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1Instituto de Matemática, UFRGS, Porto Alegre, RS, 91509–900, Brazil
emilio.allem@ufrgs.br, juliane.capaverde@ufrgs.br,

trevisan@mat.ufrgs.br

2Faculty of Science, University of Kragujevac,
Kragujevac, Serbia
gutman@kg.ac.rs

3State University of Novi Pazar, Novi Pazar, Serbia
ezogic@np.ac.rs , edinglogic@np.ac.rs

(Received December 26, 2015)

Abstract

The resolvent energy of a graph G of order n is defined as ER =
∑n

i=1(n−λi)−1, where

λ1, λ2, . . . , λn are the eigenvalues of G. In a recent work [Gutman et al., MATCH Commun.

Math. Comput. Chem. 75 (2016) 279–290] the structure of the graphs extremal w.r.t.

ER were conjectured, based on an extensive computer–aided search. We now confirm the

validity of some of these conjectures.

1 Introduction

Let G be a graph on n vertices, and let λ1 ≥ λ2 ≥ · · · ≥ λn be its eigenvalues, that

is, the eigenvalues of the adjacency matrix of G. The resolvent energy of G is defined

in [3, 4] as

ER(G) =
n∑
i=1

1

n− λi
. (1)
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It was shown in [3] that

ER(G) =
1

n

∞∑
k=0

Mk(G)

nk
(2)

where Mk(G) =
∑n

i=1 λ
k
i is the k-th spectral moment of G.

In what follows, we present results found in the literature that confirm some

of the conjectures made in [3, 4] on the resolvent energy of unicyclic, bicyclic and

tricyclic graphs. These results were originally stated in [2,5,6] in terms of the Estrada

index, another spectrum–based graph invariant related to the spectral moments by

the formula

EE(G) =
∞∑
k=0

Mk(G)

k!
.

Most of the proofs in [2,5,6] are based on the spectral moments and work for the

resolvent energy without any change. The proofs that involve direct calculations with

Estrada indices can be easily modified to give the equivalent results concerning the

resolvent energy, as we show below. Thus, the following are determined:

• the unicyclic graph with maximum resolvent energy (Theorem 1);

• the unicyclic graphs with minimum resolvent energy (Theorems 2 and 3);

• the bicyclic graph with maximum resolvent energy (Theorem 4);

• the tricyclic graph with maximum resolvent energy (Theorem 5).

2 Unicyclic graphs with maximum and minimum

resolvent energy

Let Xn denote the unicyclic graph obtained from the cycle C3 by attaching n − 3

pendent vertices to one of its vertices, and X̃n the unicyclic graph obtained from C4

by attaching n− 4 pendent vertices to one of its vertices, as in Figure 1.
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Figure 1: Unicyclic graphs with maximum resolvent energy.

Lemma 1. Let G be a unicyclic graph on n ≥ 4 vertices, G 6∼= Xn, X̃n.

1. If G is bipartite, then Mk(G) ≤Mk(X̃n), for all k ≥ 0, and Mk0(G) < Mk0(X̃n)

for some k0.

2. If G is not bipartite (that is, G contains an odd cycle), then Mk(G) ≤Mk(Xn)

for all k ≥ 0, and Mk0(G) < Mk0(Xn) for some k0.

Proof. Part (i) follows from Lemmas 3.2, 3.5 and 3.8 in [2], and (ii) follows from

Lemmas 3.2, 3.5 and 3.7 in [2].

We denote the characteristic polynomial of a graph G by φ(G, λ). For a proper

subset V1 of V (G), G−V1 denotes the graph obtained from G by deleting the vertices

in V1 (and the edges incident on them). Let G − v = G − {v}, for v ∈ V (G). We

make use of the following lemma.

Lemma 2. [1] Let v ∈ V (G), and let C(v) be the set of cycles containing v. Then

φ(G, λ) = λφ(G− v, λ)−
∑

vw∈E(G)

φ(G− v − w, λ)− 2
∑
Z∈C(v)

φ(G− V (Z), λ)

where φ(G−v−w, λ) ≡ 1 if G is a single edge, and φ(G−V Z, λ) ≡ 1 if G is a cycle.

