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Abstract: Here, we study the internal variable approach to viscoelasticity. First, we generalize the
classical approach by introducing a fractional derivative into the equation for time evolution of the
internal variables. Next, we derive restrictions on the coefficients that follow from the dissipation
inequality (entropy inequality under isothermal conditions). In the example of wave propagation,
we show that the restrictions that follow from entropy inequality are sufficient to guarantee the
existence of the solution. We present a numerical solution to the wave equation for several values of
the parameters.
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1. Introduction

The internal variable method represents the common procedure for studying the
constitutive equations, both linear and nonlinear, of viscoelastic materials. It has importance
for both the analytical and numerical aspects (see [1,2]). In [3], we analyzed the internal
variable approach to viscoelasticity for a single internal variable that is described by a
fractional evolution equation. We showed that the thermodynamical stability condition
imposes restrictions on the coefficients in the constitutive equation that, when the internal
variable is eliminated, agree with the earlier obtained results.

Our aim in this work is to analyze the more general case of a material with several
internal variables. The evolution of the internal variables is assumed to be described by
a linear system of fractional differential equations of different orders, as in [4]. For the
analysis of the restrictions that follow from the second law of thermodynamics under
isothermal conditions, we shall apply the method used in [5,6]. Thus, our model is the
same as the one analyzed in [7]. However, our analysis is different, and the restrictions
that we obtain are more general. We shall analyze two specific models. Application of the
fractional calculus and the results presented here is possible in various areas of physics and
mechanics. The experimental results that are needed to determine the order of the fractional
derivatives as well as the coefficients in the constitutive equation may be obtained from
experiments, such as those in [8,9].

2. Model

We follow [1] in presenting the basics of the internal variable method in linear vis-
coelasticity. Thus, we consider a one-dimensional viscoelastic body whose constitutive
equation is given in the form of a generalized standard linear model (also called the gen-
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eralized Maxwell model), Wiechert model, or Maxwell–Wiechert model. This model is
equivalent to the following (see [1] p. 35, [10]):

σ(t, x) = kE(t, x) +
N

∑
j=1

k jε j(t, x), (1)

where
dε j

dt
+

1
τj

ε j(t, x) =
dE
dt

, ε j(0, x) = 0, j = 1, . . . , N. (2)

Here, σ denotes the Cauchy stress at the point x, where x ∈ (−∞, ∞) denotes a spatial
coordinate and t ∈ (0, ∞) is the time. In addition, E denotes the strain and ε j, j = 1, . . . , N
denote the internal variables. We note that Equations (1) and (2) are of the forms in
Equations (11) and (12) of [11]. Here, E is the observable variable and ε j represents the
hidden or internal variables.

In this work, we propose to generalize the system in Equations (1) and (2) by in-
troducing fractional derivatives. Since fractional derivatives are nonlocal operators, the
generalization that we propose amounts to the introduction of memory effects in the consti-
tutive equation. Recall that the Riemann–Liouville fractional derivative of the real order
α ∈ [0, 1] is defined as [12]

0Dα
t f (t) :=

1
Γ(1− α)

d
dt

∫ t

0

f (τ)
(t− τ)α

dτ, t > 0, (3)

for absolutely continuous functions f (t), t ∈ [0, T] ( f ∈ AC([0, T])). In the analysis that
follows, we assume that Equation (1) holds, but instead of Equation (2), we have

0D
αj
t ε j(t, x) +

1
τj

ε j(t, x) = 0Dβ
t E(t, x), ε j(0, x) = 0,

where we assume that
0 < αj, β ≤ 1, j = 1, . . . , N. (4)

Recently, in [13], general fractional derivatives were studied in detail. In the approach in [13],
the Riemann–Liouville fractional derivative is just a special case. In principle, general
fractional derivatives may be used instead of Equation (3).

