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Assistant Professor

School of Electrical Engineering, University of Belgrade, Serbia

Thesis Committee

Dr. Alessandro De Luca
Full Professor

Department of Computer, Control and Management Engineering
The Sapienza University of Rome, Italy

Dr. Slobodan Vukosavić
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Full Professor

School of Electrical Engineering, University of Belgrade, Serbia

Dr. Filippo D’Ippolito
Assistant Professor

Department of Engineering, University of Palermo, Italy



Acknowledgements

I am very grateful for meeting numerous truly amazing people during my Ph.D. studies who
have significantly enriched my life.

First, I would like to express my deepest gratitude to Dr. Adriano Fagiolini for his infinite
support and encouragement, for sharing with me the visionary ideas for control of robots that
made me remain highly motivated throughout every day of studies, and for dedicated, invalu-
able, and focused guidance that allowed me to finish studies in time. Without his persistent
help and incredibly kind and friendly nature merged with a genius mind, Ph.D. studies would
not be such a joyful experience. Moreover, I would never learn ice-skating.

I would also like to extend my deepest appreciation to Dr. Kosta Jovanović for his infal-
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Dissertation title: Stiffness Estimation and Adaptive Control for Soft Robots

Abstract: Although there has been an astonishing increase in the development of nature-
inspired robots equipped with compliant features, i.e. soft robots, their full potential has not
been exploited yet. One aspect is that the soft robotics research has mainly focused on their
position control only, while stiffness is managed in open loop. Moreover, due to the difficulties
of achieving consistent production of the actuation systems for soft articulated robots and the
time-varying nature of their internal flexible elements, which are subject to plastic deformation
over time, it is currently a challenge to precisely determine the joint stiffness.

In this regard, the thesis puts an emphasis on stiffness estimation and adaptive control
for soft articulated robots driven by antagonistic Variable Stiffness Actuators (VSAs) with
the aim to impose the desired dynamics of both position and stiffness, which would finally
contribute to the overall safety and improved performance of a soft robot. By building upon
Unknown Input Observer (UIO) theory, invasive and non-invasive solutions for estimation of
stiffness in pneumatic and electro-mechanical actuators are proposed and in the latter case also
experimentally validated. Beyond the linearity and scalability advantage, the approaches have
an appealing feature that torque and velocity sensors are not needed.

Once the stiffness is determined, innovative control approaches are introduced for soft ar-
ticulated robots comprising an adaptive compensator and a dynamic decoupler. The solutions
are able to cope with uncertainties of the robot dynamic model and, when the desired stiffness
is constant or slowly-varying, also of the pneumatic actuator. Their verification is performed
via simulations and then the pneumatic one is successfully tested on an experimental setup.
Finally, the thesis shows via extensive simulations the effectiveness of adaptive technique ap-
plied to soft-bodied robots, previously deriving the sufficient and necessary conditions for the
controller convergence.

Keywords: robotics, soft robotics, variable stiffness actuators, modeling, stiffness estima-
tion, unknown input observers, adaptive control
Scientific field: Electrical and Computer Engineering
Scientific subfield: Robotics and Control Systems



Naslov doktorske disertacije: Estimacija krutosti i adaptivno upravǉaǌe
kod popustǉivih robota

Apstrakt: Iako se danas izuzetno intenzivno radi na razvoju robota inspirisan-
ih prirodom koje odlikuje elastiqna struktura, ǌihov puni potencijal jox uvek
nije iskorix�en. Sa jedne strane, istra�ivaǌa u oblasti popustǉivih robota
su uglavnom fokusirana samo na upravǉaǌe ǌihovom pozicijom, dok se krutost
regulixe u otvorenoj sprezi. Pored toga, zbog potexko�a u postizaǌu konzis-
tentne proizvodǌe aktuatora i promenǉive prirode ǌihovih elastiqnih eleme-
nata, koji su vremenom podlo�ni plastiqnoj deformaciji, trenutno je izazov pre-
cizno odrediti krutost zglobova robota.

U ciǉu doprinosa poboǉxaǌu performansi i bezbednosti rada popustǉivih
robota, teza prikazuje doprinos proceni krutosti i adaptivnog simultanog up-
ravǉaǌa pozicijom i krutosti antagonistiqkih aktuatora promenǉive krutosti
(VSA). Oslaǌaǌu�i se na teoriju opservera nepoznatih ulaza (UIO), pred-
lo�ena su invazivna i neinvazivna rexeǌa za procenu krutosti u pneumatskim
i elektromehaniqkim aktuatorima i eksperimentalno verifikovana u sluqaju
druge grupe aktuatora. Pored linearnosti i skalabilnosti, ovi pristupi imaju
privlaqnu osobinu da senzori momenta i brzine nisu potrebni.

Teza predla�e inovativne sisteme upravǉaǌa koji poseduju adaptivni kom-
penzator i dinamiqki dekupler. Predlo�ene metode upravǉaǌa demonstriraju
mogu�nost da kompenzuju nesigurnosti dinamiqkog modela robota bez obzira da
li je on pogoǌen elektriqnim ili pneumatskim aktuatorima. Nakon simulacija,
razvijeno upravǉaǌe je verifikovano i na pneumatskom robotu. Na kraju teze,
obimne simulacije pokazuju efikasnost adaptivne tehnike kada se primeni na
robote sa fleksibilnim linkovima, prethodno izvode�i dovoǉne i potrebne uslo-
ve za konvergenciju kontrolera.

Kǉuqne reqi: robotika, popustǉivi roboti, aktuatori promenǉive krutosti,
modeliraǌe, estimacija krutosti, adaptivno upravǉaǌe
Nauqna oblast: Elektrotehnika i raqunarstvo
Nauqna podoblast: Robotika i upravǉaqki sistemi



Titolo della tesi: Stima della rigidezza e controllo adattivo per soft robot

Sommario: Nonostante la sorprendente crescita nello sviluppo dei robot ispirati alla natura,
tra cui i cosiddetti soft robot, il potenziale di questi sistemi, che hanno intrinseche capacità di
adattamento, non è ancora stato sfruttato a pieno. La ricerca ha principalmente considerato
il controllo in retroazione della posizione dei giunti del robot, lasciando la gestione della cede-
volezza di questi ultimi ancora in anello aperto. Peraltro, le attuali limitazioni nel processo
di produzione degli attuatori a cedevolezza variabile e l’inevitabile variabilità nel tempo degli
elementi elastici costitutivi, i quali sono soggetti ad usura e deformazione plastica, rendono il
problema della determinazione precisa della rigidezza di giunto ancora oggi una sfida.

In tale ambito, questa tesi pone l’accento sulla stima della rigidezza e sul controllo adattativo
dei soft robot, considerando in primis i sistemi articolati e pilotati da attuatori a cedevolezza
variabile (VSA) in configurazione antagonista. Ciò viene fatto con l’obiettivo primario di im-
porre simultaneamente una dinamica desiderata sia per la posizione che per la rigidezza e,
conseguentemente, di migliorare la sicurezza fisica e le prestazioni di un soft robot.

Basandosi sulla teoria degli osservatori ad ingresso sconosciuto (UIO), in questo lavoro
vengono proposte soluzioni, invasive e non, che consentono di stimare la rigidezza nei robot con
attuatori pneumatici o elettromeccanici, soluzioni che nel secondo caso vengono anche validate
sperimentalmente. Oltre al vantaggio della linearità e della scalabilità, le suddette soluzioni
hanno l’interessante caratteristica di non richiedere l’uso di sensori di coppia o velocità.

Sfruttando cos̀i la disponibilità di una stima della rigidezza, il lavoro descrive inoltre dei
metodi innovativi per il controllo robusto dei soft robot articolati, il cui schema include un
compensatore adattativo e un disaccoppiatore dinamico. Detti metodi possono gestire le in-
certezze nella conoscenza del modello dinamico del robot e, quando il riferimento della rigidezza
è costante o lentamente variabile, anche quelle relative all’attuatore pneumatico. La loro verifica
è valutata attraverso delle simulazioni e, nel caso pneumatico, anche per via sperimentale.

Infine, la tesi mostra come estendere le tecniche di controllo adattativo ai sistemi robotici con
cedevolezza distribuita lungo l’intero corpo del robot, garantendo formalmente la convergenza
del controllore. L’efficacia di questa tecnica adattativa è mostrata attraverso una estensiva
simulazione.

Parole chiave: robotica, soft robotica, attuatori a cedevolezza variabile, modellistica, stima
della rigidezza, osservatori ad ingresso sconosciuto, controllo adattativo.
Macro-ambito scientifico: Ingegneria elettrica e informatica
Settore scientifico: Robotica e sistemi di controllo.
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Introduction

At the mention of industrial robots, usually bulky, heavy, and rigid manipulators come to
mind. Their installation in factories has begun in the 1980s marking the beginning of the
modern age of robotics, where robots switched humans in almost all repetitive and exhausting
yet simple and precise tasks. For safety reasons, most industrial robots are placed inside cages
where they perform tasks such as welding, assembling, and grinding without any interference
from a human operator. In this way, a clear borderline between human and robot roles is
drawn.

The aspiration of the robotics society in the last three decades, however, has been the
development of robots that will be more human-like in both mechanical and cognitive sense
and, as such, capable of operating within the anthropic environment. Indeed, creating a shared
human-robot workplace would have positive social and economic influence (Ajoudani et al.
(2018)) while human-robot collaboration would radically improve the health of manufacturing
workers if robots would assist them, for example, in carrying heavy equipment (Cherubini et al.
(2016)). Moreover, the physical interaction with a robot increases the bonding and attenuates
the stress of a human (Willemse and van Erp (2019)). These insights, accompanied by the
endeavor to achieve or even surpass human dexterity and promptness in performing motion
and manipulation tasks, have fostered the development of soft robotics.

The term soft robot will be used to denote the robots whose era started with the intentional
introduction of flexible elements inside them aiming at mimicking the actuation mechanism
of biological systems. Even though rigid robots can become human-friendly by exploiting
collision detection and avoidance software (Haddadin et al. (2017)), perception (Flacco et al.
(2012b)), and active compliance (Albu-Schäffer et al. (2007b)), soft robots have the advantage of
light-weight structure, high force-to-weight ratio, energy efficiency, and the infinite bandwidth.
Thanks to these properties, soft robots have shown promising aspects where safety, robustness,
and adaptability are the main concern (Rus and Tolley (2015), Van Ham et al. (2009)). So far,
the idea of soft robot design has led to the development of effective prosthetic devices such as
tendon-driven robotic hands (Piazza et al. (2017)) and exoskeletons (Karavas et al. (2015)).
However, while robots with software-enabled compliance have already been quite developed
and has become part of the industry, there is still a panorama of open questions about soft
robots – robots with intrinsic and passive compliance.

In general, these systems can be divided into two groups: soft articulated robots whose elas-
tic elements are concentrated within joints and soft-bodied robots with the elasticity distributed
along the links (De Luca and J. Book (2016)).

Part of the research focuses on soft articulated robots whose essential feature is the ability
to change, besides position, also their stiffness – the inverse of the compliance - in real-time.
Such potential, similar to the one that humans have, can be achieved with several different
mechanisms. Among them, variable stiffness actuators (VSAs) in the antagonistic setup, either
electrically or pneumatically powered, seem to be most auspicious in typical applications (Grioli
et al. (2015)). The pneumatic variant has benefits due to the higher power-to-weight ratio and
simplicity of the mechanism (Bicchi and Tonietti (2002), Albu-Schäffer et al. (2007a)) while
the electric ones are prominent for their compactness, silence, and the fact that no external
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devices are required (such as air or fluid compressors) (Wolf et al. (2016)). On the other side,
inspired by nature and endowed with morphological flexibility and compliance, robots with
flexible links, more precisely – soft-bodied continuum robots, are advantageous with respect
to the articulated ones for their capacity to adapt to the harsh terrain, move within confined
spaces, achieve rapid movements, and smoothly manipulate objects (Rus and Tolley (2015);
Polygerinos et al. (2017)).

Motivation
To ensure the safety of a human-robot collaboration one has to be continuously aware of the

soft robot stiffness. This requirement is described with the danger index defined by Ikuta et al.
(2003), where it is suggested that the index shall be a product of several factors, such as distance
between robot and human, their relative velocity, and finally the inertia and stiffness of a robot.
However, stiffness is not measurable, meaning that its value cannot be determined by using a
sensor. In this case, one can either perform extensive experimentation and identification, in
order to obtain an accurate stiffness model, or can rely on datasheets from the manufacturers.
Even in the case that the provided datasheets are initially reliable, the continuous wear induced
by the impact of forces acting on the elastic elements, the temperature drifts, and the torque
hysteresis eventually result in additional inaccuracies (Ruderman et al. (2014)). This motivates
the development of online stiffness estimators, which also become crucial for closed-loop stiffness
control.

Effective control of stiffness at the joint or end-effector level is the key enabler for the VSA
benefits that arise in various tasks, such as when performing cyclic movements for dribbling
a ball (Haddadin et al. (2018)), during explosive actions of autonomous hammering (Garabini
et al. (2011)), for safe human-robot interaction (De Santis et al. (2008)), and indeed in many
others. Different solutions of position and stiffness control have already been explored, including
backstepping (Petit et al. (2015)), LQR-based gain scheduling (Sardellitti et al. (2012)), adap-
tive control (Tonietti and Bicchi (2002)), sliding mode control (Best et al. (2016b)), all with the
assumption that an accurate and reliable stiffness estimate is available. So far, since stiffness is
not measurable, its regulation is mostly performed in open-loop by leveraging on model-based
computation. The initiative to close the loop on both position and stiffness, achieving the
decoupled control of those variables and imposing the desired motion dynamics, has first been
addressed by exploiting static and dynamic feedback linearization (Palli et al. (2008)), however,
the high control gains have deterred its applicability. This has simultaneously motivated the
development of online stiffness estimators and control techniques for soft articulated robots
that are robust to model uncertainties, such as those based on adaptive techniques.

Robust control techniques have a promising application also within the field of soft-bodied
robots. The recent conclusion that soft robot dynamics can be connected to the one of an
augmented rigid robot by satisfying certain kinematic and dynamic constraints (Della Santina
et al. (2020b)), has opened the door for applying classical control techniques on the theoretically
infinite-dimensional soft-bodied robots. Therefore, the cumbersome necessity to perform an
extensive identification procedure in order to find dynamic parameters of soft continuum robots
prior to applying model-based control laws has inspired the consideration of adaptive-based
approaches.
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Thesis contributions
The research within the thesis has been devoted to the development of algorithms that will

enhance the capabilities of soft robots. The starting goal has been to design the control law that
can ensure the simultaneous and decoupled closed-loop control of both position and stiffness in
robot joints without requiring accurate knowledge of robot dynamic parameters.

Since stiffness is not measurable, the first line of the research has been directed towards
designing online stiffness estimators. To the best of the author’s knowledge, in the thesis
the first online stiffness estimator for joints actuated by pneumatic VSAs is proposed and its
performance has been validated in the simulation environment. Moreover, the estimation of
stiffness in joints of electro-mechanically driven robots has been achieved in an innovative way
by using unknown input observer theory, both invasively and non-invasively, being accompanied
by the simulation and experimental verification of the proposed estimators. As a result, the
design of an invasive stiffness estimator differs from the state-of-the-art solutions in a way that
it neither requires information about the velocity of drives, nor tuning of any other parameters
except the ones of the Recursive Least Square algorithm. The original work on this topic has
been published by the author in (Fagiolini et al. (2020), Trumić et al. (2019)). Furthermore, the
presented non-invasive estimator improves the latest results since it does not lean on information
from force/torque sensors and does not suffer from the observability issues.

The commonly applied approaches for the control of soft robots are closing the loop only
on position, while stiffness is regulated in open loop. Contrarily, the limelight of the thesis is
to design the control that can simultaneously ensure that both the position and stiffness have
the desired dynamics. In this regard, the results by the author in (Trumić et al. (2018), Trumić
et al. (2020c)) have presented the very first experimental verification of closing the loop on both
position and stiffness of pneumatically driven robots, which is achieved via decoupled nonlinear
adaptive control, while the broader perspective is discussed in (Trumić et al. (2020)). More-
over, comparison to feedback linearization approach is shown in (Trumić et al. (2020b)). The
thesis continues with the solution for the decoupled adaptive control of electrically driven soft
articulated robots, which takes into account also the actuator dynamics. Finally, sufficient and
necessary conditions for designing adaptive control of soft-bodied robots are discussed and the
formulation of the adaptive control in the context of soft robots is shown. The non-theoretical
contribution of this topic comprises simulations that show the performance of adaptive control
when applied to different instances of soft robots (Trumić et al. (2020a)).

The main contributions are the following:

• A PCC-based model for a generic three-dimensional soft robot, ensuring kinematic and
dynamic equivalence with the original system and having no representation singularities
and discontinuities;
• An invasive stiffness estimator for pneumatically and electro-mechanically driven soft ar-

ticulated robots based on the theory of delayed Unknown Input Observers, which requires
neither apriori knowledge about stiffness model nor measurement of motors velocities;
• A non-invasive stiffness estimator for electro-mechanically driven soft articulated robots

based on the theory of delayed Unknown Input Observers, that lacks the necessity of
force/torque measurements and does not experience observability issues;
• Experimental validation of the invasive and non-invasive stiffness estimators performed

on the electro-mechanically driven soft articulated robot;
• A robust closed-loop position and stiffness controller for pneumatic soft articulated robots,

which is based on the nonlinear adaptive control theory. Decoupling position and stiffness
control is achieved by using control degrees of freedom associated with the null-space of
the actuator matrix;
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• A simulation and experimental validation of the proposed technique which shows the
performance and comparison with open-loop based solutions and feedback linearization
method;
• A robust cascade-based closed-loop position and stiffness controllers for electro-mechanical

soft articulated robots, which address also dynamics of the actuator and which are based
on the proportional-derivative (PD) controller plus feedforward term and nonlinear adap-
tive control theory. Decoupling is achieved via the corresponding matrix which maps the
flexibility torques into the desired position and stiffness dynamics;
• Simulation validation of the proposed controllers and the comparison in cases when the

integral term is added.
• A robust closed-loop position controller for a soft-bodied robot, which is based on the

nonlinear adaptive control theory;
• Extensive simulation validation - including 3D and non-constant curvature soft robots -

proving the effectiveness and the robustness of the controller.
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Thesis overview
The thesis is divided into three parts: modeling, stiffness estimation, and adaptive control

of soft robots.

Summary of Part I
The first part introduces the reader to the mechanisms of state-of-the-art soft robotic setups

and provides their mathematical description.
Chapter 1 gives an overview of different soft articulated robots, highlighting ones with the

antagonistic variable stiffness actuation, and briefly reports on various soft-bodied robots.
Chapter 2 presents the mathematical description of soft articulated robots with the variable

stiffness actuators driven by either pneumatic or electro-mechanic drive.
In Chapter 3 dynamics of soft-bodied robots is modeled under the assumption of piecewise

constant curvature. The author contributes by developing an augmented formulation for a soft
robot in three-dimensional space, that is described by an improved parameterization, thus
avoiding singularity and discontinuity issues (Trumić et al. (2020a)). Besides, the chapter
presents the model of a soft inverted pendulum with affine curvature.

Summary of Part II
The second part proposes novel techniques for stiffness estimation in soft articulated robots.

Recalling that stiffness is not measurable, there is no sensor that can retrieve its value. However,
to be aware of the value of stiffness is crucial not only for guaranteeing safe human-robot
collaboration, but also for designing the control techniques which close the loop on both position
and stiffness.

Chapter 4 introduces the main concept of stiffness estimation, as well as state-of-the-art
techniques.

Chapter 5 outlines the general theory of delayed unknown input observers and recursive
least square algorithms, which are fundamental for determining the analytic expressions of
stiffness and flexibility torque.

In Chapter 6 an invasive approach is performed to find stiffness in both pneumatically
and electro-mechanically actuated robot joints. First, the flexibility torque acting on the robot
joint is determined by considering it as an unknown input to the system. Then, coefficients
of stiffness and flexibility torque polynomial approximations are obtained via recursive least
square algorithm. Part of this chapter has been published by the author in (Trumić et al.
(2019), Fagiolini et al. (2020)).

Chapter 7 presents a non-invasive approach, which is appealing for the reason that only
information on link and drives positions are necessary. Herein, a delayed UIO and RLS algo-
rithms are used to directly reconstruct the first time derivative of the flexibility torque, which
by definition contains the information on stiffness.

Summary of Part III
The third part addresses the adaptive control of soft robots. To manage a soft robot presents

an immense challenge due to the existence of intrinsic flexible and nonlinear elements as well
as the elastic coupling between the motors and links positions in the case of soft articulated
robots. Thus, the solutions proposed in this part tackle these challenges by coping with model
uncertainties and ensuring the decoupling property.

Chapter 8 reviews the previously achieved results in controlling soft robots.
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Chapter 9 presents the principles of nonlinear adaptive control.
In Chapter 10 the decoupled nonlinear adaptive control is proposed to ensure the simul-

taneous and independent closed-loop control of both position and stiffness for pneumatically
driven flexible joint robots. The results within this chapter have been published by the author
in (Trumić et al. (2020c), Trumić et al. (2020), Trumić et al. (2020b), Trumić et al. (2018)).

Chapter 11 proposes a cascade-based decoupled adaptive control for robots with the
electro-mechanic actuation which also considers the dynamics of actuators. The inner loop
controller ensures asymptotic tracking of the desired motors positions, while the outer-loop one
enables tracking of the desired position and stiffness trajectories.

Finally, Chapter 12 tackles the dynamic control of soft-bodied manipulators. More pre-
cisely, it shows how to formulate the adaptive control calculations and describe the necessary
and sufficient hypotheses for convergence. Results from this chapter have been published by
author Trumić et al. (2020a).
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Part I

Modeling



What distinguishes a mathematical model from, say, a poem, a song,
a portrait or any other kind of ”model” is that the mathematical model
is an image or picture of reality painted with logical symbols instead
of with words, sounds or watercolors.

John L. Casti



Chapter 1

Introduction

To model a soft robot, one should either consider that flexibility is concentrated within
joints as in soft articulated robots or distributed along the link, which is the case of soft-bodied
ones. Before proceeding to the mathematical description of soft articulated and soft-bodied
robots, this chapter presents a review of the existing hardware solutions.

In that light, the compliance in robots can either be achieved by programming the stiffness
(active compliance) or introducing the flexible elements (passive compliance) within their actu-
ators. The latter ones are then divided into three groups according to the actuation mechanism:
single actuated flexible transmission (SAFT), antagonistic variable stiffness actuators (aVSA),
and serial variable stiffness actuators (sVSA), and described in more details by Flacco (2012).
Figure 1.1 depicts the instances of rigid robots with active compliance and soft articulated
robots powered by the before-mentioned actuators.

Within this thesis, the attention has been dedicated to the second group – antagonistic
variable stiffness actuators, which are used to drive robots shown in Fig. 1.2. Being inspired
by the way biceps and triceps antagonistically actuate human elbow, these actuators endow
a compliant robot with a wider range of the achievable Cartesian stiffness compared to the
SAFT ones and have a less complex mechanism than the one of serial VSAs. More precisely,
the antagonistic mechanism is based on the following logic: the position of the arm is changed by
extending one muscle and simultaneously contracting the antagonistic one while stiffness varies
by simultaneous contraction or relaxation of both muscles. To replicate such a system on robots,
it is necessary to ensure the possibility to vary stiffness in real-time, which is only possible if
the nonlinear spring is used (this is easily shown by finding stiffness via its definition, i.e. by
calculating partial derivative of elastic force with respect to the elongation (Van Ham et al.
(2009)). For this reason, the first solutions of antagonistic VSAs included springs with quadratic
and exponential characteristics, or McKibben muscles that naturally have nonlinearity, (Fig. 1.3
a). Since such simple arrangement of antagonistic VSAs requires that each motor (or muscle
in pneumatic case) can generate the maximum torque at the link, novel and energy-efficient
designs emerged in form of bidirectional VSAs that allowed the agonist and antagonist motors
to support each other (Fig. 1.3 b). However, due to the high coupling between position and
stiffness, the control of such actuators becomes challenging.

In this regard, Chapter 2 provides the mathematical descriptions of pneumatic and electric
antagonistic VSAs, also comprising the first-order dynamic equation for stiffness, which are
later used to derive the decoupled control laws of position and stiffness.

A step further towards mimicking nature is made in the field of soft-bodied robots. The
rapid development of computationally powerful devices, soft materials, and wearable electronics
triggered the various conceptions of such robots, with some of the most interesting solutions
being shown in Fig. 1.4. Chapter 3 presents the piecewise constant curvature model of a general
soft-bodied robot in three-dimensional space as well as its description assuming affine curvature.
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Figure 1.1: Active compliance: (a) Dual-arm 7 axis collaborative YuMi of ABB (figure from
ABB (2019)); (b) Collaborative KUKA LBR iiwa 7 axis manipulator (figure from KUKA
(2015)); (c) Cost-efficient 7 axis Panda manipulator of Franka Emika (figure from Franka Emika
(2011));
SAFT: (d) Rollin’ Justin whose arms are DLR Light-Weight-Robot III 7 axis manipulators.
Elasticity in joints is introduced via harmonic drives as presented by Hirzinger et al. (2002)
(figure taken from DLR (2007)); (e) The HeiCub humanoid robot (iCub version from Heidelberg
university) whose knees and ankles are driven by series elastic actuators and which is described
by Hu et al. (2016) (figure taken from University of Heidelberg (2018));
sVSA: (f) The actuator with mechanically adjustable series compliance AMASC (right) used for
the biped BiMASC (left) (figures from Hurst et al. (2010) and Dynamic Robotics Laboratory
(2007)); (g) The Mechanically Adjustable Compliance and Controllable Equilibrium Position
Actuator MACCEPA used within exoskeleton ALTACRO (figure from Cherelle et al. (2010))
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Figure 1.2: Antagonistic electromechanical VSAs: (a) ALTER-EGO is a soft dual arm mo-
bile robot whose arms are actuated by qbmove antagonistic variable stiffness actuators. It is
developed in Centro Piaggio at the University of Pisa by Lentini et al. (2019) (figure from
Centro Piaggio (2018)); (b) The antropomorphic robot David from DLR with bidirectional
antagonistic variable joints (BAVS) for wrist and forearm rotation described by Grebenstein
et al. (2011) (figure from DLR (2007));
Antagonistic pneumatic VSAs: (c) The soft pneumatic manipulator GioSte with antagonistic
setup of McKibben muscles; (d) The pneumatic biped Lucy actuated by antagonistic pleated
pneumatic artificial muscles (figure from Verrelst et al. (2005))

Figure 1.3: Configurations of antagonistic VSAs: (a) simple and (b) bidirectional
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Figure 1.4: Soft-bodied robots: (a) Soft rod-climbing robot inspired by winding locomotion of
snake (figure from Liao et al. (2020)); (b) Ray-inspired fast-moving soft electronic fish (figure
from Li et al. (2017)); (c) Octopus inspired robot (figure from Fras et al. (2018)); (d) Worm-like
soft robot (figure from Della Santina et al. (2020b)); (e) Reptilian-like soft electrically actuated
quadruped (figure from Huang et al. (2019)); (f) King Louie - inflatable humanoid soft robot
(figure from Best et al. (2016a))
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Chapter 2

Soft articulated robots

To derive a model of soft articulated robots, i.e. flexible joint robots, which is applicable for
analysis and control, certain approximation assumptions have to be made. First of all, since
robot joints considered in this research have nonlinear stiffness characteristics, the mapping
between transmission deflection and flexibility torque has to be smooth and invertible. Fur-
thermore, it is assumed that the actuator of the i-th robot link is mounted on link i− 1, which
is indeed the case for the robots mentioned below.

