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Thermomechanical behavior of hot mix asphalt (HMA) is considered. Its highly 
irregular microstructure is covered by the hierarchical approach. A brief survey 
of endochronic thermodynamics precedes constitutive consideration. Two 
constitutive models are discussed: classical Perzyna’s approach and tensor 
representation based approach. The second is superior due to its possibility to 
cover properly diverse multiaxial non-proportional stress-strain histories. 
However, due to availability of experimental data the first model is applied to 
rutting problem through Abaqus FEM code with material user subroutine 
developed by the authors. Vakulenko’s thermodynamic time appropriate for 
aging is incorporated. Hyper elastic-viscoplastic behavior is considered and 
some preliminary results are presented. 

Key words: endochronic memory, nonlinear hyper elasto-plasticity, thermo- 
                    dynamic restrictions, asphalt rutting 

 

Introduction 

The aim of this paper is twofold. First, we will consider in some detail an asphalt 

pavement - its microstructure and mechanical behavior are described in [2, 3]. Unlike 

concrete being a rigid pavement, asphalt belongs to flexible pavements. A characteristic 

permanent strain with spatial distribution along the road is called rutting. While the initial rut 

is caused by densification of the pavement under the path of the wheel, the subsequent history 

of rut is a result of shear flow of the hot mix asphalt (HMA). Thus, a proper constitutive 

model for asphalt is needed - able to cover not only tension but shear as well. 

 Concerning the microstructure of asphalt we see that HMA contains a very high 

volume fraction of irregularly shaped particulate inclusions [4]. Typically, HMA consists of 

93-97% of gravel and sand (usually called aggregates) bonded by bitumen. It has been shown 

by Lakes et al. [5] that for some larger volume fraction of irregular particulates, Eshelbian 

approach based on ellipsoidal inclusions does not give acceptable results - the predictions of 

effective properties underestimate the actual properties significantly. This fact pointed out by 

Lakes et al. [5] is logical due to large discrepancy from ellipsoidal form. As well known and 

discovered by Eshelby (cf. [6]) within range of isotropic elasticity for ellipsoidal inclusions a 
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homogeneous external field exerted outside the inclusion produces a corresponding 

homogeneous strain field in the inclusion. Such a remarkable feature has made possible a 

development of large number of papers dealing with so called self consistent field theories 

where inclusions have form close to ellipsoids. Such an approach (cf. also [7] ) here, to our 

regret, is not promising. Instead, the so called hierarchical approach is proposed. By this 

approach, HMA is modeled as a two phase composite, the first phase having aggregates with 

principal diameter larger than 0:3mm while the second phase was taken to be a homogenized 

mixture of smaller aggregates and binder. The enclosed fig. 1 (a) taken from [4] is convenient 

to illustrate the essence of this method. It should be noted that for such an approach a proper 

choice of the size of the Representative Volume Element (RVE) is very important and an 

image processing technique is needed. 

 For a body with manifold of immersed ellipsoidal inclusions this issue has been dis-

cussed in some detail in [8]. Calculations needed involve solving large number of the coupled 

integral equations. These calculations would become particularly cumbersome if for 

calculation of Eshelby tensor instead of average stiffness we insert the effective stiffness 

tensor (cf. [9]). Due to this complexity if we want explicit information about RVE size then 

the approach must be oversimplified. For instance in the paper [10] the authors obtained the 

most valuable information about RVE size. However, due to all the difficulties mentioned 

above for obtaining explicit solutions they assumed that inclusions are non-overlapping 

spheres and that the medium is isotropic. The finite element analysis applied in [11] is even 

simpler neglecting eigen-strains escorting implantation of grains into the polycrystalline RVE. 