Theorem 1. Let G be a unicyclic graph on n ≥ 4 vertices. Then ER(G) ≤ ER(Xn),

with equality if and only if G ∼= Xn. Moreover, if G is bipartite, then ER(G) ≤

ER(X̃n), with equality if and only if G ∼= X̃n.
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Proof. Let G be a unicyclic graph. Lemma 1 and equation (2) imply that ER(G) ≤

ER(Xn) if G contains an odd cycle, and ER(G) ≤ ER(X̃n) if G contains an even

cycle (i.e., G is bipartite). Furthermore, equality occurs if and only if G ∼= Xn, in the

case of an odd cycle, or G ∼= X̃n, in the bipartite case.

Now, an n-vertex unicyclic graph with maximum resolvent energy is either Xn or

X̃n. We show that ER(Xn) > ER(X̃n), for n ≥ 4. Let φ(Xn, λ) and φ(X̃n, λ) denote

the characteristic polynomials of Xn and X̃n, respectively. Then, by [3, Theorem 8],

we have

ER(Xn) =
φ′(Xn, n)

φ(Xn, n)
and ER(X̃n) =

φ′(X̃n, n)

φ(X̃n, n)
(3)

where φ′(G, λ) = d
dλ
φ(G, λ). By Lemma 2, it follows that

φ(Xn, λ) = λn−4 (λ4 − nλ2 − 2λ+ n− 3)

φ(X̃n, λ) = λn−4 (λ4 − nλ2 + 2n− 8) .

Hence

ER(Xn)− ER(X̃n) =
φ′(Xn, n)

φ(Xn, n)
− φ′(X̃n, n)

φ(X̃n, n)

=
φ′(Xn, n)φ(X̃n, n)− φ′(X̃n, n)φ(Xn, n)

φ(Xn, n)φ(X̃n, n)

=
10n4 − 24n3 + 10n2 − 4n+ 16

(n4 − n3 − n− 3)(n4 − n3 + 2n− 8)
.

The polynomial p(λ) = 10λ4 − 24λ3 + 10λ2 − 4λ + 16 does not have any real roots,

thus the numerator p(n) is positive for all n. The real roots of the polynomials

λ4 − λ3 − λ− 3 and λ4 − λ3 + 2λ− 8 are less than 2, so the denominator is positive

for n ≥ 2. It follows that ER(Xn)− ER(X̃n) > 0.

Let C∗n denote the unicyclic graph obtained by attaching a pendent vertex to a

vertex of Cn−1.

Lemma 3. Let G be a unicyclic graph on n ≥ 5 vertices. If G 6∼= Cn, C
∗
n, then at

least one of the following holds:

1. Mk(G) ≥Mk(Cn) for all k ≥ 0, and Mk(G) > Mk(Cn) for some k0 ≥ 0.
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2. Mk(G) ≥Mk(C
∗
n) for all k ≥ 0, and Mk(G) > Mk(C

∗
n) for some k0 ≥ 0.

Proof. If G 6∼= Cn, C
∗
n, it follows from Lemmas 5.3, 5.4, 5.5 in [2] that G can be

transformed into either Cn or C∗n in a finite number of steps, in such a way that, at

each step, the k-th spectral moment does not increase for each k, and decreases for

some k0.

Theorem 2. Let G be a unicyclic graph on n ≥ 5 vertices. If G 6∼= Cn, C
∗
n, then

ER(G) > min{ER(Cn), ER(C∗n)}.

Proof. Follows from Lemma 3.

Using arguments that are not based on spectral moments, we can strengthen

Theorem 2 as follows:

Theorem 3. Let G be a unicyclic graph on n ≥ 5 vertices. If G 6∼= Cn, then ER(G) >

ER(Cn).

Proof. In view of Theorem 2, it is sufficient to prove that ER(Cn) < ER(C∗n). In [3],

the validity of this latter inequality was checked for n ≤ 15. Therefore, in what

follows we may asume that n > 15, i.e., that n is sufficiently large.

