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Abstract

After pioneering experiments that realized Bose-Einstein condensates in systems of

ultracold atoms with weak contact interactions, it took a decade for experimental

techniques to advance and enable measurement of effects of the dipole-dipole inter-

action that exist between atoms or molecules with a permanent or induced electric

or magnetic dipole moment. The first such experiment was realized in 2005 with

chromium atoms, followed by the experiments with atoms with much larger magnetic

moments, such as dysprosium and erbium. Furthermore, the dipolar condensates

comprised of polar molecules with much stronger electrical or magnetic dipole mo-

ments were also realized. While the contact interaction is symmetric and has a short

range, the dipole-dipole interaction between atoms or molecules is anisotropic and

has a long range. These features are responsible for a whole series of new phenomena

that appear in ultracold dipolar gases. If we take into account that the strength of

the contact interactions can be varied over many orders of magnitude using the Fes-

hbach resonance technique, and that the dipole-dipole interaction strength can also

be tuned using a fast rotating magnetic or electric field, it is easy to see that such a

versatility of dipolar quantum gases is unparalleled and makes them an obligatory

element in a toolbox for engineering quantum devices and sensors.

The main contribution of this thesis is the study of Faraday and resonant density

waves in ultracold bosonic systems with the contact and the dipole-dipole interac-

tion. Such waves emerge in Bose-Einstein condensates as a result of the harmonic

driving of the system. They represent nonlinear excitations and are generated due to

the interaction-induced coupling of collective oscillation modes and the existence of

parametric resonances. We introduce here a variational mean-field approach for the

description of the dynamics of the Faraday and resonant waves in dipolar conden-

sates. This approach is based on the Gaussian variational ansatz, which includes

the condensate widths and the conjugated dynamical phases as parameters. The

ansatz also includes the density modulations in order to capture the dynamics of

density waves.
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Using the developed variational approach, as well as a full numerical approach,

we study in detail the properties of density waves in dipolar condensates at zero

temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole

interaction plays an important role. We derive equations of motion for the dynamics

of a driven dipolar system and identify the most unstable modes that correspond to

the Faraday and resonant waves. Based on this, we derive the analytical expressions

for spatial periods of both types of density waves as functions of the contact and the

dipole-dipole interaction strength. We compare the obtained variational results with

the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii

equation in three dimensions, and find a very good agreement.

In this thesis, we also study the effects of the contact and the dipole-dipole inter-

action on the properties of the ground state and of the collective oscillation modes of

dipolar condensates. While the increase of the contact interaction strength always

leads to an increase of condensate widths, the situation is more complex when the

dipole-dipole interaction is varied. In a cigar-shaped geometry, when the dipoles are

oriented in the radial direction, the increase of the dipole-dipole interaction strength

leads to the increase of condensate widths in the weak-confinement direction and in

the direction of the dipoles, while the width in the third direction decreases. We

also study the frequencies of the collective modes, where the interaction effects turn

out to be less pronounced, in particular for the breathing and the quadrupole mode,

whose values practically remain constant over the whole range of experimentally rel-

evant values of both interaction strengths. The frequency of the radial-quadrupole

mode is more sensitive to changes of interaction strengths, especially the contact

interaction strength, and shows a nonmonotonous behavior as a function of the

dipole-dipole interaction strength.

Keywords: Bose-Einstein condensate, pattern formation, dipole-dipole interaction,

parametric resonance, interaction effects

Research field: Physics

Research subfield: Condensed matter physics

UDC number: 538.9
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Резиме

Након пионирских експеримената са системима ултрахладних атома у ко-

jима jе реализована Бозе-Аjнштаjн кондензациjа са слабом контактном интер-

акциjом, била jе потребна читава децениjа да би се прецизност експеримената

повећала и омогућила мерење ефеката дипол-дипол интеракциjе коjа постоjи из-

међу атома или молекула са перманентним или индукованим електричним или

магнетним диполним моментом. Први такав експеримент jе изведен 2005. го-

дине са атомима хрома, а након тога су уследили експерименти са диспрози-

jумом и ербиjумом, атомима са jаким магнетним диполним моментима, као и

са поларним молекулима са далеко већим електричним и магнетним диполним

моментима. Док jе контактна интеракциjа симетрична и краткодометна, дипол-

дипол интеракциjа између атома или молекула jе анизотропна и дугодометна

и узрок jе читавог низа нових особина ултрахладних бозонских система. Ако

узмемо у обзир да се у експериментима jачина контактне интеракциjе може ме-

њати од jако одбоjне до jако привлачне користећи технику Фешбах резонанци,

као и то да се jачина дипол-дипол интеракциjе може контролисати помоћу брзо

ротираjућег магнетног или електричног поља, лако jе закључити да прилаго-

дљивост и разноврсност особина диполних квантних гасова чини ове системе

неупоредивим и обавезним алатом у инжењерингу квантних уређаjа и сензора.

Главни допринос ове дисертациjе jе проучавање феномена Фарадеjевих и ре-

зонантних таласа густине у ултрахладним бозонским системима са контактном

и дипол-дипол интеракциjом. Овакви таласи настаjу као резултат хармониj-

ске модулациjе система и представљаjу нелинеарне ексцитациjе система услед

присуства интеракциjа, спрезањем колективних осцилациjа и параметарских

резонанци. У овоj дисертациjи смо у оквиру теориjе средњег поља развили

вариjациони приступ за опис динамике Фарадеjевих и резонантних таласа у

диполним кондензатима. Оваj приступ jе заснован на Гаусовом вариjационом

анзацу коjи за параметре има ширине кондензата, конjуговане фазе, а укључуjе

и модулациjе густине како би описао динамику таласа густине.
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Користећи развиjени вариjациони приступ, као и пун нумерички приступ,

детаљно смо проучавали особине таласа густине у диполним кондензатима на

нултоj температури, где дипол-дипол интеракциjа игра важну улогу због на-

рушења симетриjе услед анизотропиjе система. Извели смо jедначине кретања

коjе описуjу динамику модулисаног диполног бозонског система и идентифико-

вали наjнестабилниjе моде коjе одговараjу Фарадеjевим и резонантним таласи-

ма. Даље, на основу тога, извели смо аналитичке изразе за просторне периоде

оба типа таласа густине, као и њихову зависност од jачине контактне и дипол-

дипол интеракциjе. Добиjене вариjационе резултате упоредили смо са резулта-

тима детаљних нумеричких симулациjа коjе решаваjу диполну Грос-Питаевски

jедначину у три просторне димензиjе и добили смо веома добро слагање.

У овоj дисертациjи проучавали смо и утицаj контактне и дипол-дипол ин-

теракциjе на своjства основног стања и колективних осцилациjа диполних кон-

дензата. Док повећање jачине контактне интеракциjе увек доводи до ширења

кондензата, ситуациjа jе сложениjа када се мења jачина дипол-дипол интерак-

циjе. За замку у облику цигаре у коjоj су диполи ориjентисани у радиjалном

смеру, повећање jачине дипол-дипол интеракциjе доводи до ширења кондензата

у лонгитудиналном правцу и у правцу поларизациjе, док се ширина у трећем

правцу смањуjе. Поред тога, проучавали смо и фреквенциjе колективних мода,

где су ефекти интеракциjа мање изражени. Ово се посебно односи на монополну

(дишућу) и квадруполну моду, чиjе вредности практично остаjу константне у

целом распону експериментално релевантних вредности jачина интеракциjа. Са

друге стране, фреквенциjа радиjалне квадруполне моде jе осетљивиjа на проме-

ну jачине интеракциjе, посебно jачине контактне интеракциjе, док при промени

jачине дипол-дипол интеракциjе показуjе немонотоно понашање.

Кључне речи: Бозе-Аjнштаjн кондензациjа, формирање патерна, дипол-дип-

ол интеракциjа, параметарска резонанца, ефекти интеракциjе

Научна област: Физика
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1 Introduction

According to the quantum statistical physics, there is a critical temperature below

which the weakly-interacting bosons populate the lowest energy state of the system,

which becomes macroscopically occupied. For temperatures well below the critical

one, the thermal excitations can be usually neglected, and the same applies to the

quantum fluctuations. The emergence of a macroscopically occupied ground state

represents one of the few macroscopic quantum phenomena and is known as the

Bose-Einstein condensation. It was experimentally realized for the first time in 1995

in dilute ultracold atomic gases of alkali metals, such as lithium 7Li [1], rubidium
87Rb [2] and sodium 23Na [3]. Theoretically, the Bose-Einstein condensate (BEC)

as a new phase of matter was predicted in 1924 by Indian physicist Satyendra Nath

Bose [4] and German physicist Albert Einstein [5]. The theoretical study of BECs

and a long quest for its experimental realization has significantly contributed to the

development of quantum statistical physics, condensed matter physics, atomic and

molecular physics, quantum optics, and laser physics, as well as to the other areas

of physics, such as quantum information, quantum field theory, high-energy physics,

and even the theory of general relativity. Such a wide applicability stems from the

fact that BECs represent almost ideal Feynman’s quantum simulators [6] for many

physical systems.

In typical experiments with BECs, an ultracold dilute atomic cloud has a number

density between 1019 − 1021 m−3, i.e., three to six orders of magnitude lower than

the density of air at room temperature and atmospheric pressure. The system is

usually confined in a magneto-optical trap that can be described by a harmonic

1



potential, which is experimentally realized by a six-beam laser setup, where two

counter-propagating beams in each spatial direction provide harmonic confinement.

Atoms of selected species are cooled down to the nanokelvin temperatures using a

combination of different techniques, such as the Zeeman slower, the laser cooling,

and the evaporative cooling. In order to experimentally realize a BEC in a system

with weak inter-atomic interactions, it is essential that the gas is rarefied. If this is

the case, the system is close to the ideal gas of bosons, and the standard Bogoliubov

theory can be applied. In practice, the diluteness requirement can be expressed by

the condition [7, 8]:

na3
s � 1 , (1.1)

where n is the number density and as is the s-wave scattering length of atoms, which

characterizes atomic interactions, seen as scattering processes in a dilute gas. Fig-

ure 1.1 illustrates the experimentally measured momentum distribution of a sodium

Figure 1.1: The first experimental realization of a BEC in 1995 in a dilute ultracold

atomic gas of sodium 23Na. The three momentum distributions at different temper-

atures illustrate how the condensation sets in: well above Tc we have the Maxwell-

Boltzmann distribution (left); at Tc the peak corresponding to the macroscopic

occupation of the ground state appears (middle); well below Tc the thermal cloud

disappears and only the peak around p = 0 remains (right). The figure is taken from

Wikipedia and authored by NIST/JILA/CU-Boulder [NIST Image, public domain,

https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png].
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gas at three different temperatures. The distribution on the left-hand side cor-

responds to the thermal (Maxwell–Boltzmann) distribution at a temperature well

above the critical one (Tc), while the distribution in the middle represents the re-

sults for the system at the critical temperature Tc = 170 nK. This distribution is

bimodal, containing both the thermal component and a peak that corresponds to

the emerging condensed fraction of atoms. The distribution on the right-hand side

is obtained after an additional evaporative cooling brings the system down to the

temperature T = 20 nK� Tc. Since the system is now significantly below the criti-

cal temperature, practically all atoms are in the condensate, and the experimental

momentum distribution exhibits a single-peak distribution that corresponds just to

the condensed fraction.

1.1 Role of interactions

Investigation of ultracold quantum gases is a very attractive research field that

involves a large number of theoretical and experimental groups worldwide. Such a

widespread interest comes from the fact that properties of the BEC systems can

be broadly tuned in an unprecedented range. In particular, this applies to the

strength of contact interactions that can be varied over many orders of magnitude

using the Feshbach resonance [9] technique. The existence of Feshbach resonances

is related to atomic bound states and can be practically manipulated by an external

magnetic field, thus adjusting the electronic structure of atoms. In this way, close

to a Feshbach resonance, the strength of the contact interaction can be dynamically

tuned over a wide range of values. Furthermore, not only the amplitude, but also

the sign of the interaction can be changed, i.e., the interaction can be tuned from

very repulsive to very attractive.

After pioneering experiments that realized BEC in systems with weak contact

interactions, it took a decade of work on accuracy improvement of experimental

techniques to enable measurement of effects of the dipole-dipole interaction (DDI)

that exists between atoms or molecules with a permanent or induced electrical or

3



magnetic dipole moment. The very first such experiment was realized in 2005 with

chromium atoms 52Cr [10], while the experiments with atoms with much larger

magnetic moments, such as dysprosium 164Dy [11] and erbium 168Er [12] came after.

Furthermore, the dipolar condensates comprised of ultracold polar molecules with

much stronger electrical [13] and magnetic [14] dipole moment were realized some

years ago. While the contact interaction is symmetric and has a short-range, the

DDI between atoms or molecules is anisotropic and long-range. These features are

responsible for a whole series of new phenomena that appear in ultracold dipolar

gases [15]. For example, due to the attractive component of the DDI, an instability

exists, and the system is stable only for a number of atoms below the critical one.

This is closely related to the trap geometry, and if the system contains a number

of particles larger than the critical one, it may still be quasi-stable or collapse.

The stability of the system depends not only on the trap geometry, but also on its

interplay with the orientation of the dipoles. Note that in experiments the dipoles

are not randomly oriented, but usually follow a preferential direction, determined

by an external magnetic or electric field. If the system becomes unstable due to

changes in the geometry of the trap or due to a number of particles which is above

the critical, it undergoes a dynamical collapse during which interesting structures

appear [16–18].

Although quantum fluctuations can be usually neglected, close to stability border

they may play a crucial role and lead to new states of matter, such as the quantum

droplets that were recently observed in dipolar condensates of dysprosium [19, 20]

and erbium [21]. In these recent experiments, it was observed that the Rosensweig

instability [22] due to the DDI is compensated by the stabilizing effect of quantum

fluctuations. Note that the quantum droplets, emerging from the partial condensate

collapse, are arranged in a lattice that, under certain circumstances can behave as

the elusive supersolid state of matter [23]. Another interesting feature of quantum

droplets is that they can be considered to be made of an incompressible quantum

liquid.

The strength of the DDI can be also tuned using a fast rotating magnetic or
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electric field [24, 25]. Therefore, both the contact interaction and the DDI strength

can be varied in experiments, and they represent the important parameters of the

system. We also note that the dimensionality of the system can be tuned and con-

sidered as a free parameter. Namely, by manipulating the harmonic trap frequen-

cies, the geometry of the system can be transformed from the three-dimensional

to quasi-two-dimensional or quasi-one-dimensional. Furthermore, this can also be

done dynamically, during the experiment, at the same time as possible changes of

the contact interaction and the DDI. Due to all of these features, the versatility

of dipolar quantum gases is unparalleled and makes them obligatory elements of a

toolbox for engineering quantum devices and sensors.

1.2 Collective oscillation modes

The very first BEC experiments have focused on the measurement of frequencies

of low-lying collective oscillations modes of the system [26, 27]. Until nowadays

such experiments remain the most accurate, and the frequencies of the collective

oscillations can be measured with the precision of few per mill. These experiments

are also the most natural ones, since they measure the response of the system to small

perturbations. In a typical experiment, the system is prepared such that it occupies

the ground state for a given set of parameters and the trap geometry. Afterward,

the system is excited by a small perturbation of one of the parameters, e.g., a small

variation of one of the trap frequencies, or moving of the trap origin, or change of the

interaction strength. Such a perturbation generates the dynamical response of the

system, which can be measured by imaging of the density profile of the system. This

is done by the time-of-flight imaging or using one of in situ techniques [7, 8], which

allow to measure the time dependence of the BEC properties, such as a center of mass

position, condensate widths, etc. The Fourier analysis of these time dependencies

reveals frequencies of the low-lying collective modes, typically breathing, quadrupole,

radial-quadrupole, and dipole mode.

However, this approach does not allow the specific collective modes to be iden-
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tified with the corresponding frequencies. Only if we know how the system should

be excited in order to induce only one of the modes, it is possible to measure its

frequency. Even if this the case, BEC systems are nonlinear and different collective

modes are coupled. Therefore, although initially only one mode could be excited,

other collective modes will get excited over time through the transfer of energy.

Only detailed theoretical modeling of the systems’ dynamics allows us to identify

the frequencies with the corresponding collective modes properly. One of the most

conventional methods for this is the time-dependent variational approach. Usually,

variational parameters include the condensate widths and their dynamics reveal not

only the frequencies, but also the type of the collective modes. The variational ap-

proach leads to a set of nonlinear differential equations, which reflect the nonlinear

nature of BECs. The analysis of these equations allows to calculate not only the

collective oscillation modes, but also to study the dynamics of the system. This

includes the response of the system to driving of one of the parameters and the

emergence of parametric resonances.

From a theoretical point of view, a BEC is usually studied in the formalism of

second quantization. The corresponding many-body Hamiltonian includes the two-

body interactions between the particles, which are of two types: the short-range

contact interaction and the long-range DDI. Since the interactions are usually weak,

they can be treated perturbatively, and the mean-field theory gives a basic descrip-

tion of the system. At zero temperature, we can neglect thermal excitations, and the

mean-field theory yields the Gross–Pitaevskii equation (GPE). For dipolar systems,

the standard GPE has to be extended to include the corresponding dipolar interac-

tion term. These equations, which are also called nonlinear Schrödinger equations,

due to the presence of nonlinear interaction-induced terms, are capable of describing

practically all phenomena that appear in BEC systems, with reasonable precision.

In particular, the GPE can be used as a basis for the variational approach, as out-

lined above. However, if a more precise description of the system is necessary, a

full numerical solution of the GPE may be required. Its analysis can also be used

to calculate the frequencies of the collective modes. Since the frequencies of the

collective modes are measured experimentally with high accuracy, they are used to
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estimate the accuracy of all theoretical and numerical approaches for the modeling of

BECs. While the variational and other theoretical approaches enable the derivation

of functional dependencies of the collective mode frequencies on the system’s pa-

rameters, it is clear that their accuracy is limited by the selection of the variational

ansatz and by the approximation order in a perturbation expansion. On the other

hand, a full numerical approach is much more accurate. It allows direct solving of

the mean-field theory equations, or higher-order theories, but requires a numerical

simulation for each given set of parameters. Only a combination of analytical and

numerical approaches, and a comparison with experimental results, provide us with

full description and understanding of the system in a comprehensive way.

In addition to well-known low-lying excitation modes mentioned previously, due

to nonlinearity in ultracold quantum gases some other types of excitations can

emerge as well. Density waves are an important example of nonlinear excitations

and can be induced by a harmonic modulation of the trap frequencies or interaction

strength. The motivation for this comes from the classical phenomenon of Faraday

waves, which may appear on the surface of the shallow layer of liquid under certain

conditions. Namely, if the container with the liquid is harmonically oscillated in a

vertical direction, the wave patterns may emerge, depending on the ratio of the liq-

uid depth and the container size, as well as depending on the modulation frequency.

This phenomenon was first studied and described by Michael Faraday at the begin-

ning of the XIX century [28]. The interest for such type of excitations arose again

during the 1980s in the context of nonlinear liquids. In the context of ultracold

gases, Faraday waves were first investigated theoretically in 2002 by Staliunas [29].

After his first theoretical and numerical results for the systems with contact interac-

tion where he assumed that the interaction strength is harmonically modulated, the

Faraday waves were first measured in the BEC experiments with rubidium atoms

in 2007 by Engels [30]. In the experiment, the radial part of the harmonic trap was

modulated instead of interaction strength. However, qualitatively this leads to the

same type of density waves. Although in the case of nonlinear liquids the generated

waves are surface waves, in the literature the same name, i.e., Faraday waves is also

used for the density waves that emerge as a result of the harmonic modulation in
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the realm of ultracold quantum gases.

Faraday waves in ultracold gases are a consequence of the existence of parametric

resonances in the system. While the spatial period of these waves depends on the

geometry of the system and other parameters, the frequency of their oscillations is

constant and is two times smaller than the modulation frequency. This is character-

istic of all parametric resonant phenomena, and in the variational approach leads to

the Mathieu-like differential equation that gives the observed ratio of the frequency

of Faraday waves and the modulation. The Faraday density waves with half of the

modulation frequency, are not the only nonlinear excitation of the system. In a

driven system, there are always excitations corresponding to waves that have the

same frequency as the modulation. However, they become resonant when the modu-

lation frequency corresponds to one of the collective mode frequencies, or their linear

combination, or a multiple. The resonant waves develop in the system and grow ex-

ponentially, much faster than the Faraday waves. Therefore, these two phenomena

can be easily distinguished, not only by comparing their frequencies, but also the

corresponding onset times. So far, Faraday and resonant waves have been studied

in a single [29] and binary BEC systems [31], both with spatially homogeneous and

inhomogeneous contact interactions [32].

1.3 This thesis

The focus of this thesis is on the study of excitation modes of dipolar Bose-Einstein

condensates, including the collective oscillation modes, and density waves that

emerge as a result of the driving of the system. In particular, the thesis investi-

gates the Faraday waves and effects of the contact and dipole-dipole interaction.

Chapter 1 gives an introduction into the field of ultracold atoms and important

role that interactions play for the properties of Bose-Einstein condensates. It also

introduces collective oscillation modes, Faraday and resonant waves, and discusses

the theoretical approaches used for their description.
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Chapter 2 describes in detail noninteracting Bose gases at zero temperature,

and presents a mean-field theory for weakly interacting Bose systems with the

short-range contact and the long-range dipole-dipole interaction. This chapter also

presents a variational approach for the description of static and dynamic properties

of dipolar BECs.

