Univerzitet u Beogradu

Hemijski fakultet

Ivana Lj. Milenković

Toksičnost i biološki uticaj nanočestica cerijum-oksida obloženih ugljenim hidratima na odabrane model organizme

doktorska disertacija

Beograd, 2020.

University of Belgrade

Faculty of Chemistry

Ivana Lj. Milenković

Toxicity and biological effect of cerium-oxide nanoparticles coated with carbohydrates on selected model organisms

Doctoral Dissertation

Belgrade, 2020.

Mentori:

dr Vladimir Beškoski, vanredni profesor

Univerzitet u Beogradu, Hemijski fakultet

dr Ksenija Radotić Hadži-Manić, naučni savetnik

Univerzitet u Beogradu, Institut za multidisciplinarana istraživanja

Članovi komisije:

dr Branko Matović, naučni savetnik

Univerzitet u Beogradu, Institut za nuklearne nauke "Vinča"

dr Ljubodrag Vujisić, docent

Univerzitet u Beogradu, Hemijski fakultet

dr Jelena Trifković, vanredni profesor

Univerzitet u Beogradu, Hemijski fakultet

Datum odbrane:

Ova doktorska disertacija je nastala u saradnji Instituta za multidisciplinarna istraživanja u Beogradu (Odsek za nauku o živim sistemima) sa Institutom za nuklearne nauke ''Vinča'' (Laboratorija za materijale), Institutom za molekularnu genetiku i genetičko inženjerstvo (Laboratorija za molekularnu biologiju), Hemijskim fakultetom (Katedra za biohemiju), Univerziteta u Beogradu i Prirodno-matematičkim fakultetom, Univerziteta u Malagi (Katedra za neorgansku hemiju kristalografiju i mineralogiju)

Ovom prilikom se zahvaljujem svojim mentorima, prof dr Vladimiru Beškoskom i dr Kseniji Radotić Hadži-Manić na predloženoj temi, nesebičnoj podršci i pomoći prilikom izrade i pisanja disertacije

Zahvaljujem se dr Branku Matoviću na ukazanom poverenju i mogućnosti da se deo disertacije realizuje u Laboratoriji za materijale, Instituta za nuklearne nauke "Vinča" Zahvaljujem se dr Aleksandri Nikolić i njenom timu na saradnji i omogućavanju izrade dela disertacije na Institutu za molekularnu genetiku i genetičko inženjerstvo, kao i dr

Jeleni Trifković i dr Ljubodragu Vujisiću na korekcijama i sugestijama

Zahvalnost na saradnji dugujem i koleginicama Aleksandri Mitrović, Branki Lončarević, Mariji Lješević, Jovani Despotović i Slađani Spasić jer su svojim doprinosom omogućile da disertacija dobije završnu formu

Zahvaljujem se svim kolegama sa Odseka za žive sisteme na pomoći i pozitivnoj atmosferi Posebnu zahvalnost dugujem svojoj porodici

Toksičnost i biološki uticaj nanočestica cerijum-oksida obloženih ugljenim hidratima na odabrane model organizme

SAŽETAK

Nanočestice cerijum-oksida (nCeO₂) su nanomaterijal popularan zbog izmene Ce³⁺ i Ce⁴⁺ oksidacionih stanja. Međutim, niska stabilnost i taloženje nCeO₂ u vodenoj sredini predstavljaju ograničenje njihovoj raznovrsnoj primeni.

U prvom delu teze su sintetisane $nCeO_2$ samopropagirajućom metodom na sobnoj temperaturi. Nanočestice su stabilizovane oblaganjem glukozom, levanom ili pululanom zbog visoke hidrosolubilnosti i biokompatibilnosti. Pululan je prvi put korišćen za oblaganje $nCeO_2$. Nanočestice su oblagane tokom i nakon sinteze variranjem različitih uslova (vreme oblaganja, temperatura i količina materijala za oblaganje).

U drugom delu teze neobložene i glukozom, levanom ili pululanom obložene (G-, L- ili P-CeO₂) nCeO₂ su okarakterisane skenirajućom i transmisionom elektronskom mikroskopijom, rendgenskom difrakcijom, infracrvenom spektroskopijom sa Furijeovom transformacijom, rendgenskom fotoelektronskom spektroskopijom, nuklearnom magnetnom rezonancom, metodom dinamičkog rasejanja svetlosti i turbidimetrijom. nCeO₂, oblagane ugljenim hidratima nakon sinteze tokom 6 h, podvrgnute su daljem ispitivanju.

U trećem delu teze ispitani su biološki uticaji neobloženih i obloženih nanočestica na četiri biljne vrste tretiranjem tokom klijanja (3-5 dana) i rastenja (3 nedelje). Testiran je uticaj oblaganja na usvajanje nanočestica, klijanje i razvoj biljaka, kao i parametre sekundarnog metabolizma (ukupni i pojedinačni fenoli i ukupna antioksidativna aktivnost). Detektovana su poluisparljiva jedinjenja u pšenici i grašku sveobuhvatnom dvodimenzionalnom gasnom hromatografijom. Akutna toksičnost nanočestica je testirana na bakteriji (*Vibrio fischeri*), slatkovodnom račiću (*Daphnia magna*) i zebrici (*Danio rerio*). Kod *Daphnia magna* je respirometrijski praćen metabolički put O₂ i CO₂.

Ključne reči: nanočestice, cerijum-oksid, glukoza, levan, pululan, oblaganje, *Daphnia magna*, *Danio rerio*, *Vibrio fischeri*, biljke

Naučna oblast: Hemija

Uža naučna oblast: Biohemija

Toxicity and biological effect of cerium-oxide nanoparticles coated with carbohydrates on selected model organisms

ABSTRACT

Cerium oxide nanoparticles (nCeO₂) ape popular nanomaterial due to their transition between Ce^{3+} and Ce^{4+} oxidation states. However, low stability and agglomeration of nCeO₂ is a main barrier to their various application.

In the first part, nCeO₂ were synthesized by a self-propagating room temperature method. The nanoparticles were coated with glucose, levan or pullulan due to their high hydrosolubility and biocompatibility. Pululan was used for nCeO₂ coating for the first time. nCeO₂ were coated during and after the synthesis under different conditions (coating time, temperature and amount of coating material).

In the second part, the uncoated and glucose-, levan- and pullulan-coated $nCeO_2$ were characterized by scanning and transmission electron microscopies, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance, dynamic light scattering method, and turbidimetry. Carbohydrates-coated $nCeO_2$ after the synthesis during 6h, were further examined.

In the third part, the effect of uncoated and coated nanoparticles was tested on four plant species by treatment during the germination (3 - 5 days) and the growth (3 weeks). The influence of coating on the nanoparticles' uptake, plants' germination and development, as well as parameters of secondary metabolism (total and individual phenols, and total antioxidant activity) was tested. Also, screening of semi-volatile compounds in wheat and pea were carried out by comprehensive two-dimensional gas chromatography. The acute toxicity of nanoparticles were tested on bacteria (*Vibrio fischeri*), water flea (*Daphnia magna*), and zebrafish (*Danio rerio*). The O₂ and CO₂ metabolic pathways in *Daphnia magna* were followed by respirometry.

Keywords: nanoparticles, cerium oxide, glucose, levan, pullulan, coating, *Daphnia magna*, *Danio rerio*, *Vibrio fischeri*, plants

Scientific field: Chemistry

Scientific subfield: Biochemistry

Lista skraćenica

nCeO₂ - nanočestice cerijum-oksida

ROS - reaktivne vrste kiseonika (eng. Reactive Oxygen Species)

DNK - dezoksiribonukleinska kiselina (eng. DeoxyriboNucleic Acid)

UV - ultravioletno zračenje

DC metoda - metoda oblaganja nanočestica tokom sinteze (eng. During Coating)

SC metoda - metoda oblaganja nanočestica nakon sinteze (eng. Subsequent Coating)

G-CeO2 - glukozom obložene nanočestice cerijum-oksida

L-CeO₂ - levanom obložene nanočestice cerijum-oksida

P-CeO₂ - pululanom obložene nanočestice cerijum-oksida

D. magna - Daphnia magna

D. rerio - Danio rerio

V. fischeri - Vibrio fischeri

SPRT metoda - samo-propagirajuća metoda na sobnoj temperaturi (eng. Self Propagating Room Temperature Synthesis)

XRD - rendgenska difrakcija (eng. X-Ray Diffraction)

FTIR - infracrvena spektroskopija sa Furijeovom transformacijom (eng. *Fourier-Transform Infrared Spectroscopy*)

XPS - rendgenska fotoelektronska spektroskopija (eng. X-ray Photoelectron Spectroscopy)

NMR - nuklearna magnetna rezonanca (eng. Nuclear Magnetic Resonance)

ss-NMR - nuklearna magnetna rezonanca čvrstog stanja (eng. *solid-state Nuclear Magnetic Resonance*)

SEM - skenirajuća elektronska mikroskopija (eng. Scanning Electron Microscopy)

HRTEM- transmisiona elektronska mikroskopija visoke rezolucije (eng. *High-Resolution Transmission Electron Microscopy*)

DLS - dinamičko rasejanje svetlosti (eng. Dynamic Light Scattering)

ICP-OES - induktivno spregnuta plazma - optičko emisiona spektrometrija (eng. *Inductively Coupled Plasma Optical Emission Spectrometry*)

TAA - ukupna antioksidativna aktivnost (eng. Total Antioxidative Activity)

ABTS - 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

HRP - peroksidaza rena (eng. HorseRadish Peroxidase)

TPC - ukupan sadržaj fenola (eng. Total Phenolic Content)

HPLC-MS - tečna hromatografija visokih performansi sa masenom spektrometrijom (eng. *High-Performance Liquid Chromatography - Mass Spectrometry*)

ESI proba - elektron-sprej jonizaciona (eng. Electron Spray Ionization) proba

Ger tretman - tretman tokom klijanja (eng. Germination) semena

Gro tretman - tretman tokom rastenja (eng. Growth) biljke

ADaM - medijum za gajenje D. magna (eng. Aachener Daphnien Medium)

GCxGC-MS - sveobuhvatna dvodimenzionalna gasna hromatografija sa masenom spektrometrijom (eng. *comprehensive two-dimensional Gas Chromatography - Mass Spectrometry*)

NLPCA - nelinearna analiza glavnih komponenti (eng. Nonlinear Principal Component Analysis)

PCA - analiza glavnih komponenata (eng. Principal Component Analysis)

PC - glavna komponenta (eng. Principal Component)

CATPCA - kategorijska analiza glavnih komponenata (eng. Categorical Principal Components Analysis)

ANOVA - jednofaktorska analiza varijanse (eng. One-Way ANalysis Of VAriance)

Zav- prosečna veličina čestica (eng. Z-average particles size)

UV/Vis - spektroskopija u oblasti ultraljubičaste i vidljive svetlosti (eng. *UltraViolet-Visible spectroscopy*)

hpf - sati nakon mresta (eng. hours post fertilization)

SADRŽAJ

1. UVOD	1
2. PREGLED LITERATURE	3
2.1. Nanočestice cerijum-oksida (nCeO ₂)	
2.1.1. Struktura nCeO ₂	4
2.1.1.1. Kiseonične praznine u kristalnoj rešetki	4
2.1.2. Svojstva nCeO ₂	5
2.1.2.1. Redoks svojstva nCeO ₂ i interakcija sa reaktivnim vrstama kiseonika	5
2.1.2.2. Faktori koji utiču na biološku aktivnost nCeO2	6
2.1.3. Primena nCeO ₂	6
2.1.4. Sinteza nCeO ₂	6
2.1.5. Poboljšanje stabilnosti nCeO ₂ oblaganjem	8
2.1.5.1. Glukoza kao materijal za oblaganje	8
2.1.5.2. Levan	9
2.1.5.3. Pululan	
2.2. nCeO ₂ u životnoj sredini	10
2.2.1. Sudbina i transformacija nanočestica u životnoj sredini	
2.2.2. Usvajanje nCeO ₂ u različitim biljnim vrstama i efekat na klijanje i rastenje	
2.2.3. Antioksidativni odgovor biljaka na nCeO ₂ tretmane	
2.2.4. Efekat nCeO ₂ na Vibrio fischeri, Daphnia magna i Danio rerio	
3. EKSPERIMENTALNI DEO	
3.1. Hemikalije	15
3.2. Mikroorganizmi	15
3.3. Sinteza nCeO ₂	15
3.3.1. Sinteza neobloženih nCeO ₂	
3.3.2. Sinteza glukozom, levanom i pululanom obloženih nCeO ₂	
3.3.2.1. Oblaganje nCeO ₂ DC metodom	
3.3.2.2. Oblaganje nCeO ₂ SC metodom	
3.4. Sinteza levana i pululana	16
3.5. Karakterizacija nCeO ₂	16
3.5.1. Rendgenska strukturna analiza	
3.5.2. Skenirajuća elektronska mikroskopija	
3.5.3. Transmisiona elektronska mikroskopija visoke rezolucije	16
3.5.4. Infracrvena spektroskopija sa Furijeovom transformacijom	
3.5.5. Rendgenska fotoelektronska spektroskopija	
3.5.6. Nuklearna magnetna rezonanca	17
3.5.7. Elementalna organska mikroanaliza	17
3.6. Određivanje stabilnosti nanočestica	17

3.6.1. Turbidimetrija	17
3.6.2. Dinamičko rasejanje svetlosti i zetametrija	17
3.7. Analiza bioloških uticaja nCeO, na bilike	
3.7.1. Tretman biliaka tokom klijanja	
3.7.2. Tretman biljaka tokom rastenja	
3.7.3. Određivanje biomase i koncentracije cerijuma u bilikama	
3.7.4. Ekstrakcija fenolnih jedinjenja i određivanje nijhovog ukupnog sadržaja u bilikama	
3.7.5. Određivanje ukupne antioksidativne aktivnosti	
3.7.6. Određivanje profila fenolnih jedinjenja	
3.7.7. Sveobuhvatna dvodimenzionalna gasna hromatografija sa masenom spektrometrijom	
3.8. Ispitivanje toksičnosti nCeO ₂ na bakteriju i vodene životinje	20
3.8.1. Model organizmi korišćeni u eksperimentima	
3.8.2. ICP-OES analiza tretiranih <i>D. magna</i> i <i>D. rerio</i>	
3.8.3. Ispitivanje akutne toksičnosti različitih nCeO ₂ na modelu <i>D. magna</i>	
3.8.4. Praćenje respiracije <i>D. magna</i>	21
3.8.5. Ispitivanje akutne toksičnosti različitih nCeO ₂ na <i>D. rerio</i>	
3.8.6. Ispitivanje inhibitornog efekta različitih n CeO_2 na bioluminiscenciju V. fischeri	22
3.9. Statistička obrada podataka	23
4. REZULTATI I DISKUSIJA	24
4.1. Strukturna svojstva nCeO ₂	25
4.1.1. Poređenje dve metode oblaganja nCeO ₂	
4.1.2. Strukturna svojstva nCeO ₂ obloženih SC metodom	
4.1.2.1. SEM i HRTEM analiza	
4.1.2.2. Karakterizacija FTIR metodom	
4.1.2.3. XPS analiza	
4.1.2.4. NMR analiza	
4.1.2.5. Elementalna organska mikroanaliza	
4.1.3. Stabilnost obloženih nCeO ₂	
4.2. Biološki efekti nCeO2 na odabranim biljnim vrstama	37
4.2.1. Usvajanje Ce i njegova translokacija unutar biljaka	
4.2.2. Efekat obloženih i neobloženih nCeO ₂ na klijanje četiri biljne vrste	
4.2.3. Efekat obloženih i neobloženih nCeO ₂ na rastenje biljke	
4.2.4. Antioksidativni odgovor biljaka na nCeO ₂ tretmane	41
4.2.4.1. Efekat neobloženih i obloženih nCeO ₂ na TAA	41
4.2.4.2. Efekat neobloženih i obloženih n CeO_2 na ukupni sadržaj fenola i fenolni profil	
4.2.5. Detekcija poluisparljivih jedinjenja u pšenici i grašku nakon tretmana neobloženim i obloženim nCeO	2 49
4.2.5.1. Identifikacija pojedinačnih pikova sa hromatograma	51
4.2.5.2. NLPCA	73
4.2.5.3. Multivarijantna obrada slike i PCA	77
4.3. Ispitivanje akutne toksičnosti nCeO2 na odabranim životinjskim model organizmima	79
4.3.1. Usvajanje Ce u vodenim organizmima	79
4.3.2. Uticaj različitih nCeO ₂ na <i>D. magna</i> usled akutnog izlaganja	80
4.3.3. Metabolizam kiseonika i ugljenik(IV)-oksida kod D. magna tokom tretmana različitim nCeO2	
4.3.4. Efekat različitih nCeO ₂ na ranu fazu razvoja <i>D. rerio</i>	
4.3.5. Efekat različitih nCeO ₂ na inhibiciju bioluminiscencije kod V. fischeri	

5. ZAKLJUČAK	
6. LITERATURA	

1. UVOD

Nanomaterijali nalaze sve veću primenu u farmaceutskoj i kozmetičkoj industriji, u proizvodnji boja, goriva, elektronskih uređaja i poljoprivredi. Nekontrolisana primena nanočestica može dovesti do povećane opasnosti po životnu sredinu usled akumulacije u zemljištu, stenama, vazduhu i vodi. Ova tema je od nedavno postala predmet interesovanja među naučnicima, dovodeći do razvoja nove naučne discipline ekonanotoksikologije.

Nanočestice cerijum-oksida (nCeO₂) spadaju u najviše proizvedene nanočestice oksida metala na godišnjem nivou (10000 tona) [1]. Popularnost ovog nanomaterijala raste zbog sposobnosti istovremenog postojanja Ce^{3+} i Ce^{4+} oksidacionih stanja i formiranja kiseoničnih praznina na površini kristalne rešetke nanočestice, usled čega pokazuju antioksidativno, antiinflamatorno i antikancerogeno ponašanje [2,3]. Međutim, niska rastvorljivost u vodenoj sredini predstavlja osnovno ograničenje njihovoj primeni, što je navelo brojne naučnike da oblažu nanočestice različitim polimerima i time povećaju stabilnost njihovih vodenih suspenzija. Do sada su za oblaganje korišćena jedinjenja poput glukoze, dekstrana, hitozana, heparina, polietilen glikola, limunske kiseline, levana [4-10] itd.

Cilj ovog doktorata je primena prirodnih, u vodi rastvornih ugljenih hidrata za oblaganje nanočestica, kako bi se povećala njihova rastvorljivost u vodi, kao i ispitivanje njihovog uticaja na žive organizme. U tu svrhu su korišćeni monosaharid glukoza i egzopolisaharidi, levan i pululan. Uslovi oblaganja su optimizovani promenom temperature, vremena i stepena oblaganja, kao i veličine neobloženih nCeO₂. Sintetisane nanočestice su okarakterisane primenom brojnih mikroskopskih i spektroskopskih metoda, a stabilnost njihovih vođenih suspenzija je testirana turbidimetrijski, merenjem površinskog naelektrisanja i hidrodinamičke veličine nanočestica. U cilju testiranja njihovog potencijalnog rizika po životnu sredinu, ispitan je uticaj na odabrane biljne, bakterijske i vođene životinjske vrste, a dobijeni rezultati su statistički obrađeni.

Kako bi se ostvarili ciljevi rada, postavljeni su sledeći zadaci:

- Modifikovati i optimizovati hidrotermalnu metodu za oblaganje nanočestica cerijum-oksida sa ugljenim hidratima nakon sinteze i uporediti sa standardnim hidrotermalnim oblaganjem nanočestica tokom sinteze;
- Uraditi fizičko-hemijsku karakterizaciju tri vrste obloženih (glukozom, levanom ili pululanom) i neobloženih nanočestica cerijum-oksida i ispitati stabilnost njihovih vodenih suspenzija, u cilju njihovog međusobnog poređenja;
- Ispitati obloženih nCeO₂ interakciju sa odabranim poljoprivrednim biljnim vrstama - dve monokotile (pšenica i kukuruz) i dve dikotile (grašak i sočivo), praćenjem koncentracije nanočestica u biljkama nakon tretmana i stepena njihove translokacije, kao i bioloških i biohemijskih efekata (uticaj na klijanje, izduživanje korena i nadzemnog dela, merenje pokazatelja stresa - ukupnog sadržaja fenolnih jedinjenja, fenolnog profila i ukupne antioksidativne aktivnosti) uz poređenje sa efektima neobloženih nanočestica.
- Testirati potencijalnu akutnu toksičnost različito obloženih nanočestica na tri organizma koji se uobičajeno koriste kao model sistemi za ispitivanje ekotoksičnosti (*Daphnia magna*, *Danio rerio*, *Vibrio fischeri* NRRL B-11177), praćenjem mortaliteta (kod *Daphnia magna* i *Danio rerio*) i inhibicije luminiscencije (kod bakterije Vibrio fischeri); odrediti koncentraciju cerijumoksida u vodenim organizmima nakon tretmana; ispitati uticaj različito obloženih nanočestica na respiraciju *Daphnia magna* uz poređenje sa efektima neobloženih nanočestica;

2. PREGLED LITERATURE

2.1. Nanočestice cerijum-oksida (nCeO₂)

2.1.1. Struktura nCeO₂

Cerijum je najzastupljeniji lantanoid ili element "retke zemlje" [11]. Zahvaljujući elektronu u 4f orbitali (Xe $4f^{15}d^{16}s^2$), nCeO₂ poseduju redoks svojstva tj. mogućnost izmene Ce³⁺ (Xe 4f¹) i Ce⁴⁺ (osnovno stanje Xe) oksidacionih stanja. Kristalna rešetka nCeO₂ je površinski centriran kubni fluorit sa dužinom ivice gradivne jedinice (Ce4O8) od 0,51 nm. U prisustvu kiseoničnih praznina može postojati u formi Ce₂O₃ gradeći heksagonalnu kristalnu rešetku. Gradivne jedinice kristalnih rešetki se u većini slučajeva udružuju u kristalite, kristaliti u nanočestice, a nanočestice u veće strukture (štapiće, listove ili kocke) koje variraju u opsegu veličina 1-100 nm. Uslovi sinteze određuju da li će se kristaliti sastojati od jedne ili više gradivnih jedinica [12]. Nanočestice oksida metala, poput nCeO₂, imaju veliku površinu i "defektna" mesta (blisko locirani katjoni i anjoni) povezana sa licem, ivicama i uglovima njihovih poliedarnih oblika [13]. U kristalnoj rešetki nCeO₂, svaki Ce jon je okrenut ka površini rešetke i osmostruko koordinisan (vezan sa osam kiseonikovih atoma), dok je svaki atom O četvorostruko koordinisan (vezan sa četiri Ce jona) (Slika 1). Usled adsorpcije različitih rastvorljivih molekula, osmostruka koordinacija Ce jona može biti izmenjena u četvorostruku. Promene oksidacionog stanja Ce ili na nivou atoma kiseonika u kristalnoj rešetki mogu dovesti do povećanja napona unutar rešetke, kao i njene veličine [14].

2.1.1.1. Kiseonične praznine u kristalnoj rešetki

Kiseonične praznine u kristalnoj rešetki su posledica nedostatka atoma kiseonika u jednom ili više okteta unutar gradivne jedinice nCeO₂ [15]. Kako bi se očuvalo celokupno naelektrisanje, nedostatak jednog atoma kiseonika se mora nadoknaditi redukcijom dva Ce⁴⁺ jona, usled izmeštanja elektrona u 4f orbitalu Ce. Lokacija tako nastalih Ce³⁺ jona može zavisiti od veličine, oblika i načina sinteze kristala nCeO₂. Pokazano je da se zastupljenost Ce³⁺ povećava idući ka površini nanočestice [16], kao i sa opadanjem veličine nanočestice [17].

Slika 1. Struktura kristalne rešetke nCeO₂: osmostruka koordinacija cerijumovih atoma (žuto) (A), četvorostruka koordinacija kiseonikovih atoma (crveno) (B) i gradivna jedinica kristalne rešetke [11] (C)

Koncentracija kiseoničnih praznina se može izračunati iz odnosa Ce^{3+}/Ce^{4+} i predstavlja kapacitet skladištenja kiseonika (µmol oslobođenog kiseonika / g početnog materijala).

Postojanje kiseoničnih praznina omogućava kristalnim n CeO_2 da se ponašaju kao "kiseonični pufer" [15] koji reaguje na nedostatak ili višak atoma kiseonika iz neposrednog okruženja, a ujedno doprinosi i njegovim katalitičkim svojstvima. Jedan od najmoćnijih načina modulacije broja kiseoničnih praznina, a samim tim i reaktivnosti nanočestica, je obogaćivanje kristalne rešetke zamenom atoma cerijuma sa dvovalentnim i trovalentnim jonima drugih metala.

U odnosu na većinu nanočestica, nCeO₂ pokazuje jedinstvenost u povećanju deformacija kristalne rešetke sa smanjenjem veličine nanočestice [12], koje nastaju kao rezultat gubitka atoma kiseonika, formiranja kiseoničnih praznina i posledično povećanja Ce^{3+}/Ce^{4+} odnosa [17]. Pokazano je da nCeO₂ veličine 2-3 nm imaju najveći kapacitet skladištenja kiseonika [12], što ukazuje na to da se reaktivnost nCeO₂ povećava smanjenjem njene veličine do vrednosti od 2-3 nm, na kojoj je reaktivnost maksimalna.

2.1.2.1. Redoks svojstva nCeO₂ i interakcija sa reaktivnim vrstama kiseonika

Pojedine reaktivne vrste kiseonika (ROS) nastaju kao nus produkti ćelijskih metaboličkih puteva. Pored uloge imunskog aktivatora i sekundarnog glasnika u ćelijskoj signalizaciji, povećana koncentracija ovih reaktivnih molekula ima veliku ulogu u patogenezi brojnih bolesti, koje nastaju usled oštećenja molekula dezoksiribonukleinske kiseline (eng. *deoxyribonucleic acid*, DNK), proteina i lipida slobodnim radikalima. Sposobnost nCeO₂ da katalizuje prevođenje štetnih radikala u manje štetne molekule je dovela do povećanja istraživanja u domenu njegove primene.

nCeO₂ imaju dvojaku aktivnost, mimetičku (superoksid-dismutaza) i katalaznu (razgrađuje vodonik-peroksid), što daje mogućnost da se nCeO₂ ponašaju kao oksidans i antioksidans. Postoje različita objašnjenja za ovakvo ponašanje, ali tačan mehanizam delovanja još uvek nije potpuno razjašnjen. Po jonskom mehanizmu Ce⁴⁺ i Ce³⁺ joni iz kristalne rešetke interaguju direktno sa oba radikala, oksiduju superoksid i razgrađuju peroksid. Smatra se da je mimetička komponenta favorizovana povećanjem Ce³⁺/Ce⁴⁺ odnosa [18], a katalazna aktivnost njegovim smanjenjem [19]. Jonski mehanizam delovanja nCeO₂ je predstavljen jednačinama:

$3Ce^{4+} + 3O^{2-} \rightarrow 3Ce^{3+} + 3O_2$ Ce^{4+} redukcija	a (1)
--	-------

$$\operatorname{Ce}^{3+} + \operatorname{O}^{2-} + 2\operatorname{H}^{+} \to \operatorname{Ce}^{4+} + \operatorname{H}_2\operatorname{O}_2$$
 $\operatorname{Ce}^{3+} \operatorname{oksidacija}$ (2)

$$H_2O_2 + 2Ce^{3+} + 2H^+ \rightarrow 2Ce^{4+} + 2H_2O$$
 regeneracija Ce^{4+} i razgradnja H_2O_2 (3)

Jednačine (1) i (2) predstavljaju mimetičku aktivnost, dok je katalazna aktivnost opisana jednačinom (3). U realnosti, višak $\cdot O^{2-}$ se može javiti usled nedostatka superoksid-dismutaze.

Po drugom mehanizmu obe reakcije se odvijaju stvaranjem kiseoničnih praznina u kristalnoj rešetki nCeO₂ uz izmenu cerijumovih oksidacionih stanja. Ovaj mehanizam je prikazan jednačinom (4), koja pokazuje aktivnost superoksid-dismutaze, dok se predloženi šestostepeni mehanizam za reakciju katalaze može prikazati ukupnom jednačinom reakcije (5). OH⁻ joni na površini nCeO₂ mogu igrati ulogu u neutralizaciji $\cdot O^{2-}$ protonujući ga pri čemu nastaje hidroperoksil ($\cdot OOH^{-}$) radikal, koji se razgrađuje na način prikazan jednačinom (6).

$2 \cdot O^{2-} + 2H^+ \longrightarrow H_2O_2 + O_2$	razgradnja •O ²⁻	(4)
$H_2O_2 + 2O_2^- + 2H^+ \longrightarrow 2H_2O + 2O_2$	razgradnja H ₂ O ₂	(5)
$2 \cdot OOH \rightarrow H_2O_2 + O_2$	razgradnja •OOH ⁻ radikala	(6)

Da li dva oksidaciona stanja Ce u kristalnoj rešetki nCeO₂ reaguju direktno sa superoksidom i peroksidom ili su kiseonične praznine glavno mesto odvijanja ovih hemijskih reakcija uz naknadnu promenu naelektrisanja Ce, ostaje da se utvrdi u budućim istraživanjima.

2.1.2.2. Faktori koji utiču na biološku aktivnost nCeO₂

Veličina i oblik nCeO₂, površinsko naelektrisanje, materijali koji se koriste za oblaganje nCeO₂, lokalno pH i ligandi koji mogu učestvovati u redoks reakcijama su glavni faktori od kojih zavisi biološka aktivnost nCeO₂. Na reaktivnost nCeO₂ u tečnoj fazi mogu uticati joni, organske kiseline, polimeri, proteini, fosfati i drugi molekuli, dovodeći i do rastvaranja kristala i taloženja nanočestica. Adsorbovane vrste mogu blokirati reaktivna mesta na površini nCeO₂. Atomi i grupe u kristalnoj rešetki nCeO₂, kao što su cerijum, kiseonik i hidroksilne grupe, mogu učestvovati u brojnim reakcijama. Katalitička svojstva nCeO₂ obično zavise od njihove kristalne strukture, raspodele veličina, površine, dužine ivica, uglova itd. Kod obloženih nCeO₂ omotač oko nanočestice ne može reagovati sa površinski aktivnim mestima, ali može sprečiti difuziju velikih molekula ka površini nanočestice. Na toksičnost nanočestica u velikoj meri utiču njihova veličina i oblik, što se uzima u razmatranje prilikom procene njihove opasnosti po žive sisteme [20]. Osnovni ograničavajući faktor koji može uticati na transport i biodistribuciju nCeO₂ je nestabilnost njihovih vodenih suspenzija, koja dovodi do aglomeracije nanočestica. Takođe, lokalna aktivnost kiseonika i vode može uticati na površinsku hemiju nanočestice.

2.1.3. Primena nCeO₂

nCeO₂ su tehnološki važan nanomaterijal zbog njihove raznovrsne primene u proizvodnji kiseoničnih senzora [21,22], materijala za poliranje stakla [23], apsorbera ultravioletnog (eng. *ultraviolet*, UV) zračenja [24,25], čvrstih elektrolita za gorivne ćelije [26], ali i u oblastima kao što su ekološka hemija, forenzika [27], kozmetika [28], medicina [6] i elektronika [29]. Poseduju veliki potencijal za lečenje neurodegenerativnih oboljenja [30], kao i svih oboljenja uzrokovanih akumulacijom ROS poput kancera [31], dijabetesa [32], degeneracije makule [33], ishemijskog moždanog udara [34] itd. Predlaže se i primena nCeO₂ za fotolitičko i termolitičko razlaganje vode u cilju dobijanja vodonika, vodećeg kandidata za gorivo budućnosti [35]. U svakodnevnom životu se susrećemo sa brojnim tehnologijama zasnovanim na primeni nCeO₂, kao što je obezbojenje UV apsorpcije stakla (300-400 nm), zaštita za fotoosetljiva stakla, sredsva za poliranje, optički premaz, dodavanje gorivima (radi smanjenja emisije NO) itd. [11]. nCeO₂ mogu imati ulogu katalizatora ili ko-katalizatora zbog sposobnosti skladištenja kiseonika.

Zbog velikog odnosa površine i zapremine, nCeO₂ imaju sposobnost prolaska kroz ćelijske barijere, što ih čini adekvatnim za transport terapeutika koji mogu biti inkapsulirani unutar čestica ili adsorbovani na njihovoj površini. Mogućnost ove primene zavisi od njihove veličine, oblika, kao i površinskog naelektrisanja [36].

Razlog ovako bogate primene nCeO₂ je posedovanje izvrsnog kapaciteta za skladištenje kiseonika, koji je zasnovan na redoks svojstvu tj. izmeni Ce³⁺ i Ce⁴⁺ oksidacionih stanja i relativno lakom formiranju upražnjenog mesta kiseonika na površini nanočestice [5-7,37-40]. Zahvaljujući tome, nCeO₂ su moćni hvatači slobodnih radikala, a sposobnost regeneracije nakon svakog ciklusa reakcija sa slobodnim radikalima ih čini jedinstvenim u odnosu na druge čestice [41,42].

2.1.4. Sinteza nCeO₂

Zbog svih navedenih karakteristika, optimizacija načina i uslova sinteze koji će povećati broj kiseoničnih praznina i istovremeno zadržati kristalnu strukturu nanočestica postaje veliki izazov. Naizged suptilne promene, kao što su promena reaktanata, temperature i puta sinteze mogu imati velik uticaj na krajnja svojstva nanočestica. Do sada su korišćena dva principa sinteze, jedan zasnovan na redukciji Ce^{4+} u Ce^{3+} oksidaciono stanje i drugi zasnovan na obogaćivanju n CeO_2 sa drugim elementima. Kontrolom rasta kristala, n CeO_2 se mogu sintetisati u više različitih veličina i oblika (film, globularne, štapićaste itd.). Kada se postigne željena veličina i oblik, proces sinteze se zaustavlja odvajanjem nanočestica iz reakcione sredine. Karboksilne kiseline se uobičajeno koriste za kontrolu rasta kristalita [43].

Metode sinteze se prema temperaturnom režimu mogu podeliti na metode pri temperaturama nižim i višim od 250 °C. Najčešće korišćene metode sinteze n CeO_2 su prikazane u <u>Tabeli 1</u>.

Metode sinteze na temperaturama ispod 250 °C	Metode sinteze na temperaturama iznad 250 °C	
Koprecipitacija [44]	Sinteza plamenom [45]	
Hidrotermalna sinteza [46]	Fizičko taloženje pare [47]	
Solvotermalna sinteza [48]	Termalna sprej metoda [49]	
Sol-gel metoda [50]	Razlaganje aerosola pomoću soli [51]	
Mikroemulzija [52]	Homogeno taloženje [53]	
Reverzne micelarne metode [17]	Sonohemijsko zagrevanje [54]	
Samopropagirajuća metoda na sobnoj temperaturi (SPRT) [55]	Mikrotalasno zagrevanje [56]	
Gasna kondenzacija [57]	Termelne hidrolize [59]	
Elektrohemijska sinteza [59]	Termania indronza [58]	

Tabela 1. Najčešće korišćene metode sinteze nCeO₂

Metode sinteze na nižem temperaturnom režimu se najviše koriste za sintezu malih količina materijala i u istraživačke svrhe. nCeO₂ se uglavnom sintetišu u tečnoj fazi. Kod ovih metoda se kao polazne supstance najčešće koriste jedinjenja (izvor Ce³⁺ jona), oksidaciono sredstvo (oksiduje Ce³⁺ u nerastvorne Ce⁴⁺ jone), kao i jedan ili više stabilizatora, koji istovremeno mogu imati i ulogu oksidansa. Najčešće korišćeni stabilizatori su organski alkoholi [60], organski amini [61] i polimeri [62]. Konačna veličina nanočestice se reguliše koncentracijom i jačinom adsorpcije stabilizatora. Nedostatak pomenutih metoda je što najčešće zahtevaju naknadno ispiranje i resuspenziju sintetisanih nCeO₂, što je izbegnuto kod sinteze nCeO₂ u formi koloida, gde se sinteza odvija direktno bez koraka odvajanja sintetisanih nanočestica.

Za metode koje se odvijaju na višem temperaturnom režimu (<u>Tabela 1</u>), kao što su aerosolni procesi, mogu se koristiti veoma visoke temperature sagorevanja i do 2500 °C. Ove metode se najčešće koriste za proizvodnju većih količina materijala u industriji, kao i za obogaćivanje nCeO₂ drugim metalima. Kao prekursori cerijuma koriste se cerijum-alkoksidi ili karboksilatni aerosoli, koji se kontinuirano unose u reakcionu komoru. Kalcinacija se često koristi kao tehnika kojom se na visokoj temperaturi (ispod tačke topljenja u atmosferi kiseonika) cerijumovo jedinjenje prevodi u oksid. Sintezom nCeO₂ na visokim temperaturama se mogu dobiti nanočestice oštrih ivica i uglova, što ih razlikuje od nCeO₂ sintetisanih na nižim temperaturama.

