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Članovi komisije:

dr Milan Knežević
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Title:

SIMPLICIAL COMPLEXES AND COMPLEX NETWORKS:

the influence of higher-order (sub)structures on network properties

Abstract

In modern theoretical physics (quantum gravity, computational electromagnetism,

gauge theories, elasticity, to name a few) simplicial complexes have become an im-

portant objects due to their computational convenience and power of algebraic topo-

logical concepts. On the other hand, physics (and mathematics) of complex systems

formed by the large number of elements interacting through pairwise interactions in

highly irregular manner, is the most commonly restricted to concepts and methods

of the graph theory. Such systems are called complex networks and notions of graph

and complex network are used interchangeably. The achievements of the complex

networks research are important for modern world and largely reshape our notion

of a large class of complex phenomena, primarily because seemingly random and

disorganized phenomena display meaningful structure and organization. The same

stands also for the aggregations of complex network’s elements into communities

(modules or clusters), which as a major drawback has that they are restricted to

the collections of pairwise interactions.

In this thesis to the notions of structure and substructure of complex systems,

exemplified by complex networks, are given a new meaning through the changing the

notion of community, by defining a simplicial community. Unlike the common notion

of community, simplicial community is characterized by higher-order aggregations

of complex network’s elements. Namely, starting from typical properties of complex

systems it was shown that the natural substructure of complex networks emerges

like the aggregations of a multidimensional simplices. It was further shown that

simplicial complexes may be constructed from complex networks in several different

ways, indicating the possible different hidden organizational patterns leading to

the final structure of complex network and which are responsible for the network

properties. In this thesis two simplicial complexes obtained from complex networks

are studied: the neighborhood and the clique complex.

Relying on the combinatorial algebraic topology concepts a unified mathematical

framework for the study of their properties is proposed. The topological quantities,

like structure vectors, Betti numbers, combinatorial Laplacian operator are calcu-

lated for diverse models real-world networks. Properties of spectra of combinatorial
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Laplacian operator of simplicial complexes are explored, and the necessity of higher

order spectral analysis is discussed and compared with results for ordinary graphs.

The relationship of properties resulting from combinatorial Laplacian spectra with

connectivity properties stored in the Q-vector is analyzed and discussed. The basic

statistical features of complex networks are preserved by algebraic topological quan-

tities of simplicial complexes, indicating possible presence of the so far unknown

generic mechanisms in the complex networks formation. The spectral entropy is

proposed as a measure of complexity which is determined by the eigenvalues of

combinatorial Laplacian. All results support the necessity of developing a novel re-

search field, called statistical mechanics of simplicial complexes as a unifying theory

of the complex systems represented by simplicial complexes.

Keywords:

statistical mechanics, complex systems, graph, complex networks, combinatorial al-

gebraic topology, simplicial complexes, topological invariant, combinatorial Lapla-

cian, entropy

Scientific field:

physics

Specific scientific field:

statistical physics

UDC number: 533.9(043.3)

iv



Naslov:

SIMPLICIJALNI KOMPLEKSI I KOMPLEKSNE MREŽE:

uticaj (pod)struktura vǐseg reda na karakteristike mreže

Rezime

U savremenoj teorijskoj fizici (na primer, kvantnoj gravitaciji, računskom elek-

tromagnetizmu, gejdž teoriji, elastičnosti) simplicijalni kompleksi su postali važni

objekti zbog njihove računske pogodnosti i moći koncepata algebarske topologije.

Sa druge strane, fizika (i matematika) kompleksnih sistema formiranih od velikog

broja elemenata koji interaguju parnim interakcijama na izrazito neregularan način,

najčešće je ograničena na koncepte i metode teorije grafova. Takvi sistemi se nazi-

vaju kompleksne mreže i pojmovi graf i kompleksna mreža se poistovećuju. Dopri-

nosi istraživanja kompleksnih mreža su važni za savremeni svet i umnogome pre-

oblikuju naše poimanje velike klase kompleksnih fenomena, pre svega zbog toga

što naizgled slučajni i neure -deni fenomeni pokazuju smislenu strukturu i organi-

zaciju. Isto važi i za agregacije elemenata kompleksne mreže u zajednice (module ili

klastere), koje kao najveći nedostatak imaju osobinu da su ograničene na kolekcije

parnih interakcija.

U ovoj tezi pojmovima strukture i podstrukture kompleksnog sistema, kroz

primer kompleksne mreže, dato je novo značenje menjanjem pojma zajednice, defin-

isanjem simplicijalne zajednice. Za razliku od uobičajenog pojma zajednice, sim-

plicijalna zajednica je karakterisana sa agregacijama vǐseg reda elemenata mreže.

Naime, pošavši od tipičnih osobina kompleksnih sistema pokazano je da se kao

prirodna podstruktura kompleksne mreže pojavljuju agregacije multidimenzionalnih

simpleksa. Pokazano je, dalje, da se simplicijalni kompleksi mogu iz kompleksnih

mreža konstruisati na nekoliko različitih načina, ukazujući na postojanje različitih

skrivenih organizacionih obrazaca koji vode do konačne strukture kompleksne mreže

i koji su odgovorni za osobine mreže. U ovoj tezi su razmatrana dva simplicijalna

kompleksa dobijena iz kompleksne mreže: kompleks susedstva i klika kompleks.

Oslanjajući se na koncepte kombinatorijalne algebarske topologije predložen je

objedinjeni matematički okvir za proučavanje njihovih osobina. Topološke veličine,

kao što su strukturni vektori, Betti brojevi, operator kombinatorni laplasijan, računate

su za različite modele realnih mreža. Ispitivane su osobine spektra operatora kombi-

natorni laplasijan simplicijalnog kompleksa, i razmatrana je neophodnost spektralne

analize vǐseg reda koja je pore -dena sa rezultatima za obične grafove. Analizirana je i
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razmatrana veza osobina dobijenih iz spektra kombinatorijalnog laplasijana sa osobi-

nama povezanosti sadržanih u Q-vektoru. Osnovne statističke osobine kompleksnih

mreža su očuvane kod simplicijalnih kompleksa kroz veličine algebarske topologije,

ukazujući na moguće postojanje do sada nepoznatih generičkih mehanizama u formi-

ranju kompleksne mreže. Kao mera kompleksnosti predložena je spektralna en-

tropija koja je definisana preko svojstvenih vrednosti kombinatorijalnog laplasijana.

Svi rezultati podržavaju neophodnost razvoja novog polja istraživanja, nazvanog

statistička mehanika simplicijalnih kompleksa, kao objedinjujuće teorije komplek-

snih sistema predstavljenih kao simplicijalni kompleksi.

Ključne reči:

statistička mehanika, kompleksni sistemi, graf, kompleksne mreže, kombinatorna

algebarska topologija, simplicijalni kompleksi, topološka invarijanta, kombinatorni

laplasijan, entropija

Naučna oblast:

fizika

Uža naučna oblast:
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Chapter 1

Introduction

Complexity is a very intriguing concept which attracts attention and hence the re-

search interest of scientists from different disciplines. Some kind of common purpose

unified their efforts in formulation of a unique, up to some specific differences, the-

ory of complex systems, which could be applied to diverse systems appearing in

physical, social, biological, technological, informational, and many other phenom-

ena. This approach is rather familiar in physics, particulary in the field of critical

phenomena where the concept of ”universality” [1] means that physical systems

formed by the different elements will have the same behavior near critical point if

they have the same numerical value of the so called critical exponents. Hence, it is

not coincidence that the statistical physics had the largest influence on the sudden

burst of important results, which reshaped our image about complex systems, and

especially about complex networks.

However, if we want to begin the formulation of complex systems theory by

introducing the definitions upon which we can build further theory, and primarily,

definition of what complex system is, we face the problems: there is not a unique and

widely accepted definition of a complex system [2]. This seemingly essential obstacle

does not prevent researchers to adapt concepts and methods from their disciplines on

a specific complex system, and as a result give informative and practical description

of their behavior. Nevertheless, one large subset of complex systems singles out

due to the specific mathematical framework within which problems related to those

complex systems can be tackled. The characteristic of those systems is that they are

formed by the large number of elements which interact among themselves through

pairwise interactions. The easiest way to represent mathematically such complex

system is by a graph, associating the elements with the nodes or vertices, and

their interactions with the links or edges of a graph forming a complex network

[3]. Although the underlying assumptions of research that led to the results in
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this thesis did not rely on any rigorous definition of a complex system, we have

accepted some qualitative and most common properties which characterize complex

systems in general. Based on these properties we have developed a characterization

of complex system by a suitable mathematical framework.

In general, the line of reasoning was the following: complex networks are es-

sentially a complex systems, and as such they should obey qualitative properties

of complex systems. First property is that complex systems, despite their great

irregularity, display some sort of organization which can be termed as an ”organized

complexity” [4], and we assume that this is true for complex networks. The last

assumption is proved in numerous research articles through the analysis of complex

networks by representing them as a graphs (for example, [5], [6], [7]). Second prop-

erty is that any collection of elements of a complex system which are related by

certain rules displays a qualitatively different behavior than the mere sum of those

elements [8], and this has to be captured in mathematically rigorous fashion. Here

is a very simple example: hot coffee is a collection of, say, four ingredients coffee

powder, water, milk, and sugar, and knowing the flavor of each ingredient can not

help us a lot in knowing the flavor of their mix in the hot coffee. Moreover, the same

is true for any collection of three ingredients, or for any collection of two ingredients.

Hence, such phenomena have to be mapped onto a suitable mathematical framework

which captures these properties. This second property has to be further explained

in the context of complex networks. Consider, say four people seated at the table

and engaged in a group conversation so that each person may hear everyone else.

A complete graph consisting of four nodes would be immediately assumed as an

adequate mathematical framework for this relationship. Consider now the situation

in which each person may only whisper in the ear of another person. Again, the

only applicable graph model is the complete four node graph although the situa-

tion is completely different. The model is not adequate since the conversation of

the group as an entity is not captured by the (1-dimensional) graph model which

can not make distinction between a four-person group conversation and a set of six

pairwise conversations. Hence, the behavior of a complex network can not be antic-

ipated by knowing only the pairwise relationships between its elements, but it is to

the large extent influenced by the structure built by those elements and their rela-

tions. The network of streets underlies the traffic carried by vehicles, and it is often

hard to predict occurrence of, for example, traffic jams. Nevertheless, knowledge of

the structure, or connectivity, or the hidden organizational patterns of the streets

can be very informative in the prediction of possible jams. Of course, following

the same reasoning, the similar problems can occur in the cases like the Internet
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(as a physical connections between computers) or the Power Grids or the network

of neurons connected by synapses. By eliminating or adding new elements and/or

connections, the structure may change, and it further affects the traffic through the

networks. Finally, the third property is that the complex system possess an intrin-

sic hidden hierarchical organization which is responsible for the appearance of the

system as it is [9]. Again, we can consider an example in order to give a clarification

of this assumption: take for example a large company which is divided into sectors

which are further divided into subsectors, which are divided into subsubsectors, and

so on. Furthermore, the building blocks of a complex system are arranged in an

irregular yet meaningful way which is revealed through the hidden organizational

patterns which appear on different hierarchical levels characterized by aggregations

of complex system’s elements.

These typical properties of complex systems can be easily captured by simpli-

cial complexes, i.e., a set of connected polyhedra which build a higher dimensional

discrete geometrical space. An example of the formation of the simplicial complex

is presented in Figure 1.1 by gluing simplices (polyhedra).

(a) (b)

Figure 1.1: An example of gluing polyhedra (a) along common faces in forming the
simplicial complex (b).

Therefore, we will place the problem of the hierarchical organization of intrin-

sic substructures of complex networks into suitable mathematical framework most

adequate for the analysis of simplicial complexes, that is, combinatorial algebraic

topology [10]. The idea of modeling complex systems by analyzing its elements rep-

resented by simplices is not a new one. Namely, Ron Atkin [11], [12], following the

ideas of Dowker [13] of building a simplicial complex from the relations between the

elements of two sets (or the same set), have introduced the method of Q-analysis

[14]. Researchers have sporadically used the methods of Q-analysis for the analysis

of specific systems, often with small number of elements. Such cases span from

studying qualitative and quantitative structure of television program [15], analysis

of the content of newspaper stories [16], social networks [17], [18], [19], [20], urban

planning [21], [22], relationships among geological regions [23], distribution systems

[24], decision making [25], diagnosis of failure in large systems [26], to mention a few.
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From this short overview of the applications we can see the wide range of systems to

which Q-analysis can be applied. Recently Atkin’s methodology received a further

development in the work of Barcelo and Laubenbacher [27], naming their theory an

A-homotopy theory in honor of Atkin.

In modern theoretical physics simplicial complexes are recognized as important

and convenient objects [28], [29], [30] due to their analytical and computational

convenience. The language of modern physics is based on the calculus on manifolds

which are discretized using simplicial complexes. Reversely, simplicial complexes

can be used for the study of topological properties of a manifold obtained from

experimental data [31]. Also, the use of simplicial complexes in discretization of

exterior differential forms is extremely important. It is now widely recognized that

geometry and topology are at the foundation of many physical theories such as gen-

eral relativity [32], [33], electromagnetism [34], gauge theory [35], elasticity [36], to

mention a few. For example, the development of simplicial quantum gravity [37]

depends on the results of the Regge calculus [38], which, in turn, was developed

by approximating smooth 4-dimensional manifold by rigid simplices. On the other

hand, in the computational electromagnetism [39], [40], [41] Maxwell’s equations

can be directly expressed in terms of discrete differential forms which are defined as

cochains on simplicial complexes. Generally, the geometric and topological nature

of such theories is often obscured by their formulation in vectorial and tensorial

forms due to unavoidable use of coordinate systems so that the complete topological

and geometrical nature is obscured hiding for example, local and global invariants.