Ground-state properties of dipolar condensates are explored in Chapter 3. Us-

ing the variational approach introduced in Chapter 2, the corresponding equations

for the ground state are derived, including the special cases of cylindrical symme-

try, and pure contact interaction. The variational results are compared with full

numerical results obtained by solving the three-dimensional dipolar GPE for three

atomic species that posses the magnetic dipolar moments: chromium, erbium, and

dysprosium.

Chapter 4 provides a variational description of the collective oscillation modes

and derives the expressions for their frequencies as functions of the contact and

dipole-dipole interaction strength, which are then verified by comparison with the

full numerical results.

The Faraday and resonant waves are studied in Chapter 5. At first, a variational

approach is developed, that is capable of capturing the emergence and dynamics of

density waves in dipolar condensates. Using the properties of Mathieu’s differential

equation, the most unstable modes are identified and the expressions for the spatial

periods of Faraday and resonant waves are derived. The phenomenon of density

waves is then studied numerically in detail for the three atomic species and the

obtained results are compared with the variational ones [33].

Chapter 6 presents details on the algorithm we use to solve the dipolar GPE and

the split-step semi-implicit Crank-Nicolson method. Finally, Chapter 7 summarizes

all results and gathers our conclusions. Appendices A – F present further analytical

and numerical details that are relevant for certain chapters, but would overburden

the main text.
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2 Bose-Einstein condensation and dipole-dipole

interaction

BEC is usually described in the formalism of second quantization [7,8]. First, using

this formalism we will show that the macroscopic occupation of the ground state

leads to the spatial coherence in the condensate, i.e., to the off-diagonal long-range

order (ODLRO). The system is described in terms of the one-body density matrix,

which can be defined in the coordinate space by

ρ(r, r′) = 〈Ψ̂†(r) Ψ̂(r′)〉 , (2.1)

where Ψ̂†(r) is a creation operator and Ψ̂(r) is the corresponding annihilation oper-

ator, and the averaging is performed over the ensemble. These operators describe a

creation or annihilation of a particle at the position r, and, in the case of bosons,

satisfy the bosonic commutation relations

[Ψ̂(r) , Ψ̂†(r′)] = δ(r− r′) , [Ψ̂(r) , Ψ̂(r′)] = 0 , [Ψ̂†(r) , Ψ̂†(r′)] = 0 . (2.2)

For the system consisting of N identical bosons in a pure state, which is described

by the N -body wave function Ψn(r1, . . . , rN), the one-body density matrix can be

written as an integral

ρn(r, r′) = N

∫
dr2 · · · drN Ψ∗n(r, r2, . . . , rN) Ψn(r′, r2, . . . , rN) , (2.3)

which motivates the name of the matrix ρ. In a more general case, for a system

in a mixed state in thermodynamic equilibrium, the one-body density matrix is

calculated as an ensemble average, where the weights are given by the Boltzmann
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distribution

ρ(r, r′) =
1

Z

∑
n

e−βEn ρn(r, r′) , (2.4)

where n enumerates system’s eigenstates Ψn, β = 1/(kBT ) is the inverse temper-

ature, and Z =
∑

n e
−βEn is the partition function. The diagonal elements of the

density matrix correspond to the particle density

ρ(r, r) = 〈Ψ̂†(r) Ψ̂(r)〉 = n(r) , (2.5)

and the total number of particles can be calculated as N =
∫
drn(r) ≡

∫
dr ρ(r, r).

Similarly, the one-body density matrix can be represented in the momentum

space

ρ(p,p′) = 〈Ψ̂†(p) Ψ̂(p′)〉 , (2.6)

where the field operator in momentum space can be obtained from the coordinate

representation by a Fourier transform

Ψ̂(p) =
1

(2π~)3/2

∫
dr e−

i
~p·r Ψ̂(r) . (2.7)

Again, the diagonal elements give the density of the particles, this time in momentum

space, n(p) = ρ(p,p), and the total number of particles can be calculated in a

similar manner, N =
∫
dpn(p). In a Bose-Einstein-condensed system, we have a

macroscopic occupation of the ground state, which means that the particle density

in momentum space has a form

n(p) = N0 δ(p) + ñ(p) , (2.8)

where the occupation N0/N . 1. Let us see what consequences this has for the

density matrix. If we insert equation (2.7) into equation (2.6) for p = p′, we get

n(p) =
1

(2π~)3

∫
dR ds ρ

(
R +

s

2
,R− s

2

)
e
i
~p·s . (2.9)

where R represents center-of-mass coordinate, and s the distance between the two

arguments in density matrix. For a uniform and isotropic system of volume V ,

where we assume that in the thermodynamic limit N, V → ∞ the particle density

is constant n = N/V , the one-body density matrix depends only on the distance
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s, and not on the center-of-mass coordinate R, i.e., ρ (R + s/2,R− s/2) = ρ(s).

Therefore, the above equation for the density yields

ρ(s) =
1

V

∫
dpn(p) e−

i
~ p·s . (2.10)

For a normal system with a smooth momentum distribution n(p) at small momenta,

the one-body density vanishes in the limit s → ∞, due to oscillatory nature of the

phase factor e−
i
~ p·s. However, the condensed system, which contains a delta function

at p = 0 gives a surprising result that ρ(s) → N0/N when s → ∞. The fact that

off-diagonal elements of the one-body density matrix do not vanish even in the limit

s→∞, shows that the existence of the condensate leads to coherence in the system,

i.e., the long-range order.

To study excitations of the system, we use eigenstates of the density matrix

ϕi(r), where we assume, for simplicity, that the spectrum is discrete. In this basis,

the density matrix is expressed as

ρ(r, r′) = N0ϕ
∗
0(r)ϕ0(r′) +

∑
i>0

Niϕ
∗
i (r)ϕi(r

′) . (2.11)

Here ϕ0 represents the single-particle state with the occupancy N0, while Ni are

occupancies of excited states. Note that the above equation leads to expression

(2.8) for the density n(p) using equation (2.9) and orthonormality of the eigenstates

ϕi(r). For a uniform system of non-interacting bosons, the eigenstates are plane

waves ϕp(r) = eip·r/~/
√
V , while in a general case the functions ϕi have to be

determined by solving the corresponding eigenproblem. Using this basis, the field

operator can be expressed as

Ψ̂(r) =
∑
i

ϕiâi . (2.12)

where new bosonic operators âi represent elementary excitations of the system and

obey bosonic commutation relations

[âi , â
†
j] = δij , [âi , âj] = 0 , [â†i , â

†
j] = 0 . (2.13)

If the system is well below the critical temperature for Bose-Einstein condensation,

we can use a zero-temperature approximation and neglect thermal excitations. We
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can also assume that practically all of the particles are in the ground state and that

only a small fraction is excited, which corresponds to the following decomposition

of the field operator

Ψ̂(r) = Ψ0(r) + δΨ̂(r) , (2.14)

where Ψ0(r) ≡ ϕ0(r) â0 ≈
√
N0 ϕ0 is the wave function of the condensate and

δΨ̂(r) =
∑

i 6=0 ϕi(r) âi represents excitations due to quantum fluctuation. Note

that the ground-state operators â0 and â†0 can be replaced by a c-number
√
N0

due to macroscopic occupation of the ground state, and the fact that Bose-Einstein

condensation corresponds to breaking of the U(1) symmetry associated with the

phase of the wave function [8]. In other words, below the critical temperature the

order parameter does not vanish,

〈â0〉 = 〈â†0〉 =
√
N0 6= 0 . (2.15)

The time evolution of the system is determined by e−iĤt/~, where Ĥ is the Hamil-

tonian of the system, so the evolution of the ground-state wave function of the

condensate is given by

Ψ0(r, t) = Ψ0(r)e−iµt/~ , (2.16)

where

µ = E(N0)− E(N0 − 1) =
∂E

∂N

∣∣∣
N=N0

(2.17)

is the system’s chemical potential.

2.1 Noninteracting Bose gas

Previously we have neglected the thermal excitations and have used the zero-tempe-

rature approximation. However, depending on the temperature, we may have to take

into account thermal excitations. For a uniform noninteracting Bose gas in a box

of volume V , the eigenstates are plain waves that satisfy the periodic boundary

conditions and have a dispersion relation ε(p) = p2/2m. According to the Bose-

Einstein distribution function, the number of atoms in thermal (excited) states is
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given by

Nth(T ) =
∑
p6=0

1

eβ(p2/2m−µ) − 1
, (2.18)

where m is the mass of an atom. Using a semi-classical approximation and replacing

the above sum with the integral,
∑

p → V/(2π~)3
∫
dp, we obtain

Nth(T ) =
V

λ3
T

2√
π

∫ ∞
0

x1/2 dx

e−βµ ex − 1
=

V

λ3
T

g3/2(eβµ) , (2.19)

where λT =
√

2π~2β/m is the thermal wavelength and gp(z) =
∑∞

l=1 z
l/lp is Bose

function. From the above equation we obtain the critical temperature Tc at which

all atoms are in the thermal population, i.e., Nth(Tc) = N . This leads to

kBTc =
2π~2

m

(
n

g3/2(1)

)2/3

, (2.20)

where n = N/V is the density of the gas and g3/2(1) ≈ 2.612. Note that the

chemical potential of a uniform system above the critical temperature can be taken

to be zero due to the dispersion relation, such that eβµ = 1. Above the critical

temperate all particles are in the thermal cloud, and we have N = V g3/2(1)/λ3
Tc
,

according to equation (2.19). On the other hand, below Tc the number of thermal

atoms decreases, and we have Nth(T ) = (T/Tc)
3/2N , which is obtained by combining

equations (2.19) and (2.20). Therefore, the number of particles in the condensate is

given by

N0(T ) = N

[
1−

(
T

Tc

)3/2
]
, (2.21)

and becomes macroscopic for T < Tc.

The situation changes in the presence of an external trapping potential. The

most frequently encountered and experimentally used potential is a harmonic trap,

given by

U(x, y, z) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (2.22)

where ωi, i ∈ {x, y, z}, are the trapping frequencies. The temperature dependence

of the number of atoms in the condensate is now different and reads

N0(T ) = N

[
1−

(
T

Tc

)3
]
. (2.23)
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This is illustrated in Figure 2.1, where the blue line represents the condensate frac-

tion for a homogeneous system, and red line the condensate fraction in the presence

of an external harmonic trap. Not only that temperature dependence is modified

by the presence of the trap, but also the critical temperature changes, and is now

defined as

kBTc = ~ω
(
N

ζ(3)

)1/3

, (2.24)

where ω = (ωxωyωz)
1/3 is the geometric average of the trap frequencies, and ζ(3) =

g3(1) ≈ 0.94. Note that the energy scale for the critical temperature is now given

by the trap energy ~ω, and that Tc now depends on the number of particles as N1/3,

while for the uniform case it was N2/3.

1− (T/Tc)
3

1− (T/Tc)
3/2

T/Tc

N
0
/N

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.1: The condensate fraction N0/N as a function of the temperature T/Tc for

a noninteracting Bose gas: homogeneous case (blue line) and harmonically trapped

case (red line).

2.2 Weakly-interacting Bose gas

The ground-state energy of an ideal Bose gas is equal to zero, this leads to zero

pressure and infinite compressibility. However, the presence of interactions in the

system, even the weak ones, dramatically changes this. Here we briefly outline the

Bogoliubov theory to first order in the interaction strength, which is capable of

describing a dilute Bose-Einstein-condensed gas. Precisely such systems were exper-

imentally realized, and it was shown that only two-particle interactions significantly

contribute to the energy of the systems, while interactions of three and more parti-

cles can be neglected. Also, due to large inter-particle distances, the details of the
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two-body interactions can be neglected as well, i.e., they can be modeled just as

s-wave scattering processes in a dilute Bose gas, described by the s-wave scattering

length. The many-body Hamiltonian of such a system is given by

Ĥ =
~2

2m

∫
dr∇Ψ̂†(r)∇Ψ̂(r) +

1

2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)Uc(r− r′)Ψ̂(r′)Ψ̂(r) , (2.25)

where Uc(r) represents the model potential for the above-described contact interac-

tions. The field operator in the case of a uniform gas and in the basis of plane waves

reads Ψ̂(r) =
∑

p âpe
ip·r/~/

√
V , where âp is the operator annihilating a particle in

the state with momentum p. Inserting this into the above Hamiltonian, we obtain

Ĥ =
∑
p

p2

2m
â†pâp +

1

2V

∑
q,p1,p2

Uc(q) â†p1+qâ
†
p2−qâp1 âp2 , (2.26)

where p1 and p2 denote momenta of the interacting particles before the collision,

q the exchanged momentum in the collision, while Uc(q) =
∫
Uc(r) e

−iq·r/~dr is

a Fourier transform of the interaction potential. For the temperatures below the

critical one, the main contribution of the interaction to the Hamiltonian is due

to the particles with small momenta, q ≈ 0. If we denote the zero-momentum

component by g ≡ Uc(q = 0), the Hamiltonian of the system can be rewritten as

Ĥ =
∑
p

p2

2m
â†pâp +

g

2V

∑
p1,p2

â†p1
â†p2

âp1 âp2 . (2.27)

Note that the above approximation is mathematically equivalent to replacing the real

inter-particle interaction potential with the modeled contact potential Uc(r− r′) =

g δ(r− r′).

As we have seen, below the critical temperature the order parameter does not

vanish and we can replace the operators â0 and â†0 by a c-number
√
N0, where

N0 = N at zero temperature, when all particles are condensed. If we restrict the

sums in equation (2.27) to zero momentum contributions, which yield the ground

state, we obtain for the ground-state energy

E0 =
gN2

2V
=

1

2
Nng . (2.28)

The interaction coupling constant g can be expressed via s-wave scattering length as

as g = 4π~2as/m. Contrary to the noninteracting case, the pressure P of a condensed
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weakly-interacting Bose gas does not vanish at zero temperature. Instead, it is given

by P = −∂E0/∂V = gn2/2, and the compressibility is now finite, ∂n/∂P = 1/(gn).

The compressibility is related to the speed of sound c by a relation 1/(mc2) =

∂n/∂P . Using this, we can derive the sound velocity in the condensate and obtain

c =
√
gn/m.

The above zeroth-order approximation is capable of providing us with the esti-

mates for the ground-state energy, but not more than that. In order to describe the

system in more detail, we have to go to the higher-order approximation such that

we include the operators âp and â†p with p 6= 0. The Hamiltonian does not contain

the linear terms in âp, and the first non-trivial approximation is quadratic,

Ĥ =
g

2V
â†0â

†
0â0â0 +

∑
p

p2

2m
â†pâp +

g

2V

∑
p6=0

(
â†0â

†
pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0âpâ−p

)
.

(2.29)

Luckily, quadratic Hamiltonians can be explicitly diagonalized, which we do here

following Bogoliubov prescription. As it was done in the zeroth-order approximation,

in the terms in brackets of Equation (2.29) we replace the operators â0 and â†0 with
√
N , while for the first term we have to use a better approximation that is obtained

from the normalization â†0â0 +
∑

p6=0 â
†
pâp = N , which leads to

â†0â
†
0â0â0 = N2 − 2N

∑
p6=0

â†pâp , (2.30)

up to terms quadratic in âp. Note that the scattering theory [34], to the same

approximation order, requires the renormalization of the interaction strength g

g → g

(
1 +

g

V

∑
p6=0

m

p2

)
. (2.31)

By substituting Equations (2.30) and (2.31) into the Hamiltonian (2.29), we obtain

Ĥ = g
N2

2V
+
∑
p

p2

2m
â†pâp +

1

2
gn
∑
p6=0

(
2â†pâp + â†pâ

†
−p + âpâ−p +

mgn

p2

)
, (2.32)

which can be diagonalized using the Bogoliubov transformation

âp = upb̂p + v∗−pb̂
†
−p , â†p = u∗pb̂

†
p + v−pb̂−p . (2.33)
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We require that new operators b̂p and b̂†p obey the same bosonic commutation rela-

tions as the operators âp and â†p, which leads to the condition |up|2 − |v−p|2 = 1.

From this, we see that the coefficients u and v can be parametrized as follows

up = coshαp , v−p = sinhαp . (2.34)

In the above equation, the parameter αp has to be chosen such that non-diagonal

elements of the Hamiltonian (2.32) vanish. For such αp, the Hamiltonian becomes

Ĥ = Ẽ0 +
∑
p6=0

ε(p) b̂†pb̂p , (2.35)

where

Ẽ0 = E0 +
1

2

∑
p6=0

[
ε(p)− gn− p2

2m
+
m(gn)2

p2

]
, (2.36)

with ε(p) given by

ε(p) =

√(
p2

2m

)2

+ c2p2 , (2.37)

which is known as the Bogoliubov dispersion law. Here c stands for the speed

of sound c =
√
gn/m. The diagonalization of the system using the Bogoliubov

transformation allows us to connect the system of interacting bosons with a nonin-

teracting system of particles with the energy ε(p), whose annihilation and creation

operators are b̂p and b̂†p, respectively. Although this system is noninteracting, the

dispersion is modified and is not given by a free particle expression p2/2m. In the

limit of small momenta p � mc, the dispersion (2.37) becomes ε(p) = cp. From

this, we see that elementary excitations of the system in the long-wavelength regime

correspond to sound waves. From a symmetry point of view, these elementary exci-

tations can be thought of as the Goldstone modes that correspond to breaking of the

U(1) symmetry of quantum mechanics due to the Bose-Einstein phase transition.

Note that the ground-state energy Ẽ0 is given by

Ẽ0 = E0

(
1 +

128

15
√
π

√
na3

s

)
, (2.38)

which is expressed in terms of the perturbation parameter na3
s. Therefore, we see

that the Bogoliubov theory is valid if the previously introduced criterion (1.1) is

satisfied, such that the correction to the energy, given in brackets of Equation (2.38)

is small.
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2.3 Mean-field theory for dipolar Bose gas in a trap

Bose-Einstein condensation is experimentally realized with a dilute Bose gas trapped

in the external potential. Such a setup produces a nonuniform system, which is ex-

perimentally necessary to provide confinement of the system. However, this changes

the properties of the system and is responsible for new phenomena, such as col-

lective oscillations. Here we briefly outline the mean-field theory for a nonuniform

Bose gas in the external potential U(r, t), both for stationary and non-stationary

systems. However, as outlined in Chapter 1, in this thesis, we consider not only

the short-range contact interaction Uc(r− r′) = g δ(r− r′), but also the long-range

dipole-dipole interaction

Udd(r) =
µ0

4π

d2r2 − 3 (r · d)2

r5
, (2.39)

where µ0 is the vacuum permeability and d is the magnetic dipole moment. We

assume that all dipoles are oriented in the same direction, as in experiments where,

due to the present magnetic fields, this is always the case. If the dipoles are oriented

in the z direction of the Cartesian coordinate system, the potential has the form

Udd(r) =
µ0µ

2
d

4π

1− 3 cos2 θ

r3
, (2.40)

where θ is the angle made by the vector r and the polarization direction z. The

angle θ determines if DDI is attractive or repulsive. For instance, for θ = 0 we

have an attractive DDI, while for θ = π/2 the interaction is repulsive, as illustrated

in Figure 2.2. Note that the strength of the DDI is usually defined by the dipolar

length

add =
µ0µ

2
dm

12π~2
. (2.41)

This is convenient since it allows us to express the DDI in a similar way as the

contact interaction strength is expressed in terms of the s-wave scattering length.

With all these ingredients, the Hamiltonian of the system in the Heisenberg

picture is given by

Ĥ =
~2

2m

∫
dr∇Ψ̂†(r, t)∇Ψ̂(r, t) +

∫
dr Ψ̂†(r, t)U(r, t) Ψ̂†(r′, t)

+
1

2

∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)Uint(r− r′) Ψ̂(r′, t)Ψ̂(r, t) ,

(2.42)
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Figure 2.2: Illustration of dipole-dipole interactions of atoms whose dipole moments

are polarized along the z axis. In the middle, we have a generic case determined

by relative position between atoms r and angle between the polarization axis z and

vector r. On the left-hand side is a special case θ = 0, which is usually called

head-to-tail configuration, when the dipoles attract each other. On the right-hand

side is another special case, corresponding to θ = π/2, when the dipoles repel. This

configuration is usually called side-by-side.

where Uint(r) = Uc(r) + Udd(r). The dynamics of the system is governed by the

Heisenberg equation

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
. (2.43)

For the Hamiltonian (2.42), the above commutator can be readily calculated, and

we obtain the equation of motion as follows

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + U(r, t) +

∫
dr′ Ψ̂†(r′, t)Uint(r− r′) Ψ̂(r′, t)

]
Ψ̂(r, t) .

(2.44)

The mean-field theory is obtained, according to (2.14), when we replace the field

operator with the wave function of the condensate Ψ̂(r, t) = ψ(r, t) and neglect
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quantum fluctuations, yielding the dipolar GPE in the form

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r, t) + g|ψ(r, t)|2

+

∫
dr′ ψ∗(r′, t)Udd(r− r′, t)ψ(r′, t)

]
ψ(r, t) .

(2.45)

The above equation is also called the nonlinear Schrödinger equation, where two

types of nonlinearities are present due to the two types of interactions, namely the

contact interaction and the DDI.

The dipolar GPE can be cast into a dimensionless form, which is useful for ana-

lytical and numerical considerations. This is done by choosing a reference frequency

ωr, and by expressing all other physical variables in units defined by it, i.e., lengths

in units of harmonic oscillator length l =
√
~/(mωr), time in units of 1/ωr, and

energy in units of ~ωr. This leads to dimensionless variables

x → x

l
, y → y

l
, z → z

l
, as →

as
l
, add →

add

l
, t → ωrt ,

ψ(r, t) → l3/2 ψ(r, t) , U(r, t)→ 1

~ωr
U(r, t) , Udd(r, t)→ 1

~ωr
Udd(r, t) .

