UNIVERZITET U BEOGRADU MAŠINSKI FAKULTET

Aleksandar M. Milovanović

PRIMENA PARAMETARA ELASTO-PLASTIČNE MEHANIKE LOMA NA PROCENU INTEGRITETA VELIKIH SFERNIH REZERVOARA

doktorska disertacija

Beograd, 2019.

UNIVERSITY OF BELGRADE FACULTY OF MECHANICAL ENGINEERING

Aleksandar M. Milovanović

APPLICATION OF PARAMETERS OF ELASTIC-PLASTIC FRACTURE MECHANICS FOR INTEGRITY ASSESSMENT OF LARGE SPHERICAL STORAGE TANKS

Doctoral Dissertation

Belgrade, 2019.

Komisija za ocenu i odbranu disertacije

Mentor: **dr Aleksandar Sedmak**, redovni profesor Mašinski fakultet, Univerzitet u Beogradu

> **dr Zoran Radaković**, redovni profesor Mašinski fakultet, Univerzitet u Beogradu

> **dr Nebojša Gnjatović**, docent Mašinski fakultet, Univerzitet u Beogradu

> **dr Nenad Mitrović**, vanredni profesor Mašinski fakultet, Univerzitet u Beogradu

dr Nikola Budimir, naučni saradnik Inovacioni centar Mašinski fakultet, Univerzitet u Beogradu

Datum odbrane: _____ god.

PREDGOVOR

Doktorska disertacja "Primena parametara elasto-plastične mehanike loma na procenu integriteta velikih sfernih rezervoara" predstavlja nastavak višedecenijskih istraživanja u oblasti integriteta konstrukcija, realizovanih od strane članova Katedre za tehnologiju materijala, Mašinskog fakulteta, Univerziteta u Beogradu. Imajući u vidu da važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na kojoj je dijagnostifikovana pojava nepravilnosti u vidu neprihvatljivih grešaka zavarenih spojeva, disertacija je imala za cilj razvijanje metode sanacije nedozvoljenih grešaka u zonama zavarenih spojeva zasnovane na adekvatnom geometrijskom oblikovanju, odnosno korekciji geometrije nedozvoljene greške. Dugujem veliku zahvalnost svom mentoru, prof. dr Aleksandru Sedmaku, koji mi je nesebično pomagao tokom svih faza izrade disertacije. Takođe, zahvaljujem se na stručno – tehničkoj pomiću koju mi je prožio naučni saradnik dr Nikola Budimir. Konačno, posebno se zahvaljujem članovima komisije prof. dr Zoranu Radakoviću, doc. dr Nebojši Gnjatoviću i vanrednom prof. dr Nenadu Mitroviću na korisnim sugestijama kojima su mi pomogli u oblikovanju finalne verzije disertacije.

PRIMENA PARAMETARA ELASTO-PLASTIČNE MEHANIKE LOMA NA PROCENU INTEGRITETA VELIKIH SFERNIH REZERVOARA

REZIME

U radu se analizira integritet konstrukcije velikog sfernog rezervoara za skladištenje tečnog amonijaka koji je izložen dejstvu unutrašnjeg pritiska, koji je izrađen zavarivanjem segmenata gornjeg i donjeg dela polusfernog omotača sa gornjom i donjom kalotom, koji su takođe izvedeni zavarivanjem prethodno deformacijom oblikovanih limova, u čijim zavarenim spojevima je otkriveno 211 grešaka ispitivanjem metodama bez razaranja. Primenom parametara elasto-plastične mehanike loma propisan je postupak određivanja kritične dubine greške u zonama zavarenih spojeva konstrukcije. Određen je adekvatan postupak obrade (geometrijsko oblikovanje) strukture u lokalnoj uskoj zoni u okolini greške kojom se postiže bezbednost konstrukcije sa aspekta čvrstoće. Pokazano je da debljina omotača sfernog rezervoara u lokalnim zonama otkrivenih grešaka može biti i manja od minimalne propisane standardom EN 13445-3:2017, a da pritom integritet konstrukcije nije narušen. Eksperimentalno-numeričkim istraživanjem propisane su granične geometrijske karakteristike greške, odnosno propisana je procedura kojom su definisane dubine grešaka koje je moguće sanirati bez primene dodatnog materijala (bez navarivanja) i kojom se obezbeđuje bezbedan rad konstrukcije.

Ključne reči:	Sferni rezervoar, integritet konstrukcije, elasto- plastična mehanika loma, greška zavarenih spojeva (prslina, smaknuće, neprovar), MKE			
Naučna oblast:	Tehničke nauke, mašinstvo			
Uža naučna oblast:	Mehanika loma			
UDK:	539.42:[621.642:62-986(043.3) 620.172.24(043.3)			

APPLICATION OF PARAMETERS OF ELASTIC-PLASTIC FRACTURE MECHANICS FOR INTEGRITY ASSESSMENT OF LARGE SPHERICAL STORAGE TANKS

ABSTRACT

The paper analyzes the construction integrity of a large spherical storage tank for liquid ammonia exposed to internal pressure. The spherical storage tank was made by welding the previously deformed segments of sheet metal. 211 welding defects were detected performing the ultrasonic testing on welding joints. The critical depth of defect in a small zone of welded joint of a structure is defined using the parameters of elastic-plastic fracture mechanics. Adequate process of machining of the structure in the local narrow zone of detected defect is determined which achieves structural safety from the aspect of strength. It has been shown that the thickness of the spherical reservoir shell in zones of detected defects may be less than the minimum specified by standard EN 13445-3: 2017, without compromising structural integrity. Experimental and numerical investigation prescribed the boundary geometric characteristics of the defect that can be repaired without the use of additional material (without welding) and ensuring the safe operation of the structure.

Keywords:	Spherical storage tank, structural integrity, elasto- plastic fracture mechanics, welding defect (crack, undercut, incompletely filled groove), FEA				
Scientific field:	Technical sciences, Mechanical engineerin				
Scientific discipline:	Fracture mechanics				
UDK:	539.42:[621.642:62-986(043.3)				
	620.172.24(043.3)				

SADRŽAJ

1 UVODNA RAZMATRANJA1
1.1 Sferni rezervoari7
1.1.1 Tehničke karakteristike sfernih rezervoara10
1.1.2 Proizvodnja velikih rezervoara11
1.1.3 Analiza opterećenja 12
1.2Mehanika loma14
1.2.1 Linearno elastična mehanika loma – osnovni principi15
1.2.1.1 Faktor inteziteta napona
1.2.1.3 Plastična zona ispred vrha prsline
1.2.1.4 Primena linearno elastične mehanike loma
1.2.2 Elasto-plastična mehanika loma
1.2.2.1 Otvaranje vrha prsline (CTOD)
1.3Naučni ciljevi istraživanja
1.4 Polazne hipoteze 21
2 KONTROLNI PRORAČUN SFERNOG REZERVOARA
2.1 Određivanje dopuštenih napona
2.2 Merenje debljine zida posude ultrazvukom
2.3 Određivanje kategorije i nivoa opasnosti opreme pod pritiskom
2.4 Zahtevi za vrstu i obim kontrole i ispitivanje zavarenih spojeva
2.5 Proračun posude za projektni pritisak $p = 16, 0 \ bar$
1. Najveći statički pritisak u posudi35
2. Proračun debljine zida sfernog omotača \emptyset 15.120 × 30 mm , usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]
3. Proračun cevnog priključka Ø 508 × 12,5 mm na sfernom omotaču, usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]
4. Proračun prirubnice sa grlom otvora za kontrolu DN500 PN40, usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]
5. Opterećenja od seizmičkih uticaja, proračun prema Pravilniku o tehničkim propisima o delovanju vetra na noseće čelične konstrukcije [37]
6. Opterećenja od uticaja vetra, proračun prema Pravilniku o tehničkim propisima o delovanju vetra na noseće čelične konstrukcije [38] 50
3 PROCENA INTEGRITETA KONSTRUKCIJE SFERNOG REZERVOARA PRIMENOM PARAMETARA ELASTO-PLASTIČNE MEHANIKE LOMA
4 ANALIZA NAPONSKO-DEFORMACIONIH STANJA PRIMENOM METODE KONAČNIH ELEMENATA
4.1 Konačnoelementni model strukture sfernog rezervoara60
4.2 Analiza opterećenja62

4.3 Naponsko-deformaciono stanje strukture sfernog rezervoara	64
4.3.1 Prvi proračunski slučaj	64
4.3.2 Drugi proračunski slučaj	67
4.3.3 Treći proračunski slučaj	69
4.4 Provera naponskog stanja u zonama saniranih linearnih indikacija	73
4.5 Provera naponskog stanja za kritičnu vrednosti dubine greške određene parametrir plastične mehanike loma u poglavlju 3	na elasto- 98
5 ZAKLJUČAK	103
5.1 Naučni doprinosi	
5.2 Kritički osvrt na polazne hipoteze	
5.3 Primenljivost i značaj rezultata istraživanja	
5.4 Mogući pravci daljih istraživanja	105
LITERATURA	106

UVODNA RAZMATRANJA

Rezervoari predstavljaju hermetički zatvorena skladišta [1], u kojima se obavlja skladištenje tečnosti (voda, hemikalije ili ostale opasne materije u tečnom stanju) ili gasova.

- Postoji više različitih tipova rezervoara u zavisnosti od:
 - a) geometrijskih i konstruktivnih karakteristika,
 - b) kapaciteta,
 - c) materijala od koga su izrađeni,
 - d) karakteristika robe koja se skladišti,
 - e) mesta i načina ugradnje, načina postavljanja,
 - f) primene.

Primena rezervoara i vrsta robe koja se skladišti

Osnovna namena rezervoara je skladištenje tečnosti i gasova ali se njihova primena definiše u odnosu na mesto i ulogu u logističkom sistemu i vrsti robe koja se skladišti. U rezervoarima se može skladištiti voda (za piće, tehnička/industrijska, otpadna), ulja, nafta i naftni derivati, gasovi... Većina navedenih tečnosti i gasova spada u kategoriju opasnih materija, tako da se pri lociranju, izgradnji i eksploataciji rezervoara moraju poštovati relevantne karakteristike robe (temperatura pri kojoj dolazi do zapaljenja, ekplozija, smrzavanje, korozivna dejstva materije) i poštovati odgovarajući propisi i preporuke o transportu, rukovanju i skladištenju vezani za datu klasu opsanih materija. U odnosu na mesto i ulogu skladišta u logističkom sistemu, rezervoari mogu spadati u sledeće kategorije: proizvodno prijemna skladišta (skladištenje pogonskih materijala ili sirovina), proizvodno otpremna skladišta (skladištenje vode za piće), distributivna skladišta (skladištenje naftnih derivata u rafinerijskom kompleksu), sabirno distributivna skladišta (naftni terminali u lukama).

Kapacitet, masa i dimenzije rezervoara

Kapacitet je određen unutrašnjim obimom i visinom rezervoara. Kapacitet se obično izražava i može izražavati u m³ ili litrima. U odnosu na kapacitet, grade se različiti rezervoari, što zavisi od vrste industrije gde se primenjuju, njihovoj ulozi i funkciji, vrste robe, ugradnje (nadzemni, podzemni), materijal od koga su napravljeni... U naftnoj i prehrambenoj industriji kapacitet rezervoara se kreće u opsegu od 1.000 do 150.000 m³. Kapacitet rezervoara za skladištenje manjih količina tečnosti i gasova kreću se u rasponu od 1.000 do 5.000 m³, a za veće količine od 10.000 do 20.000 m³. Kapacitet velikih rezervoara može zavisiti od konstrukcije rezervoara (rezervoari sa fiksnim krovom se grade do 80.000 m³, a rezervoari sa plivajućim krovom i do 150.000 m³ zapremine). Jedan od najvećih rezervoara je izgrađen u Japanu, polu-ukopanog je tipa, kapaciteta od 200.000 m³. U prehrambenoj industriji kapacitet rezervoara od nerđajućeg čelika kreće se u opsegu od 300 litara pa do 75.000 litara. Masa i dimenzije rezervoara su ograničene tehnološkim svojstvima tla na ili u koje se postavljaju.

Mesto ugradnje

Prema mestu ugradnje, rezervoari se klasifikuju kao:

- 1. Nadzemni rezervoari,
- 2. Nadzemni rezervoari izdignuti na posebnu konstrukciju,
- 3. Podzemni rezervoari,
- 4. Podvodni rezervoari,

- 5. Polu-ukopani rezervoari,
- 6. Prenosivi rezervoari.

Nadzemni rezervoari predstavljaju najčešće rešenje ugradnje (Slika 1.1.).

Slika 1.1. Nadzemni rezervoari

Nadzemni rezervoari izdignuti na posebnu konstrukciju se najčešće primenjuju za skladištenje vode. Danas se najčešće izrađuju od čelika, dok su se ranije gradili i od drveta. Sreću se u velikom broju oblika (Slika 1.2.).

Slika 1.2. Izgled čeličnog i drvenog rezervoara za vodu

Podzemni rezervoari se često ugrađuju u proizvodnim kompleksima za skladištenje pogonskih materija (vode, benzina, hemikalija) i na benzinskim stanicama. Usled česte potrebe da se u okviru jednog rezervoara skladište različite materije (benzinske stanice), ovakvi rezervoari se proizvode sa više komora, pri čemu njihova konstrukcija i opremanje podleže posebnim propisima (Slika 1.3.).

Slika 1.3. Izgled podzemnog rezervoara sa komorama

Podvodni rezervoari se koriste kod naftnih platformi i bušotina (Slika 1.4.).

Slika 1.4. Izgled i oblici podvodnih rezervoara

Usled ekoloških i bezbednosnih pogodnosti, za skladištenje opasnih materija se koriste i polu-ukopani rezervoari, betonske konstrukcije (Slika 1.5.).

Slika 1.5. Polu-ukopani rezervoari

Prenosivi rezervoari se izrađuju u različitim oblicima i veličinama (Slika 1.6.). Rezervoari ovog tipa za skladištenje vode se uglavnom prave od polietilena velike gustine, fiberglasa ili visoko kvalitetnih smola i stakla. Koriste se takođe za skladištenje pesticida, hemikalija i ostalih tečnosti.

Slika 1.6. Prenosivi rezervoari

Materijali od kojih se izrađuju rezervoari i izgradnja/ugradnja rezervoara

Rezervoari se izrađuju od različitih materijala: čelik, beton, prednapregnuti beton, fiberglas, plastika, titanijum, drvo... Postoje i rezervoari koji su izgrađeni u kombinaciji različitih materijala, kao na primer čelični rezervoari u kobinaciji sa staklom ili nekim drugim materijalom u cilju zaštite od korozije. Čelični rezervoari se izrađuju obično od hladno valjanog čelika, koji se površinski tretiraju slojem cinka. Radi bolje zaštite od korozije, u čelične rezervoare se mogu ugrađivati obloge od stakla. Čelični rezervoari se proizvode u skladu sa određenim specifikacijam, pri čemu debljina čelika zavisi od veličine suda rezervoara. Sud rezervoara se obično pravi od čeličnih prstenova

određene širine, koji se zavaruju jedan za drugi (Slika 1.7.). Obloge za omotač i dno suda mogu biti rađene od epoksida ili fiberglasa.

Slika 1.7. Izrada čeličnih rezervoara

Rezervoari od galvanizovanog rebrastog čelika (Slika 1.8.) se ručno zakivaju, imaju specifičan dizajn i konstrukciju, valovito galvaniziranu čeličnu oplatu, i predstavljaju hermetički trajna i kvalitetna skladišta. Način postavljanja zavisi od veličine rezervoara, lokacije i lokalnih propisa. Unutrašnji zaštitni sloj se može postaviti ili tokom proizvodnje ili po samoj ugradnji rezervoara.

Slika 1.8. Rezrvoar od galvanizovanog rebrastog čelika

Čelični rezervoari su često podložni koroziji (sa unutrašnje i spoljašnje strane – Slika 1.9.). Korozija obično počinje sa pojavom jamica na metalnoj površini, sa njihovim napredovanjem javljaju se i otvori. Pored rezervoara i cevi, koroziji su izloženi i svi drugi delovi sistema tako da svi moraju biti zaštićeni od korozije.

Slika 1.9. Pojava korozije na unutrašnjem (pod a)) i spoljašnjem delu (pod b)) čeličnog rezervoara

Najbolji metod zaštite od korozije je unutrašnje oblaganje rezervoara. Izuzetni rezultati postižu se hladnom galvanizacijom, druge vrste oblaganja (epoksi-smola, ugljeni katran, poliuretanska boja) takođe mogu pružiti pogodnu zaštitu u nekim slučajevima. Pre samog oblaganja, potrebno je pripremiti površine koje će se tretirati sredstvom zaštite kako bi se postiglo odgovarajuće prijanjanje sredstva na materijal na koji se nanosi. U cilju zaštite od korozije, često se grade i rezervoari u

kombinaciji čelik beton ili čelik staklo. Kapacitet rezervoara od čelika i stakla se kreću od nekoliko desetina hiljada litara do nekoliko miliona litara (Slika 1.10., Slika 1.11.).

Slika 1.10. Rezervoar za vodu od čelika i stakla

Slika 1.11. Kompleks rezervoara od čelika i stakla

Postoje dva načina ugradnje čeličnih rezervoara. Manji rezervoari (do nekoliko desetina hiljada litara) se proizvode i sklapaju u fabrici, a potom se isporučuju korisniku i instaliraju na predviđenu lokaciju (primer postavljanja podzemnih čeličnih rezervoara - Slika 1.12.). Veći rezervoari (nekoliko stotina hiljada litara) se proizvode u obliku komponenti, a sklapaju se na mestu ugradnje (primer sklapanja i izgradnje nadzemnih čeličnih rezervoara - Slika 1.13.).

Slika 1.12. Postavljanje podzemnih čeličnih rezervoara

Slika 1.13. Izgradnja nadzemnog čeličnog rezervoara (sklapanje na mestu ugradnje)

<u>Oblik rezervoara</u>

Rezervoari se izrađuju u više oblika i mogu biti: sferni (Slika 1.14.), cilindrični postavljeni vertikalno ili horizontalno (Slika 1.15.) ili oblika kvadra (Slika 1.16.). Vertikalni rezervoari se postavljaju na postolja i vertikalne oslonce, dok se horizontalni cilindrični rezervoari najčešće postavljaju na nosače ili "sedlo".

Slika 1.14. Sferni rezervoar

Slika 1.15. Vertikalni (pod a)) i horizontalni (pod b)) cilindrični reezrvoar

Slika 1.16. Rezervoar u obliku kvadra

1.1 Sferni rezervoari

Sferni rezrvoari se obično koriste za skladištenje vode, skladištenje gasova kao što su tečni zemni gas i tečni naftni gas, a mogu se koristiti i za skladištenje drugih tečnosti i gasova. Sferni rezervoari za skladištenje vode izdignuti na posebnim konstrukcijama uobičajeni su za skladištenje tehničkih voda. Poželjniji su od drugih vrsta rezervoara zbog: dodatnog kapaciteta za skladištenje, pogodni su za različite tipove tla, otporniji na seizmičke uticaje, visoke iskorišćenosti materijala za izradu rezervoara [2]. Sferni rezervoari izdignuti na konstrukcije najčešće se izvode u dva oblika: sferoidni rezervoari, i višekolonski rezervoari (Slika 1.17.).

Slika 1.17. Sferoidni rezervoar (pod a)), višekolonski rezervoar (pod b))

Sferni rezervoari se takođe koriste u svemirskom programu zahvaljujući mogućnosti potpunog pražnjenja rezervoara u poređenju sa cilindričnim rezervoarima. Pražnjenje rezervoara se vrši ubrizgavanjem gasa pod pritiskom, ovo je neophodno kada se rezervoar nalazi u beztežinskom prostoru [3]. Pored navedenog sferni rezervoari se koriste u satelitima i lansirnim vozilima zbog njihove velike zapremine u odnosu na težinu. U pomenutim aplikacijama, zapljuskivanje radne materije unutar rezervoara i frekvencija na različitim nivoima napunjenosti rezervoara su predmet raznih istraživanja [4].

Druga najčešća upotreba sfernih rezervoara u industriji odnosi se na skladištenje gasa pod pritiskom, jer mogu izdržati veći unutrašnji pritisak i imaju manja ograničenja koja se odnose na dimenzije u poređenju sa cilindričnim rezervoarima. Sferni rezervoar za skladištenje gasa i betonskim temeljem prikazan je na slici 1.18.

Slika 1.18. Primer sfernog rezervoara za skladištenje gasa

Sferni rezervoari imaju visok stepen izdržljivosti. Nakon tri godine eksploatacije analiziran je integritet sfernog rezervoara za skladištenje tečnog naftnog gasa sledećih karakteristika: zapremina 200 m³, debljina zida 24 mm, radni pritisak 1.7 MPa. Utvrđeno je da je konstrukcija rezervoara otporna na mikro prsline i deformacije omotača pri minimalnoj promeni debljine zida omotača [5].

Polu-ukopani i ukopani sferni rezervoari mogu se izrađivati od armiranog betona i primenjuju se za skladištenje vode. Studija je izvedena na tankozidom sfernom rezervoaru napravljenom od armiranog betona čiji je oblik formiran tako što je tankozida ploča armiranog betona postavljena na gumenu membranu na naduvavanje. Zatim je gumena membrana naduvana kako bi se u ploči od armiranog betona dobio oblik kalote (polovina sfere). Ova tehnika dobijanja polovine sfere ima za cilj smanjenje troškova prilikom izrade sfernih rezervoara od betona [6]. Studija je analizirala dve vrste sfernih rezervoara za skladištenje vode od betona, polu-ukopane i ukopane rezervoare. U nekoliko Afričkih država, kao što su Kenija i Uganda, betonski sferni rezervoari se koriste za skladištenje vode. Rezervoari u obliku sfere su poželjniji za pomenute aplikacije jer iziskuju manje materijala za izradu i lako se konstruišu [7].

1.1.1 Tehničke karakteristike sfernih rezervoara

Sferni rezervoari se smatraju tankozidim zavarenim posudama kada je debljina zida sfernog rezervoara mala u poređenju sa spoljašnjim prečnikom rezervoara. Pretpostavka da je rezervoar tankozidi važi kada su ispunjeni sledeći uslovi:

1. debljina zida rezervoara je manja od 0,1 radijusa sfernog rezervoara R,

2. unutrašnji pritisak je veći od spoljašnjeg,

3. analiza opterećenja usled dejstva pritiska razmatra samo uticaj unutrašnjeg pritiska,

4. kontrolni proračun čvrstoće odnosi se na omotač sfernog rezervoara, cevne priključke i oslonce rezervoara.

Razlikujemo tri napona koja se javljaju na unutrašnjoj strani rezervoara usled dejstva unutrašnjeg pritiska: tangencijalni napon σ_t , napon u pravcu meridijana σ_m i radijalni napon σ_r . Tangencijalni napon i napon u pravcu meridijana su jednaki [8]. Ako pretpostavimo da je reč o pravilnoj sferi, σ_r i σ_t se određuju prema sledećim jednačinama:

$$\sigma_r = \frac{p}{a^3 - 1} \left[1 - \left(\frac{r_e}{r}\right)^3 \right],\tag{1}$$

$$\sigma_t = \frac{p}{a^3 - 1} \left[1 + \frac{1}{2} \left(\frac{r_e}{r} \right)^3 \right],\tag{2}$$

gde su:

 r_e – spoljašnji poluprečnik sfere,

r – parametar koji predstavlja lokaciju na kojoj se računa napon,

p – unutrašnji pritisak,

 $a = \frac{r_e}{r} - \text{koeficijent kojim je predstavljen odnos spoljašnjeg poluprečnika i parametra koji defineše lokaciju na kojoj se računa napon.$

Maksimalna vrednost napona javlja se u unutrašnjim vlaknima omotača $r = r_i$. Prethodne jednačine mogu biti napisane u sledećem obliku:

$$\sigma_{ti} = p \cdot \frac{\frac{a^3}{2} + 1}{a^3 - 1},\tag{3}$$

$$\sigma_{ri} = -p. \tag{4}$$

S obzirom na maksimalni dozvoljeni napon σ_s , i unutrašnji prečnik D_i , potrebna debljina zida t pri datom unutrašnjem pritisku p, može se izračunati prema sledećoj jednačini:

$$t = \frac{D_i}{2} \left(e^{\frac{p}{2 \cdot \sigma_s}} - 1 \right). \tag{5}$$

Oslonac sfernog rezervoara projektovan je na osnovu težine uskladištenog proizvoda i lokacije na kojoj će biti postavljen rezervoar. Sferoidni rezervoari se postavljaju na postolje i pogodni su za lokacije sa niskom seizmičkom aktivnošću kako bi se izbegao inverzni efekat klatna prilikom zemljotresa. Drugu vrstu oslonaca sfernih rezervoara predstavljaju oslonci izrađeni od određenog broja stubova sa zategama postavljenih na ekvatoru ili ispod ekvatora rezervoara.

Broj stubova potreban za oslanjanje rezervoara određuje se na osnovu težine uskladištenog proizvoda, uticaja dejstva vetra i seizmičkih aktivnosti. Broj stubova se može predstaviti sledećim izrazom:

$$n = 2F/\nabla.$$
 (6)

Gde je: n - broj stubova, F - normalna sila, $\nabla - sila smicanja.$

Broj stubova zavisi od njihovog međusobnog rastojanja kao i od spoljašnjeg prečnika rezervoara [9]:

$$l = \sqrt{Dd/2}.\tag{7}$$

Gde je:

l – rastojanje između stubova, D – je spoljašnji prečnik rezervoara, d – je spoljašnji prečnik stuba.

Mehaničke veze između stubova rezervoara se zovu zatege. Oslonci sfernih rezervoara detaljno se analiziraju na mestima gde se očekuju seizmičke aktivnosti. Analiza rezervoara metodom konačnih elemenata usled dejstva seizmičkog opterećenja pokazala je da se rezervoar više pomera u horizontalnom pravcu u poređenju sa radijalnim pravcem. Ovakav rezultat nam ukazuje da postoji mala verovatnoća za lom stubova oslonca usled dejstva napona savijanja. Prema rezultatima iz opisane analize potrebno je razmatrati povećanje broja stubova i smanjenje njihovog prečnika. Analiza takođe ukazuje na to da su broj stubova oslonca, materijal, spoljašnji i unutrašnji prečnik rezervoara u funkciji od težine uskladištenog proizvoda [10].

Radni vek sfernog rezervoara zavisi od proizvoda koji se skladišti, materijala od koga je rezervoar napravljen, radne temperature, vremenskih uslova i periodičnog održavanja. Prosečan radni vek sfernih rezervoara je naveden u Tabeli 1.1 [11]:

Tip rezervoara	Broj godina
Betonski rezervoari	30 ÷ 55
Čelični rezervoari za ulje	$25 \div 20$
Rezervoari od nerđajućeg čelika za skladištenje hemikalija	15 ÷ 30
Čelični rezervoari pod pritiskom	$20 \div 25$
Izdignuti čelični rezervoari za vodu	30 ÷ 40

Tabela 1.1: Prosečan radni vek sfernih rezervoara

1.1.2 Proizvodnja velikih rezervoara

Sferni rezervoari male i srednje veličine izrađuju se od livenih segmenata koji su pojedinačno zavarivani i zatim tretirani u pećima za termičku obradu. Veliki sferni rezervoari se izrađuju na lokaciji na kojoj će rezervoar raditi od livenih segmenata koji se pojedinačno zavaruju i termički tretiraju. Izrađen sferni rezervoar mora biti termički tretiran i ispitan pod pritiskom (napunjen vodom i testiran odgovarajućim ispitnim pritiskom) na lokaciji. Zavarivanje segmenata je prikazano na Slici 1.19.

Cena izrade sfernih rezervoara obično se određuje na osnovu težine rezervoara. Cena izrade sfernih reezrvoara varira u zavisnosti od debljine zida omotača. Materijal koji se koristi za izradu

rezervoara može da dovede do varijacija u ceni izrade od $\pm 20\%$ [12]. Upotreba sfernog rezervoara umesto cilindričnog rezervoara može da smanji količinu potrebnog materijala za izradu za 50%. Ušteda na materijalu se mora uzeti u razmatranje prilikom izbora oblika rezervoara.

Tradicionalni proces izrade sfernih rezervoara je odgovoran za troškove vezane za izradu sfernog rezervoara. Postoji nekoliko patenata za inovativne metode izgradnje koje imaju obećavajuće uštede u troškovima zavarivanja, livenja i obrade sfernih rezervoara [13-17]. Retka potražnja za sfernim rezervoarima je uticala na nemogućnost uvođenja patenata u praksu. Nedavno, velika potražnja za tečnim naftnim gasom navela je proizvođače da investira u jeftinije metode izrade opreme pod pritiskom za skladištenje i transport tečnog naftnog gasa, što će dovesti i do smanjenja troškova za izradu sfernih rezervoara.