Being equipped with the possibility to vary their stiffness, soft robots subject to gravity are
in danger of crashing if the obtained stiffness is too small. Therefore, it is assumed that the
lowest stiffness of the joint is greater than the upper bound of gravity forces gradient.

Additionally, concerning electro-mechanically driven robots, it stands that rotor inertial
matrix is diagonal, such that the rotor position does not affect a robot inertia matrix, gravity
vector, as well as the angular velocity of a rotor center of mass, which actually only depends
on the own spinning of a rotor.

Consider a soft robot with discrete points of elasticity coinciding with its n joints, which is
used in applications requiring simultaneous regulation of joint position and stiffness. Having
denoted with q = (q1, · · · , qn)T and σ = (σ1, · · · , σn)T the robot’s position and stiffness vectors,
respectively, in which qi and σi are the i-th joint angle and stiffness variables, a full model of
the robot describing these vectors dynamics is required. As it is known, the link side dynamics
is given by the differential equation:

B(q) q̈ + C(q, q̇) q̇ +G(q) = τ + τext , (2.1)

where B(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn is the vector of Coriolis, centrifugal, and
damping terms, G(q) ∈ Rn is the vector of gravity forces, τ = (τ1, · · · , τn)T is the elastic torque
vector, and τext ∈ Rn is the vector of external torque loads.

For model in Eq. 2.1 a set of properties holds. The ones of the interest for the control laws
derived in the thesis are listed below.

Proposition 1. The inertia matrix B(q) is symmetric positive definite and bounded:

λ1In < B(q) < λ2In ∀q ,

where λ1 and λ2 are positive scalars.

Proposition 2. The matrix Ḃ(q)− 2C(q, q̇) is skew symmetric, hence, it stands

qT
(
Ḃ(q)− 2C(q, q̇)

)
q = 0 .
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Proposition 3. The left-hand side of link position dynamics can be expressed as a linear
combination of regressor and parameters, i.e.

B(q) q̈ + C(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)π ,

2.1 Pneumatically actuated soft articulated robots
The class of pneumatically driven robots with so-called McKibben artificial muscles in an-

tagonistic configuration, where every joint i is actuated by a pair of muscles, ai and bi, attached
to a pulley of radius Ri is schematically shown in Fig. 2.1. The i-th pair of muscles are respon-
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Figure 2.1: Depiction of a 1-DoF soft robotic arm actuated by a pair of McKibben artificial
muscles in antagonistic configuration. Air pressure in the muscles is controlled by electro-
pneumatic regulators and induces muscle contractions, thus allowing position and stiffness
control of the robot’s link.

sible for providing the torque τi required for motion of the i-th joint, according to the static
equation:

τi = τi,a − τi,b = RiFi,a(qi)−RiFi,b(qi) ,

where Fi,a and Fi,b are the elastic (tension) forces applied by the two muscles. The two forces of
the pair of muscles depend on their internal pressures, pi,a and pi,b. As in the work of Tonietti
and Bicchi (2002), it can be assumed that the relations between elastic forces and pressures are
expressed in the form

Fi,a(qi) = Kg
i,a φi,a(qi) pi,a ,

Fi,b(qi) = Kg
i,b φi,b(qi) pi,b ,

where Kg
i,a and Kg

i,b are construction-dependent muscle parameters, and φi,a(qi) and φi,b(qi) are
the elongations of the muscles, given by the relations

φi,a(qi) = (li,a,n − qiRi)2 − l2i,a,m ,
φi,b(qi) = (li,b,n + qiRi)2 − l2i,b,m ,

where li,a,n and li,b,n are the muscles’ nominal lengths and li,a,m and li,b,m their minimum ones. To
achieve a more compact form, assume for simplicity that each antagonistic pair of muscles have
identical construction constants, i.e. Kg

i,a = Kg
i,b = Kg

i , and define the constants Ki = Kg
i Ri.

Denoting then the diagonal construction-dependent constant matrix K = diag(Ki), the muscle
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elongation matrix Φ ∈ Rn×2n

Φ(q) =


φ1,a(q1) −φ1,b(q1) ... 0 0

0 0 . . . ... ...
0 0 ... φn,a(qn) −φn,b(qn)

 ,

and the pressure vector p ∈ R2n×n as

p = (p1,a, p1,b, p2,a, p2,b, · · · , pn,a, pn,b)T ,

the generalized elastic torque vector τ can be written as

τ = K Φ(q) p . (2.2)

Eq 2.1 and 2.2 describe the dynamics of the joint position vector, under the actuation of the
input pressure vector p.

Moving on now to the i-th joint’s stiffness, by assuming that its pressure does not depend
on its position, the stiffness itself can be obtained from its definition:

σi = −
∂τi

∂qi
=

= −Ki

(
∂φi,a

∂qi
(qi) pi,a −

∂φi,b

∂qi
(qi) pi,b

)
=

= −Ki (φq,i,a(qi) pi,a − φq,i,b(qi) pi,b) .

Defining a matrix Φq(q) as
φq,1,a(q1) −φq,1,b(q1) ... 0 0

0 0 . . . ... ...
0 0 ... φq,n,a(qn) −φq,n,b(qn)

 ,

the stiffness vector can be written more concisely as

σ = −K Φq(q) p . (2.3)

In order to obtain closed-loop control of the robot’s stiffness σ, a dynamic model for this variable
is also needed. Inspired by the approach of De Luca and Lucibello (1998), this can be obtained
by considering the first time derivative of σ as in the following:

σ̇ = −K Φ̇q(q) p−K Φq(q) ṗ . (2.4)

Therefore, a full model of a soft-robot with pneumatic muscles can be obtained from Eq. 2.1,
2.2, 2.4, and thus written as

B(q) q̈ + C(q, q̇) q̇ +G(q) = K Φ(q) p− τext ,
σ̇ = −KΦ̇q(q) p−KΦq(q) ṗ ,

(2.5)

It will be assumed in the following that no interaction with the environment occurs, i.e. the
external torque load is identically null (τext = 0 for all t), and that each pressure regulator is
sufficiently fast to instantaneously control the corresponding pressure variable.
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Figure 2.2: Depiction of a 1-DoF soft robotic arm actuated by DC motors in antagonistic
configuration. The inertia, damping, mass, and length of the link are denoted with I, β, m,
and L, respectively. Motor inertia and damping are b1,a and d1,a for the agonist drive, and b1,b
and d1,b for the antagonist one. The commanded torques to motors are τ1,a and τ1,b, while the
generated flexibility torques are τ e1,a and τ e1,b.

2.2 Electrically actuated soft articulated robots
Consider an n degree-of-freedom robot with flexible joints driven by electrical VSAs in

agonist-antagonistic configurations. More precisely, each joint of the robot is actuated by a
couple of DC motors, which are connected to the joint via tendons as in Fig. 2.2. By changing
the internal motors positions, it is possible to vary both joints position (if motors rotate in the
same direction) and stiffness (when motors rotate in opposite directions).

As described in Albu-Schäffer and Bicchi (2016), the robot dynamical model can be written
as follows:

B(q) q̈ + C(q, q̇)q̇ +G(q) = −τe(φ1, φ2) + τext ,
Ba q̈a +Da q̇a − τ ea(φa) = τa ,
Bb q̈b +Db q̇b − τ eb (φb) = τb ,

(2.6)

where q ∈ Rn is the link angle vector, τ et is the total flexibility torque vector, and where
qj ∈ Rn, τ ej , and τj are the motor position vectors, flexibility torque vectors, and commanded
torque vectors, respectively, for the agonistic (j = a) and antagonistic (j = b) motor.

Moreover, B(q) is the robot link inertia matrix, C(·) includes Coriolis, viscous friction,
and centrifugal terms, and G(·) is a vector of gravity forces; matrices Bj = diag(bi,j) and
Dj = diag(di,j) contain motor’s inertia and damping coefficients, respectively; finally, τext is the
external torque, assumed to be null in the remainder of the work.

It is worth remarking that the following property for motor dynamics holds:

Proposition 4. The left-hand side of motor position dynamics can be expressed as a linear
combination of regressor and parameters, i.e.

Ba q̈a +Da q̇a = Ya(q̇a, q̈a)πa ,
Bb q̈b +Db q̇b = Yb(q̇b, q̈b)πb .

Furthermore, having denoted with φj = q − qj the transmission deflection vectors of the
agonistic and antagonistic motor’s transmission, the total flexibility torque τ et , in the first
equation of the model, is given by

τ e = τ ea(φa) + τ eb (φb) . (2.7)

The above element-wise dependency on the transmission deflection, i.e. the fact that for the

16



i-th joint τ ei,j = τ ei,j(φi,j), along with the diagonal form of the motor’s inertia and damping
matrices, justifies a decentralized viewpoint of motor’s dynamics.

Therefore, the components σi,j of the stiffness vector σj of each transmission are by definition

σi,j(φi,j) =
∂τ ei,j
∂φi,j

(φi,j) , (2.8)

leading to the total joint stiffness and its time derivative

σi = σi,a(φi,a) + σi,b(φi,b) ,

σ̇i =
∂2τ ei,a
∂φ2

i,a

φ̇i,a +
∂2τ ei,b
∂φ2

i,b

φ̇i,b .
(2.9)

Moreover, it can be assumed that the flexibility torque is an odd function, meaning that
compression and extension have the same effect on transmission behavior:

τ e(0) = 0 and τ ei,j(−φi,j) = −τ ei,j(φi,j), ∀φ .

Finally, the full model of an electric antagonistic VSA states:

B(q) q̈ + C(q, q̇)q̇ +G(q) = −τe(φ1, φ2) + τext ,
Ba q̈a +Da q̇a − τ ea(φa) = τa ,
Bb q̈b +Db q̇b − τ eb (φb) = τb ,

σ̇ = ∂2τ ea
∂φ2

a

φ̇a + ∂2τ eb
∂φ2

b

φ̇b .

(2.10)

In the remainder of the thesis, it will be assumed that the electrical dynamics of the motor
system can be neglected due to its fast response.
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Chapter 3

Soft-bodied robots

Being endowed with morphological flexibility and compliance, continuum soft robots promise
to have a disruptive impact in several areas where safety, robustness, and adaptability are a
main concern Rus and Tolley (2015). Yet, to fully exploit their potentialities, one has to face
the challenge of dealing with systems characterized by states of theoretically infinite sizes. One
possible strategy to deal with such systems is by using model-free machine learning techniques
that regard a soft robot as a black box Thuruthel et al. (2018). On the other end of the
spectrum, model-based techniques fully taking into account the infinite nature of the problem
are still unfeasible Mironchenko and Prieur (2019).

These reasons have steered the research attention towards the development of approximated
but finite-dimensional models Grazioso et al. (2019); Sadati et al. (2019), trading modeling
accuracy with numerical efficiency, as well as reduced-order models, enabling an analytic design
of model-based controllers Thieffry et al. (2018). Within this context, the Piecewise Constant
Curvature (PCC) approximation-based paradigm is an effective attempt to leverage on the
equivalence between a soft-bodied robot and a large enough rigid one, aiming at enabling
a variety of classical control approaches already established in robotics. The planar case is
discussed in Della Santina et al. (2020b) while the three dimensional case is addressed in
Katzschmann et al. (2019). However, this latter work relies on the classic 3D representation of
PCC robots Webster III and Jones (2010), which is subject to several singularities issues making
the controller not well defined in several boundary conditions (e.g. straight configuration).
In Della Santina et al. (2020a), it is discussed that these issues can be solved by using a
different parameterization of the configuration manifold of a PCC robot, which is global and
everywhere well defined. However, no connection to the augmented rigid robot formulation is
provided in that work.

A contribution of the present work is therefore to extend the 3D augmented rigid representa-
tion of Katzschmann et al. (2019) to the improved parameterization proposed in Della Santina
et al. (2020a). This allows the derivation of controllers which are numerically stable and well
defined in the whole configuration space.

3.1 Modeling of soft robots under PCC hypothesis

3.1.1 Background
Consider a soft-bodied robot consisting of n Constant-Curvature (CC) segments. Let {S0}

be the robot’s base frame and {S1}, . . . , {Sn} the n local frames attached to the end of each seg-
ment. Under the PCC assumption, i.e. when each segment can be characterized by a unique CC
segment in the space, the i-th segment’s configuration is fully determined by the frames {Si−1}
and {Si}. Accordingly, it suffices to adopt the following variables per segment Katzschmann
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et al. (2019): 1) the angle φi between the bending plane and the plane described by the unit
vectors n̂i−1 and ôi−1; 2) the relative rotation θi between the two frames in the curvature
plane; 3) the segment’s length change δLi, whose minimum is physically bounded by −L0,i,
where L0,i ∈ R is the rest value. However, singularity issues arise whenever θi = 0 or φi = ±π,
which leads to known description inaccuracies.

It has been recently established that a singularity-free representation can be obtained by
considering, for each segment, the four arcs originating from the positive and negative directions
of the x and y axes of {Si−1} and terminating into the corresponding ones of {Si} Della Santina
et al. (2020a). Accordingly, the i-th segment configuration is qi = (∆x,i,∆y,i, δLi)T ∈ R3 (see
Fig. 3.1), where

∆x,i = 1
2(L2,i − L1,i) , and ∆y,i = 1

2(L4,i − L3,i) ,

with Lj,i being the four arc lengths (j = 1, · · · , 4). The two sets of coordinates are related by
the invertible mapping

φi = arccos
(

∆x,i

∆i

)
= arcsin

(
∆y,i

∆i

)
,

θi = ∆i/di ,
(3.1)

where ∆i =
√

∆2
x,i + ∆2

y,i and di is a free parameter, which can be chosen to match some specific
location, e.g. where strain sensors are placed, so to have direct readings of the configuration.
For the sake of readability, it is assumed di = 1 m in the remainder of the work.. In terms of
the elements of the configuration vector qi, the i-th homogeneous transformation mapping Si−1
into Si is given by

T ii−1 =
(
Ri
i−1 tii−1

01×3 1

)
,

where

Ri
i−1 =


1 + ∆2

x,i

∆2
i
αi

∆x,i∆y,i

∆2
i

αi −∆x,i

∆i
s∆i

∆x,i∆y,i

∆2
i

αi 1 + ∆2
y,i

∆2
i
αi −∆y,i

∆i
s∆i

∆x,i

∆i
s∆i

∆y,i

∆i
s∆i

c∆i

 ,

tii−1 = L0,i+δLi
∆i

(
∆x,i

∆i
αi,

∆y,i

∆i
αi, s∆i

)T
,

with αi = c∆i
− 1, and finally c∆i

= cos ∆i and s∆i
= sin ∆i. According to this notation, the

configuration of a soft-bodied robot with n PCC segments is fully described by the vector q =
(qT1 , · · · , qTn )T ∈ R3n.

3.1.2 Augmented PCC representation with improved parameteriza-
tion

One should first focus on finding a globally-valid augmented representation for the i-th CC
segment. The idea is that of trying to match the segment’s kinematics and dynamic map with
those of a classical rigid robot with sufficient degrees of freedom. The matching is obtained when
the two models are said to be kinematically and dynamically equivalent, that is if the reference
frame attached to the end-effector of the segment’s augmented model coincides with that of the
rigid robot, and when their respective centers of mass coincide, respectively. It has been shown
very recently in Katzschmann et al. (2019) that an equivalent augmented representation can be
obtained with a ten degree-of-freedom rigid robot whose segment variables are φi, θi, and δLi.
This model is almost always valid, except at the above-mentioned singularity configurations.

However, by leveraging on the recently developed improved parameterization Della Santina
et al. (2020a), it is proceeded herein to a rigid-robot equivalent representation, using the vari-
ables ∆x,i, ∆y,i, and δLi to describe each segment, for i = 1, · · · , n, which therefore has no
singularity issues. In terms of the newly chosen configuration vector qi, the augmented config-
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Figure 3.1: Three dimensional description of a CC segment. Panel (a) shows the improved
parameterization, which is free from singularities and discontinuities. Herein it is connected to
augmented rigid model in Panel (b).

uration vector ξi ∈ R10 from Della Santina et al. (2020a) can be described by a nonlinear map
of the form

ξi = mi(qi) = mi(∆x,i,∆y,i, δLi) ,

which explicitly reads: 

ξ10(i−1)+1
ξ10(i−1)+2
ξ10(i−1)+3
ξ10(i−1)+4
ξ10(i−1)+5
ξ10(i−1)+6
ξ10(i−1)+7
ξ10(i−1)+8
ξ10(i−1)+9
ξ10(i−1)+10



=



arccos ∆x,i

∆i
∆i

2 − η
∗
i (qi)

b∗i (qi)
η∗i (qi)

− arccos ∆x,i

∆i

arccos ∆x,i

∆i

η∗i (qi)
b∗i (qi)

∆i

2 − η
∗
i (qi)

− arccos ∆x,i

∆i



, (3.2)

where
b∗i (qi) = L0,i+δLi

∆i
γi(qi) , η∗i (qi) = arccos

(
sin

(
∆i

2

)
/γi(qi)

)
,

with
γi(qi) =

√
1 + sinc

(
∆i

2

) (
sinc

(
∆i

2

)
− 2 cos

(
∆i

2

))
.

and the asterisk is used to distinguish them from the analogous ones in the previous φi, θi and
δLi based formalization. Recall that sinc(x) = sin(x)/x and its value in zero is 1. Mapping mi

is globally defined as it holds

lim||qi||→0 b
∗
i (qi) = L0,i

2 , lim||qi||→0 η
∗
i (qi) = 0 ,

lim||qi||→0 arccos
(

∆x,i

∆i

)
= 0 .

Following from the above reasoning, a globally-valid augmented representation of a soft-
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bodied robot, under the PCC hypothesis, can be obtained by serially connecting its n CC
segments. This leads to an augmented vector ξ ∈ R10n that is related to the robot’s configura-
tion q = (∆x,1,∆y,1, δL1, · · · ,∆x,n,∆y,n, δLn)T via the decentralized mapping

ξ = m(q) =


m1(∆x,1,∆y,1, δL1)

...
mn(∆x,n,∆y,n, δLn)

 . (3.3)

Then, one can now move on to deriving the dynamic model corresponding to this new
formalization. The rigid robot’s dynamics described as a function of ξ reads

Bξ(ξ) ξ̈ + Cξ(ξ, ξ̇) ξ̇ +Gξ(ξ) = τξ + JTξ fext , (3.4)

where Bξ, Cξ ∈ R10n×10n, Gξ ∈ R10n are the inertia and Coriolis matrices and gravity vector,
respectively, Jξ ∈ R6×10n the Jacobian of the direct kinematics, and τξ and fext are the gener-
alized forces along the ξ-coordinates and external wrench vector. Substituting in (3.4) the first
two time derivatives of (3.3), i.e. the relations

ξ̇ = Jm(q) q̇ , ξ̈ = J̇m(q, q̇) q̇ + Jm(q) q̈ , (3.5)

where Jm(q) : R3n → R10n×3n is the Jacobian of mappingm(q) with respect to q, left-multiplying
the resulting equation by JTm, and finally using (3.3) to replace ξ with q, the intermediate result
is obtained:

B(q) q̈ + C(q, q̇) q̇ +G(q) = τ ∗ + JT (q) fext ,

where B,C ∈ R3n×3n, G ∈ R3n, J(q) ∈ R6×3n is the Jacobian of the direct kinematics with
respect to q, and τ ∗ = (τ ∗x,1, τ ∗y,1, τ ∗L,1, · · · , τ ∗x,n, τ ∗y,n, τ ∗L,n)T is the generalized force along the
q-coordinates. Specifically, it stands:

B(q) = JTmBξ(m(q)) Jm ,
C(q, q̇) = JTm

(
Bξ(m(q)) J̇m + Cξ (m(q), Jm q̇) Jm

)
,

G(q) = JTmGξ(m(q)) ,
J(q) = Jξ(m(q)) Jm .

As a further step, one can now add at segment level Della Santina et al. (2020a) the elastic
and friction terms, which are proportional to q and q̇, respectively, and thus can be described
via a block-diagonal stiffness matrix K = diag(K1, · · · , Kn), with Ki = diag(k∆x,i

, k∆y,i
, kδLi),

and a block-diagonal damping matrix D = diag(D1, · · · , Dn), with Di = diag(β∆x,i
, β∆y,i

, βδLi).
Finally, to complete the model, one can express the i-th segment’s subset of inputs, τ ∗x,i, τ ∗y,i,
and τ ∗L,i, as linear combinations of the corresponding externally applicable inputs, τx,i, τy,i, and
τL,i, via the segment’s actuation sub-matrix

Ai =


∆x,i∆y,i

∆2
i

νi −∆2
x,i νi+∆2

i sin ∆i

∆2
i

∆x,i νi
∆2
i
Li

∆2
y,i νi+∆2

i sin ∆i

∆2
i

−∆x,i∆y,i

∆2
i

νi
∆y,i νi

∆2
i
Li

0 0 sinc(∆i)

 .

with νi = 1 − sinc(∆i) and Li = L0,i + δLi.The robot’s overall actuation matrix is therefore
given by A(q) = diag(A1(q1), · · · , An(qn)). Since each Ai is globally well-defined and invertible
(its determinant is sinc2(∆i)), the robot is fully actuated. In conclusion, the sought soft-bodied

22



robot’s dynamics can be written as

B(q) q̈ + C(q, q̇) q̇ +G(q) +K q +D q̇ = Aτ + JTfext , (3.6)

where τ = (τx,1, τy,1, τL,1, · · · , τx,n, τy,n, τL,n)T . Without loss of generality, the external wrench
vector is assumed null, i.e. fext = 0, in the remainder of the paper.

Before concluding, it is worthy to point out that such a model yields properties facilitating
the application of classical control approaches. Herein only their statements are reported since
the proofs follow from steps as in Della Santina et al. (2020b).

Proposition 5. The inertia matrix B(q) is positive semi-definite and bounded, i.e.

B(q) � 0 , ‖B(q)‖ <∞ ,∀q ∈ Rn,

if ‖Jm‖ < 1 and |mi(q)| <∞ for all q ∈ Rn and ∀i such that the i-th joint is prismatic. More-
over, under the above hypothesis on B, given any matrix R(q) ∈ Rnh×dr such that rank(Bξ(m(q)) =
dr and span(R(q)) is the range of Bξ(m(q)), then rank(RTJm(q)) = n implies that B(q) � 0.

Proposition 6. If Cξ(ξ; ξ̇) is obtained via Christoffel symbols, then matrix Ḃ(q)− 2C(q, q̇) is
skew-symmetric. If Cξ is not built through Christoffel symbols, then q̇T

(
Ḃ(q)− 2C(q, q̇)

)
q̇ = 0.

The importance of this formalization is the possibility to model soft-bodied robots as fully-
actuated rigid ones, with no singularity issues, which allows capitalizing on classical robust
control techniques, as is also done in the following.

Remark 1. In case robot is constrained to planar motions, the following map for the i-th
segment is used

mi(qi) =
(
qi
2 Li

sin(qi/2)
qi

Li
sin(qi/2)

qi

qi
2

)T
,

and the form for the i-th segment Jacobian is

Jm,i(q) =
(

1
2 Lc,i Lc,i

1
2

)T
. (3.7)

3.2 Soft inverted pendulum with affine curvature
Consider now a continuum soft robot of length L with diameter D subject to the gravity

pointing downwards in a way that the robot becomes a soft inverted pendulum, as displayed in
Fig. 3.2. The positions along the main axis of a pendulum are parameterized by the coordinate
s ∈ [0, 1], which means that point at s is sL far from the base and has an attached reference
frame Ss. Therefore, one can denote base frame with S0, and tip frame with S1. Introducing
another variable d ∈ [−1

2 ,
1
2 ] to describe points lying outside the main axis, Cartesian coordi-

nates of a point (s, d) in a global frame become (xs,d, ys,d) while in the local frame they are
(d, 0). Therefore, the shape of a robot can be entirely described by a main axis, characterized
by the curvature κs(t) : [0, 1]× R −→ R which is affine with respect to the coordinate s:

κs(t) = θ0(t) + θ1(t)s ,

where θ0 and θ1 are constant and linear components of a curvature, and moreover, the config-
uration variables of the system θ = (θ0, θ1). The dynamics of the soft inverted pendulum is
modeled as

B(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + kHθ + bHθ̇ = H

(
1
0

)
τ ,
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Figure 3.2: A soft inverted pendulum in two characteristic positions. Light gray color resembles
the shape of the pendulum, while the dark gray line depicts the main line. The figure is taken
from Della Santina (2020).

where B(θ), C(θ, θ̇), and G(θ) are derived by summing up the infinitesimal mass elements
Della Santina (2020), H ∈ R2×2 with Hi,j = 1/(i + j − 1) is the Hankel matrix, k ∈ R is
stiffness, and b ∈ R is damping of the pendulum. Finally, it is worth remarking that the affine
curvature model is a generalization of the PCC model, for which it stands θ0 ≡ 0.
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Part II

Stiffness Estimation



One of the principal objects of theoretical research in my department
of knowledge is to find the point of view from which the subject appears
in its greatest simplicity.

Josiah W. Gibbs



Chapter 4

Introduction

The main concept behind the stiffness estimation problem is that of finding the first deriva-
tive of the flexibility torque with respect to the flexible transmission. Pioneering results focused
on estimating Cartesian stiffness Diolaiti et al. (2005), under the assumption that the robot’s
end-effector is in contact with the environment. On the other hand, joint stiffness estimation
appears to be more convenient as it covers a general case when the contact between robot and
environment can also happen sideways. Depending on the necessity of knowing the commanded
torques to DC drives or commanded pressures in McKibben muscles, approaches can be divided
into the invasive and non-invasive ones.

To this regard, the online, non-parametric, and non-invasive stiffness estimator presented
by Grioli and Bicchi (2010) is able to identify stiffness from the link side, without needing
any information of the actuating drive. Beyond the need to compute the time derivative of
torque sensor from possibly noisy data, the practical applicability of such approaches remains
challenging also because the state observability property is lost when the robot’s link is in
steady state.

