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Procena mehanickih svojstava razlicitih miSi¢nih grupa primenom metode ,,dve brzine”

Rezime

lako su Siroko prisutni u sportu i rehabilitaciji, rezultati izokineti¢kih protokola ne mogu da
diskriminiSu izmedu razli¢itih maksimalnih mehani¢kih misi¢nih kapaciteta (maksimalne sile [Fo],
maksimalne brzine [Vo]), maksimalne snage [Pmax] i nagiba relacije sila-brzina [a]). Relacija sila-brzina
modelovana koris¢enjem samo dve eksperimentalne tacke (metod ,,dve tacke”) je predlozena za
istovremenu procenu svih pomenutih kapaciteta. Medutim, mogucnost koris¢enja ovog metoda tokom
izokinetickog testiranja nije dovoljno istrazena. Stoga, sprovedene su dve studije sa ciljem da se ispitaju
validnost i osetljivost metode ,,dve tacke”. Za potrebe prve studije su izmerene sile ekstenzora i fleksora
koje deluju u zglobu kolena i lakta na uzorku od 22 ispitanika, koriste¢i osam ugaonih brzina (30-240°s),
dok su za potrebe druge studije izmerene sile misi¢a koje deluju kao ekstenzori i fleksori u zglobu kolena,
kuka, lakta i ramena na uzorku od 40 ispitanika, koriste¢i dve ugaone brzine (60 and 180°/s). Rezultati
su pokazali da je relacija sila-brzina snazna i linearna (Svi r > 0.969), da je validnost modela da proceni
maksimalnu misi¢nu silu visoka, ali niza za ostale parametre relacije (medijana r = Fo = 0.96; Vo = 0.71;
a=0.78; i Pmax = 0.78). Osetljivost metode ,,dve tatke” je visoka za misice koji deluju u zglobu kolena,
umerena za misice koji deluju u zglobu kuka i ramena i niska za misi¢e koji deluju u zglobu lakta.
Povezanost izmedu istih parametara relacije sila-brzina je u proseku bila niska do umerena u obe studije.
Generalno, rezultati podrzavaju kori$¢enje metode ,,dve tacke” kao validne i osetljive metode za procenu
maksimalnih kapaciteta razli¢itih misi¢nih grupa da generiSu silu, dok je za dobijanje kompletne slike o
misi¢noj funciji ispitanika potrebno testirati veci broj misi¢nih grupa.

Kljuéne reci: Relacija sila-brzina, izokineti¢ka dinamometrija, testiranje, rehabilitacija, sport

Naucna oblast: Fizi¢ko vaspitanje 1 sport
UZa naucna oblast: Nauke fizickog vaspitanja, sporta i rekreacije
UDK broj: 796.012.1:612.74(043.3)



Mechanical capacities of the different muscle groups assessed using "'two-velocity' method

Resume

Although widely applied in sport and rehabilitation, individual isokinetic testing protocols are
ineffective to discern between maximal mechanical capacities of the muscles (i.e., maximal force [Fo],
maximal velocity [Vo]), maximal power [Pmax] and force-velocity slope [a]). Force-velocity [F-V]
relationship modelled using just two distinctive experimental points ("two-velocity" method) has been
proposed for determining these capacities at once. However, its application during isokinetic testing is
not well explored. Therefore, two studies were conducted with an aim to validate the two-velocity
method and to explore its sensitivity. For the first study knee and elbow flexors and extensors of the 22
participants were tested implementing eight angular velocities (30-240°/s), while for the second study,
force of flexosr and extensors acting on the knee, hip, elbow and shoulder of the 40 men were recorded
at two angular velocities (60 and 180°/s). Results show that the F-V relationships were linear and strong
(all r>0.969), validity of Fowas high but lower for the other F-V relationship parameters (median r: Fo
= 0.96; Vo = 0.71; a = 0.78; and Pmax = 0.78). Sensitivity of the two-velocity method was high for the
knee, moderate for the hip and shoulder, and low for the muscles that act in the elbow joint. Association
between the same F-V relationship parameters was generally poor to moderate in both studies. Generally,
findings support the two-velocity method as a valid and sensitive procedure for determining the maximal
capacity of the selected muscles to produce Fo, while more muscles should be tested to comprehensively
evaluate the participants’ muscular function.

Keywords: F-V relationship, isokinetic dynamometry, testing, rehabilitation, sport

Scientific field: Physical Education and Sport
Scientific subfield: Science of Physical Education, Sports and Recreation
UDC number: 796.012.1:612.74(043.3)
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1. Introduction

Human muscles are composed from muscle fibres which have very complex structure.
Specifically, muscle fibres are merged into groups that are covered with connective tissue (Rothwell &
Rothwell, 1994). The movement is enabled by muscle proteins that slide past each other (Squire, 2016),
which enables muscle shortening and force production. Muscle function depends from the activation of
different mechanical, physiological and neural processes which are necessary for executing any type of
movement. Although these processes are interdependent, they are generally explored separately due to
their high complexity. From all mentioned processes (i.e., mechanical, physiological and neural) the
scope of this dissertation mainly involves mechanical capacities of the muscles and corresponding
mechanisms which both enable and limit human performance. The term mechanical capacities refers to
the muscle capabilities to generate force (F), velocity (V) and power (P).

Maximal force and power production depend on variety of factors, among which are:
biochemical, histological, biological, anatomical, etc. (Pincivero, Coelho, & Campy, 2004). More
specifically, those factors are: (1) length and diameter of muscle fibres; (2) muscle structure; (3) fibre
types; (4) number of cross-bridges; (5) developed force in every cross-bridge; (6) force-velocity (F-V)
relationship; (7) shortening velocity of muscle fibres etc. (Fitts, McDonald, & Schluter, 1991). The
ability to produce force influence power production in a quite extent. In this regard, strong correlations
between maximal force production and power variables (i.e., maximal values of rate of force
development and power) indicate the importance of strength development (i.e., ability to produce force)
(Stone, Moir, Glaister, & Sanders, 2002).

Generally, the capacity of the muscles to produce velocity depends of the muscle fibre structure.
The most important factor to delineate muscle fibre types are particular myosin profiles. Specifically,
from 11 known myosin isoforms, muscle fibres could contain single myosin heavy chain isoform (“pure
fibre types”) or two or more (“hybrid fibre types”) (Pette & Staron, 2000). Even though relatively
permanent, muscle fibres are known as the structures which are capable to modify their phenotype under
specific circumstances (e.g. mechanical loading or unloading, aging, increasing or decreasing
neuromuscular activity, etc.) (Pette & Staron, 2000). Consequently, implementing different exercise
regimes could lead to shortening velocity changes due to the muscle fibre transitions. Besides muscle
fibre structure, variety of mechanical factors influence shortening velocity (i.e., range of motion, pre-
stretch, etc.) (Bober, Putnam, & Woodworth, 1987). However, little information exists regarding
systematic classification of the all possible mechanisms which could influence shortening velocity of the
muscles.

The power depends both on the capacity of the muscles to produce force and velocity (i.e., it
represents the product of velocity and force) (Lindstedt, 2016). As a result of the direct dependency from
the force and velocity capabilities, power capability could be increased by increasing only force, while
keeping velocity at the same level, by incrementing velocity and keeping force output at the same level,
or by simultaneously increasing both force and velocity output. Since all muscle fibres can develop equal
isometric force per cross-sectional unit (Lindstedt, 2016), from a force standpoint power output could be
increased by incrementing cross sectional unit. On the other hand, power output could be incremented
by increasing velocity capability (i.e., inducing alterations of fibre types).



Assessing force, velocity and power capabilities is extremely important for the sports, recreation
and rehabilitation purposes. Specifically, different types of standardised tests are being used in order to
evaluate different physiological and biomechanical characteristics of muscles, to set norms for various
individuals, for sport selection, assessing effects of different training and rehabilitation procedures,
preventing injuries, etc. (Knezevi¢ & Mirkov, 2011; Wilson & Murphy, 1996). Methods for assessing
those capacities are diverse and can be divided into field (usually indirect) and laboratory (usually direct)
methods. The results of field or indirect methods are used for concluding (i.e., predicting) about muscle
capabilities, while laboratory or direct methods are used for measuring some mechanical quantity which
enables more precise assessment of the muscle mechanical capacities.

For example, direct methods for measuring force output could be done during different
contraction modes (i.e., isometric, isoinertial or isokinetic) (Abernethy, Wilson, & Logan, 1995). As it
has been stated in the paper of Knezevic and Mirkov (2011) ,,the isometric strength assessment is based
on a measurement of maximal force (Fmax) exerted during maximal voluntary contraction (i.e., against
external load), in a specific joint angle, while the isoinertial strength assessment involves exertion of
concentric, eccentric or concentric/eccentric contractions against constant external load”. Isokinetic
mode is based on measuring force output during constant velocity with the specific equipment (i.e.,
isokinetic dynamometers).

In the scope of this dissertation is isokinetic dynamometry, a method which represents the gold
standard for evaluating muscle capacities during single-joint movements. As a method, it has been widely
used for decades (Hislop & Perrine, 1967), which has led to the development of a variety of testing
protocols and procedures. Note that isokinetic dynamometry has been considered as a safe, objective and
reliable method (Land & Gordon, 2011; Mayhew, Rothstein, Finucane, & Lamb, 1994). The general aim
of current dissertation is to assess validity and sensitivity of the two-velocity method (discussed later in
the text), which could be developed and implemented during routine testing procedures for
comprehensive analysis of the single-joint muscle function.



2. Muscle mechanical capacities

2.1. Strength

In biomechanics, there are two types of forces, those that act within body (e.g. transmitting force
from tendon to bone) and outside of the body (e.g. interaction of the subject with the environment)
(Zatsiorsky & Kraemer, 2006). People cannot directly influence the magnitude of the forces which are
acting inside of our bodies and, therefore, the term force will reflect only forces that are acting outside
of our bodies. Instead of force, the appropriate term for naming muscle capacity is strength. Muscle
strength refers to the capability of the muscles to develop high forces in isometric conditions (i.e., when
there is no movement) or to develop high forces during slow movement velocities. Developing muscle
force is related with the increments in the cross sectional area, muscle length, changes of the muscle
length (and shortening velocity), etc. (Kukolj, 2006).

The force that a muscle can produce increases in parallel with its cross sectional area (Bruce,
Phillips, & Woledge, 1997). This relationship between muscle strength (i.e., exerted force) and cross-
sectional area is positive and high. In addition, level of the developed force is directly related with the
time available for muscle contraction. This can be explained by the well-known fact that specific time is
needed both for attaching and detaching of actin and myosin chains (Cormie, McGuigan, & Newton,
2011). Relationship which describes association between force and available time is so called force-time
relationship. Maximal forces are developed during isometric contractions, while the capacity to generate
maximal force decreases with increment of the velocity of the movement (Hill, 1938). In order to achieve
maximal force 3-5 seconds are needed (Abernethy et al., 1995). What needs to be noted is that resistance
and magnitude of the exerted force are proportional, so when the external resistance increases so does
the muscle force.

The magnitude of force achieved during some activity can be described using absolute or/and
relative indicators. More specifically, absolute force refers to the maximal load lifted, or force applied
(in kg or N) without considering weight of the subject. On the other hand, relative force is described as
force developed per kg of the subject's weight (kg/kg, N/kg). In fact, Jaric (2002) has shown that the
association between developed force and body weight is non-linear and suggested using alometric scale
for this purpose (N/kgn%3).

2.2. Velocity

High velocity of the movement is the main prerequisite for successful performance in many
sports. Factors that are influencing velocity of the multi-joint movements are: (1) muscle structure (i.e.,
percent of slow and fast twitched fibers of the muscles involved in the movement), (2) age, (3) force and
power capacities, (4) level of sports technique (Nesi¢, 2002). As a multi-joint characteristic, velocity is
defined as ability to perform movement(s) as quickly as possible, while external resistance is not big,
activity of the movement is not coordinative demanding and activity does not last long. More, it can be
divided into speed of the reaction time, velocity of the single movement and frequency of the movement
(Kukolj, 2006). Depending of the sport discipline, most important type of speed can and should be
developed during specific trainings.



Heterogeneous muscle structure is undoubtable one of the crucial factors that affect velocity of
the movement. Different muscle fibre types that make muscle structure heterogeneous are tightly
connected with the velocity capacity of the individual muscles, and thus velocity capacity of the multi-
joint movements. To date, 4 different “pure” muscle fibre types are known, with specific abilities to
produce maximal velocity. Specifically, lowest maximal velocity of shortening can be achieved in type
| fibres, type 11B are the fastest, while I1A and 11D types display comparable values, but lower than 11B
(Pette & Staron, 2000). These “pure” muscle fibre types are composed of single myosin heavy chain
isoform. Additionally, few “hybrid” fibre types are known (i.e., composed of two or more myosin heavy
chain isoforms) making the muscle tissue even more heterogeneous (Pette & Staron, 2000). It has been
suggested that muscles can be shortened with a speed of 3 length per second (Jari¢, 1997), depending of
the muscle structure, while most of the single-joint movements are faster than 200 °/s (Pereira & Gomes,
2003).

Shortening velocity is a muscle capacity which is predominantly influenced by genetics, which
means that it can be slightly improved with training (Kukolj, 2006). Even though relatively persistent,
muscle fibres are structures that are capable of changing their phenotype under specific circumstances
(e.g. training). Thus, implementing different training regimes might increase shortening velocity due to
the muscle fibre transitions. For years, it was generally accepted that for improving specific sport
performance, exercises during training should be performed at a specific velocity. Opposite to this,
Cronin et al. (2002) indicated that increasing muscle capabilities such as strength, rate of force
development and power would lead to better improvements in sport performance in comparison to
training at a specific velocity.

2.3. Power

Power can be described as the capability of the muscles to generate force rapidly (Lima &
Rodrigues de Paula, 2012). Power should be considered as the “product of velocity and force of the
movement” (Kukolj, 2006). Based on this, it can be concluded that if the aim is to increase power, force
or/and velocity should be increased. More, power output is zero when the force is zero and/or shortening
velocity is zero, while during multi-joint movements it reaches a maximum at an intermediate force (i.e.,
one half of the maximal force) and associated velocity (Josephson, 1993). Maximal power depends on
several factors (described below) which are interdependent:

Mechanical factors

Mechanical factors upon which maximal power capacity of the muscle depends on are numerous,
while some of the most important are: time available to exert force, velocity of the movement and type
of the muscle contraction (Cormie et al., 2011). Peak power is influenced by the F-V relationship in a
way that it is maximised around /3 of the maximal velocity during single-joint, and around /- during
multi-joint movement (Jari¢, 1997). In addition, power depends on time available to attach cross bridges,
while it is higher during eccentric-concentric (stretch shortening cycle) in comparison to power which
could be developed in pure concentric-only movement (Cormie et al., 2011). More, during stretching of
the muscle-tendon complex potential energy is saved in tendons, cross bridges and aponeurosis, which
could be used in next contractions (Cormie et al., 2011).

Morphological and neural factors
Percent of slow and fast twitch fibres is the main morphological factor which influences power.
A person with more fast twitch fibres will demonstrate an improved capacity to produce muscle power
4



(Cormie et al., 2011; Wilmore & Costill, 1994). Indirectly, power depends on muscle length, and
physiological cross-sectional area. Neural factors which are influencing muscle power are “firing
frequency, motor unit recruitment, synchronisation and inter-muscular coordination” (Cormie et al.,
2011).



3. The assessment of muscle mechanical capacities

Testing muscle capabilities is widely applied in sport (Singh, Chengappa, & Banerjee, 2002),
recreation (Gissis et al., 2006) and rehabilitation (Bohannon, 2001). Results of these tests can reveal
current state of the muscle system, while same result should be used with precaution for predicting sport
results (Singh et al., 2002). Testing can be performed in laboratory or in field conditions. As it is well
known, laboratory testing allows obtaining more precise information, with a higher internal validity,
while field tests are more ecologically valid. Particular tests are conducted to assess mainly one motor
capability. However, it is generally thought that strength, power and velocity are inter-related to some
extent.

3.1. Strength assessment

Strength can be assessed using direct and indirect methods. Direct methods are the one that
provide real force mechanical output, using dynamometers. Formulas that are used for indirect estimation
of the force are “based on the assumption that number of repetitions against loads lighter than a maximal
(i.e., some % of the one repetition maximum [1RM]) does not change under training” (Knezevi¢ &
Mirkov, 2011). In the next two paragraphs, isometric test will be described (as a representative of direct,
laboratory testing methodology) as well as 1RM testing procedure (which represents indirect, field force
assessment methodology).