Bearing in mind the relations (3), we get

ER(G) =
d lnφ(G, λ)

dλ

∣∣∣∣
λ=n

and therefore

ER(Cn)− ER(C∗n) =

(
d lnφ(Cn, λ)

dλ
− dφ(lnC∗n, λ)

dλ

)∣∣∣∣
λ=n

=
d

dλ
ln
φ(Cn, λ)

φ(C∗n, λ)

∣∣∣∣
λ=n

. (4)

The greatest eigenvalue of Cn is 2, and the greatest eigenvalue of C∗n is certainly

less than 3. Therefore, bearing in mind that Cn and C∗n contain no triangles and no

pentagons, for λ = n,

φ(Cn, λ) = λn − nλn−2 + b2(Cn)λn−4 + · · ·

φ(C∗n, λ) = λn − nλn−2 + b∗2(Cn)λn−4 + · · ·
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and thus
φ(Cn, λ)

φ(C∗n, λ)
= 1 +

b2(Cn)− b2(C∗n)

λ4
+O

(
1

λ6

)
and

ln
φ(Cn, λ)

φ(C∗n, λ)
=
b2(Cn)− b2(C∗n)

λ4
+O

(
1

λ6

)
.

Then because of (4),

ER(Cn)− ER(C∗n) = −4
b2(Cn)− b2(C∗n)

n5
+O

(
1

n7

)
. (5)

Using the Sachs coefficient theorem [1], one can easily show that

b2(Cn) =
1

2
n(n− 3) and b2(C

∗
n) =

1

2
(n− 3)(n− 4) + 2n− 7

from which one immediately gets that for sufficiently large values of n,

ER(Cn)− ER(C∗n) ≈ − 4

n5

i.e., ER(Cn) < ER(C∗n).

3 Bicyclic graphs with maximum resolvent energy

Let θ(p, q, `) be the union of three internally disjoint paths Pp+1, Pq+1, P`+1 with com-

mon end vertices. Let Yn denote the bicyclic graph obtained from θ(2, 2, 1) by at-

taching n− 4 pendent vertices to one of its vertices of degree 3, and let Ỹn denote the

bicyclic graph obtained from θ(2, 2, 2) by attaching n− 5 pendent vertices to one of

its vertices od degree 3, as in Figure 2.

Figure 2: Bicyclic graphs with maximum resolvent energy.
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Lemma 4. Let G be a bicyclic graph on n ≥ 5 vertices, G 6∼= Yn, Ỹn. Then one of the

following holds:

1. Mk(G) ≤Mk(Yn) for all k ≥ 0, and Mk(G) < Mk(Yn) for some k0 ≥ 0.

2. Mk(G) ≤Mk(Ỹn) for all k ≥ 0, and Mk(G) < Mk(Ỹn) for some k0 ≥ 0.

Proof. Follows from Lemma 3.1, Theorems 3.2 and 3.3, and Lemma 3.4 in [5].

Theorem 4. Let G be a bicyclic graph on n ≥ 5 vertices. Then ER(G) ≤ ER(Yn),

with equality if and only if G ∼= Yn.

Proof. By Lemma 4, a graph with maximum resolvent energy among n-vertex bicyclic

graphs is either Yn or Ỹn. Thus, it is sufficient to show that ER(Yn) > ER(Ỹn), for

n ≥ 5. Let φ(Yn, λ) and φ(Ỹn, λ) denote the characteristic polynomials of Yn and Ỹn,

respectively. Then, by [3, Theorem 8], we have

ER(Yn) =
φ′(Yn, n)

φ(Yn, n)
and ER(Ỹn) =

φ′(Ỹn, n)

φ(Ỹn, n)
.

By Lemma 2, it follows that

φ(Yn, λ) = λn−4
[
λ4 − (n+ 1)λ2 − 4λ+ 2(n− 4)

]
φ(Ỹn, λ) = λn−4

[
λ4 − (n+ 1)λ2 + 3(n− 5)

]
.

Hence

ER(Yn)− ER(Ỹn) =
φ′(Yn, n)

φ(Yn, n)
− φ′(Ỹn, n)

φ(Ỹn, n)

=
φ′(Yn, n)φ(Ỹn, n)− φ′(Ỹn, n)φ(Yn, n)

φ(Yn, n)φ(Ỹn, n)

=
16n4 − 34n3 + 8n2 + 2n+ 60

(n4 − n3 − n2 − 2n− 8)(n4 − n3 − n2 + 3n− 15)
.