Slika 1.19. Izrada sfernog rezervoara

1.1.3 Analiza opterećenja

Za potrebe ovog rada upotrebljen je rezervoar za tečni amonijak u obliku sfere koji je izrađen zavarivanjem segmenata gornjeg i donjeg dela polusfernog omotača sa gornjom i donjom kalotom, koji su takođe izvedeni zavarivanjem prethodno deformacijom oblikovanih limova. Namenjen je za skladištenje i pretakanje tečnog amonijaka. Posuda je jednodelna sa jednostrukim zidom i propisano je zaštićena. Na posudi su ugrađeni manometar, merač nivoa tečne faze, ventil sigurnosti i ventil za punjenje, pražnjenje i pretakanje posude.

Posuda je stabilna i instalirana je na pretakalištu za tečni amonijak, oslanja se na dvanaest oslonaca, kao što je prikazano na slici 1.20. Amonijak (NH₃) je bezbojan gas karakterističnog oštrog mirisa, lakši je od vazduha. Visoke koncentracije amonijačnih para su zapaljive na 630 °C. Eksplozivan je u smesi sa oksidirajućim materijama. U dodiru sa halogenim elementima reakcija može biti eksplozivna. Pri temperaturi 250 °C reaguje eksplozivno sa prehloratorima. Reaguje burno sa kiselinama, nekim metalima i gasovima poput hlora, vodonikovog hlorida, oksida nemetala...

Pregrejani rezervoar tečnog amonijaka može eksplodirati ako postoje mehanička oštećenja. Otrovan je ako se udiše. Izaziva hemijske opekotine. Lako se topi u vodi pri čemu nastaje amonij-hidroksid (NH₄OH). U vazduhu se može osetiti u koncentraciji od oko 5 ppm, pri čemu je maksimalno dozvoljena koncentracija (MDK) 25 ppm. Rezervoari sa amonijakom, zahvaćeni požarom, mogu eksplodirati zbog velikog porasta pritiska u njima, pa se mora misliti o njihovom hlađenju vodom.

Slika 1.20. Izgled sfernog rezervoara za tečni amonijak (NH₃)

Tehnički podaci sfernog rezervoara za skladištenje tečnog amonijaka su prikazani u tabeli 1.2.

Naziv	Rezervoar za tečni amonijak (NH3)
Proizvođač	TISSOT & C ^{IE}
Godina proizvodnje	1968
Materijal posude	Finozrni konstrukcioni čelik oznake A36.52
Zapremina posude	1.800 m ³
Radni fluid	NH ₃ (tečni amonijak)
Radni pritisak u posudi	16 bar
Ispitni pritisak	20,8 bar
Radna temperatura	$-20 \div 40$ °C
Spoljni prečnik posude	15.120 mm
Kritični pritisak za NH ₃	113 bar
Kritična temperatura za NH ₃	405,6 K
Gasna konstanta za NH ₃	488,2 J/kg·K

Tabela 1.2: Tehnički podaci sfernog rezervoara za skladištenje NH₃

Prema odredbama "Pravilnika o tehničkim zahtevima za projektovanje, izradu i ocenjivanje usaglašenosti opreme pod pritiskom" ("Sl. glasnik RS", br. 87/2011) [18] za proračun čvrstoće i stabilnosti posude pod pritiskom, za ovu vrstu i klasu posude uzimaju se u obzir sledeća opterećenja: 1. Mirna opterećenja stvorena unutrašnjim, odnosno spoljašnjim pritiskom;

2. Dinamička i udarna opterećenja i nagle promene pritiska se zanemaruju s'obzirom na stabilno kontinualno punjenje i potrošnju;

3. Opterećenja stvorena dejstvom hidrostatičkog pritiska amonijaka;

4. Opterećenja izazvana sopstvenom masom posude i masom radne odnosno ispitne materije;

5. Opterećenja izazvana priključnim cevovodima, radnom opremom, stepeništem, uređajima za hlađenje, i sl.;

6. Opterećenja izazvana vetrom;

7. Opterećenja izazvana seizmičkim potresom;

8. Naponi izazvani temperaturnim poljima u materijalu se zanemaruju;

9. Lokalni naponi na mestu priključaka, odnosno oslanjanja;

10. Opterećenja izazvana sopstvenim ili dodatnim vibracijama se takođe zanemaruju.

1.2 Mehanika loma

Mehanika loma je naučna disciplina koja se bavi problemima prslina i njihovog uticaja na ponašanje materijala i konstrukcija. Mehanika loma je počela svoj razvoj početkom XX veka radovima Inglisa o koncentraciji napona [19] i Grifita o brzini oslobađanja energije [20], a pedesetih godina Irvin je postavio temelje linearno elastične mehanike loma uvođenjem faktora intenziteta napona i njegove kritične vrednosti [21, 22]. U to doba mehanika loma beleži prve značajne praktične uspehe objašnjenjem lomova brodova tipa Liberti i mlaznih aviona tipa Komet [23]. Dalji razvoj ove naučne discipline obuhvatio je njeno proširenje na elasto-plastičnu oblast analizom plastične zone ispred vrha prsline [24] i uvođenjem odgovarajućih parametara – otvaranja vrha prsline [25] i J integrala [26]. Sledio je razvoj mehanike loma u još nekim važnim oblastima kao što su zamor [27], puzanje [28], i korozija [29].

Praktična primena mehanike loma se od samog početka zasnivala na dvostranom tumačenju njenih parametara: s jedne strane oni predstavljaju opterećenje i geometriju konstrukcije, uključujući geometriju prsline, a s druge strane svojstvo materijala, odnosno njegovu otpornost na rast prsline. Time je uspostavljen trougao mehanike loma, i omogućeno da mehanika loma postane jedan od temelja nove naučne discipline – integriteta konstrukcija.

Integritet konstrukcija je relativno nova naučna i inženjerska disciplina, koja u širem smislu obuhvata analizu stanja i dijagnostiku ponašanja i popuštanja, procenu veka i revitalizaciju konstrukcija. To znači da, osim uobičajene situacije u kojoj treba proceniti integritet konstrukcije kada se ispitivanjem bez razaranja otkrije greška, ova disciplina obuhvata i analizu naponskog stanja konstrukcije bez prsline, najčešće metodom konačnih elemenata. Na taj način se dobija precizna i detaljna raspodela pomeranja, deformacija i napona, koja omogućava da se utvrde "slaba" mesta u konstrukciji, čak i pre pojave prsline. Ovaj pristup je posebno važan za konstrukcije koje su izložene radnim uslovima tipičnim za nastanak prslina, kao što su zamor, puzanje i korozija.

1.2.1 Linearno elastična mehanika loma – osnovni principi

Raspodela napona u blizini vrha prsline je od velikog značaja za razvoj prsline i pojavu loma. Iako je pojava plastičnih deformacija na samom vrhu prsline neizbežna, rešenja teorije elastičnosti imaju veliki teorijski i praktični značaj. Jedan od bitnijih prvih uspeha teorije elastičnosti bio je objašnjenje značajne razlike između teorijske i stvarne čvrstoće polikristalnih tela.

Grifit je prvi objasnio razloge ovog neslaganja, pretpostavivši da makroskopski homogena epruveta sadrži grešku tipa prsline, koja uslovljava koncentraciju napona dovoljnu da se lokalno dostigne teorijska čvrstoća [30]. Greška tipa prsline u prvom približenju može da se zameni eliptičnim otvorom sa velikom osom 2a i malom osom 2b, slika 2.1a. Ako opterećenje deluje upravno na veliku osu, duž y koordinate, maksimalni napon je:

$$\sigma_{max} = \sigma \left(1 + \frac{2a}{b} \right) = \sigma \left[1 + 2 \left(\frac{a}{\rho} \right)^{1/2} \right],\tag{8}$$

gde je $\rho = b^2/a$, poluprečnik zaobljenja u temenu elipse. Pri tome je pretpostavljeno da je ploča jedinične debljine i beskonačna, pa opterećenje σ predstavlja istovremeno napon u preseku dovoljno udaljenom od eliptičnog otvora.

Slika 2.1. Šema Grifitovog problema: a) eliptični otvor, b) prslina

1.2.1.1 Faktor inteziteta napona

Za sve tri vrste opterećenja napon oko vrha prsline je proporcionalan izrazu $1/\sqrt{r}$, dok konstanta proporcionalnosti k i funkcija f_{ij} zavise od vrste opterećenja. Ako se konstanta k zameni faktorom inteziteta napona, $K (= k\sqrt{2\pi})$, koji se za različite vrste opterećenja obeležava sa K_I , K_{II} ili K_{III} , dobija se:

$$\lim_{r \to 0} \sigma_{ij}^{(I)} = \frac{\kappa_I}{\sqrt{2\pi r}} f_{ij}^{(I)}(\theta), \lim_{r \to 0} \sigma_{ij}^{(II)} = \frac{\kappa_{II}}{\sqrt{2\pi r}} f_{ij}^{(II)}(\theta), \lim_{r \to 0} \sigma_{ij}^{(III)} = \frac{\kappa_{III}}{\sqrt{2\pi r}} f_{ij}^{(III)}(\theta).$$
(9)

Kompletni izrazi za komponente napona pri I ili II vrsti opterećenja su dati u tab. 2.1, za pomeranja u tab. 2.2, a napon različit od nule i pomeranja pri III vrsti opterećenja u tab. 2.3.

Napon	I vrsta opterećenja	II vrsta opterećenja
σ_{xx}	$\frac{K_I}{\sqrt{2\pi r}}\cos\left(\frac{\theta}{2}\right)\left[1-\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{3\theta}{2}\right)\right]$	$-\frac{\kappa_{II}}{\sqrt{2\pi r}}\sin\left(\frac{\theta}{2}\right)\left[2+\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{3\theta}{2}\right)\right]$
σ_{yy}	$\frac{K_I}{\sqrt{2\pi r}}\cos\left(\frac{\theta}{2}\right)\left[1+\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{3\theta}{2}\right)\right]$	$\frac{K_{II}}{\sqrt{2\pi r}}\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{3\theta}{2}\right)$
$ au_{xy}$	$\frac{K_I}{\sqrt{2\pi r}}\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{3\theta}{2}\right)$	$\frac{K_{II}}{\sqrt{2\pi r}}\cos\left(\frac{\theta}{2}\right)\left[1-\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{3\theta}{2}\right)\right]$
σ_{zz}	0 za ravno stanje napona (RSN) $\nu(\sigma_{xx} + \sigma_{yy})$ za ravno stanje deformacije (RSD)	$0 ext{ za RSN}$ $ u (\sigma_{xx} + \sigma_{yy}) ext{ za RSD}$
$ au_{xy}$, $ au_{yz}$	0	0

Tabela 2.1. Polja napona oko vrha prsline za opterećenje I i II vrste

Tabela 2.2. Polja pomeranja oko vrha prsline za opterećenje I i II vrste

Pomeranje	I vrsta opterećenja	II vrsta opterećenja
u _x	$\frac{\kappa_I}{2\mu} \sqrt{\frac{r}{2\pi}} \cos\left(\frac{\theta}{2}\right) \left[\kappa - 1 + 2\sin^2\left(\frac{\theta}{2}\right)\right]$	$\frac{\kappa_{II}}{2\mu} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right) \left[\kappa + 1 + 2\cos^2\left(\frac{\theta}{2}\right)\right]$
u _y	$\frac{\kappa_I}{2\mu} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right) \left[\kappa + 1 - 2\cos^2\left(\frac{\theta}{2}\right)\right]$	$-\frac{\kappa_{II}}{2\mu}\sqrt{\frac{r}{2\pi}}\cos\left(\frac{\theta}{2}\right)\left[\kappa-1-2\sin^2\left(\frac{\theta}{2}\right)\right]$

Gde je:

 μ – moduo smicanja,

 $\kappa = 3 - 4\nu$ (RSD) i $\kappa = (3 - \nu)/(1 + \nu)$ (RSN),

 ν – Poasonov koeficijent.

Tabela 2.3. Napon različit od nule i komponente pomeranja pri III vrsti opterećenja

$$\tau_{xz} = -\frac{K_{III}}{\sqrt{2\pi r}} \sin\left(\frac{\theta}{2}\right) \qquad \qquad \tau_{yz} = \frac{K_{III}}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \qquad \qquad u_z = \frac{K_{III}}{\mu} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right)$$

U slučaju I vrste opterećenja duž pravca $\theta = 0$ komponente napona u x i y pravcu su:

$$\sigma_{xx} = \sigma_{yy} = \frac{K_I}{\sqrt{2\pi r'}},\tag{10}$$

dok je smicajni napon jednak nuli, što znači da je ravan prsline glavna ravan za čisto opterećenje I vrste. Jednačina 10 važi samo blizu vrha prsline, gde $1/\sqrt{r}$ singularitet dominira, dok su naponi dalje od vrha prsline određeni graničnim uslovima.

Faktori intenziteta napona su proporcionalni naponima oko vrha prsline, pa stoga definišu amplitudu naponskog singulariteta. Drugim rečima, jednim parametrom, tj. faktorom intenziteta napona, definisani su napon, deformacije i pomeranja oko vrha prsline.

Linearno elastični napon oko vrha prsline mora da bude proporcionalan udaljenom naponu, pa važi $K_I \propto \sigma$. Prema jed. 10, jedinica za faktor intenziteta napona je MPa \sqrt{m} . Kako je u razmatranim problemima veličina (dužina) prsline jedina bitna geometrijska veličina, odnos između K_I i udaljenog napona mora da bude oblika:

$$K_I = O(\sigma \sqrt{a}). \tag{11}$$

Može da se pokaže da važi [31]:

$$K_I = \sigma \sqrt{\pi a},\tag{12}$$

čime je uspostavljen odnos lokalne (faktor intenziteta napona) i globalne veličine (udaljeni napon). Kako izraz 11 važi samo u slučaju zategnute beskonačne ploče sa centralnom prslinom, to u svim ostalim slučajevima, treba da se koristi koeficijent *Y*, koji uzima u obzir navedena odstupanja:

$$K_I = Y \sigma \sqrt{\pi a}.$$
 (13)

Kod tela beskonačnih dimenzija, koeficijent Y zavisi samo od vrste i položaja prsline, a kod tela konačnih dimenzija još i od odnosa veličine prsline i dimenzija tela, obično definisanog količnikom dužine prsline i odgovarajuće dimenzije tela, širine a/W. Tako za beskonačnu ploču sa ivičnom prslinom, sl. 2.2a, važi izraz:

$$K_I \approx 1,12\sigma\sqrt{\pi a},\tag{14}$$

pri čemu je 12%-no povećanje K_I posledica činjenice da se ivična prslina više otvara jer je manje geometrijski ograničena od centralne prsline, sl. 2.2b.

Slika 2.2. Ivična prslina u beskonačnoj zateznoj ploči: a) ploča, b) detalj prsline

Za konačnu ploču sa ivičnom prslinom važi izraz:

$$K_I = Y(a/W)\sqrt{\pi a},\tag{15}$$

gde je a dužina prsline, W širina ploče, a:

$$Y(a/W) = 1,12 - 0,26(a/W) + 10,52(a/W)^2 - 21,66(a/W)^3 - 30,31(a/W)^4.$$
 (15)

Za male vrednosti a/W koeficijent $Y(a/W) \rightarrow 1,12$.

Vrednosti koeficijenta Y(a/W) za veliki broj različitih slučajeva su date u priručnicima [32]. Komplikovanije konfiguracije često mogu da se svedu na jednostavnije slučajeve [33], što ima veliki praktični značaj.

1.2.1.2 Žilavost loma - kritična veličina faktora intenziteta napona

U prethodnom poglavlju faktor intenziteta napona je predstavljao silu rasta prsline, odnosno opterećenje i geometriju tela, uključujući prslinu. Postoji veza između faktora intenziteta napona i sile rasta prsline:

$$K^2/E' = G, (16)$$

gde je E' = E za RSN, odnosno $E' = E/(1 - v^2)$ za RSD. Razlika između RSN i RSD je od ključnog značaja za primenu linearno elastične mehanike loma, jer samo u uslovima RSD može da se zanemari uticaj plastične deformacije. Imajući u vidu analizu (kvazi) krtog loma i tumačenje faktora intenziteta napona kao sile rasta prsline sledi:

$$K_I = K_{IC}, \tag{17}$$

gde je K_I faktor intenziteta napona, a K_{Ic} njegova kritična vrednost, koja predstavlja svojstvo materijala ukoliko je određena pri RSD, što je uslov dobijanja jednoznačnih vrednosti. Ključni uslov za uspostavljanje RSD je dovoljna debljina, koja je propisana standardom, na osnovu podataka utvrđenih iskustveno:

$$t_{min} \ge 2.5 \left(K_{Ic} / \sigma_{\gamma s} \right)^2, \tag{18}$$

gde je σ_{ys} napon tečenja.

1.2.1.3 Plastična zona ispred vrha prsline

Na slici 2.3 dat je izgled plastične zone ispred vrha prsline. Mala zona plastične deformacije u sredini odgovara stanju ravne deformacije, dok je na bočnim površinama izražena plastična deformacija pri RSN. Ako se ojačanje materijala zanemari, u okviru plastične zone (r_p) , napon je konstantan $(\sigma_{yy} = \sigma_{ys})$, odnosno ne prelazi napon tečenja σ_{ys} , što omogućava jednostavnu aproksimaciju veličine (poluprečnika) plastične zone na osnovu pretpostavke o njenom povećanju do uspostavljanja ravnoteže, slika 2.4. Na taj način se dobija Irvinova korekcija poluprečnika plastične zone kao najjednostavniji način uvođenja plastičnosti u analizu ponašanja oko materijala vrha prsline [23]:

$$r_p = 2r_y = \frac{1}{\pi} \left(\frac{\kappa_l}{\sigma_{YS}}\right)^2 \text{za RSN, } r_p = 2r_y = \frac{1}{3\pi} \left(\frac{\kappa_l}{\sigma_{YS}}\right)^2 \text{za RSD.}$$
(19)

U slučaju predstavljanja plastične zone trakom popuštanja po modelu Dagdejla [24] moguća su i drugačija tumačenja veličine plastične zone. Detaljnija analiza problema veličine plastične zone je data u [32].

Slika 2.3. Plastične zone ispred vrha prsline

Slika 2.4. Naponsko stanje oko vrha prsline, elasto-plastično ponašanje materijala

 $\theta = 0$

Elasto - plastično

r

Plastično deformisana zapremina mora da bude unutar zone u kojoj dominira singularitet. Ako plastična zona postane suviše velika, onda singularitet više ne postoji i korigovani faktor intenziteta napona K_I nije važeći parametar za definisanje stanja u blizini vrha prsline.

1.2.1.4 Primena linearno elastične mehanike loma

Primena LEML se zasniva na faktoru intenziteta napona, K_I , koji s jedne strane predstavlja opterećenje i geometriju konstrukcije, uključujući oblik i veličinu prsline, a s druge strane, njegova kritična vrednost, nazvana žilavost loma, K_{Ic} , predstavlja svojstvo materijala. Na osnovu ovog tumačenja parametara LEML i energetskog kriterijuma Grifita, dobijaju se jednostavne zavisnosti kojima se procenjuje integritet konstrukcije:

 $K_I \leq K_{Ic}$ – integritet konstrukcije nije ugrožen,

 $K_I > K_{Ic}$ – integritet konstrukcije jeste ugrožen jer je moguć krti lom.

1.2.2 Elasto-plastična mehanika loma

Kada se u području vrha prsline pojavi plastična zona značajne veličine, nije više moguće jednoznačnim parametrom opisati polje napona i deformacija, kao što je to bio slučaj sa faktorom intenziteta napona K_I , niti je moguće njegovom kritičnom vrednošću definisati žilavost loma materijala. Stoga je neophodno uvođenje parametara koji nisu ograničeni linearno elastičnim ponašanjem materijala, kao što su otvaranje vrha prsline i *J* integral.

1.2.2.1 Otvaranje vrha prsline (CTOD)

Kada je Vels [25] pokušao da izmeri K_{Ic} kod konstrukcionih čelika primetio je da su se površine prslina razdvojile pre loma, a da je plastična deformacija zatupila oštar vrh prsline. Kako je zatupljenje vrha prsline raslo proporcionalno žilavosti materijala, Vels je predložio otvaranje vrha prsline (Crack Tip Opening Displacement - CTOD) kao merilo žilavosti loma materijala. Iako očigledno ima iskustveni karakter, CTOD je našao veliku primenu, jer može jednostavno da se odredi, čak i u komplikovanim problemima, a daje dobre rezultate.

Slika 2.5. Modeli otvaranja prsline: a) Irvinov, b) Dagdejlov (model trake popuštanja)

Osim toga, u oblasti srazmerno malog tečenja - SSY, može da se uspostavi veza između CTOD i K_I . Razmatrajući prslinu sa malom plastičnom zonom ispred vrha, sl. 2.5a, Irvin je pretpostavio da se takva prslina ponaša isto kao i prslina sa oštrim vrhom, ali malo veće dužine, $a + r_y$, gde je r_y Irvinova korekcija usled plastičnosti. Ako se za Irvinovu korekciju r_y uzme vrednost za RSN, jed. 19, dobija se:

$$\delta_t = \frac{4}{\pi} \frac{K_I^2}{\sigma_{YS}^E},\tag{20}$$

gde je CTOD označeno sa δ_t . Na ovaj način CTOD je povezan sa K_I , ali je predloženi model suviše uprošćen. Model trake popuštanja (strip yield model) koji je predložio Dagdejl daje realnije i primenljivije rezultate. Osnovni koncept ovog modela je isti kao kod Irvina, ali se uticaj plastične zone ne uzima u obzir samo povećanjem dužine prsline, već i delovanjem pritisnih napona nivoa napona tečenja, sl. 2.5b. Primenom modela trake popuštanja dobija se:

$$\delta_t = \frac{8\sigma_{YS}^a}{\pi E} \ln \sec\left(\frac{\pi}{2}\frac{\sigma}{\sigma_{YS}}\right) = \frac{K_I^2}{\sigma_{YS}^E} \left[1 + \frac{1}{6}\left(\frac{\pi}{2}\frac{\sigma}{\sigma_{YS}}\right)^2 + \cdots\right],\tag{21}$$

gde je ln sec razvijeno u red. Ako se zadrži samo prvi član reda dobija se izraz:

$$\delta_t = \frac{K_I^2}{\sigma_{YS}^E} = \frac{G}{\sigma_{YS}},\tag{22}$$

koji se od jed. 20 razlikuje za ≈28%. Kako Dagdejlov model važi za RSN i idealno plastični materijal (bez ojačanja), za drugačije uslove neophodna je korekcija jed. 22:

$$\delta_t = \frac{K_I^2}{m\sigma_{YS}^E} = \frac{G}{m\sigma_{YS}},\tag{23}$$

gde je m bezdimenziona konstanta, koja iznosi 1,0 za RSN i idealno plastični materijal, a između 1,0 i 2,6 za RSD i materijal koji ojačava.

1.2.2.2 Dijagrami analize loma

Definišu se bezdimenzione promenljive, $S_r = \sigma/\sigma_c$ i $K_r = K_I/K_{Ic}$, pri čemu je usvojeno da je K_{eff} jednako žilavosti loma materijala, K_{Ic} :

$$K_r = S_r \left[\frac{8}{\pi^2} \ln \sec\left(\frac{\pi}{2}S_r\right)\right]^{-\frac{1}{2}}.$$
 (24)

Ako je materijal potpuno žilav, konstrukcija se lomi plastičnim kolapsom pri $S_r = 1$, dok je za lom konstrukcije od potpuno krtog materijala $K_r = 1$. U svim ostalim slučajevima postoji međudejstvo plastičnog kolapsa i krtog loma, pa su K_r i S_r manji od 1, a parovi odgovarajućih vrednosti čine graničnu krivu, koja je definisana jed. 24 i prikazana na slici 2.6.

Slika 2.6. Dijagram analize loma

1.3 Naučni ciljevi istraživanja

Opšti naučni ciljevi doktorske disertacije su unapređenje postojećih znanja kroz eksperimentalna istraživanja u laboratorijskim i terenskim uslovima, i unapređenje trenutnog stanja istraživanja u oblasti mehanizama oštećenja, s aspektom na greške izazvane nepravilnim zavarivanjem, eksploatacijom opreme, ispitivanjem opreme, kao i analiza uticaja dubine greške na integritet opreme, kao i stvaranje novog generičkog znanja u ovoj oblasti. Pored opštih, moguće je definisati i više posebnih naučnih ciljeva:

- Osvrt na trenutno stanja istraživanja u oblasti mehanizama oštećenja na opremi pod pritiskom;
- Uspostavljanje korelacije između dubine prsline, debljine zida posude i integriteta posude;
- Uspostavljanje matematičkog modela kojim bi se navedeni problem u zavarenim spojevima mogao u potpunosti opisati.

1.4 Polazne hipoteze

Rast i razvoj nedozvoljenih greške u zavarenim spojevima je često prisutan mehanizam oštećenja u većini industrijskih postrojenja. Poznavanje procesa nastanka greške, kao i praćenje parametara i predviđanje daljeg razvoja su ključni parametri za planiranje remonta i sanacija opreme pod pritiskom.

Obzirom da je analiza uticaja grešaka na integritet opreme pod pritiskom poželjan metod kontrolisanja opreme pod pritiskom, neophodno je poznavati negativan uticaj grešaka na integritet opreme, kao i mogućnost sanacije analiziranih grešaka.

Imajući u vidu navedene činjenice, postavljene su sledeće polazne hipoteze:

- Primenom parametara elasto-plastične mehanike loma moguće je odrediti kritičnu dubinu greške u zonama zavarenih spojeva sfernih rezervoara za skladištenje amonijaka, odnosno odrediti opseg dubina greške pri kojima integritet konstrukcije nije narušen;
- Važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na kojoj je dijagnostifikovana pojava grešaka. Adekvatnom obradom (geometrijskim oblikovanjem) strukture u lokalnoj uskoj zoni u okolini greške moguće je bez dodavanja dodatnog materijala (bez navarivanja) postići adekvatno ponašanje konstrukcije sa aspekta čvrstoće;
- U lokalnim zonama obrađenih dijagnostifikovanih grešaka (zonama linearnih indikacija) debljina omotača sfernog rezervoara može biti i manja od minimalne propisane standardom EN 13445-3:2017, a da pritom integritet konstrukcije nije narušen;
- Eksperimentalno numeričkim istraživanjem moguće je propisati granične geometrijske karakteristike linearnih indikacija, odnosno propisati proceduru kojom se definišu dubine greške koje je moguće sanirati bez primene dodatnog materijala i time obezbediti bezbedan rad konstrukcije.

KONTROLNI PRORAČUN SFERNOG REZERVOARA

Kontrolnim proračunom sfernog rezervoara proveravamo da nivo bezbednosti i pouzdanosti nije niži od nivoa koji se zahteva "Pravilnikom o tehničkim zahtevima za projektovanje, izradu i ocenjivanje usaglašenosti opreme pod pritiskom" [18].

Rezervoar za tečni amonijak u obliku sfere (slika 2.1) koji je izrađen zavarivanjem segmenata gornjeg i donjeg dela polusfernog omotača sa gornjom i donjom kalotom, koji su takođe izvedeni zavarivanjem prethodno deformacijom oblikovanih limova, namenjen je za skladištenje i pretakanje tečnog amonijaka. Posuda je jednodelna sa jednostrukim zidom i propisano je zaštićena. Na posudi su ugrađeni manometar, merač nivoa tečne faze, dva ventila sigurnosti na prekretnom uređaju, priključci za potrošnju tečne i gasne faze, priključci za pretakanje tečne i gasne faze. Posuda je stabilna i oslanja se na dvanaest oslonaca. Tabelom 2.1 predstavljena je lista podataka o posudi potrebnih za proračun.

Slika 2.1 Sferni rezervoar za amonijak

Tabela 2.1: Tehničke karakteristike posude

Vrsta posude:	SFERNI REZERVOAR ZA AMONIJAK
Proizvođač posude:	TISSOT & C ^{IE} PODENSAC GIRONDE - Francuska
Radni pritisak:	−1 ÷ 16,0 bar
Proračunski pritisak:	16,0 bar
Radna temperatura:	$-20 \div 40$ °C
Proračunska temperatura:	40(20) °C
Zapremina radnog prostora:	1.800.000 l
Radni medijum:	Amonijak
Proračunski prečnik:	Ø15.120 × 30 mm
Visina posude:	16.500 mm
Dodatak na koroziju:	1,0 mm
Najveće dozvoljeno punjenje:	725.000 kg

2.1 Određivanje dopuštenih napona

Sferni rezervoar za skladištenje amonijaka izrađen je od finozrnog čelika čija je oznaka po francuskom standardu A36.52. Minimalna zatezna čvrstoća navedenog čelika je 520 MPa, a napon tečenja 360 MPa. Materijali korišćeni za delove konstrukcije sfernog rezervoara navedeni su u tabeli 2.2.

