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Abstract

Arguably the greatest challenge of contemporary theoretical physics is to
understand the profound interplay between Quantum Mechanics (QM) and
the General Theory of Relativity (GR). To solve the conundrum of “Quantum
Gravity” (QG) one has to transcend some deeply rooted assumptions on which
we are accustomed, in particular, at very short length scales we might have
to abandon the notion of a continuous space-time and the associated mat-
hematical construct of a smooth manifold that describes it. Field theory on
noncommutative (NC) space-time is one distinguished approach to QG, and
the one that will be advocated in this thesis. NC field theory is based on the
method of quantization by deformation, originally developed for the purpose
of establishing phase-space quantum mechanics. One speaks of a deformation
of an object/structure whenever there is a family of similar objects/structures
of which the “distortion” from the original, undeformed one can be somehow
parametrized. In physics, this so-called deformation parameter is usually re-
lated to some fundamental constant of nature that measures the deviation
from the classical (i.e. undeformed) theory. To deform classical space-time,
one introduces an abstract algebra of NC coordinates, denoted by z*, that
satisfy some non-trivial commutation relations. The simplest case of non-
commutativity is the so-called canonical (or 0-constant) noncommutativity,
[ZH, 2Y] = 6" ~ A?VC, where 0¥ are components of a constant antisym-
metric matrix, and Ay is a hypothetical length scale at which NC effects
become relevant. Instead of deforming abstract algebra of coordinates, one
can introduce space-time noncommutativity in the form of NC products of
functions (fields) on commutative space-time. These products are called star
products (x-products). In particular, canonical noncommautativity is effected
by the Moyal x-product.

During the previous studies of the theory of NC gravity, it was found that
NC corrections to GR can be obtained by canonical deformation of anti-de
Sitter (AdS) gauge field theory. Starting with an action of the MacDowell-
Mansouri type, invariant under SO(2,3) gauge transformations, one obtains
the Einstein-Hilbert action with cosmological constant term, after choosing a
certain gauge. NC deformation is based on the Seiberg-Witten approach to
NC gauge field theory, and the first non-vanishing NC correction is quadratic
in 0*”. This model also predicts a non-trivial NC deformation of Minkowski
space and offers an explanation for the apparent breaking of diffeomorphism
invariance in the NC theory. Namely, the structure of the NC-deformed Min-
kowski metric suggests that, by assuming canonical noncommutativity, we

implicitly choose a preferred frame of reference - the Fermi inertial frame.



Building on these results, we proceeded by introducing matter fields within
the SO(2,3) framework, in particular, we considered Dirac spinor field, U(1)
gauge field and non-Abelian Yang-Mills gauge field. It turns out that inclusion
of matter fields produces non-vanishing linear NC correction involving various
new matter-gravity couplings that arise due to space-time noncommutativity.
This feature is a significant improvement in comparison to the pure NC gravity
model, and a priori unexpected result. Moreover, some NC terms pertain
even in Minkowski space, effecting NC deformation of the Dirac equation.
Predictions of this model of NC Electrodynamics include the NC birefringence
effect (helicity-dependent energy levels of an electron in NC space-time) and
NC-deformed Landau levels of an electron in background magnetic field.

Finally, we upgraded the model of pure NC gravity to include Supersym-
metry (SUSY). It is well-known that one can define a consistent theory of
extended N = 2 AdSy Supergravity (SUGRA). This model of SUGRA invol-
ves a pair of Majorana vector-spinor fields that can be mixed to form a pair
of Dirac spinors (charged gravitini) coupled to U(1) gauge field. Besides local
SO(1,3)xU(1) gauge symmetry, the action is also invariant under complex lo-
cal SUSY. We present a geometric action that involves two “inhomogeneous”
parts: an orthosymplectic OSp(4]2) gauge-invariant action of the MacDowell-
Mansouri type that has vanishing first order NC correction, and a supplemen-
tary action invariant under purely bosonic SO(2,3) x U(1) ~ Sp(4) x SO(2)
sector of OSp(4]2), that needs to be added for consistency. This additional
action provides a non-trivial linear NC correction that is calculated explicitly.
Also, a recurring theme of the thesis will be the relation between the canonical

NC deformation and Wigner-Inonii group contraction.
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Rezime

Jedan od najvelih izazova savremene teorijske fizike jeste usaglasavanje
Opste teorije relativnosti (OTR) i Kvantne mehanike. Da bismo razresili
problem “kvantne gravitacije” neophodno je da prevazidemo neke duboko
ukorenjene pretpostavke na kojima se zasnivaju sve naSe dosadasnje teorije.
Jedna od njih je i pretpostavka da je struktura prostor-vremena kontinualna
na svim skalama i da shodno tome odgovara matematickom konceptu glatke
mnogostrukosti. Teorija polja na nekomutativnom (NK) prostor-vremenu je
jedan dobro definisani pristup problemu kvantne gravitacije, i taj pristup ¢e
biti zastupljen u ovoj disertaciji. NK teorija polja po¢iva na metodu deforma-
cione kvantizacije, originalno razvijenom radi zasnivanja kvantne mehanike
u faznom prostoru. O deformaciji nekog objekta/strukture govorimo onda
kada postoji familija srodnih objekata/struktura kod koje se odstupanje od
nedeformisanog originala moze na odredeni na¢in paramatrizovati. U fizici
se ovaj takozvani parametar deformacije javlja u vidu neke fundamentalne
konstante prirode i predstavlja meru odstupanje od “klasi¢ne” (tj. nedefor-
misane) teorije. Da bismo deformisali klasi¢no prostor-vreme, uvodimo ap-
straktnu algebru nekomutativnih koordinata, u oznaci z*, koje zadovoljavaju
neke netrivijalne komutacione relacije. Najjednostavniji primer je takozvana
kanonska (ili 6-konstantna) nekomutativnost, [##,3"] = i0"" ~ A%, gde su
0" komponente konstantne antisimetri¢ne matrice, a Ayc hipoteticka skala
duzine na kojoj efekti nekomutativnosti postaju znacajni. Umesto deformi-
sanja apstraktne algebre koordinata, nekomutativnost mozemo uvesti u vidu
nekomutativnih proizvoda funkcija (polja) obi¢nih komutativnih koordinata.
Ovi proizvodi se nazivaju star-proizvodi (x-proizvodi). Konkretno, kanonskoj
nekomutativnosti odgovara Mojalov x-proizvod.

Tokom prethodnih istrazivanja teorije NK gravitacije, ustanovljeno je da
se nekomutativna verzija OTR moze dobiti kanonskom deformacijom anti-
de Siter (AdS) gradijentne teorije gravitacije. Predlozeno klasi¢no dejstvo
Jang-Milsovog tipa, invarijantno na lokalne SO(2,3) transformacije, se pri
odredenom kalibracionom uslovu svodi na standardno AjnStajn-Hilbertovo
dejstvo sa kosmoloskom konstantom. NK deformacija je sprovodena sledeéi
Sajberg-Vitenov pristup NK teoriji gradijentnih polja, i ispostavlja se da
je prva nenulta NK korekcija kvadratna po 6#. Ovaj model takode pred-
vida netrivijalnu deformaciju prostora Minkovskog i pruza objasnjenje porekla
narusenja opste kovarijantnosti koje je prisutno u NK teoriji. Naime, struk-
tura NK-deformisane metrike Minkovskog ukazuje na to da, uvodeéi kanonsku
nekomutativnost, mi implicitno prelazimo u odredeni referentni sistem - onaj

koji odgovara Fermijevim inercijalnim koordinatama duz geodezika.



Na osnovu pomenutih rezultata, u ovoj tezi je unapreden SO(2,3) model
ciste NK gravitacije uvodenjem polja materije, i to: Dirakovog spinorskog
polja, U(1) i Jang-Milsovog gradijentnog polja. Ispostavlja se da materija
proizvodi nenultu NK korekciju prvog reda u vidu novih tipova interakcije
sa gravitacijom, a usled nekomutativnosti prostor-vremena. Ovo je znacajan
i neocekivan napredak u odnosu na ¢istu NK gravitaciju. Stavise, neki od
novih interakcionih ¢lanova opstaju ¢ak i u prostoru Minkovskog i uzrokuju
deformaciju Dirakove jednacine. Neka od predvidanja ovog modela NK elek-
trodinamike su efekat NK dvojnog prelamangja (tj. zavisnost energetskih nivoa
elektrona od njihovog heliciteta) i NK-deformisani Landauovi nivoi elektrona
u pozadinskom magnetnom polju.

Konaé¢no, izvrSeno je i uopstenje modela ¢iste NK gravitacije koje ukljucuje
supersimetriju. Poznato je da je moguce definisati konzistentnu teoriju N = 2
AdS, supergravitacije (SUGRA). Model sadrzi par Majorana vektor-spinora
koji obrazuju par Dirakovih spinora (naelektrisana gravitina) kuplovanih sa
U(1) gradijentnim poljem. Pored lokalne SO(1,3) x U(1) simetrije, dejstvo
je invarijantno i na kompleksnu lokalnu supersimetriju. Predstavi¢emo geo-
metrijsko dejstvo koje sadrzi dva “nehomogena” dela: ortosimplekticko dej-
stvo Jang-Milsovog tipa invarijantno na lokalne OSp(4|2) transformacije, koje
nema NK korekciju prvog reda, i dopunsko dejstvo invarijanto na ¢isto bo-
zonski SO(2,3) x U(1) ~ Sp(4) x SO(2) sektor OSp(4|2) grupe, koje se mora
dodati radi konsistentnosti sa klasi¢nom teorijom. Ovo dopunsko dejstvo po-
seduje netrivijalnu linearnu NK korekciju. Pitanje koje ¢e se iznova postavljati

je pitanje odnos kanonske NK deformacije i Vigner-Inonuove kontrakcije.

Kljuéne reci: kvantizacija deformacijom, Mojalov proizvod, NK gravi-
tacija, Sajberg-Vitenovo preslikavanje, AdS gradijentna teorija, orto-
simplekticka SUGRA
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1 Introduction

Our Universe is a Cosmos. This is the fundamental assumption on which we
base our scientific enterprise. In our intellectual struggle, a desire to understand the
universal laws of the physical world and to grasp their ultimate meaning is often
subdued by our own limitations and pragmatism - eventually, we want to be able to
calculate something useful, and produce a working model for some restricted class
of phenomena that are accessible to our current mathematical and technological
resources. As a rule, the relation between profoundness of a certain theory and its
capacity to produce concrete results is inversely proportional - underlying theories,
considered to be more fundamental, tend to be less operational. It would be a chal-
lenging task, for example, to derive the laws of molecular dynamics starting from the
Lagrangian of the Standard Model (SM) of particle physics with all its intricacies,
although, in principle, this is possible. Therefore, it is an extraordinarily significant
fact, and by no means obvious, that the complex hierarchical organization of the
physical world and the manner in which its layers are intertwined between each
other make it possible for us to construct well-defined effective descriptions of phe-
nomena, reliable only for some restricted set of values of the relevant parameters.
Every effective theory is characterized by its domain of applicability (scale), the de-
grees of freedom associated with that scale and symmetries of their dynamical laws.
Pushing an effective theory beyond its area of applicability is typically marked by
the appearance of singularities in its mathematical structure, the prototypical exam-
ples being the SM and the General Theory of Relativity (GR). A lack of constraint
on infinitely small/large quantities of any kind signifies that a theoretical model is
incomplete, in which case it should be replaced by a wider framework able to tame
the infinities. Therefore, it seems reasonable to expect that our progress towards a
hypothetical final “theory of everything” is going to proceed in steps, through a se-
quence of effective descriptions of increasing generality and ever-growing domain of
validity. The transition from a particular effective theory to a more fundamental one
(that contains the former as a limiting case) can be formalized through the notion of
deformation. One speaks of a deformation of an object/structure whenever there is
a family of similar objects/structures of which the “distortion” from the original, un-
deformed one, can be somehow parametrized. In physics, this so-called deformation
parameter usually appears as some fundamental constant of nature that measures
the deviation from the classical (meaning undeformed) theory. We can articulate

this more precisely by the following (very abstract) definition.

Definition 1.1. Let X be an object in a certain category C. A deformation of X is
a family of objects X. € Obj(C) parametrized by €, such that X., = X for some €.



An effective theory may be regarded as the leading order term in a perturbative
expansion of a more general, deformed theory, in powers of a certain deformation
parameter. In that respect, we consider the Special Theory of Relativity (STR)
to be a deformation of the Newtonian mechanics, the deformation parameter being
v/e; when v/ec — 0 (low-speed limit) Newtonian mechanics is restored. Another
way to look at this relation is from the aspect of symmetry. Deformation parameter
often plays the role of a contraction parameter in the Wigner-Inénti (WI) Lie algebra
contraction procedure [I, 2]. As an illustration, consider the homogeneous Lorentz
algebra so0(1,3). It has a total of six generators M,, (rotations of Minkowski space

M), satisfying the following commutation relations,
[M(Zb7 Mcd} = i(nadec + nbcMad - nachd - nbdMac) . (11)

After separating generators My, into three 3-rotation generators J; = ig;;,Mj; and

three boost generators K; = M;q, we can recast ([L.1)) into a more explicit form,

[, J;) = dgiji i
[Jiij] = i€z’ijk )

Now we use the speed of light ¢ as a contraction (deformation) parameter and define

K; = K; /c. In the limit v/¢ — 0 we obtain homogeneous Galilean Lie algebra,

[Ji, Jj| = teiji i,
(s, f(j] = igijk}N(k ;

K, K] =0. (1.3)

Another case that will be important for us, later on, is the WI contraction of anti-de
Sitter (AdS) so0(2,3) algebra into Poincaré algebra.

In this general context, quantum theories are recognized as deformations of the
corresponding classical ones, deformation parameter being the Planck constant .
This is the content of the principle of correspondence, one of the most important
guiding principles in physics, due to N. Bohr [3]. It poses a general constraint
on every new-developed theory of physics - besides giving us a refined conceptual
framework to deal with some class of phenomena, it must also be consistent with
the corresponding less accurate theory that precedes it and reduce to that theory in
a certain limit. This paradigm is inherited by the modern physics (especially high-

energy physics), one of its guises being the concept of quantization by deformation.
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1.1 Deformation quantization - quantum mechanics

That quantization (of a classical system) can be realized as a deformation has
already been anticipated by P. Dirac in the early twenties [4], 5]. He was the first
to note the resemblance between the Poisson bracket (Lie bracket for the algebra
of functions on phase space) and quantum commutator, and suggested that it might
be possible to define an associative, but non-commutative product of functions on
phase space that could encapsulate the non-commutative character of quantum mec-
hanics. The Poisson bracket would then be identified with the leading order term
in the h-expansion of a certain, more general, “quantum bracket” on phase space
(today know as the Moyal bracket). In this expansion, higher-order terms (those
containing i) would be responsible for quantum effects and in the limit & — 0 clas-
sical structure would be restored, in accord with the principle of correspondence.
This observation was the first incentive for the theory of star-products (x-products) -
associative, but non-commutative deformations of ordinary commutative point-wise
products of functions on classical phase space - that lies at the heart of the method

of deformation quantization.

Another important source of inspiration for the theory of x-products came from
the work of H. Weyl, J. von Neumann and E. Wigner. In [6] Weyl defined a certain
formal map - the Weyl transform - that takes a function on phase space and assigns
to it an operator on Hilbert space (the so-called associated Weyl-operator). This
construction relates the theory of x-products and Weyl quantization procedure based
on the symmetric ordering scheme. Eventually, it became clear that Weyl transform
is not an intrinsically special quantization prescription and that deformation qu-
antization provides a more general framework. In 1931, von Neumann utilized the
Weyl transform as an equivalent representation of the Heisenberg algebra [7]. He
also worked out an analogue of Hilbert space operator multiplication in phase space
and thus effectively discovered the rule governing the noncommutative product of
the corresponding phase space functions — an early version of the x-product. Ne-
vertheless, von Neumann ignored his own discovery concerning the x-product and
just proceeded to postulate the standard correspondence rules between classical and

quantum mechanics [§].

Wigner, on the other hand, was searching for an alternative formulation of Qu-
antum Mechanics (QM), an operator-free formulation that could be defined directly
on classical phase space. He developed a theory of quasi-probability distributions
(Wigner functions) [9] to calculate quantum corrections to classical statistical mec-

hanics. A central object in his approach is the Wigner transform, a map that takes



an operator on a Hilbert space and assigns to it a function on phase space. For a
self-adjoint operator this function is real. In particular, to a general quantum state
(statistical operator) Wigner transform assigns a quasi-probability distribution that
can be used to calculate statistical averages of any classical observable while acco-
unting for the quantum effects. As it turns out, Wigner transform is an inverse
of Weyl transform and the whole construction is therefore named the Wigner-Weyl
(WW) correspondence. 1t is proved that WW correspondence is a one-to-one map

between phase space functions and quantum operators.

In his 1946 thesis [10], H. L. Groenewold explored the consistency of the von Ne-
umann’s general quantization prescription. As a tool, he utilized a fully developed
formulation of the WW correspondence, regarded as a formal invertible transform.
The essence of this correspondence is the *-product (today known as the Moyal-
Weyl-Groenewold product, or just the Moyal product, for short). This realization
helped Groenewold to prove that it is not possible to find a fully consistent quanti-
zation procedure (in the von Neumann sense), which means that it is not possible to
promote classical Poisson bracket of any two functions onto their quantum commu-
tator. This result is known as the Groenewold’s no-go theorem [11] and it was one of
the main reasons to look for another method of quantization. Groenewold’s obser-
vation, and the counterexamples that he found, have been generalized and codified
to what is now known as the Groenewold — Van Hove theorem [12]. Groenewold
also realized that the Wigner transform of a quantum commutators gives a genera-
lization of the Poisson bracket (the Moyal bracket), which contains Poisson bracket

as its classical limit.

At the same time, J. H. Moyal was developing essentially the same theory but
from a different point of view [13], one that is more related to statistical mecha-
nics. He focused on all expectation values of quantum operator monomials, ¢"p™,
symmetrized by Weyl ordering. Moyal realized that these expectation values could
be generated out of a classical-valued characteristic function on phase space, which
he later recognized as the Wigner transform of a statistical operator. He obser-
ved that many familiar operations of standard QM could be apparently bypassed
and verified that the uncertainty principle is incorporated in this structure. Less
systematically than Groenewold, Moyal also obtained the quantum evolution of the
Wigner function by deforming the classical Poisson bracket into the Moyal bracket,
thus establishing a more comprehensive notion of the “A — 07 limit based on the
asymptotic h-expansion — as opposed to the less intuitive method of taking the limit
of large occupation numbers or computing expectation values in coherent quantum

states.



Before the advent of deformation quantization techniques, there seemed to be no
organic connection between classical and quantum systems and the workings of the
correspondence principle were somewhat obscure. Functorial quantization [14] is the
most general framework for defining quantization that assumes that classical and
quantum systems are, as far as their mathematical structure is concerned, categori-
cally different. To define a quantization procedure, one has to construct a covariant
functor (an arrow preserving functor) that assigns to each classical system (phase
space) a quantum system (Hilbert space). Classical systems are properly described
by symplectic category S. Its objects are symplectic manifolds (M, w) and its maps
are symplectomorphism (canonical transformations). On the other hand, quantum
systems are described by unitary category U. Its objects are Hilbert spaces (H, (-, -))
and its maps are unitary transformations. It seems that a reasonable definition of a
quantization of a classical system would, therefore, be a covariant functor F : S — U

satisfying the following conditions:

1. To every symplectic manifold (M, w) is associated a Hilbert space F (M, w) =
(FIM], Flw]). In this Hilbert space, Flw| : FIM] x FIM] — C is the inner
product.

2. To every symplectomorphism ¢ : (M,wp) — (N, wyr) is associated a unitary
transformation Fp] : F(M,wr) = F(N,wpr).

The question is, however, whether it is possible to find a functor consistent with
the actual theory of quantum mechanics, that is, with Schrédinger representation.
As it turns out, there can be no such functor that could provide a complete, physi-
cally sensible quantization. This is a strong motivation to consider an alternative

approach to the problem of quantization, in general.

In 1978, F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer
published a milestone papers that set the course of the modern theory of defor-
mation quantization [I5], [16]. Their goal was to endow classical phase space with
noncommutative structure by deforming the commutative algebra of functions on
phase space. The ordinary commutative product is replaced by a suitable non-
commutative x-product (which x-product is to be applied, depends on the details
of the deformation procedure), thus yielding a deformed algebra capable of captu-
ring the noncommutative character of quantum mechanics. For example, the Moyal
*-product is associated with the constant phase space deformation, using /A as a
deformation parameter. Since the mapping of brackets (Poisson bracket to Moyal

bracket) need only be satisfied asymptotically, up to O(h?), so as to find classical



mechanics in the limit where A — 0, the inconsistencies found by Groenewold are
resolved. Although we cannot claim that deformation quantization amounts to a de-
finite solution to the problem of quantization, it does provide the most transparent
formulation of the correspondence principle. The method of deformation quantiza-
tion became fully appreciated after M. Kontsevich’s proof of his famous Formality
conjecture [17]. A corollary of this conjecture is that every classical system (properly
described by a Poisson manifold) can be (almost) uniquely quantized by deforma-
tion [I§], in accord with the general principle of correspondence and the original
Dirac’s intuition. For a more detailed account on the history of the subject see, for

example, [19, 20].

1.2 Deformation quantization - quantum gravity

Besides its role in establishing a completely new interpretation of QM, ”defor-
mation philosophy“ found its most attractive application in the study of the fun-
damental structure of space-time itself. To resolve the conundrum of “Quantum
Gravity”, we must be prepared to go beyond the usual assumptions on which we are
accustomed, in particular, at very short length scales (very high energies) we might
have to abandon the notion of a continuous space-time and the associated mathe-
matical construct of a smooth manifold that describes it [21) 22]. There is a famous
heuristic argument that supports this attitude. By combining (perhaps naively)
the basic principles of QM and GR - the uncertainty principle and the geometric
character of gravity, respectively - seems to imply that there exists a natural “de-
fence mechanism” preventing us from observing the structure of the physical world
beyond the Planck scale (Ip ~ 1072°m). Namely, Heisenberg’s uncertainty relations
AgAp > k/2 imply that in order to probe smaller length scales, we need to provide
larger amounts of energy /momentum. This fact, however, brings us in conflict with
GR, assuming the continuity of space-time at all scales [23]. According to GR, a
sufficient amount of energy density creates a black hole with a Schwarzchild radius
Rs = 2MGy/c* proportional to the energy density. Therefore, with a further in-
crease in energy, the size of the black hole increases proportionally, thus preventing
us from accessing the region within. There is an uncertainty relation between Rg
and the radial coordinate AR,Ar > lf, that predicts the appearance of virtual black
holes and wormholes (quantum foam) at the Planck scale [24, 25]. It follows from
the Heisenberg relation A(Mc)Ar > h/2 that gets saturated at the Planck scale
(mye)lp = h/2 (mp ~ 1078kg is the Planck mass). It seems that beyond the Planck
scale, space-time loses its empirical meaning (as we know it), and since we do believe

that there is physics beyond the Planck wall, this contradiction has to be resolved.



Over the course of the 20" century, several well-established and quite distinct
approaches to quantum gravity appeared. In spite of being different in so many
respects, all of them, however, recognize that the crucial problem lies in the notion of
continuity of space-time and the principle of locality that goes with it. To transcend
this deeply rooted assumption, the proponents of String Theory [20] suggest that
the fundamental building blocks of nature are not point-like elementary particles
interacting at a single space-time point, but tiny vibrating string (or, more generally,
branes) that, due to their extension, interact non-locally. Each vibrational mode of
the string corresponds to a different particle (infinitely many of them) including
graviton - a quantum of the gravitational field. The most attractive features of this
theory are its unification power and a plethora of exotic mathematical structures
such as Supersymmetry (SUSY) and extra (compactified) spatial dimensions. In
String Theory, space-time is an emergent phenomenon grounded in the dynamics
of the fundamental strings. The theory lacks ability to reproduce the known low-
energy phenomenology (except gravity). Then there is Supergravity (SUGRA), in
its simple and extended versions. SUSY greatly improves the renormalizability of
non-gravitational gauge field theories through loop cancellation and offers a natural
solution to the hierarchy problem. To include gravity, SUSY is promoted into gauge
symmetry [27-29], the corresponding gauge field being the gravitino spin-3/2 field.
It is a well-developed theory with great unification capacity, but it is not complete.
Others claim that space-time itself has a discrete, granular structure and define
the “quantum of volume”; this is the theory of Loop Quantum Gravity, and it
most faithfully preserves the deep notion of background independence that lies at
the heart of GR [30]. Then, there is an algebraic approach of Noncommutative
Geometry where one abandons the geometrical notion of a point and instead defines
a deformed space-time in terms of its C*-algebra of functions [31I]. Other approaches
include Causal Set Theory [32], Quantum Measure Theory [33], Consistent Histories
[34], Euclidean path integral approach [35], Asymptotic safety program [30], some
recent developments such as gauge-gravity duality (AdS/CFT correspondence) and
EPR = ER conjecture [37, 38].

The concept of “space-time noncommutativity” appeared already in the 1930s
when W. Heisenberg suggested that the problem of UV-divergences in Quantum
Field Theory (QFT) could perhaps be solved by postulating non-vanishing com-
mutation relations between coordinate operators, analogous to the canonical com-
mutation relations between coordinates and their canonically-conjugated momenta
[39]. The first model of NC geometry came from Snyder [40] who showed that one
could have Lorentz symmetry in deformed space-time. However, this line of develop-

ment was overshadowed by the success of the renormalization program of Schwinger,
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Feynman and Tomonaga. Nevertheless, noncommutativity started to appear une-
xpectedly in various contexts. After realizing the connection between String Theory
and Noncommutative geometry, the latter once again became an interesting topic in
high energy physics. Namely, the theory of open strings in a constant Kalb-Ramond
B-field implies that the endpoint coordinates of a string attached to a D-brane do
not commute [41]. This implies that a QFT on NC space-time can be interpreted
as a low energy limit of the theory of open strings. There are more elementary
examples coming from classical mechanics. If we take a single particle of mass m
and charge ¢, constrained to move in the xy-plane, and apply homogeneous mag-
netic field in the z-direction, the Poisson bracket {x,y} is not equal to zero in the
limit of the strong magnetic field B. Making a transition to quantum mechanics, we
obtain [z, 9] ~ 1/B. The geometrical notion of a point lacks meaning in NC spaces
and it makes no sense to introduce ordinary c-number coordinates. An important
mathematical result of Gelfand and Naimark 42, 43| is that every unital commu-
tative C*-algebra over C is isomorphic to the one of C-valued continuous functions
on compact Hausdorff topological space. It implies that we do not have to regard
space as a set of points in order to describe its properties; instead, we can use the
commutative algebra of functions defined on that space. Analogously, for an NC

space we use the corresponding NC C*-algebra of functions.

