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Abstract

This thesis has been written under the supervision of my mentor Prof. Dr. Pavle Mladenovic¢ at
the University of Belgrade, Faculty of Mathematics in the academic year 2012-2013. The title of
this thesis is “Extreme values in sequences of independent random variables with mixed
distributions”. For good survey of the field, see Resnick, S. I. [25] and Samorodnitsky, Taqqu
[27]. The thesis is divided into two chapters. Chapter 1 is divided into 7 sections. In this chapter,
we focus on classical results in extreme value theory. We discuss maxima and minima in the first
section, univariate extreme value theory in the second section, max-stable distributions in the
third section, peaks over threshold models in the fourth section, domain of attraction of the
extremal type distributions in the fifth section, tails in the sixth section and tail equivalence in the
seventh section.

Chapter 2 is divided into 9 sections. In this chapter, we discuss mixed distributions in the first
section, mixture of normal distributions in the second section, mixture of Cauchy distributions in
the third section, stable distributions in the fourth section, properties of stable random variables
in the fifth section, infinitely divisible distributions in the sixth section. Sections 7 and 8 contain
the main results for this dissertation. Mixtures of stable distributions are described in the seventh
section and mixtures of an infinite sequence of independent normally distributed variables in the
eighth section. Conclusion and future research are in the ninth section.

Scientific field (naucna oblast): Mathematics (matematika)

Narrow scientific field (uZa naucna oblast): Probability and Statistics (Verovatnoca i Statistika)
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INTRODUCTION

Extreme Value distributions arise as limiting distributions for maximum or minimum (extreme
values) of a sample of independent and identically distributed random variables, as the sample
size increases. Extreme Value Theory (EVT) is the theory of modeling and measuring events
which occur with very small probability. This implies its usefulness in risk modeling as risky
events per definition happen with low probability. Thus, these distributions are important in
Statistics and Probability. These models, along with the Generalized Extreme Value Distribution
(GEVD), are widely used in risk management, finance, insurance, economics, hydrology,
material sciences, telecommunications, and many other fields dealing with extreme events. There
are three fundamental mathematical results that illustrate the importance of extreme value theory
(EVT) in risk management applications:

1- Extremal types Theorem.
2- Domain of attraction Theorem.
3- Standard for choosing a high Threshold.

The main results of this thesis are contained in papers Shneina, E. K. [6]; Shneina, E. K. and
Bozin, V. [7]. These papers extend the results of Mladenovi¢, P., [20]. Namely, we determined
the type of extreme value distributions and the corresponding normalizing constants for
sequences of independent identically distributed (i.i.d.) random variables which are mixtures of
stable distributions [6]. Also, we showed that a common distribution function of extreme value
of a mixture of an infinite sequence of independent identically distributed (i.i.d.) normally
distributed random variables, and also determined the normalizing constants [7].
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Chapter 1

Classical Results in Extreme Value Theory

1.1 Maxima and Minima
(i) Maxima: Let X;,X,,... X;; be a sequence of independent identically distributed
(i.1.d.) random variables with distribution function F (x) and put
M, = max{X,,X,,...,X,} = max;<;<p, X,

my = min{Xl;XZ; ---an} = minlsisn Xi'

The relation between max and min is:
min{X,, X, ..., X, } = —max {—X,,—X,, ..., = X,.} ,
min; ¢;<p X;= — MaX;<j<n (—X;).

Then the distribution function of M,, is
P{M, <x}=P{X; <x,X,<x,..X,<x }=P{X, <x}... P{X, < x},

P{M,, < x} =[F(x)]" = F*(x), n =1 xeR, neN.

(ii) Minima: Generally, the results for minima can be deduced from the corresponding

results for maxima by writing min;<;<, X; =— max;<j<,(—X;). In conjunction with
minima, it can be useful to present results in terms of the survival function
F=1-F.

We have P{m,, > x} = (1 — F(x))" = (F(x))" = F*(x).
Therefore, the distribution function of the minima is
Pim,<x}=1-[1-F)]"=1-F"(x).

The class of Extreme Value Distributions (EVD's) essentially involves three types of extreme
value distributions, types I, IT and III, defined below.

Definition 1.1.1. (Extreme Value Distributions for maxima).
The following are the standard extreme value distribution functions for maxima:

1. Gumbel (type I):  (x) = Go(x) = exp(—e™*) , — <x<+ ;

exp(—x~%), if x>0,

0, if x<0, for some a > 0;

2. Fréchet (type I): 4 (x) = Gy 4(x) = {

exp(—(—x)%), ifx<0,

1 if x> 0. for some a > 0.

3. Weibull (type III):  4(x) = G,4(x) = {

2
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Definition 1.1.2. (Extreme Value Distributions for minima).
The standard extreme value distributions for minima are defined as:

) =1- (-x), ) =1- 4(=x) and ") =1- 4(—x).
Then the following are the standard extreme value distribution functions for minima:

1. Gumbel (type I): *(x) = Gg(x) =1 —exp(—e*), - <x<+ ;

1—exp(—(—x)"%), ifx<0,

1 if x>0 for some a > 0;

2. Fréchet (type I): 4 (x) = G1 o(x) = {

1 —exp(—x%), ifx=0,

3. Weibull (type III):  ,(x) = G;,(x) = { 0 ifx <0

for some a > 0.

1.2. Univariate Extreme Value Theory

Extreme Value Theory (EVT) is a branch of probability theory and statistics which deals with
large values in a data set. It has become more widespread in the past decade as a tool for risk
management in different areas. The theory can be used by banks to estimate extreme investment
losses, enables insurance companies to price their products and aids the government to budget
for possible storms, earthquakes and other natural disasters. Generally, there are two approaches
to studying the distribution of extreme values namely, Block Maxima Models (M,,) and Peaks
Over Threshold Models (POT). In the univariate these approaches respectively lead to the
Generalized Extreme Value Distributions (GEVD) (Fisher-Tippett, 1928 [11]; Gnedenko, 1943
[12]) with location u, scale o and shape éparameters and the Generalized Pareto Distributions
(GPD) (Pickands, 1975 [22]; Davison and Smith, 1990 [5]) with shape ¢ and scale o parameters.

1.2.1. Block Maxima (M,,) Models

Suppose X, X,, ... are independent identically distributed (i.i.d) random variables with common
distribution function F. Let M,, = max{Xy,X,, ..., X,} = max;<;<, X;, denote the maximum of
the first n random variables and let x; = sup{x : F(x) < 1} denote the right endpoint of F.
Wehave P{M, < x}=P{X; <x, X, <x,...X, <x }=F"x), n=>1 xeR, neN.

M,, Converges almost surely to xp whether it is finite or infinite. The limit theory in univariate
extremes seeks norming constants a, > 0, b, and a nondegenerate G such that the distribution
function of a normalized version of M,, converges to G, i.e.

lim,_, P (M”—_b” < x) = lim,_, F™(a,x + b,) = G(x), (1.1)

an
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If this holds for suitable choices of a, and b, then we say that G is an extreme value
distribution function and F is in the domain of attraction of G, written as FEDA(G).

We say further that two distribution functions G and G* are of the same type,

if G*(x) = G(ax + b) for some a > 0, b and all x.

The Extremal Types Theorem (Fisher and Tippett, 1928 [11]; Gnedenko, 1943 [12]; de Haan,
1970 [18]) characterizes the limit distribution function G as of the type of one of the following
three classes:

1. Gumbel (type I):  (x) = Go(x) =exp(—e™*) , — <x<+ ;

exp(—x~%), if x>0,

0 if x<0 for some a > 0;

2. Fréchet (type I): (%) = Gy 4(x) = {

exp(—(—x)%), ifx<0,

1 if x>0 for some a > 0.

3. Weibull (type III):  4(x) = Gp4(x) = {

Thus, any extreme value distribution can be classified as one of Type L, II or III.
The three types are often called the Gumbel, Fréchet and Weibull types, respectively.

1.2.2. Generalized Extreme value distribution (GEVD)

The role of the generalized extreme value (GEV) distributions in the Theory of Extremes is
analogous to that of the normal distribution in central limit theory for sums of random variables.
Assume X, X5, ... are independent identically distributed (i.i.d.) with finite variance and writing
Sp =X, + X, + -+ X, for the sum of the first (n) random variables, the standard version of

Sp—an

central limit theorem (CLT) says that appropriately normalized sums converge in

n
distribution to the standard normal distribution as (n) goes to infinity. The appropriate

normalization used sequences of normalizing constants (a,,) and (b,) defined by a,, = nE(X;)
and b, = \/n var(X,).

In mathematical notation we have lim,,_, P[b;! (S, —a,) < x] = (x), xeR.

For more details see Coles, Stuart (2001) [4]; Embrechts, Kliippelberg and Mikosch (1997) [8];
Leadbetter, Lindgren and Rootzen (1983) [17] and Resnick (1987) [25].

Definition 1.2.3. (The Generalized Extreme Value (GEV) distribution)
The classical extreme value theory is based on three asymptotic extreme value distributions
identified by Fisher and Tippett (1928) [11]. And the distribution function of the (GEV) given by
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_(Hs(’%ﬂ))f]; o
|exp (—e_(%)); ¢ =0;

exp

Fepv(x;€,0,0) =

where 1 + & (%) > 0, ueR is the location parameter, ¢ > 0 the scale parameter, and eR the

shape parameter.

The parameter & is known as the shape parameter of the GEV distribution and
Fepy (x; €, 0, 1) defines a type of distribution:

If §> 0 then Fgpy(x; €&, 0,u) is Fréchet distribution.

If §=0then Fgpy(x;0,0,u) is Gumbel distribution.

If £ <0 then Fgpy(x; &, 0,u) is Weibull distribution.

All the graphics below are made in XTREMES program [28].
The following figure (1.1) contains distribution functions that belong to the class of the

generalized extreme value distributions (Fréchet distribution is represented with red line, Gumbel
distribution with black line and Weibull distribution with green line).

Figure (1.1): Generalized extreme value distributions.
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It has the following density function
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fgev(x $,0,1) :4

for 1+E(?)>0.

The following figure (1.2) contains the probability density functions of the generalized extreme
value distributions (Fréchet distribution is represented with red line, Gumbel distribution with
black line and Weibull distribution with green line).

Figure (1.2): Probability density functions of the generalized extreme value distributions.
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Remark: Note the differences in the ranges of interest for the three extreme value distributions:
Gumbel is unlimited, Fréchet has a lower limit, while the Weibull has an upper limit.

The figure (1.3) below shows Densities for Gumbel, Fréchet and Weibull distribution functions
respectively from left to right.

Figure (1.3): For Gumbel, Fréchet and Weibull densities respectively from left to right.

1.2.4. Extremal Types Theorem

The extreme type theorems play a central role of the study of extreme value theory.

In the literature, Fisher and Tippett (1928) [11], were the first who discovered the extreme type
theorems and later these results were proved in complete generality by Gnedenko (1943) [12].
Leadbetter, Lindgren and Rootzen (1983) [17] and Resnick (1987) [25], are excellent reference
books on the probabilistic aspect.

A recent book by Embrechts, Kliippelberg, and Mikosch (1997) [8], gives an excellent viewpoint
of modelling extremal events. The extreme type theorems say that for a sequence of independent
identically distributed (i.i.d.) random variables with suitable normalizing constants, the limiting
distribution of maximum statistics, if it exists, follows one of three types of extreme value
distributions.
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The fundamental extreme value theorem (Fisher and Tippett, (1928) [11]; Gnedenko, (1943)
[12]) ascertains the Generalized Extreme Value distribution in the von Mises parametrization
(von Mises, (1936) [26]) as an unified version of all possible non-degenerate weak limits of
partial maxima of sequences comprising independent identically distributed (i.i.d.) random
variables X;, X5, .... That is:

Theorem 1.2.5. (Fisher and Tippett, (1928) [11]; Gnedenko, (1943) [12])

Let {X,,n = 1} be a sequence of independent identically distributed (i.i.d.) random variables
with distribution F, and suppose there exist normalizing constants

a, >0, b,eR, n = 1such that

Pla;*(M, — b,) < x] = F*(a,x + b,) —» G(x), (1.2)

where G (x) is a non-degenerate limiting distribution. Then G (x) belongs to the type of one of
the following three distributions:

1. Gumbel (type I): A(x) = Gy(x) =exp(—e™™), —oo<x<+o0;

exp(—x~%), if x>0,

0, if x<0, for some a > 0;

2. Fréchet (type I): @p(x) = G14(x) = {

exp(—(—x)%), ifx<0,

1 if x> 0. for some a > 0;

3. Weibull (type II1): ¥y (x) = Gpqa(x) = {

where a is a positive constant. We referto = Gy = EVo, =G, =EV;
and , = G, = EV, as the extreme value distributions, while the constants a,, and b,, from

(1.2) are called the normalizing constants.