(2.46)

This rescales the harmonic trapping potential to the form

U(r, t) =
1

2

(
γ2x2 + ν2y2 + λ2z2

)
, (2.47)

where γ = ωx/ωr, ν = ωy/ωr, and λ = ωz/ωr are the trap aspect ratios, which may

be time-dependent. Taking all this into account, the dimensionless dipolar GPE

reads

i
∂ψ(r, t)

∂t
=

[
−1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ 4πNas |ψ(r, t)|2

+ 3Nadd

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′, t)|2
]
ψ(r, t) ,

(2.48)

where θ is the angle between the vector r− r′ and z axis. The wave function here is

normalized to unity
∫
dr |ψ(r, t)|2 = 1, and the density profile is given by n(r, t) =

N |ψ(r, t)|2. In the mean-field approximation, the many-body wave function can be

written as

Ψ(r1, . . . , rN , t) ≈
N∏
i=1

1√
N
ψ(ri, t) . (2.49)
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The above time-dependent dipolar GPE describes the dynamics of the system.

Since the ground state wave function has a common phase, it can be chosen to be

zero, thus making the wave function real. The time-independent ground state wave

function ψ0(r) satisfies the time-independent GPE, or the eigenequation

µψ0(r) =

[
−1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ 4πNas |ψ(r)|2

+ 3Nadd

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′)|2
]
ψ(r) ,

(2.50)

where the chemical potential µ is the corresponding eigenvalue. Both the time-

dependent and time-independent dipolar GPE can be exactly solved only numer-

ically. In this thesis, we do so using the Crank-Nicolson split-step semi-implicit

method [35–37]. From the analytic point of view, we use the variational approach,

which is presented in the next section.

2.4 Variational approach

The dipolar GPE equation can be written as the Euler-Lagrange equation for the

following Lagrangian density

L(ψ, ψ∗) =
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
+

1

2
ψ∗∇2ψ − U |ψ|2 − 2πNas |ψ|4

− 3Nadd

2
|ψ|2

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′)|2 ,
(2.51)

where the wave function of the condensate is a function of space and time variables

ψ ≡ ψ(r, t), and the trap potential U ≡ U(r, t) is given by Equation (2.47). The

GPE (2.48) is obtained as the Euler-Lagrange equation with respect to ψ∗, or as

the complex-conjugate of the Euler-Lagrange equation with respect to ψ. The above

Lagrangian can be used as a starting point for a variational description of the ground

state and the dynamics of a BEC. This is done by selecting a suitable ansatz for the

wave function, calculating the Lagrangian of the system L(t) =
∫
drL, and deriving

the equations of motion for the variational parameters present in the wave function

ansatz. The variational approach is a valuable method to study the behavior and

properties of BECs and we use it to investigate the collective modes and density

waves.
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For the variational study, we use the Gaussian ansatz [38–41]

ψ(x, y, z, t) =
1

π3/4√uxuyuz
e
− x2

2u2
x
− y2

2u2
y
− z2

2u2
z

+ix2φx+iy2φy+iz2φz
, (2.52)

where the six variational parameters {ui, φi} are functions of time and represent

the condensate widths and conjugated phases, respectively. If only the ground state

is studied, then the phases φi can be omitted, and the condensate widths can be

assumed to be constant. However, if we want to study the system’s dynamics, then

the phases are necessary, and therefore we take them into account. The coefficient in

front of the exponent function is chosen so as to keep the wave function normalized

to unity.

Using the Lagrangian density (2.51) and ansatz function (2.52), by integration

we calculate Lagrangian of the system, consisting of five terms

L(t) = L1(t) + L2(t) + L3(t) + L4(t) + L5(t) . (2.53)

We calculate all term independently. The first one reads

L1(t) =
i

2

∫
dr
(
ψ∗ψ̇ − ψψ̇∗

)
= −1

2

(
u2
xφ̇x + u2

yφ̇y + u2
zφ̇z

)
, (2.54)

while the kinetic energy term gives

L2(t) =
1

2

∫
drψ∗∇2ψ = −1

4

(
1

u2
x

+
1

u2
y

+
1

u2
z

+ 4u2
xφ

2
x + 4u2

yφ
2
y + 4u2

zφ
2
z

)
. (2.55)

The term corresponding to the potential energy yield

L3(t) = −
∫
drU |ψ|2 = −1

4

(
γ2u2

x + ν2u2
y + λ2u2

z

)
, (2.56)

and the contact interaction term gives

L4(t) = −2πNas

∫
dr |ψ|4 = − Nas√

2π uxuyuz
. (2.57)

The DDI term is more complex to calculate. It reads

L5(t) = −3Nadd

2

∫
dr |ψ(r)|2

∫
dr′ Udd(r− r′) |ψ(r′)|2 , (2.58)

where, in the rescaled units, the dipolar potential is given by

Udd(r) =
1− 3 cos2 θ

r3
. (2.59)
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The r′ integral can be calculated using the convolution theorem,

L5(t) = −3Nadd

2

∫
dr |ψ(r)|2F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) . (2.60)

where F stands for the direct and F−1 for the inverse Fourier transform. The

above expression can be further simplified if we explicitly write the inverse Fourier

transform,

L5(t) = − 3Nadd

2 (2π)3

∫
dkF [Udd] (k)F

[
|ψ|2

]
(k)

∫
dr |ψ(r)|2 eik·r . (2.61)

The last integral is equal to F
[
|ψ|2

]
, which can be readily calculated,

F
[
|ψ|2

]
(k) = e−

1
4

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) . (2.62)

The Fourier transform of the dipolar potential F [Udd] (k) is calculated in Ap-

pendix A and reads

F [Udd] (k) =
4π

3

(
3 cos2 θ − 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
. (2.63)

If we put all these elements together, the DDI term of the Lagrangian is given by

L5(t) = −3Nadd

(2π)2

∫
dk

(
3

k2
z

k2
z + k2

y + k2
z

− 1

)
e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (2.64)

and, as shown in Appendix B, can be expressed in terms of the anisotropy function

f ,

L5(t) =
Nadd√

2π uxuyuz
f

(
ux
uz
,
uy
uz

)
. (2.65)

The anisotropy function [42] is defined as

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

(x2 sin2 ϕ+ y2 cos2 ϕ) sin2 θ + x2y2 cos2 θ
− 1

)
,

(2.66)

and its solution can be expressed via elliptic integrals [43] of the first and the second

kind. Details on the anisotropy function and how it can be expressed for different

values of the arguments x and y are given in Appendix C. Now that we have calcu-

lated the Lagrangian of the system, we derive the Euler-Lagrange equations for the

variational parameters,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , qi ∈ {ux, uy, uz, φx, φy, φz} , (2.67)
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that describe the time evolution of the parameters. We first proceed with the equa-

tions for the phases φi, which turn out to be

φi =
u̇i
2ui

. (2.68)

The Euler-Lagrange equations for the condensate widths ui contain the phases φi

and their derivatives, which can be eliminated using the above equations. This leads

to the second-order differential equations for the parameters ui in the form

üx + γ2ux −
1

u3
x

−
√

2

π

N

u2
xuyuz

[
as − addf

(
ux
uz
,
uy
uz

)
+ add

ux
uz
f1

(
ux
uz
,
uy
uz

)]
= 0

(2.69)

üy + ν2uy −
1

u3
y

−
√

2

π

N

uxu2
yuz

[
as − addf

(
ux
uz
,
uy
uz

)
+ add

uy
uz
f2

(
ux
uz
,
uy
uz

)]
= 0

(2.70)

üz + λ2uz −
1

u3
z

−
√

2

π

N

uxuyu2
z

[
as − addf

(
ux
uz
,
uy
uz

)
− add

ux
uz
f1

(
ux
uz
,
uy
uz

)

− add
uy
uz
f2

(
ux
uz
,
uy
uz

)]
= 0

(2.71)

where f1 and f2 are partial derivatives of the anisotropy function with respect to

the first and the second argument. More details on these derivatives are given in

Appendix C.

The above equations are used to variationally study the dipolar BEC dynamics,

as well as the corresponding ground state. The algebraic equations determining the

ground state are obtained by assuming that the condensate widths are constant,

thus removing their second derivatives from the equations of motion.
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3 Ground-state properties

In the previous section, we have seen that the condensation corresponds to the accu-

mulation of a macroscopic number of particles in the ground state. In the mean-field

theory at zero temperature, all atoms are condensed in the lowest single-particle

quantum state, while the ground-state wave function |ψ(r)|2 = n(r) determines

the density distribution of atoms. The wave function is a complex quantity, whose

square of the modulus describes the contribution of the condensate to the diagonal

elements of the density matrix ρ, and whose phase has a role in the coherence char-

acterization. The wave function is defined up to a constant phase factor, reflecting

the U(1) symmetry of quantum mechanics. For a system with a time-independent

Hamiltonian, the condensation leads to a symmetry breaking, such that the whole

condensate is described by a constant phase, which can be set to zero. This can

be also seen as a consequence of the off-diagonal long-range order discussed ear-

lier. Since its phase can be set to zero, the wave function of the ground state can

be always taken to be real-valued. In BEC experiments, the ground state usually

represents the first step and is achieved by cooling an atomic or molecular sample

using a variety of techniques. The ground state can be reliably described by the

GPE [7,8], as discussed previously. In typical experiments, the dynamics of the sys-

tem is induced from the ground state by perturbing the system or changing some of

the system parameters, such as the interaction strength or the trap geometry. The

behavior of the system is then observed using the time-of-flight imaging technique

or in-situ types of measurements.

For a noninteracting system, the GPE reduces to a Schrödinger equation with a
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given trap potential. In case of a harmonic potential (2.22), the ground state of a

noninteracting bosonic system is determined by the lowest single-particle quantum

state, which is given by the Gaussian function

ψ(x, y, z) =
(m
π~

)3/4

(ωx ωy ωz)
1/4 e−

m
2~ (ωxx2+ωyy2+ωzz2) . (3.1)

Therefore, in the weak-interaction limit a Gaussian function represents a good choice

for a perturbative or variational treatment of the system. In the other limiting case,

when the interaction is strong such that the kinetic energy term can be neglected,

one can use the inverted parabola of the Thomas-Fermi approximation as a starting

point for various analytic approaches.

3.1 Variational description of the ground state

To describe the ground state variationally, we rely on the Gaussian ansatz (2.52). In

the static case, the dynamical equations of motion (2.69) - (2.71) have the following

form

γ2ux −
1

u3
x

−
√

2

π

Nas
u2
xuyuz

+

√
2

π

Nadd

u2
xuyuz

f

(
ux
uz
,
uy
uz

)
−
√

2

π

Nadd

uxuyu2
z

f1

(
ux
uz
,
uy
uz

)
= 0 ,

(3.2)

ν2uy −
1

u3
y

−
√

2

π

Nas
uxu2

yuz
+

√
2

π

Nadd

uxu2
yuz

f

(
ux
uz
,
uy
uz

)
−
√

2

π

Nadd

uxuyu2
z

f2

(
ux
uz
,
uy
uz

)
= 0 ,

(3.3)

λ2uz −
1

u3
z

−
√

2

π

Nas
uxuyu2

z

+

√
2

π

Nadd

uxuyu2
z

f

(
ux
uz
,
uy
uz

)
+

√
2

π

Nadd

uyu3
z

f1

(
ux
uz
,
uy
uz

)
+

√
2

π

Nadd

uxu3
z

f2

(
ux
uz
,
uy
uz

)
= 0 .

(3.4)

The ground state of the system is characterized by the constant condensate widths

ui, i ∈ {x, y, z}. Solving the above system of nonlinear algebraic equations we

directly obtain the widths of the condensate. In some special cases, this can be

done analytically. For example, if we neglect the dipole-dipole interaction by setting

add = 0, and if the system is cylindrically symmetric, such that uy = uz = uρ, the
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variational equations reduce to

γ2u4
x = 1 +

√
2

π

Nasux
u2
ρ

, (3.5)

u4
ρ = 1 +

√
2

π

Nas
ux

. (3.6)

Because the number of atoms in the system is much larger than 1, the first term

in the above equations can be neglected and the widths of the condensate can be

expressed as

ux ≈
(√

2

π

Nas
γ4

)1/5

, uρ ≈
(√

2

π
Nasγ

)1/5

. (3.7)

As we can see, if we have only the contact interaction, the size of the condensate

increases in all directions with the increase of the interaction strength as a1/5
s . We

also see that the condensate width ux in the direction of weak confinement is always

larger than uρ, since ux/uρ = 1/γ � 1.

If we now take into account the dipole-dipole interaction, the system of equations

(3.2) - (3.4) cannot be analytically solved anymore. However, it can be simplified

when the direction of weak confinement matches the direction of the dipoles’ polar-

ization. Assuming cylindrical symmetry of the trap, the anisotropy function satisfies

the following limit

lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) =
(2 + x2)fs(x)

2(1− x2)
− 1 , (3.8)

where fs(x) = f(x, x) is the cylindrically symmetric anisotropy function which is

defined in Appendix C. Using this the variational equations (3.2) - (3.4) lead to the

system

γ2u4
x = 1 +

√
2

π

Nux
u2
ρ

[as − addAx(κ)] , (3.9)

u4
ρ = 1 +

√
2

π

N

ux
[as − addAρ(κ)] , (3.10)

where κ = uρ/ux, while functions Ax(κ) and Aρ(κ) are defined by

Ax(κ) =
2− 7κ2 − 4κ4 + 9κ4 d(κ)

2 (1− κ2)2
, (3.11)
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Aρ(κ) =
1 + 10κ2 − 9κ2 d(κ)− 2κ4

(1− κ2)2
, (3.12)

with

d(κ) =
tanh−1

√
1− κ2

√
1− κ2

. (3.13)

In the limit of small κ, the above functions have limits Ax(κ)→ 1, Aρ(κ)→ 1, with

κ2d(κ)→ 0. If we again neglect the first term in Equations (3.9) and (3.10) due to

N � 1, this system can be solved analytically in the zeroth-order in κ. The solutions

are the same as (3.7), with as replaced by ãs = as−add. However, depending on the

value of κ, the corrections of the order κ and higher could be important, such that

the system (3.9) and (3.10) has to be solved without applying κ→ 0 approximation.

In this case, the above equations cannot be solved analytically and the numerical

approach is necessary. As we are considering a case when the dipoles are oriented in

the z direction and the cylindrical symmetry is not present anymore, we have to use

the full set of variational equations (3.2) - (3.4) in order to determine the ground

state widths.

Note that the above equations for the ground state widths, with or without cylin-

drical symmetry, can be used to assess the stability of the system as well. Namely,

we know that even in the absence of the dipole-dipole interaction the system can

become unstable if the contact interaction is attractive (as < 0). This happens if

the number of atoms is sufficiently large, such that the right-hand sides of equations

(3.2) - (3.4) become negative. The situation is more complex in the presence of the

dipole-dipole interaction, which is anisotropic and can lead to instability due to the

trap geometry, even for a large and positive contact interaction. The numerical ap-

pearance of negative condensate widths can be used to detect the onset of instability

in the solutions of the above equations.

3.2 Ground state of 52Cr, 168Er and 164Dy BECs

Now we will explore how the ground state looks like for condensates of atomic

chromium 52Cr, erbium 168Er, and dysprosium 164Dy, using a numeric and a varia-
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tional approach for the system which parameters are given in detail in Appendix D.

As outlined in Chapter 6, the numerical calculation of the ground state relies on

the imaginary-time propagation. As a starting point we always use a Gaussian

wave function that corresponds to the noninteracting case (3.1), i.e., the variational

ansatz (2.52) with ui = 1/
√
ωi/ωr and φi = 0, given by Equation D.3. Starting

from such a state, depending on how far from the ground state it is, the imaginary-

time propagation evolves it exponentially fast to the ground state. Figure 3.1 shows

the ground-state condensate density for N = 104 atoms of the considered atomic

species, together with the chosen Gaussian initial state. We plot the corresponding

integrated densities

n(x) =

∫∫
dy dz |ψ(x, y, z)|2 , (3.14)

n(y) =

∫∫
dz dx |ψ(x, y, z)|2 , (3.15)

n(z) =

∫∫
dx dy |ψ(x, y, z)|2 , (3.16)

where blue line represents the corresponding initial, Gaussian state density ni, and

red line the numerically obtained ground state density nf . The trap weakly confines

the atoms in the x direction, and therefore the condensate density nf (x) is much

more elongated than the other two densities. This can be seen in Figure 3.1 for

all species, with the corresponding width for 52Cr of around 35.706 µm, while for
168Er and 164Dy the widths are around 23.201 µm and 23.339 µm, respectively. Here

the widths wi, i ∈ {x, y, z} are defined as two times the root-mean-square of the

corresponding coordinate, i.e., 2
√
〈x2〉, 2

√
〈y2〉, 2

√
〈z2〉. Note that for the initial

states we have wi = 2ui = 2/
√
ωi/ωr. The differences in the numerically obtained

values of wx are mainly the result of the contact interaction, i.e., a combination of

the s-wave scattering lengths and masses of atoms. The values of as for all three

species are quite similar, and therefore the main difference in the ground state widths

comes from the mass difference, while the dipole-dipole effects are very small due

to the small density n(x). It is one order of magnitude smaller than the densities

in other directions, as can be seen from Figure 3.1. However, the dipole-dipole

interaction significantly changes the densities in the y − z plane. Although the

trap is cylindrically symmetric in that plane, the dipole-dipole interaction breaks
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Figure 3.1: Integrated ground-state densities (red lines) of BEC of N = 104 atoms of

chromium 52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third

row). The initial Gaussian wave function that corresponds to the noninteracting case

(blue) is propagated in the imaginary time for 100 ms to obtain the ground state

(red line). The first, second, and third column give the corresponding integrated

densities in x, y, and z direction, respectively. The observed significant elongation of

the condensate in the x direction is due to the trap geometry defined in Appendix D.

this symmetry, which can be seen by comparing the middle and the right-hand side

column in Figure 3.1.

In recent experiments it was demonstrated that the strength of the dipole-dipole

interaction can be tuned by applying a fast-rotating magnetic field, or for electric

dipoles, a fast-rotating electric field [24, 25]. In our description, this corresponds

to changing the value of the parameter add. If we set add = 0, then the system is

reduced to a BEC with only the contact interaction. Note that this can be effectively

achieved if the external field that orders the dipoles is switched off. To compare how
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Figure 3.2: Integrated ground-state densities of BEC of N = 104 atoms of chromium
52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third row).

Red lines correspond to the densities obtained by taking into account the dipole-

dipole interaction, while blue lines are obtained for add = 0. The first, second, and

third column give the corresponding integrated densities in x, y, and z direction,

respectively. Table 1 gives relative differences in the condensate widths due to

dipolar effects.

the dipole-dipole interaction contributes to the ground state properties, Figure 3.2

gives the corresponding results for chromium 52Cr (first row), erbium 168Er (second

row), and dysprosium 164Dy (third row), with (red) and without (blue lines) the

dipole-dipole interaction. As expected, the figure shows cylindrical symmetry in the

y− z plane when the dipolar effects are neglected, while the asymmetry grows when

they are taken into account, from chromium to dysprosium, as the dipole moment

increases. Table 1 gives relative differences of the condensate widths due to the

dipole-dipole interaction, ∆wi/wi = 1 − wi(0)/wi(add). Positive values correspond
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Table 1: Relative differences of the ground-state condensate widths due to the dipole-

dipole interaction. The values correspond to the integrated densities from Figure 3.2

for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi = 1 −
wi(0)/wi(add), i ∈ {x, y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species add (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 15.126 0.959 -1.055 2.044
168Er 66.564 4.009 -10.987 13.469
164Dy 132.607 3.624 -25.457 20.748

to the increase of the width due to dipolar effects, and negative values the opposite.

As expected, the condensate elongates in the direction of the dipoles, while due to

the interplay of geometry and interaction effects, its width increases in the x and

decreases in the y direction. As noted earlier, the relative change in the x direction

is negligible, while in other directions it is quite significant for species with large

dipole moments.

As mentioned earlier, propagation in imaginary-time is used to calculate the

true ground state of the system starting from any initial state (provided that it is

not orthogonal to the ground state). The convergence to the ground state can be

detected by the convergence of all physical quantities that describe the system, in
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Figure 3.3: Convergence of the chemical potential of a BEC of N = 104 atoms of

chromium 52Cr (left), erbium 168Er (middle), and dysprosium 164Dy (right) during

imaginary-time propagation, with (red) and without (blue line) the dipole-dipole

interaction for the system parameters given in Appendix D.
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particular, its chemical potential, energy, and the expectation value of the system’s

size. Therefore, the convergence of these quantities is used as a criterion in numerical

simulations, which is illustrated in Figure 3.3. In the left panel we can see the

decrease of the chemical potential for chromium 52Cr, in the middle panel for erbium
168Er, and in the right panel for dysprosium 164Dy, both with and without dipole-

dipole interaction. The chemical potential is expressed in units of ~ωr, where ωr =

160.5 × 2π Hz is rescaling frequency. From Figure 3.3, we observe that the dipole-

dipole interaction increases the energy of the system. Furthermore, this energy

difference increases with the strength of the interaction add, and reads 306 ~ωr,

1444 ~ωr, and 2101 ~ωr, respectively for the listed atoms.

