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T-dualization of bosonic string and type IIB superstring in presence of
coordinate dependent background fields

Abstract

Topic of this disertation is examination of non-commutative and non-associative
properties that emerge in context of closed string theory. This examination will be
carried out on two distinct models. One where we work with bosonic string and
other where we work with type IIB superstring. Furthermore, both of these models
will be analyzed in presence of coordinate dependent background fields. Subjecting
these models to T-dualization we will be able to obtain both T-dual theories and
transformation laws that connect coordinates of starting theory with T-dual one.
Utilizing transformation laws and commutative relations of starting theory we will be
able to deduce non-commutative properties of T-dual theories. Method for obtaining
T-duality will be based on Buscher procedure and its extensions. Main idea of
Buscher procedure lies in localization of translational symmetry by replacing partial
derivatives and coordinates that appear in action with covariant derivatives and
invariant coordinates. This substitution inevitably introduces additional degrees
of freedom which are encoded in gauge fields. By elimination of newly introduced
degrees of freedom with method of Lagrange multipliers and subsequently finding
equations of motion for gauge fields we obtain transformation laws. Inserting these
laws into the action we will obtain T-dual theory.

In examination of bosonic string theory, we will work with 3D space where Kalb-
Ramond background field will have infinitesimal linear dependence on one coordi-
nate, z coordinate. Dualization will be carried along two distinct chains, one where
coordinate that appears in background fields will be dualized last and other where it
will be dualized first. By comparing these two approaches we will be able do discern
what are necessary components for emergence of non-commutative properties.

Second part of thesis will be concerned with T-duality of type II superstring that
propagates in linearly coordinate dependent Ramond-Ramond field. Unlike previous
case, this theory possesses both bosonic and fermionic coordinates, however back-
ground field will only depend on bosonic part. T-duality will first focus only on
bosonic part and later we will also incorporate fermionic part. We will also present
alternative chain of duality where first we dualize fermionic coordinates and later
bosonic ones. It will be shown that both chains produce same non-commutative
relations. Finally, at the end of the thesis, we will also make analysis of same case
when we have more general Ramond-Ramond field.

Key words: String theory, non-commutativity, non-associativity, Buscher procedure
Scientific area: Physics
Scientific subfield: High energy theoretical physics



T-dualizacija bozonske strune i tip IIB superstrune u prisustvu koorinatno
zavisnih pozadinskih polja

Sazetak

Tema ove disertacije je bazirana na izu¢avanju nekomutativnih i neasocijativnih os-
obina koje se javljaju u kontekstu teorije struna. Ovo izucavanje ¢e biti obavljeno na
dva razli¢ita modela. Prvi model sa kojim ¢emo raditi je model bozonske strune dok
je drugi model za tip IIB superstrunu. Oba modela ¢e biti analizirana u prisustvu
koordinatno zavisnih pozadinskih polja. Podvrgavanjem ovih modela T-dualizaciji
bi¢emo u stanju da dobijemo T-dualne teorije i zakone transfromacija koji povezuju
koordinate pocetnih i T-dualnih teorija. Koris¢enjem datih zakona transformacije,
kao i komutativnih osobina pocetnih teorija bi¢emo u stanju da dedukujemo neko-
mutativne osobine T-dualnih teorija. Metoda za dobijanje T-dualnosti je bazirana
na BusSerovoj proceduri i njenom upostenju. Glavna ideja Buserove procedure lezi
u lokalizaciji translacione simetrije, gde mi zamenjujemo parcijalne izvode i koor-
dinate koje se javljaju u dejstvu sa kovarijantnim izvodima i invarijantnim koordi-
natama. Ova smena sa sobom povlaci i uvodenje dodatnih stepeni slobode koji su
izrazeni preko kalibracionih polja. Eliminacijom novih stepeni slobode preko metode
Lagranzevih mnozitelja a zatim pronalazenjem jednacina kretanja za kalibraciona
polja, dobijamo zakone transformacija izmedu koordinata. Ubacivanjem ovih zakona
transformacija u dejstvo dobijamo T-dualnu teoriju.

Proucavanje bozonske teorije struna, radi¢emo sa 3D prostorom gde uzimamo da
Kalb-Ramondovo pozadinsko polje ima infinitezimalu linearnu koordinatnu zavis-
nost od samo jedne koordinate, z koordinate. Dualizacija ¢e biti sprovedena duz dva
razli¢ita lanca, jedan gde tek na kraju dualizujemo duz koordinate koja se javlja u
pozadinskom polju a druge gde ovu koordinatu prvu dualizujemo. Poredenjem ova
dva pristupa bi¢emo u stanju da zaklju¢imo koji su sastojci neophodni za javljanje
nekomutativnih osobina.

Drugi deo disertacije tice se T-dualizacije tip II superstrune koja se krece u lin-
earno koordinatno zavisnom Ramon-Ramon polju. Za razliku od ploslog slucaja,
ova teorija poseduje i bozonske i fermionske koordinate, doduse pozadinska polja
zavise samo od bozonskih koordinata. T-dualizacija ¢e se prvo fokusirati samo na
bozonski deo, nakon toga ¢emo ukljuciti i fermionske koordinate. Kao i u proslom
slucaju, predstavicemo i jos jedan alternativan lanac dualizacije, lanac gde prvo du-
alizujemo fermionske a zatim bozonske koordinate. Pokaza¢emo da oba lanca vode
do istih nekomutativnih relacija. Konac¢no, na kraju disertacije, izvrSicemo analizu
iste teorije ali sa opstijim slucajem Ramon-Ramon polja.

Kljuéne reci: Teroija struna, nekomutativnost, neasocijativnost, Buserova procedura
Naucna oblast: Fizika
Uza naucna oblast: Teorijska fizika visokih energija
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1. Introduction

In the first half ot the 20th century physics has been the subject of two massive developments.
First of these developments was switch from deterministic description of nature to one that is
probabilistic, giving rise to quantum mechanics. This change introduces many counterintuitive
ideas into physics. Some of these changes are that energies of objects are no longer continuous,
they are now discrete taking on only certain values. We have that objects are no longer
described by their positions and momenta, they are now described with object called wave
function in which every relevant quantity is encoded. Furthermore, even when position and
momenta are obtained they no longer commute, making it impossible to measure both values to
arbitrary high precision. Existence of wave function suggests that objects propagate as waves
of probability until measured, then they collapse to one of available states that was allowed by
the theory. Other development happened due to realization that speed of light is the same for
all observers. This in turn forced us to reconsider nature of space and time itself. Now, passage
of time or measurements of positions were no longer the same for different observers moving
at different speeds. Such drastic change in our understanding of reality forced us to abandon
concepts of space and time as separate entities but to consider them as one unified object,
called space-time, and theory which described motion in it was named special relativity. This
paradigm shift soon ushered in realization that our understanding of gravity is not compatible
with space-time. Now, gravity should be understood, not as a force but as a curvature of four
dimensional space-time. Theory that deals with these concepts is called general relativity.

These two developments marked the start of modern theoretical physics, however they
themselves are not compatible. Work on incorporation of quantum mechanics and general
relativity into one unifying framework started in second half of 20th century and it is still
ongoing. It should be noted that some progress has been made, quantum mechanics has been
meshed with special relativity resulting in quantum field theory. Theory where main objects
are no longer point particles but fields of energy whose excitations should be considered as
particles which we observe. Quantum field theory allowed us to construct standard model of
particle physics which to this day is the most accurate model of subatomic world. This theory
also allows us to examine how fields behave when we have fixed space-time curvature but theory
that describes full dynamics between fields and curvature is only a distant dream. Main problem
with joining of these two formalism lies in the fact that quantum mechanics is plagued with
infinities when we deal with interacting particles. While these infinities can be removed for
electrodynamics, weak and strong nuclear forces with process called renormalization, in case of
gravity divergences are non removable. This forces us to be more creative if we ever wish to
obtain theory of quantum gravity.

Even before advent of quantum field theory there were propositions on how to best deal with
emergent divergences. One idea that was proposed was to impose non-commutativity between



1. Introduction

coordinates, reminiscent of non-commutativity between coordinates and momenta. This would
in turn mean that there is minimal possible length in nature and that we can not measure
position of particle with infinite precision. When quantum field theory and renormalization
were developed, this idea was mostly forgotten. It was not until publishing of paper [I] that
non-commutativity came into consideration again. Usually, space time is treated as continuum
but in the case when we have non-commutativity between coordinates it is possible to construct
Lorentz invariant space-time. After this introduction, there were many attempts to formulate
physics through non-commutative formalism and today, quantum field theory constructed on
non-commutative space-time is one of possible extensions of standard model [2, 3]. Along with
this approach there are other possible approaches to solving problem of quantum gravity, where
two most dominant theories are string theory and loop quantum gravity. Since topic of this

thesis lies with string theory, we will discus only this approach.

String theory [1, 5, 6, 7, 8] was first developed in 1960s, where it was originally conceived not
as a theory of quantum gravity but as a theory of strong nuclear interactions. Due to advent
of quantum field theory, string theory was replaced as main contender for description of strong
nuclear force. However, it was observed that theory posseses few interesting features to be
scraped entirely. Of all features, by far most important one was that in context of string theory
gravity naturally emerges. There was no need to forcibly mesh quantum mechanics and general
relativity. Because of this progress in string theory has switched from description of strong
nuclear force to possible description of all reality. In years following its conceivement, theory has
undergone two major revolutions. First of which was introduction of supersymmetry, making
theory applicable to both bosonic and fermionic states. Second revolution occurred when
it was noticed that by introducing supersymmetry we inevitably bring along two additional
symmetries, S and T dualities, and that there are now finite many consistent string theories.
Dualities that emerge now span a web that connects all possible supersymmetric string theories,
hinting that there should exist one over encompassing theory. It is not yet know if any of
superstring models fully describes our universe and there is still ongoing work to determine
this.

Even though there are few ongoing directions which could result in theory of quantum
gravity, it should be noted that these alternate approaches are not always mutually exclusive.
For example, coordinate non-commutativity also appears in context of string theory [9]. Where
it was shown that open strings endpoints which usually propagate along Dirichlet manifold,
in certain conditions propagate along non-commutative manifold, in turn giving rise to non-
commutative properties. Non-commutativity has also been observed in closed strings, although
for different reasons [10]. In case of close string, non-commutativity arises only if we have
theory with coordinate dependent fields. By applying T-duality to such models it has been
shown that T-dual theories are non-commutative ones. Work until now has been done only on
bosonic coordinates, it was not until 2008 that it was found that same duality can emerge in
case of fermionic coordinates [11]. This has given rise to possibility that results that have been
obtained for supersymmetric particle would naturally follow for supersymmetric string. One
of these results [12] is that there would be emergence of non-commutativity between fermionic
coordinates which is proportional to bosonic ones. It has been sugested that by working with
special configuration of background fields same result would be obtainable in string theory
[13]. For now, these connections between supersymmetric particle and string theory are only

2



speculations.

In this thesis, we will focus on examining non-commutativity for closed strings. We fill focus
on two models, one for bosonic strings and other for superstrings. Since for these string theories
non-commutativity only emerges in T-dual theories if we have coordinate dependent background
fields, we will incorporate these kind of fields into our examination. For bosonic string we will be
working with coordinate dependent Kalb-Ramond field, while in case of superstring we will be
working with coordinate dependent Ramond-Ramond field. While our choice of bosonic string
background field has already been examined [!1], approach that we will undertake is novel and
it is only based on utilization of T-duality. We will also be discussing possibility of alternative
routes for obtaining non-commutativity. For superstring, we decided to work with coordinate
dependent Ramond-Ramond field because this configuration of fields was used as a basis for
speculation of existence of fermionic non-commutativity [13] and our intention is to test if there
is any validity to this hypothesis. Just as in the case of bosonic string, we will test alternative
routes for obtaining T-dual theories. One where we first perform dualization along bosonic
and then fermionic coordinates and one where this direction is reversed. In both models non-
commutativity will be analized by establishing a link between coordinates of starting theory
and coordinates of T-dual theory. This link when paired with Poisson brackets of starting
model will in turn give rise to T-dual Poisson brackets. At the end of the thesis, we will also
give short examination of case when we have more general structure of Ramond-Ramond field.
Where only T-duality of bosonic coordinates will be examined.



2. String theory

In order to not be overwhelmed by new ideas and concepts, in this chapter we decided to give
short introduction to bosonic strings, superstrings and T-duality. Where most concepts that

will later be utilized are developed.

2.1 Bosonic string theory in coordinate dependent back-

ground fields

To gain understanding of string theory in general it is useful to begin with examination of
bosonic string theory. While this theory lacks many features that would make it suitable for
description of real world phenomena, results that are obtained here can be easily generalized
to more realistic cases. Since string theory has been historically developed as an extension of
model that describes free bosonic particle [1, 5, 6, 7, &], it is educational for us to start at the

same point.

2.1.1 Relativistic point particle

We begin by examining the action of particle of mass m that propagates in D dimensional
space-time where we also have gravitational field described by metric tensor G,,. This particle
traces out l-dimensional trajectory denoted with z#(7) (x = 0,1,..., D) called "world line”,
where 7 is some arbitrary parameter we call "proper time”. Particles trajectory is geodesic
thus its action has to be proportional to invariant length of world line

S = —m/ds, (2.1.1)

where invariant length is given as

dzt dz”
ds = \/—Gw(a:)% d“i dr. (2.1.2)

Equations of motion for particle are obtained by variation of above action with respect to x*,
thus obtaining

Azt i dz¥ dx?

— 2.1.
dr? v dr dr’ (2.1.3)
where we introduced Cristoffel symbol I'}, as
or 1
F/sz =G" (x)i (8vGop<x> + asz/o<x> - aaGup(iU)) . (2.1.4)

4



2.1. Bosonic string theory in coordinate dependent background fields

Action that we introduced possesses one important quality and that is invariance under
reparametrizations 7 — 7 = f(7). However, this action also posses few negative qualities.
First of which is presence of square root, in turn making any attempt at quantization quite
difficult. Second negative quality is that this action only describes massive particles. Both of
those negative qualities can be resolved by introducing additional auxiliary field e(7) and by
utilizing action that is equivalent to starting action at classical level

1 1 dzt dz” 9

In order to see that this new action is equivalent to the old one, we can find equation of motion

for auxiliary field e(7)

G (r)— —e*m? =0, (2.1.6)

and substitute it into the action (2.1.5), from this we recover starting action (2.1.1). This
equation can be thought of as mass-shell condition for propagation in curved space-time. In
order to see if new action is also invariant under reparametrization, let us consider infinitesimal
transformation of type

=7 =7+ A7) (2.1.7)

Coordinates x#(7) transform as scalars under reparametrization, thus for them we have

da*
dr -’

Transformation of auxiliary field can be obtained if we notice that second term in action (2.1.5)

dox" (1) = 2 (1) — 2#(1) = —A(7) (2.1.8)

must transform according to

e(r)dr = €' (7")dr’, (2.1.9)
from which we can deduce following transformation rule

doe(T) =€ (1) —e(1) = —d%_()\e). (2.1.10)

Having obtained how all fields behave under reparametrization of parameter 7 it is straight-
forward to check that whole action (2.1.5) is also invariant

Soe — m2ge
(2.1.11)
Applying partial integration to first term, neglecting surface terms and by plugging in

1 2 dxt dogz” 1 dxt dx¥ 1 dxt dx¥
00S == [ dr | -G (x)— -0,G(v)——0px” — =G, (x)—
0 2/ ! (e () dr dr * e PN (z) dr dr O T e (z) dr dr

transformation laws it is easy to show that

505 = 0. (2.1.12)

This proves to us that by adding additional auxiliary field we can be sure that we are not
changing any underlying physics of the theory.



2. String theory

2.1.2 Bosonic string theory

Main idea of bosonic string theory is really simple, instead of working with action that describes
dynamics of point-like object in space-time we work with action that describes one dimensional
object, called string, which propagates in space-time. Propagation of string in space-time
sweeps two dimensional surface called world-sheet. By working in D dimensional space-time,
we denote the location of the string by coordinates z#(7,0) (u = 0,1, ..., D), due to increase in
dimensionality of the object we are analyzing, we also have increase in number of parameters
needed for its parameterization. Where we have that world-sheet surface ¥ is parameterized by
7 and o (in future chapters we will also utilize be £ and £'). Action is formed by maximization

of surface and it has following form

S = Ii/ dy. (2.1.13)
s

Here k is called tension of the brane and it has dimmensionality of the (mass)? or (length)™2.
Brane tension is also usually represented as k = 1/(2ma’), where parameter o is named Regge
slope. We have that du represent surface element which, in order for action to be dimensionless,
has dimensionality of (length)?. Surface element it is given by

WF=¢—@HGW@%%w@ﬂwfg:\ﬁdaa%mfg (m,n =0,1.), (2.1.14)
Gon = G (€) O D (2.1.15)

Just like before, we have that G, describes metric of D dimensional space-time. We have
also took the liberty to denote drdo as d*¢, while indices m and n are world-sheet indices. The
metric G,,, is known as induced world-sheet metric

Similarly, as in case of point particle, we would like to obtain action that does not posses
square root. Again this can be accomplished by introducing additional auxiliary field, this time
we have auxiliary metric g,,, that describes intrinsic geometry of the two dimensional manifold.
It should also be noted that auxiliary metric has Lorenzian signature. Action for bosonic string
can then be transcribed as

S = E/ d*6/=g9""(€)G () O B2, (2.1.16)
2 /s

where ¢"" is inverse and ¢ is determinant of g,,,.
In order to examine some interesting properties of this action we will analyze its local
symmetries, in case when space-time has Minkowski metric. First symmetry is invariance to

reparametrizations

gm/ — gm _ )\m,
Sozt = A", 2",
5Ogmn — )\rargmn _ aTAmgrn o 8T>\ngmr’

dov/=g = Om(A"V/=g).

2.1.17
2.1.18
2.1.19
2.1.20

~~ ~—~ —~
~— ~— ~— ~~—



2.1. Bosonic string theory in coordinate dependent background fields

Second local symmetry is invariance to Weyl scaling
dog™" = A(&)g™. (2.1.21)

While now presented just as curiosity, Weyl invariance plays a major role in derivation of consis-
tency equations for background fields. Both A™ and A are functions of world-sheet coordinates
€% and &'

In addition to these local symmetries, action also possess Poincaré invariance

dort = why ¥ + 1M, (2.1.22)
Sog™ = 0. (2.1.23)

where w*,, is antisymmetric.

Due to presence of Weyl invariance in bosonic string action we have that trace of energy-
momentum tensor is zero, ¢""7T,,, = 0. This tensor is given as a variation of action with respect

to world-sheet metric tensor g™

21 48

1
mn _— = mx“3n$ - _gmngklakxﬂalm (2124)
K\/?égmn H K

2

Since term 0.5/6¢g™" represents equation of motion for field ¢™", we than have that energy-
momentum tensor is zero. With this result obtained, we return to examination of bosonic string
in nontrivial background fields.

2.1.3 Inclusion of background fields

We have already seen how we can incorporate space-time metric in bosonic string theory
(2.1.16).

S1 = g/ d*6/=g9""(0) G (2) OOz (2.1.25)
s

Inclusion of this tensor does not change any of local symmetries that we had in Minkowski case.
Similarly, energy-momentum tensor is also zero.

In addition to space-time metric, there are two more massless tensors that can be added
into the theory. First of these tensors is antisymmetric Kalb-Ramond field B,,,. Action that
contains this tensor is given by

Sy = /i/ d*€€™ (o) B, (2) Ot 0z’ (2.1.26)
>

Where we needed to introduce two dimensional Levi-Civita tensor ™" with signature €’ = —1.
Similarly to space-time metric tensor, Kalb-Ramond field does not break reparametrization
invariance or Weyl symmetry.

Final massless tensor that can be added to theory is scalar dilaton field ®(x). This field
couples to world-sheet scalar curvature
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Sy =k / d*¢\/—g®(z)R?., (2.1.27)
)

Including dilation field into bosonic string violates Weyl invariance of the action [15]. It is
necessary for consistency of the theory, if we want to make sensible quantum theory, that action
be locally scale invariant. That is, we need to have traceless world-sheet energy momentum
tensor. Breakdown of scale invariance in quantum field theories is usually encapsulated in g

functions, where these functions arise from unltaviolet divergences in Feynman diagrams.