Our intention here is to derive the restrictions on the coefficients in Equations (1)
and (4), which follow from the second law of thermodynamics under isothermal conditions.
We assume that ε j(t, x) = 0, j = 1, . . . , N, E(t, x) = 0 and σ(t, x) = 0 for each x ∈ R and
t < 0. Furthermore, assume that E ∈ C1([0, ∞)). The second law of thermodynamics,
under isothermal conditions, requires that for any cycle of duration T > 0, with “cycle”
here meaning E(0) = E(T) = 0, there exists D > 0 such that the dissipation inequality is

D(x) =
∫ T

0
σ(t, x)E (1)(t, x)dt ≥ 0, (5)

where E (1)(t, x) = ∂E(t,x)
∂t holds for every x ∈ (−∞, ∞). The inequality in Equation (5) is

used for any value of E that does not necessarily satisfy the conditions of a cycle. For
example, in [14], it is proposed to use Equation (5) for E satisfying “any sufficiently smooth
E” which satisfies E(x, t) = 0, t ∈ (−∞, 0]. We shall use this requirement, since it does
not require the definition of a cycle, as cycles can be defined differently. See, for example,
ref. [15], where it is required that the entropy inequality—and Equation (5) is just special
case of it—holds for specially defined D-cyclic processes. More details on the dissipativity
condition may be found in [16–18]. Since Equation (5) must hold for all x, in the analysis
that follows, we omit x as an independent variable. By applying the Fourier transform
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σ̂(ω) = F (σ)(ω) =
∫ ∞
−∞ σ(t)e−iωtdt, ω ∈ R, to Equations (1) and (2) and eliminating

ε̂ j(ω), we obtain
σ̂(ω) = E(ω)Ê(ω), (6)

where

E(ω) = E1(ω) + iE2(ω) =

k + (iω)β
N

∑
j=1

k j

(iω)αj + 1
τj

Ê(ω).

We now recall the results of Proposition 2.4 in [5]:

Proposition 1. A necessary condition for a constitutive equation to satisfy Equation (5) is that the
components E1 and E2 of the complex dynamic modulus E, defined by Equation (6), satisfy

E1(ω) = E1(−ω),

E2(ω) = −E2(−ω), ω ∈ R, E2(ω) ≥ 0, ω ∈ R+,∫ ∞

0

1
ω

E2(ω)

(1 + ω2)
m
2

dω < ∞, for some m > 0. (7)

Proof. Here, we sketch the proof of the proposition. Let F1(ω) = E2(ω)/ω. Since E2(ω)
is odd, we will show that the non-negativity of F1(ω) ≥ 0, ω ∈ (−∞, ∞) implies that
Equation (5) holds. Let κ(t) be the characteristic function of [0, T], and let θ ∈ S(R), where
S is the Schwartz space (i.e., the space of all smooth functions that are rapidly decreasing
at infinity along with all derivatives). Then, by the Bochner theorem [19], the positivity of
κ(t)κ(τ)F−1(F1)(t− τ) implies the following for every θ ∈ S(R):∫ T

0

∫ T

0
κ(t)κ(τ)F−1(F1(ξ))(t− τ)θ(τ)θ(t)dτdt =

= 2
∫ T

0

∫ t

0
F−1(F1(ξ))(t− τ)θ(τ)θ(t)dτdt ≥ 0,

where we used F1(−ξ) = F1(ξ), and in the last step, we used the Fubini theorem to obtain
2 in front of the integral. Finally, since any function in C[0, T] supported by [0, T] is a limit
of a real-valued sequence θk, k ∈ N, let θk → ε′, supp θk ⊆ [0, T] such that θk → ε(1), k→ ∞
uniformly on [0, T]. For such θk, the following applies:

lim
k→∞

∫ T

0

∫ T

0
κ(t)κ(τ)F−1(F1(ξ))(t− τ)θk(τ)θk(t)dτdt =

=
∫ T

0

∫ T

0
F−1(F1(ξ))(t− τ)ε(1)(τ)ε(1)(t)dτdt ≥ 0.

The last expression is just D ≥ 0 (i.e., (5) holds).

The condition in Equation (7)3 guaranties that E2
ω is a tempered measure (see [20]). The

conditions in Equation (7) are different from the restrictions that follow from the Bagley–
Torvik method (see [1,21]). The restrictions derived by using the Bagley–Torvik method
are based on the assumption that under sinusoidal stress imposed on a viscoelastic body,
after the transition period, the strain has the same form but with a phase shift. Then, the
energy loss during a complete cycle is required to be positive. In the analysis leading to
Equation (7), the energy dissipation condition is satisfied during the deformation process
starting from the virginal state, not requiring that this deformation constitutes a cycle. The
approach used here was also used in [17] (p. 128).