Exterior derivative of differential forms is, on the other hand, invariant under a co-

ordinate system change and since every differential equation may be expressed in

terms of exterior derivative of differential forms [42], many physical laws may be

expressed in terms of differential forms. Discretization of differential forms using

finite differences, for example, and using their coordinate values leads to numer-

ical invalidation of some basic theorems (Stokes, for example) making traditional

discretization methods futile. It turns out that proper discretization of differential

forms that preserves all the fundamental differential properties is possible only on

simplicial complexes [43]. As a curiosity let us mention that there are some at-

tempts to formulate physical theories in a completely discrete fashion [44], [45], [46],

[47], with emphasis on simplicial complexes. Considering the importance of simpli-

cial complexes in the fundamental theories, we may consider simplicial complexes as

universal tools for comprehensive and wide encompassing study of complex systems.

This ”simplexication of sciences” and ”complexication in sciences” naturally led

to the ideas of relating concepts of statistical mechanics and algebraic topology [48],
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[49], [50], [51], [52]. Namely, it turns out that essential characteristics of complex

systems exemplified by complex networks, like the behavior of degree distribution

is preserved when we calculate distributions of algebraic topological quantities of

simplicial complex obtained from complex network. This further implies that we

have to look for the additional rules which lead to the structure of complex network

as it is, and relying on the substructures revealed through the algebraic topology

concepts. Therefore, we have to turn our attention to those substructures and verify

their validity within the structure of a complex network. So far the substructures in

complex networks called communities (or modules, or clusters) [53] are considered

as aggregations of pairwise interactions of network’s elements based on certain rule,

with the most general requirement that the density of the node connectivity within

the community is higher then the connectivity among communities. The lack of a

precise and widely accepted definition of what community is resulted in a diversity

of definitions mostly as a consequence of a detection algorithm [54]. The detection

of communities and their definitions includes node-based methods [55], link-based

methods [56], [57], clique-based methods [58], [59], [60], to mention the most impor-

tant ones. The link-based methods [56], [57] and clique-based methods [58], [59], [60]

have been successful in capturing important properties of substructures related to

the sharing of common nodes (and links) between different communities, that is the

overlapping property. Recently, the attention has been shifted from the community

detection to the so called structural group [61] defined as the aggregation of nodes

with common structural properties.

In the approach introduced in this thesis the notion of community has an essen-

tially different meaning. The definition of a simplicial community depends on the

context determined by relationship between network elements including the process

of the simplicial complex (i.e. the network). Introducing the general notion of sim-

plicial community in the framework of combinatorial algebraic topology, we define

and show that different substructures emerge in complex networks by mapping a

complex networks into diverse discrete topological spaces. In some cases the ap-

proach is an extension and upgrade of the present community definitions, such as

the case of k-clique communities [59].

Partitioning a simplicial complex, constructed from the initial complex network

into mesoscale structures which capture relationships between simplices and their

overlappings (called faces) and arranging them into levels defined by their corre-

sponding dimensions [48], [49], we obtain a hierarchical description of simplicial

complex connectivity. This representation is then compared, analyzed and inter-

preted by the spectrum of the (higher dimensional) combinatorial Laplacian of the

5



corresponding simplicial complex [62], [63], which also has a hierarchical structure

defined by the dimension of the simplicial complex [64]. Since the graph itself

is a 1-dimensional simplicial complex the combinatorial Laplacian of the underly-

ing graph is the 0th order combinatorial Laplacian of the corresponding simplicial

(clique) complex. Hence, the combinatorial Laplacian of simplicial complex repre-

sents generalization of the graph Laplacian. Properties of the spectrum of the graph

Laplacian are well known (see for example [65]), and they are important for the

study of dynamic processes taking place on the complex network [66], among other

applications. Although much less known, combinatorial Laplacian of a simplicial

complexes represents an area of active mathematical research [62], [67], [68].

In order to measure ”complexity” of complex networks several entropic measures

has been proposed following information theoretical and statistical mechanics for-

malisms related to the structure and organization of complex networks. The Shan-

non entropy was derived under given structural constraints [69], [70], [71]. The von

Neumann entropy (spectral entropy) proportional to the logarithm of eigenvalues

of the density matrix ρ which quantifies the degree of mixedness of quantum states

was defined in [72] and [73]. A density matrix ρ is said to be pure if Tr(ρ2) = 1,

or equivalently if ρ = ρ2, and mixed otherwise. Laplacian matrix of a graph scaled

by the sum of graph degrees is positive, symmetric with trace equal to 1 and hence

equal to the density matrix. In this thesis we define the spectral entropy of the sim-

plicial complex derived from the underlying graph as a vector whose components

are spectral entropies defined for each dimension q of the simplicial complex. This

entropy is proportional to the logarithm of the probability of the appearance of the

eigenvalue of the qth higher dimensional combinatorial Laplacian. With adequate

normalization the qth entropy quantifies the difference of the simplicial subcomplex

at each dimension from the set of disconnected q-simplices [74].
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Chapter 2

Properties of a simplicial complex

This chapter is devoted to definitions, concepts, and quantities related to simplicial

complexes. Although this chapter is purely mathematical, rigorous definitions and

proofs are avoided where unnecessary.

2.1 Definition of simplicial complex

Let us start with a finite set B = {b1, b2, . . . , bm}, whose elements we call vertices. A

convex hull of q+1 elements {bα0 , bα1 , ..., bαq} of the set B is called a q-dimensional

simplex, or just a q-simplex [75]. Geometrical realization of a q-simplex is through

the polyhedra embedded in d-dimensional Rd space, where q ≤ d, and the rigorous

proof of this realization can be found in [75]. Hence, simplices can be understood

as a higher-dimensional generalizations of a point, a line, a triangle, a pyramid, and

so on. Figure 2.1 left, illustrates geometrical realization of q-simplices for various

q, of the set B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} with subsets: {1, 2, 3, 4, 5},
{2, 3, 5, 6}, {6, 8}, {2, 7}, {7, 8, 9}, {8, 9, 10} and {11, 12, 13, 14}.

1

2

34

5

2

3

5

6

2

6

7

8

7
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11 12
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14

8

9
1

2

3
4
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6

7

8

9

10

11

12

13

14

Figure 2.1: Formation of simplicial complex on the right from simplices on the left part
of the picture.

In the following we will label a q-dimensional simplex as σq. A p-simplex σp

is a p-face of a q-simplex σq, denoted by σp ≤ σq, if every vertex of σp is also a

7



vertex of σq. Therefore, if two simplices σq and σr share p + 1 common vertices,

then they share a p-face. From the Figure 2.1 left we can see that subset {2, 3, 5} of

a simplex {1, 2, 3, 4, 5} is also a subset of a simplex {2, 3, 5, 6}, meaning that these

two simplices share a 2-face. Also, the definition of a simplex implies that a 2-face

{2, 3, 5} is also a simplex. Defined in this way, simplices are the maximal subsets

(simplices), in the sense that they are not face of any other simplex.

Collection of simplices together with all their faces is called a simplicial complex.

In more formal terms a simplicial complex K on a finite set B = {b1, b2, . . . , bm} of

vertices is a nonempty subset of the power set of B, such that K is closed under

the formation of subsets [75]. The maximal dimension of a simplex in K determines

the dimension of the whole simplicial complex, D = dim(K). Figure 2.1 (right)

illustrates how simplices on the left side form the 4-dimensional simplicial complex.

The above definition of simplicial complex is the abstract onelacking the mean-

ing of vertex aggregations into subsets of B. Namely, for practical purposes when

we are dealing with a concrete elements b1, b2, . . . , bm we must have some rule ac-

cording to which we aggregate elements into subsets which form simplices, and

we must know what these simplices actually represent. Let us introduce a new

set A = {a1, a2, . . . , an} and a binary relation λ, which together with the set

B = {b1, b2, . . . , bm} contribute to the formation of two simplicial complexes [13]. We

will introduce these two simplicial complexes leaning on the concepts of Q-analysis

developed by R. Atkin [14], [11], [76], [77], and further developed by J. Johnson [78],

[79], [80]. The binary relation λ by some rule or property assigns to every element

in A one or more elements in B, i.e., for every ai ∈ A there exists bj ∈ B such that

aiλbj. The set A and the relation λ determine the subset K of the power set of B

and we label each element {bα0 , bα1 , ..., bαq} ∈ K (q ≤ m) by the element ai ∈ A for

which aiλbα0 , aiλbα1 , ..., aiλbαq . To distinguish the element ai from the set A and

its associated element from the set K due to the relation λ, the element of the set K

will be labeled as σ(ai). Therefore, the notation σq(ai) = ⟨bα0 , bα1 , bα2 , . . . , bαq⟩ [78]
means that an element ai of the set A is λ-related to q elements {bα0 , bα1 , bα2 , . . . , bαq}
of the set B. The elements of the set B are called vertices, whereas the elements of

the set K are called q-dimensional simplices or just q-simplices. Further, an element

ai is λ-related to any subset of the set {bα0 , bα1 , bα2 , . . . , bαq}, and hence, every subset

of {bα0 , bα1 , bα2 , . . . , bαq} is also a simplex, meaning that any such subset is a face

of simplex, due to the definition of q-face. Since each ai ∈ A identifies a q-simplex

σq(ai) (for some q) together with all its faces, this collection of simplices is called a

simplicial complex K, which we will denote KA(B, λ) [12].

To illustrate the construction of simplicial complex from two sets let us in-
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troduce a set A = {a, b, c, d, e, f, g}, together we previously introduced set B =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, and suppose that the elements of the set A

are λ-related to the elements of the set B. For example, the letters from the set

A may correspond to the individuals the numerals from the set B may correspond

to the diverse interests of each individual and the relation λ may correspond to the

property ”person a has an interest in 1”. As another example, we may assume that

the letters from the set A correspond to patients, whereas numerals from the set B

correspond to diverse clinical symptoms, and the relation λ corresponds to the prop-

erty ”patient a has a symptom 1”. Or, the letters from the set A may correspond to

the city streets whereas the numerals from the set B may correspond to the diverse

junctions and the relation λ may correspond to the property ”street a contains a

junction 1”. As another example consider that letters from the set A correspond

to the TV shows whereas the numerals from the set B correspond to the diverse

subjects, covered by the show and the relation λ corresponds to the property ”TV

show a has a subject 1”. In the context of social issues the letters from the set A

may correspond to the social groups, the numerals from the set B may correspond

to the diverse persons, and the relation λ may correspond to the property ”social

group a has as a member person 1”. As a final example, the letters from the set

A may correspond to the geological regions, whereas the numerals from the set B

may correspond to the diverse rock types, and the relation λ may correspond to the

property ”geological region a has a rock type 1”, and so on.
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Figure 2.2: Formation of the simplicial complex from Figure 2.1, but now the simplices
are labeled.

Figure 2.2 left illustrates polyhedral representation of simplices obtained by the

elements from the set A, which are λ-related to the elements of the set B. For

example, an element a is λ-related to the elements {1, 2, 3, 4, 5}. The obtained

simplices are:

σ(a) = ⟨1, 2, 3, 4, 5⟩
σ(b) = ⟨2, 3, 5, 6⟩
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σ(c) = ⟨6, 8⟩
σ(d) = ⟨2, 7⟩
σ(e) = ⟨7, 8, 9⟩
σ(f) = ⟨8, 9, 10⟩
σ(g) = ⟨11, 12, 13, 14⟩.
Figure 2.2 illustrates the simplicial complex formed by ”gluing” simplices along their

shared faces. By simple inspection of left and right sides of Figures 2.1 and 2.2 we can

see that simplicial complexes are the same with a slight difference: the simplices from

Figure 2.2 are labeled and a meaning is attached to them. For example, consider a

simplicial complex of streets (simplices) and junctions (vertices) in an urban area.

Then from the above example, street a contains junctions 1, 2, 3, 4 and 5, whereas

street b contains junctions 2, 3, 5 and 6, and these two streets share junctions 2, 3

and 5. Hence, it is easy to comprehend how simplicial complex from Figure 2.2 can

capture the complicated relationships between streets through common junctions.

Obviously, if we do not assign a street name with the corresponding junction, we

would lose an important information.

Since the relation λ relates the elements of the set A with elements of the set

B, there must be some relation which does the reverse, i.e., relates the elements of

the set B with the elements of the set A. That role is taken by the inverse relation

λ−1 [14], [78] of λ which relates the elements of the set B with the elements of the

set A: 1λ−1a, 2λ−1a, 2λ−1b, 2λ−1d, 3λ−1a, 3λ−1b, and so on. Following the same

procedure, we form a simplicial complex KB(A, λ
−1) on the vertex set A defined by

the relation λ−1, represented in Figure 2.3. Note that the elements of sets A and

B have changed their roles, and in the complex KB(A, λ
−1) simplices are from the

set B whereas the vertices are from the set A. Now we can generalize these results

to the simplicial complex defined by two arbitrary sets A = {a1, a2, . . . , an} and

B = {b1, b2, . . . , bm} and relation λ. Then simplicial complex KB(A, λ
−1) defined

on the sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} by the inverse relation λ−1

of the relation λ is called the conjugate complex of the simplicial complex KA(B, λ)

[14], [78]. In order to clarify the importance of the simplicial complex and its con-

jugate, let us consider an example where the elements of the set A are patients, and

the elements of the set B are clinical symptoms. Then the simplicial complex repre-

sents a collection of patients sharing the symptoms, whereas its conjugate complex

represents a collection of clinical symptoms sharing the patients which have them.