For theory that contains all tree terms we have following action

emn

S = /ﬁ/zdzf\/—_g{ Bgm”GW(:L’) + \/—__gBW(x) Oma!Opa” + q)(yc)R(z)} : (2.1.28)

For this action, trace of energy-momentum tensor has following general structure

21T = % /—gR® + fl,\/ —gg"" Ot O’ + ﬁfyem"amx“anx”, (2.1.29)

where 3%, 8% and 87 are local functions of the coupling functions ®(z), G, (z) and B, (z).
Given [ functions can be calculated in perturbation theory, where we find vacuum expectation
values of vertex operators. By performing these calculations, which are far beyond the scope of
this thesis, and demanding that trace of energy-momentum tensor be zero we arrive at following
set of equations [10]

1 o
Ey = R,u,u - ZB/J,paBﬁ + 2D“a/y = O, (2130)
fl/ = DPB;pJ,V - 2a’PBZV = 07 (2131)
D — 26 1
B8* =2nk 5 — R =5 Bupw B — Dy + 4a* = ¢, (2.1.32)

Here c is undetermined constant called Schwinger term, D,, are space-time covariant deriva-

tives and R, is space-time Ricci tensor [17, 18, 19, 20, 21, 22]. Expressions for

B, =0,B,, +0,B,, +0,B,,, a,=0,9, (2.1.33)
represents field strength of Kalb-Ramond field [23, 2], while a, is dilaton gradient. First
term in 3% comes from conformal gauge Faddeev-Popov determinant [25]. In addition to these

equations we also have following relation

D¥B5 + 9,6% =0, (2.1.34)
which allows us to set 3% to constant.

By solving equations (2.1.30), (2.1.31) and (2.1.32) we will be able to find coordinate de-
pendent configuration of background fields that will be used in examination of bosonics string
non-commutativity.



2.2. Supersymmetric string theory

2.2 Supersymmetric string theory

Having developed action for bosonic string we now focus on more complex case of superstrings.
This immediately raises the question, why? Answer lies in the fact that bosonic string theory
has few irredeemable qualities which make it unfit to be considered as theory of everything.
First of these problems is the fact that theory requires 26 dimensional space-time to operate.
Second problem is existence of tachyons, making vacuum unstable. While it is true that both of
these problems could be solvable, first by compactification of extra dimensions and second could
also be solvable by finding some other stable vacuum. Third problem that theory possesses is
sadly the greatest one and it is not solvable, theory lacks fermionic states. If we ever wish to
describe real world we must have theory that deals with both bosons and fermions.
Introduction of fermionic states can be done in few different way, however all are focused
on incorporation of supersymmetry [1, 6, 7, 8]. This can be done by adding supersymmetry
at world-sheet level or at space-time level producing two different formalism, Ramond-Neveu-
Schwarz formalism and Green-Schwarz formalism respectively. While distinct, it can be shown
that these two fromulations are equivalent. These two formulations have one major flaw and
that is that they needlesly complicate introduction of nontrivial background fields. Fortunately
in last few years there has been emergence of third formulation of superstring theory, pure
spinor formulation [26, 27, 28, 29, 30]. While having more technical difficulties in obtaining
the starting action, theory shines in generalization of flat space action to one with complex
fields. Where all fields are incorporated by adding integrated massless vertex operator [31] to

the action of flat theory. This section will focus on obtaining pure spinor superstring theory.

2.2.1 Supersymmetric point particle

Just as was case for bosonic strings, in order to obtain action for supersymmetric string theory
we need to start with action for supersymmetric point particle. This action is in fact general-
ization of action for point particle that we had before and action (2.1.5) will be our starting

point

1,
S = /2—633 dr, (2.2.35)

where we will work with flat Minkowski space-time. Since the mass term is not relevant for
examination of string theory we decided to set m to zero.

In order to obtain supersymmetry we need to expand the space from only including bosonic
coordinates z* to also including fermionic 84 ones, here index A = 1,2, ... N denotes the number
of supersymmetry and in turn number of anticommutating spinor coordinates, since higher
order of supersymmetry does not produce any additional insight we will be only interested in
case where A = 1 and from now on we will be neglecting this index. Index « denotes spinor
components and in general for Dirac spinor it is dependent on number of dimensions D of
space-time, where we have o = 0,1...,2°/2. Supersymmetry is obtained by demanding that

both bosonic and fermionic coordinates transform in certain way

= e, Bt = (D)o, e =0 (2230
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Here €* is infinitesimal constant Grassmann parameter, (I'*),s are Dirac matrices in D
dimensions. Since we are interested only in Majorana-Weyl spinors, above relations are written
in form appropriate to these spinors. It should be noted that these transformation laws do not
single out any specific action. While there are many different supersymmetric actions that can
be written we are only interested in simplest one, this leaves us with

S = /2i <a: - iea(rﬂ)aﬁéﬁ)%m (2.2.37)

e

This action is invariant to full super-Poincaré symmetry. Equations of motion for e, x# and 6¢,
respectively are

12=0, I1"=0, (I").I1,6°=0. (2.2.38)

where we denoted with IT#
" = " — i0%(T"),30°. (2.2.39)
Since we have that 6% always comes attached to term I'*II, and (I'*II,)* = —II?, action

possesses additional symmetry. This is local symmetry known in literature as x symmetry. By
denoting with x(7) infinitesimal Grassmann spinor parameters we can observe that action is
invariant under

0,0% = (T")* T kg, Guat = i0(T")0p0,0°, e = 4ied*r,. (2.2.40)

To see that action (2.2.37) is invariant under these transformations we can start by exam-
ining how IT* and e~! transform

O, I1H = 60" — i6,0%(T")050° — —i0%(T")030,.6”
= 00 (1) 030,0° 4 10%(T")050,0° — 16,0%(T") 450" — —if%(T")506,,6°

= 2i0%(I"")4,56,6°. (2.2.41)
0,012 = 200,,0,IT" = 4i0°(T") 4p0,0°T1,, = 4il1%0°k,, (2.2.42)
Spe = —e 20, = —die 0%, (2.2.43)

Finding variation of action we have

1 ' : :
0uS = 5 / (0pe I + €716, 11%) = %/ ( 4e 170k — 4e’1H20a/€a> =0. (2.2.44)
While here, presented for sake of completeness, existence of x symmetry is crucial for obtaining
Green-Schwarz formulation of string theory. Now we will demonstrate procedure for obtaining
pure spinor description of superparticle. Methods that we develop here will be exactly the same
as ones needed for string.

10



2.2. Supersymmetric string theory

2.2.2 Pure spinor formulation of supersymmetric point particle

Before proceeding with pure spinor formalism it should be noted that action (2.2.37) possesess
constraints. This can easily be seen by finding conjugated momentum of fermionic coordinate

= (;—j = ZT“(Fu)aﬁeﬁ = 'L ((f'u' — 7;6011 (FN)OQ/JHG‘IBl) (F“)aﬁeﬁ, (2245)

Ta

T = i — 0% (T%) o, 5,07 (2.2.46)
where 7, is conjugate momenta of bosonic coordinate x#. While expressions for m, and II,, are
identical it should be noted that their interpretations are different, one is conjugate momenta
and other is just combination of bosonic and fermionic coordinates that is invariant under
supersymmetry transformations. If we decided to take more complex supersymmetry invariant
combination of coordinates, these terms would not coincide. From this we see that

Aoy = T 4 13, (T*)0p0” + (1) 0500 (T)) 0y 5,67, (2.2.47)

represents constraint. Since fermionic coordinates ¢ and their conjugated momenta 7, satisfy
following Poisson bracket

{74,0°} =07, (2.2.48)
we have that constraint satisfy
{dasds} = mu (1) (2.2.49)
Starting point for pure spinor particle is by replacing action (2.2.37) with following quadratic
action [32]
. . 1
S = /dT (m:i‘“ + Q0% + W A* — §7r“7ru) , (2.2.50)
where 7, are now independent variables [33] and A* are pure spinor ghost variables satisfying
pure spinor constraints
AT 0\ = 0. (2.2.51)

Their conjugated momenta are given by w, and they are defined up to gauge transformation
Sowa = (T")apA’A,. (2.2.52)

To obtain correct physical states, action (2.2.50) needs to be supplemented with BRST like
operator

Q = \d,, (2.2.53)

where all physical states are in the cohomology of above given operator. We have that Q* = 0
and this operator carries ghost number +1, that is if we define that \* and w, carry ghost
numbers +1 and —1 respectively. This operator posseses few interesting properties, for example
in case of massless relativistic point particle we had following mass-shell relation m,7# = 0, here
this is indirectly implied by operator ). Furthermore, we had that supersymmetric particle
action is invariant under x symmetry, here we have that pure spinor action does not posses this
symmetry but is in fact replaced by gauge invariance generated by Q).

11



2. String theory

Now we would like to examine how to obtain background fields in which superparticle can
propagate. We will give example for case where ghost number is 41, then wave function can
be described as

U(z,0) = A\* Ay (2, 0), (2.2.54)

here A, is the superfield. By acting with () on this wave function we obtain

QU(x,0) = \*N°D,Az =0, (2.2.55)

this relation implies
(F[pr)aﬁDaAB =0, (2.2.56)
where D, = 32 + £(I'"),36° 52 is supersymmetric derivative and (T'[up6,)*? is totally anti-

symmetric product of five gamma matrices. Imposing following variation of wave funtion
doVU(z,0) = QA = A\*D,A, (2.2.57)
we have following transformation for superfield
doAu(x,0) = DoA(x,0). (2.2.58)

This means that equation (2.2.56) and (2.2.58) are Maxwell equations of motion and gauge
invariance for superfield A,. It should also be noted that field A, can be transcribed as

expansion in fermionic coordinates as
An(2,0) = ful®) + fap(2)0° + fup,(2)0°0° + ... (2.2.59)

By using wave function with ghost numbers that are different from +1 we can obtain more
background fields and their equations of motion, sadly we will omit analyzing such cases.

2.2.3 Superstring

Action for superstring follows the same philosophy as the one we had for superparticle. In short,
we want to expand spacetime by introducing fermionic coordinates and by finding some com-
bination of coordinates that is invariant to supersymmetry. This is accomplished by following

combination

I, = O™ — i0°A(T") 0500 (2.2.60)

Superstrings are defined in ten dimensional space time, therefore we have that p = 0,1...9,
while for spinors we have @ = 1,2, ...,16. Indices m and n are world-sheet indices as before.
Depending on the type of superstring theory, we have different number for supersymmetry. We
are mainly interested in type II superstrings, hence we will be working with N = 2 SUSY. This

way we can transcribe above equation as

1% = 0™ — i0%(T") 050 0” — i0%(T") 00m0”. (2.2.61)

12



2.2. Supersymmetric string theory

Based on chirality of spinors, there is further subdivison of type II theory. We have type
ITA for opposite chirality and type IIB superstring theory for same chirality. Having defined

supersymmetry invariant combination of coordinates, action has following form

g = g / A2/ —gg ™ I 11, (2.2.62)
by

This action, just as one for superparticle, is invariant under reparametrization and  trans-

formations. Action also has following constraints

1 1 _

Ama = Tma + (i@mx“ + 596“(rﬂ)mﬁl&neﬁl + 549@1(1“#)a!5lameﬂl) (TW)asb”, (2.2.63)
- 1 1 _ _

Ao = T + (i@m:v“ + 5QO“I(F“),Mameﬁl + 5901 (Fﬂ)a,ﬁlameﬁl) (T)asf”. (2.2.64)

Tma = 12 (0)ap0”, e = 111% (1) 00" (2.2.65)

For pure spinor formalism, we make a switch from action (2.2.61) to action for flat space-time
that is quadratic [20, 27, 28, 29]

S = / 4 (gnwamxuanx”nmn a0 0% 4 D 0T+ Wad N+ @aa+Xa) . (2.2.66)
b

Here z#, 6%, 7., 0% and 7, are Green-Schwarz-Siegel matter variables where indices take
range it = 0,1..9, @ = 1,2, ...16. Pure spinors are labeled with \* and A%, while their conjugated
momenta are w, and @w,, respectively. We have that pure spinors satisfy pure spinor constraints

A (TH) 0N = AN(T") N = 0. (2.2.67)

Similarly as in the case of superparticle, in order to obtain physical states we need to
introduce operator BRST like operator (), however in order to do that we need to transcribe
equations (2.2.63) and (2.2.64) into light-cone coordinates

do = 70 — %(rue)a [am + i(eruaﬁ)} , (2.2.68)
dy = To — %(P,ﬁ_)a [8_1‘“ + i(érﬂ@_é)} : (2.2.69)
then we have
QL = /dguada, Qr = /dgwa, (2.2.70)
where
@} =~ [N, Q= [N, (2:271)

Due to pure spinor constraint equations (2.2.67) we have that @), and Qg are nillpotent. We

13



2. String theory

introduced following two combinations of coordinates written in light-cone coordinates

1 1 _
I =0, 2" + 5ecv(l“fi)aﬁ(imﬁ, " =0 _a" + 500‘(1““)@58_95. (2.2.72)

For ghost number zero, massless super Yang-Mills states are obtained from following uninte-
grated and integrated vertex operators

V = XA, (2,0,0),
/dg*U = /d5+ (040° A (,0,0) + 11 Ay(2,0,0) + du W (2,0,0) + Ny F* (2,6,0)) .
(2.2.73)

Here A, and A, are gauge fields, while W< and F* are superfield-strengths for super
Yang-Mills. We also have introduction of Lorentz currents for pure spinor variables, given as

1 = 1 3
N = §wa(r[””]>“gkﬁ7 NI = Q%(r[#vl)aﬁﬂ : (2.2.74)

By acting with @) on vertex operator in both integrated and unintegrated form and by
demanding that

QV =0, QU=0.V, (2.2.75)

we can obtain equations of motion for fields with ghost number zero. However, we are not
only interested in background fields with ghost number zero, we are interested in all possible
background fields that are allowed by the theory. Fortunately there is finite amount of fields
that are allowed, they can be collected into a supermatrix A,;y, while integrated form of vertex
operator is given by

Vsg = / PE(XTM Ay XN, (2.2.76)
¥
8+9a a—é)\ Aa,é’ Aow Eaﬁ ro,/u/
" _ I~ A A Ef  Q
XM= | ", XM= |, Aun= | T T vl (2977
da d_)\ MN Eag Eg _Pocﬁ Ca/,w ( )
%Nﬁy %Nﬁy Quu,ﬁ Quu,p CIBMV S;u/,po'

Here, fields A,,, E’E‘, EY and P°# are known as physical superfields, while superfields that are
in the first row and the first column are known as auxiliary because they can be expressed in
terms of physical ones [31]. Remaining superfields Q,,,, (Qu..,), C%. (C?..) and S, ., are
curvatures (field strengths) for physical fields. This notation is in accordance with Ref [31]. By
acting with BRST operators (0, and (Qr on this vertex operator we obtain following equations
for background fields.

14



2.2. Supersymmetric string theory

(1+D)Aas = (I'"0)aAys,
DA = (Uu0)a B

1
DB = — (T110)°0,,5,

DQu5 = —(I'1.0)a001E 5,

(1 + D)Aaﬁ = (F‘LLQ_)BA
DACW = (Pue_)ﬁEaﬁv

_ 1 A
DEQB - _Z@[u ]Q)BQWM

Ly

]_)Qoww = —(F[#é)ﬁ&,]Eaﬁ,

(1+D)As, = (T0)0A, (1 +D)As = (T"0)5A,,, (2.2.82)
DA, = (T.0).E2, DA,, = (T.0)sE?, (2.2.83)
« 1 v e N 7 1 vl
DE, = _Z(F[u ]9) Qi DEgl - _Z(F[u }0)69#1#1/7 (2.2.84)
Dy, = =)o ES . Dy = —(L0) 50,1 EL (2.2.85)
(1+D)E = (T"0).E),  (1+D)E*s = (I'"0)EY, (2.2.86)
DE] = (I'.0)a P, DEY = (I',0)sP*’, (2.2.87)
1 _ 1 o
DP? = —Z(r[f‘”@)acﬁw, DP? = —Z(P[“V]H)BCO‘W, (2.2.88)
DCP, = —(I(0)a0,) P*°,  DC. = —(I'(.0)0,1 P, (2.2.89)
(2.2.90)
(1+D)Qupv = T"0) 0y (1+ D)0 = (T"9) 50001, (2.2.91)
DQ#,MV = (F;ﬂ)aoamw DQuw,u - (Pué)ﬂéﬂmw (2‘2'92)
« 1 v e DY 1 1)
DC®,,,, = —Z(F[“ 10)S, 00, DCP,, = —Z(r[ﬂ 10)2.S 101 (2.2.93)
DS um = —(T110)a0,1C% s DSunpw, = —(140)50,)C% 10 (2.2.94)
Here operators D and D are given as
) _ )
D=6¢"—, D=0"— 2.2.95
60a7 aea ( )

Every superfield appears in two groups of equation, reason for this is that both # and 6
components of the field need to be fixed. Inside each group there is iterative structure [34, 37]
which allows us to solve field equations recursively for any initial conditions. Furthermore,
there is hierarchical structure that governs these equations, making it possible to solve them
subsequently. Solutions to these equations produce fields that can be transcribed as expansions
in fermionic coordinates #* and #*. We will be utilize equations of motion for background fields
again in Chapter 5, where we will be discussing initial conditions that correspond to coordinate
dependent Ramond-Ramond field P4,
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2. String theory

2.3 T-duality

We have briefly touched upon naming convention for type IIB supersrings in previous chapter,
where we explained that II originates from N = 2 supersymmetry and B originates from the
chirality that we imposed on spinors. Type IIA is theory with N = 2 supersymmetry were
spinors have opposite chirality and Type IIB is theory with N = 2 supersymmetry were spinors
have same chirality. We could have chosen to work with some other number of supersymmetry
or by having theory which is also invariant to some other symmetry group. By being able to
pick and chose with what kind of symmetry we are working, it would be expected that there
are infinite many possible string theories. However this statement is not true, there are only
five consistent string theories. These theories are: type I, type ITA, type IIB, heterotic SO(32)
and heterotic Eg X Ejg string theories.

No matter what superstring theory we are working with, they all only make sense if we work
in ten dimensional space-time. From our everyday experience it is obvious that our reality has
three spatial and one time dimension, this disparity between reality and theory forces us to
find a way to deal with six extra spatial dimensions. One way to make string theory comply
with observations is by curling up excess dimensions, where they are now circles with radius
R. This process is known as compactification [1, 5, 6, 7, 8].

By compactifying dimensions there is emergence of new kind of symmetry, symmetry that
connects theories where radii of compactification is R with ones where it is 1/R. However this
is not all, this symmetry also connects different types of superstrings. We call this symmetry
T-duality [36, 37, 38, 39, 40, 41]. In addition to T-duality, string theory is also invariant under
S-duality which connects theories where constant of interaction is o with ones where it is 1/«
[12]. By working in tandem these two dualities connect every possible superstring theory. This
has given rise to speculation that there exists one theory, M theory, which works in eleven
dimensional space-time from which all other types of superstrings stem. At the time of writing
of this thesis, there has not been much progress in obtaining this elusive theory.

Our interest in T-duality comes from the wish to examine non-commutative properties of
closed strings. Since this duality connects different types of string theory, our idea is to have
one theory with standard Poisson brackets which we dualize and see what are the Poisson
brackets of dual theory. In order to be successful in this task it would be helpful to devise
procedure which would streamline this whole process. Fortunately, such procedure already
exists and it is called Buscher procedure [36, 43, 44, 45]. While understanding of procedure
is best accomplished by working on concrete examples, we would like to briefly present main
steps this procedure entails.

2.3.1 Busher procedure

Idea that lies in the hearth of Buscher procedure is localization of some isometry direction,
usually shift symmetry. Therefore, first step in procedure entails testing if the action is invariant
under global translations

S = / d*¢L(x,0x), o0z =N — §S=0. (2.3.96)
by
Localization of symmetry is accomplished by substituting partial derivatives dx* with covari-
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2.3. T-duality

ant ones Dx*. In case where we have coordinates that do not appear under partial derivatives,
typically when we have coordinate dependent background fields, we also need to introduce in-
variant coordinate x™ [16, 44, 47, 48]. Inclusion of invariant coordinate separates standard
form generalized Buscher procedure [46, 44, 45, 49, 50].

O — Dyt = O + v, 2™ = / d"EDypat, S = / PEL(2™, Da).  (2.3.97)
P b

Introduction of covariant derivatives has inevitably introduced additional gauge fields v*
into the theory. Since we demand that starting theory and T-dual one have same number of
degrees of freedom we need to eliminate excess degrees of freedom. This is accomplished by
introducing following term with Lagrange multiplier

Sadd:/d2£y,u€mn mvﬁu (2398)
b

where y,, is Lagrange multiplier and ™" is world-sheet Levi Civita tensor.
Next step in procedure is utilization of gauge freedom to fix translation symmetry, this way
action becomes only function of gauge fields and Lagrange multipliers

S+ Saqa = / d’L(z,0x,y,v00), x(£) = constant — S+ Seqq = / d*L(y,v,Ov)
) 2

(2.3.99)

Finally, last step focuses on finding equations of motion for gauge fields and Lagrange
multipliers. First set of equations of motion, when inserted into gauge fixed action produces T-
dual action, which is now only function of Lagrange multipliers and their derivatives. Inserting
equations of motion for Lagrange multipliers into gauge fixed action eliminates all changes we
made in previous steps and brings us back to the start. By combining these two sets of equations
of motion we can obtain T-dual transformation laws, laws that connect starting coordinates
with their T-dual counterparts.