We conclude by stating that our goal in this work is to analyze the restriction and ther-
modynamical admissibility that follows from Equation (5) in the new constitutive equations:
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(A) Fractional-order internal variable viscoelasticity with constitutive equation of the form
that generalizes Equations (1) and (2) such that

σ(t, x) = kE(t, x) +
N

∑
j=1

k jε j(t, x), (8)

0Dα
t ε j(t, x) +

1
τj

ε j(t, x) = 0Dβ
t E(t, x), ε j(0, x) = 0. (9)

The case where αj = β = 0, j = 1, . . . , N, is trivial, since it leads to Hooke’s law:

σ(t, x) =

k +
N

∑
j=1

k j

1 + 1
τj

E(t, x). (10)

In the analysis that follows, we therefore assume that

k ≥ 0, τj ≥ 0, (11)

while for k j, j = 1, . . . , N, we assume that it could be both positive and negative. The
models in Equations (8) and (9) with αj = 1, j = 1, . . . , N, are used to describe the
mechanical behavior of foods (see [22]).

(B) Distributed fractional-order internal variable viscoelasticity with a constitutive equa-
tion of the form that generalizes the model presented in [1] (p. 36):

σ(t, x) = kE(t, x) +
∫ B

0
φ(α)εα(t, x)dα, (12)

τα
0Dα

t εα(t, x) + εα(t, x) = τ
β
1 0Dβ

t E(t, x), εα(0, x) = 0, (13)

where φ(α), α ∈ [0, B] is given a constitutive function or distribution. In addition, τ
and τ1 denote the relaxation times. In the analysis that follows, we shall assume that
φ = µ = const. Note that Equations (12) and (13) are fractional generalizations of the
internal variable model with a continuum of relaxation times, as presented in [1] (p.
36). They also have the form of a distributed-order fractional constitutive equations.

3. Main Results

We treat cases A and B separately.

3.1. Model A

In order to analyze the restrictions which follow from Equation (5), we apply the
Fourier transform σ̂(ω) = F (σ)(ω) =

∫ ∞
−∞ σ(t)e−iωtdt, ω ∈ R, to Equations (8) and (9)

and obtain

σ̂(ω) =

[
k +

N

∑
j=1

k j ε̂ j(ω)

]
Ê(ω),

(iω)βÊ(ω) = ε̂ j(ω)

[
(iω)αj +

1
τj

]
, j = 1, . . . , N. (14)

In Equation (14), we omitted the dependance on x. From Equation (14), we obtain

σ̂(ω) =

k + (iω)β
N

∑
j=1

k j

(iω)αj + 1
τj

Ê(ω). (15)
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From Equation (15), we obtain the complex modulus E (cf. [23]) as

E(ω) = E1(ω) + iE2(ω) =

k + (iω)β
N

∑
j=1

k j

(iω)αj + 1
τj

, ω ∈ R. (16)

Note that the classical case in Equations (1) and (2) is recovered for αj = β = 1, j =

1, . . . , N. Since (iω)αj = ωαj
[
cos

παj
2 + i sin

παj
2

]
, ω > 0, we obtain

E1(ω) =

k + ωβ cos
πβ

2

N

∑
j=1

k j

ωαj cos
παj

2 + 1
τj[

ωαj cos
παj

2 + 1
τj

]2
+
[
ωαj sin

παj
2

]2 +

+ωβ sin
πβ

2

N

∑
j=1

k j
ωαj sin

παj
2[

ωαj cos
παj

2 + 1
τj

]2
+
[
ωαj sin

παj
2

]2

, (17)

E2(ω) =

ωβ sin
πβ

2

N

∑
j=1

k j

ωαj cos
παj

2 + 1
τj[

ωαj cos
παj

2 + 1
τj

]2
+
[
ωαj sin

παj
2

]2−

−ωβ cos
πβ

2

N

∑
j=1

k j
ωαj sin

παj
2[

ωαj cos
παj

2 + 1
τj

]2
+
[
ωαj sin

παj
2

]2

, (18)

ω > 0,

or

E1(ω) = k +
N

∑
j=1

k j

[
ωβ+αj cos

π(β−αj)
2 + ωβ 1

τj
cos πβ

2

]
[
ωαj cos

παj
2 + 1

τj

]2
+
[
ωαj sin

παj
2

]2 ,

E2(ω) =
N

∑
j=1

k j

[
ωβ+αj sin

π(β−αj)
2 + ωβ 1

τj
sin πβ

2

]
[
ωαj cos

παj
2 + 1

τj

]2
+
[
ωαj sin

παj
2

]2 .

