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ION-ATOM QUANTUM ENTANGLEMENT
IN A MAGNETIC FIELD BASED ON THE
SUPERFOCUSING EFFECT —

THE SPIN QUBIT PROCESSING IN SILICON

Abstract

We have theoretically and numerically examined the <100> thin silicon crystal and
isotopically purified silicon nanocrystal in the 2 T magnetic field as a medium for the
direct generation of an ion-atom entanglement obtained as a mixed quantum state of
hyperpolarized '2 nuclear spins hyperfine-coupled with electron spin, using the
superfocusing channeling effect. Numerical modeling and characterization of

entanglement as a state vector in the Hilbert space of the composite system that cannot

be expressed as the direct tensor product of states: |\|/1>,

V,), in a given case include

mixed quantum state induced by the superimposed hyperchanneled proton beam of 1
and 2 MeV energy over electron spin states in *°Si. Motivated by the fact that direct
induction of ion-atom entanglement and coherent storage of quantum bits (qubits) into
desired long lived quantum states could permit the precise qubit manipulation, and
single qubit measurement for times which could exceed seconds, we have for the first
time investigated the features and benefits of hybrid solid- state qubits under ion
channeling regime, based on coupling of electron spin to nuclear spin in the isotopic,
99% pure *’Si nanocrystal target. Obtained results reveal a pathway for production of a
new type of memory unit for quantum processing in nanocrystaline silicon and support
further exploration toward implementation of single memory unit below atomic scale
aimed for information storage and solid state quantum engineering, since the achieved
robust entanglement of *Si nuclear states becomes far more isolated from destructive

interactions.

Keywords: Solid state qubit, Silicon, Spin, Superfocusing effect, Ion channeling,
Quantum information.
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JOHCKO-ATOMCKA KBAHTHA
KOPEJIALIMJA Y MATHETHOM I10JbY
BA3SMPAHA HA EOEKTY
CYIIEPOOKYCHUPAIHA —
[TPOHECHUPABE CITMHCKOI' KYBUTA Y
CUJINLONIYMY

Pe3zume

TeopujckuM W HYMEPUYKHM MOJICIOBakEM HCIUTHBAaH je TaHak <100> kpucranm u
M30TOICKH TpeunitheHn HaHOKpucTan cuwiuiyjyma y 2 T MarHeTtHom mnospy, Kao
MEIWjyM 3a JHPEKTHO TI'eHEepUCame jJOH-aTOM KBAaHTHE Kopenaiuje ao0ujeHe Kao
MEIIaHO KBAHTHO CTambe XUIEPIOIAPHU30BAHNX HYKICAPHHUX Y2 CIIMHOBA, CIIPETHYTHX Ca
CIIMHOBHUMA eJeKTpoHa momohy edekrta cymepdokycupama. Hymepuuku momen u
KapakTepu3alja KBaHTHE KOpejaluje CIpe3ama Kao CTama BeKTopa y XuidepToBOM
IpOCTOPY KOjU HE MOTY OUTH M3PaKEHU TUPEKTHUM TEH30PCKH MPOM3BOJIOM KBAaHTHHUX

cTama: |W1>, \412>, y JaTOM CIIy4ajy YKJbydyjeé MEIIaHO KBAaHTHO CTamke€ WHIYKOBAHO

CyNEepIOHUPAHUM XUIIEPKAHAIMCAHUM MPOTOHCKUM cHOmMoM eHepruje 1 u 2 MeV Ha
CIIMHCKAM CTambHMa CIEKTPOHA y > Si. MOTHBHCAHH UMIGCHHIIOM Ja JMPEKTHA
WHAYKIMja JOHCKO-aTOMCKE KBAaHTHE KOpelaluje W KOXEPEHTHOT CKJIaJUIITEeHa
KBaHTHMX OuTOoBa (KyOWTa) y TMOXeJpbHA ,Jyro-kuByha KBaHTHa CTamba MOXKe
OMOTYhHTH Tpenu3Hy MaHWIyJalujy KyOuTa W jEAMHCTBEHO Mepeme KyOuTa y
BPEMEHY KOj€ MPEeBa3Uiia3l CEKyHJIe, UCTPAKUBAKE 0OCOOMHA M MPETHOCTH XUOPHIHUX
KyOUTa y KOHJIEH30BaHO] MaTepHju CMO MpPBH IMyT HU3BPUIMIN Yy PEXKHUMY JOHCKOT
KaHaJIKcama, 0a3upaHo Ha e(eKTy clpe3ama eJNEeKTPOHCKOT M HYKJICApPHOT CIIMHA Y
M30TOTICKH, 99% YHCTO] METH HAHOKpUCTANa - Si. JJOOMjeHN pe3yITaTH OTKPHBAjy MyT
Ka TIPOYKIIM]H HOBOT THUIIA MEMOPHU]CKE JETMHUIIC HAMEHEHO] KBAHTHOM IPOIICCUPADY
y HAHOKPUCTAIHOM CHIUIUjyMy W TOJApXKaBajy Jajbe HCTpaXKHBame Ka
UMIUIEMEHTAIlMjH  JeIMHCTBEHE MEMOpPHjCKE jEIUHMIIE Ha Cy0aToMCKO] CKajH
HaMEHEHO] CKIIAANINTEHY HHPOPMaIMje U KBAHTHOM WH)XCHEPUHTY y UBPCTOM CTamby,
003HPOM J1a OCTBapEeHA CHAXKHA KBAHTHA KOpEIALMja > Si HyK/IeapHUX CIIMHCKHX CTaEba
nocTaje Jajieko U30JI0BaHuja O] IeCTPYKTUBHUX MHTEPaKIIH]ja.

Kibyune peuun: KyOut y cucremuma uBpcror crama, Cumunujym, CnuH, Edekar
cynepdokycupama, JoHCKO KaHanmcame, KBantHa nHopMarmja.

Hay4na o0maact: ®usuka.

VY:ika HayuHa obJsiact: Pu3nKa KOHJIEH30BaHE MaTepHje.

YK 6poj: 538.9

i



Acknowledgments

There are many people who have helped me during the course of my Ph.D., and to
whom I am greatly indebted. First and foremost my parents for their constant support
during these years deserve the credit for where I am today.

My thesis advisor, dr Marin Tadi¢ and the University of Belgrade Physics Department,
deserve avowal for giving me a chance to prove myself as a scientist. Especially, I
would like to express my gratitude to the thesis committee for their time and support.

At last, I thank to my colleagues and my friends who were on my side of the “story” and
made my experience of Ph.D. life the richer.



Dedicated to my parents

Mirko and Dragica



Contents

Title Page . . ..o 1

ADSIIACE . . . o i
Acknowledgments . . ... ... .. il
Dedication . . .. ..o v
Table of Contents . . . ... ... i \%

| Main Principles
Chapter 1

Silicon — based solid state qubits

LI INtrodUCtiON . . . o v v vt e e e 1
1.2 Thesis outline and StrUCLULE. . . . . . . ot vttt e e e e e e e e 3
Chapter 2

Main concepts involving the spin qubit quantum information
processing

2.1 Pure and mixed States . . . . ..ottt e 6
2.2 Entanglement. . ... ... e 9
2.2.1 Classical correlation versus quantum correlation & nonlocality. .. ........ 10
2.2.2 Separability: . . . ..o 11
23 Entangled States. . . .. ..ot 12
230 Bellstate. . . ..ot 12
232 Werner state. . . . ..ot e 14

2.4 Tailoring entanglement over the four - dimensional space organized as a 2x2
tensor product SPACE. . . . .t vt 16
25 The Qubit. . ..o 20



Chapter 3

Manipulation of semiconductor spin qubits

3.1 Introduction . . . ..ot 23

3.2 Manipulation of asingle spin. .. ........ .. ... 24

3.2.1 Isolated spin in a static magnetic field . .. ............ ... .. ... .. ... 24

3.2.2 Rotating reference frame. . .. .......... ... . .. .. 26

3.3 Spin precession and magnetic resonance condition . ....................... 28

3.4 Interaction between two electrons. . .. ....... .. ... 30

3.5 A magnetic coupling between nuclear spin and electron spin. . .............. 33

3.5.1 Isotropic and anisotropic hyperfine interaction. . ...................... 33

3.6 Electron — nuclear spin interaction. . ... ............uutirrerrenennenn.n.. 38

3.6.1 Static Hamiltonian. .. ......... .. . .. 38

3.6.2 Exact diagonalization of the static Hamiltonian. . ...................... 39

3.7 Interaction of electron-nuclear spin system with electromagnetic radiation. . . .. .. 43
Chapter 4

lon channeling in crystals

4.1 Introduction . . .. ..ot 46
4.1 Continuum Model. . . ... ... e 47
4.2 Thomas-Fermi interaction potential in continuum approximation............. 48
Il Results

Chapter 5

Superfocusing of channeled protons in a <100> Si thin crystal

S5.1INtroductiOn . . . .o ot 53

Vi



5.2 Semiclassical model of the superfocusing effect induced by proton channeling . . .55

5.3 Results and DiISCUSSION . . . . . v vttt e e e e e e e e 57

Chapter 6

Quantum entanglement and spin control in silicon nanocrystal

6.1 Introduction . . ... ... .. 72
6.2 The logarithmic singularity under continuum approximation . ................ 72

6.3 Quantum model of the superfocusing effect for excitation and coherent control
of electron and nuclear spinstates .................co ittt 75

6.4 Mapping of quantum states, transformation matrix and mixed coupling induced

by superimposed CP field . .. ... ... ... . 80

6.5 Numerical methods and simulationmodel .. ............................. 87

6.6 DISCUSSION . . . ottt et e et e e 91
Chapter 7

7.1 Concluding remarks and outlook. . . ........ ... ... ... ... ... . .. . 99

Bibliography. ... ... . 101

vii



MAIN PRINCIPLES



Chapter 1

Silicon — based solid state qubits

1.1 Introduction

The most exploited material in the field of Micro- and Nanoelectronics, crystalline
silicon (Si) has taken the central role in condensed matter systems due to its scalability
in compatible, multifunctional materials, planar device interconnection, and its proven
capability to operate as a single quantum device [1]. Silicon integrated circuits have
provided the computation capacity that created the Information Age [2]. In particular,
spin qubits based in silicon are currently one of the most promising architectures for
quantum information processing (QIP). Among others, one especially favorable feature
is that spins in silicon possess long coherence times [3, 4]. Moreover, silicon quantum
electronics has already demonstrated fast operation and a proven record of scalable
integration over variety of other materials [5]. As a result, the full benefit of existing
silicon technology is now disposable to facilitate advantages of spin qubits based in
crystalline Si on nanoscale. Recent results of the exchange coupling in coupled
nanocrystals (QD) have revealed the promising potential of these structures for the

purpose of quantum processing [6, 7].

Moreover, as today’s nanotechnology focus becomes primarily oriented toward the
production and manipulation of materials at the subatomic level, allowing the
performance and complexity of interconnects when the device density accepts more
than hundreds devices on a single chip, the manipulation of semiconductor
nanostructures at the subatomic level including the engineering of Si isotope
superlattices in which alternating layers of different isotopes were formed with
nanoscale precision [8, 9] represents the next natural step. Silicon naturally exists in the
form of three stable isotopes: 2881, Si and *°Si, characterized with the fixed relative
abundance: 92.2% (**Si), 4.7% (*°Si) and 3.1% (*’Si), and associated with nuclear spin
differences: 7 = 1/2 for 298i, but 7 = 0 for *Si and 30Si, where the mass difference

between the isotopes represents important feature at the nanometer scale length.



A Kane’s famous proposal of phosphorus-doped silicon (Si:P) quantum computer [10]
was put in front plane the implementation of solid-state spin architectures in QIP.
Following these steps, a single silicon atom as a bit carrier for processing and storing of
information [11] has been proposed recently. A phosphorus atom attached at the end of
the *°Si nuclear spin chain was suggested for the initialization and read-out of the *’Si

nuclear spins.

T=100 mK
Barrier
Si
31 31 |
il i ILL“ Substrate

Figure 1.1: Schematic of Kane’s proposal for a nuclear-spin quantum computer utilized
on *'P donors in a silicon matrix [10].
In contrary to recently investigated doped silicon architectures [12], where the main
problem of decoherence in view of the temperature dependent spin-boson, and
temperature independent spin-spin mechanisms predominates, a long quantum
information coherence time of 25 seconds for 2°Si nuclear spins at room temperature as
one of the main the criteria for nuclear spin to be utilized as a memory qubit, was
experimentally confirmed [13], while the isotopically purified silicon was
simultaneously investigated to prove that it would be possible to fabricate the single
wire of *’Si atoms exclusively [14-16]. Moreover, the recent experimental study of
coherent quantum information transfer involving *’Si nuclear spins in silicon, actually
demonstrate advantage of *’Si nuclear spins as excellent candidates for solid state qubits

[17, 18].

However, to succeed in the way of QIP implementation one still needs to resolve many
open questions. For instance, the small magnetic moment of nuclear spin prevents the

substantial equilibrium polarization at accessible experimental conditions operated



under nuclear polarization techniques like dynamic (DNP), and optical nuclear
polarization (OPN) [19]. Besides, the challenges of effective initialization and the read
out of the nuclear spin states are necessary tasks which must be addressed and

improved.

1.2 Thesis outline and structure

This thesis presents novel theoretical insights and progress towards comprehending and
controlling the complex environment of a silicon-based solid-state qubit. The theoretical
study of the electron — nuclear 2 spin qubits coupling, initialization and coherent
control in highly confined silicon environment, followed by numerical analysis,
modeling and simulation of a new QIP concept based on the superfocusing effect [20]
suitable for addressing the individual nuclear spins in isotopically purified nano-
crystaline *’Si as the physical qubits [21, 22] are presented. Guided by the anisotropic
hyperfine interaction the two-qubit operations are for the first time performed on these
physical qubits by controlling exchange coupling J as a function of superfocusing field.
Logical qubits are enconded into a subspace of the physical qubits, so that the exchange
coupling alone enables universal solid state quantum computation. The presented study
employs the quantum communication protocol based on the transmission model of
hyperchanneled protons and the quantum Monte Carlo simulations of spin system in
silicon nanocrystal. Numerical solutions of equations of motion of protons correspond

to hyperchanneled proton spatial and angular distributions in the phase space.

In this thesis the quantum electrodynamical nature of entanglement as an essential
quantum property that establishes mutual predictable correlation of particles of
energy/matter is investigated using the precisely guided proton beam through a *’Si
nanocrystal axial channel on a basis of screened Moli¢re interaction potential. It is well
known that information on the spin state of a particle in the quantum entanglement state
— whether the given particle spin is oriented parallel or anti-parallel — allows
simultaneous information about the spin of the other particle which belongs to
entanglement pair. Quantum entanglement allows qubits to simultaneously interact and
to transfer the quantum state information regardless to the distance between them, in the
process of communication that is not limited by the speed of light. The correlated

particles will retain the status of entanglement if they are in isolated environment. In



accordance with afore mentioned, the great potential of quantum entanglement can be
exploited for quantum information storage and processing [10], development and
implementation of chip integrated quantum protocols. In that context, the process of
coupling of electron with /2 nuclear quantum spin states [23] in silicon nanocrystal
target, mediated by the polarized nuclear spin states of hyperchanneled protons through

the quantum entanglement, allows the transfer of information originally deposited in the

electrons to the spin state of the host 29Si. The result is an extremely fast transfer of
quantum information in long-lived quantum state (polarization) of a nuclear spin,
further addressable to a photon, with corresponding polarization/frequency.

Obtained results reveal a pathway for production of a new type of memory unit for

quantum processing in silicon.

This thesis is organized in two main sections.

The theoretical background and mathematical formalism closely tight to the focus of
this thesis are decidedly presented in the first part composed of three chapters. After
introductory informations, chapter 2. describes general quantum concepts necessary for
explanation of spin qubit quantum information processing. Upon formulation of pure
and mixed quantum states it describes the correlation between quantum behavior and
nonlocality of entanglement, further addressing discussion to special bipartite entangled
states. Chapter 3. explains magnetic field effect on quantum states creation and
manipulation, while chapter 4. provides the fundamentals of channeling theory in solids
with special emphasis to Continuum model, axial confinement, hyperchanneling, and
Moliere approximation of Thomas-Fermi interaction potential, giving in such way the

main theoretical preliminaries to results presented in next section.

Part II represents the exposition of my published research including results, discussion
and concluding remarks. It is composed of three chapters. The chapter 5. is devoted to
theoretical-semiclassical background and detail numerical study of the new ion
channeling phenomena called the superfocusing effect [20], demonstrating the precision
in spatial resolution beyond limits of the Bohr radius, while the sixth chapter illuminates
the quantum theory of the superfocusing effect as a driving force for electron spin
coherent control and precise manipulation and entanglement of nuclear spin quantum

states in isotopically engineered *’Si nanocrystal host [21, 22], described by extensive



analytical, numerical and simulation study. Finally, the chapter 7. gives concluding

remarks and future prospective.