Finally we would like to emphasize, that the simplicial complex can be created

on a single set, that is, following the above notation A = B, and, hence, KA(A, λ).

In this case the simplicial complex and its conjugate complex are the same.
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Figure 2.3: Conjugate complex of the simplicial complex from Figure 2.2.

The geometrical representation of the simplicial complex is not the practical way

to represent the relation between two sets. The more practical representation is by

the so called incidence matrix [14], [78] Λ. The rows of this matrix are associated

with the simplices and columns are associated with the vertices, and the matrix

entry [Λ]ij is equal to 1 if simplex σ(i) contains a vertex j and otherwise it is equal

to 0. Hence, for the above example rows correspond to the elements of the set A,

columns correspond to the elements of the set B and a matrix element [Λ]ij is equal

to 1 if an element ai ∈ A is λ-related to the element bj ∈ B:

Λ =



λ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 1 1 1 1 1 0 0 0 0 0 0 0 0 0

b 0 1 1 0 1 1 0 0 0 0 0 0 0 0

c 0 0 0 0 0 1 0 1 0 0 0 0 0 0

d 0 1 0 0 0 0 1 0 0 0 0 0 0 0

e 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 0 0 0 0 0 0 0 1 1 1 0 0 0 0

g 0 0 0 0 0 0 0 0 0 0 1 1 1 1


The matrix representation of the conjugate complex KB(A, λ

−1) of the simplicial

complex KA(B, λ) is the transpose matrix of Λ (ΛT ). The matrix that captures the

relationships between simplices, and hence, the properties of simplicial complex is

the so called connectivity matrix defined as:

Π = Λ · ΛT − Ω , (2.1)

where Λ is the incidence matrix, and Ω is matrix with all entries equal to 1. Rows

and columns of the matrix Π are associated to the simplices, the diagonal elements
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represent the dimension of simplices, whereas the non-diagonal elements represent

the dimensionality of faces which simplices share. By convention, the entry [Π]ij =

−1 (i ̸= j) means that two simplices do not share face. For the example of simplicial

complex in Figure 2.1, the connectivity matrix has the following form:

Π =



a b c d e f g

a 4 2 −1 0 −1 −1 −1

b 2 3 0 −1 −1 −1 −1

c −1 0 1 −1 0 0 −1

d 0 −1 −1 1 0 −1 −1

e −1 −1 0 0 2 1 −1

f −1 −1 0 −1 1 2 −1

g −1 −1 −1 −1 −1 −1 3



2.2 Chains of connectivity and structure vectors

So far we have introduced the dimension of the simplex and the relationship (or ad-

jacency) between two simplices through the shared common face, which are stored

in the connectivity matrix. Now we will introduce a higher aggregations of simplices

induced through the shared face and, further, how they induce the intrinsic hier-

archical multilevel and multidimensional organization of simplicial complex. The

property that any subsimplex of a simplex is also a simplex induces various levels of

adjacency between simplices, and also various levels of connectivity between collec-

tions of simplices. Two simplices are q-near if they share a q-dimensional face (see

Figure 2.4), and hence, they are also (q − 1)-, (q − 2)-, ..., 1- and 0-near.

(a) (b) (c)

Figure 2.4: An example of q-nearness between simplices. Two simplices are: (a) 0-near,
(b) 1-near, and (c) 2-near.

The collection of simplices in which any pair of simplices is connected by a

sequence of simplices where a pair of successive simplices is q-near is called the

q-connected component. More formally, two simplices σ and ρ are q − connected
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[11] if there is a sequence of simplices σ, σ(1), σ(2), ..., σ(n), ρ, such that any two

consecutive ones share at least a q-face. As an example of q-connectivity see Figure

2.5. Note that if two simplices σp and σr are q-connected, they are also (q − 1)−,

(q − 2)−, ..., 1, 0-connected in K.

(a)

(b)

Figure 2.5: An example of q-connectedness: (a) green and red simplices are 0-connected,
and (b) green and yellow simplices are 1-connected.

The q-connectivity between simplices induces an equivalence relation on simplices

of a complex K, since it is reflexive, symmetric, and transitive. This equivalence

relation will be denoted by γq so that

(σ(i), σ(j)) ∈ γq if and only if σ(i) is q-connected to σ(j).

Let Kq be the set of simplices in K with dimension greater than or equal to q. Then

γq partitions Kq into equivalence classes of q-connected simplices. These equivalence

classes are members of the quotient set Kq/γq and they are called the q-connected

components of K. Every simplex in a q-component is q-connected to every other

simplex in that component, but no simplex in one q-component is q-connected to any

simplex on a distinct q-connected component. The cardinality of Kq/γq is denoted

Qq and is the number of distinct q-connected components in K. The value Qq is

the qth entry of the so called Q-vector [74] (first structure vector [78]), an integer

vector with the length dim(K) + 1. The values of the Q-vector entries are usually

written starting from the number of connected components for the largest dimension

in descending order, i.e.:

Q = {Qdim(K) Qdim(K)−1 ... Q1 Q0}.
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An example illustrating the partitioning of the simplicial complex into q-connectivity

classes and Q-vector for the example from Figure 2.1 is presented in Figure 2.6, with

Q-vector entries:

Q = {1 3 4 5 2}.

q=4

q=3

q=2

q=1

q=0

Figure 2.6: Q-vector of simplicial complex from Figure 2.1.

Another vector-based quantity is the so called second structure vector [78]

n = {ndim(K) ndim(K)−1 ... n1 n0},

which is an integer vector with dim(K) + 1 components, like the Q-vector, and the

q-th entry, nq, is equal to the number of simplices with dimension larger or equal to

q, that is, it is equal to the number of simplices at the q-level. For the example of

simplicial complex from the Figure 2.1, whose Q-vector components are presented
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at the Figure 2.6, the second structure vector goes is:

n = {1 3 5 7 7}.

Finally, the entries of the third structure vector Qq are defined in the following

way [81]:

Qq = 1− Qq

fq
, (2.2)

where Qq is q-th entry of the first structure vector, and fq is q-th entry of the second

structure vector. The third structure vector measures the degree of connectedness

on each q-level, or in other words, it measures the number q-connected components

per number of simplices.

2.3 Homology groups and Betti numbers

So far, structural properties of simplicial complex have been explored only through

the connectivity of simplices deduced from the relationship between two sets. We

now concentrate on the topological properties of simplicial complex and take into

account a key property of the simplicial complex definition - that the power set of the

set on which simplicial complex is defined is closed under the formation of subsets.

In other words, every subsimplex, that is the face, is also a simplex in simplicial

complex. Hence, when we say ”q-simplices”, we mean ”all maximal q-dimensional

simplices and all q-dimensional faces”.

Let us start again with a finite vertex set B = {b1, b2, . . . , bm}. An arbitrary

ordering of vertices {bα0 , bα1 , ..., bαq} of a simplex defines an oriented q-simplex which

we denote [bα0 , bα1 , ..., bαq ], and we say that simplicial complex K is oriented if

all simplices in K are oriented. Note that an unoriented simplex was denoted as

⟨bα0 , bα1 , ..., bαq⟩. An example of oriented 0-, 1-, 2-, and 3-simplices is illustrated in

Figure 2.7, and by convention 0-simplex does not have an orientation.

Let Cq(K) (for each q ≥ 0) be the vector space whose bases is the set of all

q-simplices of an oriented simplicial complex K, and the elements are the linear

combinations of bases vectors, called chains. Accordingly Cq(K) is called a chain

group [75] (the term chain group is accepted for traditional reasons, regardless of

the vector space properties of Cq(K), nevertheless Cq(K) is still a group). The

dimension of Cq(K) is equal to the qth entry of an important topological invariant,

the f -vector, f = (f0, f1, ...fq...fn). In this expression fq is equal to the number of

q-dimensional simplices of the simplicial complex K, i.e. f0 represents the number

of vertices, f1 number of edges and so on. For q larger than the dimension of K,
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0-simplex 1-simplex

2-simplex 3-simplex

Figure 2.7: Examples of orientation of 0-, 1-, 2-, and 3-simplex.

vector space Cq(K) is trivial and equals to 0. For a set of vector spaces Cq(K) with

0 ≤ q ≤ dim(K) the linear transformation ∂q : Cq(K) → Cq−1(K) called boundary

operator acts on the bases vectors ⟨vα0 , vα1 , ..., vαq⟩ in the following way [75]

∂q⟨vα0 , vα1 , ..., vαq⟩ =
q∑

i=0

(−1)i⟨vα0 , ..., vαi−1
, vαi+1

, ..., vαq⟩ .

An example of the action of the boundary operator on a 3-simplex and its subsim-

plices from Figure 2.1 is illustrated in Figure 2.8.

Taking a sequence of chain groups Cq(K) connected through the boundary op-

erators ∂q the so-called chain complex is defined in the following way

∅ → Cq
∂q→ Cq−1

∂q−1→ .... → C1
∂1→ C0

∂0→ ∅,

with ∂q∂q+1 = ∅ for all q. The kernel of ∂q is the set of q-chains with empty boundary

while a q -cycle, denoted by Zq, is a q-chain in the kernel of ∂q. The image of ∂q is the

set of (q − 1)-chains which are boundaries of q-chains with a q-boundary, denoted

by Bq, being a q -chain in the image of ∂q+1. The q
th homology group [75] is defined

as

Hq = ker ∂q/im ∂q+1 = Zq/Bq.

The rank of the qth homology group βq = rank(Hq) or βq = dim(Hq) is topological

invariant called the qth Betti number and is equal to the number of q-dimensional

holes in simplicial complex. Since it is a topological invariant it is used to distinguish

topological spaces one from another. For example, the value of β0 is the number

of connected components of simplicial complex, β1 is the number of tunnels, β2 is

the number of voids, etc. In the simplicial complex presented in Figure 2.1 right

we can see that there are two connected components, hence β0 = 2, and one 1-

dimensional hole bounded by 1-dimensional simplices [2, 6], [2, 7], [7, 8], and [7, 8],
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Figure 2.8: The action of boundary operator on the 3-, 2-, and 1-simplices.

hence β1 = 1. As R. Atkin pointed out [12] the zeroth Betti number is equal to Q0,

nevertheless, the higher-order Betti numbers are not equal to the higher order Q-

vector entries. Therefore, the analysis presented in the previous section (Q-vector)

gives a generalization of the zeroth order Betti number, although different from the

homology theory. The values of Betti numbers of simplicial complex from Figure

2.2 are preserved for its conjugate complex (see Figure 2.3), and Dowker [13] have

proved that the homology groups of simplicial complex and its conjugate complex

are isomorphic.

Each boundary operator ∂q has its matrix representation Bq with respect to

bases of vector spaces Cq(K) and Cq−1(K), with rows associated with the number

of (q − 1)-simplices and the columns associated with the number of q-simplices.

To each boundary operator ∂q corresponds an adjoint operator ∂∗
q : Cq−1(K) →

Cq(K) with the associated matrix representation equal to the transpose of matrix

representation of boundary operator ∂q, that is B
T
q . It is important to mention that

the qth adjoint boundary operator is in fact the same as the qth coboundary operator

δq : Cq−1(K) → Cq(K) [63], whereas, their matrix representations coincide when

proper scalar products are chosen for the definition of ∂∗
q .
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since they share common

2-face <1,2,3>

2-simplices <0,1,2> and <1,2,3> are
since they are both faces

of 3-simplex <0,1,2,3>

lower adjacent

upper adjacent

Figure 2.9: An example of adjacency between two 3-simplices.

2.4 Combinatorial Laplacian

Since we have defined an oriented simplicial complex and boundary operator, we are

prepared to introduce new concepts. For two q-simplices σ(i) and σ(j) of an oriented

simplicial complex K we say that they are upper adjacent, denoted σ(i)∼Uσ(j), if

they are both faces of some (q + 1)-simplex in K. The upper degree of a q-simplex

σ in K, denoted degU(σ), is the number of (q + 1)-simplices in K of which σ is a

face. If oriented q-simplices σ(i) and σ(j) are upper adjacent and have a common

(q+1)-simplex τ , we say that σ(i) and σ(j) are similarly oriented if orientations of

σ(i) and σ(j) agree with the ones induced by τ . For two q-simplices σ(i) and σ(j)

of an oriented simplicial complex K we say that they are lower adjacent, denoted

σ(i)∼Lσ(j), if they have common (q − 1)-face (that is (q − 1)-simplex as a face).

Hence, the lower degree (degL(σ)) of a q-simplex is defined as the number of (q−1)-

faces in σ, which is always equal to q + 1. Example of upper/lower adjacency is

illustrated in Figure 2.9.

