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Rezime

Problem najmanjih ndrisobnih rastojanja dve konfokalne ekpt orbite (lokalni
minimumi), u literaturi poznat kao ¢an proksimiteta malih planeta, u novije vreme
prepoznat pod pojmom Minimal Orbit Intersection e — MOID zauzima veoma
zn&ajno mesto u astronomskim studijama, ne samo zbedikzije mogdih sudara
asteroida i drugih nebeskih telagvuezbogcinjenice da se analizom ponaSanja asteroida
pri bliskim prilazima mogu odrediti njihove masepmene orbitalnih elemenata i neke
druge vazne karakteristike. Bavese tim problemom u ovoj disertaciji vrSili smo
analizu funkcije rastojanja dve elifrtie konfokalne putanje malih planeta primenuju
kombinovane, analitko-numeréke metode ré&unanja proksimiteta.

Pregledom svih vaznijih rezultata u ovoj oblastissddine XIX veka pa do danasnjih
dana vidimo da se problem transformisao od reSavdwg transcedentne jediee,
raznim metodama i dugotrajnim aproksimacijama, dikasnih i brzih reSenja
vektorskih jedn&na sistema koji opisuje problem. U tezi je raavjjazlozen i
primenjen jednostavan i efikasan an&kt — numeriki metod, koji pronalazi sve
minimume i maksimume funkcije rastojanja, a poscedmoguédava da se odrede i
prevojne take. Metoda je idejno zasnovana na giadj interpretaciji Simovljevia
(1974) i na transcedentnim jednama koje je razvio Lazo¥i(1993). Testiranje
metode smo obavili na blizu 3 miliona parova rdalalipticnin asteroidskih orbita i
njene moguanosti i rezultate rkuna uporedili sa algebarskim reSenjima koja je dao
Gronki (Gronchi, 2005). Staj para konfokalnih orbita séetiri proksimiteta, koji je
metodom sltiajnih uzoraka i posle brojnih simulacija sa ré#hn vrednostima
putanjskih elemenata pronasao Gronki (Gronchi2208io je motiv da pokuSamo da
pronadjemo takav par medju realnim parovima adskii putanja. Zahvaljujil
efikasnosti metode koju smo razvili takva dva paugronadjena i njihovi parametri su
prikazani u ovoj disertaciji.

Osim ovog, dalja analiza funkcije rastojanja kramidacije sa preko 20 miliona
razlicitih parova asteroidskih putanja, dala je joS nigkointeresantnih reSenja funkcije
rastojanja. Rezultati takve simulacije dati suhliku tabelarnih i gratikih prikaza
raznovrsnosti reSenja funkcije rastojanja.

Klju éne reci: Male planete, Asteroidi, Funkcija rastojanja, Prokgeti, MOID.
Naucna oblast: Astronomija.

Uza nautna oblast:Nebeska Mehanika.

UDK broj: 523.44(043.3)



THE DISTANCE FUNCTION FOR MINOR PLANETS AND
PROXIMITY CALCULATION

Abstract

The problem of the minimal mutual distances for twamfocal elliptical orbits (local
minima), in the literature known as the proximitglaulation for minor planets and
recognised recently as Minimal Orbit IntersectioistBnce — MOID, occupies a very
important place in astronomical studies, not ordgduse of the prediction of possible
collisions of asteroids and other celestial bodims, also because of the fact that by
analysing the behaviour of asteroids during thecoenters it is possible to determine
their masses, changes of orbital elements and atigortant characteristics. Dealing
with this problem in this thesis the author haslys®l the distance function for two
elliptical confocal orbits of minor planets combigianalytical and numerical methods
for proximity calculation.

A survey of all relevant results in this field frame middle of the XIX century till our
days indicates that the problem has been transtbfroen looking for a solution of two
transcendental equations by applying various methaxadd approximations of long
duration towards efficient and rapid solutions ettor equations of the system which
describes the problem. In the thesis a simple dideat analytic-numerical method
has been developed, presented and applied. It ntsll the minima and maxima in
the distance function and, indirectly, makes itguole to determine also the inflection
points. The method is essentially based on Sima¢le (1974) graphical
interpretation and on transcendental equations loleed by Lazowd (1993). The
present method has been examined on almost thriennpairs of real elliptical
asteroid orbits and its possibilities and the coragpon results have been compared to
the algebraic solutions given by Gronchi (2005)e ™ase of a pair of confocal orbits
with four proximities found by Gronchi (2002), whapplied the method of random
samples and carried out numerous simulations witbrent values of orbital elements,
gave the motivation to try here to find out sucha@r among the real pairs of asteroid
orbits. Thanks to the efficacy of the method depetbin the thesis two such pairs have
been found and their parameters are presented.

In addition to the one meantioned above a furtinatyasis of distance function through

simulations including more than 20 million diffetgrairs of asteroid orbits has resulted
in several additional interesting solutions of thetance function. The results are given
in the form of tables and plots showing the diwgreif solutions for the distance

function.

Key words: Minor planets, Asteroids, Distance function, Proxies, MOID.
Branch of Science:Astronomy.

Field: Celestial Mechanics.

UDC number: 523.44(043.3)
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PREDGOVOR

Radei pod rukovodstvom prof. dr. Mikea Kuzmanoskog nséayiski rad upoznao sam
se sa problemom proksimiteta. Problemom proksimiteprethodna dva stéke bavili

Su se mnogi svetski stmjaci doprinosé njegovom upoznavanju u manjoj ili &g
meri. Medju njima prof. Dr. Mike Kuzmanoski i prodr Jovan Lazo¥i su ve&i deo
svog nadnog opusa posvetili ovoj temi objavivsi évebroj radova. Osim njih i
znaajnih rezultata koje su oni postigli problemu priakiseta dosta paznje posvetili su i
prof. dr. Vojislav MiSkowvé pre njih i prof. dr. Jovan Simovljavizajedno sa njima.
Jedna od ideja prof. dr. Jovana Simoviaviu problemu reSavanja proksimiteta
iskoriena je kao osnov za izradu magistarskog rada. kaBavani Gronki objavio
rad ‘ON THE STATIONARY POINTS OF THE SQUARED DIST™YCE BETWEEN
TWO ELLIPSES WITH A COMMON FOCUS’, (2002), u kojeeksplicitno analitiki
reSava navedeni problem izgledalo je da o tom pitaaista nema Sta viSe da se kaZze.
Medutim, vrativSi se pre nekoliko godina ovoj temi @@ sam da je u davremenu
objavljeno viSe natnih radova u kojima su se pojavili neki novi aspakSavanja
problema proksimiteta uopste, MOID-a posebno, g¢epskazalo da postoji neslaganje
teorijskih i prakténih reSenja, posebno sa stanovista broja stacidntfaka funkcije
rastojanja. To je zdo da problem proksimiteta nije izgubio aktuelnosato smo se u
ovoj disertaciji pozabavili tim problemom.

U disertaciji je generisan i upotrebljen kombinavametod r&una proksimiteta koji
omoguiava veu efikasnost izr&unavanja. Posledica je bila i znatn@iMeroj uporednih
analiza i kompletnija slika osobina funkcije raatgp.



1. UVOD

Pre svega treba isfacinjenicu da u astronomiji nisu tak&esti sl¢ajevi da neki
problem traje skoro dva veka i da pored mnogihayégresenja i rezultata on joS uvek
priviaci paznju kako astronoma tako i ostalih &raika iz razltitih oblasti. Upravo je to
slicaj sa problemom proksimiteta, pfemu hronoloski gledafu sa ove vremenske
distance, stie se utisak da se njegovo reSavanje odvijalo negekadno tj. postepeno,
upravo onim tempom kako su i dolazila nova saznhiigada su ona astronomska ili
matematika. Od reSavanja problema dve transcedentne {esnasukcesivnim
aproksimacijama bilo da su u pitanju prave ili ekgdéne anomalije, preko raznih
pojednostavljenja funkcije rastojanja, do primenezenog matematkog aparata i
diferencijalne geometrije.

U tom smislu, vratimo se nakratko dva veka unazpdpa ¢injenicu tada opSteg
uvazavanja Ticijus-Bodeovog pravila. Iz tih razlpggoosle otkda Urana, postojala je
sve veéa verovatnéa da na udaljenosti od oko 2.8 AJ mora postojangia. To se
zaista i obistinilo 1. Januara 1801. kada je @akki astronom Pjaci (Piaci) to dio.
Medutim, dimenzije tog nebeskog tela bile su mnogo jmad @&ekivanih i ta prva
mala planeta — asteroid dobila je ime Ceres. Od, tpdinje stalno otkrivanje novih
sli¢cnih nebeskih tela tako da ih sredinom XIX veka weaoko petnaestak.

Ovde zelim da istaknem da su do prve polovine XKaveastronomi sa ovih prostora
imali odredjeni doprinos iziavanju asteroida. Tako je Milorad B. Ptototkrio
tridesetak asteroida a jednom od njih otkrivenomQtobra 1936. godine u glavhom
asteroidskom prstenu, dao je ime Srbija. Pero Djitkotkrio je dva asteroida koji su
dobili imena po Milutinu Milankowiu i Zvezdari. Svakako treba naglasiti i da je prof.
dr. Vojislav Miskovt u svojim GodiSnjacima NaSeg Neba koje je sa s&ana
objavljivao na Astronomskoj opservatoriji u Beograd periodu od 1930. godine do
1962. godine iscrpno izveStavao o svakom pronalaskih planetoida kako ih je on
tada zvao i davao odgovarégustriéna objasnjenja.

U drugoj polovini XX veka bilo je numerisano &@ko 1500 asteroida; petkom
osamdesetih njihov broj raste na preko 2000, dokvgi skok usledio krajem
devedesetih, kada je bilo numerisano 13 000 asli@r& obzirom na neverovatan razvoj
tehnike poslednjih decenija, broj numerisanih astier raste iz dana u dan, tako da ih
trenutno ima preko tristo hiljada, a najveleo je otkriven i registrovan poslednjih
desetak godina.

Kada govorimo o njihovim kinemakim karakteristikama treba dieda je njihovo
kretanje u direkthom smeru a najvebroj ima putanje izmdu Marsa i Jupitera
(asteroidski pojas). U toj oblasti je njihova nameoncentracija jer se tu nalazi preko



99% svih do sada numerisanih objekata. Ipak, veid@voj posmatrgkih tehnika
poslednjih decenija omogava njihovo sve&e&e otkrivanje i van ove oblasti gak i
van Surevog sistema. Veliki broj asteroida, bliskost pajédd putanja asteroida pgk

I moguenost sudara na@ njima su glavni razlozi Sto problem najmanjihdugobnih
rastojanja tj. proksimiteta i njegova analiza uns\aspektima od njegove prve pojave
sredinom 19. veka, pa do danasnjih dana, ne gudktglnosti. Takodje u novije doba
te analize vrlatesto imaju za cilj izbegavanje sudara kasifi letilica sa sve w@®m
koncentracijom svemirskog otpada. Ako tome dodame gslénim metodama
izratunavamo i udaljenosti iznda Zemlje i asteroida, kao i da se ha osnovu pof@San
asteroida u proksimitetu (bliskim prilazima) vrgra&unavanje njihovih masa, reeidi
Sto su se poslednjih dvadesetak i viSe godina y @vasti v& ustalili termini kao Sto
su: Near Earth Asteroids (NEAyear Earth Object (NEO), Minimal Orbit Intersection
Distance (MOID), Potentially Hazardous Asteroidsl3) i Virtual Asteroids (VAS).

Moze se primetiti iz gore navedenih naziva i njitnogkratenica, da se danas, u eri
velikog tehnoloskog napretka, kako u oblasti posamgd tako i raunskih tehnika,
problem proksimiteta transformisao i s¥e&e dve transcedentne jediee koje
opisuju problem zamenjuju odredjena an&ddi reSenja i razni oblici funkcije
rastojanja. Velike modunosti r&unara i programskih paketa omdguaju nam
raznovrsne pristupe i ragiie analize problema proksimiteta. Near Earth Astkr
(NEASs) i Near Earth Objects (NEOs), su oblasti yirka se matematki modeli i
programski paketi za izéanavanje proksimiteta koriste iskdjyo za pronalazenje
asteroida i drugih nebeskih telge su putanje u pojedinim njihovim delovima izuzet
bliske Zemljinoj. Potentially Hazardous Asteroid3HAS) su, uslovno teno, ona
podgrupa gore navedenih asteroitlpe kretanje tj. mala vrednost proksimiteta sa
Zemljom predstavlja realnu opasnost za eventuakiétanje putanja i mogu sudar.
Virtual Asteroids (VAs) su nastali kao produkt iazlh matemaitkin modela za
simulaciju asteroidskih kretanja a sa ciljem danse osnovu njihovih putanjskih
elemenata joS preciznije i bolje definiSe funkegatojanja sa svim njenim stacionarnim
tatkama. S obzirom da pojedini proksimiteti mogu imadte vrednosti od prevojnih
tacaka funkcije rastojanja, uveden je i pojam Minin@ibit Intersection Distance
(MOID) koji se koristi za procenu rizika sudara &ta dva nebeska tela, a definisan je
kao rastojanje iznmil najblizih ta&aka oskulatornih orbita ta dva nebeska tela.

Imajuci sve to u vidu cilj naSeg rada je da na osnovugpash analitickih i drugih
reSenja i metoda za nalazenje proksimiteta nebewkdy posebno tela Stevog
sistema, napravimo proceduru i eventualno izgradmetod za pronalazenje svih
stacionarnih t&éaka dve konfokalne orbite uz pokusSaj da iscrpenaotswerijski mogta
reSenja i sltajeve, a Sto do sada nije uradjeno.

Svi rezultati analize proksimiteta i funkcije rgsigja, kao i ostalih kritinih tataka, bée
dati na osnovu putanjskih elemenata, koji su pavsthlih podataka sastavni deo
osnovne liste asteroida.



2. PREGLED VAZNIJIH REZULTATA U OBLASTI
PROKSIMITETA

2.1. Prvi radovi u oblasti proksimiteta i njihoviezultati

Sredinom XIX veka, kada je bilo otkriveno oko peist@ak asteroida, ameki,
astronom B. A. Guld. (B. A. Gould) i neila astronom H. A. Darest (H. A. d'Arest)
bili su prvi koji su pdeli da se bave ovom problematikom. Zrgajmedusobne polozaje
putanja asteroida, oni su pretpostavili da se pnuketi izmeiu dve planetoidske
putanje mogu &kivati u okolini relativnintvorova.

S obzirom da je proksimitet najmanje rastojanje adum dve asteroidske putanje,
smatralo se da on moze biti odteg zndaja za izdavanje kretanja asteroida. Direktor
betke opservatorije K. V. Litrov (K. V. Littrow) prvje ukazao na moguaost da se dva
asteroida ndu istovremeno (ili bar priblizno u isto vreme) urtgolozaju. On je tvrdio
da bi asteroidi imali uticaja jedni na druge akcsbinalazili dosta blizu, pod uslovom
da svi ostali porentaji (od velikih planeta), budu Stoctaje izra&unati | da bi se na
osnovu tih uticaja mogle iztanati mase asteroida.

To je nargito bilo moge kod asteroida koji su se dugo kretali "jedan gpateigog"
oko proksimiteta, skoro "paralelno”. Bez obzira @d.itrov ukazao na to, teée se E.
Stromgren (E. Stromgrem), direktor opservatorijgapenhagenu, pozabaviti time. On
je smatrao da proksimiteti asteroida od "samo" hle&kstotih delova AJ nisu dovoljni
da proizvedu merljive porerdagje na osnovu kojih bi se mogle izuaati, bar priblizno,
neke od masa asteroida. Kasnije se ispostaviloimasuprotno, tj. da upravo
izratunavanjem mausobnih gravitcionih uticaja mozemo dobiti najpoanzige
vrednosti masa asteroida. Vazno je napomenuti dasjel802. godine (odmah posle
otkrica Palasa), Gaus (Gaus) dao sugestiju da se maseidstmogu dobiti na osnovu
medusobnih gravitacionih efekata. Migim, zbog problema koji proisti iz ¢injenice
da su asteroidi veoma malih masa, Gausova nadarivstge tek posle 172. godine,
kada su mase Ceresa i Palasa prvi putdethe upravo po njegovoj zamisli.

Prvo izr&unavanje proksimiteta daje netkaastronom Grunert (Grunert) i to preko
opstih izraza za oddéesanje t&aka ukrStanja dvaju konusnih preseka u prostoraziz
su suviSe komplikovani, tako da su u praksi bibrekneupotrebljivi. Pored sugestija
koje je dao za miusobne uticaje asteroida, Litrov taleodaje i jedné&ne koje su imale
konkretnu primenu u reSavanju problema proksimitétamenljive veliine u njima su
ekscentidne anomalije (E i B i to je prvi put da se proksimiteti predstavljgjteko
njih.

Jednéine koje je on izveo imaju oblik:

asinE +B) - a€”sin2E +a'sinE + B') cosE, +a"'sinE +B")sinE, =0,

BsinE+C) -a,°e”sin2E, + Bsin(E, +C')coE + B'sin(E, +C")sinE = 0. 2.1)



U ovim jedna&inama a i @ su velike poluose, e ieekscentknosti doténih putanja, a
velginea ,a» a» B B B B B,B" C,CiC" funkcije putanjskih elemeama
uocenih planetoida.

Litrov je zbog nemogtnosti da na jednostavan i brzc¢ima lako date do parova
asteroida gde postoje proksimiteti, pribegao pesylj modela asteroidskih putanja od
Zice. Na taj n&n prvo bi otkrio kod kojih parova se putanje dgmol priblizavaju, pa
tek onda pristupao iz¢anavanju.