So, as it has been emphasized previously, one group of testing procedure consists of tests during
which muscles act against static resistance (i.e., isometric dynamometry). Capability that has been
assessed in this manner is sometimes called static strength, and represents capacity to produce force or
torque (T) under maximal volitional isometric conditions (Caldwell et al., 1974). Test usually lasts 3-5
seconds (Caldwell et al., 1974). Even though it has evident internal validity, reliability and sensitivity,
the ecological validity is low due to the fact that this kind of movements are extremely rare in everyday
life (Nedeljkovic, 2016).

The other testing procedure consists of tests during slow velocity of the movements, and the most
common type of it is 1IRM test. 1RM type of test pertains to group of the tests which are known as
isoinertial dynamometry (i.e., resistance is constant). As the name says, this testing protocol requires
performing one repetition with the resistance which can be lifted only once. Velocity of the movement
during this kind of tests is different for different movements/exercises (Garcia-Ramos, Pestafia-Melero,
Pérez-Castilla, Rojas, & Haff, 2018). As it has been shown, irrespective of the sex or muscle group, 1RM
testing protocol is a reliable method for assessing muscle strength capacities as long as it is performed
after familiarisation period and short warm-up (Seo et al., 2012). Ecological validity of this kind of
testing procedure is higher in comparison to isometric testing, as the muscles act both in eccentric and
concentric conditions, which is common to regular activities such as walking, running, jumping, etc.

3.2. Velocity assessment

Regarding sport performance velocity assessment can be carried out with a goal to discover
maximal velocity capacity. What is important to emphasize when assessing maximal velocity is that
some basic prerequisite needs to be fulfilled. Namely, test should be conducted in a way that the
movement is simple, resistance minimal and that activity does not last long. Tests for assessing maximal
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velocity capacity can be divided into 3 different groups (1) tests for reaction time: different kind of
movements performed from a variety of starting positions (on audio or visual, predetermined or
unexpected signal), (2) speed of the single movement: different kind of throwing, jumps, short maximal
accelerations, etc., and (3) frequency of the movement: hand tapping, running, etc. (i.e., selection of the
test depends on specific sports activity) (Kukolj, 2006).

Besides revealing maximal velocity capacity, velocity assessment could be used for controlling
intensity during resistance training. For instance, velocity assessment gain massive popularity as it has
been reported that during typical resistance exercise in isoinertial conditions (i.e., assuming that
repetitions are performed with maximal volitional effort) velocity decreases as fatigue increases
(Gonzéalez-Badillo, Marques, & Sanchez-Medina, 2011). Prescribing and controlling exercise intensity
based on the measured velocity is well known as velocity-based training. According to Garcia-Ramos et
al., (2019) “velocity-based training requires the measurement of velocity in real-time and provides at
least three important practical applications: (I) load can be adjusted on a daily basis to match the desired
intensity (commonly expressed as a percentage of the 1RM) due to the strong relationship between
movement velocity and the load lifted (Gonzélez-Badillo & Sanchez-Medina, 2010), (1) the volume of
the training session (e.g., the number of exercises per session, sets per exercise or repetitions per set) can
be prescribed based off the magnitude of velocity loss due to its close relationship with markers of
fatigue, and (I11) the administration of real-time velocity feedback improves motivation and enables the
maintenance of higher movement velocities during resistance training”.

3.3. Power assessment

As it was previously mentioned power is maximised when the muscles are acting against optimal
load, and the intention to perform the movement is as fast as possible. Generally, optimal load for power
production (i.e., and consequently power assessment) depends from exercise and type of the sport in
which athlete is involved, and it is usually defined as a percentage of 1RM. For example, “power output
is maximised at 0% of 1RM in the jump squat, 56% of 1RM in the squat, and 80% of 1RM in the power
clean for strength and power athletes” (Cormie, McBride, & McCaulley, 2007). Most common tests for
power assessment are: Wingate test (30 sec) on bicycle ergometer, different types of jumps (i.e., 30-kg
jump squat, countermovement, and drop jumps (Cronin & Hansen, 2005)), and throws (ballistic
exercises), Margaria test (Nedeljkovic, 2016), seated shot put, medicine ball chest pass (Falvo, Schilling,
& Weiss, 2006), etc. Besides choosing specific exercise, choosing an appropriate equipment is one of
the important requisites of every power assessment. For example, in the study of Cormie et al (2007)
power measurement techniques were validated utilising different kinetic and kinematic devices (i.e.,
different combination of the linear positioning transducers and force plates) during squat jump, squat and
power clean. The results of the study showed that both the analysis procedures and data collection affect
the power output as well as the load-power relationship.

3.4. Open and closed kinetic chain

There is continuous debate over selection of “open” versus “closed” kinetic chain exercises and
tests both in scientific literature and in everyday practice. The term open kinetic chain (OKC) refers to a
movement in which the terminal limb segment is free, while during closed kinetic chain (CKC)
movement distal or terminal limb segment meets external resistance (Mayer et al., 2003). Typical
examples of the OCK movements are throwing, golfing, volleyball strike, etc., while typical examples
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of the CKC are squatting, deadlift, push-up, etc. Even though it seems that there is simple delimiter
between OKC and CKC movements, it has been argued that everyday activities are usually composed of
the successive interchange between OKC and CKC movements (i.e., walking, running, jumping, stair
climbing, swimming, etc.).

More, exercises are divided by different additional criteria into OKC or CKC group. For example,
from the biomechanical standpoint, OKC movements are the ones during which proportion of shear
forces are grater, while CKC movements are characterised by the greater proportion of compression
forces. On the other hand, from the neurophysiological standpoint, OKC are characterised by the
involvement of the single muscle group (i.e., single-joint movements), while CKC movements are
movements that require controlled co-contraction of the multiple muscles/ muscle groups and joints (i.e.,
multi-joint movements) (Mayer et al., 2003). Additional delimiters between OKC and CKC are provided
in the table below (Table 1).

Table 1. Classification characteristics for open kinetic chain (OKC) and closed kinetic chain (CKC)
exercises (Reprinted and modified with permission from George J. Davies from “Orthopaedic physical
therapy home study course 984 , 1998)

Table 1. Common classification characteristics for OKC and CKC exercises. Seated knee
flexion/extension serves as the model for OKC, while a standing squat movement is the CKC model
Characteristic OKC CKC
Distal segment free fixed
Movement pattern rotatory linear
Movement plane single multiple
Moving joints one multiple
Muscle recruitment single group multiple groups
Joint compressive forces slight yes
Joint shear forces yes slight
Equipment often time extensive minimal

Based on the all introduced criteria, isokinetic exercises generally pertain to the OKC group since
the tests involve single joint movements, single muscle group, movement pattern is rotatory and the
portion of the shear forces are higher. However, classifying isokinetic exercises/tests as purely OCK
movements is a bit misleading. Specifically, distal segment of the extremity is semi-free since
movements are predetermined by the lever arm and attachment between load cell and extremity. More,
additional resistance can be very high during testing/training. Lack of free movement and additional
external load are the characteristics of the CKC movements. In this aspect, isokinetic testing/training
could be essentially classified as OKC, however not always as a purely OKC movements. Maybe the
best definition is the one proposed by Steindler, who defined OKC activities as the activities undertaken
to create high velocities or acceleration, while CKC are activities with a focus of generating high levels
of strength (Steindler, 1977). In this manner, isokinetic exercise performed under higher angular



velocities (i.e., 180 °/s) could be defined as OKC, while the ones under low angular velocities (i.e., 60
°/s) could be defined as CKC.

3.5. Force-velocity relationship

Muscles could shorten faster when they act against light resistances, in comparison to when they
act against heavy ones (Seow, 2013). In other words, assuming that an individual performs the movement
with maximal effort, movement velocity will be decreased when the resistance is increased. First
researchers that investigated the relationship between force and velocity of the movement were
conducted at the beginning of the previous century (Fenn & Marsh, 1935; Gasser & Hill, 1924). Dr.
Archibald Hill conducted his first research on isolated muscle of the frog (m. sartorius). Namely, he
measured the change of heating energy, which was influenced by the velocity of the shortening, and
concluded that these two variables have a direct and proportional relationship. First mathematical
formulation of the F-V relationship (equation 1) was formulated 1938 by the Dr. Archibald Hill, and it
describes relationship between muscle force and shortening velocity of the muscles and it has a
hyperbolic shape.

(V+Db) (F+a)=(FO0+a) b (equation 1)

Shortening velocity

Figure 1. Force-velocity relationship of single-joint movement
(Reprinted with permission from: Force-velocity Relationship of Muscles Performing Multi-
joint Maximum Performance Tasks, Jaric, S., 2015)

Studies were firstly conducted on animals, isolated muscles, and later on single- and multi-joint
movements. However, proliferation of scientific literature regarding F-V relationship and its use for a
testing and training purposes started with the study of Jaric (2015), who suggested that the F-V
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relationship during multi-joint movements could follow a linear shape, making calculations of the F-V
parameters relatively simple using following equation:

F(V)=Fo—aV (equation 2)
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Figure 2. Force-velocity relationship during multi-joint movements
(Reprinted with permission from: Force-velocity Relationship of Muscles Performing Multi-
joint Maximum Performance Tasks, Jaric, S., 2015)

where Fo represents y-intercept (maximal theoretical force), Vo is X-intercept (maximal
theoretical velocity), a is the slope of the F-V relationship, and it represents the ratio between Fo and Vo,
while Pmax is the maximal power which, as a direct consequence of the F-V linearity, can be calculated
in this manner:
Pmax = Fo X Vo / 4 (equation 3)

After the proposal of Jaric (2015), modelling the F-V relationships during multi-joint movement
was commonly done by recording more than two experimental point (i.e., more than two pairs of force
and velocity data; multiple-point method) (Cuk et al., 2016; Garcia-Ramos, Jaric, Padial, & Feriche,
2016; Giroux, Rabita, Chollet, & Guilhem, 2016). Although precision of determining F-V relationship
parameters increases as the number of experimental points increases, it has been argued that this
procedure could be fatiguing and time-consuming. A study of Jaric (2016) and Perez-Castilla et al.
(2018), showed that implementing only two most distant experimental points could be viable solution to
increase time-efficiency and to decrease possible negative effect of fatigue. Worth mentioning is that
reliability of the Vo parameter is the lowest, when compared to other F-V relationship parameters,
regardless of the method applied (i.e., two- or multiple-point method).

Based on everything mentioned above, F-V relationship depends on four F-V parameters (i.e.,
Fo, Vo, Pmax and a,) which have true physiological meaning. Fo is the parameter of F-V relationship which
represents maximal theoretical isometric force (e.g. force applied while velocity of the movement is 0
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m/s), Vo represents maximal theoretical velocity (e.g. when there is no additional resistance), while Pmax
represents maximal theoretical power. And lastly, a describes the ability to maintain force production
despite increasing movement velocity (Morin & Samozino, 2016). Consequently, F-V relationship has
some very important implications which will be presented in the text below.

Firstly, the fact that modelling of the F-V relationship could be done relatively simple opened a
possibility to a body of studies to explore shape and slope of the F-V relationship during various
exercises, experimental conditions and sports, and primary for assessing maximal muscle capacities of
athletes. For example, linearity of the F-V relationship has been confirmed during multi-joint movements
as for example during vertical jumps (Samozino et al., 2014), cycling (Zivkovic, Djuric, Cuk, Suzovic,
& Jaric, 2017b), and various upper body movements (Nikolaidis, 2012). Very interesting study was
conducted by the French scientific couple (Morin & Samozino, 2016) who showed that modelling F-V
relationship might be used for monitoring training program on an individual plain, since single program
could not fit the needs of the group of athletes. Moreover, they demonstrated that F-V relationship
modelling could be also used for assessing imbalances between muscle mechanical capacities (i.e.,
whether athlete needs to optimize individual F-V profile by increasing force or velocity, etc.). It is
important to keep in mind that individual F-V relationship could be used to individualize training
stimuluses, since it has been shown that F-V profiles differ more between individual athletes than
between athletes of different sports (Haugen, Breitschadel, & Seiler, 2019). Consequently, Jiménez-
Reyes, et al. (2017) tested hypothesis that F-V relationship could be implemented for optimising training
programs. Specifically, they applied two types of training programs (i.e., training that is based on the
individual imbalances in the F-V profile, and resistance training that is common to every participant),
and showed that for improving jump performance training program that took into account imbalances
and differences in the initial individual F-V profiles had greater success.

Thirdly, F-V relationship modelling found its place in the robotic and prosthetic development,
where one of the most challenging part is to build artificial muscles. In the relatively recent study of
Schmitt et al. (2012) authors proposed a simple bio-inspired functional artificial muscle that could be
used in the prosthetic and robotic industry, and which is grounded on the F-V relationship model.
However, it is important to keep in mind that used F-V relationship models are based on the hyperbolic
Hill model, and not linear, as it is lately proposed for multi-joint movements. Although utilisation of the
F-V models is relatively new approach in the biomedical prosthetic engineering, previous studies have
implemented different isokinetic tests and isokinetic F-V modelling to assess post-operative status of the
patients with prosthetics (Horstmann et al., 1994; Ryser, Erickson, & Cahalan, 1988).

Finally, it is a matter of time when the F-V relationship modelling would be used in some new
area. A potential new direction of the use of the F-V relationship might be as a method for deciding about
future specialization of young athletes. Keeping in mind that chronic engagement in specific sport lead
to a differently balanced force-velocity profiles (Giroux et al., 2016), young athletes with specific F-V
profile might be directed toward suited sport/discipline.

3.6. "Two-point method": a novel method for F-V relationship modelling

As it has been previously mentioned, F-V relationship was shown to follow linear shape when it
was assessed from different functional tasks. This feature of the F-V relationship was the initial premise
for dr. Slobodan Jari¢, to propose F-V relationship modelling using just two distinctive experimental
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points (i.e., “two-point” method) (Jaric, 2016). In his opinion “two-point method” might be able to
discriminate between maximal muscle capacities in a less time and without negative influence of the
fatigue in comparison to method that was routinely used for F-V relationship modelling, more popularly
known as “multiple-point method” (i.e., more than two experimental pairs of force and velocity values
are used for F-V relationship modelling). Even though the “two-point method” was proposed few years
ago (Figure 3), a number of papers have been published, confirming hypothesis proposed by Jari¢ (2016).
Importantly, it has been shown that the farthest pair of loads (i.e., the points closest to the intercepts)
could provide the highest reliability and validity among all two-point methods evaluated (Pérez-Castilla
et al., 2018), so when possible, researchers should try to use most distinct points for modelling.

1000 - a
800 - -B- Full regression model
-~ Two - loads model
600 - y =-311x + 892
3
L 400 +
y =-299x + 862
r=0.989
200
l |

V (m/s)

Figure 3. Linear force—velocity relationships modelled applying multiple- (dashed line, solid and empty
squares) or two-point method (solid line and solid squares) during bench press exercise.
(Reprinted with permission from: Two-load method for distinguishing between muscle force,
velocity, and power-producing capacities, Jaric, S., 2016)

Specifically, this method was validated with respect to “multiple-point method” and during
specific tasks such as motorized treadmill test (Dobrijevic, llic, Djuric, & Jaric, 2017), electronically
braked cycle ergometer (Garcia-Ramos, Torrejon, Pérez-Castilla, Morales-Artacho, & Jaric, 2018), squat
jumps (Janicijevic et al., 2019), etc. Additionally, it has been also used for assessing upper body muscle
capacities (Garcia-Ramos et al., 2017), and for various exercises in the single study (i.e., bench pull,
vertical jumps, bench press throws, and cycling) (Zivkovic et al., 2017b). Generally, these studies
suggested that the two-point method is a fatigue free and time-effective procedure able to discriminate
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between muscle mechanical capacities. These characteristics make the two-point method valuable tool
for monitoring athletes’ capabilities during training program.

Regarding the ability of this method to predict 1 RM, the study of Garcia-Ramos and Jaric (2018)
gave some crutial implications and steps that need to be fullfiled to validly obtain 1RM using this method.
Specifically, besides above-mentioned requisite that experimental points need to be close to the intercepts
(i.e., force and velocity intercepts) it is recomendable that load close to the force intercept used for L-V
modelling should represent approximately 70-80% of self-reported 1RM, because higher loads were
shown to have lower reliability. More, two trials with the same loads could be suficient and both avaraged
or maximal values of recorded variables could be used for modelling, while the rest periods between
trials are test-, and load-specific.