It should be noted that this procedure can be applicable even to cases when we do not have
translational symmetry [15]. This is accomplished by substituting starting action with one that
has translation symmetry, form of this new action is the same as the form of action where we
introduced covariant derivatives, invariant coordinates, Lagrange multipliers and fixed gauge.
Legality of this step is assured only if we are able to salvage original action by inserting solutions
to equations of motion for Lagrange multipliers into its substitute. It is also important to say
that, in cases where we deal with invariant coordinate, we are essentially switching from local
theory to non-local one. Recently non-locality has been become very important issue in the
quantum mechanical considerations [53].

Having gained some insight into how Buscher procedure works, in the next chapters we will
focus on applying this procedure to different types of string theory.
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3. T-duality of closed bosonic string with
H-flux

This chapter is based on work done in paper [5/]

It has been know for some time now that non-commutativity can emerge in context of string
theory [52, 55, 506, 57, 58, 59, 60, 61, 62, 63, 64, 65], however this emergence was only in the
context of open string theory with constant background field. Geometric properties of open
strings, their "openness”, gave rise to boundary conditions that must be imposed as canonical
constraints. In order for these constraints to be consistent we are led to equations that describe
boundary conditions as functions of ¢ world-sheet coordinate. By solving these equations we
find interesting conclusion, we can express initial coordinates of the theory as linear combi-
nations of effective coordinates and effective momenta. Imposing standard Poisson brackets
between effective coordinates and effective momenta, we find that coordinates of initial theory
do not commute. This kind of non-commutativity is known as ”canonical non-commutativity”
and it is not only exclusive to the string theory. In fact canonical non-commutativity can trace

, 68, 69].

Because of their open nature, open strings have one additional peculiar property and that

it’s origins to Yang-Mills theories [60,

is the existence of gauge fields at their endpoints [70]. This fact combined with property
of non-commutativity creates a natural bridge between string theory and non-commutative
Yang-Mills theories. Where examining properties of non-commutative quantum field theory
(renormalization [71]) or even obtaining experimental proof of particle decays that are unique to
these theories [72, 73] would allow us to give more credence to the idea of one large encompassing
theory, string theory.

On the other hand, closed strings do not posses the benefits of their open counterparts.
Their lack of borders forces us to be more creative in order to extract any kind of non-
commutative behaviour. Due to their geometric restriction, one interesting idea emerges why
not examine closed strings in coordinate dependent background fields and instead of find-
ing dependence of initial coordinates on effective coordinates and momenta we find depen-
dence of T-dual coordinates on starting coordinates and momenta? While this idea is not new
[10, 14, 74,75, 76, 77,78, 79, 80, 81, 82, 83] and in fact case that is disscused in this chapter has
already been examined in [14], in order to obtain non-commutative T-dual theory authors had
to utilize combination of standard Buscher procedure and nontrivial winding conditions. Our
goal is to accomplish the same thing by focusing only on T-duality. T-duality from one theory
to another establishes link between coordinates of theories, this link with combination of canon-
ical momenta of original theory makes it possible to write T-dual coordinate as combination of
initial coordinates and momenta. By finding Poisson brackets between T-dual coordinates and
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3.1. Three torus with H-flux - choice of background fields

by enforcing standard Poisson bracket structure on original theory fascinating result emerges,
T-dual coordinates of closed bosonic string do not commute.

It should be noted that although these two types of non-commutativity are dominant in
string theory, there is one additional type of non-commutativity present in physics. This
third type of non-commutativity is based on Lie algebras, where commutator between two
coordinates is proportional to coordinate. This kind of non-commutativity is encapsulated
in k-Minkowski space-time [34, 85, 86, 87, 88 89]. While x-Minkowski space-time is non-
commutative and associative, this behaviour is more of the outlier than norm. In general if
we have that commutator of coordinates is proportional to linear combination of coordinates,
then we expect space to be non-associative because jacobiator and associator would be nonzero.
These kind of spaces are closely linked with L., algebras [90].

In this chapter we focus on obtaining T-dual theory, T-dual transofrmation laws and T-dual
non-commutativity of simplest possible theory with coordinate dependent background fields,
three torus with H flux. To be more precise, we will deal with bosonic string theory where space-
time metric is constant and Kalb-Ramond field has only one non-zero component B,, = Hz
which depends linearly on z coordinate with infinitesimal proportionality constant H. Like we
said, this case has been examined before however we will depart from conventional method
by utilizing Buscher procedure throughout all chapter. Since standard Buscher procedure
applies only to isometry directions on which background fields do not depend, we will utilize

combination of standard and generalized procedure in order to obtain T-dual theory.

While this theory is quite simple, it’s usefulness comes from just that. It is a good testing
ground for some basic ideas before embarking on more complex case.

3.1 Three torus with H-flux - choice of background fields

We begin with action for closed bosonic string in the presence of the space-time metric G, (z),
Kalb-Ramond antisymmetric field B, (z), and dilaton scalar field ®(z) where action is given
as

Emn

v

where notation is indetical to one in Chapter 2.1, that is, ¥ is the world-sheet surface parame-

S = /i/zd2§\/—_g{ BgmnGW(x) + B, ()| Opmat Oz’ + CI)(ZE)R(2)} , (3.1.1)

terized by {™ = (7,0) [(m = 0,1),0 € (0,7)], while the D-dimensional space-time os spanned
by the coordinates z# (u = 0,1,2,..., D — 1). Intrinsic world-sheet metric is labeled with g,
and its corresponding scalar curvature is given as R(®.

We have seen in previous chapter that background fields for bosonic string must obey
following equations of motion (here presented again for sake of clarity) [10]
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3. T-duality of closed bosonic string with H-flux

1 loa
= R — 7 Bueo B + 2Dy, =0, (3.1.2)
L =D,Bh, —2a,B,, =0, (3.1.3)
D — 26 1
B® =2rk e~ R — ﬂBup(,B“p‘7 — D,a" + 4a® = c, (3.1.4)

where we had that c is an arbitrary constant and function 3% could also be set to a constant
because of the relation

D¥B5, +0,8% = 0. (3.1.5)

Further, we also had that R,, and D, are Ricci tensors and covariant derivative with respect
to the space-time metric G, while

By, = 0,B,, +0,B,,+0,B.,, a,=0,9, (3.1.6)

were field strength for Kalb-Ramond field B,, and dilaton gradient, respectively. Simplest
solution to these equations is when all three background fields are set to constants, however
this case does not provide any new insight into closed string non-commutativity. Case that we
will be examining in this chapter is one where every background field, except Kalb-Ramond
field, is set to constant. For Kalb-Ramond field we want to have linear coordinate dependence.
In order to see if our wishes are consistent with reality, we should examine equations of motion
for background fields more closely. By setting dilaton field to constant and demanding linear
coordinate dependence for Kalb-Ramond tensor, first equation (3.1.2) reduces to

1
R;LV - ZLB;chrBleU = 0; (317)
where field strength B, is constant. If we additionally assume that this is infinitesimal
constant H, then we are free to set space-time metric G, also to a constant in approximation
linear in B,,,. These assumptions satisfy all three space-time field equations, where the third
equation (3.1.4) takes following form

—c (3.1.8)

This expression allows us to chose the number of dimensions we want to work in. In order to
explore main properties of closed bosonic string in presence of coordinate dependent background
fields and in order to not make calculations needlessly complicated we will work in D = 3
dimensions with the following choice of background fields

R 0 0 0 Hz 0
Gw=|0 R 0|, Bu=|-Hz 0 of. (3.1.9)
0 0 R? 0 0 0

Here R, (u = 1,2,3) are radii of the compact dimensions. This configuration of background
fields, while simple it is not arbitrary, it represents geometry of torus with flux (field strength)
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3.2. T-dualization of bosonic closed string action

H [51]. Our choice of infinitesimal flux H can be understood in terms of the radii as

i 2—o (3.1.10)
RiRsR3) o

Since H is infinitesimal this means that flux is "diluted” and that our torus is large. This gives
us the freedom to rescale the coordinates

pe 2 (3.1.11)
P — 1.
RM

which simplifies the form of the metric even more

G =

o O =
[ )

0
0]. (3.1.12)
1

With this configuration of background fields, action for closed string takes following form

S = /i/ d*£0 2", 02"
)

= /4/ d*¢ [% (Oyx0_x+ 03y0_y+ 0,20_z) + OyoHz0_y — 0, yHz0_x| | (3.1.13)
2

where we have transcribed action into light-cone coordinates (more detail in Appendix A).
Metric tensor G, and Kalb-Ramond antisymmetric tensor B, are combined into new tensor
I, =B, + %Guw We also took liberty to relable coordinates z* as

X
=1y, (3.1.14)
z

T-dualization of dilaton field is performed separately within quantum formalism, since that is
not the focus of this thesis from now on we will omit the term containing this field.

3.2 T-dualization of bosonic closed string action

Having established our starting point in previous section, content of this section will be based on
obtaining T-dual action and T-dual transformation laws. T-dualization will be performed one
direction at the time by utilizing standard and ,when situation demands, generalized Buscher
procedures. Results that are obtained here will be used in subsequent section as a way to obtain
non-commutative properties of T-dual theory.
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3. T-duality of closed bosonic string with H-flux

3.2.1 T-dualization along x direction - from torus with H-flux to

twisted torus

We start our T-dualization journey by dualizing action (3.1.13) along x direction. Since this
x direction is an isometry direction this means that action possesses global shift symmetry
r — x + a and since background fields do not depend on this coordinate we can accomplish
our goal by utilizing standard Buscher procedure [36]. We will go through all the steps that
were highlighted in previous chapter. As it has been already explained, starting point of T-
dualization procedure is based on localization of global shift symmetry. This is accomplished
by introducing covariant derivatives that will replace partial derivatives

O+x — Dix = 04x + vy, (3215)
where vy are gauge fields that transform as
51& = —aia, (3216)

under local translations. By adding term with Lagrange multiplier v,

Sadd = g/ d*Emn(Dyv- — _vy), (3.2.17)
)

to the action we are making newly added gauge fields unphysical degrees of freedom. After
gauge fixing, x = const, the action takes the following form

1
Stix :/{/ d*¢ {5 (vyv_ + 04 y0_y+ 0420_2) + vy Hz0_y — Oy yHzo_
2

1
5 (@4 — a_m)] . (3.2.18)

We can find equations of motion for Lagrange multiplier 7; which tell us that field strength for
the gauge field vy vanishes
F+7 = a+/Uf — an =0. (3219)

Solving this equation we obtain following solution for gauge filed

V+ = 8:|:ZL‘. (3220)

If we wish to return to original action (3.1.13), we only need to plug these solution into gauge
fixed action (3.2.18). Varying the gauge fixed action (3.2.18) with respect to the gauge fields

vy and v_ we obtain following two equations

v = —0_v1 —2Hz0_y, (3.2.21)
U+ = 8—{-71 + 2H28+y (3222)
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3.2. T-dualization of bosonic closed string action

Utilizing these two expressions in a manner that has been described before and by neglecting
all terms that are not linear in H we are left with following T-dual action

S =K / 204 (o X)) 1y 0 (. X)", (3.2.23)
%

where subscript , denotes quantity obtained after T-dualization along x direction and we have
grouped coordinate into

Xi=1y | (3.2.24)

z

After first T-duality theory has new altered background fields

1
xHJr,uV = :(:Buu + §xGuV7

1 2Hz 0
+Buw =0, ,G,=|2Hz 1 0]. (3.2.25)
0 0 1

These background fields define what is known in literature as a "twisted torus” geometry.
String theory after one T-dualization is geometrically well defined both globally and locally.
Theory is geometrical where flux H plays the role of connection. Combining the solution of
equation of motion for Lagrange multiplier (3.2.20) with equations of motion for gauge fields
(3.2.21) and (3.2.22) we get the transformation laws connecting initial coordinates x* with
T-dual coordinates ,X*

O+x = +04v + 2H 2041y, (3.2.26)

where = denotes T-dual relation. The momentum 7, is canonically conjugated to the initial

coordinate z. Using the initial action (3.1.13) we get

65

= = i — 2H 2y 2.2
5 k(T 2y'), (3.2.27)

Ty

where, as before, we have denoted A = 8,4 and A’ = 9, A. Combining transformation laws for

light-cone derivatives of x coordinate, we are able to obtain
T =+ 2Hzy, (3.2.28)

which when utilized with the expression for momentum 7., gives us transformation law in

canonical form
o = Ky (3.2.29)
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3. T-duality of closed bosonic string with H-flux

3.2.2 From twisted torus to non-geometrical ()-flux

We continue T-dualization by performing T-dualization of action (3.2.23) along y direction.

We repeat same procedure from previous subsection and form the gauge fixed action
1
+Sfix :/{// d*¢ {5 (04710-m1 +vpv_ +0420_2) + O ynHzo_ + vy  Hz0_v
b

+ %72 (O,v_ — a_v:)] : (3.2.30)

Equations of motion for Lagrange multiplier v5 produce
v —0 vy =0— vy = 0y. (3.2.31)

Inserting these solutions to equations of motion into gauge fixed action it returns to its starting
form (3.2.23). By varying the gauge fixed action with respect to the gauge fields we obtain

V+ = :i:ai")/g — 2H28i’}/1. (3232)

Inserting these equations equations into gauge fixed action and by keeping only terms linear in
H, we obtain T-dual action

S = ’f/ A*€04 (ay X )2y T, O— (2 X)), (3.2.33)
b
where
"N
ey X) =[] (3.2.34)
z

(3.2.35)

|
O Nl m
I\

1
1 2

zyH—Hw = zyB;w + §myG,uua acyH—Hw = | Hz
0

= O O

Separating tensor ,,IL,, into its constituent fields we obtain following expressions for back-
ground fields

0 —Hz O 1 00
0 0 0 0 01

Background fields that we obtained after two successive T-dualizations resemble background
fields of the starting theory, torus with H-flux, but they should only be considered locally. Their
global properties are nontrivial and, because of this, the term "non-geometry” was introduced.
This configuration of fields is known as torus with Q-flux.

Combining the equations of motion for Lagrange multipliers y, and equations of motion for
gauge fields vy we can deduce T-dual transformation laws

01y = +0.v9 — 2H 2047 (3.2.37)
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3.2. T-dualization of bosonic closed string action

In order to obtain canonical form of transformation laws we again need to find canonical
momentum. This time of y coordinate
08
Ty = 5o = k(y + 2H zx'). (3.2.38)
)
Adding the transformation laws (3.2.37) for 0,y and J_y together and utilizing properties of
light-cone derivatives, we obtain
Y=, — 2H 27, (3.2.39)

Combining this expression with one for momentum 7, we obtain transformation law in canonical
form
Ty = K. (3.2.40)

Having obtained two separate transformation laws in canonical form (3.2.29), (3.2.40) we can
notice that T-dual coordinates 7; and v, are still commutative. This is a consequence of a
simple fact that variables of initial theory, which is geometrical one, satisfy standard Poisson

algebra
{z"(0),m,(0)} = 800(0c — ), {z" 2"} ={m,,m} =0, (3.2.41)
where
Ty
=Ty |- (3.2.42)
T2

3.2.3 From @ to R-flux - T-dualization along z coordinate

Having dualized starting action along both x and y direction, we are left only with T-dualization
along z direction. Since background Kalb-Ramond field depends on this coordinate we will
utilize generalized T-dualization procedure [16, 44, 45,19, 50].

Starting point is the action we obtained after performing T-dualization along z and y
coordinates (3.2.33). Since Kalb-Ramond field depends on z it seems that we are lacking
isometry along z. However this is not the case, action is indeed invariant under global shift
transformations of z coordinate. To see this let us assume for a moment that Kalb-Ramond field
linearly depends on all coordinates B,,, = b, + %Bw,px” and check if some global transformation
can be treated as isometry one. We start with global shift transformation

St = N, (3.2.43)

and make a variation of action

55 = 3 BN / d*€0,2"0_a" = %Bw“ﬁm" / &€ [0 (2" 0pa”) — 2" (OmOpa”)] . (3.2.44)

The second term vanishes explicitly due to contraction of antisymmetric tensor ¢™" and
(OmOy) tensor, while the first term is surface one and in general this term is different from zero.
However, expression for 45 is topological invariant and if we have topologically trivial map
from world-sheet onto D-dimensional space-time this expression is set to zero. This means that
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3. T-duality of closed bosonic string with H-flux

properties of field strength H do not play a role in ensuring our action has invariance under
shift symmetry.

There is one additional, although more technical, explanation for vanishment of surface term
which is more appropriate to the approximations used in this chapter. Because we chose to
work in linear approximation of H terms, we have that our coordinates x* satisfy 0, 0_x* =0
equations of motion for constant G, and B, whose solutions are well documented in standard
string theory textbooks. From these solutions we have that, if we hold initial 7; and final 74 fixed
and if we work with trivial winding conditions (winding number is set to zero), coordinates z*
satisfy x#(o + 2m) = 2#(0) which ensures disappearance of surface term. Consequently in the
case of constant metric and linearly dependent Kalb-Ramon field, global shift transformation
is an isometry transformation. This means that we can make T-dualization along z coordinate

using generalized T-dualization procedure.

As has been described in previous chapter, difference between generalized [16] and standard
Buscher procedure is only in one additional step seen in the introduction of invariant coordinate.
We again start by localizing shift symmetry of the action (3.2.33) and by introducing covariant
derivative

Orz — Diz =012+ vy, (3.2.45)

Now into play comes introduction of invariant coordinate as line integral

2 = /Pdngmz = /PderDJrz + /Pdf_D_z = z(&) — z(&) + AV, (3.2.46)
where
AV = /Pdfmvm = /P(dfﬂur +dé o). (3.2.47)

Here ¢ and &, are the current and initial point of the world-sheet line P. At the end, as in the
standard Buscher Procedure, in order to make vy unphysical degrees of freedom we add to the

action term with Lagrange multiplier

Seadd = g/ d*6v3(0,v_ — 0_vy). (3.2.48)
s

With these additions final form of action is

_ 1 .
ayS :"v/ d*¢ {5 (04710-m1 + 04720-72 + DyzD_z) — Hz"(04710-72 — 04720-71)
P

1
+ 573(8+v_ - 8_v+)} . (3.2.49)

Because of the existing shift symmetry we fix the gauge, z(§) = 2(&p), and then the gauge fixed
action takes the form

1
aySfia :“/ d*¢ [5 (0410 + 0:720-72 + viv-) — HAV(0:710-72 — 01720-m1)
>

1
+ 573(8+v, — 8v+)} : (3.2.50)
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3.2. T-dualization of bosonic closed string action

Equation of motion for Lagrange multiplier v3 gives us
Ov_ —0-vy =0—= vy =012, AV = Az, (3.2.51)
while equations of motion for gauge fields vy are
vy = +0193 — 2087, (3.2.52)
functions B+ are defined as

1
6i = :tiH(”yla;ny — ’)/28$’}/1). (3253)

These functions are obtained as a result of the variation of the term containing AV (more detail
in Appendix C)

Oy <—2/~@/ d2§em"H8m718n'ygAV) = /@/ d*¢(BT vy + B 6v_), (3.2.54)
2 )

using partial integration and the fact that 9.V = v.. Inserting these relations into gauge fixed
action and again keeping only terms that are linear in H, we obtain T-dual action

oS = K / BP0, (g Xy TL (e X7, (3.2.55)
by
where
M 1
:Eyz-rlu =171 :L"yzH+,u1/ = :L"yzB,uZ/ + §xyzG,u1/7 (3256)
73
0 —HAV 0 100
a:yzB;U/ = HAV 0 0 s Z‘yZGIJJj = 010 (3257)
0 0 0 0 0 1

We also introduce double coordinate
ai"}/g = :i:aiﬁ/g. (3258)

One thing to note is that AV never stands alone it is always accompanied by field strength
H, which implies that, according to the diluted flux approximation, we calculate AV in zeroth
order in H

AV = / d£+8+’}/3 - / d£*8_73 = A’}/g (3259)
P P

This expression makes it clear why we defined double coordinate 73 as in Eq. (3.2.58). Presence
of AV, which is defined as line integral, represents the source of non-locality of the T-dual
theory. The resoult of three T-dualizations is a theory with R flux. Combining equations of
motion for Lagrange multiplier (3.2.51) with equations of motion for gauge fields (3.2.52), we
obtain the T-dual transformation law for z coordinate

8iz = :tai’73 - QB:F (3260)
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3. T-duality of closed bosonic string with H-flux

Combining 0,z and 0_z we get transformation law for Z

22y + H(mv, —72m) (3.2.61)

which enables us to write down the transformation law in the canonical form

1
PR H(xy — yz'). (3.2.62)

/

Y3

I

Here we used the expression for the canonical momentum of the initial theory (3.1.13)

= — = KZ. 2.
55 = 14 (3.2.63)

T

3.3 Noncommutativity and nonassociativity using T-duality

Having obtained transformation laws in canonical form for all coordinates

1%
I

1
~Ty Vs T H(xy — ya'). (3.3.64)

/
T
K

/
— T, Y2
K

we can start analyzing how Poisson brackets of T-dual theory differ from starting one. In order
to find the Poisson brackets between T-dual coordinates 7,, we will use the algebra of the
coordinates and momenta of the initial theory

{(2"(0), m,(5)} = 6"6(c — 7), {a" 2"} = {mp,m} =0, (3.3.65)

as well as results obtained in Appendix. By examining structure of transformation laws it is
obvious that only nontrivial Poisson brackets will be {v1(c),v3(d)} and {y2(0),v3(a)}.