It should be noted here that asphalt is a tar like substance obtained during fractional destilla-

tion of crude natural oil. At high temperature it behaves like a viscous fluid. For this reason a 

proper thermodynamic analysis of the deformation process is indispensable. The above 

discussed microstructural analysis dealing with windowing of RVE is not even touched here 

due to high irregularity of large often overlapping grains having irregular shapes. Due to these 

reasons, although unwillingly we will apply here a phenomenological approach smoothing 

inclusions and matrix into a homogeneous representative substance. On the other hand, the 

thermodynamical approach applied in the sequel is adequate and without simplifications. 

Endochronic thermodynamics 

The main idea in the so-called endochronic thermodynamics (cf. [14, 15]) is to replace 

actual time by means of some non-decreasing scalar function of inelastic strain history respon-

sible for aging whose ultimate value leads finally to rupture of the body. Vakulenko called this 

function - thermodynamic time ([14]). In such a concept purely elastic strain does not contribute 

to the thermodynamic time.  Such a time was introduced in [14] by means of the inelastic 

entropy source accumulation as follows. This source may be obtained by making use of 

   / d / d /T s t div T   q ,    (1) 

where ρ; s; q and T are mass density, specific entropy, specific heat flux vector and 

absolute temperature. In the range of thermoelasticity ψ vanishes in a homogeneous 

temperature field. 
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Figure 1. Microstructure of asphalt. 

Thus, the inelastic part of the source (1) i.e. 2/P gradT T   q reads ( d / dt is used here 

to denote material time derivative):  

: d / d d / d d / d ,PT t s t u t    σ ε                      (2) 

where σ, ε, and u stand for Cauchy stress tensor, total strain tensor and internal energy 

density. As a partial result the reduced dissipation inequality   q grad 1/T 0  shows that heat 

“flows” to the particle with lower temperature. Now, passing to the point, Vakulenko assumed 

that 0P
s  and defined the thermodynamic time by means of (cf. also [13]) 

   
t

0

t = d .P
s t t       (3) 

The function ζ(t) is piecewise continuous and non-decreasing in that    t d t /d 0tD t  
 

within elastic ranges and  t 0tD  when plastic deformation takes place. 

Assuming that at each time instant the considered state can be obtained either by 

instantaneous loading or by unloading and splitting the whole time history into a sequence of 

infinitesimal segments Vakulenko claimed that a superposition and causality exists – 

extending in such a way Boltzmann’s and Volterra’s superposition to nonlinear inelastic 

phenomena. Proceeding with accumulation of infinitesimal memory he obtained an integral 

relationship between Eulerian plastic strain deviator and stress deviator history as follows: 

     
0

d
= , d .

d
P



     


 
  

 
Φ         (4) 

 Therefore, in this setting the plastic strain tensor is obtained as a functional of stress 

and stress rate history.  

 In the books [1, 13] the authors applied Vakulenko’s approach to diverse media 

splitting the internal energy into a part dependent on temperature and elastic strain and a part 

which contains as arguments inelastic internal parameters and temperature. For our purpose in 

this paper we will consider a possibility to replace actual time with such a thermodynamic 

time.  If we compare the hereinabove function of thermodynamic time to accumulated plastic 

strain, then we see that ζ is able to account for nonlinear evolution equations in a simple way. 

 



Kudrjavceva, Lj. T., et al.: Thermomechanics of Soft Inelastics Bodies with… 
S224                                                THERMAL SCIENCE:Year 2014, Vol. 18, Suppl. 1, pp. S221-S228   

 

 

MAM model with tensor representation 

According to ([12]) the increment of plastic strain tensor is perpendicular to a loading surface 

Ω = const where Ω depends on stress, temperature and Pattern of Internal Rearrangement 
(PIR). Translating this statement into the language of the previous section an evolution 

equation for plastic stretching should hold in the following form ([1]):  

                   = , , .t PD T PIR        (5) 

Here PIR is described by a holonomic internal variables representing crystal slips over active 

slip systems. 