For ω < 0 in the above formulas, π
2 should be replaced with −π

2 . From Equations (17)
and (18), it follows that

E1(ω) = E1(−ω), E2(ω) = −E2(−ω). (19)

Our main result is stated as follows:

Theorem 1. Sufficient conditions for Equations (8) and (9) to satisfy Equations (5) and (7) are

k ≥ 0,
N

∑
j=1

k j

1 + 1
τj

≥ 0, αj ≤ β, j = 1, . . . , N. (20)

Proof. First, we consider the case αj = β = 0, j = 1, . . . , N. In this case, Equations (8)
and (9) define Hooke’s body, so Equation (5) holds when Equation (13) is satisfied since the
storage modulus E1 is different from zero and the loss modulus E2 is equal to zero. Then,
from Equation (10), we get

σ(t, x) = EE(t, x),



Mathematics 2022, 10, 1708 6 of 13

with E = k +
N
∑

j=1

kj

1+ 1
τj

> 0 if Equation (20) holds. In the case of 0 < αj, β ≤ 1, j = 1, . . . , N,

the conditions in Equation (19) are satisfied by Equations (17) and (18). We now consider
the condition in Equation (7)1 (i.e., E2(ω) ≥ 0 for ω > 0). Given ω∗ > 0, Equation (18)
could be estimated as follows:

E2(ω) =
N

∑
j=1

k j

[
ω∗(β+αj) sin

π(β−αj)
2 + ω∗β 1

τj
sin πβ

2

]
[
ω∗αj cos

παj
2 + 1

τj

]2
+
[
ω∗αj sin

παj
2

]2 ≥

≥ ω∗β
min

j

[(
ω∗αj sin

π(β−αj)
2 + 1

τj
sin πβ

2

) kj

1+ 1
τj

]

max
j

[([
ω∗αj cos

παj
2 + 1

τj

]2
+
[
ω∗αj sin

παj
2

]2
)

1
1+ 1

τj

] · N

∑
j=1

k j

1 + 1
τj

.

Therefore, E2(ω) ≥ 0 if β ≥ αj, j = 1, . . . , N, and Equation (20)2 holds. Finally, the
condition in Equation (7)2 becomes

∫ ∞

0

N

∑
j=1

k j

[
ωβ+αj sin

π(β−αj)
2 + ωβ 1

τj
sin πβ

2

]
ω(1 + ω2)

m
2
[
ωαj cos

παj
2 + 1

τj

]2
+
[
ωαj sin

παj
2

]2 dω ≤

≤
∫ ∞

0

N

∑
j=1

k j

[
ωβ+αj sin

π(β−αj)
2 + ωβ 1

τj
sin πβ

2

]
ω(1 + ω2)

m
2 1

τ2
j

dω < ∞.

This ends the proof.

Remark 1. The conditions in Theorem 1 generalize the results of [7] where, in our notation, k j > 0,
j = 1, . . . , N is required. Here, some of k j, j = 1, . . . , N may be negative. This is enough that

N

∑
j=1

k j

1 + 1
τj

≥ 0. (21)

In addition, for any ω∗ > 0, we have

E1(ω
∗) = k +

N

∑
j=1

kj

[
ω∗(β+αj) cos π(β−αj)

2 + (ω∗)β 1
τj

cos πβ
2

]
[
(ω∗)αj cos παj

2 + 1
τj

]2
+
[
(ω∗)αj sin παj

2

]2 ≥

≥ k +
N

∑
j=1

kj

(ω∗)βmin
j

[
(ω∗)αj cos π(β−αj)

2 + 1
τj

cos πβ
2

]
1

1+ 1
τj

max
j

[{[
(ω∗)αj cos παj

2 + 1
τj

]2
+
[
(ω∗)αj sin παj

2

]2
}

1
1+ 1

τj

] =

= k +
(ω∗)βmin

j

[
(ω∗)αj cos π(β−αj)

2 + 1
τj

cos πβ
2

]
max

j

[{[
(ω∗)αj cos παj

2 + 1
τj

]2
+
[
(ω∗)αj sin παj

2

]2
}

1
1+ 1

τj

] · N

∑
j=1

kj

1 + 1
τj

≥ k > 0.

