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Nonuniform helical antennas

Abstract

The objective of this thesis is to systematically analyze and optimize nonuniformly-wound helical
antennas, along with classical (uniform) helical antennas. The optimization of the nonuniform
helical antennas has many degrees of freedom. Hence, the optimization space is large and the
optimization task is challenging. It is shown that, in most practical cases, the optimal nonuniform
helical antennas outperform the uniform helical antennas presented in the literature. It is also shown
that the nonuniform helical antennas are the preferable choice when the losses are low or medium,
whereas for high losses, the uniform helical antennas should be used.

A large database is assembled from the optimization results, wherefrom a complete design
procedure is developed for the nonuniform helical antennas. This procedure comprises all necessary
equations and graphs for evaluating the optimal antenna parameters and estimating the antenna
characteristics. The design procedure is verified experimentally, by measurements of a fabricated
prototype.

Quad (2 X 2) arrays of nonuniform helical antennas are also investigated. Their design procedure
includes the optimization of single antennas along with their positions in the array. The solution of a
real engineering problem is presented: a quad array that meets predefined specifications is designed
and a prototype is fabricated and measured.

Key words: antenna design, helical antennas, optimization, quad arrays of helical antennas
Scientific field: Electrical and Computer Engineering

Scientific subfield: Electromagnetics, Antennas, and Microwaves
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Heynudopmue xeJuxkouaaiHe aHTEeHe

Caxerak

[luse oBe Te3e je cucTeMaTMyHa aHajdu3a M ONTHUMM3alMja HEYHHU(POPMHO MOTAHHUX
XEJIUKOUJATHUX aHTEHa, Kao U KJIACUYHUX (YHU()OPMHUX) XEIUKOUJAIHUX aHTeHa. OnTtumusaimja
HEYHU(POPMHHX XETMKOUIATHUX aHTEHa MMa MHOTO CTemeHu cinoboxe. Crora je ONTUMH3AIMOHU
IPOCTOp BEJIMKM, a ONTUMH3AIMja H3a30BaH 3anatak. [lokazaHo je na, y Hajehem Opojy
NPaKTUYHUX CJIy4ajeBa, ONTHMalHEe HEYHH(DOpPMHE XENWKOMJAIHE AaHTEeHE HaJAMallyjy To
nepdopmaHcamMa YHU(POPMHE XEIMKOWAAIHE aHTEHE IpeJcTaB/beHe y nuteparypu. Ocum Tora,
MOKa3aHo je Jla Ccy HeyHHu(OpMHE XETUKOUIAIHEe aHTeHEe 00JbM M300p Kaja Cy TyOWIM Malld Wiu
CpedmU, JOK OM y cilydajy BEIMKHMX ryOuTaka Tpebano KOPUCTUTH YHU(POPMHE XEIMKOUJAIHE
aHTCHE.

Pesynratu ontumusanMje 4MHe BeNUKY 0a3y MojaTaka, Ha OCHOBY KOj€ je Pa3BHjeH MOCTYyHaK
MIPOJEKTOBaka HEYHU(DOPMHHUX XeNMKOuAaTHUX aHTeHa. OBaj moctymak oOyxBaTa cBe MOTpeOHE
jenHaunHe U rpaduke 3a oxpehuBame ONTUMATHUX apaMeTapa aHTeHa U MPOLIEHY KapaKTepUCTHUKA
anteHa. lloctymak pgu3ajHa je TOTBphEH EKCIIEpUMEHTATHO, MEPEHEeM KapaKTepHUCTHUKa
peanu30BaHoTr IPOTOTHIIA.

Taxohe cy ucnutuBaHu HU30BU Off 2 X 2 HeyHHU(OpPMHE XenukoujanHe aHTeHe. IIpouenypa 3a

HUXOB JIM33JH CaJIp’Ku ONTHUMM3ALM]y 3ace0OHMX aHTEHA, Ka0 M ONTUMU3AIM]y MOJ0XKaja aHTeHa y
Hu3y. [IpencTaBibeHO je U pelienhe peaTHor HHKEHEPCKOT MpodiieMa: TU3ajHUpaH je Hu3 of 2 X 2

aHTEeHE KOjU MHCIymaBa yHampen naeduHUcaHe creuudukaluje, a OpPOTOTHIl je€ HANpaB/beH U
U3MEPEH.

KibyuHe peuu: nv3ajH aHTEHA, XCITUKOWIATHE aHTEHE, ONTUMHU3AIlHMja, HU30BH XEIHKOWIATHUX
aHTEHa
Hayuna o0sact: EnexrpoTrexHuka U pauyHapCTBO

Y:ika HayIHa ob6Jacr: EHGKTpOMaFHCTI/IKa, AHTCHC U MUKpOTaJIaCu
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1. Introduction

Helical antennas were first reported by Kraus in [1] and explained in more details in [2]. The
classical helical antenna consists of a conductor uniformly wound in the form of a helix and
positioned above a ground plane or another convenient counterbalance. The sketch of a typical
helical antenna is shown in Fig. 1.1a. The main parameters that define the geometry of the helical
antenna are:

e the axial antenna length, L, or the number of turns, N,
e the turn radius, r, and
e the pitch angle, ¢, or the pitch, p.
The relation between the pitch angle, turn radius, and pitch is defined by ¢ = arctan(p /(an)).

We assume the ground plane to be horizontal, so that the axis of the helix is vertical (the z axis in
Fig. 1.1a). In the case of uniform helical antennas, the turn radius and pitch angle are constant,
whereas the turn radius and pitch angle of nonuniform helical antennas vary along the antenna axis
(the z axis in Fig. 1.1a). The feeding port is between the counterbalance and the helix. The helical
conductor (usually, a wire of a circular cross-section and radius ry, uniform along the conductor)
can be located above a ground conductor of various shapes and sizes. The simplest theoretical case
is an infinite perfectly conducting (perfect electric conductor, PEC) ground plane. Such a ground
conductor is suitable for investigation of the antenna characteristics, since the influence of the
currents on the ground plane can be replaced by the image theorem. However, for practically
feasible realizations, the ground conductor of finite dimensions is required. The ground conductors
of finite dimensions can be flat (most often of a circular or a square shape, Fig. 1.1a), or in a shape
of a circular cup (Fig. 1.1b) or a truncated cone (Fig. 1.1c).

b (©
Figure 1.1. Sketch of the uniform helical antenna above (a) ﬂ(at) ground plane, (b) circular cup, and (c) truncated cone.
Helical antennas can radiate in two different radiation modes, i.e., the normal mode and the axial
(or beam) mode. For the operation in the normal mode, the helix must be short (L << A ) and the
circumference of the helix turns and pitch must be small compared to the wavelength (smaller than
0.5A), where A is the free-space wavelength at the antenna operating frequency [2]. In the normal
mode, the antenna radiates almost equally in all directions perpendicular to the helix axis; hence,
the radiation pattern is omnidirectional in the equatorial plane. In the general case, the radiated field
is elliptically polarized. However, for certain dimensions, the polarization can be circular or linear.
Namely, if the pitch angle is equal to 0, the helical antenna collapses into a loop. The radiation is



perpendicular to the helix axis (i.e., in the equatorial plane), but the polarization is linear and
horizontal. With the increase in the pitch angle, the polarization becomes elliptical. The polarization
is circular when the pitch angle achieves the value such that the turn circumference is equal to

\J2p A, where p is the corresponding pitch [2]. With further increase in the pitch angle, the

polarization becomes elliptical again. Finally, when the pitch angle is 90°, the helical antenna
becomes a straight conductor. Hence, the polarization is linear and vertical.

Helical antennas working in the normal mode are employed in WLAN applications [3]-[5],
mobile communications [6]—[9], and medical applications [10]-[14]. However, note that they are
narrowband and their directivity is low.

The axial mode occurs when the circumference of the turns is around one wavelength at the
antenna operating frequency. In the axial mode, the maximum of the radiation is along the helix
axis, the field is circularly or elliptically polarized in that direction, and the main beam is well
defined. Hence, in [2] it is also referred to this mode as the beam mode, so that helical antennas
radiating in the axial mode can be referred to as axial or beam helical antennas [2].

Since an almost accidental invention of helical antennas working in the axial mode by Kraus, they
have been widely used because of their good mechanical and electrical properties: a simple and
robust structure, almost circular polarization, inherently broad bandwidth, etc. These good
performances promote helical antennas as a good choice for various applications. First applications
were primarily in the space communications [2], [15]. During the last two decades, besides space
applications [16]-[22], helical antennas have also been used in medical applications [23]-[26],
wireless communications [27]—-[35], unmanned aerial vehicle (UAV) applications [36], [37],
radio-frequency identification (RFID) systems [38]-[40], radar systems [41], [42], cyber security
[43], and hybrid free-space optics/radio-frequency (FSO/RF) systems [44].

The focus of this thesis are helical antennas working in the axial mode. Various designs of helical
antennas are widely investigated: designs devoted to the specific application [15]-[44], designs
according to the defined specifications, or designs which improve specific antenna
characteristics [45]-[84]. However, general and reliable guidelines for the design of the helical
antennas are rarely found (especially for nonuniformly-wound helical antennas). To generate such
guidelines, extensive numerical computations (simulations) are necessary. Modern computers have
recently reached performances that allow running the necessary amount of simulations in
reasonable and acceptable time. Therefore, the main motivation of this thesis is to build a large
database of the optimal helical antennas by extensive numerical computations and, based on it,
define general guidelines for the design of helical antennas. Within this work, several million
simulations have been performed. The obtained data have been used for the formulation of a
complete, standalone, and rapid procedure for designing the axial-mode nonuniform helical
antennas. The antennas designed using this procedure have been investigated in detail, compared in
terms of their characteristics with different types of helical antennas (i.e., uniform helical antennas
and helical antennas with exponential and piecewise-linear variation of geometrical parameters) and
with helical antennas whose design is presented in the literature. The results of the presented design
procedure have been verified experimentally. In addition, this procedure has been expanded to the
design of arrays of helical antennas.

1.1. Design of helical antennas

Some practical design guidelines (design equations and diagrams) are available in the open
literature for designing uniform helical antennas, with constant turn radius and pitch angle along the
antenna [ 1], [2], and [45]-[50].

Firstly, Kraus presented guidelines for the design of uniform helical antennas [1], [2]. For the
antennas with more than N =3 turns, it is suggested that the circumference, C, and pitch angle of
each turn should be in the ranges 0.8A <C <1.15A and 12°< ¢ <14°, respectively [2]. The



corresponding antenna gain in the main radiating direction (along the antenna axis), assuming no
losses, can be calculated as

. CY L
g[dBl]:1010g10£12(Ij IJ, (1.1)

where A is the free-space wavelength at the antenna operating frequency (f) and L is the axial
antenna length. The antenna terminal resistance depends on the way antenna is fed. In case of the
axial feed (i.e., the feed is on the axis of the helix, and a conductor is used to connect the feed and
the helix wire), the resistance is R =140 (C/ X)Q , whereas for the peripheral feed (i.e., the feed is

located directly at the onset of the helix wire, as in Fig. 1.1a), the resistance is R = 150/ JC/A Q.

The axial ratio (the ratio of the major to the minor axis of the polarization ellipse of the electric-
field intensity) is AR = (2N +1)/(2N). However, in Kraus’s early work, the shape and size of the
ground plane is not clearly defined. This can lead to ambiguities when other, later results presented
in the literature are compared with the Kraus’s results since the size and shape of the ground plane
can strongly affect the antenna gain.

The experimental results presented in [45] and [46] show that the results given by (1.1)
overestimate the gain. For the helical antennas of a fixed length, containing 8.6 to 10 turns whose
circumference is in the interval 0.8A <C <1.2A, instead of the coefficient 12 in (1.1), the

numerical factor should be between 4.2 and 7.7, whereas in [47] it is suggested that 6.2 is suitable
for this numerical factor. These results claim that the actual gain is for 1.9-4.6 dB smaller than
given by (1.1), which is a significant reduction.

Also, in [45] a new equation is derived to fit the measured gain of the fixed-length antenna of

around 10 turns: g[dBi]=10log,, (8.3 (TEV/(27\,))M_1 (£/)"*(tan12.5°/tan OL)JN/2 ) The gain

calculated from this equation is within +0.1 dB of the measured data. It should be noted that
experimental results utilized in this research are obtained for antennas located above a circular cup
instead above a flat ground, whereas in [47] the type of the ground plane is not specified.

Later, by extensive numerical modeling, Emerson [48] has found that the maximal possible gain
of uniform helical antennas is up to 5 dB lower than the gain calculated from (1.1). More precisely,
the antenna gain increases more slowly with increasing the antenna length than Kraus’s equation
predicts. Further, in [48] a new equation for the antenna gain 1is presented,

g[dBi]=10.25+1.22L/X—O.0726(L/X)2, along with an equation for the optimal turn radius,

r/A =0.2025-0.0079 L/ +0.000515(L/A) . These design equations are valid for the axial antenna
lengths in the range 2A <L <7A and the constant pitch p=0.24A. The gain is almost
independent of the wire radius and conductivity (losses in the antenna conductor). Furthermore, in
terms of the gain, a square ground plane of a A/2 side is nearly as good as an infinite ground plane
[48].

Obviously, there exist significant differences among the results presented in the literature. In [49],
these differences are pointed out and summarized. Further, a systematic investigation is performed
of uniform helical antennas placed above an infinite ground plane in order to present a reliable
procedure for designing such antennas. The optimal parameters for the narrowband (NB) design and
three types of wideband (WB) designs are presented. These parameters depend on the axial antenna
length, the wire radius, and the operating frequency. The gain of the optimal antennas is compared
with the results available in the literature. The NB design achieves higher gain than almost all other
designs, except the gain calculated from Kraus’s equation, which is known to significantly
overestimate the gain. The smallest discrepancy is between the gain of the NB design and the
design from [50]. (The on-line reference [50] has been last accessed in 2006, but it is not available
any more.) It should be noticed that the optimal pitch angles in [49] are in the range 3°<a <16°
and they strongly depend on the wire radius. This range of pitch angles is much wider than the



classical range declared in [1], [2], and [45]-[47]. In [49] is indicated that the pitch angles from [50]
are in good agreement with the optimal pitch angles for the NB design from [49].

In order to investigate causes of the discrepancies among the results presented in the literature, in
[51] different shapes and sizes of the ground conductors are considered. Firstly, it is confirmed that
the gain of the antenna located above an infinite ground plane is practically the same as reported in
[48]. Further, it is shown that the optimal square ground plane is of a side 1.5 A, although [52]
recommends a circular or a square ground plane of a diameter or a side between 0.5\ and 0.75 A. In
[51] antennas placed above a cylindrical cup (Fig. 1.1b) and a truncated cone (Fig. 1.1c) are also
investigated. A cylindrical cup whose diameter is 1 A and the height is 0.25 A increases the gain for
1.4 dB in comparison with the antenna located above an infinite ground plane. However, the
increase in the gain depends on the antenna length, i.e., for shorter antennas and pitch angles
considered in [51] the enhancement of the gain is negligibly small, but it increases with increasing
the antenna length. A truncated cone significantly increases the gain. The optimal dimensions of the
truncated-cone reflector are presented in [53]. In [53] by simultaneous optimization of the antenna
geometry and the dimensions of the truncated-cone reflector, the gain enhancement is obtained to
be up to 5 dB in comparison with helical antennas located above a square ground plane. The axial
lengths of the helical antennas considered in [53] are 1A, 2 A, and 5 A, while the wire radius is
0.0015 A. The optimal pitch angles are several times larger than with a flat reflector, and the optimal
lower and upper cone radii are R ~0.5A and R ~ 0.5 H + A, respectively, where H is the

lower upper
height of the cone reflector.

The explanation of the cup and cone functionality and various factors that improve the radiation
pattern and gain are investigated in [54]. By analyzing the current distribution along different parts
of the antenna conductor, it is confirmed that the traveling wave (along the upper part of the
antenna) produces a relatively well-shaped radiation pattern, whereas the sidelobes are created by
the current of the lowest turns. The current along the lowest turns does not resemble a traveling
wave and it radiates almost omnidirectionally in horizontal directions. The field radiated by the
lowest turns can easily be reflected into more favorable directions by the rim of the cup or the cone.
Also, the field produced by the lowest turns can be suppressed by decreasing the pitch angles near
the feed of the antenna. Additionally, it is explained that an infinite ground plane can make some
helical antennas more broadband by reflecting waves that are launched from the antenna
downwards, which justifies the WB design from [49].

Further, it is shown in [54] that for tall cones the length of the helical antenna practically has no
influence on the antenna gain. This result confirms that the cone is the main radiation source: it acts
like a horn antenna exited by the helical antenna, as it was previously indicated in [55].

Square-shaped corrugated reflectors are investigated [56]. It is shown that the rear surface of the
reflector changes the currents on the reflector, which reduces the backward radiation.

In order to increase the gain or improve antenna characteristics, adding different parasitic
elements is suggested in [33], [57]-[63]. Adding a circular plate on top of helical antenna is used
for widening the axial-ratio bandwidth [57] and increasing the gain [58], [59]. A parasitic
cylindrical ring is mounted on the top of antenna [60] or parasitic rings are mounted inside the
helical antenna [61], both with the same purpose to increase the gain. To reduce the overall
dimensions of the helical antenna, loading stubs are periodically placed around the turn
circumference [62]. In order to keep the advantage (i.e., the size reduction) of the stub-loaded
helical antennas from [62], but also to achieve a purely real input impedance, a new design is
proposed in [33]. With the same aim to minimize the antenna overall dimensions (without
sacrificing the gain), a lossy ferrite core with a dielectric shell is placed inside the helical antenna
[63].

As it is mentioned, the antenna conductor is usually a wire of a circular cross-section, uniform
along the conductor (Fig. 1.1a). However, in some applications, the antenna conductor can be a
strip, a wire of a nonuniform circular cross-section, or the conductor can be realized as a printed
conducting trace [5], [24], [38], [39], [57], [64], and [65]-[68]. The influence of different conductor
types on the antenna characteristics is investigated in [64]. For a uniformly-wound helical antenna,



where the optimal design parameters are adopted as for the NB design from [49], various shapes
and sizes of the antenna conductor are investigated. Three different sets of models are utilized that
correspond to different manufacturing technologies: thin-wire models, wire-cage models, and plate
models. In [64] it is shown that the thin-wire model is appropriate as long as the antenna conductor
is thin (its radius is smaller than about 0.01 X) and the gap between the turns is wide (larger than the
wire radius). When the antenna conductor becomes thicker and the turns are closer, the proximity
effect becomes pronounced, so that the thin-wire model is not appropriate any more [64].

Recently it was suggested that the metallic conductor of a conventional helical antenna can be
replaced with a plastic tube of a circular cross-section filled with pure water [69]. This allows
reconfigurability of polarization over a wide frequency range. Reconfigurability of polarization is
also achieved using liquid metal as the antenna conductor [70]. Further, switchable sense of
polarization is also obtained using origami helical antennas [65]. The origami helical antennas are
used to obtain reconfigurability in terms of frequency [66], [67] or both mode and frequency [68].
Finally, reconfiguration of the radiation pattern can be obtained by using shape-memory alloy
spring actuator [71].

In [1] Kraus claims that near the operating frequency, the real part of the input impedance is
between 100QQ and 5000, whereas the imaginary part is +j300€2. However, in [72] it is

indicated that an axial-fed helical antenna has a terminal impedance of 140€Q). Further, it is
suggested that the impedance can be matched to 50Q simply by increasing the conductor size close

to the fed point. This way of impedance transformation is used for antenna matching in [43]. A
similar idea for impedance matching is used in [73], where it is shown that increasing the pitch of
the first turn increases the input resistance and decreases the input reactance, whereas increasing the
feed height increases the input resistance and negligibly influences the input reactance. A detailed
investigation of an impedance matching network that consists of a single wire (which enables fast
analysis) is presented in [74], [75]. Another method for impedance matching is proposed in [76],
where controlling the dimension of the top layer of a double-layer metal structure (bottom layer acts
like a ground plane) enables tuning of the input impedance.

As an upgrade of the classical, uniform helical antennas, nonuniform helical antennas are also
investigated in the literature. Various types of nonuniformities are used to improve antenna
characteristics. In [77], it is shown that tapered radii at the feeding end and at the termination of the
antenna suppress unwanted current waves that travel along the helix, which improves the axial ratio.
Further, by varying the angle of the truncated-cone reflector of the tapered antenna, the input
impedance can be adjusted to an arbitrary value [77].

Continuously tapered (or conical) helices and quasi-tapered helices are considered in [78]. Such
helices enable shaping the gain versus frequency and also improve the axial ratio and radiation
pattern. A quasi-tapered helical antenna is proposed in [73] with an aim to broaden the bandwidth.
This antenna consists of two segments. The bottom segment is conical and it is responsible for
increasing the bandwidth towards lower frequencies. The top segment is uniform and it is used to
increase the gain at higher frequencies. Further, quasi-tapered helical antennas are investigated with
the same aim (to achieve a wide bandwidth) in [79]. Here, the quasi-tapered antenna consists of two
uniform segments (of different turn radii) that are connected by a short intermediate segment. In
[79] is stated that, in order to maximize the gain bandwidth, the ratio of lower-to-upper diameter
should be around 1.41, and the axial lengths of two uniform segments should be equal.

Logarithmic, linear, and exponential variations of the turn radius along the antenna are
investigated and compared in [80], [81]. However, the gain of the antennas with the exponential
variation of the turn radii, proposed as the best solution in [80], [81], is around 6.5 dB lower than
the gain of uniform helical antenna of the same axial length [49], and around 7 dB lower than the
gain of the nonuniform antenna of the same length from [82]. Hence, the data presented in [80],
[81] do not seem to define optimal nonuniform helical antennas.

Nonuniform pitch angles are also reported in the literature [82]-[85]. In [82], nonuniform helical
antennas are considered that have a wire pigtail instead of a ground conductor. In order to maximize
the gain, both the radii and pitches are optimized. The resulting gain is very close to the gain of the



optimal uniformly-wound helical antennas with a large ground plane [49], while the obtained
nonuniform antennas are smaller and handier. In [83] and [84], nonlinear pitch profiles are
considered with a constant or exponentially varying turn radius aimed at maximizing the gain and
minimizing the axial ratio. In [85], an exponential pitch is considered and it is used for widening the
bandwidth compared to uniform helical antennas. This improvement is explained by analyzing the
current distribution along the antenna.

Data presented in the literature strongly indicate that nonuniform helical antennas may
outperform uniform helical antennas. Hence, for engineering purposes, it is desirable to have
reliable guidelines how to achieve optimal properties of these antennas. However, in contrast to
uniform helical antennas, where systematic investigation and practical design guidelines already
exist in [1], [2], and [45]—[50], such design guidelines do not exist for nonuniform helical antennas.
This fact has motivated us to perform a detailed study of nonuniform helical antennas, which would
result in clear engineering design guidelines and procedures. This task is challenging because
nonuniform helical antennas have many degrees of freedom, which significantly aggravates the
search for the optimal solutions.

1.2. Arrays of helical antennas

In order to further increase the achieved gain, several helical antennas (uniform or nonuniform)
can be arranged so to form an array. This concept is introduced by Kraus in [86], and investigated in
more detail in [2]. Antenna arrays (instead of a single helix) can obtain the same gain, but allow
using shorter antennas. Namely, to achieve the same gain, with an increase of the antenna number,
the required antenna length is decreased. Similarly, using an antenna array instead of a single
helical antenna of the same axial length (as the antennas that make up the array), increases the
achieved gain. According to the theory of antenna arrays, the level of increase depends on the
number of antennas used in the array (under condition that antennas are properly spaced) [2], [87].
For example, an array of four helical antennas achieves around 5 dB higher gain than a single
helical antenna (of the same axial antenna length as the antennas used in the array) [88]. Arrays of
helical antennas that contain various numbers of elements (arranged in different ways) are
investigated in the literature: linear arrays in [89]-[92], planar square arrays in [88], [93]-[102], and
circular arrays in [103]-[107].

The main parameters that define the geometry of the helical antenna array are the geometrical
parameters of a single helix (i.e., the axial antenna length, turn radius, and pitch or pitch angle), the
shape and size of the ground conductor, and number and spacing between the array elements. The
influence on the antenna characteristics of the geometrical parameters of a single helix and shape
and size of the ground conductor are similar as for a single helical antenna. Increase in the number
of array elements increases the gain. The optimal spacing between the elements and the influence of
the element spacing on the antenna characteristics are widely investigated in the literature [92],
[94]-[98], [105], [106], [108]. The curves presented in [96] give a first-order approximation for two
design questions. Firstly, in the case of a specified array aperture, the minimal number of elements
is given that is required for the maximal directivity. Secondly, in the case of a specified number of
elements, the optimal spacing for the maximal directivity is given. In [108] an equation that defines
the minimal distance between the array elements is introduced. It is stated that the array-element

spacing should be at least /G, /(4 7))\, where G, is the (numerical) gain of the single helical

antenna. In [98] adjustment of the spacing between the array elements is utilized to tilt the radiated
beam at the certain angle. Finally, by controlling the amplitude distribution, beams of complicated
shapes can be generated [92].

The range of applications that employ arrays of helical antennas is similar as for single helical
antennas: mobile communications [90], [95], [97], [109], satellite communications [107], and
broadcasting satellite TV programs [105], [106]. In addition, arrays of helical antennas are used in
radar applications [92] and high-power microwave applications [101], [104].



The feeding of the antenna array requires an appropriate network. An antenna array can be
matched to 50 Q using a properly designed feeding network. The design of feeding networks is
presented in [90], [91], [98], [101], [104]-[106], and [109]. Feeding networks are usually realized
in the printed-circuit technology [90], [98], [109] or using waveguides [91], [104]-[106]. For the
high-power applications, special attention is paid to the design of the feeding network [101].

In this thesis, arrays of helical antennas will be considered in the form of a planar, square array of
four (2x2) nonuniform helical antennas, referred to as a quad array. Firstly, a complete design

procedure for an antenna array (the optimal geometry of helical antennas utilized in the array,
positions of the antennas, and the feeding network) is presented. The designed antenna array meets
pre-set specifications. Hence, this part of the thesis presents a good solution of a real-world
engineering problem. Further, general guidelines for the design of quad arrays are presented and a
procedure for designing these arrays is formulated. The design procedure yields all necessary data;
hence, it allows fast designing of quad arrays without additional calculations.