A different perspective to the challenging problem of online stiffness estimation, which uses
also measurements from the motor side, is the one offered by the promising research line of the
work by Flacco and De Luca (2011). In the solution therein proposed, joint stiffness estimator
is achieved via a two-phase process: first, an estimate of the flexibility torque applied to each
motor is obtained by using residuals, and then a Recursive Least Square (RLS) algorithm is
used to determine torque and stiffness approximations, which are parameterized with respect
to the flexible transmission. The approach requires knowledge of the motor speed, which is
estimated through a Modified Kinetic Kalman Filter (MKKF), whose parameters have to be
properly tuned (Flacco et al. (2012a)). Another interesting method estimating instead stiffness
in a direct way, and not requiring the computation of time derivatives, is the one proposed
by Ménard et al. (2014), which uses so-called modulating functions. While the approach is
advantageous as it provides a proof of the estimation error convergence, it requires an a-priori
choice of the RLS algorithm parameters and of the integration window length, one of the
modulating function parameter.

Within this setting, the solutions proposed in the following chapters tackle the challenge
by leveraging on the theory of the delayed Unknown Input Observers (UIO) where either
the flexibility torque or its time derivative are considered as an unknown input to the robot
actuator system or the robot system itself. Then, an RLS algorithm is used to find the stiffness
approximation. More precisely, Chapter 5 revises the theory of unknown input observers and
recursive least square algorithm. Then, Chapter 6 describes an invasive approach of estimating
stiffness in joints of pneumatically and electrically powered robots, followed by Chapter 7
that presents a non-invasive approach for electric soft-joint robots. It is worth remarking
that, besides providing an elegant solution in a way that the observer is designed apriorly
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and independently of the unknown-input signal model, the proposed method improves upon
the above-mentioned approaches as no velocity information is necessary in case of the invasive
approach, while force/torque sensor are needless for the non-invasive case.
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Chapter 5

Background

Unknown Input Observers (UIO) are useful tools that have mainly been used for detecting
system failures, by achieving correct state estimation independently of the unknown inputs. In
this case, however, the research focuses on estimating the unknown input, which is a nonlinear
time-variant function of our system variables. Among the input-observer categories studied
in the literature, so-called “delayed” input-observers Sundaram and Hadjicostis (2007, 2008);
Sundaram (2012) are preferable for our problem as they provide more information about the
system. Indeed, thanks to the use of multiple output values, collected over consecutive sampling
times, they are capable of estimating both the system’s states and inputs, with a constant and
predetermined delay, and they involve looser existence conditions for the realization of the
input-observer. This leads to the appealing feature of being able to asymptotically reconstruct
the unknown flexibility torque, without velocity sensor measurements, otherwise necessary with
the observer obtained via the zero-delay approach Valcher (1999). Finally, compared to the
approach in Saberi et al. (2000), the one in Sundaram and Hadjicostis (2007), which is used
here, leads to a smaller state space of the observer.

Once flexibility torque is estimated via the UIO, the stiffness is straightforwardly determined
by the RLS algorithm briefly presented in the subsequent section.

5.1 Delayed unknown input observers
The use of a so-called UIO filter has the advantage of simultaneously allowing state esti-

mation and unknown input reconstruction. The main concept capitalizes on the equivalence
between linear system’s invertibility and unknown input observability, which has been explored
in (Sain and Massey (1969);Hou and Patton (1998)). Thus, consider a linear, time-invariant,
discrete-time system in a general form

Xk+1 = AXk +B Uk ,
Yk = C Xk +DUk ,

(5.1)

where Xk ∈ Rn is a state vector, Uk ∈ Rm contains the unknown inputs, Yk ∈ Rp is an output
vector, A, B, C, and D are suitable matrices. Given a time delay L ≥ 0, the history of the
system’s output, YL

k = (Y T
k , · · · , Y T

k+L)T , can be expressed as

YL
k = OLXk + HL UL

k , (5.2)

where UL
k = (UT

k , · · · , UT
k+L)T is the system’s input history, and OL and HL

k are the L-step
observability and invertibility matrices, respectively. More precisely, for a zero delay, L = 0, the
input and output histories reduce to U0

k = Uk and Y0
k = Yk, respectively, and the corresponding

system’s observability and invertibility matrices are O0 = C and H0 = D. For a positive time
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delay, L ≥ 1, it holds

OL =
(
CT , (CA)T , (CA2)T , · · · , (CAL)T

)T
=

=
(
CT , (OL−1A)T

)T
,

and

HL =



D 0 0 0 · · · 0
CB D 0 0 · · · 0
CAB CB D 0 · · · 0

... ... ... ... . . . ...
CAL−1B CAL−2B · · · · · · CB D

 .

As anticipated above, the system invertibility plays a crucial role in ensuring the observ-
ability of the unknown inputs. Therefore, first the condition for the system invertibility is
presented:

Proposition 7 (System Invertibility). A linear dynamic system with state form as in Eq. 5.1,
with state vector Xk ∈ Rn and Uk ∈ Rm, is invertible with delay L if, and only if, the condition

rank
(
HL
)

= m+ rank
(
HL−1

)
(5.3)

is satisfied for some L 6 n, where rank (H−1) = 0 by definition.

Moreover, as the system output in Eq. 5.2 depends also on the initial state, whose knowledge
can be approximate, it is useful to check also the system’s strong observability according to the
following:

Definition 1. A discrete-time system as in Eq.5.1 is strongly observable if, for any initial
state X0 and any unknown input sequence U0, U1, ..., there exists a positive integer L such that
X0 can be recovered from the output sequence Y0, Y1, ...

Proposition 8 (Strong Observability). A discrete-time system in Eq. 5.1 where Xk ∈ Rn is
strongly observable if, and only if, for some L 6 n, it holds

rank
([
OL,HL

])
= n+ rank

(
HL
)
.

A discrete-time linear delayed unknown input observer, introduced by Sundaram and Had-
jicostis (2007), is described with

X̂k+1 = E X̂k + F YL
k ,

Ûk = G

(
X̂k+1 − AX̂k

Yk − C X̂k

)
,

(5.4)

where E and F are observer matrices of suitable dimensions, being designed such that X̂k → Xk

and Ûk → Uk, and where G = (BT , DT )T † is an input decoupling matrix, with full column rank,
and P † is the pseudo-inverse of a matrix P .

The existence conditions of a such UIO are the following:

Proposition 9 (Existence of delayed UIO). Given a linear dynamic system of the form in
Eq. 5.1, an L-step delayed UIO described by Eq. 5.4 exists if, and only if, there exist two
matrices E and F satisfying the conditions:

1. E is Schur, i.e. all its eigenvalues lay within the unit circle of the complex plane,
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2. E = A− F OL, and

3. F HL = (B, 0n×Lm).

Proof. The conditions for the observer’s stability are examined by driving the estimation error
to zero, whose dynamics is:

ek+1 = X̂k+1 −Xk+1 =
= E X̂k + F YL

k − AXk −B Uk =
= E ek + F YL

k + (E − A)Xk −B Uk =
= E ek + (E − A+ F OL)Xk + F HLUL

k −B Uk ,

where E and F are the observer’s matrices to be suitably chosen. Under the theorem’s as-
sumptions, reduces to ek+1 = E ek, thereby guaranteeing convergence for every unknown input
signal Uk and every initial state e0.

The condition for the existence of matrix F is equivalent to the one given in Prop. 7, while
the matrix is obtained by following the design procedure described in Sundaram and Hadjicostis
(2007); Sundaram (2012), shortly presented below.

First, consider the third condition F HL = (B, 0n×Lm) which is also called input-decoupling
equation, as it decouples input from the estimation error. The matrix F can be expressed as

F = F̂ N = (F̂1, F̂2)N ,

where N is chosen such that
N HL =

(
0 0
Im 0

)
.

This straightforwardly leads to the conclusion that F̂2 = B. Moving now on to the state-
decoupling equation E = A − F OL, named after property to decouple states and estimation
error, the design degree-of-freedom of matrix F̂1 is used to suitably allocate eigenvalues of E,
in order to keep it stable. If any desired eigenvalue position is given, robust pole placement
procedures such as the one described in Kautsky et al. (1985) are recommended.

5.2 Recursive Least Square algorithm
Consider a function f which can be approximated as a product of a regressor matrix Φ and

a corresponding parameter vector Π ∈ Rκ

f = Φ Π .

Assuming that f and Φ are known, the RLS algorithm is used to estimate the parameter
vector Π̂ such that the estimation error ε = f̂ − Φ Π̂ is minimized. Having denoted with
Π̂[k] = (π̂1[k], · · · , π̂κ[k])T the parameter vector estimated at the k-th step, the following RLS
algorithm proposed by Ljung (1999) can be used:

ε[k] = f [k]− Φ[k] Π̂[k] ,
ρ[k] = ΦT [k]P [k − 1] Φ[k] ,
K[k] = (1 + ρ[k])−1 (P [k − 1] Φ[k]) ,
Π̂[k] = Π̂[k − 1] +K[k] ε[k] ,
P [k] = P [k − 1]−K[k] ΦT [k]P [k − 1] ,

(5.5)
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where K indicates the gain vector, ρ presents a residual covariance, and P is the parameter
covariance matrix. The algorithm is initialized with an a-priori assumption of parameters Π̂[0]
and a positive definite covariance matrix P [0].
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Chapter 6

Invasive approach

This chapter proposes a technique for the estimation of stiffness and flexibility torque in
robot joints assuming the availability of information about the commanded torques/pressures.

First, an online stiffness estimator is designed for a soft joint robot with the pneumatic
actuation and, to the best of the author’s knowledge, it presents a unique stiffness estimator
for such robots. The challenge is attacked from the link side, hence, in order to design a linear
observer, all robot nonlinearities are grouped with the flexibility torque and considered as an
unknown input. It is worth noting that the only necessary information is that of commanded
pressure in both McKibben muscles and link position. The disadvantage of the proposed method
stems in the requirement of precise knowledge of robot dynamic parameters and nonlinearities.
Moreover, the observability issue occurs when the robot is in zero position.

Regarding the electrically driven soft joint robots, a pivotal point of the strategy is the
consideration of the flexibility torque signal as an unknown input of the linear motor model.
Compared to the solution presented by Grioli and Bicchi (2010), approaching the problem
from the link side, this approach avoids the known observability issue and does not require
the installation of torque sensors, as it considers the problem from the motor side. Moreover,
compared to the method presented by Flacco et al. (2012a), the present one requires no tuning
of a Kalman Filter, thanks to the capacity of the UIO to simultaneously estimate velocity
of motors and flexibility torque. However, similarly to Flacco et al. (2012a), the proposed
approach estimates both joint stiffness and flexibility torque, which is useful for model-based
control laws, but on the other hand it lacks the proof of stiffness convergence which is provided
instead by Ménard et al. (2014).

Finally, while the approach by Ménard et al. (2014) requires a suitable tuning of the in-
tegration window length depending on the signal to be elaborated, the UIO-based approach
involves matrices that are a-priori determined and thus independent of the signal rate. As a
consequence, the UIO output alone tends to be more susceptible to noise, but the concurrently
running RLS algorithm is capable of successfully compensating for it. It is also worth men-
tioning that, thanks to the decentralized structure of motor dynamic equations, this method
can be applied for the stiffness estimation in flexible joints of electric robots with multiple de-
grees of freedom, joints driven by different VSA configurations, and, consequently, for Cartesian
stiffness estimation based on joints’ positions and stiffnesses.

6.1 Robots with pneumatic actuation
This section considers the estimation of flexibility torque and stiffness in the joint of a

pneumatically actuated robot with one link, whose dynamic model is obtained from Eq. 2.5
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and reads

Iq̈ + βq̇ +mg l sin q = τe (6.1a)

σ̇ = d

dt

∂τe
∂q

. (6.1b)

It is a straightforward observation that in order to estimate stiffness, first a flexibility torque
needs to be determined.

6.1.1 Flexibility torque estimator
The following result stands:

Theorem 1 (Flexibility torque estimator). Given a pneumatic soft robot system with one link,
as in Eq. 6.1a, and a sampling time T, a delayed, discrete-time, input-state observer described
by

X̂k+1 = E X̂k + F Yk ,

ûk = G

(
X̂k+1 − AX̂k

qk − C X̂k

)
,

where k is a discrete time step, allows the reconstruction of the flexibility torque τe. The state
and output vector are

X̂k =
(
q̂k
ˆ̇qk

)
, Yk =

 qk
qk−1
qk−2

 ,
and the matrices are

E =
(

1 T
−1/T −1

)
F =

(
0 0 0
0 0 1/T

)

G =
(
0 b 0

)

A =
(

1 T
0 1− T d

b

)
, C =

(
1 0

)
(6.2)

The estimated flexibility torque is obtained as

τ̂e,k = ûk −mgl sin q̂ . (6.3)

Proof. The input to the system, that will be considered as an unknown, collects all system
nonlinearities such that

u = τe −mgl sin q

for the purpose of building a linear UIO estimator. Defining the state vector as X =
(
qT , q̇T

)T
yields the linear state form

Ẋ = AcX +Bcu , q = CX +Du ,

with C defined in Eq. 6.2, while the other system matrices are given by

Ac =
(

0 1
0 −β/I

)
, Bc =

(
0

1/I

)
, D = 0 .

Now, to comply with the discrete-time form of an estimator, the system is transformed to its
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discrete version by applying Euler’s rule, such that A = I2 + TAc and B = TBc, and becomes

Xk+1 = AXk +Buk , qk = CXk +Duk ,

where A and B are given in Eq. 6.2. Moreover, matrices A, B, C, and D satisfy the invertibility
and strong observability conditions for the delay L = 2, introduced in Prop. 7 and Prop. 8,
which along the fact that the matrix E is stable for chosen F̂1 = 02×2 implies the existence of a
UIO. Finally, the design procedure of the observer matrices, provided in Prop. 9, leads to the
matrices E, F , and G as stated in Eq. 6.2.

Once the UIO has estimated the unknown input Ûk, the flexibility torque can be recon-
structed by applying Eq. 6.3, which concludes the proof.

6.1.2 Estimation of stiffness
With the aim of obtaining analytic expressions of flexibility torque and stiffness, an RLS

algorithm is then used to identify the coefficients of a κ-th order parametric approximation of
torque with respect to the commanded pressures and link position:

τ̂e = Φ Π ,

where
Φ = (pa (1, q, · · · , qκ) , pb (1, q, · · · , qκ)) ,

Π = (π1, π2, · · · , π2κ)T ,
are a regressor matrix, comprised of powers of a link position multiplied by pressures in agonist
and antagonist McKibben muscle, and the corresponding vector of unknown parameters, re-
spectively. The order κ is chosen so that the main features are captured and simultaneously the
estimation is denoised. Afterward, stiffness is calculated as a first derivative of the flexibility
torque approximation:

σ̂ = ∂τ̂e
∂q

= ∂Φ
∂q

Π̂ .

The block diagram of a stiffness estimator is presented in Fig. 6.1.

6.1.3 Simulation results
The proposed estimator is validated on a soft pneumatic robot actuated by two McKibben

muscles arranged in the antagonistic setup. Nominal values for the parameters of robot dy-
namics are set to I = 0.015 kg m2, β = 10−5 Nm/s, m = 0.4 kg, l = 0.3 m, while the actuator
parameters are la,n = lb,n = 0.36 m, la,min = lb,min = 0.25, lb,n = 0.36 m, Kg = 0.14, and
R = 0.016 m. Following the procedure presented in the previous section, a Taylor expansion of
the flexibility torque and corresponding stiffness approximation can be derived as

τ̂e = pa
∑2
n=0 q

n πa,n+1 + pb
∑2
n=0 q

n πb,n+1 ,

σ̂ = pa
∑2
n=0 nq

n−1 πa,n+1 + pb
∑2
n=0 nq

b,n−1 πn+1 .

The RLS algorithm is initialized with the parameter vector equal to zero, meaning that
parameters are completely unknown in the beginning, while the initial covariance matrix is set
to P [0] = 109I6. Choosing the sampling time T = 10−2 s, position and stiffness are commanded
to follow the desired sinusoidal trajectory, i.e. qd = 0.3 sin π

10t m and σd = 5 + sin π
6 t Nm/rad.

Figure 6.2 presents the results of flexibility torque and stiffness estimation, as well as the
relative errors. Apart from the initial time period, when the parameters of RLS algorithm are
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Figure 6.1: Block scheme of the algorithm for invasive estimation of stiffness in flexible robot
joints, actuated by pneumatic antagonistic VSA.

being updated, both torque and stiffness values are estimated accurately. Moreover, the RLS
parameters remain bounded and converge to the constant values, as shown in Fig. 6.3.

The estimation error can be quantitatively presented through the suitable indices such as
Mean Square Error (MSE) and Mean Square Relative Error Percentage (MSREP). Given two
sample sequences of a real signal χ and an estimated signal χ̂, those indices are defined as
follows:

MSE = 1
n2−n1+1

∑n2
n=n1(χ(n)− χ̂(n))2 ,

MSREP = 1
n2−n1+1

∑n2
n=n1 (χ(n)− χ̂(n))2 /χ2(n) ,

where n1 and n2 indicate the initial and final time interval. The MSE for flexibility torque
and stiffness estimation is 1.710−14 and 1.210−5 while the MSREP is equal to 1.610−8 and 0.45,
respectively.

6.1.4 Conclusion
This section addressed stiffness estimation in robots with pneumatic drive. The method

exploits delayed UIO to reconstruct the flexibility torque, tackling the challenge from the link
side. Eventually, an RLS algorithm is applied to obtain an analytic expression of stiffness and
flexibility torque. Simulation verification of the proposed estimator showed that both variables
are well estimated, requiring just the knowledge of commanded pressures and link position.
Moreover, the solution has observability issues only when the position of a robot is equal to
zero. The main disadvantage is comprised of the necessity for the precise information about
the link dynamic parameters and restriction to one segment only. Future work will consider
the modification of a regressor matrix for the purpose of extending the method to multi link
case.
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Figure 6.2: Simulation run of a one-DoF pneumatic robot driven by McKibben muscles in the
antagonistic setup. In the leftmost figure, from top to bottom, desired and obtained position
and stiffness, as well as commanded pressures are shown. The middle and rightmost figure
depict results of flexibility torque and stiffness estimation.

Figure 6.3: Temporal evolution of parameters estimated via RLS algorithm in Matlab Simulink.
Parameters converge rapidly and remain constant.

6.2 Robots with electric actuation
Within the following, a methodology that tackles the challenge of stiffness estimation from

a drive side has been presented. Therefore, since it is applied on robots with electric actuation,
dynamics of each DC motor actuating the joint has to be considered in order to first reconstruct
the local flexibility torque, and then leverage on Eq. 2.9 to determine stiffness.

Observing the j-th drive of an i-th joint in Eq. 2.10, the following dynamic relation for a
motor stands

bi,j q̈i,j + di,j q̇i,j − τ ei,j(φi,j) = τi,j , (6.4)

and it will be addressed for the purpose of extracting the information of the local flexibility
torque.
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6.2.1 Local flexibility torque estimation
Theorem 2 (Local flexibility torque estimation). Given a system in Eq. 6.4, and a sampling
time T, a delayed, linear, input-state observer can be designed of the following form

X̂i,j,k+1 = E X̂i,j,k + F Yi,j,k ,

Ûi,j,k = Gi,j

X̂i,j,k+1 − Ai,j X̂i,j,k(
qi,j,k
τi,j,k

)
− C X̂i,j,k

 ,

with the aim of reconstructing the local flexibility torque τ ei,j. The state, input, and output vector
are

X̂i,j,k =
(
q̂i,j,k
ˆ̇qi,j,k

)
, Ûi,j,k =

(
τ̂ ei,j,k
τi,j,k

)
, Yi,j,k =

((
qi,j,k, qi,j,k−1, qi,j,k−2

)T
,
(
τi,j,k, τi,j,k−1, τi,j,k−2

)T)T
,

while the matrices read

E =
(

1 T
− 1
T
−1

)
, F =

(
0 0 0 0 0 0
0 0 0 0 1/T 0

)
,

Gi,j =
(

0 −Tbi,j 0 1
0 0 0 1

)

Ai,j =
(

1 T

0 1− T di,j
bi,j

)
, C =

(
1 0
0 0

)
.

(6.5)

The local flexibility torque is directly obtained from the unknown input vector.

Proof. Considering the state vector Xi,j = (qi,j, q̇i,j)T , the input vector Ui,j = (τ ei,j, τi,j)T , and
the output vector Yi,j = (qi,j, τi,j)T , the state-space form of the system becomes

Ẋi,j = Aci,jXi,j +Bci,jUi,j , Yi,j = CXi,j +DUi,j ,

where C is given in Eq. 6.5 and the other matrices are

Aci,j =
(

0 1
0 −di,j/bi,j

)
, Bci,j =

(
0 0

1/bi,j 1/bi,j

)
,

D =
(

0 0
0 1

)
.

The discrete-time version of the system, necessary if one wants to derive the UIO, can be
obtained by using the Euler’s method. In this way, the system gains the form

Xi,j,k+1 = Ai,j Xi,j,k +Bi,j Ui,j,k , Yi,j,k = C Xi,j,k +DUi,j,k .

where Ai,j and B are provided in Eq. 6.5. It is straightforward to conclude that the system
is fully observable. However, regarding the existence conditions of a UIO, it is important to
additionally examine the invertibility and strong observability of the system. According to
Prop. 7, the sought delay, allowing the unknown input reconstruction, is L = 2. The strong
observability condition is satisfied, again, for a delay L = 2 according to Prop. 8, which allows
the conclusion that a two-sample delay is necessary and sufficient for observing unknown inputs.
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Finally, the existence of UIO is ensured by choosing F̂1 = 02×2, so E becomes a stable matrix.
The observer matrices E, F , and G, given in Eq. 6.5 are obtained by following the design
procedure in Prop. 9.

Remark 2. It is worth remarking that although it might seem that both the commanded and
the flexibility torque are considered as an unknown inputs in the UIO, the information about
the commanded one is introduced by setting the corresponding element of D matrix to one.
Therefore, the presented estimator is invasive.

6.2.2 Estimation of stiffness
Once the flexibility torque has been estimated by the UIO, an RLS algorithm is used to

determine the coefficients of a κ-th order parametric approximation of such torque with respect
to flexible transmission, being τ̂ ei,j = Φi,j Πi,j , where the quantities

Φi,j =
(
φi,j, φ

3
i,j, · · · , φ2κ+1

i,j

)
,

Πi,j = (πi,j,1, πi,j,2, · · · , πi,j,κ)T ,

are a regressor matrix, comprising only odd powers of the transmission deflection since flexibility
torque oddness is assumed, and the corresponding vector of unknown parameters, respectively.
As in the case of pneumatic actuators, the order κ is set in a way that the main features are
captured and simultaneously the estimation is denoised. Afterward, stiffness is calculated as a
first derivative of the flexibility torque approximation:

σ̂i,j =
∂τ̂ ei,j
∂φi,j

= ∂Φi,j

∂φi,j
Π̂i,j .

The block diagram of a stiffness estimator is presented in Fig. 6.4.

6.2.3 Simulation results
The proposed technique has first been validated in simulations on a two degree-of-freedom

soft robot, with rotary joints actuated by antagonistic VSAs, mounted in a vertical plane. The
simulated actuators are Qbmove Maker Pro with servo DC motors provided by qb-robotics.
According to the robot model in Eq. 2.10 and data-sheets qbmove Centro Piaggio (2011), the
flexibility torque generated by each drive and the corresponding stiffness are

τ ei,j = ki sinh(ai(qi − qi,j)) ,
σi,j = ai ki cosh(ai(qi − qi,j)) ,

(6.6)

where ai and ki denote VSA string characteristic, assumed to be same for each joint. The
total flexibility torque and stiffness of the joint are straightforwardly determined in compliance
with Eq. 2.7 and 2.9. Nominal values for the stated VSA are bi,j = 3 · 10−6 kgm2, di,j =
10−6 Nms/rad, a1 = 6.7328 Nm, k1 = 0.0227 1/rad, a2 = 6.9602 Nm, and k2 = 0.0216 1/rad.
Given the decentralized structure of motors’ dynamics (cf. Ch. 2) and the fact that motors
have the same characteristics by construction, the local flexibility torque at every motor i
can be estimated by a copy of the very same UIO, which is designed only once, with a delay
L = 2. Moreover, the following Taylor expansion of the flexibility torque and the corresponding
stiffness approximation are used:

τ̂ ei,j = ∑3
n=0(qi − qi,j)2n+1 πi,j,n+1 ,

σ̂i,j = ∑3
n=0(2n+ 1)(qi − qi,j)2n πi,j,n+1 .
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Figure 6.4: Block scheme of the algorithm for the invasive estimation of stiffness in flexible
robot joints, actuated by electro-mechanical antagonistic VSA.

Figure 6.5: Simulation run of a two degree-of-freedom flexible joint robot driven by antagonistic
VSA. From left to right, commanded torques τi,j applied to the motors and obtained trans-
mission deflections φi,j, estimated total flexibility torque τ̂ et,j for each joint and corresponding
error percentage τ̃ et,j = (τ̂ et,j − τ et,j)/τ et,j, and estimated stiffness σ̂t,j in each joint and error per-
centage σ̃t,j = (σ̂t,j − σt,j)/σt,j. Both flexibility torques and stiffnesses are estimated effectively
with quite small relative error.
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Figure 6.6: Temporal evolution of the parameter vectors estimated via the RLS algorithm in
Matlab/Simulink. Parameters rapidly converge and remain constant.

Table 6.1: Evaluation criteria for simulated results

MSE [N2m2/rad2] MSREP [%]
Stiffness estimation 1st joint 1.84 · 10−7 3.34 · 10−7

2nd joint 1.92 · 10−7 3.38 · 10−7

Torque estimation 1st joint 1.49 · 10−11 2.85 · 10−9

2nd joint 1.62 · 10−11 2.84 · 10−9

Starting the RLS algorithm with complete lack of knowledge of the parameter values, i.e.
with a null Π̂i,j[0], and an initial covariance matrix Pi,j[0] = 108I4, the simulation, run with
a sampling period of T = 10−3 s, gives the results reported in Fig. 6.5 and Fig. 6.6. More
precisely, Fig. 6.5 shows the commanded torques to drives, which are chosen to be sinusoidal
with the same amplitude of 0.15 Nm and with different frequencies of 0.25 Hz for τ1,1, 0.06 Hz
for τ1,2, 0.17 Hz for τ2,1, and 0.08 Hz for τ2,2, and corresponding deflections. The figure also
reports the total flexibility torque and stiffness estimation via UIO and RLS algorithm, as well
as the relative error of the estimation with respect to the reference models. It is apparent that
the UIO accurately estimates the flexibility torque with a negligible delay of 2 milliseconds.
Estimation errors of flexibility torque and joint stiffness of few percents appear only during an
initial phase, when the parameters’ convergence has not been achieved yet.

Furthermore, it is worth noticing that the estimation performance is not affected by the
joints’ dynamic coupling, which is in accordance with the result in Flacco et al. (2012a), stating
that the decentralized structure of motor dynamics allows the approach to be applied also
to multiple degree-of-freedom robots. Moreover, Fig. 6.6 shows the estimated parameters’
evolution over time. It is noticeable that, with rigid robot links as in this case, the robot’s
Cartesian stiffness can be straightforwardly calculated based on its well-known relation with
joint stiffness Albu-Schäffer and Bicchi (2016). Finally, Tab. 6.1 reports a summary of the
estimation performance for both torque and stiffness in each joint.