Interesantno je da je ovakav postupak ujedno odago da nde i priblizne vrednosti
heliocentrénih longituda poloZzaja proksimiteta. Ako se ovakadena vrednost
longitude nije mnogo razlikovala od longitude refabg ¢vora, Litrov je za pribliznu
vrednost longitude polozZaja proksimiteta uzimadema vrednost longitude. Taiju
vrednost polozaja proksimiteta odieao je sukcesivnim aproksimacijama.

Linser (Linsser) je bio slede astronom koji se bavio ovim problemom. Njegov
postupak se svodio na iztmavanje heliocentmih longituda, heliocentnih latituda i
potega udenih asteroida u ekvidistantnim razmacima. Upeanjem izr&unatih
potega i latituda i izdvajanjem onih parova za ksierazlike ovih vrednosti padale
ispod usvojenih granica, odiigao je vrednosti longituda proksimiteta. Litro\Linser
Su za najmanje ndesobno rastojanje usvoijili iznos od 0.1 AJ.

Sin astronoma Galea (Galle) (koji je otkrio NeptuA) Gale (A. Galle), u svojoj
doktorskoj disertaciji formirao je jedtiae za minimalno rastojanje izihe putanja u
obliku:

Asin(E, +A) = zisin2 #sin2E + asin(E + A),
3,

2.2)
A'Sin(E + A\") :%sinz 8, SIN2E, +a'sin(E, + A).

Velicine 4, A, A, N @ a A A mogu se predstaviti preko glomaznih i
komplikovanih izraza dobijenih posle niza smenaansformacija. Galle je, kao i
njegovi prethodnici, nepoznate E i E1 kaavao sukcesivnim aproksimacijama,
uzimaji za polazne vrednosti eksceniih anomalija one dobijene poorelativnih
¢vorova.

llustracije radi, tada je broj otkrivenih planetaidio 232, a Galle je konkretne rezultate
za neki od parova radio logaritmima ¢etiri decimale.

Direktor opservatorije u Nici G. Fajet (G. Faye#) $a svojim saradnicima odredio
uzajamne proksimitete za 800 asteroidskih putapfaksimitete za periotine komete i
velike planete.

On je reSavao problem tak® sukcesivnim aproksimacijama, a polazio je od timau
kod proksimiteta izm#u dva asteroida heliocentnie longitude jednake (Sto ne mora
uvek da bude tmo), i ograntavao se na parove kod kojih je minimalna udaljenost
izmedu putanja manja od 0.01 AJ. Postupak kojim se aslygi ideja engleskog
astronoma A. Mart-a (A. Marth) izloZzena joS 60 gwdranije, koja u stvari predstavlja
konstruisanje i nanoSenje na milimetarsku hartijtensekata asteroida. Iz njih je
dobijao priblizne polozaje proksimiteta, a nakomaimnavanja i udaljenosti ¢aka



proksimiteta. In&e intersekt asteroida je zatvorena kriva linijajakee dobija kao
projekcija stvarne asteroidske putanje na polur&ega je normalna na ekliptiku.

Taénost Fajeovog postupka iznosila je od 0.50-10 edmnvost longitude a +0.003 AJ za
udaljenost proksimiteta.

Rezultati njegovog rada su oko 320 000 parovaseteta, méu kojima je pronasao
Sest parova kod kojih u polozaju proksimiteta wafadst izmédu asteroida nije & od
0.0004 AJ, tj. 60 000 km.

2.2. Radovi naSih nagénika u oblasti proksimiteta

Opsiran istorijski pregled najzéanijih radova na ovu temu dao je V.V.Miskévi
(1974.). Uglavhom su to bile analize dotadasnjitioxaa nemékih astronoma. On je
obradu ogramivao na sléajeve asteroida koji su se kretali u istoj ravnrudgm
reCima, slkajeve asteroida sa priblizno jednakigworovima i nagibima putanja.
Ovakve parove ili grupe asteroida nazvao je kvandanarnim asteroidima.

Svakako da je najkompletniju metodu za ¢m@avanje proksimiteta asteroidskih
putanja dao J. P. Laz@v(1964) u svojoj doktorskoj disertaciji "Vaznijealsenosti u
kretanju kvazikomplanarnih planetoida". Ova metgelanajviSe primenjivana, a sa
odreienim dopunama u upotrebi je i danas. @ot@nje proksimiteta ponta izraza u
kojima figuriSu prave anomalije kao promenljive tgkale dao Lazowi (1967), pri
cemu je korigen isti postupak, sa tom razlikom Sto su krajrgaenja polozaja i
veli¢ine proksimiteta izrazena preko pravih anomalija.

U prvom sli&aju on polazi od uslovnih jedéiaa:

2 2
2pY) _ o 0% _,
OE, ' oE,

(2.3)

pri cemu je kvadrat rastojanja izrazen preko eksagntrianomalija Ei E;, odnosno
P* = (T,(E) = T,,(E,))* + (f,(E) — T,y (E,))* + (f,(E) — f,,(E,))* (2.4)
Posle niza smena, gieanja i reSavanja dobija jedtiae u obliku:

f(E.,E,) = X,sinE, +Y, cosE, -Z, sinE, cosE, =0,

9(E,,E,) = X;sinE, +Y, cosE, —Z, sinE, cosE, =0. (2.5)

gde su veliine X, Y., Zi1, X3, Y1 i Z, odgovarajdi koeficijenti koji zavise od
putanjskih elemenata.

Ovo su jedn&ne transcendentnog tipa i on ih reSava sukcesiaproksimacijama, pri
¢emu odrduje uzastopne i to sve manje i manje popraxkgo, AEz, AEj1, AEzs,
.. AE1g1), ABExk-1y dok ne odredi za svaki sistem, tj. za svako ukjstgputanja
vrednosti

Ex = By TAE gy i Eox = Bxpyy TAE , &P

koje zadovoljavaju polazne jedfiae sa t&anosu sa kojom se to Zeli.



Prve popravkéE;q i AE;o mogu se odrediti iz jeddima oblika

of of 0 0
fo +AE, +AE,——=0 g0+AE10—g+AE20—g=O (2.7)

aE:I.O aEZO aE:I.O aEZO ,
pri ¢emu se dobijaju nove vrednostihE Eijo+ AE1g | Ex1 = Exp + AEyo .

Sve dalje popravke dobijaju se na analogatinna vrednosti pribliznih popravki zbog
ucinjenih zanemarivanja kod razvijanja u red imajlilob

of . ag a9 of
gof_fan fOE_gOGEl
— 20 20 — 0 0
PRo="3 o9 of og ™7 af og  of og - (2.8)
aElO aEZO aEZO aElO aE:I.O aEZO aEZO aE:I.O

Lazovi je ovu metodu potpuno kompletirao 1993. godine.

Kod reSavanja problema preko pravih anomalija, kez@olazi od uslova da
heliocentrtni vektori poloZajaf1i > prve i druge eliptine putanje budu izraZeni
preko pravih anomalijet::Y2) u obliku,

F, =r,cosu,P, +r,sinu,Q,,

_ = 2.9
r, =r,cosu,P, +r,sinu,Q,, (2.:9)
a da je vektor relativnog poloZaja jedr@ =T —T,. Kvadrat rastojanjge isto biti u
funkciji pravih anomalija, a uslovne jedfiae za postojanje ekstremuma itassledéi
oblik:

2
0p - 0 dp

2

, = 0.
Py 0] (2.10)

Posle reSavanja i stiwanja ponovo dobija izraze oblika
f(v,0,) =0 9(v,,0,) =0 (2.11)

tj. transcedentni sistem jedifiiaa, ali sada izrazen preko pravih anomalija, kajedie
reSava sukcesivnim aproksimacijama dok nienaednosti,

Upy = Uyogy AUy,

— 2.12
U2n - U2(n—1) + AUz(n—l) ' ( )

koje zadovoljavaju polazni sistem jedima, sa potrebnim stepenontiasti.

Sledé€e popravke u nizu dobijaju se na analogatim&ime se moze dobiti joS daija
vrednost pravih anomalija

U12 = UlO + Al/ZI.O + AUll = Ull + AUll’

U22 = U20 + AV20 + AU21 = U21 + AU21' (213)
Dalje popravke dobijaju se razvojem funkc f (U1:0,) =0 j 9(v;,0,) =0 y Tejlorov
red i zanemarivanjer@lanova sa stepenimadm od jedan. Prve od njih dobijaju se iz
jedn&ina



fo +AUf, +AULT, =0,

Jo +AU,Q, +AU,Q, =0, (2.14)
gde su:
fU' = 6_
B a U 1=U10,U5=U:
f, =
B aUZ U =Uq0,U>=0:
(2.15)
gU10 - aUl ju s
gUzo - aUZ ju e ’
a posle reSavanja sistema one su
f' —fqg
AU10 = go Y20 Oguzo
UlO gUZO T oy gUm
' ' 2.16)
f.g, —g,f (
Av,, = 090, go Yo

Yio gUzo a Uzo gUm

Razmatrajai razne aspekte i mognosti odreivanja proksimiteta Lazo¥iradi i na
numertko-grafickim metodama. U jednoj takvoj metodi Lazéwil974) dolazi do
jedn&ina pravih u kojima kao parametar figuriSe pravanaalija ¢ija se vrednost
ocitava predstavljanjem pravih na jedinstvenom grafik

Razvojem raunarske tehnike, natibo u poslednjeetiri decenije, numetke metode su
u potpunosti potisnule grake, ali su to u principu bile prilagene metode Lazota

(1976,1978). Isti autor (Lazavi 1970,1971), daje analizu i vrSi iZumavanje
poremeéaja parova kvazikomplanarnih planetoida u kretaggk su u proksimitetu.

Dobijeni rezultati pokazuju i potduju da méusobni gravitacioni uticaj malih planeta,
kada se istovremeno nalaze u proksimitetu ili ugoy®j blizini, uopSte nije
zanemarljiv. Lazo\d i M. Kuzmanoski (1974,1976) daju odeme rezultate u vezi
trajanja proksimiteta, kao i promena dasobnih rastojanja zbog promena njihovih
putanjskih elemenata .

Izratunavanjem proksimiteta izrnde putanja najwgh malih planeta (Ceres, Palas, Juno,
Vesta) i drugih numerisanih malih planeta, LazoviKuzmanoski (1983) su dobili
proksimitet od samo 0,0000154 AJ, tj. svega 2300i kmizmeiu (2) Palas i (1193)
Afrika.

J. Simovljevé (1977) daje vrednosti petnih uslova, tj. ekscentnih anomalija, za
izratunavanje proksimiteta metodom sukcesivnih aproksigaSimovljeve (1979)
daje proraune, tj. analitike izraze porené@jnih efekata planetoidskih putanja tokom
trajanja proksimiteta. Takie, kao Sto je u predgovoru&@omenuto, on iznosi jednu
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interesantnu ideju za reSavanje proksimiteta keja stvari i jedan od osnova ovoga
rada.

M. Kuzmanoski i Z. Knezevi (1993) objavljuju zajediki rad pod naslovom 'Close
Encounteres with Large Asteroids in the Next 50r¥ed@vde je opisana i primenjena
kombinovana metoda za detekciju bliskih susretdumajveim asteroidima (vé@m od

100 km u preniku), u periodu od 50 godina g od 1991. godine. Metod se sastoji od
viSestepene selekcije, att@ numekika integracija daje parametre bliskih susreta sa
visokom pouzdandsi. Rezultat je lista od 208 bliskih susreta naogjasjima manjim

od 0.01 AJ.

2.3. Pregled zné&ajnijih radova u oblasti proksimiteta od druge palme
XX veka do danas

Necemo pogresiti ako kazemo da je rad iz 1968. goflsirski, 1968), G. Sitarskog
'Approaches of the Parabolic Comets to the Outané&ls’ jedan od najcitiranijih u
oblasti proksimiteta, ne samo zato Sto ima prekgaifina kako je objavljen, ¥ezbog
¢injenice da autor u drugom poglavlju 'Minimal Distees between Two Orbits’, na
vrlo jednostavan ri@n, definiSe problem. Naime, on preko kvadrata ik@ézhektora
polozaja izrazenih preko putanjskih elemenata inginja funkcije rastojanja i njenih
prvih i drugih izvoda po dve nezavisno promenjiaidgme dobija jednéine poma@u
kojih moze da odredi polozaje na orbitama gde suaimalne vrednosti funkcije
rastojanja tj. proksimiteti. Ovde treba naglasii @ sltan metod za izeainavanje
proksimiteta razvijen od strane Lazéxi(1967), Sto je vepomenuto u prethodnom
poglavlju.

Ne mnogo manje citiran rad je iz 1975. godine (Ba&in, 1975), D. N. BernStajna
'Broj korena sistema jedfima’. Zbog ¢injenice da je problem proksimiteta u osnovi
matematiki (sistem dve transcedentne jedima koje se mogu transformisati u
jedn&ine ¢etvrtog stepena), autor kai&njem Lorenovih polinoma na mnogostrukosti i
zadovoljenja uslova meSovite zapremine Minkovskagkp dokaza dve teoreme
definiSe broj korena sistema jedire.

Kratak, ali vrlocesto citiran rad iz 1978. godine (Vassiiliev, 19™8) N. Vasiljeva

'Determining of critical points of distance funatidbetween points of two Keplerian
orbits’, osim jednostavnosti i ¥emanje viSe dekivanog naina definisanja problema
preko niza smena i funkcije rastojanja ima i kotkeerezultate za staj orbita Plutona
I Neptuna. U tom smislu su matendtti model, program i rezultati Vasiljeva
proveravani, i upokivani sa rezultatima koji su dobijeni kat&hjem kombinovane
metode koj&e biti predstavljena u ovom radu u poglavlju 4.

1986. godine (Dybczinski at al.,1986) P. A. Buiski, T. J. Jopek, R. A. Serafin u
svom radu 'On the minimum distance between two &eg@h orbits with a common
focus’ generalizuju problem proksimiteta tako daegbeliptEnih putanja svoj metod
prilagaiavaju parabotinim i hiperbolénim putanjama. Oni ukazuju na neke préei
nedostatke kompjuterskog iztmmavanja nekoliko autora koji su se ranije bawtom
problematikom (Lazovi 1967, 1981, Murray 1980, neophodnost odgovaiaju
pocetnih vrednosti i Dubyago 1949, Sitarski 1968, Riamev 1980, ograbénja u
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primenjivosti metode). Svoj metod, koji je sustinskican prethodnima, numeki
testiraju poméu cetiri metode:

NL-Njutnov metod (Lazo, 1967)
NL-Njutnov metod (Hoosts et al., 1984)
SM-metod skeniranja

AM-naizmentni iterativni metod

1999. godine (Kholshevnikov and Vassiiliev, 1999%. V. HolSevnikov i N. N.
Vasiljev u radu 'On the distance function betweemnts of two Keplerian orbits’
uspevaju da oddenim smenama uproste funkciju rastojanja i probgbeakticno svode
na odrdivanje svih realnih korena trigonometrijskog pohm® reda 8, priemu su
koeficijenti polinoma racionalne funkcije putanjskelemenata. Upotrebométmarske
algebre pokazuju da polinom manjeg stepena sane&vojstvima ne postoji.

'On the stationary points of the squared distaretevbéen two with a common focus’ iz
2002. godine autora (Gronchi, 2002) G. F. Gronjgjasvakako, najcitiraniji rad, ako
uzmemo u obzir da je objavljen pre skoro 10 godihavom radu on formira kvadrat
funkcije rastojanja u obliku:

d® =(x=x)*+(y-y)* +(z-2)’

pri ¢emu je parametrizacija elipsi data izrazima u zé@naa i to:
x =a[cos@)(cosl’) —€) —1-e? sin(@)sinu')]

y =a[sin(w)(cosl’) —€) ++1-e? cose) sin)]

z=0

x = a[cos(w)(cosl) —e) - sin(a))@ sin(u)]

y = a[sin(w)(cosi) —e) + cos@)ﬁ sin(u)] cos()
z=g[sin(w)(cosl) —e) + cos@)ﬁsin(u)] sin(l)

Parametr &, &’ i | imaju orijentaciju kao na slici 1.
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Slika 2.1: Skica Gronkijevog referentnog sistema dlipse u prostoru sa najmanjim
brojem parametara, Gronchi (2002).

Kao Sto se moZze videti, gornji izrazi su dati prghkatanjskih elemenata i pravih
anomalija pricemu veléina | predstavlja m&sobni nagib ravni u kojima se nalaze
elipse. Pored ovoga i odnos velikih poluosa je tedad da jedna od njih ima vrednost 1,
a sve u smislu definisanja problema sa Sto manjopen parametara. Krithe take
funkcije rastojanja moraju zadovoljavati uslove:

2 2
ﬂ =0 ﬂ =0
ou ou
gde se posle joS nekoliko pojednostavljenja i pohnaigonometrijskin smena dobija
sistem polinoma u obliku:

p(t,s) = a(t)s® + B()s+ y(t) =0
q(t,s) = Af)s* + B(t)s® + D(t)s— At) =0

Koristeti BernStajnovu teoremu iz prethodno navedenog fiadamu Minkovskog
Gronki reSava problem i dokazuje da je n&veoguwti broj reSenja tj. stacionarnih
tacaka 16. Njegov algoritam je baziran na Brzoj Fonj@ transformaciji gde nakon
velikog broja numetkih eksperimenata, priblizno sa oko milion raitih parametara
elipsi, daje tabelu zavisnosti ekscefrtasti i broja stacionarnih ¢aka u obliku:

Tabela 2.1: Zavisnost broja stacionarnincéka od ekscenifnosti prve i druge
elipticne putanje, Gronchi (2002).

ekscentdn | ekscentdn | broj

ost ost stacionar
prve druge nih
putanje putanje tacaka
ez 0 e€£0 12

ez0 e=0 10

e=0 e€£0 10

e=0 e=0 8

U sledéem radu iz 2005. godine (Gronchi, 2005) G. F. Grofdsk algebraic method to
compute the critical points of the distance functimetween two Keplerian orbits’ on
daje algebarski metod za iZtenavanjem kritinih tataka funkcije rastojanja iznda
dve

Keplerove orbite zasnovane na teoriji eliminacifgfikasan algoritam izgnava
kriticne ta&ke ne samo kod eligih putanja vé i kod parabolinih i hiperbolénih koje
imaju zajedniku ZiZzu. Na kraju daje oddene komentare u vezi nekih degerativnih
slucajeva koji se mogu pojaviti kada je u pitanju kng¢sasteroida.