Dopušteni napon na osnovu standarda EN 13445-3:2017 [34] određuje se prema jednačini 2.1:

$$f = \min\left(\frac{R_m}{1,875}; \frac{R_{p0,2t}}{1,5}\right),\tag{2.1}$$

gde su:

f – dopušteni napon [MPa], R_m – zatezna čvrstoća [MPa], $R_{p0,2}$ – napon tečenja na granici proporcionalnosti [MPa].

	Norivi		MATERIJAL					
Pozicija	alamanta	Dimenzije (mm)	JUS/EN/D	IN/ГОСТ	SRPS EN/JUS			
	elementa		Oznaka	Standard	Oznaka	Standard		
1	Sferni omotač	$\emptyset 15.120 imes 30$	A36.52	AFNOR	P355 NL2	10028-3		
2	Oslonci	Ø660 × 7	A36.52	AFNOR	P355 NL2	10028-3		
3	Zatege	-	A36.52	AFNOR	P355 NL2	10028-3		
4	Cevni priključci	-	A333.1	ASME				
5	Ojačanja priključaka	-	A36.52	AFNOR	P355 NL2	10028-3		
6	Prirubnice	_	A350 LF1	ASME				

Tabela 2.2: Ugrađeni materijali

• Određivanje dopuštenog napona za materijal A36.52 prema standardu EN13445-3:2017 [34]:

Tabela 2.2.1: Hemijski sastav u %

Oznaka	C. %	Mn.%	Si	P _{max}	S _{max}	Al _{total}	Ν	Cr	Cu	Mo	Nb	Ni	Ti _{max}	V
A36.52	≤ 0,157	1,39	0,3	0,013	0,021	≥ 0,015	-	0,08	-	0,02	-	-	-	0,08

Tabela 2.2.2: Mehaničke osobine

Oznaka	Standard	Debljina mm	Napon	Zatezna	Izduženje	Žilavost KV(J) (min)			
	Standard		MPa (min)	MPa	% (min)	-20°	0°	+20	
A36.52	AFNOR	$t \le 50$	360	min 520	23	47	-	-	

Tabela 2.2.3: Vrednosti dopuštenih napona za materijal A36.52

NAZIV ELEMENTA	MATERIJAL	<i>p</i> [bar]	t [°C]	$min f [N/mm^2]$	<i>f</i> [N/mm ²]
Sferni omotač	126.52	16	40	$\frac{R_m}{1,875}$	277,33
Ø15.120 × 30 mm	A30.32	10	40	$\frac{R_{p0,2t}}{1,5}$	240,0
Oslonci	A 26 50	16	40	$\frac{R_m}{1,875}$	277,33
Ø660 × 7 mm	A30.32	10	40	$\frac{R_{p0,2t}}{1,5}$	240,0
Oisčenie prikliučeko	126.52	16	40	$\frac{R_m}{1,875}$	277,33
Ојасанја рпкијисака	A30.32	10	40	$\frac{R_{p0,2t}}{1,5}$	240,0

• Određivanje dopuštenog napona za materijal A333.1 prema standardu EN13445-3:2017:

Tabela 2.2.4: Hemijski sastav u %

Oznaka	C. %	Mn.%	Si	P _{max}	S _{max}	Al _{total}	Ν	Cr	Cu	Mo	Nb	Ni	Ti _{max}	V
A333.1	0,3	0,4÷1,06	-	0,025	0,025	-	-	-	-	-	-	-	-	-

Tabela 2.2.5: Mehaničke osobine

Oznaka	Standard	Debljina	Napon	Zatezna	Izduženje	Žilav	vost KV(J) ((min)
Оглака	Standard	mm	MPa (min)	MPa	% (min)	-45°	0°	+20°
A 222 1	ASME	t < 8	205	min 290	20	0.19		
A333.1	ASME	t > 8	205	min 380	25	9-18	-	-

Tabela 2.2.6: Vrednost dopuštenog napona za materijal A333.1

NAZIV ELEMENTA	MATERIJAL	<i>p</i> [bar]	<i>t</i> [°C]	$min f [N/mm^2]$	$f [N/mm^2]$
Comi mililină d	A 222 1	16	40	$\frac{R_m}{1,875}$	202,67
Cevni prikijučci	A333.1	10	40	$\frac{R_{p0,2t}}{1,5}$	136,67

• Određivanje dopuštenog napona za materijal A350 LF1 prema standardu EN13445-3:2017:

Tabela 2.2.7: Hemijski sastav u %

Oznaka	C. %	Mn.%	Si	P _{max}	\mathbf{S}_{\max}	Al _{total}	Ν	Cr	Cu	Mo	Nb	Ni	Ti _{max}	v
A350 LF1	0,3	0,6÷1,35	0,15÷0,3	0,035	0,040	-	-	0,3	0,4	0,12	0,02	0,4	-	0,08

Tabela 2.2.8: Mehaničke osobine

Oznaka	Standard	Debljina	Napon	Zatezna	Izduženje	Žilav	vost KV(J) ((min)
Оźпака	Standard	mm	MPa (min)	MPa	% (min)	-28,9°	0°	+20°
A350 LF1	ASME	t > 50	205	min 415	25	18	-	-

Tabela 2.2.9: Vrednost dopuštenog napona za materijal A333.1

NAZIV ELEMENTA	MATERIJAL	<i>p</i> [bar]	<i>t</i> [°C]	$min f [N/mm^2]$	<i>f</i> [N/mm ²]
Drimhaina	A 250 L E1	16	40	$\frac{R_m}{1,875}$	221,34
Phrudmice	A330 LF1	10	40	$\frac{R_{p0,2t}}{1,5}$	136,67

2.2 Merenje debljine zida posude ultrazvukom

Omotač posude prema projektnoj dokumentaciji izrađen je od limova debljine $e_s = 29 \div 30 \text{ mm}$ (srednja vrednost $e_s = 30 \text{ mm}$). Svi priključci su izrađeni od standardnih cevi dimenzija datih u grafičkoj dokumentaciji sfernog rezervoara za tečni amonijak. Cevni priključak revizionog otvora izrađen je od lima debljine 30 mm. Rezultati merenja dati su u tabeli 2.3. Minimalno izmerena debljina lima je $e_n = 27,3 \text{ mm}$.

Deo	koji se	ispit	uje:			S	Segme	nti sf	ernog	g reze	rvo	ara za a	amon	ijak		
Crtež	br.:			Sl	ika 3.2)										
Mate	rijal:			Α	36.52											
					UL	TRA	ZVUČ	NO M	EREN	JE DE	EBL.	JINE				
Krite prihv	rijumi atljivo	sti:				-	Uređaj	:	U C	Dak ltrason MX D	tota nics DL+	Priprem površin	ia e:		Pesk	tirano
Tačn mere	ost nja:			:	±0,01	mm	Kalibra blok:	cioni	Step	enasti 48 r	3÷ nm	Površin ispitiva	a nja:		Unuti	ašnja
Meto	da:			Iı	mpuls-	eho	UZ sor	nde:	S	SE 5 M	IHz	Kontakt sredstvo	tno):			Gel
					POZ	ZICIJ	E I RE	ZULT	'ATI N	IERE	NJA	[mm]				
Red.	Broj	Dia		Mei	rna tačk	a - del	oljina	New	Red.	Broj	Di	Mer	na tačk	a – det	oljina	Neu
br.	seg.	Diff	1.	1	2	3	4	Nap.	br.	seg.	Di	n. 1	2	3	4	inap.
		(GORN	IJI S	EGME	NT				E	EKVA	ATORIJAI	LNI SE	GMEN	Т	
14.	1		30),55	31,06	29,86	29,36	-	97 100.	1		30,84	31,40	30,90	30,92	-
58.	2		30),20	29,50	29,83	30,03	-	101 104.	2		30,35	30,59	31,04	31,40	-
9 12.	3		29	9,97	30,04	30,00	30,01	-	105 108.	3		30,49	30,91	31,60	31,61	-
13 16.	4		30),44	30,09	30,79	30,83	-	109 112.	4		30,29	30,85	30,99	30,60	-
17 20.	5		29	9,55	30,12	29,64	30,90	-	113 116.	5		30,06	30,51	30,44	30,84	-
21 24.	6		29	9,63	30,25	30,02	30,12	-	117 120.	6		30,59	30,47	30,55	31,07	-
25 28.	7		30	0,04	29,71	30,04	30,40	-	121 124.	7		30,63	30,65	31,60	31,52	-
29 32.	8		30	0,21	30,68	30,26	30,41	-	125 128.	8		30,60	30,70	30,81	31,06	-
33 36.	9		29	9,76	30,30	29,82	29,94	-	129 132.	9		30,30	30,28	30,52	30,40	-
37 40	10		29	9,70	30,15	30,90	30,65	-	133	10		30,44	30,38	31,29	30,85	-

Tabela 2.3: Rezultati merenja debljine zida

41 44.	11		30,36	28,18	30,41	30,39	-	137 140.	11		30,22	30,25	30,95	30,39	-
45 48.	12		29,82	30,40	29,65	30,05	-	141 144.	12		30,19	30,47	30,87	30,62	-
49 52.	13		30,05	29,87	29,45	29,85	-	145 148.	13		30,39	30,43	30,44	30,59	-
53 56.	14		30,25	30,15	30,22	30,47	-	149 152.	14		30,45	30,43	30,53	30,44	-
57 60.	15		29,83	29,85	31,37	31,13	-	153 156.	15		30,77	30,48	30,60	30,40	-
61 64.	16		29,84	30,34	30,13	30,35	-	157 160.	16		30,65	30,88	30,77	31,40	-
65 68.	17		30,00	30,03	30,13	30,35	-	161 164.	17		31,12	30,60	31,33	31,31	-
69 72.	18		30,58	29,64	30,28	29,86	-	165 168.	18		30,99	31,10	31,57	31,64	-
73 76.	19		30,65	30,35	30,07	30,08	-	169 172.	19		30,62	30,41	31,24	31,19	-
77 80.	20		30,02	30,02	29,84	29,83	-	173 176.	20		30,07	30,12	30,82	30,75	-
81 84.	21		30,37	30,24	30,79	30,50	-	176 180.	21		30,52	29,25	30,97	30,96	-
85 88.	22		30,03	29,97	30,00	30,02	-	181 184.	22		30,65	30,60	31,04	31,33	-
89 92.	23		31,05	30,19	29,92	30,15	-	185 188.	23		30,31	31,27	31,10	31,20	-
93 96.	24		29,80	29,68	29,39	29,74	-	189 192.	24		30,06	30,35	31,43	30,30	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				POZ	ZICIJI	E I RE	ZULT	ATI N	IERE	NJA [n	ım]				
Red.	Broj	Dim	Me	rna tačk	a - deblj	ina	Nan	Red.	Broj	Dim	Me	rna tačk	a – debl	jina	Nan
br.	seg.	Dim.	1	2	3	4	rup.	br.	seg.	Dim.	1	2	3	4	rup.
		DC	NJI SE	GMEN	TI				-	DO	ONJA K	KALOT	A		
193 196.	1		31,30	30,50	31,29	32,39	-	297.	1D		32,48	-	-	-	-
197 200.	2		31,30	31,35	31,87	31,42	-	298.	2D		31,43	-	-	-	-
201 204.	3		31,45	31,40	31,50	31,80	-	299.	3D		31,32	-	-	-	-
205 208.	4		30,64	31,22	31,25	31,80	-	300.	4D		31,08	-	-	-	-
209 212.	5		31,40	31,24	31,49	31,67	-	301.	5D		31,30	-	-	-	-
213 216.	6		30,77	30,82	30,71	31,38	-	302.	6D		31,19	-	-	-	-
217 220.	7		30,08	31,44	30,97	31,28	-	303.	7D		31,42	-	-	-	-
221 224.	8		31,02	30,81	31,36	31,10	-	304.	8D		30,91	-	-	-	-
225 228.	9		31,17	30,94	31,14	31,56	-	-	-	-	-	-	-	-	-
229 232.	10		31,04	31,22	31,97	31,81	-								
233 236.	11		30,71	31,22	31,00	31,11	-	NAP	OME	NA:					
237 240.	12		30,89	31,16	31,16	31,23	-	N		-1		• • • • •			
241 244.	13		30,61	31,10	31,13	31,22	-	na g plašta	ornjim a reze	, ekvat rvoara	orijaln: deblji	im i d ina zi	onjim da m	segme erena	je u
245 248.	14		31,01	31,50	31,72	31,67	-	uglov	vima s	segmen	ata. Č	va če	tiri m	erna 1	mesta
249 252.	15		31,72	32,10	31,80	31,57	-	oznac kazal	jke na	i brojev satu.	'ima 1,	2, 3 1	4 broja	ano u s	smeru
253 256.	16		32,06	31,70	31,53	31,15	-	No	: . :	:	:.: 1	1			
257 260.	17		31,50	31,50	31,58	31,90	-	deblji	ine zid	a izvrše	јој ка eno je i	iou re	sam m	ira me nernih i	mesta
261 264.	18		31,31	31,55	31,05	31,16	-	po ob	oimu k	alote.	-	-			
265 268.	10		31,12	31,48	31,79	31,69	-	Dozie			sto no	kojim	io trè	eno me	erenje
269 -	19							TOZIC	nje me	rnm me	sta na	којши	1 JC VI S	cho nic	5
272.	20		31,71	31,15	31,50	31,66	-	deblji	ine zi	da šen	atski	su pi	rikazar	ie na	šemi
272. 273 276.	20 21		31,71 31,74	31,15 32,23	31,50 31,80	31,66 31,69	-	deblji ispiti	ine zi vanog	da šen rezervo	natski Dara da	su pi toj na	rikazar slici 2.	ie na 2.	šemi

281 284.	23		31,67	31,40	31,94	31,40	-
285 288.	24		30,70	31,03	31,20	31,43	-
-	-	-	-	-	-	-	-
		GO	RNJA	KALO	ГА		
289.	1G		29,22	-	-	-	-
290.	2G		29,50	-	-	-	-
291.	3G		28,89	-	-	-	-
292.	4G		29,00	-	-	-	-
293.	5G		29,20	-	-	-	-
294.	6G		27,30	-	-	-	-
295.	7G		29,21	-	-	-	-
296.	8G		29,36	-	-	-	-

b)

2.3 Određivanje kategorije i nivoa opasnosti opreme pod pritiskom

Tabela 2.4: Određivanje kategorije i nivoa opasnosti sfernog rezervoara za NH3

Za određivanje kategorije i nivoa opasnosti opreme pod pritiskom primenjeni su sledeći pravilnici: Pravilnik o tehničkim zahtevima za projektovanje, izradu i ocenjivanje usaglašenosti opreme pod pritiskom [18]; Pravilnik o pregledima opreme pod pritiskom tokom veka upotrebe [18].

2.4 Zahtevi za vrstu i obim kontrole i ispitivanje zavarenih spojeva

Zahtevani obim ispitivanja bez razaranja zavisi od ispitne grupe i vrste zavarenog spoja.

- Obim ispitivanja bez razaranja za glavne zavarene spojeve na posudi određuje se u skladu sa tabelom 2.5.1 [35].
- Obim ispitivanja bez razaranja ostalih spojeva mora biti u skladu sa tabelom 2.5.2 [35], dat ٠ kao vrednost u procentima.

				a Ispitna grupa				
Zahtevi	-	l	2			3	4	
Zahtevi Dozvoljeni materijali ^g Obim NDT za glavne zavarene spojeve ^{e, h} NDT drugih šavova Koeficijent valjanosti zavarenog spoja Najveća debljina za koju su određeni materijali dozvoljeni Postupak zavarivanja Radni opseg temperature	1a	1b	2a	2b	3a	3b	b ,j	
Dozvoljeni materijali ^g	1 do 10	1.1, 1.2, 8.1	8.2, 9.1, 9.2, 9.3, 10	1.1, 1.2, 8.1	8.2, 9.1, 9.2, 10	1.1, 1.2, 8.1	1.1, 8.1	
Obim NDT za glavne zavarene spojeve ^{e, h}	100 %	100 %	100 % - 10% ^d 100 % - 10% ^d 25 % 10 %		10 %	0 % ^k		
NDT drugih šavova		Definisano u tabeli 5.5.1 za svaku vrstu zavarenih spojeva						
Koeficijent valjanosti zavarenog spoja	1	1	1	1	0,85	0,85	0,7	
Najveća debljina za koju su određeni materijali dozvoljeni	Neograničeno ^f	Neograničeno ^f	30 mm za grupe 9.1, 9.2 16 mm za grupe 9.3, 8.2 ⁱ , 10	50 mm za grupe 1.1, 8.1 30 mm za grupu 1.2	30 mm za grupe 9.2, 9.1 16 mm za grupe 8.2, 10	50 mm za grupe 1.1, 8.1 30 mm za grupu 1.2	16 mm za grupe 1.1, 8.1	
Postupak zavarivanja	Neograničeno ^f	Neograničeno ^f	Samo potpuno m zavarivanje ^c	ehaničko	Neograničeno ^f	Neograničeno ^f	Neograničeno ^f	
Radni opseg temperature	Neograničeno ^f	Neograničeno ^f	Neograničeno ^f	Neograničeno ^f	Neogra	uničeno ^f	Ograničeno na (-10÷300)°C za grupu 1.1 (-105÷300)°C za grupu 8.1	

Tabela 2.5.1: Ispitne	grupe za čelične	posude pod	pritiskom	[35]	L

^a Za sve ispitne grupe mora biti izvedeno 100 % vizuelno kontrolisanje u najvećem mogućem obimu

^b Ispitna grupa 4 se sme primeniti samo za:

- Fluide grupe 2; i

 $-P_{s} \leq 20$ bar; i

- $P_{s} V \le 20000 \text{ bar} \cdot L \text{ za temperature iznad } 100 \text{ }^{\circ}\text{C}; \text{ ili}$

- $P_{S} V \le 50\,000 \text{ bar} \cdot L$, ako je temperatura jednaka ili manja od 100 °C;

- ispitivanje većim pritiskom (Videti tačku 10);
- najveći broj ciklusa pritiska pune amplitude koji je manji od 500;

- manju vrednost nazivnog proračunskog napona (videti EN 13445-3:2014).

^c Potpuno mehanizovani i/ili automatski postupak zavarivanja (videti EN ISO 14732:2013).

^d Prva slika: u početku, druga slika: posle zadovoljavajućeg iskustva. Za definiciju "zadovoljavajućeg iskustva", videti 6.6.1.2.4

e Detalji ispitivanja su dati u tabeli 6.6.2-1

f Neograničena sredstva, bez dodatnih ograničenja zbog ispitivanja. Ograničenja koja su navedena u tabeli, su ograničenja koja su posledica ispitivanja. Druga ograničenja, koja su data u različitim tačkama standarda (kao što su ograničenja proračuna, materijala, itd.) takođe moraju biti uzeti u obzir.

^g Videti EN 13445-2:2014 za dozvoljene materijale.

 $^{\rm h}$ Procenat se odnosi na procenat šavova svake pojedinačne posude

i 30 mm za grupu materijala 8.2 je dozvoljena, ako se dodatni materijali za zavarivanje koji sadrže delta ferit, koriste za slojeve za popunjavanje do završnog sloja, ali ne uključujući isti.

^j Ograničeno na posude sa jednim odeljkom i jednu grupu materijala.

^k osim za spoj koničnog sa cilindričnim omotačem bez prevoja (veliki kraju konusa) za koji je potrebna MT ili PT

<u>1_</u>				7
Kategorija ZS	Oznaka	Tip zavarenog spoja	RT ili UT	MT ili PT
	1	Uzdužni spojevi	100 %	10 %
	2a	Obodni spojevi na omotaču	10 %	10 %
	2b	Obodni spojevi na omotaču sa podložnom trakom	NP	NP
	2c	Obodni preklopni spoj	NP	NP
	3a	Obodni spojevi na priključku di > 150mm ili e > 16 mm	25 %	10 %
Sučeoni zavareni spoj sa	3b	Obodni spojevi na priključku di > 150mm ili e > 16 mm sa podložnom trakom	NP	NP
potpunim provarom	4	Obodni spojevi na priključku di ≤ 150 mm ili e ≤ 16 mm	0 %	25 %
	5	Svi spojevi sfera, spojevi danaca i polusferičnih kalota sa omotačem	100 %	10 %
	6	Spoj koničnog sa cilindričnim omotačem pod uglom ≤ 30°	100 %	100 %
	7	Spoj koničnog sa cilindričnim omotačem pod uglom > 30°	100 %	10 %
	8a	Opšti slučaj spoja omotača i danca	NP	NP
Obodni preklopni spojevi	8b	Spoj kompenzatora i omotača e ≤ 8 mm	0 %	100 %
Spoj ravnog danca ili cevne ploče sa omotačem. Spoj prirubnice ili oboda sa omotačem	9	Sa potpunim provarom	25 %	10 %
	10	Sa delimičnim provarom, ako je a > 16 mm	NP	NP
	11	Sa delimičnim provarom, ako je a ≤ 16 mm	NP	NP
Spoj prirubnice ili oboda sa	12	Sa potpunim provarom	25 %	10 %
Spoj prirubnice ili oboda sa	13	Sa delimičnim provarom	NP	NP
priključkom	14	Sa potpunim ili delimičnim provarom $di \le 150$ mm ili $e \le 16$ mm	0 %	10 %
	15	Sa potpunim provarom di > 150mm ili e > 16 mm	25 %	10 %
	16	Sa potpunim provarom di ≤ 150 mm ili e ≤ 16 mm	0 %	100 %
Spoi prikliučka ili grane sa	17	Sa delimičnim provarom za bilo koji di a > 16 mm	NA	100 %
omotačem	18	Sa delimičnim provarom di > 150 mm ili a ≤ 16 mm	NP	NP
	19	Sa delimičnim provarom di ≤ 150 mm ili a ≤ 16 mm	0 %	100 %
	19i	Spoj ploče za ojačavanje sa omotačem i priključk.	0 %	25 %
	19j	Sučeoni spoj ploče za ojačavanje ^s	100 %	100 %
Krajevi cevi u cevnoj ploči	20			100 %
Trajni spojevi	21	Sa potpunim ili delimičnim provarom		10 %
	22	Površine koje nose pritisak, posle uklanjanja privremenih dodataka		100 %
Oblaganje zavarivanjem	23			100 %
Popravke	24		100 %	100 %
$d^{d} 10\%$ ako je e > 35 mm, 0% ak	co je e ≤ 35	mm		

Tabela 2.5.2: Obim ispitivanja bez razaranja [35]

^s Samo MT ili PT ako se omotač koristi kao podloga Dokazivanje zadovoljavajućeg iskustva: uspešna proizvodnja 25 uzastopnih posuda; 50 m uzastopnih glavnih ZS.

Slika 2.2 Vrste zavarenih spojeva

2.5 Proračun posude za projektni pritisak (p = 16, 0 bar)

- 1. Najveći statički pritisak u posudi
- 2. Debljina zida sfernog omotača 30 mm
- 3. Oslabljenje omotača na mestu priključaka Ø508 × 12,5 mm, Ø219,1 × 7,0 mm, Ø139,7 × 8,8 mm, Ø114,3 × 7,1 mm, Ø60,3 × 5,0 mm
- 4. Prirubnica sa grlom otvora za kontrolu DN500 PN40
- 5. Opterećenja od seizmičkih uticaja
- 6. Opterećenja od uticaja vetra

1. Najveći statički pritisak u posudi

Najveći statički pritisak fluida u posudi se uzima u obzir ukoliko u zidu posude izaziva povećanje pritiska više od 5%.

Radni uslovi:

 $p_g = 16,0 \text{ bar} - \text{najveći pritisak u gasnom prostoru posude, pri 40°C,}$ $\rho_{50} = 576,0 \text{ kg/m}^3 - \text{gustina gasa u tečnom stanju, pri 43°C [36],}$ h = 13,016 m - visina stuba tečnog gasa (za 95% punu sferu), $g = 9,81 \text{ m/s}^2 - \text{ubrzanje.}$ Hidrostatički pritisak za radne uslove je:

$$p_h = \rho \cdot g \cdot h = 0,735 \text{ bar.} \tag{2.2}$$

5% najvećeg pritiska za 95% punu sferu:

$$0,05 \cdot p_g = 0,8$$
 bar. (2.3)

Proračunski pritisak za radne uslove je:

$$p = p_g = 16,0$$
 bar. (2.4)

Ispitni uslovi:

 $p_{gi} = 20,8$ bar – najveći pritisak pri vrhu sfere, $\rho_v = 1000$ kg/m³ – gustina ispitnog fluida – vode, h = 15,06 m – visina stuba tečnosti pri ispitivanju, g = 9,81 m/s² – ubrzanje. Hidrostatički pritisak za ispitne uslove je:

$$p_i = p_{gi} + \rho_v \cdot g \cdot h = 22,277$$
 bar. (2.5)

Slika 2.3 Sfera izložena dejstvu unutrašnjeg pritiska

2. Proračun debljine zida sfernog omotača Ø15. 120 \times 30 mm, usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]

Polazni i usvojeni podaci: p = 16 bar – proračunski pritisak, $T_r = 40$ °C – proračunska temperatura, $D_e = 15.120$ mm – spoljašnji prečnik omotača, $e_n = 27,3$ mm – analizirana (minimalna izmerena) debljina zida sfernog omotača, f = 240 MPa – dozvoljeni napon za materijal A 36.52, Z = 1 – koeficijent slabljenja zavarenog spoja (100% radiografija), $\delta_e = 0$ mm – apsolutna vrednost negativne tolerancije za nazivnu debljinu zida, c = 1 mm – dodatak na koroziju i habanje, $D_i = D_e - 2e_n = 15.065,4$ mm – unutrašnji prečnik omotača, $D_m = D_e - e_n = 15.092,7$ mm – srednja vrednost prečnika sfernog omotača, $e_a = e_n - c - \delta_e = 26,30$ mm – izvedena debljina zida omotača. Potrebna debljina zida sfernog omotača se određuje prema jednačini 2.10, u kojoj je:

$$e_{min1} = e_{p1} + c + \delta_e = 26,16 \text{ mm},$$
 (2.6)

$$e_{min2} = e_{p2} + c + \delta_e = 26,15 \text{ mm},$$
 (2.7)

$$e_{p1} = \frac{p \cdot D_e}{4 \cdot f \cdot Z + p} = 25,16 \text{ mm},$$
 (2.8)

$$e_{p2} = \frac{p \cdot D_i}{4 \cdot f \cdot Z - p} = 25,15 \text{ mm},$$
 (2.9)

$$e_{min} = \max(e_{min1}, e_{min2}) = 26,16 \text{ mm.}$$
 (2.10)

Minimalna potrebna debljina zida sfernog omotača za skladištenje tečnog amonijaka iznosi $e_{min} = 26,16$ mm, što je manje od minimalne izmerene debljine zida $e_n = 27,3$ mm.

3. Proračun cevnog priključka Ø508 × 12, 5 mm na sfernom omotaču, usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]

Polazni i usvojeni podaci:

p = 16 bar – proračunski pritisak,

 $d_p = 515 \text{ mm} - \text{unutrašnji prečnik ploče za ojačanje,}$

 $l_p = 107,5 \text{ mm} - \text{širina ploče za ojačanje},$

 $e_{ap} = 30 \text{ mm} - \text{izvedena debljina ojačavajuće ploče,}$

 $D_e = 15.120 \text{ mm} - \text{spoljašnji prečnik omotača suda},$

 $e_{cs} = 30 \text{ mm} - \text{debljina zida suda},$

 $c_c = 1 \text{ mm} - \text{dodatak}$ na koroziju i habanje,

 $\delta_e = 0 \text{ mm} - \text{apsolutna vrednost negativne tolerancije za nazivnu debljinu zida,}$

 $e_{as} = e_{cs} - c_c - \delta_e = 29 \text{ mm} - \text{izvedena debljina zida suda},$

 $D_i = D_e - 2e_{as} = 15.062 \text{ mm} - \text{unutrašnji prečnik omotača suda},$

 $e_{nb} = 12,5 \text{ mm} - \text{nazivna debljina priključka},$

 $c_{nc} = 1 \text{ mm} - \text{dodatak}$ na koroziju i habanje,

 $\delta_{ne} = 0 \text{ mm} - \text{apsolutna vrednost negativne tolerancije za nazivnu debljinu zida,}$

 $e_{ab} = e_{nb} - c_{nc} - \delta_{ne} = 11,5 \text{ mm} - izvedena debljina priključka,}$ $d_{eb} = 508 \text{ mm} - \text{spoljašnji prečnik priključka,}$

 $d_{ib} = d_{eb} - 2e_{ab} = 485 \text{ mm} - \text{unutrašnji prečnik priključka,}$

 $l_{bi} = 60 \text{ mm} - \text{dužina dela priključka koji se nalazi unutar sfernog omotača,}$

 $l_b = 300 \text{ mm} - \text{dužina dela priključka koji se nalazi van sfernog omotača,}$

 $f_s = 240$ MPa – nazivni proračunski napon materijala suda A 36.52,

 $f_b = 136,67$ MPa – nazivni proračunski napon materijala priključka A 333.1,

 $f_p = 240$ MPa – nazivni proračunski napon materijala ploče za ojačanje A 36.52.