3.3 Interaction effects on the ground state

In this section, we study the influence of the short-range contact interaction on the

ground state properties of dipolar condensates. For the first experimental realization

of BEC, it was possible to tune the strength of contact interactions over a wide range

using the Feshbach resonance technique [9]. By adjusting the external magnetic field

close to a Feshbach resonance, the contact interaction strength can be tuned from

large positive to large negative values, i.e., it is even possible to switch between

repulsive and attractive interactions. To model this, we keep fixed the dipole-dipole

interaction strength to experimentally measured values listed in Appendix D for each

species, and investigate the ground state properties when the contact interaction

parameter is varied in the interval from as = 10 a0 to as = 200 a0 for the condensate

of N = 104 atoms. It turns out that erbium 168Er BEC is unstable for low values

of as, so we use the region from as = 40 a0 to as = 200 a0 in this case. Similarly,

for dysprosium 164Dy we use the interval from as = 90 a0 to as = 200 a0. Figure 3.4

illustrates the contact interaction strength dependence of the condensate widths in

x, y, and z direction obtained from the numerical simulations (red) and variational

calculation (blue line). As expected, the increase of the repulsive contact interaction

leads to the increase of condensate widths in all directions. Results of numerical

simulations agree with the results of the variational analysis with the relative error
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Figure 3.4: Condensate widths as functions of the contact interaction strength for

a BEC of N = 104 atoms of chromium 52Cr (first row), erbium 168Er (second row),

and dysprosium 164Dy (third row). Results are obtained for fixed dipole-dipole

interaction strengths given in Table 2. Red lines represent numerically obtained

widths, and blue lines the variational ones.

of around 30%. As we can see from Table 2, which lists relative differences of the

ground-state condensate widths for two values of the contact interaction strength,

as = 90 a0 and as = 200 a0, the increase of the repulsive contact interaction increases

the condensate width in all directions and for all species. We also observe that

the dipole-dipole interaction suppresses elongation of the condensate in z direction,

where it is attractive.

Although more difficult, it is also possible to tune-down the strength of the

dipole-dipole interaction for magnetic atomic species using a fast-rotating magnetic

field [24, 25]. The maximal possible values are defined by the permanent magnetic

moment of the corresponding species. To investigate the effects of the dipole-dipole
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Table 2: Relative differences of the ground-state condensate widths due to the

contact interaction. The values correspond to the condensate widths from Fig-

ure 3.4 for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi =

wi(200 a0)/wi(90 a0)− 1, i ∈ {x, y, z}.

Species add (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 15.126 16.917 9.748 7.957
168Er 66.564 15.361 14.612 5.353
164Dy 132.607 17.446 21.554 2.139

interaction on the ground-state properties, we numerically and variationally calcu-

late the condensate widths of chromium 52Cr, erbium 168Er, and dysprosium 164Dy

in the interval from add = 0 a0 to add = 170 a0, keeping the contact interaction

strength fixed. Due to the instability of erbium and dysprosium condensates for

large values of add, we have used the interval from add = 0 a0 to add = 140 a0 for

those two species. Figure 3.5 illustrates the striking effect of the dipole-dipole inter-

action which has a non-monotonous behavior of the condensate width in x direction,

causes a decrease in y direction and increase in z direction. The agreement between

numerical and variational results as quite reasonable, with the error of around 30%.

Table 3 gives relative differences of the ground-state condensate widths for add = 0

and add = 100 a0. As we see, the change is most prominent in y and z direc-

Table 3: Relative differences of the ground-state condensate widths due to the dipole-

dipole interaction. The values correspond to the condensate widths from Figure 3.5

for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi = 1 −
wi(100 a0)/wi(0), i ∈ {x, y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species as (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 105 5.004 -12.180 14.676
168Er 100 4.290 -17.326 17.388
164Dy 100 4.308 -17.205 17.336
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Figure 3.5: Condensate widths as functions of the dipole-dipole interaction strength

for a BEC of N = 104 atoms of chromium 52Cr (first row), erbium 168Er (second

row), and dysprosium 164Dy (third row). Results are obtained for fixed contact

interaction strengths given in Table 3. Red lines represent numerically obtained

widths, and blue lines the variational ones.

tion. With an increase of the dipole-dipole interaction, the size of the condensate

increases in z direction, and decreases in y direction. This is expected since it is

well known that the condensate elongates along the direction of maximal attraction

of the dipole-dipole interaction. On the other hand, the increase of the size in x

direction is also observed but is much smaller.
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4 Collective oscillation modes

Calculation of the system’s ground state is usually the first step in analytical and

numerical approaches. The same applies to the experimental studies, where obtain-

ing and characterizing the ground state represents the first and necessary step before

proceeding to further measurements. The characterization of the ground state in-

cludes measurement of its density profile and condensate widths, as we have seen

in the previous section. In addition to these static properties, an important way

to probe the system is to study its low-lying excitations or collective modes. Such

excitations can be generated from the ground state by a small perturbation of the

system’s parameters. This results in small oscillations of the condensate density

and its widths, which can be experimentally observed using the time-of-flight imag-

ing or some of the in-situ techniques. The analysis of experimental results, as well

as the results obtained in numerical simulations, includes the Fourier analysis of

condensate widths, which yields the frequencies of the collective modes [44–46].

It is well known that the collective oscillation modes of a noninteracting Bose gas

are disentangled, i.e., independent in each spatial direction, with the frequency equal

to twice the corresponding trap frequency. The presence of interactions in the system

couples different modes, which results in the appearance of the breathing mode,

quadrupole mode, radial-quadrupole mode, dipole mode, etc. Their frequencies are

shifted with respect to the noninteracting case, and the study of these interaction-

induced frequency shifts represents one of the important characterization methods

used to describe the ground-state properties. From the experimental point of view,

probing of the collective excitations is one of the most accurate measurements that
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can be performed in ultracold atom systems, with the precision of the order of one

per mille. Therefore, a comparison of numerically or analytically obtained estimates

for the frequencies of collective modes is an excellent method to check the validity

and level of confidence of the models used. As in our case, there are two types

of interaction in the system, and both of them independently affect the collective

modes and their frequencies, which we study in this section.

In the case of externally driven systems, which is necessary to generate the den-

sity excitations, such as Faraday waves, one can expect the appearance of resonances

in the system. This usually happens when the driving frequency is close to one of

the frequencies of the collective modes, or their linear combination. In some cases,

this leads to the emergence of the Faraday waves, while sometimes resonant waves

appear, as we show in Chapter 5. Therefore, it is essential to understand well the

collective modes of the system, to either avoid resonant behavior or to induce it

when necessary.

4.1 Variational description of collective modes

For the variational study of the collective modes, we use the Gaussian variational

ansatz (2.52), and equations of motion (2.69) - (2.71) derived in Section (2.4). The

system is perturbed from the ground state by a small change of one of its parameters,

such that the condensate widths become time-dependent,

ui(t) = ui0 + δui(t) , i ∈ {x, y, z} , (4.1)

where ui0 are the constant ground-state widths, and δui(t) are small oscillation

amplitudes, |δui(t)| � ui0. If we insert the expression (4.1) for the condensate

widths into the equations of motion (2.69) - (2.71), and linearize the system by

expanding it in the small parameters δui(t) and keeping only the terms of the first

order, we obtain a coupled system of ordinary linear differential equations of the

second order, which can be expressed in the matrix form as

δü(t) +M δu(t) = 0 . (4.2)
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Here δu(t) is a vector [δux(t) δuy(t) δuz(t)]
T , and elements of the matrix M are

calculated from the Lagrangian of the system (2.53),

Mij = −2
∂2L(u)

∂ui ∂uj

∣∣∣∣
u=u0

, i, j ∈ {x, y, z} . (4.3)

To calculate the frequencies of the oscillations induced in the system, we write the

solution of equation (4.2) in the following form

δu(t) = δu eiωt , (4.4)

where δu is a constant vector, and ω denotes a collective mode frequency. If we insert

this into the matrix equation (4.2), the collective mode frequencies are eigenvalues

of the matrix M , i.e., solution of the following eigenproblem

det(M − ω2I) = 0 . (4.5)

The above eigenproblem can be analytically solved in a simple way in some

special cases. For example, if the system is cylindrically symmetric, such that uy =

uz ≡ uρ, the problem is essentially two dimensional leading to additional symmetry

in the matrix M , which now has the form

M =


m1 m4 m4

m4 m2 m3

m4 m3 m2

 . (4.6)

Due to this, the corresponding eigenproblem can be fully solved in a closed form.

The frequencies of the collective modes in this case are

ω2
B =

m1 +m2 +m3 +
√

(m3 +m2 −m1)2 + 8m2
4

2
, (4.7)

ω2
Q =

m1 +m2 +m3 −
√

(m3 +m2 −m1)2 + 8m2
4

2
, (4.8)

ω2
RQ = m2 −m3 , (4.9)

with the corresponding eigenvectors

uB =
[
m1−m2−m3+

√
(m3+m2−m1)2+8m2

4

2m4
1 1

]T
, (4.10)

uQ =
[
m1−m2−m3−

√
(m3+m2−m1)2+8m2

4

2m4
1 1

]T
, (4.11)

uRQ =
1√
2

[
0 −1 1

]T
. (4.12)
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In the above expressions, index B denotes the breathing mode, Q the quadrupole

mode and RQ the radial-quadrupole mode. The modes can be identified by analyzing

the corresponding eigenvectors. In the first case, all three components of uB are

positive, which means that it corresponds to the breathing mode. In the second case,

the longitudinal component of uQ is of the opposite sign of the radial components,

thus it represents the quadrupole mode, and in the third case, the longitudinal

component of uRQ is zero, while the two radial components are of the opposite sign,

which means that this mode can be identified with the radial-quadrupole mode.

Next, we consider the system with contact interaction only. If we set add = 0,

the derivatives (4.3) of Lagrangian (2.53) yield the following elements of matrix M

m1 = γ2 +
3

u4
x0

+ 2

√
2

π

Nas
u3
x0u

2
ρ0

, (4.13)

m2 = 1 +
3

u4
ρ0

+ 2

√
2

π

Nas
ux0u

4
ρ0

, (4.14)

m3 =

√
2

π

Nas
ux0u

4
ρ0

, (4.15)

m4 =

√
2

π

Nas
u2
x0u

3
ρ0

, (4.16)

where ui0, i ∈ {x, ρ} are the ground-state condensate widths given by equations

(3.5) and (3.6). Using the above expressions in (4.7) - (4.9), we can calculate the

frequencies of the collective modes as functions of the contact interaction strength

as, the number of particles N , and the trap aspect ratio γ. For the noninteracting

system, in the limit as → 0, we obtain for the collective mode frequencies ωB = 2,

ωQ = 2 γ, and ωRQ = 2. These frequencies are given in dimensionless units, while

the physical values are obtained by multiplying them with the referent frequency

ωr = ωy = ωz, such that ωB = 2ωr, ωQ = 2ωx, and ωRQ = 2ωr. As mentioned

earlier, in this special case we obtain the collective mode frequencies equal to twice

the trap frequencies.

If the contact interaction is present in the system, then the collective mode fre-

quencies depend on its strength as. Figure 4.1 shows this dependence, obtained from

the variational approach for a BEC of N = 104 atoms of chromium 52Cr, where the
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Figure 4.1: Frequencies of the breathing (left), quadrupole (middle), and radial-

quadrupole (right) collective mode as functions of the contact interaction strength

for a BEC of N = 104 atoms of chromium 52Cr. Results are obtained using the

variational approach, and neglecting the dipole-dipole interactions.

dipole-dipole interaction is neglected. As we can see, when the contact interaction

parameter is varied in the interval from as = 0 to as = 200 a0, the frequency of the

breathing mode slowly increases, while the frequency of the quadrupole mode slowly

decreases. The decrease in the frequency of the radial-quadrupole mode is more

prominent than in the case of the quadrupole mode. On this figure we also observe

that in the noninteracting limit ωB and ωRQ tend to 321×2π Hz = 2×160.5×2π Hz,

and that ωQ tends to 14× 2π Hz = 2× 7× 2π Hz.

In order to compare the variational results with experiments, we use the values

obtained in Reference [44] for a BEC of N = 1.5 × 107 atoms of 23Na. For a trap

with the frequencies 16.93(2)×2π Hz and ωρ = 230(20)×2π Hz, the experimentally

measured value of the quadrupole mode frequency was ωQ = 1.569(4)ωx, which

in excellent agreement with our variationally result ωQ = 1.581ωx. For the same

parameters, the results of numerical simulations yield the frequency ωQ = 1.575ωx,

which is in even better agreement with the experimental value. Therefore, we con-

clude that the above variational and numerical approach can be reliably applied to

study ultracold atomic systems.

While it is still justified to neglect the dipole-dipole interaction for atomic species

such as 52Cr, for species with larger values of the dipole moment it is necessary to

take it into account. We now present the variational calculation of the collective

mode frequencies for the case of a cylindrically symmetric system with the dipoles
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oriented in the direction of weak confinement. In this case, the elements of matrixM

again have the form given by Equation (4.6). We have calculated the ground-state

widths (3.9) and (3.10) for such a system in the previous section, which allows us

to calculate the elements of matrix M as follows

m1 = γ2 +
3

u4
x0

+ 2

√
2

π

N

u3
x0u

2
ρ0

(as − addAxx(κ)) , (4.17)

m2 = 1 +
3

u4
ρ0

+ 2

√
2

π

N

ux0u
4
ρ0

(as − addAρρ(κ)) , (4.18)

m3 =

√
2

π

N

ux0u
4
ρ0

(as − addAxρ(κ)) , (4.19)

m4 =

√
2

π

N

u2
x0u

3
ρ0

(as − addAρx(κ)) , (4.20)

where κ = uρ0/ux0, and functions Aij(κ), i, j ∈ {x, ρ} are defined by

Axx(κ) =
4κ6 − 12κ4 − 9κ4d(κ) + 51κ2 − 36κ2d(κ) + 2

2 (1− κ2)3
, (4.21)

Aρρ(κ) =
32κ6 − 99κ6d(κ) + 141κ4 − 36κ4d(κ)− 54κ2 + 16

16 (1− κ2)3
, (4.22)

Axρ(κ) =
16κ6 − 45κ6 d(κ) + 51κ4 − 30κ2 + 8

8 (1− κ2)3
, (4.23)

Aρx(κ) =
4κ6 − 36κ4 + 45κ4 d(κ)− 15κ2 + 2

2 (1− κ2)3
, (4.24)

with

d(κ) =
tanh−1

√
1− κ2

√
1− κ2

. (4.25)

During the calculation of the matrix elements (4.21) - (4.24), in addition to (3.8),

we have used the following identities satisfied by the anisotropy function

lim
y→x

f11(x, y) = lim
y→x

f22(x, y) =
9 [(4 + x2) fs(x)− 2 (1− x2)]

8 (1− x2)2 , (4.26)

lim
y→x

f12(x, y) = lim
y→x

f21(x, y) =
(8 + 8x2 − x4) fs(x)− 2 (4− 5x2 + x4)

8x2 (1− x2)2 , (4.27)

where fs(x) ≡ f(x, x) is the cylindrically symmetric anisotropy function, and fij are

second partial derivatives,

fij(x1, x2) =
∂2

∂xi ∂xj
f(x1, x2) . (4.28)

In the limit of small κ, which corresponds to the cigar-shaped trap geometry

that we consider (γ � 1), the above functions can be approximated in the zeroth
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order by Axx(κ) = Aρρ(κ) = Axρ(κ) = Aρx(κ) → 1, with κ2d(κ) → 0. In this

approximation, the matrix elements can be cast in the same form as Equations

(4.13) - (4.16), just with as replaced by ãs = as − add. The corresponding collective

mode frequencies are given again by Equations (4.7) - (4.9), which are evaluated

using the above-approximated values of mi.

We now consider the experimentally relevant system when the dipoles are ori-

ented in the z direction, such that the cylindrical symmetry is not present anymore,

although the trap remains cylindrically symmetric. In this case, the matrix M is

just a symmetric matrix, without the additional symmetry we had before. After a

lengthy, but straightforward calculation, we obtain

M11 = γ2 +
3

u4
x0

+ 2

√
2

π

N

u3
x0uy0uz0

[
as − add

(
f − κxzf1 +

κ2
xz

2
f11

)]
, (4.29)

M22 = 1 +
3

u4
y0

+ 2

√
2

π

N

ux0u3
y0uz0

[
as − add

(
f − κyzf2 +

κ2
yz

2
f22

)]
, (4.30)

M33 = 1 +
3

u4
z0

+ 2

√
2

π

N

ux0uy0u3
z0

[
as − add

(
f + 2κxzf1 + 2κyzf2+ (4.31)

κxzκyzf12 +
κ2
xz

2
f11 +

κ2
yz

2
f22

)]
, (4.32)

M12 =

√
2

π

N

u2
x0u

2
y0uz0

[
as − add

(
f − κxzf1 − κyzf2 + κxzκyzf12

)]
, (4.33)

M13 =

√
2

π

N

u2
x0uy0u2

z0

[
as − add

(
f − κxzf1 + κyzf2 − κxzκyzf12 − κ2

xzf11

)]
, (4.34)

M23 =

√
2

π

N

ux0u2
y0u

2
z0

[
as − add

(
f + κxzf1 − κyzf2 − κxzκyzf12 − κ2

yzf22

)]
, (4.35)

where we have used abbreviations κij = ui0/uj0, f ≡ f (κxz, κyz), and

fi =
∂

∂κiz
f(κxz, κyz) , fij =

∂2

∂κiz ∂κjz
f(κxz, κyz) . (4.36)

4.2 Interaction effects and the collective modes

The usual low-lying collective oscillation modes, such as the breathing, quadrupole,

and radial-quadrupole mode, are direct consequences of the existence of interactions

in the system. In the absence of interactions, the many-body physics is reduced to a
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one-body problem, and for bosons this amounts to simple disentangled oscillations

along the trap axes as the normal modes, with the frequencies equal to twice the

corresponding trap frequencies. In this noninteracting case, although each atom

would oscillate independently with the corresponding frequency even if no other

atoms are present, the fact that the atoms are identical and that all of them would

perform the same type of oscillations makes their dynamics practically a collective

mode.

The presence of interactions, even if quite weak, changes the situation dramat-

ically and allows the emergence of the well-known collective modes [44]. In the

previous section, we have derived the variational expressions for the frequencies of

those collective modes and we now study how they are affected by the strength of

the contact and the dipole-dipole interaction. We have already seen in Figure 4.1,

where the frequencies of the collective modes are calculated variationally as func-

tions of the contact interaction strength by neglecting the DDI, that the breathing

and the quadrupole mode frequencies depend very weakly on as, while the radial-

quadrupole mode is more sensitive. Figure 4.2 presents numerical and variational

results for all three atomic species, where we take into account the DDI, both nu-

merically when solving the dipolar GPE and variationally, using the expressions

derived in Section 4.1. Not surprisingly, the breathing and the quadrupole mode

frequencies still exhibit the flat behavior, while the radial-quadrupole mode shows

a significant dependence on as. Therefore, the contact interaction strength, which

can be tuned in experiments in a very broad range, can be considered as a control

parameter only for the radial-quadrupole mode, whose frequency can be adjusted

this way, although in a limited range.

From Figure 4.2, we see that our variational approach properly captures the

functional behavior of all the modes and gives frequency values, which are in very

good agreement with the numerical ones. The absolute errors are of the order of

few Hz, which makes them practically negligible for the breathing and the radial-

quadrupole mode, while in the case of the quadrupole mode, due to its low value of

around 12 Hz, the relative error amounts to 10%.
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Figure 4.2: Effects of the contact interaction on frequencies of collective oscilla-

tion modes: the breathing mode (left column), the quadrupole mode (middle col-

umn), the radial-quadrupole mode (right column), for a BEC of N = 104 atoms of

chromium 52Cr (top row), 168Er (middle row), and 164Dy (bottom row), for a fixed

dipole-dipole interaction strength given in Appendix D. Red upper triangles are

numerically obtained values using the FFT analysis, and blue lines are variational

results from Section 4.1.

Next, we focus on the effects of the dipole-dipole interaction strength, presented

in Figure 4.3. The results for the breathing and the quadrupole mode are quite

similar, although one can see a slight increase in the breathing mode frequency

and a slight decrease in the quadrupole mode frequency as add increases. However,

the radial-quadrupole mode frequency shows a nonmonotonous behavior, albeit in

an even more limited range. The variational approach works equally well here as

in the case of the contact interaction, and, in particular, it properly describes the

nonmonotonous behavior of the radial-quadrupole mode.
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Figure 4.3: Effects of the dipole-dipole interaction on frequencies of collective os-

cillation modes: the breathing mode (left column), the quadrupole mode (middle

column), the radial-quadrupole mode (right column), for a BEC of N = 104 atoms

of chromium 52Cr (top row), 168Er (middle row), and 164Dy (bottom row), for a fixed

contact interaction strength given in Appendix D. Red upper triangles are numeri-

cally obtained values using the FFT analysis, and blue lines are variational results

from Section 4.1.

The precise knowledge of the collective oscillation mode frequencies is essential

not only for comparison with the experiments, where measurements of these fre-

quencies are the most precise and can be used for testing of various theoretical and

numerical approaches, but also for a deeper understanding of the dynamical re-

sponse of the system in many experimental situations. This is of particular interest

for driven systems, where resonances may appear close to frequencies of collective

oscillation modes. This is also relevant for the study of Faraday waves, which can

be generated only by modulating the system at non-resonant frequencies, as we will

see in Chapter 5.
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5 Faraday and resonant waves

In the previous section, we have seen that a small perturbation of one of the system

parameters generates collective oscillation modes, which we have analyzed using the

spectral analysis of the condensate widths. We demonstrated that frequencies of the

collective modes depend on the geometry of the system, as well as on the strength

of the contact and the dipole-dipole interactions, but we did not discuss the spatial

period of the induced waves since it was much larger than the size of condensate.