Međutim, visoka temperatura u procesu sinteze $nCeO_2$ može uticati na njihovu biološku aktivnost [63]. Metode koje se koriste za sintezu $nCeO_2$ u prahu mogu uticati na mikrostrukturu i osobine praha [64]. Zato se veliki napor ulaže u pronalaženje jeftine i vremenski efikasne metode, koja će u velikoj meri zadržati jedinstvena svojstva $nCeO_2$.

2.1.5. Poboljšanje stabilnosti nCeO₂ oblaganjem

Glavno ograničenje primene n CeO_2 je njihova tendencija ka aglomeraciji i taloženju zbog velikog broja upražnjenih mesta kiseonika na njihovoj površini, što je uzrok male stabilnosti njihovih vodenih suspenzija [65]. Ovaj problem se može prevazići oblaganjem n CeO_2 sa polimernim jedinjenjima, čime se poboljšava stabilnost njihove vodene suspenzije.

Za oblaganje nCeO₂ su do sada najčešće korišćeni polimeri, kao što je dekstran [5,39,65-68], heparin [7,69], hitozan [6,70], poli (etilen glikol) [8,71], organske kiseline (poli (mlečna-koglikolna kiselina) [72], limunska kiselina i njene soli [9,73,74]), glukoza [4], levan [10] i lekovi [64]. Pri izboru polimera, treba obratiti pažnju na tip i količinu polimera prevučenih preko nanočestice, zbog direktnog uticaja na stabilnost suspenzije [38].

Koloidne disperzije nanočestica se mogu stabilizovati i podešavanjem pH vrednosti na kojoj ne dolazi do njihovog taloženja. Stabilizacija koloida se može ostvariti i dodatkom određenih jona, kao što su nitratni i acetatni joni, koji se specifično adsorbuju na površini nanočestice [75]. Ako se polimer adsorbuje u ravnoj konformaciji polimerno odbijanje je kratkog dejstva i stabilizacija je uglavnom elektrostatička, dok će kod debljih adsorbovanih slojeva polimera, polimerni lanci štrčati u rastvor povećavajući doprinos polimernog odbijanja između nanočestica [76].

Princip oblaganja nCeO₂ ugljenim hidratima primenjen u ovoj tezi je prikazan na Slici 2.

Slika 2. Vezivanje ugljenih hidrata nCeO₂

2.1.5.1. Glukoza kao materijal za oblaganje

Ugljeni hidrati su važna klasa polihidroksilnih jedinjenja koja se koriste za oblaganje nanočestica već duži niz godina [4,5], a poznata je i primena prostih i složenih ugljenih hidrata za kompleksiranje trovalentnih katjona lantanida [77]. Glukoza je redukujući monosaharid molekulske formule $C_6H_{12}O_6$ (Slika 3) i zbog svoje dostupnosti, rastvorljivosti i ekonomičnosti je pogodna za oblaganje i stabilizaciju nanočestica. Biokompatibilnost i netoksičnost omogućavaju primenu glukozom obloženih nanočestica u farmaciji, biomedicini i proizvodnji biosenzora [78]. Do sada je glukoza korišćena za oblaganje nanočestica zlata [79,80], magnetita [81], CeO_2 [4] i kao takva je pogodna za poređenje sa novim jedinjenjima korišćenim za oblaganje n CeO_2 . Oblaganje glukozom povećava primenu nanočestica, jer se glukozni transporteri nalaze na mnogim vrstama ćelija i kao takve mogu proći krvno-moždanu barijeru.

Ključna tačka mehanizma oblaganja n CeO_2 glukozom je redukcija Ce^{4+} do Ce^{3+} uz oksidaciju glukoze [4]. Efikasnost glukoze da redukuje katjone se može povećati u baznoj

sredini [78]. Karakoti i dr. (eng. *Karakoti et al.*) (2007) [34] pretpostavljaju da jedan Ce jon može kompleksirati 1-2 OH grupe glukoze, odnosno da 1 molekul glukoze može kompleksirati dva Ce jona. Sa druge strane, glukozni monomer u polisaharidu može kompleksirati samo jedan jon cerijuma zbog sternih ograničenja [82]. Zbog većeg broja hidroksilnih grupa, polisaharidi imaju veću tendenciju kompleksiranja Ce⁴⁺ od monosaharida, koja takođe može biti ograničena sternim smetnjama usled veličine molekula polisaharida [4]. Takođe je pokazano da oblaganjem nanočestica složenim ugljenim hidratima, poput saharoze [81], dolazi do njihovog razlaganja na redukujuće monomere - glukozu, koja omogućava kompleksiranje katjona i oblaganje nanočestica. Oblaganje nanočestica glukozom tokom sinteze neutrališe njihovo površinsko naelektrisanje, čime se sprečava njihovo povećanje pa su obložene nanočestice često manjih dimenzija od neobloženih [78].

Slika 3. Strukturne formule levana, pululana i glukoze

2.1.5.2. Levan

Fruktani su grupa prirodnih polimera fruktoze u koju spadaju inulin i levan. Za razliku od inulina koji sadrži β (2 \rightarrow 1) glikozidno povezane β -D-fruktofuranozne jedinice, levan je hidrosolubilni egzopolisaharid sastavljen pretežno od β -(2 \rightarrow 6) glikozidno povezanih monosaharidnih jedinica sa po nekim β -(2 \rightarrow 1) bočnim lancima [10,83,84]. Zbog nanometarskih dimenzija i sfernog oblika ima nisku unutrašnju viskoznost i veću stabilnost od linearnih formi [85,86]. Najčešće je male molekulske mase (Mr < 5000) ukoliko je biljnog porekla, dok se mikrobiološkom sintezom mogu dobiti duži polisaharidni lanci mase i do 500 000 Da [85,86].

Levan (<u>Slika 3</u>) je našao primenu u biomedicini [85], u prehrambenoj industriji kao prebiotik, stabilizator, emulgator, sredstvo za kapsulaciju itd. [84]. Poseduje antioksidativna, antikancerogena [83] i imunostimulativna svojstva, što je od posebnog značaja za farmaceutsku i kozmetičku industriju [84]. Kompletno se degradira u crevima i pokazuje prebiotička svojstva, kao i mogućnost snižavanja holesterola [87]. Zbog osobina, kao što su netoksičnost, biokompatibilnost, biorazgradivost i sposobnost formiranja filma [84], levan predstavlja nov i obećavajući biomaterijal pogodan za oblaganje nanočestica. Tome doprinosi veliki broj hidroksilnih grupa i redukujuće šećerne jedinice koje ulaze u njegov sastav.

Fruktani sastavljeni od pet fruktoznih jedinica omućavaju stabilizaciju ćelijskih membrana interagujući sa njima, što omogućava i veće preživljavanje ćelija [88]. Zajedno sa drugim egzopolisaharidima, levan se kao strukturna komponenta nalazi u mikrobiomu zemljišta gde ima funkciju zaštite mikroorganizama od isušivanja [89]. Deluje i kao barijera koja olakšava stvaranje kiseonika i na taj način doprinosi mikroaerobnim uslovima neophodnim za fiksaciju azota [90]. Vanćelijski je rezervoar hranljivih materija u mnogim biljnim tkivima i mikroorganizmima [85].

Za mikrobiološku proizvodnju levana se koriste mikroorganizmi (*Bacillus licheniformis* [84], *Streptococcus* [91], *Halomonas* [92] itd.) ili izolovani enzimi, a kao polazne supstance za sintezu se obično koriste saharoza, sirup ili melasa. Variranjem polaznih supstanci i drugih

uslova fermentacije, dobijaju se proizvodi različite molekulske mase, stepena grananja [93], prečnika, unutrašnje viskoznosti i stabilnosti [84]. Levan-saharaza je enzim neophodan u sintezi levana, jer katalizuje transfer fruktoznih jedinica saharoze na rastući lanac levana [94]. Na proizvodnju mikrobnog levana u velikoj meri utiču koncentracija hranljivih materija u hranljivoj podlozi i uslovi sredine, kao što su pH, koncentracija kiseonika, konfiguracija bioreaktora i bakterijski soj [86]. Koriste se i metode zasnovane na kombinaciji tretmana sa kiselinama, $Ca_3(PO_4)_2$ i aktivnim ugljem [95].

2.1.5.3. Pululan

Pululan je hidrosolubilni, neutralni i linearni egzopolisaharid, koji nastaje povezivanjem maltotrioznih jedinica pomoću α -(1,6)-D-glikozidne veze (<u>Slika 3</u>) [96,97]. Molekulska masa pululana se kreće od nekoliko hiljada do 2 000 000 Da. Takođe poseduje biodegradibilne, nehigroskopne i neredukujuće osobine, a zbog svoje viskoznosti u vodenom medijumu ima sposobnost adhezije i formiranja filma koji se odlikuje termostabilnošću, antistatičkim i elastičkim svojstvima [98]. Sva pomenuta svojstva doprinose strukturnoj fleksibilnosti pululana. Molekuli pululana mogu formirati koloidno-stabilne nanočestice samoagregacijom u vodenoj sredini. Zbog odličnih mehaničkih svojstava i nepropustljivosti kiseonika, filmovi pululana se mogu koristiti za oblaganje bioloških molekula, čime se mogu stabilizovati na duže vreme. pH vodenog rastvora pululana je 5-7 i termostabilan je do 250-280 °C [99]. Na viskoznost vodenog rastvora pululana ne utiče zagrevanje, pH i većina jona metala [99].

Zbog svojih jedinstvenih osobina, kao što su netoksičnost, antimutagenost i antikancerogenost koristi se u prehrambenoj industriji [96] kao prebiotik, stabilizator, zamena za skrob zbog lakog varenja i za produžavanje roka trajanja hrane zadržavanjem vlage i inhibiranjem rasta gljivica [99]. Ulazi u sastav lepka za proteze, proizvoda za oralnu higijenu [100], kozmetičkih preparata [101], gelova za imobilizaciju enzima [102], a ima i potencijalnu primenu kao konjugat za vakcine [103]. Brojna su i istraživanja na polju primene u biomedicini [96], ciljane isporuke lekova do određenog tkiva, inženjeringa tkiva itd.

Pululan je fungalni egzopolisaharid koji se proizvodi iz skroba u kiselim aerobnim uslovima pomoću *Aureobasidium pullulans* [96,98], gljive prisutne u zemljištu, drveću i drugim biljnim materijalima. U ostale mikrobne izvore pululana se ubrajaju *Cryphonectria parasitica* [104], *Rhodototula bacarum* [105], *Cytaria harioti* [106], *Tremella mesenterica* [107] itd. Pululan, kao sekundarni metabolit, proizvode ćelije slične kvascu u uslovima ograničene količine amonijaka [108]. Prinos pululana se može stimulisati dodatkom amonijum-sulfata koji služi kao izvor azota, pažljivim odabirom ugljenih hidrata kao izvora ugljenika, aeracijom, kao i podešavanjem pH vrednosti, temperature, sastava i viskoznosti hranljivog medijuma [108]. Nakon sinteze, pululanu se pomoću aktivnog uglja uklanja melanin, a onda se prečišćava organskim rastvaračima [98]. Postoji interesovanje da se proizvodi pululan određene morfologije. Prema dostupnim literaturnim podacima, pululan je po prvi put korišćen kao materijal za oblaganje nCeO₂ u izradi ove doktorske disertacije.

2.2. nCeO₂ u životnoj sredini

Usled povećanja primene nCeO₂ sve je veća mogućnost oslobađanja njihovih produkata u vodu i zemljište, što može dovesti do nagomilavanja i negativnih efekata po životnu sredinu. Boje, baterije, katalitički konvertori, suspenzije za poliranje, aditivi stakla i goriva su samo neki od brojnih izvora iz kojih može doći do oslobađanja nCeO₂ u životnu sredinu [109]. U vodenoj sredini, telesnim tečnostima i zemljištu nCeO₂ može reagovati u formi koloida, a stabilnost koloida može zavisiti od temperature, vrste atoma na površini nCeO₂, liganada adsorbovanih na površinu nanočestice, jona, pH i drugih faktora.

Evropska komisija procenjuje da je globalna proizvodnja nCeO₂ oko 10 000 tona godišnje [110]. Koncentracija Ce u zemljištu se kreće u opsegu od 2 do 150 mg kg⁻¹ [111], a u otpadnim vodama oko 80 μ g L⁻¹ [112]. U Evropi srednja koncentracija Ce u zemljištu je 48,2 mg kg⁻¹, u sedimentima je 66,6 mg kg⁻¹ i u vodi 55 ng L⁻¹ [112].

Literaturni podaci o toksičnosti nCeO₂ na raznim organizmima su kontradiktorni, čemu može doprineti i činjenica da su za istraživanje korišćene nanočestice različitih fizičko-hemijskih karakteristika. Dva glavna objašnjenja toksičnosti nCeO₂ su mala veličina tj. visok odnos površine i zapremine koji omogućava velikom broju atoma da budu locirani na površini nanočestice i površinsko naeektrisanje materijala koji se koriste za njihovo oblaganje. Pretpostavljeni mehanizmi toksičnosti nanočestica su: proizvodnja ROS, oslobađanje jona metala, fotokatalitičko ponašanje i fazna transformacija [113].

2.2.1. Sudbina i transformacija nanočestica u životnoj sredini

Kada se nCeO₂ nađu u životnoj sredini može doći do homoagregacije - između istih nanočestica i heteroagregacije - između nanočestica i čestica iz životne sredine. Veličina agregata utiče na njihov transport, ponašanje, reaktivnost, usvajanje i toksičnost. Stabilnost neobloženih nCeO₂ zavisi od njihovog površinskog naelektrisanja na koje utiče pH vrednost sredine. nCeO₂ imaju izoelektričnu tačku 8,21 što ih čini pozitivno naelektrisanim u kiseloj sredini i negativno naelektrisanim u baznoj sredini. Pokazano je da je transport nCeO₂ znatno niži u kiseloj sredini i pri visokoj koncentraciji jona [114]. Prisustvo jona Na⁺ [115], Ca²⁺ [115] i fosfata [116] može kontrolisati i stabilnost neobloženih nCeO₂ u vodenoj sredini.

Adsorpcija organskih materija iz okruženja na površinu nanočestica može s jedne strane dovesti do heteroagregacije, a sa druge strane do povećanja stabilnosti nCeO₂, što zavisi od vrste i koncentracije organskih materija [117]. Najčešće se adsorpcijom organskih molekula stvara barijera koja sprečava agregaciju nCeO₂ i onemogućava stvaranje većih agregata, ali se ne mogu potpuno savladati Van der Valsove (eng. *Van der Waals*) privlačne sile koje postoje između nanočestica unutar manjih agregata [118].

Rastvorljivost takođe određuje sudbinu nCeO₂ u životnoj sredini. Iako su neobložene nCeO₂ nerastvorne u vodi, prisustvo redukcionih sredstava poput limunske i askorbinske kiseline može povećati rastvorljivost pri niskim pH vrednostima redukcijom Ce⁴⁺ na površini nanočestice u Ce³⁺. Ova jedinjenja mogu formirati i jake hemijske veze sa površinskim hidroksilnim grupama i Ce³⁺ jonima stvarajući helate [119].

2.2.2. Usvajanje nCeO₂ u različitim biljnim vrstama i efekat na klijanje i rastenje

Literaturni podaci o akumulaciji nCeO₂ u biljkama su raznovrsti i zavise od biljne vrste. Poređenje usvajanja Ce iz neobloženih i obloženih nCeO₂ je pokazalo da obložene nCeO₂ povećavaju akumulaciju Ce kod kukuruza [120]. Sa druge strane je primećeno da interakcija između organskih materija i nCeO₂ dovodi do smanjenja usvajanja Ce u pšenici [121]. Uprkos fiziološkim razlikama između monokotila i dikotila, pokazano je da je, usled izlaganja iste površine korena zemljištu, usvajanje Ce slična nezavisno od toga da li su biljke izložene obloženim nCeO₂, neobloženim nCeO₂ ili Ce³⁺ jonima [122].

Kad je efekat nCeO₂ na klijanje semena u pitanju, pri koncentracijama većim od 400 mg L⁻¹ nije pokazan uticaj na klijanje semena lucerke (*Medicago arborea*) [123]. Od deset testiranih poljoprivrednih kultura pri koncentracijama većim od 1000 mg L⁻¹, nCeO₂ su pokazale značajan efekat na razvoj kotiledona samo kod krastavca (*Cucumis sativa*) [124]. Nasuprot tome, zapažena je niža toksičnost nCeO₂ na klijanje semena lucerke, krastavca, paradajza (*Solanum lycopersicum*) i kukuruza (*Zea mays*) pri koncentracijama 500-2000 mg L⁻¹ [125]. Koncentracija

od 2000 mg L^{-1} nCeO₂ nije uticala na klijanje semena rotkvice, uljane repice, paradajza, pšenice, salate, kupusa i krastavca [126].

Nekoliko radova je ispitivalo uticaj nCeO₂ na rastenje biljke. Pokazano je da nCeO₂ značajno inhibiraju rastenje korena kod: salate (na 250-1000 μ g mL⁻¹ [124] i 2000 mg L⁻¹ [126]), paradajza (na 500 μ g mL⁻¹ [124] i na 1000 i 4000 mg L⁻¹ [125]), lucerke (na 2000 i 4000 mg L⁻¹ [125]), raži (na 500-1000 μ g mL⁻¹ [124]) i crnog luka (na 500 μ g mL⁻¹ [124]). Sa druge strane, nCeO₂ su stimulisale rastenje korena kod: lucerke (na 100-400 mg L⁻¹ [123]), soje (na 0-4000 mg L⁻¹ [127]), krastavca (na 500-4000 mg L⁻¹ [125]) i kukuruza (na 500-4000 mg L⁻¹ [125]). Može se videti da su kod lucerke nCeO₂ pokazale suprotne efekte na rastenje korena pri višim ili nižim koncentracijama.

Rastenje nadzemnog dela je značajno stimulisano nanočesticama CeO₂ kod: lucerke (na 500-1000 mg L⁻¹ [125]), kukuruza (na 2000 mg L⁻¹ [125]) i krastavca (na 500-4000 mg L⁻¹ [125]). Nasuprot tome, rastenje nadzemnog dela kukuruza je bio značajno inhibiran pri koncentraciji nCeO₂ od 4000 mg L⁻¹ [125].

2.2.3. Antioksidativni odgovor biljaka na nCeO₂ tretmane

Poznato je da se sekundarni metabolizam aktivira u biljkama tokom njihovog izlaganja abiotičkom stresu. Sekundarni metaboliti igraju najvažniju ulogu u prevazilaženju stresnih uslova i adaptaciji biljke na životnu sredinu [128]. Fenolna jedinjenja, kao grupa sekundarnih metabolita, jedna su od najvećih i najraznovrsnijih grupa aktivnih biljnih jedinjenja [129], koja učestvuju u regulaciji procesa klijanja semena, rastenja biljke i odbrambenim mehanizmima [129]. Zbog redoks svojstava, fenolna jedinjenja imaju veliki antioksidativni kapacitet, koji im omogućava da deluju kao redukciona sredstva, donori vodonika ili helatori jona metala [130]. Ova važna osobina je usko povezana sa njihovom hemijskom strukturom [129]. Na primer, fenolna jedinjenja heliraju jone metala zbog prisustva pogodnih funkcionalnih grupa: hidroksilne i karboksilne [129]. Takođe, fenolna jedinjenja deluju i kao signalni molekuli [131].

Tokom abiotičkog stresa uzrokovanog toksičnošću metala, biljka stvara slobodne radikale koji se vezuju za biomolekule kao što su DNK, proteini i lipidi i na taj način ih oštećuju [132,133]. Biljke su razvile složen antioksidativni odbrambeni sistem, sačinjen od enzimskih (kao što su superoksid-dismutaza, katalaza, askorbat-peroksidaza) i neenzimskih komponenti (kao što su vitamini, fenolne kiseline itd.), koje mogu simultano da se aktiviraju u borbi protiv oksidativnog stresa [133].

Postoje istraživanja o efektu nCeO₂ na pojedinačnu enzimsku aktivnost u različitim biljnim sistemima. Na primer, izmenjena enzimska aktivnost (katalazna, gvajakol-peroksidazna, superoksid-dismutazna, askorbat-peroksidazna, glutation-reduktazna) je zapažena u korenu i nadzemnom delu pirinča nakon tretmana sa nCeO₂ pri koncentraciji od 500 mg L⁻¹ [134] i nižim koncentracijama u semenu pirinča [135]. TAA obuhvata različite neenzimske komponente (askorbat, glutation, fenole, šećere itd.) koje poseduju antioksidativna svojstva i mogu biti indikator metaboličkog poremećaja u biljkama. Pokazano je primenom 2,2'-azino-bis(3-etilbenztiazolin-6-sulfonska kiselina / peroksidaza rena (ABTS / HRP) testa da je TAA povećana u krtoli rotkvice nakon tretmana sa 250 mg kg⁻¹ nCeO₂ [136].

Primećeno je da nCeO₂ pri koncentraciji od 800 mg kg⁻¹ značajno smanjuju ukupan TPC u plodu krastavca [137]. Pri koncentracijama od 0-500 mg kg⁻¹ nCeO₂, u rotkvicama nije značajno izmenjen TPC [136], dok je u semenu pirinča detektovan smanjen sadržaj fenola [135].

2.2.4. Efekat nCeO₂ na Vibrio fischeri, Daphnia magna i Danio rerio

Agregacija nCeO₂ u vodenom okruženju smanjuje količinu nanočestica koje bi mogle biti usvojene od strane vodenih organizama. Ispitivanjem efekta nCeO₂ na mikroorganizme došlo se do zaključka da toksičnost nanočestica u velikoj meri zavisi od soja mikroorganizma i veličine korišćenih nanočestica [138]. Vodeni račić *Daphnia magna (D. magna)* i zebrica *Danio rerio (D. rerio)* su najčešće korišćene među vodenim organizmima za procenu potencijalnog rizika nanočestica po životnu sredinu. O efektu nCeO₂ na vodene organizme postoje kontradiktorni podaci u literaturi.

Podaci o efektu nCeO₂ na *D. magna* su malobrojni. Dosadašnja ispitivanja pokazuju toksični efekat nCeO₂ na *D. magna* pri koncentracijama između 5 i 64 mg L⁻¹ [139], EC₁₀ vrednost na 8,8 - 20,0 mg L⁻¹ [140] i LC50 na 0,012 mg mL⁻¹ [141], dok se genotoksični efekat javlja pri koncentraciji 1 mg L⁻¹ [142]. Sa druge strane, nije zapažena akutna toksičnost pri koncentracijama 0-10 μ g mL⁻¹ nCeO₂ [143,144], 100 - 200 mg L⁻¹ [145] i 200-5000 mg L⁻¹ [140].

Različiti efekti nCeO₂ su zapaženi i kod zebrice *D. rerio*. Pokazan je uticaj oblika nCeO₂ (na 25 mg L⁻¹) na njihovu toksičnost [146]. Toksičan efekat u vidu promena u nervnom sistemu je primećen nakon dužeg izlaganja nanočesticama CeO₂ pri koncentracijama 20 i 50 ppm [147]. Sa druge strane, akutna toksičnost nije zabeležena pri koncentracijama višim od: 50 mg L⁻¹ nakon petodnevnog tretmana [148], 100 mg L⁻¹ [149], 200-5000 mg L⁻¹ [140] i nakon injektovanja 0,3 ili 0,75 pg nCeO₂ direktno u žumance embriona ribice [150].

Samo nekoliko radova je istraživalo uticaj nCeO₂ na luminiscenciju *Vibrio fischeri* (*V. fischeri*). Pokazano je da nCeO₂ veličine 2 - 4 nm nisu uticale na enzimsku aktivnost *V. fischeri* u prisustvu citrata pri koncentracijama 0,63 - 20 mmol L⁻¹ [151], ali su pokazale nisku toksičnost (IC₅₀ 21,76 mg L⁻¹) pri 320 mg L⁻¹ u prisustvu heksa-metilen-tetra amina [152] i visoku toksičnost na 0,064 mg mL⁻¹ [141]. Uzrok pomenutim razlikama u toksičnosti može biti razlika u veličini, obliku, površinskom naelektrisanju i drugim fizičko-hemijskim osobinama korišćenih nanočestica, zbog različitih polaznih materijala i metoda sinteze nCeO₂.

3. EKSPERIMENTALNI DEO

3.1. Hemikalije

Sve hemikalije korišćene u ovoj tezi su analitičke čistoće, sem ako nije drugačije naglašeno. Glukoza, KH₂PO₄, KI, ABTS, HRP, Folin-Ciokalteov (eng. *Folin-Ciocalteu*) reagens, galna kiselina, H₃BO₃, CH₃OH, FeSO₄ · 7H₂O, NaClO, metilen-plavo (svi Sigma Aldrich, SAD), NaOH, CoCl₂ · 2H₂O (svi Carlo Erba, Francuska), NH₃ (tehničke čistoće, 25 %), NaCl, KI, K₂Cr₂O₇ (svi Merck, Nemačka), saharoza (prehrambeni kvalitet, Crvenka, Srbija), C₂H₅OH, NaNO₃, (NH₄)₂SO₄, K₂HPO₄ · 3H₂O, HCl, NH₄NO₃ (svi Zorka, Srbija), NaHCO₃, CaCl₂ · 2H₂O, K₂HPO₄, Na₂MoO₄ · 2H₂O (svi Kemika, Hrvatska), MgSO₄ · 7H₂O (Alkaloid, Makedonija), CH₂Cl₂ (hromatografska čistoća), HNO₃ (svi J.T. Baker, SAD), agar, ekstrakt ječmenog slada, ekstrakt kvasca (svi Torlak, Srbija), H₂O₂ (AppliChem, Nemačka), SeO₂ (Riedel-de Haën, Nemačka), morska so (Aqua Medic, Nemačka), ZnSO₄ · 7H₂O (Alfa Aesar, Nemačka), Ce(NO₃) · 6H₂O, CuSO₄ · 5H₂O (svi Acros Organics, SAD), Na₂EDTA · 2H₂O (Fisher Chemical, Velika Britanija), CaNO₃ · 2H₂O, CaSO₄ · 2H₂O (svi Superlab, Srbija), MnSO₄ · H₂O (Centrohem, Srbija), Na₂CO₃ (Fluka Analytical, Nemačka), KNO₃ (Carl Roth, Nemačka), Tricaine-S (Western Chemical, SAD).

Levan i pululan su sintetisani po proceduri opisanoj u odeljku 3.4.

3.2. Mikroorganizmi

Za sintezu levana je korišćena bakterija *Bacillus licheniformis* NS032, čija je taksonomija potvrđena 16S rDNK analizom (Genbank sekvenca JF826527) [153]. Bakterija *Aureobasidium pullulans* CH-1 je korišćena za sintezu pululana.

3.3. Sinteza n CeO_2

3.3.1. Sinteza neobloženih nCeO₂

 $n\text{CeO}_2$ su sintetisane pomoću SPRT metode polazeći od $\text{Ce}(\text{NO}_3)\cdot 6\text{H}_2\text{O}$ i NaOH prema jednačini:

$$2[Ce(NO_3)_3 \cdot 6H_2O] + 6NaOH + 1/2O_2 \rightarrow 2CeO_2 + 6NaNO_3 + 15H_2O$$

Polazne supstance su ručno mešane u avanu tokom 5-10 minuta. Dobijeni proizvod je ispran centrifugiranjem tri puta po 10 minuta sa dejonizovanom vodom i dva puta sa etanolom u centrifugi (Centurion 1020D) na 4200 rpm. Dobijen proizvod je sušen preko noći na 70 °C [55,154].

3.3.2. Sinteza glukozom, levanom i pululanom obloženih nCeO₂

3.3.2.1. Oblaganje nCeO₂ DC metodom

Nanočestice CeO₂ su oblagane ugljenim hidratima na dva različita načina: tokom sinteze (DC metoda) i nakon sinteze nCeO₂ (SC metoda). Prema proceduri za DC metodu objavljenoj u San i dr. (eng. *Sun et al.*) (2009) [81], levan, pululan i glukoza su pojedinačno rastvarani u dejonizovanoj vodi, nakon čega je u rastvor svakog ugljenog hidrata dodavan Ce(NO₃)₃ · 6H₂O. Maseni odnos ugljenog hidrata i Ce(NO₃)₃ · 6H₂O je bio 1:7 odnosno 0,360 g : 2,523 g. pH vrednost reakcione smeše je podešena na pH 10 dodatkom 25 %-og rastvora amonijaka. Smeša je prebačena u autoklav od nerđajućeg čelika sa zatvorenom teflonskom posudom i ostavljena da kristališe. Korišćene su različite temperature kristalizacije (100, 150 i 200 °C), vremenski intervali (6, 12, 24 i 48 h), maseni odnosi ugljenih hidrata i neobloženih nCeO₂ (1:7, 4:7, 8:7,

16:7) i veličine neobloženih nCeO₂. Dobijen prah je odvojen od vodene faze ispiranjem tri puta sa dejonizovanom vodom u centrifugi, a potom sušen na 60 °C preko noći.

3.3.2.2. Oblaganje nCeO₂ SC metodom

Kod SC metode su glukoza, levan i pululan pojedinačno rastvoreni u dejonizovanoj vodi, nakon čega su u svaki od tih rastvora dodavane n CeO_2 prethodno sintetisane SPRT metodom. Dalji koraci su bili isti kao kod prethodno opisane DC metode.

3.4. Sinteza levana i pululana

Levan, mikrobiološki polisaharid, je sintetisan kultivacijom bakterijske kulture *Bacillus licheniformis* NS032 (iz kolekcije mikroorganizama sa Hemijskog fakulteta, Univerziteta u Beogradu, pristupni broj Genbank JF826527) u modifikovanom saharoznom medijumu sa amonijum-hloridom kao izvorom azota (pH 7) po proceduri opisanoj u Kekez i dr. (eng. *Kekez et al.*) (2015) [84]. Nakon odvajanja biomase, levan je izolovan taloženjem pomoću etanola i prečišćen dijalizom i liofilizacijom, takođe po proceduri pomenutih autora [84].

Pululan je sintetisan kultivacijom bakterije *Aureobasidium pullulans*, soja CH-1 (iz kolekcije mikroorganizama sa Instituta za Hemiju, Tehnologiju i Metalurgiju (IHTM)). Polisaharid je izolovan taloženjem pomoću etanola, nakon čega je prečišćen gel-filtracijom na Sephadex G-200 koloni prema procedurama opisanim u Jakovljević i dr. (eng. *Jakovljević et al.*) (2001) [97] i Radulović i dr. (eng. *Radulović et al.*) (2008) [155].

3.5. Karakterizacija nCeO₂

3.5.1. Rendgenska strukturna analiza

U ovoj tezi su fazna čistoća i kristalinitet sintetisanih nCeO₂ ispitani pomoću rendgenske difrakcije na uređaju Raguku Ultima IV, Japan. Rendgenski snop je bio Ni-filtrirano Cu - K α 1 zračenje ($\lambda = 0,1540$ nm) i difraktometar je radio na 40 kV i 40 mA. Rendgenski spektri su snimani u opsegu 5 - 90° (2 θ) pri brzini skeniranja 5 ° min⁻¹.

3.5.2. Skenirajuća elektronska mikroskopija

Sve nCeO₂ u ovoj tezi su snimljene na FEI Quanta 200 (FEI kompanija, Češka Republika) skenirajućem elektronskom mikroskopu, opremljenim energetskim disperzivnim spektrometrom EDAX Genesis 4000. Pre snimanja, nanočestice su nanete na kružnu mrežu od aluminijumske legure, sa lepljivom trakom i grafitom, koji ih čini provodnim za elektrone.

3.5.3. Transmisiona elektronska mikroskopija visoke rezolucije

Sve suspenzije n CeO_2 u ovoj tezi su snimljene na FEI Talos F200X (FEI, Češka Republika) transmisionom elektronskom mikroskopu visoke rezolucije (HRTEM).

3.5.4. Infracrvena spektroskopija sa Furijeovom transformacijom

Infracrvena spektroskopija sa Furijeovom transformacijom (FTIR) je primenjena za snimanje spektara u opsegu talasnih dužina 4000 - 400 cm⁻¹ primenom tehnike KBr tableta. Rezolucija je podešena na 1 cm⁻¹, a spektri su snimljeni na Bomem MB 100 spektrofotometru (Bomem, SAD).

3.5.5. Rendgenska fotoelektronska spektroskopija

Physical Electronic PHI 5700 spektrometar (Physical Electronics, SAD) sa hemisferičnim višekanalnim detektorom primenom nemonohromatskog Mg-K_{α} zračenja (300 W, 15 kV i 1253,6 eV) je korišćen za analizu jezgro-elektron nivoa signala elementa od interesa. Spektri uzoraka, prethodno osušenih u vakuumu, su snimljeni sa konstantnom vrednošću prolazne energije od 29,35 eV, koristeći oblast cirkularne analize prečnika 720 µm. Dobijeni rendgenski fotoelektronski spektri su analizirani pomoću PHI ACESS ESCA-V6.0F softvera i obrađeni pomoću MultiPak 8,2B paketa. Vrednosti energije vezivanja su se odnosile na sporedni ugljenični C1*s* signal (284,8 eV). Za određivanje energije vezivanja je korišćen Shirley tip pozadine i Gaus-Lorencova (eng. *Gauss-Lorentz*) kriva raspodele.

3.5.6. Nuklearna magnetna rezonanca

Nuklearna magnetna rezonanca (NMR) je primenjena za snimanje ¹³C spektara visoke rezolucije kod čvrstih uzoraka, nakon jednodnevnog sušenja na 65 °C. Spektri su snimljeni pomoću ¹H-¹³C CP-MAS sekvence sa dekuplovanjem protona. ¹³C CP-MAS spektri su snimljeni na sobnoj temperaturi pomoću Bruker Avance-IIIHD 600 spektrometra (IBM, SAD), opremljenog sa 3,2-mm MAS probom. Radna frekvencija za protone i ugljenik je bila 600,09, odnosno 150,91 MHz. Glicin je korišćen kao spoljna referenca za ¹³C spektre i za postavljanje Hartman Hahnovih (eng. Hartmann-Hahn) usaglašenih uslova u unakrsnim polarizacionim eksperimentima u ¹³C spektru. Vreme kontakta je bilo 2000 µs. SPINAL64 sekvenca (mala fazna postepena izmena u 64 koraka) je korišćena za heteronuklearno dekuplovanje [156]. Brzina obrtanja za sve uzorke je bila 15 kHz. ¹H-MAS eksperimenti su izvedeni pomoću 2,5-mm MAS probe sa radnom frekvencijom za protone od 600,09 MHz. ¹H hemijske izmene su indirektno poređene sa čistim tetrametil-silanom korišćenjem glicina u prahu kao spoljne reference. Brzina obrtanja za sve uzorke je bila 30 kHz.

3.5.7. Elementalna organska mikroanaliza

Sadržaj azota, ugljenika, vodonika i sumpora je analiziran pomoću automatskog analizatora Vario EL III CHNS/O Elementar (Elementar, Nemačka).

3.6. Određivanje stabilnosti nanočestica

3.6.1. Turbidimetrija

Palintest Micro 950 turbidimetar (Palintest LTD, Velika Britanija) je korišćen za merenje turbiditeta (zamućenosti) vodenih suspenzija nanočestica, sa ciljem polukvantitativnog procenjivanja koncentracije čestica, odnosno stabilnosti njihovih suspenzija. Suspenzije neobloženih i obloženih nCeO₂ su pripremane u dejonizovanoj vodi pri koncentracijama 7,5, 15, 30 i 60 mg L⁻¹. Pre merenja, suspenzije nanočestica su 60 min sonifikovane u ultrazvučnom kupatilu Ultrasons HD (J. P. Selecta s.a., Španija) na 120 W. Turbiditet je izražen u nefelometrijskim jedinicama turbiditeta (NTU).

3.6.2. Dinamičko rasejanje svetlosti i zetametrija

Zetasizer Nano ZS sa 633-nm He-Ne laserom (Malvern, Velika Britanija) je korišćen za merenje hidrodinamičke veličine i zeta (ζ) potencijala nanočestica u dejonizovanoj vodi (0,1 mg mL⁻¹). Hidrodinamička veličina čestica i distrubucija njihovih veličina je određena pomoću DLS metode, pri čemu se rezultat izražava kao intenzitet rasutog svetla. Zeta potencijal je izračunat pomoću softvera instrumenta na osnovu elektroforetske mobilnosti čestica merenih pomoću

laserske metode za merenje dinamike fluida (eng. *Doppler velocimetry*). Urađena su najmanje tri merenja i izračunata je njihova srednja vrednost.

3.7. Analiza bioloških uticaja nCeO₂ na biljke

Za ispitivanje uticaja n CeO_2 na biljke su korišćena semena dve monokotile (pšenica, iz lokalne radnje i kukuruz, sa Instituta za kukuruz "Zemun Polje", Srbija) i dve dikotile (sočivo i grašak, iz lokalne radnje) biljne vrste. Semena su površinski sterilisana ispiranjem sa 4 %-im rastvorom natrijum-hipohlorita (komercijalni izbeljivač) tokom 2 minuta i isprana sa destilovanom vodom (2 - 3 puta tokom 1 minuta).

