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Abstract. Ranked set sampling (RSS) is the cost-efficient sampling procedure. This procedure gives more

efficient estimators of the population parameters than the procedure based on simple random sampling

(SRS), with the same sample size. In this paper, we compare the coverage probabilities of confidence

intervals for the population standard deviation using the simple random sampling and the ranked set

sampling. The following confidence intervals are considered: the exact, the Bonett, the Steve large sample

normal approximations, the log asymptotic approximation and the adjusted degrees of freedom. The results

for the Gamma, Log-normal and Exponential distributions and for the real data set are presented. The

simulation study shows that the results obtained using the ranked set sampling are better than those using

the simple random sampling.

Keywords: population standard deviation; confidence interval; coverage accuracy; ranked set sampling;

simple random sampling

1. INTRODUCTION

In this paper, we construct the confidence intervals for the population standard deviation. The population

standard deviation is the most common scale parameter. The existing confidence interval for the estimation

of the population standard deviation is the exact confidence interval, based on the statistic which has
2χ

distribution. This interval is appropriate if the distribution of the data is normal with no outliers. We are

interested in confidence intervals which are appropriate if the data are not from the normal distribution, but

from skewed distribution or have heavy tails. There are some alternatives to the exact confidence interval

which can be used in such situations. There are no many authors who dealt with the confidence intervals

that were less sensitive to the departure from normality and/or presence of outliers. Bonett (2006) proposed

an approximate confidence interval for the population standard deviation which results were close to the

exact confidence interval under the normality and had very good small-sample properties under the

moderate non-normality. Cojbasic and Loncar (2011) and Cojbasic and Tomovic (2007) used the resampling

methods for construction of confidence intervals for the population variance (taking the square root of the

endpoints of that intervals gave the confidence intervals for the population standard deviation). Abu

Shawiesh et al. (2011) and Banik et al. (2014) conducted the large simulation studies in which compared the

performances of the different confidence intervals for the standard deviation under the symmetric and

skewed conditions. Hummel et al. (2005) proposed two alternative methods for finding the confidence

interval for the standard deviation.

Ranked set sampling (or shortly RSS) is an alternative method of data collection and presents the cost

effective sampling procedure. The RSS is used for improving the estimators in the situations where the

ranking of the units can be done easily compared to the effort required for the actual measurement of the

variable of interest. This method was first proposed by McIntyre (1952). He estimated the mean of the

population using the RSS instead of simple random sampling (or shortly SRS). Dell and Clutter (1972)

showed that the ranked set sampling provided more precise estimates of the mean when the ranking of the

units in the sample was easy. Using the RSS, Stokes (1980) concluded that an estimator of variance was

asymptotically unbiased regardless of the errors that could occur during the ranking and that asymptotic

efficiency of that estimator was better relative to the estimator based on the same number of the measured

units from the random sample. Chen (2007) gave the review of the several variants of the ranked set

sampling and presented some recent applications of that method. Samawi (1999) showed that the

performance of the Monte Carlo methods, such as an importance or control variate sampling, were improved

a lot using the ranked set sampling. Wolfe (2012) wrote the review article about the impact of the ranked set

sampling on the statistical inference. Ganeslingam and Ganesh (2006) applied the ranked set sampling

procedure on the estimation of the population mean and ratio using the real data set on the body

measurements. Husby et al. (2005) used the crop production dataset from the United States Department of

Agriculture to show the advantages of the RSS relative to the frequently used simple random sampling in the

estimation of the mean and median of the population. Terpstra and Wang (2008) examined the several
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methods for construction of confidence intervals for the population proportion based on the RSS. Albatineh

et al. (2014) performed the simulation study in which evaluated the performance of the several confidence

intervals for the population coefficient of variation, using the coverage probabilities and the width of the

intervals. Albatineh et al. (2017) constructed the confidence intervals for the Signal-to-Noise ratio using the

RSS. More about the ranked set sampling methodology and its application can be found in Ozturk (2018),

Zamanzade and Mahdizadeh (2017), Zamanzade and Vock (2015), Zhang et al. (2016), etc.