The details of the proof can be found in Resnick (1987) [25], Proposition 0.3, pp. 9-11.

1.3. Max-stable distributions

Definition 1.3.1. A non-degenerate distribution function G is called Max-stable if there exist real
constants a, > 0, b,eR, n = 1suchthat for all x, G"(a,x + b,) = G(x).

Then G (x) is one of the following three types: Type I: Gumbel, Type II: Fréchet and Type III:
Weibull. The next result (Theorem (1.4.1) in Leadbetter et al. (1983) [17]) shows this property.

Theorem 1.3.2. Every max-stable distribution is of extreme value type, i.e. equal to
G(ax + b) for some a > 0,b. Conversely, each distribution of extreme value type is max-
stable.
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Definition 1.3.3. G is strictly stable iff b,, = 0, for all n.
We give a list of normalizing constants when the max-stable distribution function is one of the
standard extreme value (EV) distribution functions:

(1) Gumbel: A=Gy: a, =1, b, =Inn.

(i)  Fréchet: ®y = Gy 4t ay =ne, by =0.

(iii) Weibull: W, = Gy o ay =ne, by = 0.

Examples 1.3.4:
Example (1): Go(x) = exp(—e™), a, =1, b, =Inn, xeR.
Then (Go(anx + b, ))n = (Go(x +1nn ))n _ (exp(—e‘("“nn)))n

=exp(—e™). 1/n.n = exp(—e™*) = Gy(x).

Example 2): G, ,(x) = exp(—x7%),a, = n%, b, = 0.

L\
Then (Gl,a(anx + b, ))n = (Gl,a (n%x )>n = e_<nax> = e(‘x)_a'%'” =exp(—(x))™* =

G1,a(x)-

-1

Example (3): G, ,(x) = exp(—(—x)%), a, =nwa,b, —0 Then
(Gaa@nx +5,))" = (6o (nx)) = R I e

Gz,a (x)



SHNEINA EXTREME VALUES IN SEQUENCES OF INDEPENDENT RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

The class of slowly and regularly varying functions are introduced by Karamata, J. (1930) [15].
Definition1.3.5. (Slowly Varying and Regularly Varying Function)

A positive measurable function L on (0, ) is called

L(tx)
L(t)
(1)  Regularly varying at infinity with index p(write LeiRVp)if lim,_,

(1) Slowly varying at infinity (write LeRV,) if lim,_, =1, x>0.

L(tx) _
L)
Further information can be found in Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) [3];
Embrechts and Mikosch (1997) [8]; de Haan (1970) [18]; Resnick (1987) [25] and many other
textbooks.

xP,x > 0.

Examples 1.3.6:

L(tx) _ . In(tx) _ . Int+lnx

=1i im = 1.
L(t) = Ine) = Int

Example (1): If L(t) = Int then lim,_,

Satisfies (i) in definition (1.3.5) then L(t) = Int is slowly varying at infinity.

L(tx) _ . (tx) In(tx) _

Example (2): If L(t) = tP Inx then lim, o o Me T

Thus L(t) is a regularly varying at ~ with index p, and satisfies (ii) in definition (1.3.5).
Example (3): The functions: e*, sin(x + 2) and exp {logx}, are not regularly varying.
Example (4): The functions: log x, log(1 + x) , loglog(e + x) and exp{(logx)*},

0 < a <1, areslowly varying.

1.4. Peaks Over Threshold (POT) Models
1.4.1. Generalized Pareto Distribution (GPD)

The role of Generalized Pareto Distribution (GPD) in Extreme Value Theory (EVT) is as a
natural model for the excess distribution over a high threshold. And the distribution function of
the (GPD) is given by

__1
1-(1+2)°
1—€XP(_7x); §=0,
where 0 > 0,and x = 0 when & > 0,

andOSxS_?awhen ¢§<O0.

Fepp(x;0,8) = ; €+ 0,

10
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The parameters ¢ and o are respectively, as the shape and scale parameters.
For more information about (GPD) see Embrechts, Kliippelberg and Mikosch (1997) [8];
Davison and Smith (1990) [5] and many other textbooks.

The following figure (1.4) contains distribution functions that belong to the class of the
generalized pareto distributions (Pareto distribution is represented with red line, Exponential
distribution with black line and Beta distribution with green line).

Figure (1.4): Generalized Pareto distribution functions.

The following analytical relationship exists between the Generalized Pareto Distribution (GPD)

and the generalized extreme value (GEV) distribution functions F;gy, (x) for £-parameterization:

Fepp(x) = 1 + In( Fapy (%)), where a = % =& ifIn(Fapy () > —1.

The three limiting distributions in the GPD family include the Pareto, Beta, and Standard
exponential distribution functions:
— X >
(1) Exponential ( GP,): Fgp,(x) = {1 e, x20,

0, x < 0.

1—x7% x>1,

(ii) Pareto ( GPy),a > 0 : FGPl,a(x) = {(), x <1

1-(—x)"% -1<x<0,

(iii) Beta(GP,),a<0: Fgp, (%)= {0’ x < —1.

11
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Figure (1.5): Densities for Exponential, Pareto and Beta distributions respectively from left to right.

1.4.2. Relationship between Extreme Value (EV) and Generalized Pareto (GP) distributions
The relationship for three different GP distributions are given as follows:

(1) The exponential distribution function corresponds to the Gumbel distribution as
follows:

Fgp,(x) = 1+ In(Fgy,(x)) =1 —exp (—x), x = 0.
(i)  The Pareto(or ordinary Pareto) distribution function corresponds to the Fréchet
distribution as follows:

Fep, ,(x) =1+ In(Fgy, ,(x)) =1—=x7% forx=1a>0,
(i11)  The Beta distribution function corresponds to the Weibull distribution as follows:

FGPz,a(x) =1+ In( FEVZ,a(X)) =1—(—x)"% for —1<x<0, a <0.

1.4.3. Modeling Excess distributions

Let X be a random variable with distribution function F. The distribution of excesses over a
threshold u has distribution function:

F(x+u)—F(u)
1-Flw) '
where xp = sup{x: F(x) < 1} < o, xj = right endpoint of F.

FW@) =PX -u<x|X>u)= for0<x<xp—u,

The mean excess function of a random variable X with finite mean is given by
epn = E(X —ulX >w) =—— [*(1 - F(x))dx, u>0. (1.3)

1-F(u)

12
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The mean excess function eyu expresses the mean of F® as a function of u.
In survival analysis, the mean excess function is known as the mean residual life function and
gives the expected residual lifetime for components with different ages.

Remark: The distribution function F® is called the conditional excess distribution function.

Examples 1.4.4: (Excess distribution of exponential and GPD)

(1) If F is the distribution function of an exponential random variable then
F®(x) = F(x); for all x.

1—e™, x>0,

0 <0 where 4 > 0,

Proof: Since F(x) = {

Fatw —F _ o, [1-e™]

1-e™™=F(x),
1-—F(uw e M ¢ )

= F®(x) =

= F®(x) = F(x).

(2) If X has distribution function
F =Fgpp(x;0,8) = F(u)(x) = FGPD(x;_O-(u):E)' o(w) =0+,
where 0 < x < iff>0and0£xs?oif€<0.

Prons ) = S0 o e e

<1 - (1 + @)_5_3 - (1 —_1(1 + %“)_5_1> )
1—(1—(1+%‘)_E )

_e1 —&1
(1+%”) —<1+@> ) 1_<0+5(x+u)>—€‘1 _

1 <a +é&x +o(u) — a)_f_l 1 (a(u) + €x>_5_1 1 <1 N E_x>_5_1

oc+o(u)—o o(u) o(u)
= Fepp(x;0(u), &), where o(u) =o+ &) = &(uw) =o(u) —o.

(3) Then mean excess function of the GPD can be calculated by E(X) = 1%5’ and by
formula (1.3),

13
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_o(w) o+éu
C1-¢ 0 1-¢
where 0 <u< if0< E<1and0£u<_?aif€<0.

epu o+&u>0,

The Pickands-Balkema-de Haan limit Theorem (Balkema and de Haan, (1974) [1]; Pickands,
(1975) [22]) is a key result in Extreme Value Theory (EVT) and explains the importance of the
Generalized Pareto Distribution (GPD).

Theorem 1.4.5. (Pickands-Balkema-de Haan Theorem (1974)).

Suppose that X1,X,, ..., X, are n independent realizations of a random variable X with a
distribution function F (x). Let xp be the finite or infinite right endpoint of the distribution F. The
distribution function of the excesses over certain high threshold u is given by

F(x+u)—F(u)

1—-F(u)
IfFe DA (FGEV (x;¢,0, ,u)), then there exists a positive measurable function a(u) such that
lim sup|F® (x) — Fgpp(x;0(w),§)| = 0.

U—-Xf

FW@) =PX -u<x|X>u)=

, for0<x <xp—u.

1.5. Domain of attraction of the extremal type distributions

Definition 1.5.1. (Domain of Attraction (DA)). Suppose {X,, n =1} is a sequence of
independent identically distributed (i.i.d.) random variables with the common distribution
function F. The distribution F belongs to the domain of attraction of the extreme value
distribution G, FeDA(G) if there exist constants a,, > 0, b,eR, n = 1 such that

F" (apyx + by) = P[M, < ay,x+ b,] - G(x),asn— ,where M, = maX;<;<, X;-

Leadbetter et al. (1983) [17] gave a comprehensive account of necessary and sufficient
conditions for FeEDA(G) and characterizations of a,, and b,, when G is one of the three extreme
value distribution functions above.

The following theorem from Leadbetter, M.R., Lindgreen, G. and Rootzén, H. (1983) [17] is
very useful in finding the domain of attraction of F, and gives necessary and sufficient
conditions:

Theorem 1.5.2. The following conditions are necessary and sufficient for a distribution function
F to belong to the domain of attraction of the three extremal types:

14
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Gumbel (type I): There exists a strictly positive function g(t) defined on the set (—, xg), such
1-F(t+xg(t)) _

that for every real number x the equality limgy, —Iro e~ holds true, where
_ [JF(a-F@®)at
g(t) = W,fOFX < Xp.
Fréchet (type II): xp = +o, and limtqw%((t;) =x"% forsomea > 0andall x > 0.
. . 1-F(xp—hx) a
Weibull (type I11): xp < +, and limpy, Treem X ,for some a > 0 and all x > 0.
—F(xp—

The proofs of the theorem can be found in Leadbetter et al. (1983) [17]; Resnick (1987) [25]; etc.

Theorem 1.5.3. (Characterization of DA (G))

The distribution function F belongs to the domain of attraction of the extreme value distribution
G with norming constants a,, > 0, b,€eR iff

limy_enF (apx + by) = —InG(x), xeR, when G(x) = 0 the limit is interpreted as infinity,
where F(ap,x + by) =1 — F(a,x + by,).
For more information see Embrechts and Mikosch (1997) [8]; Resnick (1987) [25].

For every standard extreme value distribution one can characterize its domain of attraction.
Using the concept of regular variation this is not too difficult for the Fréchet distribution , and
the weibull distribution ,. The domain of attraction of the Gumbel distribution is not so
easily characterized; it consists of distribution functions whose right tail decreases to zero faster
than any power function.

Definition 1.5.4. (Von Mises function). Let /' be a distribution function with right endpoint
Xp < 00, Suppose there exists some z <xr such that F has representation

F(x) =c.exp {— f;ﬁdt}, z < x < xg, where ¢ is some positive constant, a(.) is a positive

and absolutely continuous function with density a’ and limyq,, a’ (x) = 0.

Then F is called a Von Mises function, the function a(.) is the auxiliary function of F.
For more details see Resnick (1987) [25], proposition 1.4 and de Haan (1972) [2].

Theorem 1.5.5. (Von Mises Condition).

15
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(i) Let F be an absolutely continuous distribution function with density f satisfying
lim, e ’;f (x") =a >0, then FeDA(D,).

(1))  Let F be an absolutely continuous distribution function with density f which is
positive on some finite interval (z, xg). If

limxTxF% =a >0, then FeDA(Y¥,).

For more details see Resnick (1987) [25], proposition 1.15 and proposition 1.16, pp. 63.

Properties of Von Mises functions 1.5.6. Every Von Mises function F' is absolutely continuous
on (z, xp) with positive density f. The auxiliary function can be chosen as a(x) = %

Moreover, the following properties hold:

xf (x) - o
F(x)

(1) If xp = oo,then F €eRV_,, and limy_,q,

(i)  Ifxp < oo,then F(xp —x~!)eRV_c, and limyqy, (xp—;((;)f(x) >
For more details see Embrechts and Mikosch (1997) [8], pp.140.