Therefore, one can assume that the condensate density is only slightly spatially mod-

ulated in the presence of collective modes. However, if the perturbation is performed

periodically, i.e., if one of the system parameters is harmonically modulated in time,

the spatial period can become small enough to produce observable density patterns

in the condensate. The classical phenomenon of Faraday waves inspired this line of

research [28], and although oscillations of a shallow layer of liquid generate surface

waves, while periodic modulation of one of the system parameters of a quantum fluid

produces density waves, both share the common name in the literature – Faraday

waves.

Bose-Einstein condensates are usually termed quantum fluids, which encom-

passes a broader range of physical systems where quantum effects are either domi-

nant or very much pronounced. Despite their name, some of quantum fluids do not

share the trademark property of classical fluids, incompressibility. In fact, the BECs

are made of rarefied gases, but their fluid-like behavior stems from the quantum co-

herence of such systems. Therefore, while in classical fluids density modulations

can be excited only under extreme conditions, in quantum fluids the density waves

48



represent one of the natural collective excitations. Parametric driving of system

parameters can lead to pattern formation not only in BECs, where Faraday waves

are experimentally observed in cigar-shaped rubidium [30] and lithium [47] conden-

sates, but also in helium cells [48]. The actual experimental observation of this

phenomenon in 2007 was preceded by numerical studies starting in 2002 [29,49–53],

all focusing on systems with short-range, contact interactions. More recently, Fara-

day waves have been studied in dipolar [33,54–56] and two-component condensates,

including the systems with spatially-dependent contact interaction [31, 32]. Nu-

merical studies of Faraday waves have also been extended to mixtures of Bose and

Fermi gases [57], as well as Fermi gases exhibiting superfluid behavior [58, 59]. An

interesting phenomenon of Bose fireworks [60] is related to Faraday waves, but ap-

pears during the free expansion of the system, when density patterns may also

emerge [61–63].

The parametric modulation of a BEC system generically leads to the emergence

of the Faraday waves. However, resonant behavior can also be observed if the system

is modulated at one of its collective mode frequencies [64]. In that case, the Faraday

waves are suppressed and resonant waves emerge on a much shorter time scale.

Interestingly this can happen not only by modulation of the interaction strength,

but also by the modulation of the trapping potential or even the spatial modulation

of the trap [65–79].

In the context of dipolar BECs, the study of Faraday waves was limited mostly

to their excitation spectrum in one-dimensional and two-dimensional systems [54],

while the properties of resonant waves were not studied to the best of our knowl-

edge. Here, we focus on an analytical description of Faraday and resonant waves in

dipolar condensates [33]. In particular, we study how such waves develop in ultra-

cold systems of three dipolar species: chromium [10], erbium [12], dysprosium [11].

We consider the system with the parameters specified in Appendix D, with the

dipoles oriented along z direction and the cigar-shaped trap in the weakly confined

x direction. The radial (y − z) component of the trap is harmonically modulated,

ωy(t) = ωz(t) = Ω0(1 + ε sinωmt) , (5.1)

49



where ε = 0.1 − 0.2 is the modulation amplitude and ωm is modulation frequency.

These are typical values taken from the experiment of Reference [30].

In this chapter, we develop a variational approach for the study of the dynamics

of a driven dipolar BEC and identify the instability of the system leading to the

emergence of Faraday and resonant waves. Using this approach, we calculate the

dependence of wave properties on the strength of the contact and the dipole-dipole

interaction. The analytically obtained expressions for the spatial period of Faraday

and resonant waves are compared to results of the extensive numerical simulations,

which solve the full three-dimensional mean-field equations for a dipolar BEC.

5.1 Variational approach

For a variational study of Faraday and resonant waves in dipolar condensates, we use

a modification [31, 32, 49–53, 56, 64, 80, 81] of the Gaussian ansatz (2.52) to capture

the induced density waves in the direction of weak confinement (x direction),

ψ(x, y, z, t) = Ae
− x2

2u2
x
− y2

2u2
y
− z2

2u2
z

+ix2φx+iy2φy+iz2φz
[1 + (α + iβ) cos kx] , (5.2)

where A ≡ A(ux, uy, uz, α, β, k) ensures the normalization of the wave function to

unity,

A =
1

π3/4√uxuyuz

√
2√

2 + α2 + β2 + 4α e−k2u2
x/4 + (α2 + β2) e−k2u2

x

. (5.3)

The above variational ansatz involves eight variational parameters {ui, φi, α, β},
which are functions of time. The parameters ui represent the condensate widths,

while φi are the conjugated phases, which are necessary to describe the system’s

dynamics properly. Note that these phases can be omitted when we are interested

only in the ground state. The multiplicative factor 1 + (α + iβ) cos kx describes

the density modulation along x direction, and the variational parameters α and β

represent the real and the imaginary part of the amplitude of the wave. The wave

vector k, which is related to the spatial period ` of the density waves by ` = 2π/k,

is not treated here as a variational parameter. We determine its value from the

condition for the instability emergence, which leads to Faraday or resonant waves.
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If we insert the modified Gaussian ansatz (5.2) into the Lagrangian density (2.51),

we obtain the expressions for the five terms (2.53) of the Lagrangian of the system.

The first term reads

L1(t) =
i

2

∫
dr
(
ψ∗ψ̇ − ψψ̇∗

)
= −1

2

(
u2
xφ̇x + u2

yφ̇y + u2
zφ̇z

)
− αβ̇ − βα̇

2 + α2 + β2
, (5.4)

and the kinetic energy term is equal to

L2(t) =
1

2

∫
drψ∗∇2ψ

= −1

4

(
1

u2
x

+
1

u2
y

+
1

u2
z

+ 4u2
xφ

2
x + 4u2

yφ
2
y + 4u2

zφ
2
z

)
− (α2 + β2) k2

2(2 + α2 + β2)
.

(5.5)

The potential energy term is calculated using the expression (2.47) for the potential,

yielding

L3(t) = −
∫
drU |ψ|2 = −1

4

(
γ2u2

x + ν2u2
y + λ2u2

z

)
, (5.6)

while the contact interaction term reads

L4(t) = −2πNas

∫
dr |ψ|4 = − Nas√

2π uxuyuz

(
1 +

α4 + 16α2 + 2α2β2 + β4)

2(2 + α2 + β2)2

)
.

(5.7)

The Lagrangian term that corresponds to the DDI is calculated following a procedure

similar to the one described in Section 2.4. However, due to the modulation term

in the modified Gaussian ansatz, it is not possible to perform exact integration to

obtain L5(t). Using the convolution theorem, the DDI term can be written as

L5(t) = − 3Nadd

2 (2π)3

∫
dkF [Udd] (k)F

[
|ψ|2

]
(k)

∫
dr |ψ|2 eik·r , (5.8)

where the last integral is equal to F
[
|ψ|2

]
(k), and can be calculated exactly,

F
[
|ψ|2

]
(k) = B e−

1
4

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (5.9)

where B ≡ B(kx, ux, α, β, k) is given by

B =
4 + 4(e−

k
4

(k−2kx)u2
x + e−

k
4

(k+2kx)u2
x)α + (2 + e−k(k−kx)u2

x + e−k(k+kx)u2
x) (α2 + β2)

2
[
2 + 4 e−

1
4
k2u2

xα + (1 + e−k2u2
x) (α2 + β2)

] .

(5.10)

Grouping all elements together, the DDI term of the Lagrangian becomes

L5(t) = −3Nadd

(2π)2

∫
dk

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
B2e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (5.11)
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and cannot be exactly calculated. To proceed further, we take into account that

the condensate width in the weak confinement direction is large compared to the

order widths, as well as compared to the spatial period of the density waves, such

that kux � 1. We also take into account that the wave amplitude is small imme-

diately after the waves emerge, such that α, β � 1. Therefore, we approximate the

expression for B2 in the following manner

B2 ≈ 1 +
α

2 + α2 + β2
B2

1 +
α2

(2 + α2 + β2)2
B2

2 , (5.12)

where B2
1 ≡ B2

1(kx, ux, k) and B2
2 ≡ B2

2(kx, ux, k) are given by

B2
1 = 4 e−

1
4
k(k+2kx)u2

x

(
e

1
2
kkxu2

x − 1
)2

, (5.13)

B2
2 = 4 e−

1
4
k(k+2kx)u2

x

(
e

1
2
kkxu2

x − 1
)2 (

ekkxu
2
x − 6e

1
2
kkxu2

x + 1
)
, (5.14)

and correspond to the coefficients in front of the terms linear and quadratic in the

wave amplitude, respectively. Since the integral over k cannot be performed exactly

even for the approximate expression (5.12), we replace the coefficients B2
1 and B2

2

by their averages over kx,

〈B2
i 〉 =

∫
dkx

(
3 k2

z

k2
x+k2

y+k2
z
− 1
)
B2
i e
− 1

2
k2
xu

2
x∫

dkx

(
3 k2

z

k2
x+k2

y+k2
z
− 1
)
e−

1
2
k2
xu

2
x

≈
∫
dkx

(
3 k2

z

k2
x
− 1
)
B2
i e
− 1

2
k2
xu

2
x∫

dkx

(
3 k2

z

k2
x
− 1
)
e−

1
2
k2
xu

2
x

(5.15)

After that, we obtain 〈B2
1〉 ≈ 0 and 〈B2

2〉 ≈ −8. Note that we have neglected all

terms proportional to e−k2u2
x/8 and its powers, as already argued that kux is a large

quantity. Therefore, B2 turns out to depend only on α and β, and reads

B2 ≈ 1− 8α2

(2 + α2 + β2)2
. (5.16)

If we look at the expression (5.11), we see that now B2 can be put in front of the

integral sign, and integration over k can now proceed as in Section 2.4, yielding, i.e.,

the DDI term of the Lagrangian in terms of the anisotropy function f becomes

L5(t) =
Nadd√

2π uxuyuz
f

(
ux
uz
,
uy
uz

)(
1− 8α2

(2 + α2 + β2)2

)
. (5.17)

Let us compare the calculated Lagrangian terms (2.54)–(2.57) and (2.65) in Sec-

tion 2.4 with expressions (5.4)–(5.7) and (5.17), respectively. Except for the poten-

tial energy term L3(t), which remains unchanged, we see that all other terms are
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modified by an additional additive or multiplicative factor, arising due to additional

variational parameters α and β. The Euler-Lagrange equations for the system are

given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , qi ∈ {ux, uy, uz, φx, φy, φz, α, β} , (5.18)

where L is a sum of all five calculated terms. Assuming that the wave amplitudes α

and β are small, such that their quadratic and higher-order terms can be neglected,

the equations for the condensate widths, turn out to coincide with those obtained

in Section 2.4. The three equations for the phases φi yield, as in Section 2.4,

φi =
u̇i
2ui

. (5.19)

After elimination of the phases φi from the corresponding set of equations for the

condensate widths ui, we obtain the second-order differential equations (2.69)–(2.71)

again. The Euler-Lagrange equation for the variational parameters β yields

β =
2α̇

k2
, (5.20)

which we use to eliminates β from the corresponding equation for the parameter

α, as was done with the phases. With this, the equation for α turns out to be the

second-order differential equation,

α̈ +

{
k4

4
+

√
2

π

N

uxuyuz

[
as + add f

(
ux
uz
,
uy
uz

)]
k2

}
α = 0 . (5.21)

In the context of variational analysis of Faraday and resonant waves, the above

equation of motion for the wave amplitude α is usually cast into the form of the

Mathieu-like equation

α̈ + [a(k) + εb(k) sin 2τ ]α = 0 . (5.22)

This equation can be solved perturbatively in the small modulation amplitude ε.

Assuming a solution in the form of a harmonic oscillator

α(τ, ε) = P (ετ) cos
(
τ
√
a(k)

)
+Q(ετ) sin

(
τ
√
a(k)

)
, (5.23)

we obtain that functions P and Q are exponentials of the form e±iξτ , where ξ is a

complex number. The existence of the imaginary part of ξ leads to the instability,
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i.e., to the exponential growth of the wave amplitude, which yields Faraday or

resonant waves. It was shown in Reference [82] that the nonvanishing imaginary

part of ξ appears for a(k) = n2, where n ∈ N, and this represents the mathematical

form of the instability condition.

In order to cast Equation (5.21) into the Mathieu-like form (5.22), we need to

take into account that the radial trap frequencies are modulated, such that the

corresponding trap aspect ratio is given by ν(t) = λ(t) = λ0(1 + ε sin ηmt), where

λ0 = Ω0/ωr and ηm = ωm/ωr. This generates the dynamics of the system and we

need to obtain approximate expressions for the condensate widths in order to get an

explicit form of the quantities a(k) and b(k). We assume that the condensate width

ux slowly varies, and can be taken to be constant at the onset of instability. We also

assume that second derivatives of the radial widths uy and uz, with respect to time,

can be neglected, since they are proportional to the small modulation amplitude

ε. Furthermore, for simplicity, we assume uy ≈ uz ≡ uρ, which now satisfies the

modified equation (2.70) or (2.71),

λ2(t)u4
ρ = 1 +

√
2

π

N

ux

[
as +

add

2
fs

(
uρ
ux

)
− addf

′
s

(
uρ
ux

)]
. (5.24)

On the right-hand side of the above equation we assume that the ratio uρ/ux is

constant and equal to the corresponding ration for the ground state, which can be

calculated as in Section 3.1. To derive Equation (5.24), we also use the following

limits of the anisotropy function

f
′

s(x) = lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) =
(2 + x2)fs(x)

2(1− x2)
− 1 ,

lim
y→1

f(x, y) = −1

2
fs(1/x) , lim

y→1
xf1(x, y) = f

′

s(1/x) ,

(5.25)

If we express u2
ρ from Equation (5.24), and use it to estimate the quantity uyuz ≈ u2

ρ

in Equation (5.21), as well as the above limits, that yield

f

(
ux
uz
,
uy
uz

)
= −1

2
fs

(
uρ
ux

)
, (5.26)

the equation for the variational parameter α can be written as

α̈ +

[
k4

4
+

Λk2

4
λ(t)

]
α = 0 , (5.27)

54



where Λ is given by

Λ =
4
√

2
π
N
[
as − add

2
fs

(
uρ
ux

)]
ux

{
1 +

√
2
π
N
ux

[
as + add

2
fs

(
uρ
ux

)
− addf ′s

(
uρ
ux

)]}1/2
. (5.28)

Inserting the explicit form for λ(t), we obtain

α̈ + [a(k) + εb(k) sin ηmt]α = 0 , (5.29)

where

a(k) =
k4

4
+
λ0Λk2

4
, b(k) =

λ0Λk2

4
. (5.30)

In order to transform the above equation into the Mathieu-like equation (5.22), we

need to make a variable change ηmt → 2τ , which finally yields the expressions for

the coefficients a ≡ a(k) and b ≡ b(k),

a(k) =
k4

η2
m

+
λ0Λk2

η2
m

, b(k) =
λ0Λk2

η2
m

. (5.31)

As previously discussed, the instability condition for the Faraday waves reads

a(k) = 1, which can be used to calculate the wave vector of waves shortly after the

emergence of the waves,

kF =

√
−λ0Λ

2
+

√
λ2

0Λ2

4
+ η2

m . (5.32)

This represents the variational prediction for the wave vector k and the spatial period

` = 2π/k of the Faraday waves, which can be directly compared with numerical or

experimental results. Let us also stress that the above analysis is consistent with the

main characteristic of the Faraday waves, namely, that their oscillation frequency is

half that of the driving frequency. Since τ = ηmt/2, from Equation (5.22) we see

that indeed, the solution of the derived Mathieu-like equation oscillates with the

frequency ηm/2, i.e., with the frequency ωm/2.

If the modulation frequency is close to one of the collective oscillation modes,

the system will exhibit resonant behavior, which is suppressed for an arbitrary value

of the modulation frequency. While the system’s dynamics will certainly include

the Faraday mode at the frequency ωm/2 even close to a resonance, the resonant
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mode with the frequency ωm will have a larger amplitude and will develop much

faster. Although it is clear that the analysis of this section would break down, the

condition for the emergence of resonant waves still corresponds to a(k) = 22, i.e.,

the wave vector of the resonant wave is given by

kR =

√
−λ0Λ

2
+

√
λ2

0Λ2

4
+ 4η2

m . (5.33)

In that case, according to τ = ηmt/2 and Equation (5.23), the resonant density wave

will oscillate with the frequency whose aspect ratio is (ηm/2)
√

22 = ηm, i.e., with

the frequency ωm. Depending on the system’s parameters, higher resonant modes

can also appear corresponding to the conditions a(k) = n2, where n is an integer,

corresponding to the oscillation frequencies nωm/2.

5.2 Faraday waves in 52Cr, 168Er and 164Dy BECs

In order to study Faraday waves in dipolar condensates, we have performed exten-

sive numerical simulations of the real-time dynamics and solved the dipolar GPE

using the programs described in Chapter 6. The parameters for these simulations

closely match the physical parameters of BECs of chromium 52Cr, erbium 168Er, and

dysprosium 164Dy, which are given in detail in Appendix D. It is well known [65–79]

that Faraday waves can be expected as a main excitation mode of the system when

the modulation frequency ωm does not match any of the characteristic frequencies

of the system, i.e., when it is sufficiently far from any of the collective oscillations

modes or the trap frequencies. Therefore, we use the value ωm = 200×2π Hz, which

we know satisfies these conditions from our study of collective modes from Chapter

4, and the values of the trap frequencies listed in Appendix D.

Figure 5.1 shows time dependence of the integrated density profile in the weak

confinement direction n(x, t), which is obtained by integrating the condensate den-

sity over the radial coordinates y and z according to Equation (3.14). The emergence

of spatial patterns is clearly visible for all three atomic species after around 150 ms.

This is consistent with earlier experimental observations [30, 47] and theoretical re-
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Figure 5.1: Time evolution of the integrated density in the weak confinement direc-

tion for a BEC of N = 104 atoms of chromium 52Cr (top), erbium 168Er (middle),

and dysprosium 164Dy (bottom). The results are obtained for a periodic modula-

tion of the trap frequencies ωy and ωz according to Equation 5.1 with ε = 0.2 and

ωm = 200 × 2π Hz. The contact interaction strength is as = 150 a0 and the DDI

strength is given in Appendix D for each species. The Faraday waves can be visually

observed after approximately 150 ms for all three species.
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sults [65–79]. The density waves in x direction from Figure 5.1 take time to develop

and are the result of the transfer of energy from the modes that are directly excited

in the radial directions, where the trap is modulated. This can be seen in Figure 5.2,

where we show the corresponding time dependence of integrated density profiles in y

and z direction. The density waves in the radial directions emerge immediately after

the modulation is switched on at t = 0, and their frequency is equal to the mod-

Figure 5.2: Time evolution of the integrated density in y direction (left column)

and z direction (right column) for a BEC of N = 104 atoms of chromium 52Cr (first

row), erbium 168Er (second row), and dysprosium 164Dy (third row). The results are

obtained for the same parameters as in Figure 5.1. The frequency of oscillations of

the condensate densities in the radial direction is equal to ωm = 200 × 2π Hz. We

see that, due to the dipole-dipole interaction, the width of the condensate is larger

in the direction parallel to the dipoles (z direction) than in the orthogonal direction

(y direction), in particular for 168Er and 164Dy, as already shown in Section 3.3.
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ulation frequency. Comparing the left and right column in Figure 5.2, we can also

directly observe the DDI effects. As we know, the dipole-dipole interaction causes

the elongation of the condensate width in the polarization direction of the dipoles.

Although the trap frequencies in y and z direction are equal, we see in Figure 5.2

that the condensate widths in z direction for all three species are larger than the

corresponding y direction widths, and the difference increases as the strength of the

DDI increases from chromium to dysprosium.

In order to characterize the density waves, we typically analyze their FFT spec-

tra in the time-frequency and in the spatial-frequency domain. This enables us to

determine the frequencies of the main excitation modes, as well as the spatial period

of the observed density patterns. However, instead of directly analyzing the density

profiles presented in Figures 5.1 and 5.2, for the FFT it is advantageous to have

a clearer signal, which can be obtained by considering only the density variations

compared to the initial state, i.e., the ground state of the system, before the mod-

ulation is switched on. The integrated density profile variation in the confined x

direction is shown in Figure 5.3, and the corresponding density profile variations in

y and z directions are presented in Figure 5.4.

As expected, the emergence of Faraday waves is now more easily discernible

in Figure 5.3, and the same applies to the oscillations of the density shown in

Figure 5.4. By looking at these two figures, we can even estimate the main oscillation

frequency, e.g., counting the number of maxima or minima in a given time interval.

For instance, in the last 50 ms in each of the panels in Figure 5.3 we count 5 periods,

which corresponds to the frequency 100 × 2π Hz = ωm/2. This is a distinguishing

characteristic of Faraday waves, and therefore we directly determine that in this

case the system develops this type of collective oscillations. On the other hand,

in Figure 5.4 we can count 10 periods (maxima or minima) in a given 50 ms time

interval, which corresponds to the modulation frequency ωm. Thus, in the radial

directions we observe as the main excitation mode the direct response of the system

to the harmonic modulation of the trap.