Although majority of the studies assessed validity of the "two-point method" during multi-joint
movements, Grbi¢ et al. (2017) validated this method for assessing maximal mechanical capacities
during isokinetic knee extension (KE) task. This study was an important step forward, since it opened a
possibility to quickly evaluate maximal mechanical capacities applying isokinetic dynamometry, which
is known to be an important assessment tool during rehabilitation. Since during isokinetic testing one of
the requisites is to pre-set velocity, “two-velocity” instead “two-point” method will be used further in
the text in the context of isokinetic testing.
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4. Muscle mechanical capacities of the single-joint movement assessed using
Isokinetic dynamometry

4.1. Isokinetic testing

4.1.1. The concept of isokinetic testing

The concept of isokinetic dynamometry was proposed by Perrine and Hislop in the 1967 (Hislop
& Perrine, 1967). The term "isokinetic' literally means same, constant velocity, and therefore isokinetic
testing could be considered as a testing employed under constant velocity of the movement. More
specifically, during isokinetic test “muscle or muscle group contracts against a controlled
accommodating resistance, which causes a limb segment to move at a constant angular velocity ()
within a prescribed sector of its range of motion” (Dvir, 2004). Long before the development of the
isokinetic devices, muscle function was evaluated using manual muscle testing, which has shown to be
useful tool for clinical assessment of the muscle strength, while scientific validation and application
needed to be employed (Cuthbert & Goodheart, 2007). After developing, concept of isokinetic
dynamometry gain massive popularity, since it enables assessing muscle function during conditions that
are highly objective, reliable and valid (Land & Gordon, 2011; Mayhew et al., 1994).

Until isokinetic testing gained popularity, two different concepts of resistive exercise were used
(i.e., isotonic and isometric) (Hislop & Perrine, 1967). Isotonic exercises involve movements against an
additional load which is constant, and isometric against an immovable load. Although external load is
constant, resistance is variable during isotonic exercises. In comparison to this, lever arm of the isokinetic
dynamometer allows applying maximal resistance throw whole range of movement by modifying
resistance of the lever arm (i.e., so that isokinetic velocity could be achieved). This specifically means
that the resistance accommodates the external forces which are created by tested muscles (i.e., force
output is maximised) during the whole movement.

Even though term "isokinetic" means that velocity of the movement is constant, there are phases
during the movement when limb accelerates (beginning of the movement) and decelerates (end of the
movement). The higher the velocity, acceleration and deceleration phases take greater part of the
movement, limiting duration of the “true” isokinetic phase (i.e., sometimes referred as the isokinetic
sector) of the movement. It has been argued that velocities above 180°/s have a very short isokinetic
phase (lossifidou & Baltzopoulos, 1996) and that this could decrease the accuracy of the measurement
(Brown, Whitehurst, Findley, Gilbert, & Buchalter, 1995). Example of isokinetic force-time curves
recorded during KE (Figure 4) and elbow flexion (EF) (Figure 5) test recorded under 30, 60, 90, 120,
150, 210 and 240 °/s in male subjects. More specifically, lossifidou and Baltzopoulos (1996) stated that
duration of isokinetic sector could be somewhere from 76.5 to 20.9% for the Biodex (during angular
velocities ranging from 30 to 150 °/s), while for the KinCom between 66.7 and 28.1 % (from 30 to 250
°/s). If higher velocities were applied, this movements can be considered as ballistic rather than isokinetic
(Dvir, 2004).
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Figure 4. Force-time curves of the knee extensors recorded during 30, 60, 90, 120, 150, 180, 210 and 240 °/s.
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4.1.2. Hardware, software and common testing variables

Isokinetic dynamometers are robust and multipart. Even though there are different types of

dynamometers, basic parts are the same. According to Dvir (2004) parts of dynamometers are:

1.

2.

3.
4.

The head assembly- contains a motor that enables constant velocity of the movement by producing a
same amount of force as the tested muscle/muscle group, but in the opposite direction.
Lever arm- solid part that is attached to the head assembly and which can be moved radially around
immovable axis.
The load cell- enables collecting data regarding changes of the exerted muscle force over time.
The “force acceptance attachment- is the interface between the subject and the system”. Specifically,
it is accessory which is attached on the lever arm through the load cell. This “force acceptance
attachment” could be positioned according to the individual anthropometric characteristics.

Screen of the computer enables real time feedback which is shown to be important factor for

additional motivation of the subjects (Weakley et al., 2018). Afterwards, signal can be processed using
software such as LabView, MathLab, etc.

40

Picture 1. Isokinetic setting
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Prior testing some basic prerequisite needs to be fulfilled:

1. Selection of the range of motion (ROM),

2. Angular velocity(ies),

3. Subject positioning,

4. Aligning the axis of the dynamometer with the subject’s joint,
5. Contraction mode.

Signal obtained during isokinetic testing represents exerted force during specified ROM at a

given angular velocity. From this force-time signal following variables can be determined (Dvir, 2004):

1. Peak torque/force- maximal value of force/torque obtained during whole ROM, does not involve
specification of its location (Brown et al., 1995; Castro et al., 2018);

2. Average torque/force- mean value of force/torque obtained during whole isokinetic spectrum
(constant velocity part of the velocity-time curve), does not require specification of its location
(Calmels, Nellen, van der Borne, Jourdin, & Minaire, 1997);

3. The angle of a maximal torque/force- reveals specific angle during which force reached its maximum,

and it varies as a function of pre-selected velocity (Castro et al., 2018);

Torque/force at a given angle- torque/force value of the specific angle of interest;

Work- in biomechanics, in a context of isokinetic testing, work “refers to the product of muscular

force exerted through specific ranges of movement” (Hislop & Perrine, 1967). It can be presented as

total work (Brown et al., 1995; Castro et al., 2018), peak work (Sarig Bahat, Blutich, & Kodesh,

2019) or average work;

6. Power- usually defined as the rate of doing work. In biomechanics, it represents the product of force
and velocity (i.e., torque and angular velocity). Similar to other variables, it can be presented using
its maximal or average values (Ellenbecker & Roetert, 2003);

7. Impulse- quantifies the overall torque/ force during movement time I= F * t (Ns), I=M*T (Nms).

ok~

Since force applied on the load cell is usually exerted during angular movement (Land & Gordon,
2011), and since sensor of the dynamometer which measures force is set at some distance from the centre
of rotation, torque (e.g., product of the length of the lever arm and generated force) is usually reported.
Since the body segments are relatively short, torque measurement error of 1 cm decrease reliability only
2.5-5% (Dvir, 2004). All mentioned reported variables could be presented as average and/or peak values.
Additionally, single muscle group or ratios between antagonistic muscle groups or extremities could be
reported depending on the needs. More, values could be presented as an absolute or as a relative (i.e., per
kg of body mass).

Besides measuring force under movement of a constant velocity, there is possibility of measuring
muscle force under isometric conditions (i.e., against immobile lever of the dynamometer), which is an
important indicator of maximal strength capacity of a tested muscle. Additionally, explosive torque/force
production of human skeletal muscle is usually evaluated under isometric conditions being that the
different angular velocities, joint angles and acceleration interact with torque in a non-linear fashion, that
would certainly lead to the confound measures and inconsistent results (Maffiuletti et al., 2016). Figure
6 depict force output change during isokinetic test which has been obtained using isokinetic
dynamometer with an initial position set at 120° (180° represents full extension).
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Figure 6. Force-time curve of knee extensors recorded under isokinetic conditions.

Isokinetic testing is possible during both eccentric and concentric contractions (Zemach,
Almoznino, Barak, & Dvir, 2009), and if the muscles are tested in the cyclic mode they can be performed
in concentric-concentric, concentric-eccentric and eccentric-eccentric regime of the work. On the other
hand, numerous studies have explored the strength of antagonist muscle pairs and their corresponding
ratios using isokinetic dynamometry (Brown et al., 1995; Grbic et al., 2017; Land & Gordon, 2011;
Michael, Konig, Bertram, HeRling, & Eysel, 2005). Reporting the strength ratio between antagonist
muscles is generally recommended because it could provide valuable additional information (Campbell
& Glenn, 1982). Most common angular velocity for reporting strength ratios is 60°/s (Land & Gordon,
2011), and for extensors and flexors acting in knee, hip, elbow and shoulder joint, reported values
favoured knee extensors (KE) (Kurdak et al., 2005), hip extensors (HE) (Castro et al., 2018), elbow
flexors (EF) (Lategan & Kriiger, 1995) and shoulder extensors (SE) (Cahalan, Johnson, & Chao, 1991)
in comparison to their antagonistic muscle pairs (knee flexors [KF], hip flexors [HF], elbow extensors
[EE] and shoulder flexors [SF], respectively). However, it should be noted that strength ratios have
always been assessed against individual angular velocities (Land & Gordon, 2011).

4.1.3. Outcomes of isokinetic testing

From its origin, outcomes of the isokinetic testing had been used for assessing maximal muscle
capacities, asymmetries between limbs (Daneshjoo, Rahnama, Mokhtar, & Yusof, 2013), ratios between
antagonistic muscle groups (Kong & Burns, 2010), as well a method for injury prediction (Bennell et al.,
1998). Regardless of the purpose, it is important to mention that applying submaximal warm-up
decreases possibility of injury and increases the reliability of obtained results during isokinetic testing
(Osternig, 1986). Different testing procedures could significantly affect results obtained during isokinetic
testing (Gleeson & Mercer, 1996), emphasizing necessity of having testing procedures as uniform as
possible. But before discussing about possible outcomes of isokinetic testing, emphasize will be put on
the metric characteristics of its outcomes.

19



Numerous studies have shown that isokinetic dynamometry is a reliable method for force
assessment, specifically it has been shown using different isokinetic devices such as KinCom (Farrell &
Richards, 1986), Biodex (Feiring, Ellenbecker, & Derscheid, 1990), Cybex (Cockburn & Hayes, 2010),
etc. Worth mentioning is that reliability of the force outcome generally decreases as the pre-set angular
velocity increases (Montgomery, Douglass, & Deuster, 1989), while the test-retest of the knee extension
and flexion exercise has been used most frequently for assessing reliability (Cockburn & Hayes, 2010;
Feiring et al., 1990), with the knee extension being the more reliable test (Montgomery et al., 1989).

Regarding validity, the study of Drouin et al. (2004) reported near-perfect agreement between
variables that were measured with the Biodex System 3 and criterion measures of velocity, torque and
position. However, this holded the truth for the velocities lower than 300 °/s, while for the some variables
recorded during velocities higher than 300°/s, validity systematically decreased. More, isokinetic
dynamometry, as a testing procedure, has been commonly referred to as the "gold standard". With evident
logical validity for assessing power and strength capacities, it has also been used as a method for
validating other tests (Mondin, Owen, Negro, & D’Antona, 2018) due to its costly nature.

Although the aspect of sensitivity was not in the centre of research attention of the isokinetic
community, study of Knezevic et al. (2014) showed that force output produced at 60 and 180 °/s were
sensitive enough to discriminate the neuromuscular function of the injured leg during three occasions
before ACL reconstruction, and after 4 and 6 months. Additionally, same parameters of the uninvolved
leg did not change during this period, which additionally confirms sensitivity of the applied isokinetic
test. More, Mirkov et al. (2017a) proposed utilisation of the two-velocity method for assessing
neuromuscular function of the injured leg using isokinetic testing (i.e., force output during 60 and 180
°/s). Specifically, the authors demonstrated that Fo and Vo parameters were higher 6 months in
comparison to 4 months after surgery for quadriceps, while for hamstrings differences were noted only
for Fo.

Going back to the benefits of isokinetic outcomes, it is of paramount importance to gain
knowledge about the maximal muscle capacities, because they have a great impact on sports performance
(Jiménez-Reyes et al., 2017) and rehabilitation process (Mendiguchia et al., 2016). Although isokinetic
dynamometry has been criticised due to a lack of specificity, it has been used massively for assessing
maximal capacities. In this regard, 60 °/s have been considered as velocity under which muscles could
produce maximal torque/force output, while 180 °/s has been thought to be velocity which enables
production of the maximal muscle power (Raj, Bird, & Shield, 2010). Despite the existence of wide
range of velocities, these two values (i.e., 60 and 180 °/s) have been usually selected for exploring these
capacities (Grbic et al., 2017; Michael et al., 2005).

Due to the possibility to adjust isokinetic assembly for testing different muscle groups, numerous
designs had been developed to assess possible asymmetries of the body applying different ranges of
movement and velocities which could go up to 500 °/s (Baltzopoulos & Brodie, 1989). Specifically, force
of the same muscles of the different limbs are measured to assess bilateral asymmetries (Daneshjoo et
al., 2013). For example. the phenomenon of between-leg asymmetries received consistent attention from
the strength and conditioning community over the last decades (Bishop et al. 2016), and it refers to the
difference in the performance and mechanical outputs between two legs. It has been argued that the
presence of between-leg asymmetries can affect jumping performance, ability to quickly change
direction, provoke injuries, etc. (Bishop et al. 2016). Even though regularly defined as a percentile
difference between stronger and weaker, non-dominant and dominant or right and left leg, Exell et al.
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(2012) suggested that between leg asymmetries exist only when between leg difference is bigger than
variability of the single leg. Between-leg asymmetries has been assessed in a various ways including
unilateral (Kobayashi et al., 2013) and bilateral (Jordan, Aagaard, & Herzog, 2015) tests, as well as using
less (i.e., isokinetic, isometric) and more functional testing procedures (Menzel et al., 2013).

Beside this, contrasting results obtained between isokinetic and performance (e.g. isokinetic
testing shows no relative differences in strength between legs, but functional test shows or vice versa),
implied that not only strength, but also different movement patterns influence asymmetries. For example,
although Impellizzeri et al. (2007) reported significant correlations between results obtained from
isokinetic testing and vertical jJump, Menzel et al. (2013) showed that variables obtained during isokinetic
and vertical jump testing cannot be used interchangeably and do not portray same origin of the
imbalances.

4.2. Isokinetic F-V relationship during single-joint movements

Even though it has been shown that F-V relationship is polynomial (Hill, 1938), recent studies
showed that if maximal isometric force is excluded from the regression model, this relationship can be
presented using linear regression model. Besides, it has been shown that isokinetic relationship in in-vivo
conditions is less steeper than in in-vitro conditions (Osternig, 1986). Even though isokinetic testing has
been considered as a gold standard with high internal validity, the fact that the testing procedure can
occupy significant amount of time should not be neglected. A study of Zemach, et al. (2009) is a typical
representative of a study with a general aim to increase time-efficiency during isokinetic testing. These
researchers recommended that therapists or researchers should not use very slow or very high angular
velocities since they can provoke pain, and that implementing isokinetic test under single or two angular
velocities could portray unilateral muscle imbalances. Namely, group of subjects who participated in this
study was a group which was recovering from knee injury, and the test was KE. Angular velocities which
were used were 30, 60, 90 and 120 °/s, while the interpretation break was 5s, and inter-velocity brake
was 30s.

Prior to the study of Hislop & Perrine (1967), who introduced isokinetic concept of exercise and
testing, different measurement systems were used to explore F-V relationship. For example, Wilkie
(1949) used triangular lever and cables which transmitted resistance from an attached load, while velocity
was estimated from a charge accumulated on a condenser (i.e., condenser was charged during the
movement). In this manner, F-V relationship shape could be modelled and examined during elbow
flexion exercise. During the eighties important study was conducted in which authors very carefully
demonstrated differences in the force output during dynamic and isometric contraction and influence of
the acceleration phase during the isokinetic exercise (Thorstensson, Grimby, & Karlsson, 1976). Besides
exploring the shape of the F-V relationship, they added significant knowledge about the differences
between dynamic and isometric force output, influence of the acceleration phase and their dependence
from the movement velocity during single joint movement. Namely, they showed that isometric output
for specific angles is always higher than dynamic output, regardless of the angular velocity. While they
investigated force-time output for 180°/s they noticed that acceleration part of the movement could last
up to 10°, which can be observed as a sudden drop in the force when the acceleration phase ends.

In the following text relevant studies related to the F-V or T-w relationship and isokinetic testing
will be presented. Difference between torque and force is that torque is defined as a twisting force that
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tends to cause rotation and can be computed as the product of the perpendicular distance from the centre
of rotation and the force applied. Therefore, when torque is used lever arm length (i.e., anthropometric
characteristics of the subjects are taken into account) is taken into account, while when F is used only a
linear quantity of the movement is considered. Therefore, it should be emphasized that for modelling T-
o relationships angular velocity should be used, while for modelling F-V relationships linear velocity
should be used.