Chapter 2

Main concepts involving the spin qubit quantum

information processing

2.1 Pure and mixed states

Pure quantum mechanical state is described by a state vector |‘I’> in the Hilbert

space H . Any state vector can be expanded as a linear combination of basis elements

d
within chosen basis for the Hilbert space, like |¥)=) c,|a,), where the ¢, are

complex coefficients, al.> denotes the selected basis and d =dim H . Appliance of the

normalization on the state vectors gives: <‘P| ‘P> =l Zd:|ci|2 =1.

1

The expectation value of an observable 4  with respect to the state |‘P> can be

calculated by<121> = <121>T =(¥|4|¥).

For a bipartite system, consisting of subsystems 4 and B, the total Hilbert space H is

divided into two subspaces: H( 4) and H( 3) with corresponding state vectors |l// A>, and

|l//3> representing the state of the subsystem 4 and B, respectively.

If the state of two qubits is factorized, as |‘P>=|l// A>®|t//3> !, the coefficients of the

expansion <a,b ‘P> , are represented with respect to the basis states of the form |a> ®|b>

and depend on only one subspace each. In that case, due to the fact that 4 acts only on

H( ) the expectation value of an operator A: H = Hy 1s

' The above description in terms of state vectors is only valid for pure states.



A

(A)=(w|a|w)= > (¥|a'b){a"b'|4|a,b){a,b|¥)
a,a',b,b'
o . (2.1)
= 2 (¥|a'b)(a| 4[a)(a.b] ),
a,a',b
where we have used a closure relation:
> |a,b){a,b|=1,and(a,b| 4| a',b') = (a| A|a')(b|b') = (a| 4| a") 5, . (2.2)
a,b
Using the following density operator
Pow = 2 (a,b|¥)(¥|d,b), (2.3)

b

we can express the expectation value of an observable A by tracing over all states of the

composite system: <21> = Tr( pﬁ) .

Then, definingc, = <a|‘P A> and ¢, = <b|‘P B>, from p, . we obtain

* * * 2 *
paa' = ancbca'cb = Caca'Z|cb| =C.Cp = P= |V/A><V/A > (24)
b b
that is, for given separable spaces, even if we do not have the information on c,, the

closure relation holds for the basis {|b>} )

Such states, called the pure states posses the following important property of the density
operator:

o the density operator corresponding to a pure state is a projector:

p=p & |1//A> is a pure state.

. Tr(pz) =1 for a pure state.



To guarantee that p really describes a physical state it has to satisfy the following
properties:

Hermitian: p' = p.

Positive semi-definite: x p x>0, Vx e C".

Normalization: Tr( p) =1.

A mixed state is identified if the considered quantum mechanical system has a particular

probability p. to be in one state out of a whole set of states|‘1’i>. Then, a density

operator is defined as a convex combination of pure state projectors weighted with a

corresponding probability like: p = z )2 |‘I’i><‘1’i | = Z p,p. , where Z p, =1 p =0.

For the mixed state the following properties hold:

e p#£p’.

o Trp’<l.

A mixed state is characterized by a measure of purity2 or mixedness: P =Trp’, where
the minimal amount of purity depends on the dimension of the state:
P=2, d=dim(H).

The whole physical information of the statistical ensemble of the mixed state is
expressed by the density operator p because of the lack of information in which

ensemble { Di» pi} the mixed state is precisely decomposed.

As a result, for an observable A in case of a mixed state the expectation value can be

presented as<1:1> = <121>p = Zp‘ <‘Pi |121|‘P,> =Trp A.

? For pure state the measure of purity is always equal to one, P =1 .



"If, without in any way disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of physical reality corresponding to this

physical quantity."

- Definition of physical reality from the EPR paper.

2.2 Entanglement

Entanglement was, historically, first recognized by Einstein, Podolsky and Rosen (EPR)
[24] and by Schrddinger. Einstein called entanglement a”’spukhafte Fernwirkung” or
”spooky action at distance”, while Schrodinger [25] stated that entanglement is the
essence of quantum mechanics. By assigning an independent and objective reality to the
physical properties of the separated subsystems of a composite system, they have
imposed a description of fundamental differences between quantum and classical
picture of nature called “local realism”. The most significant consequence of later
formalism are further revealed constraints on the predictions of spin correlations in the
form of the so-called Bell’s inequalities [26] which can be violated by certain quantum
mechanical states. Those constraints have implied the quantum correlation aspect of
inseparability and emphasized the feature of quantum mechanics called “nonlocality”

which are one of the most apparent markers of entanglement.



2.2.1 Classical correlation versus quantum correlation & nonlocality

Entanglement represents more than a simple correlation between subsystems. For

instance, subsystems A and B appear uncorrelated if |l//> s 1s separable, although the
two spins in separable state|l//> B =‘T>A ®‘T>B =‘T ATB> =|OO>,3 are definitely

correlated in the manner they are both pointing in the same direction®. The former state
can be prepared purely locally without allowing connection of spins 4 and B, by
sending a classical message to two different, separated preparers requiring of both of
them to prepare a spin pointing along the z-axis by applying local unitary

transformations of the form U, ®U,.

On contrary, the only way to transform the former state into an entangled one like

%(‘T O B> + ‘i W B>) is to apply a collective unitary transformation to the state. To

perform this unitary to entangle 4 and B means allowing for the two subsystems to

directly interact with one another.

This is the reason that the correlations between 4 and B in an entangled state have a
different character than those in a separable state. The crucial difference is that
separable states correspond to the classically correlated ones, while entangled states are
non-classically correlated and cannot be described as mixtures of direct products states,

prepared locally.

™.

> Qubit state is represented in the Pauli basis,{ »L>} and in computational basis,

{lo). 1)

* Two electrons with spin oriented towards positive z-axis will exhibit perfect correlation

when are measured in the z basis (the outcome will always point to spin-up) but no correlation
at all in the x or y bases.

10



If we consider a quantum correlation of a bipartite system whose Hilbert space is
constructed by the tensor product of the Hilbert spaces of the two subsystems

H=7-{ 4 ®7—(B), its density operators can not be written in such a product form like the

Hilbert space.

If former is actually possible we call the state separated and can formulate the following

definition.
2.2.2 Separability:

Conversely to entangled state, which is nonlocal and represents a global feature of the
given Hilbert space, separable state [27] is not quantum correlated. It is produced solely

“classically” by local preparations of the subsystems.

If a state p can be written as the convex combination of product states like:

p= Z PiPia) ® Pis)» then p is called separable. Here Py and P are density matrices
of the subsystems and the weights satisfy conditions p, >0 and Z,- p,=1.

The set of all separable states is convex. In general, any state can be expressed by
p= ZPZ, 2 ®Pin)

A pure state |‘P> is called separable (not entangled) iff it can be factorized and written
as a tensor product of the subsystems state vectors: |‘P> :|W A>®|W3>a otherwise it is
entangled. An example for a pure separable state is: |w ‘T> ®‘T> = ‘T AT B> = |00>

in logical (computational basis).

A mixed state p is called separable iff it can be written as a convex combination of

pure product states:

p= Zpi | 4){4,|®|B)(B,|= Zpipi(A) ® 0y5) » (2.5)

11



where |A1-> and |Bl.> are state-vectors on the spaces 7, and 7, of subsystems 4 and
B respectively and 0< p, <1, such thatzipl. =1 <A7|A7> # 0, ;. In general <A7 |Al.> #0,

i,j?

(B|B)#6,,.

An example for a mixed separable state that contains classical correlations, but no

quantum correlations, is p = %(‘ TT> <TT‘ + H«i«> <¢~LD .

2. 3 Entangled states

If a state p is not separable then it is called entangled. Under local unitary operations
any non-separable state stays entangled like p — p'=(U,®U,)p(U,®U, )T where

both unitary operators, U, satisfy U'U =UU" =1. The two entangled state density

operators p and p' are equivalent.

Examples for pure entangled states are the Bell states. The singlet state is one of them:

|singlet> = % = (‘ T~L> - ‘¢T>) and we will use it later on.

2.3.1 Bell state

Maximally entangled pure states are called the Bell states. The Bell states possess purity

equal to 1. In a two-qubit system, where the Hilbert space is of the form C* ® C*, a set

of four Bell states builds a basis for all states. These states are represented in the Pauli

basis {‘TT>,
{Joo) o1,

'N«> , ‘ ~LT> , ‘ ~L~L>} and  corresponding  computational  basis

10),

11)} [28] as following:

12



)= [14) - [41) == 1) - o)
)= 1) + 1) - f|m>+|m> y
o) = [11) + [44) =1 fo0) 11
\@):1\ T - [W) = \/_|00> |11)

0 00 0

el 1[0 1 10
0 0 00
100 =l

A 1[0 00 0

@ N =21 5 6 0 o (2.6.2)
100 1

If the degrees of freedom of the correlated systems are higher than 2, only one state is

definitely a Bell state in the general Hilbert space C° ® C*, and it is given by
%)= [5)8s)
O )=—7=) |5)®]s). (2.7)

For higher-dimensional systems these states do not form a complete basis of the system
leading to construction of the so-called Bell-type states which are not necessarily

maximally entangled.

An example for a mixed entangled state which includes a fraction of a singlet - Bell

state is a Werner state. This state is invariant under the unitary transformationU ®U ,

Le., it satisfies: p = U,®U, p U,®U,

13
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2.3.2 Werner state

A Werner state [29, 30] is a two dimensional bipartite quantum state that consists of

both entangled (Bell state) and a separable (mixed state). Here, we consider a pair of % -

spin particles with inclusion of a Bell’s state singlet fraction, p, and a random fraction, 1

— p, for mixed state:

1
P’ = p|singlet><singlet|+z(1—p)}[ , (2.8)
where | is the identity matrix.

By writing the density matrix elements explicitly, with all their indices:

pmy,nv :zpr (prA )mn (prB)’ (283.)

where Latin indices refer to the first subsystem A, and Greek indices to the second one

B., eq. (2.8) becomes

1
p:z/y,nv = p Smy,nv+Z(l - p) 5m,n§,u,v . (28b)

The corresponding density matrix is given by

y 1| 0 pH 2p 0
4l 0 -2p ptl 0 | (2.9)
0 0 0 1-p

The next step considers taking the partially transpose of the density matrix with respect

to one of the subsystems. The state is defined by (4 x 4) matrix with (2 x 2) blocks.
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Transposition with respect to B subsystem is done by transposing each one of the four

blocks, when we get:

2.9.1)

-2p 0 0 1-p

( o’ )TB is characterized by three eigenvalues equal to (1 + p)/4 and the fourth - lowest

eigenvalue equal to (1 — 3p)/4. p is a weight for obtaining a pure singlet state in

domain 0< p <1, while a 1-p denotes a weight for an inclusion of mixed state. The

1+3p°

purity of the state is given by P =

. . . 1 . .
Starting from p = 0 we get a maximally mixed state: p” = ZL (where the 1, is the unit

matrix), and crossing over whole domain at p =1 we get the fully entangled (Bell) state.

For Werner state the weight of the singlet is p, and therefore in order to hold Bell’s
inequality it has to fulfill the condition: 2\2 p < 2. Namely, the violation of the Bell’s

inequality is known as a signature for entanglement in two qubits. If a state violates the

Bell inequality then we know that entanglement is present. The reverse is not true [30].

o5

As an example of such “irreversibility” the Werner state can be separable (not
entangled) only for p <1/3, but it does not violate the Bell inequality for p >1/3 when

it is entangled.

If the dimension, d, of the subsystems is higher than d = 2 such states are called

isotropic [31]:

ol =%(l—0{)ldz +a‘(Dd><CDd , where 0<a <1, and ‘CD"> is a general Bell state

denoted by eq. (2.7).

15



2.4 Tailoring entanglement over the four - dimensional space

organized as a 2x2 tensor product space

According to [32] for any pure state over a (finite-dimensional) H space, there always

exist two associate algebras generated over su, by any representation of

C?, d e N\{0, 1} that allow factorization of a state in order to create any possible

amount of entanglement.

In order to demonstrate the former statement let us consider a state p in a space

factorized with dimension d x d. Its eigenvalues { ,ol.}i1 are represented in the

following way:

lz2pz2p,22p, 2p, 2p,20, (2.10)
where the bounds are result of the properties of the density operators. We denote |l> as

the eigenvector of p,.

d2—2>,

d2—1>,

d’)).

If p, >%, then a selection of factorization is always possible such that o become
d

Next, consider the subspace: E = span (| 1>,

entangled in E.

To proof above statement we will use the reselected basis {|i)} . Over the {|i)} matrix p

is diagonal:

0 p., 0 0 | 2.11)
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The four-dimensional space E can be factorized as a 2 x 2 dimensional tensor product

space £ ®¢&, =&, and in particular we choose the vectors |1> and ‘d2—1> to be

established as maximally entangled in the new factorization [33, 34].

We define Q:E — &, the unitary operator connecting the two factorizations, as

following:

Q|I>E‘Ta'rb>\7§‘~l«a¢b>, 2
ola* -2)=|talb), (2.13)
Qla’)=|Valh), (2.14)
Q‘d2_1>E‘TaTb>\/—§‘~Lai«b>’ 015

where {‘ T a>,‘¢ a>} and HT b>,‘~l« b>} are bases of the two subspaces.

Represented with respect to the bases: {‘T al b>,‘T ald b>,‘¢ al b>,‘¢ ad b>} of E

and {|1),|d* -2).|d’).|a* 1)} of €,

Q assumes the form:

1 1
— 0 0 —
V2 V2
o 1.0 0 | (2.16)
0 0 1 0
Loy 0 - L
72 72
so it is easy to see that p, can be written as:
1
5(,01 de_]) 0 0 E(pl _de_l)
0 Yo, 0 0
= T d*-2
Po =9pQ 0 0 p, 0
. (2.17)
1 0 0 1
E(p] _pdz,l) E(pl pdz 1)
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Next step is to show that p, violates the Peres-Horodecki criterion [35, 36], i.e., it is

entangled.

Consider the partial transpose of p, with respect to the subspace &, :

Heitps) 0 0 0
1
®) _ 0 Pz E(pl_pdz—') 0 : (2.18)
Py = .
0 5(:01 _de,l) Py 0
0 0 0 %(:01 P 1)

Former includes searching of sufficient conditions for the coefficients p, for one of the

eigenvalues of p(Qb ) to be negative. Those eigenvalues are:

6 = %(A + de,l)a

;1 1 1
€ Ea(pdz—z—'— PdZ)i\/Z(dez+ Py )2_'0d22"0d2+z(p1 B ’Odzfl)2 :

e, 1s the only eigenvalue which is not always non-negative. It becomes explicitly

negative under the following condition:

LTI IV VR R VA BN Ry (2.19)

We consider that both terms of the first inequality are positive values, thus, the second
term is a geometric mean, so it is always less than or equal to the arithmetic mean of the
two coefficients.

Then, our condition can be expressed as:

- 2 2 + 2
P = Py B P, 722 Py ES PP TP P, (2.20)

2
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The sufficient condition for p, to be entangled can be further relaxed to p, >3p . .

Consider the trace of p:
d’-2 d’ d’-2
Tip=) p=1=1-p=3p 2 p. (2:21)

i=1 i=2 i=2

The last sum is composed of d> —3 terms, whose minimum is p 2, > SO it must satisfy

d*-2 1—
l-p2 3 p2(d=3)p,, =p,, <k (2.22)
i=2 -
Finally, we can express a sufficient condition for p, to be entangled as following
I-p 3
3d2_‘3<p1<:> p1>?.D (2.23)

Obtained results allow construction of a factorization which parts the states into a

maximally entangled state (the eigenstate of p, or p, ) and a separable state (the
eigenstates p ,  and p ), i.e. to write a state in the form p = P + (l—ﬁ)a , Where
f is a real number, with 0< f<1, P is a projector to a maximally entangled pure
state, and o is state orthogonal to P, i.e. <73|0'>:0. Every state over a d x d

dimensional Hilbert space which can be decomposed in above form has a maximum

eigenvalue p_ = {max( £, 1- ﬂ)} , and it is entangled if the condition p__ >%, ie.,

p> %, is satisfied.

S

&y -1, , the

| - 3 : . ~
Digression: For two E-Splns I, and I,, coupled by an interaction H =

a

Hilbert space of particular system spanned by the four simultaneous eigenstates of Iﬂa’z

and IAb’Z (where IAa,Z ‘T¢> = g‘TH and IAb’Z ‘T~l«> = —%‘T¢> ), as follows:

‘T a>®‘¢ b> =:‘TaTb>,‘Ta¢b>,‘~LaTb>,‘~Lai«b>, can be further organized in terms

of 2 x 2 dimensional system of singlet and triplet states (which correspond to

maximally entangled Bell states):

\w§=;%=g¢a¢@iua¢b»,

@§=§%=q¢a¢@iua¢b»,

according to eq. (2.6), and we will use this later on.
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2.5 The Qubit

The fundamental unit of classical information is represented via quantity called bit - the
smallest piece of information which can take one of the two possible values {0, 1}. The
corresponding unit of quantum information called the quantum bit or “qubit” represents

an analog to a quantum system which has two levels, O> and| 1> .