 The plastic distortion tensor is incompatible (cf. [1]), represents slips and may 

reflect transformation of a holonomic coordinates. Thus, taking into account that plastic 

rotation tensor may be either fixed or taken to be unity, it was assumed in [16] that in the 

above equation PIR may be represented by the plastic strain tensor. Moreover, we extend the 

above evolution equation inserting in it a scalar function Λ, which must account for the 

linear connection between rates of Mises equivalent stress and equivalent plastic strain rate. 

The structure of Λ may be related to Ziegler’s principle of least irreversible force [1]. 

Therefore 

   , , , = , , ,t P t P PD D T T                                  (6) 

where Rice’s loading function  = ,T  depends on temperature and following invariants:
 

 1 2 3 2 3 1 2 3 4, , , , , , , , ,s s s        

with  

1 tr ,s    2
2 tr ds   , 3

3 tr ds   , 3
2 tr P   , 3

3 tr P   ,  

 1 tr d P    ,  2 dtr P    ,  2
3 tr d P    ,  2 2

4 tr .d P   
 

If Ω is approximated by a fourth order polynomial with respect to σ and first order in P , 

then a very simple polynomial is obtained as follows (details are given in [1]).  

    2
1 2 2 4 1 1 2 3 3 2 5 3 2 1 3

1 1
2 = 3 2 .

2 3
a s a a s s s a s a s s        

                 (7)
 

Here only five independent constants are needed. Thus we arrive at the next equation: 

 
4

1
t PD  






   
                                                  (8)

 

with tensor generators  

0 1 tr dev dY    1       , 3 P  ,  2 2
0 2 dev dY   ,  0 4 dev d P P dY        

and corresponding scalar coefficients depending on the listed invariants are:  

1 1 2 1 3 2 4 1 5 3=a a s a s a a      ,  2 2 4 1 5 1= 3 / 2 2a a a     , 

 3 4 1 2 3 5 3= / 2 2 / 3a s s s a s   , 4 5 2=a s . 

At this point let us turn our attention to the scalar coefficient Λ appearing in (6). If we want to 

cover the effect of Rabotnov’s yielding delay, the best way is to propose this scalar in the form:  
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   
0

1 exp .
eq

eq t eqY D M
Y




  
 

     
                                  

(9) 

Here Y is the dynamic initial equivalent yield stress, Y0 is its static counterpart, η(x) is 

Heaviside’s function, λ is a material constant and M is a material constant which covers 

multiaxial stress-strain histories with broad range of strain rates – from static to impact rates. 

It is worth noting that inserting of (9) into (6) leads to an evolution equation of incremental 

form seemingly characteristic for rate–independent materials. At first sight the evolution 

equation for plastic stretching looks rate–independent since it can be transformed into an 

incremental equation if it is multiplied by an infinitesimal time increment. However, the rate 

dependence appears in stress–rate dependent value of the initial yield stress Y which has a 

triggering role for inelasticity onset. The model could be termed quasi rate independent.  
 Here, a special case of the loading function leading to reduced forms of the 

evolution equation (8) has remarkable simplicity. If a4 =0 and a5 =0, then the plastic stretching 

is of third–order power of stress. The loading function becomes (this may be called MAM 

reduced model)     2
1 2 2 1 2 3 3 22 = / 2.a s a s s s a s     

 However, although this approach has proved its superiority above all other 

considered in [1] we believe that the function Λ could be successfully applied in its simpler 

forms to other constitutive models by the plastic working i.e. ˆ : pd d    . Here the symbol 

d̂  shows that the   infinitesimal increment of plastic work is not a total differential. This will 

be applied to the next constitutive model. 