Defining the boundary operator and its adjoint we have provided necessary con-

ditions for the definition of combinatorial Laplacian of simplicial complex. Namely,

for a simplicial complex K and an integer q ≥ 0, the qth combinatorial Laplacian

is linear operator (since the composition of linear maps is a linear map) defined as

Lq : Cq → Cq and given by [62]

Lq = ∂q+1 ◦ ∂∗
q+1 + ∂∗

q ◦ ∂q .

A convenient notation to use is

LUP
q = ∂q+1 ◦ ∂∗

q+1 and LDN
q = ∂∗

q ◦ ∂q,

where LUP
q is referred to as the upper combinatorial Laplacian and LDN

q is the

down combinatorial Laplacian. Corresponding matrix representation relative to

18



some ordering of the standard bases for Cq and Cq−1 for the q
th Laplacian matrix of

K is

Lq = Bq+1B
T
q+1 +BT

q Bq .

As in the case of the Laplacian operator we may use the following notation for

convenience

LUP
q = Bq+1B

T
q+1 and LDN

q = BT
q Bq .

Clearly, graph represents a 1-dimensional simplicial complex since links (1-dim sim-

plices) connect nodes (0-dimensional simplices) and the largest dimension of a sim-

plex in the complex is 1. We now apply this fact to obtain the combinatorial Lapla-

cian of a graph. The 0-dimensional combinatorial Laplacian of simplicial complex

K is a linear map L0 : C0(K) → C0(K), and since the maps ∂0 and ∂∗
0 are assumed

to be zero maps, it follows that

L0 = ∂1 ◦ ∂∗
1 ,

where the boundary operator ∂1 : C1(K) → C0(K) maps edges to vertices. Since

in matrix representation B1 of boundary operator ∂1 the rows are associated with

edges and the columns are associated with vertices, it is obvious that the matrix B1 is

equal to the incidence matrix of an oriented graph. Therefore matrix representation

of combinatorial Laplacian is L0 = B1B
T
1 , and the matrix elements are

(L0)ij =


deg(vi), if i = j

−1, if vi ∼ vj

0 , otherwise

(2.3)

where deg(vi) is vertex degree (that is number of neighbors of a vertex vi) and the

relation vi ∼ vj is the adjacency relation between vertices vi and vj, and is the same

as upper adjacency vi∼Uvj. Clearly, the entries of the 0-dimensional combinatorial

Laplacian are the same as the graph Laplacian entries defined in the usual way via

expression Lqraph = D − A, where diagonal entries of matrix D are equal to the

vertex degrees (Dii = deg(vi)) and nondiagonal entries are zeros, and the entries of

matrix A are (A)ij = 1 if vi ∼ vj, (A)ij = 0 if vertices vi and vj are not neighbors,

and (A)ii = 0 (undirected, unweighted, without loops and multiple edges graph)

[65].

For the general case let us assume that K is an oriented simplicial complex, q is

an integer with 0 < q ≤ dim(K), and let {σ1, σ2, ..., σn} denote the q-simplices of
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complex K, then it is not difficult to deduce from Lq = LUP
q + LDN

q that

(Lq)ij =



degU(σ
i) + q + 1, if i = j

1, if i ̸= j and σi and σj are not upper adjacent but have

a similar common lower simplex

−1, if i ̸= j and σi and σj are not upper adjacent but have

a dissimilar common lower simplex

0 , if i ̸= j and σi and σj are upper adjacent or are not

lower adjacent

(2.4)

since (LUP
q )ii = degU(σ

i) and (LDN
q )ii = degL(σ

i). Detailed proof of the above ex-

pression is straightforward [63]. For later use it would be useful to notice that

(Lq)ii = degU(σ
i) + degL(σ

i) = degU(σ
i) + q + 1 since every simplex of dimension

q > 0 has exactly q + 1 (q − 1)-faces. Clearly, for q = 0 Laplacian matrix of general

simplicial complex reduces to graph Laplacian.

Let us focus now on the eigenvalues and eigenvectors of qth combinatorial Lapla-

cian Lq. For an oriented simplicial complex K and an integer q with 0 ≤ q ≤
dim(K), the qth Laplacian spectrum is denoted as S(Lq(K)). It represents set of

eigenvalues of Lq(K) together with their multiplicities and is independent on the

choice of orientation of q-simplices in the complex K. Since the qth Laplacian ma-

trix is positive semidefinite, all its eigenvalues are nonnegative. The null space of

N(Lq(K)) is the eigenspace of Lq(K) and corresponds to the zero eigenvalues. The

combinatorial Hodge theorem states that the qth homology group Hq(K) is isomor-

phic to the null space of qth combinatorial Laplacian [82], that is

Hq(K) ∼= N(Lq(K)) ,

for each integer q with 0 ≤ q ≤ dim(K). Therefore, the multiplicity of zero eigen-

values of qth combinatorial Laplacian is equal to the number of the q-dimensional

holes in a simplicial complex, i.e. a Betti number. This is a very useful expression

providing a practical method for calculation of Betti numbers [83].

In the following we introduce some properties of the spectra of the qth combinato-

rial Laplacian which will be useful for the analysis and interpretation of our results.

If simplicial complex K consists of disconnected components which are themselves

simplicial complexes K1, K2, ..., Kn, then the spectra of qth combinatorial Laplacian

Lq(K) of K for each q with 0 ≤ q ≤ dim(K) are equal to the union of spectra of
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each Lq(Ki) for i = 1, ..., n separately [63], that is

S(Lq(K)) = S(Lq(K1)) ∪ S(Lq(K2)) ∪ ... ∪ S(Lq(Kn)) .

Another very important property is that if simplicial complex K is formed by

gluing two simplicial complexesK1 andK2 along a q-face, then the spectrum S is the

union of spectra ofK1 andK2, i.e. S(Li(K)) = S(Li(K1))∪S(Li(K2)) for all i ≥ q+2

[63]. Since we are dealing here with the simplicial complex formed from the cliques

of a graph, we want to emphasis that the spectrum of a single k-clique, denoted by

G, is S(L0(G)) = {0, [k]k−1} [85], which is equivalent to S(L0(G)) = {0, [k]f0−1},
and S(Li(G)) = {[k]fi−1}, where i = 2, ..., k, and f0, f1, ..., fk−1 are the entries of

f -vector, and the exponent of [k] means the multiplicity of an eigenvalue k. These

properties are consequences of (2.3) and (2.4). Namely, every vertex in a k-clique G

has upper degree k − 1 and every pair of distinct vertices has a dissimilar common

lower simplex (an edge), hence for q = 0 from (2.3) implies that

L0(G) =


k − 1 −1 ... −1

−1 k − 1 ... −1

... ... ... ...

−1 −1 ... k − 1


so solving the eigenvalue problem of L0(G) implies that S(L0(G)) = {0, [k]k−1}, and
since the 0th entry of f -vector is equal to the number of vertices in a complex f0 = k,

we can write the general expression S(L0(G)) = {0, [k]f0−1}. For (k − 1) ≥ q > 0,

every q-simplex σi in G has upper degree equal to degU(σ
i) = (k− 1)− q and every

pair of distinct q-simplices σi and σj are upper adjacent, hence from (2.4) implies

that for q > 0

Lq(G) =


k 0 ... 0

0 k ... 0

... ... ... ...

0 0 ... k


fq×fq

.

The eigenvalue spectra has only one eigenvalue λ = k with multiplicity equal to

the number of q-simplices which is equal to fq, the qth entry of f -vector, so that

S(Lq(G)) = {[k]fq}. For a single (k − 1)-simplex fq is equal to the number of

q-dimensional faces, that is

fq =
k!

(k − 1− q)!(q + 1)!
.

21



An example of the properties of combinatorial Laplacian spectra is illustrated

in Figure 2.10 where Sq denotes the qth component of the spectrum. In a) the

complex consisting of two disjointed simplices is presented with the corresponding

spectra and in b) through d) the two simplices are first joined along a 0-dimensional

face (case (b)), followed by attachment along a 1-dimensional face (case (c)) and

completing the process with attachment along a 2-dimensional face.

S0={0, 0, 4, 4, 4, 5, 5, 5, 5}
S1={4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}
S2={4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}
S3={4, 5, 5, 5, 5, 5}
S4=5

S0={0, 1, 4, 4, 5, 5, 5, 8}
S1={1, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8}
S2={4, 4, 4, 4, }
S3={ }
S4=5

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
4, 5, 5, 5, 5, 5

S0={0, 2, 4, 5, 5, 7, 7}
S1={2, 2, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7}
S2={2, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7}
S3={4, 5, 5, 5, 5, 5}
S4=5

S0={0, 3, 5, 6, 6, 6}
S1={3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6}
S2={3, 3, 3, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6}
S3={3, 5, 5, 5, 5, 6}
S4=5

( a ) ( b )

( c ) ( d )

Figure 2.10: Spectrum of simplicial complex formed by 4-simplex and 3-simplex, when
they share: (a) (-1)-face; (b) 0-face; (c) 1-face; (d) 2-face.

We must utilize some more practical methods in order to compare eigenvalue

spectra of combinatorial Laplacian for different simplicial complexes, and the most

transparent mode is visualization. To avoid problems which emerge from histogram

or relative frequency plots due to the choice of the number of bins and their size

and since we are dealing with dim(K) + 1 eigenvalue spectra for a single simplicial

complex (a fairly large number), we need a visualization method which depends on

a single valued parameter unique for all the plots. For that purpose we use the

convolution of the spectral density represented by Dirac delta function
∑

iδ(λ, λ
i
q)

with a smooth kernel g(x, λ) so that the density function [84]

f(x) =

∫
g(x, λ)

∑
i

δ(λ, λi
q)dλ =

∑
i

g(x, λi
q) ,
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has advantageous visual properties. In the above expression λi
q is ith eigenvalue of

the qth combinatorial Laplacian. Many kernels may be rendered useful in forming

the density function, such as the Cauchy-Lorentz distribution 1
π

γ
(λ−x)2+γ2 or the

Gaussian distribution 1√
2πσ

exp
(
− (x−mx)2

2σ2

)
. Our choice here is the Cauchy-Lorentz

kernel yielding the following density function

f(x) =
∑
i

γ

(λi
q − x)2 + γ2

,

where γ is a fixed parameter which regulates the resolution (the level of detail in

the plot) so that a too high value blurs the spectrum while too low value disguises

it. In all spectra presented here the value γ = 0.03 was used chosen after careful

consideration of a number of different γ-values.

23



Chapter 3

From complex networks to

simplicial complexes and back

This section is devoted to the definitions of simplicial communities in complex net-

works. It will be shown there are various types of simplicial communities depending

on the simplicial complex representation of the complex network. The term ”simpli-

cial community” is defined with reference to the definition of q-connectivity classes

of simplicial complex.

3.1 Simplicial complexes of complex networks

From the simplicial complex’s properties, introduced in the previous chapter, we

notice that relationships as well as the aggregations of simplices are strongly de-

pendent on various dimensions. The aggregations of simplices at various dimen-

sions, namely the q-levels, we will call q-dimensional simplicial communities. In this

way the q-dimensional simplicial communities are identified by the q-connectivity

classes, although the term ”community” will be made more clear when different

types of simplicial complexes that may be constructed from complex networks are

presented in detail. Our aim is to show that the formation, identification, overlap-

ping and merging of simplicial communities are captured by the structure vectors

and combinatorial Laplacian.

The versatility of simplicial complex representations of complex networks enables

us to investigate topological properties of different substructures emerging from their

relationships and whose interconnectidness forms the overall structure of complex

networks. As a result we have an insight into the impact of aggregations of simplicial

communities on the overall structure of the complex network. There are several types

of simplicial complexes that may be constructed from graphs. We mention here the
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most important ones:

• Clique complex [10]: the vertices of clique complex are nodes of the underlying

graph G, and simplices are all maximal cliques (together with all their subcliques);

• Neighborhood complex [48], [49]: the vertices of neighborhood complex are

nodes of the underlying graph G, and to each vertex v of graph G corresponds a

simplex which contains a vertex v and all of its neighboring vertices, that is simplices

are all the subsets of the vertex set of G that have a common neighbor;

• Independence complex [10]: the vertices of independence complex are nodes of

the underlying graph G, whereas simplices are maximal cliques (together with all

their subcliques) of the complement graph of G (a graph in which two nodes are

adjacent if they are not adjacent in graph G, and vice versa), that is simplices are

all the independent sets (anticliques) of G;

• Matching complex [86]: the vertices of matching complex are the edges of the

underlying graph G and simplices are sets of edges of G with no two edges having

a common vertex; in other words, the matching complex is a clique complex of the

complement graph of the line graph of G.