3.3.1 Noncommutativity relations

We start by examining Poisson brackets between o derivatives of T-dual coordinates 7, using

(3.3.64), where only nontrivial ones are

[1(0).%4(0)} = ZHy (0)3(0 — 0) + - Hy(o)&' (o — o), (33660
(), 44(5)} = —%Hx’(a)é(a _ &) - %Hm(a)é/(a _5). (3.3.67)

We see that these Poisson brackets are of the form (B.0.1), so we can apply the result (B.0.9).
Consequently, we get

2

2 Pylo) — @) Ho ), (3:3.68
7 22(0) ~ 2(o)) H(o — 0), (3:3.69)

{mn(o),

73
{12(0), 73

(@)

}
)}

2

(o
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3.3. Noncommutativity and nonassociativity using T-duality

These two Poisson brackets are zero when o = ¢ and/or field strength H is equal to zero. But
if we take that 0 — & = 27 then we have H(27) = 1 and it follows

{n(o +2m),74(0)} = — 2 BN, + (o). (3.3.70)
{alo +2m),75(0)} = - [4xN, + (o), (3.3.71)

where N, and N, are winding numbers defined as
z(o+2m) —x(0) =21N,, ylo+27)—y(o) =2nN,. (3.3.72)

From these relations we can see that if we chose o for which z(c) = 0 and y(o) = 0 then
noncommutativity relation are proportional to winding numbers. On the other side, even in
cases where winding numbers are equal to zero there is still noncommutativity between T-dual
coordinates.

3.3.2 Nonassociativity

In order to calculate Jacobi identity of the T-dual coordinates we first have to find Poisson
brackets {v1(c),z(d)} which is presented in Appendix B, here we give only result

{r2(0),y(0)} = —%ﬁ(a — 7). (3.3.73)

The relation for {y2(c),y(a)} is similar because the transformation law for y-direction is of
the same form as for z-direction, the Poisson bracket is of the same form. Calculating Jacobi
identity by using noncommutativity relations (3.3.68) and (3.3.69) and previous equation we
have

{71(01>7 72(‘72), 73(0’3)} =
M1

{n(o1), {12(02),73(03)}} + {r2(02), {73(03), 71 (01)}} + {73(03), {71 (01),72(02) } }
2H 1 - _ _ _ _ _
= —? H(O'l — O'Q)H(O'Q - 0'3) + H(O'Q - 0'1)]‘.[(0'1 — 0'3) + H(O'l - O'3)H(O'3 — 0'2) .
Jacobi identity is nonzero which means that theory with R-flux is nonassociative. For gy =
03 =0 and 01 = 0 + 27 we get

2H

K2

I

{n(o+2m),72(0),73(0)} (3.3.74)

From the last two equations, general form of Jacobi identiy and Jacobi identity for special
choice of ¢’s, we see that presence of the coordinate dependent Kalb-Ramond field is a source
of non-commutativity and nonassociativity.
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4. From H-flux to the family of three nonlocal
R-flux theories

This chapter is based on work done in paper [01]

We have seen in previous chapter how T-duality affects theory that describes propagation
of bosonic string in presence of coordinate dependent Kalb-Ramond field. T-dualization was
performed first along x and y coordinates and finally along coordinate on which background
fields depend, that is z coordinate. Result of such chain of T-dualizations was that we had
emergence of non-locality and non-commutativity only at the end, after dualizing z coordinate.
This posses natural question, could we obtained non-commutativity earlier if we had chosen to
follow another T-duality chain? The answer to this question is positive. If we had, for example,
conducted T-dualization along xzy chain non-locality as well as non-commutativity would arise
after second T-dualization. This fact illuminates new found richness of this simple model, where
slight adjustments to T-duality chain give rise to whole new family of theories. It should be
noted however that final T-dual theory is unique and that all alternate T-duality chains converge
on same final theory which, as we have seen, was non-local and non-commutative.

Focus of this chapter is again on examining closed bosonic string with coordinate dependent
Kalb-Ramon field but along alternative T-duality chain, namely zyz chain. This order of
dualization will produce non-local theory after first T-duality and subsequent dualizations will
give us non-commutative relations. Since background fields depended only on z coordinate,
these subsequent dualizations will not affect locality of theory. Just like before, main tools for
this endeavour will consist of general and standard Buscher procedure for coordinates z and x
/y, respectively.

4.1 Preliminary action and background fields

Starting point of this chapter is the same as of the previous one and we will not repeat its
contents. We will however, for clarity sake, only list starting action transcribed in light-cone
coordinates

S = k/ d2€8+x“]:[+#ya_xl}
P

= k/ d*¢ B (0y20_x+ 0, y0_y+ 0120_2) + 0yaxHz0_y — Oy yHz0_x| (4.1.1)
¥
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4.2. Family of three R-flux non-local theories

as well as starting background fields

100 0 Hz 0
Gw=1010|, Bu=|-Hz 0 0]. (4.1.2)
001 0 0 0

Notation is the same as before. > denotes world-sheet surface which is parametrized by 7 and
o world-sheet coordinates or, as in the case of light-cone basis, by {1 and £, while space-
time coordinates are denoted with z, y and z. Space-time metric tensor G, is constant and
antisymmetric Kalb-Ramond tensor B, has infinitesimal linear coordinate dependence on z,

both of these tensors combine into tensor Il ,, as II,, = B,, £ %Guv-

4.2 Family of three R-flux non-local theories

In this section we will perform T-dualization along zyz coordinate chain. After every T-
dualization we will write down T-dual transformation laws in canonical form and check if the
theory has become non-commutative. Since T-duality procedure is the same as in chapter
before, although in reverse, we will omit most details and only focus on main results.

4.2.1 T-dualization along z direction - shortcut to R-flux

We have already seen that theories with coordinate dependent Kalb-Ramond field are invariant

under global shift symmetry with transformations of type x# — x* + M\, where invariance is

guaranteed duo to inherent antisymmetry of tensor as well as by trivial winding conditions.

This fact makes it possible to utilize general Buscher procedure in first step of T-dualization.
By substituting partial derivatives with covariant derivatives D4z

8:|:Z — Diz = 8iz + v4, (423)

introducing invariant coordinate z*™¥

2 = / dé“Dyz = / d¢t D,z +/ d¢ " D_z = z(§) — z(&) + AV, (4.2.4)
P P P
and adding term with Lagrange multiplier -3
Sadd = g/ d*En3(Dyv- — D_vy). (4.2.5)
b

to the action (4.1.1), as well as utilizing gauge freedom to fix z(§) = z(£§,) we obtain gauge
fixed action

Stix :/@'/ d*¢ [HAV(8+:L*8y —0,y0_x) + %(0+x8x + 0 y0_y +vyv_)
2

+ %73(3#1 - aer)} : (4.2.6)
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4. From H-flux to the family of three nonlocal R-flux theories

Here AV is given as
AV = / d€% v, = /(d§+v+ +d¢v). (4.2.7)
P P

The equation of motion for Lagrange multiplier y3 obtained from above action (4.2.6) produces
Ov_ —0_vy =0— vy =012, (4.2.8)

which drives us back to the initial action (4.1.1). On the other side, if we found equations of
motion for gauge fields vy, we get

Vg = :tai’}/g - 25:': s (429)

where $* functions are obtained in exactly the same way as before however, they are now
functions of initial coordinates x and y instead of T-dual ones and we do not need to make and
substitutions

1
BE = :F§H($8¢y —y0zx). (4.2.10)

Plugging equations of motion for gauge fields v into gauge fixed action and keeping only terms
lienar in H, we are let to T-dual action

S =k / d*€0, (. X)" 11,0 (.X)", (4.2.11)
%

where we now have following coordinates and background fields

x
1
ZXM = y 9 ZH+NV - ZB[,LV + §zG,u,y 9 (4212)
73
0 HAV 0 1 00
Bu=|-HAV 0 0|, .Gu=|010]. (4.2.13)
0 0 0 0 01

Since AV is represented as line integral which is the source of non-locality, we have that this
theory is non-local.

By combining solutions to the equation of motion for Lagrange multiplier (4.2.8) with
equations of motion for gauge fields (4.2.9) we find T-dual transformation laws

01z =2 +017v3 F H(20+y — yoix). (4.2.14)

Finding expression for Z and combining it with canonical momentum of z coordinate from

original theory
08
B

we get canonical transformation law for o derivative of T-dual coordinate 73

K2, (4.2.15)

T

/

1
vy = —m, + H(xy —ya'), (4.2.16)
K
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4.2. Family of three R-flux non-local theories

which is of the same form as in the xyz case.

Unlike in previous chapter here we will keep the symbol AV throughout, instead of intro-
ducing double coordinate 3.

Since we are dealing with exactly the same starting theory, initial coordinates satisfy stan-
dard Poisson algebra

{2"(0),2"(0)} = {mu(0), m,(0)} =0, {a"(0),m,(9)} = 6",0(0 — ), (4.2.17)

which when utilizes with expression for canonical transformation law (4.2.16) we are led to the
conclusion that theory we have just obtained is commutative. As a consequence of this, it also
follows that this theory is also associative. While this theory is also theory with R-flux as one

we obtained at the end of xyz dualization chain, their commutative properties are different.

4.2.2 T-dualization along y direction

Starting from the action that was dualized along z direction (4.2.11), we continue along our T-
dualization journey by focusing on y coordinate. In this case background fields are independent
of coordinate in question therefore we will apply standard Buscher procedure. In order to not
repeat unnecessary steps we immediately introduce gauge fixed action The gauge fixed action
is of the form

S fin :m/ d*¢ B (Oy20_x +vyv_ 4+ 04730-7y3) + HAV (v_0rx — v, 0_x) (4.2.18)
®
1

+ 572(8+v_ — 8_v+)} . (4.2.19)

Here solutions to equations for motion of Lagrange multiplier v, are
vy = 01y, (4.2.20)
while the equations of motion for gauge fields are
vy = £0+v F2HAV Oy . (4.2.21)

Inserting the expression for gauge fields (4.2.21) into gauge fixed action (4.2.18), we obtain the
T-dual action

WS =5 / d*€ 0y (o X)" Lyl 0 (5 X)Y, (4.2.22)
)
where
. 1
zyXM = 72 ) zyHJruV = zyB/u/ + 5 zyG/wa (4223)
V3
1 —2HAV 0
B =0, G = —2HAV 1 0 . (4.2.24)
0 0 1
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4. From H-flux to the family of three nonlocal R-flux theories

Comparing results from zyx and xyz chain after two successive T-dualizations, we see that
fields are different. In fact this configuration of fields does not emerge at any point in previous
chapter.

Continuing the procedure by finding canonical momenta of original theory
m, = k(Y + 2Hz2'), (4.2.25)
and combining them with transformation laws
O+y =2 017 F2HAV Oy, (4.2.26)

we are left with transformation laws in canonical form

1
=R (4.2.27)
K

12

which are the same as in zyz case.

Having obtained two different transformation laws we can immediately notice that this the-
ory has emergent non-commutative properties. By utilizing standard Poisson algebra (4.2.17)
we find new nonzero Poisson bracket

{4(0).%(0)} = 2 22'(0)5(0 — 2) + 2(0)7 (0~ )] (1.229)

where ¢ = 0,6(c — 7). If we take following substitutions A'(c) = y5(0), B'(c) = v4(a),
U'(c) = Z24/(0) and V(o) = £z(0), we notice that above relation takes the form (B.0.1).
Utilizing result (B.0.9) from Appendix B, we find following Poisson bracket

{r2(0),73(0)} = A [22(0) — ()] H(o — 7). (4.2.29)

K

Examining case where string is winded around compactified coordinate 0 — o+ 27 and ¢ — o

gives us

{yo(0 + 27, ys ()} = —g (2(0) + 47N, (4.2.30)

Here N, winding number defined exactly the same as in previous chapter (3.3.72). As we
can see, the non-commutativity relation (4.2.29) is of k-Minkowski type. Calculating Jacobi
identity, it is straightforward to see that

{#(01), {72(02),73(03) }} + {12(02), {73(03), (1) }} + {73(03), {x(01),72(02)}} = 0. (4.2.31)

Because the Jacobiator is zero, we conclude that this R-flux theory is non-commutative but

associative.

4.2.3 T-dualization along z direction

In this section we finish zyx chain of T-dualization by dualizing remaining = coordinate. Since
this section is mostly the same as one for y coordinate we will omit all but most important
results.
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4.2. Family of three R-flux non-local theories

We immediately begin with gauge fixed action obtained from (4.2.22)

1
oy fiz :m/ d’¢ {5 (V- + Oyy20_yo + 0yy30-73) — HAV (010_ve + 042 v_)  (4.2.32)
2

1
+ 5'}/1 (8+U_ — a_U+):| . (4233)

The equations of motion for Lagrange multiplier produces
vy = O+, (4.2.34)
while the equations of motion for gauge fields vy give
vy = £0+v1 + 2HAV 017y, . (4.2.35)

Inserting expressions for vy into gauge fixed action we get the T-dual action

S = K / €0, (o X ) syeTLi (o X) (4.2.36)
b
where
71 1
zer'u - V2 ) zymH—i-;w = zya:B;w + 5 zysz,w (4237)
V3
0 —HAV 0 1 00
B = | HAV 0 0 ; aw2Gu =101 0 (4.2.38)
0 0 0 0 01

These fields are exactly the same as the ones obtained at the end of xyz dualization, which
is expected since T-dual theory is unique.

By combining equations of motion (4.2.35) with solutions for equation of motion of Lagrange
multiplier v; (4.2.34) and by substituting into this combination canonical momentum of original
theory

e = ki — 26 H 21/, (4.2.39)

we are left with the canonical form of the T-dual transformation law

1
—Ty . 4.2.40
— (4:2.40)

1%

o

As we see the full set of T-dual transformation laws, (4.2.16), (4.2.27) and (4.2.40), are the
same as in previous chapter (3.3.64), up to H — —H. Since T-dualized theory is the same we
find same non-commutative

I

{mn(o), (o)} %[29(0)—y(0)]g(0—0)a (4.2.41)
{12(0),13(0)} = —

2

7 22(0) ~ 2(o)) H(o — 0), (+2.42)
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4. From H-flux to the family of three nonlocal R-flux theories

and non-associativite relations

{1(o1),72(02),93(03) } =
{n(01), {n2(02), 73(03) }} + {72(02), {73(03), 11 (1)} } + {13(03), {11(01), 72(02) } }

= 2]{—[2{ |:H(0'1 —09)H (09 — 03) + H(09 — 01)H (01 — 03) + H(0y — 03)H (03 — 09)|.

which can be obtained from the corresponding ones in xyz case by replacing H — —H.

4.3 Quantum aspects of T-dualization in the weakly curved

background

Both in this and previous chapter in order to prove isometry of z coordinate and to compute the
S* functions we assumed the trivial topology and that surface terms, that occur after partial
integration, vanish. Now we shift our focus on some quantum features of these problems that
manifest in nontrivial topologies. Action that we will examine will be slightly modified, we are
still examining bosonic string in presence of constant space-time metric tensor, but this time
we take Kalb-Ramond field which depends on all coordinates with infinitesimal field strength.
Previously discussed case, torus with H flux, is just a special case of this more general model.

Classic theory that we considered until now contained some problems. They all stem from
generalized Buscher procedure which demanded the introduction of invariant coordinate x, .
Since invariant coordinate is multivalued and in order to prove that the gauged theory and
initial one are the same we needed to consider global characteristics. By switching from classical
theory to quantum one at higher genus, situation is additionally complicated by holonomies of
the world-sheet gauge fields Fortunately, these problems can be resolved in Abelian case in the
quantum theory [37, 92, 93].

Starting point of this discussion is partition function for bosonic string in weakly curved
background fields

Z=2. / DyDu i Jov G vin fyoBIVIvt 5 fy vy (43.1)
g=0

Here by making Wick rotation 7 — —i7, we multiply term containing the metric tensor G,
by ¢, while the terms which contain Kalb-Ramond field B, and Lagrange multiplier v, stay
unchanged. Then new form of partition function is

Z = Z/D’ﬂ)v e~ 5 JsvGrvtin [guB[V]v+ S Jsvdr, (4.3.2)
g=0

where star represents the Hodge duality operator, while g denotes the genus of manifold. In
order to pass main idea across and not be dragged down by index calculus we oped to use
differential form notation and omit all space-time indices.

The first step in the calculation process is separation the one form Lagrange multiplier dy
into the exact part dv. (7. is single valued) and the harmonic part 7, (dy, = 0 = d'y;)

dy = dve + - (4.3.3)
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4.3. Quantum aspects of T-dualization in the weakly curved background
For the closed forms the co-exact term d'v., in the Hodge decomposition is missing.

The path integral (4.3.2) goes over all degrees of freedom including local degrees of freedom
as well as the sum over different topologies. According to the (4.3.3), we can split D7y into part
containing path integral over 7. and the sum over all possible topologically nontrivial states
contained in +y, (marked by H.)

Dy =Dy Y . (4.3.4)

H,

By integrating over 7., and utilizing functional representation of Dirac delta

/ Deet 55 — 5(g), (4.3.5)

we obtain that field strength vanishes

2= [ Dustan) e e O rorinte BV S e, (43.6)
H’Y

Same way as we had split Lagrange multiplier 1-form, we can split the v 1-form by expressing
it as sum of exact, co-exact and the harmonic parts

v =dz + dve. + vp, (4.3.7)

which means that
Dv — DaDd'v.. dH,,. (4.3.8)

The functional integration over harmonic part vy drives to the ordinary integration over topo-
logically nontrivial periods (marked by symbol H,). After integration over d'v., we get

7 = / DxdH, =8 v Grorin[svBVIVN ™ o5 fo v (4.3.9)

H,

The last term in the exponent is responsible for nontrivial holonomies. Eliminating v.. part,
the 1-form v becomes closed and the Riemann bilinear relation becomes usable

/th - zg; []{ng " — 7{ - 7{ U] (4.3.10)

The symbols a;,b; (i = 1,2,...,g) represent the canonical homology basis for the world-sheet.
Because of the periodicity of the Lagrange multiplier y, we have that these periods are just the
winding numbers around cycles a; and b;

No, = ]{ Yho Np, = j@{ Vh - (4.3.11)
a; b;

7 2

Ai = f v, Bl = % v, (4312)
a; b;
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4. From H-flux to the family of three nonlocal R-flux theories

and inserting these expressions into 4.3.10

g
/ vih = > (No,Ai = N, B), (4.3.13)
> i=1

the partition function (4.3.9) gets the form

7 = / D dA;dB;e 5 Jev G vtin [svBVv Z e's Xi1(No, Ai=Na;Bi) (4.3.14)
N, Ny, €7
The periodic delta function is defined as d(x) = % neZ e which produces
Z:i/IMdAﬂﬁﬁﬂgAﬂﬂgBaeQEUGW+M&”MW”. (4.3.15)

It is useful to examine the path dependence of the variable V#, whose form is now

V() = aH(§) — (&) + / v+ (4.3.16)
P

Let us consider two paths, P, and P, with the same initial £ and the final points £*. Now

we will subtract from the value of V# along P, the value along path P, and obtain the integral

over closed curve P, P; ' of the harmonic form

xwm—wgbf Wb (4.3.17)

ppyt

Establishing the homology between the closed curve Py P2_1 and curve ), [niai—l—mibi} , (ng,m; €
Z) we get finally
VIR = VEP) + Y (n Al +m;BL). (4.3.18)

The variable V#() in classical theory is path dependent if holonomies are nontrivial.