Consider an orthonormal basis for a two-dimensional vector space {| 0>,

1>} denoted in a

two-dimensional Hilbert space. In this case the pure normalized qubit state can be

expressed as

) =al0)+5]1), (2.24)

where a, b are complex numbers that satisfy |af + [p|"=1 [37]. The simplest

measurement of |1//> yields 0 with probability |a ?, and 1 with probability |b|2.

If the normalization is written implicitly and the overall phase is neglected, eq. (5.1) can

be expressed as
lw)=cos (§j| 0)+sin (gj e’ 1), (2.24a)

where the parameters 6 and ¢ define a point on the surface of unit sphere in 3

dimensional space — the so called Bloch sphere’.

5Only the pure qubit state can be localized on the surface of the Bloch sphere, whereas the

mixed state is located strictly inside of the Bloch sphere due to the positivity of the density
1 1( I+n n —in

matrix: p=5(1+ﬁ‘5')=—( : b
n

5 J, ﬁz(nl,nz,ig)r, where the Bloch vector

n+in, 1-n,

n, € R* has to satisfy the condition: |ﬁ |2 <1;if |ﬁ|2 =1 that is a clear signature of existence of
, , , 0 1 0 i 10

pure state (using the well known Pauli matrices: o, = , 0, = , 0, = we can
1 0 i 0 0 -1

decompose in above form any arbitrary state expressed by a density matrix).
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104

Figure 2: Qubit representation on the Bloch sphere, given by projection onto the
{XYZ} axes.

In addition to a qubit Bloch sphere representation, more precise information of the
phase of quantum state can be obtained from measurement in different basis. For

instance, if we consider in a standard basis the following quantum state

(2.25)

1 eilg
=—0)+—=|1),
jv)=—3=10)+ <=1
the measurement outcome would be 0 with probability 1/2 and 1 with probability 1/2.

In order to extract information about phase, let us consider a measurement in a basis

other than the standard basis, for instance {| +), —>} , Where

)= 10)+11) and [) == (10)-|1). 226)

We can elegantly estimate phase information of quantum state in the new basis by

combining above relations into

0=+ 10= 5 (+-1). @)
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which results in following expression

v} =510h+ =)

DS 9-) @)
- 1+2e |+)+ 1_26 |-).

From this point it is clear that information about the phase & (recalling that

¢’ =cos@+isin@) can be extracted from the probability of measuring |+> and |—>

state: %((1 +cos 6?)2 +sin’ 0) = cos’ (gj and sin’ (gj , respectively.
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Chapter 3

Manipulation of semiconductor spin qubits

3.1 Introduction

The first spectroscopic technique used to demonstrate the implementation of quantum
algorithms and construction of quantum gates [38-41], were nuclear magnetic resonance

(NMR) techniques applied to nuclear spins in liquid state [42].

Further development of electron paramagnetic resonance (EPR) techniques [43] and
electrical detection of magnetic resonance (EDMR) [44] have greatly facilitated the
exploration toward electron spins with controllable exchange interactions in crystalline

materials.

Thankfully to indispensable subatomic probes inside solids [45-47], the hybrid electron
- nuclear spin qubits [48] are highlighted as the most prominent candidates refereed to a
robust quantum information resources for the next generation processor units and low

dimensional memory elements [49, 50].

. |RF COi1[=
magnetic % [
tip

N\
B
R 2
fiber-optic
interferometer B
i)
cantilever

Figure 3.1: Single spin detection. Picture from [51].
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Very recently, quantum entanglement between electron and nuclear spins has been
experimentally confirmed [52] following the single electron spin detection [53] in solid
state systems utilized in silicon. In this context, a featured approach to manipulate,
measure and control nuclear spin correlation in a confined electronic system has been

examined here as a special example of the spin-based solid state quantum computer.

In particular, following the [54] we will describe in this chapter the physical effect
behind the implementation of alternating magnetic field which allows coherent control
and coupling of a single electron and nuclear spin mediated via the hyperfine interaction
inducing a specific superpositions, entanglement and transfer of quantum states encoded

as a qubit of information between the two parties.

The key new feature of the hybrid spin system is the anisotropic hyperfine interaction,
here exploited for universal coupling between highly polarized triplet electron spin state
in the nuclear spin degrees of freedom using a controlled channeled proton beam as an
actuator. The spin qubit is initialized in the nuclear spin space of the corresponding
electron spin manifold. In this chapter it is discussed the underlying theory and
background of the magnetic resonance and the hyperfine coupling effect utilized in this

thesis.

3. 2 Manipulation of a single spin

3.2.1 Isolated spin in a static magnetic field

The motion of an isolated spin in a static magnetic field is presented by the Zeeman

Hamiltonian as
H=-hyB, . 3.1)

Using the commutation relations,

(i..7,]=il.
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[1,,1.]=il, (3.2)

one can obtain the Heisenberg equations of motion as following:

d. 1r: - .

1, =E[1"’ H|=rBii,, (3.3)
d » .

E y :7B01x’ (34)
d »

< =o. 3.5
e (3.5)

Straightforwardly from (3.3), (3.4) and (3.5), the operator torque equation is given by

d» —dl. - _dl -
LAy L e LAY N 3.6
a ar T ar o dar (3-6)

with its equivalent:

d . . - o
Z =yBa x k,p=yhl, (3.7)

where in both case 7, J, k are the unit vectors along x, y, z directions and it is imposed

condition that the spin precesses along a static magnetic feld with right-handed
circulation fory <0or left-handed circulation for y >0. 4 is the magnetic moment

operator.
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3.2.2 Rotating reference frame

Assuming that an imaginary frame (7, 7.k ) rotates along z-axis (orlg ) with an angular

frequency Q, the rotational dynamics can be described by the following set of

equations

d-. = -

—i =Qxi, 3.8a
a0 (3-8a)
d - = -

—'=QX " 3.8b
7’ J (3.8b)
4 —Oxk (3.8¢)
dt

and by a dynamical variable F =i F. + F, + k F,, that follows the relation

R _ _.F _ e 24 "
iF:i£+j_y+k£+de—l+Fd—J+FZ% (3.9
dt dt dt dt tdt Y dt dt

o« F,

t

where c;—Fand aa—}; denote the time rates of change of F with respect to a (fixed)
t

laboratory frame and (rotating) imaginary frame (f, 7, l;), respectively.

Laboratory frame Reference frame

TZ

=y

Figure 3.2: Schematic representation of the laboratory and reference frame (see text).
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Upon substitution of F = /1, using the eq. di a=yB,a x k , we obtained
t

Ca=eqx fi=yByi < k. (3.10)

Following above results the Heisenberg equation of motion for /& in a rotating frame is:

aa—il:ﬁx(yBol_c’-l-ﬁ):}/Beffﬂxl;, (3.11)

where Beffl; = BOIE +2represents an effective field. If the imaginary frame rotates with an

angular frequency Q= —}/Bol; the effective field B, disappears and the spin remains

Iy

fixed, aa—ﬂ =0, in this rotating frame.
t

X

Figure 3.3: Larmor frequency. Schematic representation of the precession of the

magnetic moment under applied external magnetic field.

Thus, the spin /& rotates along a static field with an angular frequency Q= —7301; in
the laboratory frame. This oscillation frequency is called a Larmor frequency,

@, :|7/|BO.
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3.3 Spin precession and magnetic resonance condition

If we consider a spin in dc magnetic field, B, along z axis, a magnetic interaction

Hamiltonian is

A

H=—j-k B,=—hyB,l_, (3.12)

where, k is a unit vector along z-axis.

A magnetic moment of electron (nucleus) is given by

h=nyl, (3.13)

where y is a gyromagnetic ratio and / is a dimensionless angular moment operator.

As the squared total angular momentum /> and the z-component of the total angular

momentum fz commute, [f 2 fz] =0, a simultaneous eigenstate of 1?and fz exists

and can be expressed via

["2

I,m)=1(I+1)

1,m), (3.14)

I

z

1,m)=m|1,m), (3.15)

, 1, %, and m = I,1-1,...—1, respectively. The eigenenergies

with eigenvalues / =%

corresponding to (3.2) for such eigenstates are given by
E=—hyB,m. (3.16)

In addition to the static field B,, introduce of the superimposing alternating magnetic
field , B, coswt, along a perpendicular direction, for instance x-axis, is governed by the

new Hamiltonian

B, cos a)tfxﬂl =—hy. (3.17)
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A

The x-component of the angular momentum operator, / _, is expressed as

f=2(t+ 1),

following recursion relations:

I,m+l>,

A

L |Lmy=J1(1+1)~m(m+1)

A

1

Lm)y=\1(1 +1)-m(m - 1)

I, m —l>.

(3.18)

where ] . and I are the raising and the lowering operator respectively, referring to the

(3.19)

(3.20)

Figure 3.5: Spin precession at resonance condition, @, =-yB,, y>0, left, and off-
resonance condition @, #—yB,, y >0, right.

If the frequency @ is close to the resonance with the Zeeman splitting,

= | 7/| B, » the transverse magnetic field, B, coswr, allows change of the eigenvalue m

by 1. In order to comply with energy conservation law this process must be followed

with the absorption or emission of a single photon at frequency w
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3.4 Interaction between two electrons

If we consider a system of two electrons, according to Pauli’s exclusion principle the

spin wave function is symmetric if the two electron spins are parallel, i.e. in the triplet S

=] state.
BB =1L+
L rip-y pop+
S=1 ﬁ[ﬂl B+ BB ]=|10) (3.21)
BB =L-1),

where: +, -, correspond to up and down spin state of the electrons, respectively.

Conversely, the wave function, in coordination space, is antisysmmetric when the two

electron spins are antiparallel, i.e., when the overall spinis S =0

1 + o - -n+
Szo{ﬁ[ﬂ B+ BB ]E 0a0>‘ (3.22)

The splitting in energy into singlet and triplet states is governed by the electron-

exchange interaction as
R = zJi,jSli Sy (3.23)
ij

where §;andsS,; are electron spin operators for electron 1 and 2, defined by spatial

coordinates (i, j =x,,z).

The main part of the exchange-energy operator is

(Hexch )iso = JOSI ’ S2 H (324)

is the isotropic-exchange coupling constant.

Tr(J)
3

where J, =
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In the first approximation J, is presented via the exchange integral

e

Jo:_2<l//1(ﬁ)‘/’z(rz)‘m“//l(”2)‘//2(”1»’ (3.25)

where y, () and w, (r,)denote the space wave function of two electrons in position
space, r is the distance between two electrons and ¢, is vacuum permittivity. The

, Where the

singlet and triplet states are separated by the energy modulus equal to |J 0

sign of J, determines which state is lower scaled: the singlet or the triplet state.

N
Il
[—

| -
~

Exchange Interaction
W
~
—_— -o- HEE N S .-

B[T]
Figure 3.4: Exchange interaction between spins of two electron system.

In zero magnetic field the anisotropic magnetic dipole - dipole interaction lifts the three-
fold degeneracy of the triplet state.

In case of two electrons the electron spin-spin dipolar interaction is given by

(O Sllﬁ'}Sz B 3(81 .r,,)5(82 .r) . (3.26)
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Applying the total spin operator, S=S, +S,, with identity »*=x’+)’+z’ on the

former eq. gives

3xy

—3yx

) (2

5

)

r

Hss :—[Sx Sy Sz:l' < 5

r* =3y -3yz
7"5 }/_5

)

:

(3.27)

e

The angular brackets denote averaging over the electron spatial wave function.

The Hamiltonian can be rewritten as Hgs =S-D-S, where D represents the spin spin-
spin dipolar coupling interaction tensor with Tr (D) =0.

After applying the diagonalization former eq. can be represented in the principle axis
system (X,Y,Z) as
H,=D,S,’+D,S,*+D,S,”. (3.28)

Introducing the zero field parameters: D = %DZ and E = %(D  —D, ), the Hamiltonian

is further expressed as

1
Hss :D(SZZ—ESszr E(SX2+ S,). (3.29)

Finally, applying the external magnetic field the total Hamiltonian of the triplet state is

H, =y hB-S +D(s;—%szj+E(SX2+ S%). (3.30)

In the limit B—0, with B parallel to the z-axis the zero field, triplet eigenfunctions

arc

(3.31a)

7))+
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|TY>=%|—1>+|+1>, (3.31b)
|7,) =|0). (3.31¢)

3.5 A magnetic coupling between nuclear spin and electron

spin

For a nucleus with a magnetic moment x4, at 7 =0 and a finite radius p, , there exist two
kinds of magnetic fields: uniform internal field B, inside the nucleus and external dipole
field B, outside the nucleus, which cancel with each other out as a result the of

magnetic flux continuity as following:
¢int(p0)+¢ext(p0)=0' (332)

The internal flux is ¢,, (0, ) = 7p,’ B, , while the external flux is

K 2
b () =25 ] -5 far =0, 22 (.39
Po r p()
As a result, the internal field can be expressed as
B, :2i2 (3.34)
Lo

3.5.1 Isotropic and anisotropic hyperfine interaction

Assuming that electron wavefunction and a nuclear wavefunction overlap, the effective

nuclear magnetic field which an electron spin feels is

Bz = Bi (%”pOSJ

u, (O)‘2 is the electron density at 7 =0and %ﬂpf is the probability of finding an

2

b

(3.35)

u, (O)

where

electron inside the nucleus. In particular, when the electron wavefunction occupies
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isotropically much larger space compared to the nuclear wavefunction, the magnetic
interaction between the nucleus and the electron outside the nucleus is identically zero,
as for an s-wave symmetry electron wavefunction. In particular, the space integration
cancels out due to the continuity of magnetic flux. Thus, from (3.34) and (3.35), the

effective interaction Hamiltonian is given by:

~ &7 . .
Hey =B ==~H. 4,

u,(0)f

u (O =271 -8

: (3.36)

where /i, =—h7/e$’ and i =hy,I. The Hamiltonian (3.36) represents a Fermi contact

interaction, establishable only for the case when the electron and nucleus wavefunctions
overlap. Conversely, when the overlapping does not exist, or the electron wavefunction
1S a p-wave, d-wave or other symmetries with non-zero angular momentum, the space

integration for an external dipole field B, is non-zero, giving the anisotropic hyperfine

interaction Hamiltonian [55]:

a7 _AA, 3(/36?)(@,-?):7{%2 3(§'F)(i'F)_§.j (3.37)

9
r 7’ r P’

with 7 as the vector connecting the electron and the nuclear spin.

Now, the Hamiltonian is characterized by the terms _7e_73’nh2§x[‘x and 76—75/”h2§xf XV
r r

X

Figure 3.5: Schematic view of the magnetic coupling between nuclear and electron spin
represented in polar coordinate system (see text).

34



If fx =%(]A+ +f_) and fy =%([A+ - f_) and similar expressions for S’x and §y are used
i

in (3.37) and we introduce a polar coordinate (r, 0, qo) , we have the new expression:

fleﬁ=—7“’—73/"h2(A+B+C+D+E+F),Where

r
A=38.1(1-3c05 0), (3.38a)
lias a3 2
B=—Z( A 481 )(1-3005°6), (3.38b)
3 A R . —ig
C=—5( A+ zL)schosé’e , (3.38¢)
D= —%(S_fz+ Azf_)sin OcosBe™, (3.384d)
E= _%ii sin® G2 (3.38¢)
F= -%ﬁ_i_ sin” Ge** . (3.38)

Figure 3.6: External dipole field ]§e outside the nucleus spin, created by the strong

static magnetic field EO in the electron spin manifold, a schematic
representation.
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For the system where the spin density of the unpaired electron in orbitals with angular
momentum /=0 generates a purely anisotropic coupling, this “active” part of the
hyperfine interaction can be described by a dipolar coupling of the magnetic moment of

the electron to a nucleus, see figure 3.5.

In the principal axis system the dipolar (anisotropic) hyperfine coupling Hamiltonian is

given by

10 0) (-T 0 0
T=£2l) o _1 ol=| 0 -T o0 | (3.39)
A r
0 0 2) 0 o0 or

As a result, the complete hyperfine tensor A given by:

2 __ Lriso Traniso QO 5
Hy=Hp+H;"=SAI

—a SItSTI, (3.40)

can be rewritten as a sum of the isotropic and the anisotropic part eq. (3.39):

A. 0 0Y (a,-T 0 0
A=[ 0 4, 0|= 0 a,-T 0 | (3.41)
0 0 4 0 0 a+2T

In general case of an axially symmetric hyperfine tensor (Axx = Ayy) the principal

values are [AXX,AW,Asz[AL,A A], where 4, denotes the component of the

L4
hyperfine tensor when the magnetic field is parallel to the vector connecting the two

dipoles and 4, denotes the component when the field is perpendicular to this vector.

The anisotropic component can be extracted from the trace of the hyperfine tensor A as:

a,, :%Tr(A). (3.42)
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Under the circumstances of a strong static field B, along z-axis, the Zeeman
Hamiltonian:

H, =y hH +yhH,S., (3.43)
has dominant influence over the hyperfine interaction Hamiltonian.