Since there are different simplicial complex representations of the complex net-

work, different substructures emerge. In the present paper we focus on the properties

of two simplicial complex representations of complex networks: the clique complex

and the neighborhood complex. In the case of the clique complex we are actually

”filling” a k-clique (complete graph with k vertices) and form a (k− 1)-dimensional

polyhedra (embedded in a (k − 1)-dimensional space) The formation of simplicial

communities has similarity with the formation of k-clique communities [59]. Never-

theless, there are differences. In k-clique communities cliques are adjacent if they

share k−1 vertices. In the case of clique simplicial communities, in a q-connectivity

component, clique simplices have dimension larger or equal than q and two clique

simplices are adjacent if they share q + 1 vertices. However some pairs of clique

simplices may share q + 2, q + 3, ..., dim(K) vertices. Consequently, k-clique com-

munities are contained in the clique simplicial communities, and the overlapping

between two clique simplicial communities is encoded in the transition from the q-

level to the (q−1)-level. In Fig. 3.1, the appearance of clique simplicial communities

at three q-levels (q = 4, 3, 2) of the coauthorship network of scientists working on

network theory and experiment, as compiled by M. Newman [87] is presented. Due

to the lack of space not all simplicial communities (including those which contain

a single simplex) on either q-level are presented, but only those which participate

in the formation of a large clique simplicial community. At the 4-level two clique

simplices of different dimensions (one has dimension q = 5 and the other q = 7)
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form a clique simplicial community. At the 3-level a 4-dimensional clique simplex

(which appears at the 4-level) joins the clique simplicial community by sharing four

vertices (i.e. 3-dimensional face) with one of the clique simplices in simplicial com-

munity. Finally, at the 2-level 3-dimensional simplex (appearing as single simplicial

community at 3-level) joins a clique simplicial community by sharing three vertices

(i.e. 2-face) with one of the clique simplices in simplicial community. From this

simple example we can see the these kind of communities formed by cliques could

not be detected by the Clique percolation method, and the restriction to the fixed

k in k-clique communities is not necessary.

Alon, U

Itzkovitz, S

Kashtan, N

Shenorr, S

Chklovskii, D

Levitt, R

Ayzenshtat, I

Sheffer, M

Alon, U

Itzkovitz, S

Kashtan, N

Shenorr,  S

Chklovskii, D

Levitt, R

Ayzenshtat, I

Sheffer, M

Ziv, G

Alon, U

Itzkovitz, S

Kashtan, N

Ziv, G

Milo, R

Alon, U Milo, R

Mangan, S
Shenorr, S

Alon, U

Itzkovitz, S

Kashtan, N

Shenorr,  S

Chklovskii, D

Levitt, R

Ayzenshtat, I

Sheffer, M

Ziv, G

Mangan, S

q=4

q=3

q=2

Milo, R

Milo, R

Milo, R

Figure 3.1: A sample of the clique simplicial communities at three q-levels (q = 4, 3, 2) of
the coauthorship network.

Another advantage of the clique simplicial community approach as compared

with the k-clique communities is in the complementary nature of simplicial complex

and its conjugate. In the case of social network, simplicial communities of the

conjugate complex are formed by the polyhedra which represent agents, whereas the

vertices polyhedra are graph (network) vertices which are associated with network

cliques to which agents belong. From the definition of q-nearness, it is obvious
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that two agent-polyhedra are adjacent if they belong to the same cliques. Such

representation of substructures (related to cliques) have been useful in the analysis of

cooperation and conflict in social networks [64]. For the above coauthorship network

simplices in conjugate clique complex are associated to the authors, and vertices

are associated to the papers which theycoauthored, as in Fig. 2.3. Among many

simplicial communities appearing at q-levels, for example at the 4-level, we have

detected two simplicial communities, one formed by simplices of different dimensions

{Barabási, A.-L., Jeong, H, Oltvai, Z}, and the other {Krapivski, P, Redner, S},
containing the names of authors who appear jointly in a number of publications.

The polyhedra σ(i) in the neighborhood complex is formed by ”filling” the space

between the corresponding node i and the neighboring nodes and two polyhedra

σ(i) and σ(j) in the neighborhood complex are q-near if their corresponding nodes

(i and j, respectively) have q common neighbors. Since the simplicial complex

analysis strongly depends on dimension of simplices and of their faces, the analysis

of higher order structure properties of the neighborhood complex are particulary

interesting, since important quantities characterizing complex networks depend on

degrees of the nodes. Namely, dimension qi of simplex σ(i) is equal to the degree ki

of the node i in the corresponding complex network.

As an example of the neighborhood complex we use the so called Brain net-

work [88] in which nodes represent brain areas and links communication between

them. This network1 (Fig. 3.2) was obtained using the Planar Maximally Filtered

Graph (PMFG) [89] from the correlation matrix of the time series collected by fMRI

measurements of the brain areas activity while the people are asked to do two dif-

ferent tasks assessing short-term, that is episodic, memory. We avoid the detailed

analysis of the methods for calculation of the correlation matrix and focus only on

the obtained final network. In Fig. 3.2 we present the aggregation of nodes in the

neighborhood simplicial communities at four q-levels (q = 9, 8, 7, 6) using the follow-

ing procedure: brain network → neighborhood complex → neighborhood simplicial

communities → brain network. At the 9-level two brain areas Superior Frontal

Gyrus and Middle Frontal Gyrus form a simplicial community, and their functions

(among others) are self-awareness, and a role in sustaining attention and working

memory, respectively. Shifting to the next 8-level the another brain area Superior

Parietal Lobule, responsible for the spatial orientation and receives a large portion of

visual input, joins this simplicial community. At the 7-level another neighborhood

simplicial community is formed containing Inferior Occipital Gyrus and Middle Oc-

cipital Gyrus, both parts of the larger Occipital Lobe, responsible for processing

1I thank J.-P. Schmidt for providing the data.
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1-Anterior Cingulate; 2-Superior Frontal Gyrus; 3-Middle Frontal Gyrus; 4-Inferior Frontal
Gyrus; 5-Medial Frontal Gyrus; 6-Insular Cortex; 7-Parahippocampnal Gyrus; 8-Superior Temporal
Gyrus; 9-Inferior Temporal Gyrus; 10- Middle Temporal Gyrus; 11-Cingulate Gyrus; 12-Postcentral
Gyrus; 13- Precentral Gyrus; 14-Inferior Parietal Lobule; 15-Superior Parietal Lobule; 16-Precuneus;
17-Cuneus; 18-Lingual Gyrus; 19-Fusiform Gyrus; 20-Inferior Occipital Gyrus; 21-Middle Occipital
Gyrus; 22-Posterior Cingulate; 23-Unicate Fasciculus; 24-Lenticular Nucleus; 25-Thalamus; 26-Caudal

Figure 3.2: Neighborhood simplicial communities at four q-levels (q = 9, 8, 7, 6) of the
brain network.

visual information. Finally, at the 6-level the two neighborhood communities merge

into the large one, together with three more brain areas, namely Inferior Frontal

Gyrus, Medial Frontal Gyrus and Cuneus. Even from this simple analysis we can

anticipate the importance of aggregation of brain areas at different levels in order

to perform tasks related to the short-term (or analogously long-term) memory.
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Chapter 4

Results - preliminary and

illustrative

We have found that for some characteristic networks topological quantity (Q-vector)

of clique (and its conjugate) complex and neighborhood complex representation

satisfy the statistical invariance, in the sense that it follows the behavior of degree

distribution of the underlying complex network. For finding all maximal cliques we

have used Bron-Kerbosch algorithm [90]. The values of the entries of Q-vector of

Barabási-Albert complex network [91] clique complex representation is presented in

Figure 4.1 left, whereas the right part of Figure 4.1 represents the values of Q-vector

of conjugate clique complex and neighborhood complex.
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1

10

100

1000

10000

 Q-vector

q-level
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 conjugate clique complex
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Q
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Figure 4.1: Q-vector entries of Barabási-Albert scale-free network: clique complex repre-
sentation (left), and conjugate clique complex and neighborhood complex (right).

In Figure 4.2 left we have presented on double logarithmic scale the values of

Q-vector entries of clique complex of protein-protein interaction complex network

in yeast S. cerevisiae [92], whereas on right part of Figure 4.2 Q-vector values of
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conjugate clique complex and neighborhood complex on double logarithmic scale are

presented. The degree distribution of protein-protein interaction complex network

in yeast displays a power-law.

Since these two networks satisfy statistical invariance, we have tested this be-

havior on several other generated and real-world networks, and it turns out that in

each case Q-vector follows the behavior of the degree distribution.
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Figure 4.2: Q-vector entries of protein-protein interaction complex network in yeast:
clique complex representation (left), and conjugate clique complex and neighborhood com-
plex (right).

Betti numbers calculation of clique complexes of Barabási-Albert and protein-

protein interaction complex network revealed that nonzero values appear only for

dimensions q = 0, 1, 2 due to the small clique complex dimension (see left parts of

Figures 4.1 and 4.2). Nevertheless, since the β1 is related to the 1-dimensional ”is-

lands” of obstructions in discrete topological space defined through the clique com-

plex of corresponding network, the determination of these ”islands” is important for

the traffic which flows through the network. The calculation of Betti numbers can

be done by solving of the eigenvalue problem of higher-order combinatorial Lapla-

cians [64] (and references therein), and the determination of ”islands” of obstruction

can be detected by considering eigenvectors of higher-order combinatorial Laplacian

[64]. To track the changes of the number of tunnels (or ”islands”), that is the val-

ues of β1, depending on the scaling exponent γ of networks displaying power-law

degree distribution, we have generated several generalized random networks [93] for

different γ and represented them as clique complex. The dependence of number of

1-dimension holes (β1) on the scaling exponent γ is presented in Figure 4.3, display-

ing the decrease in the number of 1-dimensional holes by increasing γ. Since the

large number of real-world networks display power-law degree distribution with the

exponent in the range γ ∈ [2, 3], it is important to notice that the decrease of β1 is
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Figure 4.3: The dependence of number of 1-dimension holes (β1) on the scaling exponent
γ for clique complex of generalized random network with power-law degree distribution.

more rapid in this range then for γ > 3.
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Chapter 5

Results - The neighborhood

complex

This chapter is devoted to presentation of results related to the topological proper-

ties of the neighborhood complex of various complex networks [48], [50]. They are

confirming the conclusions of the previous chapter.

5.1 Random network

The simplest type (and model) of a network, despite of its inadequacy for explaining

the real world networks, is examined from the aspect of the simplicial complex

representation, more concretely, from the aspect of the associated neighborhood

complex NC1. This is done for comparison as well as an illustration of the concepts

and measures defined in the previous sections. The random network under study

consists of 2000 nodes, with probability p = 0.005 that two nodes have a link.

As mentioned before there is straightforward relationship between the degree of

the node and the dimension of the corresponding simplex. That implicates the

equivalence between degree distribution and dimension distribution. Furthermore,

we expect that dimension distribution follows the well known bell-shaped form,

which is characteristic of random networks. This property is presented at the Figure

5.1.

A random network has a characteristic scale in its node connectivity reflected

by the peak of the distribution which corresponds to the number of nodes with the

average number of links. Because of the equivalence of the distributions of degrees

and dimensions, this property holds also for the corresponding simplicial complex

representation.

The distribution of vector valued measures is illustrated by distributions of the
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Figure 5.1: Distribution of dimensions of random network with N = 2000 nodes and
probability p = 0.005 that two nodes have a link.
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Figure 5.2: Values of first and second structure vectors for random network withN = 2000
nodes and linkage probability p = 0.005.
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Figure 5.3: Values of third structure vector for random network with N = 2000 nodes
and linkage probability p = 0.005.

first and second structure vector (Figure 5.2), as well as third structure vector (Fig-

ure 5.3).

The graphics of structure vectors indicate an interesting property of the structure

of simplicial complex representation of random networks. From the highest up to

the third level the structure is not connected, and then there is a jump in the

connectivity of structure. The structure, observing it globally, is homogenous and

there is not any preferential pattern of formation of connectivity classes.

5.2 Barabási-Albert model of scale-free networks

Following the algorithm introduced in [91], the scale-free network is generated. At

this moment we will repeat just important features of this algorithm. Starting with

m0 randomly connected nodes, at each time step we add one new node which can

be linked to m nodes already present in the network. The probability of connection

to some old node i depends on its number of links ki as

Π(ki) =
ki∑
jkj

.

In this way two properties of real world network are captured: growth and

preferential attachment. In this paper we have chosen m0 = 5 and m = 3 values of

parameters, and following the above procedure the network with N = 5000 nodes

was generated. As it is already mentioned there is equivalence between degree

distribution of complex network and dimension distribution of its corresponding
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Figure 5.4: Dimension distribution of Barabási-Albert scale-free network type with N =
5000 nodes and parameters m0 = 5 and m = 3.
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Figure 5.5: First (left) and second (right) structure vector values for Barabási-Albert
scale-free network type with N = 5000 nodes and parameters m0 = 5 and m = 3.

neighborhood complex NC1. In Figure 5.4 the dimension distribution is presented.

The vector valued distributions of the first, the second, and the third structure

vectors are presented in Figure 5.5 left, Figure 5.5 right, and Figure 5.6, respectively.

We can notice that the first and the second structure vectors in Figure 5.5 follow

power-law behavior over few decades. The discrepancy from the power-law behavior

for dimension distribution over the whole range comes from the finiteness of the

network, as well as because of the randomness of the linking process. We can

assume that these features have influence on the behavior of the first and the second

structure vectors.
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Figure 5.6: Third structure vector values for Barabási-Albert scale-free network type with
N = 5000 nodes and parameters m0 = 5 and m = 3.

By definition the length of the third structure vector is equal to the length of the

first and the second, hence, from Figure 5.6 we can conclude that from the highest

to the 14th level the structure is disconnected.