Interest for accessing F-V relationship during isokinetic testing is present several decades now.
For example, study of James et al. (1994) was assessing characteristics of F-V curves of quadriceps
muscle and demonstrated that different contraction protocols (i.e., volitional or no volitional) seems to
provide different F-V curves for the same muscle group. More, Taylor et al. (1991) explored differences
in torque-angular velocity relationships modeled separately for ‘power trained athletes' and ‘endurance
trained athletes', evaluating differences in their shapes, while de Koning et al. (1985) explored F-V
relationship of arm flexor muscles in subjects that are 'arm-trained' and untrained with an aim to find
differences between different F-V relationship parameters. Additionally, Knapik and Ramos (1980)
explored the decrease in force values with the increase of movement velocity (i.e., 30, 90 and 180 °/s)
during isokinetic testing (i.e., KF, KE, EF and EE), and obtained high correlations between isometric
force and force achieved during low angular velocities, and suggested that low velocities could be used
for predicting maximal voluntary isometric force. Nevertheless, none of these or many other studies
explored the F-V relationship that was modelled using linear regression model. However, the studies that
did explore weather F-V relationship could be modeled using linear regression model were orientated
towards flexors and extensors of the trunk and knee and are discussed in detail below.

Ripamonti et al. (2008) were one of the pioneers in the utilisation of the linear regression model
for examining T-o relationship. Specifically, they were the first that demonstrated that T-w relationship
of trunk flexors and extensors can be modelled using linear regression model. Even though T-o
relationships were linear during these movements, when muscles were tested without proper rest (e.g.,
trunk extension right after flexion) the T-w relationship was polynomial, which was attributed to the
fatigue. More, it is important to mention that angular velocities were not randomised, with an implication
that during rehabilitation subjects usually perform exercises with gradual increment of the resistance.
The following study of the same research group focuses on the ability of the linearly modelled F-V
relationship to evaluate low back pain, which has known to be one of the major public health problem
and it refers to a pain that is localized between the 12th rib and the inferior gluteal folds. Specifically,
the results of the theoretical maximal T was shown to be related to the results of the DALLAS pain
questionnaire (Ripamonti, Ritz, Colin, & Rahmani, 2011), and showed that linear isokinetic F-V
relationship can be used as a complementary information for the regular low back pain evaluation. And
finally, in their third study they described differences in the T-V and P-V relationships of the trunk
muscles in patients that are suffering from chronic lower back pain and healthy individuals, and showed
that lower back pain does not provoke differences in the F-V relationship shapes and that Pmax assessed
from this relationship can be used as a relevant factor of lower back pain (Ripamonti, Colin, & Rahmani,
2011). In described studies subjects were tested on isokinetic dynamometer using six different angular
velocities (45, 60, 75, 90, 105 and 120 °/s), the ROM was set to 60° and flexors and extensors of the
trunk were tested in two non-consecutive days.

Muscle group that has been in the centre of attention of the isokinetic evaluation is quadriceps
femoris (i.e., knee extensors). Using the four velocities (30, 90, 120, 180 °/s) and with an aim to explore
the F-V relationship during submaximal concentric and eccentric contractions Kues & Mayhew (1996)
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tested thirty females. The authors demonstrated that F-V relationship is linear and strong, although,
mentioned results should be taken with precaution since the authors used narrow range of movement (50-
70°, 90° corresponds to the full extension) and the participants were stimulated electrically at 30% of
their individual maximal volitional isometric force. However, one of the first significant steps forward
in the utilisation of the linear isokinetic F-V relationship for the volitional KE assessment was made by
Lemaire et al. (2014) who showed that the F-V parameters did not differ when the F-V relationships were
modelled using eight or just three experimental points. The authors of this study were the first who started
lowering down the number of experimental points for modelling linear F-V relationship and calculating
corresponding parameters. Specifically, they tested 16 males on isokinetic dynamometer at eight angular
velocities (60, 90, 120, 150, 180, 210, 240 and 270 °/s) during KE test. Afterwards, they modelled F-V
relationships using eight and three experimental points (forces obtained during 90, 180, 240 °/s) and
compared obtained F-V relationship parameters. The parameters of the F-V relationships modelled using
only three and eight experimental points did not differ, implying that F-V relationship could be
confidently modelled using only three experimental velocities. Even though research of Lemaire and co-
workers (2014) tried to decrease the number of angular velocities applied during isokinetic testing, the
only study that have used just two angular velocities to model the F-V relationship is the research of
Grbic et al. (2017). Using the same test (i.e., KE) the validity of the parameters of the F-V relationship
was high when obtained from the two-velocity method (force recorded at 60 and 180°/s) compared to the
multiple-point method (force recorded at five velocities: 30, 60, 120, 180, 240°s). Therefore, the two-
velocity method is a promising approach since it could provide more meaningful information (i.e., Fo,
Vo, and Pmax) than the standard isokinetic test (which allows drawing conclusion only about single muscle
capacity).

4.3.Shortcomings of previous studies

As it has been mentioned, nowadays isokinetic dynamometry as a testing method has a massive
popularity in sport and rehabilitation settings. Due to the fact that it has been proposed as a method in
the seventies of the past century, numerous protocols have been developed. Choosing the right protocol
can be tricky and the testing results can reveal information only about individual muscle capacity. When
the term protocol is mentioned, it refers to the type of contraction, range of movement, angular velocities,
etc. (Zemach et al., 2009). So, if specific muscle group is tested during low angular velocities, muscle
capacity to produce maximal force will be revealed, while implementing high angular velocities during
isokinetic testing will dominantly reveal capacity of the muscles to develop maximal power. In addition,
the standard isokinetic test (i.e., force output recorded against a predetermined velocity) cannot reveal
the maximal velocity capacity because (I) the velocity cannot be voluntarily changed during the
movement, and (I1) the maximal velocity of the muscles is considerably higher than the velocities
typically used during isokinetic tests. More, most common testing protocol consists of measuring
velocities during consecutive contractions which prolongs testing procedure even more.

Besides, there is no consensus about the threshold of low and high angular velocity during the
single-joint isokinetic testing. Even though it has been reported in the review paper of Pereira & Gomes
(2003) that angular velocities ranging from 20-96 °/s could be defined as low and from 100-300 °/s could
be defined as high, it seems that this question is still an open debate. It has been recommended that
angular velocities higher than 180°/s should not be used because the time at a constant velocity is very
short and this compromises the accuracy of the measurement (Brown et al., 1995), while it has been
argued that maximal power is obtained during velocities that are higher than 180°/s.
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Isokinetic dynamometry is of vital importance for rehabilitation process. People that are
recovering from injuries need to be tested using specific angular velocities and range of movement.
Literature suggests that very slow angular velocities as well as very high are not recommendable for
isokinetic testing for this population, since they can provoke pain (Zemach et al., 2009). Therefore, it
should be possible to predict maximal capacities of the muscles, taking into consideration current abilities
of the convalescents (i.e., intensity of exercises applied during rehabilitation should be set with respect
to the real maximal capacities).

Even though it is shown that F-V relationship modelling has higher informative value, there is
very little studies that were exploring the sensitivity of the model to discriminate between genders,
muscles, different populations etc. More, there is no study with the aim to explore the possibility to
generalize same parameters of the F-V relationship between muscles tested under isokinetic conditions.
Previous studies showed inconsistent results for multi-joint movements (Prebeg et al., 2013; Zivkovic et
al., 2017b).
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5. Problem, scope and aims of the research

Problem of the research is evaluation of the maximal mechanical capacities of the muscles using
isokinetic dynamometry. Often applied isokinetic testing protocols does not provide information
regarding all muscle capacities at the same moment. There is a need to develop less time-consuming and
fatiguing procedure for evaluation of the maximal mechanical muscle capacities.

Scope of the research is the isokinetic F-V relationship modelled using “two-velocity” method
to determine maximal mechanical capacities of the muscles.

Aim of the research: In particular, two studies have been conducted, first one with a general aim
to validate the two-velocity method, and second for exploring sensitivity of F-V relationship to
discriminate between different muscle groups and populations.

Specific aims of the first study: (1) to evaluate the shape and strength of the F-V relationship
obtained from four different muscle groups, (2) to explore the concurrent validity of the two-velocity
method (based on two representative angular velocities: 60 and 180°/s) with respect to the standard
multiple-velocity method (based on eight angular velocities ranging from 30 to 240°/s), (3) to test the
sensitivity of the F-V relationship to discriminate between different muscle groups and genders, (4) to
explore the possibility of generalizing the same F-V parameters between different muscle groups, and
(5) to explore the association between maximal isometric force and theoretical maximal force obtained
using two- or multiple-velocity method.

Specific aims of second study: assessing the sensitivity of the F-V relationship obtained using
the two-velocity method to discriminate between (1) flexor and extensor muscles working at the same
joints (knee, hip, elbow and shoulder), and (2) men with different levels of physical activity, while the
last aim was (3) to examine the generalizability of the same F-V relationship parameters between
different antagonist muscle pairs.
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6. Hypotheses of the research

Based on available literature, hypotheses were set for both studies. For the first study it was
hypothesized that:

(1) All F-V relationships would be highly linear;

(2) Comparable magnitudes and strong relationships would be observed for the F-V parameters
obtained from the multiple- and two-velocity methods;

(3) The F-V relationship parameters would be higher for knee than for the elbow muscles, as well
as in men when compared to women;

(4) The association between the same F-V parameters across different muscle groups would be
generally low;

(5) Association between maximal isometric F and Fo obtained using two- or multiple-velocity
method will be high.

Hypotheses set for the second study are:

(1) The Fo and Pmax relationship parameter obtained for KE, HE, EF, SE would be higher than
for their antagonistic muscle groups (KF, HF, EE, SF);

(2) The Fo and Pmax relationship parameters of all muscles would be higher for active compared
to non-active males;

(3) The association between the same F-V parameters across different muscle groups will be low.
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7. Feasibility of the two-velocity method for assessing the force-velocity
relationship during lower-body and upper-body isokinetic tests (Study 1)*

7.1. Introduction

Monitoring maximal muscle capacities is of paramount importance for the sports performance
(Jiménez-Reyes et al., 2017) and rehabilitation (Mendiguchia et al., 2016). Maximal muscle capacities
refer to the ability of the muscles to produce force (F), velocity (V) and power (P). However, most of the
standardised tests are ineffective to discern between these capacities (Hamilton, Shultz, Schmitz, & Perrin,
2008; Hansen, Cronin, Pickering, & Newton, 2011; Raj et al., 2010). One of the most important testing
methodologies during rehabilitation process is isokinetic dynamometry, and it is considered reliable, valid
and safe for testing muscle capacities (Farrell & Richards, 1986). The concept of isokinetic dynamometry
has been developed in the seventies, and since then numerous protocols have been developed for assessing
mainly F and P capacities. However, most usually, testing procedure consists of assessment of F under
two distinct velocities, one that is in the range of low velocities (60°/s), and one that is in the range of high
ones (180°/s) (Grbic etal., 2017; Lemaire et al., 2014). Usually, lower angular velocities has been consider
as a velocities that are able to discover maximal capacity of the muscles to produce F capacity, while
higher angular velocities has been considered to reveal P capacity (Raj et al., 2010). It has been argued
that revealing P capacities could be done only by testing muscle capacities implementing angular velocities
that are higher than the range of testing velocities of isokinetic dynamometers (Grbic et al., 2017).
Consequently, the F recorded against a single angular V does not allow to determine the actual maximal
capacities of the muscles to produce F, V and P (Jaric, 2015). The solution of this problem could be
modelling of the F-V relationship (Jaric, 2015).

Although it has been accepted for decades that the F-V relationship of individual muscles has
approximately a hyperbolic shape (Hill, 1938), recent studies suggest that it fits a linear shape for
isoinertial multi-joint exercises (Jaric, 2015). The advantage of the linear F-V relationship is that
determining the theoretical maximal capacities of the muscles to produce F (Fo), V (Vo) and P (Pmax)
through a linear regression model is simplified:

F(V)=Fo—aV (eq.1)

where Fo represents the F-intercept (i.e., theoretical maximal F), a is the slope that corresponds to
Fo/Vo, and Vo is the V-intercept (i.e., theoretical maximal V). As a direct consequence of the F-V
relationship linearity, Pmax can be calculated as Pmax = Fo-Vo/4. There is also evidence that the F-V
relationship of single-joint tasks could follow a linear pattern. More specifically, Grbic et al. (2017)
revealed that the F-V relationship for the knee extension (KE) task obtained in an isokinetic dynamometer
fits a linear shape (r > 0.96). However, a more robust set of data is needed to support the linearity of the
F-V relationship of single-joint isokinetic tests performed by different muscle groups.

! This text presents complemented and partially modified publication of the paper published in the Journal of Sports
Sciences (Janicijevic, D., Garcia-Ramos, A. Knezevic, O., Mirkov, D. Feasibility of the two-point method for assessing the
force-velocity relationship during lower-body and upper-body isokinetic tests, Journal of Sports Sciences 37(6). In press. doi:
10.1080/02640414.2019.1636523)
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Most frequently, the F-V relationship has been modelled using the direct measures of F and V
under more loading or velocity conditions (multiple-point method) (Garcia-Ramos, Feriche, Perez-
Castilla, Padial, & Jaric, 2017). Modelling F-V relationship implementing multiple-point method can be,
however, fatiguing and time-consuming procedure (Garcia-Ramos & Jaric, 2018). Potential solution for
this issue, Jaric (2016) proposed a quicker and less fatigue-prone method based on the application of only
two loads/velocities (i.e., two-velocity method). The concurrent validity and reliability of the F-V
relationships obtained implementing two-point method have been confirmed in previous studies that have
involved multi-joint exercises (Garcia-Ramos, Torrejon, et al., 2018; Zivkovic, Djuric, Cuk, Suzovic, &
Jaric, 2017a). To our knowledge, less studies have been conducted with an aim to explore validity and
reliability of the F-V relationship obtained using isokinetic dynamometry (i.e., testing single-joint muscle
capacities) either by implementing multiple- or two-point method. To our knowledge, only Grbic et al.
(2017) have demonstrated a high validity of the outcomes obtained from the two-velocity method as
compared to the same outcomes obtained from the multiple-point method during the isokinetic KE task (r
> 0.76). It could be also of importance to elucidate whether the F-V relationships modelled using two-
velocity method are sensitive to differentiate between muscle groups of lower and upper extremities, and
between female and male participants.

It could be of importance to elucidate if the outcomes of the F-V profile could be generalised across
different tasks since previous studies have found inconsistent results for multi-joint tasks (Zivkovic et al.,
2017b), while to our knowledge the generalizability of the F-V relationship parameters has not been
explored between isokinetic single-joint tasks. A high sensitivity and generalizability of the F-V
parameters could further motivate using the F-V relationship in routine isokinetic testing. And finally,
most common way of exploring maximal strength capacities of the muscles is by measuring isometric F
and by assessing the one-repetition maximum (1RM). In this regard, very high r correlations coefficients
were obtained between Fo parameter and isometric F and F recorded during 1RM test in bench press throws
and squat jump exercise (Cosic et al. 2019). However, t-test performed on the same dataset showed that
these values do significantly differ, except in case of comparison between Fo and F recorded under
isometric condition in squat exercise. It should be noted that from these two strength measures only
isometric F could be recorded during isokinetic testing. Although there are controversies regarding the
capability of the isometric testing to portray and monitor changes of the sports activities, it has been argued
that isometric tests do portray basic characteristic of the muscles. To our knowledge, no previous study
compared the association between Fo and maximal isometric F within single-joint movement using
isokinetic dynamometry. Therefore, it would be interesting to explore validity of the Fo in respect to the F
recorded under isometric condition.

To fill mentioned research gaps, the F-V relationships has been modelled for 4 different isokinetic
muscle tasks (KE, knee flexion [KF], elbow extension [EE] and elbow flexion [EF]) using multiple- and
two-velocity method. We aimed to (1) evaluate the shape and strength of the F-V relationship obtained
from four different muscle groups, (2) explore the concurrent validity of the two-velocity method (based
on two representative angular velocities: 60 and 180°/s) with respect to the standard multiple-point method
(based on eight angular velocities ranging from 30 to 240°/s), (3) test the sensitivity of the F-V relationship
to discriminate between different muscle groups and genders, (4) explore the possibility of generalizing
the same F-V parameters between different muscle groups and (5) to explore the association between
maximal isometric force and theoretical maximal force obtained using two- or multiple-velocity method.
It was hypothesised that (1) all F-V relationships would be highly linear, (2) strong relationship and high
agreement would be observed for the F-V parameters obtained from the multiple- and two-velocity
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methods, (3) the F-V relationship parameters would be higher for knee than for the elbow muscles, as well
as in men compared to women, (4) the association between the same F-V parameters across different
muscle groups would be generally low as it has been described for multi-joint tasks (5) association between
maximal isometric force and theoretical maximal force obtained using two- or multiple-velocity method
will be high.