There are many ways in which space-time noncommutativity can be introduced.
One distinguished approach, and the one that will be advocated in this thesis, is
Noncommutative (NC) Field Theory - field theory on noncommutative space-time
- based on the method of x-product NC deformation [22, [44]. This way of “qu-
antizing” space-time is essentially different from the standard QFT quantization
procedure for matter fields. Loosely speaking, the idea is that different space-time
dimensions (usual 3 4+ 1) are mutually “incompatible”, in a sense that there exist
a lower bound for the product of uncertainties Az*Ax” for a pair of different co-
ordinates. Deformation quantization formalizes this notion of “pointlessness” by
introducing an abstract algebra of NC coordinates as a deformation of the classical
space-time structure described by ordinary commuting coordinates. These NC coor-
dinates, denoted by z#, satisfy some non-trivial commutation relations, and so, it is

SV

no longer the case that [##, "] = 0. Other ways of introducing space-time noncom-
mutativity include spectral triplets [45], NC vierbein formalism [46], matrix models
[47]. These approaches are not entirely independent of each other. For example,
the NC algebra of Schwartz functions, defined by Moyal x-product, is actually a
NC spectral triplet [48]. Spectral triplet composed of a Hilbert space, algebra of
operators defined on that space and a Dirac operator form a basis of the Connes’

noncommutative geometry.



The simplest case of noncommutativity is the so called canonical (or 6-constant)

noncommutativity,
[2#, 3] = i0" ~ A%o (1.4)

where 0*” are components of a constant antisymmetric matrix and Ay¢ is the yet
unknown length scale at which NC effects become relevant. Deformation parame-
ter is a fundamental constant, like the Planck length or the speed of light. Other
important choices include Lie algebra-like deformation and x-deformation. Instead
of deforming abstract algebra of coordinates, noncommutativity (deformation) of
space-time can be encoded in the form of NC products of functions (fields) on
classical space-time. These products are called star products (x-products). In par-
ticular, to establish canonical noncommutativity, we use the Moyal x-product, as a

deformation of the ordinary commutative product,

(f % §)(x) = 2" 3757 f(2)g(y)]ye

= J(@)glx) + 5070, (2)Dg(x) + OF) (1.5

The first term in the expansion of the exponential is the ordinary point-wise multi-

plication of the fields and the higher-order terms are non-classical NC corrections.

In Section 2, we will introduce Moyal *-product more formally, both in QM and
NC gauge field theory. After that, in Section 3, we study the Seiberg-Witten method
of constructing NC gauge field theory that will be used throughout the thesis. Anti-
de Sitter gauge field theory, its relation to GR, and its canonical NC deformation
are discussed in Section 4. There we present, in some detail, the SO(2,3), model
of NC gravity. In the remaining sections, we introduce matter fields (Dirac spinor
field, U(1) gauge field and non-Abelian Yang-Mills field) coupled to NC gravity
(Sections 5 — 7, respectively). These constitute the main part of the thesis. Finally,
in Section 8, we upgrade the SO(2, 3), model of pure NC gravity to include SUSY,
and consider canonical NC deformation of N =2 AdS SUGRA in D = 4, based on
the orthosymplectic gauge supergroup OSp(4]|2). We conclude by proposing some

new directions of research.



2 Moyal-Weyl-Groenewold x-product

The uncertainty principle of QM compels us to abandon the concept of phase
space, as a space of dynamical states of classical systems, and to promote generalized
coordinates and their canonically-conjugated momenta into mutually incompatible
self-adjoint operators acting on a Hilbert space. In the spirit of deformation philo-
sophy, quantization procedure can be understood as an act of imposing a noncomm-
mutative geometry structure on classical phase space. This deformed “quantum
phase space” is the prime example of a noncommuttive space ever to be studied.
Therefore, to begin with, we will introduce the Moyal-Weyl-Groenewold (MWG)
*-product in the context of phase space quantum mechanics, where it was originally
founded. By studying the method of deformation quantization of classical structures
we will become familiar with the theory of x-products and prepare the ground for
the next section, where we define the abstract concept of NC space-time on which
NC field theory is based.

2.1 *-product in quantum mechanics

The proper framework for studying classical mechanics is symplectic geometry.
This is the setting in which Kontsevich proved his formality conjecture [17]. Consider
a real vector space V of dimension m and let  : V2 — R be a bilinear, skew-
symmetric map. If for all w € V| Q(u,w) = 0 implies u = 0, the map  is called
symplectic or non-degenerate; (V, Q) is called symplectic vector space. The property

of non-degeneracy implies that V must be even-dimensional.

Definition 2.1. (Symplectic Manifold). A pair (M,w) of smooth manifold M and
2-form field w, : T,M x T,M — R is called symplectic manifold if dw = 0 (if this
is the case the form is said to be closed) and if w, is symplectic for allp € M. A
trivial example is M =R* withw =Y ;d ' Ad 2"

The algebra of smooth functions C*°(M) on the symplectic manifold (M, w)
can be endowed with a Poisson bracket, which turns it into a Poisson manifold
(M, C>®(M),{-,-}). Non-degeneracy of the symplectic 2-form w implies that there is
a unique vector field X assigned to each function f € C*°(M) such that w(Xy,-) =
df. The Poisson bracket {-,-} : C®°(M) x C®°(M) = C>*°(M) is defined by

it is bilinear, skew-symmetric and satisfies the Jacobi identity and the Leibniz rule.
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Therefore, all classical systems that can be described in terms of symplectic
manifolds carry a natural Poisson structure. The Poisson algebra (C*°(M), {-,-}) of
smooth functions on M is the algebraic structure that one should deform in order
to quanatize the classical system. Let Q be a configuration space of some classical
system with n degrees of freedom. The corresponding phase space has a natural
symplectic manifold structure. It is defined as a pair (7*Q,w) consisting of the
cotangent bundle of Q and the canonical symplectic 2-form w = >  dg" A dp;.

Poisson bracket is the familiar bracket from the Hamilton’s canonical formalism,

N\~ (90fdg Of dg
=3 (Gt~ om ) 20

=1

For simplicity, we will consider only the configuration space @ = R (one degree of
freedom, no constraints). In that case, phase space manifold M can be identified
with R2. The dynamical state of a classical system is completely determined by a
pair (¢,p) € R2. Classical observables, like angular momentum and hamiltonian,
can now be seen as smooth functions of (¢, p). In general, classical observables f are
elements of the commutative C*-algebra (with ordinary point-wise multiplication)
of smooth functions on phase space, C*(M) = {f : M — R | f is smooth}. This
algebra carries a complete information on the underlying phase space (Gelfand-
Naimark theorem). In this setting, a systematic way to quantize a classical theory
was introduced by H. Weyl [6], and was later called the Weyl quantization. He
introduced a formal mapping - Weyl transform - that associates a quantum operator
W\[ f] to every phase space observable f € C°(M). The procedure relies heavily on
the invertible character of the Fourier transform on a certain class of well-behaving
functions. The inverse of the Weyl transform is the already mentioned Wigner
transform and the whole one-one correspondence is therefore known as the Weyl-

Wigner (WW) correspondence.

Definition 2.2. The WW correspondence consists of the following steps:

1. Let a,b € R; define the Fourier transform of f € L*(R?) as

f@@z//@@wW%w+MW@M~ (2.8)
2. Perform a formal substitution p — p, ¢ — G and define

Wm@mzf 4 explilap+ b)) fla,b) (2.9)

which is known as the associated Weyl-operator.
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For mathematical simplicity, the procedure is only defined for functions f &
L*(R?). Since this space is a Hilbert space, the integration theory tells us that the
Fourier transform and its inverse are well-defined. The reason why this definition
is not yet satisfactory can be seen from the fact that it cannot handle even the
harmonic oscillator hamiltonian H (g, p) ~ (¢*+ p?); nevertheless, the procedure can
be extended to all physical relevant functions, such as polynomials [10]. The essence
of the x-product approach to QM is that it captures the noncommutative character of
QM directly on phase phase. For a given pair of Weyl-operators associated to a pair
of phase space functions, we want to find a phase space function that corresponds
to the composition of the two Weyl operators. This will be the noncommutative
MWG *-product of the two functions that we started with.

Let f,g € C®°(M). The goal is to find a function h € C*°(M) such that
171/\[ f]/W[g] = ﬁ/\[h] (on the left hand side, we have ordinary operator composition).

Moreover, we want to obtain h as a function of f and ¢g. By definition,

://da db z(ap+bq //da dv’ zap+b’ ( , b,) (210)
2T 27T 27 27T

Mixing the integrals, the exponents can be put together by using a variant of the
Baker-Campbell-Hausdorff (BCH) formula. It states that for a pair of linear ope-
rators A and B that both commute with their commutator [A, B], the following
relation holds,

exp(A) exp(B) = exp(A + B)exp([4, B]/2) . (2.11)

Applying this result yields
Pt IPHD = expli((a+a')p + (b+V)§)] explif(ab —ba')/2] . (2.12)

Performing the shifts a — a —a’, b — b — b gives us the requested expression,

da db ——
— // o 27T z (ap+bd) (f* g)(a b) [f*h g] , (213)
where we introduced
da’ db' ~ , - o
(f *n g a b // %%f — b/)ezﬁ[(a—a )b —(b—b )a]/2g(al7 b/) ‘ (214)

The MWG *-product is defined as the inverse Fourier transform of f xj g,

(Fraglap)i=F Fagl = [ [ G250 (Fagan . @)
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Note that the star product f *; g depends on the classical variables (¢, p) and that
it defines a smooth function on phase space; it is therefore a product on the algebra
of functions on phase space (C°(M),*;,) and it can be easily verified that it is
noncommutative. To obtain the standard form of the MWG product, as found
in the papers of Moyal and Groenewold, it suffices to perform the substitutions
a,a’ — —id/0p, b, b’ — —id/0q under the inverse Fourier transform and to remark

that derivatives of smooth functions commute; therefore, we have

ih (EE . EE)] oa.p)

(f *n 9)(a,p) = fla.p)exp | 5 2q0p  9poq

= (/- 9)ep)+ ) <%>n0n[f, 9l(a:p) , (2.16)

where “” stands for the commutative point-wise product, and we introduced
== ==\
1 0 0 0 0
nlJ ) = 3 -~ N T = = 5 . 217
Calf 9l(a.p) = /(4. p) (aqap apaq> 9(q,p) (2.17)
The Moyal bracket is defined by
L., 1

{Fgb==lrg=(xmg—gn={fgt+0h), (213

where {-, -} stands for the standard Poisson bracket on C*°(M). Therefore, we have
frng— f-gand {f, g} — {f, g} as b — 0. Note that this is exactly what Dirac
had anticipated. Moreover, one can easily check that MWG *-product correctly
reproduces the canonical QM commutation relations between between a conjugate

pair of coordinate and momentum (Heisenberg algebra),
TxR D —p*px=1ih. (2.19)

Also, the evolution equation of some classical observable f in deformed classical

mechanic involves the Moyal bracket,

d, 1
—f:,—(f*hH—H*hf):{f,H}—i—O(h). (2.20)
dt ih

Since W is a linear operator, it follows that [/W[f],/W[g]] = W\([f *ng]). This
amounts to a homomorphism of Lie algebras; the Lie bracket on the left is the
commutator on the space of quantum operators, and on the right we have the Moyal

commutator on C*°(M).
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Therefore, we may conclude that by introducing associative, but noncommuta-
tive MWG *-product on the space C*(R?) of smooth functions on R?, we indeed
implement a deformation of the classical Poisson algebra (C*°(R?), {-,-}), the defor-
mation parameter being A, and promote the classical phase space into a noncom-
mutative space. Weyl transform defines a homomorphism between the x-deformed
Lie algebra of functions on phase space R? and the Lie algebra of operators on the
Hilbert space L?(IR?) of square-integrable functions. In general, a quantum system
is completely determined by its C*-algebra of linear operators on the Hilbert space.
Since Moyal commutator inherits the properties of a quantum commutator (it sa-
tisfies the Heisenberg algebra), according to the Stone-von Neumann theorem [7],
the NC-deformed algebra (C*°(R?),{-,-},,) amounts to an equivalent alternative

representation of quantum mechanics, directly on phase space.

However, it is not quite clear whether WW correspondence (and therefore the
MWG x-product) provides the physical quantization procedure, since it relates clas-
sical systems involving commuting observables to quantum systems involving ope-
rators that do not commute in general, and in the latter case, different choices
of ordering yield different quantum operators. As a simple example, consider the
function f(q¢,p) = q¢-p =p-q = f(p,q). Its quantum counterpart is not defined
unambiguously, namely f(4,p) = p = pq+ih # pg = f(p,q). The two natural cho-
ices of ordering, standard (or naive) and symmetric (or Weyl), lead to two different
*-products. The two are related by a bijective linear map. We will show that the

symmetric ordering corresponds to the MWG x-product.

Definition 2.3. (Naive quantization). The linear operator Qn : Clq,p] — Dif f(R)
18 defined by

1=-Qn1)=1, ¢—Qn(g=4q, (2.21)
p—=Qnp)=p, ¢ -p"—=qP", (2.22)

where Clq, p] is the ring of complex polynomials of two variables and Dif f(R) is the
space of differential operators with polynomial coefficients in the space C*(R), i.e. an
element D € Dif f(R) takes the form D = quv:o fx0%/0¢* where fy, ..., fx € Clq].

First, note that @)y is a well-defined map since it is defined on a basis of the ring
Clg, pl; it is extended to the entire ring by C-bilinearity. Furthermore, note that Qx
is bijection since its inverse is evidently well-defined. By applying this procedure
to the aforementioned example f(q,p) = g - p would yield Qn(p-q) = Qn(q-p) =
gp = pg +ih # Qn(p)Qn(g). This means that @y is not a homomorphism of
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(associative) algebras Clg,p] and Dif f(R). However, classically, when i — 0, this
map turns into a homomorphism. Using the naive quantization procedure, it is
possible to construct an associative NC product on Clg, p] that almost satisfies the
correspondence principle. The idea is to pullback the NC multiplication in the space
of differential operators Dif f(R) to the ring C[q, p] using the bijective map @y, and
define a *-product that is compatible with the naive quantization procedure; we call

this product *y.

Theorem 2.1. Let f,g € Clq,p| and ¢ € C*(R). Then,

. (1/i) amfam
=X

fHng=QN(Qn(f
s (]

= exp((h/i)8, ® 0,)(f ® g)

(2.23)
defines an associative NC product on the ring Clq, p).

Since Qy is a bijective linear map, the associativity of the product in Dif f(R)
directly carries over to xy. The former is generally noncommutative and so the same

holds for the latter. In the classical limit we get

af dy

99 9 +O(r?) (2.24)

frvg=f-g—ith

which almost satisfies the correspondence principle. Note also that @ is a ho-
momorphism of algebras with respect to the xy-product: for all f,g € Clq,p],
An(f*nvg) = Qn(f)@n(g). This means that, although the correspondence princi-

ple is not exactly satisfied, () does define a complete quantization by deformation.

To obtain a physical deformation quantization, one that satisfies the correspon-

dence principle, we introduce an operator (Qs symmetric under the exchange ¢ < p.

Definition 2.4. (Symmetric quantization) The linear operator Qs : Clq,p] —
Dif f(R) is defined on the basis of monomials of the ring Clq, p| by

1—Qs(1) =1, q—Qs(q) =14, (2.25)
p—=Qs(p)=p, ¢ -p" = Qs(¢" - p") = Snm(d D) . (2.26)

Function S, ,(¢,p) is a polynomial in ¢, p, symmetric under the exchange ¢ <> p

and it is given by

S (é ]5) — <ﬂewé+yﬁ) ‘ B (2 27)
n,m\Y» 8x”8ym z,y=0 - .
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The quantization operator Qg is extended to the whole ring by C-bilinearity. Again,
by invoking the BCH formula and noting that ¢ and p commute with their commu-

tator, we can obtain the connection between Qg and @y,

Qs(e™) = e = explhwy/2ile™e" = exp|hiwy/2i|Qn (€™ ™)
= exp|hzy/2i]Qn (") = Qy(exp|hzy/2i]e*?TVP) . (2.28)

So there is a bijective map N : C[q, p] — C|g, p] defined by

N f(q,p) = exp[(h/2i)0%/0q0p] f (¢, p) , (2.29)

linking the two orderings by Qn(Nf) = Qs(f) for all f € C[q,p]. Note that N’s
inverse is given by N~' = exp[—(h/2i)0?/0q0p] and so Qn(f) = Qs(N~1f) for
all f € Clg,p]. Since it was shown that Qn(Nf) = Qs(f) for all f € Clg,p],
the isomoprphism of the two x-products follows directly from Theorem 2.1. The
associativity of the product in Dif f(R) carries over to *g, since Qs = Qy o N is a

bijection. Hence, xg is also an NC product on C|g, p|.

Theorem 2.2. Let f,g € Clq,p| and ¢ € C*(R). Then,

Fro= Q3 Qs(Nst) = S PSS (W) o L

m=0 k=0
(2.30)
defines an associative NC' product on the ring Clq,p]. Moreover this product is

1somorphic to the product xn of naive quantization via the linear bijective map N :

N(f*ng)=(Nf)*s(Ng), forall f,gcClg,p| (2.31)

Operator Qg is a homomorphism of algebras with respect to xg: for all f,g €
Clg, p] we have Qs(fxsg) = Qs(f)Qs(g). This time, however, we have the following

asymptotic relation:

frsg=Fg+ 5 (f.0) +O0) (2.32)

Therefore, operator (g defines a deformation quantization on the ring of polynomials
Clg, p] in the sense that to every function in the ring it associates a differential
operator that acts on the space C*°(R) and xg-product captures the NC character
of these differential operators transferring it back to C[g, p]. Moreover, *g-product

satisfies the correspondence principle.
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It turns out that xg-product induced by the symmetric quantization is exactly the

same as the MWG xp-product induced by the WW-correspondence. By definition,
for any f,g € Clg, pl,

o0

rsoan) =3 CEIS (1) B
% m G35\
-3 zﬁﬁ ;( )f ¢,p) (aqap a%a%) 9(¢,p)
= f(q,p) exp [; (?; - %@g)] 9(q,p)
= (f*xn9)(a:p) - (2.33)

Therefore, for all f,g € C[q,p|, we have fxs g = f *; g. This means that although
the MWG product is only defined on L?(R?), apparently its definition also works
for functions in the ring C[g,p]. Since symmetric quantization is well-defined, we
see now that the Weyl transform of polynomial functions, such as the harmonic
oscillator hamiltonian, is also well-defined. Moreover, the symmetric quantization is

in a 1-1 correspondence with the naive quantization which is a bijective quantization.

2.2 Noncommutative space-time

Classical phase space is an abstract space of states and not an actual coordinate
space R3. However, classical space-time is also described by a smooth manifold
and a commutative algebra of fields defined on it. Therefore, we should be able to
apply the x-product formalism to obtain the deformation of continuous space-time.
This approach leads us to an algebraic definition of a “quantum”, noncommutative

space-time. The following exposition relies heavily on [22].

To deform the algebraic structure of continuous space-time, we first consider a
unital, associative, freely generated algebra of formal polynomials over the field of
complex numbers, i.e. C[z!,...,z"]. It is a noncommutative analogue of a polyno-
mial ring, and in return, a polynomial ring may be regarded as a commutative free
algebra. The basis of C[z!, ..., z"V] consists of all finite formal products of N elements

1 N («

T, ..., coordinates”) including the unit element 1 which is of zero order. The

product of two basis elements is naturally defined by concatenation,

(™. 2" (eh 272, 27) = " a2 g 2 gl (2.34)
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There are equivalence classes in C[z?, ..., V] defined by the relation R, : [z, 2"] = 0

that generates a two-sided ideal in C[2!, ..., 2™]. The quotient

p, = St (2.35)

is the algebra of polynomials in N commuting elements. This algebra can be
extended by introducing a dimensionless parameter h and considering the algebra
Clz!, ..., zN][[n]] of formal power series in h with coefficients in Clx',...,z"]. The

h-extension of P, is the quotient

A, = . (2.36)

This is the algebra of commuting coordinates of a classical space-time that we want
to deform by introducing NC coordinates z#. The deformation is imposed on the

relation R, by making it non-trivial. In general,

~

R, : [##,47] — ihCM™(3") = 0 , (2.37)

where C* () € C[&',...,2"][[h]]. For h = 0 we consistently obtain the original
algebra of commuting coordinates A,. The deformed relations define a two sided

ideal I; in C[z', ..., 2"][[h]] spanned by the elements of the form

(&...2) ([, 2¥] — ihC™ (3")) (..2) | (2.38)

where (#...2) stands for an arbitrary product of NC coordinates from C[z!, ..., 2V].

Finally, the quotient

(2.39)

is the algebra of NC coordinates # - a deformation of the original commutative

structure A,.

There are several important examples of such algebras that we should mention.
First, we have constant deformation, with z-independent C'*”. This is the analog of
the Heisenberg phase space algebra, and it is therefore called canonical (6-constant)

deformation:
[z, 7] = iho"” | (2.40)

with C*(z) = 0" = —@* € R. Then there is Lie algebra type of deformation, with
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deformation functions C*¥(z) linear in Z,
(2, 2"] = ihfiV3" . (2.41)

In this case, the algebra A; of NC coordinates is the universal enveloping algebra
of the Lie algebra defined by (2.41)). A particular example would be

[, 3] = i(a"3” — a’i") (2.42)

with real parameters a*. In the basis where a® = 0 for i # N and o = 1/k we
can identify this algebra with the x-deformation algebra. To be consistent with the
reality property (z#)* = (z#) we demand a conjugation for & as well as (Z#)* = @#
and (Z+z)* = (z¥)*(2*)*. This implies (C*)* = —C"* = CH.

The vector space of A, can be decomposed into finite dimensional subspaces V,
spanned by the monomials of degree r. A basis in V, is given by the monomials
..z with 43 < ... < i,. Consider the vector space F, = &"_,V; spanned by
all monomials up to degree r. We require that vector space F, in A; of all NC
polynomials up to degree r to have the same dimension as F,. We also require the
ordered monomials up to degree r, that is 2...2% with i; < ... <izand 0 < s <7, to
constitute a basis in F,. This is the Poincaré-Birkhoff-Witt (PBW) property of the
NC algebra Aj;. For canonical deformation and Lie algebra deformation the PBW
property holds (PBW theorem). If algebra A; has PBW property, the set of all
monomials ordered with respect to a given fixed ordering, forms a basis. A natural
choice, but not the only one, is the symmetric ordering that gives fully symmetrized
monomials. The linear span of the basis elements of degree r defines a vector space
V.. By construction, this space has the same dimension as the vector space V. of
polynomials of degree r in N commuting coordinates. We can extend the vector
space isomorphism V. ~V, to an algebra isomorphism Az ~ A% since their vector
spaces coincide. The *-product in A} is defined so that the algebras A; and A’ are

1somorphic. By the vector space isomorphism, we map polynomials,
p(z) +— p(z) . (2.43)

A pair of polynomials p;(Z) and po() are multiplied as

=>

P1(2) - pa() = prpa(Z) - (2.44)
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By ([2.43]) we map this polynomial back to a polynomial in A%,

P1pa(2) — (p1*pa) () - (2.45)
This defines the NC x-product of two polynomial functions.

Different deformations correspond to different x-products. For #-constant defor-

mation, the associated x-product is the Moyal x-product given by

(b1 % p2)(@) = p (27050 @ s ) (a) | (2:46)

with point-wise multiplication map,

p(f ®g)(x) = f(z)-g(x) . (2.47)

Moyal product can be extended to C* functions, remaining bilinear and associative.
The power series in h will not converge in general (for an arbitrary C'*° function)

and we should regard it as a formal power series. In general,

(f©g)=frg= u(e%hep”*’”@a”f ® g)
-y (%) 000 Dy Dy ) Do) (2.48)
n=0 ’
Expansion in h yields
fxg=f-g+0(h), (2.49)
and
ih
frg—gxf=-507(0,f09—9p90,f) + O(h?) . (2.50)

This equation defines a Poisson structure known as the Moyal bracket,

f 9k = %WU (0pf0s9 — 0,905 f) (2.51)

that consistently reduces to zero when 677 — 0.

We will present an explicit derivation of the Moyal x-product that is associa-
ted with the canonical deformation. For that matter, consider the algebra P, of

polynomial functions in N commuting coordinates z', ..., 2. Any function can be
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expanded in the monomial basis

f(x) =) Cuppt o = C 4 Gt + Cpata” + . (2.52)

and it is uniquely determined by the expansion coefficients C,, ,, that are comple-
tely symmetric in their indices. Now consider the algebra P; of polynomial functions
of N noncommmuting coordinates z!, ..., 2"V that satisfies PBW condition. PBW
property enables us to define a basis of ordered monomials. There are many possible
orderings. The most often used ones are the symmetric and the normal ordering. If

we choose the symmetric ordering, the basis in the NC algebra is given by

1:=1,
ah o=zt
skt = 5(33“33” —zvzt)
(2.53)
An arbitrary element of P, can be expanded in this basis,
F@) = Cop 88 = O G #: Cy - 28”5+ (2.54)

and it is fully characterized by the completely symmetric coefficients C),; ...

We will now apply the procedure analogues to the Weyl quantization. We define
an isomorphism ¥V between vector spaces P, and P by mapping the basis of P,

into the basis of P; according to the chosen ordering prescription,
W f(z) — f(&) . (2.55)

In the case of symmetric ordering,

. 1

F@) =W = Gy [ 4k Fge (2.56)

where f(k) is the usual Fourier transform of f(z),

~ 1

F) = s [ Ve Sy (2.57)

(2m)
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For an arbitrary monomial

Wiatro] = @) [ @k (3,00, 090 () e
= (Z)] /de 5(N)(k;) (akmmakuj eikpxp>
IRy

j' O'ESj
=zt (2.58)
In general, the x-product is defined by
WIf % 9] = WIf)- Wlgl = f(2) - 4(2) - (2.59)

For the case of #-deformation, we have the Moyal x-product. We start with

1 ry ik, &P 1 ry i 20
o >N/2/ Tk e (2 e [ 4 e

@y / dVk / AVp f(k)f(p)e™e™ ot (2.60)

WIfT-Wlgl =

Since the exponents do not commute, we must again use the BCH formula

LA A B+ (BB A +..) . (2.61)

exp(A) exp(B) = exp(A+ B+ 12

S4B+

where A and B are two noncommuting operators. In the case of #-deformation the

BCH formula terminates since terms with more than two commutators vanish,

2 /de,/def k—l—p)px/’——e“pkppg
7T
- (27T)N / de/ Vg f(k)g(g — k)e ™ =30 Re - (2,62)

WIf-w

where we introduced ¢ = k + p. Comparing this expression with

Wit x8) = o [ @¥alTFa) e (2:63
we conclude
(F*9)(a) = W / A"k f(k)G(g — k)e 2" kele b (2.64)
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Finally, we take the inverse Fourier transform and obtain

1 ~ . o _ i o ~ —ipsx®
T*9=Gaw / d"p / AVl J(k)e e ekt Thog(p)e i (2.65)

To evaluate the integral, we expand in powers of 677,

i 1
frg=Fg+ 307 (0,0)(0r) — 507070y, 00, 1) OpsDi) +
= {00 [ & g} (2.66)

with commutative point-wise multiplication p{f ® g} = f- g = fg.

2.3 Noncommutative calculus

To completely develop a NC field theory, we need to have some tools at our
disposal. First we introduce NC derivative 5?,) as a map of NC algebra A to itself.

It is a deformation of the ordinary partial derivative, and we assume that
[0,, 2" = 84 + f4(0,0) . (2.67)

Here, f[’;‘(é, 0) is an operator on A that does not depend on #. Also, NC derivatives

should commute [9,,d,] = 0.