Therefore, E1(ω) > 0 if Equation (20) holds.
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3.2. Model B

For case B, we follow the same procedure as in case A and obtain the following from
Equations (12) and (13):

σ̂(ω) =

[
k + µ(τ1iω)β

∫ B

0

dα

1 + (iτω)α

]
Ê(ω), ω ∈ R. (22)

By using Equations (22) and (7), we have following theorem:

Theorem 2. A sufficient condition such that Equations (12) and (13) with φ = µ = const. satisfies
Equation (5) is

µ > 0 and B ≤ β ≤ 1. (23)

Proof. We apply the Fourier transform to Equations (12) and (13) with φ = µ. Note that

∫ B

0

dα

1 + (iτω)α =
∫ B

0

1 + (τω)α cos απ
2 − i(τω)α sin απ

2[
1 + (τω)α cos απ

2
]2

+
[
(τω)α sin απ

2
]2 dα, ω > 0, (24)

For ω < 0, the term π
2 should be replaced with −π

2 . By using Equation (24), we obtain
the complex modulus E(ω) = E1(ω) + iE2(ω) as

E1(ω) = k + µ
∫ B

0

(
1 + (τω)α cos απ

2
)
(ωτ1)

β cos βπ
2 + (τω)α(ωτ1)

β sin απ
2 sin βπ

2[
1 + (τω)α cos απ

2
]2

+
[
(τω)α sin απ

2
]2 dα,

E2(ω) = µ
∫ B

0

(ωτ1)
β sin βπ

2 + (τω)α(ωτ1)
β sin π

2 (β− α)[
1 + (τω)α cos απ

2
]2

+
[
(τω)α sin απ

2
]2 dα. (25)

From Equation (25), we conclude that E1 and E2 satisfy all the conditions stated in Equa-
tion (7) if µ > 0 and B ≤ β. Therefore, Equation (7) is satisfied, and the result follows.

4. Examples

We apply Theorem 1 in the two special cases of constitutive Equations (8) and (9).

• The generalized Zener model;
Suppose that N = 1, 0 < β, α1 < 1 so that

σ(t, x) = kE(t, x) + k1ε1(t, x),

0Dα
t ε1(t, x) +

1
τ1

ε1(t, x) = 0Dβ
t E(t, x), ε1(0, x) = 0. (26)

The restrictions on the coefficients are Equations (7) and (20)1,2:

k ≥ 0, τ1 > 0, k1 ≥ 0, α ≤ β. (27)

By applying the operator 0Dα
t to Equation (26)1 we obtain

0Dα
t σ(t, x) = k 0Dα

t E(t, x) + k1 0Dα
t ε1(t, x)

= k 0Dα
t E(t, x) + k1

[
0Dβ

t E(t, x)− 1
τ1

ε1(t, x)
]

= k 0Dα
t E(t, x) + k1

[
0Dβ

t E(t, x)− 1
τ1

(
σ(t, x)− kE(t, x)

k1

)]
,

Alternatively, if k 6= 0, we have

τ1 0Dα
t σ(t) + σ(t) = k

[
E(t, x) + τ1Dα

t E(t, x) +
k1

k
τ10Dβ

t E(t, x)
]

. (28)



Mathematics 2022, 10, 1708 8 of 13

Equation (28) is the generalized Zener model. For α = β, we obtain the standard
fractional Zener model:

A 0Dα
t σ(t, x) + σ(t, x) = k[E(t, x) + B 0Dα

t E(t, x)],

with the known restrictions

A = τ1 ≤ B = τ1(1 +
k1

k
).