Slika 2.4 Cevni priključak postavljen upravno na sferni omotač

Najveća dužina priključka van omotača, za projektovanje ojačanja:

$$l_{bo} = \sqrt{(d_{eb} - e_{ab}) \cdot e_{ab}} = 75,56 \text{ mm.}$$
(2.11)

Efektivna dužina priključka unutar omotača, za projektovanje ojačanja:

$$l_{bi'} = \min(l_{bi}; 0.5 \cdot l_{bo}) = 37,78 \text{ mm.}$$
(2.12)

Efektivna dužina priključka van omotača, za projektovanje ojačanja:

$$l_{b'} = \min(l_{bo}; l_b) = 75,56 \text{ mm.}$$
 (2.13)

Dužina prodiranja priključka kroz zid omotača, za umetnute priključke koji prodiru delimično:

$$e_{s'} = e_{as} = 29$$
 mm. (2.14)

Površina poprečnog preseka priključka koja je opterećena naponom i deluje kao ojačanje:

$$A_{fb} = e_{ab} \cdot (l_{b'} + l_{bi'} + e_{as}) = 1.636,96 \text{ mm}^2.$$
(2.15)

Površina poprečnog preseka priključka opterećena pritiskom:

$$A_{pb} = 0.5d_{ib} \cdot (l_{b'} + e_{as}) = 25.356,50 \text{ mm}^2.$$
(2.16)

Površina poprečnog preseka sfernog omotača, koja je opterećena naponom i deluje kao ojačanje:

$$A_{fs} = e_{as} \cdot l_{so} = 19.184,74 \text{ mm}^2, \tag{2.17}$$

gde je l_{so} najveća dužina omotača koja učestvuje u ojačanju:

$$l_{so} = \sqrt{\left(2\left(\frac{D_e}{2} - e_{as}\right) + e_{as}\right) \cdot e_{as}} = 661,54 \text{ mm.}$$
(2.18)

Površina poprečnog preseka sfernog omotača, koja je opterećena pritiskom i deluje kao ojačanje:

$$A_{psp} = 0.5 \left(\frac{D_e}{2} - e_{as}\right)^2 \cdot \frac{l_{so} + a_p}{0.5e_{as} + \left(\frac{D_e}{2} - e_{as}\right)} = 3.441.032,21 \text{ mm}^2, \tag{2.19}$$

gde su koeficijenti dobijeni na prema sledećim jednačinama:

$$r_{ms} = \frac{D_e}{2} - e_{as} + 0.5e_{as} = 7.545.5 \text{ mm},$$
(2.20)

$$\delta_{ms} = \frac{d_{eb}}{2 \cdot r_{ms}} = 0,034, \tag{2.21}$$

$$a_p = r_{ms} \cdot asin(\delta_{ms}) = 254,05 \text{ mm.}$$
 (2.22)

Efektivna širina ojačavajuće ploče:

$$l_{p'} = \min(l_{so}, l_p) = 107,5 \text{ mm.}$$
 (2.23)

Efektivna debljina ojačavajuće ploče za projektovanje ojačanja:

$$e_{ap} \le 1.5 \cdot e_{as} \to 30 \text{ mm} < 43.5 \text{ mm}.$$
 (2.24)

Površina poprečnog preseka ojačavajuće ploče, koja je opterećena naponom i deluje kao ojačanje:

$$A_{fp} = e_{ap} \cdot l_{p'} = 3.225 \text{ mm}^2. \tag{2.25}$$

Kako bi uslov čvrstoće bio ispunjen potrebno je da sledeća nejednačina bude zadovoljena:

$$A_{fs}(f_s - 0.5p) + A_{fp}(f_{op} - 0.5p) + A_{fb}(f_{ob} - 0.5p) \ge p \cdot (A_{psp} + A_{pb}),$$
(2.26)

gde je:

$$A_{fs}(f_s - 0.5p) + A_{fp}(f_{op} - 0.5p) + A_{fb}(f_{ob} - 0.5p) = 5.582,824 \text{ kN},$$
(2.27)

$$p \cdot (A_{psp} + A_{pb}) = 5.546,222 \text{ kN.}$$
 (2.28)

Prema rezultatima dobijenim u jednačinama 2.27 i 2.28 možemo potvrditi da je uslov čvrstoće ispunjen:

$$5.582,824 \text{ kN} > 5.546,222 \text{ kN}.$$
 (2.29)

Maksimalni pritisak se određuje prema jednačini 3.30:

$$p_{max} = \frac{A_{fs} \cdot f_s + A_{fb} \cdot f_{ob} + A_{fp} \cdot f_{op}}{(A_{psp} + A_{pb}) + 0.5(A_{fs} + A_{fb} + A_{fp})} = 16,11 \text{ bar.}$$
(2.30)

Pregled rezultata proračuna oslabljenja omotača na mestu svih priključaka prikazan je u tabeli 2.6.

1		0
Dimenzije priključka Ød _{eb} × e _{nb} [mm]	Dimenzije ploče za ojačanje $\emptyset d_p \times l_p \times e_{ap}$ [mm]	$Uslov čvrstoće$ $A_{fs}(f_s - 0.5p) + A_{fp}(f_{op} - 0.5p) + A_{fb}(f_{ob} - 0.5p) \ge p \cdot (A_{psp} + A_{pb})$
Ø219,1 × 7,0 mm	Ø228 × 86 × 30 mm	5.273,493 kN > 4.647,505 kN
Ø139,7 × 8,8 mm	-	4.670,714 kN > 4.404,098 kN
Ø114,3 × 7,1 mm	-	4.644,965 kN > 4.326,131 kN
Ø60,3 × 5,0 mm	-	4.616,985 kN > 4.161,145 kN

Tabela 2.6: Rezultati proračuna oslabljenja omotača na mestu priključaka

4. Proračun prirubnice sa grlom otvora za kontrolu DN500 PN40, usled dejstva unutrašnjeg pritiska, prema EN 13445-3: 2017[34]

Polazni i usvojeni podaci:

p = 16 bar – proračunski pritisak,

w = 14 mm -širina dodira zaptivača,

 $G_{sp} = 576 \text{ mm} - \text{spoljašnji prečnik površine dodira zaptivača,}$

 $G_{sr} = G_{sp} - w = 562 \text{ mm} - \text{srednja}$ vrednost prečnika površine dodira zaptivača,

 $m_z = 1 - \text{koeficijent pritezanja zaptivača (Aneks H [34])},$

 $y_z = 1,4$ MPa – najmanji pritisak na zaptivaču (Aneks H [34]),

f = 136,67 MPa – nazivni proračunski napon materijala prirubnice A350 LF1,

 $f_{BA} = 200$ MPa – nazivni proračunski napon vijka na temperaturi ugradnje,

 $f_B = 213,33$ MPa – nazivni proračunski napon vijka na radnoj temperaturi,

 $f_H = 136,67$ MPa – nazivni proračunski napon ogrlice materijala prirubnice A350 LF1,

 $\nu = 0.3$ – Poasonov koeficijent,

 $A_1 = 755 \text{ mm} - \text{spoljašnji prečnik prirubnice,}$

 $B_1 = 488 \text{ mm} - \text{unutrašnji prečnik prirubnice},$

 $C_1 = 670 \text{ mm} - \text{prečnik podeonog kruga rupa za vijke,}$

 $g_1 = 27 \text{ mm} - \text{debljina ogrlice na zadnjoj strani prirubnice,}$

 $g_o = 14,2 \text{ mm} - \text{debljina ogrlice na manjoj osnovi,}$

 $h_o = 68 \text{ mm} - \text{dužina ogrlice},$

 $d_b = 39 \text{ mm} - \text{spoljašnji prečnik vijka,}$

 $\delta_b = 105,243 \text{ mm} - \text{rastojanje}$ između osa susednih vijaka,

 $e_p = 52 \text{ mm} - \text{najmanja}$ debljina prirubnice, izmerena na najtanjem preseku,

 $n_v = 20 - broj vijaka,$

 $A_B = \frac{d_b^2 \cdot \pi}{4} \cdot n_v = 23.891,812 \text{ mm}^2 - \text{ukupna površina poprečnog preseka vijaka na preseku koji ima najmanji prečnik vijka.}$

Slika 2.5 Prirubnica sa grlom otvora za kontrolu

Teoretska širina naleganja zaptivača ili ležišta zaptivača:

$$b_o = \frac{w}{2} = 7$$
 mm. (2.31)

Za $b_o > 6,3\,$ mm, efektivna širina zaptivača je:

$$b = 2,521 \cdot \sqrt{b_o} = 6,67$$
 mm. (2.32)

Za $b_o > 6,3\,$ mm, efektivni prečnik površine zaptivanja:

$$G_g = G_{sp} - 2 \cdot b = 562,66 \text{ mm.}$$
 (2.33)

Ukupna hidrostatička sila:

$$H_1 = \frac{\pi}{4} \cdot \left(G_g^2 \cdot p \right) = 397,834 \text{ kN.}$$
(2.34)

Pritisno opterećenje na zaptivaču koje osigurava zaptivnost:

$$H_G = 2 \cdot \pi \cdot b \cdot G_g \cdot m_z \cdot p = 37,728 \text{ kN.}$$

$$(2.35)$$

Najmanja potrebna sila pritezanja vijaka u ugradnom stanju:

$$W_A = \pi \cdot b \cdot G_g \cdot y_z = 16,506 \text{ kN.}$$
 (2.36)

Najmanja potrebna sila pritezanja vijaka u radnom stanju:

$$W_{op} = H_1 + H_G = 435,563 \text{ kN.}$$
 (2.37)

Potrebna površina preseka vijka se dobija iz jednačine 2.38:

$$A_{Bmin} = \max\left(\frac{W_A}{f_{BA}}, \frac{W_{op}}{f_B}\right) = 2.041,703 \text{ mm}^2.$$
 (2.38)

Vijci se moraju izabrati tako da je $A_B > A_{Bmin}$:

$$A_B = 23.891,812 \text{ mm}^2 > A_{Bmin} = 2.041,703 \text{ mm}^2.$$
 (2.39)

Momenti prirubnice

Hidrostatička sila kojom se preko omotača deluje na prirubnicu:

$$H_D = \frac{\pi}{4} \cdot (B_1^2 \cdot p) = 299,261 \text{ kN.}$$
(2.40)

Hidrostatička sila koja je posledica pritiska na površinu prirubnice:

$$H_T = H_1 - H_D = 98,574 \text{ kN.}$$
(2.41)

Radijalno rastojanje između podeonog kruga rupa za vijke i kruga unutar kojeg deluje H_D :

$$h_D = \frac{C_1 - B_1}{2} = 91$$
 mm. (2.42)

Radijalno rastojanje između efektivnog prečnika zaptivača i podeonog kruga rupa za vijke:

$$h_G = \frac{(C_1 - G_g)}{2} = 53,67$$
 mm. (2.43)

Radijalno rastojanje između podeonog kruga rupa za vijke i kruga unutar kojeg deluje H_T :

$$h_T = \frac{\left(2C_1 - B_1 - G_g\right)}{4} = 72,335 \text{ mm.}$$
 (2.44)

Nazivna sila pritezanja vijaka u ugradnom stanju:

$$W_1 = 0.5 \cdot (A_{Bmin} + A_B) \cdot f_{BA} = 2.593,351 \text{ kN.}$$
 (2.45)

Ukupni moment koji deluje na prirubnicu u uslovima ugradnje:

$$M_A = W_1 \cdot h_G = 139,185 \text{ kNm.}$$
(2.46)

Ukupni moment koji deluje na prirubnicu u radnim uslovima:

$$M_{op} = H_D \cdot h_D + H_T \cdot h_T + H_G \cdot h_G = 36,388 \text{ kNm.}$$
(2.47)

Naponi u prirubnici i granice napona Koeficijent korekcije za korak vijka:

$$C_F = \max\left(\sqrt{\frac{\delta_b}{2 \cdot d_b + \frac{6 \cdot e_p}{m_z + 0.5}}}, 1\right) = 1.$$
 (2.48)

Količnik prečnika prirubnice:

$$K_1 = \frac{A_1}{B_1} = 1,547. \tag{2.49}$$

Koeficijent dužine:

$$l_o = \sqrt{B_1 \cdot g_o} = 83,244 \text{ mm.}$$
 (2.50)

Određivanje koeficijenata β_T , β_U i β_Y :

$$\beta_T = \frac{K_1^2 \cdot (1 + 8,55246 \cdot \log(K_1)) - 1}{(1,0472 + 1,9448 \cdot K_1^2) \cdot (K_1 - 1)} = 1,69,$$
(2.51)

$$\beta_U = \frac{K_1^2 \cdot (1 + 8,55246 \cdot \log(K_1)) - 1}{1,36136 \cdot (K_1^2 - 1) \cdot (K_1 - 1)} = 5,08,$$
(2.52)

$$\beta_Y = \frac{1}{K_1 - 1} \cdot \left(0,66845 + 5,7169 \cdot \frac{{K_1}^2 \cdot \log(K_1)}{{K_1}^2 - 1} \right) = 4,623.$$
(2.53)

Torzioni moment po jedinici dužine koji deluje na prirubnicu za ugradno stanje:

$$M_{TA} = M_A \cdot \frac{C_F}{B_1} = 285,215$$
 kN. (2.54)

Torzioni moment po jedinici dužine koji deluje na prirubnicu za ugradno stanje:

$$M_{Top} = M_{op} \cdot \frac{C_F}{B_1} = 74,565 \text{ kN.}$$
 (2.55)

Koeficijenti za proračun napona u prirubnici:

$$A_a = \frac{g_1}{g_0} - 1 = 0,901, \tag{2.56}$$

$$c_c = 48 \cdot (1 - \nu^2) \cdot \left(\frac{h_o}{l_o}\right)^4 = 19,449,$$
 (2.57)

$$c_1 = \frac{1}{3} + \frac{A_a}{12} = 0,40845,\tag{2.58}$$

$$c_2 = \frac{5}{42} + \frac{17 \cdot A_a}{336} = 0,16465, \tag{2.59}$$

$$c_3 = \frac{1}{210} + \frac{A_a}{360} = 0,00727,$$
(2.60)

$$c_4 = \frac{11}{360} + \frac{59 \cdot A_a}{5040} + \frac{1 + 3 \cdot A_a}{c_c} = 0,23156,$$
(2.61)

$$c_5 = \frac{1}{90} + \frac{5 \cdot A_a}{1008} - \frac{(1 + A_a)^3}{c_c} = -0,33786,$$
(2.62)

$$c_6 = \frac{1}{120} + \frac{17 \cdot A_a}{5040} + \frac{1}{c_c} = 0,06279,$$
(2.63)

$$c_7 = \frac{215}{2772} + \frac{51 \cdot A_a}{1232} + \left(\frac{120 + 225 \cdot A_a + 150 \cdot A_a^2 + 35 \cdot A_a^3}{14}\right) \cdot \frac{1}{c_c} = 1,8422,$$
(2.64)

$$c_8 = \frac{31}{6930} + \frac{128 \cdot A_a}{45045} + \left(\frac{66 + 165 \cdot A_a + 132 \cdot A_a^2 + 35 \cdot A_a^3}{77}\right) \cdot \frac{1}{c_c} = 0,23916,$$
(2.65)

$$c_9 = \frac{533}{30240} + \frac{653 \cdot A_a}{73920} + \left(\frac{42 + 198 \cdot A_a + 117 \cdot A_a^2 + 25 \cdot A_a^3}{84}\right) \cdot \frac{1}{c_c} = 0,22994,$$
(2.66)

$$c_{10} = \frac{29}{3780} + \frac{3 \cdot A_a}{704} - \left(\frac{42 + 198 \cdot A_a + 243 \cdot A_a^2 + 91 \cdot A_a^3}{84}\right) \cdot \frac{1}{c_c} = -0,28509,$$
(2.67)

$$c_{11} = \frac{31}{6048} + \frac{1763 \cdot A_a}{665280} + \left(\frac{42 + 72 \cdot A_a + 45 \cdot A_a^2 + 10 \cdot A_a^3}{84}\right) \cdot \frac{1}{c_c} = 0,09981,$$
(2.68)

$$c_{12} = \frac{1}{2925} + \frac{71 \cdot A_a}{300300} + \left(\frac{88 + 198 \cdot A_a + 156 \cdot A_a^2 + 42 \cdot A_a^3}{385}\right) \cdot \frac{1}{c_c} = 0,05718,$$
(2.69)

$$c_{13} = \frac{761}{831600} + \frac{937 \cdot A_a}{1663200} + \left(\frac{2 + 12 \cdot A_a + 11 \cdot A_a^2 + 3 \cdot A_a^3}{70}\right) \cdot \frac{1}{c_c} = 0,01902,$$
(2.70)

$$c_{14} = \frac{197}{415800} + \frac{103 \cdot A_a}{332640} - \left(\frac{2 + 12 \cdot A_a + 17 \cdot A_a^2 + 7 \cdot A_a^3}{70}\right) \cdot \frac{1}{c_c} = -0,02257,$$
(2.71)

$$c_{15} = \frac{233}{831600} + \frac{97 \cdot A_a}{554400} + \left(\frac{6 + 18 \cdot A_a + 15 \cdot A_a^2 + 4 \cdot A_a^3}{210}\right) \cdot \frac{1}{c_c} = 0,00958,$$
(2.72)

$$c_{16} = c_1 \cdot c_7 \cdot c_{12} + c_2 \cdot c_8 \cdot c_3 + c_3 \cdot c_8 \cdot c_2 - (c_3^2 \cdot c_7 + c_8^2 \cdot c_1 + c_2^2 \cdot c_{12}) = 0,01858746,$$
(2.73)

$$c_{17} = (c_4 \cdot c_7 \cdot c_{12} + c_2 \cdot c_8 \cdot c_{13} + c_3 \cdot c_8 \cdot c_9 - (c_{13} \cdot c_7 \cdot c_3 + c_8^2 \cdot c_4 + c_{12} \cdot c_2 \cdot c_9)) \cdot \frac{1}{c_{16}} = 0,53135,$$
(2.74)

$$c_{18} = (c_5 \cdot c_7 \cdot c_{12} + c_2 \cdot c_8 \cdot c_{14} + c_3 \cdot c_8 \cdot c_{10} - (c_{14} \cdot c_7 \cdot c_3 + c_8^2 \cdot c_5 + c_{12} \cdot c_2 \cdot c_{10})) \cdot \frac{1}{c_{16}} = -0,78885,$$
(2.75)

$$c_{19} = (c_6 \cdot c_7 \cdot c_{12} + c_2 \cdot c_8 \cdot c_{15} + c_3 \cdot c_8 \cdot c_{11} - (c_{15} \cdot c_7 \cdot c_3 + c_8^2 \cdot c_6 + c_{12} \cdot c_2 \cdot c_{11})) \cdot \frac{1}{c_{16}} = 0,13479,$$
(2.76)

$$c_{20} = (c_1 \cdot c_9 \cdot c_{12} + c_4 \cdot c_8 \cdot c_3 + c_3 \cdot c_{13} \cdot c_2 - (c_3^2 \cdot c_9 + c_{13} \cdot c_8 \cdot c_1 + c_{12} \cdot c_4 \cdot c_2)) \cdot \frac{1}{c_{16}} = 0,09391,$$
(2.77)

$$c_{21} = (c_1 \cdot c_{10} \cdot c_{12} + c_5 \cdot c_8 \cdot c_3 + c_3 \cdot c_{14} \cdot c_2 - (c_3^2 \cdot c_{10} + c_{14} \cdot c_8 \cdot c_1 + c_{12} \cdot c_5 \cdot c_2)) \cdot \frac{1}{c_{16}} = -0,10068,$$
(2.78)

$$c_{22} = (c_1 \cdot c_{11} \cdot c_{12} + c_6 \cdot c_8 \cdot c_3 + c_3 \cdot c_{15} \cdot c_2 - (c_3^2 \cdot c_{11} + c_{15} \cdot c_8 \cdot c_1 + c_{12} \cdot c_6 \cdot c_2)) \cdot \frac{1}{c_{16}} = 0,04946,$$
(2.79)

$$c_{23} = (c_1 \cdot c_7 \cdot c_{13} + c_2 \cdot c_9 \cdot c_3 + c_4 \cdot c_8 \cdot c_2 - (c_3 \cdot c_7 \cdot c_4 + c_8 \cdot c_9 \cdot c_1 + c_2^2 \cdot c_{13})) \cdot \frac{1}{c_{16}} = -0,12773,$$
(2.80)

$$c_{24} = (c_1 \cdot c_7 \cdot c_{14} + c_2 \cdot c_{10} \cdot c_3 + c_5 \cdot c_8 \cdot c_2 - (c_3 \cdot c_7 \cdot c_5 + c_8 \cdot c_{10} \cdot c_1 + c_2^2 \cdot c_{14})) \cdot \frac{1}{c_{16}} = 0,127,$$
(2.81)

$$c_{25} = (c_1 \cdot c_7 \cdot c_{15} + c_2 \cdot c_{11} \cdot c_3 + c_6 \cdot c_8 \cdot c_2 - (c_3 \cdot c_7 \cdot c_6 + c_8 \cdot c_{11} \cdot c_1 + c_2^2 \cdot c_{15})) \cdot \frac{1}{c_{16}} = -0,05644,$$
(2.82)

$$c_{26} = -\left(\frac{c_c}{4}\right)^{\frac{1}{4}} = -1,48495,\tag{2.83}$$

$$c_{27} = c_{20} - c_{17} - \frac{5}{12} + c_{17} \cdot c_{26} = -1,64313, \tag{2.84}$$

$$c_{28} = c_{22} - c_{19} - \frac{1}{12} + c_{19} \cdot c_{26} = -0,36882, \qquad (2.85)$$

$$c_{29} = -\left(\frac{c_c}{4}\right)^{\frac{1}{2}} = -2,20506,$$
(2.86)

$$c_{30} = -\left(\frac{c_c}{4}\right)^{\frac{3}{4}} = -3,2744,$$
(2.87)

$$c_{31} = \frac{3 \cdot A_a}{2} - c_{17} \cdot c_{30} = 3,09196, \tag{2.88}$$

$$c_{32} = \frac{1}{2} - c_{19} \cdot c_{30} = 0,94136, \tag{2.89}$$

$$c_{33} = \frac{c_{26} \cdot c_{32}}{2} + c_{28} \cdot c_{31} \cdot c_{29} - \left(\frac{c_{30} \cdot c_{28}}{2} + c_{32} \cdot c_{27} \cdot c_{29}\right) = -2,1989,$$
(2.90)

$$c_{34} = \frac{1}{12} + c_{18} - c_{21} - c_{18} \cdot c_{26} = -1,77624, \tag{2.91}$$

$$c_{35} = c_{18} \cdot c_{30} = 2,58301, \tag{2.92}$$

$$c_{36} = (c_{28} \cdot c_{35} \cdot c_{29} - c_{32} \cdot c_{34} \cdot c_{29}) \cdot \frac{1}{c_{33}} = 0,72142,$$
(2.93)

$$c_{37} = \left(\frac{c_{26} \cdot c_{35}}{2} + c_{34} \cdot c_{31} \cdot c_{29} - \frac{c_{30} \cdot c_{34}}{2} - c_{35} \cdot c_{27} \cdot c_{29}\right) \cdot \frac{1}{c_{33}} = 0,94335,$$
(2.94)

$$E_1 = c_{17} \cdot c_{36} + c_{18} + c_{19} \cdot c_{37} = -0,27837, \tag{2.95}$$

$$E_2 = c_{20} \cdot c_{36} + c_{21} + c_{22} \cdot c_{37} = 0,01372, \tag{2.96}$$

$$E_3 = c_{23} \cdot c_{36} + c_{24} + c_{25} \cdot c_{37} = -0,019, \tag{2.97}$$

$$E_4 = \frac{3 + c_{37} + 3 \cdot c_{36}}{12} - \frac{2 \cdot E_3 + 15 \cdot E_2 + 10 \cdot E_1}{10} = 0,77051,$$
(2.98)

$$E_5 = E_1 \cdot \left(\frac{3+A_a}{6}\right) + E_2 \cdot \left(\frac{21+11\cdot A_a}{84}\right) + E_3 \cdot \left(\frac{3+2\cdot A_a}{210}\right) = -0,17638,$$
(2.99)

$$E_6 = E_5 - c_{36} \cdot \left(\frac{7}{120} + \frac{A_a}{36} + \frac{3 \cdot A_a}{c_c}\right) - \frac{1}{40} - \frac{A_a}{72} - c_{37} \cdot \left(\frac{1}{60} + \frac{A_a}{120} + \frac{1}{c_c}\right) = -0,44567.$$
(2.100)

Integralna metoda Određivanje koeficijenata β_F , β_V , φ_i i λ_i :

$$\beta_F = \frac{-E_6}{\left(\frac{c_c}{3 \cdot (1 - \nu^2)}\right)_F^{\frac{1}{4}} \cdot \frac{(1 + A_a)^3}{c_c}} = 0,772,$$
(2.101)

$$\beta_V = \frac{E_4}{\left(\frac{3\cdot(1-\nu^2)}{c_c}\right)^{\frac{1}{4}}\cdot(1+A_a)^3} = 0,183,$$
(2.102)

$$\varphi_i = \frac{c_{36}}{1+A_a} = 0,379, \tag{2.103}$$

$$\lambda_{i} = \frac{e_{p} \cdot \beta_{F} + l_{o}}{\beta_{T} \cdot l_{o}} + \frac{e_{p}^{3} \cdot \beta_{V}}{\beta_{U} \cdot l_{o} \cdot g_{o}^{2}} = 1,179.$$
(2.104)

Uzdužni napon na grlu – ugradno stanje:

$$\sigma_{Hia} = \frac{\varphi_i \cdot M_{TA}}{\lambda_i \cdot g_1^2} = 125,928 \text{ MPa.}$$
(2.105)

Uzdužni napon na grlu – radno stanje:

$$\sigma_{Hiop} = \frac{\varphi_i \cdot M_{Top}}{\lambda_i \cdot g_1^2} = 32,922 \text{ MPa.}$$
(2.106)

Radijalni napon na prirubnici – ugradno stanje:

$$\sigma_{ria} = \frac{\left(1,333 \cdot e_p \cdot \beta_F + l_o\right) \cdot M_{TA}}{\lambda_i \cdot e_p^2 \cdot l_o} = 146,986 \text{ MPa.}$$
(2.107)

`

Radijalni napon na prirubnici – radno stanje:

$$\sigma_{riop} = \frac{\left(1,333 \cdot e_p \cdot \beta_F + l_o\right) \cdot M_{Top}}{\lambda_i \cdot e_p^2 \cdot l_o} = 38,427 \text{ MPa.}$$
(2.108)

Tangentni napon na prirubnici – ugradno stanje:

$$\sigma_{\theta ia} = \frac{\beta_Y \cdot M_{TA}}{e_p^2} - \sigma_{ria} \cdot \frac{K_1^2 + 1}{K_1^2 - 1} = 129,712 \text{ MPa.}$$
(2.109)

Tangentni napon na prirubnici – radno stanje:

$$\sigma_{\theta i o p} = \frac{\beta_Y \cdot M_{Top}}{e_p^2} - \sigma_{riop} \cdot \frac{K_1^2 + 1}{K_1^2 - 1} = 33,911 \text{ MPa.}$$
(2.110)

Metoda za slobodne prirubnice

Tangentni napon na prirubnici – ugradno stanje:

$$\sigma_{\theta isa} = \frac{\beta_Y \cdot M_{TA}}{e_p^2} = 487,639 \text{ MPa.}$$
(2.111)

Tangentni napon na prirubnici – radno stanje:

$$\sigma_{\theta isop} = \frac{\beta_Y \cdot M_{Top}}{e_p^2} = 127,486 \text{ MPa.}$$
(2.112)

Radijalni napon na prirubnici i uzdužni napon na ogrlici su jednaki:

$$\sigma_{ris} = \sigma_{His} = 0 \text{ MPa.}$$
(2.113)

<u>Metoda za slobodne prirubnice sa ogrlicom</u> Određivanje koeficijenata β_{FI} , β_{VI} i λ :

$$\beta_{FL} = \frac{c_{18} \cdot \left(\frac{3+A_a}{6}\right) + c_{21} \cdot \left(\frac{21+11 \cdot A_a}{84}\right) + c_{24} \cdot \left(\frac{3+2 \cdot A_a}{210}\right) - \left(\frac{9+5 \cdot A_a}{360}\right)}{\left(\frac{c_c}{3 \cdot (1-v^2)}\right)^{\frac{1}{4}} \cdot \frac{(1+A_a)^3}{c_c}} = -1,012,$$
(2.114)

$$\beta_{VL} = \frac{\frac{1}{4} - \frac{c_{24}}{5} - \frac{3 \cdot c_{21}}{2} - c_{18}}{\left(\frac{3 \cdot (1 - \nu^2)}{c_c}\right)^{\frac{1}{4}} \cdot (1 + A_a)^3} = 0,277, \qquad (2.115)$$

$$\lambda_{L} = \frac{e_{p} \cdot \beta_{FL} + l_{o}}{\beta_{T} \cdot l_{o}} + \frac{e_{p}^{3} \cdot \beta_{VL}}{\beta_{U} \cdot l_{o} \cdot g_{o}^{2}} = 0,674.$$
(2.116)