Since 0 : A; — A; the relation 1} must be consistent with f-deformation,

A~

O[] — i0") — ([0 2) — 0°)0, = 0, (2.68)

that is, interchanging NC derivative and NC coordinates does not produce a new
commutation relations between coordinates. From this follows that f;j(é, g) = 0,

and hence
[0, 2] = o . (2.69)

This relation is a peculiarity of the #-constant deformation; it does not hold in

general. We can determine the properties of éu from the following diagram

3 PBW
e

f(&)
5#1 l o; (2.70)
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The PBW property allows us to map f () and (57,L f )(2) to Ax. Then, by comparing
the images f(x) and (9} f)(x), we can deduce the form of J5. In the case of f-constant

deformation, the representation of @ on A7 is given by
O — 05 =0, , (2.71)

meaning that it does not get deformed. The derivative 0y, satisfies the undeformed

Leibniz rule,

(05(f*9) =0ulfx9) = Opf) x g+ [+ (Oh9) = (Ouf) % g+ [ *(Bug) . (2.72)

To be able to formulate actions, we have to introduce integrals on NC space-time.
One can readily check the cyclicity of ordinary integral over classical space-time

(with suitable boundary conditions),

/d‘*xf*g:/d%g*f:/d%f-g. (2.73)

and this holds in any number of dimensions. From ({2.73)) follows

/d% (fik ..k fo) = /d%; (fex f1% ook fro1) (2.74)

that is, cyclic permutations under integral are allowed. This is important for esta-
blishing variational principle that gives us equations of motion. We can use the
Leibniz rule for the functional variation and cyclicity to eliminate one %-product

and extract the result. For example,
o o
— [ d* h= [ d* ——g | *xh
69(y) / A / i (59(y)g) i
= /d4x fxdW(y—z)xh
= /d% Sy —x)x (hx f)
~ [de sy -t =t D). @1

Here, 6 (y — x) is the ordinary four-dimensional Dirac delta-function.
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3 Seiberg-Witten gauge field theory

To begin with, we will briefly summarize the basic elements of classical (un-
deformed) gauge field theories (gauge field theories on classical space-time). Let
hermitian generators Ty (A = 1,2, ..., N) of some non-Abelian, N-parametric gauge

group G, satisfy the following Lie algebra commutation relations
[T, Ts) =ifas T | (3.1)

with totally antisymmetric structure constants f,z“. Variation of matter field 1
(we assume that matter fields belong to the fundamental representation of the gauge

group) under infinitesimal gauge transformation is given by
Sath = donp = ia (2)Tar) (3.2)

where infinitesimal gauge parameter a(z) = a(x)T4 belongs to the Lie algebra
of the gauge group and depends on space-time coordinates. These transformations

close in the algebra,
[0a; 98] = 0—ifa,s) - (3.3)

Covariant derivative acts on 1) as

Dy =0, —iv, (3.4)

where v,(z) = UMA(:L‘)T 4 is a Lie algebra-valued gauge potential. By definition, the

covariant derivative of ¢ transforms covariantly,
da Dy = iaDy) (3.5)

and from this condition follows the inhomogeneous transformation law of the gauge
potential,
0y = Opac+ i, vy,] . (3.6)

Gauge field strength,
F,, = 0,v, — 0yv, —iv,, v, (3.7)

is also Lie algebra-valued, F),, = F WATA, and it transforms in the adjoint represen-
tation of the gauge group,
daFpw = tlo, Fll . (3.8)
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We can rewrite the gauge field strength in terms of covariant derivative in a curvature-
like fashion,
F.,=1iD,,D,] . (3.9)

When acting on an adjoint field, such as F},,, covariant derivative reads

DoFpy = 0aF,y — i[va, Fu) - (3.10)

In the Seiberg-Witten (SW) approach to NC gauge field theories [22) 4T, [49] 50]
the basic structure of classical gauge field theories is kept, but instead of ordinary
fields and ordinary commutative multiplication, one introduces NC fields and Moyal
x-product, respectively. We will mainly follow the exposition given in [22]. Variation
of NC matter field g@ (NC fields are denoted by a “hat” symbol) under infinitesimal,

NC-deformed gauge transformation is, by definition,
Sk =iA %1 . (3.11)

where A = A(:):) is an NC gauge parameter. Acting on a x-product of two NC fields,

NC variation satisfies the Leibniz rule:
51 % ) = (510) %+ b+ (930 (3.12)

To establish closure, for a given pair of NC gauge parameters A; and f\g, we would
like to find a third one, Ag, such that

[07 7 03] = 03 . (3.13)

There is however a difficulty, in general, concerning the closure axiom for NC gauge
transformations. Namely, if NC gauge parameter A is supposed to be Lie algebra-
valued, A(z) = A*(2)Ty, then, for some NC field ¢ from the fundamental represen-

tation (the following argument holds in any representation), we have

[(5{’;55]1& = (Al*AQ _[\2 *Al)*@&
1

> ([Af s AB|{Ty, Ty} + {A2 « ABYT, TB]) wt) = ihg k1. (3.14)

We see that the NC closure rule

[5};1 75};2] - 6ii[[\1¢f\2] ) (315)

consistently generalizes its commutative counterpart (3.3). However, (3.14) implies
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that x-commutator of two NC gauge transformations does not generally close in the
Lie algebra, because anti-commutator {74, T} is not, in general, an element of the
algebra, except for U(N) gauge group; only in this particular case one can study
non-expended (in orders of the ;deformation parameter) NC gauge theories, as in
[41]. Such actions look the same as actions describing the corresponding undeformed
theories, except that, instead of the usual point-wise field multiplication, one has
the Moyal product. Quntization of non-expended theories leads to the phenomena
of UV/IR mixing [51, 52]. But this is not enough if one wants to study the Standard
Model. Therefore, we will employ the enveloping algebra approach [49], 50].

3.1 Universal enveloping algebra approach

The universal enveloping algebra (UEA) is the largest unital associative algebra
in which we can embed a given Lie algebra, so that the abstract bracket operation

of the Lie algebra is now the commutator in the associative algebra.

Definition 3.1. (Universal enveloping algebra). For a given Lie algebra g of di-
mension n, over a field K, with generators g1,..., gn satisfying [g;, g;] = cikjgk, one
can define a freely generated tensor algebra T (g) = B ,g°" =KD gd (gR9) D ... .
The universal enveloping algebra U(g) is obtained by taking a quotient with respect
to the relation a @ b — b ® a = [a,b] for all a and b in the embedding of g in T (g),
that is, U(g) = T (9)/Z, where T is the two-sided ideal generated by the elements of
the form a @ b—b®a — [a,b] € g® (g® g) C T (g); note that [a,b] = ¢;*,a'V gy.

In general, elements of UEA are linear combinations of (tensor) products of
the generators of the original Lie algebra in all possible orders. Using the defining
relations of UEA, we can always re-arrange those products in a particular manner,
for example, elements of the form (we omit the tensor product) ¢g¥gh>...¢g5 with
k; € Z, U{0}, span UEA. Basis of UEA is always infinite dimensional. In our case,

assuming symmetric ordering, a basis (omitting “1”) is provided by

Ty =Ty,
1
TaTg: = §(TATB +TgTy) ,

ey

1
. TAl---TAn L= m Z Ta(Al)---Ta(An) s (316)

" oEeS,

where S, is the set of permutations of n objects; |5, | = nl.
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Universal enveloping algebra of a gauge group is "large enough”to ensure that
the closure property for NC gauge transformations holds, provided that NC gauge
parameter A is UEA-valued,

= i Z An’Al"'An : TA1"'TAn :

n=1 basis

_ Al’A Ty +A2’AB($) Tl ... . (317)

In this case, »-commutator of two NC gauge transformations closes in the enveloping

algebra. NC covariant derivative in the fundamental representation is defined by
D#Iﬁ = a;ﬂ[) - iv,u * 1; ) (318>

where V# stands for NC gauge field. NC field strength is defined by analogy with
the classical case
Fu =0V, =8,V —ilV, tV,] . (3.19)

The covariant derivative of ¢ transforms covariantly,
55D, = ihx D) (3.20)
implying the inhomogeneous transformation law for the NC gauge field,
5V, =0,A+i[A5 V] . (3.21)

From this follows that NC gauge field must also be UEA-valued, and it can be

represented in its basis,

n=1 basis

= VAT, + 'VZ’AB{TA,TB}
1 -
3—v ABC(T (T, To} + Tp{Te, Ta}y + Te{Ta, Tp}) + (3.22)

Components V;’A, V2AB \/3.ABC | are new independent fields in the theory, and
since UEA has an infinite basis, it seems that by invoking it we actually introduced
an infinite number of new degrees of freedom in the NC theory. This unwanted

feature of UEA-valued gauge field is tamed by the Seiberg-Witten map [41), 53].
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3.2 Seiberg-Witten map

As we saw, the main difficulty with UAE-valued gauge field theory is that it
seems to compel us to introduce an infinite number of new un-physical degrees of
freedom, making this approach unrealistic. Fortunately, however, it is demonstrated
n [54], by studying the cohomology of UEA gauge theory, that all components of
the UEA-valued gauge field can be obtained from the Lie algebra-valued gauge field
Vul = V;’ATA. Therefore, these new components do not represent new degrees of
freedom; NC' gauge field theory possess the same number of degrees of freedom as
the corresponding gauge field theory on classical space-time. This structural feature
of UEA gauge theory and the fact that NC fields have to reduce to their classical
counterparts when 6*° — 0, as dictated by the principle of correspondence, are the

basis of the SW construction, originally constructed in [41].

This map provides a way to represent NC fields as perturbation series in powers
of the deformation parameter %%, with coefficients built out of the fields from the
corresponding classical theory. This means that one can define an NC gauge field
theory in terms of its classical counterpart. The expansion can be defined by deman-
ding that NC gauge transformations are induced by the corresponding undeformed
gauge transformations. This, in turn, implies that NC gauge parameter and NC

gauge field have the following structure

A:A(a,ﬁa,...;vu,ﬁvﬂ,...) , (3.23)
Vi, = Vi(vy, 0vy, ... (3.24)

where dots stand for higher-order derivatives (we will omit the derivatives to simplify
the notation). Thus we can relate NC gauge transformation 0} = 0y = ¢}, with the

undeformed gauge transformation J, by

5 Mo, v,) = Aa, vy, + 0av,) — Aa,v,) (3.25)

A ~ ~

oaVi(vp) = V(o + davy) — Vilup) (3.26)
with classical variation of the classical gauge field, d,v, = 9,0 + i[cr, v,,].
Inserting A, = A(oz, v,) into yields
AaxAg—Agx Ao + (5505 — 65R0) = 6% 4 - (3.27)

In order to solve this equation perturbatively, one has to expand A, in powers of
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the deformation parameter 67 as

~

Ag=AD + AW L A® (3.28)

with /A\&") ~ 0™. At zeroth order, A, reduce to its undeformed counterparts, A&O) = .
Note that this expansion is not the same as the basis expansion (3.17)).

The first order NC correction AL ~ 6 satisfies the inhomogeneous equation

* A * A . - A A 1 v
501A(51) o 5/3At(xl) - Z{O“ A(Bl)] - Z[Aél),ﬁ] - A(—li)[a,ﬂ] - _QQIL {a,uav al/ﬁ} : (329>
Up to the first order, the solution is given by
- 1
Ay=a— ZGW{U’“ d,a} +O(6%) . (3.30)

This solution is not unique, since one can add to it solutions of the homogeneous
equation

* Al * A . 2 (1 r A ~ (1

OiAY) — G5AD — o AZ — A, ) - AT 5 =0 (3.31)

We will not discuss this aspect here. Detailed analyses of non uniqueness of the SW

map can be found in [55].

In this way one can obtain SW expansions for NC gauge parameter, NC gauge
potential, NC field strength and NC matter field; they are given by

Au—a- ieaﬁ{fua, s+ O0?) , (3.32)
N 1
Vi =0 = 707 {va, Ovy + Fu} + O(0°) | (3.33)
. 1 1
Fiuy = Fi = 36" 00, (93 + Do) P} + 50 Fope Fo} + O . (339
N 1
b= 6= 200, (9, + Dy)u + O(F) (539

It is clear that, at the leading order, all NC fields consistently reduce to their classical
counterparts, in accord with the principle of correspondence. We can use SW map
to expend NC-deformed actions and analyze them perturbatively. There are no
new fields in this expansion and the leading order action will always be the original
classical action. By the virtue of SW map, expanded actions are endowed with the
original undeformed gauge symmetry of the classical action, order-by-order in 5.
This method was used for constructing the NC Standard Model, as in [56].
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4 SO(2,3), model of NC gravity

In this section, we introduce NC gravity as an SO(2,3), gauge theory on ca-
nonically deformed space-time. We will go through some main results obtained in
[57H60], where the theory was founded, without getting into details of the calcula-
tion. The main emphasis will be on the structure of the theory and the method of
its construction. The intention is to set a general framework for dealing with matter

fields and supergravity, later on.

Instating the SO(2,3), model of NC gravity involves several steps. To begin
with, one introduces classical (undeformed) action invariant under SO(2,3) gauge
transformations. This action consists of three parts: the first one is a Mac-Dowell
Mansouri type of action, quadratic in SO(2,3) field strength and the other two
parts are suitable SO(2,3) generalizations of the Einstein-Hilbert action and the
cosmological constant term. To relate the AdS gauge theory to gravity (GR), a
gauge fixing condition that reduces the original SO(2,3) gauge symmetry down to
SO(1,3) needs to be imposed. For this purpose, a constrained auxiliary field is
employed, in the manner of Stelle and West. After the symmetry breaking, the
AdS action consistently reduces to (Einstein-Hilbert) 4+ (Cosmological constant) +

(topological Gauss-Bonnet term).

Canonical NC deformation of classical space-time is performed by introducing
the Moyal *-product that replaces ordinary commutative field multiplication, thus
yielding an NC action invariant under deformed SO(2,3), gauge transformations.
At this stage, a direct symmetry braking would not provide the desired result, since
it would not render an SO(1,3), invariant action. The way to proceed is to follow
the SW approach to NC gauge field theory and expand the SO(2, 3), gauge-invariant
NC action in powers of the deformation parameter 6*”. By the virtue of SW map,
this expansion is invariant under classical SO(2,3) gauge transformations, order-
by-order in 0. After gauge fixing, the obtained NC corrections of all orders will
necessarily possess SO(1,3) gauge symmetry. The second-order NC correction is
calculated explicitly (the first-order correction vanishes), and the low-energy appro-
ximation of the theory is studied, including the equations of motion. In particular,
it is demonstrated that SO(2,3), model implies a non-trivial deformation of Min-
kowski space and reveals that noncommutativity can be regarded as a source of
curvature and torsion. Furthermore, the structure of the NC-deformed Minkowski
metric suggests that the lack of diffeomorphism invariance in the NC theory can be
understood as a consequence of the fact that constant noncommutativity implies

working in a preferred coordinate system - the Fermi inertial frame.
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4.1 AdS gauge theory of gravity

Before presenting classical AdS gauge-invariant action and its NC deformation,
let us accentuate the main point of the subject - that GR with the cosmological
constant can be formulated as a Yang-Mills-like theory of AdS gauge group SO(2, 3).
By now, a vast body of literature concerning the relation of GR to Yang-Mills gauge
theories has been accumulated. Since the original papers of Utiyama [61], Kibble
[62] and Sciama [63], there has been considerable interest in this subject and, instead
of giving a full historical account, we refer to the several available reviews [64H66].
The main result of these efforts has been to establish a connection between GR,
expressed in the first-order formalism, and the Poincaré gauge theory (PGT), with
the spin-connection representing the gauge field for the local Lorentz rotations, and
the vierbein field being considered as the gauge field for translations in space-time
[67, 68]. However, the analogy with Yang-Mills gauge theories is not complete
because of the specific treatment of translations. Nevertheless, it is possible to
formulate gauge theory of gravity in a way that treats the whole Poincaré group in
a more unified way, and naturally includes the cosmological constant. The approach
is based on the AdS gauge group SO(2, 3). A significant incentive for studying gauge-
theoretic formulations of gravity came with the development of SUGRA (extended
SUGRA theories combine space-time and internal symmetries). Pure SUGRA is
related to a gauge theory of the Poincaré supergroup, or in the generalization of
SUGRA to include cosmological constant, to a gauge theory of the orthosymplectic
OSp(4]1) supergroup. We put our attention on the AdS group SO(2,3), which is
locally isomorphic to the symplectic group Sp(4) (bosonic sector of OSp(4|1)). For
our purposes, we could equally well use the de Sitter group SO(1,4); the choice of
S0O(3,2) is made to retain the connection to SUGRA. We will mainly follow the

course set in [69-74].

AdS, is a maximally symmetric space with Lorentzian signature (+ — ——) and
constant negative curvature; it can be represented as a hyperboloid embedded in
a five-dimensional flat ambient space with signature (+ — — — +). In AdS gauge
theory, we start with an action invariant under SO(2,3) gauge transformations. In
order to relate AdS gauge theory to GR, one has to reduce the original SO(2,3)
gauge symmetry to SO(1, 3). For this purpose, in [71] Stelle and West introduced a
nondynamical SO(2, 3) five-vector field ¢! with dimensions of length. The auxiliary
field is constrained to take values in the AdS, submanifold of the five-dimensional
flat internal space with metric n4p, a copy of which is associated to each point of
the space-time manifold. The constraint n4p¢?¢® = I? defines the AdS, embedding

equation, where [ is related to the cosmological constant by A = —3/I2.
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Lie group SO(2, 3) is the isometry group of AdS,. AdS algebra so(2, 3) is spanned
by ten generators M p = —Mpa (A, B = 0,1,2,3,5) satisfying s0(2,3) commuta-

tion relations

[Map, Mcp| = i(napMpe + npeMap — nacMpp — nepMac) - (4.1)

By splitting the set of generators into six AdS rotation generators My, (a,b =
0,1,2,3) and four AdS translation generators M,s5, we can recast the AdS algebra
relations (8.1]) in a more explicit form,

[Ma57Mb5] - _iMab )
[Maba MCS] = i(anMCLS - nachS) ,
[Maln Mcd] = Z.(77acl~]\/[bc + 77bc]\4’ad - 77acj\4’bd - 7/Ibd]w’ac) . (42)

By introducing rescaled generators P, := 71 M,s5, (4.2)) can be transformed into

[Py, Py) = —il My, ,
[Mabv Pc] - 2.(77613-Pa - 7]&ch> )
[Maby Mcd] = i(nadec + nbcMad - nachd - nbdMac) . (43)

In the limit [ — oo the AdS algebra reduces to Poincaré algebra, in particular,
we have [P,, B,] = 0 with all other commutators left unchanged. This is a famous
example of the Wigner-Inonii contraction. In this sense, AdS; can be regarded as
a deformation of My,. A realization of AdS algebra is provided by 5D gamma-
matrices I'* satisfying Clifford algebra {I'4,T'5} = 2nap; the generators are given
by Map = £[['4,T'5). One choice of 5D gamma matrices is T's = (i7475,75), where
v, are the usual 4D gamma-matrices. In this particular representation, SO(2,3)
generators are M, = ﬁ[va, M) = %%b and Ms, = %%. The AdS group SO(2,3) acts
on matter fields in the tangent space as a gauge group of internal symmetries. AdS
gauge field splits into two components wuab and wua‘r’,

1 1 1

W = §WMABMAB B Zw#abaab B §wua5% ’ (4.4)

Its variation under infinitesimal gauge transformation is given by
dewy = Ope +ile,w,] (4.5)

for some s0(2, 3) algebra-valued gauge parameter € = €% (2)Mp.
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More explicitly, in terms of components,

AB _ 9 AB _ A, CB_ B  CA
dw, 7 = 06" —€'ow,” +ecw, ",
ab ab a cb b ca a 5b b 5a
dew, ™ = Ope” — w7 + € W, — ehw,” + 5w,
ab __ ab a cb 5 ca
Oew, " = 0™ — " w,” + € w, . (4.6)

AdS field strength is defined in the usual way,

1
F = 0w, — Oyw, —ilw,,w,| = = WABMAB , (4.7)

2

and just like the gauge field, its components split into FWab and F,_ %, yielding

p
Fu = l(R 2 (0,50, = 0,50, )7 — L (4.8)
g\H w 2 2 H
where
R/ﬂ?b = O, — a}/wuab +wl W, — Wubc w, (4.9)
F,*® =Diw,” — Djw,” . (4.10)

Note that D/ stands for the Lorentz SO(1,3) covariant derivative.

Under local AdS transformations, field strength transforms in the adjoint repre-

sentation of SO(2,3) gauge group,
0 F,, =ile, Fl] , (4.11)
or, more explicitly,
6 F,, ab _ _.ac Ful/cb o he Flot— (a5 FW5b Lo Flo
0.F, " = —€“F,, > +€°F," . (4.12)

pve

Equations (4.4), (4.6), (4.8) and (4.12)) suggest that after setting ¢*® = 0 (by doing

this we restrict the group of gauge transformations to SO(1,3)) we may identify
wuab component of the AdS gauge field with the Lorentz SO(1, 3) spin-connection of
PGT, wﬂa‘r’ with the (rescaled) vierbein ef /I, field strength component R#V“b with the
curvature tensor, and F W“E’ with (rescaled) torsion T,,¢/I. It has been demonstrated
in the 70s that one could indeed make such identification and relate AdS gauge the-
ory with GR. One approach was proposed by MacDowell and Mansouri [69]. They

start from an SO(2,3) gauge invariant theory but make an additional assumption
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- that all fields in the theory transform covariantly under infinitesimal diffeomorp-
hisms. The action is written in a way which breaks the SO(2,3) gauge symmetry
down to SO(1,3), and it is invariant under infinitesimal diffecomorphisms. One can
then identify wﬂa‘r’ with the vierbein and obtain GR after going to the second-order

formalisrfﬂ A similar approach was discussed by Towsend in [70].

A more elegant way of relating AdS gauge theory with GR was introduced by
Stelle and West [71]. They also start from an AdS gauge theory, but they spon-
taneously break the SO(2,3) gauge symmetry down to SO(1,3). Their start with
an SO(2,3) gauge-invariant action, and introduce an auxiliary field ¢ in order to
perform the symmetry breaking. In a particular gauge, their action reduces to the

MacDowell-Mansouri action which is invariant under the SO(1,3) gauge transfor-

ab
I

feomorphism invariance follows from the spontaneous symmetry breaking and does

mations, and again w * can be interpreted as the vierbeine. In that way, the dif-

not have to be introduced by hand at the very beginning.

The auxiliary field ¢ = ¢4 is a space-time scalar and internal space 5-vector
transforming in the adjoint representation of SO(2,3), that is d.¢ = i[e, ¢]. It has
dimensions of length and it is constrained by ¢? = napd?¢® = [2. Using this

auxiliary field one can write the following SO(2, 3) gauge invariant actions [72],

1
= 64;GNTr / d*z P F Fud | (4.13)
1
So = mTr/d% "B D, ¢ Dyt + c.c. (4.14)
i
55 = —mTf/ d'z "7 D¢ D, ¢ DypDstrd (4.15)

with SO(2,3) covariant derivative in the adjoin representation,
Du(b = 8u¢ - z'[w#, (b] . (4'16>

The complete commutative model of AdS gauge field theory is defined by the sum
of these three actions,
S = 0151 + CQSQ -+ 0353 s (417)

where we introduced free parameters cq,co, and c3 that will be determined from
some additional constraints. The action (4.17)) is real and manifestly invariant under
SO(2,3) gauge group.

IThis holds if there are no spinors in the theory. If the spinor fields appear, the torsion is
nonzero, and the pure gravity part of the theory does not reduce to GR.

35



In the approach taken in [57H60] (the one that will be advocated in this thesis), there
is no spontaneous symmetry breaking. Instead, gauge symmetry is broken directly
from SO(2,3) to SO(1,3) by setting ¢* = 0 and ¢®> = [ (physical gauge), which is
consistent with ¢? = 2, yielding

Glar =175 . (4.18)

The components of D,¢ then reduce to (D,¢)s; = et and (D,¢);; = 0. This is

how we get the vierbein from the auxiliary field ¢.

In the physical gauge, the classical action (4.17) becomes

Sles = 151t + 25 |gs + €353|at.

1 / d4 Cll2 prpo [ mnp rs
= - x € Emnrs
167Gy 16 N

n e((q F )R — Qe+ 20 + 203))) . (4.19)

12

This is the GR action in the first order formalism. The vierbein ej; and the spin-

ab
n

connection we obtain an equation that allows us to express the spin-connection

connection w, * are independent fields. Varying the action with respect to the spin-
in terms of the vierbein. Since there is no fermionic matter in the action this
equation gives vanishing torsion. In that case, the first term in the action (quadratic
in curvature) is the Gauss-Bonnet term. The second term is the Einstein-Hilbert
action, while the last term is the cosmological constant. From the vierbein e}, we
can construct the metric tensor g,, = nabeZeﬁ and e = y/—g. In order to have
the canonical normalization of the Einstein-Hilbert term, we impose the constraint
c1 + co = 1. Gauss-Bonnet term is topological; it does not influence the equations
of motion and we can safely omit it. Therefore, the original AdS action reduces to

the Einstein Hilbert action with the cosmological constant

1+CQ+203

A= -3

(4.20)

Note that the cosmological constant A can be positive, negative or zero, regardless

of the AdS symmetry of our model. Under WI contraction, it vanishes.

By this we conclude the first stage of constructing the theory of NC AdS gravity.
Geometrical character of the classical AdS action (4.17)) makes it suitable for NC de-
formation by the Seiberg-Witten method. The resulting NC action, invariant under

NC-deformed AdS gauge transformations, is considered in the following section.
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4.2 NC SO(2,3), gravity action

NC deformation of GR cannot be obtained in a straightforward manner, the main
difficulty being the underlying diffeomorphism invariance of GR. A vast amount of
literature concerning NC gravity has been accumulated over the years, offering a
variety of different approaches to the subject. In [75H77] an NC deformation of
pure Einstein gravity based on the SW construction is proposed. Then, there is
twist approach including some NC solutions [78-81]. Lorentz symmetry in NC
gauge field theories was studied in [82, [83]. In the case of emergent NC gravity,
dynamical quantum geometry arises from NC gauge theory given by Yang-Mills
matrix models [84 85]. There are also fuzzy space gravity models [86] [87]. The
SW map approach was related to NC gravity models via the Fedosov deformation
quantization of endomorphism bundles [88,[89]. Other attempts to relate NC gravity
models with some testable GR results like gravitational waves, cosmological solutions
and Newtonian potential, can be found in [90H95]. The connection to SUGRA was
established in [97, [08] and the extension of NC gauge theories to orthogonal and

symplectic algebras was considered in [99, [100].