In this paper, we examine the confidence intervals for the population standard deviation which are more

adequate to use when the data do not follow the normal distribution. We construct the confidence intervals

using the simple random sampling and the ranked set sampling. The examined intervals are implemented

using the R programming language. We generate random data from the Gamma, Log-normal and

Exponential distributions, respectively and compare the coverage probabilities of the presented confidence

intervals. Then, we apply the considered intervals to the measure of the systematic risk data.

The goal of this paper is to present the ranked set sampling procedure for construction of confidence

intervals for the population standard deviation. The contribution of this paper is to emphasize the advantages

of the ranked set sampling procedure over the simple random sampling procedure. The paper is organized

as follows: in Section 2, we describe the ranked set sampling methodology; in Section 3, we present the

confidence intervals for the population standard deviation; in Section 4, we conduct the simulation study for

the data from the Gamma, Log-normal and Exponential distributions and for the real data set; in Section 5,

we summarize results and draw the conclusions.

2. RANKED SET SAMPLING METHODOLOGY

The ranked set sampling procedures can be balanced or unbalanced. Each procedure can be with the

perfect or imperfect ranking process. In this paper, we consider the balanced RSS with the perfect ranking

process (see Ganeslingam and Ganesh (2006), Wolfe (2012), Albatineh et al. (2014)). The process of

generating the balanced RSS involves drawing 2k units at random from the population. After that, these

units are randomly divided into k sets of k units each (we get k simple random samples of the size k). Within

each set, the units are ranked according to the variable of interest. The perfect ranking process implies that

actual measurements of the variable of interest on the selected units are done and that ranking is based on

them. Opposite to the perfect ranking process, the imperfect ranking process includes visual comparisons of

the units or the use of the auxiliary varables. After the ranking process, from the first set we select the unit

with the smallest rank X()1 (if the ranking is perfect or X[1], if the ranking is imperfect). The remaining k-1

units are not considered further. Then, from the second set we select the unit with the second smallest rank

X()2, and so on, until we select the unit with the largest rank from the k-th set, X()k . This procedure results

in k observations X()1 , X()2,…, X()k and is called the cycle. The number of the units in each simple random

sample, k, is called the set size. If we want to obtain the balanced ranked set sample of size n = mk , we

repeat the cycle m times (see Table 1). The complete balanced RSS with set size k and m cycles is given by

{X(j)i : j =1,2,...,k;i =1,2,...,m} . The term X()ji is called the j-th order statistic from the i-th cycle.

Table 1: The balanced RSS with m cycles and set size k

Cycle 1 X(1)1 X(2)1 … X(k)1

Cycle 2 X(1)2 X(2)2 … X(k)2

… … … … …

Cycle m X(1)m X(2)m … X()km

Source: Wolfe (2012)

The estimators of the mean and the variance of the population, based on the RSS, are given with the

following formulas (see Stokes, 1980):

XRSS = km1 ∑kj=1∑im=1
X(j)i, (1)
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1

km-1

S2RSS = (2)
∑kj=1∑im=1(X(j)i - XRSS

)2.

3. CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION

In this section, we report five confidence intervals for the population standard deviation.

• The exact confidence interval

Let X1,..., Xn be independent
and

identically distributed random variables from the normal distribution, i.e.

Xi
N(μ,σ2)

(n-1)S2/σ2
. Let (S2 = (1/n-1))∑in=

1(Xi -
X)2

be a sample variance. The statistic

has
2χ

distribution with
n-1

degrees of freedom. The exact(1α-)∙100% confidence interval for the

population standard deviation, based on the previous statistic, is of the form:

( )

( )

(2- 2 ≤ ≤ 2-) 2 (3)σ

n1Sχ

/2, 1 1/2,(1)Where -αn-

,

χ2α/2 and χ21-α/2 are the α
/2

and 1α-
/2

percentiles of the
2χ

distribution with
n-1

degrees of freedom.