6.2.4 Experimental results
This section presents results of the experimental validation of the proposed approach for

stiffness estimation, by using a real soft robot with flexible joints. Joints are actuated by
Qbmove Maker Pro VSA devices qbmove Centro Piaggio (2011) shown in Fig. ??, internally
driven by two Hitec DC servo motor drives. For each VSA, three magnetic encoders with a
resolution of 8192 pulses per revolution measure the position of the two VSA’s motors and of
the corresponding link, and two current sensors are used to measure motors currents, thereby
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indirectly providing accurate information about the achieved motor torque. Reference flexibility
torque and stiffness models are taken from the manufacturer’s data-sheet and validated in
Sec. 6.2.4.1. A sampling rate T = 5 ·10−3 s has been adopted. Then, the estimator performance
is examined by using one and two DoF setups as shown in Sec. 6.2.4.2.

(a) (b)

Figure 6.7: The robotic setup with one (a) and two (b) degrees of freedom.

6.2.4.1 Stiffness characterization

The experiment for stiffness characterization of a qbmove VSA has been performed following
the procedure described in Grioli et al. (2015). As a first step, the torque sensor ATI Axia80-
M20 has been mounted on the shaft of the actuator in order to record the value of flexibility
torque. Therefore, simultaneously both flexibility torque measurements and positions of the
shaft and two motors are collected, for different stiffness presets ranging from 0% to 100%.
Figure 6.8 shows results of the experiment applied on two different qbmove actuators from the
same set, where the abscissa presents measured values of the flexibility torque and ordinate
displays the deflection defined as δ = q − q0, where q0 is the equilibrium position.

Leveraging on the collected data, one solution is that stiffness can be calculated as a numer-
ical differentiation of a flexibility torque with respect to the deflection. Otherwise, an analytical
model of a flexibility torque dependent on the deflection should first be determined, and stiff-
ness obtained as an analytic derivative of flexibility torque model. Herein, the second approach

qbmove No 1 qbmove No 2

Figure 6.8: Torque-deflection relation obtained through the experiments on two different qb-
move actuators
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Figure 6.9: The result of fitting the torque and deflection data to the analytic k sinh(a(q − qa))+
k sinh(a(q − qb)) function for 4 different qbmove actuators.

is chosen and for that reason proceed with finding the appropriate flexibility torque model by
applying the trust region reflective fitting algorithm. This procedure is employed to fit the
function equivalent to the one in the datasheet of qbmove actuators

τ e = k sinh(a(q − qa)) + k sinh(a(q − qb)) .

where a and k are assumed to be coefficients, while q, qa, and qb are the independent variables.
The results of fitting the data are shown in Figure 6.9.

It can be observed that the model does not fit properly the whole set of flexibility torque
due to the existence of hysteresis and effects caused by the wear of springs. Therefore, the
obtained model is valid only up to some error margin, which is calculated as a Root Mean
Squared Relative Error (RMSRE):

RMSRE =

√√√√ 1
N

N∑
i=1

Xsensor −Xmodel

Xsensor
× 100 [%] ,

where Xsensor and Xmodel are the sensor and model data, respectively, while N is the number of
samples.

When calculated, the value of RMSRE amounts to 19.96 % for qbmove N o 1 and 21.06 %
for qbmove N o 2. In the remainder of the thesis, the unique value of 20% is adopted.

6.2.4.2 Validation of the estimator

In order to first prove the validity of this solution, two experiments of increasing complexity
have been designed. Both of them include three consecutive test phases: 1) during the first
phase (for t ∈ [0, 200)), both link positions and joint stiffnesses are chosen as sinusoids, 2)
during the second phase (t ∈ [200, 400)), only link positions are varying and joint stiffnesses are
constant, while 3) during the third phase (t ∈ [400, 600]) link positions are constant and joint
stiffnesses are required to vary. One of the sought results from the experiments is indeed also
the assessment of the method’s effectiveness, during different operational conditions. Robots
used for e.g. grasping tasks may be required to keep their link positions constant, while varying
their joint stiffnesses, while when employed for manipulation they need to guarantee a constant
stiffness for changing position. More precisely, the desired position and stiffness signals, during
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Figure 6.10: Experiment #1 (One degree-of-freedom setup) - The left-most column includes the
desired link position and joint stiffness, motors’ commanded torques and obtained deflections;
the mid and right-most columns report the estimated and model-based computed flexibility
torques and stiffnesses without and with parameter update termination, respectively.

Figure 6.11: Experiment #1 (One degree-of-freedom setup) - Temporal evolution of the pa-
rameter vectors experimentally estimated via the RLS algorithm without update termination.

the three phases, are as follows:

Phase 1:
{
q(t) = 0.53 + 0.2 sin(πt/4) rad ,
σ(t) = 5 + 2.5 sin(πt/8) Nm/rad ;

Phase 2:
{
q(t) = 0.53 + 0.2 sin(πt/4) rad ,
σ(t) = 5 Nm/rad ;

Phase 3:
{
q(t) = 0.53 rad ,
σ(t) = 5 + 2.5 sin(πt/8) Nm/rad .

The first experiment has been carried out by using a soft robot with only one degree of
freedom, actuated by a single VSA device. Fig. 6.10 and Fig. 6.11 report the obtained results.

The test reveals that the proposed approach is capable of estimating both flexibility torque
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Figure 6.12: Experiment #2 (Two degree-of-freedom setup) - The left-most column illustrates
desired and commanded quantities for all joints and motors; the mid and right-most column
show estimation results for the first and second joint, respectively.

Table 6.2: Experiment #1 - Evaluation criteria

MSE [N2m2/rad2] MSREP [%]
With drift Stiffness 0.5304 0.0187

Torque 8.8 · 10−6 3.3 · 10−5

Without drift Stiffness 0.0258 0.001
Torque 1.1 · 10−6 2.7 · 10−6

Table 6.3: Experiment #2 - Evaluation criteria

Without drift MSE [N2m2/rad2] MSREP [%]
Stiffness estimation 1st joint 0.048 0.002

2nd joint 0.033 0.001
Torque estimation 1st joint 9 · 10−4 0.002

2nd joint 1.1 · 10−5 4 · 10−5

and stiffness. It is noticeable that simultaneous position and stiffness variations, which occur
during the first phase, have a positive overall benefit to the estimation process. Indeed, apart
from the initial estimation error of the RLS, due to the imprecise initialization of its parame-
ters, the algorithm itself shows good performance, which only degrades when its input signals
(including the transmission deflection φi) are poorly exciting. To be more precise, it is known
from Flacco et al. (2012a) that, to better estimate the time-varying joint stiffness, it is necessary
that the transmission deflection φi covers larger ranges, so that more information is provided to
the estimation process. It is apparent that, during the second phase, the transmission deflection
is instead almost constant (refer to the bottom-left plot in Fig. 6.10), which leads to worse RLS
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performance, and, consequently, to the observed drift of the stiffness estimation.
Furthermore, the estimation performance is improved when the input signal has a richer

spectral content. As a rule of thumb, according to Ljung (1999), given the κ parameters of the
RLS, it is advisable to have κ spectral lines in the spectrum of the algorithm’s input signal,
meaning that the input signal is persistently exciting of order κ. To this respect, by observing
frequency domain of the transmission deflection, the richest spectral content of the RLS input
is present during the first phase, where indeed it shows its best accuracy. In line with this, if the
transmission deflection is constant or it has poor frequency content with respect to the number
of the RLS algorithm parameters, then it presents poor excitation to the RLS algorithm which
becomes prone to instability and divergence.

Therefore, a strategy to avoid this limitation and prevent such negative side-effects (includ-
ing the drift of stiffness estimation in the second phase), is to stop the parameters’ update,
whenever the poor excitation condition is detected. In this experiment, during the first phase,
when the input signal is sufficiently exciting, parameters reach a combination of values allowing
an accurate enough estimation of the flexibility torque function, and consequently of the stiff-
ness. This in turn enables good estimation performance even afterward (for t > 200 s), when
the parameter update is terminated (see the last column of Fig. 6.10). The corresponding MSE
and MSREP criteria are presented in Tab. 6.2.

Capitalizing on the outcomes of the first experiment, a second test has been carried out
by using a two degree-of-freedom setup, with the main purpose to experimentally validate the
proposed method for multiple link robots with flexible joints. Specifically, results reported in
Fig. 6.12 show that the dynamic coupling between joints does not impact the performance of
the flexibility torque and stiffness estimation processes. As for the previous experiment, MSE
and MSREP criteria have been calculated and listed in Tab. 6.3.

6.2.5 Conclusion
The problem of estimating stiffness in flexible robot joints driven by electrical VSAs was

addressed in this section. The proposed solution included a delayed UIO, reconstructing flexi-
bility torques at each electrical drive, and an RLS algorithm, subsequently obtaining stiffness
from a parameterization of the torque expression with respect to the flexible transmission.

Validation via simulation showed that both flexibility torque and stiffness are well estimated,
while experimental tests revealed a slow stiffness estimation drift in case of poor excitation.
However, as shown, the problem can be overcome by stopping parameter vector update when
such condition occurs. Moreover, the solution has shown several advantages. First, there are
no observability issues, since the problem is tackled from the motor side. Secondly, torque
and velocity sensors do not have to be mounted, as the UIO simultaneously estimates the
motor speed and reconstructs the flexibility torque. Third, the observer matrices are a-priori
calculated, making tuning of this method easier than that of state-of-the-art solutions. Fourth,
thanks to the decentralized property of motor’s dynamics, the proposed solution can be applied
to multiple degree-of-freedom articulated soft robots. The main limitation of the method is the
need for persistent excitation of the RLS algorithm. Future work will extend the research in
order to also estimate other relevant impedance parameters.
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Chapter 7

Noninvasive approach

The literature on non-invasive stiffness estimation approaches is not abundant. Considering
the state-of-the-art solution by Grioli and Bicchi (2010), the proposed approach has several
important advantages. First, it does not suffer from the observability issues when the position
of robot is still. Moreover, the proposed estimator is extendable to multi-DoF robots due to
its decentralized nature. Finally, there is no necessity of mounting force/torque sensors. The
main motivation behind approaching this challenge in a non-inavise way stems from the fact
that it is a promising step towards estimating human arm stiffness.

The strategy to reconstruct the current robot joint stiffness σ in a noninvasive way has two
phases. The first consists in extracting information about the partial derivatives appearing in
Eq 2.9, from the measured signals of the robot link position and speed, and then combining
it with data about the VSA’s internal transmission deflections, so as to obtain an estimate σ̂
of the current joint stiffness σ. The first step is performed by using an Unknown Input Ob-
server (Sundaram and Hadjicostis (2007)), while the second one is achieved by using an RLS
algorithm (Ljung (1999)). Chapter initially describes the estimator for a one-link case, subse-
quently introducing the generalization of the proposed method. Simulation and experimental
results are provided to verify the performance of the estimator.

7.1 Stiffness estimator for one-DoF soft robots
To find an approach of estimating stiffness in a non-invasive way without using force/torque

sensors, first a scalar system is considered. Two central ideas are the consideration of the robot
link system first time derivative and the collection of all nonlinearities into an unknown input
for the purpose of obtaining a linear estimator.

As it is known from Flacco et al. (2012a), the first time derivative of the total flexibility
torque τe contains the sought information about the partial derivatives appearing in the stiffness
definition, as given by

τ̇e =
∂τe

∂φa
φ̇a +

∂τe

∂φb
φ̇b =

∂τe,a

∂φa
φ̇a +

∂τe,b

∂φb
φ̇b = σaφa + σbφb , (7.1)

where the structure in Eq. 2.7 has been used. This fact suggests considering a higher-order
model of the robot’s link dynamics, which can be obtained by time differentiating the robot
link dynamics described with

Iq̈ + βq̇ +mgl sin q = −τe . (7.2)
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7.1.1 Flexible rotatum estimator
The subsequent theorem can be derived:

Theorem 3 (Flexibility Rotatum Estimator). Given a one-link soft robot system, as in Eq. 7.2,
and a sampling time T , a delayed, discrete-time, input-state observer described by

X̂k+1 = E X̂k + F Yk ,

ûk = G

(
X̂k+1 − AX̂k

qk − C X̂k

)
,

where k is a discrete time step, enables the reconstruction of the flexibility rotatum pe, i.e. the
time derivative of the flexibility torque. The state and output vector are

X̂k =

 q̂k
ˆ̇qk
ˆ̈qk

 , Yk =


qk
qk−1
qk−2
qk−3

 ,

and the observer matrices are

E =

 1 T 0
0 1 T
− 1
T 2 − 3

T
−2

 ,

F =
(

02×3 02×1
01×3 1/T 2

)
, G =

(
0 0 1/T 0

)
,

A =

1 T 0
0 1 T

0 0 1− T β
I

 , B =

0
0
T
I

 .

(7.3)

Finally, the estimated flexibility rotatum is obtained as

p̂e,k = −ûk −mglq̇ cos q .

Proof. The information about the flexibility rotatum pe can be extracted from the first time
derivative of the link dynamics. More precisely, considering Eq. 7.2, it stands

pe = τ̇e = −(Iq(3) + β q̈ +mgl q̇ cos q) ,

where the ?(i) notation indicates the i-th time derivative. Now, all nonlinear terms can be
grouped within the unknown input

u = −τ̇e −mgl q̇ cos q , (7.4)

yielding the following linear system

Iq(3) + β q̈ = u ,

whose state-space form becomes

Ẋ = AcX +Bc U , q = C X +Du ,

48



where C is defined as in Eq. 7.8 and the other matrices are

Ac =

0 1 0
0 0 1
0 0 −β

I

 Bc =

0
0
1
I

 , D = 0 .

Since the estimator is designed in a discrete time, it is necessary to obtain its discrete-time
form by applying Euler’s rule, which eventually leads to

Xk+1 = AXk +B uk , qk = C Xk +Duk .

where A and B are as in Eq. 7.3.
It is now straightforward to determine that the considered system satisfies the invertibility

and strong observability conditions of Prop. 7 and Prop. 8 for the delay of L = 3 time samples.
Moreover, according to Prop. 9 the existence conditions of an UIO are satisfied, since matrix
E is stable by setting F̂1 = 03×3.

Upon reconstructing the unknown input Ûk and estimating link velocity q̇k and acceleration
q̈k, the flexibility rotatum is retrieved by inverting Eq. 7.4.

Remark 3. It is worth noticing that the proposed observer requires only the use of the robot’s
link position, its inertia b, mass m, and the damping coefficient d, while no force/torque sensor
is needed.

7.1.2 Estimation of stiffness
As a second step, one can obtain an approximation of τ̇e by considering Taylor, Fourier

or any other function-based expansions, truncated at some suitable order κ, of the partial
derivatives appearing in Eq. 7.1, with respect to the two arguments, φa and φb, i.e.

τ̇e ≈
(∑κ

j=0 πa,j φ
j
a

)
φ̇a +

(∑κ
j=0 πb,j φ

j
b

)
φ̇b ,

where Πa = (πa,0, · · · , πa,κ)T and Πb = (πb,0, · · · , πb,κ)T are two unknown parameter vectors to
be identified. Once such coefficients are estimated, one can derive, from Eq. 2.8, the sought
joint’s stiffness according to the following expression:

σ ≈ ∑κ
j=0 πa,j φ

j
a +∑κ

j=0 πb,j φ
j
b . (7.5)

According to what is stated above, the RLS algorithm can be used to determine the coef-
ficients of a κ-th order parametric approximation of such torque with respect to the flexible
transmissions, being τ̇e ≈ Φ Π, where the quantities

Φ =
(
φ̇aφa, φ̇aφ

2
a, · · · , φ̇aφκa, φ̇b φb, φ̇bφ2

b , · · · , φ̇bφκb
)T
,

Π = (ΠT
a ,ΠT

b )T ,

are a regressor matrix and the corresponding vector of unknown parameters, respectively. The
order κ is chosen so that the main features are captured and simultaneously the estimation is
denoised. Therefore, having denoted with

Π̂[k] = (Π̂T
a [k], Π̂T

b [k])T

the parameter vector estimated at the k-th step, the RLS algorithm in Eq. 5.5 can be used
where ε[k] = ˙̂τe,k−Φ[k] Π̂[k]. Afterward, the stiffness can be calculated according to a best-effort
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rule applied to Eq. 7.5, thereby obtaining

σ̂[k] = (φa, φ2
a, · · · , φκa, φb, φ2

b , · · · , φκb ) Π̂[k] . (7.6)

Remark 4. It is worth noticing, referring to the system model in Eq. 2.10, that the only
information used about the VSA’s internal motors consists of their positions and speeds, qa, qb,
q̇a, q̇b, which are needed to compute the two transmission deflections and their derivative. This
kind of information is normally available on such devices, while data of the commanded motor
torques τa and τb is not employed.

7.2 Generalization of the Stiffness Estimator for Multi-
DoF Soft Robots

This section extends the estimation approach, described for the scalar case in the previous
section, by considering a complete multi-DoF soft robot. As it will be shown, a key feature of
the derived solution is the decentralized form of both the UIO and the RLS algorithm, which
scales with the number of robot joints. Indeed, the UIO consists of n copies of the estimator
found for the scalar case, each of them using only information about the i-th joint position qi,k
and its two first time-derivatives; analogously, the RLS algorithm is made of n copies of the
scalar-case RLS using only transmission deflection data, φi,a and φi,b.

7.2.1 Flexibility rotatum vector estimator
The following main result can be derived for the general case of a multi-DoF soft robot,

which generalizes the one described in Sec. 7.1 for the scalar case:

Theorem 4 (Flexibility Rotatum Estimator). Given a soft robot described by Eq. 2.10 and
a sampling time Ts, a delayed, discrete-time, input-state observer reconstructing the flexibility
rotatum pe, i.e. the time derivative of the flexibility torque τe, is described by the iterative
system:

X̂k+1 = E X̂k + F Yk ,

Ûk = G

(
X̂k+1 − AX̂k

qk − C X̂k

)
,

(7.7)

where k is a discrete step time, the state vector and the output history are

X̂k =

 q̂k
ˆ̇qk
ˆ̈qk

 , Yk =

 qk
qk−1
qk−2

 ,
and the matrices are

E =


In T In 0n
0n In T In

−
1
T 2 In −

3
T
In −2 In

 , F =

 02n×3n 02n×n

0n×3n
1
T 2 In

 , G =
(

0n×2n
1
T
In 0n

)
,

A =

 In T In 0n
0n In T In
0n 0n In

 , B =

 0
0
T In

 , C =
(
In 0n×2n

)
.

(7.8)

50



The estimated flexibility rotatum vector is obtained via the formula

p̂e,k = −(B(q̂k) Ûk + Ḃ(qk, ˆ̇qk) ˆ̈qk + Ċ(qk, ˆ̇qk) ˆ̇qk +
+ C(q̂k, ˆ̇qk) ˆ̈qk + Ġ(qk, ˆ̇qk)) .

(7.9)

Proof. The expression for the instantaneous flexibility rotatum pe can be obtained by differenti-
ating with respect to time the link’s dynamics, being described by the first relation in Eq. 2.10.
This yields:

pe = τ̇e = −(B(q) q(3) + Ḃ(q) q̈ + Ċ(q, q̇) q̇ + C(q, q̇) q̈ + Ġ(q)) .

By left-multiplying both members of the equation above by the inverse of B(q) and collecting
all nonlinear terms into an input vector U defined by the formula

U = B−1(q)
(
pe + Ḃ(q) q̈ + Ċ(q, q̇) q̇ + C(q, q̇) q̈ + Ġ(q)

)
, (7.10)

one obtains q(3) = U . Defining the state vector choice as X = (qT , q̇T , q̈T )T leads to the linear
the state form:

Ẋ = AcX +Bc U , q = C X +DU ,

where C is defined as in Eq. 7.8 and the other matrices are

Ac =

 0n In 0n
0n 0n In
0n 0n 0n

 , Bc =

 0n
0n
In

 , D = 0n .

In order to derive the sought rotatum estimator it is necessary to consider the corresponding
discrete-time linear system, obtained via Euler’s quantization rule, being given by:

Xk+1 = AXk +B Uk , qk = C Xk +DUk , (7.11)

where A and B are as in Eq. 7.8. Matrices A, B, C, and D satisfy the invertibility condition
of Prop. 7 for L = 3, thus ensuring the existence of a UIO of the sought form using only three
consecutive samples of the link position qk. The procedure to derive the rotatum estimator
consists of obtaining a dynamic equation for the state estimation error

ek = X̂k −Xk

that is decoupled from the an unknown input uk and then inverting the relation between
the estimated state X̂k and and the k-th sample uk of the input u. These steps require the
satisfaction of the conditions of Prop. 9, which can be carried out by following the reasoning
described in its proof. It is noteworthy at this point that F̂1 is a null matrix, thus ensuring the
stability of matrix E.

Once the UIO has reconstructed the unknown input Ûk, along with link velocity ˆ̇qk and
acceleration ˆ̈qk vectors, an estimate p̂e of the flexibility rotatum pe can be obtained by inverting
Eq. 7.10. This leads to Eq. 7.9 and concludes the proof.

Corollary 1. The decentralized nature of the estimator allows expressing the i-th component
ˆ̇τe,i of the total flexibility rotatum ˆ̇τe as a function of only i-th joint flexible transmissions
φi,a = qi − qi,a and φi,b = qi − qi,b and their corresponding time derivatives.
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7.2.2 Estimation of stiffness
According to Corollary 1, stiffness in each joint can be estimated in a decoupled way. More

precisely, by considering the following κ-th order approximation of the flexibility rotatum:

ˆ̇τe,i ≈
(∑κ

j=0 πi,a,j φ
j
i,a

)
φ̇i,a +

(∑κ
j=0 πi,b,j φ

j
i,b

)
φ̇i,b ,

and, by using Eq. 2.8, one obtains

σi ≈
∑κ
j=0 πi,a,j φ

j
i,a +∑κ

j=0 πi,b,j φ
j
i,b . (7.12)

Similarly to the previous section, the RLS algorithm is used to find the coefficients of the
flexibility rotatum approximation ˆ̇τe,i = ΦiΠi where

Φi =
(
φ̇i,aφi,a, · · · , φ̇i,aφκi,a, φ̇i,b φi,b, · · · , φ̇i,bφκi,b

)T
,

Πi = (ΠT
i,a,ΠT

i,b)T = ((πi,a,0, · · · , πi,a,κ)T , (πi,b,0, · · · , πi,b,κ)T )T

Finally, the i-th joint stiffness estimate can be calculated as

σ̂i[k] =
(
φi,a, φ

2
i,a, · · · , φκi,a, φi,b, φ2

i,b, · · · , φκi,b
)

Π̂i[k] . (7.13)

Remark 5. Note that the UIO uses only information about the robot’s link positions and leans
on the knowledge of the model including inertia matrix, Coriolis, centrifugal, viscous damping
terms, and gravity vector, but no force/torque sensor is required. The RLS algorithm uses
motors’ positions and speeds to estimate stiffness.

The block diagram of the proposed stiffness estimator is presented in Fig. 7.1.

7.3 Simulation results
This section evaluates the effectiveness of the presented estimation approach in simulation

on a single- and two-DoF soft robot.
For this purpose, first the dynamical model of a 1-DoF robot with a soft joint actuated

by a QB-move VSA device has been considered. The nominal values of the flexibility torque’s
and stiffness’ are computed according to their models, which are available from the manufac-
turer qbmove Centro Piaggio (2011). More precisely, they are given by

τe = k1 sinh(a1(q − qa)) + k2 sinh(a2(q − qb)) ,
σ = a1k1 cosh(a1(q − qa)) + a2k2 cosh(a2(q − qb)) ,

(7.14)

where k1, k2, a1, and a2 are suitable constants. A fourth-order Taylor expansion of τ̇e is chosen,
namely

τ̇e ≈ (πa,0 + πa,2 φ
2
a + πa,4 φ

4
a) φ̇a + (πb,0 + πb,2 φ

2
b + πb,4 φ

4
b) φ̇b ,

which only includes even-order coefficients as time-derivatives of the functions in Eq. 7.14 with
respect to the transmission deflections. Therefore, the parameter vectors to be identified online
are

Πa = (πa,0, πa,2, πa,4)T Πb = (πb,0, πb,2, πb,4)T .

By identifying such vector, it is subsequently possible to obtain the following approximation of
the joint’s stiffness

σ ≈ πa,0 + πa,2 φ
2
a + πa,4 φ

4
a + πb,0 + πb,2 φ

2
b + πb,4 φ

4
b .
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Figure 7.1: Block scheme of the algorithm for non-invasive estimation of stiffness in flexible
robot joints, actuated by pneumatic antagonistic VSA.

A first simulation has been done by using the numerical values m = 0.4 kg, l = 0.3 m, I =
0.015 kgm2, β = 10−7Nms/rad, a1 = 6.7328 rad−1, a2 = 6.9602 rad−1, k1 = 0.0227 Nm, k2 =
0.0216 Nm. Results of such simulation run are reported in Fig. 7.2 that shows that τ̇e and
the sought stiffness σ are well estimated. The only initially appearing estimation error in the
stiffness reconstruction occurs due to the worst-case hypothesis of complete lack of knowledge of
two parameter vectors, Πa and Πb, which are chosen to be initially null, i.e. Π̂a[0] = Π̂b[0] = 0.
After the initial transient, the time-derivative of the flexibility torque and the joint’s stiffness
are successfully tracked over time.

A simulation verification of results extendes to the two-DoF robotic setup which includes
joints actuated by two QB-move VSAs. The robot’s dynamics is of the form in Eq. 2.10, where
the inertia matrix is

B(q) =
(
b11(q) b12(q)
b12(q) b22

)
,

with b11(q) = I1 + m1
l21
4 + I2 + m2l

2
1 + m2

l22
4 + m2l1l2c2, b12(q) = I2 + m2

l22
4 + 1

2 m2l1l2c2, b22 =
1
2m2l

2
2 + I2, the matrix containing of Coriolis and centrifugal forces is

C(q, q̇) = 1
2

(
−m2l1s2q̇2 −m2l1s2 (q̇1 + q̇2)
m2l1s2q̇1 0

)
,

and the gravity vector

G(q) = 1
2

(
(m1 +m2)l1gs1 +m2l2gs12

m2l2gs12

)
,

where si, ci, and si,j denote sin(qi), cos(qi), and sin(qi + qj), respectively. Numerical values
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Relative error [%]

Figure 7.2: Simulation #1 (Single-DoF setup) - Reconstruction of the time-derivative of the
flexibility torque ˆ̇τe,k by the UIO (above), and corresponding estimated stiffness σ̂k obtained
via the RLS algorithm (below), for a single joint soft-robot.

Table 7.1: Nominal values of geometric and inertial parameters of the two-link soft robot.