Uzdužni napon na ogrlici – ugradno stanje:

$$\sigma_{HLa} = \frac{M_{TA}}{\lambda_L \cdot g_1^2} = 580,629 \text{ MPa.}$$
(2.117)

Uzdužni napon na ogrlici - radno stanje:

$$\sigma_{HLop} = \frac{M_{Top}}{\lambda_L \cdot g_1^2} = 151,797$$
 MPa. (2.118)

Radijalni napon na prirubnici – ugradno stanje:

,

$$\sigma_{rLa} = \frac{(1,333 \cdot e_p \cdot \beta_{FL} + l_o)M_{TA}}{\lambda_L \cdot e_p^2 \cdot l_o} = 24,572 \text{ MPa.}$$
(2.119)

Radijalni napon na prirubnici – radno stanje:

$$\sigma_{rLop} = \frac{(1,333 \cdot e_p \cdot \beta_{FL} + l_o) M_{Top}}{\lambda_L \cdot e_p^2 \cdot l_o} = 6,424 \text{ MPa.}$$
(2.120)

Tangentni napon na prirubnici – ugradno stanje:

$$\sigma_{\theta La} = \frac{\beta_Y \cdot M_{TA}}{e_p^2} - \sigma_{rLa} \cdot \frac{K_1^2 + 1}{K_1^2 - 1} = 427,804 \text{ MPa.}$$
(2.121)

Tangentni napon na prirubnici – radno stanje:

$$\sigma_{\theta Lop} = \frac{\beta_Y \cdot M_{Top}}{e_p^2} - \sigma_{rLop} \cdot \frac{K_1^2 + 1}{K_1^2 - 1} = 111,843 \text{ MPa.}$$
(2.122)

<u>Granice napona</u> Koeficijent napona za $B_1 = 488$ mm:

$$B_1 < 1000 \text{ mm} \rightarrow k_n = 1.$$
 (2.123)

Naponi u prirubnici moraju da ispunjavaju sledeće zahteve: 1. Integralna metoda

$$k_n \cdot \sigma_{Hiop} = 32,922 \text{ MPa} < 1,5 \cdot \min(f, f_H) = 205,005 \text{ MPa},$$
 (2.124)

$$k_n \cdot \sigma_{riop} = 38,427 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.125)

$$k_n \cdot \sigma_{\theta i o p} = 33,911 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.126)

$$0.5 \cdot k_n \cdot (\sigma_{Hiop} + \sigma_{riop}) = 35,675 \text{ MPa} < f = 136,67 \text{ MPa},$$
(2.127)

$$0.5 \cdot k_n \cdot (\sigma_{Hiop} + \sigma_{\theta iop}) = 33,417 \text{ MPa} < f = 136,67 \text{ MPa}.$$
 (2.128)

2. Metoda za slobodne prirubnice:

$$k_n \cdot \sigma_{His} = 0 \text{ MPa} < 1.5 \cdot \min(f, f_H) = 205,005 \text{ MPa},$$
 (2.129)

$$k_n \cdot \sigma_{ris} = 0$$
 MPa < $f = 136,67$ MPa, (2.130)

$$k_n \cdot \sigma_{\theta isop} = 127,486 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.131)

$$0.5 \cdot k_n \cdot (\sigma_{His} + \sigma_{ris}) = 0 \text{ MPa} < f = 136,67 \text{ MPa},$$
(2.132)

$$0.5 \cdot k_n \cdot (\sigma_{His} + \sigma_{\theta isop}) = 63,743 \text{ MPa} < f = 136,67 \text{ MPa}.$$
(2.133)

3. Metoda za slobodne prirubnice sa ogrlicom:

$$k_n \cdot \sigma_{Hlop} = 151,797 \text{ MPa} < 1,5 \cdot \min(f, f_H) = 205,005 \text{ MPa},$$
 (2.134)

$$k_n \cdot \sigma_{rLop} = 6,424 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.135)

$$k_n \cdot \sigma_{\theta Lop} = 111,843 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.136)

$$0.5 \cdot k_n \cdot (\sigma_{HLop} + \sigma_{rLop}) = 79,11 \text{ MPa} < f = 136,67 \text{ MPa},$$
 (2.137)

$$0.5 \cdot k_n \cdot (\sigma_{HLop} + \sigma_{\theta Lop}) = 131,82 \text{ MPa} < f = 136,67 \text{ MPa}.$$
(2.138)

5. Opterećenja od seizmičkih uticaja, proračun prema Pravilniku o tehničkim propisima o delovanju vetra na noseće čelične konstrukcije [37]

Polazni i usvojeni podaci i oznake:

 $p_r = 16$ bar – najveći pritisak u gasnom prostoru posude pri 40 °C, $D_s = 15.120$ mm – spoljašnji prečnik sfernog omotača, $s_e = 30$ mm – izvedena debljina zida sfernog omotača, H = 16.500 mm – ukupna proračunska visina objekta, I – kategorija objekta, $K_0 = 1,5$ – koeficijent kategorije objekta, $K_s = 0,1$ – koeficijent seizmičkog intenziteta (IX stepen po MCS skali), $K_d = 1,0$ – koeficijent dinamičnosti, $K_p = 1,0$ – koeficijent duktiliteta i prigušenja, G = 2.364 kN – ukupna sopstvena težina objekta, opreme i korisno opterećenje,

 $G_{rm} = 9600 (7250) \text{ kN} - \text{opterećenje od radne materije},$

 $G_v = 17.545$ kN – opterećenje od ispitne materije (voda).

Određivanje ukupne horizontalne seizmičke sile

Ukupni seizmički koeficijent za horizontalni pravac:

$$K = K_0 \cdot K_s \cdot K_d \cdot K_p = 0,15.$$
 (2.139)

Ukupno vertikalno opterećenje u radu:

$$G_r = G + G_{rm} = 11.965 \text{ kN.}$$
 (2.140)

Ukupna horizontalna seizmička sila:

$$S = K \cdot G_r = 1.795$$
 kN. (2.141)

Horizontalna seizmička sila u i-tom segmentu plašta se određuje prema izrazu:

$$S_i = S \cdot \frac{G_i \cdot H_i}{\sum G_i \cdot H_i} \quad [kN]. \tag{2.142}$$

<u>Određivanje ukupne vertikalne seizmičke sile</u> Ukupni seizmički koeficijent za vertikalni pravac:

$$K_{\nu} = 0.7 \cdot K_0 \cdot K_s \cdot K_d \cdot K_p = 0.105.$$
(2.143)

Ukupna vertikalna seizmička sila:

$$S_v = K_v \cdot G_r = 1.256 \text{ kN.}$$
 (2.144)

6. Opterećenja od uticaja vetra, proračun prema Pravilniku o tehničkim propisima o delovanju vetra na noseće čelične konstrukcije [38]

Polazni i usvojeni podaci i oznake:

 $p_r = 16$ bar – najveći pritisak u gasnom prostoru posude pri 40 °C,

 $D_s = 15.120 \text{ mm} - \text{spoljašnji prečnik sfernog omotača,}$

 $D_u = 15.060 \text{ mm} - \text{unutrašnji prečnik sfernog omotača,}$

 $s_e = 30 \text{ mm} - \text{izvedena debljina zida sfernog omotača,}$

H = 16.500 mm - ukupna proračunska visina objekta,

 $q_1 = 0.7$ kN/mm² – osnovno opterećenje vetrom za izložen objekat visine do 10 m,

 $q_2 = 0.9 \text{ kN/mm}^2$ - osnovno opterećenje vetrom za izložen objekat visine od 10÷30 m,

 $c_h = 0,3$ – koeficijent oblika za kuglu u horizontalnom pravcu,

 $c_v = 1,0$ – koeficijent oblika za kuglu, u vertikalnom pravcu,

G = 2.364 kN – ukupna sopstvena težina objekta, opreme i korisno opterećenje,

 $V_h = / \text{kN} - \text{ukupna horizontalna sila od uticaja vetra,}$

 $V_{\nu} = / \text{ kN} - \text{ukupna vertikalna sila od uticaja vetra.}$

<u>Određivanje ukupne sile od uticaja vetra za horizontalni i za vertikalni pravac</u> Osnovno opterećenje vetrom (do 10 m visine):

$$w_1 = c \cdot q_1 = 0,206 \text{ kN/m}^2.$$
 (2.145)

Osnovno opterećenje vetrom (preko 10 do 30 m visine):

$$w_2 = c \cdot q_2 = 0,265 \text{ kN/m}^2.$$
 (2.146)

Površina izložena vetru:

$$A_k = \frac{D_s^2 \cdot \pi}{4} = 179,55 \text{ m}^2. \tag{2.147}$$

Ukupna horizontalna sila vetra:

$$V_h = w_2 \cdot A_k = 47,56 \text{ kN.}$$
(2.148)

<u>Određivanje ukupne sile od uticaja vetra za vertikalni pravac</u> Osnovno opterećenje vetrom u vertikalnom pravcu:

$$w_v = c_v \cdot q_2 = 0,883 \text{ kN/m}^2.$$
 (2.149)

Ukupna vertikalna sila vetra:

$$V_{\nu} = w_{\nu} \cdot A_k = 158,53 \text{ kN.}$$
(2.150)

PROCENA INTEGRITETA KONSTRUKCIJE SFERNOG REZERVOARA PRIMENOM PARAMETARA ELASTO-PLASTIČNE MEHANIKE LOMA

Prilikom redovnih periodičnih pregleda poprečnih i uzdužnih sučeonih zavarenih spojeva segmenata konstrukcije sfernog rezervoara za skladištenje tečnog amonijaka metodama bez razaranja je utvrđeno 211 nepravilnosti u vidu nedozvoljenih grešaka. Važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na kojoj je dijagnostifikovana pojava nepravilnosti. Otkrivene greške su analizirane metodama mehanike loma, primenjujući konzervativni pristup. Da bi se odredili faktori intenziteta napona potrebno je znati opterećenje i geometriju, a žilavost loma nije bilo moguće odrediti jer se radi o gotovoj konstrukciji pa nije moguće izraditi epruvetu, već je korišćena konzervativna procena njene vrednosti. Takođe je vođeno računa o mogućnosti pojave korozije i zamora, uticaju zaostalih napona i uticaju blizine priključaka. Metodama mehanike loma analiziran je uticaj dubine prsline na integritet konstrukcije [42] [43], odnosno određen je opseg dubina grešaka pri kojima integritet konstrukcije nije narušen. Najveća dubina zabeležena metodama bez razaranja utvrđena je na grešci pod rednim brojem 197, koja se nalazi na zavarenom spoju R3 između segmenata 20g i 20. Vrednosti određenih faktora intenziteta napona za sve otkrivene greške su prikazane u tabeli 3.1. Pozicija dijagnostifikovanih nepravilnosti šematski je prikazana na slici 3.2.

Potrebni podaci za detaljnu analizu greške pod rednim brojem 197:

- geometrija posude (debljina t = 23 mm, srednji poluprečnik $R_{sr} = 7545,5$ mm),
- geometrija greške (dužina l = 45 mm, dubina a = 6 mm),
- lokacija na zavarenom spoju R3 između segmenata 20g i 20, daleko od priključaka),
- opterećenje (unutrašnji pritisak p = 16 bar, zaostali napon $\sigma_R = 0$ MPa),
- žilavost loma metala šava 1560 MPa√mm, uzeto kao minimalna vrednost [39].

Za faktor intenziteta napona se dobija:

$$K_I = \left(\frac{p \cdot R_{sr}}{2 \cdot t} + \sigma_R\right) \cdot \sqrt{\pi \cdot a} = 1139,46 \text{ MPa}\sqrt{\text{mm}},\tag{3.1}$$

što je 73,04% kritične vrednosti ($K_{IC} = 1560 \text{ MPa}\sqrt{\text{mm}}$) i ne dovodi posudu u opasno stanje.

Analiza prsline 197 se može ilustrovano prikazati dijagramom analize loma (Failure Assessment Diagram - FAD). Potrebno je odrediti parametre K_r i S_r . Parametar K_r se određuje prema predstavljenoj jednačini:

$$K_r = K_I / K_{IC} = 1139,46/1560 = 0,730.$$
 (3.2)

Za izračunavanje parametra S_r treba odrediti napon u neto preseku od primarnog opterećenja (unutrašnji pritisak). Parametar S_r se određuje preko sledećeg izraza:

$$S_r = \frac{\sigma_n}{\sigma_F} = \frac{\frac{p \cdot R_{sr}}{2 \cdot t}}{\frac{R_{p0,2} + R_m}{2}} = 0,597.$$
 (3.3)

Na osnovu dobijenih vrednosti za K_I/K_{IC} i σ_n/σ_F u dijagram analize loma (FAD) je ucrtana tačka sa koordinatama (0,597; 0,730), koja se nalazi u sigurnom delu dijagrama predstavljenog na slici 3.1.

Slika 3.1 Dijagram analize loma za prslinu 197

Tabela 3.1: Pregled, analiziranih grešaka i vrednosti određenih faktora intenziteta napona

Redni broj	Zavareni spoj	Dužina greške [mm]	Dubina greške [mm]	<i>K_I</i> [MPa√mm]	Rastojanje od referentne tačke [mm]	<i>K_{IC}</i> [MPa√mm]	$K_r = K_I / K_{IC}$	$S_r = \frac{\sigma_n}{\sigma_F}$
1	R1	-	-	-	-	-	-	-
2	1d	40	1	382,12	↓ 210 od z.s. R2	1560	0,245	0,490
3	1d	30	1,3	440,4	↓ 1060 od z.s. R2	1560	0,282	0,495
4	2d	80	1	382,12	↓ 930 od z.s. R2	1560	0,245	0,490
5	3d	30	2	560,41	↓ 150 od z.s. R2	1560	0,359	0,508
6	3d	80	1,5	476,5	↓ 1140 od z.s. R2	1560	0,305	0,499
10	7d	60	1,5	476,5	↓ 260 od z.s. R2	1560	0,305	0,499
11	7d	50	1	382,12	↓ 670 od z.s. R2	1560	0,245	0,490
12	7d	50	1	382,12	↓ 770 od z.s. R2	1560	0,245	0,490
13	7d	40	1,3	440,4	↓ 1000 od z.s. R2	1560	0,282	0,495
14	8d	60	1,5	476,5	↓ 1120 od z.s. R2	1560	0,305	0,499
15	9d	80	1	382,12	↓ 650 od z.s. R2	1560	0,245	0,490
19	13d	130	2	560,41	↓ 1600 od z.s. R2	1560	0,359	0,508
22	16d	50	1	382,12	↓ 900 od z.s. R2	1560	0,245	0,490
23	16d	50	1	382,12	↓ 1120 od z.s. R2	1560	0,245	0,490

25	18d	50	0,5	265,46	↓ 100 od z.s. R2	1560	0,170	0,481
26	18d	40	1	382,12	↓ 380 od z.s. R2	1560	0,245	0,490
27	18d	70	1	382,12	↓ 930 od z.s. R2	1560	0,245	0,490
28	18d	50	0,5	265,46	↓ 1290 od z.s. R2	1560	0,170	0,481
29	19d	40	1	382,12	↓ 240 od z.s. R2	1560	0,245	0,490
30	19d	60	0,5	265,46	↓ 340 od z.s. R2	1560	0,17	0,481
31	19d	240	2	560,41	↓ 1100 od z.s. R2	1560	0,359	0,508
32	20d	80	2	560,41	↓ 1100 od z.s. R2	1560	0,359	0,508
34	22d	110	1,5	476,5	↓ 800 od z.s. R2	1560	0,305	0,499
35	23d	20	1	382,12	↓ 100 od z.s. R2	1560	0,245	0,490
36	23d	20	1,5	476,5	↓ 260 od z.s. R2	1560	0,305	0,499
37	23d	20	1	382,12	↓ 710 od z.s. R2	1560	0,245	0,490
38	23d	25	1,5	476,5	↓ 860 od z.s. R2	1560	0,305	0,499
40	R2	30	3,1	727,33	\leftarrow 70 od z.s. 1	1560	0,466	0,529
41	R2	30	2,5	638,38	← 430 od z.s. 1d	1560	0,409	0,517
42	R2	80	1	382,12	\rightarrow 930 od z.s. 1d	1560	0,245	0,490
43	R2	20	1	382,12	← 460 od z.s. 2	1560	0,245	0,490
44	R2	40	1	382,12	\rightarrow 380 od z.s. 3	1560	0,245	0,490
45	R2	60	1,5	476,5	→620 od z.s. 4d	1560	0,305	0,499
46	R2	45	3	712,75	← 280 od z.s. 4d	1560	0,457	0,528
47	R2	100	1	382,12	← 820 od z.s. 4d	1560	0,245	0,490
48	R2	20	1,5	476,5	$5 \leftarrow 80 \text{ od } z.s. 6 \qquad 1560$		0,305	0,499
49	R2	15	1	382,12	← 400 od z.s. 6 1560		0,245	0,490
50	R2	30	2,5	638,38	← 780 od z.s. 6	1560	0,409	0,517
51	R2	60	2,5	638,38	UM R2/7	1560	0,409	0,517
52	R2	35	1,5	476,5	\rightarrow 260 od z.s. 7	1560	0,305	0,499
53	R2	30	2	560,41	← 400 od z.s. 7	1560	0,359	0,508
54	R2	100	2	560,41	\rightarrow 370 od z.s. 8	1560	0,359	0,508
55	R2	60	1	382,12	UM R2/9	1560	0,245	0,490
56	R2	50	0,5	265,46	← 400 od z.s. 9	1560	0,170	0,481
57	R2	50	0,5	265,46	← 470 od z.s. 9	1560	0,170	0,241
58	R2	50	0,5	265,46	UM R2/11	1560	0,170	0,241
59	R2	50	1,5	476,5	\rightarrow 140 od z.s. 12	1560	0,305	0,499
60	R2	40	3	712,75	← 510 od z.s. 12	1560	0,457	0,527
61	R2	50	1,5	476,5	\rightarrow 210 od z.s. 12d	1560	0,305	0,499
62	R2	100	0,5	265,46	← 320 od z.s. 12d	1560	0,170	0,481
63	R2	60	1	382,12	← 800 od z.s. 12d	1560	0,245	0,490
64	R2	40	1	382,12	\rightarrow 70 od z.s. 13	1560	0,245	0,490
65	R2	60	1,5	476,5	UM R2/13	1560	0,305	0,499
66	R2	50	1	382,12	\rightarrow 450 od z.s. 14	1560	0,245	0,490
67	R2	70	1	382,12	\rightarrow 240 od z.s. 15	1560	0,245	0,490
68	R2	60	1,5	476,5	← 430 od z.s. 15	1560	0,305	0,499
69	R2	60	1,5	476,5	← 650 od z.s. 15	1560	0,305	0,499
70	R2	60	1,5	476,5	\rightarrow 240 od z.s. 16	1560	0,305	0,499
71	R2	60	1,5	476,5	← 340 od z.s. 16	1560	0,305	0,499
72	R2	80	0,5	265,46	← 500 od z.s. 16	1560	0,170	0,481

73	R2	90	3	712,75	← 720 od z.s. 16	1560	0,457	0,527
74	R2	30	1	382,12	\rightarrow 450 od z.s. 17	1560	0,245	0,490
75	R2	40	1,5	476,5	\rightarrow 200 od z.s. 17	1560	0,305	0,499
76	R2	30	1	382,12	\rightarrow 150 od z.s. 17	1560	0,245	0,490
77	R2	50	1	382,12	← 450 od z.s. 17	1560	0,245	0,490
78	R2	180	2	560,41	UM R2/17d	1560	0,359	0,508
79	R2	30	1	382,12	\rightarrow 200 od z.s. 18	1560	0,245	0,490
80	R2	60	1	382,12	← 150 od z.s. 18	1560	0,245	0,490
81	R2	50	1	382,12	\rightarrow 250 od z.s. 21	1560	0,245	0,490
82	R2	50	0,5	265,46	UM R2/21d	1560	0,170	0,481
83	R2	80	1,5	476,5	\rightarrow 480 od z.s. 24	1560	0,305	0,499
84	R2	30	1	382,12	\rightarrow 280 od z.s. 24	1560	0,245	0,490
85	R2	100	1	382,12	\rightarrow 140 od z.s. 24	1560	0,245	0,490
86	R2	20	1,8	527,74	← 60 od z.s. 24	1560	0,338	0,504
87	R2	35	2	560,41	← 190 od z.s. 24	1560	0,359	0,508
88	R2	40	2	560,41	← 320 od z.s. 24	1560	0,359	0,508
89	R2	25	1,8	527,74	UM R2/1d	1560	0,338	0,504
92	3	210	1	382,12	↑700 od z.s. R2	1560	0,245	0,490
93	3	30	1	382,12	↑720 od z.s. R2	1560	0,245	0,490
94	3	50	1,5	476,5	1000 od z.s. R2	1560	0,305	0,499
95	3	30	2,5	638,38	↑2000 od z.s. R2	1560	0,409	0,518
96	3	55	3,2	741,84	↑2270 od z.s. R2	1560	0,476	0,532
97	3	60	2	560,41	↑2500 od z.s. R2	1560	0,359	0,508
98	3	25	1	382,12	↑2800 od z.s. R2	1560	0,245	0,490
99	4	40	2	560,41	↑1550 od z.s. R2	1560	0,359	0,508
100	4	70	3,3	756,27	↑2500 od z.s. R2	1560	0,485	0,534
101	4	30	2	560,41	↑2700 od z.s. R2	1560	0,359	0,508
103	6	30	1	382,12	↑530 od z.s. R2	1560	0,245	0,490
104	6	60	2	560,41	↑1000 od z.s. R2	1560	0,359	0,508
105	6	80	1	382,12	↑1520 od z.s. R2	1560	0,245	0,490
106	6	30	1	382,12	↑2130 od z.s. R2	1560	0,245	0,490
107	6	25	2	560,41	↑2920 od z.s. R2	1560	0,359	0,508
108	6	40	2,5	638,38	↑3100 od z.s. R2	1560	0,409	0,518
109	7	80	1	382,12	↑550 od z.s. R2	1560	0,245	0,490
110	7	140	3,4	770,64	↑2950 od z.s. R2	1560	0,494	0,536
111	7	35	2,7	668,47	13300 od z.s. R2	1560	0,429	0,522
112	7	25	3	712,75	↑3600 od z.s. R2	1560	0,457	0,528
113	8	20	1,5	476,5	↑2000 od z.s. R2	1560	0,305	0,499
114	8	90	2,7	668,47	↑2600 od z.s. R2	1560	0,429	0,522
115	8	35	2,5	638,38	↑3600 od z.s. R2	1560	0,409	0,518
116	9	140	0,5	265,46	↑400 od z.s. R2	1560	0,170	0,481
117	9	25	1,5	476,5	↑2300 od z.s. R2	1560	0,305	0,499
118	9	35	1	382,12	↑2700 od z.s. R2	1560	0,245	0,490
119	9	30	1	382,12	↑3100 od z.s. R2	1560	0,245	0,490
120	10	30	1	382,12	↑230 od z.s. R2	1560	0,245	0,490
121	10	50	1,5	476,5	↑460 od z.s. R2	1560	0,305	0,499

122	10	40	1,5	476,5	↑2270 od z.s. R2	1560	0,305	0,499
123	10	40	1,5	476,5	↑2680 od z.s. R2	1560	0,305	0,499
124	11	30	2,4	623,13	↑2580 od z.s. R2	1560	0,399	0,516
125	11	30	2	560,41	↑3100 od z.s. R2	1560	0,359	0,508
126	11	25	1,8	527,74	↑3300 od z.s. R2	1560	0,338	0,504
127	12	25	1,5	476,5	↑2500 od z.s. R2	1560	0,305	0,499
128	13	90	0,5	265,46	↑680 od z.s. R2	1560	0,170	0,481
129	13	35	2	560,41	↑2170 od z.s. R2	1560	0,359	0,508
130	13	30	1,8	527,74	↑2290 od z.s. R2	1560	0,338	0,504
131	13	30	1,5	476,5	↑2400 od z.s. R2	1560	0,305	0,499
132	13	25	1,5	476,5	↑2630 od z.s. R2	1560	0,305	0,499
133	14	60	1,5	476,5	1,400 od z.s. R2	1560	0,305	0,499
134	15	700	2,5	638,38	UM R2/15	1560	0,409	0,518
135	15	20	1	382,12	↑2580 od z.s. R2	1560	0,245	0,490
136	15	20	1,5	476,5	1,1000 od z.s. R2	1560	0,305	0,498
137	15	35	2	560,41	1,1290 od z.s. R2	1560	0,359	0,508
138	16	45	3	712,75	1,1000 od z.s. R2	1560	0,457	0,528
141	19	80	1	382,12	↑800 od z.s. R2	1560	0,245	0,490
142	19	25	2,7	668,47	↑2150 od z.s. R2	1560	0,429	0,522
144	21	60	2	560,41	↑220 od z.s. R2	1560	0,359	0,508
145	21	30	3,2	741,84	↑2640 od z.s. R2	1560	0,476	0,532
146	21	30	2	560,41	560,41 ³¹¹⁰ od z.s. R2 1560		0,359	0,508
147	22	40	1	382,12	382,12 ↑900 od z.s. R2 1560		0,245	0,490
148	23	120	1,5	476,5	↑2400 od z.s. R2	1560	0,305	0,499
149	24	25	2	560,41	↑2400 od z.s. R2	1560	0,359	0,508
150	24	30	2	560,41	↑3050 od z.s. R2	1560	0,359	0,508
151	R3	20	2,5	638,38	← 430 od z.s. 1g	1560	0,409	0,518
152	R3	30	1,5	476,5	← 250 od z.s. 2g	1560	0,305	0,499
153	R3	20	1,5	476,5	\rightarrow 170 od z.s. 4	1560	0,305	0,499
154	R3	20	1	382,12	\rightarrow 50 od z.s. 4	1560	0,245	0,490
155	R3	50	3	712,75	← 200 od z.s. 4	1560	0,457	0,528
156	R3	15	2,5	638,38	← 600 od z.s. 4	1560	0,409	0,518
157	R3	80	1,5	476,5	\rightarrow 640 od z.s. 5	1560	0,305	0,499
158	R3	25	1,5	476,5	\rightarrow 40 od z.s. 5	1560	0,305	0,499
159	R3	30	2,5	638,38	← 500 od z.s. 5	1560	0,409	0,518
160	R3	40	1,5	476,5	← 630 od z.s. 5	1560	0,305	0,499
161	R3	50	3	712,75	\rightarrow 740 od z.s. 6g	1560	0,457	0,528
162	R3	40	3	712,75	\rightarrow 440 od z.s. 6g	1560	0,457	0,528
163	R3	3	1,5	476,5	← 60 od z.s. 6g	1560	0,305	0,499
164	R3	25	1	382,12	← 470 od z.s. 6g	1560	0,245	0,490
165	R3	40	1	382,12	UM R3/7	1560	0,245	0,490
166	R3	45	2	560,14	\rightarrow 840 od z.s. 8	1560	0,359	0,508
167	R3	65	3,6	799,23	\rightarrow 760 od z.s. 8	1560	0,512	0,540
168	R3	20	1	382,12	\rightarrow 670 od z.s. 8	1560	0,245	0,490
169	R3	50	1,5	476,5	\rightarrow 480 od z.s. 8	1560	0,305	0,499
170	R3	120	1	382,12	\rightarrow 200 od z.s. 8	1560	0,245	0,490

171	R3	30	2	560,41	\rightarrow 80 od z.s. 8	1560	0,359	0,508
172	R3	40	2	560,41	← 130 od z.s. 8	1560	0,359	0,508
173	R3	60	4,2	884,15	← 250 od z.s. 8	1560	0,567	0,553
174	R3	260	2,5	638,38	← 580 od z.s. 8	1560	0,409	0,518
175	R3	30	2	560,41	← 700 od z.s. 8	1560	0,359	0,508
176	R3	80	2	560,41	\rightarrow 490 od z.s. 9	1560	0,359	0,508
177	R3	40	2,5	638,38	UM R3/9g	1560	0,409	0,518
178	R3	40	1,6	493,93	\rightarrow 70 od z.s. 10	1560	0,317	0,501
179	R3	40	2,5	638,38	\rightarrow 450 od z.s. 11g	1560	0,409	0,518
180	R3	40	1,7	510,99	\rightarrow 630 od z.s. 12g	1560	0,328	0,503
181	R3	35	2	560,41	← 550 od z.s. 12g	1560	0,359	0,508
182	R3	30	1	382,12	\rightarrow 350 od z.s. 14	1560	0,245	0,490
183	R3	30	2,2	592,15	← 520 od z.s. 14	1560	0,380	0,512
184	R3	20	1	382,12	← 750 od z.s. 14	1560	0,245	0,490
185	R3	30	1,5	476,5	\rightarrow 280 od z.s. 18	1560	0,305	0,499
186	R3	60	2	560,41	\rightarrow 60 od z.s. 18	1560	0,359	0,508
187	R3	80	3	712,75	← 170 od z.s. 18	1560	0,457	0,528
188	R3	40	2,5	638,38	← 370 od z.s. 18	1560	0,409	0,518
189	R3	110	2,5	638,38	← 730 od z.s. 18	1560	0,409	0,518
190	R3	60	2,5	638,38	638,38 ← 770 od z.s. 18 1560		0,409	0,518
191	R3	110	3,3	756,27	\rightarrow 920 od z.s. 19	1560	0,485	0,534
192	R3	40	3	712,75	\rightarrow 190 od z.s. 19	1560	0,457	0,528
193	R3	40	1,5	476,5	← 890 od z.s. 19	1560	0,305	0,499
194	R3	30	1,5	476,5	\rightarrow 900 od z.s. 20	1560	0,305	0,499
195	R3	30	2,7	668,47	\rightarrow 130 od z.s. 20	1560	0,429	0,522
196	R3	40	3	712,75	← 280 od z.s. 20	1560	0,457	0,528
197	R3	45	6	1139,46	← 350 od z.s. 20	1560	0,730	0,597
198	R3	30	1	382,12	← 650 od z.s. 20	1560	0,245	0,490
199	R3	60	3	712,75	\rightarrow 120 od z.s. 21g	1560	0,457	0,528
200	R3	35	1	382,12	← 270 od z.s. 21g	1560	0,245	0,490
201	R3	30	3	712,75	← 450 od z.s. 21g	1560	0,457	0,528
202	R3	40	3,5	784,96	\rightarrow 300 od z.s. 22	1560	0,503	0,538
203	R3	50	5	996,84	\rightarrow 400 od z.s. 22	1560	0,639	0,572
204	R3	30	1,5	476,5	← 470 od z.s. 22	1560	0,305	0,499
205	R3	30	1,5	476,5	← 550 od z.s. 22	1560	0,305	0,499
206	R3	60	2	560,41	UM R3/22g	1560	0,359	0,508
207	R3	25	2	560,41	← 730 od z.s. 22g	1560	0,359	0,508
208	R3	30	2	560,41	\rightarrow 390 od z.s. 23g	1560	0,359	0,508
209	R3	25	2	560,41	\rightarrow 340 od z.s. 23g	1560	0,359	0,508
210	R3	60	1,5	476,5	← 700 od z.s. 23g	1560	0,305	0,499
211	R3	60	4	855,94	← 500 od z.s. 24g	1560	0,549	0,549

Slika 3.2 Šematski prikaz pozicije dijagnostifikovanih nepravilnosti [40]

Analizirane prsline predstavljene u tabeli 3.1 ilustrovano su prikazane dijagramom analize loma (Failure Assessment Diagram - FAD) (slika 3.3). Parametri K_r i S_r su određeni za svaku prslinu i njihove vrednosti su upisane u tabelu 3.1

Slika 3.3 Dijagram analize loma za analizirane greške

Kritičnu vrednost dubine greške (prsline), odnosno vrednost dubine greške pri kojoj faktor intenziteta napona K_I , dostiže svoju kritičnu vrednost K_{IC} , određujemo preko jednačine 3.1 uvećavajući vrednost dubine greške. Dobijene vrednosti su prikazane u tabeli 3.2 [40].