However, this way we can determine only the main excitation modes. The dy-
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Figure 5.3: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of chromium 52Cr (top), erbium
168Er (middle), and dysprosium 164Dy (bottom), for the same parameters as in

Figure 5.1. The variations δn(x, t) are obtained by subtracting the density profile

of the ground state n(x, t = 0) from the time-dependent integrated density n(x, t)

presented in Figure 5.1.
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namics of the system contains other modes as well, and, over time, they can develop

and even start to dominate the behavior of the system. Therefore, it is important to

analyze the spectra in more detail. This is done in Figure 5.5 for all integrated den-

sity profile variations from Figures 5.3 and 5.4. For simplicity, the FFT analysis is

performed for the profiles at the trap center. As expected, in the weak confinement

direction, the left column in Figure 5.5, the main excitation mode has a frequency

ωm/2. In addition to this, we observe two other modes, at ωm and 3ωm/2. This

Figure 5.4: Time evolution of the integrated density profile variations in y direction

(left column) and in z direction (right column) for a BEC of N = 104 atoms of

chromium 52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third

row), for the same parameters as in Figure 5.1. The variation in a given direction

y or z is obtained by subtracting the density profile of the ground state from the

corresponding time-dependent integrated density presented in Figure 5.2. The dif-

ference between the condensate widths in y and z direction, which was observed in

Figure 5.2, is also clearly visible here.
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is expected from the theoretical analysis in Section 5.1, but could not be discerned

directly from the density profiles or their variations.

In the Fourier spectra of the integrated density profile variations in the radial

directions, middle and right column in Figure 5.5, we see a somewhat richer set of

excitation modes. In addition to the main mode corresponding to the trap mod-

ulation at ωm, we see that also the breathing mode is excited at the frequency

ωB ≈ 321× 2π Hz, which was determined in Section 4.1. The spectra prominently

contain the second modulation harmonic at 2ωm as well. We see some other peaks

in the spectra as well. For instance, the small peak at around 120 × 2π Hz, which

can be due to the linear combination of the modes ωB − ωm. However, such an

identification would require further theoretical and numerical analysis, which is out

of the scope of this thesis.

While the Fourier analysis in the time-frequency domain can be used to deter-

mine the character of the induced density waves (Faraday, collective, resonant), the

analysis in the spatial-frequency domain enables us to characterize the density pat-

terns and calculate their spatial period. This is illustrated in Figure 5.6 for Faraday

waves for all three considered atomic species. The integrated density profile varia-

tions are analyzed at appropriate times, which are determined to correspond to the

evolution stage when Faraday waves have fully emerged, but the system is still far

from the violent dynamics that inevitably follows after the long driving period.

In all three panels of Figure 5.6 the main peak corresponds to the wave vec-

tor kF of the Faraday waves, and we see significant differences: for 52Cr we obtain

kF = 0.57µm−1, yielding the spatial period ` = 2π/kF = 11.02µm; for 168Er we

get kF = 0.98µm−1 and ` = 6.41µm; for 164Dy we have kF = 1.10µm−1 and

` = 5.71µm. The variational analysis presented in Section 5.1 yields results which

are in good agreement with the numerical ones, namely kF = 0.51µm−1 for 52Cr,

kF = 0.91µm−1 for 168Er, and kF = 1.06µm−1 for 164Dy. These variational results

are shown in Figure 5.6 by vertical blue lines, which illustrates their agreement with

the Fourier analysis. The presented spectra also contain some additional peaks that

correspond to other geometrical features of the analyzed density profile variations,
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such as the condensate width and its higher harmonics, as well as the higher harmon-

ics of the Faraday wave periods, and linear combinations of all of these. However,

they are not of interest in our analysis and we will not study them further.

Note that the spatial period of Faraday waves can be also determined by directly

looking at the density profile variations in Figure 5.3, and estimating the spacing

between the consecutive minima or maxima at the appropriate evolution time. For
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Figure 5.5: The Fourier spectrum in the time-frequency domain of the integrated

1D density profile variations of Faraday waves at the trap center δn(x = 0, t) in x

direction (first column), δn(y = 0, t) in y direction (second column), and δn(z =

0, t) in z direction (third column) for a BEC of N = 104 atoms of chromium 52Cr

(first row), erbium 168Er (second row), and dysprosium 164Dy (third row). The

corresponding density profile variations are shown in Figures 5.3 and 5.4. Vertical

blue lines represent theoretical predictions, where ωm/2 corresponds to Faraday

waves, ωm and 2ωm to resonant waves, and ωB is the variational result for the

breathing mode frequency obtained in Section 4.1.
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Figure 5.6: The Fourier spectrum in the spatial-frequency domain of the integrated

1D density profile variations of Faraday waves in x direction δn(x, t = 272 ms) for
52Cr (left), δn(x, t = 225 ms) for 168Er (middle), and δn(x, t = 193 ms) for 164Dy

(right) BECs with N = 104 atoms. The corresponding density profile variations are

shown in Figure 5.3. Vertical blue lines represent theoretical predictions for the wave

vector kF of the Faraday waves, i.e., the variational result obtained in Section 5.1,

Equation (5.32).

instance, for chromium, we count three minima over the spatial extent of 30 µm,

yielding an estimate ` ≈ 10µm. Similarly, for erbium, we count 5 minima over

the spatial extent of 30 µm, yielding ` ≈ 6µm, and for dysprosium, the count and

the estimate are the same. Obviously, these estimates are not as precise as the

Fourier analysis results, and therefore we rely on FFT spectra to systematically

determine the spatial periods of Faraday waves and their functional dependencies

on the contact and dipole-dipole interaction strength.

5.3 Interaction effects and properties of Faraday waves

In the previous section, we have shown how Fourier analysis can be used to calculate

the spatial period of Faraday waves. Now we systematically study the interaction

effects, i.e., how the contact and the dipole-dipole interaction strength affect the

properties of generated density waves. First, we explore the influence of the contact

interaction on the emergence time and the spatial period of Faraday waves for a

fixed value of the dipole-dipole interaction strength, by varying the s-wave scattering

length in the experimentally relevant regime. In laboratory this can be achieved by

employing the Feshbach resonance technique, which allows to tune as by changing
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the external magnetic field, thus changing the electronic structure of atoms and their

scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system,

i.e., the presence of the contact and the dipole-dipole interaction terms in the Hamil-

tonian. In a linear system, described by the pure Schrödinger equation, the harmonic

modulation of the trap in the radial direction would not be transferred into the longi-

tudinal direction. Therefore, the emergence time of Faraday waves (and other types

of density waves in the longitudinal direction) critically depends on the strength of

interatomic interactions. However, if interaction strengths become sufficiently large,

the emergence time is less sensitive to their changes. Since we are considering three

species where the dipole-dipole interaction is strong in erbium and dysprosium, we

can expect that the emergence time of Faraday waves significantly depends on the

contact interaction strength only in chromium, where add is small.

This is illustrated in Figure 5.7, where we see the density profile variations for

chromium for three different values of as. Let us first note that the amplitude

of density variations is much smaller in the top panel for as = 60 a0 than in the

middle panel for as = 80 a0, and significantly smaller than in the bottom panel

for as = 150 a0. This is also evident from the fact that in the top and middle

panel we can clearly see the quadrupole collective oscillation mode, which has a

frequency of around ωQ = 12 × 2π Hz. This can be estimated from the figure and

compared to the value obtained in Section 4.2 for chromium, Figure 4.2. When the

interaction is sufficiently large, the amplitude of Faraday waves is much larger than

those of the collective modes, and they cannot be even discerned in the bottom

panel in Figure 5.7. Only for weak interactions the amplitude of the Faraday waves

is comparable to the amplitude of the collective modes, and this is the reason why

we can see them all for small values of as.

Like all other excitations, Faraday waves start to develop immediately after the

modulation is switched on. The question on their emergence time is related to their

amplitude, which is time-dependent and grows exponentially, as can be seen from

the solution (5.23) of the Mathieu-like equation that describes the dynamics of the
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Figure 5.7: Emergence of Faraday waves for different strengths of the contact in-

teraction: as = 60 a0 (top), as = 80 a0 (middle), and as = 150 a0 (bottom) for a

BEC of N = 104 atoms of 52Cr. From these integrated 1D density profile variations

δn(x, t), obtained for a fixed value of the dipole-dipole interaction strength given in

Appendix D, we observe that Faraday waves emerge faster as the contact interaction

strength increases.
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Faraday density oscillations. The imaginary part of the parameter ξ in Equation

(5.23) is responsible for the exponential growth of the Faraday waves’ amplitude,

which is not the case for collective modes. Therefore, in practical terms, the defini-

tion of the emergence time of Faraday waves is always arbitrary and can be expressed

as a time needed for the density variations to reach a certain absolute or relative

(compared to the total density) value. One can even relate this to the experimen-

tal point of view, where there is a threshold for the density variations that can be

observed, due to measurement errors. However, in numerical simulations there are

no such limitations and one can easily use an arbitrary definition to estimate the

emergence time of density waves. The more relevant quantity to study would be

the exponent that governs the growth of the wave amplitude, which depends on the

interaction strength.

Now we turn our attention to spatial features of the Faraday waves. Figure 5.8

presents the dependence of the wave vector kF on the s-wave scattering length as for

all three considered species. We also show the variational results for the dependence

kF (as) derived in Section 5.1. The agreement is very good, with errors of the order

of 10 - 15 %. We stress that the derived variational expression closely follows the

numerical results not only by their values, but, even more importantly, it follows

their functional dependence properly.
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Figure 5.8: Wave vector of the Faraday waves kF as a function of the contact

interaction strength for a BEC of N = 104 atoms of 52Cr (left), 168Er (middle), and
164Dy (right), for a fixed dipole-dipole interaction strength given in Appendix D.

Red upper triangles are numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).
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Figure 5.9: Wave vector of the Faraday waves kF as a function of the dipole-dipole

interaction strength for a BEC of N = 104 atoms of 52Cr (left), 168Er (middle), and
164Dy (right), for a fixed contact interaction strength given in Appendix D. Red

upper triangles represent numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).

Next, we study the effects of the dipole-dipole interaction strength for a fixed

value of the contact interaction. Figure 5.9 shows the corresponding dependence of

kF on add. In contrast to the contact interaction dependence, where kF was a de-

creasing function of as, here we see that kF increases as the dipole-dipole interaction

strength is increased. Figure 5.9 also shows the variational results, where the level of

agreement with the numerically obtained results is different, with errors as small as

7 % for chromium up to around 25 % for erbium and dysprosium for largest values

of add. Due to complex approximations made in the derivation of variational re-

sults, in particular those related to the dipole-dipole interaction term, the obtained

functional dependence is not as good as in the case of contact interaction, but still

provides reasonable estimates of the wave vector values for the Faraday waves.

5.4 Resonant waves

In the presence of interactions various excitation modes in dipolar BECs are coupled

and the energy pumped into the system by periodic driving can be transferred from

the driving direction to other, orthogonal directions. In the previous section, we

have seen this for non-resonant driving, when the harmonic modulation in the radial

direction was transferred to the longitudinal direction in the form of Faraday waves,

which were the main excitation mode generated. The main distinguishing property
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of these excitations is halving of the oscillation frequency, i.e., the induced density

waves have the frequency ωm/2. Here we study the other important case, when the

modulation frequency is resonant, such that the induced density waves have the same

frequency. This happens when ωm is close to one of the characteristic frequencies

of the system, e.g., one of the frequencies of the collective oscillation modes or one

of the trap frequencies. Although Faraday waves and all other collective oscillation

modes are also excited in this case, the largest amplitude corresponds to resonant

waves with the frequency ωm. When generated, these resonant waves dominate the

behavior of the system and make all other excitations negligible for the dynamics.

Figure 5.10 shows the integrated density profile variation of 168Er for a resonant

wave induced by a harmonic modulation of the radial part of the trapping potential

at ωm = ωy = ωz, i.e., when the modulation frequency coincides with the radial

trapping frequency. In this case, the density waves develop much faster than for

non-resonant modulation and are clearly visible already after 55 ms. Due to a vi-

Figure 5.10: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of erbium 168Er. The parameters

of the system are given in Appendix D, and the modulation frequency used is equal

to the weak confinement frequency, ωm = 160.5 × 2π Hz = ωy = ωz. We observe

resonant behavior corresponding to the first harmonic of the resonant frequency

ωy = ωz, which sets in after around 55 ms.
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olent dynamics that emerges in the system very fast, it is not easy to estimate the

frequency of the waves directly from Figure 5.10, as was possible before. There-

fore, we rely on the Fourier analysis in the time-frequency domain, presented in the

left panel of Figure 5.11. The obtained FFT spectrum clearly shows that the main

excitation mode has a frequency equal to ωm. We also see that the spectrum is con-

tinuous, practically without distinct individual peaks, and only the second harmonic

at 2ωm = 321 × 2π Hz yields a small local maximum. This demonstrates that the

system is far from the regime of small perturbations, where individual excitation

modes can be observed.

In the right panel of Figure 5.11 we see the Fourier spectrum in the spatial-

frequency domain, which yields the wave factor kR of resonant waves. The FFT

results give the value kR = 1.59µm−1 and the corresponding spatial period ` =

2π/kR = 3.95µm for 168Er. In the figure we also present the variational result

kR = 1.40µm−1, calculated using Equation (5.33). The agreement is again quite
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Figure 5.11: The Fourier spectrum of the integrated 1D density profile variations

δn(x, t) at the trap center in the time-frequency domain (left), and of the density

profile variations in x direction δn(x, t = 68 ms) in the spatial-frequency domain

(right) of resonant waves for a BEC of N = 104 atoms of 168Er for the same pa-

rameters as in Figure 5.10. The vertical blue line in the left panel represents the

modulation frequency ωm, while in the right panel it corresponds to the theoreti-

cal prediction for the wave vector kR of the resonant waves derived in Section 5.1,

Equation (5.33).
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good, which indicates that the variational approach we developed in this thesis can

be reliably used not only for the Faraday waves, but also for the resonant waves.

This can also be concluded from Figure 5.12, which presents the results for

the dependence of the resonant wave vector kR on the contact and dipole-dipole

interaction strength. The agreement between the numerical and variational results

is of the order of 10 % over the whole experimentally relevant domain. We see similar

behavior for the resonant waves as for the Faraday ones, namely the wave vector

decreases as the contact interaction strength increases, while the opposite is true for

the dipole-dipole interaction. Again the functional dependence obtained from the

variational approach properly describes the numerical results, thus confirming that

Equation (5.33) can be used to calculate the spatial period of resonant waves.

It is interesting to note that resonant behavior appears not only under the con-

ditions mentioned above, when ωm is equal to one of the characteristic frequen-

cies, but also when it matches their higher harmonics. Figure 5.13 illustrates this

for 168Er, which is harmonically modulated at twice the radial trapping frequency,
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Figure 5.12: Wave vector of the resonant waves kR as a function of the contact

(left) and dipole-dipole (right) interaction strength for a BEC of N = 104 atoms of
168Er. The results in the left panel are obtained for a fixed dipole-dipole interaction

strength given in Appendix D, and similarly, in the right panel, a fixed contact

interaction strength from Appendix D is used. In both panels, red upper triangles

represent numerically obtained values using the FFT analysis as in the right panel of

Figure 5.11, and blue lines are the variational results according to Equation (5.33).
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Figure 5.13: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of erbium 168Er. The parameters

of the system are given in Appendix D, and the modulation frequency used is equal

to twice the weak confinement frequency, ωm = 321 × 2π Hz = 2ωy. We observe

resonant behavior corresponding to the second harmonic of the resonant frequency

ωy = ωz, which sets in faster than the first harmonic, already after around 30 ms.

ωm = 321×2π Hz. In this case, the amplitude of the resonant mode grows even faster

and significant density variations can be observed already after 30 ms. Therefore, we

see that the modulation at the second harmonic yields even more violent dynamics

than the first harmonic. The Fourier analysis in the time-frequency domain reveals

that the main excitation mode again has a frequency of 160.5×2π Hz, but the mode

at ωm = 321× 2π Hz is also present. From the experimental point of view, resonant

driving is very dangerous and leads to the destruction of the system in a matter

of tens of milliseconds. While numerical simulations can be performed for longer

time periods, the atoms leave the condensate due to a large, resonant transfer of

energy to the system. As the condensate is depleted, the mean-field description of

the system breaks down and it cannot be anymore simulated by the dipolar GPE.
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6 Algorithm for solving the dipolar GPE

The existence of nonlinear terms in equations describing various physical systems is

usually a source of novel phenomena. However, their understanding requires detailed

and careful analysis, mainly because we can no longer rely on our intuition based

on linear equations and instinctively predict the evolution of the system. From the

experimental point of view, the analysis requires development and fine-tuning of

new methods that focus on particular phenomena in the condensate. On the other

hand, it is often necessary to establish or further develop an analytical or numerical

method to solve the corresponding set of equations, usually a set of nonlinear partial

differential equations. In the case of a BEC with dipole-dipole interaction, we mostly

rely on the dipolar GPE.

A wide range of different numerical methods was developed in the literature.

Some of them are focused on the calculation of the ground state properties [83–86],

while others focus on the dynamics of the time-dependent GPE [87–95]. Also, there

are several methods able to calculate a numerical solution both for the ground state

and non-stationary dynamics of a BEC [87–95]. These methods can be divided into

several categories: finite difference, split-step, and spectral methods.

A finite difference method approximates the spatial and time derivatives with

finite differences, up to the desired order of accuracy, which is derived from the

Taylor series expansion. This approach introduces discretization of space and time,

with the time step denoted by ∆t, and the space step denoted by ∆h. Note that

the space discretization step can be different in different directions, in which case
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we denote the corresponding steps by ∆hj, where j = 1, 2, 3. When dealing with

dipolar GPE, such discretization is usually implemented using a forward, backward,

or central difference scheme in time and a second-order central difference scheme

for space derivatives. An algorithm that implements a forward difference scheme

in time is known as an explicit method, a backward difference approach yields an

implicit method, and a central difference approach in time is a combination of the

two, and is designated as a semi-implicit algorithm, or the Crank–Nicolson semi-

implicit algorithm [35–37]. In its usual form, it introduces a quadratic error in the

calculation in the discretization steps, O(∆t2) +O(∆h2), both in the time and the

space steps. The fact that we are using a semi-implicit algorithm, i.e., that the space

derivatives are expressed as averages of their finite difference approximations in the

present and future time step, makes the Crank-Nicolson scheme unconditionally

stable [36, 37]. We have used this method in all our implementations.

The split-step method relies on the splitting of the time evolution in each time

step into several sub-steps, which corresponds to splitting the Hamiltonian that gov-

ernance system’s dynamics into several parts, and then evolving the wave function

independently with respect to each of them. This method is usually combined with

the finite difference method, and practically realized by splitting the Hamiltonian

Ĥ = T̂ + V̂ into the kinetic energy part T̂ and the potential energy part V̂ , which

includes the trap potential and nonlinear terms corresponding to the contact and

the dipole-dipole interaction. In order to implement the splitting of the Hamiltonian

and calculate the time evolution of the system we use the Baker-Campbell-Hausdorff

lemma [96]

e∆t(Ô1+Ô2) = e∆tÔ1 e∆tÔ2 e−
∆t2

2 [Ô1,Ô2]e
∆t3

6 (2[Ô2,[Ô1,Ô2]]+[Ô1,[Ô1,Ô2]]) . . . (6.1)

The above form of the lemma, know as the Zassenhaus formula [97], expresses the

exponential of the sum of two operators Ô1 and Ô2, that do not commute in general,

by a product of their individual exponentials and higher-order terms that contain

quadratic and higher orders of the parameter ∆t. If the parameter ∆t is small we

can neglect these higher-order terms and use the splitting formula which, for the
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case of the time evolution of the Hamiltonian Ĥ = T̂ + V̂ reads

e−
i
~ Ĥ∆t = e−

i
~(T̂+V̂ )∆t = e−

i
~ T̂∆t e−

i
~ V̂∆t +O(∆t2) . (6.2)

In this way, we make the error of the same order as the one due to the finite difference

scheme used to approximate time derivatives. In principle, we can go to higher orders

in the Zassenhaus formula, but this would be numerically very time-consuming. It

would also have to be accompanied by a higher order of approximation for the

time derivative. The numerical complexity of such a method would be even higher

due to this and therefore is rarely used. One can achieve the desired accuracy of

the calculation by using smaller values of the discretization steps. In addition to

split-step methods there are also other, direct methods for solving the GPE (or,

in general, partial differential equations) such as Euler or Runge-Kutta [98], where

time evolution is done in one step, avoiding the Hamiltonian division altogether.

Spectral methods rely on expressing the solution of the GPE in an appropri-

ately chosen basis as a linear combination of orthonormal special functions. In this

case, the original equation is rewritten as a set of equations for the corresponding

coefficients of the wave function expansion in the selected basis. For instance, if

we use the plane-wave basis we get the most common spectral decomposition of

the wave function. The kinetic energy part and the potential energy part of the

Hamiltonian are diagonal in the k-space and in the real space, respectively, and

forward and backward Fourier transformation enables us to compute the evolution

with respect to the corresponding part of the Hamiltonian. Note that the spectral

methods also belong to the category of split-step approaches and use the Zassenhaus

approximation (6.2).

Our numerical algorithm to solve the GPE combines the split-step approach

with the semi-implicit Crank-Nicolson method [35–37]. The ground state of the

system is calculated using propagation in the imaginary-time [84–86] starting from

an arbitrary initial state, while the system’s dynamics is obtained using the real-

time propagation from a given initial wave function. Our programs that practically
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implement the algorithm solve the dimensionally reduced form of the GPE

i
∂ψ(r, t)

∂t
=

[
−1

2
∇2 + U(r, t) + 4πNas |ψ(r, t)|2

+ 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′, t)|2

]
ψ(r, t) .