The exact confidence interval (3) is very sensitive to minor violations of the normality assumption. In the

cases of violations of the normality assumption, there are the confidence intervals which present the

alternatives to the exact confidence interval. In remain of the section, we consider that confidence intervals.

• The Bonett confidence interval

Let X1,..., Xn be continuous, independent and identically distributed random variables with E(Xi)=μ,

n 1 Sχ α n-

var(Xi)σ= 2 and the finite fourth moment. Bonett (2006) proposed the following estimator of the kurtosis,

γ4, which is asymptotically eqvivalent to the Pearson’s estimator:

γ4
=n∙∑in=1

(Xi-m)
4

/(∑
in

=

1(Xi-X)2)2

,

Where m is a trimmed mean with trim-proportion equal to 1/{2∙n-41/2} . This estimator tends to have()

less negative bias and smaller coefficient of variability than Pearson’s estimator in the symmetric and

skewed leptokurtic distributions. The (1α-)∙100% confidence interval for the population standard deviation

can be written in the following form (see Bonett, 2006):

exp⌈⌊ln(cS2 )- Z1-α/2se⌉⌋ ≤σ ≤ exp⌈⌊ln(cS2 )+ Z1-α/2se⌉⌋, (4)

Where
c=

n/(n-Z1α-/2), 2S is the sample variance, Z1α-/2 is the 1α-
/2

percentile of the Z

1/2

.distribution and se=c∙⌈⌊{γ4 ∙(n-3)/n}/(n-1)⌉⌋

• The Steve large sample normal approximations confidence interval

Steve proposed the following (1α-)∙100% confidence interval for the population standard deviation (see

Banik et al., 2014):
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2S1-Zα/2 γ̂ -1 ≤σ
≤

n S
2

1+ Z
α/2

γ̂ -1

,

n

(5)

where 2S is the Zαn sample4 variance,n /22 is the α / 2 percentile of the standardized normal distribution and

γˆ =
n∙∑

i=
1(Xi -X)

/(∑
i=

1(Xi -X
)

)2
is the kurtosis estimator.

• The log asymptotic approximation confidence interval (LOG CI)

The distribution of the sample variance, 2S, has the high skewness for small n. In order to reduce the

skewness, Hummel et al. (2005) applied natural log to the sample variance in (5) and proposed the

(1α-)∙100% confidence interval for the population standard deviation:

⌈││⌊S 2 exp⎛││⎝Z /2 γ̂ -n 1 ⎞││⎠⌉││⌋ ≤σ ≤ ⌈││⌊S 2 exp⎛││⎝-Z

/2

γ̂ n-1 ⎞│

│

⎠⌉││⌋

, (6)
Where /2 α α

Zα ˆγ is the kurtosis estimator.is the α /2
percentile of the Z distribution and

• The adjusted degrees of freedom confidence interval (ADF CI)

Hummel et al. (2005) adjusted the degrees of freedom of the exact confidence interval (3) and proposed the

following (1α-)∙100% confidence interval for the population standard deviation:

rSˆ2 2χ 2α/2,rˆ ≤σ ≤ rSˆ

χ 21-α/2,ˆ

,

r

(7)

Where rˆ= 2
n

ˆe +⎛│⎝n2-n1⎞│⎠

γˆe is the estimate of the kurtosis excess, which is defined as
()

andγ
nn (+1

X )4

()i

-X 3n-12

∑in=1 . If the random sample is generated from the()()()
γˆe =
n-1nn-2-3

4 (

)()S -
n-2n-3

normal distribution, then r = n-1 and (7) reduces to (3).

The performance of all presented intervals will be considered using the SRS and the RSS. In order to get the

estimators of the mean and variance of the population we will use the regular formulas for the SRS and

Equations (1) and (2) for the RSS.