Having in mind that SW construction works very well for NC gauge theories
and that we do know how to define a consistent classical AdS gauge theory of
gravity, it seems reasonable to consider NC gravity as a SW gauge field theory
of NC-deformed AdS gauge group SO(2,3),. This theory was founded in [57H60].
However, one cannot simply impose a gauge fixing condition on the level of the
non-extended NC action, because this will not yield an SO(1, 3), invariant theory
[57]. The main point is that NC deformation does not commute with the gauge
fixing. Therefore, one first has to expand the NC action in powers of 8#” using the
UEA gauge field theory and the SW map. The expanded NC action is invariant
under classical SO(2,3) gauge transformations, order-by-order in 6", by the virtue
of SW map. In this manner, the NC-deformed SO(2, 3), gauge theory is related to
NC gravity. Of course, one still has to impose the gauge fixing condition to obtain
an SO(1,3) gauge-invariant NC corrections. The first non-vanishing NC correction
to GR action is of second-order and it was calculated explicitly [59]. This result
is in accord with [I0I]. Due to the complexity of the NC gravity action, only the
low-energy sector of the theory is studied. An important prediction of the SO(2, 3),
model is a non-trivial NC deformation of Minkowski space that leads to a new
interpretation of noncommutativity as a source of curvature and torsion [59], and
of diffeomorphism symmetry breaking in NC field theories [60]. Also, the model
has the capacity to incorporate matter fields, and we will see later that inclusion of

matter couplings produces a non-trivial linear NC deformation.
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The NC generalization of the classical actions (4.13)), (4.14]) and (4.15)) is obtained

by promoting ordinary fields to their NC counterparts and commutative product

between fields by the Moyal x-product, yielding

’ -
St = ZWCCI;NTr / AUz P B w By 5 & | (4.21)
Sy = ﬁzmﬁ / d*ze™P? ¢ % Fpy % D,y Do+ c.c. (4.22)
Sk = _#?émﬁ / d*ze"” D+ Dydx D,d+ Dy 5 & . (4.23)

The second action is not real, and we therefore have to add its complex conjugate

by hand to impose the reality condition.

After the SW expansion and the gauge fixing (in that order), the second-order
NC correction Sz(\?)c was found explicitly. It is highly intricate and we will not write
the full expression here. We refer to the original work [59]. The analysis of the
exact action is very demanding, especially the resulting equations of motion, since
it contains terms that are up to fourth power of curvature and up to second power of
torsion. However, one can still analyze the model in different regimes of parameters.
If we are interested in the low energy corrections, we should keep terms that have
at most two derivatives on vierbeins. Therefore, we include only terms linear in

curvature, and linear and quadratic in torsion. Additionally, we assume that the

a
I

order. The equations of motions are obtained by varying the action over vierbein

spin connection w, ® and the first-order derivatives of vierbeins such are of the same
and spin connection, independently. If we consider only the class of NC solutions
with vanishing torsion T, = 0, in the low energy limit, equations of motion for the

vierbein and the spin-connection are

1 3 87Gy 35y,
dey, Raﬁcdegege’j —seh R+ (1 +co+2c3)el, =7,/ = — N—]ZC ., (4.24)
2 l e del
. . . 167Gy 655
0w, T, ey — T, et — T, =S,/ = _Téw—]\;(i : (4.25)
o

Now we come to an important point. The effective energy-momentum tensor 7%

and the effective spin-tensor S, in equations (4.24) and (4.25)) depend on 6* (since

they are obtained by varying NC correction Sz(\?)c that is quadratic in #) and we may
conclude that noncommutativity acts as a source of curvature and torsion, that is,
space-time can becomes curved as an effect of the noncommutative corrections. Also,

a torsion-free solution could develop a non-zero torsion due to noncommutativity.
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4.3 NC Minkowski space

To explore the consequences of space-time noncommutativity in some more de-
tail, we consider the NC deformation of Minkowski space in the low-energy limit
[60]. Minkowski space is a vacuum solution of Einstein field equations without the
cosmological constant. Therefore, if we recall that the cosmological constant de-
pends on the free parameters ¢y, c; and c3 as A = —3(1 + ¢ + 2¢3) /1%, we have to
assume the constraint 1 4 ¢ 4+ 2c3 = 0 that eliminates the cosmological constant in
the classical action. Regarding NC correction as a small perturbation around flat

Minkowski metric
G = N + AK/ZLCh;w ) (426)

where h,,, is quadratic in 0" ~ A%, field equations reduce to
1 1
5(&,8’%”" + 0,0"h" — O*9"h — OW™) — §n“”(6a85h0‘5 —0Oh) = Ay, (4.27)

with . .
py 2,4 por By N HvgoBgro |
T 16 ( Nap T 59a19p59

The NC-deformed components of the metric tensor are given by

11
00 _ 1— 90m90n men _ 904,890[
g 206 gio. et
07 __ Om pin ..m_.n
g = _ﬁg 9 T T ,
g o1 11 11
] 7 impajn m, .n ij naf af
g7 =—0" — @9 ™ 2416(579 Oupr® — 24l66 Oupz’a’ . (4.28)

The Reimann tensor for this solution can be calculated easily, and the scalar cur-
vature of the NC Minkowski space turns out to be R = %92 = const. Under
WI contraction it consistently vanishes. Thus, in the SO(2, 3), model, there exists
a non-trivial NC deformation of Minkowski space. A very interesting (and une-
xpected) conclusion emerges: having the components of the Riemann tensor, the

components of the metric tensor can be represented as

m _.n
goo = 1 — Romonz™ 2™,

2
Goi = —gRommxmxn )
1

This result suggests that the coordinates z# that we started with, are actually Ferm:

normal coordinates. These are the inertial coordinates of a local observer moving
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along a geodesic. The time coordinate 2° is just the proper time of the observer,
and space coordinates x' are defined as affine parameters along the geodesics in the
hypersurface orthogonal to the actual geodesic of the observer. Unlike Riemann
normal coordinates which can be constructed in a small neighbourhood of a point,
Fermi normal coordinates can be constructed in a small neighbourhood of a geode-
sic, that is, inside a small cylinder surrounding the geodesic [I02HI04]. Along the

geodesic we have

guu‘geod. = N, apg;u/’geod. =0. (430)

The measurements performed by a local observer moving along a geodesic are descri-
bed from a Fermi frame of reference, and this observer is the one that measures 6*”
to be constant. In any other reference frame (any other coordinate system) 0* will
not be constant. The breaking of diffeomorphism symmetry due to canonical non-
commutativity can now be understood as a consequence of working in a preferred

frame of reference given by the Fermi normal coordinates.

In an arbitrary reference frame, the NC deformation is obtained by an appro-
priate coordinate transformation. Let y® be an arbitrary coordinate system at a
point P in a small neighborhood of the geodesic v which defines our Fermi normal
coordinates x* and [z * z¥] = i6*". The noncommutativity in y-coordinates is then
given by
Py> 03ys

aya ayﬁ i LY PO NRA
Ak Oz ﬂe 6770 0xr0xPOTH Ox rO0x° OxY e (4.31)

) = i

The *-product is the Moyal x-product and y* are understood as functions of Fermi

inertial coordinates x*.

Two NC gravity models with constant noncommutativity, one in z* coordinates,
and the other in y* coordinates will not be equivalent. The result of [60] suggests
that constant noncommutativity implies a preferred coordinate system. This choice
breaks the diffeomorphism invariance of the NC theory. It is not clear whether the
diffeomorphism invariance can be restored. To answer this question, we have to be
able to rewrite the model in an arbitrary coordinate system. A step towards the
resolution of this problem would be understanding better various solutions of the
SO(2,3) NC gravity model, such as the NC Schwarzschild solution and cosmological

solutions. This remains to be done in the future.
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5 Dirac field and NC gravity

The content of this section is originally presented in [105].

Dirac spinor field describes charged spin-1/2 fermions, such as an electron, or a
quark. It transforms (although not necessarily) in the fundamental representation
of a gauge group, and it is invariant under general coordinate transformations. To
work with spinors in curved space-time, one has to use the first-order formalism.
In this section we introduce Dirac field within the framework of AdS gauge theory
of gravity, on the classical and noncommutative level. We start by presenting a
classical (undeformed) action, invariant under SO(2, 3) gauge transformations, that
coincides, after choosing a certain gauge, with the standard Dirac action in curved
space-time with a universal mass-like term that vanishes under WI contraction. This
mass-like term suggests (wrongly) that fermions have a mass equal to 2/ (I is the WI
contraction parameter related to AdS radius). However, the correct interpretation

would be that theory describes a massless electron in AdS, background geometry.

Due to its geometric character (before gauge fixing), the classical SO(2, 3) gauge-
invariant action is straightforwardly deformed by introducing Moyal x-product. The
resulting NC action is invariant under NC-deformed group of SO(2, 3), gauge trans-
formations. We take the SW approach to NC gauge field theory and expand the NC
action in powers of the deformation parameter 6#. By construction, the expanded
NC action is invariant under ordinary SO(2,3) gauge transformations, order-by-
order in #*. A significant consequence of having matter fields coupled to NC gravity
is the non-vanishing first order NC correction (for pure NC gravity it is quadratic).
This fact greatly simplifies the calculation and leads to some new phenomenological
predictions. In particular, the linear NC correction pertains even in the flat space-
time limit and produces NC deformation of the Dirac equation, Feynman propagator
and dispersion relation of an electron. We arrive at an interesting conclusion concer-
ning the relation between electron’s energy and helicity, namely, the model predicts
NC birefringence effect (analogues to the well-know effect in optics) for free elec-
trons propagating in NC space-time. Therefore, NC-deformed space-time acts as a
birefringent medium for electrons and causes a Zeeman-like splitting of their energy
levels, even in the absence of an external magnetic field. Later on, we will see that
if homogeneous background magnetic field is present, space-time noncommutativity
modifies electron’s Landau levels. We also note that some NC terms survive the WI
contraction, and thus provide a possible way to explore the connection between the

WI contraction and canonical NC deformation.
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5.1 Dirac field in AdS framework

Let ¢ be a Dirac spinor field transforming in the fundamental representation of

SO(2,3) gauge group. Its infinitesimal variation under the group action is

S.ah = iet) = %eABMAqu : (5.1)

AB

where € are some antisymmetric gauge parameters of SO(2,3). Therefore, we

define the SO(2, 3) covariant derivative of a Dirac spinor as

2
Du¢ = 6u¢ - §WHABMAB¢ ) (52)

and it can be dissolved in two parts
0
Dy = DEv + et (53)

where D[, given by
1
Dl = 9,4 — Zwuabaab@b , (5.4)

is the Lorentz SO(1,3) covariant derivative. The vierbein term in (5.3) is AdS
deformation that vanishes under WI contraction. As in the case of pure NC gravity
(Section 4), we introduce a non-dynamical auxiliary field ¢ = ¢“I"4 that transforms

in the adjoint representation AdS group, that is §.¢ = ile, ¢] .
Consider the spinor action (since it involves derivatives, we will call it “kinetic”)

?

S, in
vk 12

[tz 22 [6D,0D,6D,0D,0 - DiD6DSD] . (55)
This action is manifestly invariant under SO(2,3) gauge transformations, and it is
hermitian up to the surface term that vanishes. To reduce SO(2,3) gauge symme-
try down to SO(1,3) we choose the physical gauge and set ¢* = 0 and ¢° = [.
Consequently, we must set D, ¢z = e, and D, ¢%|gs = 0, yielding

1 - - 2 _
Sewnler =3 [ ate[br D = Dhire] = 7 [dwedn. (o)
This is exactly the Dirac action in curved space-time for spinors of mass 2/l. Now,
spinors do not actually gain mass by gauge fixing. The correct interpretation is that
cosmological mass-like term arises due to AdS background geometry. WI contraction

eliminates this term.
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There are five additional fermionic terms, invariant under SO(2,3) gauge trans-
formations, that can be used to supplement the original action and modify the

cosmological mass-like term. They differ only in the position of the auxiliary field,

VDD, ¢D,¢ Dty . D, Dyd D, Dodri
VDD, ¢dD ¢ Dty , YD, Dyd DDy
DD, D, Do) . (5.7)

Using them, we can build only three independent hermitian mass-like actions (of
the type ...1)) denoted by S,,; (i = 1,2,3):

Sua =2t (F = 3) [ de 7 [6D,0D,0D,0D,000 + 66D,6D,0D,0Dac]
Sna= "2 (77 = ) [ a' 2 [0D,0D,6D,60D,00 + 6D,00D0D,0Ds00)]
Sz = ic3 (? _ l%) / diz e §D,6D,é6D,d Dyl . (5.8)

Free dimensionless parameters ci,cs and c3 are introduced for generality. After

gauge fixing, sum of the three terms in (5.8)), denoted by Sy ,,,, reduces to

3
2 _
Spmlet = E Smi = 24(cy — 1 — ¢3) (m — 7) /d4x e . (5.9)
i=1

If we want to assume some particular value m for the mass parameter, the coefficients

c1, C9, and c3 must satisfy the constraint

1
Cog —Cl — C3 = o1 (5.10)

Then ({5.9) becomes

Symles = — <m — %) /d4x e . (5.11)

Terms in (5.6) and (5.11]) that involve cosmological mass 2/l cancel each other out,

and therefore, the total spinor action Sy = Sy gin + Sym comes down to
Syles. = % / d*z e [y Dl — DEpy] —m / d*z e i . (5.12)

Thus, by imposing the gauge fixing condition, we reduced the original AdS gauge

theory involving Dirac spinors, to the standard Dirac action in curved space-time.
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5.2 NC Dirac action

To deform classical actions and , we implement the Seiberg-Witten
method of constructing NC gauge field theories out of the corresponding undefor-
med ones, presented in Section 3. First, we promote classical fields, v and ¢, to their
NC counterparts, 1& and (13, and introduce the Moyal x-product instead of com-
mutative field multiplication. The resulting NC action is subsequently expanded in
powers of 0*” using the SW prescription. By construction, this expanded NC action
is invariant under undeformed SO(2,3) gauge transformations, order-by-order. In
the case of pure NC gravity (without matter field), the lowest non-vanishing NC
correction, in the physical gauge, is of second order in #*”. This feature renders
the theory computationally challenging. It is, therefore, a quite significant fact that
having matter fields (Dirac spinors, in particular) coupled to NC gravity produces
a non-vanishing linear NC correction in the physical gauge. We will present the

calculation procedure for the linear NC correction to the kinetic term ([5.5) and the
three bilinear terms (5.8)), separately.

NC coupling of spinors and gravity was previously treated by P. Aschieri and L.
Castellani [I06HI0§]. They choose to start with the classical action in curved space-
time, thus having SO(1,3) gauge symmetry from the beginning. NC deformation
immediately produces SO(1,3), gauge-invariant action. In the case of massless
Majorana spinors [106], [107], the first non-vanishing NC correction turns out to be
quadratic in 0* (all odd-power corrections being equal to zero). Coupling of Dirac
spinors and NC gravity is treated in [I08] and the linear NC deformation is obtained,
but the physical implications of this result have not been elaborated. The fact that
AdS algebra reduces to Poincaré algebra under WI contraction, might be reflected
on the relation of our NC AdS gauge theory with the NC theory of Aschieri and
Castellani, based on deformed Lorentz group. For that matter, we point out that
our theory implies that some parts of the linear NC correction to the Dirac action in
curved space-time survive WI contraction and some residual NC effects are present
even in flat space-time. This feature enables us to investigate potentially observable
NC effects at the lowest possible order. It leads to an important physical prediction
of the linearly deformed dispersion relation for electrons in NC Minkowski space,
along with a Zeeman-like splitting of their undeformed energy levels. Also, the
energy levels become helicity-dependent due to noncommutativity of the background
space-time that behaves as a birefringent medium for the propagating electrons.
Incidentally, that differences between the two models revealed themselves already in
the case of pure NC gravity. Namely, as we saw in Section 4, the NC deformation
of Minkowski space is obtained in the SO(2, 3), model of NC gravity.
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5.3 NC deformation of the kinetic spinor term

To deform the spinor action (5.5)), we follow the general SW prescription elabo-
rated in Section 3. As in general SW NC gauge field theory, we introduce NC spinor
field 1) (from the fundamental representation), NC auxiliary field ) (from the adjoint

representation) and SO(2, 3), gauge field w,. NC covariant derivative is defined as

Dyth = Outh — i, % (5.13)
Dué = 8#45 - i[@u H é] . (5~14)
The structure of NC covariant derivative, in both representations, is the same as
in classical gauge field theory, the only difference being the use of the Moyal -

product instead of ordinary point-wise multiplication. Under infinitesimal NC gauge

transformations, @/AJ, gg and their covariant derivatives transform as
56*@@ =M, % 1& , 56*DM1/3 =M, % DM@E ,
5o =i[A. 3], 6:D.p=i[A % D,g)] . (5.15)

In these NC variation, A, is an SO(2,3), gauge parameter that reduces to the

corresponding classical SO(2,3) gauge parameter ¢ = %EABM 45 When 0% — 0,

that is, A, = € + O(6). Likewise, we have &, = w, + O(#) and F,,, = F,, + O(f).

The SW expansion of @/AJ, ngS and their covariant derivatives, are given by

) = — 10w, (05 + Dp)y + O(6?)
¢ = ¢ — 20°°{wa, (95 + Dp)o} + O(6?)
R 1
Dytp = Dytp = 30*"wa(05 + Ds) Dy + S0 Foyu Do + O(0°)

DMQA5 =D, — ieaﬁ{wa, (05 + Dg) Do} + %QQB{FW’ Dso} + 0<02) :

Consider the NC version of the kinetic spinor action ({5.5))

St = 13 | 407 [ (D,0) 5 (D) = (D) » (Da)
—(Do) % (Du6) % (D) = (D,d) x ] . (5.20)

It is obtained by a direct substitution of the ordinary commutative product with the
Moyal *-product. Using the NC variations (5.15)) and cyclicity of the x-product one
can readily check that (5.20) is invariant under deformed SO(2, 3), gauge transfor-

mations. Moreover, this action is real, up to the surface term that vanishes.
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Now we expand this action up to first order in the deformation parameter 97,
using the SW map. Generally, for any pair of NC fields A and B, the first order NC

correction to their x-product is given by
PN ¢ R . ]
(A X B) — AWB + ABW 4 %9“’8(%%18[33 . (5.21)

If both of these two fields transform in the adjoint representation, the last formula
assumes a more specific form
PNC I i s
(A X B> = — 10" {wa, (05 + Dy)AB} + 56" D, AD; B
+ cov(AD)B + Acov(BW) | (5.22)
where cov(AM) is the covariant part of A’s first order NC correction, and cov(BM),
the covariant part of B’s first order NC correction. Applying the rule (5.22)) twice,

and using the expansion |D for the covariant derivative of the adjoint field ¢, we
can obtain the first order NC correction to the product Dué * Dl,g?) * ng137

R N A\ (1)
(Dudx Dud*D,3) " = 6] — a9 + D) (D,6DL0D, )}
+ 5Da(D,0D,8)(DsD,0)

+ (DaDM¢)<DﬂDV¢)DP¢
+ 5P D39} D90,

1
+ EDM¢{FQV7 Dﬁ¢}Dp¢

+ %DmD,,(b{Fap, Dy} . (5.23)

N = DO

The composite field Dué * D,,(ﬁ * Dpczg also transforms in the adjoint representation
of SO(2,3),, being a product of fields that transform in the adjoint representation.
Therefore, according to the rule , we could immediately say, without explicit
calculation, what is the non-covariant part of the first order NC correction to DMQZ;*
D, x ngzAS, that is, the first term in . It is non-covariant because of the
manner in which it involves the gauge potential w, and the partial derivative 0.
The other terms appearing in are manifestly covariant. The use of the rule
significantly simplifies the calculation. The non-covariant part of any NC field

A that transforms in the adjoint representation has the same form, namely,

p 1
noN-cov (A(1)> = —190"3{01&, (0 + Dpg)A} . (5.24)
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If we have an NC field A that transforms in the adjoint representation, and an NC
field B that transforms in the fundamental representation, the rule 1) again

acquires a specific form,

N1 '
(A X B) = — 10°%wa(9s + Dy)(AB) + %eaﬁDaApﬁB

+ cov(ADYB + Acov(BW) . (5.25)

Similar relation can be found in [I0I]. The non-covariant part of any composite
field that transforms in the fundamental representation has the same form as the
second term in . This formula reviles the structure of NC corrections and
greatly simplifies the calculation. Using the result and the expansion
for the covariant derivative of a spinor field, can obtain first order NC correction to
the noncommutative product Dué*qug*quAﬁ*ng/A). Applying the rule , and
setting A := D, D,¢x D,p and B := D), yield

(Dqu*Dué*Dpé*Daqjj)(l) = eaﬁ - wa(aﬁ + Dﬁ)(DM¢DV¢Dp¢DU¢)

Da (DM¢DV¢DP¢) (DBDU¢)
Do(Dyu¢Dy¢)(DsDp¢) Do)

(DQDM¢)(D5DV¢)DP¢D<7¢

+

+

_|_

IR VI VI

+ E{Fau; D,qu}Dungpngadj
+ %Dugb{Fau’ Dﬁ(b}DprDaw
+ %D,ungugb{Fapa Dﬁqb}Dad}

- %DlL(bDl,qﬁquﬁFngw . (5.26)

The composite field Dqu * Dl,qg * Dpé * Dgﬁ transforms in the fundamental repre-
sentation since it is a product of the field D#QZ; * Dl,ngS * ngfg that transforms in the
adjoint representation, and the field DU@/A) that transforms in the fundamental repre-
sentation of SO(2, 3),, and therefore, the first term in , the non-covariant one,
has the same form as the corresponding non-covariant term in . Again, we
could anticipate that from the general result (5.25)). The remaining terms in

are manifestly covariant. Using the NC expansion of the Dirac adjoint field,

A

b= iea%(%ﬂ 4+ D)+ O(6?) . (5.27)
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setting A= 12 and B := Dugg* Dy(ﬁ* ngzAS * Dazﬁ, the general rule ([5.21f) gives us
the first order NC correction to the SO(2,3), scalar 1 * Dugg *x Dy * quzAS * Dya:

(% Db+ Dypx Dy x Dyth) D = 68 | — izﬁFaﬁpﬂmePqﬁDoap

+ LU Du(Du6Dy6D,0)(DaDyt)

DD 6Dy6)(D5D,6) Dyt
(DaDy6)(DsD,8)Dyé Do

+ ~0{Fup. Ds#} D, 6D, 6D,

A D61 Favs Ds0} Dy Dt

+ S0Du0D, 0 Fapy Dy} Dt

— %wDM(bDy(prqﬁFaaD/gw . (5.28)

[\]

4
=

+
=N SN
<

(]

+

— DN

Finally, we can present the complete linear NC correction to the classical kinetic
spinor action (5.5]), that is, the n = 1 term in the perturbative expansion of the full

NC kinetic spinor action Sy ;,;, = Zo Sf;,lm, before gauge fixing,

kin

. .
Sikin = 75 0% / d'a e [— TVFasD,ué Do D¢ Dot

W

1

L0 Da(D,0D,0) (D3 D) Dot
+ LD (D6 D6 D,6)(DsD)
+ L 0(DuD,6)(DsD,3) D, Dyt
= 0{Fups D36} D6 D, 0D
0D, Fau, Dso} Do D

L 3D,6D,6{Fuy, D56} Dyt

=N =D [\

[\]

_|_

[\)

L 0D,6D6D, 6 Dst | 4 e (5.29)

[\)

By the virtue of SW map, all terms in the expansion of the NC action ([5.29)), which
is invariant under NC-deformed SO(2,3), gauge transformations, are manifestly

invariant under ordinary SO(2,3) gauge transformation.
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In order to break the SO(2,3) gauge symmetry of the action ([5.29) down to the
local Lorentz SO(1,3) symmetry, we choose the physical gauge and set ¢* = 0 and
¢ =1 (the result for each term separately is given in Appendix A), yielding

1 - 1
- gRaMabeg(¢7bDéw> - ERaﬁabeg(d}’%Dﬁw}

P
— R e 0 DE) - 241% e e e lie] —ege;xwméw

? c a n
- ERaub 658 bcm(w’Y 75Dé¢) 8l a,B 6 WD(??/J) 8l au e#(ngw)

T el (0,7 DE) + < T, el (0, DEY) — =T, %, et (97 D)

6l 81 o 121"
1 1 -
— 1 (Daei)(ele] — e7e)) (97" Dy Dy ) — 1 (Vo "D Dy ) — —(DL Len (VDY)

77[ /i a cars (o2
+@€ab0 eseled (Vy D) — gnab(DL “)(Dfey)eeteled (Vs DE)

+ 5 (DE)(DEe)e, el (Frus DY) — e (Dbl ey “eie? (F15 D)
- é(DL “)(ebe] — sl e’ DEv) - 81Z<DL 2)el (0, DEY)
b o R (F0at) = o R el (Gne) — 1 Ryl (50, 0)
T () — T T el st) + T el )
+ g DL (DEL) (o) — o (DEet)(Del) (elet — et (Fo,0)
— o (DEE)h(st) + o (DEet)esu(Iy) — oy (Woastd) | +ce. (530

After WI contraction (I — oo) many terms in (5.30)) vanish, for example, all terms
of the type (¢...1), and we are left with a severely reduced action,

WI o 1 a 7 1 ab o
Sfi,imlg.f. =0 ’B/d49€ el - gRau Pt (D) — — R, 4" e (YD)

16

i _
- 3—23 e (Vs D) — 7 o Loete o (V" s DEY)
Z C (o S
- ﬁRauabg deb’(ede - eged)(w7 ’75D£¢)
1 .
~ L(DLep)iehe; - eZe';)(wvngDﬁw)

— (D) (Dheb) eteted (47,95 DEY)

+12(DL el )(Djed)e, “Peteled (vraysDib) | + c.c. (5.31)
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5.4 NC deformation of the mass-like spinor terms

We now have to deal with the bilinear mass-like spinor actions (5.8]). Their NC
deformation proceeds in the same manner as for the kinetic spinor term, and after
some tedious calculation that involves sequential application of the rules (5.22) and
, we obtain the following results.

NC-deformed mass-like spinor action before gauge fixing is
s = 2) [ ate 7| 1k Dbk Dy« Dydx Dodpx dxl
em = o7\ T 7 T e ) Dydpx Dy * Dy Dop % ¢ %
teythx Dy x Dydx Dy dx Dodxh  (5.32)

+031Z*D#$*DV$*$*DP$*DUQA5*1& + c.c.

Again, by using the SW map, we can represent this action as an expansion in powers
of the deformation parameter 67, taking only linear NC correction into account.
Below, we present the result of this operation for each of the three mass-like terms,
separately. We denote them by S,(rlb)Z (1=1,2,3).

The first mass-like term:

. 2 _ y
St =5 <m - 7) 6" / d'z 5’””’”%[ + 5 Da(Dub Dy Dy Do) D

1
- ZLFQBD/J¢DV¢DP¢DU¢¢

+ %Da(Du¢DV¢DP¢D”¢>DB¢
7
2

+ 5 Da(Du¢ D) Ds(Dy¢ Do) 1)

+ £ D,0D,6(DoD,0)(D3 D)0

%'( DoD,)(DsD, ) DypDyipit)
1

-+ §{Faﬂ7 Dﬁﬁb}DbengbDa(bqb

+ %Du¢{FaV7 Dﬁ¢}DP¢DU¢¢w

+ 5 Du8D,0Foy. Da6) Dt (53

+

+ % Du¢D,¢D,¢p{ Fos, D} |0 .
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The second mass-like term:

ic 2 - 0
Smz = 57 (m - 7) pos / d'x 2% | 4 2 Da(D,ud D6 Db D) D

1
-4 w5 DD, ¢ D0 Dy

n %DQ(DM¢DV¢D,D¢¢)(D6DU¢)

+ % Dao(D,u¢Dy¢Dyd) DsdDyd
+ 5 Da(D,6D,8)(D3Dp)6 Dy

1

+ 5 (DaDyu) (D3 D) Dy ¢ Dys
1

+ §{Fa/u D5¢}DV¢DP¢¢DJ¢
1

+ §D#¢{Faw D¢} Dy Do)

1
+ 5 Du0Ds0{Fop. Dsd}oDo (5.34)

1
+ 5 DudDydDy¢¢{ Fag, Dso} |0 -

The third mass-like term:

. ) o
Sts = o (m - 7) 6 / d' 770 | + 2 Da(D,6D,66D,6Dy¢) Dy

1
— Z aﬁDM¢DV¢¢DP¢DU¢

+ 2 DalDubD,66) Ds(Dy0 D)
+ %DQ<DM¢DV¢)D5¢DP¢DU¢
1
2
1

+ = (Do D,¢)(DsD,¢)p D, Dy
+ £ D,0D,00(DeDy0)(Ds D)
+ S {Fu Ds6}Du66D, 0Dy
+ %D#gzﬁ{Fam D¢ D, Dogp

4 3 D,0D,06{Fuy D0} Do (5.35)

1
+ 5 Dub Db Dyd{Fog, Dsd} |0 .
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Assuming that none of the three mass-like spinor terms in ({5.32)) is more preferable
than the other, and taking into account the classical constraint ([5.10]), we choose to

set ¢ = —cy = €3 = =5.