1.3. Thesis outline

This thesis contains eight chapters and two appendixes.

The current chapter (Chapter 1) gives the basic information about helical antennas and arrays of
helical antennas, their geometry, design guidelines, and applications, through the literature
overview. It also outlines the main motivation and contributions of the thesis.

In Chapter 2, the geometry of the considered (uniform and nonuniform) helical antennas is
presented in more details. Nowadays, the simulations are widely used in the engineering world (as
well as in this thesis). Details about the models of helical antennas utilized for the simulations
within this thesis are brought out in Chapter 2.

Finding the optimal design and formulation of a fast and reliable design procedure for
nonuniform helical antennas is one of the main contributions of the thesis. Hence, optimizations are
an important part of this investigation. Details about the optimization setup, choosing the most
appropriate optimization algorithms, and processing of the optimization results with the mentioned
purposes are presented in Chapter 3. The steps that precede the formulation of the set of equations
for the designing of nonuniform helical antennas with linearly varying geometrical parameters are
also given in Chapter 3. The formulated set of equations contains:

e equations for calculating the geometrical parameters of helical antennas,
e cquation for gain estimation, and
e cquations for evaluating the validity of the design.

Characteristics of the antennas designed utilizing the set of equations formulated in Chapter 3 are
investigated in Chapter 4. Further, a flat square or circular ground plate of finite dimensions are
used to replace an infinite ground plane. The influence of this replacement on the antenna
characteristics is investigated and results are reported. Finally, the designed helical antennas with
linearly varying geometrical parameters are compared with other types of helical antennas (uniform,
exponential, piecewise-linear, etc.) and antennas whose design is presented in the literature.

Chapter 5 summarizes the proposed fast procedure for designing helical antennas utilizing the
formulated set of design equations. The validity of the design procedure is confirmed by
measurements of a fabricated prototype of a helical antenna that is designed following this
procedure. Details about the design, fabrication, and measurements of the prototype are presented.

Chapter 6 presents steps for detailed design and fabrication of an array of nonuniform helical
antennas. This chapter describes the design of the geometry of helical antennas that make up the
array, design of the feeding network, fabrication, and measurements of the designed array.
Chapter 6 details solution of a real engineering problem, which results in a designed and fabricated
array that meets the required project specifications.

In Chapter 7, the investigation of the quad arrays is generalized and the procedure for their design
is presented. This procedure represents an extension of the design procedure formulated in
Chapter 5 since it utilizes design equations for nonuniform helical antennas.



Finally, Chapter 8 summarizes the results presented within the thesis and outlines the main
conclusions, contributions of the thesis, and guidelines for the future research.

Appendix A explains antenna terms, definitions of the units, and definitions of some quantities
which are frequently used within this thesis.

Appendix B introduces the theorem of electromagnetic similitude, which is utilized within the
thesis.
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2. Geometry and models of nonuniform helical antennas

2.1. Geometry of nonuniform helical antennas

As it is indicated in Chapter 1, the geometry of the helical antenna is defined by the axial antenna
length, L, the turn radius, », and the pitch angle, ¢, or the pitch, p (Fig. 1.1a). In the case of
nonuniform helical antennas, the turn radius and pitch angle can vary along the antenna in various
ways. The design of this type of helical antennas has many degrees of freedom, which can result in
ill-posed solutions with a very high gain, but also very narrow bandwidth. This is impractical for the
applications where small deviations due to manufacturing tolerances can cause a shift of the
operating frequency. Therefore, it is often adopted that the variations of the turn radius and pitch
angle along the antenna have fewer degrees of freedom. Hence, these variations are taken to be
linear, exponential, piecewise-linear (with a small number of linear segments) or based on other
simple functions of the axial coordinate (the z coordinate in Fig.2.1). In this thesis, linear,
exponential, and piecewise-linear variations of geometrical parameters will be considered, and these
types of geometries are discussed in more details in this chapter.

The investigation within this thesis utilizes wire conductors of a circular cross-section, which is
uniform along the conductor. Considered wire radii will be within the range where the thin-wire
approximation is appropriate, with an aim to cover most commercially available wires. The helical
conductor will be located above infinite PEC ground plane, but also ground planes of finite
dimensions (square and circular) will be considered.

2.1.1. Linear variation of geometrical parameters

In the case of nonuniform helical antennas with linear variation of geometrical parameters, the
radius and pitch angle of each turn are linear functions of the axial coordinate z (Fig. 2.1). These
geometrical parameters are defined by:

r=(n =) +n. 2.1)

z
(Pz((Pz_(Pl)z+(Pla (2.2)

where 7 is the radius of the lowest (bottom) turn (for z=0), 7, is the radius of the highest (top)
turn (for z= L), and, similarly, ¢, and ¢, are the pitch angles at the bottom and top of the helix,

respectively.
Note that uniform helical antennas can be considered as the special case of nonuniform helical
antennas with linear variation of geometrical parameters where , =, and @, =@, .
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Figure 2.1. Sketch of the nonuniform helical antenna with linearly varying geometrical parameters.
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For simplification, if not stated otherwise, we shall refer to the nonuniform helical antennas with
linearly varying geometrical parameters simply as nonuniform helical antennas. However, in the
parts of the thesis where other types of nonuniformities are investigated, it will be clearly indicated
what type of variation is considered. In those parts we shall refer to the antenna governed by (2.1)
and (2.2) as the linear helical antenna.

2.1.2. Exponential and piecewise-linear variations of geometrical parameters

In the case of nonuniform helical antennas with exponentially varying geometrical parameters
(which we refer to as exponential helical antennas), shown Fig. 2.2a, the turn radius and pitch angle
are defined by:

r=A +B.e", (2.3)

C,z
¢p=4,+B,e", (2.4)

C,L
where 4, =1~ B,. B,=(n~i)/e5 1), 4,=0,-8,. B,=(0:-0)/le“" ~1). 7. 1. 1. 0,
are the same as in the previous subsection, and C, and C,, are arbitrary coefficients.

Further, nonuniform helical antennas with piecewise-linear variations of the geometrical
parameters (along concatenated segments) will be considered (Fig. 2.2b). These antennas will be
referred to as piecewise-linear helical antennas. The full range (0 < z < L) along the antenna axis is
divided into segments. Along each segment, the geometrical parameters are defined in a similar way
as for the linear helical antenna:

r=(rk+1—rk)z—k+rk,k=1,2,_,,,N, (25)
Lk
zZ
cpz(cpk+1—<pk)L—"+<pk,k=1,2,...,N, (2.6)

k

where 7, 1., ¢, and @,,, are radii and pitch angles of the first turn and the last turn of the k-th
segment, respectively, z, is the local coordinate along each segment (0<z, <L, ), L, is the axial
length of each segment, and N is the total number of segments.
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Figure 2.2. Sketch of the nonuniform helical antenna with (a) exponential and (b) piecewise-linear variations of
geometrical parameters (three linear segments) [110].

In this thesis, linear, exponential, and piecewise-linear variations of the geometrical parameters
are investigated and the characteristics of the best found (optimal) antennas are compared. The
antennas with exponential and piecewise-linear variations of geometrical parameters can achieve
slightly higher gain than linear antennas of the same axial length [110]. However, the bandwidth
can be much narrower, which can cause problems in the fabrication and applications. If the antenna
geometries are optimized in a given frequency range, the gain and bandwidth of all antennas is
almost the same [110]. Further, the geometry of antennas with exponential and, especially,
piecewise-linear variations is defined by more parameters; hence, the optimization requires more
iterations and lasts significantly longer.

For these reasons, in the first part of this investigation, nonuniform helical antennas with linear
variation of geometrical parameters will be considered. In Subsection 4.4.4, a detailed comparison
among various types of geometry will be presented.

2.2. Models of helical antennas

In the modern engineering, a huge part of the design process and research relies on various types
of computer simulations. Hence, reliable models and simulators are required. For this investigation,
simulations are performed in software WIPL-D [111] and AWAS [112]. These simulators perform a
full-wave 3D electromagnetic analysis, based on the method of moments (MoM). As an example,
the WIPL-D model of a helical antenna is shown in Fig. 2.3a. The antenna is fed by a voltage
delta-gap (point) generator located at the bottom of a short vertical wire segment, between the
ground plane and the beginning of the first turn.
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Figure 2.3. WIPL-D model of nonuniform helical antenna (a) with polygonal turns (16 sides) [113] and (b) with square
turns [113].
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WIPL-D and AWAS can analyze only straight-line wire segments. For this reason, a perfectly
circular turn of the radius » has to be approximated by a regular polygonal line of n sides, having
an appropriate side length.

A heuristic choice of the polygon side is as follows. A circle, whose radius is r, is approximated
by a polygon constructed in such a way that this circle is positioned midway between the circle that
is inscribed into the polygon (whose radius is #,) and the circle that is circumscribed around the

polygon (whose radius is 7, ), i.e., 7 = (r +7, )/ 2 (Fig. 2.4). Hence, the polygon is inscribed into

out
a circle whose radius is

oo o (2.7)

out D
1+cos [ij
2

where Ay =2mn/n is the central angle of the polygon.

Figure 2.4. Approximation of a circle by a polygonal line of (a) 8§ sides, (b) 6 sides, and (c) 4 sides.

If the number of polygon sides is large, the duration of the simulation increases. However, if n is
small, it can be expected that the error made due to the approximation can increase. In order to
confirm the validity of the utilized approximation and to find the optimal », we have performed the
following numerical experiments.

Various axial antenna lengths (L) and wire radii (7, ) are considered. For each axial antenna

length and wire radius, models with various numbers of polygon sides (7 ) are simulated and the
gain is inspected. The gains of these antennas as the function of utilized number of polygon sides
(n) are presented in Fig. 2.5. Each graph corresponds to one considered wire radius, whereas traces
in the graphs correspond to the considered axial antenna length.

These results show that for n >12 the gain practically does not depend on the number of polygon
sides, 1.e., for n >12 the gain deviates less than 0.1 dB compared to a very large n. Nonetheless,
the same low discrepancy can be noted for n=4. Hence, in the majority of models considered in
this dissertation, perfectly circular turns are approximated by square turns (n=4), when

Vout =21/ (1 +4/2/ 2). An example of the corresponding model is shown in Fig. 2.3b.

The approximation with four straight segments per turn speeds-up the computations. Further, it
enables manufacturing of a simple dielectric support for the antenna that has an almost negligible
influence on the antenna characteristics. More details about the fabrication of such antenna
prototypes will be provided in Subsection 5.3.
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Figure 2.5. Gain of the antennas for various numbers of sides of the approximating polygon ( n) for various axial lengths
(L) and wire radius (a) r,, =0.0002% [113], (b) r, =0.0005%, (c) r, =0.001%,and (d) r,, =0.002% .

As it is already said in Chapter 1, the counterbalance of the helical antenna can be an infinite PEC
ground plane or a ground plane of finite dimensions (e.g., a circular or square flat plate, a circular
cup, or a truncated cone). If the antenna is located above an infinite PEC ground plane, the
influence of the currents in the ground plane can be taken into account by utilizing the antenna
image (image theorem).

Flat square and circular ground planes will also be considered in this thesis. In WIPL-D models,
square or circular ground planes are divided into smaller metallic plates. The current distributions
over these plates are approximated by two-dimensional polynomials (basis functions). The
simulator also allows considering losses in the ground plane. All helical antenna parameters of
interest, e.g., the gain, input impedance, axial ratio, etc., are calculated in WIPL-D by
post-processing of those (numerically calculated) current distributions.
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3. Optimization

In this chapter, we explain in detail the optimization procedures utilized for finding the optimal
design of the nonuniform helical antennas with linearly varying geometrical parameters and present
results of these optimizations. The optimization results consist of the geometrical parameters of the
found antennas (radii and pitch angles of the first and the last turn). The optimal geometrical
parameters and the gain of the optimal antennas are analyzed and used with the aim to define a set
of equations for the rapid calculation of these quantities. This set of equations represents the base of
the design (synthesis) procedure (presented in Subsection 5.1) that allows fast and reliable design of
nonuniform helical antennas.

3.1. Optimization setup

The main criteria for the optimization of helical antennas are
1. to maximize the antenna gain and
2. to obtain circular polarization (axial ratio in dB as close to 0 as possible),
which requires multicriteria optimization. However, the second criterion can be met (relatively)
more easily than the first one. Therefore, we combined those two criteria into one. This simplifies
the optimization and allows formulation of the unique optimization (cost) function.

To that aim, we set the optimization goal to maximize the partial gain for the circular polarization
in the main radiating direction (see Appendix A.1). By maximizing the partial gain, instead of the
gain or the absolute gain (see Appendix A.1), the effects of imperfect circular polarization are also
taken into account. Hence, thereby not only the gain is maximized (the first task), but also the axial
ratio in dB is kept as low as possible (the second task), i.e., both tasks are included into the cost
function.

The partial gain is defined by

g[dBi] = g,peome [dB1] + ¢, (3.1)

where c is the gain reduction due to the imperfect circular polarization (see Appendix A.1). In the
case of the right-hand circular polarization (RHCP)

EO+jE(p

St (3.2)

tot

where Egycp 1s the rms value of Epyep(7), £ and E,, are the 6 and ¢ components of the complex

electric far field as defined in AppendixA.3, and £, = 1/|E e|2 +|E (p|2 . For the left-hand circular
polarization (LHCP)
Ee - JE(p

Sl (3.3)

tot

E

where E|jcp 18 the rms value of E;;p(?), as defined in Appendix A.3.
Further, as it is defined in Appendix A.3, the axial ratio is
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Finally, we will formulate the optimization in terms of finding the minimum of the cost function.
Hence, the cost function is defined as

fcost :loo_g[dBl]’ (35)

where the constant 100 is well above the maximal partial gain for all considered helical antennas in
this thesis. The cost function (3.5) is always positive. The ultimate goal of the optimization is to
find the global minimum of (3.5), taking into account the predefined ranges of the parameters of the
antenna geometry, i.e., optimization variables.

The optimization variables are the radii and pitch angles of the first turn and the last turn (v, 7,
01, and @, respectively). We consider the optimization variables within the following limits:

e 0.02A<r,r <0.5A and
o 05°<q,,p,<15°,

where A is the free-space wavelength at the operating frequency. Some combinations of the
optimization variables correspond to infeasible geometries, i.e., geometries that cannot be
practically realized (for example, if the desired spacing between adjacent turns is smaller than the
conductor diameter, or this spacing is very small so in the real situation these turns can touch).
These geometries are automatically identified and rejected during the optimization, by setting the

cost function to 150, which is larger than the largest f_ for all feasible geometries. The radii and

pitch angles of other turns are calculated using (2.1) and (2.2), respectively. During the
optimization, the antenna is located above an infinite perfectly conducting ground plane. The
antenna conductor is assumed to be lossy, but PEC conductors are also considered as a special case.
The optimizations are performed for various axial antenna lengths, wire radii, and wire
conductivities.

The cost function defined by (3.5) is an instance of a constrained NLP (nonlinear programming)
optimization problem. Various combinations of the optimization algorithms for the optimization of
the helical antenna geometry are investigated in [114]. The random search, Nelder-Mead simplex
[115], gradient method, and particle swarm optimization (PSO) [116], [117] are tested. The random
search and randomly initialized PSO are stochastic algorithms that usually yield a different solution
in each independent run. Hence, the random search or PSO are used in the first stage of the
optimization, whereas in the second stage the Nelder-Mead simplex or gradient method are utilized
in order to speed up the convergence to the (local) optimum. The second stage of the optimization is
launched from the best-found solution within the first stage. Results from [114] show that the
random search or PSO (in the first stage) followed by the Nelder-Mead simplex (in the second
stage) have the highest probability of finding the best solution.

Here, we will additionally investigate different combinations of the optimization algorithms,
different numbers of iterations, and algorithm setups, with an ultimate goal to choose the
combination that finds the best solution with the minimal number of iterations, i.e.,
electromagnetic-solver calls.

In order to compare different combinations of the stochastic optimization algorithms, we perform
investigation similar to the investigation performed in [114]. Each combination of the optimization
algorithms is independently restarted 100 times. For each independent run, the best-found solution
and the corresponding cost function are saved. The solutions are classified into 200 bins in terms of
the  gain.  Thereby, 4-th bin corresponds to the gain in the range
g € O.I[k—l,k)dBi, k=12,...,200. The probability of finding a solution within the bin g, is

estimated as p, = N/N,, , where N is the total number of found solutions within the considered

ot »

bin and N, is the total number of independent runs (N,,, =100).
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Fig. 3.1 shows the (estimated) probabilities, p, , for the axial antenna lengths 2 A, 5 A, and 10 2,

and various combinations of the optimization algorithms. The helix conductor is considered to have
a circular cross-section of radius 0.0002A and to be lossy, of conductivity 58 MS/m. The
simulations are performed at the operating frequency 300 MHz, where the free-space wavelength is
A=1m.

With an aim to select the algorithm for the first stage of the optimization, i.e., the random search
or PSO, the results in Figs. 3.1b, ¢, e, and f can be compared. Namely, the same number of
iterations is utilized in Figs. 3.1b and e, as well as in Figs. 3.1c and f. These results undoubtedly
confirm that the PSO is better than the random search for the first stage of the optimization. Further,
the results in Figs. 3.1c and d show that for the second stage of optimization the Nelder-Mead
simplex is better than the gradient method. Hence, the chosen combination of optimization
algorithms is the PSO followed by the Nelder-Mead simplex. (This agrees with the conclusion
made in [114].) Finally, the results in Figs. 3.1e and f can be used for choosing the number of
iterations. For shorter antennas (2 A and 5 A), it can be noticed that 2000 PSO iterations (swarm size
20) followed by (maximum of) 200 Nelder-Mead simplex iterations have a notably higher
probability to achieve the maximal gain (around 20 % higher) than 500 PSO iterations (swarm size
20) followed by (maximum of) 200 Nelder-Mead simplex iterations. For 10A antennas the
probability difference is smaller, i.e., it is around 5 %. Therefore, for the optimization of the
geometry of the nonuniform helical antennas with linear variation of turn radius and pitch angle
2000 iterations of PSO (swarm size 20) followed by (maximum of) 200 Nelder-Mead simplex
iterations, launched from the best found PSO solution, are utilized.
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Figure 3.1. Probabilities, py, for the axial antenna lengths 2 A, 5 A, and 10 A for (a) 1 random and 200 simplex iterations,
(b) 500 random and 200 simplex iterations, (c) 2000 random and 200 simplex iterations, (d)2000 random and
200 gradient iterations, (¢) 500 PSO (swarm size 20) and 200 simplex iterations, and (f) 2000 PSO (swarm size 20) and
200 simplex iterations.

3.2. Optimization results

The optimization, utilizing the combination of the optimization algorithms chosen in
Subsection 3.1, is performed for finding the optimal nonuniform helical antennas of various axial
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antenna lengths, wire radii, and conductivities, including PEC. During the optimization, the helix is
located above an infinite PEC ground plane. The optimal geometrical parameters, obtained from the
optimization, are further analyzed and used to make conclusions presented in the following
subsections.

3.2.1. Lossless conductors (PEC)

The chosen optimization setup is utilized for the optimization of lossless nonuniform helical
antennas. The optimization is performed for different axial antenna lengths and wire radii. The gain
and the geometrical parameters of the optimal antennas are shown in Figs. 3.2 and 3.3, respectively.
The results in Fig. 3.2 show that, for lossless conductors, the gain practically does not depend on the
conductor radius. Further, the gain dependence on the antenna axial length can be easily described

by a logarithmic function, i.e., g[dBi]= Alog(L/ X)+ B . The values of the coefficients 4 and B are

approximated so that this equation always underestimates the gain, but also keeping as low as
possible the discrepancy between the gain of the optimal antennas and the calculated gain. As the
result, the equation that estimates the gain of the optimal nonuniform helical antennas with lossless
conductors is

g[dBi]= 8.3110g10(%j+13.86. (3.6)

From the results shown in Fig. 3.2 it can be noticed that (3.6) successfully predicts the gain of
antennas whose axial length is an integer multiple of a half wavelength, L=kX\/2,k>4. The
discrepancy between the simulated gain and the gain calculated from (3.6) is less than 0.25 dB.
However, in other cases (L # k/2, k >4), the gain of the optimal antennas is lower than predicted
by (3.6), but also, in some cases, it is almost equal (or just negligibly higher) than the gain of the
shorter antennas for which the condition L =kA/2, k >4 is fulfilled. For example, in the case of the
conductor radius 7, =0.0002%, the gain of the antenna whose axial length is 2A is 16.47 dBi,
whereas the gain of the antenna whose axial length is 2.25A is 16.46 dBi. Hence, there is no
justification for using the longer antenna (2.251).
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Figure 3.2. Gain of the optimal lossless nonuniform helical antennas.

Fig. 3.3 shows the geometrical parameters (radii and pitch angles of the first and the last turn) of
the optimal nonuniform helical antennas with lossless conductor for characteristic axial antenna
lengths and conductor radii. (The considered axial antenna lengths and conductor radii are chosen
within the ranges defined in Subsection 3.2.2.) These geometrical parameters show high regularity.
This feature allows fitting of the data with the ultimate goal of defining a fast design procedure
which contains design equations for calculating geometrical parameters of the optimal antennas.
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Figure 3.3. Geometrical parameters of the optimal lossless nonuniform helical antennas: (a) radius of the first turn,
(b) radius of the last turn, (c) pitch angle of the first turn, and (d) pitch angle of the last turn.

3.2.2. Lossy conductors

As a preparation for the optimization, the limits for the considered axial antenna lengths, antenna
conductors, and antenna operation have to be adopted. These limits are defined by having practical
applications in mind.

The operating frequency and the antenna overall dimensions are inversely proportional, i.e., the
antenna overall dimensions are linearly proportional to the wavelength at the operating frequency.

Since very large and very small low-loss helices are hard to be fabricated, helical antennas are
commonly used from the VHF range up to lower microwave frequencies. Hence, in this work we
will consider operating frequencies from 30 MHz up to 6 GHz.

The conductivities of the most commonly used conductors (copper, silver, gold, aluminum, brass,
steel) range from 10 MS/m to several tens of MS/m. Hence, for the considered wire conductivities
we adopt the range from 10 MS/m to 100 MS/m.

The range of the axial antenna lengths is confined by the applications and the fabrication
limitations (from the upper side) and by the nature of the helical antennas (from the lower side), i.e.,
for short antennas some features of the helical antennas can be undeveloped. Hence, considered
range for the axial antenna lengths is from 2 A to 10 A, where A is the wavelength at the operating
frequency.

The considered radii of the conductors are from 0.0002A to 0.002 A, which mostly covers
commercially available wires, for the considered frequency range.
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Finally, the following limits are considered for the optimization of nonuniform helical antennas
with lossy conductors:

e operating frequencies from 30 MHz to 6 GHz,

e wire conductivities from 10 MS/m to 100 MS/m,
e axial antenna lengths from 2 A to 10 A, and

e wire radii from 0.0002 A to 0.002 A.

These limits define a design hyper rectangle.

When considering the operating frequency, it is convenient to perform all optimizations at a
single frequency, e.g., 300 MHz, where the wavelength is (around) 1 m, and thereafter scale the
obtained solution (the antenna dimensions) and conductivity to the actual operating frequency. This
procedure significantly reduces the optimization load that is necessary to obtain optimal antennas
for all points within the design hyper rectangle. Inherently, significant data compression is thereby
achieved.

This procedure is based on the theorem of electromagnetic similitude [118]. According to the
theorem, if the operating frequency is increased s times, all linear geometrical dimensions of the
antenna should be decreased s times and the wire conductivity should be increased s times in order
to obtain the electromagnetic similarity (see Appendix B). Note that the original antenna and the
scaled antenna have the same gain and the same input impedance. Hence, the wire conductivities in
the scaled model are taken to be in the range from 0.5 MS/m to 1000 MS/m, which corresponds to
the targeted wire conductivities within the considered frequency range.

Solid lines in Fig. 3.4 show the gain of the optimal antennas in the range of the targeted wire
conductivities, for various axial lengths and wire radii. (Dark blue solid lines correspond to the gain
of the antennas with lossless conductors calculated from (3.6).) All geometrical dimensions are
expressed in terms of the wavelength at the operating frequency (L). Note that the gain is plotted as
a function of the conductivity multiplied by the wavelength at the operating frequency. (We refer to
this product as the normalized conductivity.) Hence, in addition to the geometrical dimensions, the
conductivity is also expressed in terms of the wavelength at the operating frequency. This way of
expressing the geometrical dimensions and conductivity allows fast scaling of the model to an
arbitrary operating frequency (within the design hyper rectangle, i.e., the limits defined at the
beginning of this subsection). Therefore, the data shown in Fig. 3.4 are not valid only for the
frequency utilized during the optimizations (300 MHz), but also are applicable to any other
frequency (within the defined range).

Further, in all graphs shown in Fig. 3.4, i.e, for all axial antenna lengths and wire radii, it can be
noticed that by moving from the highest normalized conductivities towards the lowest normalized
conductivities (from the right to the left part of the graphs) the traces have steep slopes. This
behavior shows that the wire losses strongly affect the gain of the nonuniform helical antennas.

The shape of the optimal nonuniform helical antennas depends on the wire conductivity, i.e., on
the losses. When the losses are high (the conductivity is low), the radii and pitch angles of the turns
near the feeding point are larger than the radii and pitch angles at the helix top. In addition, the turns
at the helix top almost touch each other. A typical geometry of the antenna in this case is shown in
Fig. 3.5a. As the losses decrease (the conductivity increases), the geometry smoothly changes to the
geometry shown in Fig. 3.5b. In this case, the radii and pitch angles increase from the helix bottom
towards the top. For simplicity, these losses are referred to as the medium losses. With a further
diminish of the losses (increase in the conductivity, including PEC wires, Subsection 3.2.1), the
typical antenna geometry looks like the one shown in Fig. 3.5c. The turns at the helix bottom
become dense. Hence, the required conductor length becomes longer, which may be impractical.