Param. Value Unit Description

m1 0.26 kg First link mass
m2 0.26 kg Second link mass
l1 0.09 m First link length
l2 0.09 m Second link length
I1 0.0021 kgm2 First link inertia
I2 0.0021 kgm2 Second link inertia
g 9.81 m/s2 Gravity constant

of the robot’s inertial and geometric parameters are listed in Table 7.1. As described in the
theory, the first step is to obtain the corresponding state-space as in Eq. 7.11, which can be
done by defining the state vector x = (q1, q2, q̇1, q̇2, q̈1, q̈2)T and the input vector

u =
(
q

(3)
1

q
(3)
2

)
= B−1(q)

(
τ̇e − Ḃ(q)q̈ − Ċ(q, q̇)q̇ − C(q, q̇)q̈ − Ġ(q)

)
.

The corresponding matrices are:

Ac =
(

04×2 I4
02×2 02×4

)
, Bc =

(
04×2
I2

)
,

C =
(
I2 02×4

)
, D = 02×1 .

According to Th. 4, the input-state observer is obtained with a delay L = 3 and consists of the
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matrices

E =



1 0 Ts 0 0 0
0 1 0 Ts 0 0
0 0 1 0 Ts 0
0 0 0 1 0 Ts
− 1
T 2
s

0 −3/Ts 0 −2 0
0 − 1

T 2
s

0 −3/Ts 0 −2


,

F =
(
F̂1 B

)( I8
02×6

1
T 3
s
I2

)
,

G =
(

02×4
1
Ts

I2 02×2
)
,

where F̂1 is a matrix to be suitably chosen in order to place E’s eigenvalues at the desired
positions.

Furthermore, the i-th entries of the total flexibility torque vector τe and joint stiffness vector
σ are provided by the manufacturer qbmove Centro Piaggio (2011) via the following identified
formulas:

τe,i = k1 sinh(a1(qi − qi,a)) + k2 sinh(a2(qi − qi,b)) ,
σi = a1k1 cosh(a1(qi − qi,a)) + a2k2 cosh(a2(qi − qi,b)) .

Expanding the time differentiated quantity τ̇e,i as a Taylor series and approximating it to the
fifth-order yields

τ̇e,i ≈ (πai,0 + πai,1 φi,a + πai,2 φ
2
i,a + πai,3 φi,a + πai,4 φ

4
i,a) φ̇i,a+

+(πbi,0 + πbi,1 φi,b + πbi,2 φ
2
i,b + πbi,3 φi,b + πbi,4 φ

4
i,b) φ̇i,b ,

and correspondingly the i-th joint’s stiffness can be approximated as

σi ≈ πai,0 + πai,1 φi,a,1 + πai,2 φ
2
i,a + πai,3 φi,a,3 + πai,4 φ

4
i,a+

πbi,0 + πbi,1 φi,b,1 + πbi,2 φ
2
i,b + πbi,3 φi,b,3 + πbi,4 φ

4
i,b .

Two unknown parameter vectors are present for each joint, which are given by

Π1 = (ΠT
1,a,ΠT

1,b)T , Π2 = (ΠT
2,a,ΠT

2,b)T ,

with
Π1,a = (πa1,0, πa1,1, πa1,2, πa1,3, πa1,4)T ,
Π1,b = (πb1,0, πb1,1, πb1,2, πb1,3, πb1,4)T ,
Π2,a = (πa2,0, πa2,1, πa2,2, πa2,3, πa2,4)T ,
Π2,b = (πb2,0, πb2,1, πb2,2, πb2,3, πb2,4)T .

As in the case of a single degree-of-freedom setup, parameters Πi,a and Πi,b are assumed to be
completely unknown initially, i.e. Π̂i,a[0] = 0 and Π̂i,b[0] = 0, for i = 1, 2. Fig. 7.3 reported the
simulation results showing that the proposed UIO-RLS-based solution successfully reconstructs
both components of the flexibility torque and the joint stiffness.

7.4 Experimental results
The proposed stiffness estimator is first validated on an one-DoF soft robotic setup with

the electric variabel stiffness actuation (Fig. 7.4a) and then on a two-DoF setup (Fig. 7.4b).
Regarding the former setup, a passive Qbmove Maker Pro actuator, subject to the gravity, is
attached to the active one constituting the link with the moment of inertia I = 0.0021 kgm2,
mass m = 0.26 kg, and length l = 0.09 m. On the other hand, a two-DoF setup, built by
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Relative error [%]

Figure 7.3: Simulation #2 (2-DoF setup) - Reconstruction of the time-derivative of the flex-
ibility torque ˆ̇τe,k by the UIO (above), and corresponding estimated stiffness σ̂k obtained via
the RLS algorithm (below), for a single joint soft-robot.

adding another actuator, possess the equivalent inertia, mass and length parameters for both
links with the same before-stated values. Again, a sampling rate T = 5 · 10−3 s has been used.

(a) (b)

Figure 7.4: The robotic setup with one (a) and two (b) degrees of freedom.

The experiment on a one-Dof setup is designed with a two-fold objective. First, both the
position and stiffness change simultaneously during first 400 seconds, following the sinusoidal
trajectories qd = 0.4+0.2 sin π

4 t rad and σd = 2+sin π
6 t Nm/rad. It is well-known that estimation

of stiffness becomes challenging when the co-contraction is active, meaning that position is still
while stiffness changes. In that regard, the second phase (t ∈ (400, 800] s) consists of the
constant position and varying stiffness desired evolution such that σd = 2 + sin π

6 t Nm/rad.
The initial parameters of the RLS algorithm are assumed to be unknown Π̂[0] = 08×1 while

the covariance matrix at the first instance is set to P [0] = diag(1, 103, 105, 105, 1, 103, 105, 105).
Assuming that the derivative of flexibility torque and stiffness are even functions, the regressor
is constructed of the even powers of transmission deflections as follows

Φ =
(
φ̇a, φ̇aφ

2
a, φ̇aφ

4
a, φ̇aφ

6
a, φ̇b, φ̇bφ

2
b , φ̇bφ

4
b , φ̇bφ

6
b

)
.

Figure 7.5 shows that after initial transient period, necessary for the RLS algorithm to
update parameters, the estimation error goes below the calculated threshold. Moreover, it can
also be observed that the estimated parameters of the RLS algorithm remain bounded. After
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the parameters converge to the constant value, their update is stopped, thus ensuring that drift
of estimated stiffness does not occur. It is worth remarking that the estimation is effective
even with the switched off update of parameters, as can be observed from the fact that the
relative error remains below threshold. The value of stiffness MSE and MSREP on the interval
t ∈ []200, 800] s are 3.8 · 10−5 Nm/rad and 0.0012 %, respectively.

Relative error [%]

20% threshold

Figure 7.5: Experiment #1 (1-DoF setup) - The top figure shows the position of the first link,
in the second row are depicted model and estimated value of stiffness, third row shows the
obtained estimation error, and below are the estimated parameters of the RLS algorithm.

The experiment is then extended to estimate stiffness of the two-DoF soft robotic setup
in a non-invasive way, which presents a greater challenge due to the existence of coupled
terms. Again, position and stiffness are commanded to follow the sinusoidal trajectories,
while the RLS algorithm is initialized with parameters equal to zero Π[0] = 08×1 and co-
variance matrices that have the following values: P1 = diag(1, 102, 104, 105, 1, 102, 104, 105) and
P2 = diag(1, 10, 105, 107, 1, 10, 105, 107).

Figures 7.6 and 7.7 show the estimation performance for both joints. It can be observed
that the relative error is below the threshold after the initial period and that parameters
remain bounded. Values of stiffness MSE and MSREP for the first joint are 1.9 · 10−4 Nm/rad
and 6.3 · 10−4 %, respectively, while the second joint has MSE = 3.8 · 10−4 Nm/rad and
MSREP = 0.002 %.

7.5 Conclusion
This chapter introduced a novel approach to estimate stiffness in flexible joint robot in a

non-invasive way. Leveraging only on the information of link and drives positions, stiffness is
effectively estimated without any apriori knowledge of its model. Validation is performed within
both simulation environment and experimental setups, showing the accuracy of estimator even
when the position is still and when multi-DoF setup is used. The future work will consider the
robustification of the estimator with respect to the robot dynamic parameters.
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Relative error [%]

20% threshold

Figure 7.6: Experiment #2 (2-DoF setup - First joint) - The top figure shows the position of
the second link, in the second row are depicted model and estimated value of stiffness, third
row shows the obtained estimation error, and below are the estimated parameters of the RLS
algorithm.

Relative error [%]

21% threshold

Figure 7.7: Experiment #2 (2-DoF setup, Second joint) - The top figure shows the position of
qbmove actuator, in the second row are depicted model and estimated value of stiffness, third
row shows the obtained estimation error, and below are the estimated parameters of the RLS
algorithm.
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Part III

Nonlinear Adaptive Control of Soft
Robots



All stable processes we shall predict. All unstable processes we shall
control.

John von Neumann



Chapter 8

Introduction

Several approaches have been proposed for joint stiffness and position control such as static
and dynamic feedback linearization approach (De Luca and Lucibello (1998); Palli et al. (2008);
Potkonjak et al. (2011)), backstepping control law (Petit et al. (2015)), and energy-shaping
controllers Albu-Schäffer and Petit (2012). All the above-mentioned approaches assume that
the dynamic model is precisely known, which complicates their practical implementations.
Moreover, current results exposed by Della Santina et al. (2017) and Angelini et al. (2018)
indicate the importance of compliance preserving and show, by means of learning algorithms,
that this can be achieved by reducing the effect of the feedback action and, on the contrary,
reinforcing the feedforward term. This has motivated the application of robust control based
on adaptive technique, which can successfully cope with the model parametric uncertainties.

When it comes to soft articulated robots, their compliance is usually set in open loop, which
means that the elastic characteristic of a soft robot has to be obtained in advance, either by
using analytical calculation from the datasheet of the VSA as in the work of Angelini et al.
(2018), or performing model identification as carried out in (Lukić et al. (2016); Lukic et al.
(2019)). On the contrary, closed loop stiffness control has several benefits, as it provides position
and stiffness feedback and information about the dynamical relation between actuation system
and joints. Stiffness feedback approaches enable the soft robot manipulator to be reactive to
external disturbances (Hogan (1985)), e.g. in the case when there is a contact between the
environment and the robot. They are advantageous when the goal is to store energy (Garabini
et al. (2011); Keppler et al. (2016)) or to perform task that requires delicate contact with the
environment (Albu-Schaffer and Hirzinger (2002); Ott et al. (2008)). Furthermore, if decoupling
position and stiffness control is obtained, soft articulated robots are able to achieve high position
accuracy, while in the meantime realize a range of possible joint stiffness.

In this regard, Chapter 10 presents the decoupled adaptive control of position and stiffness
for pneumatic soft robots, while Chapter 11 shows the method for achieving the similar results
with electro-mechanically driven robots. In the end, Chapter 12 implements adaptive control
of highly-deformable soft-bodied robots position.
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Chapter 9

Background

Given a robot with dynamical model of the form as in Eq. 2.1, it is known by Proposition 3
that the left-hand side expression of such a model can be conveniently factorized as the product
of a regressor matrix Y ∈ Rn×κ and a κ-dimensional vector π ∈ Rκ of uncertain parameters,
i.e.

B(q) q̈ + C(q, q̇) q̇ +G(q) = Y (q, q̇, q̈) π . (9.1)

It is important to note that the property also allows determining other regressor forms, as
done below, by linearly combining the matrices B(q) and C(q, q̇) and the vector G(q) of the
system’s dynamics. By using this property, the following result can be proved (cf. the technique
by Slotine and Li (1991)):

Proposition 10. Given any desired joint trajectory qd : [0,∞)→ Rn, with qd(t) ∈ C2, a non-
linear adaptive controller ensuring asymptotic tracking of the joint evolution q(t), for all initial
parameter estimate π̂0, is described by the following dynamic system:

˙̂π = Kπ Y
T (q, q̇, qr, q̇r, q̈r) s ,

τ = Y (q, q̇, qr, q̇r, q̈r) π̂ +Kd s ,
(9.2)

where π̂ and τ are the parameter estimate vector and the joint torque control, respectively,
q̇r = q̇d+Λ q̃, s = ˙̃q+Λ q̃, q̃ = qd−q, Kd and Λ are two positive definite matrices determining the
tracking error convergence speed, and Kπ is a positive definite matrix specifying the parameter
adaptation rate.

Moreover, when the input control torque τ is applied to the robot through a flexible actua-
tion system as in Eq. 2.2, whose model also includes separable uncertain parameters, the above
result can be modified as suggested in the work by Tonietti and Bicchi (2002):

Proposition 11. Given a flexible joint robotic system with pneumatic actuation model as in
Eq. 2.2, with K a positive diagonal matrix, the nonlinear adaptive controller in Eq. 9.2 can be
generalized as

˙̂Π = Kπ Y
T
∗ (q, q̇, q̇r, q̈r)σ ,

p = Φ(q)†
(
Y∗(q, q̇, q̇r, q̈r) Π̂ +Kd σ

)
,

where Π̂ ∈ Rκ∗ is a modified parameter vector also including the actuator uncertainties, and
Φ(q)† ∈ R2n×n is the pseudo-inverse of the known part of the actuator model.

Proof. Given the regressor form in Eq. 9.1 and the actuator model in Eq. 2.2, it holds

K Φ(q) p = Y (q, q̇, q̇r, q̈r) π .
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Premultiplication by K−1 yields

Φ(q) p = K−1Y (q, q̇, q̇r, q̈r) π = Y∗(q, q̇, q̇r, q̈r) Π ,

where Y∗ is a suitable matrix allowing the factorization on the right of all unknown quantities
into the modified parameter vector Π. The remainder of the proof straightforwardly follows.

Note that although K = KgR is immersed into the parameter vector Π, the joint pulley
radius R must still be known, as it is part of the nonlinear expression of the actuator matrix.
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Chapter 10

Soft articulated robots with pneumatic
drives

This section lays on the foundation of the works by Tonietti and Bicchi (2002); Bicchi and
Tonietti (2002), Spong (1989), and Della Santina et al. (2017); Keppler et al. (2018). Compared
to the work by Tonietti and Bicchi (2002), a first extension stems in the fact that the robot’s
stiffness is controlled in closed-loop, which benefits to the overall system safety.

The second appealing feature of the proposed method is the use of the control degrees of
freedom, associated with the null-space of the actuator matrix, to decouple the tracking of
position commands from stiffness ones. The actuator matrix maps here the relation between
muscle pressures and joint elastic torque. While the idea of using the null-space projections is
not new in robotics — it has been applied to the Jacobian matrix of a redundant manipulator
to achieve force (Khatib (1987)) and torque (Dietrich et al. (2015)) control — the presented
approach enables the above-mentioned decoupling, without the necessity of higher order deriva-
tives (cf. Palli et al. (2008); Keppler et al. (2018)), even when the system model is not perfectly
known.

The third contribution of this work is the experimental validation of the method on a real
two-DoF soft robot arm with rigid links and flexible rotary joints, driven by pneumatically
powered VSAs in an antagonistic setup. In the setup, artificial McKibben muscles are used as
a flexible part of the pneumatic actuator system (Chou and Hannaford (1996); Gavrilović and
Marić (1969)), behaving as springs with nonlinear characteristics due to the air compressibility.

10.1 Design of the control law
A novel nonlinear adaptive decoupled stiffness and position control is presented in this sec-

tion. First, Proposition 10 briefly introduces the nonlinear adaptive control framework (Slotine
and Li (1991)) underlying the proposed one. Afterwards, Proposition 11 provides the oppor-
tunity to assume uncertainty of both model and actuator parameters. This leads to the main
result of the paper presented in Theorem 5, where decoupling of position and stiffness con-
trol is achieved by an additional control degree-of-freedom, that exploits the actuator matrix’s
null-space. Finally, the stability of the proposed approach is analyzed and proved.

When both desired stiffness and position signals have to be simultaneously tracked, a full
model that also includes stiffness dynamics is more appropriate. Under the hypothesis that
all system parameters are exactly known, this objective can be effectively achieved for flexible
robots with electrically driven actuators, by using a dynamic feedback linearization approach
of De Luca and Lucibello (1998). As it is known, the solution therein proposed obtains exact
stiffness and position decoupling by exploiting information contained in higher-order derivatives
of such variables.
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Figure 10.1: Depiction of the proposed decoupled nonlinear adaptive and decoupling control
approach.

On the contrary, when some system parameters are uncertain or even completely unknown,
accurate and decoupled control can be achieved by endowing the controlled system with adap-
tivity capacity in different ways. One possible solution to achieve this is described in the
following theorem, which leverages on the control degree of freedom obtained by projection to
the actuator matrix’s null-space. A depiction of the proposed nonlinear adaptive control is in
Fig. 10.1.

Theorem 5. Given a soft robot with dynamics as in Eq. 2.5, if matrix K−1B(q) is positive
definite for all q, an adaptive and decoupling controller generating a pressure command sig-
nal p(t), which allows simultaneous asymptotic tracking of any desired position and stiffness
reference signals, qd : [0,∞) → Rn, with qd(t) ∈ C2 and σd : [0,∞) → Rn, with σd(t) ∈ C1, is
described by the following system with dynamics given by

ν̇ =
(
Φq(q)Φ(q)⊥

)† (
Kσ(σ − σd)−K−1σ̇d

− Φq(q) ddt
(
Φ(q)†τ∗

)
− Φq(q)Φ(q)†τ∗

− (Φq(q)Φ(q)⊥ + Φ̇(q)⊥) ν
)
,

(10.1)

˙̂Π = Kπ Y
T
∗ (q, q̇, qr, q̇r, q̈r) s , (10.2)

and output signal given by
p = Φ(q)†τ∗ + Φ(q)⊥ν , (10.3)

with
τ∗ = Y∗(q, q̇, q̇r, q̈r) Π̂ +Kd s , (10.4)

where ν ∈ Rn is an internal controller state, Π̂ ∈ Rκ is the estimated parameter vector, τ∗ ∈ Rn

is a control signal directly affecting the applied torque, Kd, Kσ, and Kπ are positive definite
matrices determining the convergence speed of the position tracking error, the stiffness tracking
error, and the parameter estimation error, respectively, Y∗ is a regressor matrix for the robot’s
position dynamics, Φ(q)† is the pseudo-inverse of Φ(q), Φ(q)⊥ is a matrix in the null column-
space of Φ(q), and Φq(q) = ∂Φ

∂q
(q).

Note: The theorem describes the state form of a dynamic controller whose internal variables,
ν and Π̂, are updated according to Eq. 10.1 and 10.2, and whose output p, can be algebraically
computed by means of Eq. 10.3 and Eq. 10.4.
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Proof. The proof of the theorem is two stage. First, it can be proved that the full dynamic
model of the robot can be rewritten in suitable regressor form, and thus that adaptive control
laws for stiffness and position regulation can be found; then, it can be shown that such control
laws can be converted to feasible pressure commands.

To begin with, from the property of Eq. 9.1, consider rewriting in regressor form the following
expression, obtained from the first equation of the robot’s dynamics:

K−1
(
B(q) ṡ+ 1

2Ḃ(q) s
)

=
= K−1

(
B(q) (q̈r − q̈) + 1

2Ḃ(q) s
)

=
= K−1

(
B(q)q̈r + C(·) q̇ +G(q) + 1

2Ḃ(q)s
)
− Φ(q) p =

= Y∗(q, q̇, q̇r, q̈r) Π− Φ(q) p ,

where Y∗ is a suitable regressor matrix and Π is the corresponding parameter vector. Left-
multiplying the second equation of the robot’s dynamic model by K−1 yields

K−1σ̇ = −Φ̇q(q) p− Φq(q) ṗ .

Furthermore, having defined a new control torque vector τ∗ and a stiffness control vector uσ as

τ∗ = Φ(q) p ,
uσ = −Φ̇q(q) p− Φq(q) ṗ ,

(10.5)

respectively, one obtains the following dynamic equations:

K−1
(
B(q) ṡ+ 1

2Ḃ(q) s
)

= Y∗(q, q̇, q̇r, q̈r) Π− τ∗ ,
K−1σ̇ = uσ .

Then, under the hypothesis that K−1B(q) is positive definite for all q, one can adopt a similar
approach as in Prop. 10 and find adaptive control laws for the new inputs, by also including,
this time, a positive definite term depending on stiffness. To this aim, one can choose the
candidate Lyapunov function

V = 1
2s
TK−1B(q)s+ 1

2Π̃TK−1
π Π̃ + 1

2(σ − σd)TΓ(q)(σ − σd) ,

where Π̃ = Π− Π̂, Π̂ is the parameter estimate vector, and Γ(q) is a positive definite matrix to
be properly chosen. The Lie derivative of V is

V̇ = V̇1 + 1
2(σ − σd)T Γ̇(q)(σ − σd)+

+(σ − σd)TΓ(q)(σ̇ − σ̇d) ,

where
V̇1 = sTK−1

(
B(q) ṡ+ 1

2Ḃ(q) s
)
− Π̃T K−1

π
˙̂Π =

= sT (Y∗(q, q̇, q̇r, q̈r) Π− τ∗)− Π̃T K−1
π

˙̂Π .

Choosing τ∗ as in Eq. 10.4 leads to

V̇1 = −sTKd s+ sTY∗(q, q̇, q̇r, q̈r) Π̃− Π̃T K−1
π

˙̂Π .

The transposition of the second addend on the right-hand side of the above equation, which
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can be done since it is a scalar, allows factorizing the expression of V̇1 as

V̇1 = −sTKd s+ Π̃T

(
Y T
∗ (q, q̇, q̇r, q̈r) s−K−1

π
˙̂Π
)
.

Adopting the update rule in Eq. 10.2 for ˙̂Π makes the second addend to vanish and finally
allows reducing V̇ to

V̇ = −sTKd s+ 1
2(σ − σd)T Γ̇(q)(σ − σd)+

+(σ − σd)TΓ(q)(σ̇ − σ̇d) .

Moreover, the choice Γ(q) = K−1 allows using the stiffness dynamics equation and is compliant
with the positive definiteness of V . It also ensures Γ̇(q) = 0, thereby making the time derivative
V̇ equal to

V̇ = −sTKd s+ (σ − σd)TK−1(σ̇ − σ̇d) =
= −sTKd s+ (σ − σd)Tuσ .

Finally, by choosing the stiffness control input as

uσ = K−1σ̇d −Kσ(σ − σd) , (10.6)

one obtains
V̇ = −sTKd s− (σ − σd)TKσ(σ − σd) .

which establishes the negative definiteness with respect to stiffness and position tracking errors.
It is worth noticing that the parameter estimation convergence is not guaranteed, but their
error remains bounded as it can be found from the study of the second time derivative and
from Barbalat’s Lemma.

One can now move on to converting these controls into feasible pressure commands. To
achieve this, first assume that the sought commanded pressure vector has the form

p = A1(q) τ∗ + A2(q) ν ,

where ν is another new control vector, and A1(q) and A2(q) are two position-dependent matrices
to be conveniently chosen. From the first relation of Eq. 10.5, Φ(q) p = τ∗, one finds that it
must be

Φ(q)A1(q) τ∗ + Φ(q)A2(q) ν = τ∗ ,

which can be satisfied if Φ(q)A1(q) = In and Φ(q)A2(q) = 0n, where In and 0n are the identity
and the zero matrix of dimension n. The first of the two conditions requires that A1(q) =
Φ(q)T

(
Φ(q) Φ(q)T

)−1
= Φ(q)†, which is the pseudo-inverse of Φ(q), while the second one implies

that A2(q) = Φ(q)⊥, in which Φ(q)⊥ is any matrix in the column null-space of Φ(q). Therefore,
the commanded pressure vector p can be determined as in the form

p = Φ(q)† τ∗ + Φ(q)⊥ ν ,

where ν is still to be determined. Moreover, after computing the time derivative of p, given by

ṗ = d

dt

(
Φ(q)† τ∗

)
+ Φ̇(q)⊥ ν + Φ(q)⊥ ν̇ ,
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one can write from Eq. 10.5 that it must hold

uσ = −Φ̇q(q) Φ(q)†τ∗ − Φ̇q(q)Φ(q)⊥ ν+
−Φq(q)

(
d
dt

(
Φ(q)† τ∗

)
+ d

dt

(
Φ(q)⊥

)
ν+

+Φ(q)⊥ ν̇
)
.

Substituting in the above equation uσ with its expression from Eq. 10.6 and then solving it for ν̇
allows deriving the differential relation for the controller internal state ν described in Eq. 10.1.
To this purpose, first multiply both sides of the equation by the pseudo-inverse of Φq(q) Φ(q)⊥,
as in (

Φq(q) Φ(q)⊥
)†

(Kσ(σ − σd)−K−1σ̇d) =
=
(
Φq(q) Φ(q)⊥

)†
β(q) + ν̇ ,

with
β(q) = Φq(q) ddt

(
Φ(q)†τ∗

)
+ Φ̇q(q)Φ(q)†τ∗+

+ (Φ̇q(q)Φ(q)⊥ + Φq(q) d
dt

(
Φ(q)⊥

)
) ν ,

and then find the expression for ν̇. This concludes the search for a feasible and stabilizing
pressure command vector and the theorem’s proof.

Remark 6. As it is known, while the adaptive control approach always allows tracking of
position and stiffness references, even with inexact parameter knowledge, no guarantees can be
provided about the convergence of such parameters (Slotine and Li (1991)). Indeed, once the
position tracking error e has converged to zero, the variable s becomes null, and the parameter
adaptation stops (see Eq. 10.2).

An explicit characterization of the achieved parameter estimation error is not simple and it is
also reference-dependent. Once the position tracking error q̃ has converged, the following holds.
By first writing the robot’s dynamics in regressor form, on the left hand side, and applying the
adaptive torque, on the right hand side, it stands:

Y∗(·) Π = Φ(q)
(
Φ(q)†Y∗(·) Π̂ + Φ(q)⊥ν

)
,

where the variable dependency of matrix Y∗ has been omitted for space reasons. The orthogo-
nality construction gives independence on variable ν, which may in principle still evolve, thus
leading to

Y∗(q, q̇, qr, q̇r, q̈r) Π = Φ(q)Φ(q)†Y∗(q, q̇, qr, q̇r, q̈r) Π̂ ,

and consequently to
Y∗(q, q̇, qr, q̇r, q̈r)

(
Π− Π̂

)
= 0 ,

which finally describes the surface on which the reached parameter estimation error must lie.

Apparently, when the desired stiffness σd is time-varying, the controller depends also on the
actuator parameters K. However, for applications in which σd is slowly varying or piecewise
constant, the following corollary to Theorem 5 provides a solution independent of the actuator
parameters:

Corollary 2. Under the hypotheses of Theorem 5, if the desired stiffness σd is slowly varying
or piecewise constant, the nonlinear decoupling and adaptive controller is described by Eq. 10.2,
Eq. 10.3, Eq. 10.4 and

ν̇ =
(
Φq(q)Φ(q)⊥

)† (
Kσ(σ − σd)− Φq(q) ddt

(
Φ(q)†τ∗

)
+

− Φq(q)Φ(q)†τ∗ − (Φq(q)Φ(q)⊥ + Φ̇(q)⊥) ν
)
,

(10.7)
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and thus it is independent of the actuator parameters K.

Proof. The proof straightforwardly follows from Theorem 5 by assuming that σ̇d = 0.