5.3 Exponential network

It is already mentioned that the majority of the real world networks have power-law

degree distribution as its main characteristic. Nevertheless, there are some networks

which have exponential degree distribution. An illustrative example of this type

of network is the US Power Grid [3]. The nodes of this network are generators,

transformers, and substations, and links are high-voltage transmission lines. We

analyzed a US power grid network of the western United States which consists of

4941 nodes [94]. The dimension distribution, as well as the vector valued measures

(normalized values of the 1st- and the 2nd-structure vectors) are illustrated in Figure

5.7 left, and the third structure vector is presented in Figure 5.7 (right). As can be

seen from these figures all four measures are well fitted to the exponential function.

5.4 Scale-free networks

As an example of network with power-law degree (i.e. dimension) distribution an

information type of network will be considered. We use epa to label this network,

and it represents pages linking to www.epa.gov, and consists of N = 4772 nodes

[94]. ”This graph was constructed by expanding a 200-page response set to a search
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Figure 5.7: Degree (dimension) distribution, first, and second structure vectors (left) and
third structure vector (right) for exponential US Power grid network. The exponential fit
is indicated.

engine query, as in the hub/authority algorithm.” [94]

The distribution of dimensions of epa network is presented in Figure 5.8 left.

Vector valued measures of the 1st and the 2nd structure vectors are illustrated

in Figure 5.8 right, and the 3rd structure vector is presented in Figure 5.9. The

connectivity levels are filled with simplices but they are not q-connected up to a

certain value of the q-level. This level is rather high compared to other types of

simplicial complex representations of complex networks studied in previous sections.
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Chapter 6

Results - The clique complex

The results of this chapter highlight the properties of the clique complex represen-

tation of complex networks [64] and their advantages in revealing the complexity of

the underlying complex network [74].

6.1 The Zachary karate club

This network is formed by the members of karate club whose activities and relation-

ships were observed by Zachary [95] over the time period of two years. During this

time period the conflicting situation between the Instructor and the Administrator

caused partition of club members into two fractions, each fraction supporting one

of them. The Instructor and the Administrator are not in direct contact since their

corresponding nodes are not nearest neighbors. Nevertheless, we may assume that

they have been connected before the conflict. This network represents thus, a good

example of a social network in which conflict causes changes in network’s topology.

The following analysis will show some properties of simplicial communities formed

by the members of the club (clique complex analysis) and simplices associated to the

members of the club formed by the cliques to which they belong (conjugate clique

complex analysis).

6.1.1 Analysis of the clique complex

Simplices of the clique complex created from the Zachary karate club network are

formed by members of the club together with all their subcliques. Initially all

maximal cliques were found using the Bron-Kerbosch algorithm [90] and Q-vector

components were determined whose graphical representation is presented in Figs.

6.1 and 6.2. The 0-level component is omitted since only one connectivity class
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Figure 6.1: Graphical representation of the connectivity classes at 4- and 3-levels for
clique complex of the Zachary karate club.

represented by the underlying graph exists at that level. At the highest q-level two

4-simplices (5-cliques) σ1 and σ2 appear (Fig. 6.1) and the Instructor (node labeled

by 1) is part of each of them. Going to the next q-level (3-level) two more simplices

σ20 and σ31 appear (Fig. 6.1), and the Administrator (node labeled by 34) is part of

each of them. However, simplices σ1 and σ2 merge into a single connectivity class,

indicating the existence of a strong group of Instructor’s supporters since simplices

σ1 and σ2 share the face of dimension one less than their simplex dimensions. At the

2-level (Fig. 6.2 left) many 2-simplices appear formed by supporters of either the

Instructor or the Administrator (clustering), irrsepective of whether they contain

either the Instructor or the Administrator vertex. The important transition occurs

from 2-level to 1-level (Fig. 6.2), where simplices σ1, σ2, σ20 and σ31 merge into

a single connectivity class together with majority of 2-simplices. Visual inspection

also suggest that 2-simplices of supporters accumulate around the Instructor and

the Administrator. At 1-level (Fig. 6.2 right) there is one more connectivity class,

disconnected from the large one, of the Instructor’s supporters formed by simplices

σ8, σ9, σ10, σ11 and σ19.

Note that any subsimplex (face) of a simplex is also simplex and therefore any

subclique of a maximal clique is also a clique. The analogous concept in the con-

text of communities is nested communities, or communities inside communities. In

the settings of the karate club this means that there are relationships between var-

ious subcliques of supporters. These subtle relationships can not be seen from the

properties of q-connectivity and the Q-analysis, however, information about nested

cliques (communities) is stored in the matrix of the qth combinatorial Laplacian. Let

us recall that diagonal elements Lii are equal to the total number of (q−1)-simplices
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Figure 6.2: Graphical representation of the connectivity classes at 2- and 1-levels for
clique complex of the Zachary karate club.

and (q + 1)-simplices attached to the q-simplex i, and offdiagonal elements Lij are

nonzero if i and j q-simplices have a common (q − 1)-simplex. Consequently, infor-

mation about relationship between cliques (simplices) is reflected in the eigenvalues

of the qth combinatorial Laplacian.

The plots of combinatorial Laplacian eigenvalues of the clique complex obtained

from the Zachary karate club network are presented in Figs 6.3, 6.4 and 6.5 for

q-dimensions arranged in descending order from q = 4 to q = 0. In order to un-

derstand the meaning of the eigenvalues we will use the plots of simplices in Figs.

6.1 and 6.2. Consider two simplices at the highest 4-level (Fig. 6.1) and observe

two eigenvalues of the 4-dimensional combinatorial Laplacian in Fig. 6.3 (left plot

corresponding to q = 4). They share one 3-face (⟨1, 2, 3, 4⟩) and the result is the

formation of a connectivity class at 3-level, as reflected in two eigenvalues λ1
4 = 4

and λ2
4 = 6 in Fig. 6.3 left (as mentioned in Chapter 2 subscript marks dimension

of the simplex and superscript represents the index). If these two simplices were

not sharing a 3-face we would see only one peak at eigenvalue λ4 = 5 as a conse-

quence of the property of the spectrum formed by disconnected cliques of the same

size (see Chapter 2). At the next lower q-level (3-level) we see that there are three

connectivity classes: one formed by two 4-simplices (σ1 and σ2) sharing a 3-face and

two classes formed by each of the simplices σ20 and σ31. Since simplices σ20 and
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Figure 6.3: Spectral plots of clique complex of Zachary karate club for dimensions q = 4
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Figure 6.4: Spectral plots of clique complex of Zachary karate club for dimensions q = 2
and q = 1.

σ31 do not share 2-face at the 2-level they still form separate connectivity classes,

and they contribute to the eigenvalue spectra of 3-dimensional combinatorial Lapla-

cian by a single eigenvalue λ1
3 = 4. Subsimplices of dimension 3 (3-simplices) of

4-simplices σ1 and σ2 mutually share 2-face, contributing to the q = 3 spectrum

with eigenvalues λ2
3 = 4 and λ3

3 = 6. Consequently, the multiplicity of eigenvalues 4

and 6 is increased as seen in the increased heights of two peaks in Fig 6.3 right. The

same type of analysis can be continued to other lower q-levels all the way to level

0. At lower connectivity levels the analysis becomes complicated due the increasing

number of lower-dimensional simplices and their mutual connectivities. In spite of

that, persistent presence of eigenvalues 4 and 6 is easily noticed in Figs 6.3 and 6.4,

corresponding to q-dimensions 4, 3, 2 and 1, originating from the 4- and 3-simplices

mentioned above. However, for q = 0 these two obviously important eigenvalues do

not exist in the spectrum indicating that consideration of only the graph ( 0th order

combinatorial) Laplacian no information about larger communities and (overlap-

ping) subcommunities is available. Furthermore, the origin of the eigenvalue λ0 = 2

which is dominant at the 0th-dimension (Fig. 6.5) is more clear if we observe what

is happening at dimensions q = 2 and q = 1. Its appearance at dimension q = 2

(Fig. 6.4 left) stems from 1-faces shared between (sub)simplices of dimension q = 2,

while at 1-level its multiplicity originates due to appearance of 1-simplices.
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Figure 6.5: Spectral plots of clique complex of Zachary karate club for dimension q = 0.

6.1.2 Analysis of the conjugate complex

In the conjugate Zachary karate club clique complex (high dimensional) individuals

are defined by the cliques to which each of them belongs in contrast to the original ap-

proach were cliques were composed of individuals from the club. From the simplicial

clique complex K we have formed its conjugate complex K−1 in which simplices and

vertices exchange roles, i.e. simplices are the individuals defined by cliques (vertices)

to which they belong. For example, simplices τ 112 and τ 3413 (we use τ to mark sim-

plices in the conjugate complex) are the 12-simplex and 13-simplex associated to the

Instructor and the Administrator, respectively, and they are defined by the maximal

cliques to which they belong. Hence, the simplex τ 3413 associated to the Administrator

is defined by 14 vertices {20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 34, 35, 36} which are

associated to the cliques {σ20, σ21, σ22, σ23, σ24, σ25, σ26, σ27, σ28, σ30, σ31, σ34, σ35, σ36},
and similarly for the Instructor 12-simplex.

We omit the graphical presentation of the Q-vector due to its large number of

connectivity levels, however we present it componentwise in Table 1, where each

simplex label, as before, is represented as a superscript.

The spectral plots corresponding to the conjugate clique complex K−1 are pre-

sented in Figs. 6.6, 6.7, 6.8 and 6.9 for dimensions q = 13 to q = 0.

The hierarchical structure of the Q-vector and high dimensional combinatorial

Laplacian of the conjugate complex bear qualitative resemblance to the original com-

plex. However, the conjugate simplicial complex may detect possible structural and

q-connectivity sources of conflict between individual τ 1, labeled as the Instructor,

and individual τ 34, labeled as the Administrator, features that may remain beyond

the reach of the original complex. As previously mentioned, conflict arises between

these two persons causing Instructor to leave the club and start up a new one. From

the structure of Q-vector (Table 1) and spectral plots (Figs. 6.6, 6.7, 6.8 and 6.9)

it is clear that at dimensions 13 through 8 the Instructor and the Administrator

are the only simplicies due to their association in the highest number of cliques. At

q = 3 level both are parts of two connectivity classes but at level q = 2 the connec-
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Table 6.1: Components of the Q-vector of the conjugate clique complex constructed from
the Zachary karate club network
q = 13 τ 34

q = 12 τ 1, τ 34

q = 11 τ 1, τ 34

q = 10 τ 1, τ 34

q = 9 τ 1, τ 34

q = 8 τ 1, τ 33, τ 34

q = 7 τ 1, τ (33,34)

q = 6 τ 1, τ 3, τ (33,34)

q = 5 τ 1, τ 2, τ 3, τ (33,34)

q = 4 τ (1,2), τ 3, τ (33,34)

q = 3 τ (1,2), τ 3, τ 32, τ (33,34)

q = 2 τ (1,2,3,4), τ 6, τ 7, τ 9, τ 24, τ 28, τ 32, τ (33,34)

q = 1 τ (1−9,11,24,30,32,33,34), τ 10, τ 14, τ 20, τ 25, τ 26, τ 28, τ 29, τ 31

q = 0 {all simplices}
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Figure 6.6: Spectral plots of conjugate clique complex of Zachary karate club network for
dimensions from q = 13 through q = 10.
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Figure 6.7: Spectral plots of conjugate clique complex of Zachary karate club network for
dimensions from q = 9 through q = 6.
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Figure 6.8: Spectral plots of conjugate clique complex of Zachary karate club network for
dimensions from q = 5 through q = 2.
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Figure 6.9: Spectral plots of conjugate clique complex of Zachary karate club network for
dimensions from q = 1 through q = 0.
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tivity class with the Instructor grows due to an increasing number of new members.

At q = 1 level connectivity classes containing τ 1 and τ 34 merge into one large con-

nectivity class. All other simplices appear either as a separate connectivity class

or as part of the connectivity classes to which either τ 1 or τ 34 belong to, signaling

the polarization of the club members around the Instructor and the Administrator.

Hence, it is clear that τ 1 and τ 34 stand out at each level of connectivity as individ-

uals who cause social disintegration in the club. The corresponding eigenvalues of

the combinatorial Laplacian are 13 and 14 which dominate the spectrum even for

q = 0.

6.2 Les Miserables

This social network represents a good example of mixed cooperation/conflict inter-

action between the network elements. It is formed of 33 key characters extracted

from the Victor Hugo’s novel Les Miserables due to their co-appearances [96]. By

mixed cooperation/conflict interactions we mean that a single character is in the co-

operation (or friendship) interaction with one person and in the conflict interaction

with another. The example of these mixed interactions is illustrated in Fig. 6.10.

In the following we will use the term cooperation instead of the term friendship.

Valjean

Fantine
Javert

Enjolras

Valjean

Javert

cooperation

conflict
conflict

conflict

friendship

conflict

Figure 6.10: An example of mixed cooperation/conflict interaction between the characters
of Les Miserables.