The main objective of this part of the work is to provide a fast and simple, but sufficiently
accurate, design procedure valid for as large as possible subspace within the design hyper rectangle,
defined at the beginning of Subsection 3.2.2. For that purpose, the geometry that corresponds to the
medium losses (shown in Fig. 3.5b) is utilized, since it is considered to be the most interesting one
from the practical point of view for two reasons.
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Firstly, the gain of those antennas (indicated by dots in Fig. 3.4) is sufficiently high, i.e., the
decrease in the gain of those antennas in comparison with the gain of the antennas from Fig. 3.5¢c
(indicated by dark blue solid line in Fig 3.4) is between 0.8 dB and 0.9 dB. Namely, the ordinate
values of the dots in Fig. 3.4 are between 0.8 dB and 0.9 dB below the level indicated by dark blue
line. This discrepancy in gain is indicated as the margin in Fig. 3.4.

Secondly, the turns are not overcrowded; hence, the total conductor length is shorter.

The dots shown in Fig. 3.4 correspond to the designs with medium losses, i.e., the dots indicate
antennas that are chosen for the reference design. (In the case of the longest antennas, whose axial
lengths are 7 A and 10 A, with the thinnest wire, the normalized conductivity which corresponds to
the medium losses is larger than 1000 MS. Hence, the dots for these two examples are not plotted in

Fig. 3.4.)
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Figure 3.4. Gain of the optimal nonuniform helical antennas within considered conductivity range for various wire radii
and (a) L=2 A, (b) L=3 A, (c) L=4 A, (d) L=5 A, (e) L=7 A, and (f) L=10 A, solid lines. Gain of the nonuniform helical
antennas with PEC wire calculated from (3.6), solid dark blue line. Dots indicate antennas that are chosen for the
reference design.
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Figure 3.5. Typical examples of geometries of the optimal antennas for (a) high losses [113], (b) medium losses [113],
and (c) low losses [113].

Through a detailed investigation of the antennas that correspond to the medium losses, it is found
that these designs can also be valid for a wider range of conductivities. Hence, we refer to these
designs as reference designs, and the corresponding conductivity as the reference conductivity,
G, - Dots in Fig. 3.6a indicate the normalized conductivities that correspond to the medium losses

(abscissas of the dots shown in Fig. 3.4). By heuristic investigation of logarithmic and linear

dependencies, and by fine-tuning of each term, o, 1s approximated by

[0.5154 1og10(%)+3.601]10g10(%)—1.750 loglo[%)—4.850

o, k=10 , (3.7)

where L, ry, and A are in meters, and o, is in MS/m. The validity of the approximation given by

ref
(3.7) 1s confirmed in Fig. 3.6a, where the normalized reference conductivities are compared with
6,.¢ calculated from (3.7).

Further, the normalized reference conductivity is plotted in Fig. 3.6b as a function of the

normalized axial length and normalized wire radius. The normalization is with respect to the
wavelength at the operating frequency.
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Figure 3.6. (a) Normalized conductivities that correspond to the reference design and normalized reference
conductivities calculated from (3.7) [113], and (b) normalized reference conductivity, calculated from (3.7), as a
function of the normalized axial antenna length ( L/A) and normalized wire radius (r/A) [113].

Normalized optimal geometrical parameters for the reference design (r1, 72, @1, and @,), for
various axial antenna lengths and wire radii, are shown in Fig. 3.7. As for the antennas with lossless
conductors, the optimal geometrical parameters for the reference design show high regularity,
which allows this data to be fitted successfully. Normalized optimal radii of the first turn (Fig. 3.7a)
and the last turn (Fig. 3.7b), and the optimal pitch angles of the last turn (Fig. 3.7d) are in the same
ranges as for the antennas with lossless conductors (see Fig. 3.3). However, the optimal pitch angles
of the first turn are around five times larger in the reference design. This was expected since the
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turns at the antenna bottom in the case of lossless antennas are denser (Fig. 3.5¢) than in the
reference design (Fig. 3.5b).
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Figure 3.7. Optimal geometrical parameters of the reference design: (a) normalized radius of the first turn [113],
(b) normalized radius of the last turn [113], (c) pitch angle of the first turn [113], and (d) pitch angle of the last
turn [113].

The gain of the antennas whose geometrical parameters are shown in Fig. 3.7 is compared in
Fig. 3.8 with the gain of the antennas whose geometries are optimized at the corresponding
normalized conductivities. The dots shown in Fig. 3.8 indicate the designs with the medium losses
(as in Fig. 3.4). Hence, the abscissas and the ordinates of these dots correspond to the normalized
reference conductivity and the gain calculated from (3.6) reduced by the margin (defined in
Fig. 3.4), respectively. As it is explained for Fig. 3.4, for the longest antennas (axial antenna lengths
7 A and 10 A), with the thinnest wire (0.0002 1), the normalized conductivity which corresponds to
the medium losses is larger than 1000 MS, so the dots for these two examples are not plotted in
Fig. 3.8.

In the range of the normalized conductivities 6. ,A < oA <1000 MS, the gain of the antennas
obtained using the reference design is only up to 0.25 dB lower than the gain of the corresponding
optimal antennas (Fig. 3.8). This confirms the assumption that the reference design can be used as
the optimal design in a wider range of conductivities, i.e., in the range of the normalized
conductivities 6 A < oA <1000 MS.

Further, the discrepancy between the corresponding traces in Fig. 3.8 is negligible even for the
conductivities smaller than the reference conductivity. We adopt that the reference design can be
used as the optimal design as long as the discrepancy between the corresponding traces in Fig. 3.8 is
lower than around 0.5 dB. This condition is fulfilled for the normalized conductivities within the
range o .. A <oA <1000 MS, where the normalized minimal conductivity (o, A ) is indicated by
square markers in Fig. 3.8. The normalized minimal conductivity can be calculated from

G = [0.5954—0.483010&0(%)} ik (3.8)
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The coefficients in (3.8) are heuristically obtained by considering linear and logarithmic
dependencies (for which our analysis determines that they are the most suitable), and by
fine-tuning. The main goal is to meet the previously defined condition, i.e., the maximal
discrepancy between the gain of the antennas obtained using the reference design and the gain of
the corresponding optimal antennas should be 0.5 dB.
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Figure 3.8. Gain of the optimal nonuniform helical antennas and the reference design within considered conductivity
range for various wire radii and (a) L=2 A, (b) L=3 A, (¢) L=4 A, (d) L=5 A, (e) L=7 A, and (f) L=10 A. Abscissas of the
circle and square markers correspond to the normalized reference conductivity and o,,;,A, respectively.

Although the normalized conductivities that are higher than 1000 MS do not correspond to any
design within the design hyper rectangle, defined in Subsection 3.2.2, it can be illustrative to
compare the gain of the reference design (with a PEC wire) with the gain of the optimal lossless
antennas. If the reference design is used with a PEC wire, the resulting gain is up to 0.4 dB lower
than the gain of the antennas optimized immediately assuming a PEC wire (Subsection 3.2.1). This
confirms that the considered condition for defining the lower border of the
normalized-conductivities range (the discrepancy between the corresponding traces in Fig. 3.8 is
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lower than around 0.5 dB) is also fulfilled for the conductivities higher than 1000 MS, all the way
up to PEC wires.

For reference, in Fig. 3.9 the conductivities of the frequently used metals, i.e., copper (58 MS/m),
gold (41 MS/m), silver (63 MS/m), and aluminum (37.7 MS/m), are compared with o, for

various axial lengths and wire radii, in the considered frequency range (from 30 MHz to 6 GHz).
Each graph in Fig. 3.9 corresponds to a different wire radius. Horizontal lines indicate the
conductivities of frequently used wire materials. These lines intersect with the traces that

correspond to o, for various axial antenna lengths. These intersections denote the points where

6., Of the observed axial antenna length and wire radius is equal to the conductivity of the

considered metal (copper, gold, silver, or aluminum). Hence, at the operating frequencies lower
than the frequency that corresponds to the intersection point, the reference design can be used as the
optimal one with the considered metal as the wire material. For example, if we consider the axial
antenna length 2 A, the wire radius 0.0002 A, and copper as the wire material, the operating
frequency has to be below 300 MHz. In addition, if we consider the same axial antenna length and
wire material, but we assume the wire radius to be 0.002 A, the operating frequency can be
anywhere within the considered frequency range (from 30 MHz to 6 GHz).

Further, if a certain metal (as the wire material) and operating frequency are considered, the
intersection points in Fig. 3.9 indicate for which axial antenna lengths the reference design can be
used as the optimal one. For example, if we consider a copper wire of the radius 0.001 A and the
operating frequency is 1 GHz, the reference design can be used as the optimal design for the axial
antenna lengths up to 5A. However, if the same wire material and the operating frequency are
considered, but the wire radius is 0.002 A, the reference design is valid as the optimal design for all
axial antenna lengths within the defined range (from 2 A to 10 A).
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Figure 3.9. o, for various axial lengths and (a) r,=0.0002 A, (b) ,,=0.0005 A, (¢) r,=0.001 A, and (d) r,=0.002 A [113],
in the considered operating frequency range. For reference, horizontal lines show conductivities of copper, gold, silver,
and aluminum.
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3.2.3. Approximating equations — geometrical parameters

The results obtained in the previous subsection confirm that the gain of the reference design is
very close to the gain of the optimal antennas in the wide range of conductivities (for the
normalized conductivities o . A <A <1000 MS). Further, the results from Fig. 3.7 indicate that

the dependence of the optimal geometrical parameters, for the reference design, on the axial antenna
length and wire radius can be described by analytical equations. These analytical equations will
enable a rapid and reliable procedure for designing the optimal nonuniform helical antennas in just
a few steps.

In Fig. 3.7 the abscissas of all graphs are in logarithmic scale. Hence, the dependence of the
geometrical parameters on the axial antenna length can be approximated by the equation of the
following form: GP = Alog(L/ k)+B , where GP are geometrical parameters ri/A, /A, @1, Or @2,

and 4 and B are unknown coefficients, different for each geometrical parameter. By further
inspection of the optimal geometrical parameters, it can be noticed that the values of the coefficients
A and B depend on the radius of the conductor. Hence, A= A(r, /A) and B=B(r, /2).

For each geometrical parameter, a detailed investigation is performed in order to describe
dependences of the geometrical parameters on the axial antenna length and wire radius. The main
task for finding the equations that approximate the optimal geometrical parameters is to maintain as
low as possible the differences between the gain of the optimal antennas and the antennas designed
using the proposed design equations. Hence, the antennas designed using the proposed equations
achieve nearly the same gain as the optimal antennas. For that purpose, instead of fitting the optimal
coefficients 4 and B using a standard method for data fitting, equations that approximate the values
of the coefficients are found by heuristic investigation of various dependencies on linear and
logarithmic scale, and by fine-tuning of each term in these equations. During this process, the gain
differences are carefully monitored.

In Fig. 3.10 square markers correspond to the optimal values of the coefficients 4 and B for
different wire radii, and these optimal values are fitted by solid lines. Fig. 3.11 compares the
optimal geometrical parameters with the geometrical parameters calculated from the equations
where the optimal coefficients 4 and B (shown by square markers in Fig. 3.10) are utilized. The
gain of the optimal antennas and the gain of antennas whose geometrical parameters are calculated
from the equations with the optimal coefficients 4 and B are compared in Fig. 3.12. In the worst
case, the discrepancy between the gains of those antennas is less than 0.5 dB, for the normalized
conductivities higher than o _; A . Note that the largest discrepancy between the gain of the optimal

antennas and the reference design, in the same range of the normalized conductivities, is also less
than 0.5 dB (Fig. 3.8). Hence, antennas designed using the calculated geometrical parameters
(where the coefficients 4 and B are optimal) achieve almost the same gain as antennas whose
geometrical parameters are optimal for the reference design.

min
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Figure 3.12. Gain of the optimal nonuniform helical antennas and antennas whose geometrical parameters are calculated
from the equations with the optimal coefficients 4 and B, within considered conductivity range for various wire radii
and (a) L=2 A, (b) L=3 A, (c) L=4 A, (d) L=5 A, (e) L=7 A, and (f) L=10 A. Square markers correspond to the normalized

conductivity oA

For the radii of the first and the last turn, the dependence of the optimal coefficient 4 on the wire
radius is nearly linear (Figs.3.10a and b). Hence, the optimal values of these coefficients are

approximated in the following way:

4, =1.0681°~0.0190.
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4, = —2.2001%—0.0250. (3.10)

The optimal coefficients B for the first and the last turn are approximated by the logarithmic
functions

B, :—0.0077010g10(r7wj+0.0910, (3.11)
.
B, =O.0011310g10[7‘”]+0.160. (3.12)
Finally, the optimal normalized radii of the first and the last turn are approximated by

n r L r

—=11.0681-*-0.0190 |log,,| — |+| —0.00770log,,| = |+0.0910 |, 3.13
2 ( » ] gw@ ( g“)(x] j -
%2 = (— 2.2001%—0.0250]10g10(§j+(0.001 l310g10(%wj+0.160j . (3.14)

From Fig. 3.10c it can be noticed that, for the pitch angle of the first turn, the dependencies of the
coefficients 4 and B on the wire radius are logarithmic. The coefficient 4 in the equation for the
pitch angle of the last turn linearly depends on the wire radius, whereas the dependence of the
coefficient B is logarithmic. Hence, these coefficients are defined by the following equations

rW
A4, :—(1 .401010g10(7j+7.2219} (3.15)
A4, =891.197% 47,6254, (3.16)
2 A
7,
B, = 1.498010g10(7wj +10.256, (3.17)
rW
B, =0.31695log, (7] +2.7238. (3.18)
Finally, the optimal pitch angles of the first turn and the last turn (¢, and ¢, ) are approximated by
o.[F]= _(1.4010 1og10(’%j + 7.2219}10&0(%) + (1 .498010g10(%wj + 10.256) : (3.19)
0, [°]= (891.19 FTW +7.6254 j 1og10(%j + (0.31695 logy (’"TW) +2.7238 J . (3.20)

In the following text, we refer to the set of equations (3.13), (3.14), (3.19), and (3.20) as the
design equations, including equation (3.8) that is used to determine if this design is valid.

In Fig. 3.13 the radii and pitch angles of the first turn and the last turn of the reference design
(obtained from the optimization), referred to as “optimal”, are compared with the radii and pitch
angles calculated from the design equations, referred to as “calculated”. The discrepancy between
the “optimal” and “calculated” geometrical parameters is noticeable (the discrepancy in this case is
much bigger than in Fig. 3.11, where the coefficients 4 and B are the optimal). However, this
discrepancy does not mean that the design equations poorly fit the optimal geometrical parameters.
The main parameter for the evaluation of the design equations is the antenna gain. Hence, the main
goal during the fine-tuning of the coefficients in the design equations is to maintain as low as
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possible the discrepancy between the gain of the optimal reference design and the gain of the
antennas whose geometrical parameters are calculated from the design equations.

Therefore, the gain of the optimal antennas and the antennas whose geometrical parameters are
calculated from the design equations are compared in Fig. 3.14. From these results it can be noticed
that the largest discrepancy of the gain is around 0.5 dB for the conductivities higher than 6 _; A .
This leads to the conclusion that the design equations enable a rapid design procedure of the
nonuniform helical antennas without significantly deteriorating the antenna performance in
comparison with the optimal nonuniform helical antennas.
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Figure 3.13. Optimal geometrical parameters of the reference design and the geometrical parameters calculated from
(3.13), (3.14), (3.19), and (3.20): (a) normalized radius of the first turn, (b) normalized radius of the last turn, (c) pitch
angle of the first turn, and (d) pitch angle of the last turn.

30



g[dBi]

19
18
17
16

14
13

g [dBi]

12 |
11 H
10 |

L=2 )
= |
& =/ —
4
optimal calculated 4 and B o . A
r,=0.0002 »: —@— —_— ]
r,=0.0005 A: ]
r =0.001 1: —o— _— |
r=0.002%: —o— — |
i i 1I0 I(I)O 10IOO
i [MS]
(a)
—4 1 |
i /
//
! /
I optimal calculated 4 and B o 1
j 7,=0.0002 2 —e— |
7, =0.0005 2: |
r=0.001 »: —o— e [ ]
r=0.002 . —o— e |
1 10 100 1000
o\ [MS]

optimal calculated 4 andB o 1

[ 7 =0.00027: —e— — m
I =0.0005 2: m
[ 7 =0.0012: —e— — |
L7 =0.0022: —o— — m
I 10 100 1000
o [MS]
(e)

18
17
16
15
14
13

g [dBi]

12 H
11 f
10

15
14
13
12
11
10

g [dBi]

22
21
20

19F

18
17
16
15
14
13
12

g [dBi]

L=3 ) = ==
L
-~ <
/
/- /
4 rd
f optimal calculated 4 and B c_ A
r=0.0002 : —e— [ ]
7 =0.0005 2.: |
r=0.001 2 —o— —_— [ ]
r=0.002 2 —0— . |
1 10 100 1000

] optimal calculated 4 and B & 1

n 7,=0.0002%x —e— |

[ =0.0005 m

[ <0001 —o— — ]

)y =00027%: —o— _— m

1 10 100 1000

ol [MS]
(d)

L=10 7]

/

pd
/

7/

rw=0.0002 A
r,=0.0005 2:
r =0.001:
r =0.002 2:

optimal calculated 4 and B o_ %
+

+
+

10
o\ [MS]

®

Figure 3.14. Gain of the optimal nonuniform helical antennas and antennas whose geometrical parameters are calculated
from equations (3.13), (3.14), (3.19), and (3.20), within considered conductivity range for various wire radii and
(@) L=2 L, (b) L=3 A, (c) L=4 X, (d) L=5A, (e) L=T X, and (f) L=10 A. Square markers correspond to the normalized
conductivity GpisA.

Finally, by using the design equations for the design of the nonuniform helical antennas, the
optimization of the antenna geometrical parameters (by the designer or user) can be avoided. Hence,
computer resources (software and hardware for EM simulations) are not needed, and the design
procedure is very short and fast. This can be very useful and preferable for practical applications.
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3.2.4. Approximating equation — antenna gain

The gain in the main radiating direction is one of the most important parameters that characterize
an antenna. Therefore, the gain of the antennas designed using the presented design equations
((3.13), (3.14), (3.19), and (3.20)) will also be approximated by an equation.

Solid lines in Fig. 3.14 show the gain of antennas whose geometrical parameters are calculated
from the design equations. It can be noticed that the gain dependences on the normalized
conductivity are very similar regardless of the axial length and wire radius. For a more detailed
investigation of these dependences, the antenna gain is simulated in a wider range of the normalized
conductivities, 6, A <A <10°MS (Fig. 3.15a) and the same conclusion is being drawn. This is
also confirmed by the results shown in Fig. 3.15b, where all traces are translated and overlapped.
The first step is the vertical translation, which is made so that the maximum of all traces is 0. In the
second step the traces are horizontally translated so that all traces have a common point
(lMS, -0.5 dB). Thereafter, the behavior shown in Fig. 3.15b can roughly be approximated by the
equation

-0.5
Enormalized = T——————— > (321)
4 Goverlapped 8

where 6 e appear 18 the normalized conductivity that corresponds to the x axis in Fig. 3.15b,

whereas we refer to the values on the ordinate after the translation as the normalized gain
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Figure 3.15. (a) Gain of antennas whose geometrical parameters are calculated from the design equations in a wider
range of normalized conductivities and (b) overlapped gain traces.

The maximal gain strongly depends on the antenna axial length, whereas the wire radius only
slightly affects the maximal gain. Circular markers in Fig. 3.16 correspond to the maximal gain for
each axial length. Since the abscissa scale is logarithmic, the maximal gain can be fitted by the
equation g, = Ay max loglo(L/k)Jngmax , where 4,,,, =8.385 and B, =13.48 (solid line in
Fig. 3.16a). The fitting by this equation is satisfactory for longer antennas. However, this fitting is
not good for shorter antennas, especially for L=2 A. Hence, we added an additional term, which

improves the fitting for the shortest antennas, g .. = Agmax 10€10(L/A) + By oy + Cy o / (L/2)Pemax |

g max

where the values of 4, and B, are the same as previously defined, whereas C, ., =26.89
and D =6.763, Fig. 3.16b.

g max
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Thereafter, the dependence on the wire radius should also be fitted. For that purpose, the
overlapped traces in Fig. 3.15b have to be separated in order to obtain the dependence of the gain on
the wire radius for the normalized conductivities higher than o _; A (Fig. 3.15a). Hence, the term

-0.5

b
v Goverlapped 8

dependencies are investigated and satisfactory fitting is achieved utilizing the term
~0.5(4, L/2)

(l" w / X)Bg 4 cyoverlapped A

order to achieve satisfactory fitting, it is necessary to introduce the dependence on the axial antenna
length. This dependence cannot be easily noticed from the data shown in Fig. 3.15a, but it
significantly improves the fitting. The fitted and actual traces are compared in Fig. 3.17 for various
axial antenna lengths, demonstrating good agreement.

Finally, in Fig. 3.18 the gain of the antennas whose geometrical parameters are calculated from
the design equations in a wide range of the normalized conductivities is compared with the gain
fitted by the equation

which fits the overlapped traces in Fig. 3.15b, needs to be expanded. Various

, where the coefficients are A4, =0.005966 and B, =0.8411. Note that in

L

0.002983 ” 26.89

- 0.8411 + L 6.763 °
m Vho @

However, in the case of the axial antenna lengths 7A and 10 A, the thickest wire, and the
normalized conductivities close to o,;,A, equation (3.22) overestimates the gain. Hence, equation
(3.22) needs to be further modified in order to ensure that the equation for the gain estimation
always underestimates the gain. The additional (the last) term is included and the final equation is

0.002983 L
A

g[dBi]=8.385l0g,, (%)+13.48— (3.22)

2689 68717 (3.23)

+
0.8411 6.763 by
(5] ()

g[dBi]=8.385l0g,, (%}13.48—
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The gain calculated from (3.23) and the gain of the antennas whose geometrical parameters are

calculated using the design equations are compared in Fig. 3.19.
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Figure 3.19. Gain of the antennas whose geometrical parameters are calculated from the design equations in a wide
range of the normalized conductivities and the gain calculated from (3.23).
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Results compared in Fig. 3.19 confirm that (3.23) estimates well the gain of the designed
antennas, but also underestimates the gain in the range of the normalized conductivities
G inr <oA<1000MS, in which the design equations are valid. Moreover, (3.23) underestimates

the gain in an even wider conductivity range, considered in Fig. 3.19, o, A <o\ <10°MS. The
property that (3.23) underestimates the gain is important from the practical point of view since it
ensures that designed antennas achieve at least the gain calculated from (3.23), but in most cases
even a (slightly) higher gain. This secures that by using the design equations and the design
procedure (which will be presented in Chapter 5), the designer will be able to meet the desired
specification, i.e., the targeted gain.

The maximal discrepancy between the gain of the designed antennas and the gain calculated from
(3.23) 1s less than 0.3 dB (in the range of the normalized conductivities 6,;,A < GA < 10°MS).
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4. Characteristics of designed antennas

During the optimization only the gain and the axial ratio are explicitly taken into account (through
the cost function). However, some other antenna characteristics (e.g., bandwidth and input
impedance) are also important for the applications. These characteristics are investigated in this
chapter for the antennas designed using the design equations presented in Subsection 3.2.3.

Further, the influence of the ground plane of finite dimensions on the gain, axial ratio, and other
antenna characteristics is explored in this chapter.

Finally, antennas, whose geometrical parameters are calculated from the design equations, are
compared (in terms of the gain, axial ratio, and other characteristics) with other types of helical
antennas (uniform and nonuniform) presented in the literature and obtained from additional
optimizations.

4.1. Bandwidth, axial ratio, and input impedance

In this subsection, the relative bandwidths, axial ratios, and input impedances of the designed
antennas are investigated in detail.

The relative bandwidth is defined here as BW[%]=100 (frnax = fmin)f » where f .. and f_ .

stand for frequencies where the gain is for 1 dB (termed as BW)), 2 dB (BW>), or 3 dB (BW3) lower
than the maximal gain (Fig. 4.1), and fis the operating frequency.
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Figure 4.1. Definitions of the relative bandwidths.

The relative bandwidths of the designed antennas for various wire radii and two different wire
conductivities (o, and PEC) as a function of the axial antenna length are shown in Fig. 4.2. Note
that the wire conductivity slightly influences the relative bandwidths (less than 8 %) for all
considered wire radii (within the design hyper rectangle defined in Subsection 3.2.2, i.e., from
0.0002 A to 0.002 A) and axial antenna lengths (from 2 A to 10 A, also defined by the design hyper
rectangle). The discrepancies of BW, caused by the different conductivities are negligibly small.
However, for BW, and BWj, these discrepancies are more pronounced. Namely, in all considered
cases, BW, is larger for the reference conductivity than for the PEC wire, whereas for BW; the
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situation is reversed, i.e., the PEC wire provides larger BW3. Further, as the wire radius increases,
all the relative bandwidths increase.
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Figure 4.2. Relative bandwidths for various axial lengths and wire radii (a) r,=0.0002 A [113], (b) r=0.0005 A [113],
(¢) 7,=0.001 A [113], and (d) 7,=0.002 A [113].

The axial ratio (ar, defined by (3.4)) of the designed antennas for various antenna lengths, wire
radii, and wire conductivities o, and PEC is shown in Fig. 4.3a. The axial ratio practically does

not depend on the wire conductivity (for the conductivities within the range where the design is
valid). For all considered axial antenna lengths and wire radii, the axial ratio is maintained below
0.7 dB (i.e., 1.17). Further, the increase in the axial antenna length is followed by the decrease in
the axial ratio, except for the shortest antennas (2 A and 2.5 A) with the thickest wire (0.002 A).
Finally, the axial ratio gets smaller as the conductor becomes thinner.

Fig. 4.3b shows the (complex) input impedance (Z = R+ j X ) of the designed antennas. The same

axial antenna lengths, wire radii, and wire conductivities are considered as for the relative
bandwidths and the axial ratio. The input impedance is not influenced by the wire conductivity (for

the normalized conductivities higher than Orer ), whereas the axial antenna length slightly

influences the input impedance. However, the wire radius affects the input impedance. Namely,
when the wire radius is increased, the absolute values of the real and imaginary part of the input
impedance are decreased.
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Figure 4.3. (a) Axial ratio [113] and (b) input impedance for various axial lengths and wire radii [113].