Remark 7. By a first interpretation of the formula in Eq. 10.3, describing the expression of
the stabilizing pressure command, it can be understood that the two signals τ∗ and ν indepen-
dently control the robot’s position and stiffness. While τ∗ directly affects the applied torque, the
differential form of ν takes into account for the term depending on ṗ, which is present in the
stiffness dynamics.

Remark 8. It is also worth noticing that the time derivatives of the terms Φ†(q)τ∗ and Φ(q)⊥,
involved in Eq. 10.1 of Th. 5 and in Eq. 10.7 of Corollary 2, can be either numerically computed
or, more accurately computed in an analytical way by using the chain rule for differentiation.
Indeed it holds:

d

dt

(
Φ†(q) τ∗

)
= Φ†q(q) q̇ τ∗ + Φ†(q)

∂τ∗

∂q
q̇ .

The explicit calculation of the Jacobian of τ∗ with respect to q are reported, for the reader conve-
nience, in the experimental section. An analogous situation occurs when applying backstepping
techniques.

10.2 Simulation results
This section presents a first step towards the validation of the proposed control approach.

To this purpose, a two-degree-of-freedom, planar soft robot arm, actuated via antagonistic
McKibben artificial muscles, has been considered. The aim of this section is to show how the
proposed method effectively works, when exact knowledge of matrix Φ(q) is available. Under
such ideal hypothesis, the only difference between the regressor form and the system’s model in
Eq. 9.1 is in the values of unknown parameters Π. The reported simulations show indeed how
the controller continuously adjusts the estimated parameter vector Π̂, as the robot’s position q
and stiffness σ, are exactly steered to the desired values.

Having defined the robot’s configuration vector as q = (q1, q2)T , with q1 the arm’s shoulder
angle and with q2 its elbow angle, the robot’s dynamic model can be written in the form of
Eq. 2.5. As for the position’s dynamic equation, the well-known expressions of the inertia and
Coriolis matrices and of the gravity vector are standard and can be found e.g. in the text
by Siciliano and Khatib (2008). More precisely, referring to the system’s parameters reported
in Table 7.1, the inertia matrix is:

B(q) =
(
B11(q) B12(q)
B12(q) B22(q)

)
,

with
B11(q) = I1 +m1

(
l1
2

)2
+ I2 +m2l

2
1 ,

+m2
(
l2
2

)2
+m2l1l2 cos q2 ,

B12(q) = I2 +m2
(
l2
2

)2
+ 1

2m2l1l2 cos q2 ,

B22(q) = 1
2m2l

2
2 + I2 ,

the matrix of Coriolis and centrifugal forces is

C(q, q̇) =
(
−1

2m2l1 sin q2q̇2 −1
2m2l1 sin q2 (q̇1 + q̇2)

1
2m2l1 sin q2q̇1 0

)
,

70



Table 10.1: Definition of the actuator model’s parameters.

Param. Value Unit Description

R 0.03 m Pulley radius
Kg 0.16 - Actuator param.

lnom 0.17 m Nom. muscle length
lmin 0.14 m Min. muscle length

and the vector containing gravitation components is

G(q) =
(

(1
2m1l1 +m2l1)g sin q1 + 1

2m2l2g sin q1 + q2
1
2m2l2g sin q1 + q2

)
.

Furthermore, as for the right-hand-side of Eq. 2.5, under the assumption of equal muscle pa-
rameters, i.e. K = diag(K1, K1), having denoted with pi,a and pi,b the pressures of the two
artificial muscles of the i-th link, for i ∈ {1, 2}, and also referring to Table 10.1, the actuator
model is given by the formula:

τ∗ = Φ(q) p , (10.8)

where
τ∗ = (τ∗,1, τ∗,2)T = τ/K1 ,

p = (p1,a, p1,b, p2,a, p2,b)T ,
and

Φ(q) =
(
φ1(q) −φ1(q) 0 0

0 0 φ2(q) −φ2(q)

)
,

with
φi(q) = (lnom − qiR)2 − l2min .

One can now move on to deriving the equations of the adaptive and decoupling controller
of Th 5. First, it can be verified that the condition K−1B(q) to be positive definite is satisfied,
thereby allowing the proposed control approach to be applied. The regressor matrix reads

Y∗ =
(
q̈1,r q̈2,r Y13 sin q1 sin (q1 + q2)
0 q̈1,r + q̈2,r Y23 0 sin (q1 + q2)

)
, (10.9)

with
Y13 = (2q̈1,r + q̈2,r) cos q2 − q̇2

(
q̇1 + 1

2 q̇2 + q̇1,r + 1
2 q̇2,r

)
sin q2 ,

Y23 = q̈1,r cos q2 +
(
q̇2

1 + 1
2 q̇1q̇2 − 1

2 q̇1,rq̇2
)

sin q2 ,

and the parameter vector is

Π = (Π1,Π2,Π3,Π4,Π5)T

= 1
K1



I1 +m1
(
l1
2

)2
+ I2 +m2( l22 )2 +m2l

2
1

I2 +m2
(
l2
2

)2

1
2m2l1l2(

1
2m1 +m2

)
l1g

1
2m2l2g


.

The term Φ(q)† is the standard Moore-Penrose pseudo-inverse, which is omitted here for
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Figure 10.2: Simulation run of a 2-DoF pneumatic soft robot with initial parameter estimation
error of 10% of the real values. Shoulder and elbow references for position and stiffness are
specified first alternately (for t ∈ [0, 250)) and then simultaneously (for t ∈ [250, 350)). All
commands are asymptotically tracked with feasible pressure commands.

the sake of space, while the null-space projector Φ(q)⊥ is given by

Φ(q)⊥ =


φ1(q) 0
φ1(q) 0

0 φ2(q)
0 φ2(q)

 .

The internal state of the controller is the two-dimensional vector ν = (ν1, ν2)T . Therefore, the
sought adaptive and decoupling controller can be obtained by implementing the internal state
vector dynamics for ν in Eq. 10.1 and the parameter adaptation law in Eq. 10.2 for Π̂, and then
computing the adaptive control τ∗ as in Eq 10.4 and, finally, the output command pressure p
as in Eq. 10.3.

In order to show the effectiveness of the proposed approach, results from a typical simulation
run are presented in the following. In the simulation, the robot’s artificial muscles are initially
inflated, so as to reach a preset stiffness σ of 2 Nm/rad. During this initial setup phase, no
parameter adaptation is executed by setting the matrix gain Kπ to zero, while as soon as the
parameter adaptation is activated, Kπ is set to 35. It is worth noticing that larger values of Kπ

allow achieving faster parameter adaptation response, but, depending on how large is the initial
estimation error, attention should be drawn, in order not to drive system to instability during
the very first instants. As for the position tracking error dynamics, the controller constants
are chosen as Kd = 18 and λ = 15. It is important to recall from work of Della Santina et al.
(2017) that it is preferable to keep their values low so that natural compliance of the robot is
sustained, by reducing static feedback impact on the joints’ stiffness. The estimated robot’s
parameters Π̂ have been chosen to be 10% less than their real values Π.
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Figure 10.3: Evolution of the estimated parameter vector for the simulation scenario of Fig. 10.2.
Parameter estimates are rapidly adjusted at the beginning of the simulation and then remain
bounded.

Furthermore, desired position and stiffness trajectories, qd and σd, have been designed, so
as to include in the simulation three phases relating to three possible use-cases: 1) stepwise
increasing position commands while stiffness is kept constant, 2) stepwise increasing stiffness
commands while position is kept constant, 3) simultaneous stepwise commands for position and
stiffness. Referring to Fig. 10.2 and 10.3, the three phases are for t ∈ [0, 190), t ∈ [190, 250),
and t ∈ [250, 350), respectively. Fig. 10.2 shows that, as soon as a suitable set of values for
the estimated parameters is learnt, all position and stiffness commands are effectively tracked.
Most importantly, it is shown that position commands are followed with almost null influence
on the robot’s joint stiffness and viceversa, thus proving that the sought decoupling is achieved.
Very short transients of the stiffness can occur, only at the instantaneous changes of positions
commands, but no steady state error remains. Such transients can be easily avoided by design-
ing smoother reference signals. The figure also reports the corresponding commanded muscle
pressures. Fig. 10.3 shows the adaptation of the components of the estimated parameter vector,
which, as it is known, do not converge to the actual values, but remain bounded.

10.3 Experimental results
This section presents a final validation of the proposed control approach, using a pneumatic

soft-robot system, GioSte (Fig. 10.4), which was developed at the University of Pisa by Tonietti
and Bicchi (2002).

10.3.1 Hardware and Software Setup
The robotic system consists of an articulated arm with two rotary joints, each driven by a

pair of McKibben muscles in antagonistic configuration. All muscles receive pressurized air from
a common air compressor source at 8 bars. Inflation and deflation of each muscle is regulated by
a dedicated SMC ITV-2050 electro-pneumatic valve, which receives voltage commands in the
range of [0, 6] Volts. Such voltage commands are obtained by suitably converting the pressure
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Figure 10.4: GioSte - Pneumatic soft robot arm designed and developed at the University of
Pisa.

signals, as shown later, specified by the proposed controller according to Eq. 10.3. An ad-hoc
valve pre-configuration phase has been carried out, in order to prevent valve chattering, by
adjusting the pressure response time so as to suit the current application.

The angular positions of the rotary joints are measured through two optical and incremental
encoders, HEDS 5500 A12, each attached to the shaft of the corresponding joint pulley. The
encoders generate 500 counts per revolution, thus allowing to reach a resolution of 1.6 ·10−3 rad
if read in quadrature mode. A National Instruments PCIe6323 acquisition board is used with
its screw terminal, so as to collect encoder data and send voltage-based pressure commands to
the valves. Real-time control of the system through implementation of the proposed control
algorithm has been done, by using Matlab/Simulink 2014a software, which is connected to the
NI acquisition card via input-output drivers.

As for this validation, a single-degree-of-freedom version of the GioSte robotic system is
first considered, followed by the results of the two-degree-of-freedom setup.

10.3.2 Actuator Model Identification for the one-link GioSte
A preliminary identification phase has been carried out in order to acquire accurate knowl-

edge of the actuator model, as required by the hypotheses of Th. 5. Given the adopted one-link
GioSte robot arm, the identification process has aimed at finding the following four mappings:
1) pressure-to-voltage for muscle a, 1) pressure-to-voltage for muscle b, 3) voltage-to-torque,
and 4) voltage-to-stiffness.

The first two mappings have been obtained by applying specific voltage commands, covering
the entire operation range, to each of the two antagonistic muscles, a and b, and measuring the
corresponding achieved pressures, p1,a and p1,b. A linear least squares criterium has been used
to determine the following second-order polynomial approximation (also depicted in Fig. 10.5):

p1,a =
(
0.0025V 2

1,a + 0.8611V1,a − 0.4543
)
· 105 ,

p1,b =
(
−0.0036V 2

1,b + 0.9024V1,b − 0.5382
)
· 105 .

(10.10)
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Figure 10.5: Estimated voltage to pressure mappings for two antagonistic McKibben muscles,
actuating the one-link version of the GioSte robot.

The obtained mappings have been validated with a different set of voltage values and proved
to be sufficiently precise, which is also due to the high accuracy of the internal controllers of
each electro-valve.

As for the third and fourth mappings, the two muscles have been actuated by suitably
varying the input voltages of their valves, and then measuring the finally attained steady-state
joint position q1 when subject to gravity. More precisely, experiments consisted of probing the
entire voltage to torque and stiffness relation, by applying, completely in open-loop, constant
voltages to one muscle and varying the one of the other muscle. It is important to state that,
during this phase, no form of feedback has been used, so as to measure only the system’s
stiffness, and not the one induced by a control action. The elastic torque τ1 has therefore
been estimated by exploiting the fact that, when the joint is in the steady state, rotational
equilibrium exists and thus, from Eq. 2.1 and 2.2, it holds

τa − τb − τg = 0 , with τg = m1g
l1
2 sin(q) ,

where τa and τb are the two torques applied by the two muscles, and τg is the gravitational
force.

The joint stiffness σ, achieved for a given pair of muscle voltages, has been derived by using
the model of Eq. 2.3. By using an analogous least squares fitting algorithm, the following
polynomial approximations have been simultaneously found:

τ1 = (6.96− 2.34 q1 − 0.71 q2
1) V1,a+

−(7.03 + 2.07 q1 − 0.58 q2
1)V1,b ,

σ1 = (2.34− 0.57 q1) V1,a + (2.07 + 0.57 q1) V1,b .
(10.11)

The two mappings provide, for every actual angular position q1, the torque τ1 and the stiffness
σ1, obtained by applying some specific pair of voltage values, V1,a and V1,b.

Finally, the validity of the last mapping, relating the stiffness model, has been experimentally
verified, by measuring, for different positions q1, the change of joint angle ∆q1 induced by a
known variation of the gravity force ∆τg, produced by weights at the link tip of the link.
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Experiments showed that the assumed model is reliable enough for the application. While it
is possible to reconstruct more accurate mappings, by using e.g. force sensors mounted on
tendons, or even torque sensor mounted on the joint’s shaft, it is true that stiffness is a variable
that in real applications does not require such high precision. Then, it has been chosen to use
the model obtained by Tonietti and Bicchi (2002) for the experiments in this paper.

10.3.3 Experimental Results for the one-link GioSte
To evaluate and show the effectiveness of the proposed decoupling nonlinear adaptive con-

trol approach, a set of experiments realizing use-cases similar to the ones considered for the
simulation validation have been carried out. Again, the purpose here is to show the ability of
the controlled shoulder joint to simultaneously and independently track reference position and
stiffness commands. The implemented use-cases are: 1) smoothed stepwise position commands
with constant stiffness, 2) smoothed stepwise stiffness commands with constant position, and
3) simultaneous change of position and stiffness. Within all the experiments, the following
dynamic model of the one-link GioSte soft-robot has been used:(

I1 +m1
l1
2

)
q̈1 +m1g

l1
2 sin(q1) =

= K1 (φ1,a(q1),−φ1,b(q1))
(
p1,a
p1,b

)
,

σ̇1 = −K1
(
φ̇q,1,a(q1),−φ̇q,1,a(q1)

)( p1,a
p1,b

)
+

+ −K1 (φq,1,a(q1),−φq,1,a(q1))
(
ṗ1,a
ṗ1,b

)
,

where the viscous friction term has been neglected. Then, the regressor matrix from Theorem 5
is

Y∗ = (q̈1,r, sin(q1)) ,

and the unknown parameter vector is

Π = (Π1,Π2)T =
(

(I1 +m1
(
l1
2

)2
)/K1,m1g

l1
2 /K1

)T
.

Moreover, before proceeding to presenting the experimental results, referring to Remark 8, it
can be shown that the numerical time differentiation of the term Φ†(q1)τ∗, involved in Eq. 10.1
of Th. 5 can be avoided by applying the chain rule. Indeed it holds:

d

dt

(
Φ†(q1) τ∗

)
= Φ†q(q1) q̇1 τ∗ + Φ†(q1)

∂τ∗

∂q1
q̇1 ,

where
∂τ∗

∂q1
=

∂

∂q1

(
Y∗(q1, q̇1, q̇1,r, q̈1,r) Π̂ +Kd s

)
=

=
∂

∂q1

(
(q̈1,r, sin(q1)) (Π̂1, Π̂2)T

)
+

+
∂

∂q1
(Kd (q̇1,d − q̇1 + Λ (q1,d − q1))) =

= cos(q1) Π̂2 −KdΛ ,
which shows that no information regarding the acceleration q̈1 is in fact necessary. As it
is known, this fact allows avoiding noise amplification effects that would occur in numerical
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differentiation.
Moving now on to the experiments, desired position and stiffness values are chosen in a way

that they are compliant with the hardware. Some of the factors playing a role in such choice are
the nominal and minimal muscle lengths and the maximal muscle pressure (cf. also by Medrano-
Cerda et al. (1995)). Three tests have been carried out where the following gain values of the
adaptive and decoupling controller have been chosen: Kd = 2, Λ = 10, and Kπ = 45. Despite
the slower tracking error obtained, such values have been chosen in order to be able to present
some important features in the following plots.

During the first experiment, whose results are presented in Fig. 10.6, a stepwise reference
signal q1,d(t) for the joint position, ranging from 0 to 0.3 radians, is given, with a constant
desired stiffness σd(t) = 10 Nm/rad. The figure shows that, despite an initial tracking delay,
mostly due to the imprecise value of the parameters, all position commands are asymptotically
followed, while stiffness is maintained practically constant. The controlled system is able to
cope with both the uncertainties of the left hand side of the model, and with the one of the
construction-dependent constant K1 of the pneumatic actuator. Moreover it also recovers from
the residual error of the identification process, due to an inevitably not exact estimation of the
nominal and minimum lengths of the two muscles. Another important feature to observe is
how the controller’s internal state ν evolves, nicely adjusting its value, in order to assure the
sought decoupling. The commanded voltages V1,a and V1,b remain always within the feasible
range. It can also be observed that the amplitude of the steady-state tracking error is of the
same order of encoder resolution, and thus it could be reduced through the use of encoders
with more pulses per revolution.

Figure 10.6: Experiment #1 - Smoothed stepwise position commands with constant stiffness.
The position tracking error gradually decays as parameter adaptation advances. After adap-
tation, the tracking error is mostly affected by the noise of pressure regulators and has the
same order of amplitude of the encoder resolution. The impact of position changes on the joint
stiffness is negligible as desired. Estimated parameters, internal control state, and commanded
voltages are bounded and smooth.

As a complementary second experiment, shown in Fig. 10.7, the desired stiffness is changed
stepwise from 7 to 10 Nm/rad, while the desired position is kept constant at 0.2 rad. Similarly
to the previous experiment, the largest tracking error of both stiffness and position occurs
during an initial phase, when the adaptive control is still trying to learn a suitable combination
of parameter values.

The last of the three experiments combines the two previous scenarios, including commanded
position and stiffness signals that change simultaneously. It can be seen from Fig. 10.8 that
the adaptive and decoupling controller allows tracking such references, with practically no
interference with each other. As shown by De Luca and Lucibello (1998), dynamic feedback
linearization is able to achieve perfect decoupling, in the absence of measurement noise and
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Figure 10.7: Experiment #2 - Smoothed stepwise stiffness commands with constant position.
Dually to the previous experiment, the stiffness tracking error asymptotically converges. The
position tracking error is not affected by the stiffness commands. Estimated parameters, inter-
nal control state and commanded voltages are bounded and smooth.

Figure 10.8: Experiment #3 - Simultaneous position and stiffness commands. All references
are successfully tracked with no apparent mutual interference as desired.
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model uncertainties. As said in the introduction, leveraging on the idea therein proposed of
introducing a stiffness dynamics has allowed deriving the present adaptive approach, which has
shown to be an effective solution.

10.3.4 Comparison Between Open- and Closed-loop Adaptive Stiff-
ness Control

One could now proceed to further analyze the performance of the proposed control approach,
by showing the different behavior of the adaptive open-loop control algorithm described in Toni-
etti and Bicchi (2002) and the above proposed closed-loop stiffness control.

To this purpose, a first set of experiments has been designed in order to investigate how
the two systems respond to stepwise position commands with different rise times Tr, while the
desired stiffness remains constant, i.e. σd = σ̄d. The comparison has been done by choosing
the controller gain values Kd = 12, Λ = 1.8, and Kπ = 45. First, Fig. 10.9 reports the behavior
of the controlled GioSte robot with desired position rise time set to Tr = 6.7158 seconds.
Smoothed position reference steps are applied at t = 0 and t = 36 seconds. It can be observed
that, during the initial interval, the open-loop approach is able to faster track the desired
position command; in fact, the requirement to adapt also to the stiffness dynamics provides
the algorithm with some more conservative and slower behavior. After this first adaptation
phase, the closed-loop approach has a similar response time as the open-loop one, as for what
it concerns the position, but with the additional advantage that a smoother position tracking
is achieved; however, due to the imposed stiffness dynamics, one can notice a transient in the
stiffness tracking. It can also be seen that estimated parameters, the commanded voltages, and
the internal control state ν well-behave from a numerical standpoint and remain bounded.

Furthermore, Fig. 10.10 summarizes the two approaches for three decreasing position rise
times, namely Tr = 4.39, Tr = 2.20 and Tr = 1.65 seconds. Smoothed position reference
steps are applied at t = 0, t = 36, and 46 seconds; they are not reported in the figures for
the sake of clarity. The stiffness in open-loop is constantly maintained to 7 Nm/rad as in
the previous experiment of Fig. 10.9. The leftmost plot of the figure shows that the system
controlled via the open-loop stiffness method starts to experience an oscillatory behavior, more
apparent as Tr decreases, and eventually goes to instability. The two other plots of the figure,
the middle and rightmost, shows that, with the same setup, after some initial oscillations, the
closed-loop stiffness control can preserve the system’s stability. Indeed, the residual inaccuracy
in the actuator model identification process may lead to such an oscillatory evolution, while
the introduction of stiffness dynamics has the further benefit of providing the resulting system
additional inertia. It is, thus, the faster rise time request in the position command qd(t)
mostly responsible for the increase of the oscillatory and finally unstable behavior of the system
controlled via the open-loop stiffness approach.

Proceeding to a second type of experiments, the intention has been to investigate the effect
of stepwise stiffness commands on the joint position. To this aim, the desired position is kept
constant and the stiffness reference is stepwise changing. Fig. 10.11 reveals that both controlled
systems remain stable, but the impact of stiffness reference change on the position is larger in
the case of the open-loop solution, which ultimately also show how this approach can embed
the controlled system with better capacity of stiffness to position decoupling.

Broadly speaking, the fundamental difference between these two approaches lays in the
general principles of open and closed-loop control frameworks. The advantage of stiffness
regulation has been foreseen by Medrano-Cerda et al. (1995) and the vision of model-based
independent joint position and stiffness control of electrically driven VSAs has been theoretically
proposed by Palli et al. (2007) and Palli et al. (2008). The closure of stiffness loop is supposed
to lead to the better performance when the desired reference profile of stiffness is time varying.
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Figure 10.9: Experiment #4 - Comparison of the adaptive open-loop (first row) and closed-
loop (second row) stiffness control with position references with rise time Tr = 6.7158 seconds.
During the first interval, for t < 40 seconds, the open-loop approach is able to track faster
the desired position command; indeed, the requirement to adapt also to the stiffness dynamics
provides the algorithm with some more conservative and slower behavior, leading to the ob-
served initial lag in the closed-loop response. After this first adaptation phase, the closed-loop
approach has a similar response time as the open-loop one, as for what it concerns the position,
but with the additional advantage that a smoother position tracking is achieved; however, due
to the imposed stiffness dynamics, one can notice a transient in the stiffness tracking.
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Figure 10.10: Experiment #5 - Comparison of open-loop (leftmost) and closed-loop (middle and
rightmost) stiffness control for position references with decreasing rise times. Smoothed position
reference steps are applied at t = 0, t = 36, and 46 seconds. While the open-loop solution
starts to experience an oscillatory behavior, more apparent as Tr decreases, and eventually
goes to instability, the closed-loop one, after some initial oscillations, is capable of preserving
the system’s stability.
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Figure 10.11: Experiment #6 - Adaptive open-loop (first row) and closed-loop (second row)
control of stiffness for stepwise stiffness reference. The controlled system under open-loop
stiffness regulation experiences position disturbance during the transient of stiffness reference.
On the contrary, the closed-loop control of stiffness can suppress the oscillation of joint position.

81



Indeed, the inclusion of dynamics (i.e. an integrator) in the stiffness control allows the closed-
loop system to better cope with the non-modeled dynamics of the mechanical system. On the
other side, the implementation of the open-loop control by Tonietti and Bicchi (2002) is easier,
which finally drives to the conclusion that specific use-cases will determine the choice of proper
control approach.

10.3.5 Experimental Validation for the two-link GioSte
This subsection presents results of the validation and performance evaluation of the proposed

control law the full two degree-of-freedom robot arm of Fig. 10.4. In this setup, the first link
q1 will act as the robot’s shoulder and the second one q2 will represent its elbow. Similarly to
the procedure previously described for the one-DoF robot, the identification process for the
two-link GioSte leads to the following mappings:

τ1 = (2.28− 2.87 q1 + 2.16 q2
1) V1,a+

−(2.54 + 2.28 q1 + 6.09 q2
1)V1,b ,

τ2 = (6.96− 2.34 q2 − 0.71 q2
2) V2,a+

−(7.03 + 2.07 q2 − 0.58 q2
2)V2,b ,

σ1 = (2.87 + 0.83 q1) V1,a + (2.28− 0.83 q1) V1,b ,
σ2 = (2.34− 0.57 q2) V2,a + (2.07 + 0.57 q2) V2,b .

The same mapping as in Eq. 10.10 has been used for the second link to relate the pres-
sure p2,a and p2,b with the voltages V2,a and V2,b. Moreover, the controller’s gains are Kd =
diag(K1,d, K2,d) = diag(15, 2), Λ = diag(Λ1,Λ2) = diag(8, 8), and Kπ = 45 I5×5. Before mov-
ing to the experiments, it is worthwhile to observe, referring to Remark 3, that the Jacobian
matrix

∂τ∗

∂q
=
{
∂τ∗,i

∂qj

}
, i,j ∈ {1, 2} ,

includes the following terms:

∂τ∗,1

∂q1
=

∂

∂q1

(
Y∗,1(·) Π̂ +K1,d s1

)
=

=
∂

∂q1

(
(q̈1,r, q̈2,r, Y13(·), sin q1, sin q1 + q2) Π̂

)
+

+
∂

∂q1
(K1,d (q̇1,d − q̇1 + Λ1 (q1,d − q1))) =

= Λ1 sin q2 q̇2 Π̂3 + cos q1Π̂4 + cos q1 + q2Π̂5 −K1,dΛ1 ,

∂τ∗,1

∂q2
=

∂

∂q2

(
Y∗,1(·) Π̂ +K1,d s1

)
=

= −
((

2q̈1,r + q̈2,r + 1
2Λ2q̇2

)
sin q2 +

+
(
q̇1 + 1

2 q̇2 + q̇1,r + 1
2 q̇2,r

)
q̇2 cos q2

)
Π̂3 + cos q1 + q2 Π̂5 ,

∂τ∗,2

∂q1
=

∂

∂q1

(
Y∗,2(·)Π̂ +K2,d s2

)
=

=
∂

∂q1

(
(0, q̈1,r + q̈2,r, Y23(·), 0, sin q1 + q2) Π̂

)
+

+
∂

∂q1
(K2,d (q̇2,d − q̇2) + Λ2 (q2,d − q2)) =

= 1
2Λ1q̇2 sin q2 Π̂3 + cos q1 + q2 Π̂5 ,
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Figure 10.12: Experiment #7 - Experimental run of a 2-DoF pneumatic soft robot with
smoothed stepwise references for position and stiffness of shoulder and elbow. Tracking er-
rors converge to zero and there is no significant mutual impact between position and stiffness
control. During the transients, a small position tracking error is induced due to the residual
coupling between the joints.
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Figure 10.13: Evolution of the estimated parameter vector for the experiment shown in
Fig. 10.12. Parameter estimates are adjusted at the beginning of the experiment and then
remain bounded.
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∂τ∗,2

∂q2
=

((
q̇2

1 + 1
2 q̇1q̇2 − 1

2 q̇1,rq̇2
)

cos q2 − q̈1,r sin q2
)

Π̂3+

+ cos q1 + q2 Π̂5 −K2,d Λ2 .