We give some examples of Von Mises functions. See Embrechts and Mikosch (1997) [8], pp.
139.

Example (1): (Exponential distribution)

F(x)=e™,x>0,1>0. Fis a Von Mises function with auxiliary function a(x) = A~
Proof: F(x)=1—-F(x) =e™, F(x)=1— e ™ F'(x) = f(x) = e ™,
R _ e _a

1_ 31
f(x)  ae~rx T 2 e

then the auxiliary function a(x) =

Example (2): (Weibull distribution)

16
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F(x)=e " ,x >0, ¢, > 0. Fisa Von Mises function with auxiliary function

a(x) =c 7 Ix7" x > 0.

Proof: F(x) =1—-F(x) =e™*", F(x)=1— e " F'(x) = f(x) = e~ (ctx™™ 1),

— T
F(x) e 1 —1.,.-1,1-71
f(x)  e-cxT(ctxT-1) ~ crxT-1 T > 0.

then the auxiliary function a(x) =

Theorem 1.5.7. (Von Mises (1936)) [26]. F is absolutely continuous distribution function and
xp = sup{x:F(x) < 1}. If
(i) F'"(x) <0, forall xe(z,xp), xp < 0.
(ii) F'(x)=0, forx = xp.
W —1,  then FeDA(A) .
This is sufficient conditions for continuous function.
For more details see Resnick (1987) [25]; Embrechts and Mikosch (1997) [8].

(i) limg,,

Example: Let F(x) =1—e7*, x > 0.
ThenF'(x) = f(x) = e7*, x =0,
_ FU-F&) _ 1-F(x) _e7™* _
and f(x) = (F) — Fa e L

Therefore f'(x) = 0, and FeDA( ). See Resnick (1987) [25], pp. 42.

The following theorems can be found in Leadbetter et al. (1983) [17]; Balkema, and de Haan
(1972) [2]; and Resnick (1987) [25], are giving necessary and sufficient conditions:

Theorem 1.5.8. (Gnedenko (1943) [12]; De Haan (1970) [18]). For a distribution function F set

H(x) = ﬁ(x), xp = sup{t: F(t) <1}, so that H- = H™' is defined on (1,0). The

following are equivalent:
(i) FeDA(A), if there exist constants a, > 0, b,eR, neN such that
lim,_o F" (ayx + b,) = exp (—e™), forall x.

1-F(t+xg(t)) _
1-F(t)

—-X

(ii) HeT', there exist g such that for every real number x: limgy, e

H™ Y (tx)-H™1(t)

20 = Inx.

(i)  HT = H™'ell, there exist a such that for all x > 0: .

17
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For more details see Resnick (1987) [25], proposition 0.10., pp. 28-30.

Theorem 1.5.9. (De Haan, (1970) [18]). FeDA(A) iff

A-FQ) [;F [ Fa-F@®)atay

(f;‘F(1—F(t))dt)2

llmx_,xxF

)

R Fa-F@)atdy
[LF(1-F(t))at

. . 1 . .
in this case — € I', and the auxiliary function can be chosen g(t) = , or

JLF(1-F(®))at

,and norming constants can be chosen
(1-F(x))

g() =

an = g(by), b, =F1(1-12).

For more details see Resnick (1987) [25], proposition 1.9., pp. 48-50.

Theorem 1.5.10. (De Haan, (1970) [18]). FEDA(A) iff

lim LFa-F@y®a a1
XOXF (1-F() [[FA-F(®)*tdt «

,for some a > 1. In this case it’s true for all a > 1.

For more details see Resnick (1987) [25], proposition 1.10., pp. 50-52.

Remark 1.5.11. The corresponding characterizations of a,, and b,, are:

1. Gumbel (type I):

a, =gy, b,=F ‘1(1 — %) Where the auxiliary function can be chosen
_ [F(-F@®)at

90 =)

For more details see Resnick (1987) [25], Corollary 1.7 and proposition 1.9., pp. 48-50.

2. Fréchet (type II):
ap=F*(1-2), b,=0.
For more details see Resnick (1987) [25], pp. 54-57.

3. Weibull (type III):
an =xp —F1(1-1), b, = x.

18
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For more details see Resnick (1987) [25], pp. 59-62. and Embrechts and Mikosch (1997) [8],
pp. 135.

The domain of attraction of the distribution function F is determined by the asymptotic behavior
of the tail 1-F (x), as x—+ . The following theorem from Leadbetter et al. (1983) [17] is
important for determining of normalizing constants a,, and b,, in (1.2).

Theorem 1.5.12. Let {X,,} be an independent identically distributed (i.i.d.) sequence random
variables. Let 7 € [0, + ), and suppose that {u,,} is a sequence of real numbers, such that
n(l-F(u,)) —z, asn— (1.4)
then P{M, <u,}—e™", asn— . (1.5)
Conversely, if (1.5) holds for some z, [0, + ), then (1.4) holds.

The proofs of the theorem can be found in Leadbetter et al. (1983) [17]; Resnick (1987) [25]; etc.

Some other theoretical results may be very useful for finding the DA (G) of F and finding the
normalizing constants. Those results and examples whose distributions belong to each of the
three domain of attraction can be found in Leadbetter et al. (1983) [17]; Resnick (1987) [25]; etc.

1.5.13. Examples of Domain of Attraction

Example (1): We consider now the Pareto distribution.

— -a
We consider F(x) =1—x"% a >0, x>1. We have lim,_, 1P (tx)_ =x ¢«
1-F() (D@

In this example, the distribution function F (x) belongs to the domain of attraction of the function
G,(x), and we have the type (II) of extreme value distribution, i.e. there exist
constants a,and b,,, such that the following equality holds true:

X
P {Mn <—+ bn} — exp(—x~9%).
an

We now determine the constants a,and b,,.

a

Let us first determine the constant u,,, such that 1 — F(u,) ~ %x‘ ,,a>0, asn—> ,i.e.

1—-Flu)~ Y, t=x"% 1>0,

-a
(un)‘“~x7, asn — oo,

—-a

_ X .

(up) "%~ (E) ,as n — o, and we obtain
na
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1
u,~n X, asn — oo,

Using Theorem 1.5.12 we obtain

1
- -
P{MnSnax}—wx , asn — oo,

-1

wegeta, =ne, b, =0and G(x) =e™*

1
1—ex, x<0
Example 2): If F(x) = ’ ’
ple (2) ) {1, x = 0.

Determine the type of extreme value distribution and the normalizing constants?
1
We consider F(x) = 1 — ex.

—-xg(t) —xt? —x
= et(t+xg(®) = @e2+xt> = pTixt, put g(t) = t?, =

1
1-F(t+xg(t)) _ ettxg()

1-F(t) e%

We have

—-X
lim,,-e+xt =e ¥, ast > 07,=>

1-F(t+xg()

- - asto 0
then FeDA( (x)) (of type I, Gumbel distribution).
We now determine the constants ay, by,.
We consider F(x) =1 —ex, x <0, =1—F(x)=ex, x <0, (1.6)

thenl—F(uy,)~ Yp, 1>0, tT=ex

1

1—-F(u,) ~ ei/n, x < 0, (note that r=e%=>lnr=§,r>0).

1 1

-1
1 1 1 1
From (1.6) = eun ~ ex/n = Ine#n ~In( ex/n) = ui~ln( ex/n) = U, ~ <1n ex/n> )

-1
Uy~ (ln ex —In n) = Uy~ G —1In n) = u,~(nt—Inn)71,
P{M, <u,}—-e™F, asn-

T=e7% xeR, u, = (Int—Inn)71,
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Uy =(ne*=Inn)™" = (~x—Inn)™" = ~(x +Inn)™,
= P{M < —(X + In n)_l} - exp(—e‘x)’
- X -1 B 1 )
But (x +Inn)™! = (Inn(X +1)) =(nn)* (1 —ﬁ + 0(@)) =—- _(1n9;)2
1
G((lnn)z)’

= (My < —(x+Inm) 1) = {M, < —ﬁuhf—n)z“(ﬁ)}

{ —Inn+x+0(1)

} ={(Inn)%. M, +Inn < x + o(1)},

(Inn)2
_ 2 1 _x__ 1
= {(ll’l Tl) [Mn + lnn] <x+ 0'(1)} = Mn < (nn)2  Inn’

1

Using Theorem 1.5.12 we obtain P {M <ZX__ L} - 7%

= (lnn)2 Inn

Thus a, = (Inn)? and b, = —ﬁ = —((nn)"1.

Example (3): Suppose X;, X, ... be financial loss, independent identically distributed (i.i.d.) with
distribution function F and defined as; F(x) =1 — exp(—Ax) where A > 0,x > 0. Choose
normalizing sequences

. b, = Tn, Calculate F™*(a,x + b,)?

Proof: Since F(x) = 1 — exp(—Ax), then F™"(x) = (1 — exp (—Ax))"

n
So that F"(ayx +by) = " (3 + 1) = [1 - exp (-2 (3 + ) )| =
=[1—exp (—x —Inn)]" = [1 — exp(—x) .exp(Inn~1)]" =

— n n
(1 — %x)) = (1 — %exp(—x)) , then G(x) = lim,,_,,, F"(a,x + b,) =

n

=n_l)1£1 (1 — %exp(—x)) = exp(—e™) = Gy(x) = A(x).

Thus FEDA( (x)).
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1.6. Tails

The following definitions are from [14].

Definition 1.6.1. (Fat —tailed distribution)
The distribution of random variable X is said to have a fat tail if

PIX>x]=F(x)=1-F(x)~x"% asx - o,a > 0.

Remark: Cauchy distributions are examples of fat-tail distributions.

Definition 1.6.2. (Heavy-tailed distribution)

The distribution of a random variable X with distribution function F is said to have a heavy right
tail iflim, e e**F(x) = oo, forallA >0, F(x)=1-F(x), F(x) = P[X > «x].

Definition 1.6.3. (Long-tailed distribution)

The distribution of a random variable X with distribution function F' is said to have a long right
tail iflimy_, P[X > x+t: X > x| =1, forallt > 0, or equivalently

F(x +t)~F(x),as x — oo.

1.7. Tail equivalence

The following Theorems and Results are from Feller, (1966) [10]; Gnedenko, (1943) [12];
Resnick, (1971) [24] and Resnick, (1987) [25].
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Definition 1.7.1. (Tail equivalence)

Two distribution functions F(x) and G(x) are called tail equivalent if they have the same right
1-F(x)
X-x§ 1-6(x)

endpoint, i.e. if x§ = x§ = x, and lim = A, for some A > 0 and

xo = inf{x:F(x) = 1}.

Definition 1.7.2. (Tail equivalence)

Two distribution functions F(x) and G(x) are right tail equivalent iff

1—-F(x)
F_ G_ _ ~ — —_ 1 —
X =xf=x, 1-F)~1-G)asx>xand Jim 3—e0s

Definition 1.7.3. Two distribution functions U(x) and V(x) are of the same type if for some

A > 0,BeR, V(x) = U(Ax + B), forall x.

Theorem 1.7.4. Suppose U(x) and V(x) are two non-degenerate distribution functions. If for a
sequence F,(x) of distribution functions there exist constants a, > 0,b,eR, n > 1and
a, > 0,B,€R, suchthat F,(a, x + b,) »€ U(x), F,(a,x+ Bp) = V(x),

a —-b
= — 5 A>0, Fn — b
an an

— BeR and V(x) = U(Ax + B).

Remark 1.7.5. The set of normalizing constants a, > 0,b,eR, n =1 is asymptotically

: .. . -b
equivalent to the set of normalizing constants @, > 0, B,eR,n = 1iff ? -1, % - 0.
n n
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Chapter 2

Extreme Values for Mixtures

2.1. Mixed distributions

Let X; and X, be random variables with distribution functions F; (x)and F, (x), respectively, and

¥ = {Xl with probability p,

X, withprobability q, wherep +q = 1.

The distribution function of the random variable X is given by
F(x) = P{X < x} = pP{X; < x} + qP{X; < x} = pF1(x) + qF, (%),

The distribution function F'is called the mixture of the distributions determined by the
functions F; and F,.

We shall consider some examples of sequences of independent random variables with common
mixed distribution. In these cases we are going to determine the type of extreme value
distribution and the normalizing constants.

2.2 Mixture of normal distributions
The following example can be found in [20], but without a proof.
Example (2.2.1):

Let (X,,) be a sequence of independent random variables with normal ' (0,1) distribution and
M, = max{X, ..., X,}. As is well known, the limiting distribution of the maximum M,, is given
by P{a,(M, — by) < x} = exp(=x™%), n—> |

where the normalizing constants a, and b,, are given by

Inlnn + In4n
a, =Vv2Inn, b,=vV2Inn - ————.