4. CASE STUDY

In this part of the paper, we present the results of applying the proposed methods on the simulated data and

real-economic data.

4.1 Simulation study

In this part of our work we examine the coverage accuracy of two-sided confidence intervals for the standard

deviation introduced in the Section 3. Our objective is to compare the performance of the confidence

intervals for estimating the standard deviation using the SRS and the RSS. The nominal confidence level is

set to 95% and we want to determine which of the proposed intervals will give the coverage probability that is

the closest to 95%. For that purpose, we consider three scenarios. In the first scenario we deal with the

Gamma distribution, while in the second scenario the subject of the consideration is the Log-normal

distribution. In the third scenario we investigate the Exponential distribution. It is important to emphasize that

we can deal with any other scenario with the other skewed distribution.
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In the first scenario, we consider the Gamma distribution with the shape parameter 2 and with the scaling

parameters 0.5, 1.6 and 3.2. For each combination of the parameter setting and the sample size (15, 20, 50,

80), we performed 1000 simulations. All examined intervals are implemented using the R programming

language. In Table 2 we present the results of the coverage accuracy of 95% confidence intervals for the

standard deviation of the Gamma distribution. It can be seen that for the small samples (size 15), the RSS

Bonett interval gives the best results, i.e. the coverage probabilities that are the closest to 0.95 (the coverage

greater than 0.932). For the moderate samples (size 20), the RSS Bonett interval gives the best coverage

(below 0.961). In the case of big samples (size 50), depending on the scaling parameter of the Gamma

distribution, the best coverage probabilities are obtained using the Bonett and the RSS Log intervals (the

coverage greater than 0.939). For the samples of size 80, the Bonett interval and the RSS ADF interval give

the best coverage accuracy (above 0.943).

Table 2: The coverage of 95% two-sided confidence intervals for the standard deviation of the Gamma

distribution

a s n RSS Bonett RSS Steve RSS Log RSS ADF RSS2χ 2χ
Bonett Steve Log ADF

2 0.5 15 0.831 0.865 0.937 0.939 0.714 0.748 0.797 0.821 0.841 0.895

20 0.838 0.881 0.909 0.960 0.769 0.773 0.788 0.864 0.857 0.907

50 0.784 0.818 0.957 0.966 0.902 0.932 0.903 0.923 0.907 0.935

80 0.803 0.861 0.945 0.958 0.913 0.936 0.923 0.943 0.926 0.952

2 1.6 15 0.824 0.887 0.911 0.936 0.750 0.757 0.767 0.784 0.835 0.883

20 0.854 0.875 0.924 0.961 0.726 0.747 0.795 0.830 0.829 0.911

50 0.805 0.898 0.933 0.972 0.900 0.923 0.885 0.939 0.908 0.934

80 0.847 0.852 0.958 0.976 0.918 0.939 0.915 0.932 0.921 0.943

2 3.2 15 0.829 0.871 0.910 0.932 0.723 0.737 0.797 0.809 0.883 0.893

20 0.807 0.868 0.923 0.952 0.750 0.832 0.840 0.845 0.853 0.905

50 0.765 0.856 0.936 0.982 0.901 0.923 0.885 0.939 0.919 0.932

80 0.758 0.840 0.952 0.965 0.907 0.941 0.905 0.938 0.922 0.936

In the second scenario, we deal with the Log-normal distribution with the shape parameter 2 and with the

scaling parameters 0.25, 0.5 and 0.6. For each combination of the parameter setting and the sample size

(15, 20, 50, 80), we generated 1000 samples. All considered intervals are implemented using the R

programming language. In Table 3 we present the results of the coverage accuracy of 95% intervals for the

standard deviation of the Log-normal distribution. For the small samples, the RSS
2χ

and the RSS Bonett

intervals give the coverage probabilities that are the closest to 0.95 (above 0.924). In the case of the

moderate samples, depending on the scaling parameter of the Log-normal distribution, the RSS
2χ

interval

and the RSS Bonett interval give the best results (the coverage greater than 0.933). For the big samples

(size 50) the best results are obtained with the Steve interval and the RSS Bonett interval (above 0.940). For

the samples of size 80, the Steve, the RSS ADF, the Bonett and the RSS Bonett intervals give the coverage

probabilities that are the closest to 0.95.