The polynomial p(x) = 16x4 − 34x3 + 8x2 + 2x + 60 does not have any real roots,

thus the numerator p(n) is positive for all n. The real roots of the polynomials

x4 − x3 − x2 − 2x− 8 and x4 − x3 − x2 + 3x− 15 are less than 3, so the denominator

is positive for n ≥ 3. It follows that ER(Yn)− ER(Ỹn) > 0.
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4 Tricyclic graphs with maximum resolvent energy

Let Zi
n, 1 ≤ i ≤ 6, be the graphs given in Figure 3.

Figure 3: Tricyclic graphs with maximum resolvent energy.

Lemma 5. Let G be a bicyclic graph on n ≥ 4 vertices such that G 6∼= Zi
n, for

1 ≤ i ≤ 6. Then, some i ∈ {1, 2, 3, 4, 5, 6}, Mk(G) ≤ Mk(Z
i
n) for all k ≥ 0, and

Mk(G) < Mk(Z
i
n) for some k0 ≥ 0.

Proof. Follows from Corollaries 3.5 and 3.9 and Lemma 3.10 in [6].

Theorem 5. Let G be a tricyclic graph on n ≥ 4 vertices. Then ER(G) ≤ ER(Z1
n),

with equality if and only if G ∼= Z1
n.

Proof. By Lemma 5, a graph with maximum resolvent energy among n-vertex tricyclic

graphs is equal to Zi
n, for some 1 ≤ i ≤ 6.

By Lemma 2, it follows that

φ(Z1
n, λ) = λn−5 (λ5 − (n+ 2)λ3 − 8λ2 + 3(n− 5)λ+ 2(n− 4)) = λn−5 f1(λ)

φ(Z2
n, λ) = λn−4 (λ4 − (n+ 2)λ2 − 6λ+ 3(n− 5)) = λn−4 f2(λ)

φ(Z3
n, λ) = λn−4 (λ4 − (n+ 2)λ2 + 4(n− 6)) = λn−4 f3(λ)

φ(Z4
n, λ) = λn−6 (λ6 − (n+ 2)λ4 − 6λ3 + 3(n− 4)λ2 + 2λ− (n− 5)) = λn−6 f4(λ)
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φ(Z5
n, λ) = λn−5 (λ5 − (n+ 2)λ3 − 4λ2 + 4(n− 4)λ+ 4) = λn−5 f5(λ)

φ(Z6
n, λ) = λn−6 (λ6 − (n+ 2)λ4 + 5(n− 5)λ2 − 2(n− 8)) = λn−6 f6(λ) .

For 2 ≤ i ≤ 6, we have

ER(Z1
n)− ER(Zi

n) =
φ′(Z1

n, n)

φ(Z1
n, n)

− φ′(Zi
n, n)

φ(Zi
n, n)

=
φ′(Z1

n, n)φ(Zi
n, n)− φ′(Zi

n, n)φ(Z1
n, n)

φ(Z1
n, n)φ(Zi

n, n)
.

Straightforward calculation yields

ER(Z1
n)− ER(Z2

n) =
6n6 − 12n5 + 42n4 − 18n3 − 42n− 120

n f1(n) f2(n)

ER(Z1
n)− ER(Z3

n) =
28n6 − 56n5 + 44n4 − 8n3 + 136n2 + 80n− 192

n f1(n) f3(n)

ER(Z1
n)− ER(Z4

n) =
6n8 + 40n6 − 2n5 − 48n4 − 96n3 − 188n2 − 132n− 40

n f1(n) f4(n)

ER(Z1
n)− ER(Z5

n) =
16n7 − 20n6 + 56n5 − 40n4 + 4n3 − 52n2 − 188n

n f1(n) f5(n)

ER(Z1
n)− ER(Z6

n) =
32n8−62n7+30n6+92n5+94n4−2n3−432n2−432n−128

n f1(n) f6(n)
.

All the real roots of the polynomials that appear in the numerators are less than

2. Moreover, all the real roots of the polynomials fi, 1 ≤ i ≤ 6, are less than 3. It

follows that the numerator end denominator in the quotients above are positive for

n ≥ 3. Hence ER(Z1
n)− ER(Zi

n) > 0 for 2 ≤ i ≤ 6.
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