2V2Inn
2
Proof: Let ¢(x) = \/%_ne_x /2 and @®(x) = f_xoogo(t)dt. We shall use the following
asymptotic relation
1—®()~x"1p(kx), x- oo 2.1
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If XeV'(u, o), then distribution function of the random variable X can be represented in the form

Fx)=P{X<x}=® (%), using this representation of F(x) we obtain

1—F(t)=1—CD(t_—”)=1—d>(t),

g

1
1-FO~79(®), tooo

1 1 _tz/
1—F(t)~?—e 2, t = oo

V2m
1 1 _(t+xg()?
2
1-F(t+xg(t)) or t+xg@ ¢ o
1—F() 1 1 e ' '
=%
_ U —5trg@)?-xtg(t)
t+xg(t) )
For g(t) = %, we get
1—F(t+xg(t) = t e—%(x%)z—x = —1 e_x_%xz'tiz —»e ¥, to>w
1=F(®) t+x.% 1+x.tl2

Using Theorem 1.5.2 in chapter one, we conclude that the distribution function F (x) belongs to
the domain of attraction of the function G,(x), and we have the type (I) of extreme value
distribution, i.e. there exist constants a,and b,,, such that the following equality holds true:

x
lim P {Mn < P + bn} = exp(—e™%).

n—oo n
We now determine the constants a,and b,,.

X

Let us first determine the constant u,, such that 1 — F(u,) ~ % e*asn- e

1— F(up) ~ —g"f:l),

%~ %e‘x, asn - . (2.2)

Asymptotic relation (2.2) can be transformed in the following way:

—x Un

“o(up) -1

)

1
- €
n
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In (l e )—>1n (1),

n oun)
—Inn—x+1Inu, —Inp(u,) -0,

1 _uR 1 2
But In ¢ (u,) = ln(ﬁe /2) = —Eln2n—u7.

Now substitute (2.4) into (2.3) to get

2
—lnn—x+lnun+%ln2n+u2—"—>0.

2
It follows from (2.5) that 11:‘ —»lasn—- , and

(2Inn)
Inu, = %(mz +Inlnn) + o(1).
The relation (2.5) can also be written in the form

uf

- = x+lnn—%ln2n—lnun + o(1).

Now substitute the value of In u,, from (2.6) into (2.7). We obtain

2
i = x +1lnn—=2In2r — SIn2 —llnlnn+0(1),
2 2 2 2

u? 1

1
5 = x+1nn—zln4n— Elnlnn+o(1),

x—<In4n—-2lnlnn 1
u? =2Inn{l+—2 2 +0(—).
Inn Inn

Using the formula vl +x =1 + %x +o(x)asx > , we get

1 1 1 1
U, = VZlnn{l + 21nn<x—51n4n— Elnlnn) +o<m)},

X e lnlnn+ln4n+ ( 1 )
u, = nn—————+o )
" v2Ilnn 2V2Inn Vinn

. X
Since u,~ - + b, asx —» , we have
n

Inlnn + In4xw
a, =VvV2lnn, b,=VvV2lnn———M—,
" " 2V2Inn
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The following Theorem from Mladenovi¢, P. [20].

Theorem 2.2.2. Let (Z,) be a sequence of independent random variables such that

N (uq, 02), [ babili ,
Z { (pq1,07) with probability p torall n,

N (uy, 03), with probability q,
Where p + q = 1. Let us denote M,, = max{Zy, ..., Zp}. if
(a) 01 > 03, Wy, 2€R o1
(b) 01 = 03 and py > iy,
then for every real number x the equality

X
lim P {M,*; < pr + b;‘l} = exp(—e™),
n

n—-oo

holds true, where the constants ay, and b, are given by

v2inn o 4
a, = , b;‘l=/,11+01\/2lnn——1(lnlnn+ln—2>.
01 2V2Inn p

For the proof see Mladenovi¢, P. [20].

2.3. Mixture of Cauchy distributions

Example (2.3.1):

Let (X,) be a sequence of independent random variables with the Cauchy distribution K (1,0),
determined by the distribution function

1 1
F(x) ==+ —tan"!x.
2w

Let M, = max{X;,X;,...,X,} = max,<j<p X;. For x > 0, we have

1 1 _ 1 1 _ T _
1-F(tx) 1-5——tan Htx) _ 5 ——tan L(tx) _2- tan~1(tx) _)1 e

— - T -
1-F® 1—%—%tan‘1t —%tan‘lt >—tan"tt X

N =
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In fact, on substituting tan~1(tx) = g — u, we obtain tx = tan (g — u) = cotu,

1
Then t = ;cot u,

1

1=
X

RIr

lim;_, o (g — tan_l(tx)) .t =lim,_, (u.%cot u) = ilimu_)o (u.cotu) = (2.8)

And similarly, lim,_, (5 — tan™*(8)) .t = 1, (2.9)
From (2.8) and (2.9), we get

1
1-F(tx b 1
# X — -, t - 00,
1-F(t) 1 x

Hence, the distribution function F(x) belongs to the domain of attraction of the function
G,(x), and we have the type (II) of extreme value distribution.

The normalizing constants are a,, =Vl and b, = 0, where the constant ¥, can be computed
from the equality 1 — F(y,,) = 1 — = — 2tan"1(y,) = + — tan~1(y,) = .
2 4 2 b4 n
[ T Y
Therefore, y, = tan(; — ;) = cot—,

tanZ—tan”
o n . T T
—2—1 and sin—-=1, cos—=0.
1+tan5tan5 2 2

where tan(g — g) =

For x > 0 we have lim,,_,, P {Mn. tang < x} ="

For more information see Mladenovi¢, P., [20].

Theorem 2.3.2. Let K(A;,0) be the class of random variables with the distribution function

Fi(x) = % + %tan_1 %, i =1,2. Let (Z,,) be a sequence of independent random variables such
that for every n,
7 {K(Al, 0), with probability p,

(K (A,,0), with probability q,

where p + q = 1,and M;, = max{Z,, ..., Z,}. Then, for all x > 0 we have

lim P o

T
_— M < X} — e—x
n-oco {n(p)ll +qi) "
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Using Theorem 1.5.2 in chapter one, we conclude that the distribution function F (x) belongs to

the domain of attraction of the function G;(x), and we have the type (II) of extreme value
1

e .. . 1 .
distribution. The normalizing constants are a, = - and b;, =0, where 1—F(y,) = -
n

and y,~ M . For the proof see Mladenovi¢, P., [20].

2.4. Stable distributions
2.4.1. Introduction

Stable distributions are a rich class of probability distributions that allow skewness and heavy
tails and have many interesting properties. In probability theory, a random variable is said to be
stable distributed if it has the property that a linear combination of two independent copies of the
variable has the same distribution. The stable distribution family is also sometimes referred to as
the Levy alpha-stable distribution. The general stable distribution requires four parameters for
complete description: S, (o, B, 1), where ae(0,2] is an index of stability and also called the tail
index, tail exponent or characteristic exponent, a skewness parameter fe[—1,1], a scale
parameter 0 > 0 and a location parameter ueR. We shall use the following abbreviation
S (o, B, 1) for this stable distribution.
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Figure (2.1): Probability Density Function when (a« = 2,1.5,1,0.5,8 = 0,0 = 1,u = 0)

Figure (2.2): Distribution Function when (o = 2,1.5,1,0.5, = 0,0 = 1,u = 0).

The following Theorems and Definitions are from [27].

Here we give four equivalent definitions of a stable distribution.

The first two definitions explain why these distributions are called stable, the third definition
related it with the central limit theorem, and the fourth definition specifies the characteristic
function of a stable random variable.

Definition 2.4.2. A random variable X is called stable if for any positive numbers 4 and B,
there is a positive number C and a real number D such that

AX; +BX, =% CX + D, (2.10)
where X; and X, are independent copies of X, and where " =% " denotes equality in distribution.

Remark

(1) If equation (2.10) holds for D=0, then it is called strictly stable.
(i1) If X =%— X, then it is called symmetric stable.
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Theorem 2.4.3. For any stable random variable X, there is a number ae(0,2] such that the
number C in (2.1) satisfies

C% = A% + B, 2.11)

where a is called the index of stability or characteristic exponent.

Definition 2.4.4 (equivalent to definition 2.4.2). A random variable X is called stable if for any
n = 2, there is a positive number C,, and a real number d,, such that

Xi+X,+ 4+ X, L Cox +dy, (2.12)

where X; are independent copies of X, and ' denotes equality in distribution. X is strictly stable
if and only if d,, = 0 for all n.

Remark
(i) The first definition displays continuous combinations of two independent identically
distributed random variables, while the second definition displays the sum of any
number of independent identically distributed random variables.

1
(i) If equation (2.12) holds, then C,, = ne, for some ae(0,2].

Definition 2.4.5 (Equivalent to definitions 2.4.2and 2.4.4). A random variable X is called stable
if it has a domain of attraction, i.e., if there exists a sequence of independent identically

distributed random variables Y;,Y,,.., and sequences of positive numbers d, and real

numbers a,, such that

Y1+Y2d;+yn _l_ an _)d X’ (2.13)
n

where —»%denotes convergence in distribution.

Remark
(@) If X is Gaussian, and Y; are independent identically distributed (i.i.d.) with finite

variance, then equation (2.13) is just the central limit theorem.
1
(ii) When d,, = na, Y is said to belong to the “normal” domain of attraction X.

1
Generally, d,, = naL(n), where L(x), x > 0, is a slowly varying function at infinity.
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Definition 2.4.6 (equivalent to definitions 2.4.2, 2.4.4 and 2.4.5). A random variable X is called
stable if there exists, 0 <a <2, 0=>0, —1 < <1, pisareal number such that the
characteristic function of stable distribution has the following form:

exp {—0%|0|*(1 — if(signh) tan nz—a) + iu6} ifa #1,

Eexp(iBX) = ) (2.14)
exp {—ol|0|(1 + i/?;(sign@) In|6]) + iub} ifa=1,
and
1 if 8>0,
sign =4 0 if =0,
-1 ife<o.

Remark 2.4.7. Since (2.14) is characterized by four parameters, ae(0,2],
o = 0,Be[—1,1], ueR, we will denote stable distributions by S, (g, B, ) and write
X~Sq(0, B, ).

Remark 2.4.8. When a = 2, the characteristic function (2.14) becomes
Eexp(i6X) = exp(iuf — 026?%). This is the characteristic function of a Gaussian random
variable with mean u and variance 20°2.

Remark 2.4.9. There are only three special cases in which a closed form expression is known for
stable probability density function. These are the Gaussian case (o = 2, = 0), Cauchy case
(e =1, =0), and Levy case (a = 0.5, = £1) with the following densities:

(i) The Gaussian distribution S, (g, 0, u) = N(u, 262), whose density is

1 _G=w?
X) =——e 40 , — OO0 X 0,
f(x) ovn z <x<

The distribution function, for which there is no closed form expression, is
Fx)=PX<x)=® (@), where ®(Z) = Probability that a standard normal random

variable is less than or equal Z.

(ii)  The Cauchy distribution S, (o, 0, 1), whose density is
fx) =

, —oo<x< oo,
((x —w)?+0?)

(iii)  The Levy distribution S 5(a, 1, 1), whose density is

32



EXTREME VALUES IN SEQUENCES OF INDEPENDENT RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

SHNEINA

Vo __o
e 2071 |, u<x<o,.

f)=——7

V2m(x — p)2

Figure (2.3): Gaussian density functions when (a = 2, 8 = 0), Cauchy when (« = 1,8 = 0), and Levy
when (a = 0.5, = £1), respectively from left to right.

Figure (2.4): Stable densities in the S,(1,0,0), parameterization,

(e = 1,1.5,1.8,1.95,2).
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Figure (2.5): Stable densities in the Sy g(1, B, 0), parameterization,

(f=-1,-0.8,-05,0,0.5,0.8, and 1).

Figure (2.6): Stable densities in the S,(1,0.5,0), parameterization,

(e =0.5,0.75,1,1.25,1.5).
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2.5. Properties of stable random variables:

The following properties are from [27].

Property 2.5.1. Let X;and X, be independent random variables with X;~S, (a;, Bi, Ui),
i= 1,2 Then Xl + Xz"’Sa(O-, ﬁ, ﬂ), with
_ P1o7" + P03

1
o= (c%+ 0¥
(1 2)’ :8 O'{x+0'2a

, H=py+ lo.