3.7.1. Tretman biljaka tokom klijanja

Za svaki tretman (kontrola, CeO₂, G-, L- i P-CeO₂) su u Petrijevim šoljama postavljena 4 ponavljanja od po 20 semena (pšenice, kukuruza, sočiva i graška) i prekrivena filter papirom navlaženim sa 10 mL suspenzije nanočestica. Bilo je potrebno 20 Petrijevih šolja po biljnoj vrsti. Svaka od korišćenih nanočestica je resuspendovana u destilovanoj vodi u koncentraciji 200 mg L⁻¹. Odabrana koncentracija je u nižem opsegu koncentracija u literaturi korišćenih za tretman biljaka na hidroponici [122]. Tretman biljaka tokom klijanja (Ger tretman) je izveden u mraku na sobnoj temperaturi. Broj isklijalih semena je određen merenjem protruzije radikule (veličina preko 2 mm je uzimana kao kriterijum klijanja) [157].

Nakon tretmana sa različitim nCeO₂ tokom klijanja, isklijala semena su prebačena u plastične posude (visine 6,5 cm kod pšenice, graška i sočiva i 17,5 cm za kukuruz) sa hidroponičnim medijumom (0,5L MS/2 [158] kod pšenice, graška i sočiva i 2,4L KNOP/2 [159] kod kukuruza) bez prisustva nanočestica. Biljke su rasle u fitotronu (LAE Electronic, Italija) tokom naredne tri nedelje na 25 °C pri svetlosnom režimu 16 h svetlo / 8 h mrak. Intenzitet svetla od 150 µmol m⁻² s⁻¹ je izmeren pomoću PAR Quantum Meter (Velika Britanija). Hranljivi medijum je konstantno aerisan i obnavljan svake nedelje. Nakon tretmana izmerena je visina nadzemnog dela, dužina korena i određena je sveža masa. Kako bi se eliminisale adherirane čestice i komponente medijuma, korenovi biljaka su isprani nekoliko puta dejonizovanom vodom. Nakon tri nedelje, korenovi i nadzemni delovi od 8 biljaka (dve biljke po ponavljanju) su odvojene, zamrznute u tečnom azotu i čuvane na -80°C za određivanje TPC, TAA i fenolnog profila. Preostale 24 biljke su osušene i korišćene za određivanje koncentracije cerijuma ICP-OES metodom.

3.7.2. Tretman biljaka tokom rastenja

Za tretman biljaka tokom rastenja (Gro tretman) su izabrane jedna monokotila (pšenica) i jedna dikotila (grašak) biljna vrsta. Po 20 semena obe biljke u četiri ponavljanja je prekriveno filter papirom nakvašenim sa 10 mL destilovane vode i ostavljeno da isklija u Petrijevim šoljama. Ukupno je bilo 5 Petrijevih šolja po biljnoj vrsti. Isklijala semena (32 po tretmanu) su prebačena u plastične posude (visine 6,5 cm) sa 0,5L MS/2 [158] medijuma koji je sadržavao 200 mg L⁻¹ nanočestica (CeO₂, G-, L- ili P-CeO₂). Biljke su rasle naredne tri nedelje na 16 h svetlo / 8 h mrak svetlosnom režimu. Hranljivi rastvor je konstantno aerisan, što je posebno značajno za održavanje stabilnosti nanočestica u suspenziji, i obnavljan na nedeljnom nivou. Nakon tri nedelje, biljke su odvojene i skladištene za naredne analize po istom principu kao kod Ger tretmana.

3.7.3. Određivanje biomase i koncentracije cerijuma u biljkama

Za svaki tretman po 24 biljke su podeljene na nadzemne delove i korenove. Korenovi su isprani sa dejonizovanom vodom, kako bi se uklonile zaostale nanočestice iz medijuma, nakon

čega im je izmerena sveža masa. Posle sušenja u pećnici na 70 °C tokom 72 h, izmerena im je suva masa.

Suvi uzorci su razloženi pomoću 96 - 98 % HNO_3 i 30 % H_2O_2 (1:4, v/v) u sistemu za digestiju Tecator DS-6 (1007) (Tecator, Švedska) i razloženi uzorci su korišćeni za ICP-OES analizu [160]. Nakon hlađenja do sobne temperature, razloženi uzorci su filtrirani kroz Whatman filter papir (br. 4) i zapremina filtrata je dodavanjem dejonizovane vode podešena na 25 mL. Ukupna koncentracija Ce je određena pomoću ICP/OES Perkin Elmer Optima 4300 DV uređaja.

3.7.4. Ekstrakcija fenolnih jedinjenja i određivanje njihovog ukupnog sadržaja u biljkama

U cilju dobijanja fenolnih ekstrakata, korenovi i nadzemni delovi od 8 biljaka (2 po uzorku u 4 ponavljanja) su odvojeno homogenizovani u avanu sa tečnim azotom. Homogenati su resuspendovani u 80 % metanolu u 1:10 (m:V) odnosu i mešani tokom 60 minuta na sobnoj temperaturi. Ekstrakti su centrifugirani tokom 5 minuta na 10 000 rpm, nakon čega su dobijeni ekstrahovani fenoli u supernatantu.

Za određivanje TPC-a u uzorcima je korišćena Folin-Ciokalteova spektrofotometrijska procedura [161]. Fenolni ekstrakti (50 μ L) su pomešani sa Folin-Ciokalteovim reagensom (0,2 mol L⁻¹; 475 μ L) u 1 mL finalne zapremine. Nakon 3 minuta dodat je rastvor natrijum-karbonata (0,25 mol L⁻¹; 475 μ L) i smeša je inkubirana na 25°C tokom 60 minuta. Galna kiselina je korišćena kao referentno jedinjenje od kog su napravljeni rastvori koncentracija (0,1 - 2,0 mmol L⁻¹) za crtanje standardne prave (y = 0,83059x-0,0496, R²=0,99744). Apsorbancija je očitana na 724 nm na 2501 PC spektrofotometru (Shimadzu, Japan) i rezultati su izraženi kao μ mol galne kiseline po gramu sveže mase.

3.7.5. Određivanje ukupne antioksidativne aktivnosti

Primenom ABTS / HRP metode krajnje tačke izmerena je TAA, prema izmenjenoj proceduri, opisanoj u Kano i dr. (eng. *Cano et al.*) (1998) [162]. Ukratko, reakciona smeša je sadržala 2 mmol L⁻¹ ABTS, 15 µmol L⁻¹ H₂O₂, 0,25 µmol L⁻¹ HRP tip II i 20 µL 80 % metanolnih ekstrakata uzoraka u 50 mmol L⁻¹ kalijum-fosfatnom puferu, pH 7,5. Ukupna zapremina smeše je bila 1 mL, a esej je izveden u četiri ponavljanja na temperaturi od 25°C. Reakcija je praćena na 730 nm pomoću spektrofotometra do ustaljene apsorbancije koja prati formiranje ABTS radikala (ABTS⁺⁺). Plavo obojen ABTS radikal (ABTS⁺⁺) se formira u reakciji sa HRP. Dodatkom metanolnih ekstrakata biljaka u reakcionu smešu dolazi do njenog obezbojavanja i smanjenja apsorbancije usled trošenja ABTS⁺⁺ radikala. Pad apsorbancije je korišćen za računanje TAA sa standardne prave, dobijene korišćenjem askorbinske kiseline (0,1 - 1 mmol L⁻¹) kao univerzalnog antioksidansa. TAA je izražen kao µmol askorbinske kiseline po gramu sveže mase.

3.7.6. Određivanje profila fenolnih jedinjenja

Određivanje koncentracije pojedinačnih fenolnih jedinjenja je izvedeno primenom HPLC metode. Uzorci su injektovani u HPLC sistem (Waters, SAD), koji je povezan sa Waters 2996 Diode Array (poljem dioda) i EMD 1000 kvadrupol detektorom sa ESI probom (Waters, SAD). Razdvajanje fenolnih jedinjenja je izvedeno pomoću Symmetry C-18 RP kolone dimenzije 125×4 mm pakovane sa česticama prečnika 5 µm (Waters, SAD) i povezane sa odgovarajućom pretkolonom. Dve mobilne faze, A (0,1 % rastvor mravlje kiseline) i B (acetonitril) su korišćene pri protoku od 1 mL min⁻¹ u sledećem gradijentnom profilu: 0,0-1,0 min 10 % B; 1,0-30,0 min od 10 % do 50 % B; 30,0-40,0 min od 50 % do 10 % B; zatim 10 % B 5 min. Postkolonski delilac protoka mobilne faze (ASI, Richmond, SAD) sa 5/1 odnosom korišćen je za dobijanje

optimalnog protoka (0,2 mL min⁻¹) mobilne faze za ESI probu. Za LC/MS analizu, signali svake komponente su detektovani u negativnom skenirajućem režimu (100 - 900 m/z) sa sledećim parametrima ESI izvora: napon na kapilari - 3,0 kV; napon na konusu - 35 V; napon ekstraktora i naponi RF sočiva su bili 3,0 odnosno 0,2 V, redom. Temperatura izvora i temperatura desolvacije su bile 130, odnosno 400 oC, u struji N2 od 500 L h⁻¹. Zbog nedostatka specifičnih standarda, vrednosti su prikazane kao normalizovane površine pikova, dobijene deljenjem HPLC površine pika svakog jedinjenja sa najnižom detektovanom površinom pika. Prikupljanje, obrada podataka i spektralna evaluacija za potvrdu pikova specifičnih jedinjenja urađena je pomoću Waters Empower 2 softvera (Waters, SAD).

3.7.7. Sveobuhvatna dvodimenzionalna gasna hromatografija sa masenom spektrometrijom

Za analizu sveobuhvatnom dvodimenzionalnom gasnom hromatografijom sa masenom spektrometrijom (GCxGC-MS), osušeni nadzemni delovi biljke ekstrahovani sa CH₂Cl₂ u ultrazvučnom kupatilu i sonifikovani 15 minuta. Suspenzije su filtrirane kroz membranski filter (veličine pora 0,45 μ m, Agilent) i filtrati uzoraka su analizirani na dvodimenzionalnom gasnom hromatografu spregnutim sa kvadrupol masenim spektrometrom GCMS-QP2010 Ultra (Shimadzu, Japan) i ZX2 sistemom termalne modulacije (Zoex Corp.). Rtx®-1 (prva kolona: RESTEK, Crossbond® 100 % dimetil-polisiloksan, 30 m, 0,25 mm ID, df=0,25 μ m) i BPX50 (SGE Analytical Science, 1 m, 0,1 mm ID, df=0,1 μ m) kolone su povezane kroz GC×GC modulator kao prva, odnosno druga kapilarna kolona. Temperaturni program je startovao sa izotermalnim korakom na 40 °C tokom 5 min, nakon čega je temperatura porasla sa 40 °C na 300 °C za 5,2 °C min⁻¹. Program je završio izotermalnim korakom na 300 °C tokom 5 min. Modulacija primenjena za dvodimenzionalnu GC×GC analizu je bio topli mlazni puls azota (400 ms) svakih 8600 ms. MS podaci su prikupljeni pomoću Shimadzu GC/MS analize u realnom vremenu.

Za svaki testirani uzorak, kao rezultat GCxGC-MS analize i pretraživanja baze podataka dobijen je: hromatogram, imena jedinjenja čiji su spektri najsličniji spektru nepoznate komponente iz pojedinačne tačke sa hromatograma (sličnost spektara koji se porede je izražena kao verovatnoća u procentima) i retenciono vreme pojedinačnih detektovanih jedinjenja.

3.8. Ispitivanje toksičnosti nCeO₂ na bakteriju i vodene životinje

3.8.1. Model organizmi korišćeni u eksperimentima

Slatkovodni planktonski račić *D. magna* (MicroBioTests Inc.) je korišćen kao model organizam i životinje su održavane na konstantnoj temperaturi (20 ± 1 °C) i fotoperiodu (16 h dan / 8 h noć) prema instrukcijama proizvođača [163]. Za sve testove je korišćen ADaM prema OECD proceduri (OECD 202, 2004) opisanoj u Lončarević i dr. (eng. *Lončarević et al.*) (2019) [164]. Detalji testiranja akutne toksičnosti i praćenja potrošnje O₂ i proizvodnje CO₂ su opisani u odeljcima 3.8.3. i 3.8.4.

Odrasle zebrice (*D. rerio*, Tübingen soj) su gajene i održavane u okviru Instituta za molekularnu genetiku i genetičko inženjerstvo (IMGGI), Univerziteta u Beogradu. Svi eksperimenti sa zebricama su izvedeni u skladu sa etičkim propisima Pravilnika za rad sa eksperimentalnim životinjama IMGGI, Univerziteta u Beogradu. Zebrice su gajene na temperaturi 28 ± 1 °C tokom 14 h svetlo / 10 h mrak fotoperioda. Odrasle, zdrave ribice su održavane u filtriranoj česmenskoj vodi, dok su njihovi embrioni održavani u vodi za embrione sa 0,0002 %-og rastvora metilen plavog (Sigma-Aldrich, SAD) za dezinfekciju embriona. Oplođenje ribica se odvijalo jednom sedmično. Mužjaci i ženke su gajene u odvojenim rezervoarima. Dan pre parenja, tri muške i dve ženske jedinke su stavljane u rasplodni rezervoar.

Oplođenje je indukovano pomoću svetla i završavano u roku od 30 minuta. Nakon toga, jaja su nekoliko puta ispirana vodom za gajenje embriona. Sakupljeni su održivi embrioni po proceduri opisanoj u Kimel i drugi (eng. *Kimmel et al.*) (1995) [165] pod binokularnim stereo mikroskopom (PXS-VI, Optica, Kina) i dalje korišćeni za testiranje akutne toksičnosti različitih nCeO₂. Detalji testiranja akutne toksičnosti na zebricama opisani su u odeljku 3.8.5.

Bakterijski soj *V. fischeri* NRRL B-11177 (Macherey-Nagel GmbH & Co. KG, Nemačka) je korišćen za ispitivanje efekta nCeO₂ merenjem inhibicije bioluminiscencije (Odeljak 3.8.6.).

3.8.2. ICP-OES analiza tretiranih D. magna i D. rerio

U cilju određivanja usvojenog Ce u *D. magna*, po 50 neonata je tretirano sa nCeO₂, G-CeO₂, L-CeO₂ ili P-CeO₂ tokom 48 h. Eksperiment je urađen u triplikatu. Nakon tretmana, jedinke su temeljno isprane dejonizovanom vodom i uzorci su analizirani na ICP-OES prema protokolu opisanom ispod.

Za istu svrhu je po 48 embriona *D. rerio* tretirano sa 200 mg L^{-1} neobloženih (nCeO₂) ili obloženih (G-CeO₂, L-CeO₂ ili P-CeO₂) nanočestica tokom 72 h. Nakon tretmana su embrioni temeljno isprani dejonizovanom vodom i pripremljeni za ICP-OES analizu. Eksperiment je urađen u triplikatu.

Liofilizovani organizmi *D. magna* i *D. rerio* su razloženi sa 96-98 % HNO₃ (J.T. Baker, SAD) i 30 % H₂O₂ (Sigma Aldrich, SAD) (1:4) u Tecator sistemu za digestiju do obezbojavanja rastvora [143]. Nakon hlađenja na sobnu temperaturu, dobijeni rastvori su filtrirani kroz Whatman filter papir br. 4, a zapremine filtrata su podešene dejonizovanom vodom na 25 mL. Koncentracija osnovnog rastvora standarda je bila 10 mg L⁻¹, a koncentracije radnih rastvora korišćenih za dobijanje jednačine standardne prave (R²=0,999814) su bile 0; 0,025 mg L⁻¹; 0,05 mg L⁻¹; 0,5 mg L⁻¹ i 1 mg L⁻¹. Ukupna koncentracija Ce je detektovana pomoću ICP/OES Perkin Elmer Optima 4300 DV uređaja na talasnoj dužini 404,076 nm.

Koncentracija nanočestica korišćenih za tretmane (200 mg L⁻¹) je izabrana kao koncentracija koja se nalazi u nižem opsegu literaturnih koncentracija korišćenih za procenu akutne toksičnosti na testiranim organizmima (10 μ g L⁻¹ - 5000 mg L⁻¹ za *D. rerio* i 20 - 5000 mg L⁻¹ za *D. magna*) [140,142].

3.8.3. Ispitivanje akutne toksičnosti različitih nCeO₂ na modelu D. magna

D. magna je korišćena za test akutne toksičnosti u trajanju 48 h, izveden po modifikovanoj proceduri opisanoj u Kekez i dr. (eng. *Kekez et al.*) (2015) [84]. Za sve testove korišćen je sveže pripremljen ADaM, koji je prethodno aerisan 24 časa. Aerisan ADaM je korišćen za pripremu suspenzija svih testiranih nanočestica neposredno pred postavljanje testa. Neonate starosti do 1 dana su tretirane sa neobloženim (CeO₂) i glukozom, levanom odnosno pululanom obloženim nanočesticama (G-CeO₂, L-CeO₂ i P-CeO₂) pri koncentracijama 25, 50, 100 i 200 mg L⁻¹ tokom 48 h. Korišćeno je po 5 individua za kontrolu i svaki tretman za svaku koncentraciju u tri ponavljanja. Broj uginulih organizama je utvrđivan nakon 24 h i 48 h, a rezultati su izraženi kao procenat smrtnosti nakon 24 h i 48 h. Čaše korišćene pre svih eksperimenata su očišćene sa 10 % HNO₃ (J.T. Baker, SAD) i temeljno isprane dejonizovanom vodom (18 Ω , 25 °C). Životinje nisu hranjene tokom eksperimenta (48 h). Testovi su smatrani validnim ukoliko mortalitet u kontroli nije bio veći od 10 %.

3.8.4. Praćenje respiracije D. magna

Respiracija *D. magna* tokom akutnog izlaganja nanočesticama je praćena po proceduri opisanoj u Lončarević i dr. (eng. *Lončarević et al.*) (2019) [164]) pomoću zatvorenog kružnog

12-kanalnog Micro-Oxymax respirometra (Columbus Instruments, SAD), koji je opremljen sa paramagnetnim senzorom za O_2 , infracrenim senzorom za CO_2 i računarom. Po 20 neonata je raspodeljeno u 5 Duran-ovih boca zapremine 500 mL sa po 100 mL medijuma (kontrola/nCeO₂/G-CeO₂/L-CeO₂/P-CeO₂). Neonate su tokom 42 h izlagane suspenzijama nanočestica koncentracije 200 mg L⁻¹, za čiju pripremu je korišćen ADaM. Tokom trajanja eksperimenta životinje nisu hranjene. Tokom 42 h-ovnog tretmana nanočesticama na 25 ± 2 °C i pri svetlosnom režimu 16 h svetlo/8 h mrak, periodično (u intervalima od 2,5 h) je merena koncentracija gasova O₂ i CO₂ u bocama sa testiranim uzorcima. Dobijeni rezultati su obrađeni primenom MicroOxymax softvera i prikazani kao kumulativna potrošnja O₂ i proizvodnja CO₂ u mL po min.

3.8.5. Ispitivanje akutne toksičnosti različitih nCeO₂ na D. rerio

Akutna toksičnost različitih nCeO₂ na *D. rerio* je ispitana primenom trodnevnog (OECD Test No. 236) eseja u skladu sa dozvolom Etičke komisije za dobrobit ekperimentalnih životinja IMGGI. Pre tretmana su neobložene (CeO₂) i obložene (G-CeO₂, L-CeO₂ i P-CeO₂) nanočestice rastvorene u vodi za embrione i dispergovane pomoću Soniprep 150 (MSE, Velika Britanija) sonifikatora tokom 15 min pri amplitudi 5 μ m. Embrioni zebrica su tretirani sa 200 mg L⁻¹ neobloženih i obloženih nCeO₂ 6 hpf na mikrotitar-pločicama od 24 bunara, N = 12 embriona po bunaru u zapremini 1 mL. Uticaj različitih nCeO₂ na razvoj embriona je praćen tokom prvih 72 hpf. Svi eksperimenti su sadržali kontrolni uzorak sa netretiranim embrionima. Po tretmanu je bilo ukupno 48 embriona. Svi tretmani su izvedeni u tri ponavljanja korišćenjem embriona dobijenih iz nezavisnih mrestova.

Embrioni su posmatrani na 24, 48 i 72 hpf na svetlosnom mikroskopu (CKX41, Olympus, Nemačka) pri uvećanju 40×. Na 72 hpf, pre slikanja su embrioni anestezirani u 0,003 %-om rastvoru Tricaine-S. Embrioni su smatrani uginulim u slučaju koagulacije ili izostanka rada srca. Izleganje ribica iz embriona je posmatrana na 48 i 72 hpf. Praćen je mortalitet (zbir koagulisanih embriona i embriona koji se nisu izlegli na 72 hpf) i morfološke abnormalnosti, kao što su edem perikardijuma i žumanceta, deformacija produžetka žumancetne kese, dužina i deformisanost repa, skolioza, pigmentacija oka i tela, kao i rast embriona.

3.8.6. Ispitivanje inhibitornog efekta različitih nCeO₂ na bioluminiscenciju V. *fischeri*

Inhibitorni efekat nCeO₂ na emisiju svetlosti *V. fischeri* je određivan prema ISO 11348 standardu, korišćenjem liofilizovanih bakterija (*V. fischeri* NRRL B-11177), koje su pre testa resuspendovane u rastvoru za oživljavanje (Macherey-Nagel GmbH & Co. KG, Nemačka) [164]. Za dobijanje bakterijske suspenzije, bakterije su inkubirane na 15 °C sa 50 mL bakterijske podloge za liofilizovane bakterije *V. fischeri* (Macherey-Nagel GmbH & Co. KG, Nemačka). Potom je 500 µL bakterijske suspenzije pomešano sa suspenzijama CeO₂, G-CeO₂, L-CeO₂ i P-CeO₂ pripremljenim u 2 %-om rastvoru NaCl i dobijena smeša je inkubirana na 15°C tokom 15 min. Serijska razblaženja svih nanočestica su pripremana razblaživanjem svake prethodne koncentracije za 50 % (100 mg L⁻¹ - 6.25 mg L⁻¹). Pre merenja, uzorci su sonifikovani u ultrazvučnom kupatilu tokom 30 min, koncentracija kiseonika u uzorcima je bila > 3 mg L⁻¹, a pH je podešen između 6 i 8 sa 1 mol L⁻¹ rastvorom HCl odnosno 1 mol L⁻¹ rastvorom NaOH. Bioluminiscencija je merena u duplikatu nakon 15 min i K₂Cr₂O₇ (105,8 mg L⁻¹) je korišćen kao referentna supstanca. Rezultati su izraženi kao efektivna koncentracija koja uzrokuje 10 % (EC₁₀) i 20 % (EC₂₀) inhibicije bioluminiscencije.

3.9. Statistička obrada podataka

Statistička analiza podataka je izvedena pomoću IBM SPSS Statistics 20 softvera (IBM, SAD). ANOVA je primenjena za testiranje razlika između dužine korenova i nadzemnih delova četiri različite biljke, koje su podvrgnute tretmanu sa različitim nCeO₂ (n=24). Poređenja između svake dve grupe (različiti tretmani vs. kontrola) su izvedena primenom Bonferoni (eng. *Bonferroni*) (za uzorke sa približno jednakim varijansama) ili Tamhane (za uzorke sa nejednakim varijansama) testova za dva nezavisna uzorka (p < 0,05). Neparametarski Kruskal-Valis (eng. *Kruskal-Wallis*) test nezavisnih uzoraka je primenjen za testiranje razlika u koncentraciji cerijuma, klijanju, translokaciji, TPC i TAA u korenovima i nadzemnim delovima sve četiri biljke, kao i fenolnim profilima u nadzemnim delovima biljaka nakon tretmana različitim nanočesticama (n=4). Takođe, ovaj test je korišćen pri analizi razlika u koncentraciji cerijuma i akutnoj toksičnosti kod vodenih organizama (*D. magna* i *D. rerio*). Naknadno poređenje varijabli između grupa (između različitih tretmana i kontrole) je urađeno za svaku biljku i vodeni organizam odvojeno primenom neparametarskog Man-Vitni (eng. *Mann-Whitney*) testa na nivou statističke značajnosti p < 0,05.

GC×GC-MS podaci su obrađeni pomoću ChromeSquare 2.1 softvera, koji omogućava direktno očitavanje GC×GC rezultata, pretvarajući ih u dvodimenzionalnu sliku. Pojedinačni hromatografski pikovi su identifikovani pretraživanjem njihovih masenih spektara u bazama masenih spektara (NIST (Nacionalni institut za standarde i tehnologiju, SAD) 11, NIST 11s i Wiley 8).

Slike dvodimenzionalnih GC×GC hromatograma su prevedene u crno-beli format pomoću ImageJ programa (verzija 1.47q, Rasband W, Nationalni institut za zdravlje, SAD), koje su dalje obrađene u Delta2D programu (verzija 4.02, Decodon, Nemačka). Hromatogrami kontrole i tretiranih uzoraka su organizovani u grupe sa imenima "pšenica" i "grašak". Kao rezultat toga, sličnosti unutar GC×GC slika su automatski registrovane i proizveden je skup vektora koji povezuju odgovarajuće regione slike. Nakon transformacija poravnavanja zona, slike uzoraka podvrgnute različitim tretmanima su bile u pozicionom slaganju u odnosu na kontrolne uzorke, za svaku zasebno posmatranu biljnu vrstu. Zatim je primenjen fuzioni algoritam, kako bi se dobila slika koja uključuje sve tačke (jedinjenja), koje se pojavljuju u celom eksperimentu. Spojena slika je poslužila za stvaranje konsenzusa tačaka, dobijenih njihovom automatskom detekcijom i prebacivanjem u sve GC×GC slike iz grupe. Nakon prenošenja tačaka iz spojene slike, one su automatski kvantifikovane na svakoj ciljnoj slici i upoređene sa prvobitnim tačkama, kao i njihovim odgovarajućim tačkama na drugim slikama. Delta2D program sadrži integrisane statističke alatke sa algoritmima za grupisanje podataka, kao i parametarskim i neparametarskim testovima.

NLPCA sa optimalnim skaliranjem je obavljena pomoću IBM SPSS Statistics 20 softvera (IBM, SAD). Ovaj softver sadrži CATPCA program, koji koristi kategorijske promenljive sa celobrojnim vrednostima.

PCA je urađena pomoću PLS ToolBox, verzija 6.2.1, za MATLAB 7.12.0 (R2011a), kao eksploratorna analiza podataka primenom algoritma dekompozicije matrice na singularne vrednosti i vrednosti Q i T2 za Hotelingovu (eng. Hotelling) raspodelu na 95 %.

4. REZULTATI I DISKUSIJA

4.1. Strukturna svojstva nCeO₂

4.1.1. Poređenje dve metode oblaganja nCeO₂

DC metoda je prvobitno korišćena za oblaganje nanočestica CeO_2 in situ tj. tokom njihove sinteze, kao uobičajeni pristup koji se primenjuje u oblaganju nanočestica. Najpre je ovom metodom izvedena serija oblaganja nCeO₂ glukozom, variranjem masenih odnosa ugljenog hidrata i Ce(NO₃)₃ · 6H₂O (polazne supstance u sintezi nCeO₂) - 1:7, 4:7, 8:7 i 16:7 na 200 °C tokom 48 h, shodno literaturnim podacima [81]. Rendgenski spektri obloženih nanočestica kod svih masenih odnosa su pokazali izostanak 4 pika karakteristična za kristalnu strukturu CeO₂, što je rezultiralo dobijanjem amorfnih produkata (rezultati nisu prikazani). Zbog identičnosti sa ostalim odnosima i najmanje potrošnje polaznih supstanci, u svim narednim ekperimentima je korišćen 1:7 maseni odnos ugljenih hidrata i Ce(NO₃)₃ · 6H₂O.

Radi optimizacije uslova oblaganja DC metodom, u narednom koraku su varirane dužine trajanja oblaganja - 6, 12, 24 i 48 h za tri različite temperature - 100, 150 i 200 °C. Amorfna struktura dobijenih proizvoda je dobijena za sva primenjena vremena i temperature oblaganja, što je upućivalo na neophodnu modifikaciju DC metode. Na <u>Slici 4A</u> su prikazani spektri glukozom obloženih nanočestica uz održavanje konstantne temperature reakcije od 100 °C i variranjem dužine trajanja oblaganja. Zbog identičnosti sa spektrima prikazanim na <u>Slici 4A</u>, nisu prikazani spektri obloženih nanočestica za ostale temperature, dužine trajanja oblaganja i masene odnose.

Imajući u vidu da su amorfne nanočestice nepodobne za biomedicinsku primenu, pokušano je oblaganje nanočestica nakon njihove sinteze SPRT metodom, kako bi se očuvala njihova kristalna struktura. Ovaj način oblaganja je imenovan kao SC metoda. Ponovo je ispitana efikasnost oblaganja nanočestica glukozom pri istim parametrima oblaganja kao i kod DC metode (temperatura između 100 i 200 °C; trajanje oblaganja između 6 i 48 h; maseni odnos 1:7). Nasuprot nanočesticama oblaganim DC metodom, rendgenski spektri svih nanočestica obloženih glukozom primenom SC metode, pokazali su serije od 4 difrakciona pika, koja odgovaraju refleksijama kubne fluoritne strukture CeO₂ [166].

Na <u>Slici 4B</u> su prikazani samo spektri nanočestica oblaganih na 100 °C pri različitim dužinama oblaganja zbog identičnosti sa spektrima nanočestica obloženih na ostalim temperaturama. Na rendgenskim spektrima nisu bile vidljive značajne promene na nanočesticama sa povećanjem temperature sinteze (<u>Slika 4</u>). Štaviše, očigledno je da oblaganje glukozom nije uticalo na kristalinitet nanočestica sintetisanih SPRT metodom, što se vidi iz difraktograma neobloženih nCeO₂, datog radi poređenja (<u>Slika 4 A i 4 B</u>).

Ovi rezultati pokazuju da je SC metoda znatno pogodnija za oblaganje nCeO₂ ugljenim hidratima u odnosu na DC metodu. Iz tog razloga je DC metoda korišćena za oblaganja nCeO₂ sa levanom i pululanom. Imajući u vidu termosenzitivnost levana i pululana, temperatura 100 °C je odabrana za dalje sinteze, dok je dužina oblaganja 6 h odabrana kao najpodobnija zbog vremenske efikasnosti i ekonomičnosti.

Uspešnost SC metode je testirana i oblaganjem nCeO₂ različitih veličina - 5 nm, 10 nm, 20 nm i 40 nm. Rezultati variranja veličina nanočestica prikazani na <u>Slici 5</u>. Odnos visine i širine pikova na spektrima ukazuje na veličinu nanočestica i njegovo povećanje pokazuje manju veličinu nanočestica. Radi potencijalne biomedicinske primene i mogućnosti neometanog ulaska u ćelije, u ovoj tezi su daljim ispitivanjima podvrgnute nanočestice veličine 5 nm.

Slika 4. Rendgenski difrakcioni spektri neobloženih nanočestica (CeO₂) veličine 5 nm i nCeO₂ obloženih glukozom pri masenom odnosu 1:7 primenom DC (A) i SC (B) metode na 100 °C tokom 6, 12, 24 i 48 h [167]

Nakon optimizacije pomenutih parametara, SC metoda je primenjena za oblaganje nCeO₂ mikrobiološkim polisaharidima levanom [84] i pululanom [97,155], a dobijene nanočestice su upoređene sa nCeO₂ obloženim glukozom, ugljenim hidratom prethodno korišćenim za tu svrhu. Na osnovu rendgenskih spektara, sve obložene nanočestice su pokazale karakteristične pikove za kristalnu strukturu CeO₂, a nisu primećene ni značajne razlike između levanom, pululanom i glukozom obloženih nCeO₂ (<u>Slika 6</u>). Stoga se može zaključiti da oblaganje ugljenim hidratima ne dovodi do izmena kristalne strukture nCeO₂.

Dobijeni rendgenski spektri nanočestica su prikazani na <u>Slici 6</u>. Uzorci pokazuju tipične pikove (111), (200), (220), (311) koji odgovaraju površinski centriranoj kubno-fluoritnoj kristalnoj strukturi CeO₂. Svi uzorci pokazuju široke pikove, što se može objasniti načinom njihove sinteze na niskoj temperaturi. Nakon postupka oblaganja nanočestica nije došlo do pomeranja pikova u njihovim spektrima što ukazuje na neizmenjenu kristalnu strukturu.

Slika 5. Rendgenski difrakcioni spektri nCeO₂ različitih veličina obloženih glukozom pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h

Slika 6. XRD spektri neobloženih nanočestica (CeO₂) veličine 5nm i nCeO₂ obloženih glukozom, levanom i pululanom (G-, L- i P-CeO₂) pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [21]

4.1.2. Strukturna svojstva nCeO2 obloženih SC metodom

Fizičko-hemijske osobine sintetisanih n CeO_2 su analizirane primenom različitih tehnika - SEM, HRTEM, FTIR, XPS, NMR i elementarnom organskom mikroanalizom.

4.1.2.1. SEM i HRTEM analiza

SEM slika (<u>Slika 7</u>) pokazuje dispergovane aglomerate nCeO₂ različite veličine, koji se mogu pojedinačno videti na HRTEM slici (<u>Slika 8</u>).

Neobložene (<u>Slika 8 A</u>) i nCeO₂ obložene glukozom, levanom i pululanom su analizirane pomoću HRTEM (<u>Slika 8 B-Č</u>). HRTEM slike demonstriraju srednju veličinu neobloženih nCeO₂ u opsegu 4 - 5 nm. Na uvećanoj <u>Slici 8 Ć</u> se može videti da je veličina obloženih nanočestica u opsegu 8 - 13 nm, što predstavlja povećanje dijametra oko 2 puta usled oblaganja nCeO₂. HRTEM slike pokazuju da je kristalna struktura sa razmakom od 0,333 nm (<u>Slika 8 Ć</u>) nađena kod svih nCeO₂, što ukazuje na to da sve dobijene nCeO₂ imaju površinski centriranu kubno-fluoritnu kristalnu strukturu [168].

Slika 7. SEM prikaz G-CeO₂ pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [21]

Slika 8. HRTEM prikaz nCeO₂ neobloženih nCeO₂ (A) i G-CeO₂ (B), L-CeO₂ (C), P-CeO₂ (Č) oblaganih pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h i uvećana slika prostora unutar kristalne rešetke nanočestica (Ć). Histogram distribucije veličina nanočestica je prikazan kao umetak na slici (A) [26]

4.1.2.2. Karakterizacija FTIR metodom

Oblaganje nanočestica ugljenim hidratima je potvrđeno FTIR analizom. Na svim spektrima (<u>Slika 9</u>) obloženih i neobloženih nCeO₂, primećen je karakterističan široki pik sa intenzitetom od 3000 - 3500 cm⁻¹, koji odgovara O-H vibraciji simetričnog istezanja mono- i polisaharida. Široke trake na oko 2920 i 2850 cm⁻¹ odgovaraju vibracijama asimetričnog i simetričnog istezanja C-H u CH₂ grupi (<u>Slika 10</u>). Signal na oko 1627 cm⁻¹ sugeriše prisustvo adsorbovane vode. Spektralni region u opsegu 1200 - 950 cm⁻¹ se smatra regionom u kome se nalaze pikovi grupa karakterističnih za ugljene hidrate i u kojem dominiraju vibracije prstena. Pored toga, C-O-C vibracija preklapa frekvenciju C-OH bočnih grupa [169], dok je anomerni region lociran na 950 - 750 cm⁻¹ [170]. FTIR spektar neobloženih nCeO₂ sadrži apsorpcije u sličnim spektralnim regionima, ali sa nešto drugačijim intenzitetom.

U FTIR spektru neobloženih nCeO₂ (<u>Slika 9</u>), apsorpcija na oko 1630 cm⁻¹ odgovara H-O-H vibraciji savijanja vode [171]. Oštar intenzivni pik na 1384 cm⁻¹ odgovara N-O antisimetričnom istezanju rezidualnih nitratnih grupa, v(NO₃⁻), u materijalu [172,173]. Apsorpcije na oko 1505 i 1047 cm⁻¹ su slične apsorpcijama karakterističnim za komercijalni prah CeO₂ i nCeO₂ [174,175]. Nestanak trake na 1505 cm⁻¹ kod obloženih nCeO₂ se može objasniti njenim preklapanjem sa jakom trakom na 1540 - 1570 cm⁻¹, koja može nastati zbog apsorpcije atmosferskog CO₂. Adsorpcija CO₂ na cerijum-oksidu je primećena i proučavana u ranijim istraživanjima [176,177]. FTIR spektar neobloženih nCeO₂ sadrži dodatne apsorpcije na 840 i 810 cm⁻¹, koje su tipični pikovi za Ce-O vibracije istezanja, kao i široka traka na oko 500 cm⁻¹, koja takođe odgovara Ce-O vezi [178].