7.2.Methods
7.2.1. Participants

Twenty-two physical education students (12 women [age: 21.5 *+ 2.2 years; body height: 1.69 £
0.07 m; body mass: 60.9 £ 9.7 kg] and 10 men [age: 22.7 £ 2.5 years; body height: 1.86 = 0.06 m; body
mass: 80.6 £ 5.9 kg]) volunteered to participate in this study. Data regarding their habitual physical
activities was assessed using International Physical Activity Questionnaire (IPAQ). Based on the results
of the IPAQ tests, the average weekly activity of the participants was 10 hours, which was described as
moderate to highly intensive. The criteria for including participants into study was that they were no
professional athletes and that they did not have musculoskeletal pain or injuries that can negatively affect
the outcomes of this study. Participants were introduced with the procedures and aims of the study and
were informed that they can withdraw from the study anytime. The study was approved by the Institutional
Review Board and protocol adhered to the tenets of the Declaration of Helsinki.

7.2.2. Study design

Present study was designed to explore the feasibility of the two-velocity method for assessing
muscle mechanical capacities within variety of isokinetic tasks. All measurements were performed within
two sessions that were organised in two different non-consecutive days. The implemented testing sessions
as well as the task within one testing session were randomised. Additionally, implemented angular
velocities within each test were also randomised. Both sessions were organised at the similar time for each
participant (£1 hour).

7.2.3. Testing procedures

All testing sessions were performed with an using an isokinetic dynamometer (Kin-Kom AP125,
Chatex Corp., Chattanooga, Tennessee, USA) in the university research laboratory. According to the
manufacturer’s instructions the height and the chair of the dynamometer were adjusted to the individual
anthropometric characteristics and the axis of the dynamometer was aligned with the lateral femoral
condyle (for the tasks performed with lower extremities) and with the lateral epicondyle of the humerus
(for the tasks performed with the upper extremities). All tests and instructions were given by the same
examiner who was in charge to verbally encourage participants to exert maximal values of F.

Afterwards, participants performed three maximal voluntary isometric contractions (MVC) of the
assessed muscles (i.e., KE, KF, EE, or EF) at 120° of knee/elbow extension (180° corresponding to full
extension) that lasted 5 s (Table 3). The trials were separated by a rest period of 1 min and only the trial
with the highest F was used for statistical analyses. Following, the F during eight angular velocities (30,
60, 90, 120, 150, 180, 210, 240°) was measured during isokinetic tasks. Both during isometric and
isokinetic tests, participants were instructed to exert maximal force. Three trials were performed during
isometric tests and respecting each angular velocity. First trial of each contraction (isometric or isokinetic)
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was used as a familiarization trial, while the trial with highest force output was used for statistical analyses.
Implemented pauses between consecutive trials, different velocities during isokinetic tests were 30
seconds and 60 seconds, respectively (Blazquez, Warren, O’Hanlon, & Silvestri, 2013). Pause between
two different regimes was set to 5 minutes. All tasks were performed with the dominant limb (i.e., the one
they would use for kicking a ball [knee exercises] and writing [elbow exercises]) (Aagaard et al., 2000).

Description of the isokinetic tests was provided bellow:

Knee extension (KE):

Participants were fastened in the chair of the dynamometer with the straps around pelvis, chest and
tie. Starting position was set to 90°, while ending position was 170° (180° corresponding to complete
extension). Participants were instructed to extend their lower leg from starting to ending position.

Knee flexion (KF):

Participants were fastened in the chair of the dynamometer in the same manner as for KE test.
Range of motion was also the same, however, starting position was set to 170°, while final position was
90°. Participants were instructed to flex the lower limb from the starting to the ending position.

Elbow extension (EE):

Participants were fastened in the chair of the dynamometer with the straps around pelvis and chest.
Starting position was set to 70°, while the ending position was 135°. Participants were instructed to extend
their forearm from starting to ending position.

Elbow flexion (EF):

Participants were fastened in the chair of the dynamometer in the same manner like for the EE test.
The range of motion was the same like for EE, while the starting position was set to 135° and ending to
70°.

Picture 2. Testing set-up for elbow extension and elbow flexion test
(Modified and reprinted with permission from: Relationships between force and rate of force
development of different muscle groups as assessed thought various strength tests, Prebeg, G., 2015)
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Picture 3. Testing set-up for knee extension and knee flexion test
7.2.4. Data acquisition and analysis

All F-time signals were collected at 500 Hz, using an isokinetic dynamometer (Kin-Kom AP125,
Chatex Corp., Chattanooga, Tennessee, USA). Afterwards, signals were filtered using low-pass (10Hz)
second-order (zero-phase lag) Butterworth filter. The program used to collect, filter and calculate
necessary variables was written using LabView software (National Instruments, 13.0). Once recorded
forces were corrected for the gravity effect, and normalised by body mass using an alometric scale (N-kg?®)
(Jaric, 2002). To avoid computation errors, acceleration and deceleration artefacts phases were neglected,
and all variables were calculated from the isokinetic part of the F-time curves (Brown et al., 1995).
Although angular velocities (°/s) were the same for all subjects, they were multiplied by the length of the
individuals' lever arms to obtain linear velocities (m-s™). Thereafter, obtained linear velocities and
maximal values of F were used to model F-V relationships by fitting both second order polynomial and
linear regression models, using F recorded during all eight velocity conditions (i.e., multiple-point method)
and using F recorded during just two most commonly used ones (60 and 180°/s; i.e., two-velocity method).
And finally, both multiple- and two-point methods were used for calculating parameters of the F-V
relationships (i.e., Fo, Vo, a, and Pmax)(Jaric, 2016).

7.2.5. Statistical analyses

Descriptive data of all F-V relationship parameters are presented as mean and standard deviation
since they were normally distributed (Shapiro-Wilk test: p > 0.05), while the Pearson's correlation
coefficients (r) are presented through their median and interquartile range. The standard error of the
estimate (SEE) expressed in absolute values and as a coefficient of variation (CV %) was used to explore
the validity of the two-velocity method with respect to the multiple-point method. The validity was
determined based on the following scale: very high (CV < 5%), high (CV = 5%-10%), acceptable (CV >
10%-15%), and low (CV > 15%). Student's paired-sample t-tests and Cohen's d effect size (ES) were used
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to compare the magnitude of the F-V relationship parameters (Fo, Vo, @, Pmax) between the multiple- and
two-velocity methods. The association between the same F-V relationship parameters obtained from the
multiple- and two-velocity methods was quantified through the r coefficients. The r coefficients were
calculated to determine the relationship between the same F-V relationship parameters obtained from the
four different muscles. The level of agreement between Fo and the maximal measured isometric F was
quantified through r coefficients. Qualitative interpretations of the r coefficients as defined by Hopkins,
Marshall, Batterham, & Hanin (2009) (0.00-0.09 trivial; 0.10-0.29 small; 0.30—0.49 moderate; 0.50-0.69
large; 0.70-0.89 very large; 0.90-0.99 nearly perfect; 1.00 perfect) are provided for all significant
correlations. A mixed model ANOVA with Bonferroni corrections was applied to each F-V relationship
parameter with the “gender” (women and men) as between- and “method” (multiple-point method and
two-velocity method) and muscle (KE, KF, EE, and EF) as within-participants factor. All statistical
analyses were performed using SPSS software version 20.0 (SPSS Inc., Chicago, IL, USA) and statistical
significance was set at an alpha level of 0.05.

7.3. Results
7.3.1. Linearity of the F-V relationship

All F-V relationships were strong and linear independently from whether obtained either from the
data averaged across the participants (r > 0.969; Figure 7) or from the individual F and V data (all r >
0.893; Figure 8). However, the advantage of the higher polynomial fit (i.e., second order vs. linear model)
proved to be inconsistent. Namely, half of the r coefficients of polynomial regressions were above the
95% CI of the corresponding linear regressions (KE men, KF women, EE women, EF men), but no
significant differences were observed for KE and EF in women and KF and EE in men.

7.3.2. Validity of the two-velocity method

Figure 9 shows both the SEE and correlation coefficients of the parameters obtained from the
multiple- and two-velocity methods. No significant differences and only trivial to small ES were obtained
for all parameters (all P > 0.118 and ES < 0.50). Very large to nearly perfect correlations were observed
between the magnitudes of the F-V relationship parameters obtained from the multiple- and two-velocity
methods (median r and range: Fo = 0.96 [0.91, 0.99]; Vo = 0.71 [0.35, 0.93]; a = 0.78 [0.65, 0.96]; and Pmax
=0.78 [0.21, 0.94]). However, the CV only showed a high to very high validity for Fo (range: 4.1-9.3%),
while a lower validity was observed for the other F-V relationship parameters (range: Vo= 10.8-27.5%;
a=10.3- 30.4%; Pmax = 10.8-29.2%).

7.3.3. Sensitivity of the F-V relationship

The ANOVAs conducted on Fo, Vo and Pmax revealed significant main effect of muscle group (Fo:
F =186.4, P < 0.001; Vo: F = 16.6, P < 0.001; Pmax: F = 85.8, P < 0.001) and gender (Fo: F = 11.8, P =
0.001; Vo: F =18.4, P < 0.001; Pmax: F = 46.2, P < 0.001), while the ANOVA conducted on a parameter
only revealed a significant main effect of muscle group (F = 23.9, P < 0.001). Neither the main effect of
method nor the interactions reached statistical significance for any of the F-V relationship parameters.
Regardless of the method, men showed higher values of Fo, Vo and Pmax than women. Similarly, both
methods revealed larger values of Pmax for knee muscles than for elbow muscles due to higher values of
Fo, while no clear difference between muscles was observed for Vo. Note that the F and P data were
previously normalised for the difference in body size between men and women.

33



7.3.4. Generalizability of the F-V relationship

To assess the generalizability of the findings, the same F-V relationship parameters across the
different tasks were correlated (Table 2). The results proved to be inconclusive. The r coefficients were
generally low (median r and range: Fo = 0.04 [-0.43, 0.88], Vo = 0.04 [-0.68, 0.85], a =-0.02 [-0.45, 0.71],
and Pmax = 0.08 [-0.48, 0.66]) (Table 2). Only 8 out of 96 coefficients were significant and those were not
particularly related either to specific test, or the parameter, or the participant group.

7.3.5. Agreement between theoretical maximal force (Fo) and maximal isometric force

To assess the association between maximal isometric force and theoretical maximal force (Fo)
when it was obtained implementing two- or multiple-velocity method. The results were inconclusive and
r coefficient ranged from moderate to very large for both females and males and both methods (r range
two-velocity method [0.41, 0.87], multiple-velocity method [0,37, 0.85]) (Figure 10). In 9 out of 16 cases
r values resulted to be significant.
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Figure 7. Linear and polynomial regression models obtained from the force and velocity data averaged
across the participants during the isokinetic knee extension (upper-left panel), knee flexion (upper-right
panel), elbow extension (lower-left panel) and elbow flexion (lower-right panel) tasks. The Pearson's
correlation coefficients with corresponding 95% confidence intervals are presented for both the linear and
polynomial regression models obtained in women (filled circles) and men (empty circles). Triangles
represent the directly measured maximal voluntary isometric contraction (MVC).
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Figure 8. Pearson's correlation coefficients (medians with SD error bars) obtained from individual linear
F-V relationships of four isokinetic tasks in women (filled circles) and men (empty circles).
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Figure 9. Comparison between the same force-velocity relationship parameters obtained from the
multiple-point (filled bars) and two-velocity (empty bars) methods during the four isokinetic tasks. The
Cohen's d effect size ([multiple-point mean — two-velocity mean] / SD both; bold numbers) and the
Pearson's correlation coefficient (italic numbers) are indicated. Statistical significance: * P <0.05, ** P <
0.01. Data are presented as means and standard deviations.
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Table 3. Descriptive data of the isometric dynamometry

KE KF EE EF
Men 39.60 + 7.49 19.26 + 3.98 19.75 +5.05 18.38 + 3.68
Women 37.42 +4.68 16.35 + 2.93 17.49 + 4.03 12.96 + 2.07

Data are presented as means * standard deviations for men and women. KE, knee extension; KF, knee
flexion; EE, elbow extension; EF, elbow flexion.
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Figure 10. Correlations between theoretical maximum force (empty bars) and maximal measured
isometric force (full bars) for women (left panel) and men (right panel). Correlations with the maximal
isometric force and theoretical maximum force were made when it was obtained using multiple point
method (left part of panels) and two-velocity method (right parts of panels).

7.4. Discussion

This study explored the validity, sensitivity and generalizability of the F-V relationship parameters,
obtained from the multiple- and two-velocity methods, during isokinetic testing of various muscles
involving both the lower- and upper-body ones. The main findings of this study revealed (1) strong and
linear F-V relationships of tested muscle groups (KE, KF, EE, and EF), (2) a high concurrent validity of
Fo, but lower for the other F-V relationship parameters, when obtained from the two-velocity method
compared to the multiple-point method, (3) the outcomes of both multiple- and two-velocity methods were
sensitive to the gender and muscle groups tested (i.e., higher values of Fo, Vo, and Pmax Were generally
obtained for men and knee muscles compared to women and elbow muscles, respectively), (4) the
magnitude of the same F-V parameters obtained from different muscles were on average poorly correlated,
and (5) moderate to very large association was obtained between Foand maximal isometric F. The three
first findings collectively support the two-velocity method as a valid and sensitive procedure for
determining the maximal capacity of the muscles to produce F, but not V, during isokinetic testing. The
fourth finding highlights that the F-V relationship parameters cannot be generalised across different
muscles.
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Linear shape of the F-V relationships obtained from the number of multi-joint movements (i.e.,
squat jumps, bench press, bench press throws, etc.) was reported in numerous studies (Janicijevic et al.,
2019; Garcia-Ramos et al., 2016; Lu, Boyas, Jubeau, & Rahmani, 2017; Zivkovic et al., 2017b). However,
polynomial regression models have been usually used for modelling F-V relationships during isokinetic
tasks (Carvalho, 2015; Raj et al., 2010). Nevertheless, there are some indication that experimental points
(F and corresponding V data) obtained during isokinetic tasks could be used for linear F-V relationship
modelling. More specifically, some previous studies that have aimed to explore the shape of the isokinetic
F-V relationships demonstrated that if maximal isometric F is excluded from the model, F-V relationship
could be modelled using linear model (Grbic et al., 2017; Lemaire et al., 2014; Ripamonti et al., 2008).
Confirming our first hypothesis, previous studies have reported high linearity of the F-V relationship
modelled for the isokinetic KE task (Grbic et al., 2017; Lemaire et al., 2014; Ripamonti et al., 2008). What
is important to emphasize is that this study add additional knowledge about the shape of the F-V
relationships modelled during various isokinetic tasks (KF, EE, EF). Specifically, results of the current
study demonstrated that F-V relationships are strong and linear, however, it should be noted that half of
the r coefficients of polynomial regressions were above the 95% CI of the corresponding linear
regressions. Possibly, higher linearity of the F-V relationship obtained for the KE task could be explained
by the higher prevalence of this muscle group in everyday activities (e.g., walking, running, climbing
stairs, etc.) (Gates, Walters, Cowley, Wilken, & Resnik, 2016). Possible direction of the future studies
could be to evaluate the shape of the F-V relationships during other isokinetic tasks.

As a result of the strong linearity of the F-V relationships observed during isokinetic tasks,
application of the two-velocity method, which represents less time-consuming and less fatiguing approach,
might be used for the F-V relationships modelling. However, when modelled using two-velocity method
different F-V relationship parameters demonstrate different level of the concurrent validity in respect to
the multiple-point method. Specifically, the most valid parameter has shown to be the Fo, regardless of the
isokinetic task (low SEE and high r coefficients), while other parameters (Vo, a, and Pmax) have shown
lower validity, suggesting that the two-velocity method is less valid to estimate these parameters. It seems
that findings of the present study contradict the findings obtained in the previous studies that investigated
concurrent validity of the F-V parameters during different multi-joint movements (Garcia-Ramos & Jaric,
2018; Zivkovic et al., 2017b). Possible explanation regarding lower validity of the Vo (and parameters
which calculation directly depends from the magnitude of the Vo, a and Pmax) might be that our
experimental data were F-biased, meaning that higher extrapolation was needed to the V-intercept. In his
recent paper, Pérez-Castilla et al. (2018) emphasized the importance of selecting the appropriate
experimental points and recommended utilization of the experimental points that are closer to the
intercepts, especially to the axis intercept. Although it stands that the two angular velocities used for two-
velocity modelling are the velocities most commonly used during isokinetic testing (i.e., 60 and 180°/s)
(Raj et al., 2010; Zemach et al., 2009), the concurrent validity of the F-V relationship parameters could be
increased by selecting higher angular velocities. Future studies should try to widen the range of the
preselected angular velocities, in order to identify which is the combination of the angular velocities that
can be used for obtaining more valid F-V relationship parameters.