Proof: Use equation (2.14) and first we verify this for @ # 1. By independence,

In Eexpif (X, + X;) = In(EexpifX,) + In(EexpifX,),

In(EexpiXy) = —af'|0]“(1 — iB; (signf) tan=2) + ip, 6, (2.15)
In(EexpifX,) = —05'16]1*(1 — iB, (signf) tan=2) + ip,0 , (2.16)

equation (2.15) + equation (2.16), then we get

= —(of' + a5 161" + i16]* (B10f* + B05) signb tan ==+ i6 (uy + i),

a a
= —(a{ + ) |0]|* {1 - imsigné) tan”z—a} + i0(uq + Uy),

a, -«
gy to,

B1oT+ P05

1
then, 0 = (o1 +07)s, B = of+af

» U= gt .

Second we verify for « = 1. By independence,

In(EexpifX,) =—o04|0|(1 + iB; % (signB) In|B|) + iy, 0, (2.17)
In(EexpifX,) = —0,101(1 + iB; = (sign) In|6]) + ips,0, (2.18)
then equation (2.17) + equation (2.18), we get

_ 101+ B0y 2 } .

= (o1 + 0161 {1+ 172 (signo) nlo] | + 10 + ),

,[)) — B101+B207

then, 0 = 0, + o
’ 1 2 0'1+0'2

1= Uyt

Property 2.5.2. Let X~S, (0,8, 1) and let (a) be a real constant. Then
X+a~S,(0,B,u+ a).
Proof:
(1) If a #1, then
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In Eexpif(X + a) = In(EexpifX) + In(Eexpifa),
But In(EexpifX) = —o®|0]|%(1 — if(signf) tan=>) + iuf , (2.19)
and In(Eexpifa) = ia0, (2.20)
because Eexpifa = E(e'9%) =Y, P,e'?% = e!94y, P, = 92,1 = 9,
Then equation (2.19) + equation (2.20), we get
In Eexpif(X + a) = — 0%|0|*(1 — iB(signb) tannz—a) +i(u+a)d, if a=+1.

(i1) If @ = 1, then
In Eexpif(X + a) = —0|6|(1 + iﬁ%(sign@) In|6|) + iub + iab,

2
In Eexpif(X + a) = —0c|0|(1 + i[)’;(signe) In|6]) +i6(u + a), if a=1.
Then, X + a~S, (o, B, u + a).

Property 2.5.3. Let X~S, (0, B, 1) and let (a) be a non-zero real constant. Then

aX~S,(lalo, sign(a)p, aw), ifa#1,

2
aX~S; (Iala, sign(a)B, au — Ea(lnlal)aﬁ), if a=1.

Proof:

(1) if a # 1, then
Ta
In Eexpif(aX) = — 0%|6a|*(1 — iB(sign(ah)) tan 7) + iu(ab),

Ta
In Eexpif(aX) = — (al|al)*|0]|*(1 — iB(sign(a)sign(H)) tan 7) +i(ua)o,
then
aX~S,(lalo, sign(a)p, aw), ifa+1.
(i) Ifa=1,then

2
In Eexpif(aX) = —o|6a|(1 + iﬁ; (sign(aB))In|ab|) + iu(ab),
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2
In Eexpif(aX) = —|alo|6|(1 + iB;sign(a)sign(G){lnIaI +1n|61}) + iu(abh),

2 2
=—|al|a|0]|(1 + iﬁ;sign(a)sign(@) In|6]) +i (,ua — ﬁ; |a]|@|o.sign(a).In|a| sign(@)) 0,

then

aX~S, (Iala, sign(a)B, au — % |a|(In]a|)op. sign(a)), if a =1.

Property 2.5.4. Forany 0 < a < 2,

X~S,(0,B,0) & —X~S,(a,—pB,0).

Proof:

@) In EexpifX = — 0%|6]*(1 — iB(sign(6)) tan=>) + iuf ,
but S,(g,B,0) = —c%|0|*(1 — iB(sign(H)) tannz—a), ifa +1,
and S4(0,B,0) = —ol0|(1 + i = signd In|6]), ifa =1,

then X~S, (0, ,0).

(ii) Sa(0,—B,0) = —a%16]*(1 + iB(signd)) tan=>) , ifa #1,

T
=— {a“l@l“(l + i (signh)) tan7) },
and So(0,—f,0) = —00|(1 — if =signd In|a]), ifa=1,

2
= —{alel(l - iﬁ;signe In|6]) },

then —X~S,(a,—p,0),

from (i) and (ii) then we get X~S,(0,8,0) & —X~S,(a,—p,0).
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Remark in property 2.5.4. The distribution S, (o, B, 0) is said to be skewed to the right if 8 > 0
and to the left if § < 0. It is said to be totally skewed to the right if § = 1 and totally skewed to
the left if § = —1.

Property 2.5.5. X~S,(0,B, 1) is symmetric if and only if § = 0 and u = 0. It is symmetric
about y if and only if § = 0.
Proof: For a random variable to be symmetric, it is necessary and sufficient that its characteristic
function be real. By (2.14), when f = 0, u = 0 then

In EexpifX = — a%|0|%, ifa #1,

In EexpibX = — a|8]|, ifa=1.

Remark 2.5.6. Asymmetric stable random variable is strictly stable, but a strictly stable random
variable is not necessarily symmetric.

Figure (2.7): Symmetric stable densities for Z~S,(1,0,0), a = (0.7,1.3,1.9).
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Figure (2.8): Symmetric stable distribution functions for Z~5,(1,0,0), a = (0.7,1.3,1.9).

Property 2.5.7. Let X~S, (0,8, 1), with a # 1. Then X is strictly stable if and only if u = 0.
Proof: let X;, X, be independent copies of X and let 4 and B be arbitrary positive constants.
By properties (2.5.1) and (2.5.3),

AX; + BXy~S, (0(A + BY)z, B, u(A + B)). We must set C=(A%+ Bz in (2.10) by
properties (2.5.2) and (2.5.3),

CX + D~S, (a(A“ + BYE, B, u(A + BY)a + D),
and therefore, we have AX; + BX, =% CX + Dwith D = 0iff u = 0.

Corollary 2.5.8. Let X~S,(a, B, 1), with @ # 1. Then X — u is strictly stable.
Proof: use properties 2.5.2 and 2.5.7.

Remark 2.5.9. Thus, any alpha stable random variable with & # 1 can be made strictly stable by
shifting. This is not true when a = 1.

Property 2.5.10. Let X~S, (0,8, 1), with @ = 1. Then X is strictly stable if and only if § = 0.
Proof: let X;, X, be independent copies of Xand let A > 0,B > 0.
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And use properties 2.5.3 and 2.5.1.

Corollary 2.5.11. If X;,X,,...,X,, are independent identically distributed S,(o,B,u), then

1 1
X1+X2+---+Xn=anX1+u(n—nE), if a #1,
and
X1+ Xp+ o+ Xy =4 0y + 2 0P, if a=1.

Remark 2.5.12. The random variable X~S,(0,1,0) with 0 < a <1 is called a stable
subordinator.

Proposition 2.5.13. The “Laplace transform” Ee "X,y >0, of the random variable
X~S5,(0,1,0),0 < a < 2,0 = 0, equals

O-CZ

Ee™ = exp{——57.v* if a+1,
COS —-
2
and
2 .
Ee™ "X = exp{a.;ylny} if a=1.

-1
Remark 2.5.14. The constant —o% (cos nz—a) is negative if 0 < @ < 1, and is positive if

1 < a < 2.1t equals 0 when a = 2.

Property 2.5.15. Let X have distribution S,(0,8,0) with @ < 2. Then there exist two
independent identically distributed (i.i.d.) random variables Y; and Y, with common distribution
S,(a,1,0) such that

xot (LB (LBYy,, v
and
X=d(#)Y1—<#)YZ+0(1:ﬁ1n1;ﬁ—1;31n1;ﬁ), if a=1.

Proof use properties 2.5.1, 2.5.2 and 2.5.3, in [27].

2.6. Overview in infinitely divisible distributions
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Stable distributions have a long history in the subject of probability. They form a subset of the
class of so-called “infinitely-divisible” distributions, a class of characteristic functions at the
heart of general central limit theory.

The following definitions and Theorems are from [13].

Definition 2.6.1. A distribution function F(x) and the corresponding characteristic function
f(t) are said to be infinitely divisible if for every positive integer n there exist a characteristic

function f;,(t) such that f(t) = (f,,(t))" then f,,(t) = Vf(t), (2.21)
Property 2.6.2. Stable distributions are infinitely divisible.

Examples 2.6.3. Infinitely divisible distributions include:

(1) The normal distribution with parameters (u, ¢2) is infinitely divisible, because the
, a?t?
characteristic function of the normal distribution has the form f(t) = e™ ™2 so

that then for every positive integer n there exist a characteristic function f,(t) such

it T\ 2
that f,(t) = e'nt 2(\/5) *" is the characteristic function of the normal distribution with

o
)
(i)  The Poisson distribution with parameters (A) is infinitely divisible, because the

parameters (%

characteristic function of the Poisson distribution has the form f(t) = e)“(eit‘l), SO
that then for every positive integer n there exist a characteristic function f, (t) such

Aleit_1) . - . . T .
that f,(t) = en(e D) is the characteristic function of the Poisson distribution with
A
parameter (;)
(111)  Cauchy distribution and the “chi-squared” distribution.

Theorem 2.6.4. The characteristic function of an infinitely divisible distribution never vanishes.

Here we give an example of a discrete random variables taking the values -1, 0, 1, with

- 31 . ..
probability %, e Its characteristic function is

3+ cost

£(6) = E(el™) = an pittn — —

where et = cost +isint and e ' = cost —isint,

the function f'is positive and therefore does not vanish.
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Before the construction of the general theory two basic elementary types of such random
functions were known:

(1) The normal type then the characteristic function f,(t) is given by the formula
log fu(8) = n (it - =5), (2.22)
(i1) The Poisson type then the characteristic function f,,(t) 1is given by the formula
log f,(£) = nA(e* — 1), (2.23)

By combining (2.22) and (2.23) then we get the formula is
log fu(8) = n{iut = ==+ 2 [*7(e — 1) dF (1)}, (2.24)
log f,(t) =n {i,ut — ? + f_ooo(eitx —1)dM(x) + f0+°°(eitx - 1) dN(x)}, (2.25)
where f_()oo(eit" —1)dM(x) = limg_, f_aoo(eitx —1)dM(x), a <0, and

Jy (e —1)dN(x) = limg_ [, (e — 1) dN(x), a >0,

2t2

iut — 02 + f_Ooo(eitx —1—itx) dM(x)

then log f,,(t) = n - (2.26)
" + f0+ (e** — 1 —itx) dN(x)
22 ¢ itx s itx
_ : _ itx _ 1 _ itx _ 1 _
log f,,(t) = n<iut > + J(e 1 T xz)dM(x) +J (e 1 T +x2) dN(x)
“o 0
and
0 +00
1 0 = iut 02t2+j(itx " itx )dM()+f(“x 1 itx )dN()
08/ () =1t == ¢ 1+a2) Y ¢ 1+ax2)
o o

Theorem 2.6.5. The Levy-Khinchine canonical representation:

The function f (t) is the characteristic function of an infinitely divisible distribution if and only
if it can be written in the form:
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) ; i 2
log f(t) = iut + f_oo [e‘tx -1- 1132] 1%d(?(x), where 1L is a real constant, G(x) is a non-

_$+2
decreasing and bounded function, such that G(—o0) = 0 and the integral at x = 0 is equal Tt ,

. i itx 11+x? —t2
ie., {[eltx —-1- 2] . } = —
1+x X x=0 2

Theorem 2.6.6. The Levy canonical representation:

The function f (t) is the characteristic function of an infinitely divisible distribution if and only if
it can be written in the form:

itx
1+x2

itx
1+x2

log f(t) = iut — %th + f_Ooo [e“x —-1- ]dM(x) + fooo [ei“‘ -1- ]dN(x),

where u is a real constant, 6% is a real and non negative constant and the functions
M (x), N (x)satisfy the following conditions:

i M (x) and N(x) are non-decreasing in (—oo,0) and (0, +0).

0 g

(i)  M(=o) = N(+) = 0.

(iii)  The integrals f_Og x2dM(x) + fos x2 dN(x) are finite for every & > 0.

Theorem 2.6.7. The Kolmogorov canonical representation:

The function f(t) is the characteristic function of an infinitely divisible distribution with finite
second moment iff it can be written in the form:

dK (x)

x2 "’

log f(t) = iut+ [ [e* — 1 — itx]

decreasing and bounded function, such that K(—o) = 0 and the integral at x = 0 is equal

where u is a real constant, K(x) is a non-

2

t
2 »
2

i.e.,{[e‘” —1—itx] x_lz}x=o =—.