4.2. Note on antenna axial length

In the case of the antennas with lossless conductors (Subsection 3.2.1), the axial antenna lengths
which are non-integer multiples of the half wavelength are also investigated. It is shown that these
antennas achieve lower gain than the gain predicted by (3.6), i.e., (3.6) successfully predicts the
gain of antennas whose axial lengths are integer multiples of the half wavelength.
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Here, we want to investigate the gain of the designed antennas (with lossy conductors) of various
axial lengths (integer and non-integer). We utilize different wire radii (within the considered range
defined in Subsection 3.2.2) and the normalized conductivity oA =0c,A. The gain of these

antennas is shown in Fig. 4.4 by discrete points. These antennas show similar behavior as the
antennas with lossless conductors (see Fig. 3.2).
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Figure 4.4. Gain for various axial antenna lengths for cA=c,. [113].

It can be concluded that (3.23) accurately predicts the gain of antennas whose axial length is an
integer multiple of the half wavelength, i.e.,

L:k%,ke{4,...,20}. (4.1)

However, the gain is lower for the optimal antennas for which this condition is not fulfilled.
Therefore, in order to achieve the maximal gain, the axial antenna lengths defined by (4.1) are
recommended. Particularly, the worst results are observed for the axial antenna lengths

L=(kf:i)?»,ke{8,...,36},1’6{1,3}, (4.2)

when, for shorter antennas, the gain is around 0.4 dB lower than the gain calculated from (3.23). For
longer antennas, the discrepancies decrease. The red solid line in Fig. 4.4 fits the gain of the
antennas whose axial lengths are defined by (4.1), whereas the black solid line fits the gain of the
antennas whose axial lengths are calculated from (4.2).

4.3. Antennas above finite ground plane

All the previously given results are obtained assuming the helix to be located above an (infinite)
perfectly conducting ground plane. According to the image theory, the influence of an infinite
perfectly conducting ground plane can be emulated by the antenna image (when both the antenna
and the image are placed in free space). This significantly reduces the computation time, which
justifies using an infinite ground plane in the simulations.

However, in practice such a plane can only be approximated. Therefore, in this subsection the
influence of finite-size ground planes on the antenna gain and other characteristics will be
considered. Since the scope of this work is primarily oriented towards the design of the antenna
conductor (i.e., the helix), not the design of the ground plane, here we consider only flat ground
planes of a square or circular shape. Other shapes of the ground plane (circular cup, truncated cone,
etc.) can significantly change the gain, as it is shown in [51]-[54], [56]. However, analyzing their
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influence on the gain of the designed antennas and their characteristics is beyond the scope of this
work.

Fig. 4.5a shows a helical antenna with a square ground plane, and Fig. 4.5b shows an antenna
with a circular ground plane. We denote the length of a side of the square plane by a and the
surface areas of the square and circular planes by S. The ground plane of finite dimensions
influences the gain of the designed antennas, i.e., the antenna gain can be different from the gain
calculated from (3.23). Fig. 4.6 shows the gain differences, A g, between the gain of antennas
above the square or the circular ground plane and the antennas above an infinite ground plane
(calculated from (3.23)), for various dimensions of the ground plane, various axial antenna lengths,
and wire conductivity c,... The considered ground planes are supposed to be made of a PEC.

Additional numerical experiments show that the influence of the ground-plane conductivity on A g
is negligible, i.e., for the ground-plane conductivity 6., A g is almost the same as in Fig. 4.6.

The results in Fig. 4.6 demonstrate that the circular and the square ground plane are equivalent if
their surface areas are equal. Therefore the abscissas in Fig. 4.6 correspond to JSs / A. As it is

expected, when the ground-plane dimensions are increased, i.e., when the finite-size ground plane
approaches the infinite ground plane, the gain differences tend to zero. Further, note that for some
dimensions of the ground plane A g is larger than 0. This indicates that, with a ground plane of
proper dimensions, even higher gain can be achieved than in the case of the infinite ground plane
(the gain calculated from (3.23)), which is of significant practical importance. This increase can be
up to 0.5 dB. We denote the smallest dimension of the ground plane that corresponds to Ag =0

(i.e., the antenna achieves the same gain as with the infinite ground plane) by \/S_O / A, whereas the
dimension of the ground plane for which Ag is maximal is denoted by ,/S / A. These

max

dimensions are shown in Fig. 4.7 for various axial antenna lengths and wire radii.
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Figure 4.5. Helix located above (a) a square ground plane and (b) a circular ground plane.
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The need for a relatively large ground plane can quantitatively be explained in the following way.
The actual antenna consists of the helix and the ground plane. The electric field created by this
structure, at any point in the space (including the far-field region), due to the superposition
principle, is given as the sum of the field due to the current in the helix (E, ) and the field due to the

current in the ground plane (E,, ), i.e., E=E, +E .

We consider a representative example — a helical antenna whose axial length is L =2A at the
operating frequency 300 MHz, the wire radius i1s 0.002A, and the wire conductivity is G,.
Assuming an infinite ground plane, we use program AWAS [112] and evaluate the radiated electric

field of this antenna. The gain of the actual system, as the function of the zenith angle 6, is shown in
Fig. 4.8, labeled “actual”. Since the ground plane is infinite, E,, cancels E, at all points under the

ground plane, so that there is no radiated field in the lower half-space. In the upper half-space, E,,

can be, mathematically, replaced by the electric field due to the (negative) image of the helix
current, i.e., E,, = E;; . Hence, in the upper half-space, the actual electric field can be represented
as E=E, +E;;.

Using a customized version of program AWAS, we now compute E; in the whole space. The
corresponding gain pattern is shown in Fig. 4.8, labeled “original full space”. The current of the
helix radiates both upwards and downwards, i.e., we clearly see an upward-radiated field and a
downward-radiated field. (The field radiated downwards is even stronger than the field radiated
upwards.) In the actual system, we can consider that the downward-radiated field is totally reflected
by the ground plane and redirected upwards. This reflected field is E;; and in Fig. 4.8 the
corresponding gain pattern is labeled “image”.

If the helix is wound according to the right-hand rule, then E, is RHC polarized in the upward
directions (within the main beam), but it is LHC polarized in the downward directions. The
downward-radiated wave, reflected from the ground plane, changes its polarization and becomes
RHC polarized. Hence, in the upper half-space, E; and E,; interfere constructively in the zenith
direction (6=0). The intensity of E=E, + E,; is stronger than the intensities of both E, and E,; .
Thus, the gain of the actual antenna is larger than the gain that is attributed individually to E; and
Ey; .

If we consider a finite ground plane, the size of this plane must be large enough to properly reflect
E, (which, after reflection, becomes E,; ). In other words, the ground plane must be large enough
to encompass the major part of the currents that exist in an infinite ground plane.

Note that the effect of the reflection of the downward-radiated wave from the ground plane is
utilized in [49] to enhance the operating bandwidth of the helical antenna, in particular, for the WB3
design, but at the cost of reducing the peak gain compared to the narrowband (NB) design. On the
other hand, the nonuniform helical antenna from [82] is optimized so to minimize the downward
radiation from the helix current. Hence, this antenna does not need a ground plane, except for a
small counterbalance required to feed the helix.

We can also qualitatively explain the high gain of our nonuniform helical antenna in the
following way. Generally, a helical antenna can be considered as a linear array of individual turns
[2]. The axis of the array is the axis of the helix. In the classical design, this array radiates
predominantly upwards. In our design, however, this array radiates both upwards and downwards.
The downward radiation is reflected by the ground plane, which is equivalent to augmenting the
original array by its image. The resulting array is two times longer than the original array. Hence,
theoretically, the resulting numerical gain may be expected to be up to two times larger [119], i.e.,
the gain may be larger for up to 3 dB.
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From the practical point of view, sometimes it is also important to take care of the antenna overall
dimensions, instead of separately observing the axial antenna length and the dimensions of the
ground plane. Fig. 4.9 shows the dependences of the gain of the designed antennas, located above a
ground plane of finite dimensions, on the volume of the box or cylinder in which the antenna

(together with the ground plane) fits. Therefore, the abscissas in Fig. 4.9 correspond to LS / 2,
which is the normalized volume of that box or cylinder. As it is previously mentioned, the influence
of the losses in the ground plane on the antenna gain is negligible. Hence, here we consider ground

planes to be lossless, whereas the wire conductivity 1S G .
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Figure 4.9. Dependences of the gain of the designed antennas on the antenna overall dimensions for (a) 7,=0.0002 A,
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For example, if we consider the wire radius 0.0005 A, the targeted gain of 18 dBi can be achieved
with different axial antenna lengths and corresponding ground planes (Fig.4.9). For the axial
antenna length 4 A, a square ground plane of a side 3.25 A is required. Also, the same gain can be
achieved with antennas of the axial lengths 5 A, 7 A, or 10 A located above square ground planes of
sides 2.5 A, 2.25 A, or 2 A, respectively. Depending on the application and desired antenna overall
dimensions, the final decision can be made by the designer.

The ground plane of finite dimensions also influences other antenna characteristics, i.e., the
bandwidth, axial ratio, and input impedance.

The differences between the relative bandwidths when the antennas are located above a PEC
ground plane of a finite dimensions and above an infinite PEC ground plane are A BW,, ABW,,

and ABW,. For various axial antenna lengths, wire radii, and two different wire conductivities
(PEC and o) ABW,, ABW,, and ABW, are shown in Figs. 4.10-4.12 (for square ground

planes) and Figs. 4.13—4.15 (for circular ground planes).

These results confirm that the relative bandwidths are negligibly influenced by conductor losses
as well as by the shape (square or circular) of the ground plane (when their surface areas are equal).
The ground plane of a finite size can increase the gain. However, its influence on the relative

bandwidths is very small. Moreover, when the ground-plane dimension is larger than \/S_O / A, the

relative bandwidths are almost the same as with the infinite ground plane. This conclusion is
important from a practical point of view since it is expected that ground planes of dimensions

smaller than \/S_O / A will not be used often. Hence, the finite-size ground plane, used instead of the
infinite ground plane, does not degrade the relative bandwidths.
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Figure 4.10. A BW; for square ground plane, various axial antenna lengths, wire conductivities o,.; and PEC, and wire
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The differences between the axial ratio (Aar) and the input impedances (AZ=AR+jAX)
when the antennas are located above a PEC square ground plane of a surface area S (square side
a =+/§ ) and above an infinite PEC ground plane for various axial antenna lengths, wire radii, and
two different wire conductivities (PEC and o) are shown in Figs. 4.16 and 4.18, respectively.
These differences when the antennas are located above a PEC circular ground plane (instead of a
square ground plane) are shown in Figs. 4.17 and 4.19, respectively.

Figs. 4.16-4.19 confirm that conductor losses do not influence the axial ratio and the input
impedance. The shape of the ground plane (if the surface areas of the square and circle are equal)
negligibly influences the axial ratio, in particular for the ground planes whose dimensions are larger

than \/S—o / A . In these cases, the considered differences of the axial ratio vary closely around zero
(the variation is less than +0.25dB). However, the influence of the ground plane shape on the input
impedance is noticeable. From the practical point of view, the most preferable are the dimensions
around \/S_O / A . Hence, the most preferable part of the graphs in Figs. 4.18 and 4.19 are the middle
regions. Within these regions, for the square ground plane, AR and AX vary around 10Q2 and
—-15Q, respectively. For the circular ground plane, A X varies around 0. However, AR changes
depending on the wire radius, i.e., with the increase of the wire radius, AR decreases.
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4.4. Comparison of designed nonuniform helical antennas with other
helical antennas

In this subsection the designed nonuniform helical antennas are compared with the uniform
helical antennas and other types of nonuniform helical antennas (designed within this work), and
with different types of helical antennas presented in the literature.

4.4.1. Comparison of designed nonuniform helical antennas with the optimal

uniform helical antennas

The basic helical antennas are the uniform helical antennas, where the turn radius and the pitch
angle are constant along the antenna axis. Hence, the uniform helical antennas can be observed as
the special case of the nonuniform helical antennas with linearly varying geometrical parameters
when 1, =7, and @, =@, in (2.1) and (2.2), respectively. For the sake of comparison, using the

same combination of the optimization algorithms as for the optimization of the nonuniform helical
antennas (defined in Subsection 3.1), the optimization of the uniform helical antennas is performed
for various axial lengths and wire radii within the ranges considered in the case of nonuniform
antennas. The gain of these antennas is compared in Fig. 4.20 with the gain of the corresponding
nonuniform helical antennas, designed using the presented design equations (3.13), (3.14), (3.19),
and (3.20). The presented design of nonuniform antennas is valid for the normalized conductivities
higher than the minimal normalized conductivity, o, A, defined for each axial antenna length and

wire radius by (3.8). These minimal normalized conductivities are indicated by diamond markers in
Fig. 4.20. For the normalized conductivities higher than the minimal normalized conductivity, the
designed nonuniform helical antennas achieve higher gain than the optimal uniform helical
antennas. However, note that even for the normalized conductivities lower than 6, A the designed

nonuniform helical antennas still achieve higher gain than the optimal uniform antennas, although
this advantage reduces with increasing losses.

From the practical point of view, as long as the gain of the designed nonuniform antennas is more
than 0.5 dB higher than the maximal gain achieved with the optimal uniform antennas of the same
axial length and wire radius (red dashed line in Fig. 4.20), the designed nonuniform antennas can be
considered as the preferable choice. However, for lower normalized conductivities it is suggested to
use the uniform helical antennas due to their easier design (fewer degrees of freedom) and
fabrication (since the turn radius is constant along the antenna; hence, the supporting structure for
the antenna conductor can be constructed easier than in the case of nonuniform turn radius). For
each axial antenna length and wire radius, the normalized conductivity that defines the proposed
border can be calculated from

—1.6210g10(%w)—3.89

o, =10 1ogm[§j+1.081ogm[%]+2.82, (4.3)

where o, is in MS/m, and A, L, and r,, are in m. The coefficients in (4.3) are obtained by fitting the
normalized border conductivities indicated in Fig. 4.20 by cross markers.
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Figure 4.20. Compared gain of the designed nonuniform and the optimal uniform helical antennas, (a) L=2 A [120],
(b) L=3 A, (c) L=4 L [120], (d) L=5 A, (e) L=7 A [120], and (f) L=10 A [120]. Diamond markers indicate the minimal
normalized conductivities for which the design of the nonuniform helical antennas is valid ( A from (3.8)). Cross
markers indicate normalized border conductivities (opA). Red dashed lines indicate gains for 0.5 dB higher than the
maximal gains of the uniform helical antennas for the corresponding axial length and wire radius.

Further, the gain of the optimal uniform helical antennas (optimized at the corresponding
normalized conductivity) is compared with the gain of the uniform antennas whose design is the
optimal one for the normalized border conductivity. This comparison is made in the range of the
normalized conductivities from 0.1 MS to 1000 MS in Fig. 4.21. It can be noticed that the optimal
uniform antennas for the normalized border conductivity achieve almost the same gain as the
optimal uniform antennas. This conclusion allows us to define the optimal design for the
normalized border conductivity as the optimal design of the uniform helical antennas valid in the
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range of the normalized conductivities where the uniform helical antennas are the preferable choice
(from 0.1 MS to o,A). Hence, the optimal geometrical parameters of the uniform helical antennas

(turn radius and pitch angle) do not depend on the wire conductivity (same as the optimal

geometrical parameters of the nonuniform helical antennas).

15.0 16.0

L=2 ) L=3 )
14.5 P == === s 155 =
e " 15.0 = |

— .4 — 14.5 r 4

= 135 A J

= = ),/

3, = 14.0

5 13.0 optimal border calculated S0 # optimal  border calculated
12.5 7,=0.0002 A: ° —_— 13.5 7/ r,=0.0002 A ° -

//// r,=0.0005 A: 13.0 // r,=0.0005 A:
12.0 /i + —0.001 s - 7, =0.001 A:
v 5
11.5 r =0.002 A: ° _— —a— 7,=0.002 A: ° B — —a—
120 1 1 1 1
0.1 1 10 100 1000 0.1 1 10 100 1000
oA [MS] o\ [MS]
(a) (b)
17.0 17.5
16.5 =1 e 17.0
16.0 o —= — o 16.5
15597 16.0

7 L2 D 155

= 15.0 / | = ¥/

%0 / optimal border calculated %0 15.0 77 optimal border calculated
14.5 %ero.oooz Y — aslL// 000022 e —a—
14.0 /// /1r.=0.0005 2: 140 / r, =0.0005 1.

. V/ 7, =0.001 \: “1/ r =0.001 A:
v r0002%: e @ —— 135 200022 e ——  —a—
13.0 T T I T 13.0 L ! T T
0.1 1 10 100 1000 0.1 1 10 100 1000
ok [MS] ok [MS]
(©)
18.5 19.5
X
L=72) |
18.0 —ee—2—2 19.0
17.5 — 185
17.0 s i7 18.0

8 16517 = 175

= r / = 17.0 L/(

%0 16.0 optimal border calculated %0 16,5 / // optimal border calculated
155L/ / |r,=00002%: e —-— L/ // r,=0.0002%:  ® —-—

/| 00005 2 16.0 71 =0.0005 1.
/ r =0.001 A: S r =0.001 A:
14517 r,=0.002 A: * — 15.0 r.=0.002 2 o« - —m
14.0 - - - - 14.5 ' : ; '
0.1 1 10 100 1000 0.1 1 10 100 1000
o\ [MS] oA [MS]
(e ®

Figure 4.21. Compared gain of the optimal uniform helical antennas (“optimal”), the optimal uniform helical antennas
for the normalized border conductivity (“border”), and the antennas whose geometrical parameters are calculated from
(4.4) and (4.5) (“calculated”) for (a) L=2 A, (b) L=3 A, (c) L=4 A, (d) L=5 A, (¢) L=7 A, and (f) L=10 A.

The geometrical parameters of the optimal uniform helical antennas for the normalized
conductivity oyA are shown in Fig. 4.22 (by circular markers). Following a similar procedure as
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described for the fitting of the geometrical parameters of the nonuniform helical antennas
(Subsection 3.2.3), the geometrical parameters of the optimal uniform helical antennas can be
approximated by

r _ Ty L Vy
X =107 ((— 3.22 logl({?j —28. IJ loglo(xj + (0.0687 loglo(yj + 154D , (4.4)

o[]= (0.620 1ogm(%j + 4.77jloglo(%] + (0.499 1og10[%wj + 5.55] . (4.5)

The coefficients in (4.4) and (4.5) are found so that the discrepancy between the gain of the
antennas whose geometrical parameters are calculated (from (4.4) and (4.5)) and the gain of the
optimal uniform helical antennas is maintained as low as possible, instead of simply fitting the
optimal geometrical parameters. Therefore, the discrepancies between the optimal (circular
markers) and fitted (solid lines) turn radii and pitch angles are noticeable in Fig. 4.22.

Note that the optimal radius of a turn of the uniform helical antennas is larger than the average
turn radius (the arithmetic mean of the turn radius of the first and the last turn) of the optimal
nonuniform helical antennas. The optimal pitch angle of the uniform helical antennas increases with
the increase of axial antenna length. The same behavior shows the optimal pitch angle of the last
turn of the nonuniform helical antennas, whereas the optimal pitch angle of the first turn decreases
with the increase of the axial antenna length.

Further, in Fig 4.21 the gain of the uniform helical antennas whose geometrical parameters are
calculated from (4.4) and (4.5) is compared with the gain of the optimal antennas and the optimal
antennas for the normalized border conductivity. The maximal discrepancy between the gain of the
optimal uniform antennas and the gain of the antennas whose geometrical parameters are calculated
is less than 0.3 dB, for the considered axial antenna lengths and wire radii.
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Figure 4.22. Optimal geometrical parameters of the uniform helical antennas for the normalized conductivity oA and
calculated geometrical parameters from (4.4) and (4.5): (a) normalized turn radius and (b) pitch angle.

4.4.1.1. Comparison of the optimal uniform helical antennas and uniform helical

antennas from the literature

In Subsection 4.4.1 the results of the optimization of the uniform helical antennas are presented,
the designed nonuniform helical antennas are compared with the optimal uniform helical antennas
and the geometrical parameters of the optimal uniform helical antennas are approximated by (4.4)
and (4.5). Here, we want to compare the optimal uniform helical antennas (obtained utilizing the
same optimization procedure as described in the previous subsection) with other uniform helical

53



antennas presented in the literature and to point out and clarify some misunderstandings and
discrepancies.

The results of the detailed and comprehensive investigation of the uniform helical antennas are
presented in [49]. As it is shown there, the narrow-band (NB) design achieves the highest gain
compared to the other designs presented in the literature, except the gain calculated using the
equation from [2], which is considered to overestimate the gain. For these reasons, we believe that
the most important comparison of the optimal uniform antennas (designed here) is with the NB
design from [49]. In [49] the considered conductors are lossy, and the conductor losses are as for
the copper at 300 MHz. However, it is stated that the effect of losses is negligible even for the
thinnest considered wire. (Losses in the thinnest wire reduce the gain by 0.1-0.2 dB.) In order to
check this conclusion, we performed the optimization of the antenna geometry for various axial
antenna lengths, wire radii (considered in [49]), and normalized wire conductivities (oA ) from
0.1 MS to 1000 MS. We consider the same axial antenna lengths and wire radii as in [49],
summarized in Table 4.1. The gains of the optimal uniform antennas are shown by circular markers
in Fig. 4.23. Further, the gains of the antennas whose geometrical parameters are presented as the
optimal ones in [49] are shown in Fig. 4.23 by solid lines. In [49] the expected gains of the designed
antennas are specified, for axial antenna lengths between A and 7 A. Hence, we also indicated these

values in Fig. 4.23 by pink solid lines.
Table 4.1.
Considered axial antenna lengths and corresponding wire radii [49].

Vot /2 Vo [N Vs /M
0.00015375 0.0015375 0.015375
0.00015255 0.0015255 0.015255
0.00014850 0.0014850 0.014850
0.00013500 0.0013500 0.013500
0.00012750 0.0012750 0.012750

0.00012450 0.0012450 0.012450

Results in Fig. 4.23 definitely show that the gain of the uniform helical antennas does depend on
the conductor losses, especially for the thinnest wire, when, for the normalized conductivities lower
than 58 MS (copper at 300 MHz), the gain can be decreased for a few decibels due to the increase
in losses. Further, antennas whose geometrical parameters are obtained from our optimization
achieve slightly higher gain in almost all cases, especially for the longest antenna and the thickest
wire, where this discrepancy is almost 1 dB. For the medium-length antennas, this discrepancy is
around 0.5 dB, whereas for the shortest antennas this discrepancy becomes negligible. However, the
gain of the optimal uniform antennas predicted in [49] is overestimated in most cases, especially for
the lower normalized conductivities.
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Figure 4.23. Gain of uniform antennas of the geometrical parameters from [49] and the optimal uniform antennas for
axial lengths (a) L=0.7175 X, (b) L=1.017 A, (c) L=1.98 A, (d) L=4.5 X, (¢) L=8.5 A, and (f) L=16.6 A.

4.4.2. Comparison of designed nonuniform helical antennas and uniform helical

antennas from the literature

In this subsection we present comparison of the characteristics of the nonuniform helical antennas
designed using design equations with the narrow-band (NB) design for uniform helical antennas
from [49] (the compared characteristics are gain, bandwidths, and axial ratio). These comparisons
are made for the antennas at the operating frequency 300 MHz, wire radius is ,=0.0015 A, whereas
two different wire conductivities (o and 1000 MS/m) are considered. The results of the
comparison are presented in Tables 4.2—4.4. When the losses are low, the nonuniform helical
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antennas achieve about 2 dB higher gain than the NB design. The gain of nonuniform antennas is
more affected by the increase of losses than the gain of the NB design. However, even for higher
losses, nonuniform antennas still achieve a higher gain than NB antennas. The bandwidths of
uniform antennas are wider for shorter antennas, whereas for longer antennas the situation is
reversed. For all considered cases, the axial ratio of nonuniform helical antennas is better than of
NB antennas.
Table 4.2.
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for L=2 A [113].

Oref

NB from [49]

1000 MS/m

designed
nonuniform
helical antennas | 1000 MS /m

Oref

© 2019 IEEE

Table 4.3.
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for .=4.5 A [113].

L=4.5 )
BW, [%]

Oref 17.95
NB from [49]

1000 MS/m 18.73

designed Gref 26.10
nonuniform

helical antennas 1000 MS / m 25.90

© 2019 IEEE

Table 4.4.
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for .=8.6 A [113].

Oref
NB from [49]

1000 MS/m

designed
nonuniform
helical antennas | 1000 MS /m

Oref

© 2019 IEEE

4.4.3. Comparison of designed nonuniform helical antennas with other types of

helical antennas from the literature

The designed nonuniform helical antennas are compared here with other (different) types of
helical antennas presented in the literature.
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Different types of tapered helical antennas are investigated in [78] (including the uniform helix).
Since in [78] the radius and the conductivity of the considered conductor are not indicated, for our
design (which is used for comparison) we adopt ,=0.002 A and 6=58 MS/m. Further, we utilize an
infinite perfectly conducting ground plane, instead of a cavity used in [78]. Note that the influence
of cavity is investigated in [51], where it is shown that the cavity can increase the gain for about
1.5 dB compared to the gain with the infinite ground plane.

The results are presented in Table 4.5. For all considered cases, the nonuniform antennas,
designed using design equations achieve more than 2 dB higher gain than the antennas presented in
[78]. However, the target in [78] is to use the nonuniform helical antennas in order to broaden the
bandwidth in comparison with the uniform helical antennas. Hence, the nonuniform helical
antennas from [78] (continuously tapered and quasi-tapered) have wider bandwidth than the
nonuniform antennas designed using the design equations, although the gain of our design is

significantly higher. Finally, all considered antennas have comparable axial ratios.
Table 4.5.
Comparison of the antennas from [78] and the designed nonuniform helical antennas [113].

o [dBi] BW, [%] ar [dB]

designed designed designed
nonuniform nonuniform nonuniform
[78] helical [78] helical [78] helical

antennas

antennas

antennas

Un;%)énﬁ%f e 16.2 18.4 23 27.5 1 0.3
Ta;’te;%‘(i)'i‘/‘[% ‘Z‘~46 A 15.7 18.4 238 275 0.2 0.3
e R
QuZiiétg(I))elz\jleISIlZ3.84 A 14.8 17.8 43.1 24.4 0.5 1.4

© 2019 [EEE

A very compact design of nonuniform helical antennas with a wire pigtail counterbalance is
reported in [82]. We compare our design with the design presented in [82] in Table 4.6. The
comparison is made for the axial lengths and wire radii for which our design is applicable. For our
design, the wire conductivity is 58 MS/m and antennas are located above an infinite perfectly
conducting ground plane.