In [3], this is also obtained as a special case of the internal variable model by a
different procedure.

• Next, we treat the creep problem for the creep in model A (i.e., Equations (8) and (9)
with α1 = 0.2, α2 = 0.5, α3 = 0.9, β = 0.9, τj = 1, j = 1, 2, 3, and k = 1, k1 =
1, k2 = (1,−1,−1.5), k3 = 1). By application of the Laplace transform L( f )(s) =∫ ∞

0 exp(−ts) f (t)dt = f (s) to Equations (8) and (9), we obtain

σ(s, x) = E(s)E(s, x) =

k + sβ
3

∑
j=1

k j

sαj + 1
τj

E(s, x).

For τj > 0, αj ∈ (0, 1), there are no solutions to sαj + 1
τj
= 0 with a positive real part.

Also k > 0 implies that, 1/E(s) has no singular points in C+ = {s ∈ C | Re s > 0}.
When solving for E , we have

E(t, x) = L−1
(

σ(s, x)
E(s)

)
(t) = L−1

 σ(s, x)

k + sβ
3
∑

j=1

k j

sαj+ 1
τj

(t) =
1

2πi

∫
L

exp(ts)σ(s, x)

k + sβ
3
∑

j=1

k j

sαj+ 1
τj

ds, (29)

where L = {s : s = x0 + ip, x0 > 0, p ∈ (−∞, ∞)}. For the creep test, we have
σ(t, x) = H(t)σ0, where H is a Heaviside step function and σ0 = const. > 0. Since
H(s) = σ0/s, the inversion of Equation (29) becomes

E(t, x) = σ0 lim
P→∞

1
2π

∫ P

−P

exp(t(x0 + ip))

(x0 + ip)

[
k + (x0 + ip)β

3
∑

j=1

kj

(x0+ip)
αj+ 1

τj

]dp. (30)

The results of the numerical inversion of Equation (30) for σ0 = 1 are shown in Figure 1.
Also in Figure 1, we chose the values of the parameters shown in Table 1. In three
cases the derived restrictions were satisfied and one where they were violated.

0.1 0.2 0.3 0.40

0.5

1

1.5

0.5

E( )t

t

12

3
4

Figure 1. Solution of the creep problem for several parameter values.
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Table 1. The values of parameters for example shown in Figure 1.

k1 k2 k3 β α1 α2 α3

τ1 =
τ2 =

τ3 = k
1 1 1 1 0.9 0.2 0.5 0.9 1
2 1 −0.8 1 0.9 0.2 0.5 0.9 1
3 1 −1.7 1 0.9 0.2 0.5 0.9 1
4 1 −3 1 0.9 0.2 0.5 0.9 1

For lines 1–3 in Figure 1, the restrictions in Equation (20) are satisfied. In case 4, the
restrictions are violated. The interesting fact is that in case 3, although the dissipation
inequality is satisfied, the creep curve is oscillatory with a decreasing amplitude. This
is due to the negative value of k2, which makes that internal variable ε2 bring energy
into the system. In addition, from the final value theorem (see [24] p. 40), we have the
following final values for E(t):

lim
t→∞
E(t) = lim

s→0
sE(s) = lim

s→0

1

k + sβ
3
∑

j=1

kj

sαj+ 1
τj

=
1
k

,

lim
t→0
E(t) = lim

s→∞
sE(s) = lim

s→∞

1

k + sβ
3
∑

j=1

kj

sαj+ 1
τj

= 0. (31)

Our numerical results are in agreement with Equation (31).
• As a final example, we present the wave equation for model B. Regarding the dimen-

sionless form of the equation of motion, the constitutive Equations (12) and (13) and
geometrical conditions for the spatially one dimensional case are

∂

∂x
σ(t, x) + f (x, t) =

∂2

∂t2 u(t, x), (32)

σ(t, x) = kE(t, x) + µ
∫ B

0
εα(t, x)dα, (33)

τα
0Dα

t εα(t, x) + εα(t, x) = τ
β
1 0Dβ

t E(t, x), εα(0, x) = 0, (34)

E(x, t) =
∂

∂x
u(x, t), x ∈ (−∞, ∞), t > 0, (35)

where f (x, t) denotes the body force. By applying the Laplace transform to Equation (33)
and (34), and by using (35), we obtain

σ(x, s) = kE(x, s) + µ(τ1s)βE(x, s)
∫ B

0

dα

1 + (τs)α

=
∂u
∂x

(x, s)

[
k + µ(τ1s)β ln 2τS

1+τs
ln τs

]
.