2.7. Mixtures of stable distributions

In this chapter we consider the mixtures of stable distributions [6]. This paper extends the result
of Mladenovi¢, P., [20].
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Our result will make use of the two Theorems from [17] (for general reference, see also [25,
24)).

The first Theorem (1.5.2) in chapter 1, which is Theorem 1.6.2 from [17], enables us to
determine the domain of attraction and its type for our common distribution function.

The second Theorem (1.5.12) in chapter 1, which is Theorem 1.5.1 from [17], enables us to find
the normalizing constants a,, and b,, in (1.2).

The following property 1.2.15 in [27, p.16 -18], will be useful in our proofs.

Property 2.7.1. Let X ~ S, (0,8, 1) with 0 < a < 2. Then

1+
lim x*P{X > x} = C, zﬁU‘x,
X
: 1-p
lim x*P{X < —x} = Cu —L 0%,
X—> 2
1-a ]
- T (2—a) cos(FA) if a #1,
where C, = Uo x~ % Sinxdx) t_ 2(2 a) cos(™4/,)
/n if a=1.

As a special case, if X ~ S,(0,0,0),thenas x - ,
P(X >x)~ a“%x‘“.

Suppose now X ~ S,(a,—1,0). Since § = —1, property 2.7.1 gives lim,_, x*P(X > x) =
0,i.e., P(X > x) tends to O faster than x™* as x —

When a >1,=-1asx— ,

a

1 Lﬁ o X \a-1
P(X > x) ——m(a_ﬂ(m) exp( (a—1) (m) ) (2.27)

a

-1

where @, = a(cosg(z — a)) “.

Whena =1,

n -1
P(X >x)~ \/%_ﬂexp <—% — e("/zf,—)x—l)
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Remark 2.7.2. When 1-— Fi(x)~x_“iCai#a“i, i=1,2, then when 1< a; < a,, the

1-Fy (x)

distribution F; (x) is one with the heavier right tail because R
—r2

—>o0oasx —

However, in the case when f = —1 and the right tail of the distribution of F;, F, is given by
1 @D a1\ .
P(X >x)~ m(ax?a)z( v exp (—(a -1 (ai@) 1), withl < a; < a,

(Equation (1.2.11) from Samorodnotsky and Taqqu [27]), the situation is the opposite one,
1-F; (x)
1-F,(x)

namely F, is the distribution with the heavier right tail, since we have - 0asx—

Theorem 2.7.3 reflects this property.

Main Results

We are now ready to determine the type of the domain of attraction and corresponding
normalizing constants for our mixture.

THEOREM 2.7.2. Let (X,,) be a sequence of independent random variables such that

S,(01,0,0), with probability p,

wherep,q > 0 and X ~ S,(0,0,0) denotes the stable distribution with
P(X > x) ~0“%x"“ and 0<a <2, g, # 0,.

Let My, = max,<j<n Xj . Then, the limiting distribution of My, is given by
P{an(hhl_'bn) <x}- exp(_ﬁx_a); n-—- .,
where the normalizing constants a,, and b, are given by

-1
a, = (nC)« and b, =0,

Cq0y

with C=(pA+qB),A=C“2—aix and B = >

The proof can be found in [8]. We give another proof in this chapter. The proof has two main

parts. In the first part we obtain that the distribution function of M,, belongs to the domain of
attraction of Fréchet distribution. After that we determine the normalizing constants.
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Proof: The distribution function of the random variable X is given by
F(x) = pF;(x) + qF,(x) where X; ~S,(07,0,0) and X, ~ S, (05, 0,0).

Then 1-—F,(x) = P{X; >x}~Ax"%and1— F,(x) = P{X, > x} ~Bx™%,

Cq 02

where 4 = and B =

For the function F(x) = pF,;(x) + qF,(x), we obtain
1—F(x)~ Cx~ % whereC = (pA+qB), x -
We now consider the asymptotic behavior of the tail 1 — F(x), asx —» . For x > 0, we have

1-F(tx) . C(tx)™® lim x-
MTIoFD e et

a a

11 =x"%

That’s why, the distribution function F (x) belongs to the domain of attraction of the function
G, (x), and we have the type (II) of extreme value distribution, i.e. there exist
constants a,and by, such that the following equality holds true:

P{M <— " + b } - exp(—x~9%).

n
We now determine the constants a,and b,,.

-

Let us first determine the constant u,, such that 1 — F(u,) ~ %x asn— ,i.e.

1—pF,(u,) — qF,(u,) ~ %x‘“ as n = . That means
Cluy) %~ %x‘“ ,h — , and we obtain
U, ~ (nC)l/ax, as n —

Using Theorem 1.5.12 we obtain
1/ —a

P {Mn < (nC) /e x} - exp(—x~%), asn—> . (2.28)
X

But P {Mn <X+ bn} = G(x). (2.29)

Now we compare the equation (2.28) with the equation (2.29). We obtain

a, = (nC) "« and b, =

Caal

where C = (pA+qB),A = ,B = Ca%2” ond G(x) =exp(—x~%). O
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THEOREM 2.7.3. Let (X,,) be a sequence of independent random variables such that

S, (0g,—1,0), with probability p,
X, ~ { @ ) P yP foralln (2.30)

Sa,(0,—1,0), with probability q,

wherep,q >0, 1 < a; < a, and X ~ S,(0,—1,0) denotes the stable distribution with the tail
behavior given by formula (2.27).

Let My, = max,<j<n Xj. Then the limiting distribution of My, is given by

X
P{Mr*l < pr + b;‘l} - exp(—e™¥),asn - oo,

n

where the normalizing constants are

inn /a2 =22 1 1(2InqAsBy-Inl
« _ a Inn « _ p a2 az— nqAzB,—Inlnn
ay = ——=; and b, = B, { ey T ( )} ,

1
az—1 a
g B, *2 Inn @2 z 2inn /a2
2

a %4
(azo/-(;z)z(azz_l) , BZ == (az - 1)(“20{&\2)?_21 and

_ 1
2Tty (0.’2 —1)
-1

Oq, =0 (cosg(Z — az))z.

where A,

In this case the proof has also two main parts. In the first part we obtain that the distribution
function of M, belongs to the domain of attraction of Gumbel distribution. After that we
determine the normalizing constants.

Proof: We have that:

Y aj
1-Fx) = ijz(“f"l) exp {—Bjx“f‘l},

a]- —aj

= (aja’\aj)z(“fj>0andBj=(aj—1)(aj5;])ﬁ>0,j=1,2

J2raj(aj—1)

where Aj =

Ya

_1/0(2

Oq, = a(cosg(Z - al)) ' and Oq, = a(cosg(z - az))

For the distribution function F(x) = pF;(x) + qF,(x), we obtain
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1-F(x) =p(1-F®)+q(1 - K),

—7% L —ay a
1—F(x) = pA;x2(@-1) exp {—leal—l} + qA,x2(@=D exp {—Bzxaz—l}.

- ar A a _ aq azl all
Then 1 — F(x) = qA2x2(a2—1) exp {_Bzxaz—l} p_Alx2(a’2—1) 2(a1-1), eBzva— — Byx%1~ + 1 )

qAz

a2 (450
a a T T <
But 1 < a; < a, and so > —2— 50, x2(@-D 20@-D > (Qasx > |,
2(a1-1)  2(azx-1)

az a3
Bzx“Z_l - leal_l

and e — 0asx » . We obtain

—az az
1—F(x) ~ qAyx*@2-) exp {—Bzxaz-l}.

We now consider the asymptotic behavior of the tail 1 — F(x), asx - . For x > 0, we have
_az
1-Flt+xg(t) _ . q4:(t+ xg(t))z(az 5Ty o~ Ba(t+ag ()21

= 1=F®) ” qA, t7@-D), e—th"‘ZEl

az
_—9%2 _ —th‘lz-l{ 14228 @D 1}
=lim,, (1+ x@)z(‘“‘” e (1445) 2.31)
= {( 9(0) @~ =y
—Byt@2~1(1+xL= @° 1] _ag
Now: e ~ e & Byte-t {1 +x—22_ 9O _ 1} ~ X
(az—l) t
1 az - 1 -1
e gt) ~ —. t@a-1
g(®) B o
t\(a —1) a t t
Then (1+x&) ’ {1+x. 2 .g( )},when x&isnearzero.
t (a, — 1) t
-1 _—1
Now, take g(t) = Bi . afx—l te2=1 and substitute g(t) into ( 2.31). We obtain
2 2
a - 22
—a, —thsz2 {<1+x 12 aizltaz >(a2 1)—1}
lim,_, 1-F(txg(®) _ lim;_, (1 +x t = )Zmz Ve ,
1-F(t) Bz az
i lar-1 @ i T et (P T
Y
t— t—
= ltim e Xto() ==X a5t —»
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—ay
—ay

. . 1 a—-1 2(apy-1)
since lim,_, (1+xB—.Z—t“2—1) ' Ss1ast -
2 2

Therefore, the distribution function F(x) belongs to the domain of attraction of the function
Gy (x), and we have the type (I) of extreme value distribution, i.e. there exist constants a,and b,,,
such that the following equality holds true:

x
limP {M,‘; <—+ b,*l} = exp(—e™).
n- an
We now determine the constants a,, and b,, .

. 1 _ .
Let us first determine the constant u,,, suchthat 1 — F(u,) ~ —e Yasn - |, ie.

1
1—pFi(un) — qF;(un) ~ ze_x an- .,
—-ay azl
2
qA U2 e Batn" T %e‘x asn— . (2.32)

Asymptotic relation (2.32) can be written in the following way:

an az
1 _, 1 2(az—1 @2-1
-e x.—.un( 271 gBauy
n qAz

— 1, by taking logarithms we get

az
a

—Inn—-x-Ing—1In4, +2(Tz_1)1nun+32u;’;2‘1 - 0. (2.33)

a2
az—-1

It follows from (2.33) that Bz;;”n - 1, asn— , and

Inu, = “jl—‘l (Inlnn — InB,) + o(1). (2.34)
2

The relation (2.33) can also be written in the form

%2
Bu;? =x+Inn+Inqg4, — %ln u, + o(1). (2.35)
o

Now we substitute the value of In u,, from (2.34) into (2.35). We obtain

a2

Bzuaz—l :x+lnn+lnqA2 /BZ —%lnlnn‘l’ 0(1)F

n
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az—l
1 az
az-1 x +1InqA,\/B, —5Inlnn 1
u, = (B;'Ilnn) @2 {1+ 2 +0(—) ,
Inn Inn
1—0(2
_ B,*® a,—1( x InqgA,/B, Inlnn 1
U, = Taz 1+ + — +o|—),
a, \lnn Inn 2Inn Inn
Inn @
1-ay 1-ay
_ an _— — —
Uy ~ %2 1-BZ — X + BZ“Z { 1—6!2 + = 1<21nqA2\/% lnlnn)}
% nnaz Inn @2 a2 2lnn /a2

. X
Since un~a—*+b;“l, asn — ,we have
n

1 1-ap
x« _ a Inn faz d b*=B® 1 a;—1 (2InqA;/B—Inlnn
a’n - 1-ap an n — 1-ap + 1 )
_ 2 /
az—1 Inn @2 a 2lnn /@2

B, %2

2

__%2 —az
2@2-Y and B, = (a, — 1)(&20’;2)“2‘1 . O

1 o~
where AZ = W(QZUCKZ)

Sa,(01,—1,0), with probability p,

Remark 2.7.4. If we consider X,, ~ {Saz (6,,—1,0), with probability q,

-1

instead of (2.30) the statement of Theorem still holds with 6, = o5 (cos % (2 - az))“z.

THEOREM 2.7.5. Let (X,,) be a sequence of independent random variables such that

S,(01,—1,0), with probability p,

Ko™ {Sa (0,,—1,0), with probability q, foralln

where p,q >0, o, > 0, and X ~ S,(0,—1,0) denotes the stable distribution with the tail
behavior given by formula (2.27).
Let My* = max,<j<n X;. Then the limiting distribution of My" is given by

X

P {M,*l* <=+ b,*l*} — exp(—e™*),asn — , where the normalizing constants are

*%
an
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1_
s _ @ mn'/a d b = BTa 1 + a—1[2InpAz,/Bz—Ininn
An =4 =z an n =3 1-a a 2inna ’
B,“ Inn a nn
1 _a —a
where A3 = ——=(ad,1)*“ Y, B3 = (a—1)(ad,1)** and
37 [zna(a—1) ( a,l) » By = ( )( a,1)

Og1 = 01 (cosg(z — a))_l/a.

In this case the proof has also two main parts: in the first part we obtain that the distribution
function of M;" belongs to the domain of attraction of Gumbel distribution. After that we
determine the normalizing constants.