In the third scenario, we investigate the Exponential distribution with the rate parameters 0.5, 1.5 and 2.2.

For each parameter setting and each sample size (15, 20, 50, 80), we performed 1000 simulations. All

considered intervals are implemented using the R programming language. In Table 4 we present the results

of the coverage accuracy of 95% confidence intervals for the standard deviation of the Exponential

distribution. It can be seen that for the small samples, the RSS Bonett interval gives the best results (above

0.923). For the moderate samples, the RSS Bonett interval gives the best coverage (greater than 0.938). In

the case of big samples (size 50) the best coverage probabilities are obtained using the RSS Bonett interval

(above 0.945). For the samples of size 80, depending on the rate parameter of the Exponential distribution,

the Bonett and the RSS Bonett intervals give the best coverage accuracy (above 0.942).

Table 3: The coverage of 95% two-sided confidence intervals for the standard deviation of the Log-normal

distribution
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μ σ n
2χ

RSS Bonet2χ t RSS Steve RSS Log RSSBonet Steve Logt ADF RSS

ADF

2 0.25 15 0.911 0.946 0.965 0.977 0.788 0.839 0.807 0.852 0.904 0.924

20 0.920 0.937 0.964 0.980 0.833 0.883 0.864 0.874 0.915 0.935

50 0.909 0.918 0.972 0.974 0.947 0.954 0.923 0.936 0.927 0.963

80 0.912 0.938 0.969 0.980 0.945 0.964 0.929 0.943 0.942 0.955

2 0.5 15 0.817 0.846 0.922 0.942 0.658 0.690 0.747 0.759 0.769 0.838

20 0.758 0.850 0.930 0.949 0.679 0.729 0.768 0.818 0.800 0.850

50 0.669 0.828 0.937 0.953 0.911 0.927 0.872 0.910 0.904 0.914

80 0.762 0.766 0.949 0.961 0.920 0.936 0.905 0.932 0.920 0.925

2 0.6 15 0.734 0.753 0.915 0.924 0.610 0.636 0.676 0.753 0.777 0.802

20 0.709 0.737 0.900 0.933 0.579 0.612 0.749 0.760 0.785 0.840

50 0.655 0.671 0.919 0.940 0.842 0.884 0.791 0.884 0.867 0.875

80 0.556 0.682 0.939 0.941 0.866 0.888 0.862 0.886 0.884 0.897

Table 4: The coverage of 95% two-sided confidence intervals for the standard deviation of the Exponential