Therefore, we get

σ(x, t) =
∂u(x, t)

∂x
∗
t

A(t), (36)

where

A(t) = L−1

(
k + µ(τ1s)β ln 2τs

1+τs
ln τs

)
(t),
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and ∗
t

denotes convolution with respect to t (i.e., f ∗
t

g =
∫ ∞
−∞ f (τ)g(t− τ)dτ). By combin-

ing Equations (32)–(35) with Equation (36), we obtain the generalized wave equation:

∂2

∂t2 u(t, x) =
∂2u(t, x)

∂x2 ∗
t

A(t), (37)

subject to the initial

u(t, x) = u0(x),
∂

∂t
u(t, x)

∣∣∣∣
t=0

= v0(x), (38)

and boundary conditions
lim

x→±∞
u(t, x) = 0.

The system in Equations (37) and (38) may be written (see [25]) as

∂2

∂t2 u(t, x) =
∂2u(t, x)

∂x2 ∗
t

A(t) + δ
′
(t)u0(x) + δ(t)v0(x), (39)

where δ is the Dirac delta distribution. The solution to Equation (39) follows from expression

4.7 in [26], where A(s) is replaced with s2
[

k + µ(τ1s)β ln 2τS
1+τs

ln τs

]
). We obtain the solution to

Equation (39), expressed as

u(t, x) = L−1

 1
2

s

√
k + µ(τ1s)β

ln 2τs
1+τs

ln τs
exp

−|x|s
√

k + µ(τ1s)β
ln 2τs

1+τs
ln τs

 ∗
x

su0(x) + v0(x)
s2

. (40)

Specifically, we solved Equation (39) for the special initial conditions u0(x) = δ(x),
v0(x) = 0. Then, Equation (40) leads to

u(x, t) = lim
P→∞

1
4π

∫ P

−P
exp(t(x0 + ip))


√√√√

k + µ(τ1(x0 + ip))β
ln 2τ(x0+ip)

1+τ(x0+ip)

ln τ(x0 + ip)
×

× exp

−|x|(x0 + ip)

√√√√
k + µ(τ1(x0 + ip))β

ln 2τ(x0+ip)
1+τ(x0+ip)

ln τ(x0 + ip)


dp. (41)

The results for the numerical inversion of Equation (41) for two specific choices of
parameters and for three time instants are shown in Figure 2. This figure shows that we
may define a wave speed as the speed of propagation of the maxima in Figure 2 (i.e.,
the propagation speed is the speed of propagation of the maximum point of the Green
function) [27]. Another way to define the propagation speed is presented in [28].

In Figure 3, we used k = 0 in Equation (41). Then, the material described by (12) is
fluid like. Again, the solution is shown for three time instants.
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x

u

t=1
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0

1

2
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t=3

Figure 2. Solution of the wave equation (Equation (41)) for the case k = 1.

x

u

t=1

t=2
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0

1
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1

Figure 3. Solution of the wave equation (Equation (41)) for the case k = 0.

5. Conclusions

1. In this work, we studied a fractional generalization of the internal variable method.
We proposed two generalizations of the standard constitutive equation of internal variable
viscoelasticity, given by Equations (8) and (9) for one and Equations (12) and (13) for
the other. The main results are the thermodynamical admissibility conditions given by
Equations (20) and (23). We also presented two numerical examples illustrating the creep
and wave propagation in the models proposed here.

2. We used the Rieman–Liouville fractional derivatives. For the possibility of the use
of the Caputo–Fabrizio derivative, having non-singular kernels, see recent articles such
as [29,30]. Additionally, for the application of general fractional derivatives as proposed in [13],
the work in [31] for the internal variable viscoelasticity model proposed here seems to be an
interesting possibility.For example, the use of Sonin kernels in constitutive equations and
the formulation of the thermodynamical restrictions that follow constitutes an interesting
problem that we are working on.
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