Proof: Since o7 > 0, thend,; > d,,.
As before we compute asymptotic behavior of the tail 1 — F(x), asx — +

Similarly as in the proof of Theorem 2.7.3 by finding the dominant part of the distribution, we
obtain

1—F(x) ~ pAzx2@-1exp {—B3xﬁ},

where A; = (a671)*@ Y >0, B3 = (a— 1)(6{0’0;1)ﬁ >0 and

1
J2ra(a—1)
-1

Og1 = 0y (cosg(Z — a))

We now consider the asymptotic behavior of the tail 1 — F(x) ,as x - . Forx > 0, we have

. .
1= F(e+xg(t) _ | pAs(t +xg(6) @D, e Pulttro(®)s

im im —
t— 1-— F(t) t— pA3 . tm e_Bgt%

a
J)\a-1
1+XT) - 1}

_—@  _B t%
x@)z(“‘”.e : [( (2.36)

= lim,_, (1 +

« _a
-Bs tﬁ{(ﬁx@)“‘l - 1]
Now: e ~ e™*
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Now, take g(t) = Bi . a7—1 ta-1 and substitute g(t) into(2.36). We obtain
3

a
[24 _ - a—1
-a —Bsta—1 (1+x$ta—1) -1
a-1, =% \2(a-1)

o 2

1-F(t+xg(t)) —a
a

. . 1
llmt_, T(t) = hmt_> (1 + XB—3

)

_a 1 =@ —@
. —B3ta_1{(XB—.ta_l)'l'O(ta—l)}
= lime 3 ,
t—o

-x+0(1) — e ¥

= lime ,ast -
t—

a

. . 1 a-1,-% _—
since lim,_, (1 +x o et )2(“ Y5 1ast—o
3

Hence, the distribution function F(x) belongs to the domain of attraction of the function
Gy (x), and we have the type (I) of extreme value distribution, i.e. there exist constants a,and b,,,
such that the following equality holds true:

*k
n

x
limP{M,*l* <—+ b;‘l*} = exp(—e~%).
n—

We now compute ay” and by, .

We first find u,,, suchthat 1 — F(u,) ~ %e‘x asn-— ,ie.

—-a a

_ _ a—1 1 _
pAsul“ ™V e Bsun T ~ —e¥,asn—> . (2.37)

Asymptotic relation (2.37) can be transformed in the following way:

a _a_
le"“.p%.ufl(""l). eBsin ' - 1, by taking logarithms, we obtain
3
= _ a
Bsu;™ = x +Inn+InpA; @D Inu, + o(1) .

B3uF =x+Inn+InpAds;/B; — %lnlnn +0(1),

1

a-1 x +InpA3;\/B; —5Inlnn 1

u, = (B3'Inn) 1+ % +0( )
Inn Inn

1-a
a-1 B“ 1?711 1 a-1(2InpAs,/B3—Inlnn
un ~ . 1 X + B3 - 1-a + - 1/
Inna Inn «a @ 2Inn’a
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X

Since u, ~ — + b;", asn— ,we have
n
1 1-a
. a Inn'/a - o 1 a-1(2InpAz,/Bs—Inlnn
an =] "1=a and by =B, Tt —— 1 )
a Bg,T Inn @ a 2Inn/a
1 _a -«
where A; = ———=(ad,1)** "V and B; = (a — 1)(ad,1)*t. O
3 1/27wt(0¢—1)( a,1) 3= ( )( 05,1)

2.8. Mixture of an infinite sequence of independent normally distributed

variables

Also, in this chapter, we study distribution of extreme values of a mixture of an infinite sequence

of independent normally distributed variables with the same mean and an increasing sequence of
standard deviations [7]. This paper also extends the result of Mladenovi¢, P., [20], where
extreme values of mixture of two independent normally distributed variables were studied, to the

case of a mixture of an infinite sequence of such variables.

We will show that the common distribution function of a mixture of an infinite sequence of

independent normally distributed variables belongs to the domain of attraction of type (I).
Thus, limiting distribution of the maximum of the mixture is given by
P(an(My, —by) <x) > e,

with the normalizing constants a,, and b,, also computed in this paper.

Our result will make use of two Theorems from [17], the first Theorem (1.5.2) in chapter 1,
which is Theorem 1.6.2 from [17], enables us to determine the domain of attraction and its type

for our common distribution function.

The second Theorem (1.5.12) in chapter 1, which is Theorem 1.5.1 from [17], enables us to find

the normalizing constants a,, and b,, in (1.2).

In this paper we consider an infinite sequence of normally distributed random variables,

Zi~N (ug, 02), such that

Uk = Mo, k21
and 0<o0y<0,<-<op—>0gyask — oo.

The distribution function of variable Z; is
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—¢2

F,(x)=P(Z, <x) = d)(x;,’:"), where ®(x) = [~ oo\/:e 2 dt.

Then a random variable X which is a mixture of an infinite sequence of variables Z;, Z,, ..., Z, ...
with probability py, P2, ..., Pk, Qre1Pr = 1, has the distribution function given by

F(x) = B, pi @ (52). (238)

Main results

We are now ready to determine the type of the domain of attraction and corresponding
normalizing constants for our mixture.

Theorem 2.8.1 Let (X,,) be a sequence of independent random variables with common
distribution F (x) defined by (2.38), then F belongs to the domain of attraction of Gumbel
extreme value distribution, i.e., there exist norming constants a, > 0 and b,, such that

limyysoo P (M < 2=+ by ) = limy e F (= + by, ) = exp(—e ™), where
M, = max{X,X,, ..., Xn}.

1 _xz/ x
Proof: Let @(x) = e 2 and ®(x) = @(t)dt.

We shall use the following asymptotic relation
1-d(x) = %(p(x)(l + R(x)) where R(x) - 0 as x — oo.

Suppose Xj, € N(uy,0f) for k € N. Then

R - Z:v:lpk ((p (t ;kuk) t fk/u) (1 +R <t —Uk,uk)).

Let Ry (£) = MaX;<g<oo |R (S ”")|.

. t— t—
Since p = pg and o < gy, fort > 0 we have % = 0—“0
k 1

Therefore, since R(x) » 0asx —» o, R,(t) > 0ast - .

Hence, |1~ F(8) = 2 pe (0 (524) 725)| < e O Zizapie (0 (52) 25) = 0, as t - oo

O / t—lg Ok / t—lg

Therefore
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1-F(t) = o(1) + Ny i (0 (52) 2 ),

Ok / t—pk

- #k)

1—F(t)+o(1)—\/_zk1 t_#kez(ok ,

1 o _Lt—po e ot —
1-F)+0(1) =——¢ a( oo) z pk_k_“o __Ak(t)'

V2wt — U k=1 Oot — Uy
AT %
where A, (t) = (o_k) — (0_0) )
1 0, _Lrt=pg)?
1—-F()+0(1) = \/T_T[t —O‘L[O e 2( %o ) p(t),
1
where p(t) = Sy py 22 e 2,
k
0.2
Let g(t) = t_°
p(t+xg(0)

We have to prove that - last — oo,

p(t)
Note that p is an analytic function. Using the Taylor expansion with the Lagrange form of the
reminder, we get p(t + h) = p(t) + p'(é)h, wheret <& <t +h,

pEHn) _pO+p'©Oh P

p) — p@® p(t)

Put h = Xg(t) = :

Note that h - 0 as t — co.
We have ht; = xoZ where t; =t — .

Since or assumption is that y;, = p,, we have

t—o\ 2 t— 1 1 1 1
Ak(t) = (a_kuo) - (ﬂ) tl ( - —2) = 6kt%, where 61( = U_]% -

0o k (<) 21}

—28xt?

Hence, p(t) = Xi- 1pk—e 2

We now compute, using for instance the Dominated Convergence Theorem to justify term by
term differentiation:
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[ee]
O 1 2
p'(t) = —z Pr — Oktie 20kt
k=1 Og

,(t) «© Oy _1o 0
P Z P — Se 20k,
t1 k=1 0o

Note that 6, —» 0 as k — oo.

Note also that |p'(t)] is a decreasing function of t, and hence I;T(tf)) h - 0if 1;(—(;) h - 0.

p'(t)
t1p(t)

2
Since h = xg(t) = xtﬂ, if x is kept constant, the condition — 0 ast — oo will imply
1

p—(t)h—>0ast—>00.
p(t)

We have:

, 52 pe 2 se7E
p'(t) o= 0y

p(Dt;

Sxtt

p T 0ast; = o,
© k6 —50kt]
_ —0,€e 2

k=1 Pk 0, Ok

and therefore

p(t+xg(t))
o = 1+o0(1)ast — oo,
Note also that if x is kept constant, b -1+ o(1) ast - o too.
t1+xg(t)
. p(t+o(7))
We have in fact also proven that 0 14+0(1)ast - oo. (2.39)

We now consider asymptotic behavior as x — oo.

For x > 0 we have, as t — oo

1-F(t+xg(0) _ d-(ta+xg(®)" t,  p(t+xg(®)

e 205
1-F() ty+xg(®)  p(o)
x2g®)?* _xg(t)ty
=e 29 e 9 (1+0(1)).

(1+0(1))

2
Recall that g(t) = :—", and hence
1

56



SHNEINA EXTREME VALUES IN SEQUENCES OF INDEPENDENT RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

2 2
1—F(t+xg(t X9
1(—F(t?( ) =e 20 e*(14+0(1))>e*ast— oo,

We conclude that the distribution function F(x) belongs to the domain of attraction of the
function G,(x), and we have the type I of extreme value distribution. ©

Now we proceed to find the normalizing constants a,, and by,.

Theorem 2.8.2. Limiting distribution of the maximum of the mixture, in notation of the previous
theorem, is given by

P{a (M, — b)) < x} > e™¢"", where

V2inn

o
ay = p— b;‘l=/,to+00V21nn—ﬁ(lnlnn+ln4n)—Tn,
0

with t, > 0 the smallest positive solution of an equation

Op Op
T= In +o,V2lnn —————(nilnn+ ndn) — 1
v2inn P(ko 0 2v21nn( ) )

When 2 Inn — %(ln Inn+Indmr) > |Inp(uy)|, and 0 otherwise.

Proof: Let v = @ and v = @, so that
0 k

Fi(u,) = CI)(U,SR)).

We have (see proof of the previous theorem)

o 0 €3] )
1— Zk=1pk ‘b(v,(lk)) N Dk=1Dk (P(Un ) 1 _%(V‘I(IO)) p(un)(l N 0(1))’

= e
b ® V2
where
® O Un —Ho _Ia )
=3 Tt e
Piitn k=1pk Op Up — Uk
U, — 2 U, — 2 1 1
Ak(un):<” ”k) —<n ,uo) :<—2——2>u,21+Aun+B—>ooasn—>00.
o 0o o; 0}
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Hence the constant u, should be determined from the conditions v(o) _uno—u °,
0
Le. Uy = o + ooy, v and
o) s
p(un) =@~ RO ~ze'x asn — oo, (2.40)

This asymptotic relation can be rewritten as

0
1 WO 1

npGun) (v (0))

Or, by taking logarithms,

—Inn— ln(p(un)) -x+ ln( (0)) In ((p(v,(lo)» -0,

which is equivalent to

—Inn— ln(p(un)) -x+ ln( (0)) (—%ln 21 —%(v,(lo)f) -0,

ie.
—Inn—1In(p(u,)) — x + ln( (0)) Zln2m 4= ( (0)) - 0.

(0)
Provided that ln(p(un)) =0(1), we will have % — lasn - o, and hence, by taking

logarithms again
2 ln( (0)) —In2—Inlnn =o0(1).
Hence

1n( “’)) ~(In2 +Inlnn) + o(1). (2.41)
Substituting back this expression for ln( (0)) we find

2
%(v,(lo)) =x+Inn+ ln(p(un)) — %ln 4 — %ln Inn + o(1). (2.42)

ln(p(un))

Conversely, if (2.42) holds and = 0(1), the right hand side of (2.42) will be equal to
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In n(l + 0(1)) and hence, taking logarithm of both sides, we see that (2.41) will also hold, and
hence (2.40) holds as well.

We will choose a sequence u,, so that it satisfies ———= (p(u”)) o(1).

For this, it is sufficient that u, = o(Vln n) asn — oo,
To check that this is indeed enough, we use the assumption that p;, = y.

Hence the formula p(u,,) = Yoy Pk Tk e 361 (Un—Ho)?

1
holds, and p(u,) > pzﬂ e—E5k(un_ﬂ0)2,
0

pkdk)
0o !

i Inp(up)| < 38k Cun — 10)? ~n (

Now using u, = o(VInn), we get

[In p(uy)|

ln(p(un))
Inn n

< 8,0(1), for every k, and thus = 0(1), since 6, » 0 as k — co.