Although our design achieves significantly higher gain, the antennas designed in [82] do not
require a ground plane (a small ground plane is only used to enable easier practical realization of
the antenna feeding). Hence, these antennas are very handy and can be the preferable choice for
some applications.

Table 4.6.
Comparison of the antennas from [82] and the designed nonuniform helical antennas [113].

¢ [dBi]
rw=0.001 A
designed nonuniform helical
antennas

16.04

16.65

17.16

17.71

18.09

18.39

18.76

© 2019 IEEE

In [83] and [84] helical antennas with a pitch profile modeled using Catmull-Rom spline are
optimized using PSO. In [83] the turn radius is constant, whereas in [84] an exponential variation of
the turn radius is utilized. Moreover, these designs are compared (in terms of gain) with the
classical design suggested by Kraus. In Table 4.7, the designs presented in [83] and [84] and the
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classical Kraus’s design are compared with the nonuniform helical antennas designed using the
design equations from the work presented in this thesis. The axial antenna lengths of the analyzed
Kraus’s designs are calculated based on the known number of turns. In our design of nonuniform
helical antennas, the corresponding axial lengths are the same as for the Kraus’s design, but
rounded to the nearest integer multiple of the half-wavelength, as suggested in Subsection 4.2.
Rounding is done towards smaller integers to ensure that our design is not favored. In our design of
nonuniform helical antennas, infinite ground planes are utilized, the conductor radius is 0.002 A, and
the conductivity is 58 MS/m.

The results in Table 4.7 show that our nonuniform helical antennas achieve higher gain in all
cases except for the design from [84]. However, this discrepancy is small. Moreover, utilizing other
conductor properties (radius or conductivity) or a ground plane of an appropriate (finite) dimension,
this discrepancy can be reversed.

Table 4.7.
Comparison of the antennas from [83], [84], and Kraus’s design with our design of nonuniform helical antennas.

g [dBi]

number of
turns

designed nonuniform
helical antennas

10 . 11.79 L=2)\ 15.89

Kraus’s design

15 . 13.17 L=3.5\ 17.39

20 . 14.04 L=4.5\ 18

Exponentially varying spacing between turns is considered in [85], and the comparison with
uniform helical antennas is made. In Table 4.8 we compare our design (of wire radius 0.002 &) with
the designs from [85]. The compared antennas are of the same axial length, wire conductivity,
ground plane shape, and dimension. It can be noticed that the gain of the antennas designed using
our design equations is more than 4.5 dB higher than the gain of the antennas from [85].

Table 4.8.
Comparison of the antennas from [85] and our design of nonuniform helical antennas [113].
Operating frequency, axial length Type of design
- _ exponential [85]
J=2.9 GHz, [=2.48 ) designed nonuniform helical antennas
uniform [85]
designed nonuniform helical antennas
exponential [85]
designed nonuniform helical antennas
uniform [85]
designed nonuniform helical antennas

f=2.5GHz, L=2.13 A

f=2.8 GHz, L=3.56 A

f=2.5GHz, L=3.17 A

© 2019 IEEE

4.4.4. Comparison of designed nonuniform helical antennas and helical antennas

with exponential and piecewise-linear variation of geometrical parameters

The geometrical parameters of the nonuniform helical antennas with exponential (here referred to
as exponential or EG antennas) and piecewise-linear (here referred to as piecewise-linear or PWLG
antennas) variation of geometrical parameters are defined in Subsection 2.1.2 by (2.3)—(2.6). The
models of these antennas are made following the same procedure as for the nonuniform helical
antennas with linearly varying geometrical parameters. (In this subsection we refer to these
antennas as linear or LG antennas.) Hence, the perfectly circular turns are approximated by square
turns and the antennas are located above an infinite perfectly conducting ground plane. WIPL-D
models of EG and PWLG antennas are shown in Fig. 4.24b—c.
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Similarly to LG antennas, the geometrical parameters of EG and PWLG antennas are firstly
optimized at a single (operating) frequency in order to maximize the partial gain for the circular
polarization. Additionally, for the sake of a more detailed comparison, the optimization of the
geometrical parameters of LG, EG, and PWLG antennas is also performed in a frequency range.

The optimization of the geometrical parameters of the EG antennas utilizes the same optimization
setup as for the LG antennas (defined in Subsection 3.1), i.e., 2000 PSO iterations (swarm size 20),
followed by (maximum of) 200 Nelder-Mead simplex iterations launched form the best-found PSO
solution. In this case, the optimization variables are 7, r,, ¢,, ¢, (the same variables as defined

for LG antennas), with the additional variables C, and C,, from (2.3) and (2.4).

Since the geometry of PWLG antennas implies more degrees of freedom (also depending on the
considered number of linear segments along the antenna axis), for the optimization of this antenna
type, 5000 PSO iterations (swarm size 20) are followed by (maximum of) 200 Nelder-Mead
simplex iterations. Within this work we consider only PWLG helical antennas with three linear
segments, i.e., k€ {1,2,3} in (2.5) and (2.6). Hence, the optimization variables are r; and ¢,

Jje {1,2,3,4}, from (2.5) and (2.6). Additionally, the axial lengths of the two lower linear segments
are also optimized, whereas the length of the third segment is L, =L—-L, —L,, where L;, L,, and

L, are the axial lengths of the three segments (Fig. 2.2b).

The optimization in a frequency range utilizes the same combinations of the optimization
algorithms, but each combination is independently repeated five times in order to increase the
possibility to find the best solution. The optimal solution is the best-found solution within those five
independent optimizations.

Firstly, the single-frequency optimization is performed at 300 MHz. The considered axial antenna
length is L =3A, the wire radius r,, =0.002A , and the wire conductivity 6 =58 MS/m (copper).
The models of the optimal LG, EG, and PWLG antennas are shown in Fig. 4.24a—c. In addition, the
LG antenna is designed following the presented design procedure, i.e., the geometrical parameters

are calculated from (3.13), (3.14), (3.19), and (3.20). We refer to this antenna as LG (designed), and
the model is shown in Fig. 4.24d.

S
©2019 AOETRAN <

©2019 (Ic)ETRAN

(a) (b) (c) (d)
Figure 4.24. WIPL-D models of the optimal (single-frequency optimization): (a) LG [110], (b)EG [110],
(¢) PWLG [110], and (d) LG antenna designed following the presented design procedure.

Although the optimization is performed at the single frequency (300 MHz), the gain of the helical
antennas is compared in a wider frequency range in Fig. 4.25a.

At 300 MHz the PWLG antenna achieves more than 0.5 dB higher gain than LG and EG
antennas. However, this advantage is accompanied with a very narrow bandwidth of the PWLG
antenna (the gain has a sharp peak around 300 MHz). From the practical point of view, this can be
critical, since the manufacturing tolerances can cause the frequency response to shift.

59



Further, for the practical purposes, the overall length of the conductor is also an important
parameter. According to this criterion, the PWLG antenna can be considered as the preferable
choice, since it requires the shortest conductor (27.63 A). The required conductor lengths for the LG,
LG (designed), and EG antennas are 39.02 A, 33.44 A, and 33.50 A, respectively. In Fig. 4.24 it can
be noticed that the optimal LG antenna has significantly more turns at the lower part compared with
the other optimal antennas, which explains the request for the long conductor.

To make a fair comparison, we additionally perform the optimization in a frequency range. The
goal is to achieve as high as possible gain, but in a reasonably wide frequency range. During the
optimization, we consider the frequency range slightly shifted towards higher frequencies, from
280 MHz to 340 MHz, instead the frequency range symmetrically positioned around the operating
frequency. The reason for this is that the discrepancies of the gain in Fig. 4.25a are bigger (up to
3 dB) at the higher frequencies. We consider seven equidistantly spaced frequencies within the
defined range. We calculate the (partial) cost function for each frequency (in the same way as for
the optimization at a single frequency), whereas the (total) cost function is the arithmetic mean of
the (partial) cost functions. For this optimization the same axial antenna length, wire radius, and
conductivity are utilized.

The gains of the optimal LG, EG, and PWLG helical antennas are compared in Fig. 4.25b,
whereas the models of those antennas are shown in Fig. 4.26. Visually, small differences between
the geometries of the antennas shown in Fig. 4.24 and Fig. 4.26 can be noticed. Further, antennas in
Fig. 4.26 have more densely spaced turns at the bottom of the antenna than at the top. Finally, the
conductor lengths of LG, EG, and PWLG antennas optimized in the frequency range are 34.88 A,
31.79 A, and 32.97 A, respectively.
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Figure 4.25. Gain of the nonuniform helical antennas: (a) single-frequency optimization (at 300 MHz) [110] and
(b) optimization in a frequency range [110].
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(a) (b) ()
Figure 4.26. WIPL-D models of the optimal (optimization in a frequency range): (a) LG [110], (b) EG [110], and
(c) PWLG antennas [110].

Obviously, the optimization in the frequency range leads to the solutions with a wider bandwidth,
but this is accompanied with the decrease in the gain at the operating frequency. In the frequency
range from 260 MHz to 330 MHz, the antennas of all geometries achieve almost the same gain (the
gain differs for less than 0.5 dB within this frequency range). Fig 4.27 compares the gain of the
antennas optimized at the single frequency (300 MHz) and in the frequency range. In case of the LG
antenna, the optimization in the frequency range results in a small decrease in the gain (for 0.3 dB),
but the bandwidth is slightly wider and the required conductor is shorter. The EG antenna optimized
in the frequency range achieves around 0.5 dB smaller gain at 300 MHz than the EG antenna
optimized in the single frequency. However, the conductor is slightly shorter and the bandwidth is
wider. At 300 MHz, the PWLG antenna optimized at the single frequency achieves around 1 dB
higher gain than the antenna optimized in the frequency range. Although the PWLG antenna
optimized in the frequency range obtains significantly larger bandwidth, the required conductor is
for about 20 % longer. Hence, the main advantages of the PWLG antennas optimized at the single
frequency (high gain at the operating frequency and short conductor) are not present in case of
PWLG antennas optimized in the frequency range.

Therefore, the optimizations for various axial lengths are performed only for LG and EG
antennas, since their geometry is simpler. Hence, the optimization requires fewer parameters, which
allows us to utilize less iteration.
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Figure 4.27. Gain of the optimal (a) LG [110], (b) EG [110], and (¢) PWLG antenna optimized at a single frequency and
in a frequency range [110].

Finally, the optimization of the LG and EG antennas of various axial lengths is performed in the
frequency range. The gain of these antennas is compared in Fig. 4.28, whereas the gain at the
operating frequency and the required conductor lengths are listed in Table 4.9. The gain of the EG
antennas at 300 MHz is slightly higher, especially for longer antennas. Also, for shorter antennas
(L £31L) the EG antennas require shorter conductors than the LG antennas. However, for longer

antennas the situation is reversed.
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Finally, it can be concluded that from the practical point of view, EG and LG antennas are very
similar with respect to the gain, bandwidth, and even the required conductor length. Hence, EG
antennas do not introduce any important advantages over LG antennas.
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Figure 4.28. Gain of the optimal helical antennas optimized in a frequency range: (a) L=2 A [110], (b) L=2.5 X [110],
(c) L=4 A [110], and (d) L=5 A [110].

Table 4.9.
Conductor lengths and maximal gain of the optimal helical antennas [110].

LG antennas EG antennas

conductor length g [dBi] conductor length g [dBi]

26.7 A 16.0 26.7 A 16.1
31.8 A 16.7 31.2A 16.9
349 A 17.2 31.8A 17.5
44.0 A 18.2 45.8 L 18.5
532 A 19.0 549 A 19.3

© 2019 (Ic)ETRAN
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5. Design procedure and experimental verification

In this chapter we formulate an algorithm (set of the steps) for the design of the optimal
nonuniform helical antennas with linearly varying geometrical parameters based on the design
equations formulated in Chapter 3. In order to make the design procedure usable for practical
purposes, a ground plane of finite dimensions should be chosen following the conclusions from
Chapter 4.

We also present a worked-out example, based on which a nonuniform helical antenna was
manufactured and tested.

5.1. Design procedure

The targeted antenna gain (at the desired operating frequency) and wire properties (wire radius
and conductivity) are assumed to be known. This is justified from the practical point of view, since
in most cases a specific material (wire) is available and the targeted gain is defined by the
application.

Thereafter the design procedure consists of the steps summarized in Fig. 5.1. The required
normalized axial antenna length can be calculated from (3.23). Theoretically, this step requires an
inversion of (3.23). Also, according to Subsection 4.2, (3.23) predicts well the gain of antennas
whose axial length is an integer multiple of the half-wavelength. Hence, the normalized axial
antenna length calculated by the inversion of (3.23) should first be rounded to the nearest greater or
equal integer multiple of the half-wavelength and then denormalized by multiplication by A. Hence,
in practical applications, instead of the inversion, the minimal axial antenna length that meets the
requested gain can be found by a systematic check of the suggested (discrete) axial antenna lengths,
using (3.23). When the required axial antenna length is calculated, (3.8) should be used to check if
this design is valid for the available wire conductor and desired axial antenna length. If the
normalized conductivity of the wire conductor is higher than o, (calculated from (3.8)), the
design parameters can be calculated from (3.13), (3.14), (3.19), and (3.20), which concludes the
design.
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INPUT:

e target gain, g

e wire radius, 7,

e wire conductivity, ¢

}

Inversion of (3.23)

GA < Gpminh
Check the design by (3.8) i

The design is not
valid

l GA 2 Gmin}\f

Design parameters:
e i from (3.13)
e 1, from (3.14)
e ¢ from (3.19)
e @ from (3.20)

|

Calculate the expected gain
by (3.23)

Figure 5.1. Flowchart of the design procedure.

In Table 5.1 the values of o, for different wire radii and axial antenna lengths at various
frequencies are listed and practical feasibility of the design is indicated by the green color and the
infeasible designs are denoted in red color. Namely, the green color indicates that, for the observed
frequency, wire radius, and axial antenna length, Gmiy 1s lower than 100 MS/m (which is indicated as
the upper limit for the conductivity defined in Subsection 3.2.2), whereas if the required o, 1s
greater than 100 MS/m, that cell is colored red. From these results it can be noticed that below
around 130 MHz, for all considered axial antenna lengths and wire radii, the corresponding G, 1S
lower than 100 MS/m. However, above 130 MHz, firstly for the thinnest wires and the longest
antennas, the required values of o, become larger than 100 MS/m. As the operating frequency
increases, more cells becomes red (the corresponding G, is larger than 100 MS/m). Finally, at
6 GHz (which is the highest considered frequency, defined in Subsection 3.2.2), for the wire radius
0.001 A only the shortest axial antenna length fulfills the limit for Gpmin.

Further, if it is necessary for a cross-check, the expected gain of the designed antenna can be
calculated from (3.23).

It is important to mention that the same design procedure and equations hold for both right-hand
and left-hand wound helices.

Also note that if oyiph 1S too high, the geometrical parameters of the optimal antenna calculated
from the design equations can be used as a good starting point for further numerical optimization
performed by the designer.
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Table 5.1.
Values of 6, in MS/m, at different operating frequencies and for various antenna lengths and wire radii.

L=25)r| L=3A L=5A\ L=T\ L=10A

=0.0002 1 . 8.00 9.87 16.56 21.27 23.37

=0.00051 d 1.95 2.49 . 4.64 6.38 7.54

=0.001A d 0.67 0.88 . 1.77 2.57 3.21

=0.002A ] 0.23 0.32 : 0.68 1.04 1.37

=0.0002 1 26.67 32.88 55.19 70.88 77.88

= . 6.48 8.29 15.45 21.26 25.13
£ =100 MHz 0.00051

=0.001A ] 2.22 2.93 : 5.90 8.55 10.68

=0.0021 . 0.77 1.03 : 2.25 3.44 4.54

=0.0002 1 34.67 42.74 71.74 91.43 101.24

P =0.00051 8.42 10.78 20.08 27.63 32.67
=130 MHz

=0.001A . 2.89 3.80 . 7.67 11.11 13.88

=0.002 A ; 0.99 1.34 2.11 2.93 4.47 5.90

=0.0002 % 80.00 98.62 134.02 165.55 212.63 233.63

= 19.43 24.86 35.83 46.34 63.76 75.38
£ =300 MHz 0.00051

=0.001A ] 6.66 8.77 13.21 17.69 25.64 32.04

=0.002A 5 2.29 3.09 4.87 6.75 10.31 13.62

=0.0002 % 266.64 328.72 446.72 551.82 708.74 778.75

=0.00051 64.74 82.85 119.44 154.44 212.53 251.25

=0.001A 22.19 29.21 44.03 58.94 85.46 106.77

=0.002A 5.19 7.61 10.30 16.24 22.50 34.36 45.38

=0.0002%| 611.68 799.92 986.14 1340.16 1655.46 2126.21 2336.23

=0.00051| 141.87 194.21 248.55 358.30 463.32 637.59 753.74

=0.001A 46.97 66.56 87.63 132.09 176.82 256.37 320.31

=0.002A 15.55 22.82 30.90 48.70 67.48 103.08 136.12

=0.00027| 1223.36 1599.83 197228 | 2680.32 331091 425242 | 4672.46

=0.00051| 283.73 388.42 497.09 716.60 926.64 1275.18 1507.47

=0.001A 93.93 133.12 175.25 264.17 353.64 512.73 640.62

=0.002A 31.10 45.63 61.79 97.39 134.96 206.16 272.24

In order to obtain a complete design algorithm, an infinite ground plane has to be replaced by the
ground plane of finite dimensions. Subsection 4.3 (Figs. 4.6, 4.7, and 4.9-4.19) gives results that are
relevant for the designer when choosing the appropriate dimensions of the circular or square ground
plane. For practical purposes, it is important to stress that the losses in the ground plane do not
affect the antenna gain, as it is mentioned in Subsection 4.3.
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The other important characteristics (bandwidths, axial ratios, input impedances) of the optimal
antennas designed following the presented design algorithm are summarized in Subsection 4.1,
whereas the influence of the finite ground plane (square of circular) on these characteristics is
discussed in Subsection 4.3.

5.2. Verification of the design procedure

Following the presented algorithm, an antenna that meets concrete specified characteristics is
designed. Firstly, the antenna characteristics are checked using the simulations. Thereafter a
prototype of the designed antenna is fabricated, and the antenna characteristics are verified by
measurements.

We suppose a left-hand wound helical antenna. The target gain is 16 dBi at the operating
frequency 1 GHz (the corresponding free-space wavelength is A =300mm ). The parameters of the
wire conductor are 7, =0.6mm~0.0021 and c=58MS/m (which corresponds to copper). The
flowchart of the design procedure performed for the specified input values is shown in Fig. 5.2.

The normalized axial antenna length, required to achieve the targeted gain, is calculated from
(3.23), and rounded to the first greater integer multiple of the half wavelength, L =2.5A . The next
step is to check if this design algorithm is valid for the desired normalized axial antenna length and
conductor properties. From (3.8) omin 1s calculated to be 7.6 MS/m (o > o,;,). Hence, the design
equations can be used for calculating geometrical parameters of the optimal antenna. The radii of
the first and the last turn, 7 =0.1051A and r, =0.1453 A, are calculated from (3.13) and (3.14),
respectively, whereas the pitch angles of the first and the last turn are calculated from (3.19), and
(3.20) to be ¢, =4.8438° and @, =5.6121°, respectively. To double-check, the expected gain of
the designed antenna (calculated from (3.23)) is 16.40 dBi. Hence, the required specification is
fulfilled.

INPUT:

¢ g=16dBi

e 7,=0.6mm =0.002 A
¢ o=58MS/m

}

Inversion of (3.23)

!

L=25%

OA < Omink
Check the design by (3.8) S 2 i

The design is not

v

Design parameters:
e 7 =0.1051 1
o 1=0.1453 %
o (¢ =4.8438°
e @py=5.6121°

l

Calculate the expected gain by (3.23)
Gexpeciea = 16.40 dBi > g = 16 dBi v

valid
Jss MS/m > 7.6 MS/m

Figure 5.2. Flowchart of the performed design procedure.
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The models (made in WIPL-D and AWAS) of the designed antenna located above an infinite
PEC ground plane are shown in Figs. 5.3a and b. The simulated gain of the designed antenna in a
wider frequency range (from 0.75 GHz to 1.25 GHz) is shown in Fig. 5.3c. At the operating
frequency (1 GHz) the simulated gain in AWAS is 16.57 dBi, whereas WIPL-D yields 16.62 dBi

(this discrepancy is due to the different numerical analyses used by these codes).
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Figure 5.3. (a) WIPL-D and (b) AWAS model of the designed helical antenna located above an infinite PEC ground

plane, and (c) simulated antenna gain in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating frequency
is 1 GHz) [113].

Although the design parameters are optimized at a single frequency, the antenna designed using
the calculated geometrical parameters is reasonably broadband. The relative bandwidths are
BW]|PEC =17.98%, BW2|PEC =24.61%, and BW3|PEC =29.24% . These relative bandwidths are in
good agreement (the variation is less than 0.2 %) with the results shown in Fig. 4.2d.

The axial ratio of the designed antenna in the direction along the antenna axis and the antenna

input impedance in the considered frequency range are shown in Fig. 5.4. At the operating
frequency, the axial ratio is 0.49 dB, whereas the input impedance of the antenna at the same

frequency is (121.81— j23.01)Q. The axial ratio and input impedance at the operating frequency

are in good agreement with the results shown in Fig. 4.3.
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Figure 5.4. (a) Axial ratio in the direction along the antenna axis and (b) input impedance of the designed antenna
located above an infinite PEC ground plane in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating
frequency is 1 GHz).

In order to take a step towards the design suitable for the fabrication, an infinite ground plane
needs to be replaced by a ground plane of finite dimensions. As it is shown in Subsection 4.3, the
finite-size ground plane influences the antenna gain, as well as the relative bandwidths, axial ratio,
and input impedance. In this work only flat ground planes are considered.

For the present design, a square ground plane is chosen. Considering the results shown in
Fig. 4.6d, a square ground plane of the side length of 2.25 A is sufficient to achieve the same gain as
with an infinite ground plane. Furthermore, with the square ground plane of the side 3.33 A (around
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1 m) the antenna gain is more than 0.5 dB higher than the gain calculated from (3.23), as shown in
Fig. 4.7d. We chose the ground-plane side to be 3.33 A. From Figs. 4.10d, 4.11d, and 4.12d, the
differences of the relative bandwidths (when the antenna is located above a square ground plane and
above an infinite ground plane) can be estimated. These differences for the chosen ground plane are
ABW, =-1%, ABW, =0, and ABW; ~2% . Further, from Figs. 4.16d and 4.18d the differences
of the axial ratio and the input impedance can be estimated to be Aar ~—-0.13dB, AR=10€2, and
AX =-8Q.

The WIPL-D model of the designed antenna located above the square ground plane of the side
3.33 A is shown in Fig. 5.5a. At the operating frequency (1 GHz), the simulated gain is 16.93 dBi,
which is for 0.53 dB higher than the gain calculated from (3.23), as it is predicted by the results
shown in Fig. 4.7d. At the same frequency, the axial ratio (in the direction along the antenna axis) is
0.37 dB and the input impedance is (130.27—j31.59)Q , as the results shown in Figs. 4.16d and
4.18d, respectively, estimate.

The antenna gain in a wider frequency range (from 0.75 GHz to 1.25 GHz) is shown in Fig. 5.5b.
In the same frequency range the axial ratio and the input impedance are also calculated and shown
in Fig.5.6. The relative bandwidths are BW, =16.84%, BW, =24.53%, and

BVV3|3.33X

Figs. 4.10d, 4.11d, and 4.12d, as well as the relative bandwidths for the antennas located above an
infinite ground, allow a good estimation of the relative bandwidths for the antennas located above a
square ground plane.

|3.33k |3.33k

=31.12%. This example confirms that the differences in bandwidths predicted in
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Figure 5.5. (a) WIPL-D model of the designed antenna located above the square ground plane of the side 3.33 A (around
1 m) and (b) antenna gain in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating frequency is 1 GHz).
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Figure 5.6. (a) Axial ratio in the direction along the antenna axis and (b) input impedance of the designed antenna
located above the square ground plane of the side 3.33 A (around 1 m) in the frequency range from 0.75 GHz to
1.25 GHz (antenna operating frequency is 1 GHz).
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Results for the gain, axial ratio, and input impedance at the operating frequency, and relative
bandwidths for the designed antenna located above an infinite and a square ground plane are
summarized in Table 5.2. Also, Ag, ABW,, ABW,, ABW,;, Aar, AR, and AX from
Subsection 4.3 are indicated in Table 5.2.

Table 5.2.

Gains, relative bandwidths, axial ratios, and input impedances for the designed antenna located above an infinite and
square ground plane, and differences of these values from Subsection 4.3.

g BW, BW; R

Infinite calculated (3.23) | simulated 24.61% | 29.24 % 12181 Q
ground plane 16.40 dBi 16.62 dBi

Square ground
plane 16.93 dBi 24.53% | 31.12% 130.27 Q
(side 3.33 ))

Type of
difference

Achieved 0.53dB —0.08% | 1.88 %

From
Subsection 4.3

0.5dB 0 2%

5.3. Fabricated prototype

The prototype of the antenna designed in the previous subsection is fabricated and measured.

The antenna prototype consists of a wire, wound in the form of a helix with the specified radius
and pitch angle for each turn, and a square ground plane. Theoretically the wire is placed in air (in a
vacuum). However, for the required precise positioning of the wire, a supporting structure is
necessary. The material of the supporting structure should meet several criteria. Firstly, the
influence of the supporting structure needs to be as low as possible. Hence, the material of the
supporting structure must have a minimal effect on the field distribution. Secondly, available
techniques for cutting the supporting-structure material need to allow precise tailoring. Finally, a
good choice of the supporting-structure material implies a material which is not very heavy and
very expensive. Taking all these facts into account, acrylic glass is chosen.

The supporting structure is modeled in software Blender [121]. It consists of three acrylic-glass
plates (Fig. 5.7a). These plates are precisely tailored so to properly intersect and form a cross-like
structure (Fig. 5.7b). Each plate is slotted at the proper location to allow that intersection. The edges
of these plates are the corners of the antenna turns (Fig. 5.7c). Hence, the width of the plate
corresponds to the realized turn diameter. Along the edge of each plate, small grooves are cut at
precisely defined positions. These grooves hold the antenna conductor and provide the required
pitch angle. In order to additionally reduce the mass of the supporting structure, big holes are cut in
the plates.