Integrating Eq.(4.3.15) over A; and B; implies that periods A; and B; are zero. Consequently
v =dux. (4.3.19)

The variable V* becomes single valued, and the initial theory is restored
7 — /D.CE@_; Js, dx G*da+ik [y deBlxlde _ /Dxe—n Js, d2£0x11 [x]0x ) (4320)

By proving that we could salvage initial theory from gauged fixed action of bosonic string
in the weakly curved background in the presence of nontrivial topologies we showed that our
choice of coordinate dependent Kalb-Ramond field is consistent with path integral quantization
process.

It is useful to compare our examination of this model with similar results. During our work
we were using only Abelian isometries with combination of standard and generalized Bushcer
procedures. There has been work done in alternate approach, where non-Abelian isometries
were considered and only standard Buscher procedure was utilized [91]. There it was showed
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4.3. Quantum aspects of T-dualization in the weakly curved background

that spaces with isometry maps to the nonisometry spaces, while in this and previous chapters
there was isometry in every T-dualization step. In paper [95], authors also utilized generalized
Buscher pocedure with invariant coordinates, however dualization was again conducted along
non isometry directions using extension of gauge symmetry. It is also useful to mention that
this case can be treated in double space formalism [96]. This way T-duality is represented
as rotation in space-time that is spanned by coordinates z* and their dual counterparts y,,.
Results that are obtained here are in accordance with results we obtained in this and previous
chapters.
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5. Bosonic T-duality of supersimetric string
with coordinate dependent RR-field

This chapter is based on work done in paper [97]

Having analyzed bosonic string in sufficient detail, we will from now on focus on superstring.
In bosonic string case we have seen that emergence of non-commutativity arises from the fact
that background fields depended on coordinates. To be more precise, if we had original theory
in which background fields depended on one specific coordinate we found out that T-dual theory
now has one non-commutative coordinate which is dual to original. Similar situation happens
in superstring case although on much more complex stage. While bosonic case had only three
fields (G, spacetime-metric, B, Kalb-Ramond field and ¢ dilaton field) which could depend
on space-time coordinates, superstring theory has plethora of fields that can depend both on
bosonic and fermionic coordinates, where dependence on fermionic part is given as an expansion.
Even through T-duality procedures for obtaining T-dual theories are the same this complexity
of fields makes it imposible to get any sensible result for any except simplest configurations.
As we shall see, near the end of this thesis, even working with field that has both symmetric
and antisymmetric part gives rise to plethora of problems.

In this chapter we will examine T-duality and subsequent non-commutativity of bosonic
part of type II superstring in presence of coordinate dependent Ramond-Ramond (RR) field.
Coordinate dependence will be linear and based only on bosonic part, furthermore just like in
H-flux theory we will set work with infinitesimal coordinate dependent part, but in order to get
S* functions we will also assume this part is antisymmetric. Motivation for this configuration
of background fields comes from Ref. [31, 13] where it has been speculated that this exact
configuration will give rise to non-commutativity of fermionic coordinates, where these new
fermionic non-commutative relations are expected to be proportional to bosonic coordinates,
This hypothesis, if proven true, would suggest that all space-time has underlying fermionic
structure. Having seen that in bosonic case non-commutativity arises only in coordinates on
which fields in starting theory depend, does this fact prematurely kills this dream? Even
through answer to this question is that there are no new fermionic non-commutativity relations
(details are in following chapter), without doing calculations the answer is not so obvious. This
stems from the fact that, since theory contains two sets of coordinates, we expect that fermionic
coordinates emerge in bosonic T-dual transforamtion laws and vice versa.

As we have already said, this chapter will only focus on T-dualization of bosonic part of
superstring theory. Method that we will utilized has already been seen in action in dualization
of z coordinate, generalized Buscher procedure. Unlike previous case, T-duality here will not
be carried one coordinate at the time, we will dualize all bosonic coordinates at once. When
we obtain T-dual theory we will carry T-dualization once again to obtain starting theory.
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5.1. General type II superstring action and choice of background fields

While this step seems excessive, due to sheer complexity of the theory it is necessary as an
additional check that we did not make mistakes during T-dualization. At the end of the
chapter, by utulizing T-duality transformation laws, we will examine non-commutativity and

non-associativity of the final theory.

5.1 General type 1I superstring action and choice of back-

ground fields

We begin by recalling type II superstring action in pure spinor formulation [26, 27, 28, 29] from
Chapter 2.2. Also we will give detailed exposition and all needed assumptions before we begin

T-dualization.

5.1.1 General form of the pure spinor type II superstring action
Sigma model of type IIB superstring has the following form [31]

S =5+ Vsq. (511)

This general form of action is expressed as a sum of the part that describes the motion of string
in flat background

Sy = /Ed2§ (gnwﬁmx“ﬁna:”nm" — Ta0_0% + 8+§“7?a> + S\ + S5, (5.1.2)
and part that governs the modifications to the background fields
Vsa = /2 (XYM AN XY, (5.1.3)
The terms Sy and S5 in (5.1.2) are free-field actions for pure spinors
Sy = /Z w0\, Sy = /2 d*E0a 04\ . (5.1.4)

Here, A and \* are pure spinors whose canonically conjugated momenta are w, and @w,,

respectively. Pure spinors satisfy pure spinor constraints
AT 0N = ANTH) N = 0. (5.1.5)

In general case, vectors X and X'V as well as a supermatrix A,y are given by

&ﬁ“ 8_9)‘ Aa,@ Aau -EO/J7 ro,,ul/
I - 1S A A E Q
XM= I PG o, Auv= | i " e (5.1.6)
d,, dy E%s EY P (C%,
%Nﬁy %N'L_w Q/,u/,ﬂ Q/,u/,p Cﬁ,uu S/ﬂ/,pcr

where notation is the same as in Chapter 2.2. The components of matrix A,y are generally
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5. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

functions of z*, #* and #*. Components themselves are derived as expansions in powers of ¢
and ° (details are presented in Chapter 2.2 and consult [31]). The superfields A, Eﬁ‘, B and
P8 are known as physical superfields, while superfields that are in the first row and the first
column are known as auxiliary because they can be expressed in terms of physical ones [31].
Remaining superfields ., (Qu.,), C% (C? ) and S, 0, are curvatures (field strengths) for
physical superfields. Components of vectors X™ and X are defined as

I = o, 2" + %ea(rﬂ)aﬁ(xeﬁ, " =0 _a" + %éa(rﬂ)aﬂa_éﬂ, (5.1.7)
1 1
da = Taq — §<PH9)Q [a+$u + Z(@Fu8+0):| s
T 1~ _
do = 7o = 5 (Tuf)a {a_ﬂ + Z(erﬂa_e)} : (5.1.8)
Nt = %wa(r[#yl)aﬁw, N = %@a(r[wl)aﬁﬂ (5.1.9)

The world sheet ¥ is parameterized by ™ = (£° = 7,£! = o) and world sheet light-cone
partial derivatives are defines as 0. = 0, + d,. Superspace in which string propagates is
spanned both by bosonic z# (= 0,1, ...,9) and fermionic 6%, §* (a = 1,2,...,16) coordinates.
Variables m, and 7, represent canonically conjugated momenta of fermionic coordinates 6%
and 6%, respectively. Fermionic coordinates and their canonically conjugated momenta are
Majorana-Weyl spinors. It means that each of these spinors has 16 independent real valued
components.

5.1.2 Choice of the background fields

Background fields that we will work with are all constants except except RR field P*?. This
field will have linear coordinate dependence only on bosonic coordinates x*. These fields can
not be chosen at random, infact they must satisfy consistency relations outlined in Chapter

2.2. These consistency relations impose following form on supermatrix A,y

0 0 0 0
0 k(29w + Buw) b 0
A _ 2Jnv pv e 5.1.10
My 0 -y %(faﬁ + C’;vﬂ$p) 0 ( )
0 0 0 0

Here g,,, is symmetric tensor, B, is again Kalb-Ramond antisymmetric field, ¥ and \I/l‘j are
Mayorana-Weyl gravitino fields, and finally, f** and CS‘B are constants. Dilaton field @ is
assumed to be constant, so, the factor e® is included in f*? and C/‘fﬁ . This will be a classical
analysis and we will not calculate the dilaton shift under T-duality transformation. Based on
the chirality of spinors, there are type ITA superstring theory for opposite chirality and type
I1B superstring theory for same chirality.

Since background fields must satisfy consistency relations we have one additional restriction
imposed
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5.1. General type II superstring action and choice of background fields

Ih,C =0, Th,CP =0. (5.1.11)

Remaining constraints [31] are trivial and applied only to non-physical fields.

In addition to choice of supermatrix, in order to simplify calculation of bosonic T-duality,
because all background fields are expanded in powers of % and 6%, all §* and 6 non-linear
terms in XM and X? will be neglected. This greatly simplifies components of these two vectors
and they now have following form

I — Oyt do = T, do — T (5.1.12)

Taking into account all these assumptions, the action (5.1.1) takes the form

K Y — _
S = / 4 [§H+W8+:L'“8_:U” — T (0-0% + WED_2¥) + (240° + O, 2" V%) 7,
>
) (5.1.13)
+E7ra(f°‘5 + CPaP)mg)

Here, we combined flat space-time metric 7,,, with g,, to obtain metric tensor G, = 1, + G-
This tensor is again combined with Kalb-Ramon field to obtain Il ,, = B, £ %Guv which 1is
the same tensor we had introduced when we dealt with bosonic string.

Fermionic momenta m, and 7, that appear in above action play the role of auxiliary fields
which can be removed by finding their equations om motion and inserting them back into the
action

7y = g (F7'(@)) 5, (0-6" + WS0_") | (5.1.14)

To = =5 (0407 + 0,207) (F7' () (5.1.15)

Ba’

where we denote two new substitutions F*?(x) and (F~'(z))s of the form
F(x) = [+ CPa . (F7H(@))ag = (F Das = (F e O3 (f s 2. (5.1.16)

If we wish to invert previous equations and T-dual transformation laws, as well as to simplify
calculations, we must take into account two additional assumptions. First assumption has
already been touched upon and that is need for infinitesimal ijﬁ . This is reminiscent of diluted
flux approximation for bosonic string and in fact this assumption plays exactly the same role as
did assumption for H. Second assumption is that (f~')ae, C*(f '), is antisymmetric under
exchange of first and last index. In other words, tensor (F~!(x)),s has only antisymmetric part
that depends on x* and it is infinitesimal. These two additional assumptions do not in any way,

shape or form infringe on consistency relations for background fields or alter the properties of
other fields.

Substituting equations (5.1.14) and (5.1.15) into (5.1.13) the final form of action is
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5. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

S = /-i/ d*¢ [Hﬂw&rm“@x” + %(&ﬁo‘ + D) (F’l(x))aﬁ (0_0° + WP _a*)|. (5.1.17)
>

Having obtained this action, we can safely proceed with T-dualization.

5.2 T-dualization

In this section T-duality will be performed along all bosonic coordinates in order to find rela-
tions that connect T-dual coordinates with coordinates and momenta of original theory. These
transformation laws will then be used in subsequent chapters to find non-commutativity rela-
tions between coordinates of T-dual theory.

Starting point for considering T-duality will be generalized Buscher T-dualization procedure
[44]. This procedure works when we have theories with coordinate dependent background
fields. Standard Buscher procedure [36, 43], which we had partially utilized in previous two
chapters, is designed to be applied along isometry directions on which background fields do
not depend and is not applicable here. The shift symmetry in the generalized procedure is
localized by introduction of covariant derivatives, invariant coordinates and additional gauge
fields. These newly introduced gauge fields produce additional degrees of freedom. Since we
expect that starting and T-dual theory have exactly the same number of degrees of freedom
we need to eliminate all excessive degrees of freedom. This is accomplished by demanding
that field strength of gauge fields (F,_ = 0,v_ — 0_v,) vanishes by addition of Lagrange
multipliers. Next step in procedure is fixing the gauge symmetry such that starting coordinates
are constant and action is only left with gauge fields and its derivatives. From this gauge
fixed action, finding equations of motion for gauge fields, expressing gauge fields as function
of Lagrange multipliers and inserting those equations into action we can obtain T-dual action,
were Lagrange multipliers of original theory now play the role of T-dual coordinates.

Action (5.1.17) is invariant to translation symmetry, by the virtue of antisymmetric part of
F a_ﬁl, tensor (f~1C,f')as. Following antisymmetricity of this tensor, we can rewrite the action
(5.1.17) in the following way

1 _ -
S = /{/ d*¢ [Hﬂw&rx”@_x” + §em"8m(9a + 2" W) (F_l(a:))aﬁ 0,(0° + WPy . (5.2.1)
>

Let us now consider the global shift symmetry dz* = A\ and vary the action (5.2.1)

K

08 = 5

(IO s / d26€™0,,, (0% 4+ U22")0,(0° + \Ifgwp) , (5.2.2)
)

where m,n are indices of the twodimensional worldsheet. After one partial integration, we

first obtain surface term, which we neglect because we are interested only in trivial topologies

with trivial winding conditions. Second term which we obtain is identically zero because it is

product of symmetric, 9,,0,, and antisymmetric, €™", tensor. So, the shift isometry exists.

In order to find T-dual action we have to implement following substitutions

44



5.2. T-dualization

Orax* — Dozt = Opa” + vl (5.2.3)

at = a,, = / d€™ Dppat* = 2#(8) — 2*(&) + AVH, AVH = / €™ vy, (€), (5.2.4)
P P

S =S+ g / d*€E [0y, — v 0y y,] . (5.2.5)
=

Here we decided that y,, will play the role of Lagrange multiplier and subsequently the role of T-
dual coordinate. Because of the shift symmetry we are allowed to fix the gauge, z#(§) = x*(&)
and, inserting these substitutions into action (5.1.17), we obtain auxiliary action suitable for
T-dualization

1 _ —
Stiz = K / d*¢ [Hﬂwviv” + 5 (0.0 + v U) (FH(AV)),, (0-67 + Wiu”)
. . (5.2.6)
+§(vi8,yu —v"0:y,)

Similarly as before, working with invariant coordinate we have necessary introduction of non-
locality into the theory. Also, path P that is taken in expression for AV? goes from some
starting point &, to end point .

In order to check if substitutions we had introduced are valid and that they will lead to
correct T-dual theory of starting action, we need to be able to obtain original action by finding
solutions to equations of motion for Lagrange multipliers. Equations of motion for Lagrange
multipliers give us

v —00" =0 = ol =0.a". (5.2.7)

Inserting this result into (5.2.4) we get the following
AVP = / ™0, 27 (€)= 29(€) — (&) = A (5.2.8)
P

Since, we had shift symmetry in original action, we can let z#({y) be any arbitrary constant.
Taking all this into account and inserting (5.2.7), (5.2.8) into (5.2.6) we obtain our starting
action (5.1.17).

Before we obtain equations of motion for gauge fields, we would like to make following
substitution in action

Yip =04y — 040° (FTHAV)) [, U5, Yo, =0y, + 05 (FTHAV)) ,0-0°,  (5.2.9)
3 1 T, - ) 1 T £— a181( £—
My =y + 505 (FHAV)) W) =i — S Vil Naa CoV (f 1) a8V AV?, (5.2.10)
g Lo,
My, =0,,,+ §\Ilu(f Das Ul (5.2.11)

These substitutions allow us to write down gauge fixed action into more manageable form
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5. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

%vﬁnﬁ%mea (FH(AV)),,0-0°| . (5.2.12)

= 1
Stiz = H/Edzﬁ {Hﬂwvivi + 5?1_7_1/;# -
This action produces following equations of motion for gauge fields

_ 1 — 1
I yuv” = _(éy—u + BI(V))a L0 = §Y+u =B, (V). (5.2.13)

Here, function 8%(V) is obtained from variation of term containing AV? in expression for
F~1(AV) (details are presented in Appendix C)

B, (V) Zi&r [0 + VU ] (Faa Co P (fNpis 07 + WL, V™

VT (e O ()50 07 + V], (5.2.14)
B V) = [0+ VO] (O ()0 [0° + WLV

—ia [0 + VUL T (f aa CL P (f ) pis[07 + W5, VY] (5.2.15)

Here we have took advantage of the fact that 0.V#* = ¢! (more details in Appendix C). Let us
note that V# in the expressions for beta functions is actually V(O* because it stands besides
C%P. We omit index (0) just in order to simplify the form of the expressions.

In order to find how gauge fields depend on Lagrange multipliers, we need to invert equations
of motion (5.2.13). Since C’ﬁﬁ is an infinitesimal constant, these equations can be inverted
iteratively [11]. We separate variables into two parts, one finite and one proportional to C’;"ﬁ .
After doing this we have

~ 1 1 ~
W= =@ DY+ B VO], = DY - B (V)] (5.2.16)

Functions B, (V(?) are obtained by substituting first order of expression for v into B4,(V),
where V() is given by

AV(O)”:/dfmv,(g)”
P

1 A 0 - 1 — A\PP1 e —
— 5 [ 6T [Bry 0.5 (] - 5 [ A6 [0y, + 5, (7 0s0-07).
P P
(5.2.17)
Where 6 is inverse tensor of 11, ,, = Il + 304 (F~YAV)) s U8 defined as
O 1l,,, = ok, (5.2.18)
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5.2. T-dualization

where
_ v 1o _
O = O o SO, (7 )aw Co VO (1) 5,501 6, (5.2.19)
o, v 1 _ _
O"11,, = &, 0" =M — —@’i’“w (fH)apgll 67 (5.2.20)
foP = fof 4 \110‘@“”\1/5 (5.2.21)
Ol ,, = 0k, O_ = —4(G'I_G ). (5.2.22)

Tensor G, = G, —4(B G 'B) w 1s known in the literature as the effective metric.

Inserting equations (5.2.16) into (5.2.6), keeping only terms that are linear in C¢” we obtain
T-dual action

f/ [%(:)“”Y+MY_V+0+90“ (F‘l(AV))aBG_Gﬁ]. (5.2.23)
%

bg _
5_2

Here superscript ® denotes bosonic T-duality. Comparing starting action (5.1.17) with T-dual
action, were we note that dyz# transforms into 0y, and z* transforms into V) we can deduce
that T-dual action has following arguments.

bR = i@#_ﬂ/, (5.2.24)
1 A\ T —
(WO, = (PO, = 5 (P00, 9RO (FV), . (5220
byHa (bF_l(V(O)))aB — %(:)W\I;g (F—l(v(0>))a67 (5.2.26)
(qu(V(O)))aﬂ bvB — _% (Ffl(v(0)>)a6 \pﬁéﬁ_“’, (5.2.27)

In order to express T-dual gravitino background fields in terms of its components, it is useful
to calculate inverse of field *F
«@ [e% 1 o VT,
bReB(v 0y = peB vy 0y 4 5\11#@*1 8 (5.2.28)

With this equation at hand it is straightforward to obtain T-dual gravitino fields. Here we
present T-dual gravitino fields expanded in terms of their components

_ 1. 1.

bpre — _QMV\DS + _@L_Lm\pgl (Ffl(v(o))) \1,61@11111\1/317 (5.2.29)
1 1 = ~

b\, v « -1 a 120%

PP = —§qf§@“ \I/ﬁ@’i’“\lfm (F' (VD)) 0, U0, (5.2.30)

The general conclusion is that all background fields get the linear corrections in C’fjﬁ comparing
with the results of the case with constant background fields [10]. Also the coordinate dependence
is present in all T-dual background fields.

From the above equations we see how background fields of original theory transform under
T-duality. It should be noted that these actions are of the same form taking into account that
initial coordinates x* are replaced by y, after T-dualization.
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5. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

5.3 T-dualization of T-dual theory

Requirement that original theory and T-dual one describe the same physics it should be possible
that we can switch from one onto other by cycling T-duality. That is, applying T-duality twice
does not introduce any changes. In this chapter we would like to do just that, we will apply
T-duality procedure onto already dualized theory in order to get back to starting theory. This

fact is actually a way to test if our calculations were correct.