Now let us find 12 so that (2.42) holds.

Letw,, = yy + opv2Inn — (Inlnn + In4m).

Jo
2vV2Inn

Note that p(¢y) = Dp=1 Pk % is the maximum of function p, and for t > u, the unction p(t) is
0

decreasing.

Define 7, to be 0 when w,, — oy < \/ZUTOW |ln(p(,uo))|, and T, to be a solution of an equation

T= \/;"W |ln(p(wn — T))|, (2.43)
otherwise.

The solution to (2.43) exists and is unique when w,, — yy > \/ZJTO_M [In(p(wo))|, since the right

hand side of (2.43) is a decreasing function of 7 for 0 < 7 < w,, — Uy, and becomes smaller than
the left hand side for T = w,, — .

The solution will satisfy 0 < 7,, < w,, — U

But since w,, = 0(\/ln n) we will have that p(w, —1,,) = o(Inn) and hence 7 = 0(\/1n n),
because of (2.43).
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Note that since w,, = 0 as n — oo, for n sufficiently large the condition

Wy, — fo > «%m |In(p(1o))]| will be satisfied.

OpX

ill th n = - —_
We will use the sequence u,, = w,, — 7, + Nt

Note that since t,, = O(Vln n) we have u,~ gyv2Inn.

Taking square roots in (2.42) and using Taylor expansion for 1/ (1 + €) , we see that

v,§°) =+/2Inn (1 + ﬁ (x — —ln A — —ln Inn + ln(p(un))) +0 (lnn))' (2.44)

Is needed in order to have (2.40), in addition to u, = o(Vln n)

For n sufficiently large, we will have t,, = \/an |ln p (un - \/%N

Inplun,
Using u,~ ggV21Inn and (2.39), we get that |(|— le‘”‘)‘ =1+ 0(1) and hence

1
T, = —T(fl‘;n lInp(u,)| + o (ﬂ)

Therefore (2.44) is equivalent to

= 1o + ooVZInn (1 + i (1= g4 — I n+In(p(un)) + o (mn))’

v2Inn — (InlInn + In4m) — ‘L'n+0< -

)

_ + OpX
n = Ho T omm 2\/21

1
Un = Wn + VzInn T+ 0 (\/lnn)'

OpX

V2Inn'

The last equation is obviously satisfied for n large enough, since u,, = w,, — 7,, +

Note that for u, the relation u, = O(Vln n) also holds, since u,~ ogV2Inn, and so the

(0)

corresponding v, ~ will satisfy all the equations used in the above calculation.

. . . . . X
This gives us the required constants in the expression u, = —~+ by:
n

i} Vv2Inn
a, = —




SHNEINA EXTREME VALUES IN SEQUENCES OF INDEPENDENT RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

by, = py + opV2Inn — 2\/:‘I’W(lnlnn+ln4n) — Tp

Where 7,, is the solution of equation (2.43) when w, — u, >\/;+W|ln(p(,uo))|, and 0

otherwise.

2.9. Conclusion and Future Research

In Theorems 2.7.2, 2.7.3 and 2.7.5 we established the exact distribution of extreme values for
sequences in the following cases (see statement of the theorems for details):

) S«(04,0,0), with probability p,

1) Xu { S.(c,,0,0), with probability . foralln. (Theorem 2.7.2)
B Sq,(0,—1,0), with probability p,

(1) X, ~ { S, (0,—1,0), with probability . for all n. (Theorem 2.7.3)
S«(04,—1,0), with probability p,

(i) X, {S(x(o-Z; —1,0), with probability . foralln. (Theorem 2.7.5)

Our results show which domain of attraction the extreme value distributions belong to. In the
first case, we have the domain of attraction of the function G, (x), while in the second and in the
third case, we have the domain of attraction of the function G,(x) .

We also obtained the normalizing constants and we found that they can depend on the first
component of the mixture, on the second component or on both of them, namely:

(1) In the first case they depend on both of components of the mixture.
(11) In the second case they depend on the second component of the mixture.
(ii1))  In the third case they depend on the first component of the mixture.

Thus, we conclude that in all cases, the heaviest tail dominates the limit.

In Theorems 2.8.1. and 2.8.2, we have shown to which domain of attraction the extreme value
distributions of an infinite mixture of normally distributed variables belong to.

In Theorem 2.8.1, we have shown that the domain of attraction is of the function G, (x).
In Theorem 2.8.2, we have also obtained the normalizing constants.

In determining the normalizing constants we had to solve for the correction factor 7, which was
not explicitly given.
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The magnitude of 7 depends on the rate of growth of the

- -1
function p, p(t) = XL, py LK o38O

0o t—Hk

For future research, one might try to find explicit constants under some assumptions about
growth of function p.

Furthermore, one can try to extend the results of this thesis by considering extreme values of an
infinite sequence of variables with some distribution different from the normal distribution.
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Mpwunor 1.

UsjaBa o ayTopcTBY

MoTnncaHu-a Ehfayed Khalifa A. Shneina

6poj ynuca 2001/2008

Usjasbyjem
[0a je AOKTOPCKa AucepTaumja nog HaC10BOM

“Extreme values in sequences of independent random variables with mixed distributions”

® PE3yNTaT CONCTBEHOI UCTPA*XMBAYKOT paaa,

® [a npeasioXeHa gucepTtauuja y UeAVHM HU Yy AenoBMMa Huje Buna npeanoskeHa 3a

Jobuvjarbe 6uMno  Koje auniome npema  CTyAMjCKMM  NporpaMmma
BMCOKOLLKOJICKMX YCTAaHOBA,

® /1a CYy pe3yNnTat KOPEKTHO HaBeaeEHU U

® [a HMCaM Kpwwuo/na ayTopcKa MpaBa M KOPUCTMO MHTENEKTyanHy CBOjUHY APYrux

ua.

MoTnuc goKropaHga

Y Beorpaay,
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Mpwunor 2.

U3jaBa 0 MICTOBETHOCTU LUTaMMNaHe U efIeKTPOHCKe
Bep3nje AOKTOPCKOr paaa

Mme v npesume aytopa Ehfayed Khalifa A. Shneina
bpoj ynuca 2001/2008
Cryamjckm nporpam Matematika

Hacnos papga “Extreme values in sequences of independent random variables with mixed
distributions”

MenTop prof. dr Pavle Mladenovi¢

MoTnmcaHm Ehfayed Khalifa A. Shneina

M3jaBsbyjem Aa je WTaMnaHa Bep3nja Mor AOKTOPCKOr paja UCTOBETHA eNIeKTPOHCKO] BEP3Nju
Kojy cam npegao/na 3a objaB/bMBarbe Ha noptany OurutanHor penosutopujyma
YHusep3urerta y beorpaay.

[o3Bo/baBam ga ce objaBe MoOju AMYHWM NojauM Be3aHW 3a gobujarbe aKagemcKor 3Bahba
[JOKTOpPA HayKa, Kao LWTO Cy MMe U Npe3nme, roanHa n mecTo poherba 1 gatym ogbpaHe pasa.

OBM NMYHM NoZauM Mory ce 06jaBUTM Ha MpPEXHUM CTpaHMuama aurvTtanHe 6ubnvoteke, y
e/IeKTPOHCKOM KaTasory 1y nybankaumjama YHusepsuTteTa y beorpaay.

MNoTnuc aoKTopaHaa

Y Beorpaay,
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Mpwunor 3.

UsjaBa o kopuwhemwy

Osnawhyjem YHuBep3uTeTcky 6ubanoteky ,Ceetozap Mapkosuh® pa y [Aurutantu
peno3sutopujym YHuBep3uTteTa y beorpasy yHece mojy LOKTOPCKY AncepTaumjy nos Hac/1I0BOM:

“Extreme values in sequences of independent random variables with mixed distributions”
KOja je moje ayTOpCKO Aeno.

[ucepTtaumjy ca cBum Mpuaos3Mma npenao/na cam y enekTpoHCKom ¢opmaTty norogHom 3a
TPajHO apxuBupatLe.

Mojy [OKTOPCKY AucepTaumjy noxparbeHy y [urutanHu penosutopmjym YHuBepsuteTa y
Beorpaay mory ga Kopucte CBM KOju NOLWTYjy oapenbe caaprkaHe y ogabpaHom TUny AvueHue
KpeatusHe 3ajegHuue (Creative Commons) 3a Kojy cam ce oaay4uno/na.

1. AytopcTBo

2. AyTOpCTBO - HEKOMEpPLMjANHO

3. AyTopcTBO — HEKOMepLMjanHo — 6e3 npepase

4. AyTOpCTBO — HEKOMEPLMjaNHO — Ae/IUTU NoA, UCTUM YC0BMMA
5. AyTopcTBo — 6e3 npepage

6. AyTOpCTBO — AENUTU NOA UCTUM YCNOBUMA

(Monnmo pa 3a0KpyKuTe camo jegHy o WecT NoHyheHMX MLEHLM, KpaTak onuc INLEHLM AaT
je Ha nonehuHu nucra).

MoTtnuc poKTopaHaa

Y beorpagy,
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1. AytopcTtBo - [lo3Bos/baBaTe YMHOXKaBakbe, AUCTPUOYLMjy W jaBHO caonwiTaBake Aena, u
npepage, ako ce HaBege MMe ayTopa Ha HauuH oapeheH opf cTpaHe ayTopa MAM Aasaoua
NINLUEHLE, YaK N y KomepumjanHe cepxe. OBO je HajcnoboaHuMja o4 CBUX IULLEHLN.

2. AytopcTBO — HeKomepuMjanHo. [lo3Bo/baBaTe yMHOMKaBatbe, AUCTPUOYUM)y W jaBHO
caoniwuTaBarbe fena, U npepase, ako Cce HaBeAe MMe ayTopa Ha HauuH ogpeheH opf cTpaHe
ayTopa uau gasaoua nuueHue. OBa iMLEHLA He 03BO/baBa KOMepUMjanHy ynoTpeby aena.

3. AyTopCTBO - HEKOMepLMjanHo — 6e3 npepage. [Jo3Bos/baBaTe YyMHOXKaBake, ANCTPUOYLNjY 1
jaBHO caonwiTaBare gena, 6e3 npomeHa, npeobsMkoBarba UaM ynotpebe aena y ceom geny,
aKo ce HaBede MMe ayTopa Ha HauuH oapeheH oA cTpaHe ayTopa MM gasaoua suvueHue. Osa
NIMLUEHUA He A03BOJ/baBa KoOMepumjanHy ynoTpeby aena. Y ogHOCY Ha CBe OcCTasie AULEHLE,
OBOM /IMLLEHLLOM Ce orpaHmMyaBa Hajsehn 06um npasa Kopuwhera gena.

4. AyTOPCTBO - HEKOMEPLNja/IHO — AT NOL UCTUM YC/I0BMMA. [103BO/baBaTe YMHOKaBakbe,
ANCTPUBYLMjY U jaBHO caomnLiTaBake Aena, U Npepage, ako Ce HaBede MMe ayTopa Ha HauuH
ofpeheH o cTpaHe ayTopa UAM AaBaoLa NLEHLE M aKo ce npepaga AUcTpubympa nog uctom
WAN CAMYHOM nmueHuom. OBa AMLEHLa He [03BO/baBa KOMepuujasiHy ynoTpeby agena wm
npepaga.

5. AytopctBo — 6e3 npepage. [lo3so/baBaTe yYMHOMaBakbe, AUCTPUBYLMjY U  jaBHO
caonwTaBare gena, 6e3 npomeHa, npeobanMKoBarba MAM ynoTpebe Aena y CBOM ey, ako ce
HaBeZe MMe ayTopa Ha HauyuH oapeheH oA cTpaHe ayTopa WMAM JaBaoua auueHue. Osa
JIMLLeHL,A A03BO/baBa KomepLmjaaHy ynotpeby aena.

6. AyTtopcTBO - Aenutu nog wCTUM ycnoBuma. [o3BorbaBaTe YMHOXaBakeg,
ANCcTpnbyumjy 1 jaBHO caoniwiTaBawe Aena, U npepage, ako ce HaBeje ume aytopa Ha
HauuH oapefeH o4 cTpaHe ayTopa WM JaBaoua NUUeHUe U ako ce npepaga
anctpubympa nog WUCTOM WMNK  ciMyHOM nuueHuoM. OBa nuueHua [o3BOSbaBa
KomepuujanHy ynotpeby gena v npepaga. CnvyHa je copTBEpCKMM nuueHuama,
OLHOCHO Nu1LeHuama OTBOPEHOr Koaa.
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