6.2.1 Analysis of the Les Miserables clique complex

Simplicial communities of the Les Miserables network are the cliques formed by

interactions of the novel’s characters according to their co-appearance. As in the

Zachary karate club case, we first extract all maximal cliques using Bron-Kerbosch

algorithm [90]. In Table 2 all connectivity classes of Q-vector are presented where

each simplex has an integer label represented by the superscript. We omit graphical

representation due to practical reasons.
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Table 6.2: Components of the Q-vector of the clique complex constructed from the Les
Miserables network
q = 5 {σ16}
q = 4 {σ16}, {σ20}
q = 3 {σ11}, {σ13}, {σ14}, {σ16, σ20}, {σ17}, {σ19}, {σ22}
q = 2 {σ1}, {σ3}, {σ4}, {σ5}, {σ6}, {σ7}, {σ8}, {σ10}, {σ11}, {σ13}, {σ14},

{σ16, σ17, σ19, σ20, σ22}, {σ18}
q = 1 {σ1}, {σ2}, {σ3, σ4, σ5, σ6, σ7, σ8, σ10, σ16, σ17, σ19, σ20, σ22}, {σ9}, {σ11},

{σ12}, {σ13}, {σ14}, {σ15}, {σ18}, {σ21}
q = 0 {σ1, ..., σ22},

Dominant simplicies at levels (Table 2) from q = 5 to q = 2 include σ16, σ20,

σ17, σ19, and σ22 whose vertices are members of the revolutionary group called The

Friends of the A B C, (fr. Abaisse, the debased), that is to say, the depraved people.

Thus, each pairwise connection between the individuals is characterized by coop-

eration. If we consider these simplices as ”cells” of an underground organization,

we see that at the 2-level they all aggregate into a single connectivity class through

clustering (aggregation of 2-simplices). Simplex σ14 which appears at the 3-level

represents a street gang of murderers and robbers called Patron-Minette, so the

connection between vertices is through cooperation. Two simplices emerging from

male and female friendships, σ11 and σ13 respectively, appear at the 3-level and

can be generally assumed as composed of cooperating individuals (vertices). The

simplices formed by exlusively cooperative individuals who are also cooperative as a

group are labeled as cooperation simplices. Note that cooperation simplex assumes

the concept of group cooperation, as well. In a similar manner we define conflict

simplices though no such simplices exist in this network. At levels q = 5 through

q = 3 only cooperation simplices appear. In 2-simplices in which conflict among

individuals is present there is always one cooperation interaction and two conflict

interactions (see example at Fig. 6.10). Hence, cooperation groups are formed by

at least 4 persons, and conflict between certain characters entails that the groups to

which they are associated are formed by 3 persons.

In order to gain a deeper insight into the structure of the network we will analyze

the combinatorial Laplacian spectra, whose plots are presented in Fig. 6.11.

We focus on eigenvalues λ1 = 4 and λ2 = 6 which dominate all spectra, although

not jointly at each dimension. Emergence of the eigenvalue λ2 = 6 at dimension

q = 5 is caused by a single cooperation simplex (Table 2) and it may be explained

by the property of the clique combinatorial Laplacian spectrum (Chapter 2). Both

eigenvalues, λ1 = 4 and λ2 = 6 appear at dimension q = 4 and one more eigenvalue

λ1 = 4 emerges from the 3-dimensional subsimplex shared by simplices σ16 and

47



0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

λ

f(
x
)

q=5

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

λ

f(
x
)

q=4

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

350

400

λ

f(
x
)

q=3

0 1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

λ

f(
x
)

q=2

0 1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

λ

f(
x
)

q=1

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

λ

f(
x
)

q=0

Figure 6.11: Spectral plots of the clique complex of Les Miserables network for dimensions
from q = 5 through q = 0.

σ20. Multiplicity of eigenvalue λ1 = 4 increases at level q = 3 due to appearance of

cooperative 3-simplices σ11, σ13, σ14, σ17, σ19 and σ22. If solely the graph Laplacian

(0th order combinatorial Laplacian) was considered the origin of this important

eigenvalue would remain inaccessible.

6.2.2 Analysis of the Les Miserables conjugate clique com-

plex

We have reversed the roles of characters and cliques to which they belong, by as-

sociating simplices to individuals and vertices to cliques. Using the Bron-Kerbosch

algorithm [90] all maximal cliques were found and the Q-vector components were

determined (Table 3). The simplex τ 48 (τ is used to mark simplices in conjugate com-

plex) is associated with the main character of the novel, Valjean and he is present in

the largest number of cliques, however, he is connected to another person through

shared cliques at the 2-level. All cliques to which Valjean belongs are 2-simplices

which, as mentioned earlier, consist of mixed cooperation/conflict relationships while

the simplex τ 162 belonging to the same connectivity class as Valjean is represented

by Inspector Javert, another person present exclusively in the cooperation/conflict
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Table 6.3: Components of the Q-vector of the conjugate clique complex constructed from
the Les Miserables network
q = 8 {τ 4}
q = 7 {τ 4}
q = 6 {τ 4}
q = 5 {τ 4}, {τ 23}
q = 4 {τ 4}, {τ 22}, {τ 23}, {τ 24, τ 27}
q = 3 {τ 4}, {τ 22}, {τ 23}, {τ 24, τ 27}
q = 2 {τ 4, τ 16}, {τ 14}, {τ 22}, {τ 23, τ 24, τ 27}
q = 1 {τ 1}, {τ 4, τ 13, τ 14, τ 15, τ 16, τ 19, τ 22, τ 23, τ 24, τ 26, τ 27, τ 29, τ 30}, {τ 8}, {τ 9}, {τ 12}
q = 0 {τ 1, ..., τ 33}

simplices. Simplex τ 235 at the 5-level is associated to Enjolras, the leader of the

revolutionary group ”The Friends of the A B C”, who joins the connectivity class

formed by other members of this group at the 2-level.

Spectral plots of the combinatorial Laplacian for dimensions q = 8 through q = 0

are presented in Fig. 6.12. A clear dominance of the eigenvalue λ = 9, originating

from the simplex τ 48 , that is Valjean, is easily recognized. For dimension q = 0

the dominating eigenvalue is λ = 5, originating from simplices associated to the

members of the large cooperation simplicial community (members of The Friends of

the A B C).

6.3 Spectral entropy

The above example illustrates that analysis using both the Q-vector and the spectra

of the higher order combinatorial Laplacian are powerful complementary tools for

the analysis of complex networks in spite of large number of eigenvalues that appear

in the spectrum of ordinary graphs (networks). A careful analysis through various

connectivity levels of the corresponding clique complex reveals simplex communities

as overlapping or disjoint entities. We introduce here another quantity which mea-

sures the degree of overlapping of simplices in the complex in each dimension. Let

λi
q be the eigenvalues of qth combinatorial Laplacian and i ∈ {1, 2, ..., fq}, where fq

is the qth entry of f -vector, that is the number of q-simplices (not maximal). Then

the qth spectral entropy Hq is defined as

Hq = − 1

log(fq)

fq∑
i=1

p(λi
q) log p(λ

i
q) , (6.1)
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where p(λi
q) =

λi
q∑fq

j=1λ
j
q

is the eigenvalue probability, which may be understood as

the contribution of the eigenvalue λi
q to the whole spectrum of the qth combinato-

rial Laplacian. For λi
q = 0 clearly Hq = 0 and 1

log(fq)
is the normalization constant

which restricts the entropy values between 0 and 1 where fq denotes the number of

q-dimensional simplices in the simplicial complex. Namely, if a simplicial complex

is a single vertex, then the spectral entropy is minimal and equal to zero, whereas

when simplicial (sub)complex is formed by the q-simplices (where q is the same

for all simplices) and no pairs of different q-simplices share (q − 1)-face then qth

spectral entropy is maximal and equal to 1. Therefore, the maximum of combina-

torial entropy Hq for a particular dimension q corresponds to the disconnectivity of

q-simplices at dimension q. Of course, at dimensions smaller than q − 1 any pair of

q-simplices may share q − 2, q − 3, ..., 0 face, and henceforth Hq−1, Hq−2, Hq−3, ...,

is different than 1. When simplicial complex is formed by only one q-simplex (that

is one (q + 1)-clique) the combinatorial entropy Hq is equal to 1 for all q, since it is

disconnected from any other q-simplex at all dimensions. Hence, any deviation from

Hq = 1 for specific q indicates that internal (sub)structures of simplicial complex at

dimension q are more or less overlapped.

The dependance of the qth spectral entropy on q-dimensions for the Zachary

karate club clique complex and its conjugate complex are presented in Figure 6.13

(a) and (b), respectively. Inspection of Figure 6.13 (a) shows that for dimension

q = 4 there are two simplices which share a 3-face, hence H4 ̸= 1 and in the case

that they share {2, 1, 0,−1}-face instead of 3-face the 4th spectral entropy would

be H4 = 1. Moving to the next (lower) dimension (q = 3), two new simplices

are added. Nevertheless, since they are not sharing 2-faces the spectral entropy is

increased but it is not equal to 1 since two simplices from the 4-level share 3-face,

and hence their subsimplices (3-simplices) share 2-face. Moving to the next lower

dimension new simplices are added and the qth spectral entropy (q < 3) decreases

and thus diverges from the disconnected cliques behavior. From Figure 6.13 (b)

we see that the spectral entropy of the conjugate simplicial complex Hq ≈ 1 or

Hq = 1 for dimensions 2 < q ≤ 13 meaning that at these dimensions the complex

behaves like a set of disconnected cliques. This is the consequence of the polarizing

effect of two simplices, the Instructor and the Administrator. The origin of this

property is obvious from the spectral plots (Figures 6.6, 6.7, 6.8 and 6.9) in which

eigenvalue λ = 13 appears from the Instructor simplex and eigenvalue λ = 14 arises

from the Administrator simplex, both easily recognized at higher dimensional levels.

Furthermore, unlike in the clique complex case, these two dominating eigenvalues

persist for all q, including q = 0.
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Figure 6.12: Spectral plots of conjugate clique complex of Les Miserables network for
dimensions from q = 8 through q = 0.
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Figure 6.13: Spectral entropies of clique complex (a) and its conjugate (b) of the Zachary
karate club network.
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Chapter 7

The role of simplicial complexes in

the study of complex systems and

perspectives for future research

In this chapter we discuss some of the less familiar applications of simplicial com-

plexes in physics in general and in the field of complex systems in particular. The

list of applications is certainly not exhaustive as, among other reasons, new areas of

utilization of topology in physics and other sciences appear continually. The intent

is to be rather informative than to present a rigorous treatment of the subject.

7.1 Differential forms and simplicial complexes

We have already emphasised in the Introduction the importance of discrete differ-

ential forms in the modern theoretical physics research and their relationships with

simplicial complexes [30]. Let us recall the main highlights: simplicial complexes

are discretized manifolds, and cochains on such simplicial complexes are discrete

differential forms. Since coboundary operator on simplicial complex can be related

to the discrete exterior derivative, higher-order combinatorial Laplacian represents

a discretized Laplace-Beltrami operator on a manifold. Simplicial complexes, and as

well higher-order combinatorial Laplacians, exist independently on the discretization

procedure, as we have shown in preceding chapters, it would be insightful to examine

the possibility of the reverse procedure. Namely, the reverse procedure would imply

the reconstruction of a manifold and obtaining discrete differential forms from the

knowledge of the simplicial complex and its structure. From graph theory, the graph

Laplacian captures the structural properties of the complex network, and proves to

be convenient for the examination of dynamical processes taking place on complex
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networks [66]. Likewise, we can anticipate that higher-order combinatorial Lapla-

cians, acting as operators on the discrete differential forms, should be convenient for

the examination of dynamical processes on higher-order (sub)structures of complex

networks captured by diverse simplicial complexes. It is important to point that

some attempts in this course already present [97].

7.2 Percolations on simplicial complexes

The percolation theory [98] occurs as an adequate framework for the examination

of the critical phenomena taking place on complex networks [99]. Since complex

networks are highly irregular, the computation of percolating clusters is not simple,

though some algorithms are developed [100]. A new algorithm could be developed by

calculating a Q-vector of the neighborhood complex obtained from complex network,

in which case the connectivity classes at the 0-connectivity level represent percolative

clusters. Hence, the procedure should be as followed: calculate the Q-vector of a

neighborhood complex before occupying nodes, and then, whenever the nodes of

a network are occupied, the Q-vector entries are updated. The advantage of this

procedure is twofold: first, the algorithm for the percolating clusters originates from

the well defined mathematical quantity, and second, we have an insight into the

changes of topological properties depending on the occupation probability.

The above example of the usage of the Q-vector entries is limited to percolations

on complex networks. Nevertheless, the types of percolation processes on simplicial

complexes are far more richer, to mention a few:

• vertices can be occupied;

• simplices can be occupied and vertices can be left unoccupied, unless all simplices

which posses them are occupied;

• simplices and vertices are occupied simultaneously, possible with different proba-

bilities;

• the same as the above, but for a conjugate complex.

These rather complex processes is not easy to analyze, and one possible formalism

for their analysis can be the so called ”algebra of patterns” introduced by Atkin

[76], [77], [78] for the examination of changes on and of simplicial complexes.

7.3 Time evolution of vector-valued quantities

In Chapter 2 the vector-valued quantities like Q-vector, the second and the third

structure vectors, have been introduced for the characterization of the topological
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properties of simplicial complexes. Nevertheless, since real-world complex networks

are changing, like adding or deleting nodes and/or links, simplicial complexes ob-

tained from complex networks experience changes also. Therefore, vector-valued

quantities experience changes too and it would be useful to explore eventual change

patterns through the q-levels. This problem is in a sense related to the previous

one (percolations) since adding or deleting nodes and/or links can be treated as

percolation process.