Perzyna’s model for asphalt 

The most frequently used model of viscoplastic mechanical behavior has been proposed by 

Perzyna. The corresponding set of field equations as listed in [3] is encompassed by plastic 

strain time rate t PD   and scalar hardening variable time rate tD  

1
,

m

t P L

f
D

x 

 
  

 
ν

                                                 (10)

 

1
,

m

t l

f
D

x


 

 
  

                                                (11)

 

where normal ν to loading surface , ,     

2 1 ,J   
                                                       (12)

 

reads: 

2

.
2

d

J



  


σ
ν 1

σ
                                                 (13)

 

The elastic range is interior of a closed yield surface in the stress space. It is limited by the 

sign of yield function 

1 2 3 .f s s s H   
                                                   (14)

 



Kudrjavceva, Lj. T., et al.: Thermomechanics of Soft Inelastics Bodies with… 
S226                                                THERMAL SCIENCE:Year 2014, Vol. 18, Suppl. 1, pp. S221-S228   

 

 

Here f < 0 means elastic behavior inside the elastic range, f = 0 stands for the yield surface 

and f > 0 is characteristic for viscoplastic range. The hyperelastic nonlinear constitutive 

equation connects stress and elastic strain as follows: 

   
   2 2

2 1 3 1 4 2 5 1 4 1 62 3 1 ,

P E

E Eb I b I b I b I b I b

  

     

  

 

D - D

   
   2 2

2 1 3 1 4 2 5 1 4 1 62 3 1 ,

P E

E Eb I b I b I b I b I b

  

     

  

 

D - D

                 

(15)
 

whereas the above used stress and elastic strain invariants are collected into the set: 

 

  
1 2 3 1 2 3

2 3 2 2
1

, , , , ,

, , , , / 2,det ,E E E

I I I s s s

tr tr tr tr tr s

 

      

                             

(16) 

being slightly different from the set used in the previous model. Here it is of utmost impor-

tance to underline that the material model constants,  2 3 4 5 6, , , , , , , , ,b b b b b H m l A , when 

calibrated, are completely different for shear and tension experiments (cf. [3]). This is not a 

shortcoming of this thesis but rather enlightens the fact that all constitutive models which are 

not based on tensor generators are misleading.  

  

(a)    (b)  

 

 

 

 

 

 

 

 

(c) 
 

 

 

 

Figure 2. FEM results for pavement rutting (a) A moving wheel on a rutting asphalt surface (b) Axial 

stress vs axial strain for 1 element asphalt box in hyperelastic range according to material constants in 

[3]  (c) FEM result for deformed pavement upper surface. 
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At  present, we have made an analysis by the FEM for a parallelepiped under compres-

sion using the Perzyna’s model. However, an important modification is made: instead of time 

rates corresponding thermodynamic time rates   are used., , ,t P t PD D D D    Work towards 

full application of the MAM model is in progress. Partial results are depicted in the Figs. 2- 3. 

Analysis and some conclusions 

 Let us note that the model of hyper elasto-viscoplasticity considered here is suitable 

for numerical applications. Due to this, and following the procedure often applied in papers 

dealing with FEM analysis, first we have analyzed a single element with homogeneous stress 

and strain histories. Due to geometry of loading of the considered wheel we analyze here a 

strain controlled history when only z-component of total strain grows. Results are shown in 

Figs. 2 and 3. One should notice that contrary to the algorithm applied in [3], here thermo-

dynamic time is used instead of the commonly observed and measured time. As mentioned 

above, this time progresses only when inelastic strain is changed. Thus, in the hyper elastic 

range the usual time must be used. Stress-strain curve for direction normal to the pavement 

surface in its undeformed state is given in the Fig. 2b. When strains grow the inelastic 

beahviour appears. Curves for the calculated yield function f as well hardening function    

(cf. (11)) are further given in the Figures 2a and 2b. Initial zero values of the yield function 

encompass the hyper elastic range where the hardening function has constant value. A smooth 

behavior of the curves of the axial stress versus total axial strain is rather close to 

experimental data reported in [3]. Anyway, a further comparison with the MAM model must 

be done for more complex multiaxial and non-proportional stress and strain histories. 

Deformed upper surface of the pavement surface is shown in the Fig. 2c. 