In this case we can solve the Zeeman problem first and then treat the hyperfine coupling

as a perturbation. The eigenenergy of the unperturbed state is

Ez = —7/”7’230]7’11 +}/ehBOms H (344)

where m,and m_are the eigenvalues of fz and 3‘2. The energy level diagram for

and m_=+

m, = i% X %, in figure 3.7, shows how the matrix elements A to F, given in

eq (3.38), connect these Zeeman eigenstates.

—, m; =— 2
! ¢
(1) (+-)
B

Figure 3.7: Schematic representation of the Zeeman energy eigenstate levels for a

nuclear and election spin (m, = J_r% ,m, = J_r% ).
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3.6 Electron — nuclear spin interaction

1= j 1s assumed.

| =

For the following discussion a coupled spin system(S Z%,

3.6.1 Static Hamiltonian

For an electron (S :%) coupled to a nucleus (/ Z%) the static Hamiltonian essentially

reduces to a sum of electron Zeeman, nuclear Zeeman and hyperfine interaction term,

respectively:

H0=HEZ+HNZ+HHF= a)SS—a),IJrSAI. (345)

If we assume the high-field approximation all terms including the spin operators S '+ and

S'Y can be neglected, consequently the relation (3.45) is further reduced to

H,=wS,-wl,+AS,1,+B, S, ,+B,S,I,, (3.46)
with 4=4,,, B, =A4,,, and B, = 4,, denoting the secular and pseudo-secular parts of

the hyperfine coupling, respectively. Using theU, =¥l , the hyperfine part of the
1 p

Hamiltonian A, can be further transformed in a unitary transformation

U, (B,S,1,+B,5,1, U/ (3.47)

In combination to eq. (3.46), former relation gives the final reduction of the static

Hamiltonian:

A

H,=wS, -wl,+AS,1,+BS,I (3.48)

1
where B:(Bf( +B§)2, ¢= arctan(—g—yj an angle which defines a rotation of the

X

laboratory frame around the z-axis by / ;-
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The matrix representation of I:IO in case of the -eigenbasis

\a.B), |a.a), | B.B). | B.a) o, |[+.-), |[++), |--), |-+) is given by:
@ @ +é +§ 0 0
2 2 4 4
2 %4 A 0 0
S |4 2 2 4
° 0 0 o g 4 B
2 2 4 4
0 0 _B _&+ﬂ+£
4 2 2 4

defined by

(3.49)

The anisotropic hyperfine interaction consequences the non-diagonal form of the

Hamiltonian.

3.6.2 Exact diagonalization of the static Hamiltonian

Because the Hamiltonian is given by a 2x2 block-diagonal form, the two subspaces

can be separated and diagonalized using the polarization operators S and S”:

(3.50)

(3.51)
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This relation can be further expressed as:

A =08, (w _éj §ei,+ 25, (a, g} §i -

(3.52)

B rqn
ESﬂIX =

ac ar

(3.53)

The anisotropic part of the hyperfine coupling obtained in the final relation for I:IO

describes the transition moment and the level of mixing between allowed and forbidden

state transitions.

Former equation can be diagonalized by applying the commutator:

U, = e’ (77a‘§a Y+77ﬁ§ﬂiY)

=e” (naf’)‘iy +e' (nﬂﬁﬂfy)

=U; -UY,

where the subspaces H? and H / can be found with
[§°7,.8°1, | =—is°1,.

[§71,,5°1,]=-i5"1,

(3.54)

(3.55a)

(3.55b)
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In the first transformation, I:I(f‘ i)I:IOD ) we get the following diagonal and oft-

diagonal elements
(a), _gjﬁaiz —)[a) _gjﬁaiz cos(7,)
_i[ﬁafy,ﬁaiz][w, _gjsm(na)
= (wl —?jﬁ“fz cos(7,)
—i(—iﬁ“iX)(m, —gjsin(na)

- (a)[ —gj S°I, cos(n,)

diagonal

-8°I, (a)l —?jsin(na), (3.56)

off —diagonal

and likewise

S°i, cos(na)—ﬁafzgsin(na). (3.57)

off —diagonal diagonal

Then, the off- diagonal and on-diagonal terms of the so transformed Hamiltonian read

A

Hy {?sm(m){wz —ngOS(na)}-S“é, (3.58)

fypteor—io Bcos(m)_(w, —fj sin(na)]ﬁaix, (3.58b)

The off-diagonal elements (eq. (3.57)) vanish at zero,

Oz{gcos(%)—(w] —%)sin(na )]S‘af/y, (3.59)
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B A .
Ecos(na)z(wl —Ejsm(na), (3.60)

B .
2 _sin(n,) (3.61)
(a)l _Aj cos(7,)
2
20, = tan (7, )|, (3.62)

which represents the condition for the vanishing off-diagonal elements in & subspace.
In the second transformation, likewise, following the same method Hoﬁ can be
diagonalizated in the f subspace, when we get as the vanishing point for the off-

diagonal elements:

%cos(nﬁ):(a)[ +§Jsin(7yﬂ), (3.63)
_B in
2 sin(77,
= , (3.64)
[a)l +Aj cos(nﬂ>
2
2a)_[+A =tan(77ﬁ). (3.65)

The Hamiltonian in final, diagonalized form, I:If , 1s given as a sum of on-diagonal

terms from « and S subspace:

|, ) A (3.66)
=wS,+ ?sin(na)—(a),—?jcos(na) .S°1,
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Figure 3.7: Quantum correlations scheme of the hyperfine coupled electron (S Z%) to

1 L . .
nuclear (/ =5) spin in two two-level systems. Activated transition

frequencies, @, and ,;, associated with application of electromagnetic
radiation pulse are marked via dashed line.

3.7 Interaction of electron-nuclear spin system with

electromagnetic radiation

The rotating frame spin Hamiltonian for a two-spin particle is given by

H ,=Q4S, +o,1, +IAS, (3.71)
where Q¢ =aw, —m, , A is the hyperfine coupling tensor, w; = y,B, and w, =y, B, .

The two allowed electron — nuclear spin transition frequencies are Am_ ==*1, Am, =0,

and the two forbidden are Am_==1, Am, ==*1. In the rotating frame they can be

expressed as

1 1
W5 = Qs+5(a)12 —wy,), 0, =Q, _E(a)lz ~@y ), (3.72a)

andw,, = Qﬁ%(a}lz +@y,), 0,5 = Q —%(a)12 +a,, ) , respectively. (3.72b)
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Figure 3.8: Schematic representation of hyperfine field induced frequency
variation, Af, needed for logical qubit state transfer between electron

and nucleus: TednoTeln.

For a nucleus at 7 =0 and an arbitrary positioned electron wavefunction, (o(r), the total

electron-nuclear interaction Hamiltonian includes contact as well as dipolar hyperfine

coupling terms:

é[S :'H‘//(r)‘z {8?7[76»7”7}’2? 55(}’)4_%;—22
y 3m_j.§ } (3.73)
r
=AST +AST +4S81.

If the electron Zeeman energy y,iB, is much larger than the hyperfine interaction

energy 4., A4,, A, , the z-component of the electron spin operator commutes with the spin
Hamiltonian:

[7%, S] ~0. (3.74)
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Consequently, a reduced spin Hamiltonian can be represented as following:

H=yhBJ. +yhBS. +AS.1I (3.75)

zz z?

where eigenstates are |m )|m,), m

s

= i%, m, = i% with corresponding eigenenergies:
E=—-y hBym, + y hiBym_ + A mm, (3.76)

Assuming that 4 >0, the hyperfine energy levels corresponding to y 7B, > 4. (a high

field), and y, 7B, < A. (alow field) are shown in figure 3.9.

1

S et
- — I }/J'.’hHO-'_ AZ

—+

+ +
....... + _-l _AZ _7”;-?]_]0

b

......._..:....I _AZ +ynhH0

—+

Figure 3.9: Hyperfine energy levels for coupled electron-nuclear spin pair

(S Z%, 1 :%j in case of: (a) y,iB, > A, and (b) y,hB, < 4., a schematic

representation.
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Chapter 4

Ion channeling in crystals

4.1 Introduction

The channeling of positively charged particles through a crystalline target is wide
studied and experimentally utilized effect [56, 57] characterized by the confinement to a
specific impact parameter area larger than the closest distance approach, i, see figure

4.1.

Figure 4.1: General scheme for channeling in crystalline target (scaling is exaggerated).

The steered motion of charged particle is established for incident anglesy <y, .

If the charged particle impinges upon the crystal under impact parameter close to a
major crystal direction, the particle will experience a series of small-angle collisions as
it passes through the collection of atomic strings parallel to the crystal axis. Depending
on the primary orientation of entrance crystal plane it is possible to separate two

different channeling regimes: the planar and the axial.

Under the planar channeling a particle performs a finite transverse motion localized
between two adjacent crystallographic planes, while for the axial channeling a charged

particle impinges a crystal with small angle to one of the main crystallographic axes.
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So far, the channeling effect, theory, numerous experiments and their various
applications have been described in detail in several review articles of Morgan [58],

Gemmel [59], Beloshitsky [60].

Two modes of axial channeling founded by Robinson and Oen [61] refer to a
hyperchanneling and doughnut mode respectively. First case is established when the
particle trajectory is confined to one axial channel during transmission through a crystal
[62]. In general, hyperchanneling mode can be established only in very thin perfect
crystalline targets (due to small percentage of energy losses) for very small angles of
incidence and negligible beam divergence. A second mode is obtained when the particle
with a sufficient transverse energy passes the potential barrier entering into the lattice of
atomic strings while it changes its transverse momentum direction in collisions with the

strings [63].

Lindhard [64] has laid the theoretical foundations of channeling by introducing the so-
called axial and planar continuum models and critical angle dependencies of the charged
particle oscillatory motion guided by the harmonic potential in the crystal. These items

are concisely described in the following section.

4.2 Continuum Model

Continuum Model represents the approximation of the actual periodic potential of
atomic string (plane) with a collective potential averaged over all single ion-atom

potentials V(R).

The continuum approximation is valid only for large impact parameters and small
angles of incidence. The approximation breaks down for a particle entrance at a distance
to atomic string - less than the critical approach, 7. This restriction further implies a

critical value E,;; for the transverse energy and the critical angle, v i, for angle of

incidence, y, as following
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U(rcrit) = Ecrit = Ey/zcril ° (41)

Hence, the continuum approximation in the axial channeling is valid until the angle of
incidence of the particle upon a main crystal axis is less than the critical angle for

channeling:

/2212262
= |2 4.2
v Ed (42)

where F is the energy of the incident particle and d is in interatomic distance.

Correspondingly, for the planar channeling the critical angle is

277 7Z.¢*aN d
WZ :\/ 1 ap , (43)

Ed
0.8853 q,

— s
[ 204+ 72

where d, is the interplanar distance, N,, is the atomic density, and a =

the Thomas-Fermi screening length.

Thus, as long as the following condition is satisfied:

2“sz12;/3 (g /d)} >>1, (4.5)
m

e

where a, =0.53 Ais the Bohr radius, Z, and M are the projectile atomic number and
mass, respectively, and m, is the electron mass; the close encounter process leading to

the nuclear reaction, does not occur.
4.3 Thomas-Fermi interaction potential in continuum approximation

For the system of one atomic row, the continuum potential at distance » from a string of

atomic nuclei is given by the following relation
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U(r):%IV\/zerrzdz, (4.6)

where d is the interatomic distance between the crystal atoms composing one string

and +/z* +7? is the distance between the channeled particle and the nuclei measured

along the string in the channeling direction.

Figure 4.2: Trajectory schematics of channeled particle close encounter with atomic

string in continuum model, scaling is idealized.

In the axial channeling regime the former relation is given by

27,7, (r r
V(”):#Z(—) =Et//12;c(—), (4.7)
d a a
where 7 is the distance between channeled ion and lattice atom and Z[Zj is the
a

Thomas-Fermi (TF) screening function obtained as the solution of Thomas-Fermi

differential equation (see next subsection):

(2) d(d r j g GJ - (aL] | (48)

For the TF screening function the most commonly used approximation in the case of ion

channeling are the Lindhard [64] and Moli¢re [65]. In this thesis it is included the

Moliere screening function approximation of the Thomas-Fermi interaction potential:
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z(—) S, exp[—ﬁj , 4.9)
a i=1 a

3
where y (&)=Y a,K,(B¢), K, is the zero-order modified Bessel function of the
i=1

second kind [66], with{e;} = {0.10; 0.55; 0.35} and {£;} = {6.0; 1.2; 0.3}.

From figure 4.3 it is clear that Moliere screening function has an excellent agreement
with the Thomas-Fermi screening function for all values of the variables that are less
than ten. By inserting equation for ion-atomic interaction potential (2.4) and (2.6) in the
expression for the continuous potential (2.3) we get the expression for the Thomas-

Fermi interaction potential in Moliére approximation:

ZZZe

U(r)- ZK( ]:»

2
= U(r) :221%{0.11( (6r)+o 55K, (1'22 r)+0.351<0(0‘3 ”ﬂ (4.10)

a

a a

Figure 4.3: Thomas-Fermi potential dependence on parameter x = r/ a, a full line, and
Thomas-Fermi interaction potential in Moliére approximation, a dashed
line.

It is possible to include the effect of thermal vibrations of the lattice atoms [66]

assuming that the channeled ions have high enough speed, so that can "see" the atoms as

fixed in space and shifted from their equilibrium positions. Also, these small thermal
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shifts are mutually independent, and can be described by a Gaussian distribution [68],
whose standard deviation, oy, is equal to the one-dimensional amplitude of thermal
vibrations of atoms. As a result, the total potential of the continuous interaction of ions

and the i-th atomic string, including the effects of thermal vibrations of lattice atoms, is

given by following
2 2 2
U :Ui+%[%ui+%uij. @.11)
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Chapter 5

Superfocusing of channeled protons in a

<100> Si thin crystal

Introduction 5.1

As a first step toward manipulation at subatomic level precision in condensed matter
systems under ion channeling regime this chapter elucidates semiclasicall theory behind
superfocusing effect. The obtained results pave a way for utilization of a picometer
resolution solid-state manipulation technique — applicable for the subatomic microscopy
as well as nuclear quantum state engineering. Here we demonstrate that it is possible to
measure the cross-section for the process of proton induced X-ray emission as a
function of the proton impact parameter within the foreign atom, giving the transverse
projection of the electron density within the atom. This dependence would have several

points, corresponding to the numbers of values of incident angle, ¢. Such a

measurement technique, named the subatomic microscopy, can be successfully
implemented in the quantum information processing as a method for quantum state read
out. It could be also used to measure, e.g., the cross-section for a (p, « ) nuclear reaction
as a function of the proton impact parameter within the foreign atom.

In the following it is presented a theoretical route for explaining the subatomic
confinement of the proton beam of the initial energy of 2 MeV channeled along the
<100> axis of a Si thin crystal for different values of the proton beam incident angle. It
is demonstrated that the half-width of the proton beam can be made much smaller than
the Bohr radius, i.e., the average radius of a hydrogen atom in its ground state. This
effect is called the effect of superfocusing of channeled ions [69]. Obtain results show
that it is possible to use such a proton beam to probe the interior of a foreign atom

inserted in the channel by changing gradually the proton beam incident angle. In
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particular, the superfocusing effect of protons channeled in a <100> Si thin crystal is

analyzed in detail.

The initial proton energy is 2 MeV and the proton beam incident angle is increased
gradually from zero up to 20 % of the critical angle for channeling. The reduced crystal
thickness is varied between 0.20 and 0.30, the corresponding range of crystal thickness
being between 66.1 and 99.2 nm. The spatial distributions of channeled protons,
obtained by the numerical solution of the proton equations of motion in the transverse
plane and a realistic Monte Carlo computer simulation code, are presented as functions
of the proton beam incident angle and reduced crystal thickness. They are analyzed via
the corresponding mappings of the impact parameter plane to the transverse position
plane, which is dominated by the rainbow effect. The performed analysis shows that it is
possible to focus the proton beam within the region of the radius considerably below the

Bohr radius for all the considered values of the proton beam incident angle.

In recent years, as the characteristic dimensions of devices made of advanced materials
have approached the atomic scale, obtaining the information on their structure-
properties relationships around this limit is emerging as a fundamental request in
materials and devices engineering [70-73]. On the other hand, one of the major driving
forces in the field of ion channeling is the requirement to guide and focus the beam to

nanometer sized regions [74, 75].

The possibility of superfocusing of channeled ions was first observed by Demkov and
Meyer [69]. Following the theoretical studies of Mileti¢ et al. [76, 77] and Zivkovi¢ et
al. [78], they analyzed the axial focusing of 1 MeV protons in the <100> channel of a Si
thin crystal assuming that the continuum proton-crystal interaction potential was
dominantly cylindrically symmetric and harmonic. The effect was also considered by
Neskovi¢ at al. [79], who treated it as the crystal rainbow effect [80, 81], whose
occurrence had been confirmed experimentally by Krause et al. [82, 83]. The continuum
proton-crystal interaction potential was of the Thomas-Fermi type, having both the

harmonic and anharmonic components.