After imposing the gauge fixing condition, and defining a(m,[) := m — 2/I, the
complete first order NC correction to the sum of the three classical mass-like terms

(5.8) becomes

B |
S{ler = alm,1) 67 [t e [ ~ 3 PaederDf + gyl Dac) (Der)o™

1 1 1
(D) (Dhel) ke, — o (DEeh)els — SR, Melckon

3 # 181 #
1 ab 1 a 7 a 1
_ @Raﬁ Cab — @Taﬁ Yo — @Tau elyg — Eaaﬂ] P . (5.36)

In Appendix A we present the result for each mass-like term separately.

After WI contraction we are left with

il B0 [ e [ - Dk D + Tna(Dle) (Dhel )

4 12 #
m m m
- g(DgeZ)(Dé’ef’,)efjeZacb - @Raﬁabaab - ERaMabeg‘egabC] WP . (5.37)

The total first order NC correction in the physical gauge is the sum of the kinetic
spinor term ([5.30) and the mass-like spinor term (|5.36)),

1 1 1
SPler = S hinler + S5l - (5.38)

The result represents the first order NC' correction to the classical Dirac action
in curved space-time. The action exhibits couplings of Dirac spinors and gravity
that arise due to space-time noncommutativity. The fact that some terms, those in
and , survive WI contraction is of special significance. Namely, it is not
entirely clear whether WI contraction, in general, commutes with the canonical NC
deformation. In this particular case, one would have to calculate directly the NC

correction to the Dirac action in curved space-time (by deforming SO(1,3) gauge
symmetry) and compare the result with (5.38]).

Also, having a non-trivial linear NC correction enables us to explore potentially
observable NC effects at the lowest perturbative order. We will see in the next

section that the first order NC correction pertains even in Minkowski space.
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5.5 NC Dirac equation in Minkowski space

Up until now, we have not talked about the metric of space-time explicitly. We
know from Section 4 that the SO(2,3), model of NC gravity predicts quadratic
deformation of the Minkowski metric. Therefore, it is justified to consider the flat
space-time limit of the NC spinor-gravity action . After setting g, = M +
O(6?%), the NC action becomes

1 - 71 - -
Sf/}{%lat = Haﬁ / d4l‘ [_ 2—l(¢0'aaa/380¢)) + Ilzgaﬁp (¢7p’75aaw) - M3(¢0aﬁ¢)] 5
(5.39)
where we introduced M3 := % + 6%3. This action is the linear NC correction to

the Dirac action in Minkowski space. Note that it vanishes under WI contraction.
Noncommutativity appears in the form of new terms in the action. One of them is
the mass-like term with the mass matrix M 300‘50a5. The total NC-deformed action

in Minkowski space up to first order in 6% is

— . a 1 _ "
S@*b,ﬂat - 1(#?) at T S’l(lll,i):lat z/d4x Yy 0, —m)p +0 B/d4x [— ZWJUQ 08051)
Ti - _
+ Sistad” (U15000) = M ($0ast)] - (5.40)

The existence of the first order NC correction to the Dirac action in Minkowski
space is a non-trivial, and a priori unexpected, consequence of the NC AdS model.
It is important to note that we are working with “free” electrons (they interact only
with NC gravity). Therefore, if we were to deform classical Dirac action Sg%at by
directly inserting the Moyal x-product (minimal substitution), it follows from

that action would remain the same.
From (5.40) we derive the Feynman propagator (in momentum space),
iSw(p) = / dhz (QT(2)B(0)|Q) e

1 )
N —m+2’e+ —m —+ i€
P p

?

(i aﬁ)ﬁ—m+ie+

., (5.41)

with ) .
R o po 3
D, = 570 PsPo + VTP A M°0.5 . (5.42)
The Feynman propagator is modified due to space-time noncommutativity. There-

fore, we may say that electrons effectively interact with the NC background itself,

in a similar manner in which they interact with a background electromagnetic field.
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By varying (5.40) with respect to 1) we derive the NC-deformed Dirac equation
for v in Minkowski space,
7

1
[Za —m — 2—l9a60a‘73500 + W@“’Beaﬂpgfyﬂgﬁg — 9a6M30a5] w =0. (543)

To simplify further analysis, we will assume that we have only two spatial dimensions
that are mutually incompatible, e.g. [x!, %] = i6'%. Therefore we have '? = —§?! =:

0 # 0, with all other components of 8% equal to zero.

The equation ([5.43]) reduces to

710

[za—m— —(0,7020, — 0,7 010,) + Tor

9] (707503 —737500) — 29M3012] =0, (5.44)

and we choose %123 = 1.

Now we want to find an NC version of the dispersion relation for Dirac fermions.
Since hamiltonian commutes with the total momentum operator, we can assume
the plane wave ansatz 1(r) = u(p)e~ 7%, where u(p) stands for a yet undetermined
spinor amplitude

a

b
u(p) = : (5.45)

c

d

With this choice, equation ([5.44)) can be represented in the momentum space as

( <b;_;” _‘;_";) + ww) u(p) =0, (5.46)

with matrix M given by

1 7 1
A wP:P- —ppEP: 5 ED-

1 1 7
M= Zf e —A —ubpe Toeps . (5.47)
1 1
wEP: 5 ED- B 5 D=D—
—LEp, Lp. Ltppr  -B

Quantities £ and p denote energy and momentum of a particle, respectively, and
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the matrix elements A and B are given by

1 Tk
A=— (px—i—py)—l———QM?’

21 1212
1 7E
B:=— — 203, A4

We use the Dirac representation of y—matrices.

Non trivial solutions of the homogeneous matrix equation (5.46) which, when
written explicitly, states that (we use py = p, £ ip,)

E—m+0A  Zp.p_ —p.— p.  —p-+LZEp_\ [a
sp:pe E—m—0A —p,—S2Ep.  p.— 12D bl .
p:+ 1o5p:  p-+5Ep. —E—m+0B pap- ol
pr— 5B —p.+ 1omp- Sp.ps —~E—-m—06B) \d
(5.49)

exist, if and only if, the determinant of the matrix p —m + 6M (which is the matrix
appearing in (5.49))) equals zero. This condition will give us the dispersion relation.
The determinant depends on energy which is also represented as a perturbative

expansion in 6,

gn

400
_ (n) () __
E=>Y E™  where E Tongth)Ft -

(5.50)

If the determinant equals zero, it is equal to zero order-by-order in 0, and we can
derive the momentum dependence of E™) correction which is enough to see how non-
commutativity modifies the dispersion relation. To get higher-order energy terms,

we need higher-order perturbative corrections to the Dirac action.

First, we will consider an electron moving along z-direction, i.e. in the direction
orthogonal to the NC xy-plane. The matrix equation ([5.49) reduces to

E —m + 0A(0) 0 —p. — Zp. 0 a
0 E —m —6A(0) 0 p: — 155p. b

p. + 15p. 0 —E —m+6B(0) 0 o
0 —p: + p. 0 —E—m—-6B(0)) \d

(5.51)

where A(0) = A(p, = p, = 0) and, likewise, B(0) = B(p, = p, = 0).
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Non trivial solution for spinor components a, b, ¢, and d exist if at least one of

the following two conditions is satisfied:

£ (g - 20 o] [t ({42 ) o] = o 7%]2 .

122 1212 122
(5.52)
Four different solutions for the energy (up to the first order in 6) are

o= Bpr | -2 2 o)

S STTZRTE) IR ’

m* m] 0

Esy=—-FEy+t |— — —| =— 0 .

3,4 P |:12l2 313:| Ep + O( ) ’ <5 53)

with E, = y/m?+p?. This is reminiscent of the quantum Zeeman effect. The
deformation parameter 6 plays the role of a constant background magnetic field

that causes the splitting of atomic energy levels.

In the rest frame (p = 0) the energies reduce to:

Era(0) =m F lﬂ _ L] 6+ 00)

1212 303
_ m 1 2

We see that the mass of an electron gets “renormalized” due to space-time noncom-

mutativity and the NC correction is linear in the deformation parameter.

By solving the matrix equation (5.51) for each of the four energy functions in
(5.53), we get four linearly independent spinor solutions of the NC Dirac equation

(up to a normalization factor):

¢1 ~ e—iE1t+ipzz ’

Pz m__ 1Y) _0
Ep+m [1 + (12l2 313) Ep]

w2 ~ e—zEgt—zpzz ,

Dz _ m 1) 6
2 [1- (3 - &) &

26



wg ~ efiEg,tfipzz ’

e Bt Pz (5.55)

Spinors v and 1, (13 and 1)4) correspond to positive (negative) energy solutions
of the NC Dirac equation. Note that, in the commutative case, the opposite helicity
(ﬁ:%) solutions have the same energy. However, in the NC theory, the solutions
with opposite helicity have different energies. The noncommutativity of space, here
taken to be constrained to xy-plane, causes the undeformed energy levels £F£, to

split. The energy gap between the new levels is the same for +F}, and it equals

m? m] 6

From dispersion relations ([5.53) we can derive the (group) velocity of an electron.
This velocity is defined by

0

v=— . 5.57
> (5.57)

For positive (negative) helicity solution ¢ (19) we get

2
p m m\ 0 9
=— |1 |—=—== | = +0()] . 5.58
Y12 =g [ (1212 313) B2 ( )} (5.58)
These velocities can be represented as
_ b 2

Vi2 = 5 + 0(6 ) . (559)

Eio

Therefore, we may conclude that group velocity of an electron moving in the z-
direction depends on its helicity. This is analogues to the birefringence effect, i.e.
an optical property of a material having a refractive index that depends on the
polarization and propagation direction of light. NC background acts as a birefringent

medium for electrons propagating in it.
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The Dirac spinor ¥; can now be represented as

1
0 » .
Y1~ . C (5.60)
E1+E1(0)
0
and in the rest frame
1
0 —iBy (0)t
1(0) ~ 0 e Bt (5.61)
0
where .
m
E =m—-|——-—10. .62
1(0) =m lm? 3l3} (5.62)

The boost along z-direction in spinor representation is given by

0 03

_ P\7 _sinh (¥
S(e) —cosh(2>l smh<2> ol (5.63)
3
where v = tanh(yp). If we take v = —v; = — 2= we can boost the rest frame solution
Y1 (p. = 0) into the solution ¢y (p.),
S(=p:)v1(0) = Y1 (p2) (5.64)

with the boost matrix

Eq(p:) + Eq1(0) Ei(p.) — E(0) [0 o3
S(p) = \/ 2E,(0) I+ \/ 2F,(0) s 0] (5.65)

This tells us that constant noncommutativity in the xy-plane is compatible with a

Lorentz boost along z-direction. Similar statement holds for the other solutions.

By the same procedure we get NC-deformed energy levels of an electron moving

in the NC zy-plane, i.e. an electron with momentum p = (ps, py, 0),

1
E1,4:iEp—lm ——}9,

1212 313
m 1
Bys=+Ey+ |— — —| 0 .
23 Pt [12[2 3z3} ’ (5.66)
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with B, = (/m? +p: +p;. Note that, in this case, the NC corrections do not
depend on the momentum of an electron, as opposed to the NC corrections of the

energy levels of an electron moving along z-direction. Again, these energy levels

exactly reduces to (5.54) when p = 0.

The four independent Dirac spinors are

Yy~

Y3 ~

Yy~

By (L1 (o —

E‘:Jtm [1 + (#

efiEgtJripszripyy
’

—iE3t—ipLx—ipyy
€ )

efiE4t7ipzx7ipyy

e—iElt—i-isz:—‘ripyy
)

(5.67)

It turns out that these solutions cannot be obtained by boosting the corresponding

rest frame solutions. This was to be expected since, as we have already mentioned, by

choosing the canonical noncommutativity we have effectively fixed the coordinate

system. In other words, we work in a preferred coordinate system in which only

boosts along z-axis and rotations around z-axis are preserved. With this observation
we conclude the analysis of the Dirac field in the SO(2, 3), model of NC gravity.
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6 NC Electrodynamics

The content of this section is originally presented in [109].

In the previous section, we have demonstrated that AdS gauge theory of gra-
vity has the capacity to consistently incorporate Dirac spinors, both classically and
noncommutativelly. We studied canonicaly deformed dispersion relation for free
electrons, that is, for electrons that interact only with NC gravity and not among
themselves. To establish a complete theory of NC Electrodynamics, we have to
include U(1) gauge field in the SO(2,3) framework. In the first order formalism,
fermions couple naturally to the gravitational field, however, to couple gauge fi-
elds to the gravitational field one normally requires the Hodge dual operation. The
definition of the Hodge dual requires an explicit use of the metric tensor, which
means working in the second order formalism. This becomes even more significant
in the AdS gauge theory where the basic dynamical variable is the SO(2,3) gauge
field that splits into Lorentz SO(1,3) spin-connection and vierbein only after im-
posing the physical gauge. In this section, we present a classical SO(2,3) x U(1)
gauge-invariant action that reduces to the kinetic action for U(1) gauge field in the
physical gauge. NC correction is derived in the usual way and it is linear in 0",
Special attention is placed on the residual NC effects after W I contraction and in
Minkowski space. We discuss how noncommutativity modifies relativistic Landau

levels of an electron, in a constant background magnetic field.

6.1 U(1) gauge field in AdS framework

To include electromagnetic field in SO(2, 3) framework, we upgrade the original
S0O(2,3) gauge group to SO(2,3) x U(1). The general gauge potential (2, consists
of two independent parts,

Q=w,+A4,. (6.1)

The first part is the SO(2, 3) gauge field w,, that splits into SO(1, 3) spin-connection
and vierbein, and the second part, A, is the U(1) gauge field. To €2, we associate
field strength

Fu =0, — 0,9, —i[Q,, Q) =Fu.+Fu, (6.2)

comprised of SO(2,3) field strength F,,, = +F, AP M p and U(1) field strength

2% w

Fuw = 0,A, —0,A, . (6.3)
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Following the approach of [I10], we define SO(2,3) x U(1) gauge-invariant action
for U(1) gauge field,

1

Sa= 15T / Atz e ( fF D, Dy + %ffDucbquﬁDpcbDacbczﬁ) +c.c. (6.4)

where D, stands for SO(2,3) x U(1) covariant derivative. The action involves an
additional auxiliary field f which is a U(1)-neutral AdS algebra-valued 0-form, trans-
forming in the adjoint representation of SO(2,3), that is

f= I M b =iled) (63

with € = %EAB M ap. Its role is to provide the canonical kinetic term for U(1) gauge
field in the absence of the Hodge dual operation that can not be defined without
explicitly introduction of the metric tensor. This, however, is not possible, given

that metric is not explicit in Sjy.

Field ¢ is also a U(1) scalar, and its covariant derivative reduces to the AdS part,

D¢ = 0,0 —i[Q, @) = 04 — iwy, ¢] = D,yo . (6.6)

This simplification is not a peculiarity of the Abelian group U(1); it also holds in a

more general case of non-Abelian Yang-Mills theory, as we shall see later.

The action ([6.4) can be recast in a more explicit form,

1 1
=g | e (zf"‘BFWCD<Dp¢>E<Da¢>F¢G Te(MasMepleTrl'c)

+ Q%fABfCD<Du¢>>E<Dy¢>F<DP¢>G<Da¢>H¢R Tr(MapMepTpTrlalul's)

+ % FAPFu (D) E (D)t ¢¢ Tr(Mapl gl L) ) + c.c. (6.7)

After calculating traces (see Appendix D) we obtain

l

SA:—E

d*z ehre” (fABFWCD(Dp¢)E(Da¢)F¢G(UFG€ABCDE + 2napEBCEFG)
= 2ifYPF (D) (Ds9)" 6 appra

- éfABfAB(Du¢)E(Du¢)F(Dp¢)G(Do¢)H¢R€EFGHR> +c.c. (6.8)
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The first term in is purely imaginary, and since we imposed the reality condition
on S by adding its complex conjugate, this term does not contribute. Therefore,

after the gauge fixing, when (D,¢)* = ¢% and (D,¢)° = 0, the action reduces to

1 1
Salgs = —3 /d415 ghvp? (fab}—uufabefe;eg + EfABfABe?efgheZeZ@‘ZeZ)

_ %/d% e (f“beZeZ}"w + %(fabfab + 2fa5fa5)> ’ (6:9)

with the vierbein determinant e = det(ef) = /—g.

Equations of motion for the components f,, and f,5 of the auxiliary field f are
fa5 =0 ) fab - _656;;};1,1/ . (610)

Inserting them back into the action , we can eliminate the auxiliary field f. This

leaves us with the well-known action for pure U(1) gauge field in curved space-time,

1 1
Salgs = 1 /d% e 9" g" FrunFpe = 1 /d4x e F2 . (6.11)

6.2 Interacting Dirac fermions

Dirac spinor field has already been treated in detail in Section 5. Here we will
simply generalize those results to include U(1) gauge field, the only difference being
an additional A, term in the total covariant derivative. In this manner, we introduce
interaction between Dirac spinors mediated by A,. Dirac spinor field v transforms

in the fundamental representation of SO(2,3) x U(1) gauge group,

S.ah = iet) = %EABMABLD o, (6.12)

AB

where €7 are infinitesimal antisymmetric gauge parameters of SO(2,3), and « is an

infinitesimal U(1) gauge parameter. The covariant derivative of the full SO(2,3) x

U(1) gauge group in the fundamental representation is given by

,D,uw = 8,u¢ - ZQ/M = @ﬂ/} - i(w# + A,u)w

Z a
— DLy + St (6.13)

where we introduced SO(1,3) x U(1) covariant derivative D} = D —iA, and we

set ¢ = —1 for an electron.
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The fermionic action consists of two parts: the kinetic action

Suin = 15 [ dto @7 (UD,0DL6D,0Ds0 — DoiD,DOD00) ,  (614)
and the three mass-like action terms
. 5 )
Som =i (m - 7) [tz e (6D,6D,0D,0D,000
— ¢ D,¢D,¢D,dd Dyt + JJD;L¢DV¢¢D/J¢DU¢¢> +c.c. (6.15)

After the symmetry breaking, the total spinor action reduces to

Sulet. = Suinler + Sunlur = [ d'a e (i097(Dk ~ida)w —miw) . (616)

This is the Dirac action for charged fermions with mass m in curved space-time.
Together with the U (1) kinetic term (6.11]), it constitutes the total action for classical

electrodynamics in curved space-time.

6.3 Canonical deformation of AdS Electrodynamics

To establish an NC field theory with SO(2,3), x U(1), gauge group, we need NC
spinor field 1/;, NC gauge potential Qu and NC adjoint field gg The corresponding
NC field strength is defined as

Fo = 8,0, — 0,0, —i[Q, *Q,] . (6.17)
The covariant derivatives of 1/3 and 95 are

Dyth = Oh — i x4, (6.18)
IDMQAS = ((“)Mq?) - Z[Qu ¥ ¢E] . (6.19)

Fields Qﬂ and qZA>, along with their covariant derivatives lb and 1) transform
in the fundamental and adjoint representation, respectively, under infinitesimal NC

gauge transformations,

0 =ihextp, 0Dy =ih x DY,
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The transformation laws for NC gauge potential and field strength are

5, =0, A +i[A. = Q] , (6.21)
5, =i[A = F) . (6.22)
In these variations, A, is an NC gauge parameter of the full SO(2,3), x U(1), gauge

group, and A, = e B Mup + a, as %7 — 0.

The SW map enables us to express NC fields in terms of the corresponding

commutative fields, without introducing new degrees of freedom in the theory:

§ = = 367905 + D)+ O(F*) (6.23)
b=~ 17(00, (05 + D)o} + O(F?) (624
Q,=Q, - ieaﬂ{ﬁa, 05 +Fp.} +O(6?) . (6.25)

Using these expansions, we can derive similar ones for the field strength, and cova-

riant derivatives of spinor and adjoint field. They are given by

. 1 1
F., =F,, — 1eaﬁ{ﬂa, (05 + Dp)F,} + éeaﬁ{lﬁ‘a#, Fg,} +O(6?) , (6.26)
A 1 1
D) =D,ab — Zeama(aﬁ +Ds)D,y + 590‘61&“@5@@ +0(6?) , (6.27)
~ 1 1
D¢ =D,¢ — ZW{QQ, (05 + Dp)D,ug} + 59@‘*{1}.@‘0”1, Do} +0OH%) . (6.28)
A non-ezpanded NC action with SO(2,3), x U(1), gauge symmetry is obtained

directly from the classical action (6.4]) by introducing Moyal x-product,

1 . R I
S = _1_6lTr/d4x 5“”p”<f*IF“l,*ngb*Dggb*¢

—|—%f* f*DHqB* D, ¢ *D,@ * Dyp * (;3) + c.c. (6.29)

This NC action involves an auxiliary NC field f , classically defined in 1} that
transforms in the adjoint representation of the SO(2,3), x U(1), gauge group

orf =i[Acx f] . (6.30)

The transformation laws (6.20]), (6.22) and (6.30) ensure the invariance of action
(6.29) under SO(2,3), x U(1), NC gauge transformations.
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Again, we use the general rule for calculating linear NC correction to x-product
of a pair of adjoint NC fields

N1 ’
(A X B) = — 10", (95 + D) AB} + %QaﬁDaADBB

+ cov(AV)B + Acov(BW) | (6.31)

where cov(/l(l)) is the covariant part of A’s first order NC correction, and cov(]g’ ™),
the covariant part of B’s first order NC correction. After some simplification, inc-
luding a few partial integrations, the first order NC correction before gauge fixing

can be expressed as

(1) _ o (1)
sY =58+ 54,
6o

:ﬁ Tr / d*q ehvro (%{]Faﬁ, [IF,uD,0Dopd + i f D, Do (D, Dy pd)

- f{Faua FﬁV}DP¢DU¢¢ - ifFuVDa (DP¢DU¢)Dﬁ¢
- Z‘f]F,uu(Doszqb) (D5D0¢)¢ - fF;w{{Fapa D,3¢}7 DU¢}¢

+ % (%{Fam f}D.¢Du¢Dpd Do — f{[{Fap, Db}, Do), Dy¢Do}d

— if2(Da(DudDy6DpéDs9)Ds6 + Da(DudDy6Dpd)(DyDad)é (6:32)

+ (Da(Du¢DV¢>(DBDp¢> + (DaDu¢>(Dﬁpu¢)Dp¢)Do¢¢>)> +cc,

where we distinguish the linear f-part and the quadratic f?-part, and all terms are
manifestly SO(2,3) x U(1) gauge-invariant, by the virtue of SW map. Note also
that D,¢ = D, ¢, since ¢ is not charged under U(1).