Slika 9. FTIR spektri neobloženih nanočestica (CeO₂) veličine 5 nm i nCeO₂ obloženih glukozom, levanom i pululanom (G-, L- i P-CeO₂) pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [167]

Slika 10. Uvećani FTIR spektralni region od 3000 do 2800 cm⁻¹ kod neobloženih (CeO₂) veličine 5 nm i nCeO₂ obloženih glukozom, levanom i pululanom (G-, L- i P-CeO₂) pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [19]

U FTIR spektru levanom obloženih nCeO₂, apsorpcioni pik na 1060 cm⁻¹ sa vrhovima na 1014 cm⁻¹ i 1127 cm⁻¹ ukazuje na C-O-C istezanje, pik na 1459 cm⁻¹ se pripisuje C-H savijanju,

dok je na 926 cm⁻¹ karakteristična za prisustvo furanoznog prstena, koji potiče od monomernog ostatka ugljenog hidrata [153].

FTIR spektar nCeO₂ obloženih pululanom sadrži apsorpcione trake na 1155, 1107, 1080 i 1020 cm⁻¹, koje se odnose na vibracije istezanja C-O i C-C veza, kao i na deformacione vibracije C-C-H i C-OH veza [179]. Apsorpciona traka na 850 cm⁻¹ je karakteristična za α -konfiguraciju glukozne jedinice pululana. Oštar pik na 1384 cm⁻¹ odgovara N-O frekvencijama rezidualnih nitratnih grupa [172,173].

FTIR spektar nCeO₂ obloženih glukozom pokazuje apsorpcionu traku na 1111 cm⁻¹, karakterističnu za C-O frekvencije. Pik na 1050 cm⁻¹ dokazuje C-O i C-C istezanje, a pik na 915 cm⁻¹ je karakterističan za C-O i C-C-H vibracije piranoznog prstena [180]. Apsorpcione trake između 1300 cm⁻¹ i 1460 cm⁻¹ ukazuju na prisustvo δ vibracija C-O, C-C i C-H veza iz glukoze.

FTIR analiza pripremljenih nanočestica potvrđuje formiranje obloženih nCeO₂. Pokazani spektri su tipični za ugljene hidrate i potvrđuju da su molekuli ugljenih hidrata sastavni deo obloženih nCeO₂.

4.1.2.3. XPS analiza

XPS merenja su dodatno potvrdila uspešno oblaganje nCeO₂ ugljenim hidratima. Sastav elemenata na površini i u dubljim slojevima obloženih i neobloženih nCeO₂ je prikazan u <u>Tabeli</u> 2, koja sumira sastav u atomskim procentima izračunat iz Ce 3*d*, C 1*s* i O 1*s* rezultata obloženih i neobloženih nCeO₂.

Tabela 2. Atomski sastav (%) Ce 3*d*, C 1*s* i O 1*s* nivoa jezgra za obložene i neobložene nCeO₂ [181]

	Ce 3d	C 1s	O 1s
CeO ₂	20,0	21,5	58,5
G-CeO ₂	21,3	27,8	50,9
L-CeO ₂	19,5	29,3	51,2
P-CeO ₂	14,3	32,5	53,2

Vodonične veze između kiseonikovih atoma CeO_2 i organskog sloja su uzrokovale povećanje udela atomskih procenata C, što je povezano sa značajnim smanjenjem površinske koncentracije CeO₂. Spektri Ce 3*d* sloja jezgra obloženih nanočestica takođe pokazuju jasne modifikacije usled formiranja Ce³⁺ jona (<u>Slika 11 A</u>). Ovo je indikativno za pojavu novih udela na 880,6, 884,8, 899,0 i 902,5 eV karakterističnih za Ce³⁺ [182]. Kao što je očekivano, interakcija između ugljenih hidrata i nCeO₂ dovodi do delimične redukcije Ce⁴⁺ jona, koja je posebno izražena kod L-CeO₂ i G-CeO₂.

<u>Slika 11 B</u> pokazuje O 1*s* sloj jezgra, gde je glavni pik na 529 - 530 eV povezan sa kiseoničnom rešetkom CeO₂ i pripisuje se Ce-O vezivnoj energiji, dok drugi pik na 531,5 - 532 eV ukazuje na prisustvo kiseoničnih praznina [183]. Signal je zbog kiseonika iz karbonata preklopljen sa glavnim signalom na 529 - 530 eV. Spektri O 1*s* sloja jezgra obloženih nanočestica (<u>Slika 11 C-Ć</u>) pokazuju promene u odnosu na spektre obloženih nCeO₂. Spektri O 1*s* sloja jezgra obloženih nCeO₂, naročito kod L-CeO₂ i P-CeO₂ uzoraka, pokazuju izvesne promene u poređenju sa neobloženim nCeO₂. Relativni intenzitet njihovih udela na oko 532,0 eV je veći zbog kiseonika iz C-OH i C-O-C grupa kod L-CeO₂ i P-CeO₂ nanočestica.

<u>Slika 11 D</u> pokazuje C 1*s* sloj jezgra neobloženih nCeO₂ koji se može razložiti na različite udele. Osnovni udeo je pozicioniran na 284,8 eV i može se pripisati sp³ (C-C i C-H) i sp² (-C=C-) hibridizovanim C atomima. C-O udeo hidroksilnih grupa (na 286,5 eV) je nađen kod obloženih nCeO₂. Očekivano, nCeO₂ pokazuje udeo na 289,3 eV zbog formiranja površinskog cerijum-karbonata. Četvrti udeo na 291,2 eV se pripisuje pratećim $\pi \rightarrow \pi^*$ zbog delokalizacije dvostrukih veza [184].

Spektri C 1*s* sloja jezgra obloženih nanočestica (<u>Slika Dž-E</u>) pokazuju jasne promene nastale usled oblaganja, sa udelom visokog intenziteta koji je rezultat prisustva etanolnih (C-OH) i etarskih (C-O-C) grupa na oko 286,3 eV i karboksilnih i karbonatnih grupa na oko 289,0 eV. Najzad, širok signal na visokoj vezivnoj energiji se može pripisati Na KLL signalu, koji se preklapa sa udelom kiseonika iz vode.

4.1.2.4. NMR analiza

Materijali koji sadrže paramagnetne jone se uglavnom ne proučavaju NMR metodom čvrstog stanja (*ss*-NMR), imajući u vidu jak uticaj tih jona na rezonantne signale najbližih atoma. Uobičajeno je da se jezgra, proučavana u organskim matriksima koji nose ove paramagnetne vrste, ne mogu detektovati ili su rezonantni signali visoko pogođeni, pošto je proces relaksacije poboljšan. Iz tog razloga pomoću strategija direktne ili unakrsne polarizacije, koje se uobičajeno koriste za ¹³C *ss*-NMR proučavanja strukture, mogu se detektovati segmenti/regioni polimernog materijala koji su zatvoreni za paramagnetne entitete. Sa tim ciljem različiti autori koriste NMR kao način za otkrivanje koji od liganada prisutnih u polimernoj mreži je uključen u koordinaciju Cu [185,186], Hg [187], Co [185,188] i Sm [189] jona u nekristalnim sistemima.

Kod neobloženih nCeO₂, joni Ce su dobro raspoređeni u celokupnom materijalu imajući u vidu da su praktično svi signali ugljenika nestali usled interakcije sa Ce ili prisustva u njegovom okruženju. U slučaju P-CeO₂, preostali ¹³C rezonantni signal je bio i dalje prisutan na 73,4 ppm, koji je najintenzivniji signal u ¹³C CP-MAS spektru pululana (<u>Slika 12, Ć i D</u>). U ostatku uzorka koji sadrži Ce jone, iste rezultate je dala primena ¹³C direktne polarizacije ili ¹³C CP-MAS korišćenjem kratkih kontaktnih vremena (50 - 100 µs).

¹³C NMR signali su snimani u poređenju sa prethodnim *ss*-NMR rezultatima za glukozu i NMR za rastvor levana i pululana. U poređenju sa literaturnim podacima, u ovoj tezi je prvi put primenjen *ss*-NMR za karakterizaciju levana i pululana. Kod pululana, anomerni ugljenici (C₁₋₁) su diferencirani od ostatka ugljovodoničnog lanca i odgovaraju različitom okruženju $\alpha_1 \rightarrow_4$ (C₁) i $\alpha_1 \rightarrow_6$ (C₁) veza u kojima ovi ugljenici učestvuju (<u>Tabela 3</u>).

U cilju dobijanja što više strukturnih informacija o nanočesticama, urađena je ¹H-MAS *ss*-NMR analiza i rezultati su prikazani na <u>Slici 12</u> (srednji i desni deo). ¹H-MAS spektar za P-CeO₂ pokazuje ¹H rezonantne signale na 5,1 i 8,2 ppm koji su pripisani vodonicima iz -CH-OH i -OH grupa. Međutim, ostali ¹H signali, izuzev vode, u G-CeO₂ i L-CeO₂ nanočesticama su iščezli usled paramagnetnog efekta Ce jona. Ovi rezultati ukazuju na postojanje biopolimernih regiona kod P-CeO₂ nanočestica (<u>Slika 12 D, srednji i desni deo</u>) koji ne interaguju sa nCeO₂, što potvrđuje da je ¹³C signal još uvek prisutan na 73,4 ppm među ¹H NMR signalima na 5,1 i 8,2 ppm. Iako su u početnim materijalima bez jona Ce linije ¹H-MAS spektara bile široke i sadržale signale koji ukazuju na vodu (označeni kao 'W'), interakcija sa Ce je uklonila glavni protonski signal u svakom uzorku (<u>Slika 12</u>, srednji i donji deo).

Slika 11. XPS spektri visoke rezolucije za neobložene i nCeO₂ obložene pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h: spektri Ce 3*d* (gornji deo), O 1*s* (leva kolona) i C 1*s* (desna kolona) sloja jezgra [181]

Zanimljivo je da ¹H-MAS spektri svih nCeO₂ pokazuju slične obrasce vodene strukture pri hemijskoj izmeni protona (δ^{1} H) od 0 - 2 ppm, koji su povezani sa slabim interakcijama između molekula vode. U početnom materijalu bez Ce jona prisutni su vodeni klasteri na δ^{1} H = 1 i 3 ppm [190], koji interaguju sa površinom nanočestice elektrostatički ili preko vodoničnih veza. Međutim, nanočestice sa Ce jonima takođe sadrže molekule vode koji ne interaguju sa površinom nanočestice zbog čega je ¹³C signal na 73,0 ppm među ¹H signalima na 5,1 i 8,2 ppm još uvek prisutan u NMR spektru. Za G-CeO₂ i L-CeO₂ nanočestice se može zaključiti da su bile dobro dispergovane zbog nestajanja svih ¹H i ¹³C-NMR signala, uzimajući u obzir da su *ss*-NMR karakterizacije urađene pri istim uslovima.

Slika 12. Levi deo: ¹³C CP-MAS *ss*-NMR spektri (15 kHz) i srednji deo: ¹H-MAS *ss*-NMR spektri (30 kHz) za levan (A), L-CeO₂ (B), glukoza (C), G-CeO₂ (Č), pululan (Ć) i P-CeO₂ (D). Desni deo: uvećani ¹H-MAS regioni prikazani na B', Č' i D' spektrima. G-, L- i P-CeO₂ su obložene pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [181]

|--|

Atom ugljenika	Glukoza	Levan	Atom ugljenika	Pululan
C ₁	93,5	60,7	C_1 / C_1 ,	102,5 / 98,3
C_2	71,1	104,6	$C_2 / C_{2'}$	73,0
C_3	73,5	76,8	$C_3 / C_{3'}$	73,0
C_4	73,5	76,8	$C_4 / C_{4'}$	82,5
C_5	72,2	80,6	$C_5 / C_{5'}$	73,0
C_6	64,3	64,6	$C_{6} / C_{6'}$	62,1

4.1.2.5. Elementalna organska mikroanaliza

Elementalna analiza sintetisanih nCeO₂ (<u>Tabela 4</u>) je potvrdila uspešno oblaganje CeO₂ glukozom, levanom i pululanom pokazujući povećan procentni sadržaj ugljenika kod sve tri vrste obloženih nanočestica u odnosu na neobložene. Ovi rezultati su u saglasnosti sa rezultatima XPS analize, koja je takođe pokazala povećan sadržaj ugljenika kod obloženih nanočestica (<u>Tabela 2</u>). U neznatnim procentima zapaženo je prisustvo i drugih elemenata, azota i vodonika, koji su prisutni u početnim materijalima korišćenim u sintezi nCeO₂.

Tabela 4. Rezultati elementalne organske mikroanalize neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica

	Azot (%)	Ugljenik (%)	Vodonik (%)	Sumpor (%)
CeO_2	1,00	0,70	1,07	0,74
G-CeO ₂	0,53	2,49	0,86	\leq 0,25
$L-CeO_2$	0,64	3,20	0,92	\leq 0,25
P-CeO ₂	0,64	3,19	1,00	\le 0,25

4.1.3. Stabilnost obloženih nCeO₂

Za određivanje stabilnosti vodenih suspenzija različitih n CeO_2 je korišćena metoda turbidimetrije. Turbiditeti (zamućenost) neobloženih i obloženih n CeO_2 , suspendovanih u vodi pri različitim koncentracijama su prikazani na <u>Slici 13</u>.

Nagibi linearizovanih prava ukazuju na povećanu stabilnost nCeO₂ suspenzija usled oblaganja različitim ugljenim hidratima. Neobložene nCeO₂ pokazuju nižu stabilnost (tj. imaju najmanji nagib), dok oblaganje pululanom povećava stabilnost suspenzije. Najbolji rezultat oblaganja je dobijen kod nanočestica obloženih levanom i glukozom, čija je stabilnost suspenzija bila slična (na slici imaju najveći nagib).

U cilju dubljeg razumevanja stabilnosti suspenzija različitih nCeO₂, izmerene su njihove hidrodinamičke veličine i površinsko naelektrisanje, a rezultati su prikazani u <u>Tabeli 5</u>. Hidrodinamička veličina, određena DLS metodom uz primenu Stoks-Ajnštajnove (eng. *Stokes-Einstein*) jednačine, je sfera koja ima isti translacioni koeficijent difuzije kao i izmerena čestica, uz pretpostavku da je to hidratacioni sloj koji okružuje nanočesticu [191,192]. Zav čestice je primarni parametar dobijen ovom tehnikom i, s obzirom na određene uslove, najčešće korišćeni parametar DLS veličine za kontrolu kvaliteta ili poređenje. Još jedan DLS rezultat prvog reda je raspodela intenziteta veličina čestica, koji je posebno od interesa kada se analiziraju nemonodisperzni sistemi, koji imaju veću distribuciju veličina [191,192]. Distribucija intenziteta je prirodno merena prema intenzitetu rasipanja svake frakcije nanočestica i u <u>Tabeli 5</u> je označena kao intenzitet (%). Kako bi se omogućio bolji uvid u evoluciju veličine nanočestice u zavisnosti od vrste ugljenih hidrata korišćenih za oblaganje nCeO₂, dati su rezultati distribucije tj. veličine frakcija sa njihovim udelom u intenzitetu rasutog svetla.

Rezultati, prikazani u <u>Tabeli 5</u>, pokazuju dobru korelaciju sa turbidimetrijskim rezultatima. Shodno tome, najveća Zav vrednost je zabeležena kod neobloženih nCeO₂ što ukazuje na prisustvo agregata koji su uzrok niže stabilnosti suspenzije. Veličina nanočestica je bila raznovrsna: najzastupljenija (preko 80 %) je bila frakcija sa nanočesticama veličine od oko 350 nm, dok je znatno manja količina nanočestica imala veličinu od 100 nm. Takođe je detektovana i treća frakcija (nije prikazana u <u>Tabeli 5</u>), koja ukazuje na agregate u mikrometarskom opsegu veličina.

Slika 13. Linearizovani rezultati turbiditeta kod vodenih suspenzija neobloženih i nCeO₂ obloženih glukozom, levanom i pululanom pri masenom odnosu 1:7 primenom SC metode na 100 °C tokom 6 h [167]

Tabela 5. Z-srednja vrednost veličine čestica (Zav), raspodela intenziteta i veličine nanočestica (veličina frakcija i intenzitet (I) izražen u %), i zeta potencijal (ζ) neobloženih (CeO₂) i nCeO₂ obloženih glukozom, levanom i pululanom (G-, L- i P-CeO₂) [167]

Uzorak	Zav, nm	Veličina frakcije 1, nm	I,%	Veličina frakcije 2, nm	I,%	ζ, mV
CeO ₂ ^a	385	344,7	83,8	105,4	15,5	32,2
G-CeO ₂	235	235	77,6	61	22,4	31,3
L-CeO ₂	216	264,6	70	86,4	30	20,8
P-CeO ₂	314	306,2	86,3	84,3	13,7	19,8

^a A mala porcija (0,7 %) većih agregata (2,75µm) je takođe detektovana

Iako prisutne u maloj količini (intenzitet od 0,7 %), velike čestice su uzrokovale povećanje Zav vrednosti, koja je bila veća od veličine nanočestice iz frakcije 1. Kao vrednost izračunata na osnovu intenziteta, Zav vrednost je osetljiva čak i na male promene u uzorku, kao što je prisustvo male količine aglomerata i stoga će težiti ka većim vrednostima kada su prisutne veće čestice [191-193]. Sličan rezultat je zapažen i kod P-CeO₂. Oblaganje sa ugljenim hidratima je smanjilo veličinu agregata kod svih oblaganih nanočestica. Poznato je da oblaganje nanočestica glukozom neutrališe površinsko naelektrisanje nanočestice čime se sprečava njeno povećanje [78], što potvrđuju i rezultati u <u>Tabeli 5</u>. Sličan efekat je primećen i nakon oblaganja nCeO₂ sa heparinom [7].

Ugljeni hidrati korišćeni u ovom istraživanju se međusobno razlikuju u pogledu naelektrisanja i veličine molekula, parametrima koji igraju bitnu ulogu u stabilnosti čestica u suspenziji. Kao što se vidi iz <u>Tabele 5</u>, neobložene nCeO₂ nose pozitivno naelektrisanje, što je na granici stabilnosti suspenzije (suspenzija se smatra stabilnom pri $|\zeta| > 30$ mV). Glukoza, najmanji molekul među korišćenim ugljenim hidratima, praktično je nenaelektrisana. Stoga je površinsko

naelektrisanje nCeO₂ nepromenjeno kada mali molekuli glukoze prodiru u njihove klastere, što dovodi do formiranja manjih agregata. Nasuprot tome, levan i pululan sadrže negativno naelektrisanje, koje se kompenzuje pozitivnim nelektrisanjem nCeO₂. Oba ova ugljena hidrata mogu da utiču na stabilnost suspenzija nCeO₂ sternim smetnjama: molekul levana je veći (oko 150 nm) u odnosu na pululan (60 - 120 nm) i stoga je stabilizujući efekat izraženiji kod nanočestica obloženih levanom, rezultujući prisustvo veće količine manjih čestica. Takođe je objavljeno [194] da interakcija levana sa drugim nanočesticama dovodi do smanjenja ζ , čak i do stepena obrnutog naelektrisanja. Ipak, stabilnost nanočestica je poboljšana.

Slične Zav vrednosti su određene za n CeO_2 obložene glukozom i levanom (<u>Tabela 5</u>). Zav vrednosti pokazuju pozitivnu korelaciju sa izmerenim turbiditetom. Stoga Zav vrednosti ukazuju na inherentnu stabilnost suspenzija nanočestica, potvrđujući turbidimetrijske rezultate.

4.2. Biološki efekti nCeO₂ na odabranim biljnim vrstama

Veoma malo se zna o fitotoksičnosti nCeO₂. Na fitotoksičnost nanočestica generalno utiču brojni faktori, kao što su njihove fizičko-hemijske osobine, faza razvoja biljke i osobine medijuma u kojem se biljka uzgaja [195]. Vrsta medijuma za uzgajanje biljaka može imati važnu ulogu u usvajanju nanočestica, a poznato je veće usvajanje nCeO₂ tokom uzgajanja biljke na hidroponičnom medijumu [196]. Hidroponika je bila medijum izbora i u ovoj tezi, jer gajenjem biljaka u zemlji na usvajanje nanočestica mogu uticati interakcije između organskih materija u obloženom sloju nanočestica i onih koje su prisutne u zemlji.

4.2.1. Usvajanje Ce i njegova translokacija unutar biljaka

Imajući u vidu morfološke parametre, testirane biljne vrste nakon tretmana različitim $nCeO_2$ nisu pokazale vidljive znakove oštećenja, kao što su nekroza, hloroza ili zakržljalost. Primećena je značajna razlika u koncentraciji Ce između Ger i Gro tretmana (<u>Tabela 6</u>), što je očekivano ako se ima na umu razlika u dužini njihovog trajanja (trajanje Ger tretmana je 3 - 5 dana, a Gro tretmana 21 dan). Takođe, koncentracija Ce se razlikovala i između tretiranih biljnih vrsta, a najveće usvajanje nCeO₂ je zapaženo kod pšenice nakon oba (Ger i Gro) tretmana.

Kod Gro tretmana (<u>Tabela 6</u>), visoka koncentracija Ce detektovana u nadzemnom delu pšenice se razlikuje od literaturnih podataka [121], što se može pripisati dve nedelje dužem izlaganju biljaka nanočesticama u odnosu na Ger tretman. Očigledno je da duže izlaganje biljaka nCeO₂ dovodi do povećane akumulacije Ce. Iako su turbidimetrijski podaci pokazali da su G-CeO₂ nanočestice među najstabilnijima, njihova koncentracija u biljkama je bila najmanja nakon Ger tretmana. To ukazuje da stabilnost suspenzija nanočestica ne mora nužno uticati na koncentraciju Ce u biljkama. Kod Gro tretmana, akumulacija Ce je bila znatno veća u pšenici nego u grašku.

Nakon Ger tretmana, Ce je takođe detektovan u kukuruzu i pšenici, ali ne i kod sočiva. Usvajanje obloženih nCeO₂ je bilo značajno različito u odnosu na neobložene nCeO₂ (<u>Tabela 6</u>). Kod pšenice, usvajanje obloženih nCeO₂ je manje od neobloženih u nadzemnom delu, a veće u korenu, dok je kod graška usvajanje veće i u nadzemnim delovima i u korenu. Veće usvajanje obloženih nCeO₂ u korenu pšenice i graška može biti zbog veće stabilnosti suspenzija obloženih nanočestica. Oblaganje nCeO₂ je dovelo do smanjene koncentracije Ce u nadzemnom delu pšenice kod oba, Ger i Gro, tretmana, dok je kod kukuruza dovelo do povećane koncentracije Ce, što pokazuju i literaturni podaci [120,121]. Važno je naglasiti da usvajanje Ce zavisi od stepena interakcije između korenovog sistema i hidroponičnog medijuma i povezana je sa kinetikom rastenja, strukturom korena i taloženjem nanočestica [122].

Tabela 6. Koncentracija Ce (mg Ce po kg suve mase biljke) u pšenici, grašku i kukuruzu nakon Ger i Gro tretmana sa različitim nCeO₂ koncentracije 200 mg L⁻¹. Rezultati su prikazani kao srednje vrednosti ± standardna greška [181]

	PŠE	NICA	GRA	AŠAK	KUK	KUKURUZ	
	Nadzemni deo	Koren	Nadzemni deo	Koren	Nadzemni deo	Koren	
Ger kontrola	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
Ger _CeO ₂	$0,050 \pm 0,007$	$4,\!680 \pm 0,\!051$	< 0,05	$1,560 \pm 0,076$	< 0,05	$\begin{array}{c} 1,600 \pm \\ 0,318 \end{array}$	
Ger_G-CeO ₂	< 0,05	$3,160 \pm 0,054^{a}$	< 0,05	$\begin{array}{c} 1,330 \pm \\ 0,065 \end{array}$	< 0,05	$0,080 \pm 0,013^{a}$	
Ger_L-CeO ₂	< 0,05	$9,950 \pm 0,058^{a}$	< 0,05	${2,370} \pm \\ {0,076}^{\rm a}$	$0,290 \pm 0,031^{a}$	${\begin{array}{*{20}c} 14,870 \pm \\ 0,169^{a} \end{array}}$	
Ger _P-CeO ₂	$0,020 \pm 0,006^{a}$	$10,670 \pm 0,086^{a}$	< 0,05	$3,610 \pm 0,078^{a}$	< 0,05	$5,710 \pm 0,120^{a}$	
Gro kontrola	< 0,05	< 0,05	< 0,05	< 0,05			
Gro _CeO ₂	51,360 ± 0,383	10892,860 ± 12,475	$\begin{array}{c} 0,820 \pm \\ 0,044 \end{array}$	$\begin{array}{c} 88,420 \pm \\ 0,496 \end{array}$			
Gro_G-CeO ₂	$26,600 \pm 0,654^{a}$	$\frac{13675,000}{6,338^{a}} \pm$	$1,810 \pm 0,066^{a}$	$147,160 \pm \\ 0,633^{a}$			
Gro_L-CeO ₂	$33,130 \pm 0,120^{a}$	$17522,730 \pm \\ 4,840^{\rm a}$	$2,530 \pm 0,056^{a}$	$117,220 \pm 0,343^{a}$			
Gro_P-CeO ₂	$25,470 \pm 2,064^{a}$	$14593,750 \pm \\5,462^{a}$	$3,160 \pm 0,03^{a}$	88,460 ± 0,536			

*p < 0,05

Vrednosti koje se statistički značajno razlikuju u odnosu na vrednosti za neobložene $nCeO_2$ su označene sa "a". U nadzemnom delu i korenu sočiva koncentracija Ce je bila ispod nivoa detekcije.

Translokacija Ce iz korena u nadzemne delove se nakon Ger tretmana desila samo u pšenici i kukuruzu (<u>Slika 14</u>), dok je nakon Gro tretmana primećena i kod pšenice i kod graška. Iako je kod Gro tretmana akumulacija Ce bila znatno viša kod pšenice u odnosu na grašak, translokacija Ce iz korena u nadzemni deo je kod tretmana sa P-CeO₂ bila skoro 20 puta veća u grašku nego u pšenici (<u>Slika 14</u>). U poređenju sa neobloženim nanočesticama, veća translokacija Ce kod graška u odnosu na pšenicu je razlog povećane koncentracije Ce u nadzemnom delu graška i smanjene u nadzemnom delu pšenice nakon tretmana obloženim nCeO₂. S obzirom na odsustvo interakcije nanočestica sa zemljom u hidroponičnom medijumu, razlike u koncentraciji Ce i njegovoj translokaciji u pšenici i grašku se mogu pripisati razlikama u anatomiji njihovih korenova (kao što je struktura apoplastičnih barijera i grananje korenova) i mehanizmima distribucije metala [197].

Slika 14. Stepen translokacije, izražen u %, kod biljaka nakon Ger i Gro tretmana sa neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama. Prikazane su srednje vrednosti ± standardna greška samo za biljke kod kojih je detektovan Ce u nadzemnom delu i korenu [181]

4.2.2. Efekat obloženih i neobloženih nCeO₂ na klijanje četiri biljne vrste

U literaturnim podacima se mogu naći i pozitivni i negativni efekti nCeO₂ na biljke [124,125,127,134-137,198-200], što može zavisiti od tretirane biljne vrste, načina uzgajanja, koncentracije nanočestica i materijala za njihovo oblaganje. U skladu sa literaturnim podacima [123], naši rezultati pokazuju da nijedna od korišćenih nCeO₂, pri testiranoj koncentraciji od 200 mg L⁻¹, nije značajno uticala na klijanje semena kod nijedne testirane biljne vrste (p < 0,05, <u>Slika</u> <u>15</u>). Klijanje, u prisustvu neobloženih i obloženih nCeO₂, nije variralo u poređenju sa kontrolom kod nijedne ispitane biljne vrste.

Slika 15. Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na klijanje semena kod četiri različite biljke. Date su srednje vrednosti ± standardna greška [181]

4.2.3. Efekat obloženih i neobloženih nCeO₂ na rastenje biljke

Da bi se ispitala osetljivost biljaka na nCeO₂ u različitim fazama razvoja, poređene su biljke koje su tretirane obloženim i neobloženim nCeO₂ tokom dve različite faze razvoja: klijanja semena i rastenja na hidroponici. Nanočestice nCeO₂ mogu pokazati suprotne efekte na rastenje korena kada se primenjuju u niskoj (stimulišući efekat) i visokoj koncentraciji (inhibirajući efekat) [125]. U ovoj tezi, koncentracija nCeO₂ od 200 mg L⁻¹ je odabrana kao koncentracija iz nižeg opsega primenjenih koncentracija u literaturi za gajenje biljaka u hidroponici (10 - 10000 mg L⁻¹) [122].

Naši rezultati pokazuju da su sve testirane biljne vrste osetljive na tretmane nCeO₂ tokom rane faze razvoja - klijanja semena, iako ovaj efekat nije vidljiv iz rezultata klijanja semena, ali utiče na dalje faze razvoja biljke - rastenje korena i nadzemnog dela. Odsustvo efekta tretmana sa nCeO₂ na klijanje semena se može objasniti prisustvom informacije koju seme nosi iz prethodne generacije u periodu klijanja [201]. Razmatrajući efekat Ger tretmana u testiranim biljnim vrstama, može se videti njegov stimulativni efekat samo na dužinu nadzemnog dela pšenice (<u>Slika 16 A</u>).

Slika 16. Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na dužinu nadzemnog dela (A) i korena (B) kod četiri različite biljne vrste nakon Ger i Gro tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05 [181]

Sa druge strane, na dužinu korena svih tretiranih biljnih vrsta (<u>Slika 16 B</u>) su značajno uticali samo Ger _G-CeO₂ i Ger_L-CeO₂ (stimulativni efekat) kod pšenice i Ger_P-CeO₂ kod graška, dok su Ger_CeO₂ i Ger_G-CeO₂ tretmani inhibirali rastenje korena kod sočiva, kao i Ger_P-CeO₂ tretman kod kukuruza.

Iako Ce nije detektovan kod sočiva nakon Ger tretmana, dužina korena kod ove biljke je bila smanjena, što se može objasniti mogućim poremećajima određenih regulatornih mehanizama, koji su posledica moguće adsorpcije Ce na klijancu tokom procesa klijanja. Može se zaključiti da iako Ger tretmani nisu uticali na klijanje semena u svim testiranim biljnim vrstama, pokazan je njihov efekat na kasnije faze razvoja biljke (<u>Slika 16, A i B</u>).

Suprotno efektu Ger tretmana, Gro tretman nije izazvao veću akumulaciju Ce u biljkama, a time nije uticao na dužinu biljaka uprkos dužem izlaganju nanočesticama (4 dana u Ger tretmanu odnosno 3 nedelje u Gro tretmanu). To pokazuje da je klijanje osetljivija faza razvića nego faza rastenja. Sve testirane biljne vrste su osetljive na nCeO₂ tretmane tokom faze klijanja semena, najranije faze razvoja biljke.

4.2.4. Antioksidativni odgovor biljaka na nCeO₂ tretmane

Praćenje sekundarnih metabolita je važan parametar u ispitivanju odgovora biljke na stres izazvan metalima. Kada je biljka izložena biotičkom ili abiotičkom stresu proizvode se sekundarni metaboliti koji pomažu biljci da prevaziđe postojeće stanje i adaptira se na životnu sredinu [128,132]. Usled stresa biljka proizvodi slobodne radikale, koji oštećuju biomolekule poput lipida, DNK i proteina [132,133]. Kako bi ublažile štetne efekte slobodnih radikala, biljke su razvile efikasne enzimske i neenzimske odbrambene sisteme, antioksidanse malih masa, kao što su vitamini, fenolne kiseline itd. [132,133]. TAA uključuje različite neenzimske komponente koje pokazuju antioksidativnu aktivnost (askorbat, glutation, fenoli, šećeri, itd.) i mogu biti indikator metaboličkog oštećenja u biljkama. Fenoli su jedna od najrazličitijih grupa sekundarnih metabolita koja ima ulogu u regulaciji klijanja semena, rastenja biljke i odbrambenom odgovoru [129,132]. Zbog svojih redoks osobina, fenolna jedinjenja imaju veliki antioksidativni kapacitet, koji im omogućava da deluju kao donori vodonika, hvatači singletnog kiseonika, redukujući agensi, helatori metala [130], ali i kao signalni molekuli [131]. Stoga je u ovoj tezi upoređen ukupan sadržaj fenola, fenolni profil i ukupna antioksidativna aktivnost, kao deo neenzimskog odbrambenog sistema biljke i indikatori biljnog odgovora na tretman različitim nCeO₂ u korenu i nadzemnom delu.

4.2.4.1. Efekat neobloženih i obloženih nCeO2 na TAA

TAA je određena u nadzemnim delovima (<u>Slika 17 A</u>) i korenovima (<u>Slika 17 B</u>) biljaka tretiranih različitim nCeO₂. Dobijeni rezultati pokazuju da nCeO₂ imaju suprotan efekat na pšenicu kod Ger i Gro tretmana. U poređenju sa kontrolom (0,32 μ mol g⁻¹ za Ger i 0,14 μ mol g⁻¹ za Gro tretman), TAA se značajno povećala nakon Gro tretmana sa obloženim nCeO₂ (0,20; 0,21 i 0,20 μ mol g⁻¹ za G-, L- i P-CeO₂), a smanjila nakon Ger_L-CeO₂ (0,20 μ mol g⁻¹) tretmana u nadzemnom delu pšenice (<u>Slika 17 A</u>). To se može objasniti najvećim koncentracijom Ce kod pšenice u odnosu na ostale tretirane biljke (<u>Tabela 5</u>). TAA u korenu nije bio značajno izmenjen nakon oba, Ger i Gro, tretmana.

Usled prisustva 4*f* elektrona u Ce i mogućnosti izmene između Ce³⁺ i Ce⁴⁺ oksidativnih stanja, nCeO₂ mogu imati dvojaku aktivnost - proizvodnja ROS [39] i uklanjanje ROS [202], što objašnjava njihovo ponašanje i u ovom istraživanju. Smanjenje TAA nakon Ger tretmana u pšenici (<u>Slika 17 A</u>) može ukazati na to da su nCeO₂ delovale kao ROS sakupljači. Sa druge strane, sposobnost nCeO₂ da indukuje prekomernu proizvodnju ROS [203] aktivira odbrambeni sistem biljke, dovodeći do povećanja TAA u nadzemnom delu pšenice nakon Gro tretmana

(<u>Slika 17 B</u>). Suprotan efekat Ger i Gro tretmana se može pripisati različitom ponašanju Ce u različitim biljnim vrstama, što zavisi od uslova mikro-okruženja u svakoj biljnoj vrsti, kao što su pH vrednost, prisustvo različitih vrsta malih molekula, kao i karakteristika materijala koji se koristi za oblaganje [118].

Slika 17. Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na TAA u nadzemnim delovima (A) i korenovima (B) četiri različite biljne vrste nakon Ger i Gro tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05 [181]

Među korišćenim nanočesticama, L-CeO₂ su dovele do najvećih promena TAA, potvrđujući da oblaganje može modifikovati efekat nanočestica na biljke. Oblaganje nCeO₂ je imalo veći uticaj na TAA pšenice nakon Gro tretmana (sve obložene nCeO₂ su uticale na TAA) u poređenju sa Ger tretmanom (samo G-CeO₂ su uticale na TAA). Ovakav efekat obloženih nCeO₂ može biti povezan sa većim stepenom redukcije Ce⁴⁺ (<u>Slika 11</u>), koji ukazuje na oksidativni stres u biljkama.

4.2.4.2. Efekat neobloženih i obloženih n CeO_2 na ukupni sadržaj fenola i fenolni profil

Sadržaj fenolnih jedinjenja i aktivnost antioksidativnih enzima je indikator stresa i deo odbrambenih mehanizama biljke u borbi protiv ROS, glavnih uzročnika oksidativnog stresa [128,133]. Stoga je određivanje sadržaja fenola, kao indikatora odbrambenog kapaciteta biljke, od velikog značaja. Prema literaturnim podacima [135,136,204], samo nekoliko istraživanja se bavilo određivanjem TPC-a u biljkama tretiranim sa nCeO₂.

Efekat tretmana različitim nCeO₂ na TPC u četiri testirane biljne vrste je prikazan na <u>Slici</u> <u>18 A</u> (nadzemni deo) i <u>Slici 18 B</u> (koren). Slično efektu nCeO₂ na dužinu nadzemnog dela i korena, samo Ger tretmani su uticali na TPC, dok Gro tretman nije imao efekta na TPC nijedne testirane biljne vrste. Kod nadzemnih delova, TPC je značajno povećan samo kod sočiva nakon svih Ger tretmana (Ger_CeO₂, Ger_G-CeO₂, Ger_L-CeO₂ i Ger_P-CeO₂), što može biti posledica apsorpcije Ce na klijancima tokom procesa klijanja. Kada je reč o korenu, TPC je bio značajno povećan u pšenici nakon Ger_CeO₂, Ger_L-CeO₂ i Ger_P-CeO₂ tretmana, a smanjen kod graška nakon Ger_CeO₂ i Ger_G-CeO₂ tretmana. Kod kukuruza i sočiva TPC je bio nepromenjen. Ovi rezultati pokazuju da obložene CeO₂ imaju značajniji uticaj na sekundarni metabolizam, što može ukazati na indukciju oksidativnog stresa u biljkama i biti znak jače odbrambene reakcije biljke.