Dubina greške a [mm]	Faktor intenziteta napona $K_{I} = \left(\frac{p \cdot R_{ST}}{2 \cdot t} + \sigma_{R}\right) \cdot \sqrt{\pi \cdot a} \left[\text{MPa}\sqrt{\text{mm}}\right]$	Kritična vrednost faktora intenziteta napona <i>K_{IC}</i> [MPa√mm]
6	1139,46	1560
6,5	1212,35	1560
7	1286,71	1560
7,5	1362,84	1560
8	1441,05	1560
8,5	1521,63	1560
8,6	1538,06	1560
8,7	1554,59	1560
8,8	1571,24	1560

Tabela 3.2 Kritična vrednost dubine greške [40]

Ispitivanjem metodama bez razaranja zavarenih spojeva segmenata konstrukcije dijagnostifikovano je 211 neprihvatljivih grešaka, sa najvećom utvrđenom dubinom od 6 mm za grešku 197. Ustanovljeno je da pomenuta greška sa stanovišta mehanike loma ne dovodi posudu u opasno stanje, odnosno da integritet konstrukcije nije narušen. Metodama mehanike loma određena je kritična vrednost dubine greške od 8,7 mm, pri kojoj faktor intenziteta napona iznosi $K_I = 1554,59$ MPa \sqrt{mm} , što je 99,65% kritične vrednosti ($K_{IC} = 1560$ MPa \sqrt{mm}) i neće dovesti posudu u opasno stanje.

ANALIZA NAPONSKO-DEFORMACIONIH STANJA PRIMENOM METODE KONAČNIH ELEMENATA

4.1 Konačnoelementni model strukture sfernog rezervoara

Da bi se formirao konačnoelementni model strukture sfernog rezervoara za skladištenje amonijaka potpuno realne geometrijske forme, bilo je neophodno da se na osnovu originalne konstrukcione dokumentacije obezbeđene od strane korisnika, nacrtaju svi njegovi konstrukcioni detalji u trodimenzionalnoj formi, slika 4.1. Prilikom modeliranja sfernog rezervoara, kao osnovni elementi strukture predstavljeni su omotač, osloni stubovi i zatege.

Slika 4.1 Sferni rezervoar za skladištenje amonijaka (Prva grupa zatega prikazana je crvenom bojom, dok je druga grupa prikazana plavom bojom): (a) Izometrijski prikaz rezervoara; (b) Pogled odozgo

Oslanjanjanje sfernog rezervoara izvedeno je pomoću 12 radijalno raspoređenih stubova čija je numeracija prikazana žutim brojevima na slici 4.1(b). Osloni stubovi povezani su pomoću dve grupe od po 12 zatega. Svaka zatega sastoji se iz dve lamele poprečnog preseka 70 x 35 mm. Prva grupa zatega je na slici 4.1(a) prikazana crvenom, dok je druga grupa zatega prikazana plavom bojom. Numeracija zatega na slici 4.1(b) izvršena je u negativnom matematičkom smeru, a brojne vrednosti zaokružene su crnom bojom. Kao orjentir za numeraciju strukturnih elemenata poslužila je horizontalna seizmička sila, čiji je uticaj na naponsko-deformaciono stanje konstrukcije analiziran u trećem poglavlju ovog rada.

Sintezom prikazanih elemenata, formiran je 3D model sfernog rezervoara. On predstavlja kontinuum za formiranje konačnoelementnog modela.

Detalji mreže konačnih elemenata generisane u zonama veze oslonog stuba i omotača sfernog rezervoara i veze stuba, oslone ploče, čvornih limova i zatega prikazani su na slici 4.2.

Oslanjanje modela ostvareno je sprečavanjem svih stepeni slobode oslonim pločama stubova.

Slika 4.2 Detalji mreže konačnih elemenata: (a) zona veze oslonih stubova i omotača sfernog rezervoara; (b) zona oslanjanja stuba

Konačnoelementna mreža sastoji se od **1505518** trougaonih elemenata tipa ploče i **7440** konačnih elemenata tipa štapa koji ukupno sadrže **774543** čvorova. Povezivanje odgovarajućih strukturnih elemenata izvršeno je pomoću **36693** virtuelnih grednih elemenata, čime je simulirano spajanje strukturnih elemenata zavarivanjem.

Ukupan broj stepeni slobode koje sistem ima u ovom slučaju iznosi **4624912**. Rešenje ovog sistema po pomeranjima nije moguće zbog singulariteta globalne matrice krutosti (det[k] = 0), jer strukturi nisu eliminisana pomeranja u prostoru (tri translacije i tri rotacije) pa sistem ne može da se deformiše usled zadatog opterećenja. Redukovanjem sistema za zadata pomeranja, odnosno za **938921** jednačina na mestu oslonaca, dobija se broj nehomogenih linearnih algebarskih jednačina sistema, koji u ovom slučaju iznosi **3685991**.

U matričnoj formi, sistem jednačina glasi:

$$\{F\} = [k]\{\Delta\} \to \begin{cases} F_S \\ F_R \end{cases} = \begin{bmatrix} K_{SS} & K_{SR} \\ K_{RS} & K_{SS} \end{bmatrix} \begin{cases} \Delta_S \\ \Delta_R \end{cases}.$$
(4.1)

Pošto je vektor pomeranja na mestima oslonaca,

$$\{\Delta_R\} = \{0\},\tag{4.2}$$

nepoznata čvorna pomeranja dobijaju se iz matrične jednačine,

$$\{\Delta_S\} = [K_{SS}]^{-1} \{F_S\},\tag{4.3}$$

у којој је:

- {Δ_s} vektor nepoznatih pomeranja svakog čvora mreže konačnih elemenata, koji u ovom slučaju ima dimenziju 3685991 x 1;
- $\{F_S\}$ vektor zadatog opterećenja, koji u ovom slučaju ima dimenziju **3685991** x **1**;
- $[K_{SS}]$ podmatrica globalne matrice krutosti sistema mreže konačnih elemenata, koji u ovom slučaju ima dimenziju **3685991** x **3685991**.

Određivanjem polja pomeranja modela, sistem je statički identifikovan. Korišćenjem jednačina veza pomeranja i deformacija, kao i jednačina deformacija i napona, određuje se naponsko stanje modela.

Vektor deformacija dobija se prema matričnoj jednačini,

$$\{\varepsilon\} = [B]\{\Delta\} = [B_i \quad B_j \quad B_k]\{\Delta_S\}.$$

$$(4.4)$$

Vektor napona izračunava se na osnovu izraza,

$$\{\sigma\} = [D]\{\varepsilon\} = [D][B_i \quad B_j \quad B_k]\{\Delta_S\}.$$
(4.5)

4.2 Analiza opterećenja

Strukturna analiza konstrukcije sfernog rezervoara izvedena je za tri proračunska slučaja. <u>U prvom proračunskom slučaju struktura sfernog rezervoara izložena je dejstvu:</u>

- Sopstvene težine sfere sa stubovima, kompletnom armaturom, stepenicama i platformama (Q = 2410 kN)
- Hidrostatičkog pritiska radnog fluida (amonijaka) čija je raspodela po konturi omotača prikazana na slici 4.2.1
- Proračunskog pritiska (p = 16 bar)

Slika 4.2.1 Polje hidrostatičkog pritiska amonijaka

U drugom proračunskom slučaju struktura sfernog rezervoara izložena je dejstvu:

- Sopstvene težine sfere sa stubovima, kompletnom armaturom, stepenicama i platformama (Q = 2410 kN)
- Hidrostatičkog pritiska radnog fluida (amonijaka) čija je raspodela po konturi omotača sfere prikazana na slici 4.2.1
- Proračunskog pritiska (p = 16 bar)
- Horizontalne seizmičke sile (S = 1910 kN)

Horizontalno seizmička sila uneta je u model kao kontinualno opterećenje jedne polukalote omotača sfernog rezervoara, čija se rezultanta nalazi u težištu omotača, slika 4.2.2. Odstupanja u vrednostima čvornih opterećenja, prikazanih na slici 4.2.2, posledica su nesimetričnosti konačnoelementne mreže kojom je navedena polukalota diskretizovana.

Slika 4.2.2 Čvorna opterećenja koja se javljaju kao posledica delovanja horizontalne seizmičke sile

<u>U trećem proračunskom slučaju struktura sfernog rezervoara izložena je dejstvu:</u>

- Sopstvene težine sfere sa stubovima, kompletnom armaturom, stepenicama i platformama (Q = 2410 kN)
- Hidrostatičkog pritiska ispitnog fluida (vode) čija je raspodela po konturi omotača prikazana na slici 4.2.3

Ispitnog pritiska (p = 20,8 bar)

Slika 4.2.3 Polje hidrostatičkog pritiska vode

Ispitni i proračunski pritisak u modele uneti su kao unifirmno polje pritiska koje deluje na površini omotača sfere, dok je sopstvena težina konstrukcije simulirana uvođenjem ubrzanja zemljine teže svim čvorovima konačnoelementne mreže.

4.3 Naponsko-deformaciono stanje strukture sfernog rezervoara

Identifikacija naponsko – deformacionog stanja strukture sfernog rezervoara izvedena je za proračunska opterećenja, poglavlje 3. Sva pomeranja prikazana na slikama polja pomeranja data su u mm. Slike naponskih polja prikazuju vrednosti uniaksijalnih napona dobijenih prema hipotezi najvećeg deformacionog rada utrošenog na promenu oblika (hipoteza Huber, Hencky, von Mises). Uniaksijalni (idealni) napon za trodimenzionalno naponsko stanje određuje se na osnovu izraza:

$$\sigma_{u} = \sqrt{\frac{1}{2}} \cdot \left[\left(\sigma_{x} - \sigma_{y} \right)^{2} + \left(\sigma_{y} - \sigma_{z} \right)^{2} + (\sigma_{z} - \sigma_{x})^{2} \right] + 3 \cdot \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2} \right).$$
(4.6)

Uniaksijalni napon je pogodan za izvođenje dokaza napona zato što se upoređuje sa tabličnim podacima (dobijenim uniaksijalnim zatezanjem opitnih epruveta) za primenjeni materijal. Vrednosti napona prikazanih na slikama polja napona izražene su u Pa.

4.3.1 Prvi proračunski slučaj

Slika 4.3.1 Raspodela napona po omotaču sfernog rezervoara sa porastom visine stuba radnog fluida

Visina stuba [m]	0	1	2	3	4	5	6	7
Napon [MPa]	200,1	200,9	201,7	202,4	203,2	204,0	204,8	205,6
Visina stuba [m]	8	9	10	11	12	13	14	15
Napon [MPa]	206,3	207,1	207,9	208,7	209,4	210,2	211,0	211,8

Tabela 4.3.1 Zavisnost napona u omotaču od visine stuba ragnog fluida

Na slici 4.3.1(b) prikazan je dijagram zavisnosti napona u omotaču sfernog rezervoara od visine stuba radnog fluida, dok je u tabeli 4.3.1 prikazan priraštaj vrednosti napona sa porastom
visine stuba fluida sa korakom od jednog metra. Prilikom akvizicije podataka neophodnih za formiranje navedenog dijagrama vodilo se računa da se izbegnu skokovi vrednosti napona do kojih neminovno dolazi u zonama spoja oslonih stubova i omotača sfernog rezervoara.

Maksimalni napon na konstrukciji sfere javlja se u zoni spoja ojačanja na stubu 7 i omotača, na omotaču sfere i iznosi $\sigma_{max} = 286$ MPa, slika 4.3.2.

Slika 4.3.2 Polje napona u zoni spoja stuba 7 i omotača sfernog rezervoara

Prilikom modeliranja spojeva ojačanja primenjen je vrlo konzervativan pristup, naime u modelima ne postoje zavareni spojevi koji bi u značajnoj meri doprineli porastu debljine ligamenata na mestima veze, čime je dobijena izražena koncentracija napona u posmatranim zonama.

Analizom rezultata prikazanih u tabeli 4.3.2 može se izvesti zaključak da odstupanja u vrednostima maksimalnih napona koji se javljaju na omotaču sfere, a u zonama spojeva ojačanja i omotača ne prelaze 2,2%. Kako sferni rezervoar, u razmatranom proračunskom slučaju, predstavlja simetričan, simetrično oslonjen strukturni model, sa simetrično raspodeljenim opterećenjem, može se izvesti zaključak da su razmatrana odstupanja posledica nesimetričnosti mreže konačnih elemenata, ali i da su navedena odstupanja apsolutno opravdana sa stanovišta inženjerske tačnosti.

Zona kod stuba	1	2	3	4	5	6
Maksimalni napon [MPa]	284	283	282	285	281	280
Zona kod stuba	7	8	9	10	11	12
Maksimalni napon [MPa]	286	283	282	284	284	284

T 1 1 400 M 1 ' 1	1		•	• • •	• • •
Tabela 4 3 2 Maksimalne	vrednosti nanona	i ii zonama s	noieva c	macamia	1 1 omotaca
rubelu 1.5.2 Mukbillulle	vi canobri mapona	a Zonania b		jacanja	i i omotaca

Maksimalni naponi koji se javljaju na oslonim stubovima u zonama koncentracije napona (na mestima spojeva horizontalnog ukrućenja i zida stuba) prikazani su na slici 4.3.3, dok su vrednosti napona date u tabeli 4.3.3.

Slika 4.3.3 Polje napona oslonih stubova sfernog rezervoara

Tabela 4.3.3 Maksimalne vrednosti napona u zonama koncentracije na stubovima

Stub	1	2	3	4	5	6
Maksimalni napon [MPa]	198	201	201	201	198	201
Stub	7	8	9	10	11	12
Maksimalni napon [MPa]	200	198	201	201	199	200

Polja napona na zidu najopterećenijeg stuba u oblastima na koje zone koncentracije napona nemaju uticaja prikazane su na slici 4.3.4.

Slika 4.3.4 Polja napona zida stuba u zonama na koje koncentracije napona nemaju uticaja

U tabelama 4.3.4 i 4.3.5 prikazane su vrednosti maksimalnih napona u zategama za povezivanje oslonih stubova sfernog rezervoara.

Tabela 4.3.4 Maksimalni naponi u prvoj grupi zatega

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	25,7	25,7	26,0	25,7	25,7	25,9
	-	0	0	10	11	10
Zatega	/	8	9	10	11	12

Tabela 4.3.5 Maksimalni naponi u drugoj grupi zatega

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	25,6	25,7	25,8	25,7	25,7	25,9
Zatega	7	8	9	10	11	12
Maksimalni napon [MPa]	25,5	25,4	26,0	25,7	25,5	25,9

4.3.2 Drugi proračunski slučaj

Drugi proračunski slučaj merodavan je za proveru nosivosti oslonih stubova i zatega sfernog rezervoara za skladištenje amonijaka.

Maksimalne vrednosti napona u zonama spojeva ojačanja i omotača sfernog rezervoara prikazane su u tabeli 4.3.6.

Tabela 4.3.6 Maksimalne vrednosti	napona 11 7	zonama spo	oieva oiačai	nia i omota	ča
Tubera 1.5.0 Marshiname Meanobri	napona a z	Jonanna spe	je ta ojaea	iija i omota	ou

Zona kod stuba	1	2	3	4	5	6
Maksimalni napon [MPa]	278	276	290	311	303	296
Zona kod stuba	7	8	9	10	11	12
Maksimalni napon [MPa]	296	281	296	301	301	295

Maksimalne vrednosti uporednih napona koji se javljaju na oslonim stubovima, u zonama koncentracije napona, na mestima spojeva horizontalnog ukrućenja i zida stuba, prikazane su na slici 4.3.5. Radi lakše vizuelne identifikacije, na slici 4.3.5, pravac i smer horizontalne seizmičke sile prikazani su crvenom strelicom, a numeracija stubova izvršena je u skladu sa preporukama datim na slici 4.1. Maksimalni uporedni napon u zoni koncentracije javlja se na stubu 8 i iznosi $\sigma_{max,s} = 227$ MPa.

Slika 4.3.5 Polje napona oslonih stubova sfernog rezervoara

Polje napona najopterećenijih stubova 7 i 8, u zonama na koje koncentracije napona nemaju uticaja prikazano je na slici 4.3.6. Maksimalne vrednosti napona javljaju se na samom dnu stubova u zonama veza stubova sa oslonim plocama i iznose $\sigma_{\max,s7} = 153,0$ MPa za stub 7, odnosno $\sigma_{\max,s8} = 153,1$ MPa za stub 8.

Slika 4.3.6 Polje napona stubova 7 i 8 u zonama na koje koncentracije napona nemaju uticaja

Polja napona zatega prve odnosno druge grupe prikazana su na slikama 4.3.7 odnosno 4.3.8, dok su maksimalne vrednosti napona koje se javljaju na zategama priložene u tabelama 4.3.7 i 4.3.8.

Slika 4.3.7 Polje napona zatega prve grupe

Slika 4.3.8 Polje napona zatega druge grupe

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	7,9	19,4	48,9	73,4	81,7	77,3
Zatega	7	8	9	10	11	12
Maksimalni napon [MPa]	58,8	31,8	3,2	19,5	30,0	26,2

Tabela 4.3.7 Maksimalni naponi u prvoj grupi zatega

T 1 1 4 0 (A A A A A A A A A A A A A A A A A A A 	•	1 1	•
Tabela /L 3 S	X Makeimalni	nanon1 11	drugoi	oruni zatega
1 a 0 0 a + 0.0	o wiaksiinanni	napom u	ulugor	grupi Laioga

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	48,6	19,5	7,7	25,7	29,8	19,9
Zatega	7	8	9	10	11	12
Maksimalni napon [MPa]	3,0	31,5	59,4	76,8	81,4	71,9

Rezultate prikazani u tabelama 4.3.7 i 4.3.8 ukazuju na dobru korelaciju vrednosti maksimalnih napona koji se javljaju na zategana prve i druge grupe. Naime, maksimalna vrednost uporednog napona od 81,7 MPa javlja se na petoj zatezi iz prve grupe. Ovoj vrednosti u značajnij meri korespondira vrednost od 81,4 MPa koja se javlja na simetrično postavljenoj zatezi 11 druge grupe. Isti slučaj je i sa drugim po opterećenosti zategama, odnosno zategama 6 prve grupe i 10 druge grupe čije su vrednosti maksimalnih napona 77,3 MPa i 76,8 MPa respektivno.

4.3.3 Treći proračunski slučaj

Na slici 4.3.9(b) prikazan je dijagram zavisnosti napona u omotaču sfernog rezervoara od visine stuba ispitnog fluida, dok je u tabeli 4.3.9 prikazan priraštaj vrednosti napona sa porastom visine stuba fluida sa korakom od jednog metra. Prilikom akvizicije podataka neophodnih za formiranje navedenog dijagrama vodilo se računa da se izbegnu skokovi vrednosti napona do kojih neminovno dolazi u zonama spoja ojačanja i omotača sfernog rezervoara.

Slika 4.3.9 Raspodela napona po omotaču sfernog rezervoara sa porastom visine stuba ispitnog fluida

Visina stuba [m]	0	1	2	3	4	5	6	7
Napon [MPa]	260,2	261,3	262,9	264,2	265,5	266,8	268,1	269,4
Visina stuba [m]	8	9	10	11	12	13	14	15
Napon [MPa]	270,7	272,0	273,3	274,6	275,9	277,2	278,5	279,8

Tabela 4.3.9 Zavisnost napona u omotaču od visine stuba ispitnog fluida

Maksimalne vrednosti napona u zonama koncentracije – zonama spojeva ojačanja i omotača sfernog rezervoara priložene su u tabeli 4.3.10.

Maksimalni napon na konstrukciji sfere javlja se u zoni spoja ojačanja i omotača, kod stubova 7, na omotaču sfere i iznosi $\sigma_{max} = 371$ MPa, slika 4.3.10.

Vrednosti maksimalnih napona koje se javljaju na oslonim stubovima sfernog rezervoara u ispitnim uslovima priložene su u tabeli 4.3.11.

Maksimalni napon na oslonom stubu iznosi $\sigma_{\max,s} = 302$ MPa. Na slici 4.3.11 prikazano je polje uniaksijalnih napona oslonih stubova, kao i detalj stuba 2 u zoni koncentracije napona, na mestiu spoja horizontalnog ukrućenja i zida stuba.

Slika 4.3.10 Polje napona u zoni spoja stuba 11 i omotača sfernog rezervoara

Slika 4.3.11 Polje napona oslonih stubova sfernog rezervoara

	1	•	• • • •	~
Tabela 4 3 10 Maksimalne	vrednosti nanona il zonama	spoleva	olacania 1 omota	ca
	reallost impond a Zonania	spojera	ojuounju i omotu	uu

Zona kod stuba	1	2	3	4	5	6
Maksimalni napon [MPa]	368	361	367	369	362	360
Zona kod stuba	7	8	9	10	11	12

Tabela 4.3.11 Maksimalne vrednosti napona u zonama koncentracije na oslonim stubovima sfernog rezervoara koji se javljaju u ispitnim uslovima

Stub	1	2	3	4	5	6
Maksimalni napon [MPa]	300	302	302	301	301	302
Stub	7	8	9	10	11	12
Maksimalni napon [MPa]	301	300	301	301	300	301

Polja napona na zidu najopterećenijeg stuba u oblastima na koje zone koncentracije napona nemaju uticaja prikazane su na slici 4.3.12.

Slika 4.3.12 Polja napona zida stuba u zonama na koje koncentracije napona nemaju uticaja

U tabelama 4.3.12 i 4.3.13 prikazane su vrednosti maksimalnih napona u zategama za povezivanje oslonih stubova sfernog rezervoara.

TIII	10	N / I ·	1 .	•	•	•	
Tabela 4 3	12	Makem	nalnı n	anoni	11 nrvo1	oruni	zatega
1 abera 4.5	• • • •	viacom	nann n	apom	u pi voj	Siupi	Laioga

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	43,0	42,9	43,5	42,9	43,0	43,3
Zatega	7	8	9	10	11	12
Maksimalni napon [MPa]	42,9	42,8	43,3	43,1	43,0	43,0

T 1 1 4	0 10	3 6 1		•		1 1	•	
Tabela 4	3 13	Maks	1malni	nanoni	11.4	drugoi	oruni	zatega
I ubblu I.	5.15	mano	mamm	maponi	u	urugoj	Siupi	Luiogu

Zatega	1	2	3	4	5	6
Maksimalni napon [MPa]	42,8	43,0	43,2	43,0	43,0	43,4
Zatega	7	8	9	10	11	12
Maksimalni napon [MPa]	42,8	42,8	43,5	42,9	42,8	43,4

4.4 Provera naponskog stanja u zonama saniranih linearnih indikacija

Prilikom redovne kontrole ispitivanjem bez razaranja zavarenih spojeva segmenata konstrukcije sfernog rezervoara za skladištenje tečnog amonijaka otkriveno je 211 neprihvatljivih grešaka. Važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na kojoj je dijagnostifikovana pojava nepravilnosti u vidu neprihvatljivih grešaka. Najčešće korišćen metod sanacije neprihvatljivih grešaka je obrada zone zavarenog spoja sa detektovanom greškom i dodavanje materijala odnosno "navarivanje" [41]. Pomenuti metod je rizičan zbog uvođenja toplote u zoni sanacije i velike verovatnoće nastanka novih grešaka na mestu sanacije. Prema prethodno razmotrenom poželjno je usvojiti drugi način sanacije neprihvatljivih grešaka. U nastavku će biti analiziran princip sanacije neprihvatljivih grešaka koji se zasniva na geometrijskom oblikovanju, promeni dimenzija grešaka.

Pomenute nepravilnosti su obrađene adekvatnim geometrijskim oblikovanjem (brušenjem, glodanjem profilisanim glodalom) [40] kako bi rezervoar ispunio zahteve važeće tehničke regulative. Kako bi se proverile sve obrađene nepravilnosti (linearne indikacije) potrebno je formirati konačnoelementni model strukture sfernog rezervoara za skladištenje amonijaka potpuno realne geometrijske forme, bilo je neophodno da se na osovu originalne konstrukcione dokumentacije, nacrta deo sfere koji sadrži linearnu indikaciju u trodimenzionalnoj formi. Najveća širina sfernog omotača koja učestvuje u ojačanju, a koja nam je potrebna za formiranje konačnoelementnog modela određena je prema izrazu 2.18, i jednaka je $l_{so} = 661,54$ mm. Na slici 4.4.1 prikazan je formiran model u trodimenzionalnoj formi, sa dimenzijama linearne indikacije 161.

Slika 4.4.1 Model u trodimenzionalnoj formi sa dimenzijama linearne indikacije pod rednim brojem 161

<u>Linearna indikacija – 161</u>

Linearnu indikaciju pod rednim brojem 161 opisuje dužina l = 50 mm, širina b = 10 mm i dubina a = 3 mm. Kako bi se odredila maksimalna vrednost uporednog napona potrebno je definisati konačnoelementnu mrežu analiziranog dela sfernog omotača sa linearnom indikacijom, uneti odgovarajuće opterećenje i postaviti odgovarajuće veze.

Konačnoelementna mreža se sastoji od **2441977** elemenata tipa tetraedra i ukupno sadrži **520713** čvorova. Veličina konačnog elementa u lokalnoj zoni (zoni linearne indikacije) je 0,2 mm, a na delu sfernog omotača koji nema oštećenja u vidu prsline je 2 mm. Detalji mreže konačnih elemenata generisane u zoni linearne indikacije sfernog omotača prikazani su na slici 4.4.2.