Here we describe an approach aimed at achieving the picometer measurement

resolution. It is based on using the superfocused proton beam, in the crystal channel, for
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scanning the interior of a foreign atom, being localized near the superfocusing point.

The approach has the potential for a breakthrough in the field of subatomic microscopy.

In order to outline the main features of the superfocusing effect, the spatial distributions
of channeled protons, i.e., their distributions in the transverse position plane, for
different values of the proton beam incident angle and reduced crystal thickness are

analyzed in detail.

5.2 Semiclassical model of the superfocusing effect induced by proton
channeling

The system considers a proton moving through an axial channel of a thin Si crystal. We
employ the classical model of ion channeling assuming that the interaction between the
proton and crystal's atoms is elastic [64]. In the proton trajectory calculations we use the
Thomas-Fermi proton-atom interaction potential [59] in the Moliére approximation [64,
65], which is

2
V(') = ﬂ [0.35exp(=br") +0.55 exp(—4br") +0.10 exp(~20br") (5.1)
r

where Z; and Z, are the atomic numbers of the hydrogen and silicon atoms,

respectively, e is the elementary charge, »' is the distance between the proton and
atom, b=0.3/a, a= [97z2 /(12822)]]/3% is the screening radius of the atom, and a, =

52.9 pm is the Bohr radius [85]. The z axis is taken to be parallel to the <100> Si
crystallographic axis with the origin lying in the entrance plane of the crystal. The
proton beam axis lies in the xz plane and makes angle ¢ with the z axis, being the
proton beam incident angle. We further apply the continuum approximation [64]. As a
result, the continuum interaction potential of the proton and crystal is obtained as a sum

of the continuum interaction potentials of the proton and crystal's atomic strings,
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U (x, y>=§U;’“ (x.9). (5.2)

where x and y are the transverse components of the proton position and M is the

number of atomic strings. This expression includes the thermal vibrations of the atoms.

The continuum interaction potential of the proton and ith atomic string is [59]

2
Gzth [axin(x’y)+8yin(x=y)]a (53)

Ul(x,y)=U,(x,y)+

where U, (x,y) is the continuum interaction potential of the proton and ith atomic string
without the effect of thermal vibrations taken into account, and &, the one-dimensional

thermal vibration amplitude of the atoms.

We include in the calculations of the spatial distributions of channeled protons the
effects of their collisions with the crystal's electrons. The specific (electronic) energy

loss of the proton in the channel is taken into account via relation

dE  4nZ}e*
——= >—n,In
dz  my hao

e

2
2mv

, (5.4)

where m, is the electron mass, v the proton velocity, n, = AU" (x, y)/(4r) the density

of the crystal's electron gas averaged along the z axis, 4=0_+0 , h the reduced

w2

1/2

Planck constant, and @, = (47e’n, /m,)"* the angular frequency of the oscillations of

the electron gas induced by the proton [59]. The specific change of the dispersion of the

proton scattering angle caused by its collisions with the electrons is included in the form

dQ* m dE
_ M [_ab ) 55
Vv ( dzj (5:3)

2
dz m,

where m, is the proton mass [59]. The corresponding dispersions of the components of

the proton scattering angle are (27 = .Qyz =2°/2.

Our calculations are based on the theory of crystal rainbows, and are focused on the

appearance of rainbows in the proton transmission through the <100> Si thin crystal
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when the proton beam does not coincide with the crystallographic axis, i.e., when the
crystal is tilted relative to the plane perpendicular to the proton beam. This theory
enables us to analyze the spatial distributions of channeled protons via the
corresponding rainbow patterns. These distributions are generated using the numerical
solution of the proton equations of motion in the transverse position plane and a realistic

Monte Carlo computer simulation code.

The analysis of the proton scattering process in question is carried out via the mapping
of the impact parameter plane to the transverse position plane [86, 87] in accordance

with the chosen values of ¢ and the reduced crystal thickness, A. The Jacobean of this

mapping, i.e., the ratio of the infinitesimal surfaces in the transverse position plane and

impact parameter plane, reads

l]r(xo’yo,gp,/l):ﬁa_y_ﬁa_y, (5.6)
ox, Oy, Oy, Ox,

where x, and y, are the components of the proton impact parameter, i.e., the

components of its initial position in the transverse position plane. Thus, equation

J (%y,¥,,9,A) = 0 determines the lines in the impact parameter plane along which the

proton yield in the transverse position plane is singular.

5.3 Results and Discussion

This section discusses the effect of superfocusing of protons channeled in the <100> Si

thin crystal for various proton beam incident angles. The initial proton energy, E, is 2

MeV and the crystal thickness, L, is changed from 66.1 nm to 99.2 nm.

The corresponding values of the reduced crystal thickness, A= f L/v,, where f, =

5.94x10" Hz is the average frequency of the transverse proton motion close to the

channel axis and v, the initial proton velocity [88], are between 0.20 and 0.30. The

proton beam incident angle is varied in the range between 0 and *0.20y,, where
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v, = [22122e2 /(dEO)T/2 = 6.09 mrad is the critical angle for channeling, with d being

the distance between the crystal's atoms within the atomic strings [64]. The one-

dimensional thermal vibration amplitude of the atoms is o, = 7.4 pm [67].

It is assumed that the crystal's atomic strings defining the channel intersect the x and y
axes. The number of atomic strings is 36, i.e., we take into account the atomic strings
lying on the three nearest square coordination lines [88]. The proton equations of
motion in the transverse position plane are solved numerically using the Runge Kutta
method of the fourth order [66]. The components of the proton impact parameter, x,

and y,, are chosen randomly from the uniform distributions within the region of the

channel. The initial number of protons was 4,294,967.

Figure 5.1 presents the spatial distributions of channeled protons along the x axis for
nine values of the proton beam incident angle, ¢ = 0, £0.05y_, £0.10y,, £0.15y,
and £0.20y,, and A = 0.25, corresponding to L = 82.6 nm. Each of these distributions
contains one maximum. As one would expect, for ¢ = 0 the maximum lies at the origin,
for positive values of ¢ on the positive part of the x axis, and for the negative values of
@ on the negative part of the x axis. The larger the modulus of ¢, the large the
displacement of the maximum from the origin. Also, when the modulus of ¢ is larger,

the maximum is weaker and broader. These maxima are due to the effect of
superfocusing of channeled protons, which is explained by the dominance of the
harmonic component of the continuum proton-crystal interaction potential, given by eq.

(5.2), over its anharmonic component in the region close to the channel axis [69, 79].
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Figure 5.1: The yields of channeled protons along the x axis in the transverse position
plane for the proton beam incident angles ¢ = 0, £0.05y_,, £0.10y,, £0.15y, and

+0.20y, and the reduced crystal thickness A = 0.25, corresponding to the crystal
thickness L = 82.6 nm.

The heights of the maxima for ¢ = £0.05y,, £0.10y,, £0.15y, and £0.20y, are 99,

92, 53 and 28 % of the height of the maximum for ¢ = 0, respectively. The
displacements of the maxima for ¢ = £0.05y,, £0.10y, and +0.15y, from the origin
are below a,, and one can say that these maxima are strong and narrow. For ¢ =
+0.20p, the displacement of the maxima from the origin is above a,, and the

maximum is weak and broad.
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Figure 5.2: The yields of channeled protons in the transverse position plane in the two-
dimensional representation for the proton beam incident angles ¢ = 0, +0.05y_,
+0.10y,, +0.15y, and +0.20y, and the reduced crystal thickness A = 0.25,

corresponding to the crystal thickness L = 82.6 nm. The area in which the yield of
channeled protons is below 5 % is designated by white color, the areas in which the
yields are between 5 and 10 %, 10 and 15 %, 15 and 20 %, 20 and 50 %, and 50 and 80
% by the increasing tones of gray color, respectively, and the area in which the yield is
above 80 % by black color. The atomic strings defining the channel are represented by
the four circles lying on the x and y axes.

This suggests that, by varying ¢ from 0 to £0.15y_, one could probe the interior of a

foreign atom inserted in the channel at the depth of A = 0.25, i.e., at the superfocusing

point in the first rainbow cycle [79]. The weakening of the superfocusing effect for ¢ =
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+0.20y, can be attributed to the fact that in these cases the proton beam is displaced

considerably from the channel axis toward the upper or lower channel wall, and moves
through the region of the channel in which the anharmonic component of the interaction

potential is more pronounced than its harmonic component [69, 79].

The spatial distributions of channeled protons in the two-dimensional representation for
@ =0, £0.05y,, £0.10y,, £0.15y, and +0.20y, and A = 0.25 are shown in figure
5.2. It is evident that for ¢ = 0, £0.05,, £0.10y, and £0.15y_ each of the
distributions has one strong and narrow maximum. The shapes of the areas of the
distributions for ¢ =0, £0.05y, and £0.10y, representing the constant proton yields
are circular, while the shapes of the areas of the distributions for ¢ = +£0.15y, are
ellipsoidal. For ¢ = £0.20y, the distributions become broader and each of them

contains two maxima displaced symmetrically along the positive and negative parts of

the y axis, and the shapes of their areas representing the constant proton yields deviate

from the ellipsoidal ones.

It is clear that for these values of ¢ the superfocusing effect is considerably attenuated

and dissolved. Thus, as it has been suggested above, the possibility to use the proton
beam for probing the interior of a foreign atom inserted in the channel at the

superfocusing point exists only for the values of the modulus of ¢ below0.15y, .
Figures 5.3(a) and 5.3(b) give the distributions for ¢ = 0.10y, and 0.20y, in the three-

dimensional representation. Note that the scales of the yield axes in the two figures
coincide. These two distributions show clearly the splitting of the superfocusing

maximum for the larger value of ¢.
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Figure 5.3 (a, b): The yields of channeled protons in the transverse position plane in the
three-dimensional representation for the proton beam incident angles (a) ¢ = 0.10y,

and (b) ¢ = 0.20y, and the reduced crystal thickness A = 0.25, corresponding to the
crystal thickness L = 82.6 nm.
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Figures 5.4(a) and 5.4(b) give the rainbow lines in the transverse position plane for ¢ =
0.05¢., 0.10y., 0.15y, and 0.20y, and A = 0.25, which correspond to the spatial

distributions of channeled protons in the upper part of the transverse position plane

shown in figure 5.2.
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Figure 5.4 (a, b): The evolution of the rainbow pattern in the transverse position plane
with the proton beam incident angle, for (a) ¢ = 0.05y, and 0.10y, and (b) ¢ =

0.15y, and 0.20y_, for the reduced crystal thickness A = 0.25, corresponding to the
crystal thickness L = 82.6 nm.

The rainbow patterns for ¢ = —0.05y., —0.10y,, —0.15y, and —0.20y, and the
same value of A lie in the transverse position plane symmetrically with respect to the
y axis to the corresponding patterns shown in this figure. It has been already
established that for ¢ = 0 the rainbow line comes to a point, when the effect of

superfocusing of channeled protons is most pronounced [79]. Note that the scale of the

x and y axes in the former figure is 10 times smaller then the corresponding scales in

the latter figure. As ¢ increases, the pattern shifts along the x axis.
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However, this shift decreases as the pattern approaches the atomic string intersecting the

x axis. Also, with the increase of ¢, the two patterns become larger and more

separated from each other.

Comparison of these figures with figures 5.2 and 5.3 demonstrates that, in spite of the

fact that rainbow patterns for ¢ = 0.05y,, 0.10y, and 0.15y, is composed of two

parts, each of the corresponding spatial distributions of channeled protons contains only

one maximum.

The two rainbows for ¢ = 0.20y, are responsible for the two maxima appearing in the

corresponding spatial distribution. However, one should note that for each of the

considered values of ¢, rainbow pattern lies within a circle of the radius much smaller

than q,.

In the analysis presented in figures 5.1-5.4, direction of the incident proton beam is
changed along the x axis, i.e., toward the atomic strings defining the channel that
intersects this axis. We have also explored the spatial distributions of channeled protons
for the reduced crystal thickness A = 0.25 and direction of the incident proton beam
changing along line y =x, i.e., between the atomic strings defining the channel. The
obtained results are similar to the ones presented in these figures, including the splitting

of the superfocusing maximum for the larger values of the proton beam incident angle.

In next step it is considered a foreign atom inserted in the channel near the
superfocusing point and exposed to the proton beam. The insertion of the atom can be
performed by the technique of ion implantation. One of results of the proton-foreign
atom interaction can be an inner-shell ionization of the atom resulting in the emission of
a characteristic X-ray. This process is called proton induced X-ray emission (PIXE). It

is illustrated in figure 5.5.

The distance between the channel walls is 271.5 pm, the half-width of the proton beam

is R, =5.0 pm [69], and the radius of the foreign atom is R, = 100 pm, corresponding

to a sulfur atom [89]. The half-width of the proton beam is taken to be constant in the

interaction region since the length of the superfocusing region, which is the region
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around the superfocusing point, is much larger than R [69]. For ¢ = 0, the protons

propagate through the foreign atom along its diameter coinciding with the z axis, and

for ¢ = 0.05y., 0.10y,, 0.15y, and 0.20y, they propagate through the atom along its
chords being practically parallel to the z axis. The larger the value of ¢, the smaller
the length of the chord. The proton beam shown in the figure corresponds to ¢ =

0.05y, .

Channel wall

Channel wall

Figure 5.5: An illustration of the interaction of the proton beam with the inner-shell
electrons of a sulfur atom inserted in the channel near the superfocusing point resulting
in the emission of characteristic X-rays.

This simple geometrical analysis demonstrates the possibility for measuring the cross-
section for PIXE as a function of the proton impact parameter within the foreign atom.
Thus, one could measure the electron density within the foreign atom. Such a probing of

the interior of the foreign atom can be named the rainbow subatomic microscopy.
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Another result of the proton-foreign atom interaction can be the excitation of the atom's
nucleus resulting in the emission of an a-particle, i.e., a (p, o) nuclear reaction.

In this case one could measure the cross-section for this nuclear reaction as a function of
the proton impact parameter within the foreign atom [69].

The realization of the idea of subatomic microscopy depends crucially on the possibility
to localize foreign atom near the superfocusing point, i.e., to make it practically
coincide with the proton beam neck. Displacement of the foreign atom from the proton
beam neck can be compensated by varying the initial proton energy upward or
downward to move the neck forward or backward, respectively, and make "the two
objects" coincide. However, the effect of thermal vibrations of the foreign atom makes
its position uncertain. Since the corresponding one-dimensional thermal vibration

amplitude is comparable with R, [67], one should cool the crystal to a temperature well

below room temperature to make the effect less pronounced. Resolution of the
microscopy is determined by the ratio of the diameter of foreign atom and the full-width
of the proton beam. In the above described example this ratio is 20. Thus, in accordance
with the above given simple geometrical analysis, one can choose the seven values of

®,0, £0.05y,, £0.10y, and £0.15y,, and obtain seven well-separated measurement

points. If the cross-section for PIXE is measured, the final result of the experiment
would be the transverse projection of the electron density within the foreign atom. In
this case the sensitivity of the microscopy is determined by the way the cross-section

depends on the electron density.

Figure 5.6 shows the dependences of the yields of channeled protons around the centers

of their spatial distributions on A in the region between 0 and 0.3 for ¢ = 0 and
0.10y, . For the region in the transverse position plane around this center we take the
circular region around it having the radius smaller than », =0.1a, = 5.3 pm. The value
of r, is chosen to be close to the half-width of the proton beam at the superfocusing
point (R, = 5.0 pm). The maxima of these dependences are attributed to the

superfocusing effect. Their positions for the two values of ¢ are 0.246 and 0.245, the

corresponding values of L being 81.3 and 81.0 nm, respectively.
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The height of the maximum for ¢ = 0.10y, amounts to 98 % of the height of the
maximum ¢ = 0. The full-widths of the two maxima are 0.084 and 0.083, respectively,

and the corresponding values of AL are 27.8 and 27.5 nm, respectively. It is evident

that these values are much larger than R . The small downward shifts of the positions of

the two maxima away from the superfocusing point can be attributed to the presence of
the small but not negligible anharmonic component of the continuum proton-crystal
interaction potential. The fact that values of the position, height and full-width of the
two maxima do not deviate much from each other is in accordance with the previously

drawn conclusion that for ¢ = 0.10y, the superfocusing effect is still very pronounced.
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Figure 5.6: The yields of channeled protons around the centers of their spatial
distributions as functions of the reduced crystal thickness in the vicinity of the
superfocusing point for the proton beam incident angles ¢ =0 and 0.10y . .

We shall also analyze the evolution of the rainbow pattern in the transverse position

plane with A in the vicinity of the superfocusing point for ¢ = 0.10y, .
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The patterns for A4 = 0.200, 0.220 and 0.240 consist of a cusped rectangular line with

the cusps directed between the atomic strings defining the channel.