The acrylic-glass plates are fabricated and assembled (Fig.5.8a). At the places of plate
intersection, the acrylic-glass plates are glued in order to increase the strength of the supporting
structure. At the bottom of the supporting structure, a small footer (also made of acrylic glass) is
placed to allow fixing the antenna to the ground plane (Fig. 5.8a). The antenna conductor (copper
wire of the circular cross-section of the radius 0.6mm=0.002A) is wound on the supporting

structure (Fig. 5.8b), which is thereafter fixed to an aluminum square plate. The side of the plate is
1 m, which corresponds to 3.33 A at the operating frequency. The fully assembled antenna prototype
is shown in Fig. 5.8c.
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Figure 5.7. Blender models: (a) acrylic-glass plates, (b) the way plates intersect, and (c) full model of the assembled
acrylic-glass supporting structure with the antenna conductor.
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Figure 5.8. (a) Assembled supporting structure, (b) with wound antenna conductor, and (c)assembled antenna
prototype [113].

5.4. Measurement procedure and results

Measurements of the designed and fabricated antenna are performed in Idvorsky laboratories
[122]. The chamber in Idvorsky laboratories is semianechoic. Hence, additional absorbers are
placed on the floor of the chamber in order to reduce the wave reflected from the floor. With these
additional absorbers, the semi-anechoic chamber could be considered as a fully anechoic chamber.
The measurement setup in the chamber is shown in Fig. 5.9. It consists of the designed nonuniform
helical antenna, a well-documented Vivaldi antenna, a vector network analyzer Agilent ES061A,
and a laptop for collecting measurement results.
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Figure 5.9. Measurement setup in the anechoic chamber in Idvorsky laboratories.

Firstly, the reflection coefficient of the fabricated antenna is measured and compared with the
simulated results in the frequency range from 0.75 GHz to 1.25 GHz (Fig. 5.10).

The effect of imperfect wire bendings at the corners of the turns is also taken into account. This is
done by scaling the turn radii of the model that is used for the comparison with measured results of
the fabricated antenna.

The total wire length of the fabricated antenna is 882.5 cm, whereas the total wire length of the
model (without scaling) is 861 cm. Hence, the imperfect bendings at the corners of the turns extends
the wire length for around 2.5 %, so that the characteristics of the fabricated antenna are shifted
towards lower frequencies in comparison with the computational model. Further, in the model, the
conductor is placed in a vacuum, whereas in the case of the fabricated antenna the conductor is
wound on the supporting structure made of acrylic glass (a dielectric whose relative permittivity is
approximately 3.5). This dielectric also slightly influences the antenna performance, by shifting the
antenna characteristics towards lower frequencies.

To take into account the influence of the imperfect bendings and also the influence of the
dielectric supporting structure, all simulations (whose results are compared with measurements) are
performed for models with 5 % larger turn radii than the turn radii of the fabricated prototype.

The effect of the surface roughness is taken into account by taking the wire conductivity, in the
model, to be 29 MS/m, as explained in [43].

0
A Helical antenna.
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Figure 5.10. Measured and simulated reflection coefficients of the fabricated antenna in the frequency range.

Next, the transmission coefficient between the fabricated helical antenna and the Vivaldi antenna
is measured and compared with the simulated results in the frequency range from 0.75 GHz to
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1.25 GHz. The simulated results are obtained for the model which emulates real situation, i.e.,
models of both antennas placed at the actual distance. The tip-to-tip distance between the helical
antenna and the Vivaldi antenna is 2460 mm. Since the Vivaldi antenna is linearly polarized, two
scenarios are considered, each corresponding to one of the two orthogonal polarizations.

In the first case, the Vivaldi antenna is placed in a vertical position, as in Fig. 5.9. We refer to this
scenario as “vertical”, and the WIPL-D model for this case is shown in Fig. 5.11a. In the second
case, the Vivaldi antenna is rotated for 90°, so it is placed horizontally (“horizontal scenario”), and
the WIPL-D model is shown in Fig. 5.11b.

The measured and simulated transmission coefficients for both scenarios are compared in
Fig. 5.12. The measured and simulated results are in good agreement.
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Figure 5.11. WIPL-D models that correspond to the (a) vertical scenario and (b) horizontal scenario.
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Figure 5.12. Measured and simulated transmission coefficient for (a) vertical and (b) horizontal scenario.

In order to perform measurements in the far field, the three conditions given in Appendix A.3
must be fulfilled. In our case, the critical condition is » > d . =2 D* / A, where d is the Fraunhofer
distance, and we take D to be the antenna axial length. For the fabricated antenna D=2.5 A and
dr =3750mm . Hence, the measurements are actually performed in the near-field region and,
strictly speaking, we cannot extract the antenna gain from the measured data, because the far-field
conditions are not fulfilled. Unfortunately, the available chamber is too small to perform far-field
measurements.

However, the good agreement between simulated and measured results shown in Fig. 5.12 gives
us a strong solid background to believe that the gain of the fabricated antenna is very close to the
gain obtained from the simulations.
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In order to further increase the confidence in the good gain of the fabricated antenna, the
following numerical experiment is performed.

Firstly, two identical Vivaldi antennas are simulated at the distances (d), sweeped from 0.1 m to
5 m (measured from the tip of one antenna to the tip of the other antenna). The frequency for the
analysis is 1 GHz. We start from the modified Friis formula

|§21(d)|2 = (szGrGt (1 - |§11|2)(1 - |§22|2)- (5.1)

4nd

This formula gives the squared magnitude of the transmission coefficient between the antenna ports.
The modification takes into account the mismatch between the antennas and the feeding
transmission lines. Note, however, that this formula assumes that the receiving antenna is in the far
field of the transmitting antenna. Since the transmitting and the receiving antennas are identical, the

antenna gainis G, =G, =G and |§11| = |§22| . Hence, the transmission coefficient is

A
|§21(d]:4n_dG(1—|§11|2)- (5.2)

We use G and s,; from the simulations in order to calculate |§21(d l from (5.2). We compare the

transmission coefficient from the simulation to the one obtained using the Friis formula. If we use
the distance, d, measured between the tips of the antennas, we observe a discrepancy in the
transmission coefficients, as shown in Fig. 5.13a. This discrepancy is expected since the Friis
formula is valid when the antennas are in the far-field region, but we use it in a region that is not
sufficiently far from the antennas, i.e., in a region that is not exactly the far-field region.

In order to mitigate this discrepancy, we need to find the “center” of the Vivaldi antenna, or the
correct distance that should be used in the Friis formula. With simple optimization of the distance
used in the Friis formula, it is found that the distance between the tips should be increased for
approximately 93 mm per antenna, i.e., 186 mm in total. This distance is practically the same as if
we measure the distance between the antennas from nearly the mid-point of one antenna to the
mid-point of the other antenna. The comparison of the simulated transmission coefficient and
calculated transmission coefficient with this distance correction is shown in Fig. 5.13b. From the
presented results it can be concluded that if we use the Friis formula for the gain estimation of the
fabricated helical antenna, we need to correct the tip-to-tip distance between the helical antenna and
the Vivaldi antenna by adding 93 mm. However, we also need a similar correction for the helical
antenna.
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Figure 5.13. Transmission coefficient simulated and calculated from Friis formula (a) without the distance correction
and (b) with the distance correction of 93 mm for each Vivaldi antenna.
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Further, the same numerical experiment is performed for the designed helical antenna in order to
find the distance correction for it. Two identical antennas are analyzed, oriented so to achieve the
maximal power transfer. The transmission coefficients obtained without the distance correction and
with the distance correction of 680 mm for each helical antenna are shown in Fig. 5.14. Note that
for calculating the transmission coefficient using (5.2), the gain and the reflection coefficient are
obtained from the simulation of a single helical antenna at the operating frequency. Hence the
coupling between helical antennas is not taken into account, unlike in the case of simulated
transmission coefficient where this coupling is considered. Therefore the simulated results in
Fig. 5.14 show a “zig-zag” behavior.

In the inset of Fig. 5.14b, the position of the antenna “center” with the correction is indicated by a
black dot.
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Figure 5.14. Transmission coefficient simulated and calculated from Friis formula (a) without the distance correction
and (b) with the distance correction of 680 mm for each helical antenna.

Finally, we use the distance corrections for the Vivaldi antenna and for the designed helical
antenna with the measured results for the transmission and reflection coefficients in order to
estimate the measured gain. Note that the distance corrections have slight variations with frequency,
but we use constant corrections estimated for 1 GHz since the aim of our measurements is primarily
to get the gain of the fabricated antenna at 1 GHz.

Since the Vivaldi antenna is linearly polarized and the helical antenna is circularly polarized, the
gain obtained from the Friis formula, using the measured results for the transmission and reflection
coefficients, corresponds to one of the two orthogonal linear polarizations. The measured gain (in
the main radiating direction and in the frequency range from 0.75 GHz to 1.25 GHz) for each
polarization is compared with the simulated results in Fig. 5.15. The numerical gain (Appendix A.1)
for the circular polarization can be calculated as the sum of the numerical gains for the linear
polarizations. Note that if the circular polarization is perfect, the gains of the two orthogonal (linear)
polarization components are equal and the logarithmic gain for the circular polarization is 3 dB
higher than the logarithmic gain of the linear-polarization components.
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Figure 5.15. Simulated and measured gain for (a) the vertical polarization and (b) the horizontal polarization.

Further, the gain of the fabricated helical antenna prototype in the main radiating direction in the
same frequency range is compared with simulated results in Fig. 5.16a. The measured and
simulated radiation patterns of the fabricated antenna at 1 GHz in the xOz plane (Fig. 5.5a) are
compared in Fig. 5.16b. Although the distance corrections are calculated only at the operating
frequency (1 GHz), the simulated and measured results shown in Figs. 5.15 and 5.16a are in very
good agreement in the full considered frequency range. In particular, the discrepancy at 1 GHz is
negligible (less than 0.03 dB).
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Figure 5.16. Measured and simulated gain of the designed helical antenna (a) in the frequency range from 0.75 GHz to
1.25 GHz [113] and (b) the radiation pattern at the operating frequency of 1 GHz [113].

The radiation patterns in the xOz plane (Fig. 5.5a) are also measured at some other frequencies
and compared with the simulated results in Fig. 5.17. These results also confirm that the measured
gain of the designed antenna is in good agreement with the simulated gain near the main radiating
direction (within the main lobe) at all considered frequencies.
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Figure 5.17. Radiation pattern of the designed and fabricated helical antenna at (a) 0.8 GHz, (b) 0.9 GHz, (c¢) 1.1 GHz,
and (d) 1.2 GHz.

Finally, it can be concluded that measurement results demonstrate excellent agreement with the
design targets and with the computational models.
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6. Design of array of nonuniform helical antennas

In this chapter a complete design of an array of nonuniform helical antennas will be presented in
detail. The designed array has to meet predefined design specifications. Hence, this task illustrates a
practical engineering problem.

The presented design procedure contains the design of an array of four (2 x 2 ) nonuniform helical

antennas with linearly varying geometrical parameters, optimization of the antenna positions within
the array, and the design of the feeding network that simultaneously is a matching network with
respect to 50Q. The design procedure is verified through the measurements of the fabricated array.

6.1. Design specifications

The task is to design and verify (through simulations and measurements) an antenna array whose
gain is at least 20 dBi within the frequency range from 0.9 GHz to 1.1 GHz, whereas the required
gain at the operating frequency 1 GHz is 21 dBi. Hence, BW, (defined in Subsection 4.1) is 20 %.
The free-space wavelength at the operating frequency is A =300mm. It is also required that the
antenna is matched with respect to 500 (the modulus of the reflection coefficient, s,,, is less than
—10dB) within the same frequency range. The overall antenna dimensions have to be maintained

as small as possible, with a tendency to achieve a cuboid shape with the maximal dimension of a
side Im~3.331.

6.2. Geometry and model of quad array

To meet the required specifications, we adopt an array of four (2x2) identical nonuniform
helical antennas. We refer to this array of antennas as quad array. For this design, we consider
nonuniform helical antennas with linearly varying geometrical parameters. The antennas are placed
at the vertexes of an imaginary square of a side D (Fig. 6.1a). All antennas have the same
orientation. The geometry of the nonuniform helical antennas with linearly varying geometrical
parameters is defined by the axial antenna length, L, the radii of the first and the last turn, 7, and 7, ,
respectively, and the pitches (or pitch angles) of the first and the last turn, p, and p, (or ¢, and
¢, ), respectively. The radii and pitch angles of each turn can be calculated using (2.1) and (2.2),

where z is the axial coordinate. Alternatively to the pitch angle, the pitch of each turn can be
calculated from

z
p=(pz—p1)z+p1- (6.1)

The antenna conductor is a wire of a circular cross-section whose radius is 7, . Theoretically, the

antenna array can be placed above an infinite perfectly conducting ground plane or above a ground
plane of finite dimensions. For this design, we consider a flat, square-shaped ground plane of a side
a, Fig. 6.1a.
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As it 1s explained in Subsection 2.2 (where a single helical antenna is considered), a perfectly
circular turn can be approximated by a polygonal turn utilizing (2.7). This approximation is also
used when making the model of the array, since it speeds up computations and it is necessary to
overcome the limitations imposed by the utilized electromagnetic solver, i.e., the solver can analyze
only straight-line wire segments. All simulations are run in WIPL-D [111]. The WIPL-D model of
the quad array, utilizing the suggested approximation, is shown in Fig. 6.1b.

(a) (b)
Figure 6.1. Array (2 x 2) of nonuniform helical antennas, quad array: (a) sketch [88] and (b) WIPL-D model [88].

The available conductor is a copper wire of a circular cross-section and radius
1, =0.6mm~ 0.002% . In order to estimate the required axial antenna length, we consider the fact

that the array of four antennas can increase the gain by up to 6 dB in comparison with a single
helical antenna. Hence, the required gain of a single helical antenna has to be at least 15 dBi at
1 GHz. Utilizing the first step from the flowchart shown in Fig. 5.1 (“Inversion of (3.23)”), the
minimal required axial antenna length is estimated to be 2 A. However, it is also required that the
gain has to be above 20 dBi in the frequency range from 0.9 GHz to 1.1 GHz, i.e., that the required
BW, =20% . Fig. 4.2d shows that, for the designed antennas, BW, < 20% . Hence, to be on the safe
side, we adopt that the axial length of the antennas in array is L =2.5X = 750mm. The gain of the
nonuniform helical antenna (located above an infinite ground plane) of axial length 2.5, wire
radius 0.002 A, and wire conductivity 58 MS/m (which corresponds to the copper) is estimated from
(3.23) to be 16.4 dBi. Actually, this is the same antenna as the antenna designed in Subsection 5.2.

Since the maximal dimension of the array is limited to 1 m, we adopt the side of the ground plane
a=1m=3.33A. In the simulations we consider a lossless ground plane, since the investigation
done for a single helical antenna (Subsection 4.3) shows that losses in the ground plane have
negligible influence on the antenna characteristics.

In the basic model of the array (shown in Fig. 6.1b), all antennas are fed by voltage delta-gap
point generators located on the short vertical wire segment between ground plane and the first
antenna turn (as for a single helical antenna). All generators are of the same amplitude and phase.
The feeding network will be included in the model later.

6.3. Optimization procedure for basic model

The optimization procedure is similar to the procedure formulated for optimizing nonuniform
helical antennas with linearly varying geometrical parameters (Subsection 3.1). The optimization
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goal is to maximize the partial gain for the circular polarization in the main radiating direction
(Appendix A.1) of the array. The cost function is defined here as the L,-norm,

f;:ost = V(loo_g)z > (62)

where g is the gain of the array. The best possible design corresponds to the global minimum of

f;:OSt °

The optimization again contains two steps. For the first step, we utilize the particle swarm
optimization (PSO) [116], [117] with a randomly seeded swarm. The second step of the
optimization is launched from the best-found solution in the first step. For the second step, local
optimization algorithms are utilized, i.e., Nelder-Mead simplex [115] or gradient algorithm.

Different numbers of iterations and algorithm setups are investigated and the following designs
(marked as the optimal) are the best-found results.

The optimization of the considered quad array contains 5 optimization variables:

e the radius of the first turn, 7,

e the radius of the last turn, r,,

e the pitch of the first turn, p,,

e the pitch of the last turn, p,, and

e the distance between the feeding points of the helical antennas, D .

According to the optimal geometrical parameters of the nonuniform helical antennas calculated
using (3.13), (3.14), (3.19), and (3.20), the optimization variables are expected to be within the
limits:

e 25mm<7 <40mm,
e 30mm<r, <50mm,
e 10mm< p, <50mm, and
e 10mm< p, <50mm.

The distance between the array elements is investigated in the literature [96], [108]. As it is
indicated in Chapter 1, in [108] it is suggested that the array elements should be spaced at least
VG, /i4nik, where G, is the (numerical) gain of the single helical antenna. Hence, it can be
expected that the optimal spacing between the elements is around 560mm. However, we
additionally investigated how the distance between array elements affects the gain and the radiation
pattern, in order to find a proper range for the optimization variable D.

We consider a quad array of the same axial length, operating frequency, wire radius, and wire
conductivity (i.e., 2.5 A, 1 GHz, 0.002 A, and 58 MS/m, respectively). The geometrical parameters
of the helical antennas are calculated using (3.13), (3.14), (3.19), and (3.20). To simplify the
computation, the helices are located above an infinite perfectly conducting ground plane. We vary
the distance between the antennas, D, from 200 mm to 700 mm. The radiation patterns (in the ¢ =0
cut) are shown in Fig. 6.2, where ¢ and 0 are measured from the x axis (in the xOy plane) and the z
axis to the considered direction, respectively (Fig. 6.1a). It can be noticed that for D=200 mm,
sidelobes are the lowest, but also the gain in the main radiating direction (0=0) is the lowest. With
increasing D, the gain in the main radiating direction increases, but this is accompanied with the
increase in the sidelobes. For D > 600 mm, no further increase in the gain in the main radiating

direction can be noticed; however, the sidelobes increase further. Therefore, we adopt the limits for
the optimization variable D to be 400 mm < D < 600 mm .
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Figure 6.2. Radiation patterns of the array of nonuniform helical antennas for various distances between the elements.
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6.4. Optimal basic design

The optimizations are run for the basic model shown in Fig. 6.1a, and the optimal values of the
optimization variables are
e 7 =349mm,
e 7 =47.1mm,
e p =17mm,
e p,=379mm, and
e D=5869mm.

We refer to this design as the optimal basic design. The model of this design and the 3-D radiation
pattern at 1 GHz are shown in Fig. 6.3. The gain in the main radiating direction is slightly less than
22 dBi, whereas the front-to-back ratio is 21 dB. The ¢-cut (¢ =0) of the radiation pattern at
1 GHz is shown in Fig. 6.4a. The gain and the axial ratio in the main radiating direction in the
frequency range from 0.8 GHz to 1.5 GHz are shown in Fig. 6.4b. The gain is above 20 dBi (as it is
required by the design specification) in the frequency range from 0.9 GHz to 1.15 GHz. Within that
frequency range, the axial ratio is below 1.4, and the input impedance of each helical antenna is
around (115-3j20)Q.

(@ (b)
Figure 6.3. Optimal basic design: (a) model [88] and (b) 3-D radiation pattern at 1 GHz [88].
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Figure 6.4. Optimal basic design: (a) ¢-cut of the radiation pattern at 1 GHz [88] and (b) gain and axial ratio versus
frequency [88].

The next step is to introduce the feeding network into the design and to find the best values of the
optimization variables in this case.

6.5. Feeding network

The feeding network has two roles. The first role is to feed each helical antenna with the same
amplitude and phase. The second role is to match the quad array to 50 Q.

For these purposes, a H-shaped feeding network is chosen (Fig. 6.5). The network consists of six
wire segments. These wire segments are located above a ground plane; hence, they act like

transmission lines. Four transmission lines, of a characteristic impedance Z,, interconnect adjacent

helices. These transmission lines transform the impedances of single helical antennas. Pairs of those
(transformed) impedances are connected in parallel at points 4 and B. The impedances at points A

and B are further transformed by the transmission lines whose characteristic impedance is Z_, . At
the point O, these transformed impedances are again connected in parallel. The point O is the
feeding point of the quad array and Z_ and Z_, are chosen so that the impedance at O is as close
as possible to 50 Q, i.e., the quad array is well matched with respect to 50 Q.

<X ,5f>
<< ”
S
=
- =
- ==
= =
= =2
<IN >
== =
<

Figure 6.5. Model of the quad array with H-shaped feeding network [88].

The characteristic impedances Z,, and Z_, are determined by the radii of the wire segments and
the elevations of the wires above the ground plane. The available wire radii in our lab are 0.3 mm
and 0.6 mm. Since it is necessary that Z > Z_,, the four transmission lines of the characteristic

impedance Z_ are realized with the wire of the radius 0.3 mm, whereas the two middle wire
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segments are made of the wire of the radius 0.6 mm. The elevation of all wires is 2 mm above the
ground plane. For these data, the corresponding characteristic impedances are Z,=155Q and
Zo=112 Q, calculated using [123].

Further, the geometry of the quad array, with the incorporated feeding network, will be optimized.

6.6. Optimization of quad array with feeding network

The optimization of the quad array with the H-shaped feeding network is challenging since it
requires simultaneous maximization of the partial gain for the circular polarization and
minimization of the reflection coefficient at the feeding point of the quad array, i.e., matching of the
quad array.

Although this is a two-criteria optimization problem, in our case these criteria are weakly
coupled. Namely, the gain of the quad array depends only on the geometry of the array (geometry
of the helices and the distance between elements). The gain is not affected by the geometry of the
feeding network since it practically does not radiate. The geometry of the feeding network has a
role in the impedance transformation and affects the reflection coefficient. These conclusions allow
us to combine the two criteria into a single cost function, utilizing our engineering experience for
estimation of the relative weights of the criteria.

The set of optimization variables and optimization algorithms are the same as for the basic model.
In order to broaden the bandwidth, N =5 equidistantly spaced frequencies within the frequency
range from 0.95 GHz to 1.15 GHz are considered (~20 % bandwidth). This frequency range is
chosen to account for a 5 % frequency shift towards lower frequencies due to the imperfect
mounting of wires on the supporting structure and the influence of the dielectric of the supporting
structure. Hence, the expected frequency range of the fabricated quad array is from 0.9 GHz to
1.1 GHz,

The cost function is defined as

1 N
cost 7
N\&

> (100-g) \/i(max(jgnhls, o)y, (6.3)

1 k=1

where |§1 l| is the reflection coefficient in dB at the antenna feeding point.
The optimal values of the optimization variables are
e 7 =341mm,
e 7,=44.6mm,
e p =20.5mm,
e p,=499mm, and
e D=4882mm.

The model of the optimal quad array with the incorporated feeding network, the 3-D radiation
pattern and ¢ -cut (¢ =0) of the radiation pattern of this antenna at 1 GHz are shown in Figs. 6.5,
6.6a, and 6.6b, respectively. The results in Figs. 6.3b and 6.4a compared with the results shown in
Fig. 6.6 confirm that the feeding network has negligible influence on the radiation properties of the
antenna. The optimal radii of the first and the last turn have changed for less than 10 % (in
comparison with the basic design, Subsection 6.4). However, the optimal pitches of the first and the
last turn are increased due to the incorporated feeding network. From the practical point of view,
this change is favorable, since it leads to shortening the antenna wires, i.e., the fabrication requires
less material. The distance between the array elements, D, decreases for more than 15 % for the
quad array with the incorporated feeding network in comparison with the basic design.

The gain, axial ratio, and reflection coefficient are analyzed within the frequency range from
0.8 GHz to 1.5 GHz (Fig. 6.7). The gain is above 20 dBi from 0.94 GHz to 1.27 GHz, which is an
almost 33% bandwidth. The axial ratio within this frequency range is below 1.5 and the reflection
coefficient is below —9.3 dB. The wider bandwidth is expected since now the optimization is done
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in a frequency range instead at the single frequency. Hence, the designed quad array with the
feeding network fulfills the design specifications. The next step is design verification through
measurements of a fabricated prototype.

2200
- 18.00
14.00
= 10.00
% 6.00
= 200
= 200
£00
= -10.00
= -14.00
= -18.00
2200

@) (b)

Figure 6.6. Optimal quad array with the feeding network at 1 GHz: (a) 3-D radiation pattern [88] and (b) ¢-cut of the
radiation pattern [88].
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Figure 6.7. Optimal quad array with feeding network: (a) gain and axial ratio [88] and (b) reflection coefficient at the
feeding point of the quad array versus frequency [88].

6.7. Prototype of quad array

The fabricated prototype is used for the design verification. The prototype consists of four
identical nonuniform helical antennas, the feeding network, and the ground plane. The four helical
antennas are designed to be identical. However, due to manual wire winding, small discrepancies
are present. Therefore, the feeding network is designed to enable individual testing of each helical
antenna, pairs of antennas (connected by the transmission lines of the characteristic impedance
Z.,), and the entire quad array. The feeding network keeps the H-shape.

The supporting structure for each single helical antenna is realized following the same procedure
and choosing the same technology as described in Subsection 5.3. The wire conductor of radius
0.6 mm is wound on the supporting structure. The assembled single helical antenna is shown in
Fig. 6.8a. The reflection coefficients of helical antennas are firstly measured independently in the
frequency range from 0.8 GHz to 1.2 GHz. The measured reflection coefficients, with respect to
150 Q, are shown in Fig. 6.8b. These results confirm that four helical antennas are almost identical
despite the small differences due to manual winding. Further, these results are used to additionally
optimize the feeding network.
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Figure 6.8. (a) Assembled single helical antenna [88] and (b) measured reflection coefficients of helical antennas that
make up quad array with respect to 150 Q in the frequency range from 0.8 GHz to 1.2 GHz [88].

During the fabrication of the feeding network (shown in Fig. 6.5), we faced difficulties to achieve
and maintain the required positions of the wires. Namely, the required height of the wires above the
ground plane is almost impossible to maintain precisely along the wires.