Smanjenje sadržaja fenola u korenu graška može ukazati na oštećenje odbrambenog sistema zbog njegove zaštitne uloge u hvatanju slobodnih radikala i helaciji metala [135], dok su Ger_L-CeO₂ i Ger_P-CeO₂ tretmani ublažili ovaj efekat povećavajući nivo fenola na kontrolni. Povećani sadržaj fenola u pšenici i smanjen u grašku može biti povezan sa različitim koncentracijama Ce u ovim biljnim vrstama. Povećana koncentracija Ce u korenu pšenice je dovela do povećanog sadržaja fenola. Pošto nije bilo translokacije iz korena u nadzemni deo pšenice kod većine nCeO₂ tretmana, fenolni sadržaj nije značajno povećan u nadzemnom delu. Povećanje TPC vrednosti u pšenici nakon Ger tretmana može otvoriti nove mogućnosti u primeni nCeO₂ u proizvodnji đubriva i zaštitnih sredstava za biljke. Zato je neophodno ispitati uticaj testiranih nCeO₂ na drugu generaciju biljaka.

Nekoliko istraživanja se bavilo analizom fenolnog profila u nadzemnim delovima biljaka tretiranih sa nCeO₂ [205-208]. U našem istraživanju su fenolna jedinjenja ekstrahovana iz nadzemnih delova biljaka i kvalitativno određena pomoću HPLC-MS. Profili fenolnih jedinjenja (<u>Slike 19 i 20</u>) pokazuju neizmenjen kvalitativni sastav (tip i broj fenolnih jedinjenja) nakon tretmana kod svih tretiranih biljaka, što ukazuje na to da tretmani neobloženim i obloženim nCeO₂ nisu značajno uticali na fenolni profil biljaka. Zapažene promene u površini pika kod fenolnih jedinjenja pšenice i graška mogu ukazati na blage, ali ne i ključne kvantitativne promene sekundarnog metabolizma biljke.

Flavonoidi, vicenin 1 i 2, identifikovani su kao dominantna jedinjenja u pšenici [209], dok su dva derivata hidroksicinamične kiseline i jedan derivat ferulične kiseline [209] detektovani u manjoj količini (<u>Slika 19 A</u>). <u>Slika 20 A</u> prikazuje sedam najizraženijih pikova jedinjenja nađenih u grašku, koja nisu identifikovana. Poređenjem površina pikova svih tretmana sa kontrolom za svaku biljku, uočene su statistički značajne razlike kod svih identifikovanih fenolnih jedinjenja pšenice (<u>Slika 19 B</u>) i kod neidentifikovaog jedinjenja 5 kod graška (<u>Slika 20 B</u>).

Slika 18. Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na TPC u nadzemnim delovima (A) i korenovima (B) četiri različite biljne vrste nakon Ger i Gro tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05 [181]

Kao i kod rezultata za vrednosti TAA, Gro tretman je više uticao na fenolni profil nadzemnih delova pšenice, dok je kod nadzemnih delova graška Ger tretman jedini bio efektivan. Kod nadzemnih delova pšenice (<u>Slika 19 B</u>), statistički značajno povećanje površine pika se desilo nakon svih Gro tretmana sa svim tipovima nCeO₂ kod vicenina 1 i derivata ferulične kiseline. Površine pikova su takođe povećane nakon tretmana sa svim obloženim nCeO₂ kod vicenina 2 i derivata 2 hidroksicinamične kiseline, kao i nakon Gro_L-CeO₂ i Ger_P-CeO₂ tretmana kod derivata 1 hidroksicinamične kiseline. Sa druge strane, smanjenje površine pika se desilo samo kod derivata 1 hidroksicinamične kiseline nakon svih Ger tretmana sa svim nCeO₂. Povećana količina svih fenolnih jedinjenja u nadzemnim delovima pšenice nakon Gro tretmana može biti posledica velike količine akumuliranog Ce (<u>Tabela 5</u>), što je u saglasnosti sa povećanjem TAA. Uticaj obloženih nanočestica je bio izraženiji u poređenju sa neobloženim. Među testiranim nanočesticama, L-CeO₂ su imale najveći uticaj na fenolni profil testiranih biljaka.

Slika 19. HPLC hromatogram metanolnih ekstrakata iz nadzemnih delova pšenice sa UV/Vis spektrima dominantnih fenolnih jedinjenja (A); Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na fenolna jedinjenja u nadzemnom delu pšenice nakon Ger i Gro tretmana (B). Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05 [181]

Sa druge strane, kod graška (<u>Slika 20, B i C</u>) su statistički značajne promene uočene samo kod jedinjenja 5, kao nedominantnog fenola u nadzemnom delu graška, nakon Ger_L-CeO₂ i Ger_P-CeO₂ tretmana. Ovi tretmani nisu uticali na TAA i TPC kod graška. Zapažene promene u površini pika kod fenolnih jedinjenja pšenice i graška (<u>Slike 19 i 20</u>) mogu ukazati da su neka specifična fenolna jedinjenja indukovana tretmanima. Kod sočiva (<u>Slika 21</u>) i kukuruza (<u>Slika 22</u>) nije bilo promena fenolnih jedinjenja.

Kod tretmana obloženim nanočesticama ne bi trebalo isključiti moguće efekte polisaharidnih fragmenata kao signalnih molekula. Odbrambeni sistem biljaka se može stimulisati nekim polisaharidima. Takođe, efekti oblaganja pululanom mogu delimično biti zbog njegovih slobodnih fragmenata, koji nisu u kontaktu sa Ce. To je pokazano ¹H i ¹³C *ss*NMR metodom (<u>Slika 12</u>).

Slika 20. HPLC hromatogram metanolnih ekstrakata iz nadzemnih delova graška sa UV/Vis spektrom fenolnog jedinjenja čiji je sadržaj bio značajno povećan (A); Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na jedinjenja 1 - 5 (B) i jedinjenja 6 i 7 (C) u nadzemnom delu graška nakon Ger i Gro tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05 [181]

Slika 21. HPLC hromatogram metanolnih ekstrakata iz nadzemnih delova sočiva sa UV/Vis spektrima statistički značajnih fenolnih jedinjenja (A); Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na jedinjenja 1 - 8 (B) u nadzemnom delu sočiva nakon Ger tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05

Slika 22. HPLC hromatogram metanolnih ekstrakata iz nadzemnih delova kukuruza sa UV/Vis spektrima statistički značajnih fenolnih jedinjenja (A); Efekat neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica na jedinjenja 1 - 6 (B) u nadzemnom delu kukuruza nakon Ger tretmana. Prikazana je srednja vrednost ± standardna greška; * označava statistički značajne razlike u poređenju sa odgovarajućom kontrolom, p < 0,05

4.2.5. Detekcija poluisparljivih jedinjenja u pšenici i grašku nakon tretmana neobloženim i obloženim nCeO₂

Samo nekoliko istraživanja se bavilo analizom jedinjenja u nadzemnom delu pšenice i graška. Primenom HPLC metode analizirani su citrati i druga organska jedinjenja nakon tretmana pšenice sa nCeO₂ [210]. Fenolne kiseline su detektovane primenom gasne hromatografije spregnute sa masenom espektrometrijom (GC-MS-MS) i pokazana je varijacija u njihovoj distribuciji u nadzemnom delu pšenice [211-213]. Trehaloza i njeni metabolički enzimi su analizirani u semenu i nadzemnom delu pšenice nakon izlaganja abiotičkom stresu primenom gasne hromatografije-masene spektrometrije (GC-MS) [214]. HPLC i GC metode su korišćene za identifikaciju fenilacetatne kiseline u nadzemnom delu graška, pšenice i kukuruza [215]. Sa druge strane, jedinjenja u nadzemnom delu graška su skoro neistražena. Primenom GC-MS metode su u nadzemnom delu graška identifikovani giberelini [216], nekoliko auksina [217], apscisinska kiselina [218] i indol-3-buterna kiselina [219].

Razvoj dvodimenzionalne gasne hromatografije (GC×GC) je razmatran u nekoliko istraživanja [220-223]. U poređenju sa jednodimenzionalnom gasnom hromatografijom, dvodimenzionalna omogućava povećanu senzitivnost, jednostavniju pripremu uzoraka i daje dvodimenzionalne hromatograme koji olakšavaju identifikaciju klasa jedinjenja [220]. Prema literaturnim podacima, GC×GC-MS je našla primenu u analizi proizvoda dobijenih degradacijom lignina [224], biodegradaciji dizel goriva [225], aldehida opisanih u vinu i ulju iz semena grožđa [226], nafti [227], za identifikaciju promena u metaboličkom profilu jetre [228], kao i za detekciju lekova u forenzici [229].

U ovom istraživanju su primenom GC×GC-MS metode detektovana poluisparljiva jedinjenja u grašku i pšenici nakon tronedeljnog tretmana sa 200 mg L^{-1} obloženih i neobloženih nCeO₂ u hidroponici. Vizuelni pregled GC×GC hromatograma, dobijenih iz metilen-hloridnih ekstrakata nadzemnih delova pšenice i graška (Slike 23 i 24), otkriva razliku u hemijskom sastavu ekstrakata između netretiranih i tretiranih biljaka. Hromatogrami koji odgovaraju pšenici tretiranoj sa različitim nCeO₂ sadrže sličan broj jedinjenja, dok u poređenju sa njima hromatogrami netretirane pšenice sadrže manji broj jedinjenja (Slika 23). Razlog tome može biti manja koncentracija Ce u nadzemnom delu pšenice nakon tretmana obloženim nanočesticama u odnosu na tretman neobloženim nanočesticama (Tabela 6), zbog čega su nadzemni delovi biljke u manjoj meri bili izloženi abiotičkom stresu. Profil poluisparljivih jedinjenja u uzorcima graška se prilično razlikuje u zavisnosti od primenjenog tretmana. Primetna je razlika između hromatograma graška tretiranog obloženim nanočesticama (Slika 24 V-G) sa jedne strane i hromatograma netretiranog (Slika 24 B) i graška tretiranog sa neobloženim nCeO₂ (Slika 24 A) sa druge strane. Može se zaključiti da tretman obloženim nanočesticama više utiče na profil poluisparljivih jedinjenja graška u onosu na profil pšenice, što može biti uslovljeno većom translokacijom usvojenih nanočestica iz korena u nadzemni deo kod graška.

Takođe, uzorci pšenice su sadržali više poluisparljivih jedinjenja u odnosu na grašak, što se može biti uzrokovano tretiranom biljnom vrstom.

Rezultati koji odgovaraju profilu poluisparljivih jedinjenja iz ekstrakata pšenice i graška su analizirani u tri koraka. Urađena je:

1. identifikacija pojedinačnih pikova poređenjem njihovih masenih spektara sa masenim spektrima iz baze podataka (ciljana analiza profila)

2. analiza podataka primenom NLPCA metode;

3. analiza celog profila na hromatogramu kao jedinstvenog obrasca prepoznavanja određenog uzorka primenom obrade slike i multivarijantne analize podataka. U ovom slučaju

hromatografski profil je posmatran kao skup karakterističnih signala, čijim poređenjem se identifikuje sastav uzorka.

Slika 23. GCxGC hromatogrami metilen-hloridnih ekstrakata nadzemnih delova netretirane (A) i sa CeO₂ (B), G-CeO₂ (V), L-CeO₂ (G) i P-CeO₂ (D) tretirane pšenice tokom rastenja

Slika 24. GCxGC hromatogrami metilen-hloridnih ekstrakata nadzemnih delova netretiranog (A) i sa CeO₂ (B), G-CeO₂ (V), L-CeO₂ (G) i P-CeO₂ (D) tretiranog graška tokom rastenja

4.2.5.1. Identifikacija pojedinačnih pikova sa hromatograma

Sva poluisparljiva jedinjenja detektovana u nadzemnim delovima pšenice su imenovana u <u>Tabeli 7</u>, a jedinjenja graška u <u>Tabeli 8</u>. Prikazana su samo jedinjenja čiji spektri pokazuju sličnost veću od 80 % sa jedinjenjima iz baze podataka. U nadzemnom delu pšenice i graška je ukupno detektovano 108 odnosno 77 poluisparljivih jedinjenja, redom. Većina jedinjenja pripada grupi alkohola, aldehida i organskih kiselina, kao i derivatima aromatičnih jedinjenja i ugljovodonicima. Od ukupno 129 različita poluisparljiva jedinjenja detektovana u oba uzorka, 56

je detektovano u obe biljke sa istim retencionim vremenima u obe kolone; 52 jedinjenja je detektovano samo u pšenici, dok je 21 detektovano samo u grašku. Može se primetiti da, pored velikog broja jedinjenja detektovanih u svim ekstraktima, neka od njih se razlikuju u zavisnosti od biljne vrste i primenjenog tretmana.

Tabela 7. Poluisparljiva jedinjenja detektovana GCxGC-MS metodom u metilen-hloridnim ekstraktima nadzemnih delova pšenice; + označava prisustvo, a - odsustvo jedinjenja u uzorku. Jedinjenja koja se javljaju kod obe biljke su označena sa *

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						+	Kontrola
						+	nCeO ₂
1,2-dimetil-benzen*	C_8H_{10}	1	12,769	2,64	95	+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
						+	nCeO ₂
2,3,4-trimetil heksan*	$C_{9}H_{20}$	2	12,948	1,35	85	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
$(F)_2$ 2_dimetil_3_						-	nCeO ₂
decen	$C_{12}H_{24}$	3	13,650	1,44	85	+	G-CeO ₂
uccell						+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
2.6.6-trimetil-1-						+	nCeO ₂
henten	$C_{10}H_{20}$	4	14,350	1,50	82	+	G-CeO ₂
nepten						+	$L-CeO_2$
						+	$P-CeO_2$
	$C_{10}H_{20}$		14,952	1,59		+	Kontrola
3-etil-2-metil-1-		5			85	-	nCeO ₂
hepten						+	$G-CeO_2$
nepten						+	$L-CeO_2$
						-	$P-CeO_2$
						+	Kontrola
2.4.4-trimetil-1-						+	nCeO ₂
heksen	$C_{9}H_{18}$	6	15,253	1,65	86	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
	A 11 A	_			0.1	+	$nCeO_2$
(E)-2-heptenal*	$C_7H_{12}O$	7	15,653	1,65	91	+	$G-CeO_2$
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
D 11111	a u o	8	15,664		07	+	$nCeO_2$
Benzaldehid*	C_7H_6O			2,31	85	+	$G-CeO_2$
						-	$L-CeO_2$
						-	$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						+	Kontrola
1						+	nCeO ₂
1-metii-2-propii-	$C_{10}H_{20}$	9	15,953	1,68	90	+	G-CeO ₂
cikioneksan						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
2-metil-nonan	$C_{10}H_{22}$	10	16,650	1,50	92	+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
						+	nCeO ₂
Heptanska kiselina	$C_7H_{14}O_2$	11	16,745	1,20	84	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
		12				-	Kontrola
	$C_{10}H_{22}$					-	nCeO ₂
3-metil-nonan			16,851	1,53	90	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
(E E) - 2 4 -						+	nCeO ₂
hentadienal*	C ₇ H ₁₀ O	13	17,054	1,74	91	+	G-CeO ₂
neptudienui						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						+	nCeO ₂
3-metil-undekan	$C_{12}H_{26}$	14	17,150	1,44	92	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
	~ ~ ~ ~					+	nCeO ₂
Oktanal*	$C_8H_{16}O$	15	17,346	1,23	86	+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
5.1	a w		1 - 0 - 0	1 - 69	<u></u>	+	$nCeO_2$
Dekan	$C_{10}H_{22}$	16	17,852	1,62	94	+	$G-CeO_2$
						+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
2.2 dimetil alter	СЧ	17	18 251	1 52	00	-	$nCeO_2$
5,5-uimetii Oktail	$C_{10}H_{22}$	1/	10,231	1,33	00	+	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,5,6-trimetil-dekan	$C_{13}H_{28}$	18	18,451	1,56	92	+	$G-CeO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	P-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-etil-1-heksanol*	$C_8H_{18}O$	19	18,544	1,11	89	+	$G-CeO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	P-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{c} 2.2,0-\text{Irmetil-}\\ \text{cikloheksanon}\\ \text{cikloheksanon}\\ \text{cikloheksanon}\\ 2,6,7-\text{trimetil-dekan}\\ 2,6,7-\text{trimetil-dekan}\\ C_{13}\text{H}_{28}\\ 21\\ 2,6,7-\text{trimetil-dekan}\\ (S)-1-\text{metil-4+(1-}\\ \text{metiletenil)-}\\ \text{cikloheksen}\\ C_{10}\text{H}_{16}\\ 22\\ 18,667\\ 2,40\\ 4-\text{metil-dekan}\\ C_{10}\text{H}_{16}\\ 22\\ 18,667\\ 2,40\\ 86\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$							+	nCeO ₂
$\begin{array}{c} \text{Ciklonexsanon} & - & \text{L-CeO}_2 \\ & - & P-CeO_2 \\ & - & P-CeO_2 \\ & - & Ronrola \\ & - & nCeO_2 \\ & - & P-CeO_2 \\ & + & L-CeO_2 \\ & + & L-CeO_2 \\ & - & P-CeO_2 \\ & - & R-CeO_2 \\ & - $	2,2,0-trimetil-	$C_9H_{16}O$	20	18,548	1,38	86	-	$G-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cikioneksanon						-	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	P-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,6,7-trimetil-dekan	$C_{13}H_{28}$	21	18,651	1,53	92	+	$G-CeO_2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-	P-CeO ₂
							+	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(S)-1-metil-4-(1-						-	nCeO ₂
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	metiletenil)-	$C_{10}H_{16}$	22	18,667	2,40	86	-	G-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cikloheksen						+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-metil-dekan	$C_{11}H_{24}$	23	18,751	1,53	92	+	G-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_ = ;; = _		. –	+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-fenil-etanon	C_8H_8O	24	19,363	2,28	86	+	$G-CeO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-metil-benzaldehid*	C_8H_8O	25	19,460	2,10	89	+	$G-CeO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	P-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$+ L-CeO_2 + P-CeO_2$	4-metil-benzaldehid*	C ₈ H ₈ O	26	19,861	2,13	96	+	$G-CeO_2$
+ P-CeO ₂					-		+	$L-CeO_2$
							+	$P-CeO_2$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,6-dimetil-dodekan	$C_{14}H_{30}$	27	19,951	1,56	93	+	G-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	11 50			,		+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	P-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cikloheksanol*	$C_6H_{12}O$	28	20.144	1.08	83	+	G-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 0 12 -	-	- 1	,		+	L-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	P-CeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							_	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-metil-4-(1-	$C_{10}H_{14}$	29	20.446	1.26	80	+	G-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	metiletil)-benzen*	010114	_>	20,110	1,20	00	-	L-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_	nCeO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-dekanol	$C_{10}H_{22}O$	30	20 554	1 68	84	_	G-CeO2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 dekullor	01011220	50	20,334	1,00	04	+	L-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nonanal*	C ₀ H ₁₀ O	31	20.845	1.17	95	+	G-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ttonunun	091180	51	20,010	1,17	20	+	L-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	2,6-dimetil-	$C_{0}H_{1}O$	32	20,952	1 59	86	+	G-CeO2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cikloheksanol	0,811,00	52	20,952	1,57	00	+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_	nCeO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5-dimetil-nonan	CuHa	33	21 352	1.62	93	+	G-CeO2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,5 diffetit fiolidit	C111124	55	21,332	1,02	25	+	L-CeO ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	nCeO
kiselina $C_{8}H_{10}O_{2}$ 34 $21,443$ $1,00$ 02 $+$ $C_{0}O_{2}$ $+$ $P-CeO_{2}$ - Kontrola $ nCeO_{2}$ $+$ $C_{15}H_{32}$ 35 $21,552$ $1,59$ 91 $+$ $G-CeO_{2}$ $+$ $L-CeO_{2}$ $+$ $L-CeO_$	2-etil-heksanska	CoHuOa	34	21 443	1.08	82	+	G-CeO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kiselina	0811602	54	21,443	1,00	02	+	
$\begin{array}{c ccccc} 2,6,11\text{-trimetil-} \\ dodekan \end{array} & C_{15}H_{32} & 35 & 21,552 & 1,59 & 91 \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_	nCeO
dodekan $C_{15}C_{15}C_{21}$ $C_{15}C_{21}$ C_{15	2,6,11-trimetil-	C.H.	35	21 552	1 59	91	-	G-CeO.
+ P-CeO ₂	dodekan	C 15 11 32	55	21,332	1,57	71	+	
							+	$P-CeO_2$

<u>Ivana Lj. Milenković</u>

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
1004						+	$nCeO_2$
1,2,3,4-tetrametii-	$C_{10}H_{14}$	36	21,647	1,32	91	+	G-CeO ₂
benzen*						-	L-CeO ₂
						-	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Dodekan	$C_{12}H_{26}$	37	21,752	1,62	87	-	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	$nCeO_2$
Heksadekan	$C_{16}H_{34}$	38	22,153	1,65	85	-	$G-CeO_2$
	10 01		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						+	nCeO ₂
1-fenil-1-propanon	$C_9H_{10}O$	39	22,559	2,04	85	+	G-CeO ₂
I I	-) 10 -		,	9 -		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						+	nCeO ₂
Oktanska kiselina*	$C_8H_{16}O_2$	40	22,945	1,20	88	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
0.5.11						+	nCeO ₂
3,5-dimetil-	$C_9H_{10}O$	41	22,958	1,92	81	+	G-CeO ₂
benzaldehid	7 10		22,750	,		+	$L-CeO_2$
						-	$P-CeO_2$
						_	Kontrola
						+	nCeO ₂
1-(4-metilfenil)-	$C_9H_{10}O$	42	23.160	2.10	94	+	G-CeO ₂
etanon	-) 10 -		- ,	, -		+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
2-metil-undekan	$C_{12}H_{26}$	43	23.254	1.71	91	-	G-CeO ₂
2-mem-unuekan	- 12 - 20	-	- , -	,	-	+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Naftalen*	$C_{10}H_{8}$	44	23,460	2.10	95	+	G-CeO ₂
		·		,		+	L-CeO ₂
						+	$P-CeO_2$
						•	

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						_	Kontrola
						-	nCeO ₂
Tetradekan	$C_{14}H_{30}$	45	23,653	1,65	86	-	G-CeO ₂
	11 50		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Dekanal*	$C_{10}H_{20}O$	46	23,945	1,17	95	+	G-CeO ₂
	10 20		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
10045 (1						+	$nCeO_2$
1,2,3,4,5-pentametil-	$C_{11}H_{16}$	47	24,047	1,32	88	+	$G-CeO_2$
benzen*						+	$L-CeO_2$
						-	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
2,4-dimetil-	$C_9H_{10}O$	48	24,160	2,13	96	+	G-CeO ₂
benzaldehid*	<i>y</i> 10		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
2-fenoksi-etanol	$C_8H_{10}O_2$	49	24,165	2,37	92	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
			24,374			+	Kontrola
						+	nCeO ₂
Benzotiazol*	C ₇ H ₅ NS	50		2,88	91	+	$G-CeO_2$
	, ,	20		_,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
2,6,6-trimetil-1-						+	nCeO ₂
cikloheksen-1-	$C_{10}H_{16}O$	51	24,453	1,65	91	+	$G-CeO_2$
karbaldehid*	10 10		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
(E)-2-decenal*	$C_{10}H_{18}O$	52	25,547	1,32	88	+	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
11 .11 1						-	nCeO ₂
α, α - dimetil-benzen	$C_{9}H_{12}O$	53	25,562	2,19	80	+	$G-CeO_2$
metanol	C911120					-	$L-CeO_2$
							$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						+	Kontrola
2.6.6-trimetil-1-						+	nCeO ₂
cikloheksen-1-	$C_{11}H_{18}O$	54	25.650	1.50	94	+	G-CeO ₂
acetaldehid	- 11 10 -		25,050	y		+	L-CeO ₂
						+	P-CeO ₂
						+	Kontrola
						+	nCeO ₂
Nonanska kiselina*	$C_9H_{18}O_2$	55	25,746	1,23	91	+	G-CeO ₂
	y 10 2		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Metil-1,2-	$C_{0}H_{8}O_{4}$	56	26.380	3.30	92	+	G-CeO ₂
benzenkarboksilat*	-)0 - 4		,	-,	~ _	+	$L-CeO_2$
						+	$P-CeO_2$
		57	26,455		91	+	Kontrola
						+	nCeO ₂
3-(1,1-dimetiletil)-	$C_{10}H_{16}O$			1.80		+	G-CeO ₂
fenol*				1,00		+	L-CeO ₂
						+	$P-CeO_2$
	C ₁₄ H ₃₀	58	26,755	1,74	81	-	Kontrola
						+	nCeO ₂
2,3,5,8-tetrametil-						+	G-CeO ₂
dekan						+	L-CeO ₂
						+	$P-CeO_2$
	C ₁₁ H ₁₀ C ₁₁ H ₂₂ O	59 60	26,759 26,945	2,04	89 92	-	Kontrola
						+	nCeO ₂
1-metil-naftalen*						+	G-CeO ₂
						+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Undekanal*				1,20		+	G-CeO2
Chackanar						+	L-CeO ₂
						+	$P-CeO_2$
							Kontrola
	C ₁₀ H ₁₆ O	61	27,051	1,53	87	+	nCeO
(E,E)-2,4-dekadienal*						· +	G-CeO ₂
						+	L-CeO ₂
						· +	$P-CeO_2$
						-	Kontrola
2-metil-naftalen		62	27,162		83	+	nCeO
	$C_{11}H_{10}$			2,19		' +	G-CeO
						' +	
						, +	P-CeO
						Ľ	1-0002

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100						+	nCeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3-propantriol	$C_9H_{14}O_6$	63	27,459	1,98	95	+	G-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	triacetat*	<i>y</i> 11 0			,		+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-dodecenal*	$C_{12}H_{22}O$	64	28,448	1,35	87	+	$G-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_0,110			+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-d1n1dro-1,1,6-	$C_{13}H_{16}$	65	28,453	1,65	88	+	$G-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	trimetil-naftalen						+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			66	28,551		94	+	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3,4-tetrahidro-						+	$nCeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1,6-trimetil-	$C_{13}H_{18}$			1,56		+	G-CeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	naftalen*	- 1518			-,		+	$L-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_8H_8O_3$	67	28,875	2,97	85	-	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-	nCeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-hidroksi-3-						+	G-CeO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	metoksibenzaldehid						+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{12}H_{10}$ $C_{12}H_{24}O$	68 69	28,962 29,646	2,19	90 96	+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-etenil-naftalen*						+	$G-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	Kontrola
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dodekanal*				1,23		+	G-CeO ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₁₂ H ₁₂	70	29,759			+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,6-dimetil-naftalen*				1,98	95	+	$nCeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$G-CeO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+	$L-CeO_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	$P-CeO_2$
1,8-dimetil-naftalen* $C_{12}H_{12}$ 71 30,160 2,07 86 + $nCeO_2$ + $G-CeO_2$ + $L-CeO_2$	1,8-dimetil-naftalen*	$C_{12}H_{12}$	71	30,160	2,07	86	+	Kontrola
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							+	nCeO ₂
+ $L-CeO_2$							+	$G-CeO_2$
							+	$L-CeO_2$
+ $P-CeO_2$							+	$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						_	Kontrola
(1R, 2S, 7S, 9S) - 3, 3, 7 - 10						+	nCeO ₂
trimetil-8-	$C_{15}H_{24}$	72	30.347	1.26	92	+	G-CeO ₂
metiletilidenetriciklo	- 15 24	, 2	50,517	, -		+	L-CeO ₂
5.4.0.0 ^{2,7} Jundekan*						+	P-CeO ₂
						-	Kontrola
1 (0 4 d'an a t'ife a 'i) 1						+	nCeO ₂
1-(2,4-dimetilienii)-1-	$C_{11}H_{14}O$	73	30,374	2,88	81	+	G-CeO ₂
propanon					~ *	+	L-CeO ₂
						+	P-CeO ₂
						+	Kontrola
6 10 dimetil 5 0						+	nCeO ₂
0,10-dimetil-5,9-	$C_{13}H_{22}O$	74	30,749	1,41	89	+	G-CeO ₂
undekadien-2-on*						+	L-CeO ₂
						+	P-CeO ₂
			31,142		88	-	Kontrola
						+	nCeO ₂
1-heksadekanol	C ₁₆ H ₃₄ O	75		0,96		-	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
	C ₁₂ H ₂₆ O	76	31,645	1,17	96	+	Kontrola
						+	nCeO ₂
1-dodekanol						+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
4-(2,6,6-trimetil-1- cikloheksen-2-il)-3- buten-2-on*	C ₁₃ H ₂₀ O	77	31,753	1,62	93	+	Kontrola
						+	nCeO ₂
						+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
	$C_{17}H_{32}O_2$	78	31,967		81	+	Kontrola
10 matil 9						+	nCeO ₂
10-IIIciII-o-				2,46		+	G-CeO ₂
tetradecenn acetat						+	L-CeO ₂
						-	P-CeO ₂
		79	32,246	1,23	92	-	Kontrola
						+	nCeO ₂
Tridekanal*	C ₁₃ H ₂₆ O					+	G-CeO ₂
						-	L-CeO ₂
						-	P-CeO ₂
	C ₁₆ H ₂₆ O	80	32,251	1,53	93	+	Kontrola
2,4-bis(1,1- dimetiletil)-fenol*						+	nCeO ₂
						+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						+	Kontrola
						+	nCeO ₂
3,/,11-trimetil-2,6,10-	$C_{15}H_{26}O$	81	32,650	1,44	86	+	G-CeO ₂
dodekatrien-1-ol*	15 20		,	,		+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
						+	nCeO ₂
2-metil-1-	$C_{16}H_{32}$	82	33,044	1,11	81	+	G-CeO ₂
pentadecen*	- 10 - 52		, -	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Dietil-1,2-benzen-	$C_{12}H_{14}O_4$	83	33.767	2,46	89	+	G-CeO ₂
dikarboksilat*	12 11 1		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
	$C_{13}H_{20}O$	84	34,555		82	_	Kontrola
4-(2,6,6-trimetil-1-						+	nCeO ₂
cikloheksen-1-il)-3-				1,77		-	G-CeO ₂
buten-2-on				_,		-	$L-CeO_2$
						+	$P-CeO_2$
	$C_{14}H_{28}O$	85	34,647	1,26	95	+	Kontrola
						+	nCeO ₂
Tetradekanal*						+	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$
	C ₁₅ H ₃₀ O ₂	86	35,045	1,14	91	+	Kontrola
						+	nCeO ₂
Izopropil dodekanoat*						+	$G-CeO_2$
						+	$L-CeO_2$
						+	P-CeO ₂
	$C_{13}H_{22}O_3$	87	35,357	1,89	91	+	Kontrola
Metil (3-okso-2-						+	nCeO ₂
pentil-, ciklopentil)						+	$G-CeO_2$
acetat*						+	$L-CeO_2$
						+	$P-CeO_2$
	C ₁₄ H ₃₀ O	88	36,043	1,02	84	+	Kontrola
						-	nCeO ₂
2-tetradekanol						-	$G-CeO_2$
						-	$L-CeO_2$
						-	$P-CeO_2$
1-(4-izopropilfenil)-2- metilpropil acetat	C ₁₅ H ₂₂ O ₂	89	36,153	1,62	86	+	Kontrola
						+	nCeO ₂
						+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
-----------------------------	-----------------------	---------------	--------	----------	--	-----------	--------------------
						+	Kontrola
						+	$nCeO_2$
<i>n</i> -heksil salicilat*	$C_{13}H_{18}O_3$	90	36,154	1,71	89	+	$G-CeO_2$
						+	L-CeO ₂
						+	P-CeO ₂
						+	Kontrola
						+	nCeO ₂
1-tetradekanol*	$C_{14}H_{30}O$	91	36,447	1,26	90	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
						+	nCeO ₂
13-tetradecenal*	$C_{14}H_{26}O$	92	36,549	1,38	87	+	$G-CeO_2$
						+	L-CeO ₂
						+	P-CeO ₂
						+	Kontrola
						+	nCeO ₂
Pentadekanal*	$C_{15}H_{30}O$	93	36,947	1,29	95	+	$G-CeO_2$
						+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
2,6-d1-terc-but11-4-						+	nCeO ₂
hidroksimetilen-	$C_{15}H_{22}O_{2}$	94	37,860	2,04	85	+	G-CeO ₂
2,3,5,6-detetrahidro	10 22 2		,			+	L-CeO ₂
cikoheksanon						+	P-CeO ₂
						-	Kontrola
						+	nCeO ₂
2,3,6-trimetil-1,4-	$C_{13}H_{12}O_{2}$	95	37.871	2.67	80	+	G-CeO ₂
naftalen dion	- 1512 - 2		.,	_,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Pentil benzoat	$C_{12}H_{16}O_{2}$	96	38.553	1.65	81	+	G-CeO ₂
	- 12 10 - 2		,	<u> </u>		+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
2-metil-2-fenil	$C_{20}H_{34}$	97	38,661	2,10	84	+	G-CeO ₂
tridekan*	20 54		,			+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Heksadekanal	C16H32O	98	39.048	1.32	94	+	G-CeO ₂
	10 52 -		, -	,		+	L-CeO ₂
						+	$P-CeO_2$
							2

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						+	Kontrola
3737 11 .11 4						+	nCeO ₂
N,N-dietil-1-	$C_{14}H_{31}N$	99	39,450	1,44	89	+	G-CeO ₂
dodekanamın*	14 51		,	,		+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
bis(2-metilpropil)1,2-	$C_{16}H_{22}O_{4}$	100	39.762	2.16	96	+	G-CeO ₂
benzen-dikarboksilat*	- 10 22 - 4			, -		+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Heptil benzoat*	$C_{14}H_{20}O_{2}$	101	39,955	1.77	82	+	G-CeO ₂
	- 1420 - 2			- ,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Tridecil benzoat	$C_{20}H_{22}O_2$	102	40 455	1 77	87	+	G-CeO ₂
	020113202	102	10,100	1,77	07	+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
<i>n</i> -palmitinska	$C_{16}H_{22}O_{2}$	103	41.849	1.41	92	+	G-CeO ₂
kiselina*	010113202	100	.1,012	-,	~_	+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
cis,cis,cis-7,10,13-	$C_{16}H_{26}O$	104	42,454	1 65	91	+	G-CeO ₂
heksadekatrienal		101	12,101	1,00		+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Etil heptadekanoat	$C_{10}H_{20}O$	105	42.547	1 29	83	+	G-CeO ₂
Emneptudekundut	01911380	105	12,317	1,29	05	+	L-CeO ₂
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
(Z)-9-oktadecenal	$C_{18}H_{24}O$	106	42,550	1 47	92	+	G-CeO ₂
	01811340	100	12,330	1,17	72	+	
						+	$P-CeO_2$
						+	Kontrola
						т +	nCeO.
Hentadekanal*	CH.O	107	43 0/10	1 38	Q /1	<i>∓</i> ′ +	G-CeO
периоскана	C171134O	107	ч <i>э</i> ,0 ч 7	1,50	74	-	
						- -	$\mathbf{P}_{\mathbf{C}} \mathbf{P}_{\mathbf{C}}$
						Т	1-0002

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
2-metiltetrakozan	$C_{25}H_{52}$	108	56,669	2,58	86	-	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂

Tabela 8. Poluisparljiva jedinjenja detektovana GCxGC-MS metodom u metilen-hloridnim ekstraktima nadzemnog dela graška; + označava prisustvo, a - odsustvo jedinjenja u uzorku. Jedinjenja koja se javljaju kod obe biljke su označena sa *

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
1,2-dimetil-benzen*	C_8H_{10}	1	12,769	2,64	92	-	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
2.2.4 trime still						-	nCeO ₂
2,3,4-trimetil heksan*	C_9H_{20}	2	12,948	1,35	80	-	$G-CeO_2$
						+	L-CeO ₂
						-	P-CeO ₂
						-	Kontrola
(1.2 dimetilbutil)	$C_{12}H_{24}$	3		1,77	84	-	nCeO ₂
(1,2-dimetholum)-			14,054			-	G-CeO ₂
cikioneksan						-	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
Ciklopentan-1,2-diol	$C_5H_{10}O_2$	4	14,858	1,95	85	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
(E)-2-heptenal*	$C_7H_{12}O$	5	15,651	1,56	86	-	G-CeO ₂
		-	10,001	1,00		+	$L-CeO_2$
						+	P-CeO ₂