The evolution of the rainbow patterns [90-92] with A in the region between 0.240 and
0.260 is displayed in figure 5.7. For A = 0.245 the pattern is composed of two cusped
triangular lines, each of them with two cusps directed between the atomic strings

defining the channel and one cusp directed along the y axis and toward the third cusp

of the other line. Thus, the increase of A toward the value of 0.250 induces the splitting
of the cusped rectangular rainbow line. The rainbow pattern for A = 0.250, which is
also shown in figure 5.4, consists of two cusped triangular lines, as the rainbow pattern
for A = 0.245. These two rainbows are separated from each other less than the two
rainbows occurring for A = 0.245. For A = 0.255, the rainbow pattern contains two
cusped triangular line. These two rainbows are larger than the two rainbows occurring
for A = 0.250 and they overlap. The rainbow pattern for 4 = 0.260 consists of a
deltoidal line with two joints of its sides having the form of a swallow-tail directed
along the x axis and the other two joints of its sides having the form of a cusp directed

along the y axis. The rainbow patterns for 4 = 0.280 and 0.300, which are not shown

in figure 5.7, contain a cusped deltoidal line with the cusps directed toward rather than
between the atomic strings defining the channel. Thus, the increase of A away from the
value of 0.250 induces the joining of the two cusped triangular rainbow lines into the
cusped deltoidal line (with the cusps directed toward rather than between the atomic
strings defining the channel). As in figure 5.4, the inner sides of all these lines are the

bright sides of the rainbows while their outer sides are the dark sides of the rainbows.

If the evolution of the rainbow pattern in the transverse position plane with A given in

figure 5.7 is compared with the corresponding evolution for ¢ = 0 presented in [79],

one can see that the cusped rectangular line, the two cusped triangular lines and the
cusped deltoidal line appearing in the former case for A4 = 0.20, 0.25 and 0.30
correspond to a cusped square line, a point and a cusped square line in the latter case,

respectively. Also, in the case when ¢ = 0.10y_, centers of the rainbow patterns are

displaced from the origin, the displacement increasing with A, and in the case when ¢
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= 0, they coincide with the origin. This is in accordance with the corresponding

dependences shown in figure 5.6.

0.033

—~ 0.032
=
=
=<
0.031
0.002
N
@@

Figure 5.7: The evolution of the rainbow pattern in the transverse position plane with
the reduced crystal thickness in the vicinity of the superfocusing point, for A = 0.240,
0.245, 0.250, 0.255 and 0.260, corresponding to the crystal thicknesses L = 79.3, 81.0,

82.6, 84.3 and 85.9 nm, for the proton beam incident angle ¢ = 0.10y_, see text above.

To summarize, this chapter presents theoretical analysis of the superfocusing effect of 2
MeV protons in a <100> Si crystal channel. The considered range of the reduced crystal
thickness, A, is around 0.25, i.e., in the vicinity of the superfocusing point. The
corresponding value of the crystal thickness is 82.6 nm. The superfocusing effect has

been analyzed for the proton beam incident angles, ¢, between 0 and £0.20y,, with

. being the critical angle for channeling.
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It has been shown that each of the spatial distributions of channeled protons for ¢ = 0,
+0.05y,, £0.10y, and £0.15y, and A = 0.25 has one strong and narrow maximum.

These maxima are due to the superfocusing effect, which is explained by the dominance
of the harmonic component of the continuum proton-crystal interaction potential over
its anharmonic component in the region close to the channel axis. The displacements of

these maxima from the origin are below a,. Each of the distributions for ¢ = +£0.20y,
has two maxima, whose displacements from the origin are above a,. The rainbow
patterns corresponding to all these distributions consist of two cusped triangular lines.
For ¢ = 0 these two rainbow lines come to a point.

Also, we have elaborated further the idea to employ the superfocusing effect for
subatomic microscopy. The system under consideration has been a foreign atom, being
a sulfur atom, inserted in the channel near the superfocusing point and exposed to the

proton beam.
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Chapter 6

Quantum entanglement and spin control in
silicon nanocrystal

In this chapter selective coherence control and electrically mediated exchange coupling
of single electron spin between triplet and singlet states using numerically-derived
optimal control of proton pulses is demonstrated. Spatial confinement below size of the
Bohr radius for proton spin chain FWHM is obtained. Precise manipulation of
individual spins and polarization of electron spin states are analyzed via proton induced
emission and controlled population of energy shells in pure *’Si nanocrystal. Entangled

quantum states of channeled proton trajectories are mapped in transverse and angular

phase space of *’Si <100> axial channel alignment in order to avoid transversal

excitations. Proton density and proton energy as impact parameter functions are
characterized in single particle density matrix via discretization of diagonal and nearest
off-diagonal elements. We combined high field and low densites (1 MeV/92 nm) to
create inseparable quantum state by superimposing the hyperpolarizationed proton spin
chain with electron spin of Si. Quantum discretization of density of states (DOS) was
performed by the Monte Carlo simulation method using numerical solutions of proton
equations of motion. Distribution of gaussian coherent states is obtained by continuous
modulation of individual spin phase and amplitude. Obtained results allow precise
engineering and faithful mapping of spin states, which can provide the effective
quantum key distribution (QKD) and transmission of quantum information over remote
distances between quantum memory centers for scalable quantum communication
network. Furthermore, obtained results give insights in application of channeled protons
subatomic microscopy as a complete versatile scanning-probe system capable of both
quantum engineering of charged particle states and characterization of quantum states

below diffraction limit linear and in-depth resolution.
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6.1 Introduction

Major progress of experimental techniques as well as theoretical models during the last
few decades, has made possible the comprehensive analysis of the ion beams collision
dynamics [64, 93]. Obtained results have facilitated development of versatile analytical
instruments which can provide material characterization, modification and analyses [72,
94] over a wide range of scientific disciplines. In addition, focused ion beam techniques
beyond sub-nanometer scale [71, 74, 95-97] have gained an important role as silicon
based nano-domain engineering [98-100] has become one of the most important tool in
materials research, low dimensional system electronics, semiconductor manufacturing
and nanotechnology overall. Recent experimental investigations of quantum
information processing via single electron devices in gate defined quantum dots [101,
102] confirm silicon based spin quantum-information processor as a promising
candidate for future quantum computer architectures [10]. In that context series of
investigations of electrically [103-105] and optically [106] induced ion kinetics in solid
state quantum systems reveal that focusing of coherent ions through oriented crystal,
may enhance precise confinement and manipulation of individual spins in quantum
information processing [37, 107]. The most prominent recent results relating the spin
dynamics control to ion channeling techniques in thin crystals presented in series of
theoretical studies [20, 79, 108, 109] when the ion differential cross section is singular
[110] give opportunity for precise manipulation of intrinsic properties of charged

particles.

6.2 The logarithmic singularity under continuum approximation

For transverse energy £, < E¢p and the ion beam incident anglep <<y, ¢ and vy,

denote critical angle for channeling and effective ion atom potential, respectively.

The effective potential area 7(‘410 (E l)) which corresponds to maximal enhancement in

ion flux density includes strictly harmonic terms under continuum approximation
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where 4, denotes the equipotential surface closed by field contour in the central part of

the axial channel. The corresponding integration boundaries are:

2
and A=A —A - ”i(p . (6.2)

nEQ’

- 2 -l Lo .
A, =78 a" and A =7p, a0 denote demarcation line of the channel cross-section

area. The central part of the axial channel is then represented by the annulus of inner

radius S|, =(7sz)71 = /(%)+apf , (6.3)

where d, p, and o represent the mean spacing between the atomic rows, ion impact

parameter and the ratio of total axial channels number versus number of atomic rows

forming the channel, respectively.

Accordingly to equations (1.31), when the ion beam incident angle is close to

zero @ = 0, the anisotropy for central part of axial channel is induced only by harmonic
component of the interaction potential. This implies that first equipotential circle

represents dominant effective potential area for ion flux density denoted as y(A,O (E l)).

Hence, the area of maximal enhancement in ion flux density is confined to central

Ak
rE@

equipotential curve of axial channel y(A,O)zln and further converges to zero

2

as 4, — 0 if the incident angle, i.e. the tilt angle of the beam, corresponds to condition

Q= (Alok /7zE ) The results obtained for MeV proton beam energies show the

nonequlibrium density of states across central part of the channel as nonuniform flux

redistribution. This reveals the strong effect of anharmonic components in effective

continuum interaction potential even in vicinity of low index crystal axis for <1 OO> Si.
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In this part of the thesis I present theoretical study of localization and coherent control
by superfocused channeled protons, CP beam induced polarization of individual
electron spins in pure *’Si nanocrystal. We analyze precise control of entangled proton
trajectories and discrete quantum states of phase space in connection to selective spin

manipulation. The harmonic motion of highly correlated channeled protons is tuned by

external RF field, by varying the CP energy and tilt angle relative to main <1 OO> crystal

axis. The calculations include the quasiharmonic approximation as well as the effect of
multiple scattering by valence electrons and assume the anharmonicity of the interaction

potential [110, 111]. Quantum entanglement of focused ion trajectories in final states

corresponds to central part of the <100> Si axial channel. It is analyzed in phase space by

convoluted transfer matrix method [112].

According to Liouville‘s theorem [113], the ensemble of channeled particles (for large
impact parameters) experiences series of correlated, small angle collisions in initial
stage of elastic interaction with atoms of the crystal lattice. Therefore, a proton flux
distribution can be calculated via probability function of quantum trajectory
reversibility, i.e., the probability for appearing of backscattered particles along initial
propagation direction. The resultant flux distribution further considers unnormalized
probability map of trajectories of channeled particles in phase space. We have analyzed
the nonequilibrium state of channeled protons density profiles in configuration and
scattering angle plane in connection to anharmonic expansion terms of proton - crystal
effective potential. Calculation assumes the initial state of static equilibrium,
considering 92 nm crystal’s length and channeling conditions which correspond to
infinitesimal crystal tilt angles, from zero up to 20% of critical angle for channeling.
Degree of correlation between separate trajectories of channeled protons was calculated
by two separate mapping procedures between configuration and angular phase plane.
Thus, the nonharmonic-higher order terms of continuum interaction potential were
analyzed via distribution function of channeled protons in transverse position plane and

scattering angle plane.

The subsequent chapters are organized as follows.
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Section 6.3 following the recent experimental attempts to realize electron spin processor
in silicon capable of quantum information processing introduces quantum model for
excitation and coherent control of electron spin states via entangled proton trajectories.
Exchange coupling is analyzed under quasiharmonic approximation of interaction
potential taking into account the constraint of singular proton flux density. The
theoretical model is further explained by Moliére approximation of the Thomas-Fermi
interaction potential. This formalism comprises Liouville's theorem to give simple
explanation for mapping procedures for proton beam transformation matrix in
configuration and angular phase space. Section 6.4 explains numerical model and
simulation parameters. Section 6.5 compares and discusses profiles of proton density
distributions for transverse position plane (configuration space) and scattering exit-
angle plane (angular space), gives the evolution of proton fluxes with various tilt angles
and further illustrates comparative analysis of proton trajectories mapped in six
dimensional phase space considering several A and ¢ variables in effective ion - crystal
anharmonic potential. Mapping procedure for entangled proton trajectories is further
obtained considering localization, selective excitation and unitary transformations of

singlet/triplet spin states in quantum phase space.

6.3 Quantum model of the superfocusing effect for excitation
and coherent control of electron and nuclear spin states

Coherent manipulation and precise control of single electron spin rotation represents
first step toward quantum information processing (QIP) [37, 114]. In order to achieve
high level of precision of single electron spin unitary rotations we propose highly
correlated spin chain of superfocused protons as a direct probe method for induction of
local electron spin excitations in silicon. In this context propagation of the single spin
excitation as a procedure for quantum state entanglement [115] can be intermediated via
mixed quantum state between channeled protons (CP) spin system and induced coherent
oscillations of electron spin system in silicon. In spin-lattice system, the condition of
conservation of transverse energy when CP have equal probability to access any point

of physical area corresponding to the channeling conditions, i.e., reaching the state of
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statistical equilibrium, has been modified by Barrett factor [116]. This constraint
explains simultaneous existence of equilibrium particle distribution and population
enhancement in different fractions of the phase space volume in process of ion
transmission through media of sufficient small length. As a result, phase space
distributions of CP in separate non-equipotential areas of the channel exhibit fractal
characteristics over total phase space volume. We have investigated the proton flux
profile in scattering angle plane and transverse position plane. The boundary conditions

of nonuniform density distributions are analyzed in case of small impact parameters

along main <1 00> Si crystal axis. The obtained results show that enhancement effect of

channeled protons flux bijectivelly corresponds to flux maxima in coordination space.

In that sense we have analyzed degree of anisotropy including the anharmonic, higher
order terms, k', i <4, in effective continuum interaction potential. As a result, the

channeled proton (CP) induced transition frequency ® between two electronic states

includes higher order contributions

ho=ho- Y|E (o.M (a.(2p) - (1.9)+ 0" (6.21)

E, represents the effective transverse energy of induced CP - electron system

interaction.
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Figure 6.1: (a) 3-d density distribution profiles of channeled protons. The quantum
trajectories are compared in angular scattering plane (left), L = 286 nm and transverse
position plane (right), L = 82.6 nm. The chosen tilt angle is ¢ = 0.05y, (a).
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Figure 6.1: (b, ¢) 3-d density distribution profiles of channeled protons. The quantum
trajectories are compared in angular scattering plane (left), L = 286 nm and transverse

position plane (right), L = 82.6 nm. The chosen tilt angles are ¢ = 0.15y, (b) and ¢ =
0.20y. (c).
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The corresponding Hamiltonian of rotating frame system [31] is

Hs=QS +wl +AS 1 +BSI_,
Q:C()S—a), a)s:gﬂeBo/h7 a)[:_gnﬂnBo/h' (622)

Q represents CP perturbed electron Zeeman frequency, B, and S, denote the Bohr and
nuclear magneton respectively, S. and/ are electron and nuclear spin operators, g and
gn are electron and nuclear effective g factors, @, andw, denote electron and nuclear
Zeeman frequency respectively (nuclear frequency for spin up polarization @,, = 11.99
and nuclear frequency for spin down polarization @, = 36.35), 4 and B are secular and
pseudosecular hyperfine couplings terms, respectively, 7 is reduced Planck constant, B,
is static magnetic field along z-axis. Under static magnetic field the singlet |S'> and
polarized triplet ‘To,i> are degenerate, nearly independent. As a result, the quantum state
of system p in rotating frame corresponds to position of spin down polarized axis

(bottom half of the Bloch sphere) as p ®|0><0| ®U , likewise the polarized spin up axis

position (top half of the Bloch sphere) denotes p®|l><1|®U , where U (eq. (6.30))

couples additional degrees of freedom to initial quantum state, i.e. it represents the
transformation matrix of mixed quantum state under CP polarization. In finite magnetic
field, the CP perturbed electron Zeeman frequency for external field up to 1 MeV

allows decorrelation of longitudinal Overhauser field B, and shifts the level of singlet
spin-down configuration from the ground into the excited S|7})> and S|T+>state. This

coherent superposition of system energy levels (1, 0) and (0, 1) with triplet state (1, 1) is
consistent with dipole-dipole mediated nuclear diffusion and leads to periodic

superposition of spin states with precession period on a 1s time scale assuming that
Overhauser fields B :(ABX,ABY’ BZ) are Gaussian distributed on long time scales.
Thus, the external field close to 1 MeV is large enough to cause the strong spin

dependency of tunneling effect. Large field produces strong asymmetry for spin up and

spin down charge energy. It is important first to establish a non-zero external magnetic

field Bso that each of nuclear spin principle axis orientations can be effectively
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optimized. This produces efficient coupling of longitudinal component of electron spins
to quantized transverse component of nuclear spins. Thus, the quantized nuclear spin
states are mediated via anisotropic part of the hyperfine interaction, i. e. the universal

control of the nuclear spin state is achieved via unitarily transformed term, BS I

[117].

Namely, up to 1 MeV the external field induces coupling of nonparalell nuclear spin
quantization axis to electron spin states and it allows the anisotropic pseudosecular term
for universal control, otherwise the pseudosecular term is suppresed. Hence, adding a
stronger external field to the quartic potential (eq. (6.21)), alters the potential minima
and changes confinement energies of orbital wave states which in turn induces a DOS

transition from apsolute equilibria to saddle point in phase space.

Instead of applying the oscillating RF field to spatially resolve and manipulate spin
resonance frequencies (or in order to measure response of the quantum dot by current
flowing through the dot or by near quantum point), the induced transition can be
generated upon CP excitation of the spin system. Thus, excited spin system displaces
the center of the electron wavefunction along the oscillating superfocused CP field
direction and change its potential depth. As a result the electron wavefunction frequency

can be spatially distorted in order to coincides/shifts with applied CP field.