When we started with T-duality in previous chapter, we started by testing if theory pos-
sessed translational invariance. Here, because of the presence of AV we do not need to
conduct such a test, theory is invariant. This can be easily deduced by checking eq. (5.2.17)
and taking notice that every instance of dual coordinate y,, is accompanied with partial deriva-

tive. We begin T-dualization by implementing following substitutions

8iyu —)Diyﬂ = 8iyu + Uty — Diy# = Uy, (531)
AVOr AT O
1 ~ —
AUO» = / dET 6P [t — 0.0 (F1)ap¥? ]
P
1 Ny _
—5/ dE= 0" [u_p, + U8 (f71)ap0-0"] | (5.3.3)
P
Y, —Up, =uy, — 0,0 (F*l(AU@))aﬁ 25 (5.3.4)
Yo =U-y = uy + V5 (FHAUD)) ,0-0° (5.3.5)
S S+ g / d*€(uy, 0 " —u_,0,a"). (5.3.6)
%

We denoted newly introduced gauge fields with uy while z# are Lagrange multipliers. In first
line we immediately fixed gauge by choosing y,(§) = const. Inserting these substitutions into
(5.2.23) we get

K

b
Si:r;:
D)

1_ _
/E d*¢ [56’1”U+#U_V +0,.0" (F‘l(AU(O)))aﬁ 0_0° 4+ (up,0_a" —u_,0.2")|. (5.3.7)
Finding equations of motion for Lagrange multipliers and inserting solution to those equations
into gauge fixed action we return to the starting point of this chapter, T-dual action. On the

other hand, finding equations of motion for gauge fields

Uiy =2 [aw”ﬁw + 8] (x)] +0,6° (F (1), W, (5.3.8)
Uy = —2 [ﬁﬂwa_:pv + ﬁ;(x)] — U2 (F (), 0-6°, (5.3.9)

and inserting these equations into the gauge fixed action, keeping all terms linear with respect
to C4”,, we obtain our original action (5.1.17). Here we use the freedom to choose Az =

zh(§) — a#(&), with 2#(&) = 0.
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5.4. Non-commutative relations

5.4 Non-commutative relations

We have already seen is simpler case that T-dual transformation laws, that connect dual and
original theory through their coordinates, along with Poisson bracket of original theory can be
combined in such a way to generate Poisson algebra of T-dual theory. This chapter continues on
this philosophy however we will be interested only in Poisson brackets of one half of the theory,
bosonic half. We leave examination of completely dualized theory as well as examination of
full Poisson algebra to following chapter.

Starting theory was geometric theory whose were space-time coordinates z#(£) and their
conjugated momenta 7, (). It is natural to impose standard Poisson bracket structure on such
a theory

{#"(0), m,(0)} = 6)0(0 = 7), {2"(0),2"(7)} =0, {mu(0),m,(7)} = 0. (5.4.1)

Since we have applied T-duality twice to this case we have two sets of transformation laws
that connect gauge wields with Lagrange multipliers. First set was presented in (5.2.16) and
other set was given by (5.3.8) and (5.3.9). These laws are equivalent and no matter the choice
there is no difference in results. We will chose to start with relations (5.3.8) and (5.3.9) and
using solutions to equations of motion for Lagrange multipliers z#, uy, = 0+y,, we obtain
following T-dual transformation laws

Osy 2 2[00 Ty + B, (2)] 4+ 0,07 (F' (), 05 (5.4.2)
0y 2 2|Tda” + Bl (2)] = U3 (F' (), 0.0, (5.4.3)

where symbol = denotes T-dual transformation. Subtracting these two equations and by uti-
lizing properties of light-cone coordinates (Appendix A), we get

_ , - B Loy /e
y, 21,0 1"+0.x H+W+ﬂ:+ﬁu+§a+9 (FH (@) .5 \115+§qu (F l(x))aﬂﬁ_ﬁﬁ. (5.4.4)

Taking into account that bosonic momenta, 7, of original theory are of the form
B v VT 1< a - 1 no —
T, = /{[HW,,@_x + 0”1, + §\I/M (F 1(I))aﬁ 0_0° + §0+9 (F 1($))a6 \I/ﬂ, (5.4.5)

and 8 = B + B, we obtain
m
%gf+@@. (5.4.6)

Here f3)(x) is given by

1 _ -
BR(w) =505 0% + " T (Vs O (s 07 + W]

[0+ T, O ()00 07 4 W5, (5.4.7)

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson bracket
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5. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

of sigma derivatives of T-dual coordinates and then integrating twice (see [13, 17, 51], Appendix
B ). Implementing this procedure we have that Poisson bracket is given as

{yl’l (0)7 yVQ (6)} =
1 B _ B (5.4.8)
5200001 = 01200 [ Ko (5) + Ko ()] H (0 = ),
where, for the sake of simplicity, we introduced
KMV(U) - <§a(g) + (U)\IJm) (f_l)aalcglﬁl(f_l)&ﬁ\yg (5 4 9)

—U(Faar O ()0 (0°(0) + 0,2 ().

Here, H (o — &) is same step function defined in Appendix B. Due to how we defined Heaviside
step function H we have that these Poisson brackets are zero when ¢ = &. However, in cases
where string in curled around compactified dimension, that is cases where 0 — & = 27, we have
following situation

a0+ 2m), (o)} = o

TN (- 1P £— 1 SH2 SH3 1 SH2 SH3 1 SH2 SH: 1 SH2 SH:
NS (s Gt ()W, (01001200 — 01101201 + Sl oL2oL — o1 61281

[25#15#2 _ 5#25#1] KMLUQ (g) + KMMI (0)]

vy Tr2 vy Tr2

(5.4.10)

v1 “vg vo YV U vo Y1 |2t 2 )

Here we used fact that H(27) = 1, while N* is winding number around compactified coordinate

defined as

(o + 2m) — 2t (o) = 2r N*. (5.4.11)

From this relation we can see that if we choose z*(0) = 0 than Poisson bracket has linear
dependence on winding number. In cases where we do not have any winding number, we still
have non-commutativity that is proportional to background fields.

Using the expression for sigma derivative of y, (5.4.6) and expression for Poisson bracket
of T-dual coordinates (5.4.8), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivative and
integrate with respect to sigma coordinate, this time integration is done once. Going along
with this procedure we have the final result

(000): {1 (00): s (72) 1} = 5 H o1 = 00T, (™ (),

x| H (o) — 0)[2611 51251 — 2511 265 — 51 51253 4 5141 512 §H9] (5.4.12)

v Yy vy Y Vv [ 2% v Vv Vv
vy “va vo Vv Vv v Yy vy Yo Y

+H(oy — 0)[2011612 51 — 2511 K2 513 — g1 gR2gHs 4 5#15u25#3]] _

Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR
field produces non-associative theory. However putting 0 = 09 = ¢ and o0, = ¢ + 27 we have
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5.4. Non-commutative relations

following Jacobi identity

{90(0), {9, (0 + 27), 40, (0) }} =
\I,Zél (f_l)aalcalﬁl(f_l)ﬁlﬁ\l’ﬁ3 [2551 GH2 §H3 _ 9 GHL §H2 §H3 551 SH2 M3 4 S 5uz(gu3] )

Hna vo Y1 vy “vg YV vy “vg v Vv TV

(5.4.13)

Examining equation (5.4.6), we notice that d,y, is not only a linear combination of initial
coordinate and its momenta but also has terms that are proportional to fermionic coordinates.
This might lead us to believe that T-dual theory would have nontrivial Poisson bracket between
T-dual coordinate and fermionic coordinates. However, this is not the case, and it can be
directly calculated by finding Poisson bracket between sigma derivative of T-dual coordinate
and fermion coordinates (more details in Appendix B).

{0(0),0u(0)} 20, {0%(0). y,(0)} 2 0. (5.4.14)

We will examine if these Poisson brackets go through any change when we also dualize
fermionic coordinates.
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6. Fermionic T-duality of supersimetric string
with coordinate dependent RR-field

This chapter is based on work done in paper [98]

Up until now we have only been interested in T-duality of bosonic coordinates, which is
reminiscent of historical development of said topic. Even through T-duality was originally con-
ceived with bosonic coordinates in mind [38] it is possible to extend it to fermionic coordinates
also [11, 99, , |. Fermionic T-duality, just as was case before, maps supersymmetric
background fields and fermionic coordinates of one theory to supersymmetric backgrounds and
coordinates of other theory. While actors in this play are different it is surprising that method
for obtaining fermionic T-duality is the same as before, Buscher procedure [30, 13]. Even in
cases where background fields depend on fermionic coordinates generalized procedure is appli-
cable. Since we had enough opportunity to see both standard and generalized procedures at
work, this favorable circumstance greatly reduces difficulty of this chapter.

In this chapter we continue the work that has been started in previous chapter, we finish
dualization of action that has been dualized along bosonic coordinates. Main reason we are
interested in this endeavor is to find out if such a theory will give rise to non-commutative
relations of the type {0, 0} ~ z. While it was already hinted that we will fail short in our quest,
without doing explicit calculations this is not obvious. This raises one question, why is it not
obvious that there will be no fermionic non-commutativity? Have we not seen that in bosonic
case, when we do not have background fields that depend on coordinates we can not expect
emergence of non-commutativity in dual theory no mater the order in which we chose to do T-
dualization. Answer to this question lies in one little caveat of superstring case, while it is true
that background fields of starting theory did not depend on fermionic coordinate, by performing
bosonic T-duality we have introduced non-local part which was encoded in AV*#. This term
now possesses dependence on fermionic coordinate and appears in all backgroundfields of T-dual
theory. This fact opens another question, if we had decided to perform fermionic T-duality first
and then bosonic, then we would not have to worry about appearance of fermionic coordinates
in background fields, does this mean that order of T-dualiy is important in superstring case?
Sadly, answer to this question is again negative and throughout this chapter we will carry on
explicit calculations that show this fact.

To summarise, this chapter will deal with fermionic T-duality of both theory that has already
been dualized along bosonic coordinates and one which has not been dualized. By obtaining
transforamtion laws for both cases we will examine non-commutative relations as we have done

many times before.
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6.1. Type II superstring action and action dualized along bosonic coordinates

6.1 Type II superstring action and action dualized along

bosonic coordinates

Actions that we will work with are superstring action in pure spinor formalism with coordinate
dependent RR field as well as its T-dual. Both of these actions have already been presented in

previous chapter and here we will only give quick summary.

6.1.1 Type II superstring in pure spinor formulation

For the first action we have

S = li/ d*¢ {HWV@M“@_QJV + %(&r@_a + 0,2t TY) (F_l(x))aﬁ (0_60° +V50_2v)|, (6.1.1)
>

where again tensors that appear in above expression have following form

H:I:/M/ = B;ux + %G/ﬂj7 (612)
FoR(a) = [+ C2% (P (@) = (F s — (F Do CoP22(f V. (6.13)

Since this is a logical follow up to previous chapter, properties of the (F~!(x)).s tensor
are the same as before. We are working with tensor that has antisymmertic and infinitesimal
coordinate dependent part. Rest of the symbols have following meaning: = (u =0, 1,...,9) are
bosonic coordinates, #* and #* are fermionic coordinates with 16 independent real components
each which are Majorana-Weyl spinors, superspace is parameterized by £™ (£° = 7, ¢! = o) and
light-cone partial derivatives 04 = 0, + 0.

6.1.2 Bosonic T-dual action

Action that is obtained after T-dualizing (6.1.1)

_H
2

+ 0,y 0 (TN VO)) 007 10,6 (FHVO)) bqf”ﬁa_yy] ,

1- _
bs / dQS[E@W&Fyu@_yV + 040" (bF_l(V(O)))aB 0_60°
b

(6.1.4)

where y,, represents T-dual coordinate, left superscript b denotes bosonic T-duality and AV?°

represents following integral

AV Or —
1 y _ 1 . _
== / dET O [04yp, — 040%(fNag¥h ] — = / dE= O [0 yp, + U0 (f)asd-0"] .
P P

2 2
(6.1.5)
As we can see AV (7 does indeed contain fermionic coordinates and by association so do
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6. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

background fields. This is the main differentiating fact between type Il superstring theory and
its bosonic counterpart.

T-dual tensors that appear in action have following interpretation: ©*” is inverse tensor of
I, =y, + %\iffj (F‘l(x))aﬂ Wh = IVLFW — %\i/fj(f_l)aalC’l‘f‘lﬁla:p(f_l)glgllff, defined as

0", = dh. (6.1.6)

Remaining properties are listed in great detain in previous chapter (5.2.19), (5.2.20), (5.2.21),
(5.2.22). While background fields are given as

1

(EWO),, = (B 0),, — () e a (o), 617
Tensor ("F~1(V©®)) 5 is T-dual to (F7'(2)) s and T-dual gravitino fields are given as
T 1 N7 1 T — VUL O 1 1N
b\I,,ua _ 5@;11/@3 + Z@/i,ulqjﬁl (F 1(‘/(0)))551 \Ij,fl@_ \Ijul — 5@’1 \I’M’ (618)
1 .1 _ _ 1
b\ v v o -1 a1 QUIV v
v - LugerLyemag (rom), wpen ——Lujor. @19

Having presented these two theories we can focus on main part of this chapter, fermionic T-
duality.

6.2 Fermionic T-duality

No matter on which theory we decide to dualize first we have to note one thing and that is
that both actions (6.1.1) and (6.1.4) do not posses terms proportional to 9,6% and 9_6*. This

means that our fermionic coordinates have following local symmetry

60 = *(o%), 00 =e*(o7), (cf=1%0). (6.2.1)

We need to fix this symmetry before obtaining T-dual theory, one way to do this is through
BRST formalism. This symmetry has following corresponding BRST transformations for
fermionic fields

s0% = c*(o™), s0* =c*(07). (6.2.2)

Here s is BRST nilpotent operator, ¢* and ¢ represent ghost fields that correspond to gauge
parameters €* and €* respectively. In addition to ghost fields we also have following BRST

transformations

sCy =bya, 5Cy=b_o, Sbia=0, sb_q=0. (6.2.3)

where C, and C, are anti-ghosts, b, and b_,, are Nakanishi-Lautrup auxiliary fields.

Fixing of gauge symmetry is accomplished by introduction of gauge fermion, where we have
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6.2. Fermionic T-duality

decided to follow procedure that has been outlined in [102]

v — g /E & [C*a (aw v %aaﬂb+5) + (a,éa + %bﬁaﬁa)oa], (6.2.4)

here a®? is arbitrary invertible matrix.
Applying BRST transformation to gauge fermion we obtain gauge fixed action and Fadeev-
Popov action

Sy = g /E &€ [B,amea O 0%, + B,aaaﬂbw} , (6.2.5)

Spp="1 /E PE[Cdc® + (0-e)C). (6.2.6)

Fadeev-Popov term contains only ghosts and anti-ghosts and it is decoupled from the actions
(6.1.1) and (6.1.4). From this point on, this term will be ignored. Gauge fixing term contains
auxiliary fields b_, and b, that can be removed with equations of motion

B—a = —8_9_6(of1)5a, b+a = —(a‘l)ag(‘iﬁﬁ, (627)
giving us
Syp = —g / d*€0_0%(a )00, 0. (6.2.8)
by

Inserting guage fixing term into (6.1.1) and (6.1.4) gives us actions that can be dualized with
Buscher procedure.

6.2.1 Type II superstring - fermionic T-duality

In order to not be overwhelmed we will work with non dualized theory first. Buscher procedure
that we apply here, after finding gauge fixing term, does not in any significant way differ from
one we applied before.

Since both action (6.1.1) and gauge fixing term (6.2.8) are trivially invariant to global trans-
lations of fermionic coordinates, we localize this translational symmetry by replacing partial
derivatives with covariant ones

0L0% — D10 = 040 + us, (6.2.9)
0:0% = D 0% = 0.0 + us. (6.2.10)

New gauge fields u$ and u$ introduce new degrees of freedom that are removed by addition
of term

Sodd = g/ P& [Za(04u® — 0_u) + (0:0% — 0_uS)za] - (6.2.11)
P

Gauge freedom can be utilized to fix fermionic coordinates such that ¢ = 6 = const and

0% = 0 = const. This in turn reduces our covariant derivatives to
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6. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

D.0™ — uf, Di0* — us. (6.2.12)

With all this in mind, we have following action

v 1 —o \TE] — v
Stiz = /-f,/zd2§ [Hﬂw&rx“@_x + E(u+ + 0,2t (F 1(:E))a6 (v’ + UPo_a") 6213
1 1 1 o
3 (@7 agu] + S2a(Osu® = Ouf) + 5(9402 — 8,111),2&} .
On one side we have equations of motion for Lagrange multipliers z, and z,
opu® —0_uf =0 — uf = 040°, (6.2.14)
O.u* —0-us =0 — uaf =0+0" (6.2.15)

Inserting solutions for these equations into action (6.2.13) we obtain starting action plus
gauge fixing term.

Variation of action with respect to gauge fields produces following set of equations of motion

u® = — (F*%(z)0_z5 + veo_at) (6.2.16)
ul = —a*P0, zg, (6.2.17)
u§ =0, 2gF*(x) — 0,2V, (6.2.18)
a®* = 0_zgal”. (6.2.19)

Utilizing these equations we can remove gauge fields from action, resulting in action that
depends only on Lagrange multipliers and bosonic coordinates

1 1
IS = /4;/ d*¢ [Hﬂw&w“@_a:” — §6+2a\112‘8_x“ — §0+ZQF“5(9:)8_25
T .2.20
1 o 1 ~ of (6 )
—§8+x Wh0_zq — Qa,zaa 01z23].

Just like in the bosonic case, we have that left superscript / denotes fermionic T-duality.
From here we can deduce background fields of feriomionic T-dual theory

M =, (6.2.21)

PP @)™ = F(), (6.2.22)

M, f (P (2) " = =08 = 0, =05 (F7'(2),, (6.2.23)
TP @) W, =00 = T, = (F'(2)) 4, V- (6.2.24)

Unlike bosonic case, fermionic T-dual theory is local. This can be attributed to the fact
that background fields do not depend on fermionic coordinates. This in turn means that theory
is geometric and we should not expect emergence of non-commutative phenomena.
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6.2.2 Fermionic T-duality of bosonic T-dual theory

To obtain fully dualized theory we start with action that is already T-dualized along bosonic
coordinates (6.1.4). Procedure for fermionic T-duality is mostly the same as described before.
The only difference comes from the fact that bosonic T-duality introduced non-local term V°
which depends on #* and 6 and now we need to introduce invariant fermionic coordinates in

order for action to exhibit local shift symmetry

Di6% = 0.:0” + us, (6.2.25)

DL 0™ = 0.0“ + u., (6.2.26)

b= [ demDut = [ de(@ut +u5) = Do+ AU" (6.2.27)
P P

00 = / €™ D0 = / dE™ (00 + 1) = AG* + AU, (6.2.28)
P P

Fixing gauge symmetry as before, setting fermionic coordinates to constants, we deduce follow-

ing relations

DL6™ — ug, D. 6™ — us, 6 — AU, 6> — AU, (6.2.29)

muv mu

With these relations we obtain action that is only a function of gauge fields, Lagrange multipliers
and dual coordinates

1-
"Spo = § [ Pe[50" 0000+ 1 (PO, 0
+8+y“b\I;ua (bF_l(V(O)))aﬁ WP+ s (bF_l(V(O)))aﬁ bqjuﬁ’@_yy .y (Oé_l)ocﬂui (6.2.30)

0 (Opu — O_u) + (0,7 — a_fai)za].

In order to simplify calculations we introduce the following two substitutions

CEVD) 5 00y, + 020 = Zoa,  Oyy, 0 (CFTHVO)) =025 = Zyp. (6.2.31)

Now, our action can be expressed as

1 ]
"Stia = g / d*¢ [59“ Y0, yu0y, +ul ((FH V) ol + Z +utz,
. (6.2.32)

—® (Y pul] + 0_Zaus — ﬁf&rza} .

Similar to the first case, we can always revert to starting action by finding equations of motion
for Lagrange multipliers and inserting their solutions into the action. In both cases equations
of motion are the same so we take the freedom to omit them here.
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6. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

Equations of motion for gauge fields differ in this case. Since we have that V(? depends
on fermionic coordinates, equations of motion have additional term that depends on invariant

coordinate.
uf = —(@)P0yz5, Al =0 za(), (6.2.33)
0§ = =2y "FP(WO) — g (v, U0 P, (6.2.34)
Wb = —bpley Oz — 5:(‘/(0), U©)y bgrb, (6.2.35)

The beta functions, ﬁfj(V(O), U), are obtained by varying V(© (see [07] and Appendix C

for more details). They are given as
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Inserting equations of motion for gauge fields into action (6.2.32) and keeping only terms
linear with respect to C[j‘ﬂ, we obtain fully dualized action
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Expanded, we have
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From here, we can read background fields the fully of T-dualized theory
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Comparing background fields in different stages of T-dualization we notice that both fermionic
T-duality and bosonic T-duality affect all field, where all T-dual theories now have coordinate
dependent fields. It should also be noted that non-commutative relations in theory emerge only
after performing bosonic T-duality. Fermionic T-dual coordinates are always only proportional
to fermionic momenta therefore Poisson brackets between fermionic coordiantes always remain
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6.2. Fermionic T-duality

Zero.