Tih godina (Baluyev and Kholshevnikov, 2004) B@juR. i HolSevnikov K. rade na
problemu neporendenih orbitalnih razdaljina i objavljuju rad pod mazm: 'Distance
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between two arbitrary unperturbed orbits’. Oni dtyu sve realne korene
trigonometrijskin polinoma stepena osam i pdtyu da kod neporendenih putanja
polinom nizeg stepena ne postoji. Td&p oni izloZzeni postupak pored eliptih
putanja primenjuju i na hiperbohe i parabotine putanje.

2006. godine (Murison and Munteanu, 2006) M. A. idoim i A. Munteanu 'On the
Distance Function between Two Confocal Kepleriabitet rade na analitkim i
numertkim istrazivanjima problema minimalnog rastojanjaekp ekscenténih

anomalija i konstatuju opste re3enje u obliku pmiia stepena 8 izrazenih priCOSE;

i COSE,. Numertki resavajdi Keplerovu jednainu i jednostavnim algoritmom za
pretragu, mogte je odrediti vreme bliskih prilaza dva asteroiflakav brzi filter sluzi
za selektovanje mogih proksimiteta bez potrebe za nunikdm integracijom
diferencijalnih jedné&na kretanja. Kao i kod Gronki-ja (2002) (gde tgokaze da je
gornja granica 16 stacionarnincéka) i ovde su numeka istrazivanja ukazala da je
gornja granica broja stacionarniliaa 12.

2006. godine (Gronchi at al., 2006) G. F. Gronki, Témei i A. Milani objavljuju rad
'Mutual geometry of confocal Keplerian orbits: urteénty of the MOID and search for
virtual PHAS'. U ovom radu uvodi se ranije nhavedpojam MOID — Minimum Orbit
Intersection Distance koji su prvi upotrebili BowelMuinonen (1994) kao korisno
sredstvo za ustanovljavanje da li se dva nebed&astelaraju ili prolaze veoma blizu.
Ovde su dati odreni rezultati u vezi broja lokalnih minimuma kaajihov polozaj u
odnosu na uzlazni i izlazdvor. Takate koristéi ovaj pristup autori su trazili virtuelne
PHA — Potentially Hazardous Asteroids i pronasjeéte ¢ije orbite su raztiite od onih
kakve imaju NEA — Near Earth Asteroids.

2010. godine Armellin at al., 2010) R. Armelin, P. Di Lizia, MBerc i K. Makino
objavljuju rad ‘Computing the critical points ofehdistance function between two
Keplerian orbits via rigorous global optimizatiorMetod koji je ovde predstavijen
globalno je optimizovan i zasniva se na Tejlorovanodelu. Posle dobijanja
stacionarnih taka odredjene sposobnosti modela se koriste zaizanaticaja
nezavisnih orbitalnih parametara na polozaj statiah ta&aka.

U testovima su koréene jednostavne orbite i Aphophis asteroid a gtolegdtimizator
je bio COSY-GO. Metod takie omogiava klasifikaciju novootkrivenih nebeskih tela
a opseg procena svih MOID-a je baziran na MontéoGdgoritmu.

Vidimo dakle da je odvanje proksimiteta u modernim tokovima astronorhski
istrazivanja dobilo jednu drugigu formu i da je on i dalje zastupljen astronomsk
problem, iako datira od sredine XIX veka. Zb#igjenice da se njegova reSenja mogu
koristiti i za druga izréunavanja, on ima uvek odienu aktuelnost i zraj. To najbolje
potvrduju upravo u uvodnom delu navedeni naslovi pojédinblasti koje su se
definisale poslednjih decenija. Sve zajedno toigurso opravdani razlozi za stalno
trazenje novih nana prilazenja problemu proksimiteta, bilo da j& @ njegovom
izratunavanju, odrdivanju uslova za njegovo postojanje ili definisameblema u
celini.
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3. PROKSIMITETI | KRITI CNE TACKE FUNKCIJE
RASTOJANJA

3.1 Broj proksimiteta i uslovi njihovog postojanja

Kada govorimo o uslovima postojanja proksimitetaopgto treba da imamo na umu je
¢injenica da je ovo prostorni problem i da je neaplmprvo definisati Sta se datgau
ravni kada imamo dve konfokalne elipse. U tom amidbkaz da izm#u dve elipse u
ravni sa jednom zajedfkom zizom, ne moze postojati viSe od dve pteeetake
(Milisavljevic, 2002), treba uzeti u obzir. Ono &e kasnije dogka kada jednoj od
elipsi pa&nemo da menjamo pored geometrijskih parametaraikévegboluose i
ekscentidnosti) i ostale parametre tj. putanjske elementgifn argument uzlaznog
¢vora i argument perihela), u najkean se moZe opisati na slédeatin:

Jedan proksimitet uvek postoji. Sama priroda problena to ukazuje, tj. poznato je da
izmedu bilo koje dve zatvorene krive linije u prostorwoma postojati makar jedno
minimalno rastojanje. Zbog toga se o nekim posebosiovima koji moraju biti
ispunjeni, ovde ne mora ni govoriti, jer je to jassamo po sebi (videti primer na sl.
3.1)

Slika 3.1: Projekcija putanja para malih planeta{4638) na ravan prve putanje tj. XY
ravan

Dva proksimiteta mogu postojati i to je pr&kid nagegi slucaj. Oni se oliino nalaze u
blizini relativnih ¢vorova, ili kada se radi o kvazikomplamarnim pusamg, u okolini
njihovih projekcijskih preseka. S obzirom na relab mali me&usobni nagib svih
prikazanih primera, njihove projekcije na XY ravdaju dosta realnu sliku stvarnog
stanja. Ipak, zbog taog izrazavanja uveli smo termin projekcijski plesgr se te
tatke ne moraju uvek nalaziti u blizini relativniékvorova. Da bi sléaj sa dva
proksimiteta bio ispunjen, dovoljno je da izitoeravni u kojima se nalaze putanje
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postoji odréeni nagib, ili da se, gledajunjihovu projekciju na XY ravan, st utisak
kao da se seku u dvecka. Slike 3.2 ai 3.2 b u principu odgovaraju swvimogwim
slitajevima u stvarnosti.

Slika 3.2: a)Projekcija putanja para malih planefd — 3468) na XY ravan. b)
Projekcija putanja para malih planeta (6 — 16) n& kavan.

Tri proksimiteta mogu postojati, ali se taj &y kada su u pitanju putanje malih
planeta, sr&& mnogo rée. Proksimiteti kod ovog staja ob&no su raspoieni tako da
su dva u okolini projekcijskih preseka putanjaiére blizini¢vorova), dok je tré uvek
skoro simet&no u sredini naspram njih. Uslovi za postojanjekeog sliéaja obéno
proistiéu iz specijalnih polozaja prethodnog &ja. Sa slika 3.3 a i 3.3 b to se moze
jasno videti (napomena: polozaj zize na slici 3pB&Eno odstupa od realnog jer je u
pitanju veliki medjusobni nagib elipsi)

Slika 3.3: a )Projekcija putanja para malih plangtf43 — 3200) na XY ravan. b)
Projekcija putanja para malih planeta (287 — 486X ravan.

Cetiri proksimiteta takde mogu postojati, sa tom razlikom $to ih je u steati veoma
teSko proné. Primer sa sl. 3.4 je simulirani model koji imamaadu Gronkija (2002),
I on upravo pokazuje da je shj sacetiri proksimiteta teorijski mogu
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Slika 3.4: Projekcija putanja simuliranog modelaapaalih planeta M1 i M2 na ravan
prve putanje tj. XY ravan

Postavlja se pitanje Sta je to Sto je realno miedwsto se stvarno moze dogoditi u ravni
izmedu dve elipse sa jednom zajethom zizom, a Sto bi pri maloj promeni
medusobnog nagiba, tj. u prostornom&lju, uslovilo pojavu tri proksimiteta?! To bi
bio slwaj kada imamo dve presee t&ke i treéu koja je veoma bliska dodiru, kao Sto je
prikazano na slici 3.5

U tom tr&éem karakteristinom polozaju (na slici 3.5 obelezen sg) vhoze se nalaziti
jedno minimalno rastojanje izrie dve elipse, a ono je najmanje kada jg=S® tj.
kada su perihelske daljine jednake.

Ipak, nikada se ne moze dogoditi da se to minimahsiojanje degeneriSe wka
(Milisavljevi¢, 2002).

Slika 3.5: Sematski prikaz poloZaja dve konfokalhetiche putanje za postojanje 3
proksimiteta

Kada se ispune dati uslovi i d® do situacije kao na sl. 3.5 (6ho je karakteristino
mesto "dodira” u blizini perihela one elipse kog@omera), dobijamo model koji u
prostornom sléaju (kada izméu ravni u kojima se elipse nalaze postoji dera
nagib), ima tri proksimiteta. Od ta tri proksiméetdva su, kao i otmo, u okolini
projekcijskih preseka putanja;M M., dok je tréi u okolini karakteristinog polozaja
Ms.
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Kada govorimo o skaju sacetiri proksimiteta on bi se mogao shvatiti kao $péu
slwtaj prethodnog prikazanog na sl. 3.5. Postavimaseliga te slike u polozaj sa dve
pres€ne take, ali sada sa dasobnom razlikom u poziciji perihela od priblizn80®P
(videti sl. 3.6).

Iy

Slika 3.6: Sematski prikaz poloZzaja dve konfokalhgtiche putanje za postojanje 4
proksimiteta

Na prvi pogled vidimo da je to ¥erazmatrani slkkaj dva proksimiteta sa sl. 3.2a
Medutim, iz ovakve ravanske postavke u prostornontagly pri dovoljno velikoj
razlici u nagibima ravni u kojima se elipse naladelazi upravo do pojave joS dva
proksimiteta i to u zonama M M,. Ovi proksimiteti su skoro simetno rasporéeni u
odnosu na pravac maksimalnog rastojanja &amevih elipsi. Njihovo postojanje
(egzistencija) je zasnovana na @wgenice: Prva je polozaj elipsi kao “karike u lafc
(periheli su na suprotnim stranama), tako da p@zids sa sl. 3.5, koju smo uslovno
zvali tatka dodira, ovde ne postoji. Naprotiv, iméju vidu da se pozicija Mnalazila u
pravcu perihela, ona se pri ovakvomdugobnom polozaju elipsi prosto gubi i postaje
jedno od najvéih rastojanja (sivi oséeni deo sl. 3.6).Tako imamo situaciju u kojoj
ostajemo 'samo’ na dva proksimiteta, kao Sto jepékazano na sl. 3.2.

Medutim, postepenim povavanjem meéusobnog nagiba ravni u kojima se nalaze
elipse, dolazi do pojave treg proksimiteta, a kasnije oko “kttiog ugla” (u
prikazanom primeru njegova vrednost je 79°-81¢p ipojavecetvrtog proksimiteta.
Oba ova proksimiteta upravo se nalaze u zonamaN¥,. Svakako da dovoljno veliki
medusobni nagib dve elipse, gde imandetiri proksimiteta, né& biti isti kod svih
primera ovog tipa, ali se slobodno mozé& A je upravo to drugi razlog za postojanje
cetiri proksimiteta. Svi ostali mogu polozZaji (bez obzira na vrednosti putanjskih
elemenata, a natibo na uzajamni nagib), ne mogu dati ni jedan koge principijelno
razlikovao od ovde prikazanih primera i modela.
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3.2 Kriti¢ne tacke funkcije rastojanja i zavisnost od putanjskiheshenata

S obzirom na kompleksnost funkcije rastojanja bgeoman broj njenih oblika kao i na
¢injenicu da zastupljenost kitiih tataka prevashodno zavisi od oblika tj. geometrije
putanja, metodu kojéemo kasnije objasniti koristili smo u nekoliko edaprva ideja je
bila da se od svih postdjé registrovanih asteroida
(http://www.minorplanetcenter.net/iau/MPEph/MPEpmNt pronatu parovi sacetiri
proksimiteta jer do sada takav rezultat nije bigaglen. U tom cilju odabrano je 2449

asteroida sa poznatim ’'dijametrom’ i nagiboméine od 45 (Gronkijev simulirani
model sa 4 proksimiteta je bio razlog takvog odgbirNjihovim metusobnim
kombinacijama napravljena je baza od 2997576 pamstaroida za koje se, po
dosadasnjim pretpostavkama, mogiekivati da se takav rezultat dobije.

Slede€a etapa je bila da se sa malo prildgmom gore pomenutom metodom prdua
svi mogui parovi reSenja (broj min i broj max) kod simuhi parova asteroidskih
putanja zbog Sto celovitije analize funkcije raatgf. Zbog ogromnog broja magh
kombinacija, koje se mogu simulirati, pribeglo sikedenim ogranienjima tako da su
putanjski elementi prve elipse bili fiksni al=1z=11 »1=10,Q1=10 dok su putanjski
elementi druge elipse i el varirani po skexi@a modelu: 12=1:89;21»2=5:355;25,
02=5:355;25, €2=0:0.9;0.01, a2=0.05:0.95;0.15, €1.9¢D.1. ( predstavlja argument
perihela). Posle joS nekih dodatnih provera i stidkih pokuSaja reSavanja, jedini
nain da se funkcija rastojanja Sto celovitije defeni§io je da se pre petka sledée
etape izvrSe dodatne korekcije u pogledu varirpojanjskih elementa.

3.3 Kritiche tacke funkcije rastojanja i zavisnost od oblika putan]

Poslednja etapa tj. korak koji je dem, kao Sto je u prethodnom poglaviju¢ve
nagovesteno, bila je uslovna klasifikacija mébu parova konfokalnih elispi tj.
elipticnih putanja asteroida. U tom smislu, formiranersgrupe i u svakoj po nekoliko
tipova kako bi kasnije simulacije funkcije rastgmmogle da nam daju joS celovitiju
sliku o tome Sta se zapravo ddgatokom simulacija; tj. pri promeni odenih
parametara | naravno Sto preciznije rezultate. dvjihoblici i geometrijske
karakteristike su:

Grupa |

Ovde su uzeti u razmatranje tri para istih elipgi ggmu par a) ima najmanju
ekscentinost (elipse su jako bliske kruznicama), par b) iel@centdnost koja

uslovljava da je velika poluosa dva puta duza odenpoluose, i par c) gde je
ekscentiinost izuzetno velika Sto uslovljava da je odnoskedl male poluose priblizno
1:20 (degenerativni stajevi ipak mogti u realnosti).
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la) al=1, a2=1, e1=0.01, e2=0.01
(dve identéne elipténe putanje jako malih ekscertibsti - bliske kruznici)

Ib) al=1, a2=1, e1=0.866, €2=0.866
(dve identéne eliptEne putanje kod kojih mala i velika poluosa imajamaru 1:2)

Ic) al=1, a2=1, e1=0.99, €2=0.99

(dve identéne elipttne putanje kod kojih mala i velika poluosa imajabl¥nu
razmeru 1:20)

« 0>

Grupa Il

Ideja za formiranje grupa Il i Il proistekla je &njenice da sva tri para elipsi iz prve
grupe (ili one srazmerne tj. proporcionalne njicmadgu imati ili nemati presaih
tataka kada su u istoj ravni. Druga grupa, upravo sieadia odrdene karakteristne
slicajeve u ravni kada se ove elipse i njimérsdi ne seku.

lla) al1=0.5, a2=1, e1=0.01, €2=0.01
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(dve sltne elipttne putanje jako malih ekscertrosti — bliske kruznici, pricemu
jedna ima duplo manju veliku poluosu od druge)

lIb) a1=0.01, a2=1, 1=0.01, e2=0.99

(kombinacija eliptinih putanja Ic-la po ekscentnosti, pri¢emu se one u ravni ne
seku, tj. druga ima jako male obe poluose i ptaktise nalazi unutar prve)

i

llc) al=1, a2=0.49, e1=0.01, e2=0.99

(suprotno prethodnom tipu tj. sada se alimi putanja sa ekstremnom eksceéntgu
nalazi unutar druge, koja ima veoma malu eksaamist, blisku kruznici i duplo &
veliku poluosu)
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lld) a1=0.5, a2=1, e1=0.866, e2=0.866

(dve sltne elipténe putanjecije poluose stoje u razmeri 1:2 pfemu je jedna ima
duplo manju veliku poluosu od druge tj. nalazi satar nje)

lle) al1=0.5, a2=1, €1=0.99, €2=0.99

(dve sltne elipttne putanje velikin ekscentriosti, ¢ije poluose stoje u odnosu
priblizno 1:20, pricemu je jedna ima duplo manju veliku poluosu od drtignalazi se
unutar nje)