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						_	Kontrola
						_	nCeO ₂
Benzaldehid*	C_7H_6O	6	15,664	2,31	82	+	G-CeO ₂
	, 0		,	,		+	$L-CeO_2^2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
3,7-dimetil-1-okten	$C_{10}H_{20}$	7	15,961	2,16	88	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
(E E) 2 4						-	nCeO ₂
(E,E)-2,4-	$C_7H_{10}O$	8	17,054	1,74	88	-	G-CeO ₂
neptadienai*						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Oktanal*	$C_8H_{16}O$	9	17,346	1,23	82	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
2-etil-1-heksanol*	$C_8H_{18}O$	10	18,544	1,11	82	-	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
3,/-dimetil-2,6-	$C_{10}H_{18}O$	11	19,147	1,32	81	+	$G-CeO_2$
oktadien-1-ol	10 10		,			+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
2-metil-benzaldehid*	C_8H_8O	12	19,460	2,10	88	-	$G-CeO_2$
				·		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
4-metil-fenol	C_7H_8O	13	19,856	1,83	90	+	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
4-metil-benzaldehid*	C ₈ H ₈ O	14	19,861	2.13	96	+	G-CeO ₂
	0 0 -		,	, -	-	+	L-CeO ₂
						+	P-CeO ₂

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
Cikloheksanol*	$C_6H_{12}O$	15	20,144	1,08	82	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
4,5-dimetil-1-heksen	C_8H_{16}	16	20,246	1,23	82	+	G-CeO ₂
						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
1 matil 1 (1						-	nCeO ₂
1-IIIelii-4-(1- matilatil) hanzan*	$C_{10}H_{14}$	17	20,446	1,26	81	+	G-CeO ₂
metheth)-benzen*						+	L-CeO ₂
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
Nonanal*	$C_9H_{18}O$	18	20,845	1,17	95	+	G-CeO ₂
						+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
1 2 2 1 totromotil						-	nCeO ₂
1,2,3,4-tetrametii-	$C_{10}H_{14}$	19	21,647	1,32	92	+	G-CeO ₂
Uelizeli [*]						+	L-CeO ₂
						-	P-CeO ₂
						-	Kontrola
1 matil 2						-	nCeO ₂
1-Inetii-2- fanilaiklopropan	$C_{10}H_{12}$	20	22,151	1,53	80	+	G-CeO ₂
теппсткюргоран						+	L-CeO ₂
						-	P-CeO ₂
						-	Kontrola
1 stil 2.3 dimetil						-	nCeO ₂
honzon	$C_{10}H_{14}$	21	22,649	1,41	89	+	G-CeO ₂
UCHIZCH						+	$L-CeO_2$
						-	P-CeO ₂
						+	Kontrola
						-	nCeO ₂
Oktanska kiselina*	$C_8H_{16}O_2$	22	22,945	1,20	89	+	G-CeO ₂
						+	L-CeO ₂
						+	$P-CeO_2$
							Kontrola
						-	nCeO ₂
Naftalen*	$C_{10}H_{8}$	23	23,460	2,10	94	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂

Doktorska disertacija

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
Dekanal*	$C_{10}H_{20}O$	24	23,945	1,17	94	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
10245						-	nCeO ₂
1,2,3,4,5-pentametii-	$C_{11}H_{16}$	25	24,047	1,32	83	+	G-CeO ₂
benzen.						+	$L-CeO_2$
						-	P-CeO ₂
						-	Kontrola
2.4 dimetil						-	nCeO ₂
2,4-uimetii-	$C_9H_{10}O$	26	24,160	2,13	96	+	G-CeO ₂
Denzaldeniu						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	nCeO ₂
Benzotiazol*	C ₇ H ₅ NS	27	24,374	2,88	87	+	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
2,6,6-trimetil-1-						-	nCeO ₂
cikloheksen-1-	$C_{10}H_{16}O$	28	24,453	1,65	87	-	G-CeO ₂
karbaldehid*						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
		20	05 5 47	1.00	00	-	$nCeO_2$
(E)-2-decenal*	$C_{10}H_{18}O$	29	25,547	1,32	90	+	$G-CeO_2$
						+	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
Nonanaka kisalina*	СЧО	20	25 746	1 22	95	-	$C C_2$
Nonaliska kiselilla	$C_9\Pi_{18}O_2$	50	23,740	1,25	0.5	+	$U-CeO_2$
						+	$L-CeO_2$
						Т	Kontrola
						-	nCeO.
2-hidroksi-izo-	CuaHuaOa	31	26.061	2 13	92	-	G-CeO
butirofenon	C1011202	51	20,001	2,15)2	+	L-CeO2
						+	$P-CeO_2$
						-	Kontrola
						_	nCeO
Metil-1,2-	C ₀ H ₇ O ₄	32	26 380	3 30	93	+	G-CeO2
benzenkarboksilat*	~9**/04	52	20,000	5,50	20	+	L-CeO ₂
						+	$P-CeO_2$
						•	

Doktorska disertacija

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
3-(1,1-dimetiletil)-	$C_{10}H_{16}O$	33	26,455	1.80	88	+	G-CeO ₂
tenol*	10 10		,			+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
1-metil-naftalen*	$C_{11}H_{10}$	34	26,759	2,04	88	+	$G-CeO_2$
	11 10		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Undekanal*	$C_{11}H_{22}O$	35	26,945	1,20	93	+	G-CeO ₂
	- 11 22 -		- 9	2 -		+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
(E,E)-2,4-	$C_{10}H_{16}O$	36	27.051	1.53	89	+	G-CeO ₂
dekadienal*	- 10 10 -			y		+	$L-CeO_2$
						+	$P-CeO_2$
						_	Kontrola
100						-	nCeO ₂
1,2,3-propantriol	$C_9H_{14}O_6$	37	27,459	1,98	94	+	$G-CeO_2$
triacetat*	<i>y</i> 11 0		,			+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
2-dodecenal*	$C_{12}H_{22}O$	38	28,448	1,35	89	+	$G-CeO_2$
	12 22		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
1,2,3,4-tetrahidro-						-	nCeO ₂
1,1,6-trimetil	$C_{13}H_{18}$	39	28,551	1,56	92	+	$G-CeO_2$
-naftalen*	10 10		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
3-hidroksi-2,4,4-						+	nCeO ₂
trimetilpentil-2-	$C_{12}H_{24}O_3$	40	28,848	1,38	91	+	$G-CeO_2$
metil-propanoat						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
2-etenil-naftalen*	$C_{12}H_{10}$	41	28,962	2,19	89	+	G-CeO ₂
	12 10		,	-		+	$L-CeO_2$
						+	P-CeO ₂

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						_	Kontrola
						_	nCeO ₂
Dodekanal*	$C_{12}H_{24}O$	42	29.646	1.23	97	+	G-CeO ₂
	- 12 24 -		- ,			+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
1,6-dimetil-naftalen*	$C_{12}H_{12}$	43	29,759	1,98	92	+	$G-CeO_2$
,	12 12		,	,		+	$L-CeO_2^2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
1,8-dimetil-naftalen*	$C_{12}H_{12}$	44	30,160	2,07	81	+	$G-CeO_2$
,			,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
(1R, 2S, /S, 9S) - 3, 3, /-						-	nCeO ₂
trimetil-8-	$C_{15}H_{24}$	45	30,347	1.26	91	+	G-CeO ₂
metiletilidenetriciklo	15 21		,			+	$L-CeO_2$
5.4.0.0 ⁻ Jundekan*						-	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
6,10-dimetil-5,9-	$C_{13}H_{22}O$	46	30,749	1,41	87	+	$G-CeO_2$
undekadien-2-on*	10 22		,	,		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
2,6-di-butil-2,5-						-	nCeO ₂
cikloheksadien-1,4-	$C_{14}H_{20}O_{2}$	47	31,250	1,44	82	+	G-CeO ₂
dion	11 20 2		,	,		+	$L-CeO_2^2$
						+	$P-CeO_2$
						-	Kontrola
4-(2,6,6-trimetil-1-						-	nCeO ₂
cikloheksen-2-il)-3-	$C_{13}H_{20}O$	48	31,753	1,62	91	+	$G-CeO_2$
buten-2-on*						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Tridekanal*	$C_{13}H_{26}O$	49	32,246	1,23	91	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
0 / 1 * /1 1						-	nCeO ₂
2,4-D1S(1,1-1)	$C_{16}H_{26}O$	50	32,251	1,53	91	+	G-CeO ₂
dimetiletil)-tenol*			,	-		+	L-CeO ₂
						+	$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						_	Kontrola
						_	nCeO ₂
O-hidroksibifenil	$C_{12}H_{10}O$	51	32.269	2.58	95	+	G-CeO ₂
	- 12 10 -		- ,	y		+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
cis-heksahidro-8a-						-	nCeO ₂
metil-1,8(2H,5H)-	$C_{11}H_{16}O_2$	52	32,359	1,98	81	+	$G-CeO_2$
naftalendion	11 10 2		,	,		+	$L-CeO_2^2$
						+	$P-CeO_2$
						-	Kontrola
(<i>R</i>)-5,6,/,/ <i>A</i> -						-	nCeO ₂
tetrahidro-4,4,/A-	$C_{11}H_{16}O_2$	53	32,471	2,70	89	+	$G-CeO_2$
trimetil- $2(4H)$ -	11 10 2		,	,		+	$L-CeO_2$
benzofuranon						+	$P-CeO_2$
						-	Kontrola
3,7,11-trimetil-						-	nCeO ₂
2,6,10-dodekatrien-1-	$C_{15}H_{26}O$	54	32,650	1,44	84	+	$G-CeO_2$
ol*	15 20		,			+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
0						-	nCeO ₂
2-metil-1-	$C_{16}H_{32}$	55	33,044	1,11	81	+	$G-CeO_2$
pentadecen*	10 52		,	,		+	$L-CeO_2$
						-	$P-CeO_2$
						-	Kontrola
D:						-	nCeO ₂
Dietil-1,2-benzen-	$C_{12}H_{14}O_{4}$	56	33,767	2,46	89	+	G-CeO ₂
dikarboksilat*	12 11 1		,	,		+	$L-CeO_2^2$
						+	$P-CeO_2$
T 1 (1204						-	Kontrola
Izobuti1-2,2,4-						-	nCeO ₂
trimetil-3-	$C_{16}H_{30}O_4$	57	34,447	1,26	90	+	$G-CeO_2$
karboksiizopropil						+	$L-CeO_2$
pentanoat						+	$P-CeO_2$
						-	Kontrola
						+	nCeO ₂
Tetradekanal*	$C_{14}H_{28}O$	58	34,647	1,26	93	+	G-CeO ₂
						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
T. '1						-	nCeO ₂
Izopropil	$C_{15}H_{30}O_{2}$	59	35,045	1,14	88	-	G-CeO ₂
dodekanoat*			,	-		+	L-CeO ₂
						+	$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
Metil (3-okso-2-						_	nCeO ₂
pentil-, ciklopentil)	$C_{13}H_{22}O_{3}$	60	35,357	1.89	89	+	G-CeO ₂
acetat*	- 15 - 22 - 5			y		+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
<i>n</i> -heksil salicilat*	$C_{13}H_{18}O_{3}$	61	36,154	1,71	84	+	G-CeO ₂
	- 15 10 - 5		, -	2		+	L-CeO ₂
						-	$P-CeO_2$
						-	Kontrola
						_	nCeO ₂
1-tetradekanol*	$C_{14}H_{30}O$	62	36,447	1.26	88	+	G-CeO ₂
	- 14 50 -	-	,	, -		+	L-CeO ₂
						+	P-CeO ₂
						_	Kontrola
						_	nCeO ₂
13-tetradecenal*	$C_{14}H_{26}O$	63	36,549	1.38	88	+	G-CeO ₂
	- 1420 -		;- :,	-,		+	$L-CeO_2$
						+	$P-CeO_2$
						+	Kontrola
						+	nCeO ₂
Pentadekanal*	$C_{15}H_{30}O$	64	36,947	1.29	93	+	G-CeO ₂
	- 15 50 -	-	9	, -		+	L-CeO ₂
						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Trietil- <i>O</i> -acetilcitrat	$C_{14}H_{22}O_{8}$	65	37 259	2.04	87	+	G-CeO ₂
ineth o accinenta	014112208	00	57,207	2,01	07	+	L-CeO ₂
						_	$P-CeO_2$
						_	Kontrola
(6 <i>S</i> - <i>cis</i>)-5,6,7,7 <i>A</i> -						-	nCeO ₂
tetrahidro-6-hidroksi-	$C_{11}H_{16}O_{2}$	66	37.486	3.63	85	+	G-CeO ₂
4,4,7 <i>A</i> -trimetil-,	01111003	00	57,100	5,05	00	+	L-CeO ₂
2(4H)-benzofuranon						+	$P-CeO_2$
						-	Kontrola
						-	nCeO ₂
Behenska kiselina	$C_{22}H_{44}O_2$	67	37.849	1.35	82	_	G-CeO ₂
	- 22 44 - 2		,	-,		+	$L-CeO_2$
						+	$P-CeO_2$
							Kontrola
						-	nCeO ₂
2-metil-2-fenil	C20H24	68	38.661	2.10	80	+	G-CeO ₂
tridekan*	~20==34	00	20,001	_,10		+	L-CeO ₂
						+	$P-CeO_2$

Jedinjenja	Molekulska formula	Redni broj	RT1	RT2	Sličnost sa jedinjenjem iz baze podataka (%)	Prisustvo	Tretmani
						-	Kontrola
						-	nCeO ₂
6,10,14-trimetil-2-	$C_{18}H_{36}O$	69	38,748	1,32	84	-	G-CeO ₂
pentadekanon						+	L-CeO ₂
						+	P-CeO ₂
						+	Kontrola
						-	nCeO ₂
Heksadekanal	$C_{16}H_{32}O$	70	39,048	1,32	90	-	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
N N_dietil_1_						-	nCeO ₂
dodekanamin*	$C_{14}H_{31}N$	71	39,450	1,44	89	+	G-CeO ₂
dodekanannin						+	$L-CeO_2$
						+	$P-CeO_2$
						-	Kontrola
bis(2-metilpropil)1,2-						-	nCeO ₂
benzen-	$C_{16}H_{22}O_4$	72	39,762	2,16	94	+	G-CeO ₂
dikarboksilat*						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
	~ ~ ~ ~					-	nCeO ₂
Heptil benzoat*	$C_{14}H_{20}O_2$	73	39,955	1,77	82	+	$G-CeO_2$
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
						-	$nCeO_2$
3,7,11,15-tetrametil-	$C_{20}H_{40}O$	74	41,846	1,2	90	-	$G-CeO_2$
1-heksadecen-3-ol	20 10		,	,		-	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
<i>n</i> -palmitinska	~ ~ ~ ~					-	$nCeO_2$
kiselina*	$C_{16}H_{32}O_2$	75	41,849	1,41	92	-	G-CeO ₂
						+	$L-CeO_2$
						+	P-CeO ₂
						-	Kontrola
Z.E-3,13-			10 150	1.5.6	0.4	-	$nCeO_2$
oktadekadien-1-ol	$C_{18}H_{34}O$	76	42,452	1,56	84	-	$G-CeO_2$
						-	$L-CeO_2$
						+	P-CeO ₂
						+	Kontrola
TT / 1 1 1.5			12 0 10	1 20	02	-	$nCeO_2$
Heptadekanal*	$C_{17}H_{34}O$	11	4 <i>3</i> ,049	1,38	93	+	$G-CeO_2$
						+	$L-CeO_2$
						+	$P-CeO_2$

4.2.5.2. NLPCA

Velika količina informacija sadržana u velikom broju varijabli (detektovana jedinjenja) dobijenih analizom velikog broja uzoraka zahteva primenu odgovarajućih statističkih procedura kako bi se izdvojile najvažnije informacije i izveli tačni zaključci. Da bi se odabrali parametri pogodni za karakterizaciju uzoraka podvrgnutih različitim tretmanima, za procenu profila njihovih poluisparljivih jedinjenja je korišćena NLPCA metoda. Ova metoda ima istu primenu kao i tradicionalna analiza glavnih komponenata (RCA), ali je pogodna za varijable mešovitih nivoa merenja (nominalne, ordinalne i numeričke), koje ne moraju biti međusobno linearno povezane. U NLPCA metodi sve varijable se posmatraju kao kategoričke, a svaka različita vrednost promenljive se naziva kategorija. Matrica podataka se sastojala od ukupno 108 identifikovanih poluisparljivih jedinjenja u uzorcima pšenice i 77 u uzorcima graška, koja su korišćena kao nominalne varijable (1 - prisustvo u uzorku, 0 - odsustvo u uzorku).

Od 108 jedinjenja detektovanih u nadzemnom delu pšenice, 58 jedinjenja nije pokazalo nikakvu varijabilnost u skladu sa izvršenim tretmanom, tj. prisutna su u svim uzorcima pšenice (kontroli i uzorcima tretiranim nanočesticama). Stoga je NLPCA primenjena za analizu preostalih 49 poluisparljivih jedinjenja koja pokazuju varijabilnost. Primenjen dvokomponentni model objašnjava 79,44 % ukupne varijanse podataka. PC1 je objašnjavala 53,93 % varijabiliteta među podacima, dok je PC2 objašnjavala 26,51 %. Zajednička projekcija skorova i vektora latentnih varijabli za prve dve PC je prikazana na Slici 25. Grafik skorova (Slika 25 A) ukazuje na grupisanje objekata duž PC1 ose; kontrolni ekstrakt pšenice je pozicioniran na desnoj strani grafika skorova i razlikuje se od tretiranih uzoraka (na levoj strani grafika). Takođe, uzorci tretirani sa L-CeO₂ i P-CeO₂ nanočesticama su grupisani na suprotnoj strani PC2 ose u poređenju sa nadzemnim delovima pšenice tretiranim sa neobloženim i G-CeO₂ obloženim nanočesticama. Pozicioniranje uzoraka na grafiku skorova ukazuje na to da se profili poluisparljivih jedinjenja razlikuju od kontrolnih ekstrakata, kao i da tretmani sa L-CeO₂ i P-CeO₂ nanočesticama imaju sličan efekat na pšenicu, a koji se razlikuje od efekata tretmana sa G-CeO₂ i neobloženim nanočesticama. Pošto odgovarajući grafici vektora latentnih varijabli ukazuju na vezu između varijabli objekata, oni mogu poslužiti za identifikaciju varijabli koje doprinose pozicioniranju objekata na grafiku skorova i stoga uticati na bilo koju posmatranu grupu u skupu podataka. Zajedničke projekcije vektora latentnih varijabli (Slika 25 B) ukazuju da:

- jedinjenje (2-tetradekanol) je specifično za kontrolni uzorak;

- jedinjenje (2,2,6-trimetil-cikloheksanon) je specifično za uzorak tretiran neobloženim nCeO₂;

- jedinjenje (α , α - dimetil-benzenmetanol) je specifično za uzorak tretiran sa G-CeO₂;

- jedinjenja (benzaldehid, 1-metil-4-(1-metiletil)-benzen, 1,2,3,4-tetrametil-benzen, tridekanal) su specifična za uzorke tretirane sa G-CeO₂ i neobloženim nanočesticama;

- jedinjenja (1-dekanol, dodekan, heksadekan, 2-metil-undekan, tetradekan, 2metiltetrakozan) su specifična za uzorke tretirane sa L-CeO₂ i P-CeO₂ nanočesticama;

- jedinjenja (2,3,4-trimetil-heksan, heptanska kiselina, 3-metil-undekan, oktanal, dekan, 4,6-dimetil-dodekan, 1-fenil-1-propanon, oktanska kiselina, 1-(4-metilfenil)-etanon, 2,3,5,8-tetrametil-dekan, 1-metil-naftalen, (E,E)-2,4-dekadienal, 2-metil-naftalen, (1R,2S,7S,9S)-3,3,7-trimetil-8-metilidentriciklo[5.4.0.0^{2,9}]undekan, 1-(2,4-dimetilfenil)- 1-propanon, 2,3,6-trimetil-1,4-naftalendion) su prisutna u svim uzorcima tretiranim nanočesticama;

Slika 25. Model nelinearne analize glavnih komponenti pšenice i graška - grafik skorova (A) i grafik vektora latentnih varijabli (B): kontrola (1), CeO₂ (2), G-CeO₂ (3), L-CeO₂ (4) i P-CeO₂ (5). Jedinjenja su prikazana kao varijable (V) sa brojem koji odgovara rednom broju jedinjenja u tabeli

- jedinjenja ((*E*)-2,2-dimetil-3-decen, 2-metil-nonan, 3-metil-nonan, 3,3-dimetil-oktan, 2,5,6-trimetil-dekan, 1-fenil-etanon, 4,5-dimetil-nonan, 2,6,11-trimetil-dodekan, etil heptadekanoat) su specifična za uzorke tretirane sa G-CeO₂, L-CeO₂ i P-CeO₂ nanočesticama;

- jedinjenja (2,6,7-trimetil-dekan, 4-metil-dekan, 4-hidroksi-3-metoksibenzaldehid) su specifična za uzorke tretirane sa G-CeO₂ i L-CeO₂ nanočesticama;

- jedinjenja (2,6-dimetil-cikloheksanol, 1,2,3,4,5-pentametil-benzen) nisu detektovana u kontroli i uzorku tretiranom sa P-CeO₂ nanočesticama;

- jedinjenja (3,5-dimetil-benzaldehid, 10-metil-8-tetradecenil acetat) su detektovana u svim uzorcima sem uzorku tretiranom sa $P-CeO_2$ nanočesticama.

Rezultati NLPCA primenjene na 77 poluisparljivih jedinjenja detektovanih u uzorku graška, od kojih su 2 isključena iz analize usled odsustva varijabiliteta među podacima, ukazuju na različit uticaj nanočestica na ovu botaničku vrstu u poređenju sa pšenicom. Dvokomponentni model, koji objašnjava 91,22 % ukupnog varijabiliteta (78,18 % varijabiliteta sadržano u PC1 i 13,04 % u PC2), ukazuje da:

- neobložene nanočestice nemaju uticaj na profil poluisparljivih jedinjenja u uzorku graška (grupisanje ekstrakata kontrole i nadzemnih delova tretiranih sa n CeO_2 na grafiku skorova),

- uticaj tretmana sa L-CeO₂, G-CeO₂ i P-CeO₂ nanočesticama je specifičan i različit u odnosu na ostale tretmane (<u>Slika 25 B</u>).

Grafik vektora latentnih varijabli ukazuje na činjenicu da su sve detektovane varijable prisutne samo u uzorcima tretiranim obloženim nanočesticama. Dodatno:

- jedinjenje (2,3,4-trimetil-heksan) je specifično za uzorak tretiran sa L-CeO₂ nanočesticama;

- jedinjenja ((1,2-dimetilbutil)-cikloheksan, 3,7,11,15-tetrametil-1-heksadecen-3-ol, *Z*,*E*-3,13-oktadekadien-1-ol) su specifična za uzorak tretiran sa P-CeO₂ nanočesticama;

- jedinjenja (1,2,3,4-tetrametil-benzen, 1-metil-2-fenilciklopropan, 1-etil-2,3-dimetilbenzen, 1,2,3,4,5-pentametil-benzen, (1R,2S,7S,9S)-3,3,7-trimetil-8metilidentriciklo[5,4,0,02,9]undekan, 2-metil-1-pentadecen, *n*-heksil salicilat, trietil-*O*acetilcitrat) su specifična za uzorke tretirane sa G-CeO₂ i L-CeO₂ nanočesticama;

- jedinjenja (1,2-dimetil-benzen, (*E*)-2-heptenal, (*E*,*E*)-2,4-heptadienal, 2-etil-1-heksanol, 2-metil-benzaldehid, 2,6,6-trimetil-1-cikloheksen-1-karbaldehid, izopropil dodekanoat, behenska kiselina, 6,10,14-trimetil-2-pentadekanon, heksadekanol, *n*-palmitinska kiselina) su specifična za uzorke tretirane sa L-CeO₂ i P-CeO₂ nanočesticama;

Doktorska disertacija

Jedinjenja (48 ukupno) sa komponentama vektora latentnih varijabli 0,996 i -0,033 za PC1 i PC2, redom (<u>Tabela 9</u>), nije prisutno u kontroli i uzorku tretiranom neobloženim nanočesticama.

Tabela 9. Nelinearna analiza glavnih komponenti; Komponente vektora latentnih varijabli za uzorke pšenice i graška (jedinjenja su predstavljena kao varijable (V) sa rednim brojevima kojima su označeni u <u>Tabelama 7 i 8</u>)

	Pšenica			Grašak	
Dimenzija			Dim	enzija	
	1	2	_	1	2
V2	0,956	-0,245	V3	0,401	0,812
V11	0,956	-0,245	V74	0,401	0,812
V14	0,956	-0,245	V76	0,401	0,812
V15	0,956	-0,245	V1	0,719	0,588
V16	0,956	-0,245	V5	0,719	0,588
V27	0,956	-0,245	V8	0,719	0,588
V39	0,956	-0,245	V10	0,719	0,588
V40	0,956	-0,245	V12	0,719	0,588
V42	0,956	-0,245	V28	0,719	0,588
V58	0,956	-0,245	V59	0,719	0,588
V59	0,956	-0,245	V67	0,719	0,588
V61	0,956	-0,245	V69	0,719	0,588
V62	0,956	-0,245	V75	0,719	0,588
V72	0,956	-0,245	V19	0,668	-0,696
V73	0,956	-0,245	V20	0,668	-0,696
V95	0,956	-0,245	V21	0,668	-0,696
V3	0,811	0,409		0,668	-0,696
V10	0,811	0,409	V45	0,668	-0,696
V12	0,811	0,409	V55	0,668	-0,696
V17	0,811	0,409	V61	0,668	-0,696
V18	0,811	0,409	V65	0,668	-0,696
V24	0,811	0,409	V22	0,626	0,021
V33	0,811	0,409	V30	0,626	0,021
V35	0,811	0,409	V77	0,626	0,021
V105	0,811	0,409	V4	0,996	-0,033
V8	0,198	-0,958	V6	0,996	-0,033
V29	0,198	-0,958	V7	0,996	-0,033
V36	0,198	-0,958	V9	0,996	-0,033
V21	0,540	-0,052	V11	0,996	-0,033
V23	0,540	-0,052	V13	0,996	-0,033
V67	0,540	-0,052	V14	0,996	-0,033
	Pšenica			Grašak	
	Dime	enzija	_	Dim	enzija
	1	2		1	2
V32	0,510	-0,662	V15	0,996	-0,033
V47	0,510	-0,662	V16	0,996	-0,033
V30	0,583	0,757	V17	0,996	-0,033
V37	0,583	0,757	V18	0,996	-0,033
V38	0,583	0,757	V23	0,996	-0,033
V43	0,583	0,757	V24	0,996	-0,033
V45	0,583	0,757	V26	0,996	-0,033
V108	0,583	0,757	V27	0,996	-0,033
V41	-0,331	-0,565		0,996	-0,033

Doktorska d	lisertacija			Ivana Lj	i. Milenković
V78	-0,327	-0,548	V31	0,996	-0,033
V22	-0,198	0,958	V32	0,996	-0,033
V20	-0,037	-0,746	V33	0,996	-0,033
V5	-0.240	0,148	V34	0,996	-0,033
V53	0.279	-0,426	V35	0,996	-0,033
V75	0.553	0,148	V36	0,996	-0,033
V79	0.198	-0,958	V37	0,996	-0,033
V84	0.240	-0,148	V38	0,996	-0,033
V87	-0.944	0,273	V39	0,996	-0,033
V88	-0.956	0,245	V41	0,996	-0,033
			V42	0,996	-0,033
			V43	0,996	-0,033
			V44	0,996	-0,033
			V46	0,996	-0,033
			V47	0,996	-0,033
			V48	0,996	-0,033
			V49	0,996	-0,033
			V50	0,996	-0,033
			V51	0,996	-0,033
			V52	0,996	-0,033
			V53	0,996	-0,033
			V54	0,996	-0,033
			V56	0,996	-0,033
			V57	0,996	-0,033
			V60	0,996	-0,033
			V62	0,996	-0,033
			V63	0,996	-0,033
			V66	0,996	-0,033
			V68	0,996	-0,033
			V71	0,996	-0,033
			V72	0,996	-0,033
			V73	0,996	-0,033
			V2	0,479	-0,092
			V58	0 594	-0.061

U poređenju sa kontrolom, glavne promene u profilu isparljivih jedinjenja su detektovane u pšenici nakon tretmana sa L- i P-CeO₂ nanočesticama, kao i u grašku nakon tretmana sa L-CeO₂ nanočesticama. Aldehidi su dominantna klasa jedinjenja u obe biljne vrste. Njihovo prisustvo u grašku je već potvrđeno i pokazano je da čine 5 % jedinjenja u grašku [230]. Među njima, benzaldehid i nonanal su prethodno detektovani u biljkama [231], kao i aldehidi preko 5 C atoma [232]. Takođe je već detektovan 1-metil-4-(propan-2-il) benzen (poznat i kao para-cimen), aromatično jedinjenje nađeno u grašku nakon tretmana obloženim nanočesticama [231].

V70

0,234

0,638

U obe tretirane biljne vrste je detektovan derivat jasmonske kiseline (metil-(3-okso-3pentil-, ciklopentil) acetat). Osnovna funkcija ove kiseline i njenih metabolita je regulacija rastenja biljke i odbrambenog odgovora na abiotički i biotički stres [233]. Kada su biljke pod stresom izazvanim metalom, jasmonska kiselina igra ulogu u povećanju nivoa glutationa, čiji oligomeri formiraju fitohelatine koji heliraju toksične teške metale [234]. Sinteza jasmonske kiseline može biti stimulisana pomoću ROS, koje biljka proizvodi kada je pod stresom, čime se pojačava odgovor biljke na stres. Jasmonati, soli jasmonske kiseline, mogu uticati na emisiju drugih isparljivih jedinjenja povezanih sa stresom [233,235], posebno terpena [236] koji imaju potencijal da ublaže abiotički stres [237]. Terpeni su prisutni u biljkama kao lipofilna, niskomolekulska (C15 or C10) jedinjenja [238].

76

U ovoj tezi, monoterpenski alkohol 3,7-dimetil-2,6-oktadien-1-ol (poznat kao geraniol) je detektovan u grašku samo nakon tretmana obloženim nCeO₂, što može ukazivati na to da obložene nanočestice uzrokuju oksidativni stres. Derivati geraniola su takođe detektovani u bosiljku [239] i mirisu različitih biljaka [240]. Odsustvo terpena u pšenici je u skladu sa literaturnim podacima [231]. Odsustvo izoprena i drugih monoterpena kod obe biljne vrste se može objasniti brzim isparavanjem nakon sinteze usled nemogućnosti njihovog skladištenja u biljci. Aromatični terpenski aldehid, 4-hidroksi-3-metiloksibenzaldehid (poznat kao vanilin), detektovan je samo u pšenici nakon tretmana obloženim G-CeO₂ i L-CeO₂ nanočesticama.

Alkani i alkeni su takođe detektovani kod obe tretirane biljne vrste, sa malo većim prisustvom u pšenici. Etilen, najpoznatiji među njima, se proizvodi nakon povrede i drugih abiotičkih stresova biljke, zbog čega je poznat i kao "hormon stresa" [231]. U ovoj tezi on nije detektovan u testiranim biljkama nakon nijednog tretmana. Razlog tome može biti činjenica da se pod određenim uslovima etilen može oksidovati u karboksilne kiseline, koje su detektovane u obe biljne vrste [241].

Veliki broj isparljivih alkohola i estara su esencijalni sastavni deo cvetnih mirisa. Najviše detektovani estri u obe biljne vrste su derivati benzoeve, salicilne i sirćetne kiseline.

4.2.5.3. Multivarijantna obrada slike i PCA

Hromatografski profil se često razmatra prilikom ispitivanja autentičnosti i kvaliteta hrane. Ceo hromatogram je tretiran kao jedinstven multivarijantni profil tj. višedimenzioni vektor, bez posebne identifikacije pojedinačnih pikova [242]. Kako bi se maksimalno ekstrahovale korisne informacije iz hromatografskih profila, primenjena je sveobuhvatna analiza slike i dalja multivarijantna analiza podataka. Pristup koji uključuje obradu hromatograma, u ovom slučaju dobijenim GC×GC analizom, potvrđen je kao korisna analitička alatka za analizu profila ili nepristrasno poređenje uzoraka [243]. Naime, tačke sa dvodimenzionalnog GC×GC hromatograma poseduju definisane x i y koordinate, dok je intenzitet signala predstavljen kao intenzitet sive boje na z koordinati. Specifično pozicioniranje tačaka i intenziteta signala, koji su proporcionalni količini analita, karakteriše profil određenog uzorka. Međusobno poređenje profila poluisparljivih jedinjenja može olakšati identifikaciju uzorka.

Umesto opsežne analize pojedinačnih poluisparljivih jedinjenja pretraživanjem baze podataka, urađena je brza uporedna analiza poluisparljivih jedinjenja primenom obrade slike. Kako bi se analizirao uticaj različitih tretmana na uzorke pšenice i graška, slike hromatograma su obrađene pomoću Delta2D softvera i podaci su iskorišćeni za dalju hemometrijsku analizu podataka. Delta2D softver kombinuje statističku analizu sa pouzdanim pristupom detekciji pojedinačnih tačaka, podudaranja, kvantifikaciji i brzoj vizuelnoj analizi. Softver koristi naprednu tehnologiju za obradu slike, kako bi se eliminisale varijacije između pozicija tačaka, dajući preklopljene slike sa jasno naglašenim razlikama u intenzitetima određenog jedinjenja. Delta2D softver sadrži puno ugrađenih algoritama, za koje je dokazano da su dovoljni za pravilnu obradu slike GC×GC hromatograma [243].

Tehnika obrade slike za analizu GC×GC hromatograma se bazira na preklapanju pojedinačnih slika sa koordinatama definisane referentne slike, a onda na stvaranju opšte slike primenom fuzionog algoritma. Na osnovu opšte slike se stvara zajednički obrazac prepoznavanja, koji se potom primenjuje na svaku pojedinačnu sliku u cilju kvantifikacije. Tako dobijeni rezultati predstavljaju jedinstven otisak prsta svakog hromatograma, koji se dalje koristi za multivarijantnu analizu podataka.

Isti način obrade slike je primenjen na uzorcima pšenice i graška. Pre kreiranja prosečnog profila svih slika iz analizirane grupe, mala pomeranja zona koja odgovaraju istom jedinjenja jednih u odnosu na druge korigovana su poravnavanjem i svođenjem na iste h i y koordinate. Poravnavanje je neophodno kako bi se pouzdano eliminisale distorzije između hromatograma, odnosno da se tačke koje pripadaju istom profilu pojavljuju na istoj poziciji na svim slikama. Poravnavanje zona je izvršeno ručno preklapanjem hromatograma kontrole sa hromatogramom

tretiranog uzorka koji je bio najbogatiji zonama. Skup preklopljenih parova za kontrolu pšenice i uzorke tretirane sa različitim nCeO₂ je prikazan na <u>Slici 26</u>. Slike sa poravnatim zonama su dalje spojene kako bi se dobila mapa poluisparljivih jedinjenja koja uključuje sve tačke celokupnog eksperimenta. Spojena slika kombinuje više slika sa jednom novom, veštačkom, ali realističnom kompozitnom slikom. Ta slika je korišćena za stvaranje zajedničkog obrasca tačaka, tj. identifikaciju segmenata na hromatogramima uzoraka pšenice i graška. Odgovarajući obrazac tačaka je, u skladu sa postojećim poravnavanjem između slika, prebačen na sve slike unutar grupe. Na taj način je dobijen isti obrazac tačaka na svakoj slici i postignuta je jedinstvena podudarnost slika.

Slika 26. Poravnavanje zona na hromatogramima dobijenim za kontrolu i pšenicu tretiranu sa neobloženim i obloženim n CeO_2 (jedna slika je obojena narandžasto, a druga plavo)

Kada se obrada slika završi, skup podataka služi kao osnova za dalju hemometrijsku evaluaciju. Za statističku analizu je primenjen PCA, u cilju pronalaženja razlika u profilima poluisparljivih jedinjenja u zavisnosti od tretmana primenjenog na pšenici tj. grašku. Dobijeni rezultati su otkrili identično grupisanje uzoraka, koje je dobijeno ciljanom analizom profila (<u>Slika 27</u>). Kada je pšenica u pitanju, tretman sa nCeO₂ značajno menja profil poluisparljivih jedinjenja uzoraka, sa različitim odgovorom biljke na neobložene i obložene nCeO₂. Dodatno, među uzorcima tretiranim sa obloženim nCeO₂, tretmani sa L-CeO₂ i P-CeO₂ su uzrokovali sličnu reakciju biljke, dok je ona bila donekle različita kod G-CeO₂ tretmana. Prethodno je pokazano da sve obložene nCeO₂ povećavaju TAA i menjaju fenolni profil samo u pšenici [181], što može ukazivati na oksidativni stres. Imajući u vidu blage razlike između profila isparljivih jedinjenja pšenice nakon tretmana obloženim i neobloženim nanočesticama, može se zaključiti da je profil isparljivih jedinjenja manje izmenjen u odnosu na ostale ispitane parametre stresa. Sa

druge strane, grašak nije pokazao odgovor na tretman sa neobloženim nCeO₂, za razliku od uočljive reakcije na tretman obloženim nCeO₂. Međutim, uzorci tretirani sa P-CeO₂ nanočesticama pokazuju različit profil poluisparljivih jedinjenja u poređenju sa uzorcima tretiranim sa L-CeO₂ i G-CeO₂ nanočesticama. Iako Gro tretman sa različitim nCeO₂ nije uticao na TAA, TPC i fenolni profil kod graška [181], profil ispraljivih jedinjenja se može razmatrati kao nezavisni indikator oksidativnog stresa.