It has been generally considered that within general population men and lower-body muscles are
stronger than woman and upper body muscles, respectively (Miller, MacDougall, Tarnopolsky, & Sale,
1993). However, possible differences in the magnitude of the F-V relationship parameters between
different groups was not in the scope of the research attention (Garcia-Ramos, Torrejon, et al., 2018). The
results of the present study supported our third hypothesis. As it has been expected, both methods (i.e.,
multiple- and two-point method) presented higher values of the Fo, Vo and Pmax relationship parameters
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for men in comparison to the women and higher Pmax for lower- in comparison to upper-body muscles.
Differences between lower- and upper-body muscles originate more from the differences in their maximal
F, rather than from the differences in their maximal V. Therefore, it seems that F-V relationship assessment
is sensitive enough to distinguish among maximal muscle capacities (i.e., F, VV and P) between different
muscle groups and gender.

Rejecting our fourth hypothesis, the correlations observed between the same F-V relationship
parameters were shown to be low. Although the possible generalisation between the same parameters
might save time, the inconclusive and generally low correlations were observed between tasks. Although
this is the first study that investigated this issue within single-joint movements, the findings of the present
study are in consent to the study of Zivkovic et al. (2017) who assessed the correlations across different
isoinertial multi-joint tasks. This is also in agreement with the study of Prebeg et al., (2013) who
demonstrated that maximal mechanical capacities differ more between muscles than between variables
obtained from the same muscle/muscle group. Therefore, sports practitioners, therapist and coaches should
evaluate single muscle group/exercise to obtain valid information about muscle mechanical capacities of
their subjects.

Although isometric F portrays an important quality of the musculoskeletal system, association
between Fo parameter of the F-V relationship and maximal isometric F was moderate to very large
regardless of the gender or muscle group. The inconclusive results indicate that Fo parameter cannot be
used as a predictor of the maximal isometric F value during isokinetic tasks. Contrary to our findings,
Cosic et al. (2019) obtained high correlations between Fo and both maximal isometric F and 1RM (0.84,
0.92, respectively). However, possible explanation for this discrepancy in the results could be found in the
type of the performed task. Specifically, in the present study, muscles acting in the single-joint were tested,
while in the study of Cosic et al. (2019) task was squat jump performed on a Smith machine. Therefore, it
seems that Fo and maximal isometric F share the same variance to some extent, however this shared
variance is more pronounced within multi-joint tasks.

Respecting possible future directions and limitations of the current study, few things should be
acknowledged. Firstly, our experimental points are somewhat F-biased (i.e., nearer to the ordinate) that
influenced decrement in the concurrent validity of the Vo parameter, and in parameters that directly depend
on it (i.e.,, a and Pmax). Secondly, the F-biased experimental points can partially explain the low
generalizability between some of the F-V relationship parameters, because the accuracy of the two-
velocity method could be diminished due to the higher distance to the axis. And finally, future studies
should try to seek for an optimal combination of the experimental points that might increase the accuracy
of the F-V relationship and its parameters (Pérez-Castilla et al. 2018).

7.5. Conclusions

Generally, the findings of the current study reinforce utilisation of the two-velocity method, a fast,
valid and sensitive procedure for determination of the maximal muscle capacity to generate F (i.e., Fo). At
the same time its implementation is somewhat limited for rest of the muscle capacities (Vo, a and Pmax).
For obtaining comprehensive analysis of the individual s general muscle function, F-V should be modelled
for every tested muscle/muscle group. Therefore, for increasing time efficiency and decrease fatigue
associated to the testing procedures, two-velocity method could be confidently used for assessing maximal
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muscle capacity to produce Fo, while future studies should seek for the more optimal combination of the
experimental points to increase the preciseness of the Vo, a and Pmax for isokinetic tasks.
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8. Isokinetic testing: sensitivity of the force-velocity relationship assessed
through the two-velocity method to discriminate between muscle groups
and participants' physical activity levels (Study 2)

8.1. Introduction

Muscle isokinetic strength tests are considered safe, valid and reliable (Land & Gordon, 2011).
Therefore, they have been widely used to assess the state of individual muscle groups and the asymmetries
between them (Holmes & Alderink, 1984; Michael et al., 2005). A basic requisite of isokinetic testing is
to record force output at a constant movement velocity, that may range from 0-500 °/s depending on the
device (Land & Gordon, 2011). In this regard, it has been argued that angular velocities above 180 °/s
should be avoided because the range of motion (ROM) under the constant velocity is very small and this
might decrease measurement accuracy (Brown et al., 1995). The two velocities most commonly used
during isokinetic testing procedures are 60 and 180°/s (Janicijevic et al., 2019; Grbic et al., 2017; Lemaire
et al., 2014), which have been suggested to reveal the maximal capacities of the muscles to produce force
and power, respectively (Raj et al., 2010; Zapparoli & Riberto, 2017). However, it is known that higher
values of force can be achieved under lower angular velocities , while maximal power could be attained
at higher angular velocities (Raj et al., 2010). In addition, the standard isokinetic test (i.e., force output
recorded against a predetermined velocity) cannot reveal the maximal velocity capacity because (I) the
velocity cannot be voluntarily changed during the movement, and (11) the maximal movement velocity is
considerably higher than the velocities typically used during isokinetic tests (Bober et al., 1987).

The linear regression has been recommended for modelling of the force-velocity (F-V) relationship
during multi-joint movements because it has been suggested that the F-V relationship during these tasks
follows a linear shape (Jaric, 2015). However, previous studies implied that the F-V relationship may also
be linear when obtained from single-joint isokinetic tasks (Grbic et al., 2017; Lemaire et al., 2014;
Ripamonti et al., 2008). A benefit of the strong linearity of the F-V relationship is that it provides a
possibility to estimate maximum force (Fo), velocity (Vo) and power (Pmax) producing capacities within a
single testing procedure. In this manner, additional tests for separate evaluation of the Vo and Pmax
capacities could be avoided. Furthermore, recording force values against only two angular velocities could
provide enough information to accurately determine the F-V relationship (i.e., two-velocity method)
(Garcia-Ramos & Jaric, 2018; Jaric, 2016; Petronijevic et al., 2018). In this regard, Grbic et al. (2017)
reported a high validity of the F-V relationship parameters (Fo, Vo, and Pmax) obtained through the two-
velocity method (force recorded at 60 and 180 °/s) compared to the multiple-point method (force recorded
at five velocities: 30, 60, 120, 180, 240 °/s) during the isokinetic knee extension (KE) task. Previously,
Lemaire et al. (2014) reported a high agreement between torque- and power-velocity relationships when
three angular velocities were used in comparison to eight for its modelling. However, to date, no study has
evaluated the feasibility of the two-velocity method in isokinetic settings (e.g., 60 and 180°5s).

It may be important to elucidate if the F-V relationship assessed through the two-velocity method
is able to discriminate between participants of different physical activity levels (active vs. non-active) as
well as between antagonistic muscle groups (e.g., knee, hip, elbow and shoulder). Although Cuk et al.,
(2016) reported sensitivity of the F-V parameters to discriminate between participant of different activity
level, no previous studies have compared magnitudes of the F-V relationship parameters assessed by
isokinetic dynamometry between antagonistic muscle groups. It has been proposed that quantitative
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relation of the antagonist muscles strength could present valuable additional information to strength values
of individual muscles (Campbell & Glenn, 1982). In this regard, higher force values have been reported
for extensor muscles acting on the knee (Kurdak et al., 2005) and hip (Castro et al., 2018), while flexor
muscles were stronger at shoulder (Cook, Gray, Savinar-Nogue, & Medeiros, 1987) and elbow joints
(Yang et al., 2014). It should keep in mind that F-V relationship modelling can help us discriminate not
only between maximal force capacities (Fo), but also between maximal power (Pmax) and maximal velocity
capacities (Vo) of antagonist muscle pairs. In addition, it would be also interesting to determine the
possibility of generalizing the outcomes of the F-V relationship between antagonist muscle pairs. It should
be kept in mind that the generalizability of the F-V relationship parameters has been shown to be low
between different muscle groups assessed during multi-joint task (e.g., jumping and sprinting) (Cuk,
Prebeg, Sreckovic, Mirkov, & Jaric, 2017), but no previous study has explored the association between
the same F-V relationship parameters obtained from antagonist muscle pairs assessed using isokinetic
dynamometry.

Scarce information exists regarding the maximal velocity capacity of individual muscles due to the
limitations of isokinetic devices for testing very fast movements. However, other technologies have been
used for measuring the maximal velocity of different body segments (Lambert, Beck, & Weeks, 2017;
Wagner et al., 2014). Jessop and Pain (2016) used a high-speed video camera to measure the maximal
velocity of flexor and extensor muscle groups acting on six joints (ankle, knee, hip, shoulder, elbow and
wrist) during movements performed in a standing position. The issue regarding measuring velocity in a
standing position is that the gravitational component has a positive and negative effect on maximal velocity
during flexion and extension movements, respectively. Therefore, the influence of gravity did not allow
to accurately compare maximal velocity capacities between flexor and extensor muscle groups acting on
the same joints. Mirkov et al. (2002) showed that when performing the exercise with the arm in an abducted
position, elbow flexors and extensors have similar velocities at a ROM from 115 to 165 °, while higher
velocity values were obtained for flexors from 65 to 115 ° (180 ° is considered to be maximal extension).
That elbow flexors are faster than extensors in a variety of conditions was also confirmed by Jaric (2000).
However, very little information exists regarding the comparison of maximal velocity capacity between
flexor and extensor muscles acting on other joints (e.g., knee, hip, and shoulder). The issue with comparing
maximal velocities between different studies was highlighted by Bober, Putnam and Woodworth (1987)
who reported that the maximal velocity of knee extensor muscles was dependent of both the ROM and
pre-stretch (velocity values ranged from 213 to 1087 °/s). Therefore, the existing literature does not allow
us to hypothesise regarding the possible differences in maximal velocity capacities between antagonist
muscle pairs acting on several joints.

Taking all of the above into account, there is an apparent need to explore the feasibility of the two-
velocity method (i.e., force output recorded against only two angular velocities) to assess the F-V
relationship parameters during isokinetic tasks. Therefore, the main aim of this study was to evaluate the
sensitivity of the F-V relationship assessed through the two-velocity method to discriminate between (1)
extensor and flexor muscle groups acting on the same joints (knee, hip, elbow and shoulder), and (I11) men
with different levels of physical activity. The generalizability of the same F-V relationship parameters
between antagonist muscle pairs was also examined. It was hypothesized that (1) Fo and Pmax Obtained
during KE, hip extension (HE), elbow flexion (EF), and shoulder extension (SE) would be higher than
during the knee flexion (KF), hip flexion (HF), elbow extension (EE), and shoulder flexion (SF),
respectively. It was also hypothesized that (1) Fo and Pmax of all muscles would be higher for active
compared to non-active participants, and (Ill) the association between the same F-V relationship
parameters across different muscle groups would be low. These results could allow better understanding
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of the benefits of modelling that isokinetic testing procedure of the F-V relationship through the two-
velocity method.

8.2. Method
8.2.1. Participants

Forty young men volunteered to participate in this study. The physical activity level was assessed
by the International Physical Activity Questionnaire (IPAQ), which was used to divide participants in
active (n = 27, age = 23.7 £ 2.9 years [range = 21.0 - 26.0 years], height = 1.83 + 0.06 m, body mass: 79.8
+ 8.0 kg) and non-active group (n = 13, age = 21.9 + 4.0 years [range = 17.8 - 26.0 years], height = 1.80 +
0.06 m, body mass = 68.4 £ 9.9 kg). All participants were free from chronic diseases and musculoskeletal
injuries. Participants were introduced with the testing procedures and possible risks associated with
isokinetic assessment. The study protocol was approved by the Institutional Review Board and was in
accordance with the principles of the Declaration of Helsinki. All participants singed an informed consent
form.

8.2.2. Study design

This study was designed to explore the feasibility of the two-velocity method for assessing the
muscle mechanical capacities during several isokinetic tasks. The study consisted of four testing sessions
separated by 48-72 hours. The flexor and extensor muscle groups of one joint were tested in each session
against two angular velocities. The order of testing of the joints (elbow, knee, shoulder and hip), muscles
(flexors and extensors), and velocities (60 and 180°/s) was randomised. All testing sessions took part at
the same time of the day for every participant (+1 hour) and under similar environmental conditions.

8.2.3. Testing procedures

Measurements were conducted at the Faculty research laboratory, using an isokinetic dynamometer
(Kin-Kom AP125, Chatex Corp., Chattanooga, Tennessee, USA). Every testing session started with a
standardised 5 minutes warm-up that consisted of cycling on a leg cycle ergometer and stretching
exercises. Afterwards, the participants were positioned into the chair of the dynamometer and fixed with
Velcro straps in accordance to the manufacturer's guidelines. The axis of the dynamometer was aligned
with the axis of the participants’ joint using visual inspection and manual palpation. Muscle force was
assessed at two angular velocities: 60 and 180°/s. Participants performed three cycles of maximal
voluntary contractions (1 cycle = 1 flexion + 1 extension) separated by 30 seconds. The recovery time
between different sets was set to 2 minutes. Participants were encouraged by the same experienced
examiner to execute the movement as strong and as fast as possible. In addition, participants received
visual feedback of force values throughout the whole execution of the exercise. All measurements were
performed with the dominant extremity (i.e., extremity that would be used for kicking a ball [knee and hip
exercises] and writing [elbow and shoulder exercises]) (Aagaard et al., 2000; Holmes & Alderink, 1984).
The ROM was 80° for the knee tasks (from 90° to 170°) (Grbic et al., 2017), 50° for the hip tasks (from
90° to 140°) (Dvir, 2004), 65° for the elbow tasks (from 45° to 110°) (Parr, Yarrow, Garbo, & Borsa,
2009), and 80° for the shoulder tasks (from 90° to 170°) (Dvir, 2004).
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8.2.4. Data acquisition and analysis

A custom-made Lab View application was used to provide visual feedback on a computer screen,
data acquisition and processing of the force-time signals. Force-time signals were recorded at 500 Hz and
low-pass filtered (5 Hz) using a second-order (zero-phase lag) Butterworth filter. The peak force value of
each trial was calculated from the isokinetic part of the force-time curve (Brown et al., 1995). The highest
peak force of the three trials was used for further analyses. Force data were normalized to the body mass
on the power of 2/3 (Jaric, 2002). Linear velocities (m-s™) were calculated as a product of angular velocity
and the length of individuals' lever arm. Then, using normalised force and linear velocity, F-V relationships
were modelled by fitting the following linear regression model:

F(V)=Fo—aV (eq.1)

where Fo represents the force-intercept (i.e., theoretical maximal force), a is the slope that
corresponds to Fo/Vo, and Vo is the velocity-intercept (i.e., theoretical maximal velocity), while Pmax (i.€.,
maximal theoretical power) was calculated as Pmax = Fo- Vo/4.

8.2.5. Statistical analysis

Mean and standard deviations (SD) are used for reporting descriptive data, while the Pearson's
correlation coefficients (r) are reported through their median and inter-quartile range values. A total of 16
mixed-model ANOVAs with Bonferroni post hoc corrections (4 F-V relationship parameters [Fo, Vo, a
and Pmax] % 4 joints [knee, hip, elbow and shoulder]) were applied with the muscle group (flexor vs.
extensor) as within- and physical activity level (active vs. non-active) as between-participant factors. The
Cohen's d effect size (ES) was used to explore the magnitude of the differences and it was computed
considering the harmonic mean of the SD of the compared conditions. The following scale was used to
interpret the magnitude of the ES: negligible (<0.2), small (0.2-0.5), moderate (0.5-0.8), and large (>0.8)
(Cohen, 1988). The association between the same F-V relationship parameters obtained from flexor and
extensor muscle groups acting on the same joint was quantified through the r coefficient. Qualitative
interpretations of the r coefficients were: “0.00-0.09 trivial; 0.10-0.29 small; 0.30-0.49 moderate; 0.50—
0.69 large; 0.70-0.89 very large; 0.90-0.99 nearly perfect; 1.00 perfect” (Hopkins et al. 2009). Magnitude-
based inference was performed by means of a custom Excel spreadsheet, while other statistical analyses
were performed using the software package SPSS (IBM SPSS version 22.0, Chicago, IL, USA). Statistical
significance was set at an alpha level of 0.05.

