyjy ogpeabe cagpxaHe y ogabpaHom Tuny
nuueHue KpeatusHe 3ajegHuue (Creative Commons) 3a kojy cam ce oany4dvo/na.

1. AyTOopCTBO
2. AyTOpCTBO - HEKOMEpPLMjanHo
@AyTOpCTBO — HekomepuujanHo — 6e3 npepage
4. AyTOpCTBO — HEKOMEPLjarnHo — AENUTY No4 UCTUM ycroBruMa
5. AytopcTBo — Ge3 npepage
6. AyTOpCTBO — LENUTX No4 UCTUM ycrnosuma

(Monumo fga 3aoKkpyuTe camo jefHy of LIecT NOoHYRAeHWX nuueHUM, KpaTak onuc
nuUeHUn aaT je Ha nonefuHu nucta).

MoTnuc goktopaHaa

Y Beorpaay, _27. maj 2013. rog.___ %; é , Z




1. AytopcTBo - [lo3BorbaBate yMHOXaBarbe, AUCTPUOYLIM)Y W jaBHO caoniuiTaBake
[ena, u npepage, ako ce HaBefe UMe ayTopa Ha HauumH ofpeReH of cTpaHe ayTtopa
Unn gasaolia nuuUeHue, Yak u y komepuumjanHe cepxe. OBo je HajcnobofHuja of CBUX
nMUeHuM.

2. AyTOpCcTBO — HEKOMepumjanHo. [lo3BorbaBare yMHOXasamwe, aucTpudyuujy v jaBHo
caorniwiTaBare fena, v npepage, ako ce HaBefe vme ayTopa Ha HauunH ogpeheH of
cTpaHe ayTopa unu gasaoua nuueHue. OBa nuueHUa He A03BoSbaBa KomepuujanHy
ynoTpeby gena.

3. AyTopcTBO - HekomepumjanHo — 6e3 npepage. [losBorbaBare ymHOXaBare,
avcTpubyumnjy 1 jaBHO caonwiTaBake pfena, 6e3 rnpomeHa, npeobnvkoBara WM
ynotpebe gena y cBoM feny, ako ce HaBede UMe ayTopa Ha HauiH ogpeheH of
cTpaHe aytopa unv daBaoua nuueHue. Oa nuueHua He [03BorbaBa KomepuujanHy
ynoTpeby aena. Y ofHOCY Ha CBe ocTane nuueHLe, OBOM fMLEHLOM Ce orpaHuyasa
Hajsehun obnm npaea kopuwhexa gena.

4. AYTOpCTBO - HEKOMEpLUMjanHO — AenuTu nojd ucTum ycrnosuma. [lossorbaBate
yMHOXaBare, AMCTpubyLmnjy v jaBHO caonuitaBake Aerna, u npepane, ako ce Haseae
yuMe ayTopa Ha HaumH ofpefheH of CTpaHe ayrtopa unu gaBaoua NuueHLe 1 ako ce
npepaga AucTpubynpa nofd WCTOM Wnv CrvdHoM nuueHuyom. Oea nuvueHua He
[03BosbaBa koMmepLpmjanHy ynotpeby gena v rnpepaga.

5. AyTopcTBo — 6e3 npepage. [JosBorbaBaTe ymHOXaBare, AUCTPUOyLWjy W jaBHO
caonwTasatse gena, 6es npomeHa, npeobnukosara unu ynotpebe gena y cBom geny,
ako ce HaBede UMe ayTopa Ha HauvH ogpefeH of cTpaHe ayTtopa unu gaBaola
nuueHue. OBa nuueHLa 403BoSbaBa KoMmepuujanHy ynotpeby gena.

6. AyTopcTBO - [AenuTu nop wuctum ycroeuma. [lo3BorbaBate yMHOXaBate,
AMCTpUBYLMjy 1 jaBHO caoniiTaBake Aena, v npepaje, ako ce HaBene ume aytopa Ha
HauMH ogpefeH of CTpaHe ayTopa WM [asaolia nuLeHue 1 ako ce npepaga
aucTpubympa nog UCTOM WMnuM cnvyHoM  rmueHuom. OBa  nuueHula [03BoSbasa
koMepupmjanHy yrnotpeby fAena u npepaga. CrmuHa je codTBepck/M nuleHuama,
O[IHOCHO NULIEHLIaMa 0TBOPEHOT Kofa.
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