Accordingly, no joint acceleration and jerk are also needed for the two-DoF case.
The shoulder joint is commanded to simultaneously follow smoothed stepwise trajectories

ranging from 0 to 0.25 radians for the positions, and 17 to 19 Nm/rad for the stiffness; the
elbow joint is required to track smoothed stepwise trajectories ranging from 0 to 0.15 radians
for the positions, and 12 to 14 Nm/rad for the stiffness. The obtained results in Fig. 10.12 show
that independent and simultaneous tracking capabilities for both position and stiffness desired
evolution are achieved, while the estimated parameters converge as depicted in Fig. 10.13. As
anticipated, the largest tracking error is observed during the adaptation phase, which is due to
the parameter uncertainty, and during the position transients, caused by the residual coupling
between joints. The change of stiffness reference has a negligible impact on the position. Thus,
the effectiveness of proposed method has been confirmed also for multi-DoF setups.

10.4 Comparison with feedback linearization
The groundwork for the feedback linearization method, applied to the soft robots with

variable stiffness actuators in the antagonistic setup has been laid by the authors of Jovanović
et al. (2017), Palli et al. (2008). In this section very same approach is used for pneumatic soft
robot - the nonlinear system dynamics is transformed by the appropriate control law into the
chain of integrators, so that system becomes linear.

10.4.1 Feedback linearization
Consider two degree-of-freedom soft robot with the position and pressure dynamics pre-

sented in the state-space form:
ẋ = f(x) + g(x)u

y = h(x) (10.12)

where outputs are y = (q1, q2, σ1, σ2)T , inputs are u = (pc,1,a, pc,1,b, pc,2,a, pc,2,b)T , and states are
x = (q1, q2, q̇1, q̇2, p1,a, p1,b, p2,a, p2,b)T . The first step implies differentiating each output until
the input variable appears. If the sum of both outputs orders is equal to the number of states,
then full linearization can be achieved. It is straightforward to calculate that the direct relation
between outputs (position and stiffness) and commanded pressure is obtained when position is
derived three times and stiffness once:

q
(3)
1 = L3

fhq,1(x) + E1,1pc,1,a + E1,2pc,1,b + E1,3pc,2,a + E1,4pc,2,b ,

q
(3)
2 = L3

fhq,2(x) + E2,1pc,1,a + E2,2pc,1,b + E2,3pc,2,a + E2,4pc,2,b ,
σ̇1 = Lfhσ,1(x) + E3,1pc,1,a + E3,2pc,1,b + E3,3pc,2,a + E3,4pc,2,b ,
σ̇2 = Lfhσ,2(x) + E4,1pc,1,a + E4,2pc,1,b + E4,3pc,2,a + E4,4pc,2,b ,

(10.13)

where Ei,j for i = 1, · · · , 4, j = 1, · · · , 4 is element of matrix E. As the sum of orders for both
positions and stiffness is equal to the number of states, one can conclude that all states are
fully observable as a result of having no zero dynamics. It can be concisely written as:

(
q(3)

σ̇

)
=
(
L3
fhq(x)

Lfhσ(x)

)
+ E


pc,1,a
pc,1,b
pc,2,a
pc,2,b

 , (10.14)

84



with the control input: 
pc,1,a
pc,1,b
pc,2,a
pc,2,b

 = E−1

−
(
L

(3)
f hq(x)
Lfhσ(x)

)
+


vq,1
vq,2
vσ,1
vσ,2


 , (10.15)

where vq,1, vq,2, vσ,1 and vσ,2 are newly-introduced inputs, chosen such that for given desired
trajectory of position qd,i and stiffness σd,i following polynomials are Hurwitz:

vq,i = q
(3)
d,i +Kq,2(q̈d,i − q̈i) +Kq,1(q̇d,i − q̇i) +Kq,0(qd,i − qi) ,

vσ,i = σ̇d,i +Kσ,0(σd,i − σi) .
(10.16)

10.4.2 Simulation Results and Discussion
The proposed control approach for soft-robots has been validated in Matlab/Simulink en-

vironment on a two DoF soft robot arm actuated by antagonistic McKibben artificial muscles.
Recalling the well-known dynamic model of robot, the inertial matrix of the robot arm dynamic
model is given by

B =
[
B11 B12
B21 B22

]
, (10.17)

where B11 = I1 + m1(1
2 l1)2 + I2 + m2l

2
1 + m2(1

2 l2)2 + m2l1l2 cos q2, B12 = I2 + m2(1
2 l2)2 +

1
2m2l1l2 cos q2, B21 = B12, B22 = 1

2m2l
2
2 + I2 with In being the identity matrix of dimension n.

The Coriolis and centrifugal force matrix C(q, q̇) and the gravity vector G are

C(q, q̇) =
[
hq̇2 h(q̇1 + q̇2)
−hq̇1 0

] [
q̇1
q̇2

]
, G =

[
(1

2m1l1g +m2l1g) cos q1 + 1
2m2l2g cos q1 + q2

1
2m2l2g cos q1 + q2

]
.

(10.18)
The dynamic model parameters of the robot are the following: m1 = 0.44 kg and m2 = 0.35 kg
are masses, l1 = 0.33 m and l2 = 0.225 m are link lengths, I1 = 0.004kgm2 and I2 = 0.0015kgm2

are link inertias, for both degrees of freedom.
Regarding the feedback linearization approach, all roots of the Hurwitz polynomials vq,1,

vq,2, vσ,1, and vσ,2 have been chosen equal to −1, while the gains of the decoupling adaptive
controller are set to Λ = 1, Kd = 1, and Kπ = 20. As already discussed in Palli et al.
(2008), position and stiffness reference trajectories need to be differentiable up to the third and
first order, respectively, so that their asymptotic tracking can be achieved. The simulations
have been designed in a way that robustness of methods is verified with respect to dynamic
parameter uncertainty, when both position and stiffness of the soft robot’s joints are varying.
The uncertainty of parameters is set to 1% since the apparent difference between those two
approaches can already be noticed.

As shown in Fig. 10.14 (a) and (c), feedback linearization and decoupling adaptive control
have a similar performance when parameters are precisely known, achieving satisfactory track-
ing of both position and stiffness. It can also be observed that when the feedback linearization
approach is used, stiffness does not get affected at all by the variations of position, while small
transient effects occur for the case of the adaptive approach. The source for these transients
may lay in the calculation of actuator matrix pseudoinverse.

However, when the values of dynamic model parameters are reduced by 1% compared to
their real value, the difference in performance achieved by the two methods becomes quite
noticeable. In accordance with the previous results in the literature, the position is tracked
with a constant error when the feedback linearization approach is used Fig. 10.14 (b). On the
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Figure 10.14: Positions and stiffnesses of joints for feedback linearization approach with
precise (a) and 1 % imprecise (b) dynamic parameters, and adaptive approach with precise

(c) and 1 % imprecise (d) parameters
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other hand, the adaptive control scheme manages to cope with the uncertainty of parameters,
once those dynamic parameters are learned, and achieves good performance in tracking desired
position and stiffness references, Fig. 10.14 (d). The tracking of stiffness is not affected by the
uncertainty of dynamic parameters, as there is no mutual dependency. Indeed, the robustness
of the feedback linearization approach can be improved by raising the gain values as shown in
Potkonjak et al. (2011), but high gains affect the natural compliance of a soft robot and make
practical implementation challenging.

10.5 Conclusion
In this section a novel approach for adaptive and decoupling control of position and stiffness

in pneumatic soft-robots has been presented. The approach achieves the desired decoupling
by using the control degree of freedom, laying in the kernel of known part of the actuator
matrix, plus an additional dynamic compensation that is made available by the introduction
of the stiffness dynamics. The approach has been validated first via simulations and through
experiments with a two-degree-of-freedom robot soft robot. Validation has shown that joint
position and stiffness are effectively tracked in different use-cases. A formal proof of the stability
of the tracking error for the approach has also been provided.

The solution has shown to have several advantages. First, it is robust to model uncer-
tainties and, if stiffness reference is constant or slowly-varying, also to actuator uncertainties.
Secondly, it requires computation of only the first time derivative of stiffness and of the second
time derivative of position. No further differentiation is needed, thus simplifying practical im-
plementations. Third, it allows joint stiffness to be controlled in closed loop, thereby making the
system more capable of following various position trajectory profiles, as shown in experiments.
Practically, this means that joints can achieve faster movements (even with lower stiffness)
when compared to the open-loop case, hence potentially improving the safety of soft robots
when used for human-robot interaction.

The main limitation of the current approach stems in the assumption that part of the actu-
ator model is known, which has required performing an initial identification phase. However,
we believe that the approach can be generalized for fully unknown actuator matrices, as well as
for different classes of pneumatically and electrically driven soft robots. This objective can be
achieved e.g. by using stiffness estimators, which would allow better estimation of the stiffness
and thus more effective closed-loop control. A second limitation of the current hardware is
related to the present mechanical coupling among joint pulleys, shafts, and muscles, which is
unable to effectively support fast motions without experiencing slippage and inducing measure-
ment errors. Albeit slower experiments have been shown, we are confident that better results
can be achieved with a future hardware upgrade by adopting better mechanical solutions for
such connections and using more consistent materials for the artificial muscles. With the same
objective of achieving faster motions, but with a different type of actuators, some seminal
work has already been initiated by Lukic et al. (2019), with an electric antagonistic VSA setup
characterized by more reliable mechanical structures and faster natural dynamics.

It is also worth saying that the scalability of the proposed method, and in fact that of other
adaptive control approaches, relies on the derivation of the regressor form of a robot’s dynamics.
To this respect, very recently, novel approaches, such as that by Marcucci et al. (2017a),
have introduced automatic generation methods, aiming at reducing the amount of information
needed to model and control a robot manipulator, and thus also potentially improving the
efficiency of the proposed solution.
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Chapter 11

Soft articulated robots with
electro-mechanic drives

This chapter presents a decoupled nonlinear adaptive control for sfot articulated robots with
the electro-mechanical drive. Similarly to the line of research by Palli et al. (2008), vectors of
links position q and joints stiffness σ are chosen as system outputs on which the loop is closed.
The proposed approach, however, differs in multiple ways.

The first contribution is that the adaptive control law is used for controlling the considered
system in the cascaded way. Therefore, parametric uncertainties on both motor and link side
are addressed. The inner-loop controller is designed to achieve the asymptotic tracking of the
desired motors positions while the outer-loop one takes care of position and stiffness tracking,
such that when qi,j −→ qi,j,des, then qi −→ qi,des and |σi − σi,des| < ε. The extensive research on
cascade strategy including the one for rigid robots driven by AC motors is sublimed by Ortega
et al. (2013), while the following sections differ in a way that robots have an antagonistic VSA
drive. Secondly, the decoupling property of the proposed technique is achieved by leveraging
on the explicit relation between stiffness and flexibility torques generated from motors which
leads, eventually, to the necessity of only first order derivative of the position variable. To
obtain an explicit relation, one needs to assume that the flexibility torque has a sine hyperbolic
dependency on the transmission deflection. This is indeed often the case in the existing solu-
tions (qbmove Centro Piaggio (2011)). Finally, compared to the recent solution of decoupling
motion and stiffness (Mengacci et al. (2020)), the herein shown approach takes into account
also dynamics of actuators.

The chapter starts by modifying the model of a soft articulated robot in order to satisfy the
assumption on the explicit stiffness-flexibility torque relation. It continues by proposing the PD
plus feedforward term based control that assumes the accurate knowledge of system parameters,
and finishes by presenting the novel control approach based on the adaptive technique.

11.1 Design of the control law
To decouple the position and stiffness control, it becomes necessary to express the first

derivative of stiffness as a function of local flexibility torques. Therefore, it is straightforward
to conclude that the model of flexibility torque should satisfy the following condition

∂2τ ej
∂φ2

j

= k τ ej ,

where j = a, b denote agonist and antagonist drive. The solution of this differential equation
leads to the conclusion that τ ej should comprise functions of the exponential type. Moreover,
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Figure 11.1: Depiction of the proposed cascaded control.

building upon the assumption that τ ej is odd and function of the transmission deflection φj, the
sine hyperbolic representation of flexibility torque is adopted

τ ej = kj
2 e

ajφj − kj
2 e
−ajφj = kj sinh ajφj .

with kj and aj being free parameters.
Accordingly, the total flexibility torque states

τ e = τ ea(φa) + τ eb (φb) = ka sinh(aaφa) + kb sinh(abφb) ,

which by definition leads to the following expressions for stiffness in robot i-th joint and its
time derivative

σ = kaaa cosh(aaφa) + kbab cosh(abφb) ,
σ̇ = kaa

2
a sinh(aaφa)φ̇a + kba

2
b sinh(abφb)φ̇b

= a2
aτ

e
a(φa)φ̇a + a2

bτ
e
b (φb)φ̇b .

Therefore, a full model of a robot driven by the electric VSAs states

B(q) q̈ + C(q, q̇)q̇ +G(q) = −τ ea(φa)− τ eb (φb) , (11.1a)
σ̇ = a2

aτ
e
a(φa)φ̇a + α2

bτ
e
b (φb)φ̇b , (11.1b)

Ba q̈a +Da q̇a − τ ea(φa) = τa , (11.1c)
Bb q̈b +Db q̇b − τ eb (φb) = τb . (11.1d)

The block diagram of the proposed control is presented in Fig. 11.1.

11.1.1 PD augmented control
Consider, for the beginning, a PD augmented control of soft robot driven by electro-

mechanical VSAs, which assumes the knowledge of parameters. Therefore, first a theorem
considering the inner loop control is derived, followed by the one of the outer loop.

Inner loop control of motors positions

Theorem 6. Given an antagonistic setup of direct current motors, whose dynamics is described
by Eq. 11.1c and 11.1d, the global asymptotic tracking of trajectories qa,d : [0,∞) −→ Rn and
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qb,d : [0,∞) −→ Rn is achieved with the following control law

τa = Daq̇a − τ ea(φa)+
Ba (q̈a,d − kp,a(qa − qa,d)− kd,a(q̇a − q̇a,d)) ,

τb = Dbq̇b − τ eb (φb)+
Bb (q̈b,d − kp,b(qb − qb,d)− kd,b(q̇b − q̇b,d)) .

(11.2)

where kp and kd are proportional and derivative gains, respectively.

Proof. Since the proof is equivalent for both motors, below is shown the procedure for the
agonistic set of drives only.

Consider the Lyapunov function candidate

Va = 1
2s

T
a sa ,

where sa = q̇a − q̇a,d + Λa(qa − qa,d), and whose time derivative is

V̇a = sTa ṡa = sTa (q̈a − q̈a,d + Λa(q̇a − q̇a,d)) .

Replacing q̈a with its value obtained from the model in Eq. 11.1c yields:

V̇a = sTa
(
B−1
a (−Daq̇a + τ ea + τa)− q̈a,d + Λa(q̇a − q̇a,d)

)
.

and substituting the control law proposed in Eq. 11.2 leads to

V̇a = −sTa kasa ,

for kd,a = Λa + ka and kp,a = Λaka. The convergence of tracking error to zero is ensured since
the second time derivative of Lyapunov candidate Va is lower bounded.

Outer loop control of link position and joint stiffness

Once convergence of the inner loop is obtained, the fact that qa → qa,d and qb → qb,d ensures
the achievability of local flexibility torques necessary for the position and stiffness control via
the following relation

qa,d = q − 1
aa

asinh( τ
e
a

ka
)

qb,d = q − 1
ab

asinh( τ
e
b

kb
) , (11.3)

which is smooth and invertible.
Therefore, the derivation of the outer-loop decoupled control law of position and stiffness

follows.

Theorem 7. To achieve the asymptotic tracking of the desired links positions qd : [0,∞) −→ Rn

with qd(t) ∈ C2 and bounded-error tracking of joints stiffness σd(t) : [0,∞) −→ Rn, such that
σd(t) ∈ C1, the following local elastic torques have to be applied to Eq. 11.1a and 11.1b:
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(
τ ea
τ eb

)
=



−1 −1 . . . 0 0
... ... . . . ... ...
0 0 . . . −1 −1

γa1 + ∆1 γb1 −∆1 . . . 0 0
... ... . . . ... ...
0 0 . . . γan + ∆n γbn −∆n



−1

Cq̇ +G+B(q̈d − kdė− kpe)

σ̇d − kσeσ

 ,

(11.4)

where γai = a2
a,i(q̇i− q̇a,i), γbi = a2

b,i(q̇i− q̇b,i), ∆i is the constant term, kp, kd, and kσ are positive
definite diagonal matrices determining the convergence rate of position and stiffness tracking
errors, respectively, position sliding variable is defined as s = q̇−q̇r, q̇r = q̇d−Λe, and e = q−qd;
stiffness tracking error is eσ = σ − σd.

Proof. Consider the following Lyapunov function candidate

V = Vq + Vσ = 1
2s

T s+ 1
2e

T
σ eσ ,

and, for the beginning, focus on the position part, whose time derivative is

V̇q = sT ṡ = sT (q̈ − q̈d + Λė) .

Substituting the link dynamics, it follows

V̇q = sT
(
B(q)−1(−C(q, q̇)q̇ −G(q)− τ e(φa, φb))− q̈d + Λė

)
.

and the introduction of the control law:

τ e = − (Cq̇ +G+B(q̈d − kp(q − qd)− kd(q̇ − q̇d))) , (11.5)

leads to the negative semi-definite Lie derivative of a Lyapunov candidate

V̇ = −sTks ,

where kd = Λ + k and kp = k. The inspection of its second time derivative confirms that the
error is asymptotically converging to zero.

Secondly, the Lie derivative of Lyapunov candidate stiffness part states

V̇σ = eTσ ėσ = eTσ (σ̇ − σ̇d) ,

and, following the same principle as in the previous, it comes to

V̇ = eTσ (a2
a(q̇ − q̇a)τ ea + a2

b(q̇ − q̇b)τ eb − σ̇d) .

Finally, the substitution of

a2
a(q̇ − q̇a)τ ea + a2

b(q̇ − q̇b)τ eb = σ̇d − kσeσ , (11.6)

leads to
V̇ = −eTσkσeσ .
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It can be observed from Equations 11.5 and 11.6 that the control for position and stiffness
is indeed coupled. This becomes more apparent when these two equations are expressed in the
matrix form. For the sake of simplicity consider the single degree-of-freedom case:(

−1 −1
a2
a(q̇ − q̇a) a2

b(q̇ − q̇b)

)(
τ ea
τ eb

)
=(

C(q, q̇)q̇ +G(q) +B(q̈d − kdė− kpe)
σ̇d − keσ

) (11.7)

Thus, to determine the explicit control law for τ ea and τ eb the inversion has to be performed
leading to (

τ ea
τ eb

)
=
(

−1 −1
a2
a(q̇ − q̇a) a2

b(q̇ − q̇b)

)−1

(
C(q, q̇)q̇ +G(q) +B(q̈d − kdė− kpe)

σ̇d − kσeσ

)
However, one can notice from the previous that the matrix subject to inversion may become

singular when the elements of the last row become equal, i.e. a2
a(q̇ − q̇a) = a2

b(q̇ − q̇b). In order
to avoid the ill condition without distorting the position of the robot, the following equilibrium
of the net momenta needs to be achieved:

∆(τ ea − τ eb ) = 0 ,

where ∆ = diag(∆i), implying the control law in Eq. 11.4.

Remark 9. By observing the determinant of matrix

−1 −1 . . . 0 0
... ... . . . ... ...
0 0 . . . −1 −1

γa1 + ∆1 γb1 −∆1 . . . 0 0
... ... . . . ... ...
0 0 . . . γan + ∆n γbn −∆n


it is straighforward to conclude that the singularity can be avoided for ∆i that is chosen as

∆i = a2
i |q̇i,j,max| ,

where j = a, b denotes agonistic and antagonistic drive, respectively.

Remark 10. According to Theorem 7, the position tracking error converges to zero, however, a
bounded stiffness tracking error appears due to the ∆ term. One can deal with it by increasing
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the gain kσ or by using an integrator term. In the latter case, the control law gains the form

(
τ ea
τ eb

)
=



−1 −1 . . . 0 0
... ... . . . ... ...
0 0 . . . −1 −1

γa1 + ∆1 γb1 −∆1 . . . 0 0
... ... . . . ... ...
0 0 . . . γan + ∆n γbn −∆n



−1

×

Cq̇ +G+B(q̈d − kdė− kpe)

σ̇d − kσeσ − kI
∫
eσdt

 ,

(11.8)

with kI being the positive definite matrix.

11.1.2 Decoupled Nonlinear Adaptive Control
The adaptive control approach allows to manage the soft robot system even in the circum-

stances when the dynamic parameters of link and motors are uncertain. Again, a cascaded
formulation of the control is adopted, with link position and stiffness being controlled in the
outer loop, while motors positions are controlled within the inner loop.

Inner loop control of motors positions

Theorem 8. The global asymptotic tracking of the desired trajectories qa,d : [0,∞) −→ Rn and
qb,d : [0,∞) −→ Rn, such that qa,d, qb,d ∈ C2 is achieved via the following control laws

τa = Yaπ̂a − τ ea − kasa ,
˙̂πa = −kπaY T

a sa ,
τb = Ybπ̂b − τ eb − kbsb ,

˙̂πb = −kπbY T
b sb ,

(11.9)

where kπa = diag(kπ1,a , kπ2,a) and kπb = diag(kπ1,b , kπ2,b) determine the rate of parameter esti-
mate convergence.

Proof. For the convenience, consider only the agonistic set of drives and take the Lyapunov
function candidate

Va = 1
2s

T
aBasa + 1

2 π̃
T
a kπa π̃a ,

whose Lie derivative is equal to

V̇a = sTaBaṡa + 1
2s
T
a Ḃasa − π̃Ta kπa ˙̂πa =

sTaBa(q̈a − q̈a,d + Λaėa)− π̃Ta kπa ˙̂πa .

where Ḃa is null since it is a constant matrix. Substituting the acceleration in the derivative of
Lyapunov function candidate as follows

V̇a = sTaBa (B−1
a (−Daq̇a + τ ea + τa)− q̈a,d + Λaėa)− π̃Ta kπa ˙̂πa

= sTa (−Ba(q̈a,d − Λaėa)−Daq̇a + τ ea + τa)− π̃Ta kπa ˙̂πa
= sTa (−Yaπa + τ ea + τa)− π̃Ta kπa ˙̂πa

94



and adopting the control laws in Eq. 11.9, leads to

V̇a = sTa (−Yaπ̃a − kasa)− π̃Ta kπa ˙̂πa =
−sTa kasa − π̃Ta (Y T

a sa + k−1
πa

˙̂πa)

Finally, it stands that V̇a = −kas2
a.

Outer loop control of link positions and joint stiffnesses

Once convergence of the inner loop is obtained, the fact that qa → qa,d and qb → qb,d ensures
the achievability of local flexibility torques necessary for the position and stiffness control via
the following relation

qa,d = q − 1
aa

asinh( τ
e
a

ka
)

qb,d = q − 1
ab

asinh( τ
e
b

kb
) , (11.10)

which is smooth and invertible.

Theorem 9. Assume that the Propositions 1, 2, 3 and 4 hold. Then, the desired trajectories of
links positions and joints stiffness qd : [0,∞) −→ Rn with qd(t) ∈ C2 and σd(t) : [0,∞) −→ Rn,
such that σd ∈ C1 are effectively tracked by adopting the following control laws

(
τ ea
τ eb

)
=



−1 −1 . . . 0 0
... ... . . . ... ...
0 0 . . . −1 −1

γa1 + ∆1 γb1 −∆1 . . . 0 0
... ... . . . ... ...
0 0 . . . γan + ∆n γbn −∆n



−1

×

Y (q, q̇, q̇r, q̈r)π̂ − ks

σ̇d − kσeσ

 ,

˙̂π = −kπY T s ,
(11.11)

where Y (q, q̇, q̇r, q̈r)π̂ = B̂(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) stands, with Y being a regressor matrix and
π̂ the vector of the uncertain parameters.

Proof. Consider the Lyapunov function candidate

V = Vq + Vσ ,

where
Vq = 1

2s
TBs+ 1

2 π̃
Tkππ̃ , and Vσ = 1

2e
T
σ eσ .

The Lie derivative of the position term is derived as

V̇q = sTB(q)ṡ+ 1
2s
T Ḃ(q)s− π̃kπ ˙̂π

= sTB(q)(q̈ − q̈d + Λė) + 1
2s
T Ḃ(q)s− π̃kπ ˙̂π =

= sTB(q)(B(q)−1(−C(q, q̇)q̇ −G(q)− τe)− q̈d + Λė) + 1
2s
T Ḃ(q)s− π̃kπ ˙̂π

= sT (−C(q, q̇)q̇ −G(q)−B(q)(q̈d − Λė)− τe) + 1
2s
T Ḃ(q)s− π̃kπ ˙̂π .

where the skew-symmetry property can smoothly be used to avoid the appearance of Ḃ(q),
since

sT (1
2(Ḃ − 2C) + C)s = sTCs .
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This further leads to

V̇ = sT (−τe −B(q)q̈r − C(q, q̇)q̇r −G(q))− π̃kπ ˙̂π .

Now, exploiting the elastic torque from Eq. 11.11 the derivative of Lyapunov function becomes

V̇ = sT (Y π̂ − Y π − ks)− π̃kπ ˙̂π = −sTks− sT (Y π̃ + π̃kπ ˙̂π)

and substituting the parameters update law from the same Eq. 11.11, it finally stands V̇ =
−sTks.

Concerning the stiffness part of Lyapunov function candidate, the procedure of finding its
derivative is equivalent to the one in the previous section.

Finally, the following relation stands(
−1 −1

a2
a(q̇ − q̇a) a2

b(q̇ − q̇b)

)(
τ ea
τ eb

)
=
(
Y (q, q̇, q̇r, q̈r)π̂ − ks

σ̇d − keσ

)
(11.12)

whose ill condition occurs when α2
a(q̇− q̇a) = α2

b(q̇− q̇b) which, again, can be cured by following
the principle described above and introducing the ∆ term.

Remark 9 holds for the adaptive approach as well, while Remark 10 is slightly modified:

Remark 11. According to Theorem 9, the position tracking error converges to zero, however, a
bounded stiffness tracking error appears due to the ∆ term. One can deal with it by increasing
the gain kσ or by using an integrator term. In the latter case, the control law gains the form

(
τ ea
τ eb

)
=



−1 −1 . . . 0 0
... ... . . . ... ...
0 0 . . . −1 −1

γa1 + ∆1 γb1 −∆1 . . . 0 0
... ... . . . ... ...
0 0 . . . γan + ∆n γbn −∆n



−1

×

 Y (q, q̇, q̇r, q̈r)π̂ − ks

σ̇d − kσeσ − kI
∫
eσdt

 ,

˙̂π = −kπY T s ,
(11.13)

with kI being the positive definite matrix.