Slika 4.4.2 Detalj mreže konačnih elemenata za linearnu indikaciju br. 161

Model koji simulira realno stanje sfernog omotača na kome se nalazi linearna indikacija opterećen je uniformnim poljem pritiska, čija je vrednost dobijena sabiranjem proračunskog pritiska i maksimalne vrednosti hidrostatičkog pritiska radnog fluida, p = 16 bar (vrednost proračunskog pritiska određena u poglavlju 2.5). Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 161, gde je debljina omotača redukovana sa projektovanih 30 mm na $e_{161} = 30 - a_{161} = 27$ mm, iznosi $\sigma_{max,s_161} = 391,2$ MPa (slika 4.4.3). Dobijenu vrednost maksimalnog uporednog napona potrebno je uporediti sa dopuštenim lokalnim naponom za materijal A 36.52, koji se određuje prema izrazu 4.7. Dopušteni lokalni napon za materijal A 36.52:

$$\sigma_{dl} = R_{p0.2t} = 360$$
 MPa. (4.7)

Kako bi dokaz napona bio zadovoljen potrebno je da nejednačina 4.8 bude ispunjena.

$$\sigma_{max,s} \le \sigma_{dl}.\tag{4.8}$$

Možemo da primetimo da je vrednost maksimalnog uporednog napona veća od vrednosti dopuštenog lokalnog napona za 31,2 MPa, pa zaključujemo da dokaz napona nije zadovoljen.

Slika 4.4.3 Polje napona za veličinu linearne indikacije $50 \times 10 \times 3$ mm

Kako dokaz napona nije zadovoljen potrebno je korigovati dimenzije linearne indikacije, dužinu i širinu, i pratiti promenu maksimalnog uporednog napona. Dubina linearne indikacije se ne menja jer ne želimo da još više tanjimo sferni omotač. Dalja analiza je vršena sa povećanjem geometrije, dužine i širine, linearne indikacije za po 1 mm. U tabeli 4.4.1 je prikazana zavisnost vrednosti maksimalnog uporednog napona od promene dužine i širine linearne indikacije.

Linearna indikacija	Korigovana dimenzija $l \times b \times a \text{ [mm]}$ $51 \times 10 \times 3$ Promena dužine $l[mm]$ $53 \times 10 \times 3$ $54 \times 10 \times 3$ $55 \times 10 \times 3$		Maksimalni napon [MPa]
		$51 \times 10 \times 3$	390,06
	Duomono	$52 \times 10 \times 3$	391,11
	dužina	$53 \times 10 \times 3$	391,23
		$54 \times 10 \times 3$	393,08
	ιμπη	$55 \times 10 \times 3$	392,11
		$56 \times 10 \times 3$	392,76
		$50 \times 11 \times 3$	374,11
161		$50 \times 12 \times 3$	360,17
$50 \times 10 \times 3$ [mm]		$50 \times 13 \times 3$	348,84
	Duomono	$50 \times 14 \times 3$	341,11
	Promena	$50 \times 15 \times 3$	333,24
	b[mm]	$50 \times 16 \times 3$	327,06
	D[IIIII]	$50 \times 17 \times 3$	320,81
		$50 \times 18 \times 3$	316,42
		$50 \times 19 \times 3$	312,21
		$50 \times 20 \times 3$	308,9

Tabela 4.4.1: Zavisnost maksimalne vrednosti napona od promene dimenzija linearne indikacije br. 161

Ako posmatramo vrednost maksimalnog napona za slučajeve kada se koriguje dužina linearne indikacije, možemo zaključiti da nema smanjenja vrednosti maksimalnog napona (slika 4.4.4), a pri promeni širine zapažamo da se vrednost napona smanjuje za svaku promenu, odnosno sa povećanjem vrednosti širine maksimalni napon u lokalnoj zoni opada (slika 4.4.5). Za svaku dalje analiziranu linearnu indikaciju vršićemo korigovanje širine kako bi smanjili vrednost maksimalnog napona u lokalnoj zoni i tim postigli da dokaz napona bude zadovoljen.

Slika 4.4.4 Promena maksimalnog napona u zavisnosti od promene dužine linearne indikacije br. 161, prema tabeli 4.4.1

Slika 4.4.5 Promena maksimalnog napona u zavisnosti od promene širine linearne indikacije br. 161, prema tabeli 4.4.1

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije dimenzija $50 \times 20 \times 3$ mm, iznosi $\sigma_{max,s_{161k}} =$ 308,9 MPa (slika 4.4.6), što je manje od dopuštenog lokalnog napona $\sigma_{dl} =$ 360 MPa, čime je dokaz napona zadovoljen.

Slika 4.4.6 Polje napona za veličinu linearne indikacije $50 \times 20 \times 3$ mm

Dimenzije linearnih indikacija kao i vrednost dobijenih maksimalnih uporednih napona prikazani su u tabeli 4.4.2. Detaljno je analizirano 16 linearnih indikacija čija je vrednost maksimalnog uporednog napona veća od dopuštenog lokalnog napona. Šematski prikaz svih dijagnostikovanih linearnih indikacija kao i njihov položaj predstavljen je na slici 4.4.7.

		, ,	<u> </u>	5	J	1 3		
Redni broj	Zavareni spoj	Dimenzija linearne indikacije [mm]	Dubina [mm]	Napon [N/mm ²] [MPa]	Rastojanje od referentne tačke [mm]	Korigovana dimenzija žleba [mm]	Dubina [mm]	Napon [N/mm ²] [MPa]
1	R1	-	-	-	-	-	-	-
2	1d	40x20	1	243,7	↓ 210 od z.s. R2			
3	1d	30x30	1,3	244,5	↓ 1060 od z.s. R2			
4	2d	80x30	1	234,5	↓ 930 od z.s. R2			
5	3d	30x20	2	263,7	↓ 150 od z.s. R2			
6	3d	80x10	1,5	275,1	↓ 1140 od z.s. R2			
10	7d	60x50	1,5	239,6	↓ 260 od z.s. R2			
11	7d	50x30	1	235,5	↓ 670 od z.s. R2			
12	7d	50x40	1	232,6	↓ 770 od z.s. R2			
13	7d	40x30	1,3	241,1	↓ 1000 od z.s. R2			
14	8d	60x40	1,5	240,7	↓ 1120 od z.s. R2			
15	9d	80x30	1	234,6	↓ 650 od z.s. R2			
19	13d	130x70	2	246,3	↓ 1600 od z.s. R2			
22	16d	50x50	1	232,3	↓ 900 od z.s. R2			
23	16d	50x60	1	231,4	↓ 1120 od z.s. R2			
25	18d	50x50	0,5	220,8	↓ 100 od z.s. R2			
26	18d	40x30	1	236,5	↓ 380 od z.s. R2			
27	18d	70x40	1	231	↓ 930 od z.s. R2			
28	18d	50x40	0,5	221,5	↓ 1290 od z.s. R2			

Tabela 4.4.2: Pregled, dimenzija i pozicija linearnih indikacija na zavarenim spojevima

29	19d	40x40	1	234,2	↓ 240 od z.s. R2			
30	19d	60x70	0,5	224,4	↓ 340 od z.s. R2			
31	19d	240x60	2	247,8	↓ 1100 od z.s. R2			
32	20d	80x30	2	254,6	↓ 1100 od z.s. R2			
34	22d	110x60	1,5	237,5	↓ 800 od z.s. R2			
35	23d	20x20	1	250,2	↓ 100 od z.s. R2			
36	23d	20x15	1,5	267	↓ 260 od z.s. R2			
37	23d	20x10	1	265,4	↓ 710 od z.s. R2			
38	23d	25x15	1,5	262,5	↓ 860 od z.s. R2			
40	R2	30x45	3,1	299,7	← 70 od z.s. 1			
41	R2	30x10	2,5	353,5	← 430 od z.s. 1d	30x20	2,5	299,8
42	R2	80x30	1	234,6	\rightarrow 930 od z.s. 1d			
43	R2	20x15	1	247,8	← 460 od z.s. 2			
44	R2	40x20	1	243,2	\rightarrow 380 od z.s. 3			
45	R2	60x25	1,5	246,2	→620 od z.s. 4d			
46	R2	45x15	3	329,7	← 280 od z.s. 4d			
47	R2	100x35	1	232,3	← 820 od z.s. 4d			
48	R2	20x20	1,5	263,9	← 80 od z.s. 6			
49	R2	15x15	1	254,9	← 400 od z.s. 6			
50	R2	30x35	2,5	280,7	← 780 od z.s. 6			
51	R2	60x30	2,5	271,2	UM R2/7			
52	R2	35x35	1,5	247,3	\rightarrow 260 od z.s. 7			
53	R2	30x20	2	263,7	← 400 od z.s. 7			
54	R2	100x60	2	247,5	\rightarrow 370 od z.s. 8			
55	R2	60x40	1	231,6	UM R2/9			
56	R2	50x40	0,5	221,6	← 400 od z.s. 9			
57	R2	50x40	0,5	221,6	← 470 od z.s. 9			
58	R2	50x50	0,5	222,9	UM R2/11			
59	R2	50x50	1,5	238,8	\rightarrow 140 od z.s. 12			
60	R2	40x40	0,5	222,6	← 510 od z.s. 12			
61	R2	50x30	1,5	244,3	\rightarrow 210 od z.s. 12d			
62	R2	100x40	0,5	220,2	← 320 od z.s. 12d			
63	R2	60x30	1	235,1	← 800 od z.s. 12d			
64	R2	40x40	1	234,1	\rightarrow 70 od z.s. 13			
65	R2	60x50	1,5	239,7	UM R2/13			
66	R2	50x40	1	232,9	\rightarrow 450 od z.s. 14			
67	R2	70x50	1	229,9	\rightarrow 240 od z.s. 15			
68	R2	60x40	1,5	240,7	← 430 od z.s. 15			
69	R2	60x40	1,5	240,7	← 650 od z.s. 15			
70	R2	60x40	1,5	240,7	\rightarrow 240 od z.s. 16			
71	R2	60x40	1,5	240,7	← 340 od z.s. 16			
72	R2	80x40	0,5	220,3	← 500 od z.s. 16			
73	R2	90x30	3	288,2	← 720 od z.s. 16			
74	R2	30x20	1	244,5	\rightarrow 450 od z.s. 17			
75	R2	40x30	1,5	245,6	\rightarrow 200 od z.s. 17			
76	R2	30x30	1	238,8	\rightarrow 150 od z.s. 17			

77	R2	50x30	1	235,5	← 450 od z.s. 17		
78	R2	180x50	2	248,8	UM R2/17d		
79	R2	30x30	1	238,8	\rightarrow 200 od z.s. 18		
80	R2	60x50	1	230,1	← 150 od z.s. 18		
81	R2	50x30	1	235,5	\rightarrow 250 od z.s. 21		
82	R2	50x30	0,5	222,7	UM R2/21d		
83	R2	80x25	1,5	245,2	\rightarrow 480 od z.s. 24		
84	R2	30x25	1	242,6	\rightarrow 280 od z.s. 24		
85	R2	100x30	1	233,6	\rightarrow 140 od z.s. 24		
86	R2	20x25	1,8	261,6	← 60 od z.s. 24		
87	R2	35x30	2	258,9	← 190 od z.s. 24		
88	R2	40x20	2	263,4	← 320 od z.s. 24		
89	R2	25x25	1,8	258,9	UM R2/1d		
92	3	210x20	1	241,7	↑700 od z.s. R2		
93	3	30x30	1	238,8	↑720 od z.s. R2		
94	3	50x30	1,5	244,3	↑1000 od z.s. R2		
95	3	30x20	2,5	286,9	↑2000 od z.s. R2		
96	3	55x35	3,2	284,3	↑2270 od z.s. R2		
97	3	60x30	2	254,9	↑2500 od z.s. R2		
98	3	25x25	1	245,8	↑2800 od z.s. R2		
99	4	40x30	2	257,4	1550 od z.s. R2		
100	4	70x30	3,3	289,8	↑2500 od z.s. R2		
101	4	30x65	2	258,9	↑2700 od z.s. R2		
103	6	30x20	1	244,5	↑530 od z.s. R2		
104	6	60x20	2	262,9	↑1000 od z.s. R2		
105	6	80x15	1	249,2	↑1520 od z.s. R2		
106	6	30x30	1	238,8	↑2130 od z.s. R2		
107	6	25x30	2	262,8	↑2920 od z.s. R2		
108	6	40x20	2,5	284,2	↑3100 od z.s. R2		
109	7	80x10	1	263,3	↑550 od z.s. R2		
110	7	140x25	3,4	306,4	↑2950 od z.s. R2		
111	7	35x35	2,7	280,5	13300 od z.s. R2		
112	7	25x60	3	299,5	1111111111111111111111111111111111111		
113	8	20x50	1,5	259,4	↑2000 od z.s. R2		
114	8	90x20	2,7	295,5	↑2600 od z.s. R2		
115	8	35x40	2,5	275,7	↑3600 od z.s. R2		
116	9	140x40	0,5	220,1	↑400 od z.s. R2		
117	9	25x25	1,5	256,2	↑2300 od z.s. R2		
118	9	35x30	1	247,3	↑2700 od z.s. R2		
119	9	30x30	1	238,8	↑3100 od z.s. R2		
120	10	30x60	1	237,6	↑230 od z.s. R2		
121	10	50x70	1,5	240,2	↑460 od z.s. R2		
122	10	40x20	1,5	251,5	↑2270 od z.s. R2		
123	10	40x30	1,5	245,6	↑2680 od z.s. R2		
124	11	30x30	2,4	281,9	↑2580 od z.s. R2		
125	11	30x20	2	263,7	↑3100 od z.s. R2		
			·		·		

126	11	25x25	1,8	258,9	13300 od z.s. R2			
127	12	25x25	1,5	256,2	↑2500 od z.s. R2			
128	13	90x30	0,5	221,6	↑680 od z.s. R2			
129	13	35x45	2	257,4	↑2170 od z.s. R2			
130	13	30x30	1,8	254,5	↑2290 od z.s. R2			
131	13	30x25	1,5	252,6	↑2400 od z.s. R2			
132	13	25x30	1,5	253,5	↑2630 od z.s. R2			
133	14	60x70	1,5	238,7	1,100 od z.s. R2			
134	15	700x50	2,5	121,4	UM R2/15			
135	15	20x20	1	250,2	↑2580 od z.s. R2			
136	15	20x20	1,5	263,9	1,1000 od z.s. R2			
137	15	35x20	2	263,9	1,1290 od z.s. R2			
138	16	45x25	3	296,4	↑3000 od z.s. R2			
141	19	80x40	1	231,1	↑800 od z.s. R2			
142	19	25x25	2,7	298,9	†2150 od z.s. R2			
144	21	60x30	2	254,9	↑220 od z.s. R2			
145	21	30x25	3,2	305,5	↑2640 od z.s. R2			
146	21	30x30	2	260	↑3110 od z.s. R2			
147	22	40x30	1	236,5	1100 od z.s. R2			
148	23	120x20	1,5	251,4	↑2400 od z.s. R2			
149	24	25x45	2	262,4	↑2400 od z.s. R2			
150	24	30x25	2	263,1	1100 × 11000 × 11000 × 11000 × 11000 × 11000 × 11000 × 11000 × 11000 ×			
151	R3	20x20	2,5	296,9	← 430 od z.s. 1g			
152	R3	30x15	1,5	265,5	← 250 od z.s. 2g			
153	R3	20x70	1,5	256,4	\rightarrow 170 od z.s. 4			
154	R3	20x20	1	250,2	\rightarrow 50 od z.s. 4			
155	R3	50x15	3	331,3	← 200 od z.s. 4			
156	R3	15x35	2,5	309,9	← 600 od z.s. 4			
157	R3	80x15	1,5	259,9	\rightarrow 640 od z.s. 5			
158	R3	25x10	1,5	273,8	\rightarrow 40 od z.s. 5			
159	R3	30x15	2,5	299,9	← 500 od z.s. 5			
160	R3	40x10	1,5	273,8	← 630 od z.s. 5			
161	R3	50x10	3	391,2	\rightarrow 740 od z.s. 6g	50x20	3	308,9
162	R3	40x15	3	326,5	\rightarrow 440 od z.s. 6g			
163	R3	30x5	1,5	382,9	← 60 od z.s. 6g	30x10	1,5	298,3
164	R3	25x5	1	321,1	← 470 od z.s. 6g			
165	R3	40x15	1	250,7	UM R3/7			
166	R3	45x10	2	330,5	\rightarrow 840 od z.s. 8			
167	R3	65x10	3,6	443,7	\rightarrow 760 od z.s. 8	65x25	3,6	315,6
168	R3	20x5	1	317,9	\rightarrow 670 od z.s. 8			
169	R3	50x10	1,5	297,4	\rightarrow 480 od z.s. 8			
170	R3	120x10	1	268,8	\rightarrow 200 od z.s. 8			
171	R3	30x10	2	330,2	\rightarrow 80 od z.s. 8			
172	R3	40x10	2	327,2	← 130 od z.s. 8			
173	R3	60x15	4,2	390,9	← 250 od z.s. 8	60x30	4,2	320,5
174	R3	260x10	2,5	377,2	← 580 od z.s. 8	260x20	2,5	299,1

175	R3	30x10	2	330,2	← 700 od z.s. 8			
176	R3	80x15	2	293,6	\rightarrow 490 od z.s. 9			
177	R3	40x30	2,5	279,5	UM R3/9g			
178	R3	40x10	1,6	300,2	\rightarrow 70 od z.s. 10			
179	R3	40x10	2,5	316,4	\rightarrow 450 od z.s. 11g			
180	R3	40x10	1,7	300,8	\rightarrow 630 od z.s. 12g			
181	R3	35x10	2	330,1	← 550 od z.s. 12g			
182	R3	30x30	1	238,8	\rightarrow 350 od z.s. 14			
183	R3	30x10	2,2	329,5	← 520 od z.s. 14			
184	R3	20x10	1	265,4	← 750 od z.s. 14			
185	R3	30x10	1,5	298,3	\rightarrow 280 od z.s. 18			
186	R3	60x10	2	330,1	\rightarrow 60 od z.s. 18			
187	R3	80x15	3	339,3	← 170 od z.s. 18			
188	R3	40x10	2,5	316,4	← 370 od z.s. 18			
189	R3	110x15	2,5	317,7	← 730 od z.s. 18			
190	R3	60x16	2,5	308,8	← 770 od z.s. 18			
191	R3	110x10	3,3	420,8	\rightarrow 920 od z.s. 19	110x25	3,3	305,5
192	R3	40x10	3	383,5	\rightarrow 190 od z.s. 19	40x20	3	309,8
193	R3	40x20	1,5	251,5	← 890 od z.s. 19			
194	R3	30x20	1,5	264,9	\rightarrow 900 od z.s. 20			
195	R3	30x10	2,7	367,1	\rightarrow 130 od z.s. 20	30x20	2,7	367,4
196	R3	40x25	3	298,4	← 280 od z.s. 20			
197	R3	45x30	6	367,5	← 350 od z.s. 20	45x45	6	356,6
198	R3	30x10	1	268,1	← 650 od z.s. 20			
199	R3	60x25	3	295,6	\rightarrow 120 od z.s. 21g			
200	R3	35x35	1	238,2	← 270 od z.s. 21g			
201	R3	30x10	3	380,3	← 450 od z.s. 21g	30x20	3	315,4
202	R3	40x10	3,5	417,6	\rightarrow 300 od z.s. 22	40x20	3,5	327,4
203	R3	50x20	5	373,8	\rightarrow 400 od z.s. 22	50x25	5	354,7
204	R3	30x5	1,5	382,7	← 470 od z.s. 22	30x10	1,5	298,6
205	R3	30x5	1,5	382,7	← 550 od z.s. 22	30x10	1,5	298,6
206	R3	60x10	2	330,1	UM R3/22g			
207	R3	25x5	2	429,5	← 730 od z.s. 22g	25x10	2	326,2
208	R3	30x10	2	330,2	\rightarrow 390 od z.s. 23g			
209	R3	25x8	2	351,6	\rightarrow 340 od z.s. 23g			
210	R3	60x10	1,5	298,1	← 700 od z.s. 23g			
211	R3	60x15	4	380,8	\leftarrow 500 od z.s. 24g	60x25	4	325,9

Detaljno je analizirano 16 linearnih indikacija označenih rednim brojevima: 161, 163, 167, 173, 174, 191, 192, 195, 197, 201, 202, 203, 204, 205, 207 i 211.

Slika 4.4.7 Šematski prikaz položaja dijagnostifikovanih linearnih indikacija

<u>Linearna indikacija – 163</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 163 ($l \times b \times a = 30 \times 5 \times 1,5$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 28,5 mm iznosi $\sigma_{max,s_163} = 382,9$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.8). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati (povećavati širinu), kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.8 Polje napona za veličinu linearne indikacije $30 \times 5 \times 1,5 \text{ mm}$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 30 \times 10 \times 1,5$ [mm]), iznosi $\sigma_{max,s_{-163k}} = 298,3$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.9). Dokaz napona je zadovoljen.

Slika 4.4.9 Polje napona za veličinu linearne indikacije $30 \times 10 \times 1,5$ mm

<u>Linearna indikacija – 167</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 167 ($l \times b \times a = 65 \times 10 \times 3,6$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 26,4 mm iznosi $\sigma_{max,s_{-167}} = 443,7$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.10). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati (povećavati širinu), kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.10 Polje napona za veličinu linearne indikacije $65 \times 10 \times 3,6\,$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 65 \times 25 \times 3,6$ [mm]), iznosi $\sigma_{max,s_{-167k}} = 315,6$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.11). Dokaz napona je zadovoljen.

Slika 4.4.11 Polje napona za veličinu linearne indikacije $65 \times 25 \times 3,6$ mm

Linearna indikacija – 173

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 173 ($l \times b \times a = 60 \times 15 \times 4,2$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 25,8 mm iznosi $\sigma_{max,s_173} = 390,9$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.12). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.12 Polje napona za veličinu linearne indikacije $60 \times 15 \times 4,2 \text{ mm}$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 60 \times 30 \times 4,2$ [mm]), iznosi $\sigma_{max,s_173k} = 320,5$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.13). Dokaz napona je zadovoljen.

Slika 4.4.13 Polje napona za veličinu linearne indikacije $60 \times 30 \times 4,2 \text{ mm}$

<u>Linearna indikacija – 174</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 174 ($l \times b \times a = 260 \times 10 \times 2,5$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 27,5 mm iznosi $\sigma_{max,s_174} = 377,2$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.14). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.14 Polje napona za veličinu linearne indikacije $260 \times 10 \times 2,5 \text{ mm}$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 260 \times 20 \times 2,5$ [mm]), iznosi $\sigma_{max,s_174k} = 299,1$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.15). Dokaz napona je zadovoljen.

Slika 4.4.15 Polje napona za veličinu linearne indikacije $260 \times 20 \times 2,5 \text{ mm}$

<u>Linearna indikacija – 191</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 191 ($l \times b \times a = 110 \times 10 \times 3,3$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 26,7 mm iznosi $\sigma_{max,s_191} = 420,8$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.16). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.16 Polje napona za veličinu linearne indikacije $110 \times 10 \times 3,3 \text{ mm}$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 110 \times 25 \times 3,3$ [mm]), iznosi $\sigma_{max,s_191k} = 305,5$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.17). Dokaz napona je zadovoljen.

Slika 4.4.17 Polje napona za veličinu linearne indikacije $110 \times 25 \times 3,3 \text{ mm}$

<u>Linearna indikacija – 192</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 192 ($l \times b \times a = 40 \times 10 \times 3$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 27 mm iznosi $\sigma_{max,s_192} = 383,5$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.18). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.18 Polje napona za veličinu linearne indikacije $40 \times 10 \times 3$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije $(l \times b \times a = 40 \times 20 \times 3 \text{ [mm]})$, iznosi $\sigma_{max,s_192k} = 309,8$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.19). Dokaz napona je zadovoljen.

Slika 4.4.19 Polje napona za veličinu linearne indikacije $40 \times 20 \times 3$ mm

<u>Linearna indikacija – 195</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 195 ($l \times b \times a = 30 \times 10 \times 2,7$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 27,3 mm iznosi $\sigma_{max,s_{-}195} = 367,1$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.20). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.20 Polje napona za veličinu linearne indikacije $30 \times 10 \times 2,7$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 30 \times 20 \times 2,7$ [mm]), iznosi $\sigma_{max,s_195k} = 307,4$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.21). Dokaz napona je zadovoljen.

Slika 4.4.21 Polje napona za veličinu linearne indikacije $30 \times 20 \times 2,7$ mm

<u>Linearna indikacija – 197</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 197 ($l \times b \times a = 45 \times 30 \times 6$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 24 mm iznosi $\sigma_{max,s_197} = 367,5$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.22). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.22 Polje napona za veličinu linearne indikacije $45 \times 30 \times 6$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 45 \times 45 \times 6$ [mm]), iznosi $\sigma_{max,s_197k} = 356,6$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.23). Dokaz napona je zadovoljen.

Slika 4.4.23 Polje napona za veličinu linearne indikacije $45 \times 45 \times 6$ mm

<u>Linearna indikacija – 201</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 201 ($l \times b \times a = 30 \times 10 \times 3$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 27 mm iznosi $\sigma_{max,s_201} = 380,3$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.24). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.24 Polje napona za veličinu linearne indikacije $30 \times 10 \times 3$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije $(l \times b \times a = 30 \times 20 \times 3 \text{ [mm]})$, iznosi $\sigma_{max,s_201k} = 315,4$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.25). Dokaz napona je zadovoljen.

Slika 4.4.25 Polje napona za veličinu linearne indikacije $30 \times 20 \times 3$ mm

<u>Linearna indikacija – 202</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 202 $(l \times b \times a = 40 \times 10 \times 3,5 \text{ [mm]})$, gde je debljina omotača redukovana sa projektovanih 30 mm na 26,5 mm iznosi $\sigma_{max,s_202} = 417,6$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.26). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.26 Polje napona za veličinu linearne indikacije $40 \times 10 \times 3,5 \text{ mm}$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 40 \times 20 \times 3,5$ [mm]), iznosi $\sigma_{max,s_202k} = 327,3$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.27). Dokaz napona je zadovoljen.

Slika 4.4.27 Polje napona za veličinu linearne indikacije $40 \times 20 \times 3,5 \text{ mm}$

Linearna indikacija – 203

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 203 ($l \times b \times a = 50 \times 20 \times 5$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 25 mm iznosi $\sigma_{max,s_203} = 373,8$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.28). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.28 Polje napona za veličinu linearne indikacije $50 \times 20 \times 5$ mm

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 50 \times 25 \times 5$ [mm]), iznosi $\sigma_{max,s_203k} = 354,7$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.29). Dokaz napona je zadovoljen.

Slika 4.4.29 Polje napona za veličinu linearne indikacije $50 \times 25 \times 5$ mm

<u>Linearna indikacija – 204</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 204 [40] ($l \times b \times a = 30 \times 5 \times 1,5$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 28,5 mm iznosi $\sigma_{max,s_204} = 382,7$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.30). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.30 Polje napona za veličinu linearne indikacije $30 \times 5 \times 1,5 \text{ mm}$ [40]

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 30 \times 10 \times 1,5$ [mm]), iznosi $\sigma_{max,s_204k} = 298,6$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.31). Dokaz napona je zadovoljen.

Slika 4.4.31 Polje napona za veličinu linearne indikacije $30 \times 10 \times 1,5 \text{ mm}$ [40]

<u>Linearna indikacija – 205</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 205 [40] ($l \times b \times a = 30 \times 5 \times 1,5$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 28,5 mm iznosi $\sigma_{max,s_{205}} = 382,7$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.32). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.32 Polje napona za veličinu linearne indikacije $30 \times 5 \times 1,5 \text{ mm}$ [40]

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije ($l \times b \times a = 30 \times 10 \times 1,5$ [mm]), iznosi $\sigma_{max,s_205k} = 298,6$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.33). Dokaz napona je zadovoljen.

Slika 4.4.33 Polje napona za veličinu linearne indikacije $30 \times 10 \times 1,5 \text{ mm}$ [40]

<u>Linearna indikacija – 207</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 207 [40] ($l \times b \times a = 25 \times 5 \times 2$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 28 mm iznosi $\sigma_{max,s_207} = 429,5$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.34). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.34 Polje napona za veličinu linearne indikacije $25 \times 5 \times 2 \text{ mm}$ [40]

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije $(l \times b \times a = 25 \times 10 \times 2 \text{ [mm]})$, iznosi $\sigma_{max,s_207k} = 326,2$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.35). Dokaz napona je zadovoljen.

Slika 4.4.35 Polje napona za veličinu linearne indikacije $25 \times 10 \times 2$ mm [40]

<u>Linearna indikacija – 211</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije 211 [40] $(l \times b \times a = 60 \times 15 \times 4 \text{ [mm]})$, gde je debljina omotača redukovana sa projektovanih 30 mm na 26 mm iznosi $\sigma_{max,s_211} = 380,8$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.36). Kako dokaz napona nije zadovoljen dimenzije analizirane linearne indikacije potrebno je korigovati, kako bi se vrednost maksimalnog uporednog napona smanjila.