8.3. Results

Descriptive data (Mean + SD) for the F-V relationship parameters are provided in Table 4. Linear
regression models obtained during the knee, hip, elbow and shoulder tasks were presented in the Figure
11. None of the muscle group x physical activity level interactions reached statistical significance (p >
0.093) (Table 4, Figure 11). A significant main effect of muscle group was obtained for Fo, a and Pmax in
the knee and hip joints (higher values for extensors) as well as in the shoulder joint (higher values for
flexors), while for Vo the main effect of muscle group reached statistical significance only for the knee
joint (higher value for flexors) (Figure 12). A significant main effect of physical activity level was obtained
for Fo during the KE and KF tasks and for Pmax during KF, EE and SE tasks (higher values were always
obtained by the active group) (Figure 13).
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Table 4. Comparison of the force-velocity (F-V) relationship parameters between muscle groups and
physical activity levels for each joint.

F-Vv Active Non-active ANOVA

para Joint Muscle x

meter Flexor Extensor Flexor Extensor Muscle PAL PAL
Knee 20.5+4.0 29.7#5.0* 17.6£3.2# 26.1+48# p<0.001 p=0.015 p=0.706
Fo Hip 19.4+4.2  37.4+9.8*  19.8#3.1  335+8.0 p<0.001 p=0403 p=0.093
(r_\2|/-3|;g Elbow  12.3+2.0  12.1+24  11.6+29 10717 p=0.192 p=0.127 p=0.387
Shoulder 18.7#35  14.0+2.8* 17.6+28  12.0+21 p<0.001 p=0.093 p=0.372
Knee  3.20£0.93 2.50+0.51* 3.10+1.59 2.65+1.46 p=0.009 p=0.940 p=0.538
Vo Hip  4.17+2.40 3.07#2.03 3.45+2.75 3.93+278 p=0556 p=0.907 p=0.142
(T)'S_ Elbow 4.39+1.85 4.76+2.36 4.47+2.25 3.48+136 p=0508 p=0.241 p=0.158
Shoulder 3.72+1.78  3.35%1.49 3.42+250 3.37+2.19 p=0523 p=0.804 p=0.629
Knee  6.17#2.54 10.64+2.82* 5.98+2.75 10.16%4.30 p<0.001 p=0.709 p=0.773
(Ném_ Hip  550+3.40 11.19+596* 7.01+3.34 11.34+652 p<0.001 p=0543 p=0.487
s™kg'  Elbow  2.98+1.11 2.94+131 3.28+253 3.224121 p=0.884 p=0395 p=0972
K Shoulder 5.93+3.07 4.58+2.33* 6.88+3.98 4.11¥167 p<0.001 p=0770 p=0.168
Knee 16.1+4.4  18.4+3.8* 12.9+48# 16.2452 p=0.001 p=0.040 p=0.507
Pma:( Hip 19.6£10.8 29.5+19.0* 16.1+11.1 29.3+148 p=0.001 p=0.622 p=0.622
2/-\2//.3) Elbow 13.445.6 14.3+7.5 12.2+5.9 9.4+43# p=0459 p=0.076 p=0.147
Shoulder  16.9+7.7 11.3+4.6* 14.148.5 9.6+4.7# p<0.001 p=0.244 p=0.623

Mean + standard deviation. Fo, maximum force; Vo, maximum velocity; a force-velocity slope; Pmax,
maximum power; PAL, physical activity level. *, significant differences with respect to Flexor; #,
significant differences with respect to Active.
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Linear regression models obtained from the force and velocity data averaged across the participants
during the knee extension and flexion (upper-left panel), elbow extension and flexion (lower-left panel),
hip extension and flexion (upper-right panel) and shoulder extension and flexion (lower-right panel) tasks
are depicted in Figure 11. The correlations of the F-V relationship parameters between flexor and extensor
muscles acting on the same joint are reported in Table 5. Moderate to large correlations were observed in
the knee and shoulder joints for all F-V relationship parameters (r ranges from 0.349 to 0.571). Hip joint
showed significant correlations for Fo (r = 0.640) and a (r = 0.385), while the elbow joint only showed a

significant correlation for Fo (r = 0.513).
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Figure 11. Linear regression models obtained from the force and velocity data averaged across the
participants during the knee extension and flexion (upper-left panel), elbow extension and flexion (lower-
left panel), hip extension and flexion (upper-right panel) and shoulder extension and flexion (lower-right
panel) tasks. Straight and dashed lines represent extensor and flexor muscles, respectively. The error bars
depict the standard deviations of flexor (squares) and extensor (circles) muscle groups.
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Figure 12. Standardized differences (95% confidence intervals) for maximum force (Fo; upper-left panel),
maximum velocity (Vo; upper-right panel), force-velocity slope (a; lower-left panel) and maximum power
(Pmax; lower-right panel) between the antagonist muscle pairs acting on the knee, hip, elbow and shoulder
joints (ES = Extensor mean — Flexor mean / SDoth).
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Figure 13. Standardized differences (95% confidence intervals) for maximum force (Fo; upper-left panel),
maximum velocity (Vo; upper-right panel), force-velocity slope (a; lower-left panel) and maximum power
(Pmax; lower-right panel) between active and non-active groups for each muscle group. ES, effect size. KE,
knee extension; KF, knee flexion; HE, hip extension; HF, hip flexion; EE, elbow extension; EF, elbow
flexion; SE, shoulder extension; SF, shoulder flexion.
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Table 5. Association of the force-velocity relationship parameters between flexor and extensor muscles
acting on the same joint.

Fo Vo a Pmax
Knee 0.571** 0.349** 0.554** 0.496**
Hip 0.640** 0.132 0.385* 0.142
Elbow 0.513** 0.057 -0.110 0.275
Shoulder 0.560** 0.467** 0.474** 0.579**

Fo, maximum force; Vo, maximum velocity; a, force-velocity slope; Pmax, maximum power. Statistical
significance: * p < 0.05, ** p < 0.01.

8.4. Discussion

This study was designed to explore whether the F-V relationship modelled by the two-velocity
method could discriminate between antagonist muscle groups and males with different physical activity
levels. The main findings revealed that (1) Fo, a and Pmax Were higher for the KE, HE and SF compared to
their corresponding muscle pairs (KF, HF, SE), while Vo was significantly higher for KF compared to KE,
(1) Fo was higher for active compared to non-active males only during the KE and KF tasks, while Pmax
was higher for active males during KF, EE and SE, and (Ill) the association between the same F-V
parameters across different muscle groups were generally moderate to large. The first two findings
generally support the two-velocity method as a sensitive procedure for testing muscle capacities during
knee, hip and shoulder isokinetic tasks, while a lower sensitivity was observed for the elbow task. The
third finding suggests that the association of the F-V relationship parameters between antagonist muscle
groups could be higher than the previously reported between different multi-joint exercises.

The function of the muscles acting on the knee joint has been commonly evaluated by isokinetic
dynamometry (Grbic et al., 2017). Previous studies have reported higher values of force under isokinetic
conditions for KE compared to KF muscles (Holmes & Alderink, 1984; Kabacinski, Murawa, Mackala, &
Dworak, 2018). Similarly, higher values of Fo and Pmax for the KE compared to the KF were observed.
Even though a specific hypothesis regarding Vo was not formulated, our results demonstrated that KF tends
to show a higher Vo than KE. A plausible explanation might be the different architecture of KE and KF
muscles (i.e., KF muscles consist of long and parallel fibres that are expected to allow higher shortening
velocities than KE muscles which present a greater pennation angle) (Lieber & Fridé N, 2000). In addition,
both Foand Pmax Were higher for active males during the KF task, while only Fowas higher for active males
during the KE task. Therefore, as far as the knee joint is concerned, it can be concluded that the two-
velocity method was sensitive enough to discriminate between antagonist muscles as well as between
males of different physical activity levels.
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The weakness of the muscles acting on the hip joint may provoke imbalances of the whole kinetic
chain of the lower limbs (Khayambashi, Ghoddosi, Straub, & Powers, 2016). The weakness of the HE
evaluated during an isokinetic concentric contraction has also been positively connected with an increased
risk of hamstring injury (Sugiura, Saito, Sakuraba, Sakuma, & Suzuki, 2008). In line with other studies
(Alexander, 1990; Calmels et al., 1997), both higher Fo and Pmax for HE compared to HF were observed,
but no significant differences were reported between active and non-active males for any of the F-V
relationship parameter. Therefore, while the two-velocity method seems to be effective to discriminate
between HE and HF muscle groups, it remains unclear whether it could also be sensitive to discriminate
between males of different physical activity levels. Future studies should compare populations with clear
differences in the strength of HE and HF (e.g., runners vs. taekwondo athletes) to further explore the
sensitivity of the two-velocity method to discriminate between different populations.

The repetitive overhead movements which are common for some sports (e.g. throwing and spiking)
may be responsible for sport-specific injuries of the elbow (Wilk, Macrina, Cain, Dugas, & Andrews,
2012). Velocities of the elbow can go up to 2300°/s during overhead pitching (Wilk et al., 2012) and
1700°/s for tennis serve (Leon Lategan & Kriiger, 2007). These extremely high velocities emphasize the
importance of developing the strength of the muscles acting on the elbow. Rejecting our hypothesis, no
differences were found for any F-V relationship parameter between the EF and EE muscle groups. This
contradicts the results of Jaric (2000) who revealed higher velocities for EF compared to EE under a variety
of conditions. In addition, only Pmax during the EE was significantly higher for active compared to non-
active males. The overall lack of significant differences between active and non-active males could be
explained because they did not necessarily differ in the activities performed with the upper limbs, or by
the fact that isokinetic testing may not be sensitive to discriminate between active and non-active
populations (Sarig Bahat et al., 2019). Future studies should explore if the two-velocity method could be
sensitive enough to find differences in the F-V relationship parameters between groups that clearly differ
in the strength capacity of their elbow muscles. Therefore, based in our findings, the sensitivity of the two-
velocity method for assessing the mechanical capacities of EF and EE muscle groups should be questioned.

Shoulder isokinetic testing is commonly used not only for testing participants who are recovering
from shoulder injuries, but also for healthy overhead athletes (i.e., those who use their upper limbs in an
arc over head to propel a ball) (Ellenbecker & Roetert, 2003). The shoulder joint is one of the most mobile
joints of the human body and, therefore, it needs to be surrounded with strong muscles (Veeger & van der
Helm, 2007). Confirming our first hypothesis, higher Fo values were obtained for SF compared to SE
muscles. However, significant differences between active and non-active males were obtained only for
Pmax during SE in which active males showed higher values. Previous studies have reported significantly
higher force values for active participants compared to non-active participants during both SE and SF tasks
(Cook et al., 1987). The absence of significant differences in Fo in our study could be explained because
the level of upper limb activity did not meaningfully differ between the active and non-active groups. Note
that the findings related to the shoulder joint are somehow similar to the ones reported for hip muscles,
suggesting that the two-velocity method is sensitive to discriminate between flexor and extensor muscles,
but a lower sensitivity was observed for discriminating between active and non-active males. Therefore,
the recommendation of comparing groups with clear differences in upper-body force capacities could be
also applied for the shoulder joint.

The possibility of generalising the F-V relationship parameters between antagonist muscle groups
was also explored in the present study. Rejecting our last hypothesis, stronger correlations were found for
the magnitude of the same F-V parameters than previous studies that explored the correlations between
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different isoinertial multi-joint exercises (Marcote-Pequeno et al., 2018; Zivkovic et al., 2017b).
Regardless of the higher generalizability of the F-V relationship parameters observed in the current study,
it should be noted that significant correlations were not systematically reached, which suggest that a given
maximal mechanical capacity cannot be predicted from the value observed in the antagonist muscle group.
Regarding the possible limitations of the present study, it should be acknowledged that during the testing
procedure the two most commonly used angular velocities (i.e., 60 °/s and 180 °/s) were applied. Because
these two velocities are far from the velocity-intercept, it is possible that the precision of the F-V
relationship could be improved using velocities nearer to the velocity-intercept by reducing the
extrapolation needed to reach Vo (Garcia-Ramos & Jaric, 2018). In addition, the lack of significant
differences between active and non-active males for several F-V relationship parameters and muscle
groups could be the consequence of not controlling the type of sport and recreational activity performed
by the participants. Therefore, future studies should try to compare participants with more distinctive
characteristics regarding the function of the different muscles assessed.

A new potential benefit of the two-point method could be calculation of the muscle mechanical
capacities ratios (i.e., strength ratios, power ratios, velocity ratios). It has been argued that strength ratio
between antagonist muscle groups could provide meaningful additional information about strength
capacities of antagonistic muscle groups (Tata, Ng, & Kramer, 1993). Strength ratios are typically
calculated under isometric (Kong & Burns, 2010) or isokinetic conditions (Aagaard, Simonsen,
Magnusson, Larsson, & Dyhre-Poulsen, 1998) dividing the maximal force of flexor muscles by the
maximal force of extensor muscles. However, traditional strength ratios do not provide an extensive
evaluation of the mechanical imbalances of the tested muscles because other important mechanical
capacities (Vo and Pmax) are not being evaluated. Therefore, additional tests would be needed to evaluate
Vo and Pmax capacities which could be time-consuming. A potential solution for shortening the testing
procedure could be the use of the two-point method to selectively evaluate all maximal mechanical
capacities at the same time (Grbic et al., 2017) and, subsequently, calculate their corresponding ratios.

8.5. Conclusions

The sensitivity of the two-velocity method for testing the maximal mechanical capacities was high
for the knee joint, moderate for the hip and shoulder joints, and low for the elbow joint. The F-V
relationship assessed through the two-velocity method was able to discriminate better between antagonist
muscle groups than between males with different levels of physical activity. The non-systematic
correlations between the F-V relationship parameters of antagonist muscle groups suggest that a given
maximal mechanical capacity cannot be predicted from the value observed in the antagonist muscle group.
Therefore, since different muscle groups should be evaluated to obtain complete information of the
function of the whole neuromuscular system, the two-velocity method could be considered as a quick
procedure for testing the maximal mechanical capacities to produce force, velocity, and power.
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9. General conclusion and significance of the studies

Present thesis was designed with an aim to validate, explore sensitivity and generalizability of the
two-point method for applying it during isokinetic testing. Results of the studies demonstrated that F-V
relationships obtained during isokinetic tasks were strong and linear (all r > 0.969), and that validity of the
Fowas high but lower for the other F-V relationship parameters (median r: Fo = 0.96; Vo =0.71; a = 0.78;
and Pmax = 0.78) when obtained using two-velocity method. Regarding sensitivity, both the multiple- and
the two-velocity method provided higher values of Fo, Vo and Pmax for men compared to women, and were
able to discriminate better between antagonist muscle groups than between males with different levels of
physical activity. In both studies, association between the same F-V relationship parameters were on
average poor to moderate. Generally, findings support the two-velocity method as a valid and sensitive
procedure for determining the maximal capacity of the selected muscles to produce Fo, while more muscles
should be tested to comprehensively evaluate the subject's muscular function.

Until recently, assessing muscle capabilities was performed exclusively using standard isokinetic
testing protocols (i.e., applying different angular velocities during isokinetic testing), which enabled
drawing conclusions only about individual mechanical capacities (i.e., F or P) of the tested muscles at
once. What is important to emphasize is that isokinetic F-V relationship modelling opens a possibility to
assess all mechanical capacities (i.e., F, P and V) at once, while two-velocity method additionally shortens
this procedure. In this regard, the two-velocity method could be particularly recommended when several
muscles should be tested within the same session to minimise testing time.

Besides shortening testing procedure, fatigue associated with the testing protocol is significantly
decreased. This quality of two-velocity method is particularly important since the mechanical capacities
of both the patients and athletes could be frequently assessed. And what is of great importance is that
velocities applied during testing sessions are more comfortable for tested subjects (i.e., enable predicting
maximal capacities without directly assessing them) irrespective of the strength level. Finally, two-
velocity method could be used to distinguish between antagonistic muscle groups, likely opening
possibility to evaluate asymmetries in the F, V, P capabilities of the extremities.