To overcome this problem, we changed the technology for the fabrication of the feeding network
and realized the feeding network by the printed-circuit technique, on FR-4 substrate. In order to
minimize the influence of the substrate (in particular, to reduce losses), the transmission lines are
designed as inverted microstrips [124], whose cross-section is shown in Fig. 6.9. The issue of
mechanical stability of the feeding network is solved by inserting acrylic-glass spacers between the
FR-4 substrate and the ground plane, all along the edges of the lines. The thickness of the substrate
and air layer (i.e., the height of the spacers) are 4, =0.5mm and /4, =2mm, respectively, whereas

the thickness of the metallization is t =36 um.

FR-4 substrate | B
i T t |

' Microstrip line

Air

Ground plane
Figure 6.9. Cross-section of inverted microstrip line [88].

The characteristic impedances of the inverted microstrip lines (i.e., the widths of microstip lines)
are fine-tuned in Microwave Office (MWO) [125], using the model shown in Fig. 6.10. In this
model, the measured reflection coefficients (shown in Fig. 6.8b) are used. The measured reflection
coefficients are imported into the model via subcircuits “S11 17, “S11 27, “S11 37, and “S11 _4”.
The transmission lines (of characteristic impedances Z, and Z_, ), that make up H-shaped feeding
network, are realized in the model using the subcircuits “Zcl” and “Zc2” shown in Fig. 6.10.
Fine-tuning is applied to the microstrip-line widths in these two subcircuits, whereby the reflection
coefficient of the quad array is monitored. The resulting line widths are 0.6 mm and 3.4 mm, which
correspond to Z,, =156Q and Z_, =87Q, respectively. The corresponding reflection coefficient

of the quad array is shown in Fig. 6.11a. The reflection coefficient is below —10dB in almost the
whole frequency range from 0.8 GHz to 1.2 GHz (namely, from 0.815 GHz to 1.2 GHz). The
simulated input impedance (Z = R+ jX ) of the quad array is shown in Fig. 6.11b. At the operating

frequency (1 GHz), Z = (37.53—j 7.17)Q.
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Figure 6.11. Simulated (a) reflection coefficient and (b) input impedance of the quad array.
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The ground plane of the quad array is manufactured as a square aluminum plate of a side 1 m and
thickness 2 mm. To increase the rigidity of the structure, aluminum tubes are placed along the edges
of the plate on the underside (Fig. 6.12a).

The fabricated, fully-assembled quad array with the incorporated H-shaped feeding network is
shown in Fig. 6.12b. The inset in Fig. 6.12b shows more details on how the inverted microstrip lines

are interconnect and fixed to the ground plane.
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(2) (b)
Figure 6.12. (a) Bottom side of aluminum plane used as a ground plane and (b) fully-assembled quad array [88].

6.8. Measurements of quad array

The fabricated prototype of the quad array (shown in Fig. 6.12b) is measured in Idvorsky
laboratories [122]. The first measurement setup is the same as for the measurements of the
nonuniform helical antenna (explained in Subsection 5.4).

Firstly, the reflection coefficient of the quad array (with respect to 50Q) is measured and

compared with the simulated reflection coefficient (Fig. 6.11a) in Fig. 6.13. As in the case of the
simulated reflection coefficient, the measured reflection coefficient is also below —10dB in almost
the entire considered frequency range (namely, from 0.81 GHz to 1.17 GHz).

Further, the measurement setup that consists of the fabricated quad array and a well-documented
in-house made Vivaldi antenna is utilized (Fig. 6.14). As it is explained in Subsection 5.4, in order
to estimate the gain and the radiation pattern of the quad array (which is circularly polarized), two
sets of measurements are necessary. These sets correspond to two linear polarizations; hence, the
quad array is placed in two different orientations. When the middle section of the feeding network
(the transmission lines of the characteristic impedance Z, ) is positioned horizontally (parallel to

the floor of the chamber), we refer to this orientation as “horizontal”, whereas when the middle
section is vertical (perpendicular to the floor), we refer to this orientation as “vertical”. The
transmission coefficients between the quad array and the Vivaldi antenna are measured (and
simulated) when the distance between the ground plane of the quad array and the tip of the Vivaldi

antenna 18 Dgaq vivagi = 1575 mm (Fig. 6.13b). In the frequency range from 0.9 GHz to 1.1 GHz,

the discrepancy between the simulated and measured transmission coefficients is less than 1.5 dB.
At 1 GHz, the simulated and measured results agree almost perfectly.
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Figure 6.13. Simulated and measured (a) reflection coefficient of the quad array [88] and (b) transmission coefficient
between the quad array and Vivaldi antenna [88].
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Figure 6.14. Measurement setup consists of quad array and Vivaldi antenna [88].

The radiation patterns of the quad array, in the ¢ =0 cut, are measured for both the horizontal
and vertical orientations, in the frequency range from 0.95GHz to 1.1 GHz, and
DQuad_Vivaldi =4020mm. The simulated and measured transmission coefficients, normalized to the

maximal level, are compared in Figs. 6.15 and 6.16. The simulated and measured results agree
almost perfectly within the main lobe at all considered frequencies and for both orientations.
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Figure 6.15. Cuts (¢ = 0) for the horizontal orientation at: (a) 0.95 GHz [88], (b) 1 GHz [88], (c) 1.05 GHz [88], and
(d) 1.1 GHz [88].
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Figure 6.16. Cuts (¢ =0) for the vertical orientation at: (a) 0.95 GHz [88], (b) 1 GHz [88], (¢) 1.05 GHz [88], and

(d) 1.1 GHz [88].

Finally, another measurement setup (Fig. 6.17) is utilized. In this measurement setup, a signal
generator Rohde Schwartz SMLO03 (whose power level is 0 dBm at 0.99 GHz) is connected to the
quad array. A Teseq CLB 6144 BilLog antenna is used as the receiving antenna. Using a Teseq
SMR4503 EMI receiver, the electric field is measured at a 3000 mm distance. The simulated and
measured normalized radiation patterns (normalized to the maximal level) at 0.99 GHz for both
orientations (horizontal and vertical) are compared in Fig. 6.18.

Quad array
Bilog
antenna

Figure 6.17. Measurement setup consists of quad array and bilog antenna [88].
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Figure 6.18. Normalized level of electric field for (a) horizontal [88] and (b) vertical orientation at 0.99 GHz [88].

Finally, it can be concluded that the simulated and measured results of the designed and
fabricated quad array show good agreement. At the operating frequency 1 GHz the gain is 21 dB,
whereas in the frequency range from 0.9 GHz to 1.1 GHz the gain is (20.5 +1 .S)dBi .
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7. Design of optimal quad arrays of nonuniform helical antennas

with linearly varying geometrical parameters

In this chapter, design equations for the nonuniform helical antennas with linearly varying
geometrical parameters (from Chapter 3) are utilized for the design of quad arrays (2x2 arrays of

helical antennas). The design equations from Chapter 3 are used for calculating the optimal
geometrical parameters of the nonuniform helical antennas that make up the quad array. Further,
optimizations are run in order to find the optimal locations (i.e., distances) of the array elements.
These optimizations allow expanding the design equations by an equation for the optimal locations
of the array elements. Hence, the complete design procedure for quad arrays is obtained. For the
sake of comparison, additional optimizations are performed, where both the geometrical parameters
of the helical antennas and their locations are optimized.

Optimizations are made utilizing helical antennas located above an infinite ground plane. Finally,
with the purpose to obtain practically realizable designs, the infinite ground plane is replaced by a
flat, finite-size square ground plane and the influence of this ground plane on the array gain is
investigated.

7.1. Quad array geometry

As it is stated in Subsection 6.2, the quad array consists of four (2 x 2) identical helical antennas

(Fig. 6.1a). The geometry of helical antennas that make up the array is explained in
Subsection 2.1.1. The optimal parameters that define the geometry of nonuniform helical antennas
with linearly varying geometrical parameters (radii and pitch angles of the first and the last turn)
can be calculated from the design equations (3.13), (3.14), (3.19), and (3.20). The radii and pitch
angles of other turns can be calculated from (2.1) and (2.2). In the quad array, the helical antennas
are located above an infinite ground plane at the vertexes of an imaginary square of a side D. The
generators, located between the ground plane and the first turn of the helix, feed each helical
antenna. All generators are of the same amplitude and phase. The antenna conductor is a wire of a
circular cross-section.

7.2. Optimization procedure

The utilized optimization procedure is similar to the optimization procedure explained in
Subsection 3.1 for the optimization of the geometrical parameters of a single helical antenna.
Namely, the optimization goal is to maximize the partial gain for the circular polarization in the
main radiating direction (see Appendix A.1). Hence, the cost function is again defined by (3.1). In
the case of the quad array, the optimization variable is the distance between the adjacent helical
antennas, D, whereas the optimal geometrical parameters of helical antennas that make up the quad
array are calculated using the design equations from Subsection 3.2.3.

For these optimizations we firstly utilized the systematic search, since there is only one
optimization variable. However, we found that the same (or even better) results (i.e., higher gain of
the optimal arrays) are achieved utilizing a two-stage optimization with the same total number of
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evaluations of the cost function. In the first optimization stage (maximum of) 500 iterations of the
particles swarm optimization (PSO) algorithm [116], [117] are utilized (the swarm size is 10),
whereas in the second stage (maximum of) 200 iterations of the Nelder-Mead simplex [115] are
launched from the best-found solution within the first optimization stage.

The optimizations are performed for different axial lengths (L) of the single helical antennas and
radii of the helical conductors (7, ), within the ranges defined in Subsection 3.2.2. Since the design

equations are used for calculating the geometrical parameters of the helical antennas, we consider
normalized conductivities that are bigger than o, A, 1.e., the conductivities for which the design
equations are valid.

The constraints for the optimization variable D are estimated for each considered axial antenna
length (L) following the similar investigations as explained in Subsection 6.3. Namely, we vary the
distance D (normalized to the wavelength at the operating frequency) and simulate the radiation
pattern of the quad arrays at the operating frequency. As it is explained in Subsection 6.3, when D
is small, the sidelobes are low, but the gain in the main radiating direction is also small. When D
increases, the gain in the main radiating direction increases, but this is accompanied with the
increased sidelobes. In order to utilize the criteria for defining the constrains of the optimization

variable D (i.e., D, <D<D,,, ), we perform a set of simulations for various L, assuming the
wire radius to be 0.0002A and the wire conductivity to be o, .

Firstly, we simulate the radiation pattern for D within the wide range from 1A to 5A, with the
step of 0.2, and determine the maximal achieved gain (for each L) in the main radiating direction,
Zmax - F1nally, we define the following criteria (these criteria are indicated in Fig. 7.1a):

e D... corresponds to the maximal considered distance between the adjacent array
elements for which the gain in the main radiating direction is less than 90 % of g..,
e D, corresponds to the maximal considered distance between the adjacent array

elements for which the level of the first sidelobes is less than 80 % of g, -

The utilized constrains of the optimization variable D are summarized in Table 7.1, whereas the
radiation patterns (the ¢ =0 cuts) for various axial lengths (L) and corresponding D, and D,

are shown in Fig. 7.1. Angles ¢ and 6 are measured from the x axis (in the xOy plane) and the z

axis to the considered direction, respectively (Fig. 6.1a).
Table 7.1.
Constrains for the optimization variable D.
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Figure 7.1. Radiation patterns ( ¢ = 0 cuts) of the quad arrays for finding the constrains of the optimization variable D
for (a) L=2 A, (b) L=3 A, (c) L=4 A, (d) L=5 A, (e) L=T7 A, and (f) L=10 A.
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7.3. Optimization results

The optimizations are run for various axial lengths, wire radii, and wire conductivity G,

calculated from (3.7). The geometrical parameters of the helical antennas are calculated from design
equations (3.13), (3.14), (3.19), and (3.20), and the distances between the adjacent array elements
are optimized. All optimizations are run at 300 MHz, but all results are normalized to the
corresponding wavelength. Hence, they can be scaled to an arbitrary frequency according to the
similitude theorem (see Appendix B).

The optimal distances D for different axial lengths and wire radii are shown in Fig. 7.2. These
results show that the wire radius negligibly influences the optimal distance. Further, it can be
noticed that the optimal distance D shows nearly logarithmic dependence on the axial length. This
conclusion is very useful, since it allows fitting the optimal values of D and formulating an equation
for calculating these optimal values. This equation has the form D/A = A, log,,(L/1)+ B, . By

fine-tuning the constants 4, and B, , the optimal distance D can be approximated by

D L
7:3'41102%10[;)4-1'15. (7.1)
The optimal distances calculated using (7.1) are indicated by the solid line in Fig. 7.2.
5.0
45 —
4.0
35 /,/
g 3. //; |
r=0.0002
25 ) — ® + =0.0005 %
2.0 r.=0.001 A
s ® =0002%
D calculated from (7.1)
1.0 : —
2 3 4 5 6 7 8 910

L/A
Figure 7.2. Optimal distance D.

The radiation patterns (¢ =0 cuts) for the optimal distances D are shown by blue solid lines in
Fig. 7.1 and compared with the radiation patterns of the quad arrays when the distances between
adjacent array elements are D, ;, and D, . In the main radiating direction, the gain is almost the

same as in the case when the distance i1s D whereas the first sidelobes are lower. This is

max °?
expected, since the level of the first sidelobes decreases when the distance decreases; hence, for the
distance D (D < D, ) the level of the first sidelobes is lower than when the distance is D, .

max
For the sake of comparison, we perform additional optimizations where all geometrical
parameters of the quad arrays are optimized. Namely, the optimization variables are the radii and
the pitch angles of the first and the last turn of the helical antennas, as well as the distance D. For
this optimization we utilize the same setup (optimization algorithms, constrains for the optimization
variables, cost function) as for the optimization of nonuniform helical antennas (Subsection 3.1)
whereas constrains for the optimization variable D are the same as defined in Table 7.1.
Fig. 7.3 compares the gain (at the operating frequency in the main radiating direction) of:
e the quad arrays where only the distance D is optimized and the geometrical parameters of
the helical antennas are calculated from design equations (referred to as “optimal”),
e the quad arrays where all geometrical parameters are optimized (referred to as “optimal
all”), and
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e the quad arrays where the distance D is calculated from (7.1) and the geometrical
parameters of the helical antennas are calculated from design equations (referred to as
“calculated”).

The maximal discrepancy between the gain in the case referred to as “optimal” and the gain in the
case when D is calculated from (7.1) is less than 0.04 dB, i.e., this discrepancy is negligible. The
discrepancy between the gain in the case referred to as “optimal all” and the gain in the case when
D is calculated from (7.1) is less than 0.12 dB, which is also practically negligible.

Since it is expected that the quad array increases the gain for around 6 dB in comparison with a
single helical antenna of the same axial length, in Fig. 7.3 the gain calculated from (3.23) increased
by 6 dB is also indicated (by solid lines). These results show that the quad array increases the gain
by more than 6 dB. The minimal increase is by 6.19 dB.
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Figure 7.3. Comparison of the gain of the quad arrays where geometrical parameters of helices are calculated from the
design equations and the distance D is optimized (“optimal”), where geometrical parameters and the distance D are
optimized (“optimal all”), and where geometrical parameters of helices are calculated from the design equations and the
distance D is calculated from (7.1) (“calculated”) for (a) r,=0.0002 A, (b) r,=0.0005 2%, (c)r,=0.001 A, and
(d) ,=0.002 A.

The optimal distances D obtained from the additional optimization when all geometrical
parameters are optimized are compared in Fig. 7.4a with the optimal distances D calculated from
(7.1). These results confirm that (7.1) also successfully fits these optimal distances D. In Fig. 7.4b
the geometrical parameters of the helices obtained from the optimization of the quad array are
compared with the geometrical parameters calculated from the design equations. The optimal
geometrical parameters are not perfectly fitted by the design equations formulated for the design of
a single nonuniform helical antenna. However, the perfect fitting is not the main evaluation
criterion. The gain of the designed antennas is of much greater significance and the fulfillment of
that criterion is confirmed by the results shown in Fig. 7.3.
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Figure 7.4. Comparison of: (a) the optimal distances D obtained from the optimization when all geometrical parameters
are optimized and the optimal distances D calculated from (7.1), and (b) the geometrical parameters obtained from the
optimization when all geometrical parameters are optimized and the geometrical parameters calculated from the design
equations.

Further, the influence of the wire conductivity on the optimal distance between the adjacent
elements is investigated. The optimization variable is again the distance D and the same
optimization procedure is utilized. However, in this case we consider two extreme conductivities,
6., and PEC. The optimal distances D obtained from these optimizations are compared with the

optimal distances calculated from (7.1) in Fig. 7.5, whereas the gain of these antennas is shown in
Fig. 7.6. Additionally, in Fig. 7.6 the gain of the single helical antenna calculated from (3.23) and
increased by 6 dB is also indicated.

These results confirm that the optimal distance between the array elements does not depend on
the wire conductivity. Hence, (7.1) can be used for calculating the optimal distances D for an
arbitrary wire conductivity, as long as the design equations are valid (i.e., for the normalized
conductivities oA >c_. A). Further, the design equations can be used for calculating the

min
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geometrical parameters of the helices. These conclusions allow us to formulate the procedure for
designing the quad arrays of nonuniform helical antennas with linearly varying geometrical
parameters by expanding the previously formulated design procedure for nonuniform helical

antennas.
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Figure 7.5. The optimal distances D for (a) o,,;, and (b) PEC.
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Figure 7.6. The gain of the quad array for the wire conductivity o.;, and PEC: (a) r,=0.0002 A, (b) r,=0.0005 A,
(c) 74=0.001 A, and (d) 7,=0.002 A.
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Finally, we utilize the design equations (3.13), (3.14), (3.19), and (3.20) for calculating the
geometrical parameters of helices and (7.1) for calculating the distance between adjacent elements,
and design quad arrays for various axial lengths, wire radii, and a wide range of normalized wire
conductivities (from o, A to 10°%). Circular markers in Fig. 7.7 show the gain of these arrays.
Additionally, we calculate the gain of the single helical antenna (from (3.23)) considering the same
axial lengths, wire radii, and wire conductivities as for the quad arrays. The smallest discrepancy
between the gain of the designed quad array and the gain calculated from (3.23) is 6.185 dB,
whereas the largest discrepancy is 6.369 dB. Therefore, we can formulate an equation that estimates
the gain of the designed quad array by adding the constant 6.185 to (3.23):

L
0.002983 x 26.89

» 0.8411 + L 6.763
m Vo (J

Solid lines in Fig. 7.7 indicate the gain calculated using (7.2). Note that (7.2) underestimates the
gain (this property is obtained for the same reason as it is explained for (3.23)). The largest
discrepancy between the simulated gain and the gain calculated from (7.2) is less than 0.2 dB.

g[dBi] =8.385log,, (§)+13.48— —68.71%‘”+6.185. (7.2)
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Figure 7.7. Gain of the designed quad arrays in wide range of the normalized conductivities.
7.4. Finite ground plane

The results presented in the previous subsections are obtained considering helices located above
an infinite ground plane. This scenario is favorable for simulations (since it reduces the required
computation time). However, for the practical purposes, the infinite ground plane has to be replaced
by a finite-size ground plane. Therefore, in this subsection we consider helices located above a flat
square-shaped ground plane of a side a (Fig. 6.1). The quad arrays are designed utilizing the design
equations (3.13), (3.14), (3.19), and (3.20) for calculating the geometrical parameters of the helices,
whereas the optimal distances between the adjacent elements are calculated from (7.1). The
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influence of the finite-size ground plane is investigated in terms of the gain of the quad arrays at the
operating frequency in the main radiating direction, for various axial lengths, wire radii, and wire

conductivity o,. The difference between the gain of the quad array located above finite ground

plane and the gain of the corresponding quad array calculated from (7.2), i.e., the gain of the
corresponding quad array located above infinite ground plane, is shown in Fig. 7.8.

These results confirm that the finite-size ground plane can replace the infinite ground plane
without sacrificing the gain. Moreover, by appropriate choosing the ground plane dimension, a
slightly higher gain can be achieved. However, this increase is lower than in the case of single
helical antennas. (The influence of a finite ground plane on the gain of a single helical antenna is

investigated in Subsection 4.3.)
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Figure 7.8. Differences between the gain of the designed quad arrays located above the ground plane of a finite
dimension and the gain calculated from (7.2) for wire conductivity o.¢and wire radius (a) r,=0.0002 A, (b) ,=0.0005 A,
(c) 74=0.001 A, and (d) 7,=0.002 A.

7.5. Design procedure

The results and conclusions presented within previous subsections allow us to formulate a
procedure for designing quad arrays of nonuniform helical antenna with linearly varying
geometrical parameters. This procedure is an extension of the design procedure for single helical
antennas (formulated in Subsection 5.1), since it utilizes the design equations (3.13), (3.14), (3.19),
and (3.20), but also (7.1) is included for calculating the optimal distance between adjacent array
elements and the equation for gain estimation is rewritten; hence, the quad gain can be estimated
using (7.2).
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Finally, the procedure for designing the quad arrays of nonuniform helical antenna with linearly
varying geometrical parameters is summarized by the flowchart shown in Fig. 7.9.

For the practical realization of the designed quad array, the infinite ground plane has to be
replaced by a finite-size ground plane. For the selection of the appropriate dimension of the
square-shaped ground plane and estimation of the gain difference due to the finite dimensions of the
ground plane, results shown in Fig. 7.8 can be used.

INPUT:

e target gain, g

e wire radius, 7y

e wire conductivity, o

}

Inversion of (7.2)

!

L

!

OA < Ominh
Check the design by (3.8) i

The design is not
valid
J oA 2 Gmin}\-

Design parameters:
e r from(3.13)

r, from (3.14)

¢ from (3.19)
@, from (3.20)
D from (7.1)

J

Calculate the expected gain
by (7.2)

Figure 7.9. Flowchart of the procedure for designing quad arrays.

7.6. Comparison with quad arrays of uniform helical antennas

The quad arrays of nonuniform helical antennas, designed following the design procedure
presented in Subsection 7.5, will be compared with the quad arrays of uniform helical antennas,
optimized in this subsection.

The geometrical parameters of the uniform helical antennas that make up the quad arrays are
calculated from (4.4) and (4.5). The distance between adjacent array elements, D, is optimized. For
the optimization we utilize the same setup and procedure as for the quad arrays of nonuniform
helical antennas (Subsection 7.3). We consider various axial antenna lengths, wire radii, and wire
conductivity o, ;, whereas the operating frequency is 300 MHz and the helices are located above an

infinite perfectly conducting ground plane.

The optimal distances D are compared in Fig. 7.10 with D calculated from (7.1), whereas the gain
of the optimal quads with uniform and nonuniform helical antennas is compared in Fig. 7.11.

The optimal distances D for the quad arrays with uniform helical antennas are smaller than the
optimal distances for the quad arrays with nonuniform helical antennas. Namely, for shorter axial
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antenna lengths the discrepancies of these optimal distances are around 0.25 A, whereas for longer
axial antenna lengths they are around 0.7 A.

Further, the discrepancy between the gain of quad arrays of uniform and nonuniform helical
antennas is between 1.4 dB (for shorter axial antenna lengths) and 2.2 dB (for longer axial antenna
lengths). These discrepancies are similar to the discrepancies between the gain of single uniform
and nonuniform helical antennas. Hence, the gain improvement, introduced by the nonuniform
helical antennas in comparison with the uniform helical antennas, is maintained when these
antennas are employed in quad arrays, as it is expected from the antenna array theory.
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Figure 7.10. Optimal distances D for the quad arrays of uniform helical antennas.
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Figure 7.11. Gain of the optimal quad arrays of uniform and nonuniform helical antennas.

7.7. Comparison with a design from literature

In this subsection the quad arrays designed following formulated design procedure are compared
with the quad arrays which are designed following the recommendations from [108], where an
equation is presented for estimation of the optimal distances between the adjacent elements of the
quad arrays

Doy _ Gn (7.3)
A 4n

where G, is the (numerical) gain of the single helical antenna. Since the helical antennas that make
up the quad array are designed utilizing the design equations (3.13), (3.14), (3.19), and (3.20), we
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calculate G, from (3.23). (The gain g calculated from (3.23) is in dBi, hence it requires a simple

conversion Gy, =10¢/ 1) Firstly, the best distances obtained through optimizations (for wire
conductivity o), distances calculated from (7.1) and calculated from (7.3) are compared in

Fig. 7.12a, whereas the gains of the quad arrays for which distances D are calculated from (7.1) and
(7.3) are compared in Fig. 7.12b. The optimal distances D or the distances D calculated from (7.1)
are for more than 40 % larger than the distances calculated from (7.3). However, when the distance
D is calculated from (7.1), instead of using (7.3), the quad arrays achieve for around 0.5 dB higher

gain.
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Figure 7.12. Comparison of quad arrays designed using presented design equations and utilizing guidelines from [108]
(a) optimal normalized distance D and (b) gain.

The design procedure presented in this chapter allows rapid design of quad arrays of nonuniform
helical antennas with linearly varying geometrical parameters. Moreover, comparison made in
Fig. 7.12b confirms that, compared to the results presented in the literature, using the presented
design procedure guarantees achievement of at least the same (or even higher) gain.
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8. Conclusions

The main topic of this thesis is comprehensive investigation of nonuniform helical antennas and
quad arrays of such antennas. Using software for numerical simulations of these antennas,
optimization procedures were used and a large database of the optimal designs was created. By
careful examination of this database, equations were developed that constitute a complete,
standalone, and rapid procedure for designing nonuniform helical antennas with linearly varying
geometrical parameters, which is the main contribution of the thesis. The proposed design
procedure gives all necessary data for the complete design of nonuniform helical antennas, which
significantly simplifies the design of these antennas and guarantees achievement of the optimal (or
very close to the optimal) characteristics for the chosen conductor and antenna overall dimensions.

This procedure was expanded to the design of quad arrays of nonuniform helical antennas, which
is the second major contribution of the thesis.

The validity of the presented design procedures was verified in several ways within this thesis.
Firstly, a nonuniform helical antenna was designed following the presented design procedure and it
was fabricated and measured. The results of the measurements show excellent agreement with the
results of the simulations, which confirms the validity of the proposed design procedures. Secondly,
the designed nonuniform helical antennas and arrays were compared with the helical antennas and
arrays described in the literature. Our nonuniform helical antennas outperform practically all helical
antennas presented in the literature, except in the cases of highly lossy conductor when uniform
helical antennas perform better.

Besides nonuniform helical antennas with linearly varying geometrical parameters, other
variations of the dimensions were considered (exponential and piecewise linear). It was concluded
that all these antennas achieve almost the same gain. However, the geometry of the designed
nonuniform helical antennas is simpler and hence preferable for the applications.