——— &

Grupa III

Treca grupa predstavalja odiene karakteristne sliajeve u ravni kada se ove elipse (i
njima slicne) seku.

llla) al=1, a2=0.97, e1=0.01, €2=0.03
(dve sltne elipténe putanje malih ekscentniosti koje se seku kada su u istoj ravni)

[llb) a1=0.011, a2=1, €1=0.01, €2=0.99
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(kombinacija elipiénih putanja Ic-la pricemu se one u ravni seku iako druga ima
veoma male obe poluose)

ol

lllc) al=1, a2=0.51, e1=0.01, 2=0.99

(elipticna putanja ekstremne ekscefrtgsti nalazi se unutar eliptie putanje jako male
ekscentrinosti bliske kruznici koja ima duplo ¢ veliku poluosu préemu se one seku
kada su u istoj ravni)

llld) a1=0.5, a2=1, e1=0.01, €2=0.99

(predstavlja presek jedne elipie putanje male ekscertnosti i druge velike
ekscentdnosti, pricemu druga ima duplo ¥a poluosu od prve, a seku se kada su u
istoj ravni)

llle) al1=0.5, a2=1, e1=0.01, e2=0.866
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(kombinacija jedne elipthe putanje male ekscermbsti i druge sa srednjom
ekscentdnosti, odnos poluosa 1:2, gemu je prva ima duplo manju veliku poluosu od
druge a seku se kada su u istoj ravni)

lf) al=1, a2=0.5, €1=0.99, €2=0.96

(dve sltne elipttne putanje velikih ekscentriosti-odnos poluosa priblizno 1:20, pri
¢emu jedna ima duplo manju veliku poluosu od drugenalazi se unutar nje, ali se
seku kad su u istoj ravni)

— _—

Ono sto je vazno naglasiti je da, kao Sto smo pevaj grupi opredelili za ‘samo’ tri
karakteristine elipse, tj. asteroidske putanje, tako se i alestve grupe nismo vodili
idejom da ‘ukrstimo svaku sa svakom’, tj. simuli@rsve parove elipsi. Razlog je u
¢injenici da su rezultati prethodne dve etape pdkata se broj teorijski mogdih
reSenja (14 i 16) sistema transcedentih jém@akoje definiSu funkciju rastojanja a koja
nisu do sada prodana mogu &ekivati kod parova elipsi (gore prikazanih oblika)
naravno, njima stnim. Sve simulacije su imale iste fiksne paraméfreputanjske
elementan1=1,Q1=1, i1=1 i iste varijacije ostalilm2=5: 355; 3.125022=5:355;3.125,
i2=1:89;1, (sve vrednosti su date u stepenima).k@wa pristupom je mogte da za
svaki tip iz sve tri gore navedene grupe parovaarmgat izvrSiti izr&unavanje
minimalnih i maksimalnih rastojanja za preko miliajfihovih razlgitih medusobnih
polozaja.

3.4 Geometrijski i anali¥ki prikaz reSavanja problema proksimiteta

Metoda za izréunavanje proksimiteta prikazana u magistarskom faedan postupak
za odrdivanje proksimiteta izmidu putanja malih planeta’ (S. Milisavljeyi2002) bila
je osnov za postupak koji je katén u ovom radu i kojte sada biti izlozen. Ako

pogledamo sliku 3.7 vidimo da relativni vektor pfniq'aﬁ , 0Sim Sto predstavlja razliku
prvog i drugog vektora poloZaf: i > (u zavisnosti od njegove orjentacije moze biti i
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obrnuto), uvek je normalan na tangentu tkitadodira putanje na koju dolazi tj. u
njegovom kraju.

Ovde mozZzemo K@ da se funkcija rastojanja kao matertigd interpretacija moze

nazvati merom duzine vektor £, odnosno duzinom orbitalnog preseka (DOP). Dakle
nas cilj je nalazenje krithih tataka funkcije rastojanja dvedee konfokalnih orbita i,
naravno, kada su u pitanju ekstremnékéa nalaZzenje minimuma, tj. proksimiteta.
Oc¢ekujemo da usputni rezultat bude i nalazenje ngmgamedju njima, odnosno
nalazenje najmanje duzine orbitalnog preseka (NCEDBleski MOID).

Slika 3.7: Sematski prikaz grafie metode odeévanja proksimiteta
Dakle postujdi ranije date uslove, (slike 3.7), vidimo da naiznidaim 'odlazenjem’ i

'dolazenjem’ sa jedne na drugu eliptii putanju vektore 2, pri ¢emu je poéetak

sled€eg uvek u t&i gde je kraj prethodnog, on, zapravo, konvergiresku gdece

njegov intenzitet biti najmanji. To sustinski Zhala je upravo u toj tki najmanje
rastojanje izméu dve elipténe putanje tj. proksimitet. Ovainjenica je osnova
postupka koji je prikazan u gore pomenutom magiktan radu.

S obzirom da je osnovni cilj ovog rada pronalazené mogdih reSenja sistema
jedn&ina koje opisuju problem proksimiteta tj. svih kfuitih tataka funkcije rastojanja
gore opisana metoda bila je kao takva neadekv@ina, osim Sto je bila suviSe spora,
nije pruzala ni mogtnost pronalazenja maksimalnih rastojanja.

Kao, Sto je poznato, maksimalna rastojanja zajes@mominimalnim rastojanjima i
prevojima predstavljaju krithe t&ke funkcije rastojanja. U tom smislu, u postupkii ko
¢e biti izlozen i na osnovu koga je napravljen akgon i program za izgunavanje
kriticnih tataka funkcije rastojanja iskotién je samo analiki deo gore pomenutog
postupka. U najkkeem, on izgleda ovako:

Opste je poznato da dve vektorske jeitime
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(Fl_ Fz) IN71 =0,
L. (3.1)
(ra—=r1)W2 =0,

definiSu problem i one nisu niSta drugo neko mat&ika interpretacija onoga Sto je
prethodno réeno o karakteru relativnog vektora polozaja. Ouajesn vektorskih

jedn&ina je transcedentnog tipa, a da bismo se prildigpdethodno izlozenom

geometrijskom postupku, uzmimo da su vektori pgepzaalih planeta izrazeni preko
ekscentiinih anomalija ki E;, (Simovljevi, 1976), odnosno:

r= a, (coskE, —€)) |51+ b, sinE,; (ﬁgly

- . . (3.2)
r. =a,(coskg, —e,) P,+b,sinE, Q, .
Imajwéi u vidu dajed—r =Vi korist&i vezud—r:d—rﬁ, (Milankovi¢, 1935, 1995),
dt dt dE dt
jedn&ine (3.1) moZemo napisati u obliku:
_ .\ dr;
(n—r,) dEll =0,
. (3.3)
(F,-r)E2=0

S obzirom da za primenu ove metode nije neopho@dsavanje sistema ove dve
vektorske jedn&@ne mi ¢emo pristupiti reaSavanju samo jedne od njih. Uzoim

proizvoljnu vrednost za Hnpr. E=0) ubacimo je i zamenimo vrednosti rq, ry |

. d
V, U drugu jednanu sistema (3.1) i podelimo je ¢ dEtz. Posle pregrupisavanja
¢lanova dobijamo izraz:

cosE, SinE,(b? —a2) +sinE, (&, + aa, cosE, PilP.— gag P.P»+ ba,sinE,Q,[P>)

. - I (3.4)
+cosE,(agb, P1lQ,~ b, sinE, Q,[Q, - ab, cosE, P.[Q, = 0.
Prethodnu jedrn@nu mozZzemo napisati u obliku:
AsINE, +BCosE, +CsinE, cosE, =0 3.5)
jer su izrazi u zagradama konstantneduedi, pricemu su:
A= (&e, +aa,cosE, Pi(P.- gag PP+ ba,sinE,Q,[P,) = &e, +a, P[T1,
B = (agh, P, bib,SinE, Q,[Q, - ap, cosE, PiD,) = -b, Q,(T+, (3.6)

C=b’-a’.
Ako sada jednanu (3.5) podelimo sa koeficijentom B (vadeacuna da je B razlito
od nule) dobija se:

M'sinE, +cosE, + NsinE, cosE, =0 (3.7)
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A C
gde su sa M i N oziani kolicnici B [ B respektivno.

. E E
Koristeti ~ trigonometrijske  jednakosti SINE = [2tan§ /Q+tan? E)] i

E E E
cosk = [1‘t<'31nz§)/(1+tanz E)] pa primenjujdi smenu za tangens ugtg?2 =t j
njenom zamenom u jed¢iau (3.7), dobijamo:
2t 1-t? 2t _(1-t?%)
+ + N[ =0
1+t%  1+t? 1+t%  1+4t? &.

PomnoZzimo li, sada, prethodnu jedina sa (1+f) posle odrdenih srdivanja dolazi se
do jedndine cetvrtog stepena oblika:

at*+at’+at’+at'+a,=0, (3.9)
pri ¢emu je
Hp="1 a=-2(M+N) a,=0 a=-2(M-N) a, =1 (3.10)

Ono Sto je kod ove jeddime karakteristino je da ona, sobzirom na oblik i problem koji
opisuje, mora imati uvek 2 ili 4 realna reSenja.

Samo jedno od moga cetiri reSenja je ono koje je odgovar&y a kriterijum za
njegovo odrédivanje je najmanja vrednost od svih méijurazlika intenziteta vektora

I, i f.. Naime, nakon reSavanja jedime (3.9) i posle viganja prethodnih smena,
nalazimo odgovaraj@e ekscenttine anomalije, a samim tim i intenzitete vektora
polozaja.

Oduzimanjem od svakog intenzitet vekt.a dobijamocetiri intenziteta vektorip i
uporeiujemo ih méusobno da bi pronasli najmanji. Ona ekscén&rianomalija (od
najvise moguih cetiri koje figuriSu kao reSenja) koja odgovara nafjoj vrednosti
vektora @, je traZzeno reSenje jedfiae.

S obzirom da je dobijena vrednost ekscéntianomalije druge eligtie putanjeE;
ona koja odgovara najmanjem relativnom vektoru paj iz téke na prvoj eliptinoj

putaniji sa vredn@$ ekscenttine anomalije E; =0, ceo postupak moramo ponoviti za
...... E, =359 ili sa manjim ili v&im korakom, zavisno od
karakteristika eliptinih putanja, kako bi dobili isto toliko vrednosti E,. Kada tako
dobijene vrednosti ekscenitih anomalijaE: i Ei njihovih odgovarajaih najmaniih
vektora polozaja miisobno uporedimo one koje su najmanje su naSi @igdén
proksimiteti. Sada se ceo postupak ponavlja saednay prvu eliptinu putanju, pri
¢emu su sada polazne vredncE; =0, E, =1 E, =2 E, =359 uUporativanjem

I kombinacijom ovakve dve grupe rezultata mi regsawapreblem proksimiteta fj.
izratunavamo njihov t&an broj, veltinu i poziciju.
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Slika 3.8: Sematski prikaz metode afivanja proksimiteta kada jeddma 3.9 ima dva

reSenja

Sa slike 3.8 moze se videti kako se postupak ri¢umavanje izvodi kada jedéiaa
(3.9) ima dva reSenja a sa slike 3.9 kada onadetiai reSenja. Podebljani relativni
vektori polozaja su naSa prolazna reSanja.

Slika 3.9: Sematski prikaz metode afivanja proksimiteta kada jeddma 3.9 ima
cetiri reSenja

Imajuci u vidu cinjenicu da i maksimalna rastojanja iztoedve elipttne putanje
zadovoljavaju uslov ortogonalnosti na tangenteakkama dodira odnosno da i za njih
vazi vektorski sistem jedtma (3.1), gore opisani postupak (uz uslov derga
najvetih relativnih vektora polozaja), tale primenjujemo za iztanavanje
maksimuma tj. njihovog broja, véine i pozicije.
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4. ALGORITAM ZA ODRE DIVANJE EKSTREMNIH
VREDNOSTI FUNKCIJE RASTOJANJA | PROGRAM

4.1 Algoritamska blok Sema

Kompletan analitiki postupak odrdivanja tj. izr&unavanja minimalnih i maksimalnih
rastojanja dve konfokalne elipéine putanje, objaSnjen u prethodnoj glavi, iskenge
za formiranje algoritma i pisanje a@narskog programa za izimavanje lokalnih
minimuma i maksimuma funkcije rastojanja i njihovitdgovarajdih ekscentiinih
anomalija.

al, ef, @1 0wl i1, a2 e2 22 ol i2

v

Pi={Piz Ply Plg) Of =01 Ofy Q1) FA=(F2x, P2y P2y) 02={00% 02y 02 )
_ v

PV dE,
v
- 5 E— e
A=(dde,+ qa cosE Pr Pr-qa,e - PrtBaysin £ O Pa) = dle, +.a, Py 1,
E = E +0.05rad il g s o 5 e
1 : B=(wmeb, Pr )= bbysin £ O 0y- aby cos By Pr0y) = -5, 0 11,

C=b-d.
: E
i:__-u E:N MsnE_ +cosE +NsinF_ cosE_ =0 rg—er
B B 2 2 i B
i
¥ioddlzg q=-1aq=-2M+N) =0 a=-2(M-N) q,=1
sortiranje gt tat’ +at* +at' +a;=0
rezulfata | ¥
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Slika 4.1: Blok Sema algoritma za iZtmavanje lokalnih minimuma i maksimuma
funkcije rastojanja i njihovih odgovarajih ekscentidnih anomalija.
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Blok Sema tog algoritma je prikazana je na slid.4S obzirom da je blok Sema
simetritna u odnosu na ulazne tie E; i E; na slici 4.1 dat je primer kada su ulazne
velitine ekscenttine anomalije prve elipthe putanjeE; tj. kada izraunavamo lokalne
minimume, maksimume i njihove odgovar&uekscenttine anomalije E> na drugoj
elipticnoj putaniji. Postupak iztanavanja i algoritam su isti kada promenjExi E;
zamene mesta stom razlikom Sto se tada koristi jedreg&ina sistema 3.3. Parametri u
ulaznom modulu algoritma su putanjski elementi prdeuge elipténe putanje: velike

poluose, ekscentmosti, longitude uzlaznogvora, longitude perihela i nagibi. Kada
smo isti algoritam i njemu prilageni program koristili za izg&unavanje broja

stacionarnih t&ka i njihovih vrednosti z#, Ei i E, kod simuliranih parova, kao
Sto je vé u prethodnom poglavlju pomenuto, & je jedna putanja imala fiksne
putanjske elemente na ulazu dok su putanjski elerdage putanje varirali tj. njihova
varijacija je programski generisana. U tom smiséuisulazni modul algoritma za
simulacije neznatno razlikuje.

4.1.1 Modul za sortiranje rezultata

S obzirom da, kao Sto smodveekli, jedn&ina ¢etvrtog stepena moze imaatiri ili dva
realna reSenja i da za svaki par asteroida, bikudani realni ili simulirani, treba ‘o&i
obe elipttne putanje sa odgovargm korakom, @igledno je da u postupku
izratunavanja imamo mnogo prolaznih reSenja. 1z togogaezl algoritmu postoji petlja,
a formiran je i poseban modul za sortiranje retaltd) modulu za sortiranje se
odbacuju sva telda reSenja koja programski nisu zahtevana i pragitise formiraju

dve funkcije rastojanj f:(0,E1) i f,(0,E;) koje se kasnije upoteju. U zavisnosti od
vrste ekstremuma koji se trazi (minimum ili maksimjuu funkciji rastojanja figurisu

Prminili Pmax. 1zlazni modul je fleksibilan u smislu da se matedvideti i znatno @
broj izlaznih podataka nego Sto je to dato u Eeki na slici 4.1.

4.2 Opis rada programa

lako ¢e kompletan program, koji je formiran i kar@ kako u ré&unu stacionarnih
tacaka elipténih putanja realnih asteroidskih parova, tako iwiranih parova, biti dat
u prilogu, u ovom poglavljde biti objasnjeni neki njegovi glavni delovi. Prgto treba
reci je da je program napisan u programskom jezikul&la?.0 i da se on kao takav
pokazao prikno pogodan za zahtevana @raavanja. Takde je vazn&injenica da
osim Sto je izlozeni postupak odreanja proksimiteta brzi od ghhog (Milisavljevi,
2002) i programski jezik Matlab 7.0 je operativngd svog prethodnika pre deset
godina. Ako tome dodamo i znatnoteehardverske mogunosti danas, jasno je kako je
uspesno obreno preko 20 miliona Sto realnih Sto simulirnihqar elipténih putanja.

Na samom pietku programa definisan je zajetkiikorak za promene (varijacijtE; i
E,, a odmah zatim se zadaje i preciznost NjutnoveodeetPosle unoenja putanjskih
elemenata obe asteroidske putanje na osnovu njihveegenerisu jeditini vektori P i
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Q tj. njihove koordinatne algebarske vrednosti. lgnsentima ‘poméni parametri’
posle viSestrukih smena formira se jetina ¢etvrtog stepena i nakon toga se pristupa
njenom reSavanju. Zatim slede segmenti ’prekidamjdé se odvajaju realna od
imaginarnih reSenja, zatim se nalaze reSenja uirokpkrihela i afela i tek onda
program rauna rastojanja.