After imposing the physical gauge condition, the six terms of SS} are a bit
lengthy, are we present them in Appendix B. The Sﬁll} s part is much simpler and it
is given by

S(l)| _ﬁ d4 F 2_@ d4 F ab 2 abr b 6.33
Afflgt = 3 x e a,@f -3 Te oa/B(f Jab +2f fa)' ( )

The gravitational part (that which involves quantities like curvature and torsion)

of SS} f\ .t turns out to be purely imaginary, and therefore provides no contribution

after adding its complex conjugate.
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Now we have to evaluate the gauge-fixed NC action S%|qf = Sgo)|g_f. + Sﬁll)|g.f_ on
the EoM of the auxiliary field f, up to first order in §*°. The EoM up to order O(#)
are obtained by varying S%|.¢ over f,, and f,5 independently. The on-shell first
order action, denoted by S Al Fon et has two contributions: the first one comes from

evaluating S |gf on the classical (zero order) EoM for f, which we have already

calculated @ The second contribution comes from evaluating S0 A |gf on the
first order EoM for f. It is straightforward, although tedious, to compute the first
order EoM, but as it turns out, this is not necessary. It can be readily checked that,
if we work only up to first order, the classical action gets annihilated after
inserting the first order EoM for f, whatever they might be. Thus, we only need to
insert classical EoM for f in the first order action SS)‘g.f‘, thus yielding

6
1 1 1
S,(ax,)EoM|g-f- = Z Six,)EoMf.ﬂg-f- + S,(q,)EoMff|g-f. ) (6-34)

J=1

1 gs . .
Sz(él,)EoMf.llgf- = 64 /d% € {]:M Ryab (R, 3 b— ﬁeae%)

+ Felel (Ruvap Rogteliel 2Raﬁab) + AFP"eS (RuvacRog ey — QRNBCLC@Z)

[2 [2
12
+ fATea’\egRaﬁ“b (me" e e, — 2 ) + B f””T (Tuya 2T, mele )
2 12
- Z—Q}"ag (R, ehen — P AP F* F, )} + c.c. (6.35)
(1) _eaﬂ 4 L mc L_r\ (v ©,op P 1 vV W, p
SA EoMf,2|g-f- - ? d*zeq — (DBR/,W )(Daep)ec (em(]:)\ €r — ‘F)\ er) +FA erem)
C C 4 ' m v
+ pf 1el(D5To, = emBa,) — 57, (D€ )(Dgellenel
1 L _r v c v c 1 T c
— Z—Q(Daep)ef(ec]:ﬁ”TW — el F'T6%) + 2ZZTQB T, Fy'e

1
+ Z_(DLGT)‘?V (T m(]‘_ﬁ”eﬁl Fﬁpe%) + Ty, F, pe“)
+ ZQF “e)(Dye;)(Dye; ey + l4]-"a o} +ee (6.36)
1) 0’ 4 " am 4
SA’EOMf'3|g'f’ 32 e {]: (R'Bl’“m (Rau T2 €a u) + 8.7&#]:&)
+ ForRo, ™ By, (€hemener, + €ae, eg‘e” + 2eper (ehey — elel)))

‘2 ¢ (2FarRg\™ — FarRoy™) +

12”

l2]-"“”T aTﬂ,,a} +eec. (6.37)
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g8
1 1
Sil,)EoMfA‘gf + SI(LX,%EoMfﬁ’g.f. = /d4x e {

32
+ R, (D) (Dfeom) (F ehe] + Frrete; — AFree] )
1 Qa 17 v v _o 1 g m
- l_lew (F™eaaepy + Fageley + 4F"seneq) — l_2]:p (DaLep )(Dfeom)
2
+ L (D) (F (e — ehese) + 2F;" (ebely — ehel)
2
+ 2FP(2elepq — eyese) + prﬁeé‘ez> - Z—pr“TWCTaﬂdeZeZ (6.38)
4 a v v 4 C a v 12 6
_ Z_QTﬁ,,a(Dgei)e)\(}"/\ ey — F\eh) + ﬁRﬁV €3 (FNeqe — Frel) — 7 ag} + c.c.
(1) 90[6 4 w€ a b _p v ef ef
SA,EoMf.ﬁ‘gf- = T30 d'ze {-7: €kCeCec €y (Rag Ryvap — 235,, Ra,uab)
2 4
+ 8FH (fagfw, - 2.7:%.7'—51,) + l—Qf”VeZeiRagab - ﬁfgyege,’;RQpab
4 8
T (TyaTog” + TusaToy + ToT,") = 71Fas ) + . (6.39)
And finally, the f?-term,
gos
Sikonsrler = g [ d'z e FapF?. (6.40)

Again we have non-trivial WI contraction. After performing contractions and some

simplification, we obtain
08
g wr 077
A 32
— AF" Rype Rog” + Rof” Fpo R — AT Roo R3,
— AF o Ry, PRy T — 2F R P Rypy — AFapF? + 16F™ FopFoy
— 8(DER, ) (Dke)ed (Flel et — Fyletes, + F el )

/ d*ze {]—"“”R,W(,Raﬂ’” — R4 Rypo F"

+ 2R, (DL (D) (Pwegeg 4 FPoelel 4fﬂpegeg) } . (6.41)

If canonical deformation and WI contraction commute, we should obtain the same
result for the NC action defined by minimal substitution e g"’¢"° F,, F,, — e* gH*

9”7 x F,, * F,e under the integral. This remains to be seen.
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6.4 NC theory of interacting Dirac fermions

The SO(2,3), model of free (not coupled to U(1) gauge field) Dirac spinor field
has already been treated in Section 5 and the first order NC correction has been
calculated . To include U(1)-interaction, we generalize this result by making
substitutions D} — Dl = DI —iA, and F,, — F,, = F,, + F,,, yielding

gos 2 - 1
%mwﬁ—@—Q/mmﬂ—www%+wmﬂWD>W

4 l
- l(DL a)(D bY(ete? — etel)o, — l(DL n)ehys — R ‘o
3 a“c c-a b 9] B 24 ,8 ab
1. T S 1 3
_ gR be“eﬂabc — 1—8lTa5 Ya — 1_81TCW eg"yﬁ — ﬁaag - §.Fag} P+ c.c. (6.42)
Si(/’kzn :—/d4xe¢
1 .
{ —-R,," (e“% + 562‘6 wbd VY )Dé + 51, “"(ez’% - %eabcdei 7075>D§
i a C g S N
— ng Pe e (ehed — eted) v*°DE + ZTO‘“ ( —leyo, b)Dé
) 2 71
- %Taﬁ (e + 565% )DL - ETO‘“ ade b ed’ysDL+ e abcde“eﬁed’y 751)5
1 2
- 2<(DL (1)<€H€b - 6265) ’7 + _O-aU>D,§DL - aea(Déeg)sbc edeU'YSDL
2
+1i(Dgey)(Dge ebege] (3 &% Ya — m;;e““%)%l?ﬁ
1 1
Y(DL en)(ehey — egeg‘)e%abcl)ﬁ — Y(DC];@Z) <4z’e’; + efa,f) Dg
1 ab 1 ab i)
+ 1—6lRaﬁ Oab — ZRQM (3 aeﬂ + €5a€ )ch
3 1. 8
o 4_l2Ta/3 Ya — Q_ZQTOW (65")/6 - eﬁa/‘yu> 373 27378
2
+ (D) (Dhel) (mao™™ — 2Acliet — eliel)o,) — 5 (DEes) (3els — s
5)
+ 3iF el DL — 22’]-"&#6%7’”1)5 - Z]:ag } Y+ c.c. (6.43)

Putting the pieces together, we come to the final result: the linear NC' deformation

of the classical U(1) gauge field theory in curved space-time,

* 1 1 1 1
S |g-f. = S(O)|g~f- + Si(ﬂ}cin‘gf- + S( ,7)71’g~f- + S,(cx,)EoMf’g.i + Sx(él,)EoMff|g~f- : (644)

Action S*|4¢., describing NC Electrodynamics, pertains even in Minkowski space.
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6.5 NC Electrodynamics in Minkowski space

There are some residual effects of space-time noncommmutativity coming from
the terms in S*|,¢ that survive the flat space-time limit. Therefore, from now on

we work in Minkowski space.

The action for NC electrodynamics in Minkowski space, up to the first order in §%5,

is given by
* T 1 v
Sflat :S](”(l)t)zt + S}}it = /d41’ YD —m)y — 1 /d4I FuFH

(6% 1 14 1 14
‘|—9ﬁ/d4l' <§faufﬁyf"u —g aﬂfﬂfuu>

{1 o~ ~ T o, o~
+ eaﬁ / d4.f13' w< — ZO-OCUDIBDU + m&“aﬁp ’}/p’)/g,Dg (645)

m 1 37 ~ 7 ~ 3m 1
N el _ 2 hp, — [ 22—
(412 -+ 6[3) Uaﬁ + 4 Fagp 2Fau’}/ Ié; ( 4 4l) fa5>w >

where we introduced flat space-time covariant derivative Zsu = 0, —1A,. This
action is obviously different from the other actions describing NC Electrodynamics
already present in the literature [ITTHIT3]. The new terms stem from the residual
interaction with NC gravity and they will trigger some non-trivial phenomena, such
as deformed relativistic Landau levels of an electron. Also, we point out that not

all of these terms vanish under WI contraction.

6.6 Deformed equations of motion

By varying (6.45) over A, we obtain NC Maxwell equation with sources. Up to

to first order, the equation is given by
1 1
OuFH — L0 FupgO, FH” — S0° Fou 0, F " + 0°°0,(F, M F ) (6.46)
=~ — 000, Doy — 26" 00, "Dyt + 69500

7 - [ - i - 1 _
= 5ai?" eas "YW = 5077 0a(P D) + 5070, (U1" Dsv) + 5;070a (V1)

Wyt = SO0 Dy) + 5000, D) (6.47)

The analysis of this equation remains to be done.
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By varying NC action (6.45)) over 1) we obtain a deformed Dirac equation for an

electron coupled to electromagnetic field:
(i —m + A+ 0" Mag) 9 =0, (6.48)
where 0°° M5 is given by

1 ~ ~ 71 ~ m 1
af _ pap o o
0 Maﬁ =0 { — ZO'Q DﬁDU + _2412€a5p ’)/p’}/g,DU — (—412 + _613) Oap
31 ~ 1 ~ 3m 1
S FusD — = Foarrt" Dy — [ S — =) Fus b . 6.49

From (6.49) we see that there are some new interaction terms in (6.48). For an

electron, we set ¢ = —1.

6.7 Electron in a background magnetic field

Using the NC-deformed Dirac equation (|6.48) we can analyze the special case
of an electron propagating in constant magnetic field B = Be,. Accordingly, we
choose A, = (0, By,0,0). An appropriate ansatz for (6.48)) is

©(y) L
1/} _ eszt+lpzx+szZ . (650)

x(y)

Spinor components and energy function are all represented as perturbation series in

powers of the deformation parameter,

v =0 +W+0?, (6.51)
x=x"+xV+0?) (6.52)
E=F9 4+ E® + 06 . (6.53)

Inserting the ansatz (6.50)) in the Dirac equation (6.48) yields

d e(y)
lh“mwtwf@—mf—m+BmHﬂMMw —0. (6.54)

x(y)
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The zeroth order (undeformed) equation is therefore

0

d

[E(O)vo —pa' i o —pyt -t Byyl] —0, (6.55)
y NG

and at the first order we have

d o
[E(O)VO — ' iV — —pyt —m Bml}
dy x®
@(0)
= — [EMW° + 6*° M) . (6.56)
X(O)
Taking the adjoint of (6.55),
Vi
w(o) E(0)70 — payt — mzd—y —p. —m+Byyt| =0, (6.57)

multiplying (6.56) by ¢(®) from the left and integrating over y, yields

7O / dy 0O — _gos / dy 5O M@

Therefore, the first order NC correction to the energy of an electron is simply

B0 _ —0°% [ dy @(O)Maﬂw(())

J dy OO (0:5%)

We us calculate explicitly the zeroth order solution ¢(?). From the unperturbed

equation (6.55) we derive the equation for ¢(°) spinor component. It is given by

d2
qE e By)? + (E")? — p? = m® — Bog| ¢V (y) =0 .
The unperturbed energy levels of an electron in constant magnetic field (relativistic

Landau levels) are

EQ) =/p2+m2+(2n+s+1)B, (6.59)
where n = 0,1,2,... is the principal quantum number, while s = +1 is the eigen-

value of the Pauli matrix o3.
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The complete undeformed Dirac spinor is

(0)
n,s . (0), .

@D;Og _ ) e—zEn?st-l—zprac—i—zpzz 7 (660)

Xn,s

with components
901(1(2 = (I)ngps ) (661)
Xns = 7o N — 5(\/71 + 1P, 0 — \/ﬁd)n_lmr) +p. P03 | @5,  (6.62)
n,s T 1

where o0+ = 01+t1i09, and @ is the eigenvector of o3 for eigenvalue s = £1. Functions
®, (&) (n=0,1,...) are Hermitian functions defined by

1 £ ) 2
(I)n = Hn 2B,
O = w7 Q@e

where H, are Hermitian polynomials and & = By — p,.

Normalization of gives us

70)0,,(0) 26,2
/ ’ * BED +m)
Using ((6.58)), we find
by 0% [ dy DM gyl
EW = REMUTLES (6.64)
fdy ¢n,s'7 @Z)n,s
In particular, for 82 = —#?! = § # 0 and all the other components #*? equal to

zero, we find

Os m? m B 0 B?
O — (I MA B et ) |42 (2nts+1) . (6.65
AP 70 (12[2 3l3> ( +(E((2+m)( n+s—+ )>+2E ?)( n+s+1). (6.65)

(
, n n,s

In the absence of magnetic field we confirm the already established result,

PO s0 ([ m? m
me pO 1212 33 )
The NC energy levels depend on s = £1 and we see that constant noncommutative

background causes Zeeman-like splitting of the undeformed energy levels. Therefore,

it acts as a birefringent medium.
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To obtain the non-relativistic limit of NC energy levels we expand the classical

energy E) assuming that p?, B < m?:

)

pz+(2n+3+1)B>1/2

EY) = \/p§+m2+(2n+s+1)B=m<1+ 2

m
_ m<1+p§+(2n+s+1)3 (p§+(2n+s+1)3)2) |

2m?2 B 8m4

Expending ([6.65]), we obtain the first order NC correction to the energy levels of a

non-relativistic electron:

s 0 2 3pt 3p2(2 1)B
B - (_s_ﬁ) (1_ P, 3p:  Spntst1) )

313 1212 2m?2  8m# 8m4

0 B? 2 2 HB  3(p. 2 1)B)?
B on g s41) 1_117Z+(n~|—s~|— ) n (p. +(2n+s+1)B) ‘
2m 2m?2 8m4

If we take p, = 0, the non-relativistic NC energy levels reduce to

E,,=EY)+EN +0(6?)

fs fsm 2n+s+1 (2n + s+ 1)?
—mt e — B+oB%) T T g2y g 62
mtsE T E t T g, (BB A (B +WB)+ 06
m 1 2n+s+1 (2n+s+1)% , 5
A L R e - S S R s 0%) , (6.
mee (12[2 3l3) om 11 8m? sy + O, (6.66)

where we introduced B.j; = (B + 6B?) as an effective magnetic field. As for the
non-interacting electrons [105], the spin-dependent mass-shift is apparent. If we
compare this expression with the one for the undeformed energy levels ET(L%, we see
that the only effect of #-constant noncommutaivity is to modify the mass of an
electron and the value of the background magnetic field. This result is in accord
with string theory. Namely, in [41] it is argued that the endpoint coordinate of an
open string constrained to a D-brane in the presence of a constant Kalb-Ramond
B-field satisfy constant noncommutativity algebra. The implication is that NC field
theory can be interpreted as a low energy limit, i.e. an effective theory, of the theory

of open strings.

Having the energy function , we can derive NC deformation of the induced
magnetic moment of an electron in the nth Landau level, in the limit of weak

magnetic field,

O,
Hns = =758

is the Bohr magneton. We recognize —(2n+1)up as the diamagnetic

= —up(2n+s+1)(1+6B), (6.67)

eh
2mc

where g =

moment of an electron and —sup as the spin magnetic moment. The 6B-term
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is another potentially observable phenomenological prediction. It is a linear NC
correction to the induced dipole moment of an electron. As a next step, one could
try to calculate the induced magnetization (induced magnetic moment per unit
area) of a certain material. For that matter, we need a better understanding of the

realization of noncommutaivity in many-body physics.

Canonical NC deformation of relativistic Landau levels has been considered in
[114] and for other types of NC space-times in [115] [116]. It can be seen both from
(6.65) and that the NC correction to the (non)-relativistic Landau levels de-
pends on the mass m, the principal quantum number n and the spin s. In particular,
the NC correction to energy levels will be different for different levels. It would be
interesting to explore how space-time noncommutativity modifies the degeneracy of
Landau levels and we plan to address this problem in the future. It is well known
that the physics of the Lowest Landau Level (LLL) is closely related to the physics
of Quantum Hall Effect (QHE). Using the results of this section, we hope to ob-
tain some constraints on the noncommutaivity parameter from condensed matter

experiments.

Also, starting from ([6.45]), we can analyze renormalizability properties of our
model. It was found that the so-called minimal NC Electrodynamics, a theory
obtained by directly introducing the Moyal x-product in the classical Dirac action
in Minkowski space, is not a renormalisabile theory, because of the fermionic loop
contributions [I11, 112]. It would be interesting to see if additional NC terms that
are present in the NC Eletrodynamics action can improve this behaviour.
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7 NC Yang-Mills theory

The content of this section is originally presented in [117].

The NC correction to the classical Yang-Mills action could be relevant for the
physics of the early Universe. Namely, the standard cosmological model predicts
that thermodynamic conditions in the early Universe were such that nuclear matter
existed in a state of quark-gluon plasma (QGP), a distinct phase of nuclear mat-
ter that exists only at extremely high temperatures and densities, when low-energy
composite states - hadrons - disintegrate into their fundamental constituents - qu-
arks and gluons. On the other hand, it is generally expected that quantum gravity
effects, such as space-time noncommutativity, become relevant near the cosmologi-
cal singularity (just after the Big Bang). The existence of QGP, as a theoretical
possibility, was realized in the mid-seventies after the development of the Quark
Model of hadrons and the non-Abelian gauge field theory of strong interaction -
Quantum Chromodynamics (QCD). The latter exhibits several remarkable features.
At short distances, or large momenta ¢, the effective (renormalized) coupling con-
stant a,(g?) decreases logarithmically, and quarks and gluons appear to be weakly
coupled, the so-called asymptotic freedom. Since the interaction between quarks di-
minishes as they approach each other, at sufficiently high density, they are no longer
confined inside hadrons, and become free. On the other hand, at large distances (or
small momenta), the coupling becomes strong, resulting in the phenomena of con-
finement (quarks do not exist as isolated particles at low energies; they occur only
as constituents of hadronic bound states - mesons and baryons). The commonly-
adopted cosmological scenario of the subsequent cooling of the initially hot and
dense Universe, assumes a series of phase transitions through various spontaneous
symmetry-breakings related to non-Abelian gauge fields. Specifically, the hadroni-
zation of QGP is related to the spontaneous chiral symmetry breaking, described
by a non-Abelian theory of strong interactions based on SU.(3) symmetry group,
i.e. the QCD. The nature of this phase transition determines, to a great extent, the

evolution of the early Universe.

That being said, our primary goal in this section is to generalize the previous
results related to U(1) gauge field and consistently incorporate non-Abelian Yang-
Mills gauge field (describing gluons) into the SO(2,3), framework. Deformation
of the classical action, invariant under SO(2,3) x SU(N) gauge group, will reveal
the sort of couplings of quarks, gluons and gravity that arise due to space-time
noncommutativity. This result can be regarded as the first step towards a full

theoretical treatment of quarks and gluons in NC space-time.
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7.1 Yang-Mills field in AdS framework

Introducing non-Abelian SU(N) gauge field, A, = AT}, requires an upgrade of
the original gauge group SO(2,3) to SO(2,3) x SU(N). Generators T; of SU(N)
group are hermitian and traceless, and they satisfy the (anti)commutation relations:
[T7, Ty = ifrjxTk and {T7,T;} = d;jx Tk, with antisymmetric structure constants
frix, and totally symmetric symbols d;jx = Tr({T;,T;}Tk). We choose the nor-
malization Tr(T;Ty) = 6;;. SU(N) group indices I, J,... tun from 1 to N*>—1. The
total gauge potential of SO(2,3) x SU(N) group is

1
Q= Jwp"Map @T+1@ ATy (7.1)
and the corresponding total field strength I, is the sum of the gravitational part
F,,, and the Yang-Mills part F,,,

1

F,, = §Flj‘VBMAB I+10 F.T7, (7.2)

with the usual F!, = 9,4 —8VA£+gf”KAJAK, where ¢ is the Yang-Mills coupling

pv

strength.

Action for Yang-Mills gauge field (a suitable generalization of the U(1) action

from the previous section),

1

Sa=—15 T / dia ervee < fF D, 6Dy + éfZDmDycéDpwaabeb) +cc (7.3)

is real and invariant under SO(2,3) x SU(N) gauge transformations. It involves an
auxiliary field f defined by:

f= %fAB’IMAB @Tr, Of =ile, f], (7.4)

where we have a gauge parameter e that consists of the SO(2,3) and the SU(N)
part,

1
€:§€ABMAB®H+]I®EIT]. (7.5)

Auxiliary field f transforms in the adjoint representation of SO(2,3) and SU(N)
group. The role of this field is to produce the canonical kinetic term in curved space-
time for the non Abelian SU(N) gauge field in the absence the Hodge dual operator,
which otherwise cannot be defined without an explicit use of the metric tensor. We

still need to use an auxiliary field ¢ = ¢*T'4 to produce symmetry breaking. It
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is invariant under SU(N) gauge transformations and its full covariant derivative is

given by,
Da’¢ - aa(b - ig[Qaa ¢] = ao‘¢ - i[waa ¢] = Da’¢ . (76)

By setting ¢* = 0 and ¢° = [ in (7.3]) we break SO(2,3) x SU(N) gauge symmetry
down to SO(1,3) x SU(N) and obtain

1 1
Sales =5 [l e fUEL e+ [ (g w2 L) (1)

Varying this action independently in components f/, and fl; of the auxiliary field,

we get their equations of motion,
I I 1
ab 0 ) ab — _egezf;w : (78)

By evaluating ([7.7]) on these EoM we eliminate the auxiliary field, and obtain

1

SA,E0M|g.f. - _ZL /d4ZE Vg g,upglfﬂfiyf[{g ) (79)

which is exactly the canonical kinetic term for Yang-Mills gauge field in curved

space-time.

In the context of SU(N) Yang-Mills gauge theory, we need to introduce a mul-
tiplet of N Dirac spinors,

(41
v=1|: |, (7.10)

VN

that transforms in the fundamental representation of SU(N) gauge group. Each
component 1; transforms in the fundamental representation of SO(2, 3) gauge group,

and so, infinitesimally, under a full gauge transformation,

(0cW); = i(eW); = i€’ (Tr)ijo; = %EQB(TI)ijMAB¢i : (7.11)

The i-th component of the total covariant can be decomposed in three parts, Lorentz,

[-dependent AdS part, and SU(N) part,

(Daq})i = a¢i - 1gQU¢i = aawi - §W?BMAB¢’L' - ZgA({'(TI)ijwj
)

= Dby, + —

2ty — igAL(TT) i) - (7.12)
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The undeformed fermionic action is

?

S\p:ﬁ

diz evro (\TJD#¢DV¢DP¢DU\IJ — DU\IIDNquZ,M)p@IJ) , (7.13)
and, after gauge fixing, it reduces to

_ 2 _ _
Sylgsr =1 / diz e (\IfegvsD(f\I/ - 7\1/\1/ + g\IfegvsAf,TI\If> , (7.14)

We can also include additional SO(2,3) x SU(N) invariant mass-like terms S, ;
(1 =1,2,3) in the total action,

. 9 )
St = % (m - 7) / d*z £°7 UD,¢D,¢D,¢DyddV + c.c.
7:02 2 4 v —
Sma = o5 m — 7 d*z e"?? ¥D,¢D,¢D,ppD,oV + c.c.
ng 2 4 Voo T
Sin.g = T m — 7 d*z " UD,¢D,¢pdD,¢p D,V . (7.15)
For the free dimensionless parameters cq, ¢y and c3 will again set ¢; = —cy = ¢3 =

1/72. In that case, after the symmetry breaking, the sum of the three mass-like
terms ([7.15)), denoted by S,,, reduces to

Snles = — (m — %) /d4x e UV . (7.16)

Adding this to ([7.14)), the 2/l terms exactly cancel. In particular. We thus have a
complete and consistent classical (undeformed ) model of SO(2,3) x SU(N) gauge-
invariant Yang-Mills theory.

7.2 NC-deformed Yang-Mills theory

The NC Yang-Mills action invariant under NC-deformed SO(2,3), x SU(N).
gauge transformations is obtained by applying the procedure of x-product deforma-
tion to the commutative actions Sy, S,,, and Sy, given by Egs. , and
, respectively. For example, pure Yang-Mills action S4 becomes

1 A A A A A
S% = _1—6lTr/d4:v 5“””"{f*IFW*Dp¢*DJ¢*¢

+ éf*f*pué*pyé*ppé*l)aqg*é} +cc  (7.17)
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We proceed by employing the SW map to perturbatively expanded the NC action
in powers of #*°. SW map insures the invariance of this expansion under ordinary

SO(2,3) x SU(N) gauge transformations, order-by-order.

After the symmetry breaking and elimination of the auxiliary field f by using
its equations of motion - if we consider only terms linear in 67, to eliminate the
f-field, one only needs to insert the undeformed EoM ([7.8)) in the first order NC
correction (as in the case of U(1) gauge field), yielding

g8

0 et = T3 d'z e dryxc "9 (FipF o, Foe — AFLFi,Fi) (7.18)

This is the first order NC correction to the pure Yang-Mills action in curved
space-time. It describes interaction of gauge-bosons with gravity that arises due to
space-time noncommutativity. After the gauge fixing, the total linear NC correction

to the spinor part of the Yang-Mills theory becomes

_ 1 ;
<S\(I,1) + Sﬁ?) |or. = 0°° / d'ze V| — §R ety DB 5 Raﬁabsabcdegycfl)ﬁ
Qa g Z g S
+ 16R B beb%D 16R 6”5 bem Y 757)5 - ﬂR eﬁ(ede —eleq)y 757)5
i a0 L a oL 1 b
- gTO‘ﬂ D ‘I— lTaP’ MDB “I'_ 16l Oéﬂ D _|'_ ZTO‘:U“ €b a Dﬁ
1 a Ci 7 a g 1 g
- 1_21Tau Eab de% heg DL + Msabcde eﬁedv “y"DE — 1% DEDU
1
PR - L1 DEDE — na( DEeg) (D)) eleteTn, 5Dk
1
(DL a)(Déeg)stdseue  YavsDL — a(D D)en el s Dy
12 121
1 a g g 1 a 3
- g(DLe )(eley — eae‘b‘)eﬁob DL — g(DL Jet'a,"Ds + 96ZRQB Tab
+ R betet ! R, "eg.eto,© 19 T.5"Ya + = T, el
T A7 o c T L7 a 0 BYYSD) a PO
161 §0be T gy e e T oggyptas Te T e e a8
1 19 1 1
—T, e a H— DL el 1079 D a o
T g7z Lo ot~ g (Pec)eans ¥ g (Daci)esn” = fgoas
31 o.sTL ‘ o, sTyL 1
+ gfage 7D 4.7-"Me v*Ds + gfaﬁ U+ c.c. (7.19)

The SO(1,3) x SU(N) covariant derivative is DLW = (DL — igAI'T;)¥. This ac-
tion describes interaction of fermions with gravity that emerge due to space-time
noncommutativity. Evidently, some of them pertain even in flat space-time and this
unexpected residual effect of space-time noncommutativity perhaps has some non-

trivial consequences for the dynamics of quarks and gluons. The new terms, linear
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in %, modify the standard theory of strong interaction. Note that some of them

survive the WI contraction.

From curved space-time NC actions (7.18) and ((7.19) we can derive the NC-
deformed action for SU.(3) Yang-Mills theory in Minkowski space,

* 1 vo
Sflat :/ { ;D\IJ gupg ]:il/‘FpIa

LB | %@(Q)Uaaﬁﬁﬁa\p@ L PTG D, | %q](q) Fus DU

24128

- ~ 1 - 1=
— —PWDFE, _A"Du@ - —_JDg @ 4 —FOF 1y
7 Ds e sV T 8

2
eaﬁ up Vo 1 J K 1 K
— 1g dx 99 (FLgFl, Fr — AFL Fi, F) (7.20)

with U@ being the quark color triplet, and we imply the summation over all six

flavours (¢ = u,d, s, c,t,b). The SU.(3) covariant derivative is given by
~ 1
(Do D); = 0,6 = S9. A7 (M)t (7.21)

with Gell-Mann matrices %)\1 as generators of SU.(3) gauge group; index [ goes
from 1 to 8. We have a gluon field strength F), = 0,A] — 9,A!, + g, f""* A7 A,
with coupling g,. From the experimental point of view, it is significant that the first
non-vanishing NC correction is linear in #*° since this could lead to some potenti-
ally observable effects. Following this approach, it is possible to progress towards
generalizing the NC Standard Model. After quantization, the renormalizability of
the model can be investigated, as in [I18], especially the influence of noncommuta-
tivity on asymptotic freedom. This result sets a basis for further investigation of
the effects of space-time noncommutativity on strong interaction and, by extension,

the dynamics of the early Universe.
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8 Canonical deformation of N =2 AdS; SUGRA

The content of this section is originally presented in [119].

It is well known that one can define a consistent theory of extended N = 2
AdS SUGRA in D = 4. Besides the standard gravitational part (with a negative
cosmological constant), this SUGRA model involves a U(1) gauge field and a pair
independent Majorana vector-spinors that can be mixed to form a pair of Dirac spi-
nors (charged spin-3/2 gravitini). The action for N = 2 AdS; SUGRA is invariant
under SO(1,3) x U(1) gauge transformations, and under local SUSY. We present
a geometric action that involves two “inhomogeneous” parts: an orthosymplectic
0Sp(4|2) gauge-invariant action of the MacDowell-Mansouri type, and a supple-
mentary action invariant under the purely bosonic SO(2,3) x U(1) ~ Sp(4) x SO(2)
sector of OSp(4]2), which needs to be added for consistency. This action reduces to
N =2 AdS; SUGRA after the gauge fixing. We show that N = 2 AdS; SUGRA
has non-vanishing linear NC correction in the physical gauge, originating from the
additional, purely bosonic term. For comparison, simple N = 1 Poinacaré SUGRA
can be obtained in the same manner from an OSp(4|1) gauge-invariant action (wit-
hout introducing any additional terms). The first non-vanishing NC correction is
quadratic in the deformation parameter 6*, and therefore exceedingly difficult to
calculate. Under WI contraction, N = 2 AdS, superalgebra reduces to N = 2
Poincaré superalgebra, and it is not at all clear whether this relation holds after
canonical NC deformation. We present the linear NC correction to N = 2 AdS,
SUGRA explicitly and discuss its low-energy limit and what remains of it after WI

contraction.