11.2 Simulation results
The simulations in this section show performance of a two degree-of-freedom soft robot

when augmented PD and adaptive control are applied. The main difference stems in the fact
that adaptive controller does not require the knowledge of parameters. It will be observed that
the introduction of an integral term leads to the reduced error in stiffness tracking.

Considering q1 and q2 as robot configuration variables, inertia, Coriolis matrix, and gravity
vector have the same form as in the previous chapter, where pneumatically driven soft robot
was observed, while the numerical values of the dynamic parameters are presented in Tab 11.1.
Moreover, motors dynamics is determined by parameters in Tab. 11.2 and expressed via the
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following differential equations(
b1,a 0
0 b2,a

)(
q̈1,a
q̈2,a

)
+
(
d1,a 0
0 d2,a

)(
q̇1,a
q̇2,a

)
−
(
τ e1,a
τ e2,a

)
=
(
τ1,a
τ2,a

)
(
b1,b 0
0 b2,b

)(
q̈1,b
q̈2,b

)
+
(
d1,b 0
0 d2,b

)(
q̇1,b
q̇2,b

)
−
(
τ e1,b
τ e2,b

)
=
(
τ1,b
τ2,b

)

Finally, the model of a soft robot is completed with the mapping between motors and links
positions, and generated flexibility torque as follows

τ e1,a = k1,a sinh a1,a(q1 − q1,a) , τ e1,b = k1,b sinh a1,b(q1 − q1,b) ,
τ e2,a = k2,a sinh a2,a(q2 − q2,a) , τ e2,b = k2,b sinh a2,b(q2 − q2,b) ,

where ai,j and ki,j are spring coefficients, provided in Tab. 11.2.
To show the performance of the augmented PD and adaptive control, positions of both

joints are commanded to follow the sinusoidal trajectories qd = 1 + 0.5 sin π
10t, while the desired

stiffnesses in joints are set to σ1,d = 8 + 3 sin π
8 t and σ2,d = 4 + sin π

8 t.
The PD augmented control is first implemented by exploiting Eq. 11.2 and Eq. 11.4, with

the results shown in Fig. 11.2, and then by including the integral term within stiffness control
(Eq. 11.8) which is shown in Fig. 11.3. The control gains are chosen such that the condition of
inner loop being faster than the outer loop is satisfied. Therefore, the inner-loop control gains
are kp,a = kp,b = 50 and kd,a = kd,b = 25. Without the integral term, the outer-loop ones are
kp = 25, kd = 10, kσ = 150. Otherwise, the gains are kp = 0.05, kd = 0.75, kσ = 30, and
ki = 15. It can be observed that the desired positions of both motors are well tracked in the
inner loop, as well as the link position in the outer loop. Due to the existence of ∆i = 70, the
mean of stiffness tracking error reduces to null value only when the integral action is used.

The second set of simulations considers the nonlinear adaptive controller which uses Eq. 11.9
and Eq. 11.11 to manage position and stiffness, as presented in Fig. 11.4, while the results
when an integral term (as in Eq. 11.13) is added are shown in Fig. 11.5. Following the similar
reasoning as in case of the augmented PD control, the inner-loop control gains are chosen as
kp,a = kp,b = kd,a = kd,b = 0.1, kπ1,a = 6 · 10−4, kπ1,b = 10−4, kπ2,a = 10−3, and kπ2,b = 10−4.
Without the integral term, outer-loop control gains are kp = 0.1, kd = 0.5, kπ = 0.2, and
kσ = 20. Elseways, they are kp = 0.1, kd = 0.1, kπ = 7, kσ = 20, and ki = 25. Again, the
term ∆i = 145 introduces the non-zero mean value which is erased with the means of integral
action.

The regressor matrix Y (q, q̇, q̇r, q̈r) has the same form as the one considered in the previous
chapter (Eq. 10.9), while regressor matrices of motor system are

Yj =
(
q̈1,j,d − Λė1,j q̇1,j,d 0 0

0 0 q̈2,j,d − Λė2,j q̇2,j,d

)
,

where j = a, b. It is noteworthy that in both cases there is no initial knowledge about dynamic
and motor parameters, i.e. π(0) = 0, πi,a(0) =, and πi,a(0) =. Compared to the augmented
PD approach, a larger tracking error occurs in the beginning due to the lack of parameter
knowledge, however, it is compensated as the parameters are learned.

11.3 Conclusion
This chapter has addressed the control of electro-mechanically actuated soft articulated

robots with antagonistic VSAs. The two versions of cascade-based strategy have been used to
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Table 11.1: Definition and nominal values of the geometric and inertial parameters of the
two-link soft robot. The real values of these parameters are assumed unknown when applying
adaptive control.

Param. Value Unit Description

m1 0.26 kg First link mass
m2 0.26 kg Second link mass
l1 0.09 m First link length
l2 0.09 m Second link length
I1 0.0021 kgm2 First link inertia
I2 0.0021 kgm2 Second link inertia

Table 11.2: Definition of the actuator model’s parameters.

Param. Value Unit Description

b1,a 0.001 kgm2 Agonistic motors inertia
b1,b 0.001 kgm2 Antagonistic motors inertia
d1,a 10−6 kgm2 Agonistic motors damping
d1,b 10−6 kgm2 Antagonistic motors damping
a1,a 6.7328 kgm2 Agonistic motors spring coefficient
k1,b 0.0227 kgm2 Antagonistic motors spring coefficient
a2,a 6.9602 kgm2 Agonistic motors spring coefficient
k2,b 0.0216 kgm2 Antagonistic motors spring coefficient

simultaneously and independently manage link position and joint stiffness in closed loop – aug-
mented PD controller and nonlinear adaptive control. Both approaches achieve the asymptotic
tracking of position and have bounded error when it comes to stiffness tracking, which can be
compensated by taking into account the integral of stiffness error. Performance of the proposed
controllers is verified on a two-degree-of-freedom soft robot within the simulation environment
and it is shown that tracking of the desired position and stiffness trajectories with sinusoidal
evolution has been effectively achieved.

The advantages of the proposed method are compliant to the ones in the previous chapter.
The adaptive control provides the robustness to the uncertain dynamic parameters and it is
only required to compute the first derivative of stiffness and the second derivative of position.
Besides imposing the desired dynamics of links position and joints stiffness, this chapter also
considers the dynamics of the actuation system, thus providing the broader solution. The main
limitation comes from the fact that the direct relation between stiffness and flexibility torque
is required, as well as the knowledge of its analytic form. Future work will be devoted to the
experimental verification of the results.
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Figure 11.2: Simulation #1 (Augmented PD Control of a 2-DoF setup without the integral
term) - The top and bottom rows show the behavior of the first and second joint, respectively.
The desired link positions is effectively tracked (leftmost figures), while there is a bounded error
in stiffness tracking, slightly larger for the first joint (middle figures). The good performance
is achieved when it comes to tracking the commanded motors positions (rightmost figures). It
is worth remarking that commanded motor torques have a smooth trajectory.
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Figure 11.3: Simulation #2 (Augmented PD Control of a 2-DoF setup with the integral term)
- The top and bottom rows show the behavior of the first and second joint, respectively. It
can be observed that the desired link positions and joint stiffnesses are effectively tracked
(leftmost and middle figures). The good performance is achieved when it comes to tracking
the commanded motors positions (rightmost figures). Again, commanded motor torques have
a smooth trajectory.
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Figure 11.4: Simulation #3 (Nonlinear Adaptive Control of a 2-DoF setup without the integral
term) - The top and bottom rows show the behavior of the first and second joint, respectively.
After the initial time segment when adaptive controller is updating the parameters, link posi-
tions are successfully tracked (leftmost figures), while there exists a bounded error in stiffness
tracking (middle figures). The estimated parameters of both link and motor dynamics remain
bounded (rightmost figures).
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Figure 11.5: Simulation #4 (Nonlinear Adaptive Control of a 2-DoF setup with the integral
term) - The top and bottom rows show the behavior of the first and second joint, respectively.
After the short initial time segment when adaptive controller is updating the parameters,
link positions and joint stiffnesses are successfully tracked (leftmost and middle figures). The
estimated parameters of both link and motor dynamics remain bounded (rightmost figures).
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Chapter 12

Soft-bodied robots

The PCC approach is nowadays an established technique in kinematic control of continuum
soft robots Webster III and Jones (2010). More recently, it has been proven to be effective
also for open loop dynamic control Falkenhahn et al. (2015). A step further has been done
in Della Santina et al. (2020b); Katzschmann et al. (2019) where the PCC dynamics has been
connected with the one of a rigid robot subject to a set of embeddable holonomic constraints.
In this way, model-based feedback controllers developed for rigid robots, such as feedback
linearization approach and PD plus feedforward term, could be easily extended to the PCC
case.

The aforementioned controllers share the same weakness: they all rely heavily on accurate
knowledge of soft robot dynamic parameters, which is generally not available in the practice
of soft robotics. This challenge is herein tackled by adopting nonlinear adaptive control, built
upon the technique pioneered in Slotine and Li (1991). This framework has already been applied
to articulated soft robots Tonietti and Bicchi (2002); Trumić et al. (2020c), and to kinematic
control of continuum soft robots Wang et al. (2016). Yet, dynamic control of continuum soft
robots is substantially more challenging problem.

The main contribution of this chapter is the following:

• a robust closed-loop position controller for a soft-bodied robot, which is based on the
nonlinear adaptive control theory;

• extensive simulations - including 3D and non constant curvature soft robots - proving the
effectiveness and the robustness of the controller.

12.1 Design of the control law
Adaptive control is a technique robust to model uncertainties due to imprecise knowledge

of system parameters Slotine and Li (1991). It ensures the asymptotic tracking of desired joint
trajectories via dynamic adaptation of a set of parameters. The method’s applicability relies
on the dynamics’ linearity with respect to suitable parameters, i.e. the ability to write it as the
product of a regressor matrix Y and a constant parameter vector π. In its basic formulation,
it also requires a full actuation.

First, it is shown that the linearity property is preserved in the newly proposed model. As
the dynamics in (3.4) is that of a standard rigid robot, it is linear with respect to a parameter
vector πξ, i.e. Yξ(ξ, ξ̇, ξ̈)πξ = τξ, for some matrix Yξ. This implies that analogous decomposi-
tions hold for each addend appearing in (3.4): Bξ(ξ) ξ̈ = YBξ(ξ, ξ̈) πBξ , Cξ(ξ, ξ̇) ξ̇ = YCξ(ξ, ξ̇) πCξ ,
and Gξ(ξ) = YGξ(ξ)πGξ . It can also be observed that m(q) linearly depends on L0,i and thus it
holds Jm(q) = Ym(q) πm for suitable Ym and πm. Moreover, the left hand-side of (3.6) can be
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easily written as
JTmBξ(ξ) ξ̈ + JTmC(ξ, ξ̇) ξ̇ + JTmG(ξ) +K q +D q̇ .

Its first addend can be factorized as follows:

JTmBξ(ξ) ξ̈ = πTm Y
T
m YBξ(ξ, ξ̈)πBξ =

= πTm Y
T
m YBξ(m(q), J̇m q̇ + Jm q̈)πBξ ,

where (3.3) and (3.5) have been used. By using similar reasoning as in Property 2 from Marcucci
et al. (2017b), one can find suitable YB and πB such that JTmBξ(m(q)) ξ̈ = YB(q, q̇, q̈) πB. With
similar steps, the second and third addends can be written as follows:

JTmC(ξ, ξ̇) ξ̇ = πTm Y
T
m YCξ(m(q), J̇m q̇ + Jm q̈) πCξ =

= YC(q, q̇) πC ,
JTmG(ξ) = πTm Y

T
m YGξ(ξ) πGξ =

= JTm YGξ(m(q))πGξ = YG(q) πG .

Decomposing also K q = YK(q)πK and D q̇ = YD(q̇) πD, and summing up the three addends
above yields:

Y (q, q̇, q̈) π = A(q) τ , (12.1)

with regressor matrix Y = (YB, YC , YG, YK , YD) and parameter vector π = (πTB, πTC , πTG, πTK , πTD)T .
Leveraging on Prop. 5 and 6, the following result is ready to be derived:

Theorem 10 (Adaptive Control of soft-bodied robots). Given a soft-bodied robot as in (3.6),
the dynamic control law

˙̂π = KπY
T (q, q̇, q̇r, q̈r)σ ,

τ = A(q)† (Y (q, q̇, q̇r, q̈r) π̂ +Kd σ) ,

where π̂ is the parameter estimate vector, q̇r = q̇d + Λ(qd − q), σ = q̇d − q̇ + Λ(qd − q), Kπ,
Λ and Kd are free positive definite matrices, and A(q)† is the pseudo-inverse of A(q), ensures
asymptotic tracking of any desired trajectory vector signal qd(t) ∈ C2.

Proof. In order to apply the adaptive approach proposed in Slotine and Li (1991), which avoids
using the second time-derivative of q, first the reference speed q̇r is introduced and the robot
dynamics is rewritten as

B(q) q̈r + C(q, q̇) q̇r +G(q) +K q +D q̇ = A(q) τ .

By exploiting the linearity property shown in (12.1), one can write the left hand-side of the
above expression as the product of a regressor matrix Y (q, q̇, q̇r, q̈r) and the corresponding
parameter vector π.

Additionally, a new input τ ∗ = A(q) τ can be defined. Being A(q) exactly known (and
indeed independent of any robot’s parameters) and also invertible, except at isolated points,
the adaptive control law described in Slotine and Li (1991) can be applied via τ ∗, and then
translated back to τ by using the pseudo-inverse of A(q), i.e. as τ = A(q)† τ ∗. The rest of the
proof straightforwardly follows from Slotine and Li (1991).

The block scheme of the proposed controller is presented in Fig. 12.1.
In a realistic scenario, position and speed information for all configurations can be obtained

via commercial motion-capture systems, embedded proprioceptive sensors, or a combination of
them Della Santina et al. (2020c). In such approaches, the kinematic map from Della Santina
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q̇r, q̈r

⌧ q, q̇Regulator

⌧ = Y T⇡̂

+ Kd(q̇r � q̇)

Z
⇡̂ ˙̂⇡ Parameters

Update

Soft
Robot

qd(t) Reference
Generator

Figure 12.1: Block scheme of the control algorithm introduced in this work. The soft robot with
piecewise constant curvature is matched to a dynamically equivalent augmented rigid robot.
This model is then used to derive an adaptive controller able to implement trajectory tracking
in configuration space without the knowledge of any of the soft robot’s physical parameters.

et al. (2020a) has been adopted. Though not being based on the augmented formulation, it
provides an equivalent information from the sensing viewpoint.

12.2 Simulation results
The performance and robustness of the proposed control method are validated here by

considering three setups: a planar soft-bodied robot modeled with the PCC approximation,
a soft inverted pendulum with affine curvature, and a 3D soft robot. All robot’s parameters
including mass, length, stiffness, and damping of each segment are assumed as completely
unknown.

12.2.1 Planar Soft Manipulator
As a first case, consider a planar soft robot composed of four independently-actuated and

equal segments with length L = 0.1 m, mass m = 10 g, stiffness k = 1 Nm/rad, and damping
β = 0.1 Nm·s/rad. The robot’s base frame is chosen so that its tip points downwards and
is aligned with gravity when all joint angles are null. To ensure kinematics and dynamic
equivalence on the plane, each segment is modeled as a four-DoF rigid robot according to the
augmented formulation presented in Della Santina et al. (2020b). Since the PCC-based planar
formulation has no singularity and discontinuity issues, one can use here the bending angle θi
as a configuration variable.

The controller uses a regressor matrix Y ∈ R4×173 built on such a model, with an initial
parameter vector value of π̂(0) = 0173. In Fig. 12.2 are presented the results obtained when the
robot is required to track the reference signals θd,i = Mi sin(ωt+ ϕi), with ω = 1 rad/s and
Mi and ϕi being the i-th entries of the vectors M =

(
π
8 ,

π
6 ,

π
3 ,

π
2

)
rad and ϕ = (0, π2 ,

π
3 , π) rad,

respectively. Figure 12.2 illustrates the results obtained with lower and higher control gains,
while Fig. 12.3 presents more realistic results by including noise, external disturbance and an
initial tracking error of (1,−1, 1,−1)T rad.
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Four-segment soft robot controlled with Λ = 0.1 I4, Kd = 2 I4, and Kπ = I173

Four-segment soft robot controlled with Λ = 2 I4, Kd = 10 I4, and Kπ = 10 I173

Figure 12.2: Scenario #1: From left to right, the two rows report the temporal evolution of the
configuration variables (dashed lines indicate the desired trajectories) and the corresponding
tracking errors θ̃i = θi,d− θi, the estimated parameters and commanded torques, and a trace of
the robot’s shape. As expected from theory, higher control gains allow a faster tracking con-
vergence and a more precise tracking since the beginning. It can be noticed that the parameter
estimates nicely behave and remain bounded.

12.2.2 Soft inverted pendulum with affine curvature
As a second example, consider a continuum soft robot behaving as a soft inverted pendulum

under the effect of gravity Della Santina (2020). Let L = 1 m, m = 1 kg, k = 1 Nm/rad, and
β = 0.1 Nm·s/rad be its length, mass, stiffness, and damping, respectively. Having defined the
system’s configuration vector as θ = (θ0, θ1)T , the instantaneous robot’s shape can be described
by the affine curvature κs(t, s) = θ0(t) + θ1(t) s, where s ∈ [0, 1] parameterizes the position
along the main axis of the pendulum, in such a way that Ls is the arc length of the path
connecting the base to the point s through the main axis. The soft pendulum’s dynamics can
then be modeled as

B(θ) θ̈ + C(θ, θ̇) θ̇ +G(θ) + k H θ + β H θ̇ = H

(
1
0

)
τ ,

with B(·), C(·), and G(·) being derived by appropriately summing up the infinitesimal mass
elements (Della Santina (2020)), H ∈ R2×2 with Hi,j = 1/(i+ j− 1) is the Hankel matrix. It is
notable that this model generalizes the PCC-based one described in Ch. 3, for which it stands
θ0 ≡ 0.

Let the regressor matrix Y be constructed according to the procedure described in Sec. 12.1,

106



Four-segment soft robot controlled with Λ = I4, Kd = 2 I4, and Kπ = 0.1I173

Four-segment soft robot controlled with Λ = 2 I4, Kd = 10 I4, and Kπ = 10 I173

Figure 12.3: Scenario #2: The two rows report, from left to right, the configuration variable
evolution (dashed lines indicate the desired trajectories) and the corresponding tracking er-
rors θ̃i = θi,d−θi, the estimated parameters and commanded torques, and a trace of the robot’s
shape. A persistent constant force of 0.5 N is applied from t = 25 s on each segment, simulating
an external disturbance. The measurement of each configuration variable is affected by Gaus-
sian white noise with zero mean value and standard deviation of 0.032 rad. As expected from
theory, higher control gains allow a faster tracking convergence and a more precise tracking
since the beginning. It can be noticed that the parameter estimates nicely behave and remain
bounded. The approach is robust also to the presence of external disturbance and measurement
noise.

for the case of a planar single segment. This yields to Y (θ0, θ̇0, θ̇0,r, θ̈0,r) = (y1, y2, θ0, θ̇0,r), where

y1 = θ̈0,r
16

((
sinc′

(
θ0
2

))2
+ 4 sinc2

(
θ0
2

)
+ 16

)
+

+ θ̇0,r θ̇0
16 sinc′

(
θ0
2

) (
sinc′′

(
θ0
2

)
+ 2 sinc

(
θ0
2 )
))

,

y2 = −1
4

(
2 sinc

(
θ0
2

)
cos

(
θ0
2

)
+ sinc′

(
θ0
2

)
sin

(
θ0
2

))
,

and to a parameter vector π = (mL2,mgL, k, β)T . Fig. 12.4 illustrates the results obtained with
a soft inverted pendulum with low (k = 1 Nm/rad) and medium stiffness (k = 4 Nm/rad), which
is controlled to the upright position with control gains Kπ = 0.01, Kd = 0.05, and Λ = 0.3, while
Fig. 12.5 depicts the case when noise and external disturbance are affecting the system. The
soft pendulum is regulated to the upright position by a controller with gains Λ = 0.2, Kd = 0.05,
and Kπ = 0.01 I4, and the stiffer one with gains Λ = 0.1, Kd = 0.1, and Kπ = 0.05 I4. In both
cases the initial tracking error is (π/4,−π/4)T rad. It should be noted that the small value of
the external disturbance is only chosen so as to keep the response times of both pendulums
short, while a bigger value would lead to a longer settling time but would be successfully handled
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Affine-curvature soft pendulum with stiffness k = 1

Affine-curvature soft pendulum with stiffness k = 4

Figure 12.4: Scenario #3: Affine-curvature soft pendulum subject to gravity. The proposed
controller allows asymptotically stabilizing the robot to the upright position both with a lower
and a higher stiffness.

by the approach.

12.2.3 Soft Manipulator in 3D space
Finally, this work considers a generic soft-bodied robot composed of four CC segments

in a 3D space whose model is described by Eq. 3.6. The four segments are assumed to be
identical and characterized by Li,0 = 1 m, mi = 1 kg, ki = 1 Nm/rad, βi = 0.1 Nms/rad, for
i = {1, 2, 3, 4}. Deriving and using an adaptive controller based on such a model is challenging
due to the large number of involved functions and parameters. One can proceed therefore
by building it based on the simplified model presented in Della Santina et al. (2020a). The
desired reference signals for both segments are sinusoidal, the controller gains are Λ = 7 I12,
Kd = 13 I12, and Kπ = 2 I60, the regressor matrix is Y ∈ R12×60, and the initial parameter vector
is π̂(0) = 060. The obtained results are first shown in Fig. 12.6 assuming the perfect sensory
conditions and lack of external disturbances, while Fig. 12.7 reports a system performance when
the noise and disturbances are affecting it, and when the initial tracking error is 0.05 m for
each of the three configuration variables of the first two segments, and −0.05 m for those of
the other two.

12.3 Conclusion
This section presented a novel solution for the control of soft-bodied robot position. Based

on the nonlinear adaptive control theory, the approach enables a successful tracking perfor-
mance even when significant parametric uncertainties exist. Validation of the method has been
carried out on various robot configurations, thus proving also its robustness. A still open
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Affine-curvature soft pendulum with stiffness k = 1

Affine-curvature soft pendulum with stiffness k = 4

Figure 12.5: Scenario #4: Affine-curvature soft pendulum subject to gravity. The proposed
controller allows asymptotically stabilizing the robot to the upright position both with a lower
and a higher stiffness. The standard deviation of the measurement noise is 0.032 rad, and a
persistent constant disturbance of 5 · 10−3 N is applied from t = 125 s.

Figure 12.6: Scenario #5: Four-segment 3D soft-bodied robot tracking sinusoidal references.
A Gaussian white noise with zero mean value and standard deviation of 0.032 m affects all
configuration measures, and a persistent constant force of amplitude 5 N is applied on each
segment from t = 50 s. The total tracking error is computed as the 2-norm of the vector
composed of the tracking errors along all components. The simulation shows the controller’s
ability to adapt the parameter estimates, even with noise and disturbances, so as to track the
desired signals.
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Figure 12.7: Scenario #6: Four-segment 3D soft-bodied robot tracking sinusoidal references.
A Gaussian white noise with zero mean value and standard deviation of 0.032 m affects all
configuration measures, and a persistent constant force of amplitude 5 N is applied on each
segment from t = 50 s. The total tracking error is computed as the 2-norm of the vector
composed of the tracking errors along all components. The simulation shows the controller’s
ability to adapt the parameter estimates, even with noise and disturbances, so as to track the
desired signals.

question concerning the applicability of the proposed method is connected to the maximum
number of segments used to represent a given soft-bodied robot. To this respect, thanks to
the dynamic equivalence herein established, the proposed work can benefit from studies seek-
ing for the minimum information required for an adaptive controller to accurately regulate a
soft-robot (Marcucci et al. (2017b)). It should also be noticed that the regressor is evaluated
off-line and once before the actual control action is executed. The results presented in this
work show the ability of the method to reject external disturbance and cope with measurement
noise. Future work will be devoted to testing the algorithm with real experiments, where the
state space is truly infinite dimensional, and extending it to black box uncertainties.
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Summary Conclusions

Soft robots have been projected to become the advanced technological solutions that would
take the maximum of inspiration from the biological systems and, consequently, their benefits.
The advantageous features are achieved either by employing variable stiffness actuators to
drive soft articulated robots or leveraging the morphological flexibility to accomplish different
postures of soft-bodied robots. This thesis has been dedicated to improving the performance
of such robots by tackling the challenges of stiffness estimation and exploiting robust control
techniques.

The first part commenced by briefly describing the representative examples of soft artic-
ulated and soft-bodied robots. It was followed by the mathematical description of robots
considered within the thesis, i.e. pneumatically and electro-mechanically driven soft articu-
lated robots with antagonistic VSAs and general soft-bodied robots modeled under the PCC
hypothesis and assumption of having the affine curvature.

The second part of the thesis was devoted to developing the stiffness estimation approaches
with the prime aim to reduce the required sensory information and the number of parameters to
be tuned, as well as to avoid the observability issues. It is shown via experiments that effective
results can be achieved for electro-mechanically driven robots. Both the invasive and non-
invasive approaches allowed accurate stiffness estimation for multi-degree-of-freedom robots in
real-time even when the link position is steady, while requiring only the knowledge of links and
motors positions in the non-invasive case, as well as commanded torque signal in the invasive
case.

Compared to the state-of-the-art solutions, there was no need for force/torque and velocity
sensors, while the estimators were not dependent on the input signals’ nature. Moreover, simu-
lations showed the successful estimation of stiffness in pneumatically actuated joints. The main
disadvantage comes from the fact that accurate knowledge of dynamic parameters, whether on
the motor or link side, is required. Thus, future work will consider the robust estimation of
stiffness and overall impedance in soft robots, and address the transfer of knowledge to the
estimation of stiffness in human limbs.

The third part was focused on the adaptive control of soft robots. The decoupling property
of the proposed techniques allowed the simultaneous and independent control of position and
stiffness for soft articulated robots, while the adaptive property enabled the robustness to para-
metric uncertainty. The well-known benefits of closed-loop control were shown via numerous
experiments executed on a pneumatic robot and in the simulations for electro-mechanical soft
articulated robots. It could also be observed that the main limitation stems from the fact
that knowledge of the actuation matrix (in the case of pneumatic robots) and analytic form
of stiffness-torque relation (in the case of electric robots) is required. Moreover, the adaptive
controller demonstrated the successful applicability to various soft-bodied robots, ranging from
planar to three-dimensional ones, modeled under PCC or affine curvature assumptions. Future
research will be devoted to the experimental verification of those approaches on setups of soft-
bodied robots and electric soft-articulated robots, as well as to closing the loop with stiffness
observers.
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