Summing up, designs of the studies presented as a part of this thesis were the first that included
assessing validity of the two-point method of the several important muscle groups during isokinetic
testing. Also, presented studies were the first to assess sensitivity of the two-velocity method to
discriminate between maximal muscle capacities of antagonistic muscle pairs, subjects of different gender
and healthy, uninjured males of different strength levels. However, besides its great potential
demonstrated within this work, future studies should seek for a different combination of the experimental
velocities to optimise the accuracy of the two-velocity method.
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pod nazivom ,,Procena mehanickih svojstava razli¢itih miSiénih grupa primenom metode ,,dve
brzine*.

U Beogradu 29.5.2017. Za Eti¢ku komisiju

Clanovi

1. red. prof. dr Dusanka Lazarevi¢




Supplementary document 2. Testing protocol agreement file

DOPMYIIAP 3A CAITIACHOCT CA MNMPOLEOYPOM TECTUPAHA
lcTpaxkmBauku npojexkat: ,Mumulinn u Heypanun GaKTopn XymaHe JIOKOMOUHje U HbUX0BE alaliTUBHE NPOMeH:

Hcrpaskusauu: Januua Januhujesuh
[Mpodr. np dparan Mupros
H. cap. Onusepa KHexesuh
IMpo¢. ap Anexcannap Henemkosuh
[Tpod. ap Cnobonan Japuh

Kme vcnuTaHKuka (luTaMmnaHuM CloBuMa):

¥ HAMEHA U OIIUC UCTPAXKUBAA

[o3BaHK CTE 12 YUYECTBY]eTe Yy HCTPaKMUBAYKOM NpojekTy dakyaTeTa cnopra U HU3UKOr
pacnuTama. LlmbeBM wmcrpasupama cy: (1) npoueHa penauuje cuna-6psuna  (F-V) 'y
M30KHHETHUKOM pekuMy paaa Muiunha Quekcopa 1 ekcTeH3opa y 3ri00y fakra u 3rnoly Konena
(cTaHAapAHM PErpecuoOHH MOJEN Ca NEeT Tayaka) U UCUTUBArLEe MOrYRHOCTH NpUMeHe MeTo/e “ABe
6p3une’ (“two-velocity™), (2) ucnuTHBame MOBE3aHOCTH MNapaMerapa penauuje cuia- Op3uHa
usmelhy paznuuuTux MuiimhekX rpyna (M 3a cTaHZapAHW PerpecHoHM MOJAE] ca MET Tavyaka u 3a
Mogen ca “ase 6paune™) U (3) ucnuTubame MOryliHOCTH reHepanusaumje A06HjeHUX pesyiTaTa ca

jenHe Ha Bullle MMIIHAHKUX Cpyria.

Bu here 6uTH jenan oa HajMarme 24 GuUsHuky aKTHBHMX ydecHuka. [IpHMKOM TecTHpamba
mutinhHe cuie, ceaehieTe Ha CTONUUM AMHAMOMETpa Npu 4yeMmy he Bam cermMeHTH Tena Outu
¢ukcupanu nojacesuma. Takohe, yschemo u ropaTke KOju Ce OJHOCE Ha Ball AaTyM pohema,

BUCHHY, Macy, Opoj TenedoHa.

Bawe yueuwhe y oBoM npojexty he o0yxBaTUTH:

[Tonymwasatse ynuTHUKa 0 Gpr3nukoj akrupHocTH (IPAQ);

Oxpehusatse Tenecke Komnosuuuje Ha Gruoumnenanuy [nBody 720;

TecTupame cune y 3rnoby nakra v 3rioby koseHa (3a (uiexcope u eKCTeH3ope) y
usokuneTnuxom 0 O/s u y nzomerpujckom pexxumy paza 30, 60, 90, 120, 150, 210, 240 O/s
Ha M30KMHETHHYKOM MHAMOMETPY;

4. Tecruparby Muluvhine cuie fie NPETXONUTH 3arpeBarne y Tpajamy O 5 MHH. Ha OHLHKIY

epromMeTpy v JMHaAMHYKO HCTE3ahe.

bl ool =

2. YCJOBHU YUEII'RA ¥ EKCIIEPUMEHTY

Cee pobujere uudopmauuje W pesyntaTu ose crtyauje he 6uTv nosepsbuu. Bu nuyno
nehete Mohu na Gynere MAEHTH(PHKOBAHH KAO y4ECHMK, W3y3eB Mo BauleM 6pojy/ wudpH Koja
fie 6UTH Mo3HaTa camo MCTpakWBauuma. Y cayuajy nospene npumuhiere npy nomoh. Ako Bam
6yne notpebHa aonaTHa MeaMUMHcKa nomoh, Bu fiete 61T oarosopHu 3a wy. Mmare npaso aa
npekuHere yuewhie y Tectvpary y 6110 KOM TPEHYTKY.

3. KPUTEPUJYMHU 3A YUEIIRE Y CTY/IUJU

YV cryaudju Hehere Molu na yuecTByjeTe YKOJIMKO MaTuTe O KapAHOBACKYIATOPHWX HIH
HeypoJsolKux Npobaema, uik GUII0 KOjUX MPEONnepaTHBHUX MM NOCTONepaTHBHUX nojasa (6oi,
OTOK...) KOje MOTY /1a yTU4Yy Ha pe3yJITaT eKCliepUMeHTa uiau Mory aa 6yay noropiuate ydeiuhiem.

CtpaHa 1 04 2 MHnunjanu ncnutaHuka



DOPMYJIAP 3A CATJIACHOCT CA INPOLIEAYPOM TECTUPAHSA
)axkuBadku npojekat: ,,Mumuhsu u HeypanHu GaKkTOpU XymMaHe JOKOMOUMje U H-HXOBE aJANITHBHE npomMeHe

3 PU3HUK 1 BEHEOUIIUJE

Moryhn pusuk: MOXKETE OCETHTH 3aMOp MM ynajiy MUwuha, NponasHor kapakrepa.

Beneduuuje: ynosuahere ce ca HauuHWMa AMPEKTHOT TecTUpama cune Mumuha, n1o6uhere
xonujy InBody ussewuraja o TenecHoj komnosuumju. [open csera HaBenewor nonpuxehere aa ce
neTabHUje MCNKHTA NpUpoja penaluje cuna-6p3uHa Koa jeaHO3r106HUX nokpera.

3. KOHTAKTH

VY cnyuajy na mmate OWIO KOje NUTawe y BE3M MPOTOKOJA MCTPAaXKHUBAMA, obparure ce

Haunun  Jaunhujesuh  (064/1600474). [Murama y Be3u BaluMx NOpaBa Kao YYECHHKKA
eKCrepuMeHTa MOJKeTe mnocraBuTv wwedy ernuke komucHje Pakysnrera cropta v GU3HUKOD

BacnMTama, YHuBepsutera y beorpaay (011/3555 000).

6. IIOTBPJA UCITUTAHUKA

[MpounTao/na cam oBaj N0KyMEHT U npupoaa mor yueiwha, 3aXTeBH, pusuuM M GeHeduLmje
cy mu oGjawbern. CpecTan caM pH3MKa M pasyMeM [a y CBAKOM TPEHYTKY M 6e3 MKaKBHX
nocneaMua MOTy Ja f10Byd4em CBOj npucrtaHak 3a yueuwihe y ekcriepumenty. Kommja opor

AOKYMEHTa MU je aaTa.

7. HNOTHHCH
Jatym:

[MoTtnuc
WCMHUTAaHUKA:

CrtpaHa 2 og 2 WHuumjanu ucnurtanuxa
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Supplementary document 3. International physical activity questionnaire (IPAQ)

Univerzitet u Beogradu, Fakultet sporta i fizickog vaspitanja
Doktorske studije - Eksperimentalne metode istaZivanja humane lokomocije IPAQ

INTERNACIONALNI UPITNIK O FIZICKOJ AKTIVNOSTI
- IPAQ -

Ovim kratkim upitnikom Zelimo da ispitamo koji oblik fizike aktivnosti najée§ce upraznjavate kao deo Vasih

svakodnevnih aktivnosti. Pitanja se odnose na fizicke aktivnosti koje ste upraznjavali u poslednjih 7 dana. Molimo Vas
upraznjavate u toku dana na

v artivimost; g-

> Razmislite o svim INTENZIVNIM FIZICKIM AKTIVNOSTIMA koje ste obavljali u poslednjih 7 dana.
INTENZIVNE FIZ[CKE AKTIVNOSTI su sve aktivnosti koje zahtevaju tezi fizicki napor i koje
ubrzavaju Va$e disanje i rad srca znatno iznad normalnih vrednosti. Uzmite u obzir samo one

aktivnosti koje su trajale najmanje 10 minuta.
1. U poslednjih 7 dana, koliko dana ste upraznjavali INTENZIVNE FIZICKE AKTIVNOSTI kao §to je,
aerobik, brza voZnja bicikla, mali fudbal, basket, dizanje tegova, teZi fizicki rad u dvoristu?

dana u nedelji

Nisam imao ovu vrstu aktivnosti —3> Predite na pitanje br. 3

2. Koliko vremena ste proveli baveéi se INTENZIVNIM FIZICKIM AKTIVNOSTIMA u tim danima?

sati na dan

minuta na dan Ne znam/nisam siguran

Razmislite o svim UMERENIM FIZICKIM AKTIVNOSTIMA koje ste obavljali u poslednjih 7 dana.
UMERENE FIZICKE AKTIVNOSTI su sve aktivnosti koje zahtevaju umeren fizicki napor i koje ubrzavaju
Vase disanje,i rad srca iznad normalnih vrednosti. Uzmite u obzir samo one aktivnosti koje su trajale najmanje

10 minuta.

3. U poslednjih 7 dana, koliko dana ste upraZnjavali UMERENE FIZICKE AKTIVNOSTI kao 3to je
lagana voznja bicikla, tenis, voznja rolera, brzo hodanje, laksi fizi¢ki rad u dvoristu,? Hodanje ne spada u ovu

vrstu aktivnosti.

dana u nedelji

———> Predite na pitanje br. 5

Nisam imao ovu vrstu aktivnosti

4. Koliko vremena stc proveli baveéi se UMERENIM FIZICKIM AKTIVNOSTIMA u tim danima?

sati na dan

minuta na dan e znam/nisam sigliran
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Univerzitet u Beogradu, Fakultet sporta i fizickog vaspitanja
Doktorske studije - Eksperimentalne metode istaZivanja humane lokomocije

IPAQ

> Razmislite koliko vremena ste proveli HODAJUCT u poslednjih 7 dana. Odnosi se na hodanje na
radnom mestu (fakultet), kod kuée, na putu od kuée do posla i nazad, u slobodno vreme, hodanje

kao rekreativna aktivnost, kao deo treninga,.....

5. U poslednjih 7 dana, koliko dana ste hodali najmanje 10 minuta u kontinuitetu?

dana u nedelji

Nisam hodao duZe od 10 minuta —==———% Predite na pitanje br. 7

6. Koliko vremena ste proveli HODAJUCT u tim darima?

sati na dan

minuta na dan Ne znam/hisam siguran

» Poslednje pitanje se odnosi na koli€inu vremena koje ste proveli sede¢i u poslednjih 7 dana. Odnosi
se na vreme koje ste sedeli na radnom mestu (fakultetu), kod kuce, sedenje za stolom, u poseti kod

prijatelja, Citanje, gledanje Tv-a,.....

7. U poslednijih 7 dana, koliko vremena ste proveli SEDECI u toku jednog dana?

sati na dan

. . . .
minuta na dan Ne znam/nisam siguran

v Za testiranje je potrebno da budete-u sportskaj opremi (Sorc, majica, patike)

Saglasan sam da ucestvujem u testiranju Vas potpis

Telefon e-mail adresa
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Oopa3zan 5.
N3jaBa 0 ayTOpCTBY

Wwme u npesume ayropa _ Jlanuna Januhujesuh
bpoj unexca _5007/2016

HU3jaBmbyjem
Jla je TOKTOpCKa JUcepTalirja Mo HacJ0BOM

Mechanical capacities of the different muscle groups assessed using "two-velocity"

method (IIporieHa MEXaHWYKUX CBO]CTABA PA3JIWUYMTUX MUITMAHUX IPYIIA IPUMEHOM

METOE ,.JiB€ Op3nHe‘’)

pe3ynTaT CONCTBEHOT NCTPAXMUBAYKOT Pajia;

Ja JUcepTanrja y HEeJUHH HU y JeJIOBMMa HHje Oujia IPeUIoKeHa 3a CTHIAkE IPyre AMILIOME mpemMa
CTYIMCKHUM TPOTrpaMUMa JAPYTruX BUCOKOIIKOJCKUX YCTAHOBA;

Jla Cy pe3yJITaTH KOPEKTHO HaBEIECHU U

Jla HICaM KpILKO/Jia ayTOpCKa paBa U KOPUCTHO/JIa HHTEIEKTYaIHY CBOJUHY IPYTHX JIMIA.

IMornuc ayropa

VY beorpany,
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Oopa3zan 6.

N3jaBa O HCTOBETHOCTH IIITAMITAHE M €JIEKTPOHCKE BEP3Hj€ JOKTOPCKOT
pana

Nwme u npeszume aytopa: Jannua Januhujesuh
bpoj unekca: 5007/2016
Crynujcku nporpaM: EkcliepuMeHTalHe METO/Ie N3ydaBamba XyMaHe JIOKOMOIIUje

Hacnos pama: Mechanical capacities of the different muscle groups assessed using "two-velocity" method
(ITporieHa MEXaHMYKUX CBOjCTaBa Pa3IMYUTHX MUIIMNHUX TPyIa IPUMEHOM METO/IE ,,iBE Op3uHe™

Menrop: Hayunu capagauk Omuepa Kuexesuh

U3jaBibyjeM Ja je mTamiaHa Bep3dja MOT JOKTOPCKOr pajia UCTOBETHA CJIEKTPOHCKO] BEP3UjH KOjy cam
npeiao/ia paay noxpameHa y JIMruTaTHoM peno3utopujymy YuuBep3utera y bBeorpany.

Jlo3BoJbaBaM J1a ce o0jaBe MOjH JIMUHH ITOJAIlM BE3aHU 3a JI0OHjame aKkaJeMCKOI Ha3MBa JOKTOpa Hayka,
Kao IITO Cy UME U [TPe3uMe, roJinHa U MecTo polera u 1atym ogopane paja.

OBWU TUYHHM TTOJANM MOTY ce 00jaBUTH Ha MPEKXHUM CTpaHHUIIaMa JUTUTATHE OMOINOTEKE, Y SIEKTPOHCKOM
KaTajory M y myonukanujaMa Y HuBep3uTera y beorpany.

IMoTniuc ayTopa

VY beorpany,
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O6pasay, 7.
M3jaBa o kopuiihewy

Osnamthyjem YHuBepautTercKy OuOimorteky ,,CBerozap Mapkosuh® na y JIMTHTanHU pEmoO3UTOPUjyM
Vuusepsutera y beorpany yHece Mojy JOKTOPCKY AUCEPTaLXjy IO HACIOBOM:

Mechanical capacities of the different muscle groups assessed using "two-velocity" method (ITpouena
MeXaHMYKHX CBOjCTAaBa Pa3JMYHTHX MUIIMAHUX rpyna NpuMeHoOM MeTo/Ie ,,/iBe Op3nHe*)

KOja je MOje ayTOpPCKO JIeIO.

Juceprannjy ca CBUM NpUIO3MMa IpeAao/ja caMm y eJIEKTPOHCKOM (opMary MOroJHOM 3a TPajHO
apXHWBHpame.

Mojy AOKTOPCKY JMcepTalnjy noxpameny y Jururainom perno3utopujymy YHuBep3utera y beorpamy u
JOCTYIIHY Y OTBOPEHOM IPHCTYITy MOTY Jia KOPUCTE CBU KOjH TIOLITYjy OJpende caapikaHe y oJadpaHoOM THITY
nureHne Kpeatusue 3ajennuiie (Creative Commons) 3a KOjy caM ce OjTy4no/Ja.

1. Ayropcreo (CC BY)

2. AyropctBo — Hekomepuujaano (CC BY-NC)

3. AyropctBo — HekoMmepunjainHo — 6e3 nmpepana (CC BY-NC-ND)

4. AyTopcTBO — HEKOMepIIHjaltHO — aeauTH noj uctuM ycinosuma (CC BY-NC-SA)
5. AyropctBo — 6e3 mpepama (CC BY-ND)

6. AyropctBo — menutu mox uctuM ycrnosuma (CC BY-SA)

(MonuMo 1a 3a0KpyKHTE caMo jeIHY OJI IIECT MOHYHEHUX JTUICHITH.

Kparak ormvic THIIEHIM je CacTaBHU €0 OBE U3jaBe).

IMornuc ayropa

VY Beorpany,
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