Further, it was noticed that nonuniform helical antennas are more sensitive to losses than the
uniform helical antennas. Namely, the optimal nonuniform helical antennas achieve up to 2.5 dB
higher gain than the optimal uniform helical antennas. However, this discrepancy decreases with the
increase of losses. Hence, we also formulated a set of equations for the design of the optimal
uniform helical antennas, which are the preferable choice when the losses are high. The clear border
is established that suggests which design should be used for the considered axial antenna length,
wire radius, and conductivity.

Within this thesis, flat square and circular ground planes were considered. The side of a square
ground plane or the radius of a circular ground plane that is required for the achievement of the best
performances are around the axial antenna length for shorter antennas, whereas for the longest
antennas, they are around one half of the axial antenna length. Although the designed nonuniform
helical antennas require a relatively large ground plane, this may not be a problem when such a
plane already exists (e.g., certain satellites and vehicles).

Finally, additional contribution of the thesis is the complete, “step-by-step”, solution of a real
engineering problem, i.e., the design and fabrication of a quad array that meets the pre-defined
specifications. This solution contains details about the design and optimization of the geometry of
helical antennas and their positions within the array, the design of the feeding and matching
network, and details about the fabrication of the prototype. The validity of the solution is verified by
measurements.
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The investigation and results presented in this thesis open potential topics for the future research.
Namely, machine learning algorithms might be use for accelerating the finding of the optimal
helical antennas and for considering more criteria or wider search-spaces. For example, the
optimization can be directed at simultaneously maximizing the gain and minimizing the length of
the helix conductor, which is preferable from the practical point of view. Further, the design of
arrays of helical antennas can be generalized to cover an arbitrary number of array elements.

Finally, nonuniform helical antennas with a small ground plane may be systematically investigated
and their design procedure formulated.
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Appendix

A. Gain definitions

In the literature, software, antenna datasheets, and standards the term ‘“antenna gain” is not
consistently used, or, at least, it is not used clearly. Problems also exist with the units used for the
gain. The objective of this appendix is to clarify the terms and units. We primarily follow [126].
The definitions in this appendix are taken from [126] directly or with minor modifications.
However, we have added comments and corrections to these definitions.

We consider an antenna in the transmitting mode. The antenna is fed by a generator that is
connected to the antenna by a lossless transmission line, of a given (nominal) characteristic
impedance, or a lossless waveguide, of a given wave impedance. The incident wave on the line, viz.
waveguide (traveling from the generator towards the antenna) is partly reflected from the antenna
due to the antenna mismatch. The reflection coefficient of the antenna is defined with respect to the
characteristic impedance of the transmission line, viz. the wave impedance of the waveguide.

A.1. Terms

The radiation intensity, in a given direction, is defined as' 7 =r*P, where r is the distance of
the field point from the antenna and P is the intensity of the Poynting vector at the field point,

P= |E X H| (E is the electric-field vector and H is the magnetic-field vector).

The average radiation intensity is equal to the total power radiated by the antenna divided by
the full solid angle®. The average radiation intensity of an antenna whose total radiated power is

, P
Pgis [ =-24,
47
An isotropic radiator is a hypothetical, lossless antenna whose radiation intensity is equal in all
directions. The radiation intensity of the isotropic radiator whose total radiated power is P, is

P o
I =" for any direction.
4n

The radiation efficiency is the ratio of the total power radiated by the antenna and the net power
accepted by the antenna from the connected transmitter.

The directivity of the antenna is the ratio of the radiation intensity in a given direction to the
radiation intensity averaged over all directions®. In the older literature, the term directive gain is

'Although [126] is an engineering text, formulas are avoided, though formulas would provide more compact and clearer

statements. Hence, we prefer to at least partly deviate from that style.

* The definition in [126] is different: “the radiation intensity, in a given direction, is the power radiated from an antenna

per unit solid angle”. As in the most texts in English, the construction “per unit...” is used, which is not favored in a

rigorous approach. Here, we actually evaluate the power density in the sense of the ratio of the elementary power

radiated into an elementary solid angle and that elementary solid angle, i.e., / =dP/dQ . We do not take the ratio of
the power radiated into the unit solid angle and the unit solid angle (which would be 1 steradian).

*In[126], it is written “divided by 47 >, where 4n actually means the full solid angle (47 steradians).

* «All directions” means here the directions covering the full solid angle (4 m steradians). Care should be taken, however,
that in some cases only the upper half-space is considered (e.g., in AM broadcasting in the LF, MF, and HF bands).
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also used, but this term has been deprecated. The directivity does not take into account the
dissipative loss in the antenna or the losses due to the mismatch of the antenna to the feeder and the
polarization mismatch.

The gain of the antenna in a given direction is the ratio of the radiation intensity in that direction
and the radiation intensity that would be obtained if the power accepted by the antenna were
radiated isotropically. The term absolute gain is also used to stress the distinction from the relative
gain. The gain takes into account the dissipative loss in the antenna, but it does not take into account
the losses due to the mismatch of the antenna to the feeder and the polarization mismatch. If the
antenna is without the dissipative loss, then, for any direction, its gain is equal to its directivity. If
the antenna has the dissipative loss, then, for any direction, its numerical gain is equal to its
numerical directivity multiplied by the radiation efficiency.

The realized gain™® of the antenna in a given direction is the gain of the antenna reduced to take
into account the losses due to the mismatch of the antenna to the feeder’. The realized gain is the

product of the absolute gain and the feeder mismatch factor 1-|p|*, where p is the reflection

coefficient of the antenna for the given feeder’. The realized gain takes into account the dissipative
loss in the antenna and the mismatch of the antenna to the feeder, but it does not take into account
the polarization mismatch.

The relative gain of the antenna in a given direction is the ratio of the gain of the antenna and the
gain of a reference antenna. The maximum gain of the reference antenna is implied’.

The term the relative gain is sometimes used in conjunction with the “relative radiation pattern”,
meaning the radiation pattern of the antenna normalized to its maximum.

The partial directivity/gain (absolute gain, realized gain, or relative gain) of the antenna for a
given polarization, in a given direction, is the directivity/gain reduced to take into account the
losses due to the polarization mismatch. The partial directivity/gain is the product of the total
directivity/gain and the polarization mismatch factor C =1 /o » Where I, is the radiation

copo
intensity corresponding to the given polarization and 1., is the total radiation intensity'.

For the given direction, the total directivity/gain is the sum of the partial directivities/gains for
(any) two orthogonal polarizations. The partial directivity cannot be greater than the total
directivity. If the direction for the directivity/gain is not specified, the direction of the maximal''
radiation intensity is implied and the maximal directivity/gain is implied.

In all previous definitions, the directivity and the gain are expressed as ratios of two physical
quantities, i.e., the radiation intensities. This ratio is a pure number, i.e., it has no units. We shall

> An alternative term in English found in the literature is “practical gain”; in Serbian: “pogonsko poja anje”; in German:
“Antennen-Betriebsgewinn”.

% In [127] the term “absolute gain” is wrongly used to mean the “realized gain: “... we define two gains; one, referred to
as gain (G), and the other, referred to as absolute gain (G ), that also takes into account the reflection/mismatch
losses...”. The same mistake also appears in [128].

"The wording in [126] is “The gain of an antenna reduced by its impedance mismatch factor.” By the term
“impedance”, one should consider the actual impedance for a transmission-line feeder and the wave impedance for a
waveguide feeder.

¥ In [126], the feeder mismatch factor is referred to as the impedance mismatch factor, but it is not related to the
reflection coefficient.

% In [126], it is incorrectly stated that “the maximum gains of the antennas are implied”. The problem comes from two
different usages of the word “gain”. One usage is to denote the gain as the function of the angles of the spherical
coordinate system (this defines the “gain pattern”). The other usage is to denote the maximum gain of the antenna. In
the first usage, only the maximal gain of the reference antenna is involved. In the second usage, the maximal gain of
both antennas is involved.

% In [126], the polarization mismatch factor is not defined, but rather the partial directivity/gain are defined from

scratch, by considering [ copol and the radiation intensity averaged over all directions, viz. the radiation intensity that

would be obtained if the power accepted by the antenna were isotropically radiated.

"In [126], the word “maximum” is used instead of “maximal”. Although linguistically “maximum” is used as an
adjective, it is a good practice to distinguish between “maximal” (being an adjective, i.e., “the largest”; in Serbian:
“najveéi”) and “maximum” (“the largest value”, as in “the maximum of the sinusoidal function is 1; in Serbian:

CLINNT3

“najvecéa vrednost”, “maksimum”). A similar disambiguation should be done for “minimum” and “minimal”.
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refer to this ratio as the numerical directivity, viz. gain. We shall use upper-case letters for the
numerical directivity (D) and gain (G). We shall use the attribute “numerical” where necessary to
distinguish from the logarithmic values.

The directivity and gain are often expressed in decibels by taking 10log;, of the numerical

directivity, viz. gain. We shall use lower-case letters for the logarithmic directivity (d) and gain (g).
We shall not stress “logarithmic” unless it is necessary to distinguish it from the numerical gain.

When considering the logarithmic directivity/gain, multiplications/divisions are replaced by
additions/subtractions.

The logarithmic gain is the sum of the logarithmic directivity and the logarithmic radiation
efficiency.

The realized logarithmic gain is the sum of the logarithmic (absolute) gain and the term

101og;, (I- | p[2)dB.
The relative logarithmic gain is the difference of the logarithmic gain of the antenna and the

logarithmic gain of the reference antenna.
The partial logarithmic directivity/gain is the sum of the logarithmic directivity/gain and the term

Icopol
c¢=10log,, dB.

total

A.2. Units

The averaged radiation intensity amounts to using an isotropic radiator as a reference antenna.
Hence, the unit for the logarithmic directivity/gain is dBi (decibels with respect to the isotropic
radiator).

In the older literature, as a rule, the reference antenna was a half-wave dipole. This reference is
nowadays still used in some antenna data sheets and standards (e.g., electromagnetic-compatibility
standards). To stress the reference antenna, the unit for the logarithmic directivity/gain in this case
is dBd.

The antenna directivity/gain in dBi is for 2.15 dB greater than when expressed in dBd.

Circularly-polarized antennas are often used for satellite communications (e.g., for the GPS
navigation system). In order to stress that the partial logarithmic directivity/gain for the circular
polarization is considered, the unit dBic (or dBiC) is used.

The attribute “partial” is seldom used, although its usage can be important to avoid ambiguities.

The unit dBi is not used in many cases, but only dB is used instead, leading to possible confusion
in books, papers, simulation software, and antenna data sheets.

In software, the unit dB is often used in the meaning “dBi”.

When stating the difference between two directivities/gains, which are given in dBi, it is adequate
to say that the directivity/gain, is “for n dB higher than...”. It is not correct to say that it is “for n dBi
higher than...”.

A.3. Derivation of RHCP and LHCP components of the radiated field

Figure A.1. Considered scenario for the derivation of RHCP and LHCP components of the radiated field.
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We consider an arbitrary antenna, located near the coordinate origin (Fig. A.1). We observe the
far (radiated) field of the antenna, at an arbitrary point M at the distance » from the antenna.
Far-field conditions are (simultaneously):

e r>D,
. r>A s
2
o > (the Fraunhofer condition),

where D is the maximal linear dimension of the antenna.

In case of helical antennas, D = L > A (if the counterbalance is not very large), so that only
2

r>

matters. (If this condition is fulfilled, then the other two are automatically satisfied.)

In the far-field region, the transversal components of the electric field (£, and E, dominate),
Le, E,~0 and E=Equy+Eu,,
coordinate system. The radiated field is, locally, a TEM wave.

We want to separate E into two circularly-polarized components. The first component is the

RHCP component and the second one is the LHCP component (both observed with respect to the
direction of wave propagation, i.e., u,.).

where u,, uy, and u, are the unit vectors of the spherical

Let us first consider the RHCP component, Egycp. Projections of Egycp on uy and u,, have the

same intensities (the same rms values), they are in phase quadrature (these two conditions are the
same for the RHCP and LHCP components), and the phase difference between E, and E, is ©/2

(Eq advances in phase, ie, E, lags in phase). Hence, we can write

Eguice = Ernce oo + Ernce o¥¢ = Erpicp oUp — J Eruce ol -
Similarly, for the LHCP, E ycp = Eppcpolly + Evnce oW = Ernce oo + ] Eppce oll, because now
the phase difference between E, and E, is —n/2 (E, advances in phase).

Further, E=Egycp +Eycp, s0 that Eg=Erpcpe+Encpe and E, =—j Egucpo +J Erncro -

. EO + J E(p EB - .] Eq)
From the last two equations we have Eycpg = — and £, ycpe =—— . We also have
—JEg+E JE +E
Eruce 0= #q) and E}yep 0= Tq) .

We have completely defined the RHCP and LHCP components. We can also prove that any
(arbitrarily) polarized radiated field can be split into these two components. Namely, a
time-harmonic field is elliptically polarized in the general case. Hence, it can be expressed in terms
of only two orthogonal linearly polarized fields (two fields are sufficient, not three). Each of these
two fields can be exressed in terms of two circularly-polarized waves (one RHCP and one LHCP).
The resulting RHCP and LHCP waves can be obtained by simple summations.

In the time domain, the vectors Egpycp(f) and E;,p(¢) rotate in the same plane (the plane

defined by u, and u, in our case), in opposite senses, but with the same angular velocity. At

certain instances, these two vectors have the same direction (and this situation periodically repeats
after an integer multiple of 7/2, where T =1/ f 1is the period of the field). At those instances, the
intensity of the resulting electric field is maximal, |E | .= Erycp + Erpcp » Where Epyep 1S the rms

Eq+JE,

value of Egycp(f), Egpep = \/EERHCP 0= |ERHCP (t)| =2 ,and E|cp 1s the rms value of

107



EG_JEQ

E ucr®), Eipep =\/§ELHCPe =|ELHCp(t)|=\/5 . A quarter period later, the vectors

Erycp(?) and E;0p(2) have opposite directions, when the intensity of the resulting electric field is

minimal, |E | in = |ERHCP - ELHCP| . Hence, the numerical axial ratio is

AR = B g _ Eruce * Ernce _ Ersce| + |Evice , whereas ar[dB]= 2010g10|||§RHCPIi||§LHCPH.
—~RHCP =LHCP

| E |min |ERHCP_ELHCP| ||ERHCP|_|ELHCP

B. Theorem of electromagnetic similitude

The theorem of electromagnetic similitude [118] defines the conditions that have to be satisfied in
order to obtain an electromagnetic field similar to the field in a geometrically similar system.

Let us consider two geometrically similar systems (system 1 and system 2), shown in Fig. B.1.
The ratio of the linear dimensions of these systems is #, i.e., ' =nr. (Note that in all equations

within this subsection and in Fig. B.1, prime denotes the system 2.) Hence, for n» >1 the system 2 is
larger than the system 1, and for n <1 the situation is reversed. The electromagnetic similitude
theorem is valid when both systems are linear. Hence the permittivity, permeability, and
conductivity of the material are

e(r)=es(r), W(r)=mul(r), o'(r)=so(r), (B.1)
where e, m, and s are constants. The sources of the electromagnetic field are modeled by impressed
currents, which satisfy the relation J! (r'): Jjd; (r), where j is a constant (not the imaginary unit).
All phenomena in the system 2 are 7 times faster than in the system 1, #' =Tt .

The field vectors in the systems satisfy the relations

E'(r)=kyE(r), H(r)=k,H(r), (B.2)

where k; and k, are constants. If the same field in the two systems is required, the constants
and k; should be 1.

(a) (b)
Figure B.1. Sketch of two similar systems: (a) system 1 and (b) system 2.

Maxwell’s equations for the systems 1 and 2 are

E
curl E :—pa—H, curlH =c E +J, +aa—, (B.3)
ot ot
curl’E':—u’aai,, curl'H':cs'E'+Ji'+s’aai’. (B.4)
t t

Since the operation curl’ refers to a point ' of the system 2, curl’ = curl/n . After the substitution

of the quantities from the system 2 (prime quantities) according to previously defined relations into
(B.4), it becomes
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curl E =— nmky pa—H, curl H = % cE+| 1" J, + nekg sa—E. (B.5)
Tky ot o oy Tky ) ot

In order to obtain the electromagnetic similitude, (B.3) and (B.5) must be identical. Hence, the
expressions in parentheses in (B.5) must be equal to unity,
nskyg Jn 1 neky

nmky =1, %=1, B (B.6)
Tk, kyy ky  Tky

Since we are interested in the relative field distribution (for analyzing antenna characteristics), the
constants k, and k, are 1, which simplifies (B.6) to

nm ne
—=1,ns=1, jn=1, —=1. B.7
T J T (B.7)

Practically it is almost impossible to obtain m #1, i.e., p’'#u, and e>>1 or 1/e>>1. Hence, we

can adopt m=e=1 (i.e., we have the same dielectric and magnetic materials in these systems,
provided that they are lossless), which additionally simplifies (B.7) to
1 1
n=T,j T,S 7 (B.8)

These conditions lead to the conclusion that if the geometrical parameters are n times larger in the
system 2 than in the system 1, the conductivity and the frequency (1/7) in the system 2 have to be n
times smaller. This allows that the antenna simulations can be run at an arbitrary operating
frequency and, by applying the theorem of electromagnetic similitude, the antenna geometry can be
scaled so that it corresponds to the desired frequency. The shape (pattern) of the electromagnetic
field distribution (hence, the antenna characteristics, such as the impedance and radiation pattern)
will be maintained.
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obpa3say uzjage o aymopcmey

H3jaBa o ayropcTBy

Wme v npe3ume ayTopa Jenera Aunkuh

2015/5026

Bpoj uHaekca

H3sjaB/byjem

Jia je AOKTOpCKaA AucepTalHja 110/ HacJI0BOM

HeyHudopMHe XeJTMKOMAA/IHE aHTEeHe

(Nonuniform helical antennas)

e pe3y/]TaT CONCTBEHOT HCTPaXXHBauyKor paja;

* [a aucepTaldja y LeJIMHH HU y AeJlI0BUMa HUje 6UJIa NpeAsiodkeHa 3a CTHLame Apyre
JAUIJIOMe NpeMa CTYAHjCKUM NporpaMruMa pyrux BHCOKOILIKOJICKHX YCTaHOBa;

e [Jla Cy pe3yJITaTH KOPEKTHO HaBeJeHH U

® Ja HMCaM KpLIXO//a ayTopcka MpaBa U KOPHCTHO/J1a UHTEJIEKTYaJHY CBOjUHY APYTHX
Jidua.

IloTnuc ayropa

Iy~




o6paszay usjase o ucMo8eMHOCMU WMAMNAHE U eAeKMPOHCKe 8ep3uje dokmopckoz pada

H3jaBa 0 MICTOBETHOCTH IITaMIaHEe ¥ eJIEKTPOHCKE Bep3uje LOKTOPCKOT
paja

WMe 1 ipesuMe aytopa ___Je/eHa luHkuh

Bpoj unaekca __2015/5026

Cryzujcku nporpam E/IEKTPOTEXHKKA K padyHApCTBO, MUKPOTA/laCHa TeXHUKA

Hacsi0B paza HeyHudopmHe xenukonaanne aHTeHe (Nonuniform helical antennas)

MeHTOp npod. ap AutoHuje Hophesuh u B. npod. ap Jparan Oshan

WsjaBmbyjeM fAa je wmTaMmaHa BepsHja MOT JOKTOPCKOI pajia MCTOBETHa €JIEKTPOHCKO]

BEp3HjU KOjy caM Impejao/sa paAu MNoxXpawmHUBawka y JIMMTA/IHOM pPeno3uTOpHjymMy
Yuusepsurera y beorpanay.

Jlo3Bo/baBaM Jja ce o6jaBe MOjM JIMUHH MOJALM BE3aHM 3a A00Hjale aKaJeMCKOr Ha3uBa
JOKTOpA HAyKa, Kao IITO Cy KMe U Npe3nMe, TOAMHA U MecTO pohema U JaTyM o/ibpaHe paja.

OBY JIMYHU MOJALM MOTY Cce 06jaBUTH Ha MPEXHHM CTpaHHL|aMa JUrHTalHe OUOJIUOTEKE, Y
€JIEKTPOHCKOM KaTaJIory M y nybsiriKkauujama YauBepsureTa y beorpazy.

[loTnuc ayTopa

Y Beorpaay, 26.04.2021. rogune

L.




o6pasay usjase o kopuutherby

H3jaBa o kopumhemwy

OpnawhyjeM YHuBep3uTeTcKy 6uOaHOTeKy ,CBeTo3ap MapkoBuh® ga y JIUruTaaHu

penosuTopujyMm VYHHBep3uTeTa y bBeorpagy yHece Mojy [AOKTOPCKY AHCepTaLHjy MNOA
HacJI0BOM:

HeynudopmHe xesnkonjaniHe aHTeHe

(Nonuniform helical antennas)

KOja je Moje ayTOpCKO AeJlo.

JlMcepTalyjy ca CBUM NpHJI0O3MMa npejao/jia caM y eJleKTpOHCKOM ¢opMaTy MOroAHoOM 3a
TpajHO apXHUBHpame.

Mojy AOKTOpPCKY AxcepTaLujy noxpaweHy y JJUrHTaJHOM perno3uTOpHjyMy YHHUBEpP3UTETA Y
Beorpagy v JOCTYynHY y OTBOPEHOM MPHCTYIY MOTY Ja KOPHUCTe CBH KOjH MOIITYjy oApende

caipxaHe y ofabpaHoM Tuny JauleHle KpeatuBHe 3ajeanuue (Creative Commons) 3a Kojy
caM ce oZJly4Ho/Ja.

1. Ayropctso (CC BY)
2. AyropctBo - HekoMmepuujasiHo (CC BY-NC)
@Ay'ropc*rso - HeKoMepLHjaJHo - 6e3 npepasa (CC BY-NC-ND)
4. AyTOpCTBO - HEKOMEpLHjaJIHO - AeJUTH nog uctuM ycnoBruma (CC BY-NC-SA)
5. AytopcTBo - 6e3 npepaga (CC BY-ND)
6. AyTopCcTBO - AeJHUTH noA uctuMm ycjioBuma (CC BY-SA)

(Mos1MMo J1a 3a0KpYy>HTe CaMo jeJHY OJ LIeCT NMOHyHeHHUX JTHLEHLH.
Kpatak onuc iMLleHH je cacTaBHH Jieo OBe U3jaBe).

IloTnuc ayTopa

Y Beorpagy, 26.04.2021. roaune




1. AytopcrBo. /l03BO/baBaTe yMHOXaBakbe, AUCTPHOYIHjy U jaBHO caomilTaBake Jesa, U
npepaje, ako ce HaBeJe HUMe ayTopa Ha HayHMH ogpeheH of cTpaHe ayTopa WM AaBaolia
JIMLIEH1e, YaK U Y KoMepliujasiHe cBpxe. OBO je Hajc10604HHja O/ CBUX JIMIIEHLH.

2. AyTopcTBO - HeKOMepuHjasiHO. /[03BosbaBaTe YMHOXKaBake, AUCTPHOYIIHjy M jaBHO
caollllTaBamwe feJia, U npepaje, ako Cce HaBe/le UMe ayTopa Ha HauyMH ojpebeH of cTpaHe
ayTopa HJiM JaBaolia inieHile. OBa siMLeHlla He 403B0JbaBa KOMepLIHjaJIHy YIIOTpeby Aeia.

3. AyTopcTBO - HeKOoMepuHjaJJHO - 6e3 mnpepaaa. /lo3BosbaBaTe YMHOXKABakbe,
AHCTPHUOYLIMjy M jaBHO caolliTaBamwe JeJia, 6e3 MpoMeHa, NpeobHKoBama WK yrnoTpebe
JleJla y CBOM Jiesly, aKO ce HaBeJe UMe ayTopa Ha Ha4uH oApeheH of cTpaHe ayTopa HJIH
JaBaolia JiviieHle. OBa JiMIleH1la He [03B0/baBa KOMepliHjaJiHy yrnoTpeby Aesa. Y ogHOCY Ha
CBe OCTaJle JIHlleH1le, 0BOM JIMI|EHIIOM Cce orpaHH4aBa HajBehu 06MM npaBa kopHithewa aena.

4. AyTOpPCTBO - HEKOMepLHjaJHO - [AEeJIMTH I0J HMCTHUM YycjoBUMaA. /[03BoJbaBaTe
YMHO)KaBawe, JUCTPUOYLHjY H jaBHO CAOIMLUTaBakbe [JeJia, U Npepaje, ako ce HaBeje HMe
ayTopa Ha HauMH ofpebeH oA cTpaHe ayTopa MJIM [JaBaola JIMIEHIle W aKo ce Mpepaja
AUCTpUOGYHpa MOA HCTOM MWJIM CJAHYHOM JiMueHUoM. OBa JiMIleHLAa He JA03BOJbaBa
KOMepLHjaJIHy ynoTpe6y Aesa ¥ npepaja.

5. AyropcTtBo - 6e3 mnpepaaa. [[03Bo/baBaTe yMHOXKaBawe, JHCTPUOYIHjy H jaBHO
caormuTaBame jeJia, 6e3 MpoMeHa, NpeobHKOBama WM yIoTpebe gena y CBOM jJeJly, ako ce
HaBeJle MMe ayTopa Ha HauMH ofgpebeH of cTpaHe ayTopa WM jJaBaola JiHlieHue. OBa
JIMIEHIIa J03B0/baBa KOMepLHjaJIHy yoTpeby Aeia.

6. AyTOpPCTBO - AE/IUTH MOJ UCTHUM yCJIOBUMA. [[03BO/baBaTE YMHOXKaBake, JUCTPHOYILH]Y
M jaBHO CaoMlITaBake [JeJ1a, U Npepajie, ako ce HaBeJe HMe ayTopa Ha HauMH ofpebeH of
CTpaHe ayTopa WJIM JaBaolja JIMIIEHIIE U aKo ce Mpepaja AUCTPHOYHpaA 110 HCTOM HJIM
CJIMYHOM JiMUeH1oM. OBa JIMIlEHL]a [03BOJbaBa KOMEpLHjalHy yrnoTpeby Aesa U mpepaga.
CiimuHa je codTBEpCKHUM JIHLEHIIAMa, OHOCHO JIHLIEH1laMa OTBOPEHOT KOoa.
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