Slika 4.4.36 Polje napona za veličinu linearne indikacije $60 \times 15 \times 4 \text{ mm}$ [40]

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu korigovane linearne indikacije $(l \times b \times a = 60 \times 25 \times 4 \text{ [mm]})$, iznosi $\sigma_{max,s_211k} = 325,9$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.4.37). Dokaz napona je zadovoljen.

Slika 4.4.37 Polje napona za veličinu linearne indikacije $60 \times 25 \times 4$ mm [40]

4.5 Provera naponskog stanja za kritičnu vrednosti dubine greške određene parametrima elasto-plastične mehanike loma u poglavlju 3

U poglavlju 3 parametrima elasto-plastične mehanike loma određena je kritična dubina greške od 8,7 mm. Kod analiziranog sfernog rezervoara dubina grešaka se kreće od 1 do 6 mm, a dužina greške se kreće od 10 do 700 mm. Otkrivena maksimalna dubina greške analiziranog sfernog rezervoara je manja od kritične vrednosti dubine greške utvrđene metodama elasto-plastične mehanike loma za 2,7 mm, pa je potrebno analizirati naponsko stanje za vrednosti dubine od 8 i 9 mm formiranjem konačnoelementnog modela na način predstavljen u poglavlju 4.4. Usvojena početna vrednost širine linearne indikacije je 10 mm, a dužina 400 mm.

<u>Linearna indikacija A1 usvojenih dimenzija ($l \times b \times a = 400 \times 10 \times 9$ [mm])</u>

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije ($l \times b \times a = 400 \times 10 \times 9$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 21 mm iznosi $\sigma_{max,s_{10/9}} = 1065,48$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.5.1).

Slika 4.5.1 Polje napona za veličinu linearne indikacije $400 \times 10 \times 9$ mm

U prethodnom poglavlju je utvrđeno da promenom, odnosno povećanjem širine linearne indikacije dolazi do smanjenja vrednosti maksimalnog napona u lokalnoj zoni. Prilikom implementacije ove metode za analizu linearne indikacije *A1*, gde je usvojen korak povećanja širine od 10 mm, dobijaju se sledeći rezultati:

1. za korigovanu veličinu linearne indikacije $(l \times b \times a = 400 \times 200 \times 9 \text{ [mm]})$ maksimalni uporedni napon iznosi $\sigma_{max,s_{200/9}} = 369,91$ MPa, što je veće od dopuštenog lokalnog napona (slika 4.5.2),

2. za korigovanu veličinu linearne indikacije ($l \times b \times a = 400 \times 250 \times 9$ [mm]) maksimalni uporedni napon iznosi $\sigma_{max,s_{250/9}} = 362,52$ MPa, što je veće od dopuštenog lokalnog napona (slika 4.5.3).

Slika 4.5.3 Polje napona za veličinu linearne indikacije $400 \times 250 \times 9$ mm

Iz prethodnog možemo da zaključimo da promena širine linearne indikacije od 200 mm do 250 mm prestaje da ima značajnog uticaja na promenu vrednosti maksimalnog napona u lokalnog zoni jer se vrednost napona smanjila za 7,4 MPa. Proveru naponskog stanja za linearnu indikaciju usvojene dubine od 8 mm vršimo za širine linearne indikacije od 10 mm do 200 mm.

Linearna indikacija A2 usvojenih dimenzija $(l \times b \times a = 400 \times 10 \times 8 \text{ [mm]})$

Maksimalni uporedni napon koji se javlja na omotaču sfernog rezervoara u zoni koncentracije – na dnu linearne indikacije ($l \times b \times a = 400 \times 10 \times 8$ [mm]), gde je debljina omotača redukovana sa projektovanih 30 mm na 22 mm iznosi $\sigma_{max,s_{10/8}} = 975,76$ MPa, što je veće od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.5.4).

Slika 4.5.4 Polje napona za veličinu linearne indikacije $400 \times 10 \times 8$ mm

Za korigovanu veličinu linearne indikacije ($l \times b \times a = 400 \times 200 \times 8$ [mm]) maksimalni uporedni napon iznosi $\sigma_{max,s_{200/8}} = 355,53$ MPa, što je manje od dopuštenog lokalnog napona $\sigma_{dl} = 360$ MPa (slika 4.5.5). Dokaz napona je zadovoljen.

Slika 4.5.5 Polje napona za veličinu linearne indikacije $400 \times 200 \times 8$ mm

Analizom naponskog stanja u lokalnoj zoni obrađenih linearnih indikacija čije su dubine 8 mm i 9 mm utvrđena je vrednost maksimalnog uporednog napona od $\sigma_{max,s_{200/9}} = 369,91$ MPa za obrađenu linearnu indikaciju A1 čija je dubina 9 mm, kao i vrednost maksimalnog uporednog napona od $\sigma_{max,s_{200/8}} = 355,53$ MPa za obrađenu linearnu indikaciju A2 čija je dubina 8 mm.

Pregledom rezultata dobijenih analizom naponskog stanja usvojenih linearnih indikacija možemo zaključiti da je vrednost maksimalnog uporednog napona u lokalnoj uskoj zoni obrađene linearne indikacije čija je dubina 8 mm manja od vrednosti dopuštenog napona čime je dokaz napona zadovoljen, odnosno da je vrednost maksimalnog uporednog napona u lokalnoj uskoj zoni obrađene linearne indikacije čija je dubina 9 mm veća od vrednosti dopuštenog napona pa dokaz napona nije zadovoljen i dalje geometrijsko oblikovanje linearne indikacije odnosno povećavanje širine neće dovesti do smanjenja vrednosti maksimalnog uporednog napona. Pomenutom naponskom analizom potvrđena je i metoda određivanja kritične vrednosti dubine greške primenom parametara elastoplastične mehanike loma koja je predstavljena u poglavlju 3.

Zbog dodatnog razmatranja promene naponskog stanja u lokalnim zonama linearnih indikacija kao i određivanja dubina grešaka koje je moguće sanirati geometrijskim oblikovanjem, urađena je detaljna analiza uticaja promene širine linearne indikacije na promenu vrednosti maksimalnog napona za vrednosti dubine linearne indikacije od 1 do 9 mm sa korakom povećanja dubine od 1mm. Usvojena je dužina linearne indikacije od 400 mm i početna širina od 10 mm koja se menja sa korakom od 10 mm. Konačnoelementni model za sprovođenje ove analize formiran je na
način prikazan u poglavlju 4.4. U tabeli 4.4.3 prikazana je promena vrednosti maksimalnog napona sa promenom širine linearne indikacije za dubine od 1 do 9 mm. Sprovedenom analizom predstavljena je promena vrednosti maksimalnog napona sa promenom širine linearne indikacije za fiksiranu vrednost dužine i definisane dubine i potvrđena je metoda za određivanje dubine greške koju je moguće sanirati.

Dubina [mm]	Širina [mm]	napon												
[]	10	[MPa] 303 78	[]	10	[MPa] 342.89	[]	10	[MPa] 419.77	[]	10	[MPa] 519.21	[]	10	[MPa] 611.81
1	20	242 42		20	280.76	3	20	322.18		20	375.16	5	20	429.18
	30	234 59		30	263.09		30	295.42		30	333.66		30	373.92
	40	231,39		40	255.93		40	283.19		40	316.41		40	350.37
	50	230.11		50	252.51		50	277.31	4	50	307.08		50	337.49
	60	228.76		60	250.18		60	273.71		60	301.29		60	329,98
	70	228,18	-	70	248,78		70	272,51		70	297,43		70	323,91
	80	227,73	2	80	247,7		80	271,63		80	294,04		80	319,42
	90	226,91		90	246,93		90	270,54		90	291,87		90	315,84
	100	225,43		100	246,18		100	269,88		100	289,45		100	313
	110	224,86		110	245,43		110	268,74		110	287,23		110	310,55
	120	223,35		120	244,96		120	267,38		120	285,75		120	308,34
	130	222,63		130	244,36		130	266,12		130	284,53		130	306,84
	140	221,45	ĺ	140	243,91		140	264,87		140	283,67		140	304,48
	150	220,19		150	242,51		150	263,33		150	281,89		150	302,64
	160	219,77		160	241,36		160	262,57		160	280,46		160	300,86
	170	218,64		170	240,81		170	261,13		170	279,53	-	170	299,43
	180	217,13		180	239,67		180	260,34		180	278,76		180	298,56
	190	216,73		190	238,13		190	259,14		190	277,78		190	297,07
	200	215,33		200	237,73		200	258,67		200	276,88		200	295,77
	10	729,43	7	10	819,83	8	10	975,76	9	10	1065,48			
	20	487,2		20	558,35		20	632,23		20	681,94			
	30	419,53		30	471,06		30	522,92		30	566,78			
6	40	387,03		40	431,6		40	475,76		40	510,71			
	50	371,45		50	408,89		50	448,66		50	479,89			
	60	361,04		60	394,85		60	430,93		60	459,17			
	70	352,97		70	386,51		70	417,97		70	446,37			
	80	346,83		80	378,46		80	409,37		80	432,59			
	90	340,54		90	371,92		90	401,13		90	423,87			
	100	336,41		100	364,72		100	394,55		100	416,56			
	110	333,1		110	360,01		110	387,59		110	407,22			
	120	330,17		120	355,66		120	381,03		120	403,74			
	130	328,06		130	352,18		130	377,73		130	403,21			
	140	325,54		140	349,06		140	371,69		140	393			
	150	323,43		150	346,19		150	368,06		150	389,76			
	160	321,31		160	344,05		160	362,66		160	382,55			
	170	319,82		170	340,97		170	361,78		170	380,11			
	180	318,19		180	339,62		180	359,26		180	377,59			
	190	316,37		190	337,52		190	357,69		190	372,93			
	200	315,04		200	335,69		200	355,53		200	369,91			

Tabela 4.4.3 Zavisnost promene vrednosti maksimalnog napona pri promeni širine linearne indikacije za dubine od 1 do 9mm

Grafički prikaz zavisnosti promene vrednosti maksimalnog napona pri promeni širine linearne indikacije pri fiksiranoj vrednosti dužine od 400 mm za dubine od 1 do 9 mm dat je na slici 4.5.6.

Slika 4.5.6 Zavisnost promene napona pri promeni širine linearne indikacije za dubine od 1 do 9 mm

5

ZAKLJUČAK

Istraživanja u okviru doktorske disertacije izvedena su na primeru sfernog rezervoara za skladištenje tečnog amonijaka kod koga je na zavarenim spojevima segmenata konstrukcije prilikom redovne periodične kontrole otkriveno 211 neprihvatljivih grešaka. Osvojena je metoda za proveru uticaja dijagnostifikovanih grešaka na integritet konstrukcije u okviru koje je urađen kontrolni proračun konstrukcije sfernog rezervoara prema važećim standardima, kao i metoda određivanja kritične dubine greške. Na osnovu tehničke dokumentacije sfernog rezervoara formiran je 3D model koji je upotrebljen za konačnoelementnu analizu naponskog stanja u lokalnoj zoni oko otkrivenih grešaka. Definisana je metoda geometrijskog oblikovanja dijagnostifikovanih grešaka kojom se obezbeđuje bezbedan rad konstrukcije. O značaju razvijenih metoda za proveru integriteta konstrukcije govore sledeće činjenice: važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na kojoj je dijagnostifikovana pojava nepravilnosti u vidu neprihvatljivih grešaka, u postojećoj literaturi ne postoji metod sanacije grešeka geometrijskim oblikovanjem (brušenjem, glodanjem profilisanim glodalom).

5.1 Naučni doprinosi

Naučni doprinosi predstavljenih istraživanja su:

- osvojena je metoda kojom se primenom parametara elasto-plastične mehanike loma određuje uticaj otkrivenih grešaka u zonama zavarenih spojeva sfernog rezervoara za skladištenje amonijaka na integritet konstrukcije;
- propisana je motoda određivanja kritične dubine greške u zonama zavarenih spojeva sfernog rezervoara parametrima elasto-plastične mehanike loma, odnosno metoda za određivanja opsega dubine greške u zonama zavarenih spojeva sfernog rezervoara pri kojima integritet konstrukcije nije narušen;
- razvijena je metoda sanacije nedozvoljenih grešaka u zonama zavarenih spojeva, definisanih važećom tehničkom regulativom, koja se zasniva na adekvatnom geometrijskom oblikovanju (korekcija geometrije nedozvoljene greške, odnosno promena širine greške);
- eksperimentalo-numeričkim istraživanjem propisana je procedura kojom se određuje dubina greške koju je moguće sanirati geometrijskim oblikovanjem kako bi se obezbedio bezbedan rad konstrukcije.

Opštost razvijenih metoda se ne umanjuje iako su metode razvijane za konkretan primer sfernog rezervoara za skladištenje amonijaka.

5.2 Kritički osvrt na polazne hipoteze

Testiranjem polaznih hipoteza došlo se do sledećih zaključaka:

 na analiziranom sfernom rezervoaru otkrivene su greške dubine od 1 do 6 mm za koje je numerički određen factor intenziteta napona K_I čije se vrednosti kreću od 382,12 MPa√mm za dubinu od 1 mm do 1139,46 MPa√mm za dubinu od 6 mm, i koje su manje od kritične vrednosti faktora intenziteta napona K_{IC} = 1560 MPa√mm, povećavanjem dubine greške i direktnim poređenjem vrednosti faktora intenziteta napona i kritične vrednosti faktora intenziteta napona definisana je dubina greške od 8,7 mm za koju vrednost faktora intenziteta napona iznosi 1554,59 MPa $\sqrt{\text{mm}}$ i pri kojoj dostiže svoju kritičnu vrednost od 1560 MPa $\sqrt{\text{mm}}$;

- geometrijskim oblikovanjem, odnosno promenom geometrije otkrivenih neprihvatljivih grešaka sferni rezervoar ispunjava zahteve važeće tehničke regulative, upotrebom formiranog konačnoelementnog modela izloženog dejstvu unutrašnjeg pritiska od 16 bar i varijacijom parametara dužine i širine greške zaključeno je da promena dužine greške ne utiče na promenu vrednosti maksimalnog napona, a da promena širine greške dovodi do smanjenja vrednosti maksimalnog napona i ispunjava dokaz napona u svim ispitanim slučajevima, za najkritičniju detektovanu grešku br. 197, koju opisuje dužina 45 mm, dubina 6 mm i prva izvedena širina od 30 mm vrednost maksimalnog uporednog napona iznosi $\sigma_{max,s_{197}} = 367,5$ MPa i veća je od dopuštenog napona u lokalnoj zoni $\sigma_{dl} = R_{p0,2t} = 360$ MPa pri čemu dokaz napona nije zadovoljen, a kada se širina poveća na 45 mm vrednost maksimalnog napona se smanjuje i iznosi $\sigma_{max,s_{197k}} = 356,6$ MPa što je manje od vrednosti dopuštenog napona u lokalnoj zoni $\sigma_{dl} = R_{p0,2t} = 360$ MPa čime je dokaz napona ispunjen i time obezbeden bezbedan rad konstrukcije;
- za analizirani sferni rezervoar za skladištenje tečnog amonijaka urađen je kontrolni • proračun prema standardu EN13445-3:2017 prema kome je određena minimalna potrebna debljina zida sfernog omotača koja iznosi $e_{min} = 26,16$ mm, određena minimalna debljina zida sfernog omotača ukazuje na to da je dozvoljena dubina greške a = 30 - 26,16 = 3,84 mm što nije relevantan zaključak jer je reč o lokalnoj uskoj zoni u kojoj je vrednost dopuštenog napona $\sigma_{dl} = R_{p0,2t} = 360 \text{ MPa}$ veća od vrednosti dopuštenog napona f = 240 MPa koji figuriše u određivanju minimalne potrebne debljine zida sfernog omotača po standardu, naponska analiza u lokalnoj uskoj zoni detektovanih grešaka za konkretan primer dubina grešaka od 1 do 6 mm na zavarenim spojevima sfernog rezervoara uz adekvatnu geometrijsku obradu pokazuje da vrednost maksimalnih uporednih napona ne prelazi vrednost dopuštenog napona, konkretan primer geometrijski oblikovane greške br. 197 gde je dubina greške 6 mm i gde imamo smanjenje debljine omotača sa 30 mm na 23 mm vrednost maksimalnog uporednog napona od 356,6 MPa je manja od vrednosti dopuštenog napona u lokalnoj zoni $\sigma_{dl} = 360$ MPa čime je ostvareno adekvatno ponašanje konstrukcije sa aspekta čvrstoće:
- razmatranja promene naponskog stanja u lokalnim zonama grešaka kao i određivanja dubina grešaka koje je moguće sanirati geometrijskim oblikovanjem (promenom širine), urađena je detaljna analiza uticaja promene širine na promenu vrednosti maksimalnog napona za vrednosti dubine greške od 1 do 9 mm sa korakom povećanja dubine od 1mm, za sprovođenje analize usvojena je dužina greške od 400 mm i početna širina od 10 mm koja se menja sa korakom od 10 mm, konačnoelementni model za sprovođenje analize formiran prema postupku datom u poglavlju 4.4. i prikazan je odnos promene vrednosti maksimalnog napona sa promenom širine greške za dubine od 1 do 9 mm, takođe je dat grafički prikaz analize na slici 4.5.6.

5.3 Primenljivost i značaj rezultata istraživanja

Primena metoda za proveru uticaja dubine greške na integritet konstrukcije i određivanje kritične dubine greške kao i metode sanacije dijagnostifikovanih grešaka adekvatnim geometrijskim oblikovanjem prećenim analizom naponskih stanja u lokalnoj zoni otkrivenih grešaka doprinosi

proceni integriteta konstrukcije, smanjuje mogućnost isključivanja opreme pod pritiskom iz upotrebe koja podleže važećoj tehničkoj regulativi. Rezultati istraživanja u okviru doktorske disertacije predstavljaju doprinos u oblasti analize uticaja nedozvoljenih grešaka zavarenih spojeva na integritet konstrukcije. Predstavljene metode određivanja uticaja dubine greške na integritet konstrukcije, određivanje kritične dubine grečke, sanacija grešaka adekvatnim geometrijskim oblikovanjem (korigovanje dimenzija), značajnu ulogu mogu imati u procesima rekonstrukcije i održavanja sfernih rezervoara koji su namenjeni za višedecenijsku eksploataciju.

5.4 Mogući pravci daljih istraživanja

Kako važeća tehnička regulativa ne dozvoljava upotrebu opreme pod pritiskom na čijim su zavarenim spojevima otkrivene nedozvoljene greške javlja se potreba za istraživanjem primenljivosti propisane metode sanacije grešaka na drugim posudama pod pritiskom:

- cilindrične nadzemne i podzemne posude pod pritiskom velikih dimenzija za skladištenje naftnih derivata;
- posude pod pritiskom velikih dimenzija za skladištenje prirodnog gasa;
- procesne posude pod pritiskom velikih dimenzija za razne tečnosti, gasove i pare (kolone, reaktori).

LITERATURA

[1] Vukicevic, S., 1995, Skladišta, Preving.

[2] 2012, "Water Tank Guide," http://www.caldwellwatertanks.com/tank-multicolumn-overview.html.

[3] Andracchio, C. R. A., K. L., 1968, "An Experimental Study of Liquid Flow Into a Baffled Spherical Tank During Weightlessness," NASA TM X-1526, Springfield, Virginia.

[4] Dodge, F. T., 2000, "The New "Dynamic Behavior Of Liquids In Moving Containers"," NASA SP-106, Southwest Research Institute, San Antonio, Texas.

[5] Yuan, S., Fengzhi, W., and Wang, Z. R., 1997, "Safety Analysis of 200 m3 LPG Spherical Tank Manufactured by The Dieless Hydro-Bulging Technology," Journal of Materials Processing Technology, 70(1-3), pp. 215-219.

[6] Hoggan, S. J., 1982, "Spherical Concrete Water Tank Design," Master of Science, Brigham Young University.

[7] Gedion, S., 2003, "Spherical Water Tanks," Leisa Magazine, p. 17.

[8] Annaratone, D., 2007, "Pressure Vessel Design," Springer, New York.

[9] Yukio, N., 2010, "Design Recommendation for Storage Tanks And Their Supports with Emphasis on Seismic Design," Architectural Institute of Japan, Academia.edu, p. 176.

[10] Wieschollek, M. K., Maik; Hoffmeister, Benno; and Feldmann, Markus "Seismic Design of Spherical Liquid Storage Tanks," Proc. Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, III ECCOMAS.

[11] 2003, "Tanks," SECTION UIP 11www.michigan.gov, pp. 1-9.

[12] 2011, "Design Recommendation for Storage Tanks and Their Supports with Emphasis on Seismic Design," Architectural Institute of Japan, Tokyo, Japan.

[13] Anttila, J., Gustafsson, J., Heinakari, M., Linja, J., and Vaihinen, M., 1996, "Spherical LNG-Tank and a Production Method for Such a Tank," Google Patents.

[14] Arne, C., 1954, "Spherical Segment Tank and Method," Google Patents.

[15] Baysinger, F. R., 1980, "Liquefied Natural Gas Tank Construction," Google Patents.

[16] Lindahl, J. R., 1993, "Tank Construction and Method of Manufacture," Google Patents. 202.

[17] Suzuki, T., and Takenaka, N., 1975, "Method of Constructing a Spherical Tank or the Like," US Patent 3,921,555.

[18] Pravilnika o tehničkim zahtevima za projektovanje, izradu i ocenjivanje usaglašenosti opreme pod pritiskom" ("Sl. glasnik RS", br. 87/2011).

[19] C.E.Inglis, *Stresses in a plate due to the presence of cracks and sharp corners*. Proc. Inst. Naval Arch. 55: 219-241, 1913.

[20] A.A.Griffith, *The phenomena of rupture and flow in solids*. Phil. Trans. Roy. Soc. London. A, 221: 163-198, 1920.

[21] G.R.Irwin, J.A.Kies, *Fracturing and fracture dynamics*. Welding Journal. Res. Sup. 31(2): 95s-100s, 1952.

[22] G.R.Irwin, J.A.Kies, *Critical energy rate analysis of fracture strength*. Welding Journal. Res. Sup. 33(4): 193s-198s, 1954.

[23] G.R.Irwin, *Plastic zone near a crack and fracture toughness*. Proc. 7th Sagamore Research Conf. on Mechanics & Metals Behavior of Sheet Material. Vol. 4, 463-478. Racquette Lake, NY, 1960.

[24] D.S.Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids. 8: 100-104, 1960.

[25] A.A.Wells, *Application of fracture mechanics at and beyond general yielding*. British Welding Journal 11: 563-570, 1963.

[26] J.R.Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, pp. 379-386, 1968.

[27] P.C.Paris, R.E.Gomez, W.E.Anderson, *A rational analytic theory of fatigue*. The Trend in Engineering, 13(1), pp. 9-14. University of Washington, 1961.

[28] J.D.Landes, J.A.Begley, *A fracture mechanics approach to creep crack growth*. ASTM STP 590, 128-148. Philadelphia, ASTM, 1976.

[29] M.O.Speidel, *Theory of stress corrosion cracking in alloys*. In J.C.Scully (ed.), NATO Scientific Affair Division. Brussels, 345-354, 1970.

[30] G.R.Irwin, *Onset of fast crack propagation in high strength steel and aluminum alloys*. Proc. 2nd Sagamore Conf. Ordonance Materials. Vol. II: 289-30. Syracuse, NY: Syracuse University Press, and NRL Report No. 4763 (U), May, PB121224. 1956.

[31] T.L.Anderson, Fracture Mechanics - Fundamentals and Applications, CRC Press, USA, 1994.

[32] H.Tada, P.C.Paris, G.R.Irwin, *The Stress Analysis of Crack Handbook*, Del Research Corporation, Hellertown, Pennsylvania, 1973.

[33] R.W.Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, John Wiley & Sons, New York, 1996.

[34] EN 13445-3:2017, Unfired pressure vessels - Part 3: Design, European committee for standardization, p. 867. 2017.

[35] EN 13445-5:2017, Unfired pressure vessels - Part 5: Inspection and testing, European committee for standardization, p. 81. 2017.

[36] B.M.Vasiljević, M.J.Banjac, *Priručnik za termodinamiku – Tabele i dijagrami*, Mašinski fakultet, Beograd, 2010.

[37] AD2000, Technical Rules for Pressure Vessels, p. 707. 2003.

[38] "Službeni list SFRJ" br. 41/64.

[39] K. Gerić, "Pojava i rast prslina u zavarenim spojevima čelika povišene čvrstoće, Doktorska disertacija", Tehnološko-metalurški fakultet, Beograd, 1997.

[40] Milovanović A., Sedmak A., Gnjatović N.: *Application of Fracture Mechanics Parameters to Spherical Storage Tank Integrity Assessment*, - Journal of Technical Faculties of University in Osijek - Technical Gazette, Accepted for publication (DOI: 10.17559/TV-20191021140800), 2020. (IF=0,664).

[41] Bakić R., Milović Lj., Jovičić R., Sedmak S.: *Quality assurance of storage tanks after in-service crack repairs*, - Journal of the Society for Structural Integrity and Life, Vol. 13, No 1 (2013), pp. 63–74.

[42] Sedmak A., Algool M., Kirin S., Rakičević B., Bakić R.: *Industrial safety of pressure vessels – Structural integrity point of view*, - Journal of Hemijska industrija (Chemical Industry), Accepted for publication (DOI: 10.2298/HEMIND150423005S), 2016. (IF=0,566).

[43] Adziev T., Sedmak A., Adziev G., Arsić M.: *Residual strength assessment of cracked welded spherical storage tank*, - Journal of the Society for Structural Integrity and Life, (1-2/2002), pp. 20–22.

Биографија

Кандидат Александар М. Миловановић, маст. инж. маш., студент докторских студија, рођен је 14.08.1989. године у Ужицу. Основну школу ("Стари град") и техничку школу ("Техничка школа") завршио је у Ужицу. На Машински факултет Универзитета у Београду уписао се 2008. године. Основне академске студије је завршио 2011. године. Исте године добија награду "Петар Дамјановић" компаније ОСА Рачунарски инжењеринг, док је Мастер академске студије завршио 2013. године на катедри за Транспортно инжењерство конструкције и логистику са просечном оценом 9,35 и оценом 10 за дипломски рад из предмета Рударске и грађевинске машине. Исте године добија награду за изванредан успех остварен школске 2012/13. године. Докторске студије на Машинском факултету Универзитета у Београду уписао је 2013. године на којим је положио све испите са просечном оценом 9,86.

Радни однос засновао је 2013. године са фирмом за пројектовање експертних система и инжењеринг TehnoCAD D.O.O., Београд. У периоду од 2013. до 2016. године учествовао је на реализацији 7 великих пројеката из области процесне опреме. 2014. године остварује сарадњу са фирмом за пројектовање, производњу и развој индустријске ЛЕД расвете Pontilux, Albuquerque, New Mexico. 2016. године заснива радни однос са фирмом Sinterfuse D.O.O., Ужице у својству руководиоца сектора за развој и управљање пројектима.

Кандидат је аутор 4 научно-стручна рада, од чега је 1 рад публикован у научном часопису међународног значаја (у часопису са SCI листе), 2 рада су публикована у часописима националног значаја, 1 рад саопштен на међународном скупу и штампан у целини.

Говори енглески језик, а у свакодневном раду користи програме за пројектовање и коначноелементну анализу конструкција (CATIA, ABAQUS).

Прилог 1.

Изјава о ауторству

Потписани број индекса

Александар М. Миловановић Д17/2013

Изјављујем

да је докторска дисертација под насловом

ПРИМЕНА ПАРАМЕТАРА ЕЛАСТО-ПЛАСТИЧНЕ МЕХАНИКЕ ЛОМА НА ПРОЦЕНУ ИНТЕГРИТЕТА ВЕЛИКИХ СФЕРНИХ РЕЗЕРВОАРА

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, _____ год.

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора	Александар М. Миловановић
Број индекса	Д17/2013
Студијски програм	

Наслов рада

ПРИМЕНА ПАРАМЕТАРА ЕЛАСТО-ПЛАСТИЧНЕ МЕХАНИКЕ ЛОМА НА ПРОЦЕНУ ИНТЕГРИТЕТА ВЕЛИКИХ СФЕРНИХ РЕЗЕРВОАРА

Ментор др Александар Седмак редовни професор

Потписани Александар М. Миловановић маст. инж. маш.

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао за објављивање на порталу Дигиталног репозиторијума

Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета уБеограду.

Потпис докторанда

У Београду, _____ год.

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

ПРИМЕНА ПАРАМЕТАРА ЕЛАСТО-ПЛАСТИЧНЕ МЕХАНИКЕ ЛОМА НА ПРОЦЕНУ ИНТЕГРИТЕТА ВЕЛИКИХ СФЕРНИХ РЕЗЕРВОАРА

која је моје ауторско дело.

Дисертацију са свим прилозима предао сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио.

- 1. Ауторство
- 2. Ауторство некомерцијално

3. Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

- 5. Ауторство без прераде
- 6. Ауторство делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис

лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, _____ год.

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.