6.2.3 Bosonic T-duality of fermionic T-dual theory

For completion sake, we will also T-dualize fermionic T-dual action (6.2.20) along x* coordi-
nates. In this specific case, where only RR field depends on bosonic coordinate, we expect that
bosonic and fermionic T-dualities commute. Therefore, this section can be also thought of as

a check for calculations from previous section.

We again start by localizing translational symmetry, inserting Lagrange multipliers and

fixing gauge fields. This produces following gauge fixed action
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Introducing the variables
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the action (6.2.40) gets much simpler form
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Varying the above action with respect to gauge fields v/ and v”, we get, respectively,

1
I = =5Yo, = Beu(V), (6.2.43)
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where 34, are the beta functions obtained from coordinate dependent term in the action
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Inserting (6.2.43) and (6.2.44) into the auxiliary action (6.2.42), keeping the terms linear in
Cﬁ“ﬂ, we obtain fully T-dualized action (first fermionic, then bosonic T-dualization)

1 1
S =k / d*¢ kmzaF“ﬂ(AV)a_zﬁ + ZYw(n;l)wy_,, . (6.2.46)

Expanding above action, it can easily be seen that it is identical to one given in (6.2.38).
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6. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

6.3 Few notes on non-commutativity

We have already saw that bosonic T-duality produces non-commutative relations between
bosonic T-dual coordinates. Now we want to see how these relations are modified by fermionic
T-duality and if new ones emerge. Procedure for finding non-commutativity is exactly the same
as in all the chapters leading to here, we impose standard Poisson bracket structure on starting
theory and utilize T-dual transformation laws. Only difference here is that we have additional
starting Poisson brackets, brackets containing fermionic coordinates

{2"(0), 7, (@)} = 83(0 — 0),  {6%(0),m5(0)} = {6°(0), 75(0)} = —053(c — &),  (6.3.1)

where all other Poisson brackets vanish.

We start with case that has only been T-dualized along fermionic coordinates. To find
how T-dual coordinates depend on starting ones and their momenta we can begin by finding
fermionic momenta of starting theory. It is useful to remember that starting theory did not
posses terms that are proportional to 9,6% and 0_0* and that this symmetry was fixed with
BRST formalism. Addition of gauge fixing term introduced modification to momenta of starting
theory and to obtain correct non-commutative relations we should be working with theories
that have gauge fixing term in them. With this in mind, it is easy to find fermionic momentum
of original theory (6.2.13)
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Since we want to obtain Poisson brackets for equal 7 we want to find o partial derivatives
of dual coordinate

1
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_ 1, v~ L
OpZo = 5(8+za —0_Z,) = ,{ﬂa. (6.3.5)

Fermionic Momenta of original theory commute with each other and with z* coordinates,
therefore we deduce that there has been no change to geometric structure of this theory.

For fully dualized theory, transformation laws (6.2.33) (6.2.34) (6.2.35) all depend on dual
bosonic coordinate however, when we insert transformation laws that connect original bosonic

coordinates with T-dual ones

O4yp =2 [&riﬂyﬁwu + /6,:(17)} +0,0° (F_l(z))aﬂ vl (6.3.6)
O y, = —2 [mu,,a,x” + 5;(35)] — 0 (F (@), 0-6° (6.3.7)
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6.3. Few notes on non-commutativity

into transformation laws for fermionic coordinates (6.2.33), (6.2.34) and (6.2.35) we again obtain
relations (6.3.4) and (6.3.5).

On a first glance it would seem that fermionic T-duality has not produced any new Poisson
brackets, however this is not the case. While it is true that there are no modifications to
Poisson brackets between fermions, we have new Poisson bracket structure between fermions
and bosons. This can be seen from ¢ derivative of bosonic T-dual coordinate

T
Y, = ;“ + 52(:6), (6.3.8)

where ) (x) is combination 8 (z) + 8, (z) we encountered before
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Finding Poisson brackets between o derivatives of coordinates and integrating twice we

obtain following relations

{uulor). 23(0)} =
17 _ _ _ _ (6.3.10)
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Having failed to obtain non-commutativity relations between fermionic coordinates, not
to mention ones that are proportional to bosonic ones, we conclude that hypothesis made in
[31, 13] is not appropriate. Furthermore, having gained some insight how T-duality affects non-
commutativity, we suspect that fermionic non-commutativity relations are possible but only in
case where background fields depend on those coordinates.
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7. Bosonic T-duality of supersymmetric string
with coordinate dependent RR field - general
case

This chapter is based on work done in paper [103]

In previous two chapters we have seen how T-duality affects type II superstring theory with
coordinate dependent Ramond-Ramond field. During that presentation our ability to obtain
both T-dual theory and T-dual transformation laws depended on two premises, one was that
coordinate dependent part of RR field was infinitesimal and other was that it is antisymmetric.
First of these assumptions was necessary in order to invert transformation laws while second
one was introduced only in order to obtain S* functions. It is sufficient to say that latter of
these assumptions can be removed and since 3% functions do not play any role in T-dual action
we expect the form of action to remain the same.

Here we will deal with theory whose coordinate dependent part of Ramond-Ramond field
has both symmetric and antisymmetric part, where we will only focus on bosonic T-duality.
This simple modification produces more general forms of 8% functions, N* functions. Where
B* functions were dependent on some combination of coordinates and their derivatives, N+
are functions that depend on path of path integral that has been introduced with invariant
coordinate. We expect that this departure from antisymmetric tensor to general one would not
affect theory that much, however this can not be further from the truth. Even though final
T-dual theory is the same, transforamtion laws and non-commutative relations are drastically
more complex. This rise in complexion makes it impossibile to deduce Poisson brackets of
T-dual theory the same way as we did before.

Since we have already obtained both bosonic duality and full duality of type II superstring
it is natural to wonder why go this extra step. The answer to this question lies in the fact that,
if we ever wish to work with more complex background fields it will not be possible to impose
antisymmetric restrictions on all fields. By working out the kinks of such approach on case
when the fields are relatively simple we hope that all future extensions to background fields
would follow the same procedure for obtaining T-dual transformation laws.

7.1 Action and choice of background fields

Since this is only generalization of work done before and action that we will work with has
already been mentioned few times we will just quickly list it here again, without going in any
detail what the symbols mean (for detailed exposition consult Chapter 5 and Chapter 6 )
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7.2. T-dualization - general case

S = K/ d*¢ [Hﬂwéhx“@x” + %(3+9“ + DUy (F’l(ac))aﬁ (0_0° + WP _2")|. (7.1.1)
s
with
F(a) = 7+ Ok, (F7H(@)as = (f Nap = (F e O (F )ps. (T12)

where this time we do not impose any conditions on tensors f*’ and C’l‘j‘ﬁ , except that C’ﬁ‘ﬁ is

infinitesimal. Having done this we can focus on main point of this chapter T-duality.

7.2 T-dualization - general case

This section will deal with problem of obtaining T-dual theory and transformation laws that
connect dual and original theory. Where these laws will be used in subsequent sections.

7.2.1 Implementation of the generalized T-dualization procedure

In every chapter until now where we dealth with T-duality we relied on either standard [36, 13]
or generalized [10] Buscher procedures. This stemmed from the fact that actions were invariant
to shift symmetry. In case with coordinate dependent background fields, that was a consequence
of antisymmetry. Because we decided to work with field that has symmetric part thus rendering
any invariance to translations invalid, we can not rely on dualization methods we utilized before.

Thankfully, there has been development on this front and there are methods for obtaining
T-duality in the cases with absence of shift symmetry [15]. In fact method that has been
developed is mostly identical to generalized Buscher procedure, where we replace original action
with auxiliary one which does possess translation invariance. Form of this action is exactly the
same as the form of action where translation symmetry was localized and gauge fixed. In order
for this action to produce correct T-dual theory we need to be able to salvaged original action
from it.

Following this philosophy we insert following substitutions into action (7.1.1) in order to
make it invariant to translations

Oyt — vl (7.2.1)
¥ = AVP = / dg'™ P (£, (7.2.2)
P
S S+ g / 26 [V 0_y, — "Dy | (7.2.3)
b

The result is auxiliary action convenient for T-dualization procedure

1 /) T — v
Souzr = /{/Z d*¢ {Hﬂwvivi - 5(8+90‘ + oY) (F 1(AV))aﬁ (0_6° + Thy)
, (7.2.4)
+§(Uiafyu - Uﬁ@yu)} .
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7. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

The form of this action is exactly the same as one we had when we worked with antisymmetric
field. Let us note that path P starts from &, and ends in &. In this way action becomes
non-local.

Finding equations of motion for Lagrange multipliers
o_vl — o0 =0, i =0ra", (7.2.5)
and inserting them into (7.2.2) we have
AVP — /P 4™ D27 (€1) = 29(€) — 29 (&) = A, (7.2.6)

In absence of translational symmetry, in order to extract starting action from auxiliary one,
we impose (&) = 0 as a constraint. Taking all this into account, we get the starting action
(7.1.1).

Euler-Lagrange equations of motion for gauge fields vy (k) give the following ones

—%8_:%(/1) =11, ,,v" (k) + %‘Ifff (FHAV)) 5 (0-67 (k) + 0" ()

1 ’ ] (7.2.7)
3 / d*€[0:0°(€) + 02 (€T3 ] (F o O (f )50 N (KH) [0-6°(€) + 07,02 ()],
S0:(R) = Ty () + (0,67 (s) + v (0)0) (F(AV), , W5
X (7.2.8)

—5 | P[00 + oL OULI o O (1 aN () [0-0°(6) + WE(€)].

Here, function N(k¥) is obtained from variation of term containing AV” in expression for
F~Y(AV) (details are presented in Appendix D). They represent the generalization of beta
functions introduced in Ref.[97]

Nty =3(€7 (€)M ) = w7) [A(E" = w%) = HigH = 1), (7.2.9)
N(w) =5 (& ((€7)7 (x7) — %) [H(E —57) — H(& — 7). (7210)
where more details on Dirac delta function and step function are given in Appendix A. As we

see the expressions for derivatives of y, are more complex comparing with those in Chapter 5,
where translational symmetry is present.

Assuming that Cﬁ‘ﬁ is an infinitesimal, we can iteratively invert equations of motion (7.2.7)
and (7.2.8) [11]. Separating variables into two parts, one finite and one infinitesimal propor-
tional to C’ﬁ‘ﬁ, we have
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7.2. T-dualization - general case

v’ (k) = —%éi”l {8-ym<m> + W5 (FH(AV))asd-6" (k)
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SV o O AV () s W67 (9 () + W (F)3,0-07 ()

~ 1 ~ y - (7.2.11)
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Tensor ©" is inverse tensor to I1,,, = I, ,, + sU(f1)ap®l, which satisfy O"1l,,, = ok

whose properties are given in detail in equations (5.2.20), (5.2.21), (5.2.22). In above expressions

AV is a quantity in the zeroth order in C’fjﬁ, which has the same form as we have encountered

before

AV(O)p:/d§+Ui+/d£U6
1 ; _ ] ] -
=3 /,Ddf+9"1” (049 = 040°(f s V)] = 5 /P de= O [0y, + T2 (F1)ap0_07]

(7.2.14)
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7. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

Using (7.2.7) and (7.2.8) and inserting them into (7.2.4), we get T-dual action

bSZlﬁ/d2§
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1 < — 2 - — Aviv Bl £—
U e U O () O AV )55 WO T ()15 007
1 . - 1 o _
+ 13+yu@5”1‘1’ﬁ1 ((F_I(AV))aﬁ + 5(f_l)aalC,?lﬁ%vp(f_l)ﬂsﬁz‘1’512@51”‘1’51(f_l)mﬁ)
x 0_0°
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0,8 (F AV )i+ E O U2 (), O3 AV ()15 05,6

X 8y,,] .

(7.2.15)

Let us note that above we kept terms up to to the first order in C’ﬁ‘ﬁ.

T-dual action contains all terms as initial action (5.1.17) up to the change z* — y,. Con-
sequently, T-dual background fields are of the form

1 1 A\ UV 1 = T, O — — o —
Y = 2O 4 201 [(FTHAV)ag + (f o O3 AV (£ )15
- a1 QH2v2 Bl £— Lo ala - ag Q122 B[ £—
(F D)oo U0 W (F ) 315 + 5 (F 7 aan O AV (f ™ )y Wz O WU (f )5

(F o U202 W5 (£71) 5,5, C2P AVP(f 1) 5,5

+
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(f_l)aoq \IIZ‘; éliﬂ%@g;(f—l)azascgésﬁsAvp(f—l)ﬁ352\Ijggélfw@521 (f_l)ﬁlﬁ] \Ilglélilyv
(7.2.16)
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203~ p
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-5 Daa TErOM W2 (f71) 00, CO3B AV (f71) 3,5, U220 U (f71) 5,5,
(7.2.17)
STT22e] 1 VT o 1 v

byre — 5@‘: ve = —5\1156‘1 : (7.2.18)

Comparing background field of T-dual theory with background fields from Chapter 5 we im-
mediately notice that background fields have become more complex. Tensor ©"" is defined in
(5.2.22). However, this is just an illusion. In both cases background field are exactly the same
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7.2. T-dualization - general case

only difference is that here we did not introduce tensor I1,,, = Il ,, + %\le‘F “HAV) 45078
and its inverse, therefore we are missing ingredients to express our fields in more compactified
format.

7.2.2 T-dualization of T-dual theory - general case

Having obtained T-dual theory we would like to check if this result is correct, best way to do
this is to apply T-duality procedure again. Since the initial theory was not symmetric under
translations, we had to introduce auxiliary action (7.2.4) which was invariant. This action
produced T-dual theory which is invariant to translations of T-dual coordinates. Because
of this we can dualize T-dual theory by generalized Buscher procedure. We start with the
introduction of following substitutions

0ry, = Dyy, = 01y, + vy, — Diy, = ugy, (7.2.19)

AV? AU, (7.2.20)
AU? :é /P dETO7 [usp, — 040°(f)ap ¥l |

- /P 467 [u_py + 02 (f71)ap0_07] | (7.2.21)

S =S+ %(uﬂﬁ_x“ —u_,0yat). (7.2.22)

From the first line we see that gauge is fixed by choosing y,({) = const. Inserting these
substitutions into (7.2.15) we obtain

1.
ZGTIU_HLU_,,
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X U_,,
1 " "
+ §(U+“a_l’ —u_,0rat)|.

(7.2.23)
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7. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

Using equations of motion for Lagrange multipliers, we return to the T-dual action. Finding
equations of motion for gauge fields, we have

Uy (K) = 2ﬁ+vu3+93y(’€) - 3+x”(%)¢’3(f‘1)aa1CSIBIAx”(f‘l)M‘Pﬁ
4 0,0%() (FH(A2))ap ¥

- /2 d2£ <8+éa(€) + 02t (5)@ﬁ1> (fil)aalcglﬁl(f71>ﬁ1,3N(’€7)
x (a_eﬂ (€) + \Ifﬁa_zV(g)), (7.2.24)

U () = = 200" (1) + T2 s O A2 ()5, 5000 (1)
— U(F (A))apd-0% ()

+ [ @6(0.0°(6) + 0.0 OU) (o O (F sV ()

x (a_eﬂ(g) + WP o (5)) . (7.2.25)

Here we have that Azt = z#(§) — z#(&p), and inserting these equations into the gauge fixed
action, keeping all terms linear with respect to C4” and selecting § such that z(&) = 0, we

obtain our original action (5.1.17).

7.3 Non-commutative relations - general case

In order to find Poisson structure of T-dual theory we will be using relations (7.2.7) and
(7.2.8) by expressing them in terms of coordinates and momenta of the initial theory. While
this method worked flawlessly in previous chapters, here we would still be left with terms
containing d,z#(¢) which come from function N(£%). This means that it is impossible to find
same 7 Poisson brackets. One way to circumvent this is by first using equations of motion for
coordinate x#(£) and then replacing remaining 0.2* term with canonical momentum. By doing
all the steps that were outlined, we have following relationship between T-dual coordinate and

variables of starting theory

= = 1% 12 _
05y (0) =2 2B,,0,3" — G, (L, + L) "0 l% =500 (F7(2)),,50-07
1 o — 1 [ - 1 SH2 1 Sp2 V2
- §a+6 (F 1(x))aﬁ \1151 o [H+N1H2 + é\p,ul (F 1(];))04,6’ \I];ﬁtz:| (552 551 - 551 552 )ao-l'
1- v v
+ U0 (f T aan Cp 2 (0) (F )i W), (343 02 — 64102 (I + 115 1

2 H1 v Tv1 vy Tv2

(7.3.1)

1- 1 5 y
X | T8 = S0 U+ T, 00 HW&,M] |

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson bracket
of sigma derivatives of T-dual coordinates and then integrating twice (see Appendix B). Imple-
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7.3. Non-commutative relations - general case

menting this procedure and utilizing Poisson brackets of original theory
{z"(0), m,(0)} = 0,0(0c — ), {a"(0),2"(@)} =0, {mu(o) m ()} =0, (7.3.2)

we have that Poisson bracket for sigma derivatives is given as

{aaly”l (01)7 802'3/1/2 (02)} =

2 o o
= E(H'i‘ + H_iT_)—lMle [GVWlBVWQaUz(S(Ul - 02) - Bl/lm GVzuzam(s(Ul - 02)]
1 (7.3.3)

+ 2O (F aca O (F)ps U0, (G005 + Oy 0y ) (L - TLE) b (IL, 4 T )~ eawe

X GV1M1 BV2M2IP<O-1)8025<0-1 - 02) - BVULI Gv2ﬂ2xp(0-2)8015(0-1 - 02)]'

Integrating with respect to oy (03), where we set boundaries as oy (7p) and o (7). Extracting
only Poisson bracket terms that contain ¢ and &, we have

U2 _
{yV1 (O-)’ Yoy (U)} = E(H-i- + HI) Lipz [GV1M1 BV2M2 + BleGVzuz H(o‘ - U)
1
k
% |G By () + Borjs Guapu”(0)| (0 = 7).

2  aen G5 P (1) W0, (G500 + G0 ) (L - L) 7o ([, - )"t (7:3.4)

13~ g K3~ 4

Here, H(o — ) is same step function defined in Appendix A. It follows from definition of step
functions we have that Poisson brackets are zero for ¢ = . However, in cases where string
in curled around compactified dimension, that is cases where ¢ — & = 2m, we have following
situation

2 o e
(0 (04 27). s (0)} = 2 (I + )72 | Gorpy B + B G
1- v v v v
T e O3 (1), U0, (B0 + a2 (1T, 4 11T~ s (1T, 4 TT)~tewe (7.3.5)

2 3" pa u3" pa

X |:47TGV1MIBV2M2 N? + (Gl/lm Buzuz + Br/wl Guzuz)xp(g)} .

We used fact that H(27) = 1. As we had before, symbol N# denotes winding number around
compactified coordinate, if is defined as

(o +2m) — at(0) = 2 N*. (7.3.6)

Putting z#(0) = 0 we have that Poisson bracket has linear dependence on winding number.
In cases where we don’t have any winding number, we still have non-commutativity that is
proportional to background fields.

Using the expression for sigma derivative of y, (7.3.1) and expression for Poisson bracket
of sigma derivatives (7.3.3), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivatives and
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7. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

integrate with respect to sigma coordinate, this time integral is done trice. Going along with
this procedure we have following final result

Gl/ = = —
{yl/(o-)a {yVI (01)7 Yuy (02)}} = kg'u (H+ + HZ) Low
X U3 (£ aon 5 (1) W0, (B0 + G0y ) (I + T~ (1T, - IT) ~are - (7.3.7)
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Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR field
produces non-associative theory. However putting o1 = 09 = 6 and ¢ = & + 27 we have that
Jacobi identity disappears

{90(7 +27m), {9, (9), 41,()} } = 0. (7.3.8)

Comparing these non-commutative relations with ones obtained in Chapter 5, we can ob-
serve that theory now has both different non-commutative and non-associative structure.
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8. Conclusion

At the end of this thesis we would like to present general summary of the work that has been
done thus far, as well as possibility of future extension of said work. It should also be stated that
results that have been presented, while original, are natural progression of work that has been
done by string field community and that they should not be examined in isolation. With such
rich history and vastness that accompanies string theory, author hopes that work exhibited in
this thesis was more or less self contained and that it did not leave too many readers confused.