(a) (b)  

(c)  

Figure 3. Numerically found histories for 1 element asphalt box (a) Yield function (b) Hardening 

function  (c) Results in hyperelastic-viscoplastic region 



Kudrjavceva, Lj. T., et al.: Thermomechanics of Soft Inelastics Bodies with… 
S228                                                THERMAL SCIENCE:Year 2014, Vol. 18, Suppl. 1, pp. S221-S228   

 

 

Acknowledgement  

The part of this research is supported by Ministry of Education, Science and 

Technological Development, Republic of Serbia, through grants 171004 and TR32036. 

References 

[1] Micunovic M., Thermomechanics of Viscoplasticity - Fundamentals and Applications,  Advances 
in Mechanics and Mathematics AMMA, Vol. 20, 2009, eds. R. W. Ogden and D. Gao, Springer, 
New York, USA 

[2]  Bahuguna S., Panoskaltsis V. P., Papoulia K. D. Identification and Modeling of Permanent 
Deformations of Asphalt Concrete., J. Engng. Mech., Vol. 132, 2006, Issue 3, pp. 231-239. 

[3]  Panneerselvam D., Mechanics of Asphalt Concrete: Analytical and Computational Studies, PhD 
 thesis, Case Western Reserve Univ., 2005, Cleveland, O., USA 
[4]  Kahan Mitra, Animesh Das, Sumit Basu, Mechanical behavior of asphalt mix: An experimental 

and numerical study, Construction and Building Materials, Vol. 27, 2012, 1, pp. 545-552. 
[5]  Lakes RS, Kose S, Bahia H.,Analysis of high volume fraction irregular particulate damping 
 composites, J Eng Mater Technol, Vol.124, 2002, 2, p.174-178. 
[6] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related 
 problems, Proc. Roy. Soc., 241, 1957, pp. 376–396. 
[7]  Micunovic M., Kudrjavceva L, Šumarac, Thermoinealsticity of Damaged Elastomers by 
 Self-consistent Method, Int. J. Damage Mech.,17/6, 2008, pp. 539-565. 
[8]  Micunovic, M., Self-consistent method applied to quasi-rate independent polycrystals, 

 Phil.Magazine, 85, 2005, 33-35, pp. 4031–4054. 
[9]  Yaguchi, M., Busso, E. P., A Self-Consistent Constitutive Formulation for a Directionally 

Solifified Polycristal, Int. J. Solids Structures, 42, 2005, 3-4, pp. 1073-1089 
[10]  Drugan, W. J. and Willis, J. R, A Micromechanics-Based Nonlocal Constitutive Equation and 

Estimates of Representative Volume Element Size for Elastic Composites, J. Mech. Phys.Solids, 
44, 1996, 497-524. 

[11]  Gusev, A. A., Representative volume element size for elastic composites: a numerical study, J. 
Mech. Phys.Solids, 45, 1997, 9, pp. 1449 - 1459.  

[12]  Rice, J. R., Inelastic constitutive relations for solids: an internal variable theory and its
 application to metal plasticity, J. Mech. Phys. Solids, 19, 1971, 433–455 
[13]  Fomin, V. L.: Continuum Mechanics for Engineers (in Russian), St. Peterburg University Publ., 
 St. Peterburg (1975) 
[14]  Vakulenko, A. A., Superposition in continuum rheology (in Russian), Izv. AN SSSR 
 Mekhanika Tverdogo Tela, 1, 1970, pp. 69–74 
[15]  Valanis, K. C., A theory of viscoplasticity without a yield surface, Arch. Mech., 23, 1971, pp. 

517–533 
[16]  Micunovic , M., Albertini, C., Montagnani, M., High strain rate viscoplasticity of AISI 316 

stainless steel from tension and shear experiments, In: Miljani´c, P. (ed) Solid Mechanics, Serbian 
Acad. Sci. Meetings - LXXXVII, Dept. Techn. Sci., 3, 1997, 97–106. 
.  

 
 
 
 
 
Paper submitted:  August 12, 2013 
Paper revised: November 14, 2013 
Paper accepted: November 18, 2013 