Prvi korak u celom postupku, bilo da se &naavaju minimumi ili maksimumi z E;
jeste provera da li postoji minimum ili maksimumtagki E; =0. Isti postupak se

ponavlja i zeE». Na kraju program sortira sve minimume i maksimurba najmaniji
medju minimumima. Podatke 0 minimumima i maksimumina izlazu prate podaci o

odgovarajdim vrednostime E; i E; koji su dati u stepenima, a odgovatajeninimum

ili maksimum funkcije rastojanja izrazeni su u assmskim jedinicama. Ovo je sustina
rada programa. Primena Njutnove metode u reSavmgodaine cetvrtog stepena
omoguava viSestruko ubrzanje a@nskog postupka u odnosu na brzinu rada
odgovarajgeg modula programskog jezika Matlab 7.0. Poredederih izlaznih
podataka program daje i broj kombinacija minimumanaksimuma za svaki set
simulacija ili realnih parova jer je za analizu ¢ijk rastojanja taj podatak od ziaga.

4.3 JoS neke karakteristike programa

Rekli smo da program moze da generiSe viSe vrdganih podataka u skladu sa
zahtevima analize funkcije rastojanja. Vazno jatisia program omogiava, posredno,
iscrtavanjem grafika funkcije rastojanja, odredfianjenih prevojnih t&aka. U sldaju
primene metode (Milisavlje¥i 2002), koja je odivala samo minimume tj.
proksimitete, da bi secavala kontinualnost u obilazenju i da neki od molgu
proksimiteta ne bi bio presken, a zbog problema stalnog smenjivanja minimalnih
rastojanja i prevoja funkcije rastojanja dve putamporali smo stalno "gurati" odlage
vektor uvek na novu getnu poziciju, sve dok ne prestane da s€a/tmazad na ve
izracunati proksimitet (slika 4.2).

Naime, ako sa;lobelezimo prvu elipthu putanju i nju poloZzimo XY ravan, druga
elipticna putanjaJ bi u tom slgaju, zauzimala polozaj kao na slici 4.2. Slika 4.2
prikazuje projekciju ove dve eligtie putanje n&Z ili YZ ravan, Sto zavisi od ostalih
parametara. U svakom ghju, usled méusobnog nagiba ravni u kojima se ove dve
putanje nalaze i zakrivljenosti elipse kao georjsiing oblika, imamo smenjivanje uzih

I Sirih oblasti najmanjih rastojanja ovih (ili bilkojih) asteroidskih putanja. Zato smo
koristili moguwnost "dodavanja” vrednosti ekscetiie anomalije svakoj sleélg
ulaznoj velkini, jer tek kada vektor relativnog polozz?” prade prevoj, tj. najSiru
oblast (Srafirani deo sl. 4.2) on, kao Sto smoirelkhzi u zonu proksimiteta i potreba za
ovakvim dodavanjem vrednosti viSe ne postoji déaiséa na sled prevo.
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Slika 4.2: Sematski prikaz ranije metode prevaeitjg prevojne oblasti na funkciji
rastojanja

U novoj metodi to nije neophodno jer, kao Sto j& veteno, program izabranim
korakom ulazne vrednosti za eksceimu anomaliju prvo 'olide’ kompletnu jednu pa
drugu elipténu putanju, formira dve funkcije rastojanja, uporegihove lokalne

minimume i maksimume i samim tim reSava problenddje kompletnu sliku funkcije
rastojanja.
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Slika 4.3: Graféki prikaz funkcije rastojanja za proizvoljan paiplcnih putanja
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Na slici 4.3 se vidi da se u preseku punih i ispl@hkih crvenih linija nalaze minimumi
a da se u preseku punih i isprekidanih plavihdim@alaze maksimumi. Prevoji se nalaze
u preseku plavih i crvenih linija. Zahvaljéjuzlaznim rezultatima imamo da su:

prox_min= 12 92.031  0.41445
prox_max = 185 83.084 1.5832

pri ¢emu su vrednosti u prvoj i drugoj kolol, i E, respektivho, dok je u téej
rastojanje izrazeno u AJ. Sa grafika se vidi dgpavojne téke u centru sedla i to
prevoj koji odgovara maksimumu u narandzastoj ablas prevoj koji odgovara
minimumu u svetloplavoj oblasti. Njihove vrednostioZzemo ¢itati sa grafika i u
konkretnom sltaju: to su dve vrednosti (ukupan broj min i maxngkl je broju
prevojnih t&aka), a koordinate su im priblizno:

prev_1:=~ (170 260) prev_z~ (355 250) ;
naravno sve su vrednosti izrazene u stepenima.aBuaka se polozaji prevojnihceka
mogu odrediti i znatno preciznije ali to nije biorparni cilj analize funkcije rastojanja.

Na kraju ovog poglavlja treba podsetiti da su sedgozicije maksimalnih rastojanja i
prevoja ranije r&unale aproksimativnim postupkom J. Lazav{opisanom u poglavlju
2) i da transcedentni sistem jedma 2.5, u zavisnosti od vrednosti odgovacdju
parcijalnih izvoda, ima reSenja koja su minimumaksimumi ili prevojne @&ke.

Znajwi da je

p* =(r 1)U, ~T), 4.1)
parcijalni izvod po EmoZzemo napisati u obliku:

00> _ .,. .0

9 - —2(r, — 1) Ggé (4.2)

a parcijalni izvod po £

00> .. . or

—— =2, 2

oE, (1) OF, (4.3)
Ako ponovo prvu diferenciramo pa B drugu po E dobijamo izraze u obliku:

0°p? __on o e
oE? _20E1D§E1 2(r, 1)93; (4.4)

0°p® __ o, r -
=222 +2(r, - G‘L
o7~ ZoE, o, AR (4.5)

MesSovite parcijalne izvode dobljamo kada jetina (4.2) diferenciramo po JkEili
jedn&inu (4.3) po & Tako dolazimo do:

0°p° _ 0 (0p*|__,0n Pn
dEQOE, OF, | OE, dE, OF, -

Uslov za postojanje ekstremuma je

(4.6)
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0E; OE? | 0EQE,

za vrednosti odgovarajin reSenja. Ako je to ispunjeno, ekstremum u toékitaaista
2 2 2 2

oE? >0on je minimum, a ako | oE?

reSenja sistema (3.1) su prevojnéea

postoji i to ako je <0 on je maksimum. Ostala
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5. REZULTATI ANALIZE FUNKCIJE RASTOJANJA

5.1 Simulirani parovi putanja

5.1.1 Parovi putanja kada je jedna od njih sa fiksnim svim putanjskim
elementima osim ekscentricnosti

U tabeli 5.1 prikazani su rezultati simulacije paxoputanja za sedam raziih

vrednosti velike poluose druge elippie putanje, koja je varirana od a2=0.05 do a2=0.95

sa korakom od 0.15 u jedinicama velike poluose pnbéte. Na ovaj n&@n dobijeno je

5740875 parova i isto toliko rezultata tj. parovaribinacija broja minimuma i broja

maksimuma funkcije rastojanja.

Tabela 5.1: Rezultati simulacija

Min | Vrednosti fiksnih i promenljivih elemenata svih 7 smulacija
- al=1,i1=1,»=10,Q=10, €1=0,0.9;0.1 %
Max | i2=1,89;2,w=5,355;250=5,355;25, €2=0,0.9;0.1

Velika poluosa druge elipténe putanje a2 u jedinicama al| Ukupng

0.05 0.2 0.35 0.5 0.65 0.8 0.95

1-1 | 792339 | 573310| 371174 219418 104890 41885 217/3 73924 37,0115

1-2 |72 13561 | 28039 | 25420| 17190 8651| 4569 97502 1,6983
1-3 |1 2 2 7 42 95 213 362 0,0063
14 |0 0 0 0 0 0 0 0 0

2-1 | 24232 190520 334288 444554 532145 577138 586R49 91268 | 46,8417

2-2 | 2222 41849 84372 123855 149686 1609P1 163018 7259P12,6459

2.3 |28 10 2 9 94 328 624 1095 0,0190
2.4 |0 0 0 0 0 0 0 0 0

31 | 1178 | 822 1384 | 2692 | 5460 | 11633 18750 41928 0,73p3
32 |3 39 854 4153 | 10584 | 19374] 24765 59772 1,041
33 |1 0 1 0 12 0 0 14 0.0002
34 |0 0 0 0 0 0 0 0 0

4-1 |50 11 9 13 5 21 57 166 0,0028
4-2 |0 0 0 4 17 9 98 128 0,0022
43 |0 0 0 0 0 0 0 0

4-4 |0 0 0 0 0 0 0 0 0
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Kao Sto se moze videti iz tabele 5.1 parovi sa 14 stacionarnih se ne pojavljuju pa je
ocigledno da nema ni parova sa 4 maksimuma, (u ddg&stu prva cifr&e ozngavati
broj minimuma a druga cifra broj maksimuma). Vidiw@ postoji 166 parova 4 - 1, za
koje je Gronki (2002) iz svojih simulacija tak®dobio potvrdan rezultat.

Pronaleni parovi 4 - 2 u naSim simulacijama pokazuju dak€ija rastojanja sa 12
stacionarnih téaka zaista postoji. Zastupljenost ostalih parova (& dijagramima na
slici 5.1 (a-b). Na tim dijagramima vrednosti nasepi predstavljaju duzinu velike
poluose druge orbite u jedinicama velike poluoses mrbite, dok je na ordinati dat broj
asteroida. Jasno je, da na tafinaapscisa predstavlja osu péeaja dimenzija dve
orbite.

900000 900000
800000 800000 —
700000 700000 -
600000 600000 -
500000 500000 -
400000 400000 -
300000 300000 -
200000 200000 -
100000 100000 -
0 = 0 -
0.05 0.2 0.35 0.5 0.65 0.8 0.95 0.05 0.2 0.35 0.5 0.65 0.8 0.95

Slika 5.1: a) Dijagram zastupljenosti parova 1-1,122-2 i 1-2 i b) Dijagram
zastupljenosti parova 1-1 i zbirni 2-1, 2-2 i 1-Na ordinati je broj parova a na
apscisi je relativna (normalizovana) velika polusa.

Na dijagramu a) slike 5.1 plava linijja predstavharove 1-1, zelena parove 2-1,
ljubic¢asta linija predstavlja parove 2-2 dok crvena dirgarove 1-2. Vidimo da sa
poveanjem velike poluose druge orbite broj parova 1alne opada, dok broj parova
2-1 i 2-2 stalno raste. Sto séetiparova 1-2 kod njih broj spetka raste pgev od nule,

a kasnije opada do nule. Na dijagramu b) slike fadzemo videti da je zbir parova 2-1,
2-2 i 1-2 komplementaran sa brojem parova 1-1 nanctentervalu promene velike
poluose. Ovo ukazuje n&njenicu da se od situacije sa jednim proksimitetdm
situacije sa viSe proksimiteta ’'najbrze dolazi’ getrijskim izjedn&avanjem
asteroidskih putanja.

Takvu pretpostavku bi kasnije simulacije trebattaipotvrde. Zastupljenost parova 1-3
i 2-3 je jako mala u odnosu zastupljenost ostallhopa ali je i u njihovom stiaju
primetan rast broja tih parova sa rastom velike:psé.

Dijagram a) slike 5.2 prikazuje broj parova 3-lag@ linija) i broj parova 3-2 (crvena
linija): vidi se da ti brojevi imaju tendenciju tassa rastom velike poluose, tj. sa
geometrijskim izjedn&gavanjem putanja. Dijagram b) slike 5.2 predstavig parova 4
-1 (plava linija) i broj parova 4-2 (crvena linijggde mozemo videti izvesno oscilovanje
ovakvih, specifinih, parova asteroida.
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Slika 5.2: a) Dijagram zastupljenosti parova sa,3312 i b) 4-1, 4-2. Na ordinati je
broj parova a na apscisi vélna velike poluose.

Dijagram a) slike 5.3 prikazuje broj parova 1-3ai@ linija) i broj parova 2-3 (crvena
linija). MoZe se videti da i ti brojevi imaju tenalgju rasta sa izjeddavanjem putanja.

700 2
600 -
1 1
500 -| I
400 0 E

_________ R

300 - 12845618 910111281516
.1.

200 -

100 - 2

0
0 0.5 1 3 -

Slika 5.3: a) Dijagram zastupljenosti parova sa 1-33 maksimuma u zavisnosti od
duzine jedne od velikih poluosa i b) Logaritam mnoimalne zastupljenosti svih 16
teoretski mogéih simuliranih parova putanja

Dakle, vidimo da ovaj tip simulacija ukazuje nagsirslozenosti funkcije rastojanja sa
izjedna&avanjem putanja po dimenziji. Ovu konstataciju ustobi trebalo da potvrde i
neki drugi tipovi simulacija.

5.1.2 Parovi putanja kod kojih se variraju samo w2z, Qziez.

Za svaki od 14 raalitih parova (tipova) konfokalnih eligthih putanja prikazanih u
poglavlju 3.3, urdeno je 1136441 simulacija. Dobijeni rezultati sualearani sa
stanovisSta ‘evolucije’ funkcije rastojanja i njep@omene sa promenom putanjskih
elementa koji su varirani.

Paiimo redom:

Kod tipa la fukcija rastojanja ima 6 i 8 stacionhrtataka. Pojavljuju se samo parovi 2-
1 i parovi 2-2 sa zastuplienas13% i 87% redom. Karakteri&tio je da se parovi 2-1
javljaju za relativno male vrednosti medjusobnogiba manje od 15°.
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Kod tipa Ib funkcija rastojanja je sloZenija, im@&ill2 stacionarnih taka tj. pojavljuju
se parovi 2-3, 3-3 i 4-2. Najzastupljeniji parou 2-1, 53%, 2-2, 30% i 1-1, 11%.
Parovi 2-3, su zastupljeni 3%, dok se ostali pgygvlu zanemarljivom broju. Ovde nije
primetna neka kontinualnija zavisnost funkcije ogatja u odnosu na relativni nagib.

Sustinska razlika tipa Ic i Ib je u tome Sto se kipd Ic ne pojavljuje nijedan par 3-3.
Ostale karakteristike su vrlo &tie.

Kod tipa lla pojavljuju se prvi put relativno jasrescilacije sloZzenosti fuknkcije
rastojanja sa rastom nagiba. Parovi 1-1 pojaviggza vrednosti relativnog nagiba od
0° do 6°, parovi 2-1 od 7° do 14°, i parovi 2-2vzadnosti od 15° do 89°. Navedene
oblasti nagiba blago variraju u zavisnosti od vieinostala dva putanjska elementa.

Tip llb verovatno zasluZzuje posebnu paznju jer tiijlakrastojanja za male vrednosti
longitude uzlaznogvora i longitude perihela u intervalu nagiba odd®®45°, ima 6
stacionarnih t&aka (pojavljuju se parovi 2-1), u intervalu nagdzh46° do 58°, ima 8
stacionarnih t&aka (parovi 3-1) i intervalu nagiba od 58° do &&a 10 stacionarnih
tataka (pojavljuju se parovi 3-2). Sa primicanjem bagirednosti od 90°, pojavljuju se
parovi 4-1 i 4-2, tj. funkcija rastojanja ima 1@2 stacionarnih taka. Sa druge strane,
poveanje longitude uzlaznogvora i longitude perihela znatno menja ovakvu
raspodelu.

Sto se tie tipa llc funkcija rastojanja sa paamjem longitude uzlaznogvora i
longitude perihela varira i po prvi put, imamo skwuite prelaze sa 2-2 na 1-1 i obrnuto.
Za ve&e vrednosti ova dva putanjska elementa pojavljejparovi 3-1, 3-2, 3-3 pa i
nekoliko parova 4-2.

Funkcija rastojanja za tip lld za interval relatbgn nagiba od 0° do 56°, ima 6
stacionarnih t&aka (parovi 1-2), a za interval nagiba od 578dt ima 8 stacionarnih
tacaka (parovi 2-2). Interesantno je da se u interealu76° do 77° nagiba pojavljuju
parovi 2-3 da bi se oko kr#nog ugla od 88° do 89° pojavili parovi 3-2.

Kod tipa lle funkcija rastojanja sa porastom naggustaje jednostavnija. Sie se
parovi 3-2 za nagib od 0° do 7°, parovi 2-2 zailmag 8° do 71° i parovi 1-2 za nagib
od 72° do 88°. Tek u oblasti granog ugla, tj. medjusobni nagib od 89° pojavljuju se
parovi 4-1.

Tip llla ima funkciju rastojanja vrlo ginu tipu la.
Tip lllb ima slicne karakteristike funkcije rastojanja kao tip llb.

Kod tipa llic najzastupljeniji su parovi 1-2, a keija rastojanja ima 10 stacionarnih
tacaka (pojavlju se parovi 3-2), za vrlo male vrednesanje od 10° medjusobnog
nagiba Sto je u skladu sa ranijim komentarom u ypegave 3 minimuma (poglavlje
3.1).

Tip Illd ima funkciju rastojanja sa 10 stacionarn#iaka za male vrednosti longitude
uzlaznogévora i longitude perihela u intervalu nagiba odd®® 88°. Sa povanjem
vrednosti ovih parametara pojavljuju se parovi 2alinterval nagiba od 0° do 12° i
parovi 3-2 od 13° do 88°.

Kod tipa llle pojavljuju se parovi 2-1 u intervahagiba od 0° do 39°, parovi 3-1 u
intervalu nagiba od 40° do 57° i parovi 3-2 za bagid 58° do 88°.

Tip llIf ima veliku slicnost sa tipom lle.