(6.3)

Equation (6.3) is derived from the dimensional GPE (2.45) by choosing a reference

frequency ωr, and by expressing all other physical variables in units defined using

this frequency

x → x

l
, y → y

l
, z → z

l
, as →

as
l
, add →

add

l
, t → ωrt ,

ψ(r, t) → l3/2 ψ(r, t) , U(r, t)→ 1

~ωr
U(r, t) , Udd(r, t)→ 1

~ωr
Udd(r, t) .

(6.4)

Here the unit of length l is harmonic oscillator length l =
√
~/(mωr) for the fre-

quency ωr and the mass m of the atoms in the condensate. In order to transform the

numerical results obtained in simulations to the physical units, one has to perform

the inverse rescaling.

As a result of this, the trapping potential U(r, t) is transformed into a dimen-

sionless form

U(r, t) =
1

2

(
γ2x2 + ν2y2 + λ2z2

)
, (6.5)

where γ = ωx/ωr, ν = ωy/ωr, and λ = ωz/ωr are the trap aspect ratios. For practical

reasons, we usually set one of the trap frequencies as the referent ωr. Another

convenient choice is the geometric mean of the trap frequencies, ωr = (ωxωyωz)
1/3.

Our programs allow to use all three trap aspect ratios independently, but in our

simulations, with the cigar-shaped condensates along the x-axis, we choose ωr =

ωy = ωz, so that the trap aspect ratios ν and λ are equal to 1.

6.1 Split-step semi-implicit Crank-Nicolson method

The split-step semi-implicit Crank-Nicolson method introduces the discretization of

time and spatial coordinates. The total time of simulation T is discretized into N

equal sub-steps ∆t = T/N . The simulation is performed in three spatial dimensions,

and we introduce a spatial mesh withNx, Ny, andNz equidistant points in x, y, and z
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direction, respectively. The corresponding spatial extents of the system (simulation

box sizes) are Lx = Nx ∆x, Ly = Ny ∆y, and Lz = Nz ∆z, where ∆x, ∆y, and ∆z

are the discretization steps. It is customary to place the coordinate system in the

center of the simulation box, such that the coordinates x, y, and z take values from

the intervals [−Lx/2, Lx/2], [−Ly/2, Ly/2], and [−Lz/2, Lz/2], respectively.

During the small evolution time ∆t, the split-step approach of the algorithm

divides the Hamiltonian into the non-derivative (Ĥ0) and derivative (Ĥ1, Ĥ2, Ĥ3)

parts, as follows

Ĥ0 = U(r; t) + 4πNas |ψ(r; t)|2 + 3Nadd

∫
dr′ Udd(r− r′; t) |ψ(r′; t)|2 , (6.6)

Ĥ1 =
∂2

∂x2
, Ĥ2 =

∂2

∂y2
, Ĥ3 =

∂2

∂z2
, (6.7)

where the Laplacian is split into three parts. Therefore, the initial dipolar GPE

given by equation (6.3) transforms into four sequential partial differential equations,

i
∂ψ(r; t)

∂t
= Ĥj ψ(r; t) , j = 0, 1, 2, 3 , (6.8)

which are solved one after the other in the algorithm.

Starting from a preceding solution ψn(r), obtained in the previous complete

time step, the time evolution with respect to Ĥ0 in the current time step yields an

intermediate solution ψn+1/4(r) of equation (6.8) for j = 0. The superscript 1/4

denotes that this is a first of four sub-steps in the current time iteration. Since

Ĥ0 has no derivatives, it is diagonal in real space and the solution can be written

exactly as

ψn+1/4(r) = e−iĤ0∆t ψn(r) ≡ P̂(Ĥ0)ψn(r) . (6.9)

From this intermediate solution, using the semi-implicit Crank-Nicolson scheme,

the time propagation of the wave function continues and is calculated by solving the
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series of partial differential equations,

i
ψn+2/4(r)− ψn+1/4(r)

∆t
=

1

2
Ĥ1

[
ψn+2/4(r) + ψn+1/4(r)

]
, (6.10)

i
ψn+3/4(r)− ψn+2/4(r)

∆t
=

1

2
Ĥ2

[
ψn+3/4(r) + ψn+2/4(r)

]
, (6.11)

i
ψn+1(r)− ψn+3/4(r)

∆t
=

1

2
Ĥ3

[
ψn+1(r) + ψn+3/4(r)

]
. (6.12)

On the left-hand side, partial derivatives in time are estimated by a two-point for-

mula, and on the right-side, the wave function is averaged over the current and the

future time sub-step, which is a characteristic for the finite-difference semi-implicit

Crank–Nicolson method. Equations (6.10) - (6.12) have a formal solution that prop-

agates the wave function to the next intermediate solution,

ψn+2/4(r) =
1− iĤ1∆t/2

1 + iĤ1∆t/2
ψn+1/4(r) ≡ P̂(Ĥ1)ψn+1/4(r) , (6.13)

ψn+3/4(r) =
1− iĤ2∆t/2

1 + iĤ2∆t/2
ψn+2/4(r) ≡ P̂(Ĥ2)ψn+2/4(r) , (6.14)

ψn+1(r) =
1− iĤ3∆t/2

1 + iĤ3∆t/2
ψn+3/4(r) ≡ P̂(Ĥ3)ψn+3/4(r) . (6.15)

The numerical algorithm for solving the above equations is worked out in Ap-

pendix E. Let us denote by ψ
n+j/4
i the wave function value in the current time

iteration after sub-step j and at the position i in the mesh in the corresponding spa-

tial direction. The algorithm determines the wave function by a recursive relation

ψ
n+(j+1)/4
i+1 = αjiψ

n+(j+1)/4
i + β

n+j/4
i , (6.16)

for j = 1, 2, 3, where j corresponds to spatial direction x, y, and z direction, respec-

tively. The coefficients αji and β
n+j/4
i are defined via backward recursion relations

αji−1 = γjiA
−
j , (6.17)

β
n+j/4
i−1 = γji

(
A+
j β

n+j/4
i −Bn+j/4

i

)
, (6.18)

where coefficients γji , A
−
j , A

+
j , A0

j , and B
n+j/4
i are defined by relations

A−j = A+
j = − ∆t

4∆h2
j

, A0
j = 1 + i

∆t

2∆h2
j

, (6.19)

B
n+j/4
i = i

∆t

4∆h2
j

(
ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
+ ψ

n+j/4
i , (6.20)
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where ∆hj denote spatial mesh step in ∆x, ∆y, and ∆z direction for j = 1, 2, 3,

respectively. The above backward recursion expresses the coefficients Bn+j/4
i explic-

itly in terms of the wave function in the previous sub-step, thus disentangling the

semi-implicit form of equations (6.10) - (6.12). From the technical point of view,

we see that the coefficients A±j , A0
j , α

j
i , and γ

j
i do not depend on the wave function

(i.e., on the time step n), and therefore can be calculated before the time loop in

a particular simulation. In other words, these coefficients depend only on the dis-

cretization parameters. Within the main time loop, only coefficients βn+j/4
i have to

be recalculated in each sub-step.

6.2 Dipole-dipole interaction

While the calculation of the potential and nonlinear contact interaction term within

the non-derivative part of the Hamiltonian (Ĥ0) of equation (6.8) for j = 0 is

straightforward, the calculation of the nonlinear term corresponding to the dipole-

dipole interaction at each mesh point introduces additional convolution integral.

The integral can be easily solved by moving to the Fourier space, i.e., by treating

the dipole-dipole interaction term in momentum space as∫
dr′ Udd(r− r′) |ψ(r′)|2 = F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) , (6.21)

where F represents Fourier transform and F−1 inverse Fourier transform, defined

respectively by

F [f ](k) = f̃(k) =

∫
dr f(r) e−ik·r , (6.22)

F−1[f̃ ](r) = f(r) =
1

(2π)3

∫
dk f̃(k) eik·r . (6.23)

Implementation of the algorithm uses Fast Fourier transform (FFT) for calcula-

tion of Fourier transform of the density of wave function, while the Fourier transform

of the dipole potential is calculated analytically in Appendix A, yielding

F [Udd](k) =
4π

3

(
3 cos2 θ − 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
, (6.24)
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where θ is the angle between the orientation of dipoles and vector k, i.e., in our

setup, angle between z direction and vector k. Within the same time step, ori-

entations are constant, so the transformation is performed once per time step ∆t.

The Fourier transform of density |ψ(r)|2 and inverse Fourier transform is evaluated

numerically by using a standard FFT algorithm. The FFT algorithm is carried out

in Cartesian coordinates, and the GPE is solved in 3D irrespective of the symmetry

of the trapping potential.

Successful implementation of the split-step Crank-Nicolson method using Fourier

transformation has to ensure that the wave function and the interaction term dis-

appear at the boundary of the discretization mesh. For the Fourier transform of the

long-range dipolar potential, this is not true, and equation (6.24) is undefined at the

origin in k-space, i.e., at boundaries in coordinate space. Since the same domain

is used for Fourier and inverse Fourier transform in treating the dipolar potential,

cutting off the k-space origin will affect the space domain. Thus, boundary effects

can play a role when finding the Fourier transform, and a sufficiently large space

domain has to be used to have accurate values of the Fourier transform involving

the long-range dipolar potential. Inspired by equation (A.10), it was suggested [99]

that this could be avoided by truncating the dipolar interaction conveniently at

large distances r = R so that it does not affect the boundary, provided R is taken

to be larger than the size of the condensate. Then the truncated dipolar potential

will cover the whole condensate wave function and will have a continuous Fourier

transform at the origin. This improves the accuracy of a calculation using a small

space domain. The Fourier transform of the dipolar potential truncated at r = R is

used in our implementation of the algorithm for solving dipolar GPE as

Ũdd(k) =
4π

3

(
3 k2

z

k2
− 1

)[
1 + 3

cos (kR)

k2R2
− 3

sin (kR)

k3R3

]
. (6.25)

The difficulty in using a large space domain is the most severe in 3D algorithms for

solving dipolar GPE by the split-step Crank-Nicolson method. The cut-off param-

eter R of equation (6.25) improves the accuracy of the calculation.
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6.3 Calculation of physical quantities

During the evolution of the system, the relevant physical quantities can be calcu-

lated using the obtained time-dependent wave function. Since the wave function is

obtained with the time resolution of ∆t, we can calculate all physical quantities with

the same time resolution or choose to calculate them less frequently, to decrease the

computation time. Here we list the expectation values calculated by our programs

by default.

The size of the system in x, y, and z direction is expressed by the root-mean-

square of the corresponding coordinate,

xrms =
√
〈x2〉 ,

〈
x2
〉

=

∫
drx2 |ψ(r)|2 , (6.26)

yrms =
√
〈y2〉 ,

〈
y2
〉

=

∫
dr y2 |ψ(r)|2 , (6.27)

zrms =
√
〈z2〉 ,

〈
z2
〉

=

∫
dr z2 |ψ(r)|2 , (6.28)

while the size of the whole system is estimated by the quadratic mean,

rrms =
√
〈x2〉+ 〈y2〉+ 〈z2〉 . (6.29)

For stationary states, the wave function has a trivial time dependence ψ(r, t) =

ψ(r) e−iµt, where µ is the chemical potential. If we substitute this into Equation

(6.3), and multiply it by ψ∗(r), taking into account that the wave function is nor-

malized to 1, we obtain the following formula for the chemical potential

µ =

∫
dr

[
1

2
|∇ψ(r)|2 + U(r) |ψ(r)|2 + 4πNas |ψ(r)|4

+ 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 |ψ(r)|2

]
.

(6.30)

The above expression can be also used for non-stationary states, to obtain the ex-

pectation values of the Hamiltonian.

The following expression for the energy E is obtained by multiplying the inter-
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action terms by 1/2 in equation (6.30)

E =

∫
dr

[
1

2
|∇ψ(r)|2 + U(r) |ψ(r)|2 + 2πNas |ψ(r)|4

+
3

2
Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 |ψ(r)|2

]
.

(6.31)

In a variational approach, the GPE can be obtained by minimizing the above func-

tional with respect to the wave function.

The norm of the wave function is calculated by definition∫
dr |ψ(r)|2 , (6.32)

and in the real-time propagation, it should be always equal to 1. The Crank-Nicolson

scheme conserves the normalization of the wave function, but its monitoring can be

used as an early check of the validity of the simulation. However, this is not the

case in imaginary-time propagation, since then the evolution operator is not unitary.

Therefore, it is necessary to normalize the wave function again after each time step

∆t.

6.4 Numerical integration and derivation

Numerical integration within the algorithm is implemented using Simpson’s rule∫
dx f(x) ≈ ∆x

3

N/2∑
i=1

(f2i−2 + 4f2i−1 + f2i) (6.33)

where N is a number of equidistant points and ∆x the size of a spatial step.

In order to calculate the energy and the chemical potential we also need spatial

derivatives of the wave function. For this we use the Richardson extrapolation

formula of the fourth order. For instance, the spatial derivative of the wave function

in direction j is approximated with

∂ψni
∂hj
≈ 1

12∆hj

(
ψni−2 − 8ψni−1 + 8ψni+1 − ψni+2

)
. (6.34)
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6.5 Algorithm wrap-up

Practical usage of the programs that implement the algorithm for solving the dipolar

GPE requires the preparation of an input file that provides the parameter values of

the system of interest. This includes a number of atoms in the condensate, which

is typically between 104 and 106. One also has to specify a unit of length l in units

of Bohr radius (a0 = 5.2917721092× 10−11 m). For a chosen reference frequency ωr

it is calculated as l =
√

~/(mωr) for atoms with mass m, and is typically of the

order of µm. Physical parameters of the system also include the s-wave scattering

length as, which measures the contact interaction strength, and the dipolar length

add, which measures dipole-dipole interaction strength. Both are expressed in units

of Bohr radius within the input file.

In addition of physical parameters, we also have to supply discretization details

such as the time step ∆t (in units of 1/ωr) and the number of iterations N . Typical

values of the time step ∆t we used for our simulations was between 10−2 and 10−3,

which corresponds to 10−2 − 10−3 ms after re-scaling with the frequency ωr = 2π ×
160.5 Hz. Therefore, for the simulation of the evolution for 250 ms, the number of

iterations N has to be between 2.5× 104 and 2.5× 105.

The spatial discretization is defined by the size of steps and the number of mesh

points in x, y, and z direction. In the simulations, we have used equal numbers

of mesh points in all directions, Nx = Ny = Nz = 500, with different step sizes,

typically ∆x = 0.5 and ∆y = ∆z = 0.1, due to the cigar shape of the condensate.

Such mesh creates a simulation box of the volume of approximately 250×50×50 µm3.

Flowchart of the algorithm for solving the dipolar GPE is illustrated in Fig-

ure 6.1. Using the parameters specified in the configuration input file, the algorithm

in the very first step generates an initial wave function or reads its values from the

external file. This is represented by the operator Î, which will initialize the wave

function matrix to be propagated within the main loop of the algorithm. In the

case of imaginary-time propagation, most frequently, the initial wave function will
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be generated in the form of a predefined Gaussian, or if it is explicitly defined in the

input file, it will be populated by the values from the external file. For real-time

propagation, the initial wave function is always read from the external file. Usually,

it is a wave function obtained from the previous calculation, either in imaginary- or

real-time propagation.

Using the initial wave function, the algorithm in N equal time steps ∆t prop-

agates the wave function. Each time step consists of four sub-steps, which are

implemented using the operators P̂(Ĥ0), P̂(Ĥ1), P̂(Ĥ2), P̂(Ĥ3). After each step,

the operator M̂ calculates the relevant physical quantities. In the case of imaginary-

time propagation, there is an additional operation in which we normalize the wave

function to 1 using the operator N̂ . After the main loop is finished, the simulation

saves the wave function for further use (operator Ê).

Î ψ(r)

P̂(Ĥ0)ψ(r)

P̂(Ĥ1)ψ(r)

P̂(Ĥ2)ψ(r)

P̂(Ĥ3)ψ(r)

Ê ψ(r)

M̂ψ(r) N̂ ψ(r)

i = 0

j → j + 1

j → j + 1

j → j + 1

i < N

t
→
t

+
∆
t
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Figure 6.1: Flowchart of the algorithm for solving the dipolar GPE. The operator

Î is responsible for the initialization of the wave function matrix. Propagation of

the wave function is done in four sub-steps using operators P̂(Ĥ0), P̂(Ĥ1), P̂(Ĥ2),

P̂(Ĥ3). The operator M̂ calculates physical quantities of the system, and the op-

erator Ê saves the wave function for further use. In the case of imaginary-time

propagation, the operator N̂ normalizes the wave function.
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6.6 Parallelization and optimization

The algorithm for solving fully-anisotropic three-dimensional dipolar GPE is devel-

oped based on our previous programs [88,89]. The original program for the contact

interaction GPE was written in Fortran [87] by Adhikari and Muruganandam. Later

on, we have rewritten this program in the C programming language, and parallelized

it using the Open Multi-Processing (OpenMP) library [90–92, 95]. Afterward, we

have developed the programs that include both the contact and the dipole-dipole

interaction in C and in Fortran [93,94]. We have demonstrated excellent agreement

of recent experimental observation of dipolar BECs of 52Cr, 164Dy, and 168Er atoms

with the numerical results. The programs had to be parallelized, which allows the

utilization of all available processors/cores on a shared memory computer, leading

to the speedup of 70− 90% of the ideal one.

Figure 6.2 illustrates the speedup (blue down triangles) and the efficiency (red

up triangles) in the execution time of the imaginary-time (left panel) and real-time

(right panel) propagation as a function of a number of utilized CPU cores. The

speedup S (Nc) is calculated as a ratio of the execution time of a simulation on a

single CPU core and a simulation using Nc cores. The efficiency E (Nc) = S (Nc) /Nc
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Figure 6.2: Speedup (blue down triangles) and efficiency (red up triangles) of the

algorithm for solving the dipolar GPE during imaginary-time (left) and real-time

(right) propagation as a function of the number of utilized CPU cores. Solid lines

represent fits to measured data according to Amdahl’s law.
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is defined as a ratio of the speedup, measured in numerical experiments, and the idea

one which is equal to Nc. In all simulations, we have used a consistent spatial mesh

of the size of 500×500×500. Starting from a single CPU core, we gradually increase

the number of utilized cores up to 16 on an Intel Xeon CPU E5-2670 machine with

a clock frequency of 2.60 GHz. The programs are compiled and optimized using the

Intel compiler.

Based on Amdahl’s law [100], the expected execution times of a sequential (which

remains constant) and a parallelized region of the code (which scales with a number

of cores Nc). If p is parallelized fraction of the code, the expected speedup is given

by

S (Nc) =
1

(1− p) + p/Nc

, (6.35)

and similarly for E (Nc). Solid lines in Figure 6.2 represent the fits to measured

data according to relation (6.35), which allows us to verify the consistency of the

performance of our programs and to estimate the parallel fraction p.

Details on the testing of parallelization scaling are given in Appendix F.
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7 Conclusions

This thesis explores the Faraday and resonant density waves in ultracold dipolar

Bose-Einstein condensates. It also studies the collective oscillation modes of dipolar

condensates and their ground-state properties for experimentally relevant atomic

species with the permanent magnetic dipole moment: chromium 52Cr, erbium 168Er,

and dysprosium 164Dy. The interplay of the contact and the dipole-dipole interaction

in such systems is a hot research topic today, but a detailed understanding of their

dynamics and even the stability is still lacking. This thesis contributes to variational

and numerical description of driven dipolar systems and their properties, which are

important for ongoing experiments, and will be of particular interest as the strongly

dipolar regime becomes experimentally available.

We have introduced here a variational approach and used it to describe the

ground state, the collective oscillation modes, and the Faraday and resonant waves

in dipolar BECs. This approach is based on the Gaussian variational ansatz, which

includes the condensate widths and the conjugated dynamical phases as parameters.

The ansatz is extended to include density modulations in order to capture the dy-

namics of density waves. Using our approach, we have derived analytical expressions

for the ground-state widths of the condensate, and the frequencies of the collective

oscillation modes: the breathing, the quadrupole, and the radial-quadrupole mode.

These results are verified by comparison with the numerical results obtained by solv-

ing the dipolar GPE for each of the three atomic species. We have found very good

agreement between the analytical and numerical results, and confirmed that the de-

rived expressions for the ground-state widths and collective oscillation frequencies
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can be reliably used in the relevant parameter ranges.

We have studied the effects of the contact and the dipole-dipole interaction on

the properties of the ground state and of the collective oscillation modes. While the

increase of the contact interaction strength always leads to an increase of condensate

widths, the situation is more complex when the dipole-dipole interaction is varied.

In a cigar-shaped geometry when the dipoles are oriented in the radial direction,

the increase of the DDI strength leads to the increase of condensate widths in the

weak-confinement direction and in the direction of the dipoles, while the width in

the third direction decreases. We have also studied the frequencies of the collective

modes, where the interaction effects turn out to be less pronounced, in particular for

the breathing and the quadrupole mode, whose values practically remain constant

over the whole range of experimentally relevant values of as and add. The frequency

of the radial-quadrupole mode is more sensitive to changes of interaction strengths,

especially the contact interaction strength as, and shows a nonmonotonous behavior

as a function of the dipole-dipole interaction strength add.