Prikazani rezultati pokazuju da se GCxGC-MS metoda može koristiti za jednostavan skrining efekata nanočestica na biljke i detektovanje razlika u njihovom odgovoru na istu nanočesticu. Razmatrajući rezultate dobijene primenom dva različita pristupa, identifikacijom pojedinačnih pikova na osnovu poređenja masenog spektra sa odgovarajućim spektrima iz baze podataka i analizom profila obrađivanjem slike, mogu se izvesti slični zaključci. Uzimajući u obzir prvu metodu kao dugotrajniju, koja dodatno zahteva i specijalizovano osoblje za pretaživanje baze podataka, čini se da je analiza profila mnogo lakša i brža metoda. Međutim, i dalje postoji nedostatak sveobuhvatne analize profila dvodimenzionalne GC×GC metode zasnovane na kompletnoj hemometrijskoj obradi prikupljenih podataka.

Pšenica

Grašak

Slika 27. Grafik skorova linearne analize glavnih komponenti pšenice i graška: kontrola, CeO₂, G-CeO₂, L-CeO₂ i P-CeO₂

4.3. Ispitivanje akutne toksičnosti nCeO₂ na odabranim životinjskim model organizmima

4.3.1. Usvajanje Ce u vodenim organizmima

Prema literaturnim podacima je ustanovljeno da je primarni put usvajanja hemijskih supstanci iz vode kod riba preko škrga, kože ili ingestijom [244]. Detektovana je značajna količina Ce u jetri *D. rerio* nakon tretmana sa nCeO₂ pri koncentraciji 500 μ g L⁻¹, dok tretman sa 5000 μ g L⁻¹ nCeO₂ nije dao značajno usvajanje Ce [244]. Takođe je zapaženo da unos Ce u *D. magna* nakon tretmana sa 0 - 10 μ g mL⁻¹ nCeO₂ ne dovodi do mortaliteta [143]. Ulazak Ce u *D. magna* je takođe registrovan nakon akutnog (96 h) i hroničnog (21 dan) izlaganja pri koncentraciji 0,1-10 mg L⁻¹ nCeO₂ [245].

U ovom istraživanju, koncentracija Ce u *D. magna* nakon akutnog (48 h) tretmana sa obloženim nanočesticama (2 489,65; 2 344,94 i 3 429,89 mg kg⁻¹ nakon tretmana sa G-, L- i P-

CeO₂, redom) nije bila značajno različita u odnosu na tretman neobloženim (1 577 mg kg⁻¹) (<u>Slika 28, A</u>). Usvajanje Ce u *D. rerio* nakon (72 h) tretmana sa nCeO₂ (<u>Slika 28, B</u>) je u skladu sa literaturnim podacima [246]. Kao i kod *D. magna*, usvajanje obloženih nanočestica (224,24 mg kg⁻¹; 240,06 mg kg⁻¹ i 108,39 mg kg⁻¹ za G-, L- i P-CeO₂, redom) u *D. rerio* nije bilo značajno veće u odnosu na organizmima nije bila značajno različita nakon tretmana obloženim u odnosu na tretman neobloženim nanočesticama.

Slika 28. Koncentracija Ce u *D. magna* (A) i *D. rerio* (B) nakon tretmana sa neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama pri koncentraciji 200 mg L⁻¹. Rezultati su prikazani kao srednja vrednost ± SE

4.3.2. Uticaj različitih nCeO₂ na *D. magna* usled akutnog izlaganja

U dosadašnjim istraživanjima uticaja neobloženih nCeO₂ na *D. magna* nije zabeležena akutna toksičnost pri koncentracijama 100 - 200 mg L⁻¹ [145] i 200-5000 mg L⁻¹ [140], a u tom opsegu se nalaze i koncentracije nanočestica testirane u ovoj tezi (50 - 400 mg L⁻¹). Kako bi se utvrdilo da li dolazi do promene akutnog efekta nCeO₂ nakon njihovog oblaganja, neonate *D. magna* su bile izložene neobloženim i obloženim nCeO₂ tokom 48 h. Rezultati ovih tretmana su sumirani u <u>Tabeli 10</u>.

Tabela 10. Mortalitet *D. magna* (izražen u %) nakon 48 h akutnog izlaganja neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama pri četiri različite koncentracije. Rezultati su prikazani kao srednja vrednost ± SE

	Mortalitet (%)			
Koncentracija [mgL ⁴] Nanočestice	CeO ₂	G-CeO ₂	L-CeO ₂	P-CeO ₂
50	$6{,}67 \pm 0{,}27$	$0,\!00\pm0,\!00$	$0,\!00\pm0,\!00$	$0,\!00\pm0,\!00$
100	$13,\!33\pm0,\!27$	$0,\!00\pm0,\!00$	$0,\!00\pm0,\!00$	$0,\!00\pm0,\!00$
200	$13,\!33 \pm 0,\!27$	$13,\!33\pm0,\!27$	$6{,}67 \pm 0{,}27$	$6{,}67 \pm 0{,}27$
400	$13,33 \pm 0,27$	$20{,}00\pm0{,}47$	$20,\!00\pm0,\!47$	$13,33 \pm 0,27$

Kada se porede procenti mortaliteta za iste koncentracije (50, 100, 200 i 400 mg L⁻¹) različitih nanočestica (CeO₂, G-CeO₂, L-CeO₂ i P-CeO₂), može se primetiti odsustvo značajnih razlika. Takođe, nije zapažen mortalitet nakon izlaganja obloženim nanočesticama pri koncentracijama nCeO₂ nižim od 100 mg L⁻¹, kao i odsustvo značajnih razlika u mortalitetu između obloženih i neobloženih nanočestica. Očigledno, veća stabilnost vodenih suspenzija

obloženih nanočestica (<u>Slika 13</u>) nije uticala na njihovo usvajanje (<u>Slika 28, A</u>) i mortalitet u *D. magna*. Nakon akutnog izlaganja, može se zaključiti da oblaganje nanočestica glukozom, levanom i pululanom nije imalo značajan efekat na mortalitet *D. magna*.

4.3.3. Metabolizam kiseonika i ugljenik(IV)-oksida kod *D. magna* tokom tretmana različitim nCeO₂

Prema dostupnim literaturnim podacima, u ovoj tezi je prvi put praćen uticaj nCeO₂ na respiraciju D. magna, a samo dva istraživanja su pratila potrošnju O₂ i proizvodnju CO₂ kada su neonate izložene stresu [164,247]. Lončarević i dr. (eng. *Lončarević et al.*) (2019) [164] su pokazali da levan i pululan umanjuju toksičnost i bioakumulaciju Cu²⁺ tokom akutnog izlaganja, kao i da pozitivno utiču na respiraciju *D. magna*.

U ovoj tezi je respirometrijski praćeno disanje neonata *D. magna* tokom akutnog izlaganja (42 h) obloženim i neobloženim nCeO₂ pri koncentraciji 200 mg L^{-1} kako bi se ispitao njihov uticaj na potrošnju/proizvodnju O₂ i CO₂.

Kumulativna proizvodnja O_2 i potrošnja CO_2 u *D. magna* nakon 42 h izlaganja neobloženim odnosno obloženim nanočesticama je određena u cilju validacije eksperimentalnih uslova za praćenje respirometrije u zatvorenom Micro-Oxymax sistemu. Rezultati kumulativne potrošnje O_2 i proizvodnje CO_2 su prikazani na <u>Tabeli 11</u> i <u>Slici 29</u> i odnose se na respiraciju 20 neonata po tretmanu bez standardizacije u odnosu na njihovu masu. Kriterijum validnosti testa je bio ispunjen jer mortalitet u kontrolnom uzorku nije prelazio 10 %. Na osnovu prikazanih rezultata može se zaključiti da razlike u kumulativnoj potrošnji O_2 između tretmana nisu uočljive (<u>Slika 29 A</u>), za razliku od kumulativne proizvodnje CO_2 (<u>Slika 29 B</u>) koja je nakon tretmana sa G-CeO₂ bila najveća u odnosu na tretmane ostalim nanočesticama i čak dvostruko povećana u odnosu na kontrolu. Razlog povećane potrošnje CO_2 tokom tretmana sa G-CeO₂ i L-CeO₂ nanočesticama može biti veća stabilnost njihovih vodenih suspenzija (<u>Slika 13</u>), koja potencijalno utiče na njihovu respiraciju.

Tretman	Kumulativna potrošnja O ₂ (mL)	Kumulativna proizvodnja CO ₂ (mL)
Kontrola	2,06	0,98
CeO_2	1,83	1,23
$G-CeO_2$	1,99	1,79
$L-CeO_2$	1,94	1,31
P-CeO ₂	2,04	1,11

Tabela 11. Kumulativna potrošnja O ₂	i proizvodnja CO ₂ (i	zražene u mL) u D.	magna nakon 42 h
akutnog izlaganja neobloženim	(CeO ₂) i obloženim ((G-, L- i P-CeO ₂) n	anočesticama

Slika 29. Uticaj neobloženih (CeO₂) i obloženih (G-, L- i P-CeO₂) nanočestica pri koncentraciji 200 mg L⁻¹ na kumulativnu potrošnju O₂ (A) i proizvodnju CO₂ (B) u *D. magna* nakon akutnog izlaganja nanočesticama

4.3.4. Efekat različitih nCeO₂ na ranu fazu razvoja *D. rerio*

Efekat nCeO₂ na embrione *D. rerio* je ispitivan u mnogim istraživanjima, ali nema puno literaturnih podataka o uticaju obloženih nanočestica na ove organizme. Sedmodnevni tretman sa neobloženim nCeO₂ pri koncentracijama preko 3,7 mg L⁻¹ nije imao efekta na *D. rerio* u ranoj fazi razvoja [145]. U ovom istraživanju je za tretman *D. rerio* neobloženim i nCeO₂ obloženim sa tri različite vrste ugljenih hidrata, kao i kod ostalih model sistema korišćena koncentracija 200 mg L⁻¹. Izleganje i mortalitet (zbir koagulisanih embriona i embriona koji se nisu izlegli na 72 hpf) su izraženi u procentima i prikazani na <u>Slici 30</u>. Može se primetiti da je izleganje (<u>Slika 30</u> <u>A</u>) nakon 72 h-ovnog akutnog izlaganja nanočesticama blizu 100 % kod svih tretmana, kao i da nema značajnih razlika u odnosu na kontrolu. Takođe, nema razlika u mortalitetu između tretmana neobloženim i obloženim nanočesticama, kao i između svih tretmana i kontrole (<u>Slika 30</u> <u>30 B</u>). Kao i kod *D. magna*, veća stabilnost vodenih suspenzija obloženih nanočestica (<u>Slika 13</u>) nije značajno uticala na njihovo usvajanje (<u>Slika 28, B</u>) ni posledično na mortalitet i stopu izleganja *D. rerio* iz embriona. Može se zaključiti da oblaganje nCeO₂ glukozom, levnom i pululanom ne utiče na njihovu toksičnost na *D. rerio* i da su nanočestice bezbedne po ispitane životinjske vrste u primenjenoj koncentraciji.

Embrioni zebrica su posmatrani na svetlosnom mikroskopu tokom tretmana neobloženim odnosno različitim obloženim nCeO₂. Kao što se vidi na <u>Slici 31</u>, zebrice ne pokazuju nijedan znak razvojne malformacije u svim tretiranim grupama u poređenju sa kontrolom.

Slika 30. Izleganje *Danio reri*o nakon 48 i 72 h (A) i mortalitet nakon 72 h (B) tretmana sa neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama na 200 mg L⁻¹. Rezultati su prikazani kao srednja vrednost ± SE

Slika 31. Embrioni *D. rerio* posmatrani na svetlosnom mikroskopu pri 40× uvećanju nakon 48 h tretmana neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama

4.3.5. Efekat različitih nCeO2 na inhibiciju bioluminiscencije kod V. fischeri

Bakterija V. *fischeri* je korišćena u cilju detaljnog ispitivanja efekata različitih nCeO₂. Zbog visoke senzitivnosti i korelacije sa drugim testovima, kao i mogućnosti primene za raznovrsne uzorke, test inhibicije bioluminiscencije je najviše korišćen za procenu ekotoksičnosti supstanci [248].

Uticaj neobloženih i obloženih n CeO_2 na inhibiciju bioluminiscencije V. *fischeri* je predstavljen u <u>Tabeli 12</u>.

Tabela 12. EC₁₀ i EC₂₀ vrednosti nakon tretmana *V. fischeri* neobloženim (CeO₂) i obloženim (G-, L- i P-CeO₂) nanočesticama. Rezultati su izraženi u mg L⁻¹

Tretman	EC ₁₀	EC ₂₀
CeO ₂	< 1,56	$2,75 \pm 1,80$
G-CeO ₂	< 1,56	$3,\!42 \pm 2,\!65$
$L-CeO_2$	$60,16 \pm 9,27$	$20,58 \pm 5,36$
P-CeO ₂	$16,62 \pm 10,48$	$9{,}91 \pm 8{,}85$

 EC_{10} i EC_{20} vrednosti predstavljaju koncentraciju nanočestica koja izaziva 10 odnosno 20 % inhibicije bioluminiscencije. Imajući u vidu da je uzorak toksičniji sa snižavanjem EC vrednosti, EC_{20} vrednosti pokazuju da najveći procenat inhibicije izazivaju neobložene nCeO₂ i G-CeO₂ nanočestice pokazujući sličan procenat inhibicije. Nanočestice obložene polisaharidima, posebno L-CeO₂ su pokazale najmanji efekat na ispitivani parametar. Stoga se može zaključiti da oblaganje nCeO₂ polisaharidima redukuje njihov toksični efekat na V. *fischeri*. _____

5. ZAKLJUČAK

Na osnovu dosadašnjih saznanja, u ovoj tezi je po prvi put ispitan efekat neobloženih (CeO_2) i obloženih $(G-, L- i P-CeO_2)$ nanočestica na ranu fazu razvoja biljke i njen odgovor na stres kod graška i sočiva. Iz prikazanih rezultata može se zaključiti da:

- Nanočestice su uspešno obložene modifikovanom metodom hidrotermalnog oblaganja (SC metodom), pri čemu su dobijene kristalne strukture obloženih nanočestica
- Variranje temperature, dužine trajanja oblaganja i masenog odnosa nanočestica i ugljenog hidrata korišćenog za oblaganje nije uticalo na kristalnu stukturu obloženih nanočestica dobijenih SC metodom
- Postignuta je veća stabilnost nanočestica cerijum-oksida oblaganjem ugljenim hidratima, posebno oblaganjem levanom
- Nijedna vrsta nanočestica nije imala uticaj na klijanje semena četiri različite biljne vrste
- Koncentracija Ce je u svim biljkama bila veća nakon svih Ger tretmana obloženim nanočesticama, izuzimajući efekat G-CeO₂
- Translokacija Ce iz korena u nadzemni deo je bila najveća kod graška, a nijedan od Ger i Gro tretmana nije uticao na stepen klijanja nijedne testirane biljne vrste
- Izlaganje biljaka bilo kojoj vrsti testiranih nCeO₂ je imalo najveći uticaj na pšenicu, u pogledu rastenja, TAA, TPC i promene fenolnog profila, kao posledica najveće akumulacije Ce kod ove biljke. U korenu pšenice, TPC je bio povećan nakon Ger tretmana, dok su rastenje i TAA bili nepromenjeni, što ukazuje na mogućnost TPC-a da pojača odbrambenu sposobnost biljke. Može se zaključiti da odgovor biljke na nCeO₂ zavisi od faze razvoja u kojoj je biljka izložena nanočesticama
- Izlaganje semena nanočesticama tokom procesa klijanja je uticalo na koncentraciju fenolnih jedinjenja i dužinu nadzemnog dela i korena biljke, dok je izlaganje biljaka nanočesticama tokom faze rastenja dovelo do povećanja odgovora neenzimskih komponenti antioksidativnog odbrambenog sistema i modifikacije profila fenolnih jedinjenja
- Glavne promene u profilu isparljivih jedinjenja su detektovane u pšenici nakon tretmana sa L- i P-CeO₂ nanočesticama, kao i u grašku nakon tretmana sa L-CeO₂ nanočesticama
- Nije bilo značajnih razlika između neobloženih i obloženih nCeO₂ u odnosu na kontrolu kada je reč o koncentraciji Ce i ispitivanju akutne toksičnosti različitih nCeO₂ na vodene organizme *Danio rerio* i *D. magna*. Kod bakterije *V. fischeri*, najmanji stepen inhibicije bioluminiscencije odnosno najmanju toksičnost su pokazale L-CeO₂ nanočestice
- G-CeO₂ i L-CeO₂ nanočestice su uzrokovale najveću proizvodnju CO₂ pri koncentraciji 200 mg L⁻¹, dok razlike u potrošnji O₂ nisu bile značajne između tretmana različitim nanočesticama. Prikazani rezultati su u saglasnosti sa najvećom stabilnošću vodenih suspenzija G-CeO₂ i L-CeO₂ nanočestica u odnosu na ostale ispitane nCeO₂

Zbog odsustva statističke značajnosti u odnosu na kontrolu, može se zaključiti da su neobložene i ugljenim hidratima obložene nCeO₂ bezbedne po ispitane životinjske vrste i bakteriju V. *fischeri* kada se primene u ispitanim koncentracijama

Saznanja iz ove teze ilustruju da nCeO₂ generalno ne uzrokuju fitotoksičnost kada se tretman primeni tokom rane faze razvoja biljke. Buduća istraživanja bi svakako trebalo usmeriti na ispitivanje uticaja svih ovih nanočestica na reproduktivni razvoj biljke i uticaja na drugu generaciju, kao dugoročnog efekta na biljku. Takođe treba ispitati odgovor biljaka na testirane nCeO₂ u zemlji, gde ostali faktori (organske materije, pH...) mogu imati uticaj. S obzirom da rezultati u ovoj tezi pokazuju da je klijanje senzitivnija faza razvića od rastenja, nCeO₂ mogu imati primenu u tehnologiji nanoprajminga (eng. *nanopriming*), kao relativno novoj metodi korišćenoj u poljoprivredi za povećanje klijanja semena, rastenja biljke i otpornosti na stes. Od svih korišćenih nanočestica, L-CeO₂ je imao najveći efekat na izmerene parametre kod testiranih biljnih vrsta, životinjskih i bakterijskih vrsta. Iz tog razloga u budućim istraživanjima bi trebalo usmeriti pažnju na razjašnjenje mehanizma njihovog delovanja na testirane organizme na molekularnom nivou.

6. LITERATURA

- 1. Majumdar, S.; Peralta-Videa, J.R.; Bandyopadhyay, S.; Castillo-Michel, H.; Hernandez-Viezcas, J.-A.; Sahi, S.; Gardea-Torresdey, J.L. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. *Journal of Hazardous Materials* **2014**, 278, 279-287.
- 2. Weaver, J.D.; Stabler, C.L. Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. *Acta Biomaterialia* **2015**, *16*, 136-144.
- 3. Celardo, I.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles: a promise for applications in therapy. *Journal of Experimental Therapeutics and Oncology* **2011**, *9*, 47-51.
- 4. Karakoti, A.; Kuchibhatla, S.V.; Babu, K.S.; Seal, S. Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. *The Journal of Physical Chemistry C* **2007**, *111*, 17232-17240.
- 5. Perez, J.M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. *Small* **2008**, *4*, 552-556.
- 6. Zhai, Y.; Zhou, K.; Xue, Y.; Qin, F.; Yang, L.; Yao, X. Synthesis of water-soluble chitosan-coated nanoceria with excellent antioxidant properties. *RSC Advances* **2013**, *3*, 6833-6838.
- 7. Lord, M.S.; Tsoi, B.; Gunawan, C.; Teoh, W.Y.; Amal, R.; Whitelock, J.M. Antiangiogenic activity of heparin functionalised cerium oxide nanoparticles. *Biomaterials* **2013**, *34*, 8808-8818.
- 8. Karakoti, A.S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S.V.; Wozniak, K.; Self, W.T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. *Journal of the American Chemical Society* **2009**, *131*, 14144-14145.
- 9. Masui, T.; Hirai, H.; Imanaka, N.; Adachi, G.; Sakata, T.; Mori, H. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. *Journal of Materials Science Letters* **2002**, *21*, 489-491.
- 10. Kim, S.-J.; Chung, B.H. Antioxidant activity of levan coated cerium oxide nanoparticles. *Carbohydrate Polymers* **2016**, *150*, 400-407.
- 11. Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? *Environmental Science: Nano* **2014**, *1*, 390-405.
- 12. Hailstone, R.; DiFrancesco, A.; Leong, J.; Allston, T.; Reed, K. A study of lattice expansion in CeO₂ nanoparticles by transmission electron microscopy. *The Journal of Physical Chemistry C* **2009**, *113*, 15155-15159.
- 13. Rebellato, J.; Natile, M.M.; Glisenti, A. Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders. *Applied Catalysis A: General* **2008**, *339*, 108-120.
- 14. Chen, L.; Fleming, P.; Morris, V.; Holmes, J.D.; Morris, M.A. Size-related lattice parameter changes and surface defects in ceria nanocrystals. *The Journal of Physical Chemistry C* **2010**, *114*, 12909-12919.
- 15. Trovarelli, A.; Fornasiero, P. Catalysis by ceria and related materials. Second Edition, *World Scientific Publishing* **2013**, *12*.
- 16. Hailstone, R. K.; DiFrancesco, A. G.; Reed, K. J. Synthesis and characterization of CeO₂ nanoparticles. Microscopy and Microanalysis **2009**, *15*.
- 17. Deshpande, S.; Patil, S.; Kuchibhatla, S.V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. *Applied Physics Letters* **2005**, *87*, 133113.
- 18. Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. *Biomaterials* **2008**, *29*, 2705-2709.
- 19. Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. *Chemical Communications* **2010**, *46*, 2736-2738.

- 20. Macphail, R.C.; Grulke, E.A.; Yokel, R.A. Assessing nanoparticle risk poses prodigious challenges. *Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology* **2013**, *5*, 374-387.
- 21. Beie, H.-J.; Gnörich, A. Oxygen gas sensors based on CeO₂ thick and thin films. *Sensors and Actuators B: Chemical* **1991**, *4*, 393-399.
- 22. Jasinski, P.; Suzuki, T.; Anderson, H.U. Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical 2003, 95, 73-77.
- 23. Armini, S.; De Messemaeker, J.; Whelan, C.; Moinpour, M.; Maex, K. Composite polymer core-ceria shell abrasive particles during oxide cmp: A defectivity study. *Journal of the Electrochemical Society* **2008**, *155*, H653-H660.
- 24. Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D.W.; Baker, C.H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. *Nanomedicine: Nanotechnology, Biology and Medicine* **2009**, *5*, 225-231.
- 25. Zholobak, N.; Ivanov, V.; Shcherbakov, A.; Shaporev, A.; Polezhaeva, O.; Baranchikov, A.Y.; Spivak, N.Y.; Tretyakov, Y.D. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. *Journal of Photochemistry and Photobiology B: Biology* **2011**, *102*, 32-38.
- 26. Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: a review. *Journal* of Solid State Electrochemistry **2010**, *14*, 1125-1144.
- 27. Funatsuki, A.; Takaoka, M.; Shiota, K.; Kokubu, D.; Suzuki, Y. Forensic Identification of Automobile Window Glass Manufacturers Based on Cerium Chemical States. *Chemistry Letters* **2014**, *43*, 357-359.
- 28. Raja, I.S.; Duraipandi, N.; Kiran, M.S.; Fathima, N.N. An emulsion of pigmented nanoceria as a medicinal cosmetic. *RSC Advances* **2016**, *6*, 100916-100924.
- 29. Urushidani, T.; Ogino, S. Surface polishing of silicon carbide electronic device substrate using CeO₂. Google Patents: US5750434A, **1998**.
- 30. Estevez, A.Y.; Erlichman, J.S. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. *Nanomedicine* **2014**, *9*, 1437-1440.
- 31. Wason, M.S.; Zhao, J. Cerium oxide nanoparticles: potential applications for cancer and other diseases. *American Journal of Translational Research* **2013**, *5*, 126.
- 32. Shokrzadeh, M.; Jahani, M.; Vafaeipour, Z.; Shaki, F. Protective effect of nanoceria against renal mitochondrial damage in streptozocine-induced diabetic mice. *Journal of Mazandaran University of Medical Sciences* **2016**, *25*, 258-269.
- 33. Wang, K.; Mitra, R.N.; Zheng, M.; Han, Z. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment. *Journal of Biomedical Materials Research Part A* **2018**, *106*, 2795-2804.
- 34. Kim, C.K.; Kim, T.; Choi, I.Y.; Soh, M.; Kim, D.; Kim, Y.J.; Jang, H.; Yang, H.S.; Kim, J.Y.; Park, H.K. Ceria nanoparticles that can protect against ischemic stroke. *Angewandte Chemie International Edition* **2012**, *51*, 11039-11043.
- 35. Kundu, S.; Ciston, J.; Senanayake, S.D.; Arena, D.A.; Fujita, E.; Stacchiola, D.; Barrio, L.; Navarro, R.M.; Fierro, J.L.; Rodriguez, J.A. Exploring the structural and electronic properties of Pt/ceria-modified TiO₂ and its photocatalytic activity for water splitting under visible light. *The Journal of Physical Chemistry C* **2012**, *116*, 14062-14070.
- 36. Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. *Advanced Drug Delivery Reviews* **2003**, *55*, 329-347.
- 37. Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. *ACS Nano* **2011**, *5*, 8488-8505.
- 38. Karakoti, A.; Monteiro-Riviere, N.; Aggarwal, R.; Davis, J.; Narayan, R.J.; Self, W.; McGinnis, J.; Seal, S. Nanoceria as antioxidant: synthesis and biomedical applications. *JOM* **2008**, *60*, 33-37.

- 39. Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. *ACS Nano* **2010**, *4*, 5321-5331.
- 40. Park, E.-J.; Choi, J.; Park, Y.-K.; Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. *Toxicology* **2008**, *245*, 90-100.
- 41. Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.-W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. *Surface Science* **2004**, *563*, 74-82.
- 42. Celardo, I.; De Nicola, M.; Mandoli, C.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Ce³⁺ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. *ACS Nano* **2011**, *5*, 4537-4549.
- 43. Taguchi, M.; Takami, S.; Naka, T.; Adschiri, T. Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO₂ nanocrystals produced in supercritical water: tailor-made water-soluble CeO₂ nanocrystals. *Crystal Growth and Design* **2009**, *9*, 5297-5303.
- 44. Chen, H.-I.; Chang, H.-Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. *Ceramics International* **2005**, *31*, 795-802.
- 45. Mädler, L.; Stark, W.J.; Pratsinis, S.E. Flame-made ceria nanoparticles. *Journal of Materials Research* **2002**, *17*, 1356-1362.
- 46. Hirano, M.; Kato, E. Hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders. *Journal of the American Ceramic Society* **1999**, 82, 786-788.
- 47. Sudarsanam, P.; Katta, L.; Thrimurthulu, G.; Reddy, B.M. Vapor phase synthesis of cyclopentanone over nanostructured ceria-zirconia solid solution catalysts. *Journal of Industrial and Engineering Chemistry* **2013**, *19*, 1517-1524.
- 48. Sun, C.; Chen, L. Controllable synthesis of shuttle-shaped ceria and its catalytic properties for CO oxidation. *European Journal of Inorganic Chemistry* **2009**, *26*, 3883-3887.
- 49. De Messemaeker, J.; Put, S; Van-Genechten, D.; Van Rompaey, Y.; Nelis, D.; Strauven, Y; Van Tendeloo, G. US 12/866,485 **2011**.
- 50. Kirk, N.; Wood, J. The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing. *Journal of Materials Science* **1995**, *30*, 2171-2175.
- 51. Xia, B.; Lenggoro, I.; Okuyama, K. Synthesis of CeO₂ nanoparticles by salt-assisted ultrasonic aerosol decomposition. *Journal of Materials Chemistry* **2001**, *11*, 2925-2927.
- 52. He, Y.; Yang, B.; Cheng, G. Controlled synthesis of CeO₂ nanoparticles from the coupling route of homogenous precipitation with microemulsion. *Materials Letters* **2003**, *57*, 1880-1884.
- 53. Chen, P.L.; Chen, I.W. Reactive cerium(IV) oxide powders by the homogeneous precipitation method. *Journal of the American Ceramic Society* **1993**, *76*, 1577-1583.
- 54. Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. *Chemical Society Reviews* **2013**, *42*, 2555-2567.
- 55. Matović, B.; Dukić, J.; Babić, B.; Bučevac, D.; Dohčević-Mitrović, Z.; Radović, M.; Bošković, S. Synthesis, calcination and characterization of nanosized ceria powders by self-propagating room temperature method. *Ceramics International* **2013**, *39*, 5007-5012.
- 56. Wang, H.; Zhu, J.-J.; Zhu, J.-M.; Liao, X.-H.; Xu, S.; Ding, T.; Chen, H.-Y. Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. *Physical Chemistry Chemical Physics* **2002**, *4*, 3794-3799.
- 57. Guillou, N.; Nistor, L.; Fuess, H.; Hahn, H. Microstructural studies of nanocrystalline CeO₂ produced by gas condensation. *Nanostructured Materials* **1997**, *8*, 545-557.
- 58. Hirano, M.; Inagaki, M. Preparation of monodispersed cerium(IV) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth. *Journal of Materials Chemistry* **2000**, *10*, 473-477.

- 59. Zhou, Y; Phillips, R.J.; Switzer, J.A. Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders. *Journal of the American Ceramic Society* **1995**, 78, 981-985.
- 60. Zhang, Y.-W.; Si, R.; Liao, C.-S.; Yan, C.-H.; Xiao, C.-X.; Kou, Y. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals. *The Journal of Physical Chemistry B* **2003**, *107*, 10159-10167.
- 61. Lee, S.S.; Zhu, H.; Contreras, E.Q.; Prakash, A.; Puppala, H.L.; Colvin, V.L. High temperature decomposition of cerium precursors to form ceria nanocrystal libraries forbiological applications. *Chemistry of Materials* **2012**, *24*, 424-432.
- 62. Zhou, F.; Ni, X.; Zhang, Y.; Zheng, H. Size-controlled synthesis and electrochemical characterization of spherical CeO₂ crystallites. *Journal of Colloid and Interface Science* **2007**, *307*, 135-138.
- 63. Karakoti, A.S.; Munusamy, P.; Hostetler, K.; Kodali, V.; Kuchibhatla, S.; Orr, G.; Pounds, J.G.; Teeguarden, J.G.; Thrall, B.D.; Baer, D.R. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. *Surface and Interface Analysis* **2012**, *44*, 882-889.
- 64. Yang, Z.-Y.; Luo, S.-L.; Li, H.; Dong, S.-W.; He, J.; Jiang, H.; Li, R.; Yang, X.-C. Alendronate as a robust anchor for ceria nanoparticle surface coating: facile binding and improved biological properties. *RSC Advances* **2014**, *4*, 59965-59969.
- 65. Yazici, H.; Alpaslan, E.; Webster, T.J. The role of dextran coatings on the cytotoxicity properties of ceria nanoparticles toward bone cancer cells. *JOM* **2015**, *67*, 804-810.
- 66. Collin, B.; Oostveen, E.; Tsyusko, O.V.; Unrine, J.M. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in *Caenorhabditis elegans*. *Environmental Science and Technology* **2014**, *48*, 1280-1289.
- 67. Shah, V.; Shah, S.; Shah, H.; Rispoli, F.J.; McDonnell, K.T.; Workeneh, S.; Karakoti, A.; Kumar, A.; Seal, S. Antibacterial activity of polymer coated cerium oxide nanoparticles. *PLoS One* **2012**, *7*, e47827.
- 68. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. *Angewandte Chemie* **2009**, *121*, 2344-2348.
- 69. Ting, S.S.; Whitelock, J.M.; Tomic, R.; Gunawan, C.; Teoh, W.Y.; Amal, R.; Lord, M.S. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes. *Biomaterials* **2013**, *34*, 4377-4386.
- 70. Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. *Colloids and Surfaces B: Biointerfaces* **2007**, *59*, 24-34.
- 71. Qi, L.; Fresnais, J.; Muller, P.; Theodoly, O.; Berret, J.-F.; Chapel, J.-P. Interfacial activity of phosphonated-PEG functionalized cerium oxide nanoparticles. *Langmuir* **2012**, *28*, 11448-11456.
- 72. Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem cell aligned growth induced by CeO₂ nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. *Advanced Functional Materials* **2010**, 20, 1617-1624.
- 73. Siriwardane I.W. Adsorption of citric acid on cerium oxide nanoparticles (nanoceria): effects of pH, surface charge and aggregation. *University of Iowa*, **2012**.
- 74. Barton, L.E.; Auffan, M.; Bertrand, M.; Barakat, M.; Santaella, C.; Masion, A.; Borschneck, D.; Olivi, L.; Roche, N.; Wiesner, M.R. Transformation of pristine and citrate-functionalized CeO₂ nanoparticles in a laboratory-scale activated sludge reactor. *Environmental Science and Technology* **2014**, *48*, 7289-7296.
- 75. Nabavi, M.; Spalla, O.; Cabane, B. Surface chemistry of nanometric ceria particles in aqueous dispersions. *Journal of Colloid and Interface Science* **1993**, *160*, 459-471.

- 76. Faure, B.; Salazar-Alvarez, G.; Ahniyaz, A.; Villaluenga, I.; Berriozabal, G.; De Miguel, Y.R.; Bergström, L. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. *Science and Technology of Advanced Materials* **2013**, *14*, 023001.
- 77. Israëli, Y.; Morel, J.-P.; Morel-Desrosiers, N. Complexation of trivalent lanthanide cations by sugars and alditols in water: chromatography-calorimetry comparison. *Carbohydrate Research* **1994**, *1*, 25-33.
- 78. Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y. Facile "green" synthesis, characterization, and catalytic function of β -D-glucose-stabilized Au nanocrystals. *Chemistry A European Journal* **2006**, *12*, 2131-2138.
- 79. Engelbrekt, C.; Sørensen, K.H.; Zhang, J.; Welinder, A.C.; Jensen, P.S.; Ulstrup, J. Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry. *Journal of Materials Chemistry* **2009**, *19*, 7839-7847.
- 80. Gromnicova, R.; Davies, H.A.; Sreekanthreddy, P.; Romero, I.A.; Lund, T.; Roitt, I.M.; Phillips, J.B.; Male, D.K. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes *in vitro*. *PLoS One* **2013**, *8*, e81043.
- 81. Sun, X.; Zheng, C.; Zhang, F.; Yang, Y.; Wu, G.; Yu, A.; Guan, N. Size-controlled synthesis of magnetite (Fe₃O₄) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. *The Journal of Physical Chemistry C* **2009**, *113*, 16002-16008.
- 82. Samal, R.K.; Satrusallya, S.; Sahoo, P.; Ray, S.; Nayak, S. Reaction of water soluble polymers with oxidising agents: reaction of dextran with tetravalent cerium. *Colloid and Polymer Science* **1984**, *262*, 939-947.
- 83. Kim, S.-J.; Bae, P.K.; Chung, B.H. Self-assembled levan nanoparticles for targeted breast cancer imaging. *Chemical Communications* **2015**, *51*, 107-110.
- 84. Kekez, B.; Gojgic-Cvijovic, G.; Jakovljevic, D.; Kojic, J.S.; Markovic, M.; Beskoski, V.; Vrvic, M. High levan production by *Bacillus licheniformis* NS032 using ammonium chloride as the sole nitrogen source. *Applied Biochemistry and Biotechnology* **2015**, *175*, 3068-3083.
- 85. Han, Y.W. Microbial levan. In: Advances in applied microbiology, *Elsevier* **1990**, *35*, 171-194.
- 86. Öner, E.T.; Hernández, L.; Combie, J. Review of levan polysaccharide: from a century of past experiences to future prospects. *Biotechnology Advances* **2016**, *34*, 827-844.
- 87. Yamamoto, Y.; Takahashi, Y.; Kawano, M.; Iizuka, M.; Matsumoto, T.; Saeki, S.; Yamaguchi, H. *In vitro* digestibility and fermentability of levan and its hypocholesterolemic effects in rats. *The Journal of Nutritional Biochemistry* **1999**, *10*, 13-18.
- 88. Vereyken, I.J.; Van Kuik, J.A.; Evers, T.H.; Rijken, P.J.; de Kruijff, B. Structural requirements of the fructan-lipid interaction. *Biophysical Journal* **2003**, *84*, 3147-3154.
- 89. Dogsa, I.; Brloznik, M.; Stopar, D.; Mandic-Mulec, I. Exopolymer diversity and the role of levan in *Bacillus subtilis* biofilms. *PloS One* **2013**, *8*, e62044.
- 90. Velázquez-Hernández, M.L.; Baizabal-Aguirre, V.M.; Cruz-Vázquez, F.; Trejo-Contreras, M.J.; Fuentes-Ramírez, L.E.; Bravo-Patino, A.; Cajero-Juárez, M.; Chávez-Moctezuma, M.P.; Valdez-Alarcón, J.J. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation. *Archives of Microbiology* **2011**, *193*, 137-149.
- 91. Corrigan, A.J.; Robyt, J.F. Nature of the fructan of *Streptococcus mutans* OMZ 176. *Infection and Immunity* **1979**, *26*, 387-389.
- 92. Poli, A.; Kazak, H.; Gürleyendağ, B.; Tommonaro, G.; Pieretti, G.; Öner, E.T.; Nicolaus, B. High level synthesis of levan by a novel *Halomonas* species growing on defined media. *Carbohydrate Polymers* 2009, 78, 651-657.