38



5.2 Realne asteroidske putanje

U prethodnim poglavljima izloZzen postupak je kéeis i kod realnih asteroidskih
putanja sa neznatnim izmenama u modulu generisdéagaih podataka. Take ispitani
su minimumi i maksimumi funkcije rastojanja za 24&eroida (tj. 2997576 parova) sa

poznatim poluprénicima i nagibima vém od 45 . Svi orbitalni (putanjski) elementi
uzeti su iz dostupne baze podataka IAU Minor Planetenter
(http://www.minorplanetcenter.net/iau/MPEph/MPEpmNt Rezultati su prikazani u
tabeli 5.2 i pored ostalog odmah se moze prima#itkao i u tabeli 5.1 gde smo imali
prikazane rezultate za simulirane asteroidske garowovde nema parova sa 14 i 16
stacionarnih t&aka tj. parova 3-4, 4-3 i 4-4. Tak® nema parova sa 4 maksimuma kao i
parova sa 3-3 koji su, iako u jako malom broju,kigaronaieni kod simuliranih
asteroidskih parova putanja. Kada se pogleda Zgstopt ostalih parova reklo bi se da
nema velike razlike od simuliranih i kao Sto jéekivano najviSe ima parova sa 2
minimuma Sto je i ranije utdeno (slika 5.4).

Tabela 5.2: Rezultati realnih asteroidskih parova

Broj Broj Vrednost Procenat (%) u| Redni broj
minimuma | Parova najmanjeg odnosu na sve kombinacije
- _ proksimiteta  u | testirane asteroide | .
maksimuma [AJ] maksimum
1-1 64762 1.549545e-04 21.61 1

1-2 5244 5.184364e-04 0.174 2

1-3 2 4.376694e-01 0.000066 3

1-4 0 - - 4

2-1 2052908 1.396222e-05 68.49 5

2-2 280654 1.605368e-04 9.36 6

2-3 3 2.177545e-01 0.0001 7

2-4 0 - - 8

3-1 5540 3.297258e-03 0.185 9

3-2 5461 4.325793e-03 0.182 10

3-3 0 - - 11

3-4 0 - - 12

4-1 1 1.485550 0.000033 13

4-2 1 2.070808 0.000033 14

4-3 0 - - 15

4-4 0 - - 16
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Slika 5.4: Logaritam procentualne zastupljenostins¥6 teoretski mogiuh parova
putanja u svim kombinacijama izabranih asteroida.
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Analizirajuéi sve dobijene rezultate moggrije dati neke komentare:

Kod najveeg broja parova sa jednim proksimitetom bez obmaabroj maksimuma
bliske vrednosti njihovih nagiba putanja su evidentako da se moze slobodnéi r@a
je uslov kvazikomplanarnosti kod ovih parova dimeslu¢ajeva zadovoljen.

Parovi sa dva minimuma n&itm oni sa jednim maksimumom su najzastupljeniji.
Takaie moguénost tj. verovatnéa za postojanje ovakvih parova u &l
komplanarnosti je najve.

Parovi sa tri minimuma su generalno mnogo manjaup§sni i veoma ih je tesko tia
medu kvazikomplanarnim asteroidima. Jedan od minimyemskoro uvek blizu jednog
od perihela dok su druga dva u nesto Siroj ok@lorne linije.

Parovi sacetiri minimuma su se pojavili samo dva puta od ekdri miliona
analiziranih. Prvi prondeni par imacetiri minimuma, dva maksimuma i Sest prevojnih
tacaka, a drugéetiri miminuma, jedan maksimum i pet prevojnitiaiea. U oba skaja,
evidentna je veliki medjusobni nagib. Na slikam& 5.5.7 prikazane su orbite tih
asteroidskih parova sa njihovim projekcijama naes&h sferu i kada ih uporedimo sa
odgovarajdom slikom 5.9 Gronkijevog simuliranog modela, odnsghu@ava velika
slicnost. To naravno potsiju i prostorni i ravanski dijagram funkcije rastoja dati na
slikama 5.6 1 5.8.
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Slika 5.5: Orbite asteroidskog para 2010 CA55-2QINB3, (sldaj 4-1) i njihove
projekcije na nebesku sferu.
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Slika 5.6: Prostorni i ravanski dijagram funkcijastojansz(El, E,) za asteroidski
par 2010 CA55-2010 JN33 (8hj 4-1).
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Slika 5.7: Orbite asteroidskog para 2001 OK17-200488, (sldaj 4-2) i njihove
projekcije na nebesku sferu.

Slika 5.8: Prostorni i ravanski dijagram funkcijastojanjep(El, E,) za asteroidski
par 2001 OK17—-2001 XN88 (shj 4-2).
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Slika 5.9: Orbite Gronkijevog (Gronchi, 2002) simahog para MP1- MP2 (skaj 4-
1) i njihove projekcije na nebesku sferu.

5.3 Analiza funkcije rastojanja

lako vrednosti ekscentnih anomalija u pozicijama minimuma, maksimuma kao
prevojnih t&aka u okviru istog skaja, mogu biti prikno razltite, njihove funkcije
rastojanja ipak imaju vrlo sihe oblike. U tom smislu, na slikama dole dati su 2d
dijagrami za svaki od moginh parova asteroidskih putanja (klasifikovanih pojb
minimum-maksimum). Tabela sa njihovim imenima data prilogu 2.

Na slici 5.10 a-b su prikazani odgovarajdijagrami za sltaj kad je funkcija rastojanja
1-1, Sto zajedno sa dva prevoja ukupno, daje 4dostame tdke i samim tim predstavlja
slwtaj kad je ona najprostija. U zavisnosti od vrednostanjskih elemenata i minimum
i maksimum mogu zauzimati najradtije pozicije tj. imati odgovarajte vrednost E; i
E2 .

Na svim 3d dijagramima koji su prikazani na Z ogiwednosti relativnog vektora

poloiaja,atj. velicina funkcije rastojanja izrazena u AJ. Prevojnékéasu uvek u
centru sedla i u centrima oblasti prelaska iz jesh@malne ili maksimalne vrednosti u
drugu njoj najblizu.
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0 60 120 180 240 300 360

prox_min =64  186.18 0.00015495 prox_max = 211 144.89 6.5808
Slika 5.10 a-b: 3D i 2D dijagram funkcije rastojarga par 1-1.

Slwaj 1-2 je po karakteristikama &in prethodnom osim naravno Sto ima jedan
maksimum viSe, pa samim tim i 3 prevoja tj. ukughatacionarnih taka funkcije
rastojanja.

360-
300
240

wi' 180

120-

prox_min = 354 219.68 0.78758 prox_max = 174 211.77 4.5648
355 37.911 2.7715
Slika 5.11 a-b: 3D i 2D dijagram funkcije rastojarga par 1-2.
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prox_min=13  351.74 0.43771 prox_max= 11  178.78  3.1107
179 21022  4.0411

182.11 325 4.0119
Slika 5.12 a-b: 3D i 2D dijagram funkcije rastojarga par 1-3.

lako su parovi koji imaju 1 minimum po zastupljemosdmah iza parova sa 2
minimuma, sldaj 1-3 je izuzetno redak i jako ga je teSko piprkako kod realnih tako
I kod simuliranih asteroidskih parova putanja. Fejak rastojanja sada ima 8
stacionarnih taka.

360
'

300-

prox_min = 109 95.597 0.2202 prox_max= 5 179.33 5.9418
310 309.76 1.3962e-005
Slika 5.13 a-b: 3D i 2D dijagram funkcije rastojarga par 2-1.

Svakako da su parovi 2-1 najzastupljeniji bilo @ar@ o simuliranim ili realnim
parovima asteroidskih putanja, i ono Sto je u ovel€aju evidentno je da su im
pozicije minimuma okino sa ujedn&nim razlikama odgovarajin ekscentiinih
anomalija tj. u Siroj okolini linijgvorova kako je véranije pomenuto.
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prox_min =14 15.668 0.00016054 prox_max= 184 5.6783 4.4953
199 200.55 0.069757 351 172.63 44272

Slika 5.14 a-b: 3D i 2D dijagram funkcije rastojarga par 2-2.

Slutaj 2-2 je karakteristan kao najese zastupljen kada je relativni nagib velik (blizak
90°). Simuliranje tj. promena ostalih putanjskitereenata (longitude perihela i

longitude uzlaznogvora), u tim uslovima, n&gse dovodi do pojave joS jednog ili viSe
minimuma ili jo$ jednog maksimuma.

\

300 360

240

120 120 180

0 60 120 180 240 300 360

prox_min = 23 21.304 0.37099 prox_max= 33 184.93 4.2263
328 321.56 0.21789 157 193.42 4.4858
179.09 351 4.3052

Slika 5.15 a-b: 3D i 2D dijagram funkcije rastojarga par 2-3.

Sluaj 2-3 je upravo direktna posledica prethodno kdarano parovima 2-2 |, talde,
kao i parovi sa 1-3 je jako retko zastupljen. Saeikcija rastojanja ima 5 prevoja tj. 10
stacionarnih taka.
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0 60 120 180 240 300 360

prox_min =18 19.192 2.1732 prox_max = 348 183.91 7.1919
186 255.15 0.0032973
143.31 109 2.1201

Slika 5.16 a-b: 3D i 2D dijagram funkcije rastojarga par 3-1.

lako ne mnogo zastupljeni svi gajevi 3-1 imaju prikkne metusobne stinosti kada su
poloZaji minimuma i maksimuma u pitanju. To nedvademo ukazuje da su raniji
stavovi kada je bilo @ o parovima sa 3 minimuma bili ispravni tj. dars@imumi i
maksimumi nalaze upravo naekivanim mestima, kako je to &@rikazano u poglavlju
3.1.

prox_min =134 99.542 0.0045304 prox_max =172 354.63 3.3656
347 353.36 1.3932 334 176.67 6.3586
162.58 248 2.0882

Slika 5.17 a-b: 3D i 2D dijagram funkcije rastojarga par 3-2.

MoZe se ré da je par 3-2 karakterigan sl¢aj prethodnog 3-1 I, osim 5to je josiee
zastupljen od njega, njegova funkcija rastojanjm@u najkomplesnijima jer kao i par
2-3 ima pet prevoja tj. ukupno 10 stacionarnifaka. Ovde je takie karakteristino da
se drugi maksimum oémo pojavljuje na oko 180° od prvog (nha priloZenoipagiamu
na slici 5.17 b i iz vrednosti eksceiitrih anomalija za maksimume to se moze videti).
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0 60 120 180 240 300 360

prox_min = 17 6.0837 0.073164 prox_max = 33 183.66 2.0309
279 80.995 0.61863 136 224.65 1.919
354 343.12 0.073082 176 326.91 2.031

Slika 5.18 a-b: 3D i 2D dijagram funkcije rastojarga par 3-3.

Sluaj 3-3 je najrdi od svih, pacak i od onih sa 4 minimum, izgled njegovih 3d i 2d
dijagrama funkcije rastojanja to jasno pokazujekolia, to je joS jedna potvrda da je
smena minimuma, maksimuma i njihovih odgovatédjuprevoja na obilaZzenju, po

orbitama, zaista jedan slozen postupak. Sada flankastojanja ima maksimalnih 12

stacionarnih taka.

s

E,

prox_min=10 26591 15424 Prox_max=179  181.24  7.8719

45 335.66 1.4856
323 41.877 1.5776
348 99.614 1.554

Slika 5.19 a-b: 3D i 2D dijagram funkcije rastojarga par 4-1.

Slutajevi sacetiri minimuma bez obzira da li imaju 1 ili 2 makaima, takde su
izuzetno retki bilo da je &eo realnim ili simuliranim parovima asteroidskihtaoja
(samo tri prondena od skoro tri miliona parova kod realnih i zaadjwi procenat kod
simuliranih to jasno potduju). Analizirajwi pozicije svacetiri minimum, stte se
utisak da su oni nekako pravilno raspime unakrsno po elighoj putanji (na 2d
dijagramu su oldno u svacetiri ugla). Jedan maksimum je 6bo u sredini 2d
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dijagrama tj. sa vrednostima eksceafttitn anomalija oko 180°, dok je drugi ako postoji

u jednom od uglova 2d dijagrama pa je i njegovaciwe neznatno @ od njemu
susednog minimuma. Ipak, zbog malog uzorka tj. atenih parova o nekoj ¥ej

generalizaciji ovde se ne moze govoriti osim, kiaoj& viSe puta pomenuto, da je kod

ovakvih parova medjusobni nagib blizak 90°.

prox_min =

1 257.4 2.0709

55 14.096 2.6607
299 355.25 2.4535
5.5428 111 2.3585

prox_max=

182

120 180 240
E1

9 8.5423

184.08

Slika 5.20 a-b: 3D i 2D dijagram funkcije rastojarga par 4-2.

300 360

2.7427
8.8626

Tabela 5.3 Vrednosti putanjskih elemenata karaktienih parova asteroiddiji su 2d i
3d dijagrami funkcije rastojanja prikazani u poglanvs.3

W el Q[ 1y : a[AJ]
1-1 132.281269 45.522674 18.681453 0.15134733 3.23%097
27.024027 37.320218 14.340210 0.16700712 2.59426748
1-2 248.128542 169.911193 12.982126 0.25506017 2.625484
132.18943 56.572203 63.460828 0.26643638 1.00686863
1-3 262.852693 165.372567 65.533781 0.97710700 1.9G8652
280.485689 309.975292 46.041624 0.73550991 1.760083
2-1 125.024081 307.898145 6.419848 0.11848675 2.6948739
82.945156 356.590639 16.535383 0.23064606 2.92@®4221
2-2 5.442021 62.505725 7.982340 0.13714720 2.24800199
23.590632 42.583744 4.414988 0.12392857 2.21303649
2-3 185.075073 185.459505 56.067896 0.79678925 2.329720
164.648147 256.898547 70.922738 0.89724060 2.0&3017
3-1 337.072218 167.373232 1.018258 0.06452355 2.88%13923
331.807638 150.336242 53.250673 0.81316168 2.55%76
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3-2 291.324685 | 97.424668 24.223534 0.30047538 2.3829439
356.691413 | 7.095813 60.542807 0.88223092 2.51151353

3-3 1 1 1 0.866

simulacija
2925 111.25 31 0.866

4-1 305.374159 | 106.551914 56.891819 0.78611989 3.12%402
59.344843 200.577800 55.145393 0.33872023 1.7080383

4-2 158.824199 | 122.113353 49.223350 0.56541673 3.287333
190.782840 | 279.623991 47.061014 0.48404983 2.58%68

5.4 Pojam proksimiteta i pojam MOID-a

Ceo ovaj rad je, u krajnjoj liniji, nastao kao puddtak jednog specifnog napora u
istrazivanju mdusobnih bliskih prilaza malih planeta, gemu taj napor mozemo da
identifikujemo kao zn&jan deo beogradske Skole astronomije, deodejiskoro da
navrSi stolée posmatrékih i neSto manje od stala teorijskih rezultata. PoStuju
svetsku praksu tvorci te Skole i njihovi sledbersigikoristili pojam proksimiteta da bi
oznaili situacije kada dolazi do bliskih prilaza majhaneta. Mdutim, rast zahteva da
se iz znatno bogatije populacije malih planetdunane male planete koje mogu da
dovedu do medjusobnog sudara, posebno zahtev dazs®tre i istorijski i budéi
bliski prolazi tih tela i Zemlje, dakle, sve togevelo da se ti i takvi prolazi i polozZaji
po¢nu nazivati najmanjim. U engleskom govornom pépruza najmanji od
proksimiteta dva nebeska tela upotrebljen je nBD (Minimal Orbital Intersection
Distance)

Smatrajéi da smo u ovom radu dali dosta dokazaestu srpskih astronoma u razvoju
teorije proksimiteta, da su mnogi danas Wd&unjaci u toj oblasti deo svojih znanja
crpeli i iz naSe Skole, ovde sebi dozvoljavamo d@am MOID pretvorimo u pojam
NDOP, tj. u pojam Najmanja Duzina Orbitalnih Prese®vim ukazujemo na nekoliko
stvari: prvo, radi se o odianju svih minimuma funkcije rastojanja dvecka
konfokalnih putanja malih planeta, tj. o odredjipasvih proksimiteta; dalje, radi se o
nalazenju najmanjeg medju njima; dee radi se o funkciji rastojanja, tj. 0 presecima
dveju konfokalnih eliptinih putanja, a to zia da se radi o spectinoj vektorskoj
funkciji. Bez obzira $to u ovom radu nije bio ¢gptraga’ za najmanjim proksimitetom
tj. njegovo izrgunavanje (kao Sto je to ¢&@om slwaj u radovima novije generacije)
treba naglasiti da je ta 'potraga’ ovde bila uspeShtom smislu na slici 5.21 je dat
polozaj NDOP za dve proizvoljne orbite sa svim @iiat parametrima tj. njihovim
projekcijama na nebesku sferu, koji se¢e&je ne mogu sresti u literaturi i radovima na
temu proksimiteta i analize funkcije rastojanja.
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Slika 5.21: Projekcije svih relevantnih parametaM®ID-a na nebesku sferu.

Sa slike 5.21 vidimo da je polozaj NDOP-a ¢edte dat preko pravih anomalija
(ugaonih udaljenosti od perihela), prve i drugeiterb njihovih argumenata perihela
(ugaonih udaljenosti od uzlazn@gora). Znajéi vezu prave i ekscenéime anomalije
lako se prelazi sa jedne na drugu tako da, sawiaadzraunavanja proksimiteta, to i
nema nekog posebnog zag. Oba pristupa su skoro ravnomerno zastuplijena u
literaturi.