To date, we still lack direct physical evidence of SUSY, at least in its simplest
form. However, its beneficial influence on high-energy physics (it improves renorma-
lizability in QFT and a provides a natural solution to the hierarchy problem), along
with its mathematical consistency and unification power (especially the unification
of gravity and the Standard Model within SUGRA, and an ultimate unification sc-
heme such as Superstring theory), motivate us to seriously consider SUSY as a part
of our description of nature. Since the original work of Freedman, van Nieuwenhu-
izen et al. [120, 121], and Deser and Zumino [122], the theory of supergravity has
become a well-developed research field. SUGRA provides a unification of gravity
with other fields by imposing the gauge principle on SUSY, the associated gauge
field being the spin-3/2 gravitino field described by a Majorana vector-spinor. It was
demonstrated in [123], 124] that one can define a consistent theory of N =2 AdS,
SUGRA with a complex, U(1)-charged gravitino. We propose a more geometric way
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of obtaining N = 2 AdS, SUGRA action and perform its NC deformation.

The following results amount to a supersymmetric extension of the theory of NC
gravity based on the NC-deformed AdS gauge group SO(2,3) developed in [57H60].
NC SUGRA can be established by gauging an appropriate supergroup [28] 29] 125}
I31] and performing canonical deformation. Since GR can be obtained by gauging
AdS group SO(2,3), orthosymplectic supergroup OSp(4|1) appears as a natural
choice for pure N = 1 Poincaré SUGRA. The bosonic sector of osp(4|1) superalgebra
- symplectic algebra sp(4) - is isomorphic to AdS algebra so0(2,3) that reduces to
Poincaré algebra under WI contraction [132]. The subject of NC SUGRA has been
thoroughly treated in [96H9§|. Classical action for OSp(4|1) SUGRA presented in
[98] is manifestly invariant under OSp(4|1) gauge transformations, and we will use
it as a starting point. However, obtaining explicit NC correction of this action is
exceedingly difficult because the first non-vanishing NC correction is quadratic in
0. Taking a lesson from [105] [T08], T09] that iby inlcuding Dirac spinors coupled
to U(1) gauge field (much simpler) linear NC correction emerges, we will make a
transition to OSp(4]2) SUGRA that involves a pair of Majorana spinors that can
be mixed into a pair of gravitini charged under U(1). We present an action that
consists of two “inhomogeneous” geometric parts: an orthosymplectic, O.Sp(4|2)
gauge-invariant action of the MacDowell-Mansouri type and a supplementary action
that is invariant under the purely bosonic SO(2,3) x U(1) sector of OSp(4|2), that
has to be included in order to obtain complete N = 2 AdS; SUGRA at the classical
level; a non-trivial linear NC correction to N = 2 AdS; SUGRA comes from this

additional bosonic term, after deformation.

We consider two classical SUGRA models based on the orthosymplectic OSp(4|N)
gauge group: the simple N = 1 AdS, SUGRA, describing pure supergravity with
the negative cosmological constant, and the extended N = 2 AdS; SUGRA. We put
our attentions on the latter (N = 2), since the former (N = 1) has been treated
thoroughly in [98], including its NC deformation; we discuss it just for comparison.
Significant differences of the two models in question have been manifested already
at the level of their classical actions, and this reflects drastically on the structure of

their NC corrections after deformation.
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8.1 O0Sp(4]2) SUGRA

Orthosymplectic group OSp(4]|2) has 19 generators, and they are of two sorts -
bosonic and fermionic. Ten bosonic generators Mg = —Mpa (A,B=0,1,2,3,5)

form a basis of AdS Lie algebra so(2,3) (symmetry algebra of AdSy),

[Map, Mcp) = i(napMpe + npeMap — nacMpp — nspMac) (8.1)
where nap is flat 5D metric with signature (+, —, —, —,+). By splitting this set

of generators into six M,, AdS rotation generators (a,b =0,1,2,3) and four AdS

translation generators Ma5, we can recast $0(2,3) algebra in a more explicit form:

[Ma57Mb5] = —iM, ,

~ ~

[Maba MC5] = i(nbcMaE) - nachS) 5

[Mab, Mcd] = i(ﬂadec + chMad - Uachd - UbdMac) . (8.2)
If we introduce a new set of generators (Mab,ﬁa) defined by Mab = Aab and

P, = l_lMag) = aMa5, where [ is a length scale related to AdS radius and o = |71
(we will use both in the following formulae), the algebra (8.2) transforms into:

[ﬁaaﬁb] = —'iOé2Mab )
[Maln 75(:] = i(nbcﬁa - nacﬁb) 5
[Maby Mcd] = Z.(77ad~/\;lbc + nbc-/\;lad - nachd - nbdMac) . (83)

In the limit &« — 0 (or [ — o0), AdS algebra reduces to Poincaré algebra; in
particular, we obtain [75a, 751,] = 0 with all other commutators left unchanged. This is
a famous example of the Wigner-Inénii (WI) contraction, the contraction parameter
being « (or [). This Lie-algebra contraction (or deformation) can be extended to AdS
superalgebra, and we will be interested, later on, in its effect on the NC correction
of N =2 AdS; SUGRA.

A representation of the AdS sector of 0sp(4|1) superalgebra is obtained by using
5D gamma matrices I'4 satisfying Clifford algebra {I'4,T'g} = 2n4p; the AdS gene-
rators Mup are represented by 6 X 6 super-matrices, which reduce to 4 x 4 matrices
Myp = i[F 4, 'p] in the AdS subspace, see Appendix C. One choice of [-matrices is
L'a = (9475, 75), where 7, are the usual 4D y-matrices. In this representation, the

components of Mg are given by M, = ﬂ%a W] = %O'ab and M5 = _%%_
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The ten AdS bosonic generators M p are accompanied by eight independent
fermionic generators Qé, with spinor index o = 1,2,3,4 and SO(2) index [ = 1,2,
comprising a pair of Majorana spinors, and one additional bosonic generator T
related to SO(2) ~ U(1) extension. Together, they satisfy osp(4]2) superalgebra
(for consistency, fermionic generators Qé have to transform as components of an

AdS Majorana spinor),

[Map, Mcp) = i(napMpe + npeMap — nacMpp — nspMac) |
[Map, QL) = —(Map) Qf ,
{QL. Q1) = —26U(MABC”1)QBMAB — il CosT
[1,Q%) = —ie" QL , (8.4)

with antisymmetric tensor /7, e!2 = 1. C~! is the inverse of the charge-conjugation
matrix (spinor metric) for which we use the following representation given in terms of
Pauli matrices: C' = —¢® ®i0? and C,3 = —Cpg,. Numerically, we have C~! = —C,
but the index structure of the two is different since Cl,.,(C~1)7"% = §7.

More visually,

0] —1 0
1 0 2x2
C = . (8.5)

02x2

An explicit matrix representation of 0sp(4|2) superalgebra is given in Appendix A.

By introducing a new set of generators {Mab = Aab,ﬁa = aMag,, Qé =

VaQ! T := aT}, we can recast the osp(4|2) superalgebra (8.4) into the following

form:

[Pa,Pb] = —ia’ My ,
[ ab; ] (77bc a 77ac75b) )
[(Mab, Mod] = i(aaMue + MbeMad — TacMba — MaMac) |
[Pa, Ol = —a(M),’9f
Mo, Q] = ( ) 9h
7. Q) = —ie’ Q.
(0L, 00} —zfs”a(Mabcfl)agMab — 20" (M C ™) 05P, — i CopT . (8.6)

Under WI contraction o — 0, it reduces to N = 2 Poincaré superalgebra.
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Orthosymplectic supergroup OSp(2n|m) (the symplectic sector is always even-

dimensional) consists of those super-matrices U that preserve the graded metric

G:< Yap 02"””) , (8.7)
Om><2n‘ Aij

with some real 2n x 2n matrix X,3 = —¥3, and some real m x m matrix A;; = Aj;.

Considering only infinitesimal transformations U = 1 4+ eM, generated by some

Al B
. (ch b ) (53)

(bosonic blocks Agyxo, and Dy, have ordinary commuting entries, and fermio-

0sp(2n|m)-valued supermatrix

nic blocks Boyxm and Ch,xa, have Grassmann-valued entries), the defining relation
becomes

MG +GM =0. (8.9)

Super-transpose, super-hermitian adjoint and super-trace are defined by imposing
the standard rules (MN)T = NSTMST (MN)' = NTM' and STr(MN) =
STr(NM),

AT | CT At | Cf
ST _ t_ _ _
MST = < ma ) . M= ( AT > . STr(M) = Tr(A) — Te(D) .

(8.10)

Now, the key observation is that a pair of Majorana fields Xﬁ (describing a
pair of neutral spin-3/2 gravitini) constitute the fermionic sector of the osp(4/2)
connection super-matrix €2,. We can expand this super-connection over the basis
{ My, M5, Q. T} with the corresponding gauge fields {w, W, Xh, Au}, as

L A Y A R
Q, = §wu“bMab+w,f5Ma5+(x,{)anJrAuT: X, 0 |id, |,
X | —iAu| 0
(8.11)
where we have s0(2,3) gauge field w, = %quBMAB = %wH“bMab + w#“5Ma5 =

1 . ab
1%
and their Dirac-adjoints y/, = —(x/,)"C~" with components (x1)* = —(x},)s(C~*)"®

(a=1,2,3,4).

Oab — %w“ag’%, a pair of Majorana vector-spinors Xi with components (Xﬁ)a,
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Equivalently, we can expand €2, over the rescaled basis {Malnﬁa, Qé, 7'}, but
with a different set of gauge fields {wu € E B ,zﬂl = \})Zﬁ,.A = iA“}, as

1 wu | Vv Vav
QM = §w“abMab + w a57) + fX/L QO‘ o \/a’l%lll« 0 ZOéAH ’
vah | —iaA, | 0

(8.12)

where we again have so(2,3) gauge field w, = Zw Do — & €Ya, two independent

Majorana spinors 1!, and (dimensionless) U(1) vector potential A,. We will use

this particular representation because it makes WI contraction more transparent.

The two Majorana spinors, wi and wi, can be combined into an SO(2) doublet,

_ (Y
e () o

It can be readily confirmed that the gauge supermatrix (8.12)) satisfies the defi-
ning relation for the elements of 0sp(4|2) superalgebra (C' is the charge-conjugation
matrix (8.5))),

cloo cloo
QT o 1jo |+ o 1[0 [Q=0. (8.14)
0|01 0|01

By generalization, we introduce the Osp(4/|2) field strength F,, associated with

the super-connection §2,,,

Fo = 0,8, — 0,8, —i[,, Q]

Fu | Va(Duy —Duy) Va(D,uE - D)
= Va(Dul — Dylﬁi) 0 ioF ;
\/a(DlﬂZg - Dl/&i) _Z.aﬁ‘;u/ 0
(8.15)
with extended AdS field strength F v (summation over 1 = 1,2 is implied)
R . n n mn = m
Fu = Fu —ia(iab, —lgl) = —R On — =10 Vm (8.16)

4 2
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involving extended curvature tensor ijm” and extended torsion 7| w s given by
D mn . mn 2/ . m._n n_m . T mn
R, =R, —a’(eje, —ene)) —ia(V,o™W,) (8.17)
T, :=T," +i(¥,~N"7T,) . (8.18)

Electromagnetic field strength is also modified by a bilinear current term J),
Fur = Fur — Ty = OpAy — 0, A, — 0,0V, . (8.19)

Note that Pauli matrix io® mixes the two Majorana components in 7).

In the fermionic sector of F,,, we introduced

D;ﬂ/fll, = D,ﬂﬁi + CVAM/JE ) (8.20)
D;ﬂ/}g = Duwg - @Auwi ) (8.21)

where D,, stands for SO(2,3) covariant derivative. The fact that Majorana spinors

wi and 2 are not charged is reflected in the manner in which they couple to the

gauge field A,,. Using them, we can define two charged Dirac vector-spinors zbff =
14 ;00,2 : : — _ et — (AT

¥, £y, related to each other by C-conjugation, ¢, = @Z)f = C’@D:[ , that do couple

to A, in the right way. Using the Pauli matrix io? we can unify (8.20) and (8.21))

(10

DV, = (D, + aA,ic®)¥, = (Dﬁ +3

Y + aAMiUQ) v, . (8.22)
Now consider an action, similar to the one defined in (4.13)) for pure gravity, but now
appropriately generalized to be invariant under extended OSp(4|2) gauge transfor-

mations,

Sio = STr / d*z e"P7F,,, (algxs + bP*/I*)F 0 ® . (8.23)

The action is real and we introduced a pair of free parameters, a and b, that will by
fixed later. The first part of (8.23) is quadratic in the gauge field strength and the

second part (b-term) is necessary for having local SUSY after gauge fixing.

Generalized auxiliary field @ is given by the following supermatrix (there are two

Majorana spinors A; and Ay, and scalar fields 7w, m and o, see also [08] 126-12§]),

%W + 10"Ya Y5 + %5 ‘ Al Ao
o = -\ T—o|m : (8.24)

— Ay m o
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In the physical gauge, \i = \g =7 =0 =m = ¢* = 0 and ¢* = [, yielding

] 0 0
Dlys = 0] 0/0 . (8.25)
0100

Field strength F,,, and the auxiliary field transform in the adjoint representation

of OSp(4/2), with infinitesimal variations
0F,, =ile,Fu], 6P =ile,®], (8.26)
for some o0sp(4]2)-valued gauge parameter € given by a supermatrix,

1_AB
5€ MAB‘ SERS

€= & 0 | : (8:27)

—ta| O

& 0

From (8.26)), the invariance of the action (8.23)) follows immediately.

After the gauge fixing, field ®2/I% that appears in the second term of ({8.23)
becomes a projector that reduces any o0sp(4|2) supermatrix to its so(2,3) sector,
and the classical OSp(4]2) gauge-invariant action (8.23]) reduces to

vpo (a+b)ll~ mnp s T,
Siales = / Fra—" (TRW R, *€mnrs — 4al(D, U, 75D, 0,) | . (8.28)

The term that is quadratic in the Lorentz SO(1,3) covariant derivative Dﬁ can be

transformed by partial integration,
4 nvpo L, L 1 4 Qv po mn (J TS
d*z P (D, s D0, ) = 16 dz ™R, (V0" Vs ) emnrs ,  (8.29)
where we invoked the commutator of two Lorentz covariant derivatives

ilD}, DIV, = 1R, 0mn Vs . (8.30)

A term of the same type appears in the first part of the action (8.28]). These two
contributions have to cancel each other in order to have SUSY, and this implies

the constraint b = —a/2. Moreover, to obtain the correct normalization of the
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Einstein-Hilbert term, we set a = il /327Gy = il /4K?, yielding

R "R, "7 € s (8.31)

162

1
Suolgsr. = 53 d'z (e (R(e,w) — 6a2) +

+ chvpo (2\I[M,Y5,YV(DP + OéApZ'O.Q)\IJU + Z’fﬂy(\I}p'y57:0'2\I/o_) — %(\Tjuioj\:[fy)(q]p’}%ioilpg))) .

However, this is not the full N = 2 AdS; SUGRA action. The gravity part
is correct (we can omit the topological Gauss-Bonnet term) and we also get the
correct kinetic term for the gravitino doublet. There are also two bilinear source
terms, electric and magnetic,

Ty = V,uic* 0, Tl = Ll (U, 5107 W,) (8.32)
But we are missing the contribution from the SO(2) part of the bosonic sector,
in particular, the kinetic term for U(1) gauge field A,. The reason for this defect
can be traced back to the specific form that the auxiliary field assumes in the
physical gauge P, ; it completely annihilates the SO(2) sector of any osp(4/2)
supermatrix. To restore the missing terms, we must introduce an additional action,
supplementing (8.23). In [109], following the approach of [I10], we defined a classical
action invariant under SO(2,3) x U(1) gauge transformations (~bosonic sector of
OSp(4]2)) that involves an additional auziliary field f = 1 fAPMyp. Its role is to
produce the canonical kinetic term for U(1) gauge field in the absence of the Hodge
dual operator (this is, of course, the crucial point, we are trying to construct a
purely geometrical action that does not involve the metric tensor g, explicitly).
This auxiliary field f is a U(1)-neutral O-form that takes values in s0(2,3) algebra,

and it transforms in the adjoint representation of SO(2, 3).

The way to proceed is to employ this auxiliary field method to include the
modified U(1) field strength .7::#1, defined in (8.19). However, there seems to be
no way to construct an OSp(4|2) gauge invariant action that is compatible with this
procedure. Therefore, we will use an action, analogous to the one in [I09], invariant
under the purely bosonic SO(2,3) x U(1) sector of OSp(4|2), involving the bosonic
field strength fo, = Fu, + 5 " Fu = Fuy + 5 (Fu — Jioyw) of SO(2,3) x U(1).
The action is given by

Sy=Tr / Fra—— (c F Db Dy + d f2 DM¢DV¢DP¢D0¢¢> tee (8.33)
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Note that, by doing this, we lose the complete OSp(4]2) gauge invariance of the
undeformed action before the symmetry breaking. Nevertheless, we will obtain the
correct action for N = 2 SdS, SUGRA in the physical gauge, and this is the only

requirement that has to be satisfied in order to perform NC deformation.

After calculating traces (see Appendix B) we obtain

ic
Sa = / d*z eP? (EfABFuyCD(Dp¢)E(DJ¢)F¢G(nFGgABCDE + 277AD€BCEFG)
+ C"{'_lfABﬁuV(Dp¢>E<DU¢)F¢G5ABEFG’

- %lfABfAB(DM¢)E<DV¢)F(Dp¢)G(Do¢)H¢R€EFGHR> +c.c. (8.34)

We conclude that parameter ¢ must be real; otherwise, the second term, involving
.7::/“,, would be purely imaginary and would not contribute (and this term is the
one that we need to include). Therefore, assuming real ¢, the first term (involving
gravitational quantities like curvature tensor and torsion) becomes purely imaginary
and vanishes after adding its complex conjugate (c.c.). Also, d must be purely

imaginary for the procedure to work.

Gauge fixing yields
A%Ef:/ﬁ%w(—&afvwﬁwﬁé+2MMfwﬂm>. (8.35)

By varying this gauge fixed action over f® and f® independently, we obtain alge-
braic equations of motion (EoM) for the components f,, and f,5 of the auxiliary
field f, respectively, and they are given by

C ~

fab = —@fwefl‘ez y fa5 =0. (836)

Inserting them back into the action (8.35]), we obtain

2l [, =
&%ﬁzgﬁd/dxef. (8.37)

To get the consistent normalization, we set the prefactor to (8x%)~!, yielding another
constraint 16ilc?> = 3d for the parameters ¢ and d. To make the connection with the

results of [109], we take ¢ = 1/32] and d = i/192l, implying

fap = —K " Fueley . (8.38)
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Therefore, after imposing the physical gauge, the original bosonic action (8.33]),
invariant under SO(2,3) x U(1) gauge transformations, reduces to the SO(1,3) x
U(1) gauge-invariant action containing the canonical kinetic term for U(1) gauge
field A, in curved space-time and two additional terms involving gravitino current
Ty = \I’uwQ\I’w

1 ~, 1
Salgt. = 13 /d4:c eFP=— [dwe (FP=2F Jo+T) (8.39)

4K2

This is exactly the piece that was missing in (8.31). With this result in hand,
we have the complete classical N =2 AdS; SUGRA action [28, 29],

1 _
(Se2+ Sa)lgr = —55 / d'z e (R — 6a° + 271" 5y, (D, + aA,ic?) T,
1
+2F - Tom) = Ttey  Temy = 7 (F* + Ty = 2F - Tio)) ) - (8.40)

The most important characteristics of this SUGRA model are the negative cosmolo-
gical constant A = —3a? = —3/I1% and the fact that U(1) coupling strength is equal
to the WI contraction parameter a. Under WI contraction (o — 0), the N = 2
AdSs; SUGRA action consistently reduces to the N = 2 Poincaré SUGRA action.

In terms of charged Dirac vector-spinors w,jf = wi + iwi (actually, we can use
only one of them since they are related to each other by C-conjugation) the action

becomes

1 - )
(Sa2 4+ Sa)lgs = 5.2 / d*z e (R(e, w) — 6a* + 26_15“””"1&:75%(1),) — i Ayt
+2fj+ —j+ -j+ _1(;2_2f'j+ —|—(j+)2>
(m) (e) Y(m) 4 (e) (e) ’
(8.41)
with T = S(@ot — G30p) and T 5y = @wvt — Biwvt).

For later purposes, we note that action (8.41)) contains a mass-like term for the
charged gravitino (we absorb the parameter x~! into @Z); to obtain the canonical

dimensions),
ia/d4x eYrayt (8.42)

with mass-like parameter equal to the WI contraction parameter.
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8.2 0Sp(4]1) SUGRA

The OSp(4]1) supergroup has 14 generators: ten bosonic AdS generators Mg,
and four fermionic generators Qa comprising a single Majorana spinor (describing

a single neutral gravitino). The supermatrix for the OSp(4|1) gauge field Q,, is

Q, = ( \/‘i‘;_) \/561/’“ ) . (8.43)

Consider the following action invariant under OSp(4|1) gauge transformations [97]:

STr / d*z P7F,, (Isxs — 55 0*)F 0 ® . (8.44)

The auxiliary field is

o [T+t | A ) e (s ]0) (8.45)
Y ‘7‘(’ 00

In the physical gauge, the OSp(4|1) gauge-invariant action (8.44]) ezactly the reduces
to N =1 AdS,; SUGRA action [28, 29, O8],

Sutlgs = S d'z <e(R(e,w) — 6042) + 2&?“”’)"(15#75%Dp¢0)> (8.46)

2K2

= —% d*ze (R(e,w) — 6a® + 26‘15“”P”(1/7#757,,D£w0) — 22’04(1[@0"”1#,,)) .
It contains the Einstein-Hilbert term with the negative cosmological constant A =
—3/1?, the Rarita-Schwinger kinetic term for the neutral gravitino, and a mass-
like gravitino term that is needed to insure the invariance under local SUSY (the
gravitino actually remains massless). Topological Gauss-Bonnet term is omitted.
The cosmological constant and the mass-like term vanish under WI contraction,
yielding minimal N = 1 Poincaré SUGRA. Note that we do not need additional
action terms in to obtain a consistent classical theory.

It is shown in [9§] that linear (in 6*) NC correction to (8.44) vanishes, and
that one has to calculate the second order NC correction in order to see NC effects,
which is exceedingly difficult. In the following section, we use the Seiberg-Witten
approach to NC gauge field theories, to calculate linear NC correction to N = 2
AdS,; SUGRA, and conclude that it is not equal to zero. The non-vanishing part

comes from the additional bosonic action, S4.
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8.3 NC deformation of N =2 AdS; SUGRA

Canonical deformation of the orthoymplectic action (8.23)) is obtained by repla-
cing ordinary commutative field multiplication with the Moyal x-product, yielding
an NC action invariant under NC-deformed OSp(4]2), gauge transformations,

il

5t = o =STh / @ 7 (B x By x @ — g x x D x By @) . (8.47)

Likewise, we have a canonically deformed version of the bosonic action (8.33]) with
c¢=1/32l and d = i/192l,

1

g% — @Tr/d‘lx guupcr(f*fw*qug*Dgg%*qg

+ éf*f*D#qg*Dygﬁ*ng%*Doqg*(ﬁ) +c.c.  (8.48)

Field strength IE“W appearing in 1} is defined in terms of OSp(4,2), gauge po-
tential Qu as
F =0, — 0,9, —i[Q, * Q] . (8.49)

It transforms in the adjoint representation of OSp(4,2), supergroup as well as the
NC auxiliary field (i),

~ A

0 F,, =i[AtF,], 050 =i[A 1 d]. (8.50)

€

We proceed by expanding the OSp(4]2), gauge-invariant NC action (8.47)) in powers
of the deformation parameter #** via SW map. By construction, SW map ensures
invariance of the expansion under ordinary OSp(4|2) gauge transformations, order-

by-order.

Now we present some relevant steps in the expansion procedure of the NC action
. Our goal is to calculate and analyze linear NC correction to the classical
action (8.23)). According to the SW map, the first order NC corrections of the
auxiliary field ® and the OSp(4|2) field strength F,, are given by

A 1 ~
o) = =07{9%, (0, + D)@} , (8.51)

. 1 ~ 1
F(l) - _Zepa{Qpa (ao + DU)F#V} + §QPU{FPH’ FUV} ) (852>

5%

where ﬁu stands for the OSp(4|2) covariant derivative (associated to €,,).
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Successive application of this rule gives us the first order NC correction to the

classical action (8.23)):

(1) o ileAT
27 397Gy

1 )~ ~
STI“/d4:E ghvre ( - Z{FAT, FuquU}(I) + %D)\]F,UVDTF[JU(I) (853)

1 1
+ 5{]}-?)\#7 FTV}FpUCI) + iF#V{FAW FTU}CI)
1

1 Z. A~ A~
—@( — {Fxr By @YF,,® + =D3F,,, D, 0°F 0 @

+ E{FM, F,, }®*F,, ® + ZIFW[D@, D,®F,,®

' L
+ SFu @ DaFyo D@ + SF,, 0%F, FTU}<I>>> .