7.4 Foundations of statistical mechanics of sim-

plicial complexes

In the preceding chapters we have seen that some properties of complex networks are

preserved, such as the behavior of the degree distribution, with algebraic topological

properties of simplicial complexes obtained from those networks. Whereas attempts

for precise formulation of statistical mechanics of complex networks are successful

[5], [66], [101] the field of statistical mechanics of simplicial complexes is still in

its development. The multidimensional and sophisticated structure of simplicial

complexes requires different approach than the one for the complex networks and in

turn offers many advantages and more sophisticated analysis of complex phenomena.

7.5 Construction of simplicial complex from cor-

relation matrix

Reconstructing a graph from the correlation matrix corresponding to the dynamics

of a certain complex system is rather arbitrary, and is based on some threshold

criterion on the values of the correlation matrix entries. The general requirement

for building a graph from correlation matrix entries is the one which maximizes

the sum of the correlations over the connected edges [102]. The simplest method

for extracting a connected graph with all nodes involved is the so called Minimum

Spanning Tree (MST) method [102], by which with respect to the above requirement

the resulting graph has a tree structure, i.e., does not have cycles, or triangles. As

a generalization of MST method the so called Planar Maximally Filtered Graph

(PMFG) [89], which captures more edges, contains cliques, and contains a MST

as a subgraph, was proposed. In the Chapter 3 we have used as an example of

neighborhood complex brain networks obtained from correlation matrix using the

PMFG. In either case the simplicial complex is obtained from the correlation matrix
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indirectly, from a graph. Hence, for capturing algebraic topological properties of a

complex system whose information is stored in the correlation matrix, it is important

to develop a method for construction of simplicial complex directly from a correlation

matrix, depending on the correlation matrix entries.

7.6 Weighted simplicial complexes

Related to the previous section is the problem of topological properties of the

weighted simplicial complex. Namely, a large number of real world complex net-

works, and as well simplicial complexes, are characterized by association of certain

numerical values to the nodes and/or the links of a network, and hence to the ver-

tices, the faces and the simplices of the obtained simplicial complex. Although there

are some attempts in the course of weighted combinatorial Laplacians [67], [68] or

weighted simplicial homology development [103], the methodology applied to the

wide class of complex systems is still lacking.
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Chapter 8

Concluding remarks

Starting from a typical properties of complex systems, the notion of (sub)structure of

complex networks was redefined and combinatorial algebraic topology was proposed

as an adequate mathematical framework for its study. Within the context of alge-

braic topology simplicial complexes have been used for the modeling of the structure

of complex networks, and accordingly, simplicial communities have been introduced

to capture substructure properties. It turns out that thanks to the versatility of sim-

plicial complexes which can be constructed from a single network, different hidden

organizational patterns formed by the relationships between simplicial communities

within complex network can be detected.

The neighborhood complex obtained from diverse modeled and real-world com-

plex networks shows that statistical properties of complex networks have been pre-

served when we do the transition from the graph to simplicial complex representa-

tion. Since the simplices in neighborhood complex are the collections of nodes and

the dimension of a simplex is equal the degree of corresponding node, it indicates

the importance of the taking into account such substructures in complex networks’

evolution models.

The usefulness and adequacy of simplicial complexes to model qualitative fea-

tures of complex networks is demonstrated in the case of clique complexes of two

well known social networks, the Zachary karate club and the co-appearance network

of characters in the Victor Hugo’s novel Les Miserables. It appears that an approach

using both the initial and the conjugate clique complex is particularly informative

for the analysis of social networks. The spectra of the combinatorial Laplacian of

simplicial complexes are deeply related to the connectivity properties of simplicial

complexes and hence not related to their geometrical features. Based on the con-

cept of simplicial community, communities and their interlacing is well reflected in

the spectra and provides precise information on the occurrence of such complex
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structures. Connectivity properties, well captured by the Q-vector, complement the

spectra providing hierarchical description of simplicial complexes and complex net-

works. Finally, it has been demonstrated that although extensively studied and used

in many areas of science, properties of ordinary graph Laplacian are in certain cases

not adequate to capture higher-order information that resides in complex networks.

At the end we can conclude that the results of thesis indicate that striving toward

the consistent and precise theory of complexity can without a doubt be supported

by the formalism coming from the algebraic topology using simplicial complexes

as working objects. Furthermore, the rigorous and sometimes seemingly rigid and

abstract approach of combinatorial algebraic topology proved to be an advantage

rather than the obstacle, and that the ”simplexication” of sciences far transcends

physics.
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Magistrirao je 2009. godine odbranivši magistarsku tezu pod nazivom ”Statistička

mehanika simplicijalnih kompleksa” i iste godine upisuje treću godinu doktorskih

studija na Fizičkom fakultetu Univerziteta u Beogradu. U maju 2012. godine

Nastavno-naučno veće Fizičkom fakultetu Univerziteta u Beogradu odobrilo mu je

izradu doktorske teze pod nazivom ”Simplicijalni kompleksi i kompleksne mreže: uti-

caj (pod)struktura vǐseg reda na karakteristike mreže”. Od 2006. godine zaposlen

je kao istraživač-pripravnik, a od 2009. godine kao istraživač-saradnik Laboratorije

za termotehniku i energetiku Instituta za nuklearne nauke ”Vinča”.
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I lprnor 1.

Vsjaaa o ayropcrBy

nornrcann

6poj nH4erca D7/2OOS

l4sjaeruyjeru

4a je 4orropcKa At4cepraqraja no4 HacnoBoM

cnunnuqnjannn KoMnneKcil 11 KoMnneKcHe Mpexe: yrutpi (no4)crpyrrrypa Billuer peAa
Ha KapaKTephcTnKe Mpexe

o pe3lr'tTaT concTBeHor ncTpaxhBaLtKOr paAa,
' Aa npeAnoxeHa Ahcepraqnja y qennHn Hn y AenoBhMa unje 6nna nperqnoxeHa

sa 4o6njarse 6nno xoje 4rannoMe npeMa cry4r,rjcxru nporprrft; ApyrnxBt4COKOUJ KOIICKI4X ycTaHOBa,

. Aa cy pesynTaTil KOpeKTHO HaBeAeHn n
' Aa HhcaM xpLuro/na ayropcKa npaBa n Kopncrvto r4HTeneKTyanHy caojrany

Apyrrx nnu'a.

llornnc AoKTopaHAa

Y Seorpagy, 27 . uaj 2e13. ro4.



llpnnor 2.

lAsjaea o hcroBerHocrr4 lrJTaMnaHe h ereKTpoHcKe
Bep3nJe AoKropcKor paAa

Vluen npe3hMe ayropa up Cno6oaax Manerrh

Spoj rx4erca D7t2009

Crygrjcrn nporpaM

Hacnos pa4a: Cnunnnqrjannn KoMnneKcil 14 KoMnneKcHe Mpexe: yruqaj
(nog)crpyrrypa Bnuer peAa Ha KapaKrepncrnKe Mpexe

Menrop _Ap Mrnan Pajxoenh_

flornncanr up Cno6oaan Manerrh

lzlajaeruyjeu ga je u:raunaHa Bep3nja uor AoKTopcKor pa4a ncroBerHa enerrpoucxoj
aeparajra Kojy caM npeaaoUd 3a o6jaaruusaiue Ha noprany ,Qnrurannor
peno3uropnjyua Ynmeepaurera y Eeorpa4y.

floeeoruaeaM Aa ce o6jaae uojn nrvHh no4aU[ Be3aHn aa 4o6rjaue aKa4eMcKor
3BaFba AoKTopa HayKa, Kao uro cy hMe n npe3ilMe, roAhHa r Mecro poleua h AaryM
o46paHe paga.

Oeh nilqHn noAaLlr Mory ce o6jaarrn Ha MpexHnM crpaHrUaMa Ann4TanHe
6r6nnorere, y eneKTpoHcKoM Karanory ny ny6nnxaqnjaua Yxuaepsrrera y 6eorpa4y.

Y Eeorpagy, 27 . r,lfi2013. ro4._

llornrc AoKropaHAa

{ffit



f lprnor 3.

lAsjaea o Kopr4rxheuy

Oenauhyjeu YxraepshrercKy 6r6nrorexy ,,Ceeroeap Maproerh" Aa y lurnrantn
peno3rropnjyna YHnaep3nrera y Seorpa4y yHece rraojy 4orropcKy Ailceprarlrajy nog
HacnoBoM:

Cnunnrqn jannn KoMnJ-reKcil Ll KoMnneKcHe Mpexe. yrnqaj (no4)crpyrrypa Bilruer peAa
Ha KapaKTepilcTnKe Mpexe

roja je uoje ayropcKo Aeno.

lrcepraqnjy ca cenu npilno3ilMa npegao/na caM y eneKTpoHcrou $opruary noro,qHoM
aa rpajno apxrBilpaFbe.

Mojy gorropclry Ailcepratyjy noxpaFbeHy y Pvirvrrannn peno3rroprjyna Ynnaepsrrera
y 6eorpa4y Mory Aa Kophcre caur rojn nouryjy o4peA6e caApxaHe y o4a6panoM rilny
nnqeHqe Kpearnene saje4nrqe (Creative Commons) ea rojy caM ce ognyvro/na.

1. Ayropcreo

2. AyropcrBo - HeKoMepqnjanuo

@ ayrop"rBo - HeKoMepqiljanHo - 6es npepaAe

4. AyropcrBo - HeKoMepqrjanxo - Aennrn no4 ilcrvrM ycnoBnMa

5. Ayropcrao - 6es npepage

6. AyropcrBo - AentaTn noA ncrnM ycnoBnMa

(Monnuo Aa 3aoKpyxnre caMo jeaHy oA uecr nouylennx nhqeHllr4, KparaK onnc
nilqeHqil Rar je na nonefirnn nuta).

flornnc AoxropaHAa

Y 6eorpa4y, _27 r'taj2013. ro4._



1, Ayropcreo - flooeorbaaare yMHoxaaalbe, gncrpn6y1ljy n jaano caonrtraBaFbe

Aefia, n npepape, aKo ce HaBeEe HMe ayropa Ha HaLt[H ogpeleH oA crpaHe ayropa

nnh AaBaoqa nrlleHl{e, qaK n y KoMepLlrjanHe cBpxe. Oao je najcno6ogHlaja og canx

f lHqeHLll4.

2. AyropcrBo - HeKoMepqrjanHo. ,QoraonaBare yMHoxaBabe, gucrprbyqnjy n jaaxo

caonuTaBaH,e Aena, n npepaAe, aKo ce HaBeRe nMe ayTopa Ha HaqvlH ogpeflex o4
crpaHe ayropa t,tnlt AaBaoqa nnqeHLle. Oea nilqeHqa He Ao3BorbaBa KoMepqrjanHy
ynorpeOy Aena.

3. Ayropcrao - HeKoMepqr,rjanno 6es npepafle. Sogeorbaeare yMHoxaBaH'e,
gv*pn6yqnjy ra jaano caonuraBaH,e .qena, 6ee npoMeHa, npeo6nnxoBaba nnn
ynorpe6e Aena y cBoM Aeny, aKo ce HaBeAe ilMe ayropa Ha HaL{hH ogpef;en og

crpaHe ayropa hnil AaBaoqa nilqeHqe. Oea nflqeuqa He flo3BorbaBa KoMepqnjanHy
ynorpe6y Aena. Y ognocy Ha cBe ocrane nnlleHqe, oBoM nilLleHqoM ce orpaHfiqaBa
uajeehn o6uu npaea xopnuheFba Aena.

4. AyropcrBo - HeKoMepll4janno - Aennru noA tlcl4M ycnoBnMa. fioaaoruaaare
yMHOXaBaH,e, nqvtcrpn6yl"lttjy vl jaeHo caonluraBabe Aena, n npepage, aKo ce HaBeAe

1aMe ayTopa Ha Haqilu ogpe[eu oA cTpaHe ayropa nnil AaBaoqa nltqeHqe H aKo ce

npepafla gracrpraOynpa nog LtcroM vnt crt4t{HoM nilqeHLloM. Osa nrqeHqa He

,qo3BotbaBa xorvrepqNjanny ynorpe6y .qena n npepaga.

5. Ayropcrao - 6es npepa4e. floraoruaaare yMHoxaBaH'e, 4ncrpn6yqnjy n jaeno

caonuJTaBaFbe ,qena, 6es nponnexa, npeo6nilKoBaFba nnm ynoTpe6e Aena y cBoM Aeny,
aKo ce HaBerqe ilMe ayTgpa Ha Haqmn ogpeleH o,q cTpaHe ayTopa rfin Aagaoqa
nnqeHLle. Ora nnqexLla Ao3BoJ-baBa KoMepqrjanny ynorpeby Aena.

6. Ayropcrao - Aenhrr noA hcl4M ycnoBilMa. ,Qosnoruaaare yMHoxaBaFbe,
gmcrpn6yqujy n jaeHo caonrlraBaH,e Aena, r npepaAe, aKo ce HaBeAe rMe ayropa Ha
HaqmH ogpefien ofl crpaHe ayropa vnn AaBaoqa nnqeHqe n aKo ce npepaga
gracrpra6yurpa nofl ilcToM tAnV cnhqHoM nnUeHUoM. Oaa nnUeHUa ,qo3Bo.rbaaa
xoueprlrjanHy ynorpe6y gena n npepaga. Cnrqna je coSreepcKvlM nhLleHqaMa,
oAHOCHO ni lqeHLlaMa OTBOpeHOT KORa.
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