U odnosu na NDOP naSe simulacije i &@naavanja za realne orbite daju sléste

Najmanja vrednost NDOP-a koju smo i&raali je za par asteroida 131 (Vala) — 134
(Ivet) i iznosi od 0,00001396 AJ, Sto je okattne Zemljinog radijusa;

Najveli broj NDOP-a nde se u blizinkvorova;
Veca je verovatnéa da se NDOP & u blizini perihela nego u blizini afela;

Koncentracija NDOP-a ka perihelu je srazmerna gesdekscentricitetu orbita tj. Sto je
veca ekscenttinost véa je Sansa da se NDOPRdeau blizini perihelia;
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6. ZAKLJU CAK

Ponavljamo: problem najmanjih uzajamnih rastojadjeeju konfokalnih eliptinih
orbita, tj. problem lokalnih minimuma, koji je, pwavilu, poznat u istoriji astronomije
kao problem proksimiteta, i problem pronalazenjgmaajeg méu njima, Sto je u
literaturi poznato pod gore uvedenim nazivom MOIDa izuzetno vaznu ulogu u
astronomskim istraZivanjima. Sta viSe, pona3arraisla u okolini proksimiteta otvara
i specificne moggnosti daljih istrazivanja.

U tom smislu raniji postupak (Milisavlje¥i 2002, 2010) jeste posledica radova
Lazovica (1964, 1967, 1976, 1978, 1981) i Simovigav(1977), prcemu se izbegavaju
aproksimacije i proksimiteti nalaze naizmgnm reSavanjem jedne, pa druge,
vektorske jedndne sistema 3.1. Tako se doSlo u priliku da se izmetoda
odretivanja svih kritenih tataka - minimuma, maksimuma i prevojnilta&a.

Postupak izloZzen u ovoj disertaciji je Zamo poboljSan i zahvaljugii primeni
programskih alata prilagen, tako da je prerastao u postupak koji oniaga
izratunavanje ne samo minimuma, kao prethodn§ wvenaksimuma, a posredno je
mogue odrediti i prevojne tke.

Sve te mogénosti su programski implementirane i iskéeBe u obradi kako realnih
tako i simuliranih parova asteroidskih putanja. dhoasu na aktuelne i ranije postupke i
metode naS postupak je znatno brzi, a izbor i ken@ Njutnove metode za reSavanje
jedn&ine cetvrtog stepena, umesto gotovih reSenja koja nwatidd 7.0, joS nekoliko
puta je ubrzalo proces izt@navanja.

Kada se govori o stvarnim brzinama taraavanja ili o broju izabranih parova za koje
je raun obavljen pokazalo se da rezultiguorzina, odnosno efikasnostuaa, zavisi
od viSe parametara od kojih je svakako najajmaji izbor metode, pa tek onda dolaze
do izraZzaja vrste simulacija, izbor operativhe paogske platforme, hardverskih
potencijala raunarskog sistema, ... Na srednje brzim personataétnarima (godina
2010, 2011 — pentium 1V, ...) ovakvim postupkom mwnagje obraditi preko milion
parova asteroidskih putanja zaéséa.

Zahvaljujiei ovakvom pristupu formirano je anadikio i programsko okruzenje koje je
omoguilo znatno véi broj izraunavanja funkcija rastojanja malih planeta u cilju
izdvajanja karakteristhih parova asteroidskih putanja. U tom smislu kesmlizu
rezultata za 3 miliona realnih i preko 20 miliomagliranih parova asteroidskih putanja
otiSli smo korak dalje u iziavanju funkcije rastojanja malih planeta, Sto [@a jedan
od cilleva ovog rada. U tom smislu metoda koja gegvijena i primenjena u ovoj
disertaciji pokazala se izuzetno efikasnom jer:

Omoguava zna&ajno brzu obradu velikog skupa nebeskih tela iayih putanja kako u
realnim tako i u simuliranim uslovima

Uslovno oscilatorni karakter metode doprineo jelikeno novom rezultatu, a to je
pove&anje selektivnosti i uklanjanje opasnosti da searstlicionarna t&a previdi
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Odredjene provere metode na tri grupe asteroida,Atpollo i Amor, su pokazale da
navedeni metod takodje moze da se primeni i u gjaraa koje su posebno
interesantne kada se radi o bliskim prilazima niebdgla zemlji

Pokazalo se da su, nezavisno od toga da li seoragilnim ili simuliranim parovima,
najzastupljeniji parovi 2-11i 1-1. To ukazuje ¢igjenicu da u véni slu¢ajeva funkcija
rastojanja ima jedan ili dva minumuma kod kvazikéemprnih realnih asteroida i da
zadrzava stine karakteristike i kada kvazikomplanarnosti visemma, tj. kada
medjusobni nagib postane znatndiva nekoliko stepeni.

Analiza simulacije la - spectfan sl¢aj kada su dve eligihe putanje identne i sa jako
malom ekscenttnoXu - pokazala je da i za sve ostale vrednosti mebjusg nagiba
do 89° funkcija rastojanja ima &he karakteristike.

Kod parova asteroidskih putanja sa jednim minimuntapminimum je MOID, a kod
ostalih parova gde imamo viSe minimuma, jedan dd jej MOID pri ¢emu se MOID
uvek nalazi u neposrednoj blizini perihela. Quajenica je demonstrirana na slikama
5.10, 5.11 i 5.12 koje se odnose na prikaz podataknalazenje krinih tataka parova
kod kojih smo dobili 1-1, 1-2 i 1-3.

Grupa simulacija data tabelom 2 pokazuje da bropyza sa sloZenijom funkcijom
rastojanja (broj stacionarnih ¢&ka) raste sa izjedé@vanjem orbita po dimenziji.
Promene argumenta perihela i longitude uzlazivega nisu imale wgeg uticaja.

U opStem sltiaju funkcija rastojanja evoluira u slozeniju sag@njem medjusobnog
nagiba i naje¥e se broj minimuma i broj maksimuma péaea da bi oko kritinih
uglova od 80° do 90° njihov broj bio najrel u ovom sl¢aju promena argumenta
perihela i longitude uzlaznagyora nisu imale wgeg uticaja.

Pokazalo se da parovi asteroidskih putanja saitinmma ipak postoje i kod realnih i
kod simuliranih parova. Jedan od njihovih minimupa blizini perihela, a ako to nije
slitaj onda su dva od tri u okolini liniggsorova.

Vazna jecinjenica da sltiaj 3-3 postoji kod simuliranih putanja. Kod re&lmije
pronaien. Sa druge strane parovid&iri minimuma su znatno brojniji. To ukazuje na
moguu vezu sa slozenés funkcije rastojanja jer u slaju 3-3 i 4-2 imamo 12
stacionarnih taka.

| pored velikog broja simulacija par sa 4 maksimumja pronaen. Teorija ukazuje,
Bernstajn (1975) i Gronki (2002), na maksimalhéstacionarnih taka ali, iz nekih
analiza karakterighih parova eliptinin putanja,cini se dacetvrti maksimum pri
variranju putanjskih elemenata nekako ‘skliznerevoj.

Takade, simulacije po grupama i tipovima (poglavlje)3.Bored ostalog pokazuju da
uslov da dve elipthe putanje imaju ili nemaju preseh tataka kada su u istoj ravni
nema skoro nikakvog zdaja kada je u pitanju izgled njihove funkcije rgatga tj. broj
stacionarnih taka.

Vazan rezultat ovog rada jf@njenica da su prethodno izloZzenim postupkom uspesn

pronaieni parovi sa 4-1 i 4-2 kod realnih asteroidskittapia, Sto je i bio jedan od
glavnih motiva i ciljeva.

Pokazala se ispravnom odluka da se eventualniirgatovi sacetiri minimuma traze

kod onih¢iji je nagib vei od 45°; date slike i dijagrami ukazuju na njihoveliku
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slicnost sa simuliranim modelom (Gronchi 2002). Ossafhulirani parovi sacetiri
minimuma pokazuju da su vrednosti parametara patdrljske vrednostima u
Gronkijevom modelu, pa je uslov za postojanje 4imima funkcije rastojanja: (i)
postojanje velikog medjusobnog nagiba 75°-90° hligke vrednosti longitude perihela
obe elipttne putanje, ndg&e sa razlikom do 10°, (iii) suprotne pozicije |cugie
uzlaznogivora odnosno sa pribliznom razlikom njihovih vregti@d oko 180°.

Bez obzira Sto nismo pronasli parove &iri maksimuma, kao ni parove 4-3, ne
mozemo tvrditi da ih nema. Dakle, gornja granicaksmmalni broj, stacionarnihdaka
funkcije rastojanja dve konfokalne eligte putanje koji smo ovde nasli je 12.

Osim toga, potvrdili smo ranije dobijenih 8 reSeingeppunili ih sa 3 nova reSenja: 3-3,
4-1i4-2.
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PRILOG 1

Program za izraéunavanje minimuma i maksimuma funkcije rastojanja kod
simuliranih asteroidskih parova putanja

clear
clc

format short g

rad=pi/180;

% ZADAVANJE PRECIZNOSTI

korak=1*rad; %korak za E1 i E2

korakl=1*rad; %korak za E1 i E2 unutar osnovnih petlji(za pr. res enja)
preciznost_Newton=10"-5; %preciznost za Njutnovu metodu

% KOMBINACIJE MINIMUMA | MAKSIMUM A

KOMBINACIJE=[1111222233334444
1234123412341234];

% PREALLOCATIONS

broj_kombinacija=[1111222233334444
1234123412341234
0oo000O00O0OO0OOOOOOOY ;

% OSNOVNA PETLJA (KOMBINACIJE ASTE ROIDA)

al=1;a2=1;e1=0.866;e2=0.866;01=1*rad;01=1*rad;il=1* rad;

broj_kombinacije=0;

for 02=5*rad:3.125*rad:355*rad

for 0O2=5*rad:3.125*rad:355*rad

for i2=1*rad:1*rad:89*rad

broj_kombinacije=broj_kombinacije+1;

if mod(broj_kombinacije,100)==0

broj_kombinacije

end

% ME<USOBNA INKLINACIJA

N1x=sin(il)*sin(O1);N1ly=-sin(il)*cos(O1);N1z=cos(i1 );

N2x=sin(i2)*sin(02);N2y=-sin(i2)*cos(02);N2z=cos(i2 );

% DOT

kosinus=N1x*N2x+N1y*N2y+N1z*N2z;

% CROS

X=N1y*N2z-N1z*N2y;Y=N1z*N2x-N1x*N2z;Z=N1x*N2y-N1y*N 2X;

sinus=sqrt(X"2+Y"2+2"2);

% KVADRANTI
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if sinus>0

rel_inkl=acos(kosinus);
else

rel_inkl=2*pi-acos(kosinus);
end
rel_inkl=rel_inkl/rad;
% Male poluose
bl=al*sqrt(1-e172);b2=a2*sqrt(1-e2"2);
% Pomocni parametri
P1=cos(O1)*cos(01)-sin(O1)*sin(ol)*cos(il);
P2=sin(O1)*cos(01)+cos(O1)*sin(ol)*cos(il);P3=sin(o 1)*sin(il);
P4=cos(02)*cos(02)-sin(02)*sin(02)*cos(i2);
P5=sin(02)*cos(02)+cos(02)*sin(02)*cos(i2);P6=sin(o 2)*sin(i2);
Q1=-cos(0O1)*sin(0l)-sin(O1)*cos(ol)*cos(il);
Q2=-sin(0O1)*sin(01)+cos(0O1)*cos(ol)*cos(il);Q3=cos( ol)*sin(il);
Q4=-cos(02)*sin(02)-sin(02)*cos(02)*cos(i2);
Q5=-sin(02)*sin(02)+cos(02)*cos(02)*cos(i2);Q6=cos( 02)*sin(i2);
T1=P4*Q1+P5*Q2+P6*Q3;T2=Q4*P1+Q5*P2+Q6*P3;U1=Q4*P1+ Q5*P2+Q6*P3;
U2=P4*Q1+P5*Q2+P6*Q3;S=P1*P4+P2*P5+P3*P6;V=Q1*Q4+Q2 *Q5+Q3*Q6;
% PONISTAVANJE

prox_min_E1=[];prox_max_E1=[];prox_min_E2=[];prox_m ax_E2=[];
provera_min_M=[];provera_max_M=[];koraci_E1=zeros(3 60*rad/korak,3);
koraci_E1_max=zeros(360*rad/korak,3);koraci_E2=zero s(360*rad/korak,3);
koraci_E2_max=zeros(360*rad/korak,3);f_El=zeros(1,3 60*rad/korakl);
f_E2=zeros(1,360*rad/korakl);pr=zeros(1,360*rad/kor akl);

% PETLJA ZA E1

br=0;

for E1=0:korak:2*pi-korak

br=br+1,;

% Ponistavanje

EE2=[];x2=[];y2=[1;z2=[1;r=[1;priblizno_resenje=[];
pr=zeros(1,360*rad/korak1);
AA=a2"2*e2+al*a2*cos(E1l)*S-al*a2*el*S+bl*a2*sin(E1) *T1;
BB=al*el*h2*U1l-b1*b2*sin(E1l)*V-al*b2*cos(E1)*U1;CC= b272-a2"2;M=AA/BB;
N=CC/BB;
% PRIBLIZNA RESENJA
br1=0;
for E2=0:korakl:2*pi-korakl

bri=br1+1;

pr(brl)=E2; %priblizno resenje

f_E2(brl)=M*sin(E2)+cos(E2)+N*sin(E2)*cos(E2);
end
broj_resenja=0;
if f E2(1)/f_E2(numel(f_E2))<0

broj_resenja=1;
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priblizno_resenje(1)=0;
end
for i=1:brl-1
if f E2(3i)/f_E2(i+1)<0
broj_resenja=broj_resenja+1;
priblizno_resenje(broj_resenja)=pr(i);
end
end
% NJUTNOVA METODA
%PRVO RESENJE
A=100;
X=priblizno_resenje(1);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)*2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE2(1)=X;
%DRUGO RESENJE
A=100;
X=priblizno_resenje(2);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)"2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE2(2)=X;
%TRECE RESENJE
if broj_resenja>2
A=100;
X=priblizno_resenje(3);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)"2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE2(3)=X;
%CETVRTO RESENJE
A=100;
X=priblizno_resenje(4);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)*2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
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EE2(4)=X;
end
% RACUNANJE RASTOJANJA
x1=al*(cos(E1)-el)*P1+b1*sin(E1)*Q1;
yl=al*(cos(E1l)-el)*P2+b1*sin(E1)*Q2;
z1=al*(cos(E1)-el)*P3+bl*sin(E1)*Q3;
for j=1:broj_resenja
x2=a2*(cos(EE2(j))-e2)*P4+b2*sin(EE2(j))*Q4;
y2=a2*(cos(EE2(j))-e2)*P5+b2*sin(EE2(j))*Q5;
z2=a2*(cos(EE2(j))-e2)*P6+b2*sin(EE2(j))*Q6;
r(j)=sqrt((x1-x2)"2+(y1l-y2)"2+(z1-z2)"2);
end
% ODRE*IVANJE MIN | MAX RASTOJANJ
index_min=find(r==min(r));index_max=find(r==max(r))
if numel(index_min)>1

index_min=index_min(1);
end
if numel(index_max)>1

index_max=index_max(1);
end
min_ro=min(r);max_ro=max(r);
% FUNKCIJE ro_min(E1) i ro_max
koraci_E1(br,:)=[El/rad EE2(index_min)/rad min_ro];
koraci_E1_max(br,:)=[E1l/rad EE2(index_max)/rad max_

end %bkraj petlie za E1

% PETLJA ZA E2
br=0;

for E2=0:korak:2*pi-korak

br=br+1;

% Ponistavanje

EE1=[];x2=[];y2=[];z2=[];r=[];priblizno_resenje=[];
pr=zeros(1,360*rad/korak1);

AA=al”2*el+a2*al*cos(E2)*S-a2*al*e2*S+h2*al*sin(E2)
BB=a2*e2*bh1*U2-b2*b1*sin(E2)*V-a2*b1*cos(E2)*U2;CC=

M=AA/BB;N=CC/BB;

% PRIBLIZNA RESENJA
br1=0;
for E1=0:korakl:2*pi-korakl
brl=bri+1,;
pr(brl)=E1; %priblizno resenje

f_E1(brl)=M*sin(E1l)+cos(E1)+N*sin(E1l)*cos(E1);
end
broj_resenja=0;
if f E1(1)/f_El(numel(f_E1))<0
broj_resenja=1;
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priblizno_resenje(1)=0;
end
for i=1:brl-1
if f E1(i)/f_E1(i+1)<0
broj_resenja=broj_resenja+1;
priblizno_resenje(broj_resenja)=pr(i);
end
end
% NJUTNOVA METODA
%PRVO RESENJE
A=100;
X=priblizno_resenje(1);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)*2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE1(1)=X;
%DRUGO RESENJE
A=100;
X=priblizno_resenje(2);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)"2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE1(2)=X;
%TRECE RESENJE
if broj_resenja>2
A=100;
X=priblizno_resenje(3);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)"2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
EE1(3)=X;
%CETVRTO RESENJE
A=100;
X=priblizno_resenje(4);
while abs(A)>preciznost_Newton
A=M*sin(X)+cos(X)+N*sin(X)*cos(X);
A_prim=M*cos(X)-sin(X)+N*(cos(X)*2-sin(X)"2);
X=mod(X-A/A_prim,2*pi);
end
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EE1(4)=X;
End
% RACUNANJE RASTOJANJA
x1=a2*(cos(E2)-e2)*P4+b2*sin(E2)*Q4;
yl=a2*(cos(E2)-e2)*P5+b2*sin(E2)*Q5;
z1=a2*(cos(E2)-e2)*P6+b2*sin(E2)*Q6;
for j=1:broj_resenja
x2=al*(cos(EEL(j))-e1)*P1+b1*sin(EEL(j))*Q1;
y2=al*(cos(EEL(j))-e1)*P2+b1*sin(EEL(j))*Q2;
z2=al*(cos(EE1(j))-e1)*P3+b1*sin(EEL1(j))*QS3;
r(j)=sqrt((x1-x2)"2+(y1l-y2)"2+(z1-z2)"2);
end
% ODRE*IVANJE MIN | MAX RASTOJANJ
index_min=find(r==min(r));
index_max=find(r==max(r));
if numel(index_min)>1

index_min=index_min(1);
end
if numel(index_max)>1

index_max=index_max(1);
end
min_ro=min(r);
max_ro=max(r);
% FUNKCIJE ro_min(E2) i ro_max
koraci_E2(br,:)=[EE1(index_min)/rad E2/rad min_ro];
koraci_E2_max(br,:)=[EE1(index_max)/rad E2/rad max_

end %bkraj petlie za E1

% ODRE*IVANJE BROJA MIN | MAX ZA E
% MINIMUMI ZA E1
broj_minimuma_E1=0;