This linear NC correction is real and invariant under OSp(4,2) gauge transforma-
tions. However, a careful examination shows that after the gauge fixing it vanishes

completely,
1
Spr =0 (8.54)

But we still have the additional NC action 5% invariant under the purely bosonic
NC-deformed SO(2,3), x U(1), gauge transformations. The only additional SW

expansion we need is that of f , namely

p 1

f=f = 207 (. (0, + DS} + O (5.59)
The first order NC correction to (8.48)) before gauge fixing is given by

1 1 1
S =54+ 84,

6)\7

~ 1 ~ ~
= - @ Tl"/d4$ Euupa( - ifD)\f;wD‘r(Dp¢Da¢¢) + é{f)n'a f}fuqu¢Da¢¢

- f{]?)\,ua ﬁ'u}Dp¢Da¢¢ - ifﬁuDA<Dp¢Da¢)Dr¢
— if fu(DADy6) (D Dy ) — f fruA{ faps Dr}, Do}

+ % (%{J?;”" f2}DM¢DV¢DP¢DU¢¢ - f2{[{.]?;\/“ DT(b}? Du(b]a DP¢DU¢}¢
—if (DA(DuﬁﬁDuczﬁqubDaqb)DTqﬁ + DA\(D,¢D,¢D,¢) (D, Dyp)d

+ DADLODLOND, D) Dt + (DAD)(D.DL0)D,6Ds00) ) ) + e

where we can distinguish the linear f-part and the quadratic f2-part, and all terms
are manifestly SO(2,3) x U(1) invariant by the virtue of SW map.
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After calculating traces and evaluating the gauge-fixed action SS) |o.£. on the EoM
of the components of the auxiliary field f (as it turns out, to obtain the first order
NC correction, we only need to insert zeroth order (classical) EoM in the
gauge-fixed first order NC action Sg)lg,f_), we obtain

6

1 1 1
S,(ax,)EoM|g.f- = Z S,(ax,)EoMf.ﬂg.f- + S.(A,}EoMff|g~f- ) (8-56)
j=1

with the individual terms:

9/\7' . 2
1 v a a
S,(ax,)EoMf.1|g.f~ = T 64k /d4x e {}w Ryvab (RAT b — l—QGAel;)

~ 2 ~ 2
+ .7:”06262 <R#mbR/\T‘3deé‘ez — Z_QR)‘mb> + 4F e (RHWCRM“Z’@Z + l_ng\acei)
T PO ab mn i vV 12 2 T a p,.m
+ Fooeney B\ | R, e, — i3 + l_2]: T\, (Tw,a — 2Tp,,meae#)
2 ~ mn v 12 ? ~ L =
~ 5w (RW et — 5 — A P ]—",W> } , (8.57)

W [
SA,EoMfz‘g.f. = T3k d*z e

+ (DER,, ") DEey)es (en(F el — Fret) + F, etel, )

1 T c C 4 N r m\ vV
- Z_Q‘Fp’uelg(Df:Tru - e)\bRTub ) - l_g‘/—_.yu(Dfep)(Dfeu )emef
1 r v c v T c 1 r cT v, o
- l_g(Df\lep)ef (eC‘FT“T}LV - ech“THT ) + ﬁT/\T ij fo Gceq‘lf
1 ~ ~ ~
+ s (Dkep)er (T, (F el — Foreh) + T, F el
2 ~ PO L. r L _c\ v 1~
+ Z_Q‘Fa €e (D)\ ep)(DT ey)er + l_4f)\7' ’ (858)

0)\7' 4
1 v am a_m
S,(Al,)]EoMf.3|g~f- = 395 /d433' e { — F* Ryvam (Rw — ﬁeTeu)

T am in( p v p o po M vV p 0 ,LLl/_l/,U«)
+ Foo By, R, (eaemeben +elel ejer + 2elel (eley — elel)

8

2
2 K2

2 ~ ~
- _epea (2]:)\PRTUbn + ]:PUR)\Tlm> + l?

l2 n-b ]:'uVT)\,uaTTVG +

fﬂ”fmﬁw} . (8.59)
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8/\7'
! 1
(8%kosalis + SShunsssler) = —g5- [ diae {

+ Rwab(Dfepm)(DTLegm) (f"”eﬁeg + f””efjeg — 4]?“”62627)
1 1
2 2

92 ~ -
b 20,5 (Dfe) (F(2efens — efera) + 27 (el — cfel)

Rwab (J%“”e,\aeTb + J%,\Tegeg — 4%‘3\6(’;671,) — f””nmn(DerL)(DTLeﬁ)

- - 9 -
2T 2eben, — efers) + 2PV ehel ) = ST Tl T, el (8.60)

4 a ~0’I/ NO’ v
+ l—QT,\,,a(Der)eU (Fvef, — FoPel) —

4 C a T v T v 6 T
l_QR’\” €0 (Fere — FPel) — l—4.7:,\7} ,

9/\7' .
Sz(éll,)EoMf.6|g-f- - 32_I£ /d4ZL‘ € {}—paezezeﬁez (R)\TmantVab - 2R/\p,mnRTVab)

2
2

4

8 =~ = rwir =
+ (ForF? = 2F" FauFrw) + 7

Tuv _a b T v _p ab
FH GMGVR,\TCL(, + fAVEaebR‘rp

4
Iz

~ 8 ~
Fhetel (TpuaTATb _ TWTpr _ TApawa) _ ﬁfkf} , (8.61)

and, finally, the f?-term,

0)\7 -
Sz(ﬁll,}EoMff|g~f~ = _W /d4x € .F)\T,FZ . (862)

Action (8.56) represents the first order NC correction to N = 2 AdS; SUGRA. It
involves various new couplings between U (1) gauge field, gravity and gravitini fields
that appear due to space-time noncommutativity. As it stands, this action seems
too complicated to be analyzed in its entirety. However, we can restrict ourselves to
some particular domain of parameters and work with an approximated NC action.
In particular, we will derive a low-energy approximation of , by taking into
account terms at most quadratic in the partial derivative. Therefore, we include
only terms linear in curvature, and linear and quadratic in torsion. Additionally,

we assume that spin connection wu"b and the first order derivatives of the vierbeins

are of the same order. Note also that the torsion constraint va,“ =0 (8.18)) gives

us 7,," = —iV,7*W¥,. These assumptions yield a very simple action,
(M) _ 9 e oz 99 [y T oo
S)ow-energy = ~T6in /d reF,, = ~T6lin d*z e (Fu — V,icV,)
9 _
=~ 3. d*z e (¢,Fi©" ;) 4 surface term . (8.63)
K
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This mass-like term for charged gravitino w:j, minimally coupled to gravity, appears
due to space-time noncommutativity and “renormalizes” the corresponding term
in the classical SUGRA action . If we again absorb x~! in w:[ to obtain
the canonical dimensions, the mass-like parameter is ~ [pA%/I*, and it vanishes

under WI contraction.

After WI contraction, the action (8.56) reduces to

WI 9)\7'
Salst. = — 520

/ dloe {ﬁWRW po R, — F WRpUuVRATpJ —4F " Rywpo B\

T o N vo N v 4 = = 16 ~ e
— 2F" R, [ Rrypo + 8F pe Ry MR, + Fu Ry MR — ?]-}T]ﬂ + S F" FauFr
+ 8(DER,)(DEey)er (F,reser — Frelter, + F, el

(1%

+ 2R, "n.s(Dxe,) (DEes) <J’?W6§eg + Froelel — 4]?’”6262) } . (8.64)

At this point, we are confronted with an interesting question. The fact that N = 2
AdSy superalgebra contracts to N = 2 Poinacaré superalgebra when [ — oo is
consistently reflected on the level of classical (undeformed) action (8.40); classical
N = 2 AdS; SUGRA reduces to classical N = 2 Poincaré SUGRA under WI
contraction. However, it is not a priori clear whether this relation holds after
NC' deformation, that is, whether NC deformation and WI contraction actually
commute. For that matter, one would have to explicitly compute the NC correction
to classical N = 2 Poincaré SUGRA and compare it to the action (8.64]).
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9 Conclusion and Outlook

Let us conclude by giving a brief survey of the thesis, summarizing what is thus
far accomplished by it and proposing some new directions of research. First of all, we
should emphasize that the obtained results are to be regarded as an extension and
upgrade of the substantial body of work that was previously established by many
authors. In its present state, the content of the thesis certainly does not amount
to a complete account on the subject and it opens a plethora of new questions that

ought to be treated in the future. This is perhaps its greatest value.

There are several major themes in the thesis. In general, our goal was to define
and study consistent NC deformations of some classical (i.e. undeformed) gauge
field theories, including gravity. The AdS gauge theory, having SO(2,3) connec-
tion as the only dynamical field in play, was our starting point. The advantage of
the associated SO(2,3) gauge-invariant action is that it does not explicitly involve
quantities related to the underlying space-time manifold, such as metric, curvature
or torsion. To relate this theory with GR, one has to break the original SO(2,3)
gauge symmetry down to the usual Lorentz SO(1,3) gauge symmetry. For that we
used a constrained auxiliary field (the method already advocated in the literature).
The symmetry breaking is imposed directly, by fixing the components of the au-
xiliary field; this is another important general aspect of our approach. After the
gauge fixing, the components of the SO(2, 3) gauge field are identified with the Lo-
rentz spin-connection and the vierbein field, thus obtaining their proper unification.
Canonical (#-constant) NC deformation is performed along the lines of the Seiberg-
Witten approach to NC gauge field theory. Classical actions are promoted into their
NC counterparts by introducing Moyal x-product instead of the commutative point-
wise field multiplication. The resulting non-extended NC actions are subsequently
expanded in powers of the deformation parameter 6 via SW map, up to the first
order. By construction, expanded actions are endowed with the gauge symmetry of
the corresponding classical actions, order-by-order. After imposing the gauge fixing

condition (physical gauge), NC corrections emerge.

The SO(2,3), model of NC gravity has been previously established and well
developed. It provided a basic framework for the research presented in this thesis.
However, its most significant insight, concerning the origin of the apparent brea-
king of diffeomorphism invariance in canonically deformed theories, remains to be
fully understood. This will certainly be one of the major research directions in the
future. The SO(2,3), model of NC gravity exhibits quadratic (in the deformation

parameter) NC correction to GR, which is notoriously difficult to analyze even in
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the low-energy regime. Moreover, it seems that this is a generic property of NC
gravity. Inclusion of matter fields coupled to NC gravity improves the situation
drastically; it provides a non-trivial linear NC correction to the classical action. We
considered Dirac spinor field coupled to U(1) gauge field and obtain a new model of
NC Electrodynamics that can be analyzed both in curved and flat space-time. Some
important predictions of this theory are the NC birefringence effect (energy levels
of an electron become helicity-dependent due to space-time noncommutativity) and
NC-deformed relativistic Landau levels of an electron in background magnetic field.
Since they appear at the lowest perturbative order, these results could be used to
constrain the yet unknown length scale Ayc at which NC effects become relevant.
One could also proceed by calculating perturbative loop corrections and explore the
renormalizability properties of this NC QED model. A generalization to NC Yang-
Mills theory is straightforward and it may turn out to be relevant for the study of

the early Universe and quark-gluon plasma.

To build a complete NC Standard Model within SO(2, 3) framework, one has to

introduce scalar fields. It is fairly easy to construct an action for real scalar field o,

S, =iTr / d*z &7 (fD,¢D,¢D,ddDyip + 6Lf* D, ¢ D, ¢ D,y Dygpd) + c.c.

that reduces to the standard kinetic action after imposing the gauge condition,

1

S@|g-f~ = 9

/d‘*x\/—g 970,00, .

This action has quadratic NC correction after canonical deformation.

However, constructing an action for scalar electrodynamic that involves complex
scalar field poses some severe difficulties. In this case, the total gauge group is
SO(2,3) x U(1) and the auxiliary field f has to be U(1)-charged as well. Everything
is consistent at the classical level, but the problem arises (and it seems to be a generic
one) when we try to apply the Seiberg-Witten prescription to the auxiliary field f
that transforms differently under SO(2, 3) versus U(1). If one want to introduce the
Higgs sector in the NC theory, this issue has to be resolved.

Regarding SUGRA, our primary goal was to obtain explicit NC correction to
N = 2 AdS SUGRA in D = 4. We stared with an undeformed action
of the MacDowell-Mansouri type (already advocated in the literature), invariant
under orthosymplectic OSp(4|2) gauge transformations. However, this action alone
is not enough to obtain N = 2 AdS; SUGRA after imposing the gauge fixing
condition. In particular, one has to add a supplementary action endowed
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with SO(2,3) x U(1) gauge symmetry (bosonic sector of OSp(4|2)) that provides
the missing terms in the classical action obtained from (8.23]) (e.g. the kinetic term

for U(1) gauge field). Therefore, we have the following schema:

(OSp(4)2) invariant action) + (S0(2,3) x U(1) invariant action)

ot [ [ o

(SO(1,3) x U(1) invariant action) + (SO(1,3) x U(1) invariant action)

N=2 AdS SUGRA in D=4

This situation seems curious considering that a similar OSp(4|1) gauge-invariant
action reduces to the complete N =1 AdS; SUGRA action without the need
of including any additional terms. We may conclude that the extended N > 1 AdS,
SUGRA cannot be obtained simply by gauging the corresponding orthosymplectic
group OSp(4|N) and subsequently fixing the gauge. For N > 2 one is compelled to
include an additional term, similar to the one for N = 2, that involves non-Abelian

Yang-Mills gauge field.

For the OSp(4|2) gauge-invariant part of the classical action, linear NC correction
vanishes. This result was not expected. Namely, we have previously established
that the canonical NC deformation of pure gravity, regarded as a gauge theory of
SO(2,3), group, leads to the quadratic NC correction. However, after including
matter fields, e.g. Dirac spinors coupled to U(1) gauge field, linear NC correction
appears. Since we can take a pair of Majorana vector-spinors of OSp(4|2) SUGRA
and form a pair of U(1)-charged Dirac vector-spinors, related to each other by C-
conjugation, we expected to obtain a non-vanishing first order NC correction from
the OSp(4]2) action, as well. It is worth mentioning that the second order NC
correction to OSp(4|N) SUGRA has the same structure for every N. Analysis of
the higher NC SUGRA corrections is another possible research problem.

The supplementary bosonic action does, however, provide a non-trivial linear NC
correction that is calculated explicitly. It involves various new interaction terms that
appear due to space-time noncommutativity. The classical action is constructed by
applying the same auxiliary field method as for the AdS Electrodynamics. The full
action is difficult to analyze, but we can restrict ourselves to the low-energy sector
of the theory by taking into account only terms that are at most quadratic in partial

derivatives. This leaves us with a single mass-like term for charged gravitino.
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There are two additional terms with OSp(4]2) gauge symmetry that we could
take into account. We denote them by S’ and S” and they are given by

!/

,_ # STy / d'z e F,, D,5D,0® + c.c. |
TGN
I/
TGN

where we have two free dimensionless parameters o', " and OSp(4|2) covariant deri-
vative ﬁu- Their SO(2, 3) gauge-invariant counterparts have already been analyzed
in the literature. After the gauge fixing, they modify the coefficients in the classical
action but do not introduce new type of terms. In particular, they give us a freedom
to eliminate the cosmological constant in the classical action. NC deformation of S’
and S” will change our final result, but their importance is not immediately evident.

Analysis of these additional NC corrections remains to be done.

Finally, perhaps one of the most intriguing questions that arises out of these
considerations concerns the compatibility of the Wigner-Inonii contraction and ca-
nonical NC deformation. WI contraction is a formal statement of the correspon-
dence principle from the aspect of symmetry and it is not fully understood how
NC deformation affects this operation. We have shown in this thesis that for AdS
Electrodynamics and N = 2 AdS; SUGRA WI contraction works well at the level
of their classical actions. Also, after NC deformation, we obtained non-vanishing
contracted NC actions. To determine whether the correspondence principle is con-
sistent with the NC-deformed symmetry, we have to calculate NC corrections to
classical electrodynamics in curved space-time and N = 2 Poincaré SUGRA by the
method of minimal substitution. It seems that our results suggest that the answer

is negative, at least in Minkowski space.

101



A Spinor action - individual terms

The kinetic spinor action ([5.29) contains eight terms before gauge fixing. Here
we present them, in the order of appearance in (5.29)), after the gauge fixing and

what remains of them after the Wigner-Inénii (WI) contraction.

Terms from the kinetic spinor action after the gauge fixing;:
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(Terms SEEI), Sél) and Sgl) are combined into a single term due to their similarity.)
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Now we consider separately each of the three bilinear mass-like spinor actions

(5.33), (5.34) and (5.35)), after the gauge fixing. WI contraction eliminates terms

multiplied by the cosmological mass 2/l but some of the m-terms survive.

The first mass-like term after the gauge fixing:

S, = cya(m, 107 / d'z e ( — 6i(Dkep)el DE + nu(DEes) (Dhel )0

i

a v N e 3 a 1
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1 3
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The second mass-like term after the gauge fixing;:
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The third mass-like term after the gauge fixing:
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B Actions involving U(1) gauge field

Here we present the six terms of Sﬁll} = Z?:l Sﬁll}i after the gauge fixing.
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C Matrix representation of osp(4|2) superalgebra

Here we present an explicit 6 x 6 matrix representation of O.Sp(4]2) generators
{Map, QL T} that span osp(4]2) superalgebra.

Bosonic generators of OSp(4]2):

Map

o OO o o O

o OO o o O

The imaginary unit in 7" is introduced for convenience.

Fermionic generators of OSp(4[2):

0 0
1 0
04x4 0 0
A1
(@ 0 0
0 00
0 00
0 0
0 0
O4x4 0 0
A1
(Q)s = 1o
0 0
00 0

0 0
0 0
0
. RO IV
T —
0 0
0 i
i 0
1 0
0 0
O4x4
(@) = -
2 0 0
1 0 0
0 0
00
00
Ogx4
(@Y = -
4 0 0
00
00

(C.1)

(C.2)

The second set of fermionic generators (Q?), (for I = 2) is obtained from the

first one simply by interchanging 5" and 6 column and 5* and 6! row. One can
readily check that supermatrices (C.1]), (C.2)) and (C.3), along with the ones of the

second set of fermionic generators, satisfy osp(4]2) superalgebra (8.4)).
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D Majorana spinors and AdS identities

Some basic Fierz identities involving Majorana spinors ¢ and x:

dx = x¢ = (x)
Dysx = X150 = —(Uysx)!
PYa¥5X = XVaV5? = (V7a75x)!
PYaX = —XVaX = —($7aX)"
VowX = —Xoat) = —(Vowx)! (D.1)

Also, we frequently use the following important identity in 4D. For any pair of

Majorana spinors ¢ and y, we can expand ¥y in the Clifford algebra basis,

—4x = (XUV) s + (XY*U)Va + (X5%)75 + (XY 1598) V5Ya + %(Xffab@ﬁ)%b (D.2)

Some AdS algebra relations:

[Map, Mcp] = i(ﬁADMBc +nscMap — nacMpp — nspMac)

{Muap, Mcp} = %EABCDEFE + %(UACUBD — NADTBC)

{Map,Tc} =ieapcoeM”"

[Mag,Tc] = i(npcla —nacl's)

Tl =—vla% ., Mg =%Mais (D.3)

Some useful identities involving y-matrices and o-matrices:

Ya Vb = Tab — 10ab
YaV6Ve = NabVe = Nac Vb + Mo Ya + 1€abeay Vs
TabVe = 1Yo — UacYs + Eabed V57"
VeOab = UacVs = ibeVa + Eaved VsV
Oab5 = %éTabch <
OabOcd = Naclbd — Nad"be + 1€abed V5 + 1(NadTbe + MeTad — NacTbd — MdTac)
{Oab Oca} = 2(Nactbd — NadMbe) + 21€abed Vs
[0ab, Vel = 20 (MocYa — Tacb)
{0, Ve } = 2€abeatsy?
(D.4)
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Identities with traces:

Tr(Tal'p) = 4nap

Te(T4) = Tr(TAlsTe) = 0

Tr(Tal'sl'cl'p) = 4(nanep — Nacnep + Napnes)

Tr(Lal'gl'cl'pl'g) = —4ieapcpr

Tr(MapMepl'g) = i€apcpe

Tr(MapMcp) = —napnes + Nacsp

Tr(Mapl'el'rl'c) = 2 aBEFG (D.5)
(

Tr(MapMepl'gl'rl'e) = icapcpENre — 1€ ABcDFNEG + 1€ ABCDGNER

+iEBCEFGNAD + 1€ ADEFGNBC — Y€BDEFGNAC — € ACEFGTIBD

Tr(YaVeva) = 4(NabMed — NacNod + Nedbe)
Tr Uabacd) = 4(nacnbd - 77ad77bc)

H

I Oabo_cd’yf)) == 4i5abcd

—

(
(
(
(YaV0ed) = —41(NacTlbd — Tadbe)
Tr(YaM0ceays) = 4€abed

(

H

I O-abo-cdo-ef) - 4i(77ad(77bencf - nbfnce) + nbc(naendf - nafnde)
_nac<nbendf - nbfnde) - nbd(naencf - 'r]afnce))
Tr(OabO'ch'ef’)/E,) = 4(77ac5bdef + Mbd€acef — TNad€bcef — nbcgadef) (D6)
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UsjaBa o ayTopcTBY

Mme n npesume aytopa [iparorby6 MNovaHuH

bpoj nHaekca 8006/2014

UsjaBrbyjem
[a je JOKTOpCKa AucepTaumja noa HacnosoM
Teopuja norsa y SO(2,3)- Mmogeny HeKOMyTaTUBHe rpaBuTauuje

e pesynTaT COMCTBEHOr UCTPaXMBaYKOr paaa;

e [a aucepTauMja y LEenvHU HU Yy AenoBrMMa Huje buna npeanoxeHa 3a cTuuake
Apyre Ounnome npema CTyauMjCKMM MporpaMuma OpYrx BMCOKOLLKOFNCKUX
yCTaHOBa;

e [a cy pe3ynTaTi KOPeKTHO HaBeAEeHU U

e [a HMCaM KplUMO/Na ayTopcka npaBa M KOPUCTUO/Na WHTENEKTyanHy CBOjUHY
APYrux nuua.

MoTnuc aytopa

.Afﬂbﬁ;ﬁ @M

Y beorpagy, 18.11.2019.



U3jaBa 0 MICTOBETHOCTU LUTaMMNaHe U efIeKTPOHCKe
Bep3nje AOKTOPCKOr paaa

Mme n npesnme aytopa Aparorby6 MNoyaHuH

bpoj nHaekca 8006/2014

Cryamjckn nporpam ®Pusmnka — KBaHTHa NoJba, YecTule U rpaBuTaumja
Hacnos paga Teopwuja nomsa y SO(2,3)- Mogeny HeKOMyTaTUBHe rpaBuTaumje

MeHTop npodh. ap Boja PagosaHoBuh

M3jaBrbyjeM ga je wtamnaHa Bep3nja MOr OAOKTOPCKOr paja MCTOBETHA €NeKTPOHCKO)
BEpP3nju KOjy caM npedao/na pagu noxpaweHa y [OurutanHom peno3nTopujymy
YHuBep3uTeTa y beorpaay.

[osBorbaBam ga ce objaBe MoOjM NMYHM nojauM Be3aHW 3a Aobujare akagemckor
Ha3MBa AOKTOpa Hayka, kao LTO Cy MMe 1 Npe3vMe, roamHa U Mecto pohera 1 aatym
ogbpaHe paga.

OBu nuyHM nogaum Mory ce o06jaBuTM Ha MpEXHMM CTpaHuuama aurmtanHe
OmbnunoTeke, y enekTPoOHCKOM KaTanory ny nybnvkaumjama YHmeepauteta y beorpagy.

MoTnuc aytopa

,ﬂfmﬁié @M

Y Beorpaay, 18.11.2019.



UsjaBa o kopuwhemwy

Oenawhyjem YHuBepauTeTcky 6ubnuoteky ,CBeTto3ap MapkoBuh® ga y OurutantHu
peno3uTopujym YHuBepsuTeTa y beorpagy yHece MoOjy OOKTOPCKY AucepTtaumjy nog
HacrnoBomMm:

Teopuja nomsa y SO(2,3)- Mmogeny HeKOMyTaTUBHe rpaBuTauuje
Koja je Moje ayTopcko aeno.

IuncepTaumjy ca cBuM npunosmma npegao/na cam y enekTpoHckoM doopmarty norogHom
3a TpajHO apxuBmMpa-e.

Mojy AOKTOpCKYy Aauceptauujy noxpaweHy y [OurMutanHom  penos3nTopujymy
YHuBepauTeTa y beorpagy v JOCTYnHY Y OTBOPEHOM MPUCTYNy MOry ga KopucTe CBu
Koju nowTyjy ogpeabe cagpxaHe y ogabpaHom Tuny nuueHue KpeaTuBHe 3ajegHuue
(Creative Commons) 3a kojy cam ce oany4duno/na.

1. Aytopcteo (CC BY)

2. AytopcTBo — HekomepuujanHo (CC BY-NC)
@AyTopCTBo — HekomepumjanHo — 6e3 npepaga (CC BY-NC-ND)

4. AyTOpCTBO — HekomMepuujanHo — genutn nog uctum ycnosuma (CC BY-NC-SA)
5. AytopcTtBo — 6e3 npepaga (CC BY-ND)

6. AytopcTBO — Aenutu nog uctum ycnosmma (CC BY-SA)

(Monumo ga 3aoKkpyxuTte camo jegHy o WeCT NoHyhHeHuxX nuueHuum.
KpaTak onuc nuueHumn je cactaBHM 40 OBe M3jaBe).

MoTnuc aytopa

Jﬁ?mﬁ,é @M

Y Beorpaay, 18.11.2019.



1. AytopcTtBOo. [l0o3BO/baBaTe yMHOXaBake, OUCTPUOYLMjy M jaBHO caomniluTaBawe
aena, 1 npepage, ako ce HaBefe MMe ayTopa Ha HauyuH ofapeheH o cTpaHe ayTopa
unu gaesaoua nuueHue, Yak 1y komepuujanHe cepxe. OBO je HajcnobogHuja og CBUX
nuueHUMW.

2. AyTopcTBO — HeKoMepuujanHo. [lo3BorbaBaTe yMHOXaBake, AUCTPUbyuujy u
jaBHO caonwiTaBawe Aena, v npepage, ako ce HaBeae UMe ayTopa Ha HauuH oapeheH
o[ CTpaHe ayTopa unu gasaoua nuueHue. OBa nueHua He [03BobaBa koMepLuujanHy
ynoTpeby gena.

3. AyTOopCcTBO — HeKkomepuujanHo — 6e3 npepapa. [lo3BorbaBaTe yMHOXaBawe,
ANcTpmnbyumjy M jaBHO caonwTaBawe pJena, 6e3 npomeHa, npeobnvkoBawa Wnu
ynoTpebe gena y cBOM ferny, ako Ce HaBede MMme ayTtopa Ha HadumH ogpeheH of
CcTpaHe aytopa unu gasaoua nuueHue. OBa nuvueHua He 003BOSbaBa KoMepuujanHy
ynotpeby Aena. Y ogHOCy Ha cBe ocTane nuueHue, OBOM MULEHLOM ce orpaHuvaBa
Hajsehun o61M npaBa kopuwwhewa gena.

4. AyTOpCTBO — HEKOMepuMjanHo — A4enuTu nog UCTUM ycrnoBuma. [lossorbaBaTe
YMHOXaBak-€e, AUCTpunbyLMjy 1 jaBHO caonwiTaBake Aena, U npepage, ako ce HaBeae
MMe ayTopa Ha HauuH ogpefeH of CTpaHe ayTopa Wnu AaBaola NuUeHLEe M ako ce
npepaga AuCTpubyupa nog WCTOM UMM CnMYHOM nuueHuom. OBa nuvueHua He
[103BOSbaBa komepuujanHy ynotpeby aena u npepaga.

5. AytopcTBO — 6e3 npepaga. [lo3BorbaBaTe yMHOXaBahe, AUCTPUbyUunjy 1 jaBHO
caonwTaBawe gena, 6e3 npomeHa, npeobnukoBara unu ynotpebe genay cBom geny,
aKo ce HaBege VMMe ayTopa Ha HauvH ogpefheH oA CTpaHe ayTopa unu gasaoua
nuueHue. OBa nuueHua Ao3BorbaBa kKoMepuumjanHiy ynotpedy aena.

6. AyTOpCTBO — pOenutM noa MUCTUM ycroBuma. [lo3BorbaBaTe yMHOXaBahe,
ANCcTpnbyunjy 1 jaBHO caoniwiTaBawe Aena, u npepage, ako ce HaBeje ume aytopa Ha
HauuH oapefeH o4 cTpaHe ayTopa WM JaBaoua NUuUeHUe M ako ce npepaja
anctpnbympa nog WMCTOM UM cnuyHOM nuvueHuom. OBa nuvueHua [03BOrbaBa
koMmepuujanHy ynotpeby gena v npepaga. CnuyHa je codpTBEpCKMM nuueHuama,
O[HOCHO INnLEeHuamMa OTBOPEeHOr Koaa.
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