Work done in this thesis, while covering few different topics, could best be examined by
splitting them in two main parts, first part that focuses on work based on bosonic string
and second one where we focus on work based on type II supertring. Even though both
parts are connected with overarching methodologies and some results can be carried over from
one part to other, this split is best thought of as ideological one where we make separation
between theory which is toy model and one which has a chance for describing real world.
Methodology that connected these two groups was the Buscher [30, 13] procedure as well as
its generalization [10, 45]. This procedure was instrumental in obtaining T-dual theory as
well as transformation laws that connected coordinates of original and dual theories. Tasked
with such monumental task, it is a miracle that this procedure is rather simple, where whole
procedure can be summarised in few steps. First step was to examine if action was invariant
to translational symmetry and if it was then second step would be to localize this symmetry.
Localization was done by interchanging all partial derivatives with covariant ones. This way we
introduced additional gauge fields which, in order to obtain correct T-dual theory, would have
to be eliminated. Elimination of gauge fields marks the beginning of third step and this is done
by introducing Lagrange multiplier term into action. Following this, fourth step is utilizing
gauge freedom to fix starting coordinates to constants which leaves action that only depends
on gauge fields and Lagrange multipliers. Finding equations of motion for Lagrange multipliers
and gauge fields, where inserting the latter into action, we obtain T-dual theory. There are
two main extensions to this procedure, case when background fields depend on coordinates and
case when we do not have translational symmetry. First case can be dualized by introducing
invariant coordinate in step two, this coordinate is given as a integral along path of covariant
derivative and with its introduction T-dual theory becomes non-local. Second one of these
extensions is accomplished by neglecting steps one, two and three and introducing auxiliary
action which is invariant to translations. By sheer luck, shape of auxiliary is the same one as of
the action which has been gauge fixed. Both extensions to procedure produce non-local T-dual
theory.

First major topic that was examined in this thesis was bosonic string with coordinate
dependent Kalb-Ramond field. While this theory has been examined before by many different
authors [10, 14, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], it was not sufficiently examined with
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8. Conclusion

apparatus of Buscher procedure. Even though this analysis is original it should be best thought
out as a stepping stone for more physically relevant case, stepping stone where we get to
familiarize ourselves more with generalized Bushcer procedure. In Chapter 3 we began our
work on this theory by performing T-duality first along coordinates on which background
fields did not depend, namely x and y coordinates and finally dualizing along direction on
which Kalb-Ramond field depended, z coordinate. By doing T-duality in this order we have
gone through three distinct theories which had different geometric interpretations. After first
dualization we obtained twisted torus, theory which was well defined both locally and globally.
Second dualization produces theory which was named torus with () flux and while this theory
was locally well defined we could not say the same for its global structure. Final dualization
produced theory which was non-local and non-commutative, theory with R flux. By examining
transformation laws of final theory we were able to obtain Poisson brackets between T-dual
coordinates which possessed both non-commutative and non-associative properties. Results
that are obtained in this chapter could also have been obtained by only utilizing standard
Buscher procedure along with non trivial winding conditions as has been done in [10, 14, 74,

Y ]

Having saw what properties emerge in fully dualized bosonic string with coordinate depen-
dent Kalb-Ramond field, in Chapter 4 we examined if can obtain these properties earlier in
dualization chain by altering order of T-duality. We focused on duality chain that starts with
z coordinate and finishes with x coordinate. This way we showed that right from the first
T-duality we obtain theory that is non-local, however this theory was still commutative. Only
after second dualization, we obtained one half of non-commutative relations and after finding
fully dualized theory all non-commutative relations were salvaged. By obtaining T-duality by
two different directions we observed that non-commutativity is only possible after perform-
ing dualization along coordinate on which background fields depend. This way only T-dual
coordinates of ones that appear in background fields are non-commutative.

Having exhausted bosonic string case, rest of this thesis was focused on type Il superstring
in pure spinor formalism [26, 27, 28, 29] with coordinate dependent Ramond-Ramond field. All
remaining fields were constants or set to zero. This choice of the fields was motivated by papers
[31, 13] where it has been speculated that this exact combination of fields would produce non-
commutative relations between fermionic coordinates that are proportional to bosonic ones. In
order to find transformation laws and T-dual theory we utilized two additional assumptions, first
was that Ramond-Ramond field demended only infinitesimally on coordinates and second one
was that term which contained coordinate was antisymmetric. Whith all these assumptions
we have conducted T-duality of bosonic coordinates in Chapter 5. Since background field
depended on all bosonic coordinates we had to utilize generalized Buscher procedure and in turn
obtained T-dual theory was non-local. Transformation laws that we obtained we combined with
momenta of original theory in order to transcribe them in canonical form. Having transcribed
dual coordiantes as linear combination of momenta and coordinates of original theory we found
non-commutative relations of T-dual theory. By enforcing special conditions on world-sheet
coordinate o, we found out how non-commutativity depends on winding numbers NV,,. It should
also be mentioned that in this chapter we subjected T-dual theory under dualization of dual
coordinates, this way we were able to obtain original theory in turn giving us confirmation that
T-dualization was carried on correctly.
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After examining bosonic duality we focused on fermionic duality of type II superstring.
Having seen, in case of bosonic string, that non-commutativity emerges only when we dualize
along coordinate on which background fields depend we wanted to see if same rule applies in
fermionic case. In Chapter 6 we first carried out fermionic T-duality of previously non-dualized
theory where we found out that this new theory is commutative. Next, we dualized theory which
has already been dualized along bosonic coordinates obtaining fully dual theory. In this case we
had emergence of two new Poisson brackets, brackets between dual bosonic and dual fermionic
coordinates. However we have not been able to prove that hypothesis from papers [31, 13] is
correct. There were no additional Poisson brackets between two fermionic coordinates. Finally,
for completion sake, we have also conducted bosonic dualization of theory that has been only
dualized along bosonic coordinates, proving that these two T-dualities commute.

Final part of this thesis focused again on bosonic duality of type II superstring but with
one less assumption imposed on Ramond-Ramond field. We examined how properties of trans-
formation laws and dual theory when field has both symmetric and antisymmetric part. This
small modification removed translational invariance of the theory and made us rely on extension
of Buscher procedure that works on such cases. Overcoming this minor setback by working
with auxiliary action, we proceed to find transformation laws. By introducing symmetric part
of the field we were not able to obtain 4% functions that have appeared in previous dualizations
but have instead derived their generalization, N(x*) functions. These functions were not only
dependent of coordinates and their derivatives like their predecessor but were also dependent on
choice of path in line integral that appeared in definition of invariant coordinate. This sudden
increase in complexity made it impossible to obtain canonical transformation laws in manner
that was similar as before. We had to rely both on equations of motion as well as canonical
momenta of original theory. Having obtained canonical transformation laws we were finally
able to deduce non-commutative relations of T-dual theory which, when compared to case with
antisymmetric field, are now different. On the other hand, since neither 3% nor N(x*) func-
tions do not play any role in T-dual theory, T-dual action that was obtained was the same as
in Chapter 5. Similarly as we did with antisymmetric field, we also performed T-duality of
already dualized theory where we were able to return to starting action.

Having done all this work, following question arises: What to do next? There are two
main directions that extension to this work can follow. First extension focuses on bosonic
string where instead of following standard wisdom and working only with coordinate dependent
Kalb-Ramond field we could incorporate also coordinate dependent space-time metric. This
extension would produce transformation laws that depend on N(x*) functions thus making
it possible to obtain non-commutativity for such field configurations. Furthermore this line
or research would be able to shed some light on type of changes that affect nontrivial space-
time metric after T-duality. Other possible line of research is focused on type II superstring
where we also include fermionic coordinates in background fields. Since background fields are all
interconnected it is reasonable to expect that such inclusion would produce configuration where
no field can remain constant. Having seen what are the requirements for non-commutativity,
we wager that such configuration would certainly produce non-commutative relations between
fermionic coordinates. However, we are not certain what would be the form these relations
take.
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A. Light-cone coordinates

Throughout this thesis we have often relied on usage of light-cone (lc) coordinates. Here we
will give basic overview of both lc coordinates and some tensors expressed in this basis. We

begin by defining lc coordinates as
1

¢t = 5(7 +0). (A.0.1)

This definition naturally lends itself to introduction of corresponding partial derivatives
0y = 0 _ 0, £0, (A.0.2)

+ = 8§i — Ur o -
With light-cone coordinates and their partial derivatives defined we can cast our gaze on two
tensors that endow string theory world-sheet, two dimensional Levi-Civita tensor and world-
sheet metric tensor.

We begin first with two dimensional Levi-Civita tensor €™ which is defined in (7, 0) basis

77 = —1. Consequently, in light-cone basis the form of this tensor is

€le = (_Ol > . (A03)

On the other hand the flat world-sheet metric is of the following form in (7,¢) and light-cone

_ (10 _ (3
T=\o -1 ™7 \o

In both cases subscript lc denotes light-cone basis.

as €

O Nl

basis. respectively

(A.0.4)

= O
N————
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B. Poisson brackets

Throughout this thesis, we have seen that T-dual transformation laws connect derivatives of T-
dual coordinates with coordinates and momenta of initial theory. While initial theory satisfies
standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need to
find Poisson brackets between o derivatives of T-dual coordinates. This type of Poisson bracket
will, in general case, be some function of initial coordinates, Dirac delta functions and their
derivatives with respect to ¢. Having this in mind, general case for our Poisson brackets will

have following form

{A(0), B ()} = U'(0)d(c — 7) + V()8 (0 — &), (B.0.1)

where 0'(c — 7) = 0,6(0 — 7). For terms A'(c), U'(0) and B’(g), symbol ’ stands for partial
derivative with respect to o and &, respectively. If we want to calculate the Poisson bracket

{A(0), B(o)},
first we have to calculate the following one
{AA(0,00), AB(5,50)}, (B.0.2)

where
AA(0, o) = / drA'(z) = A(0) — Aloy),  AB(G,50) = / o B (z) = B(5) — B(5y).
Substituting the expressions (B.0.3) into (B.0.2), we have

(AA(0,00), AB(5,50)} = / iz / dy [0 — ) + V(@) (@ —y)] . (B.04)

After integration over y we get

{AA(0,00),AB(G,50)} =

o ) ) (B.0.5)
= / dze{U'(z) [H(x — 7o) — H(z — )] + V() [6(z — 50) — d(z — 7)]},

0

where we utilized following property of Dirac delta functions
| dntsta ~ ) = £0) [fito ~ 1) = Hon ~ )], (B.0.6)
0o
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and where H(z) is Heaviside step function defined as

0 ifz=0
_ v 1 1
H(x)z/ dnd(n) = o I+QZEsin(nx)] =< 1/2 if0<z<2r, (B.0.7)
0 21 1 ifx =2n

and 6(z) = o= Y., ., €. Finally, integrating over z, we obtain
{AA(O', 0'0), AB(&, 5’0)} =
U(0)[f(0 ~0) (o )] = Uloo)liloo —70) = Hlon =) 0o
—U(00)[H (0 — 00) — H(0oo — 00)] + U(0)[H(0 — &) — H(00 — )]
+V (60)[H(0 — 50) — H(09 — 9] — V()[H(c — 5) — H(00 — 7)].
From the last expression, using (B.0.3), we extract the searched Poisson bracket
{A(0),B(a)} = —[U(0) = U(5) + V(5)]|H (0 — 5). (B.0.9)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(o), ()}, where
y(o) is coordinate T-dual to initial one x(o). Having this in mind, we start with the following
Poisson bracket

{Ay(o,00),2(5)} = {/ dny'(n (B.0.10)

and using T-dual transformation law in canonical form
TRy, (B.0.11)

we get

{Ay(o,00), j= —{/ dnm(n (B.0.12)

where 7(0) is momentum canonically conjugated to the coordinate z(c). Initial theory is
geometric one which variables satisfy standard Poisson algebra, so, the final result is of the
form

[H(o — ) — H(oo— )] = {y(0),2(6)} = _%F[(U _5). (B.0.13)

IIZ

RIH

{Ay(a,00),2(7)}
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C. Obtaining BZL—L terms

During our examination of both bosonic string theory and superstring theory we have several
instances where we had to find variation of term that contained AV. Variation of this term
gave rise to ﬂff(V) functions in T-dual transformation laws. While in case of bosonic string
theory we have slightly touched this issue, here we would like to give proper exhibition that
this problem entails. Even through we focus only on superstring case procedure that will be
presented is applicable to both cases, bosonic case and superstring case.

We decided to obtain ﬁff(V) functions for superstring however, we will use following sub-
stitutions 0,0 = 9,0* + VU2, 0_0F = 9_6° + VS v, also we will use F,g, to represent
term containing infinitesimal constant, in order to bring this exposition as close as we can to
bosonic string case.

/ d*€0,0°F,5,AV VP _0° = / d*e™ 0,0 F,5,AV V79,08
b by

L .
_ /E PE[ 50,07 Fy AVI70,6° — <™ 0,67 Fp, AV 000,07

_ _% / PE[ 0" Fog 0, AV 0,07 — €0,6° s, 0, AV (C.0.1)
2
X ) ]
-1 / P 0, AV O [6°F5,0,0" — 0,07 Fls, 0]
>
1 _ —
- 2 / d2§€mnvrpn [GaFaﬁpan@ﬁ - an@aFaﬁPG)ﬁ} B / d2§U7pnﬁ;n-
) b

Variation with respect to gauge field v%, and setting F,s, = —(ffl)aalCﬁlﬁl(ffl)glﬁ pro-
duces desired 55 functions (5.2.14), (5.2.15) in equations of motion (5.2.13). On the other
hand setting Fig, to 2H (factor of 2 comes from the fact that term containing Kalb-Ramond
field was already transcribed as sum of two parts, effectively having two identical terms to one
given in first line of above equation), ©% to v, and ©% to v, we obtain 4% functions for bosonic
case (3.2.53). Fermionic beta functions are obtained in exactly the same manner where only
difference stems from using gauge fields @4 and w4 instead of v.

Here we have used the property that F,g,, is antisymmetric under exchange of o and g,
this, in combination with the fact that we can express 0,00_0 as €""9,00,,0, removes all
terms proportional to 9, 0_, using identity €""00,,0,0 = 0. While surface terms disappear
from the requirement that we are working with trivial topology

It should be noted that By,(V) functions are not unique, we could have obtained different
function simply by not using symmetrization in (C.0.1). In case of non-symmetric Si,(V),
all results that have been obtained would take a simpler form. We have chosen to work with

84



antisymmetric function because results that are deduced from this case can be easily reduced,
by neglecting terms, to simpler case.
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D. Obtaining N (k) terms

Functions N (k%) emerged in Chapter 7 during calculation of T-dual transformation laws as a
consequence of variation of term that was proportional to AV. Here we will present derivation
of this function.

(5<F_1(AV))015 g1 1B p—1 m U (§)
&}i(ﬁ) - (f )aqup (f )515/Pd§ &)i('%) -
=~ (I Daaa P (F s /P dg" o€ — kF)o(ET — 17)
_ —1 a1 —1 b d€/+ / 1— _
- _(f )aalc,u g (f )Blﬂ/t; dt dt 5(5 (t)Jr - "€+)5(£ (t) — kK ) (DOl)
¢+

=~ e G s |t =)o (€ () ) =)

= (o O (a8 (€7 (€7 () = w7) [HEF = w7~ A& — 7))
= (e G (s N (7).

In third line we have parametrized the path with parameter ¢ where £ (t;) = &' and
" (ty;) = €. In fourth line we introduced substitution u = ¢7(t), in delta function this
substitute is inverted. Fifth line is obtained by using following integration rule for Dirac delta
function

| ans@otn = m = £ (Ao~ ) - Ao~ )] (D.02)

0
Here, H(x) is a step function defined in Appendix B equation (B.0.7).

Procedure for obtaining N(x7) is similar.

D.1 Properties of N(k¥) terms

Here we will list some properties of N (k%) function.
These functions can be combined in same way as BT functions in order to get 7 and o

representations



D.1. Properties of N(x%) terms

where k° and k! represent 7 and o coordinates respectevly
Acting with partial derivatives on N (k%) (N (k7)) and integrating over world-sheet we have

following relations
/ PE0N (") = 1, / P2E0.N(") = 0, (D.13)
3 P
/dzga_N(;{—) =1, /d2§8+N(/<_) =0. (D.1.4)
b b))

These relationships can be checked directly by applying partial derivatives to expressions from
D. Here we give explicit calculations to first of these relation

[ ot = [ aea(em (€ h) - w7 )ou A )~ A(g )]
= /E o (€ (€)1 ) = r7 ot — kY = /E ag 3 (¢ (€)M — k7). (D15)

At the beginning of this Appendix we had following parametrisation of path P : €7 (¢;) = &%

and &7 (t;) = €. Applying inverse parametrisation we have (¢'7)71(&]) = ¢; and (¢7)71(¢F) =
ty. With these we have
de=6s 1= /+—1+_—: de=5 1— e
[asa(em@rien —n) = [aea(ew) - )
= [daes(e—rn)=1. D.1.6
[ass(e =) (D16

Same rules apply for N(k™), N(x") and N(x'). In cases where F'~'(z),ps is antisymmetric
we can transfer partial derivatives from 0.V* to N(x*) and obtain standard 8% functions.
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1. AytopcTBo. /l03BO/baBaTe YMHOXKaBake, JUCTPUOYIUjy U jaBHO caollllTaBame JeJsa, U
npepajie, aKo ce HaBeJle UMe ayTopa Ha HAyuH ojpeheH o] CTpaHe ayTopa WM JaBaola
JIULEHIlE, YaK U y KoMepLuujaiHe cBpxe. OBO je Hajc1060HUja 01 CBUX JIMLEHIH.

2. AyTopcTBO - HekoMepuMja/aHO. /[03Bo/baBaTe YMHOKaBake, JUCTPUOYLUJY U jaBHO
caomlITaBame Jiesla, U Ipepajie, ako ce HaBeJie MMe ayTopa Ha HA4uH oJipeheH o[ cTpaHe
ayTopa WJiM AaBaola JuleHLe. OBa JiMIieHI|a He 103B0/baBa KOMepLHjaJHy YIOTpeOy fea.

3. AyTOpCcTBO - HeKOMepLHUjaJHO - ©6e3 mnpepaga. /lo3Bo/baBaTe YMHOXaBakbe,
JUCTPpUOYLHjy Y jaBHO caoNlITaBake Jiesia, 6e3 NpoMeHa, NpeobJMKOBamba UM yIoTpebe
Jlesla y CBOM Jiesly, aKO ce HaBeJle MMe ayTopa Ha HauMWH ojpebheH oJ CTpaHe ayTopa WJH
JlaBaoua JyuneHne. OBa JiMIeHI|a He J03B0/baBa KOMepPLUjaJHy yIoTpeoy Aesa. Y oAHOCY Ha
CBe OCTaJie JIMLEHIE, 0BOM JIMLEHIIOM Ce OrpaHUYaBa Hajsehu 06UM npaBa Kopulthemwa Jiena.

4. AyTOpCTBO - HEKOMepIMja/IHO - JAeJIMTH MNoJ UCTUM ycjaoBuMa. /lo3BosbaBaTe
YMHOXaBake, JUCTPUOYLHjy U jaBHO CAolIUTaBawe Jiesa, U Ipepaje, ako ce HaBeJe UMe
ayTopa Ha HauyMH oJfpebeH o cTpaHe ayTopa WJM JlaBaolla JIMLEHIle U aKo ce Ipepaja
JUCTpUOyMpa MOJA HCTOM WJIMA CAAYHOM JMLeHUoM. OBa JiMIleHLIA He [03BOJbaBa
KOMepLHjaJHy yIoTpeoy AeJa ¥ npepaja.

5. AytopcTtBO - 6e3 mpepaga. /lo3Bo/baBaTe YMHOXaBawe, [JUCTPUOYLU]Y U jaBHO
caollITaBame JeJa, 6e3 MIpoMeHa, IpeobIMKOBaba UM yoTpebe feia y CBOM Jiesly, ako ce
HaBeJle MMe ayTopa Ha Ha4yMH ojpeheH of CTpaHe ayTopa WJM JaBaoua JuleHue. OBa
JIMLIeHLa Z103B0J/baBa KOMEPLUjaHY YIIOTpeby Aea.

6. AyTOPCTBO - JeJIUTU NOJA UCTUM yca0BMMa. /lo3Bo/baBaTe YMHOXKaBakbe, JUCTPUOYIU]jY
M jaBHO caollUITaBake Jiesia, U Ipepajie, ako ce HaBeJle UMe ayTopa Ha Ha4uH oApeheH of
CTpaHe ayTopa WJIM JaBaolid JIMIeHILle M aKo ce Ipepaja AUCTpUOyupa MoJ UCTOM HJIH
CJIMYHOM JinneHLoM. OBa JIMIEeHIIa 03BO/baBa KOMepLUjaIHy YNOTpedy Aesa U mpepaja.
CnuyHa je copTBEPCKUM JIMIeHIlaMa, OJJHOCHO JIMIeHllaMa OTBOPEHOT KO/a.
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