% PROVERA DA LI JE NA NULI MINIMU

if koraci_E1(1,3)<koraci_E1(2,3) && koraci_E1(br,3)<k
broj_minimuma_E1=1;
if koraci_E1(1,3)<koraci_E1(br,3)
prox_min_E1(1,:)=koraci_E1(1,);

else
prox_min_E1(1,:)=koraci_E1(br,:);
end
end
% OSTALI MINIMUMI
for j=2:br-1

if koraci_E1(j,3)<koraci_E1(j-1,3) && koraci_E1(j,3)<
broj_minimuma_E1=broj_minimuma_E1+1;
prox_min_E1(broj_minimuma_E1,:)=koraci_E1(j

end
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end

if numel(prox_min_E1)>0

for i=1l:numel(prox_min_E1)
if prox_min_E1(i)<0
prox_min_E1(i)=prox_min_E1(i)+360;

end
end
end
% MAKSIMUMI ZA E1
broj_maksimuma_E1=0;
% PROVERA DA LI JE NA NULI MAKSIM

if koraci_E1_max(1,3)>koraci_E1_max(2,3) &&
koraci_E1_max(br,3)>koraci_E1_max(br-1,3)

broj_maksimuma_E1=1;

if koraci_E1_max(1,3)>koraci_E1_max(br,3)
prox_max_E1(1,:)=koraci_E1_max(1,:);

else

prox_max_E1(1,:)=koraci_E1_max(br,:);

end
end
% OSTALI MAKSIMUMI
for j=2:br-1

if koraci_E1_max(j,3)>koraci_E1 max(j-1,3) &&
koraci_E1_max(j,3)>koraci_E1_max(j+1,3)

broj_maksimuma_E1=broj_maksimuma_E1+1;
prox_max_E1(broj_maksimuma_E1,:)=koraci_E1 _
end

end

if numel(prox_max_E1)>0

for i=l:numel(prox_max_E1)
if prox_max_E1(i)<0
prox_max_E1(i)=prox_max_E1(i)+360;

end
end
end
% ODRE*IVANJE BROJA MIN | MAX ZA E
% MINIMUMI ZA E2
broj_minimuma_E2=0;
% PROVERA DA LI JE NA NULI MINIMU

if koraci_E2(1,3)<koraci_E2(2,3) && koraci_E2(br,3)<k
broj_minimuma_E2=1;
if koraci_E2(1,3)<koraci_E2(br,3)
prox_min_E2(1,:)=koraci_E2(1,:);
else
prox_min_E2(1,:)=koraci_E2(br,:);
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end

end

% OSTALI MINIMUMI

for j=2:br-1
if koraci_E2(j,3)<koraci_E2(j-1,3) && koraci_E2(j,3)<
broj_minimuma_E2=broj_minimuma_E2+1;
prox_min_E2(broj_minimuma_E2,:)=koraci_E2(j
end

end

if numel(prox_min_E2)>0

for i=1l:numel(prox_min_E2)
if prox_min_E2(i)<0
prox_min_E2(i)=prox_min_E2(i)+360;

end
end
end
% MAKSIMUMI ZA E2
broj_maksimuma_E2=0;
% PROVERA DA LI JE NA NULI MAKSIM

if koraci_E2_max(1,3)>koraci_E2_max(2,3) &&
koraci_E2_max(br,3)>koraci_E2_max(br-1,3)

broj_maksimuma_E2=1,;

if koraci_E2_max(1,3)>koraci_E2_max(br,3)
prox_max_E2(1,:)=koraci_E2_max(1,:);

else

prox_max_E2(1,:)=koraci_E2_max(br,:);

end
end
% OSTALI MAKSIMUMI
for j=2:br-1

if koraci_E2_max(j,3)>koraci_E2_max(j-1,3) &&
koraci_E2_max(j,3)>koraci_E2_max(j+1,3)

broj_maksimuma_E2=broj_maksimuma_E2+1;
prox_max_E2(broj_maksimuma_E2,:)=koraci_E2_
end

end

if numel(prox_max_E2)>0

for i=l:numel(prox_max_E2)
if prox_max_E2(i)<0
prox_max_E2(i)=prox_max_E2(i)+360;

end
end
end
% UPORE*IVANJE FUNKCIJA ZAE1 | E2
% PROVERA ZA MINIMUME
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koraci_E2(j+1,3)

,1:3);

UM

max(j,1:3);



br_provera=0;
for i=1l:numel(prox_min_E2)/3
provera_min=0;
for j=l:numel(prox_min_E1)/3

if abs(prox_min_E2(i,2)-prox_min_E1(j,2))<2*korak/rad
abs(prox_min_E2(i,2)-prox_min_E1(j,2))>360-2*korak/ rad

provera_min=1;
end
end
if provera_min==0
br_provera=br_provera+1;
provera_min_M(br_provera,:)=prox_min_E2(i,:);
end
end
prox_min=[prox_min_E1
provera_min_M];
% PROVERA ZA MAKSIMUME
br_provera=0;
for i=1l:numel(prox_max_E2)/3
provera_max=0;
for j=l:numel(prox_max_E1)/3

if abs(prox_max_E2(i,2)-prox_max_E1(j,2))<2*korak/rad
abs(prox_max_E2(i,2)-prox_max_E1(j,2))>360-2*korak/ rad

provera_max=1,;
end
end
if provera_max==
br_provera=br_provera+1,;
provera_max_M(br_provera,:)=prox_max_E2(i,:);
end
end
prox_max=[prox_max_E1
provera_max_M];
% BROJ MINIMUMA | MAKSIMUMA
broj_minimuma=numel(prox_min)/3;
broj_maksimuma=numel(prox_max)/3;
% BROJANJE KOMBINACIJA
COMB=[broj_minimuma broj_maksimuma];
for i=1:16
if COMB==KOMBINACIJE(i,1:2)
broj_kombinacija(i,3)=broj_kombinacija(i,3) +1;
end
end
% REZULTAT | ZAPIS
REZULTAT_1=[rel_inkl broj_minimuma broj_maksimuma];
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dimwrite(  'Rezultat_simulacija.txt'
append' , 'precision’ ,2)

, REZULTAT_1,

end
end
end
dimwrite(  'Simulacija.txt' , broj_kombinacija,
prox_min

prox_max

% STAMPANJE
plot3(koraci_E1(:,1),koraci_E1(:,2),koraci_E1(:,3),
hold on
plot3(koraci_E2(:,1),koraci_E2(:,2),koraci_E2(:,3),
grid on

plot3(koraci_E1_max(:,1),koraci_E1_max(:,2),koraci_
2)

hold on

plot3(koraci_E2_max(:,1),koraci_E2_max(:,2),koraci_
b' , 'linewidth’

grid on

korak=1;
[E1,E2]=meshgrid(0:korak*rad:2*pi);x1=al*(cos(E1l)-e
yl=al*(cos(E1)-el)*P2+b1*sin(E1)*Q2;z1=al*(cos(E1)-
x2=a2*(cos(E2)-e2)*P4+b2*sin(E2)*Q4;y2=a2*(cos(E2)-
z2=a2*(cos(E2)-e2)*P6+b2*sin(E2)*Q6;r=((x1-x2). 2+(

hSurf =
surf(E1l/rad,E2/rad,r,

ng' );

xlabel( 'E_1' , 'FontSize' ,15)
ylabel( 'E_2' ,'FontSize' ,15)
zlabel( ‘\rho' , 'FontSize' ,15)

‘EdgeColor

set(gca, 'TickDir' ,lout' )
set(gca, 'XTick' ,[0:60:360])
set(gca, 'YTick' ,[0:60:360])
set(gca, ‘'FontSize' ,15)

axis([0 360 0 360 0 max(max(n)])
grid off
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, 'none' , 'LineStyle'

‘delimiter’ , -

‘'delimiter’ )

™ , 'linewidth' ,2)

! , 'linewidth' ,2)

E1l_max(:,3), 'b' , 'linewidth’

E2_max(;,3), '--

1)*P1+b1*sin(E1)*Q1;
el)*P3+bl*sin(E1)*Q3;
e2)*P5+b2*sin(E2)*Q5;
y1-y2)."2+(z1-22)./2)."0.5;

,'none' , 'FaceLighting' , 'pho



PRILOG 2

Tabela realnih parova asteroidac¢iji su putanjski elementi dati u tabeli 5.3, a

analize funkcije rastojanja njihovih orbita prikaza ne u poglavlju 5.3

Prvi asteroid Drugi asteroid Min-Max
1323 Tugela 2337 Boubin 1-1
3 Juno 10563 Izhdubar 1-2
2004 NN8 2009 AE16 1-3
123 Brunhild 1116 Catriona 2-1
963 Iduberga 1219 Britta 2-2
159459 200 KB 2004 LG 2-3
2987 Sarabhai 2007 PH25 3-1
323 Brucia 2010 KY127 3-2
2010 CA55 2010 JN33 4-1
2001 OK17 2001 XN88 4-2
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Mpwunor 1.

UsjaBa o ayTopcTBY

MoTtnucann _Cnasuwa P. Munucaemsesuh

6poj ynuca

UsjaBrbyjem
[a je JoKTopcKa avcepTauuja nog Hacnosom

®yHKUMja pacTojakba Manux NiaHeTa v padyH npokcummuTeTa

e pe3yntaTt CONCTBEHOr UCTpaXXnBa4kor paaa,

e [a npeanoxeHa aucepraumja y UENUHU HY y AernoBrMa Huje 6una npeanoxeHa
3a pgobujae Ouno Koje AuvnnomMe npema CTyaAujCKUM nporpammma apyrux
BVICOKOLLIKONICKUX YCTaHOBA,

e [la Cy pe3yntaTuh KOPEKTHO HaBeaeHn n

e [a HWUCaM KpLUMO ayTopcka MpaBa W KOPUCTUO UHTENIeKTyanHy CBOjUHY ApYrux
nua.

MoTnuc aokropaHaa

f/m ) U{// // b@y&%/l‘

Y Beorpagy, 03.07.2012.




Mpunor 2.

MU3jaBa 0 MICTOBETHOCTU WITAMMNaHe U eNIeKTPOHCKE
Bep3uje [OKTOpPCKOr paaa

Mme u npesume aytopa _Cnasuwa P. Munucaer-esuh

Bbpoj ynuca

Cryavjckv nporpam

Hacnos paga _®yHKLUM|a pacTojaHja Manux NiaHeTa u payyH NpokcMMuTeTa

MeHTop _ap CreBo LlleraH, BaHpeaHu npodecop, YHusep3uTeT y beorpaay,
MaTtemammykm dakynter

Motnucann Cnasuwa P. Munucaemsesuh

MsjaBrbyjem da je wTamnaHa Bepsunja Mor JOKTOPCKOr paja UCTOBETHA eNleKTPOHCKO)
BEp3uju Kojy cam npefao 3a objaBrbuBare Ha noprany AurAatanHor penosutopujyma
YHuBep3uteta y Beorpaay.

[o3BorbaBam fga ce objaBe Moju NWYHU Nojaun BesaHu 3a fobujare akagemckor
3Bakba [OKTOpA Hayka, Kao LUTO Cy MMe U nNpe3ume, roauHa n mecto pohewa n gatym
onbpaHe paga.

OB/ NUYHM nojauu Mory ce O06jaBuTU Ha MPEeXHUM CTpaHuuama aurutandHe
BGubnmoTeke, y ENEKTPOHCKOM KaTanory 1 y nybnukaunjama YHusepsuteta y Beorpagy.

MoTnuc aokropaHaa

Y Beorpaay, 03.07.2012. \77” Ué/ q
A0 i //IO cﬂ%ﬁ r




Mpunor 3.

MUsjaBa o kopuwhemwy

Oenawhyjem YHuBep3auteTcky 6ubnuoteky ,Ceto3ap Mapkosuh® ga y [urutanHu
peno3utopujym YHuBepauTeta y beorpagy yHece Mojy OOKTOPCKY- AucepTauumjy noa
HacnoBoMm:

PDyHKUM[a pacTojaH|ja Manux NnaHeTa u pavyH NpokcummuTeTa

Koja je Moje ayTopcko Aaeno.

HncepTtaumjy ca cBum npunosnma npefao/na caMm y enekrpoHCKoM hopmary norogHom
3a TpajHO apxuBupame.

Mojy AOKTOpCKY AucepTauujy noxpaweHy y JurutanHn penosutopujym YHuBepauTeTa
y beorpagy mory oa kopucte cBu koju nowTyjy oapeabe cagpxaHe y ogabpaHom Tuny
nuueHue KpeameHe 3ajeaHuue (Creative Commons) 3a kojy cam ce ogny4yvo/na.

1. AyTopCTBO
2. AyTOpCTBO - HEKOMEPLMjarHo
3. AyTopCTBO — HEKOMepuujanHo — 6e3 npepaae
4. AyTOpCTBO — HEKOMEPLMjaNHO — AeNUTW NoA UCTUM YCroBUMa
5. AytopctBo — 6e3 npepage
@Aympcrso— OEnuTK Noa UCTUM ycrnoBumMa

(Monumo Oa 3aoKkpyXuTe camo jeaHy oA LeCT NOoHyHeHUX nuueHUM, Kpatak onuc
NUUEHUM A4aT je Ha nonefuHn nucta).

Mornuc gokTopaHaa

Y Beorpagy, 03.07.2012. \ ) % .
o DA /%M%w'




1. AytopctBo - [lo3BorbaBare yMHOXaBawe, AUCTpUbYUMjy U jaBHO caoniuTaBawe
[ena, n npepaje, ako ce HaBefe UMe ayTopa Ha HauvH oapefeH of cTpaHe ayTtopa
unu gasaoua nuueHue, Yak n y komepuujanHe cepxe. OBo je HajcnoboaHwja on ceBux
NULEHUMN.

2. AyTopcTBO — HEeKomepLyjanHo. [Jo3aBorbaeaTe yMHOXaBawe, AUCTPUOYLMjy 1 jaBHO
caonwitaBamwe fena, u npepage, ako ce HaBeae MMe ayTopa Ha HauuH oapeheH of
CTpaHe aytopa unu Aasaoua nuuexue. OBa nuueHUa He A03BOSfbaBa KOMeEpLUjanyy
ynotpeby nena.

3. AyTtopcTBO - HekomepuujanHo — ©Ge3 npepage. [Jo3BorbaBaTe YMHOXaBakE,
avctpubyumjyy v jaBHo caonwtaeakwe fena, 6e3 npomeHa, npeobnukoBakwa wnu
ynotpebe gena y CcBOM [Jerny, ako Ce HaBefde MMe ayTopa Ha HauumH ogpeheH of
CTpaHe aytopa wunu gasaoua nuueHue. OBa nuueHUa He L03BOSfbaBa KOMepLWjanHy
ynotpeby fena. Y O4HOCY Ha CBe ocTane NuueHue, OBOM NULEHLIOM Ce orpaHuyasa
Hajsehu obum npasa kopuiwherwa gena.

4. AyTOpCTBO - HekomepuujanHo — AenuTv nofd WcTum ycrioBuma. [losBorbaate
YMHOXaBare, AUCTpubyuujy 1 jaBHO caoniutaBawe Aena, U rnpepaje, ako ce HaBege
MMe ayTopa Ha HauuH ogpefeH of CTpaHe ayTopa Wnu gaBaola NULEHLE U ako ce
npepaga Auctpubyupa nog WCTOM WKW CNUYHOM nuueHuom. OBa nuvueHua He
[03BOrbaBa komepuwmjanHy ynotpedy gena v npepaga.

5. AytopctBo — 6e3 npepage. [Jo3BorbaBate yMHOXaBare, AUCTPMOYLMjy U jaBHO
caonwtaeame fena, 6e3 npomeHa, npecbnukosawa unu ynotpede genay ceom geny,
ako ce Hasede UMe ayTopa Ha HauuH ofpefieH of CTpaHe ayTtopa wnv Aasaoua
nuueHue. OBa nuueHua f4o3Borbasa komepuujandy ynotpeby gena.

6. AyTtopctBO - JdenuTu nohg wctuMm ycrnosuma. [lo3BorbaBaTe yMHOXaBare,
AvcTpubyuujy v jaBHO caoniuTaBame Aena, v npepaje, ako ce Hasee Me ayTopa Ha
HauuH opapeheH o cTpaHe aytopa WM jJasaoua nuueHue u ako ce npepapja
avctpubyupa nog WUCTOM UNW CMMHOM  nuueHuoMm. Osa nuueHua [o3Borbasa
komepuujanHy ynotpe®y dena u npepaga. CrnvyHa je codTBEpCKMM NULeHLama,
O[IHOCHO nuLeHLama 0TBOPEHOr KoJa.
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