A single spin excitation is then polarized along z axis coinciding with proton beam
alignment. In addition, the resultant mixed state conserves the total angular momentum

of the exchange Hamiltonian along z axis:

1H..,;:Z]=0, Z = Z o/
= (6.23)

This allows diagoanalization of the system Hamiltonian into subspaces of excited spins,
1.e. the spin ensemble along o basis, corresponds to degenerate Z eigenvalues. The
effective single spin read out [118] can be further realized by electrical detection of spin
recharge events in tunneling proximity to a metal by adjustment of the Fermi level
between two initially split electron eigenstates (corresponding to spin-up and spin-down

orientation). Excitations of electron spin localized below Fermi threshold causes
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electron tunneling and leaving of initially occupied eigenstate. Discharged, empty spin

state below Fermi level is further filled by an electron with oppositely oriented spin.

In present case, numerical solutions of entangled proton trajectories, for different

reduced crystal thicknesses and tilt angles, correspond to short range correlated proton -

lattice interaction potential in vicinity of <1 00> Si axis.

6.4 Mapping of quantum states, transformation matrix and
mixed coupling induced by superimposed CP field

The interaction between the proton and the crystal’s atoms includes elastic collisions,

assuming classical, small-angles model of channeling [59, 64]. For the zero ¢ angles,
the z-axis coincides with <100> Si crystallographic axis, while the atomic strings which
define the channel cover the x and y axis. The initial proton velocity vector v, is

collinear with the z axis.

We have modeled the system considering the Lindhard continuum approximation for
axial channeling [64]. The crystal interaction potential comprises the continuum
potentials of separate atomic strings. Hence, we have included the thermal vibrations of
the crystal’s atoms:

2

U"(x,y)=U,(x,y + % 0. U. (x,y)+0,U. (x,y)|,
(5.)=0(59)+ [0 (5.9) 2,0, (.9)] -

where Ul.(x,y) represents the continuum potential of the ith atomic string, xy are

transverse components of the proton position, and o, is the one-dimensional thermal

vibration amplitude.

The specific electronic energy loss is determined by equation

2
2m,v

dE  4ArZ’e*
Tz m 7 In ho,
e e (6.25)
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th

where v is the proton velocity, m, is the electron mass, n, = is the density of the

4

crystal’s electrons averaged along the z axis and A=0, +0,,.

The angular frequency of the electron oscillation induced by the channeled proton is

1
(47rezne Jz
W, =
Me ). (6.26)

The mean-square angular deviation of the proton scattering angle caused by its collision

with the electrons is included as

Q  m, [ dEj

& B\ &

, (6.27)

In the above equation m, denotes the proton mass and £ is the proton energy.

Further calculations take into account the proton beam divergence before its interaction

with the crystal [20, 79].

The quantum Monte Carlo simulation method has been used for parameterization of
entangled proton trajectories. Obtained numerical solutions of channeled protons
equations of motion correspond to their angular and spatial distributions. The phase
space density, according to the Liuoville’s theorem, cannot be changed in conservative
system, but one can manipulate with the form and position of the phase space elements.

We can use the phase space transformations to improve the channeling efficiency.

Discrete map of quantum states of channeled proton trajectories, their point
transformation in the spatial (transverse) and angular phase space are presented in the

following vector basis
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Figure 6.2: (a, b) The calculated positions of channeled protons yield maxima. Angular
and spatial yield dependences correspond to area of reduced crystal thicknesses between
0.00 and 300.0, L = 1.69 um (a) and 0.00 and 0.300, L = 99.2 nm (b), respectively. The

chosen tilt angles relative to Si <1 00> axis are @ = 0.05y,, ¢ =0.10y. and ¢ = 0.15y..
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Figure 6.3: Numerical simulation of proton quantum trajectories (axial yields) and
calculated slope of coupling energy J(¢). The dependence of exchange coupling
energy J(&) is compared in angular phase plane (designated by solid squares) and
transverse position phase plane (marked by solid circles). The chosen tilt angles
correspond to range between ¢ = 0.00 and ¢ = 0.5y.. The value of reduced crystal
thicknesses is fixed to A = 0.25 in configuration space, i.e. A = 0.50 in angular space.

= =

S > <
T > D2« =

(6.28)

Here A and ¢ denote the crystal reduced length and tilt angle of CP beam.

Although the phase space is six dimensional we consider four subspaces of the

transverse and angular phase space.
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Correspondingly, the mapping of beam parameters and quantum discretization of

entangled states is conformally rescaled through phase space transfer matrix M (4x4):
M — JM . In that sense we consider local symplectic condition for the realizable

transfer matrix of the Hamiltonian system

i i J,p 0 0 1
M/M=MJ/M=J,J = ,Jyp = . (6.29)
0J,, -1 0

Tilde sign denotes the transpose operation over transfer matrices and J,;, refers to unit
symplectic matrix in 2-d phase space volume.

According to the Liuoville’s theorem the conservation of the phase space volume results

from the statement: det M=1, following the equation (6.29).

Complete characterization of the phase space volume is achieved over the second order

moments of transfer beam matrices:

Z(Y):<Y}7>= <yy> : ,2(19):<l919,>= <y y> 3 . (6.29b)

The beam matrix transform as

> > MIM, (6.29¢)

I =-1/2Tr(ZJL)), o, = det(X), (6.29d)

where matrix trace, 7rand valueo,, i.e. the phase space volume occupied with the

proton beam, determines the two invariants of the transfer beam matrix. We reduce
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system dimensionality by decoupling the 4-d phase space on 2-d: conﬁgurational(x—y)

and angular, (Hx -Hy) phase space. The transformation matrix describing the mixed

quantum ensamble then couple a digonal Sx basis of electron spin system to diagonal Sy

basis [119] of fully polarized superfocused CP beam and forms a nonothonormal basis

U:Z =) a"

. (6.30)
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Figure 6.4: Quantum localization of single electron waive functions inside area of
hydrogen ground state induced by CP field. The chosen tilt angles are ¢ = 0.05 y., ¢ =

0.10 w, and ¢ = 0.15 y, for L = 57.82 nm in Si nanocrystal. The effect of quartic
anharmonic terms in the exchange interaction initiates transition to triplet states.

: r\ _ —ig mt
Bas1s‘2 > = Zanme
nm

nm> denotes the stationary,

nm> quantum state of electron

system with amplitude o, , energy &, and quantum numbers n, m.

nm 2
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Under CP interaction ip(a,, )= (nm|U |n'm'>e"(5“'"7€“"“')’an,m, denotes energy splitting

n'm'

between ground and excited electron states,

n'm'> , of the target and the projectile.

In order to determine the matrix elements of CP - lattice confinement potential for

singlet and triplet functions we use two single electron eigenstates denoted by spatial

electron-waive functions |X > and |X '> as

1/2(]Xx7) - X' X)) ®| 1)+ V1)
) IT,..) =| YN2(|xx7)-| X' X)) ®| 1)
Y2 (1) | X)) 0| ).

V2 (| xx)

S)=[1)-[+T)e 12(]Xx7)+| X' X

The energy splitting between triplet,

];)>and ground singlet state,

S> is denoted by
exchange interaction, J = <]I) |i,0(0{nm )|T0> —<S|ip(0{nm )|S> . (6.31)
The Hamiltonian is further diagonalized in singlet and triplet subspaces. In order to
overcome high level truncation of the basis, where linear combinations of two electron

states tends to infinity, we use constraint that singlet state refers to ground state

according to Lieb Mattis theorem [120] in zero magnetic field.

Applying the inhomogeneous CP field along main crystal axis, i.e., involving x and y

phase space components of tilted CP beam, if the energy difference of triplet and singlet

electron states is close, they became strongly mixed. The triplet |];)> can evolve into the

singlet state |S> as

V2(|xx7)-| X X)) 8| ) 1) - [N)- i) @172(1Xx7) + | x°X)) (632)

Likewise,

L>and |71 > evolve into singlet state. As explained in the main text the

mechanism of spin excitation and energy separation scheme, (illustrated in figure 6.5),
between the ground singlet state and the polarized triplet state is controlled by a
combination of a CP initial energy E (¢, A) and tilt angle ¢. Upon the excitation energy
is applied to the quantum dot inside the Bohr radius, it is shown that spin system energy

cost for adding an extra electron starts from state S (0, 1), as indicated by dotted black
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line, where (n, m) J(¢) and Esrdenote the charge state with n and m electrons, exchange
and splitting energy, respectively. The energy cost for reaching (1, 1) is (nearly)

independent of the spin configuration.

However, the energy cost for forming a singlet state S (0, 2) is much lower than that for
forming a triplet state (not shown in the diagram). This difference can be further

exploited for spin initialization and detection.

/ N\
‘ f_f"'f f Snml 0L) L N
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Eg, |

\f 18,00 \ S\ /
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\

R

- o
E(q:v, A) s ot

Figure 6.5: Scheme of excitation/splitting energy and exchange couplings inside area of
Bohr radius. Energy diagram shows tunneling effect between ground singlet state

and| T > polarized, triplet state, so that different superposition states can be realized.

6.5 Numerical methods and simulation model

Simulation model considers cubic unit cell representation of the isotopically pure »si

nanocrystal. It includes atomic strings on three nearest square coordination lines of

87



the<100> axial channel [20, 79, 83, 85]. According to diamond lattice symmetry, the

orthogonal mesh is projected across the channel, mapping two layers of 2 x 2 triangular

areas of <100> unit cell.

The proton trajectories are generated from the sequences of binary collisions via the
quantum Monte Carlo simulation method using the screened Moli¢re interaction
potential. Considering 2 T magnetic field, the crystal is tilted in angular space along the
axis € =0 (x=0), where the value of the tilt angle ranges up to 20% of the critical

angle for channeling, %:[222262/ (dE)}m: 6.09 mrad. Numerical calculations consider

the continuum model in the impulse approximation.

The motion of ions in the continuum model is determined by the Hamiltonian
=(/2)m(p+U@))=E(y, +y,”)+U@) (6.33)

where y, and y denote x and y projection of scattering small angle with respect to the

<100> axis. The systems ion-atom interaction potential is obtained by integration of the

Moliere approximation of the Thomas-Fermi interaction potential [59].

U (r 2ZZeZ3: ( ]

-1

(6.35)

7, and Z, denote the atomic numbers of the proton and the atom, respectively, e is the
electron charge, d measures quantum displacement of single particle wave function

relative to harmonic oscillator central position in ground state, » is distance between the

97?

1282,

3
proton and separate atomic strings, a, is the Bohr radius and a ={ } a, gives the

atom screening radius; K, denotes the zero order modified Bessel function of the
second  kind, with  the fitting  parameters: (2,)=(0.35,0.55,0.10),

(8,)=(0.30,1.20,6.00).
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Correspondingly, the potential between two i, j sites is

D, :Ui(r)+%n . (6.36)

i

n is Born exponent. Coefficients B and n are experimental fitting parameters determined
from ion compressibility measurements [121], likewise, the exponential repulsion

between the overlapping electron orbitals within the channel is described

byBeXp(_pr j

i
The measure of the orbitals overlap corresponds to /= exp(d : / a’ ((1/ b) - 2b)), (6.37)

where

b=J(1+0,/Q), e=(d/a)fha, (6.38)

denote degree of confinement field and dicretized energy, respectively.

Eq. (6.37) includes the variation of charge density of the overlapping area due to

different valence electron contribution to interaction: lattice - induced potential (across

the channel) [122, 123]. The overlap I=exp(d2/ a ) stands only for zero external field.

The one electron energies [124] for neutral Si: (1s)* (2s)* (2p)6 (3s) (3p)2 are calculated
in Hartree unit 1 Hartree = 2 Rydberg = 27.210 eV [123] as 1s = 67.02, 2s = 5.5435, 2p
=3.977, 3s = 0.49875, 3p = 0.2401. The electron affinity for Si crystal is 4.018 eV and
1.385 eV for Si atom [125].

In the rotating frame, the reduced form of protons equation of motion, considering small

angle approximation in transverse position plane [59], is

ox dy dp, 1 dU(x,y) 99, 1 0U(x,y)

& e P T 28 & & 28 o

(6.39)

2

¢ and g, represent the x-y component of the proton scattering angle. The channeled

proton distributions are mapped in configuration space and angular space in two steps:

to transverse position phase plane, x'-)’ and to scattering angle phase plane, Hx -Hy
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[20, 79] in accordance with the chosen value of reduced crystal thickness, A and the tilt

angle, o.
The phase space transformations are determined via Jacobean:

00, .8<9y ~ 00, 06,
o oy ox oy

Jy ng,y = J(x, y,(p,A). (6.40)

Eq. (6.40) comprises the proton trajectory components: 6, (x,y,9,A) and6, (x,y,,A).

It establishes a bond transformation between differential transmission cross section,

o= 1/ |J | and phase space manifolds in configuration and angular plane.

The one-dimensional thermal vibration amplitude of the crystal's atoms is 0.0074 nm
[20, 67, 79, 83, 85]. The average frequency of transverse motion of protons moving
close to the channel axis is equal to 5.94x10" Hz. It is determined from the second

order terms of the Taylor expansion of the crystal continuum potential in vicinity of the

channel axis [66, 126]

27,7,8° (¥
Ulxy)==—2 ZZ%K{BZ”],
i1 =1 (6.41)
where p, = (x—xl.) +(y—yl)2,
2
K(B,-pcj(&j(x ),
62U(x,y)=2ZlZzeZZ3:§:a B ‘Ca Na) p? , (6.42)
o d =Ea 2(x=x,) =2 (Bp
e o)
pL‘ a
2
p (Bipcj(&j(y‘y/) .
QU (xy) _ 2ZZe2 s g | e Na) p? , (6.43)
o’ Z}Z}:aa 2v-r,) =p" (B
+ ]3 c KI( ipcj
p. a
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AU, y))zzzljze ) a[%-((&) (BiD[B—D (6.44)

i=1 j=1 a p.a

K, denotes the first order modified Bessel function of the second kind, d and

M represent distance from atomic strings and their number, respectively.

. v v
The components of the proton scattering angle, ¢ =—* andg, =—, are solved
Yo Yo

numerically using the implicit Runge-Kutta method of the fourth order [66].

The components of the proton impact parameter are obtained randomly from the
uniform distributions inside the channel. The transverse components of the final proton

velocity, v, and v, are presented within the Gaussian distribution of probability that the

quantum  spin  state is recognized correctly, according to standard

deviationQ), =Q &, where Q, denotes the CP divergence. Since the channeled

by:\/z

protons angular distributions can be easily measured, they are used to reconstruct the

quantum information regarding the protons distribution in transverse phase space [127].

In order to quantify the read out fidelity the information from entangled quantum

trajectories is sampled from 6, -6, phase plane from 550,000 shots datasets [128]. The

initial number of protons correspond to quantum trajectories spin states obtained from

5%107 traces.
6.6 Discussion

3-d representation of channeled protons contour plots for 92 nm <1 00> *Si nanocrystal,

A =0.5[24, 25], for tilt angles: ¢ = 0.05 y., ¢ =0.15 y. and ¢ = 0.20 y,, where ¢ is the
angle of external field relative to symmetry axis of the spin transformation tensor, are
represented in figure 6.1 (a, b, c¢). The external field of 1 MeV is chosen to match the

limits of Bohr radius with initial CP peak separation at 20% of the critical angle
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(relative to tensor principal axis). It allows generation of the final mixed quantum state,

controlled by the pseudosecular term B =3Dcos(¢)sin(¢), i.e. it allows efficient

dipolar coupling, D, between electron and nuclear spin states. The spacing between

separate peaks about longitudinal z-direction of the confinement field is calculated

h*(n+1/2
Viaw , L = 92 nm, for n-discretized 2-d potential: £ =FE, (n(Xg )M g )) .
(LZ me) e Oy) ) 7

Obtained results show density of states (DOS) evolution in phase space for angular and
transverse position profiles. Figures 6.1 (b) show that incident tilt angles above 15 % of

the critical angle for channeling, consequent faster amplitude and phase attenuation for

angular density profile. This effect induces further splitting of the channeling pattern.

Relative change of 5% for crystal tilts leads to strong yield redistribution in angular
distribution profiles and it mostly affects phase profile central parts. The analysis in
configuration space for tilts: ¢ = 0.05 y.and ¢ = 0.15 y. shows strongly picked circular
cross section. Only a slight variation in pattern sharpness can be seen in density profile

edges.

Figures 6.1(c), illustrate the angular and configuration DOS analysis for 0.20 . The
angular phase space profile, 6.1(c (left)) shows non-homogenous transition in charge

state density and splitting of channeled proton distribution pattern.

The characteristic splitting shows two pronounced maxima on the &_-axis followed by

few nonsymmetrical peaks as lateral satellites. Their spatial positions and amplitudes

are correlated via CP mediated Zeeman interaction by g8, B/2 term. This non-secular

term shifts the energy levels of singlet spin states and splits DOS peaks (shift affects the
Fermi level for electron spin-down and spin-up configuration). Consequently, spin DOS

structure is uniquely described via two mixed quantum states.