distribution

λ n RSS Bonett RSS Steve RSS Log RSS ADF RSS2χ 2χ
Bonett Steve Log ADF

0.5 15 0.757 0.799 0.904 0.930 0.614 0.637 0.763 0.769 0.781 0.797

20 0.753 0.843 0.911 0.943 0.586 0.722 0.753 0.832 0.844 0.858

50 0.720 0.762 0.938 0.958 0.813 0.907 0.848 0.891 0.904 0.910

80 0.722 0.751 0.943 0.960 0.908 0.930 0.903 0.917 0.907 0.925

1.5 15 0.753 0.763 0.905 0.935 0.510 0.654 0.746 0.795 0.764 0.807

20 0.769 0.786 0.931 0.953 0.631 0.763 0.770 0.836 0.797 0.836

50 0.683 0.751 0.918 0.960 0.822 0.901 0.888 0.902 0.900 0.925

80 0.658 0.744 0.942 0.963 0.916 0.934 0.914 0.920 0.918 0.933

2.2 15 0.746 0.755 0.904 0.923 0.625 0.652 0.720 0.726 0.780 0.839

20 0.694 0.785 0.914 0.938 0.647 0.721 0.704 0.808 0.778 0.840

50 0.687 0.734 0.931 0.945 0.883 0.897 0.875 0.908 0.893 0.906

80 0.653 0.739 0.933 0.966 0.908 0.922 0.894 0.917 0.906 0.922

4.2. Application to the real data

In this part of the paper, we analyze the measure of theS&P500, but there are no data for some companies) onsystematicthe 5th Julyrisk2017.dataThein 490datacompaniesare from the(it iswebsiteabout

http://finance.yahoo.com/.

In analysis of securities, the measure of the systematic risk (beta) takes a central place. The measure of the

systematic risk represents the measure of the sensitivity of the yield of the securities to the changes in the

yield on the market. Beta shows that if the yield on the market changes by one percent, by how many

percentage points the yield of the securities will change.

Descriptive statistics for the analyzed data are given in Table 5. Figures 1 represents the histogram of the

analyzed variable. We can see that the measure of the systematic risk is not normally distributed. Also, we

used the Shapiro-Wilk normality test to examine whether the beta was normally distributed. The test showed

the same result as the histogram (p-value is approximately 0).

Table 5: Descriptive statistics for the data set
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Variable N Mean Std. deviation Skewness coef.

The measure of thesystematic risk 490 1.02 0.52 0.43

Figure 1: Histogram of the measure of the systematic risk

Results of the coverage accuracy of 95% confidence intervals for the standard deviation of the data set are

given in Table 6. It can be seen that for the small samples, the RSS
2χ

interval gives the best coverage

(0.945). For the moderate samples, the RSS ADF interval gives the coverage that is the closest to 0.95. For

the samples of size 50, the RSS Steve interval is the best choice and in the case of the samples of size 80,

the ADF interval gives the best coverage accuracy (0.946).

Table 6: The coverage of 95% two-sided confidence intervals for the standard deviation: the data set

n RSS Bonett RSS Steve RSS Log RSS ADF RSS2χ 2χ
Bonett Steve Log ADF

15 0.934 0.945 0.962 0.975 0.811 0.833 0.839 0.879 0.907 0.919

20 0.918 0.924 0.972 0.977 0.878 0.893 0.873 0.898 0.926 0.935

50 0.921 0.943 0.976 0.986 0.919 0.955 0.904 0.920 0.921 0.943

80 0.911 0.921 0.971 0.968 0.938 0.931 0.913 0.915 0.946 0.938

5. CONCLUSIONS

In this paper, we used the simple random sampling and the ranked set sampling to compare the coverage

probabilities of confidence intervals for the population standard deviation. The exact confidence interval, the

Bonett, the Steve large sample normal approximations, the log asymptotic approximation and the adjusted

degrees of freedom confidence intervals were examined.

In the first scenario, we investigated the Gamma distribution. For the small and moderate samples, the RSS

Bonett interval gave the coverage probabilities that were the closest to 0.95, whereas for the big samples the

Bonett, the RSS Log and the RSS ADF intervals gave the best results. In the second scenario, we dealt with

the Log-normal distribution. For the small and moderate samples, the best results were obtained using the

RSS
2χ

and the RSS Bonett intervals. In most cases, for the big samples, the Steve interval and the RSS

Bonett interval gave the best coverage. In the third scenario, we considered the Exponential distribution. For

the small and moderate samples, the RSS Bonett interval was the best choice, whereas for the big samples,

the Bonett and the RSS Bonett intervals gave the best results.

The analysis of the real data showed that for the small samples, the RSS
2χ

interval gave the best coverage

accuracy, while for the moderate samples the best choice was the RSS ADF interval. For the big samples,

the RSS Steve and the ADF interval gave the best results. We can see that using the RSS gives much better

coverage probabilities, so we recommend using it when construct the confidence intervals for the population

standard deviation.
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