- 93. Jakob, F.; Pfaff, A.; Novoa-Carballal, R.; Rübsam, H.; Becker, T.; Vogel, R.F. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. *Carbohydrate Polymers* **2013**, *92*, 1234-1242.
- 94. Yoo, S.-H.; Yoon, E.J.; Cha, J.; Lee, H.G. Antitumor activity of levan polysaccharides from selected microorganisms. *International Journal of Biological Macromolecules* **2004**, *34*, 37-41.
- 95. Küçükaşik, F.; Kazak, H.; Güney, D.; Finore, I.; Poli, A.; Yenigün, O.; Nicolaus, B.; Öner, E.T. Molasses as fermentation substrate for levan production by *Halomonas* sp. *Applied Microbiology and Biotechnology* **2011**, *89*, 1729-1740.
- 96. Rekha, M.; Sharma, C.P. Pullulan as a promising biomaterial for biomedical applications: a perspective. *Trends in Biomaterials and Artificial Organs* **2007**, *20*, 116-121.
- 97. Jakovljevic, D.; Vrvic, M.; Radulovic, M.; Hranisavljevic-Jakovljevic, M. Fine structural analysis of the fungal polysaccharide pullulan elaborated by *Aureobasidium pullulans*, CHL-1 strain. *Journal of Serbian Chemical Society* **2001**, *66*, 377-384.
- 98. Leathers, T.D. Biotechnological production and applications of pullulan. *Applied Microbiology and Biotechnology* **2003**, *62*, 468-473.
- 99. Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: microbial sources, production and applications. *Carbohydrate Polymers* **2008**, *73*, 515-531.
- 100. Hijiya, H.; Shiosaka, M. Adhesives and pastes. Google Patents: US3873333A, 1975.
- 101. Nakashio, S.; Tsuji, K.; Toyota, N.; Fujita, F. Novel cosmetics containing pullulan. Google Patents: US3972997A, **1976**.
- 102. Hirohara, H.; Nabeshima, S.; Fujimoto, M.; Nagase, T. Enzyme immobilization with pullulan gel. Google Patents: US4247642A, **1981**.
- 103. Mitsuhashi, M.; Koyama, S. Process for the production of virus vaccine. Google Patents: US4659569A, **1987**.
- 104. Delben, F.; Forabosco, A.; Guerrini, M.; Liut, G.; Torri, G. Pullulans produced by strains of *Cryphonectria parasitica*-II. Nuclear magnetic resonance evidence. *Carbohydrate Polymers* **2006**, *63*, 545-554.
- 105. Chi, Z.; Zhao, S. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. *Enzyme and Microbial Technology* **2003**, *33*, 206-211.
- 106. Waksman, N.; de Lederkremer, R.M.; Cerezo, A.S. The structure of an α-D-glucan from *Cyttaria harioti* fischer. *Carbohydrate Research* **1977**, *59*, 505-515.
- 107. Fraser, C.; Jennings, H. A glucan from *Tremella mesenterica* NRRL-Y6158. *Canadian Journal of Chemistry* **1971**, *49*, 1804-1807.
- 108. Bulmer, M.A.; Catley, B.J.; Kelly, P.J. The effect of ammonium ions and pH on the elaboration of the fungal extracellular polysaccharide, pullulan, by *Aureobasidium pullulans*. *Applied Microbiology and Biotechnology* **1987**, *25*, 362-365.
- 109. Grulke, E.; Reed, K.; Matthew, B.; Huang, X.; Cormack, A.; Sudipta, S. Nanoceria: factors affecting its pro-and anti-oxidant properties. *Environmental Science: Nano* **2014**, *1*, 429.
- 110. Future Markets (2012), The global market for nanomaterials 2002-2016: production volumes, revenues and end use markets. Future Markets Inc., http://www.futuremarketsinc.com/index.php?option=comcontent&view=article&id=176 &Itemid=73
- 111. Emsley, J. Nature's building blocks: an AZ guide to the elements. *Oxford University Press*, **2011**.
- 112. Collin, B.; Auffan, M.; Johnson, A.C.; Kaur, I.; Keller, A.A.; Lazareva, A.; Lead, J.R.; Ma, X.; Merrifield, R.C.; Svendsen, C. Environmental release, fate and ecotoxicological

effects of manufactured ceria nanomaterials. *Environmental Science: Nano* **2014**, *1*, 533-548.

- 113. Dahle, J.; Arai, Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. *International Journal of Environmental Research and Public Health* **2015**, *12*, 1253-1278.
- 114. Li, Z.; Sahle-Demessie, E.; Hassan, A.A.; Sorial, G.A. Transport and deposition of CeO₂ nanoparticles in water-saturated porous media. *Water Research* **2011**, *45*, 4409-4418.
- 115. Buettner, K.M.; Rinciog, C.I.; Mylon, S.E. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2010**, *366*, 74-79.
- 116. Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Zhang, J.; Guo, Z.; Tai, R.; Zhao, Y.; Chai, Z. Biotransformation of ceria nanoparticles in cucumber plants. *ACS Nano* **2012**, *6*, 9943-9950.
- 117. Quik, J.T.; Lynch, I.; Van Hoecke, K.; Miermans, C.J.; De Schamphelaere, K.A.; Janssen, C.R.; Dawson, K.A.; Stuart, M.A.C.; Van De Meent, D. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. *Chemosphere* **2010**, *81*, 711-715.
- 118. Van Hoecke, K.; De Schamphelaere, K.A.; Van der Meeren, P.; Smagghe, G.; Janssen, C.R. Aggregation and ecotoxicity of CeO₂ nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. *Environmental Pollution* **2011**, *159*, 970-976.
- 119. Andreescu, D.; Bulbul, G.; Özel, R.E.; Hayat, A.; Sardesai, N.; Andreescu, S. Applications and implications of nanoceria reactivity: measurement tools and environmental impact. *Environmental Science: Nano* **2014**, *1*, 445-458.
- 120. Zhao, L.; Peralta-Videa, J.R.; Varela-Ramirez, A.; Castillo-Michel, H.; Li, C.; Zhang, J.; Aguilera, R.J.; Keller, A.A.; Gardea-Torresdey, J.L. Effect of surface coating and organic matter on the uptake of CeO₂ NPs by corn plants grown in soil: Insight into the uptake mechanism. *Journal of Hazardous Materials* **2012**, *225*, 131-138.
- 121. Schwabe, F.; Schulin, R.; Limbach, L.K.; Stark, W.; Bürge, D.; Nowack, B. Influence of two types of organic matter on interaction of CeO₂ nanoparticles with plants in hydroponic culture. *Chemosphere* **2013**, *91*, 512-520.
- 122. Layet, C.; Auffan, M.; Santaella, C.; Chevassus-Rosset, C.; Montes, M.; Ortet, P.; Barakat, M.; Collin, B.; Legros, S.; Bravin, M.N. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. *Environmental Science and Technology* **2017**, *51*, 9756-9764.
- 123. Gomez-Garay, A.; Pintos, B.; Manzanera, J.A.; Lobo, C.; Villalobos, N.; Martín, L. Uptake of CeO₂ nanoparticles and its effect on growth of *Medicago arborea in vitro* plantlets. *Biological Trace Element Research* **2014**, *161*, 143-150.
- 124. Andersen, C.P.; King, G.; Plocher, M.; Storm, M.; Pokhrel, L.R.; Johnson, M.G.; Rygiewicz, P.T. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. *Environmental Toxicology and Chemistry* **2016**, *35*, 2223-2229.
- 125. López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. XAS corroboration of the uptake and storage of CeO₂ nanoparticles and assessment of their differential toxicity in four edible plant species. *Journal of Agricultural and Food Chemistry* **2010**, *58*, 3689.
- 126. Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. *Chemosphere* **2010**, *78*, 273-279.
- 127. López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.Á.; Castillo-Michel, H.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Evidence of the differential

biotransformation and genotoxicity of ZnO and CeO₂ nanoparticles on soybean (*Glycine max*) plants. *Environmental Science and Technology* **2010**, *44*, 7315.

- 128. Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. *Plant Signaling and Behavior* **2011**, *6*, 1720-1731.
- 129. Kubalt, K. The role of phenolic compounds in plant resistance. *Biotechnology and Food Sciences* **2016**, *80*, 97-100.
- 130. Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. *Food Chemistry* **2006**, *97*, 654-660.
- 131. Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? *Free Radical Biology and Medicine* **2004**, *36*, 838-849.
- 132. Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. *International Journal of Biological Sciences* **2015**, *11*, 982.
- 133. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. *Plant Physiology and Biochemistry* **2010**, *48*, 909-930.
- 134. Rico, C.M.; Hong, J.; Morales, M.I.; Zhao, L.; Barrios, A.C.; Zhang, J.-Y.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and *in vivo* fluorescence imaging. *Environmental Science and Technology* **2013**, *47*, 5635-5642.
- 135. Rico, C.M.; Morales, M.I.; Barrios, A.C.; McCreary, R.; Hong, J.; Lee, W.-Y.; Nunez, J.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of cerium oxide nanoparticles on the quality of rice (*Oryza sativa* L.) grains. *Journal of Agricultural and Food Chemistry* 2013, 61, 11278-11285.
- 136. Corral-Diaz, B.; Peralta-Videa, J.R.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Morales, M.I.; Osuna-Avila, P.; Niu, G.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in *Raphanus sativus* (L). *Plant Physiology and Biochemistry* **2014**, *84*, 277-285.
- 137. Zhao, L.; Peralta-Videa, J.R.; Rico, C.M.; Hernandez-Viezcas, J.A.; Sun, Y.; Niu, G.; Servin, A.; Nunez, J.E.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. CeO₂ and ZnO nanoparticles change the nutritional qualities of cucumber (*Cucumis sativus*). *Journal of Agricultural and Food Chemistry* **2014**, *62*, 2752-2759.
- 138. Pelletier, D.A.; Suresh, A.K.; Holton, G.A.; McKeown, C.K.; Wang, W.; Gu, B.; Mortensen, N.P.; Allison, D.P.; Joy, D.C.; Allison, M.R. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. *Applied Environmental Microbiology* **2010**, *76*, 7981-7989.
- 139. Alam, B.; Philippe, A.; Rosenfeldt, R.R.; Seitz, F.; Dey, S.; Bundschuh, M.; Schaumann, G.E.; Brenner, S.A. Synthesis, characterization, and ecotoxicity of CeO₂ nanoparticles with differing properties. *Journal of Nanoparticle Research* **2016**, *18*, 303.
- 140. Hoecke, K.V.; Quik, J.T.; Mankiewicz-Boczek, J.; De Schamphelaere, K.A.C.; Elsaesser, A.; der Meeren, P.V.; Barnes, C.; McKerr, G.; Howard, C.V.; De Meent, D.V. Fate and effects of CeO₂ nanoparticles in aquatic ecotoxicity tests. *Environmental Science and Technology* 2009, 43, 4537-4546.
- 141. García, A.; Espinosa, R.; Delgado, L.; Casals, E.; González, E.; Puntes, V.; Barata, C.; Font, X.; Sánchez, A. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. *Desalination* **2011**, *269*, 136-141.
- 142. Lee, S.-W.; Kim, S.-M.; Choi, J. Genotoxicity and ecotoxicity assays using the freshwater crustacean *Daphnia magna* and the larva of the aquatic midge *Chironomus riparius* to screen the ecological risks of nanoparticle exposure. *Environmental Toxicology and Pharmacology* **2009**, 28, 86-91.

- 143. Gaiser, B.K.; Fernandes, T.F.; Jepson, M.; Lead, J.R.; Tyler, C.R.; Stone, V. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. *Environmental Health* **2009**, *8*, S2.
- 144. Gaiser, B.K.; Biswas, A.; Rosenkranz, P.; Jepson, M.A.; Lead, J.R.; Stone, V.; Tyler, C.R.; Fernandes, T.F. Effects of silver and cerium dioxide micro-and nano-sized particles on *Daphnia magna*. *Journal of Environmental Monitoring* **2011**, *13*, 1227-1235.
- 145. Jemec, A.; Djinović, P.; Tišler, T.; Pintar, A. Effects of four CeO₂ nanocrystalline catalysts on early-life stages of zebrafish *Danio rerio* and crustacean *Daphnia magna*. *Journal of hazardous materials* **2012**, *219*, 213-220.
- 146. Lin, S.; Wang, X.; Ji, Z.; Chang, C.H.; Dong, Y.; Meng, H.; Liao, Y.-P.; Wang, M.; Song, T.-B.; Kohan, S. Aspect ratio plays a role in the hazard potential of CeO₂ nanoparticles in mouse lung and zebrafish gastrointestinal tract. *ACS Nano* **2014**, *8*, 4450-4464.
- 147. Özel, R.E.; Hayat, A.; Wallace, K.N.; Andreescu, S. Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. *RSC Advances* **2013**, *3*, 15298-15309.
- 148. Wehmas, L.C.; Anders, C.; Chess, J.; Punnoose, A.; Pereira, C.B.; Greenwood, J.A.; Tanguay, R.L. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. *Toxicology Reports* **2015**, *2*, 702-715.
- 149. Jemec, A.; Djinović, P.; Osojnik Črnivec, I.G.; Pintar, A. The hazard assessment of nanostructured CeO₂-based mixed oxides on the zebrafish *Danio rerio* under environmentally relevant UV-A exposure. *Science of the Total Environment* **2015**, *506*, 272-278.
- 150. Arnold, M.; Badireddy, A.; Wiesner, M.; Di Giulio, R.; Meyer, J. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in *Caenorhabditis* elegans. Archives of Environmental Contamination and Toxicology **2013**, 65, 224-233.
- 151. Shekunova, T.; Ivanova, O.; Baranchikov, A.; Ivanov, V.; Shcherbakov, A. Synthesis of stable aqueous ceria sols and study of their toxicity. In: Proceedings of the International conference nanomaterials: Applications and properties. 02NNBM15-02NNBM15.
- 152. Recillas, S.; Colón, J.; Casals, E.; González, E.; Puntes, V.; Sánchez, A.; Font, X. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. *Journal of Hazardous Materials* **2010**, *184*, 425-431.
- 153. Liu, C.; Lu, J.; Lu, L.; Liu, Y.; Wang, F.; Xiao, M. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by *Bacillus licheniformis* 8-37-0-1. *Bioresource Technology* **2010**, *101*, 5528-5533.
- 154. Bošković, S.; Djurović, D.; Matović, B.; Čančarević, M.; Dohčević-Mitrović, Z.; Popović, Z.V.; Zinkevich, M.; Aldinger, F. Reaction of Ce1-xRexO2-δ nanopowders synthesis. In: Proceedings of Materials science forum. 2006, 518, 95-100.
- 155. Radulović, M.Đ.; Cvetković, O.G.; Nikolić, S.D.; Đorđević, D.S.; Jakovljević, D.M.; Vrvić, M.M. Simultaneous production of pullulan and biosorption of metals by *Aureobasidium pullulans* strain CH-1 on peat hydrolysate. *Bioresource Technology* 2008, 99, 6673-6677.
- 156. Fung, B.; Khitrin, A.; Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. *Journal of Magnetic Resonance* **2000**, *142*, 97-101.
- 157. Schopfer, P.; Plachy, C. Control of seed germination by abscisic acid: II. Effect on embryo water uptake in *Brassica napus* L. *Plant Physiology* **1984**, *76*, 155-160.
- 158. Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiologia Plantarum* **1962**, *15*, 473-497.
- 159. Knop, W. Quantitative untersuchungen uber die ernahrungsprozesse der pflanzen. Landwirtsch Vers Stn 1865, 7, 93-107.
- 160. Hong, J.; Peralta-Videa, J.R.; Rico, C.; Sahi, S.; Viveros, M.N.; Bartonjo, J.; Zhao, L.; Gardea-Torresdey, J.L. Evidence of translocation and physiological impacts of foliar
applied CeO₂ nanoparticles on cucumber (*Cucumis sativus*) plants. *Environmental Science and Technology* **2014**, *48*, 4376-4385.

- 161. Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. *American journal of Enology and Viticulture* **1965**, *16*, 144-158.
- 162. Cano, A.; Hernández-Ruíz, J.; García-Cánovas, F.; Acosta, M.; Arnao, M.B. An end-point method for estimation of the total antioxidant activity in plant material. *Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques* **1998**, *9*, 196-202.
- 163. Klüttgen, B.; Dülmer, U.; Engels, M.; Ratte, H. ADaM, an artificial freshwater for the culture of zooplankton. *Water Research* **1994**, *28*, 743-746.
- 164. Lončarević, B.; Lješević, M.; Marković, M.; Anđelković, I.; Gojgić-Cvijović, G.; Jakovljević, D.; Beškoski, V. Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on *Daphnia magna* and *Vibrio fischeri*. *Ecotoxicology and Environmental Safety* **2019**, *181*, 187-193.
- 165. Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. *Developmental Dynamics* **1995**, *203*, 253-310.
- 166. Zhang, G.; Guo, Y.; Lu, L.; Zhang, Z.; Wang, L.; Zhou, L.; Shao, J. Synthesis and characterization of CeO₂ thin film with well-ordered step edges. *Materials Letters* **2014**, *125*, 162-166.
- 167. Milenković, I.; Radotić, K.; Matović, B.; Prekajski, M.D.; Živković, L.; Jakovljević, D.; Gojgić-Cvijović, G.; Beškoski, V.P. Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating. *Journal of the Serbian Chemical Society* **2018**, *83*, 745-757.
- 168. Hu, C.; Zhang, Z.; Liu, H.; Gao, P.; Wang, Z.L. Direct synthesis and structure characterization of ultrafine CeO₂ nanoparticles. *Nanotechnology* **2006**, *17*, 5983.
- Milenković, I.; Mitrović, A.; Algarra, M.; Lázaro-Martínez, J.M.; Rodríguez-Castellón, E.; Maksimović, V.; Spasić, S.Z.; Beškoski, V.P.; Radotić, K. Interaction of Carbohydrate Coated Cerium-Oxide Nanoparticles with Wheat and Pea: Stress Induction Potential and Effect on Development. *Plants* 2019, *8*, 478.
- 170. Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. *Carbohydrate Polymers* **2000**, *43*, 195-203.
- 171. Mathlouthi, M.; Koenig, J.L. Vibrational spectra of carbohydrates. In: Advances in carbohydrate chemistry and biochemistry, *Elsevier* **1987**, *44*, 7-89.
- 172. Xu, J.; Li, G.; Li, L. CeO₂ nanocrystals: seed-mediated synthesis and size control. *Materials Research Bulletin* **2008**, *43*, 990-995.
- 173. Kumar, E.R.; Kumar, S.; Kojima, T.; Jayaprakash, R. Study of magnetic behavior of Mn1-xNixFe2O4 nanoparticles. *Physics Procedia* **2013**, *49*, 27-35.
- 174. Chelliah, M.; Rayappan, J.B.B.; Krishnan, U.M. Synthesis and characterization of cerium oxide nanoparticles by hydroxide mediated approach. *Journal of Applied Sciences* **2012**, *12*, 1734-1737.
- 175. Zhang, J.; Ju, X.; Wu, Z.; Liu, T.; Hu, T.; Xie, Y.; Zhang, Z. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. *Chemistry of Materials* **2001**, *13*, 4192-4197.
- 176. Phoka, S.; Laokul, P.; Swatsitang, E.; Promarak, V.; Seraphin, S.; Maensiri, S. Synthesis, structural and optical properties of CeO₂ nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. *Materials Chemistry and Physics* **2009**, *115*, 423-428.
- 177. Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.; Onishi, T. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.-Formation of carbonate species on dehydroxylated CeO₂, at room

temperature. *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases* **1989**, 85, 929-943.

- 178. Binet, C.; Daturi, M.; Lavalley, J.-C. IR study of polycrystalline ceria properties in oxidised and reduced states. *Catalysis Today* **1999**, *50*, 207-225.
- 179. Palard, M.; Balencie, J.; Maguer, A.; Hochepied, J.-F. Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles. *Materials Chemistry and Physics* **2010**, *120*, 79-88.
- 180. Shingel, K.I. Determination of structural peculiarities of dexran, pullulan and γ -irradiated pullulan by Fourier-transform IR spectroscopy. *Carbohydrate Research* **2002**, *337*, 1445-1451.
- 181. Ibrahim, M.; Alaam, M.; El-Haes, H.; Jalbout, A.F.; de Leon, A. Analysis of the structure and vibrational spectra of glucose and fructose. *Ecletica Quimica* **2006**, *31*, 15-21.
- 182. Moretti, E.; Storaro, L.; Talon, A.; Riello, P.; Molina, A.I.; Rodríguez-Castellón, E. 3-D flower like Ce-Zr-Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): Effect of catalyst composition. *Applied Catalysis B: Environmental* **2015**, *168*, 385-395.
- 183. López, J.M.; Gilbank, A.L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. *Applied Catalysis B: Environmental* 2015, 174, 403-412.
- 184. Chastain, J.; King, R.C.; Moulder, J. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical electronics division, Perkin-Elmer Corporation Eden Prairie, Minnesota, **1992**.
- 185. Lázaro-Martínez, J.M.; Lombardo Lupano, L.a.V.; Piehl, L.L.; Rodríguez-Castellón, E.; Campo Dall'Orto, V. New insights about the selectivity in the activation of hydrogen peroxide by cobalt or copper hydrogel heterogeneous catalysts in the generation of reactive oxygen species. *The Journal of Physical Chemistry C* **2016**, *120*, 29332-29347.
- 186. Lázaro-Martínez, J.M.; Monti, G.A.; Chattah, A.K. Insights into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. *Polymer* **2013**, *54*, 5214-5221.
- 187. Sun, Z.; Jin, L.; Zhang, S.; Shi, W.; Pu, M.; Wei, M.; Evans, D.G.; Duan, X. An optical sensor based on H-acid/layered double hydroxide composite film for the selective detection of mercury ion. *Analytica Chimica Acta* **2011**, *702*, 95-101.
- 188. Lombardo Lupano, L.V.; Lázaro Martínez, J.M.; Leonor Piehl, L.; de Celis, E.R.; Dall'Orto, V.C. Activation of H₂O₂ and superoxide production using a novel cobalt complex based on a polyampholyte. *Applied Catalysis A: General* **2013**, *467*, 342-354.
- 189. Fang, X.; Chen, R.; Xiao, L.; Chen, Q. Synthesis and characterization of Sm(III)hyperbranched poly (ester-amide) complex. *Polymer International* **2011**, *60*, 136-140.
- 190. Crespi, A.F.; Byrne, A.J.; Vega, D.; Chattah, A.K.; Monti, G.A.; Lázaro-Martínez, J.M. Generation and stability of the gem-diol forms in imidazole derivatives containing carbonyl groups. Solid-state NMR and single-crystal X-ray diffraction studies. *The Journal of Physical Chemistry A* **2018**, *122*, 601-609.
- 191. Zetasizer Nano Series, User Manual, Malvern Instruments Ltd., Doi: https://www.malvern.com/en/products/productrange/zetasizerrange/?gclid=EAIaIQobCh MI0I-t_NDI2QIVwR4bCh3BVQFIEAAYASAAEgKzWfD_BwE, **2005**.
- 192. Dynamic light scattering common terms defined, Doi: http://www.biophysics.bioc.cam.ac.uk/wpcontent/uploads/2011/02/DLS_Terms_defined_ Malvern.pdf
- 193. FAQ: Peak size or z-average size-which one to pick in DLS. Doi: http://www.materials-talks.com/blog/2014/07/10/faq-peak-size-or-z-average-size-which-one-to-pick-in-dls/
- 194. Bondarenko, O.M.; Ivask, A.; Kahru, A.; Vija, H.; Titma, T.; Visnapuu, M.; Joost, U.; Pudova, K.; Adamberg, S.; Visnapuu, T. Bacterial polysaccharide levan as stabilizing,

non-toxic and functional coating material for microelement-nanoparticles. *Carbohydrate Polymers* **2016**, *136*, 710-720.

- 195. Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. *Environmental science and technology* **2009**, *43*, 9473-9479.
- 196. Wild, E.; Jones, K.C. Novel method for the direct visualization of *in vivo* nanomaterials and chemical interactions in plants. *Environmental Science and Technology* **2009**, *43*, 5290-5294.
- 197. Vaculík, M.; Landberg, T.; Greger, M.; Luxová, M.; Stoláriková, M.; Lux, A. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. *Annals of Botany* **2012**, *110*, 433-443.
- 198. Barrios, A.C.; Medina-Velo, I.A.; Zuverza-Mena, N.; Dominguez, O.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. *Plant Physiology and Biochemistry* 2017, *110*, 100-107.
- 199. Trujillo-Reyes, J.; Vilchis-Nestor, A.; Majumdar, S.; Peralta-Videa, J.; Gardea-Torresdey, J. Citric acid modifies surface properties of commercial CeO₂ nanoparticles reducing their toxicity and cerium uptake in radish (*Raphanus sativus*) seedlings. *Journal* of Hazardous Materials **2013**, 263, 677-684.
- 200. Gomez-Garay, A.; Pintos, B.; Manzanera, J.A.; Lobo, C.; Villalobos, N.; Martín, L. Uptake of CeO₂ nanoparticles and its effect on growth of *Medicago arborea in vitro* plantlets. *Biological Trace Element Research* **2014**, *161*, 143-150.
- 201. Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annual Review of Ecology and Systematics 1987, 18, 209-235.
- 202. Xue, Y.; Luan, Q.; Yang, D.; Yao, X.; Zhou, K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. *The Journal of Physical Chemistry C* **2011**, *115*, 4433-4438.
- 203. Wang, Q.; Ma, X.; Zhang, W.; Pei, H.; Chen, Y. The impact of cerium oxide nanoparticles on tomato (*Solanum lycopersicum* L.) and its implications for food safety. *Metallomics* **2012**, *4*, 1105-1112.
- 204. Zhao, L.; Peralta-Videa, J.R.; Rico, C.M.; Hernandez-Viezcas, J.A.; Sun, Y.; Niu, G.; Servin, A.; Nunez, J.E.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. CeO₂ and ZnO nanoparticles change the nutritional qualities of cucumber (*Cucumis sativus*). Journal of Agricultural Food Chemistry **2014**, *62*, 2752-2759.
- 205. Julian, E.; Johnson, G.; Johnson, D.; Donnelly, B.J. The glycoflavonoid pigments of wheat, *Triticum aestivum*, leaves. *Phytochemistry* **1971**, *10*, 3185-3193.
- 206. Olenichenko, N.; Ossipov, V.; Zagoskina, N. Effect of cold hardening on the phenolic complex of winter wheat leaves. *Russian Journal of Plant Physiology* **2006**, *53*, 495-500.
- 207. Giannakoula, A.E.; Ilias, I.F.; Dragišić Maksimović, J.J.; Maksimović, V.M.; Živanović, B.D. The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. *Journal of Food Composition and Analysis* **2012**, *28*, 46-53.
- 208. Dragišić Maksimović, J.; Maksimović, V.; Živanović, B.; Hadži-Tašković Šukalović, V.; Vuletić, M. Peroxidase activity and phenolic compounds content in maize root and leaf apoplast, and their association with growth. *Plant Science* **2008**, *175*, 656-662.
- 209. Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. *Journal of Chromatography A* **2011**, *1218*, 7670-7681.
- Schwabe, F.; Tanner, S.; Schulin, R.; Rotzetter, A.; Stark, W.; Von Quadt, A.; Nowack, B. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO₂-nanoparticles by three crop plants. *Metallomics* 2015, 7, 466-477.

- 211. Wu, H.; Haig, T.; Pratley, J.; Lemerle, D.; An, M. Simultaneous determination of phenolic acids and 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one in wheat (*Triticum aestivum* L.) by gas chromatography-tandem mass spectrometry. *Journal of Chromatography A* 1999, 864, 315-321.
- 212. Wu, H.; Haig, T.; Pratley, J.; Lemerle, D.; An, M. Distribution and exudation of allelochemicals in wheat *Triticum aestivum*. *Journal of Chemical Ecology* **2000**, *26*, 2141-2154.
- 213. Wu, H.; Haig, T.; Pratley, J.; Lemerle, D.; An, M. Allelochemicals in wheat (*Triticum aestivum* L.): production and exudation of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one. *Journal of Chemical Ecology* **2001**, *27*, 1691-1700.
- 214. El-Bashiti, T.; Hamamcı, H.; Öktem, H.A.; Yücel, M. Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. *Plant Science* **2005**, *169*, 47-54.
- 215. Wightman, F.; Lighty, D.L. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. *Physiologia Plantarum* **1982**, *55*, 17-24.
- 216. Proebsting, W.M.; Hedden, P.; Lewis, M.J.; Croker, S.J.; Proebsting, L.N. Gibberellin concentration and transport in genetic lines of pea: effects of grafting. *Plant Physiology* **1992**, *100*, 1354-1360.
- 217. Schneider, E.A.; Kazakoff, C.W.; Wightman, F. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs. *Planta* **1985**, *165*, 232-241.
- 218. Railton, I.; Reid, D.; Gaskin, P.; MacMillan, J. Characterization of abscisic acid in chloroplasts of *Pisum sativum* L. cv. Alaska by combined gas-chromatography-mass spectrometry. *Planta* **1974**, *117*, 179-182.
- 219. Nordström, A.-C.; Jacobs, F.A.; Eliasson, L. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. *Plant Physiology* **1991**, *96*, 856-861.
- 220. Pani, O.; Górecki, T. Comprehensive two-dimensional gas chromatography (GC×GC) in environmental analysis and monitoring. *Analytical and Bioanalytical Chemistry* **2006**, *386*, 1013-1023.
- 221. Adahchour, M.; Beens, J.; Vreuls, R.; Brinkman, U.T. Recent developments in comprehensive two-dimensional gas chromatography (GC×GC): I. Introduction and instrumental set-up. *TrAC Trends in Analytical Chemistry* **2006**, *25*, 438-454.
- 222. Pursch, M.; Sun, K.; Winniford, B.; Cortes, H.; Weber, A.; McCabe, T.; Luong, J. Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC×GC). *Analytical and Bioanalytical Chemistry* **2002**, *373*, 356-367.
- 223. Liu, Z.; Phillips, J.B. Comprehensive two-dimensional gas chromatography using an oncolumn thermal modulator interface. *Journal of Chromatographic Science* **1991**, *29*, 227-231.
- 224. Lama, S.M.; Pampel, J.; Fellinger, T.-P.; Beškoski, V.P.; Slavković-Beškoski, L.; Antonietti, M.; Molinari, V. Efficiency of Ni nanoparticles supported on hierarchical porous nitrogen-doped carbon for hydrogenolysis of kraft lignin in flow and batch systems. *ACS Sustainable Chemistry and Engineering* **2017**, *5*, 2415-2420.
- 225. Lješević, M.; Gojgić-Cvijović, G.; Ieda, T.; Hashimoto, S.; Nakano, T.; Bulatović, S.; Ilić, M.; Beškoski, V. Biodegradation of the aromatic fraction from petroleum diesel fuel by *Oerskovia* sp. followed by comprehensive GC×GC-TOF MS. *Journal of Hazardous Materials* **2019**, *363*, 227-232.
- Schmarr, H.G.; Sang, W.; Ganß, S.; Fischer, U.; Köpp, B.; Schulz, C.; Potouridis, T. Analysis of aldehydes via headspace SPME with on-fiber derivatization to their O-(2, 3, 4, 5, 6-pentafluorobenzyl) oxime derivatives and comprehensive 2D-GC-MS. *Journal of Separation Science* 2008, *31*, 3458-3465.

- 227. Frysinger, G.S.; Gaines, R.B. Comprehensive two-dimensional gas chromatography with mass spectrometric detection (GC×GC/MS) applied to the analysis of petroleum. *Journal of High Resolution Chromatography* **1999**, *22*, 251-255.
- 228. Koek, M.M.; van der Kloet, F.M.; Kleemann, R.; Kooistra, T.; Verheij, E.R.; Hankemeier, T. Semi-automated non-target processing in GC×GC-MS metabolomics analysis: applicability for biomedical studies. *Metabolomics* **2011**, *7*, 1-14.
- 229. Song, S.M.; Marriott, P.; Kotsos, A.; Drummer, O.H.; Wynne, P. Comprehensive twodimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOF MS) for drug screening and confirmation. *Forensic Science International* **2004**, *143*, 87-101.
- 230. Schauenstein, E.; Esterbauer, H.; Zollner, H. Aldehydes in biological systems: their natural occurrence and biological activities. **1977**.
- 231. Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. *Journal of Atmospheric Chemistry* **1999**, *33*, 23-88.
- 232. König, G.; Brunda, M.; Puxbaum, H.; Hewitt, C.N.; Duckham, S.C.; Rudolph, J. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. *Atmospheric Environment* **1995**, *29*, 861-874.
- 233. Spinelli, F.; Cellini, A.; Marchetti, L.; Nagesh, K.M.; Piovene, C. Emission and function of volatile organic compounds in response to abiotic stress. In: Abiotic stress in plants-mechanisms and adaptations, *IntechOpen*, **2011**.
- 234. Ha, S.-B.; Smith, A.P.; Howden, R.; Dietrich, W.M.; Bugg, S.; O'Connell, M.J.; Goldsbrough, P.B.; Cobbett, C.S. Phytochelatin synthase genes from *Arabidopsis* and the yeast *Schizosaccharomyces pombe*. *The Plant Cell* **1999**, *11*, 1153-1163.
- 235. Krumm, T.; Bandemer, K.; Boland, W. Induction of volatile biosynthesis in the Lima bean (*Phaseolus lunatus*) by leucine-and isoleucine conjugates of 1-oxo-and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway. *FEBS Letters* **1995**, *377*, 523-529.
- 236. Martin, D.M.; Gershenzon, J.; Bohlmann, J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. *Plant Physiology* **2003**, *132*, 1586-1599.
- 237. Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. *Trends in Plant Science* **2010**, *15*, 176-184.
- 238. Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: recent advances and future perspectives. *Critical Reviews in Plant Sciences* **2006**, *25*, 417-440.
- 239. Iijima, Y.; Wang, G.; Fridman, E.; Pichersky, E. Analysis of the enzymatic formation of citral in the glands of sweet basil. *Archives of Biochemistry and Biophysics* **2006**, *448*, 141-149.
- 240. Bauer, K; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: preparation, pšroperties and uses. Third Completely Revised Edition, *Wiley-VCH* **2001**.
- 241. Calvert, J.G.; Stockwell, W.R. Acid generation in the troposphere by gas-phase chemistry. *Environmental science and technology* **1983**, *17*, 428A-443A.
- 242. Ristivojević, P.; Andrić, F.L.; Trifković, J.Đ.; Vovk, I.; Stanisavljević, L.Ž.; Tešić, Ž.L.; Milojković-Opsenica, D.M. Pattern recognition methods and multivariate image analysis in HPTLC fingerprinting of propolis extracts. *Journal of Chemometrics* **2014**, *28*, 301-310.
- 243. Schmarr, H.-G.; Bernhardt, J. Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. *Journal of Chromatography A* **2010**, *1217*, 565-574.
- 244. Johnston, B.D.; Scown, T.M.; Moger, J.; Cumberland, S.A.; Baalousha, M.; Linge, K.; van Aerle, R.; Jarvis, K.; Lead, J.R.; Tyler, C.R. Bioavailability of nanoscale metal

oxides TiO₂, CeO₂, and ZnO to fish. *Environmental Science and Technology* **2010**, *44*, 1144-1151.

- 245. Gaiser, B.K.; Fernandes, T.F.; Jepson, M.A.; Lead, J.R.; Tyler, C.R.; Baalousha, M.; Biswas, A.; Britton, G.J.; Cole, P.A.; Johnston, B.D. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. *Environmental Toxicology and Chemistry* **2012**, *31*, 144-154.
- 246. Böhme, S.; Stärk, H.-J.; Kühnel, D.; Reemtsma, T. Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in *Daphnia magna* and zebrafish (*Danio rerio*) embryos. *Analytical and Bioanalytical Chemistry* **2015**, 407, 5477-5485.
- 247. Knops, M.; Altenburger, R.; Segner, H. Alterations of physiological energetics, growth and reproduction of *Daphnia magna* under toxicant stress. *Aquatic Toxicology* **2001**, *53*, 79-90.
- 248. Parvez, S.; Venkataraman, C.; Mukherji, S. A review on advantages of implementing luminescence inhibition test (*Vibrio fischeri*) for acute toxicity prediction of chemicals. *Environment International* **2006**, *32*, 265-268.