The central positions of angular and spatial density distributions in phase space are
shown in figure 6.2 (a, b). Maximal amplitudes of tilt angles equals ¢ = 0.05 ., 0.10 w.
and 0.15 .. Designated plots correspond to reduced crystal thickness in range of 0.00 -
300.0., for L = 1.69 pm and 0.00 - 0.300, for L = 99.2 nm, respectively. These
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dependencies determine the focusing region, i.e. specify the proton beam full with at

half maximum (FWHM).

A comparative analysis for the same values of ¢, A and amplitude maxima in
configuration plane is presented in figure 6.2(b), it determines the length and phase
space transformation bond between scattering angle plane and mapped transverse

position (configuration) plane.

Yield dependence of harmonic confinement potential (governed by first two terms in eq.
6.21) becomes zero for tilts over 0.50 . in transverse and angular phase plane, as

shown by figure 6.3. The normalization and boundary condition are restricted to

effective Bohr radius: a" ="'k g Changing tilts while keeping fixed thickness

e

parameter to L = 99.2 nm gives the non-monotonic dependence to exchange coupling

energy J (5) as a function of quantum displacement from harmonic oscillator stability

point. It goes to zero asimptotically and indicates the complete separation of quantum
states and inexistence of singlet-triplet transitions at higher tilts due to small orbitals

overlap (eqgs. 6.37, 6.38).

Figure 6.4 illustrates the localization of quantum spin waves corresponding to
uncertainty principle. The CP superimposed electron spin states (spin wave probability
density functions) are positioned inside the Bohr radius. Electron probability densities
produce maxima over each nuclear position. The quantum proton trajectory evolution
with various tilt angles is calculated for A = 0.25 in configuration space, i.e. A = 0.50 in
(mapped) angular space. We analyze eight characteristic tilt shifts: ¢ = 0.00, 0.05 .,
0.10 w., 0.15 ., 0.20 w., 0.25 w., 0.35 y., and 0.50 yw.. Inside the Bohr radius at
distance x=+d around the peak centers, the confinement field is parabolic so that

ground state of mixed wave functions coincides with harmonic oscillator state.

Observed amplitude dependences of proton yield for tilts > 0.10y. are attributed to
stronger interaction influences of higher anharmonic terms in eq. (6.21). This is more

pronounced for the spatial CP distribution.
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Amplitude decreasing and changes of peaks FWHM (positions and spatial symmetry)
are indicators for the state of strong system perturbation, i.e. due to the effect of quartic

anharmonic terms in the exchange interaction, eq. 6.21.

The observed modulation of DOS states for tilts > 0.20 . is disregarded, i.e. the main
contribution to the superfocusing effect comes from the crystal tilts below 20% of the

critical angle for channeling.

The analysis of the asymptotic behavior of the channeled protons axial yield for proton
distributions: ¢ = 0.00y., A= 0.5, (when FWHM of generated focused area converges
to zero making the sub-nanometer spatial resolution possible) has shown that the only
case when the angular yield is singular corresponds to the zero-degree focusing effect. It
is shown that an increase in the crystal tilt angle value of 15% of the critical angle for
channeling facilitates the suppression of the zero-degree focusing effect. Former leads
to a significant change in amplitude and width of the angular channeled protons profile,
causing the splitting on two lateral non-uniform circular patterns with maxima located

along @ -axis which corresponds to smaller lateral peaks.

This behavior is confirmed for energy range from several eV up to several MeV which
can be employed for PIXE analysis. To facilitate and control close encounter collision
processes in order to induce nuclear reactions one can also use this method as
intermediate process for nuclear collision cascade. However for the proton beam
energies above 100 MeV the FWHM of the channeled proton peaks in density profiles

is highly narrower <5pmless then effective Bohr radius due to enhanced orbitals

overlap of superfocusing effect governed by higher degree of spatial confinement.

Figure 6.5 represents the scheme of energy splitting and exchange coupling energy

between singlet |S > state and|T_ > triplet-polarized state localized inside the Bohr radius.

Upon modulation the CP field, unitary spin rotations are performed around two non-

commuting axes: #,z. Before manipulation, discretized proton spin states mediated
through Zeeman interaction include sublevels| Ol> and| 10> . The populations of quantum

states are distributed according to electron spin polarization at thermal equilibrium: in
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: o B A
electron manifold the nuclear quantization axes ——/ ( ) +(a)n _Ej I, , correspond
XY 0x .0y

to electron spin in ‘~L> state, whereas the nuclear axes,+§1 (x5orar) +(a)n +§j 1, , apply

to electron spin in ‘T> state. We then impose a pulse sequence of 7/n tilts relative to 9
axes on Bloch sphere. This lifts the system energy close to triplet state where exchange

J (8) is large. It triggers the coherent transition of proton eigenstates|01>—>‘T>,

|10>—>‘¢> and forms the final mixed quantum entangled state containing the

W),

superposition of proton - electron eigenstates,

To provide a transition to triplet state‘¢¢> upon initialization the system is rotated by 7

pulse about z axes of Bloch sphere through the angle ¢ =J(&)/h, where J (&) denotes
the exchange coupling as a function of energy difference,¢ between the levels.
Presented energy diagram shows that former sequence corresponds to the initial

exchange splitting £, further dominated by CP induced J (5) mixing between energy

levels detuned by @. While increasing the confinement energy E (o, A), the (1, 1) triplet
state hybridizes and produces a tunneling effect so that different superposition states can
be realized. Dependency of the field caused by lifted degeneracy of triplet state further
decreases the separation between energy levels, while the exchange coupling increases

the Gaussian of orbitals overlap, as defined in eq. (6.37).

The CP simulation patterns in transverse position plane for fixed value of A = 0.175 are

shown by figure 6.6 (a, b, c).
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Figure 6.6 (a, b): The evolution of CP modulated quantum trajectories. The mixed
entangled states in the transverse position plane are represented for L= 0.175. The tilt
angles correspond to ¢ = 0.05 y. (a), ¢ = 0.10 y. (b). Channeled protons intensity
distributions levels are designated with increasing gray scale tone.

The proton trajectory shifts with tilt angle along y = 0 axis and spreads from intersection

area of x-y plane into cusped elongated deltoidal pattern. The shifts are governed by
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atomic strings repulsive potential. Even a small change of tilt angle causes a strong
system perturbation and therefore activates the higher power terms in the ion-atom
interaction potential. Former influences regularity of proton trajectories and leads to a

gradual reduction of DOS in central area of channel.

This causes the non-uniform flux redistribution, now filled with gaps. Hence, it affects
the continuous conservation of distribution functions in phase space volume [110, 111].
Consequently, the axially channeled protons cannot encounter the state of statistical

equilibrium.
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Figure 6.6 (c¢): The evolution of CP modulated quantum trajectories. The mixed
entangled states in the transverse position plane are represented for L= 0.175. The tilt
angle corresponds to @ = 0.15 .. Channeled protons intensity distributions levels are
designated with increasing gray scale tone.

That effect has been resolved in scope of KAM theory [127], when the classical
integrability of the Hamiltonian’s is broken by sufficiently small perturbation, the
system nevertheless retains its dynamics in the form of periodic oscillation moving on

invariant phase space profile. Although these invariants of phase space have form of
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intricate fractal structure in vicinity of <100> axis, they still cover a large portion of

phase space. In that sense the reduced crystal thickness can be fully discretized by
performing the power low expansion of random points described for interval [n;, n/+n]
between two nearest neighboring fractal points A(n) = Ln® n—o0, where fractal

dimension for a< 0 draws logarithmic singularity for proton density distribution.
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Chapter 7

Concluding remarks and outlook

In conclusion our calculations and simulation results demonstrate a hybrid proton-
electron quantum interface for multipartite entanglement under constraint metric of
uncertainty principle. We established the correlation between electronic spin states and

off-diagonal hyperpolarized nuclear spin states under CP induced field. We used axial

configuration of Si<100> channel to initialize and control each electron spin state via

superimposed proton spin chain. Utilizing a dynamically decoupled sequence we have
obtained the universal quantum control and controllable coupling between singlet and

triplet-polarized spin states.

By calculating the electron spin and CP field eigenstates via full density matrix we
established the proof of non-orthogonal mixed quantum state. Upon hyperpolarization
sequence, the increased sensitivity of nuclear spin subspaces dependence to electron
spin states reduces the linear spin entropy and leads to maximized entanglement of
mixed states in density matrix. We have shown that stability dependence of nuclear field
results from anisotropic term of the hyperfine coupling, here regarded as a tunable
parameter for unitary spin control. It can be chosen to enhance the feasibility of
producing entangled mixed states. A resultant mixed quantum state that we
demonstrated in S-T systems represents important step toward realization of scalable
architecture for quantum information processing. Complementary, a scalable network of
entangled electron-nuclear states would form a basis for a cluster state of quantum
processors integrated in silicon. In addition, generation of entanglement process
comprising the network of such correlated spin states would enhance the quantum error
correction beyond any separable state and extend the precision in quantum metrology.
That would allow implementation of quantum error correcting techniques (QEC codes)
directly to perfectly entangled mixed states and direct protection of quantum states from

interaction with environment without prior entanglement purification protocols (EPP).
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In that context, the off-diagonal electron-nuclear eigenstates as mixed quantum states
are not longer invariant under unitary spin operations and represent observables in

density matrix.

Finally, the controllable addressing of single spins in quantum networks, the individual
control of wunitary spin precessions (electron-nuclear spin phase rotations) in
combination with local g-factor engineering would provide a scheme for deposition of
multipartite entangled states and manipulation of quantum memory and quantum key
distribution (QKD) based on transmission of Gaussian-modulated individual coherent

states.

Another possibility for further exploration points toward active control of the channeled
proton beam properties in the superfocusing effect, revealing the important role of
mutual contribution of the harmonic and anharmonic terms. This emphasizes the
importance in careful selection regarding the appropriate combination of the crystal tilt
angle value with crystal thickness in order to gain high spatial resolution and
localization accuracy. As a result the implementation of such nano-scale precision
scanning method could produce a detailed map of discrete inter-atom positions, and

create a highly resolved image, built-up through a process of the proton beam focusing.

This behavior is confirmed for energy range from several eV up to several MeV which
can be employed for PIXE analysis. To facilitate and control close encounter collision
processes in order to induce nuclear reactions one can also use this method as
intermediate process for nuclear collision cascade. However for the proton beam
energies above 100 MeV the FWHM of the channeled proton peaks in density profiles

is highly narrower <5pmless then effective Bohr radius due to enhanced orbitals

overlap of superfocusing effect governed by higher degree of spatial confinement.
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Mpunor 1.

N3jaBa 0 ayTopcTBY

MoTnucaHm-a Bepel BecHa

M3jaBreyjem

Aa je AOKTOpCKa AUcepTaumja Noj HacCNoBOM

ION-ATOM QUANTUM ENTANGLEMENT IN A MAGNETIC FIELD BASED ON
THE SUPERFOCUSING EFFECT - THE SPIN QUBIT PROCESSING IN SILICON

e pe3ynTtaTt CONnCTBeHOr NCTPpaKMBadKor paja,

e Ja npeanoxeHa gvcepTtauuja y UenuHU HW ¥ JenoBuma Huje Guna npeanoxeHa
3a pobujakbe BUNO Koje AUnnome npema CTYAMCKUM nporpamMmuma  Apyrux
BUCOKOLLKOJICKMX YCTaHOBA,

e Ja cy pe3ynTaTh KOPeKTHO HaBedeHW 1
e Ja HWcCaM KpLUMO/Ma ayTopcka NpaBa WM KOPUCTUO WHTEmNeKTyarHy CBOjUHY
APYrux nuuya.

MoTnuc AokTopaHaa

Y Beorpagy, 14. 10. 2013.




Mpunor 2.

MN3jaBa 0 MICTOBETHOCTHU LWUITAMMNAaHe N eNIeKTPOHCKe
Bep3uje AOKTOPCKOr paaa

Mme n npesume aytopa _beperBecha

Bpoj ynuca 1/2007

CTy,D‘ MjCKVl nporpam OM3MKa KOHASH0BAHOT CTakha MaTeij (v
ION-ATOM QUANTUM ENTANGLEMENT IN A MAGNETIC FIELD BASED ON THE SUPERFOCUSING

Hacnoe paja prepet. Tir SPIN QIIRIT PROCTESSING TN SITICON

MeHTop MapuH Taguh

MoTAncaHu  bepell Becna

M3jaBrbyjeM Aa je WTamnaHa Bep3unja MoOr AOKTOPCKOr paja WCTOBETHa eneKTPOHCKO]
Bep3nju Kojy cam npejao/na 3a objaprbuBakbe Ha noptany HAuruTtanHor
penosutopujyma YHUBep3uterta y Beorpaay.

Hos3eorraBam ga ce objaBe MOjU NMUYHW nodaunm Be3aHW 3a Aobujake akagemcKor
3Batba 4OKTOpa Hayka, kao WTo CYy UMe U Npe3nme, rogrHa u mecto pofierwa 1 gatym
oabpaHe paja.

OBM nNWYHM nojgaun Mory ce o0jaBUTUM Ha MPEeXHWM cTpaHuuama AurutanHe
onbnnoTeke, y enNeKTPOHCKOM KaTanory ny nybnukaynjama YHuBepantTeTa y beorpagy.

MoTnuc gokropaHaa

Y Beorpagy, 14 10. 2013,




Mpunor 3.

MN3jaBa o kopuwhemwy

Oenawhyjem YHueepsutetTcky 6ubnuoteky ,Csetosap Mapkoeuh® ga y OdurutanHu
penosutopujym YHueepsuteTa y beorpagy yHece Mojy AOKTOpCKY AUcepTauujy noj
HacrnoBom:

ION-ATOM QUANTUM ENTANGLEMENT IN A MAGNETIC FIELD BASED ON THE
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1. AytopcTBo - [lo3BosbaBaTe YMHOMaBake, SUCTPUOYUW)Y W jaBHO caonTaBake
Aena, u npepaje, ako ce HaBeje MMe ayTopa Ha HauyuH oapefjeH of cTpaHe ayTopa
unn gaBaola NuLeHUe, Yak 1 ¥ koMepuujanHe cepxe. OBo je HajcnobogHWja o4 CBUX
nUUeHUN.

2. AyTopcTBO — HekomepUmjanHo. [JossorbaBaTe YMHOXaBake, AUCTPUBYLNjY 1 jaBHO
caonwraeake Aena, n npepaje, ako ce HaBeje MMe ayTopa Ha HaduH oapefeH og
cTpaHe ayTopa wnu jaeaoua nuueHue. Osa nuueHUa He Ao3BOrbaBa KomepumjanHy
yrnoTpeby gena.

3. AYTOpCTBO - HeKkomepuMmjanHo — 6e3 npepage. [dossorbaBaTe YMHOXAaBahe,
Auctpubyunjy W jaBHo caonwTaBake fena, 6e3 npomeHa, npeobrnukoBaka WK
ynotpebe gena y cBOM Jefy, ako ce HaBeje MMe ayTopa Ha HauuH ogpefeH oj
cTpaHe ayTopa wnu jgaeaoua nuueHue. OBa nuueHUa He A03BOfbaBa KomepuujanHy
ynoTpeby Aena. ¥ ogHoCy Ha cBe ocTane nuueHue, OBOM NULUEHLIOM Ce orpaHu4yasa
Hajsehu o6um npaBa kopuwhera gena.

4. AyTOpcTBO - HeKoMepuujanHo — AENUTW Moj WCTUM ycrioBuma. [osorbapaTe
YMHOXaBake, AMCTpUBYLMjy 1 jaBHO caonwiTaBake Aena, U Npepaje, ako ce HaBeje
MMe ayTopa Ha HauMH ogpeheH of cTpaHe ayTopa WnW JaBaoua NUUEHLEe W ako ce
npepajga Auctpubympa noj WCTOM WNM CNUYHOM nuueHuom. OBa nuueHUA He
AO3BOIbaBa KoMepumjanHy ynotpeby aena u npepaga.

5. Aytopcteo — 6e3 npepage. [HosBorbaBate yMHOXaBake, AUCTPUBYLUN)Y W jaBHO
caonwTaeawe gena, 6e3 npomeHa, Nnpeobnukoearka Unu ynotpebe gena y cBom jeny,
ako ce HaBeje uMe ayTopa Ha HauyuH ogpeheH oa cTpaHe ayTopa Mnu AasBaoua
nuuyeHue. Oea NuueHUa Ao3BorbaBa KomepuujanHy ynotpeby gena.

6. AyTopcTBO - Jenutn noj WUCTMM YycrnoBuma. [losBorbaBaTe YMHOXaBake,
ANCTpUBYLUMjy 1 jaBHO caonwTaBake gena, u npepaje, ako ce Haeeae UMe ayTopa Ha
HayuH opjpefeH of cTpaHe ayTopa UMW JaBaola fUUeHUe U ako ce npepaja
AucTpubyupa noag WCTOM WNM crivdHoM nuueHuom. Osa nuueHua Ao3BoSbasa
KkoMepumnjanHy yrnotpeby gena m npepada. CnndHa je codbTBepcKUM nNULeHUama,
OAHOCHO NMLEHLamMa OTBOPEHOT Koaa.
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