The main contribution of the thesis is the study of driven dipolar BECs, where

the emergence of density waves is expected. This phenomenon is investigated in

an experimentally-inspired setup, where the dipolar condensate is confined into a

cigar-shaped harmonic trap. The dipole moments of the atoms are assumed to

be orthogonal to the weak confinement axis, since this maximizes the stability of

the system. The driving of the system is achieved by harmonic modulation of the

radial part of the trap, and the density waves were observed in the longitudinal,

weak-confinement direction.

Using our variational approach, the obtained equations for the dynamical evolu-

tion of the system are cast into the form of the Mathieu-like differential equation.

This allowed us to identify the most unstable solutions of the Mathieu’s equation

with the Faraday and the resonant waves, which we have observed numerically.

Based on this idea, we have derived analytical expressions for the periods of these

two types of density waves. Performing the FFT analysis of the results of extensive

numerical simulations, we were able to calculate the corresponding periods numer-
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ically, as functions of the contact and the dipole-dipole interaction strength. The

comparison of variational and numerical results shows very good agreement and

demonstrates that the derived analytical expressions provide a full understanding of

the properties of density waves in dipolar condensates.

The thesis presents the split-step semi-implicit Crank-Nicolson method used to

solve the dipolar GPE, as well as the details about the corresponding programs,

including the calculation of the dipole-dipole interaction term and relevant physical

quantities. We have also presented the scalability testing results of our parallel

programs, which demonstrate their efficiency on parallel computer clusters.
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A Fourier transform of the DDI potential

In contrast to the contact interaction, which is symmetric and has a short range, the

dipolar interaction between atoms or molecules is anisotropic and has a long range.

The dipolar effects are brought in into the GPE through an additional nonlinear

interaction term that reads in the dimensionless form

3Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 , (A.1)

where N is the number of atoms in the condensate, add the length that quantifies

the strength of the DDI, |ψ(r′)|2 the density of the condensate, and Udd(r− r′) the

DDI potential. For an arbitrary orientation of the dipoles defined by a unit vector

m, the dipolar potential is given by

Udd(r) =
r2 − 3 (r ·m)2

r5
. (A.2)

If the dipoles are oriented in z direction, the above expression transforms into

Udd(r) =
1− 3 cos2 θ

r3
. (A.3)

where θ is the angle between the vector r and the polarization axis (z direction).

In coordinate space, due to issues with the numerical divergence at short dis-

tances, calculation of the dipolar term in the GPE is not straightforward. This is

usually resolved by switching to the k-space, where the calculation does not suffer

from a singular behavior. Additionally, this allows the use of the FFT, which speeds

up numerical calculations. By means of the convolution theorem, the integral (A.1)

transforms into∫
dr′ Udd(r− r′) |ψ(r′)|2 = F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) , (A.4)

where F represents the Fourier transform and F−1 the inverse Fourier transform,

defined respectively by

F [f ](k) = f̃(k) =

∫
dr f(r) e−ik·r , (A.5)

F−1[f̃ ](r) = f(r) =
1

(2π)3

∫
dk f̃(k) eik·r . (A.6)
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The Fourier transform of the dipolar potential Ũdd(k) can be calculated analytically

using the spherical coordinates,

Ũdd(k) =

∫
drUdd(r) e−ik·r =

∞∫
0

dr

2π∫
0

dϕ

π∫
0

sin θ dθ

× 1− 3 cos2 θ

r
e−ikr(sin θ sin θk cos(ϕ−ϕk)+cos θ cos θk) ,

(A.7)

where, in spherical coordinates, k = (k, θk, ϕk). Although the coordinate system is

chosen such that the vector m is oriented along z axis, we still have the freedom to

rotate it around this axis, which makes it possible to eliminate the angle ϕk. If we

denote the θk in the selected coordinate system by α, the integral (A.7) becomes

Ũdd(k) =

∞∫
0

dr

2π∫
0

dϕ

π∫
0

dθ sin θ
1− 3 (sinα sin θ sinϕ+ cosα cos θ)2

r
e−ikr cos θ .

(A.8)

After integration over the variable ϕ, we obtain

Ũdd(k) = π
(
3 cos2 α− 1

) ∞∫
0

dr

π∫
0

dθ sin θ
1− 3 cos2 θ

r
e−ikr cos θ . (A.9)

The θ-integral above is solved by a variable change u = cos θ, yielding

Ũdd(k) = 4π
(
1− 3 cos2 α

) ∞∫
0

dr

[
sin (kr)

kr2
+

3 cos (kr)

k2r3
− 3 sin (kr)

k3r4

]
. (A.10)

This integral is calculated using another variable change v = kr,

Ũdd(k) = 4π
(
1− 3 cos2 α

)
lim
b→0

∞∫
kb

dv

[
sin v

v2
+

3 cos v

v3
− 3 sin v

v4

]

= 4π
(
1− 3 cos2 α

)
lim
b→0

kb cos (kb)− sin (kb)

(kb)3

=
4π

3

(
3 cos2 α− 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
.

(A.11)

According to this, we can immediately write the general expression for an arbitrary

orientation of the dipoles m in the form

Ũdd(k) =
4π

3

[
3 (m · k)2

k2
− 1

]
. (A.12)
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B Lagrangian of the DDI term

Using the Lagrangian density (2.51), we calculate the Lagrangian term (2.64) that

corresponds to the DDI energy for the Gaussian ansatz (2.52), used in the variational

study of the collective oscillation modes, as well as the term (5.11) for the modified

ansatz (5.2), used to describe the Faraday and resonant waves. Note that both

expressions can be written in the form

L5(t) = −3Nadd

(2π)2
B2

∫
dk

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (B.1)

where expression (2.64) is obtained for B = 1, while we get expression (5.11) for

B2 = 1− 8α2

(2 + α2 + β2)2
. (B.2)

The above integral describes the anisotropic character of the dipole-dipole interac-

tion in ultracold quantum gases. After switching to the spherical coordinate system

via the following change of variables

kxux = k sin θ cosϕ , kyuy = k sin θ sinϕ , kzuz = k cos θ , (B.3)

the above integral transforms into

L5(t) = − Nadd

(2π)2 uxuyuz
B2

∞∫
0

dk k2e−k
2/2

2π∫
0

dϕ

π∫
0

dθ sin θ

×
(

3 1
u2
z

cos2 θ
1
u2
x

sin2 θ cos2 ϕ+ 1
u2
y

sin2 θ sin2 ϕ+ 1
u2
z

cos2 θ
− 1

)
.

(B.4)

The integral over k is of the Gaussian type that can be solved analytically, leading

to

L5(t) = − Nadd

(2π)2uxuyuz
B2

√
π

2

2π∫
0

dϕ

π∫
0

dθ sin θ

×

 3
u2
xu

2
y

u4
z

cos2 θ

u2
y

u2
z

sin2 θ cos2 ϕ+ u2
x

u2
z

sin2 θ sin2 ϕ+
u2
xu

2
y

u4
z

cos2 θ
− 1

 .

(B.5)

If we introduce the dipolar anisotropy function [42], see Appendix C for details,

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

x2 sin2 ϕ sin2 θ + y2 cos2 ϕ sin2 θx2y2 cos2 θ
− 1

)
,

(B.6)
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we can write L5(t) as

L5(t) =
Nadd√

2π uxuyuz
B2f

(
ux
uz
,
uy
uz

)
, (B.7)

where exact expressions for the anisotropy function in terms of the elliptic integrals

of the first (F ) and the second (E) kind for different values of its arguments are

listed in Appendix C. For our analysis, due to geometry of the system described in

Appendix D, the most relevant region of parameters is 0 < uy/uz < 1 < ux/uz, in

which the anisotropy function can be written as

f(x, y) =
1 + 2y2

1− y2
− 3xy

√
x2 − y2E(θ, k)

(x2 − 1)(1− y2)
+

3xy F (θ, k)

(x2 − 1)
√
x2 − y2

, (B.8)

where k =
√

(x2 − 1)/(x2 − y2), and sin θ =
√
x2 − y2/x.
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C Anisotropy function

In theoretical studies of dipolar ultracold atomic or molecular systems, the anisotro-

py function emerges as a consequence of the anisotropic character of the dipole-dipole

interaction [42]. It is defined as

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

x2 sin2 ϕ sin2 θ + y2 cos2 ϕ sin2 θ + x2y2 cos2 θ
− 1

)

= 1− 3x2y2

4π

π∫
0

dθ sin θ cos2 θ

π∫
0

dϕ
1

(x2 sin2 ϕ+ y2 cos2 ϕ) sin2 θ + x2y2 cos2 θ
.

(C.1)

According to the above definition, we can assume x, y ≥ 0 without loss of generality.

The ϕ integral can be solved using relation (3.642.1) from Reference [43], yielding

f(x, y) = 1− 3xy

2

π∫
0

dθ sin θ
cos2 θ√

1− (1− x2) cos2 θ
√

1− (1− y2) cos2 θ
. (C.2)

Note that function f is symmetric in its arguments f(x, y) = f(y, x) [42]. Depending

on the values of the arguments x and y, we can consider the following cases:

1. x < y < 1

Using the substitution u =
√

1− x2 cos θ, the integral (C.2) becomes

f(x, y) = 1 +
3xy

(1− x2)3/2

√
1−x2∫
0

du
u2

√
1− k2u2

√
1− u2

, (C.3)

where k2 = (1− y2)/(1− x2) < 1. The solution of the above u-integral can be

expressed via elliptic integrals [43] of the first and the second kind, respectively,

F (θ, k) =

sin θ∫
0

du
1√

(1− u2)(1− k2u2)
=

θ∫
0

dθ
1√

1− k2 sin2 θ
, (C.4)

E(θ, k) =

sin θ∫
0

du

√
1− k2u2

√
1− u2

=

θ∫
0

dθ
√

1− k2 sin2 θ , (C.5)
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yielding

f(x, y) = 1 + 3xy
E(θ, k)− F (θ, k)

(1− y2)
√

1− x2
, (C.6)

where sin θ =
√

1− x2.

2. y < x < 1

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 1.

3. x < 1 < y

In this region it is necessary to analytically continue the function (C.6) using

the table (8.127) from Reference [43]. With the transformations

k1 =
i k

k′
, sin θ1 =

k′ sin θ

∆θ
, cos θ1 =

cos θ

∆θ
, (C.7)

we obtain

f(x, y) =
1 + 2x2

1− x2
+

3xy
√
y2 − x2E(θ1, k1)

(y2 − 1)(x2 − 1)
+

3xy F (θ1, k1)

(y2 − 1)
√
y2 − x2

, (C.8)

where k1 =
√

y2−1
y2−x2 and sin θ1 =

√
y2 − x2/y.

4. y < 1 < x

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 3.

5. 1 < x < y

In this region we proceed similarly as in the case 3, using the transformations

k1 =
k′

i k
, sin θ1 = −i k sin θ

∆θ
, cos θ1 =

1

∆θ
, (C.9)

where k′ =
√

1− k2 and ∆θ =
√

1− k2 sin2 θ, and obtain

f(x, y) =
1 + 2x2

1− x2
+

3xy E(θ1, k1)

(x2 − 1)
√
y2 − 1

, (C.10)

where k1 =
√

y2−x2

y2−1
and sin θ1 =

√
y2 − 1/y.

6. 1 < y < x

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 5.
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7. x = y

In the special case of equal arguments, x→ y, which corresponds to cylindrical

symmetry of the system, the anisotropy function depends only on a single

argument, and is given as

fs(x) = lim
x→y

f(x, y) =
1 + 2x2 − 3x2 d(x)

1− x2
, (C.11)

where d(x) is given by

d(x) =


1√

1−x2 tanh−1
√

1− x2 , x < 1 ,

0 , x = 1 ,

1√
x2−1

tan−1
√
x2 − 1 , 1 < x .

(C.12)

8. x 6= y = 1

f(x, 1) = lim
y→1

f(x, y) = −1

2
fs(1/x) (C.13)

9. x = 1 6= y

f(1, y) = f(y, 1) = −1

2
fs(1/y) (C.14)

In this thesis, the parameters of the anisotropy function are ratios of the con-

densate widths ux/uz and uy/uz. As we have seen in Chapter 3, due to geometry of

the system, the condensate in the ground state is much more elongated in x direc-

tion than in the other two directions. Also, we have observed that the dipole-dipole

interaction increases the condensate width in z direction, and decreases it in y di-

rection. The same relationships between the condensate widths are valid during the

non-stationary dynamics of the condensate, as we have seen in Chapters 4 and 5.

Therefore, in our analysis 0 < uy < uz < ux, i.e., 0 < uy/uz < 1 < ux/uz, which

corresponds to the case 4 above.

In the thesis we use fi(x, y) to denote the first partial derivative of the anisotropy

function with respect to its argument i = 1, 2, and fij to denote the second partial

derivative

fij(x1, x2) =
∂2

∂xi ∂xj
f(x1, x2) . (C.15)
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In our analysis of the cylindrically symmetric ultracold quantum gases, which exists

if the polarization direction matches the weak confinement direction of the trap, we

have used the following useful limits:

lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) = f ′s(x) =
(2 + x2)fs(x)

2(1− x2)
− 1 , (C.16)

lim
y→x

f11(x, y) = lim
y→x

f22(x, y) =
9 [(4 + x2) fs(x)− 2 (1− x2)]

8 (1− x2)2 , (C.17)

lim
y→x

f12(x, y) = lim
y→x

f21(x, y) =
(8 + 8x2 − x4) fs(x)− 2 (4− 5x2 + x4)

8x2 (1− x2)2 , (C.18)

lim
y→1

xf1(x, y) = f ′s(1/x) . (C.19)
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D Parameters of the system

In all numerical simulations and variational calculations we have used the system and

discretization parameters specified here, unless otherwise stated. We have considered

three atomic species and Table 4 lists the corresponding values of the mass m in

atomic mass units u, the s-wave scattering length as in units of Bohr radius a0,

the dipole moment µd in units of Bohr magneton µB, the dipole-dipole interaction

strength add in units of Bohr radius (a0), and the harmonic oscillator length l with

respect to the chosen referent frequency ωr = 160.5× 2π Hz.

Table 4: Summary of atomic species parameters used in numerical simulations and

variational calculations.

Species m (u) as (a0) µd (µB) add (a0) l (µm)
52Cr 51.94050 105 6 15.126 1.10112
168Er 167.93237 100 7 66.564 0.61238
164Dy 163.92918 100 10 132.607 0.61981

All simulations and calculations are performed with the same number of atoms,

N = 104.

We have considered the harmonically trapped system, with the frequencies taken

from Reference [30], i.e., ωx = 7×2π Hz, ωy = 160.5×2π Hz, and ωz = 160.5×2π Hz.

The trapping potential is defined by Equation (2.22), and for the chosen frequencies

the atoms are weakly confined in x direction, i.e., we have used a cigar-shaped

trap. Therefore, we refer to x direction as the longitudinal one, while y and z

direction represent the radial ones. In order to cast the underlying equations into

a dimensionless form, we have chosen the referent frequency ωr = ωy = ωz =

160.5×2π Hz, which defines the length scale through the harmonic oscillator length

l =
√
~/(mωr), the time scale as 1/ωr, the energy scale as ~ωr. The trapping

frequencies are also expressed in units of ωr through the trap aspect ratios γ =

ωx/ωr = 0.04361, ν = ωy/ωr = 1, and λ = ωz/ωr = 1.
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We assume that the dipoles are oriented along z direction, i.e., orthogonal to

the weakly confined x direction. The Fourier transform of the dipolar interaction

potential is thus

F [Udd(r)](k) =
4π

3

(
3 k2

z

k2
− 1

)
. (D.1)

The system is driven by a harmonic modulation of the frequencies in the tightly

confined y and z direction,

ωy(t) = ωz(t) = Ω0(1 + ε sinωmt) , (D.2)

where Ω0 = ωy = ωz has a value given above, ε = 0.1− 0.2 is the modulation ampli-

tude, and ωm is the modulation frequency. The modulation frequency is expressed

in units of ωr through the aspect ratio ηm = ωm/ωr.

We have studied the properties of the ground state, collective oscillation modes,

Faraday and resonant waves as functions of the contact and the dipole-dipole inter-

action strength. This models BEC experiments, where the strength of the contact

interaction can be varied over a broad range of values using the Feshbach resonance

technique [9]. This is also possible for the strength of the DDI, which can be tuned

using a fast rotating magnetic field [24, 25]. Therefore, the values of as and add

listed in Table 4 are used whenever we refer to their fixed values, while in some

calculations we have considered experimentally relevant ranges of these interaction

strengths.

In numerical simulations, we have discretized space and time by defining the

corresponding spacings and the time step, as well as the size of the space mesh

and the number of the time steps. In our simulations we have used equal numbers

of mesh points in all directions, Nx = Ny = Nz = 500, with different spacings,

∆x = 0.5 and ∆y = ∆z = 0.1. This choice was made due to the cigar shape

of the condensate. Such a mesh corresponds to the simulation box of the volume

of approximately 250 × 50 × 50 µm3, which is appropriate for the above trapping

potential and the considered atomic species.

Time was discretized using the time step ∆t with the typical values between
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10−2 and 10−3 in units of 1/ωr. For the Faraday and resonant waves, the number

of time steps (iterations) N was in the range 1 − 2 × 105, which corresponds to

the simulation of the evolution in the range 250-500 ms. For the calculation of the

collective oscillation modes, we had to use much larger iteration numbers, for at

least one order of magnitude, in order to achieve the accuracy of 0.1 Hz.

The value of the cutoff parameter R from Equation (6.25) in all simulations was

R = 10.

The ground state of the condensate was calculated using the imaginary-time

propagation starting from the Gaussian initial wave function, defined by

ψ(x, y, z) =
(γ ν λ)1/4

π3/4
e−

1
2

(γx2+νy2+λz2) . (D.3)

It corresponds to the solution of the Schrödinger equation, i.e., the GPE for as =

add = 0, and represents the dimensionless form of Equation (3.1).

The values of the physical constants used are as follows:

u = 1.6605390× 10−27 kg (atomic mass unit),

a0 = 5.29177210× 10−11 m (Bohr radius),

µB = 9.2740099× 10−24 JT−1 (Bohr magneton).
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E Semi-implicit Crank–Nicolson scheme

Here we describe the practical implementation of the semi-implicit Crank–Nicolson

algorithm [35–37]. In Chapter 6 we have introduced the time and the spatial dis-

cretization used to solve the dipolar GPE. The total evolution time T that will

be simulated is discretized by dividing it into Nt equal sub-steps of the duration

∆t = T/Nt. The spatial coordinates are discretized by introducing a spatial mesh

of Nx, Ny, and Nz equidistant points in x, y, and z direction, respectively. The

spatial extents of the system considered are given by Lx = Nx ∆x, Ly = Ny ∆y, and

Lz = Nz ∆z, where ∆x, ∆y, and ∆z are discretization steps in the corresponding di-

rections. For practical reasons, the center of the coordinate system coincides with the

simulation box center, such that the coordinates take the values x ∈ [−Lx/2, Lx/2],

y ∈ [−Ly/2, Ly/2], and z ∈ [−Lz/2, Lz/2].

In addition to this, within each time step ∆t, the split-step nature of the algo-

rithm divides our Hamiltonian into four parts: the non-derivative part Ĥ0, and the

three parts that contain spatial derivatives, Ĥ1, Ĥ2, Ĥ3, which read

Ĥ0 = U(r, t) + 4πNas |ψ(r, t)|2 + 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′, t)|2 , (E.1)

Ĥ1 =
∂2

∂x2
, Ĥ2 =

∂2

∂y2
, Ĥ3 =

∂2

∂z2
. (E.2)

By doing this, we have approximated our single dipolar GPE with the four sequential

partial differential equations,

i
∂ψ(r, t)

∂t
= Ĥ0 ψ(r, t) , (E.3)

i
∂ψ(r, t)

∂t
= Ĥ1 ψ(r, t) , i

∂ψ(r, t)

∂t
= Ĥ2 ψ(r, t) , i

∂ψ(r, t)

∂t
= Ĥ3 ψ(r, t) , (E.4)

which are solved one after the other in the algorithm.

In a given time step n, we start with the wave function ψn(r), obtained in the

previous time step. We point out that the time dependence of the wave function

is now denoted by the superscript n, which corresponds to the time t = n∆t. The

time propagation proceeds by solving Equation (E.3), which can be done explicitly
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according to (6.9). This produces the intermediate solution ψn+1/4(r), ready to be

propagated in time by solving Equations (E.4). This is done by expressing the

corresponding derivative operators in a semi-implicit form,

i
ψn+2/4(r)− ψn+1/4(r)

∆t
=

1

2
Ĥ1

[
ψn+2/4(r) + ψn+1/4(r)

]
, (E.5)

i
ψn+3/4(r)− ψn+2/4(r)

∆t
=

1

2
Ĥ2

[
ψn+3/4(r) + ψn+2/4(r)

]
, (E.6)

i
ψn+1(r)− ψn+3/4(r)

∆t
=

1

2
Ĥ3

[
ψn+1(r) + ψn+3/4(r)

]
. (E.7)

The complete propagation procedure outlined above yields the wave function ψn+1(r)

at the moment t = (n+ 1)∆t. On the left-hand sides of Equations (E.5) - (E.7) the

partial derivative with respect to time is expressed by a two-point formula, while

on the right-hand sides instead of the wave function at the current time, we use a

linear combination of the current and the future wave function values to improve

the stability of the algorithm. This makes the algorithm semi-implicit.

For convenience, let us denote the spatial mesh step in the x, y, and z direc-

tion by ∆hi, respectively, and use the lower index of the wave function to define

a position in the mesh in the given direction. For instance, when we are consid-

ering Equation (E.5) along x direction, ψn+j/4
i denotes the wave function value at

x = −Lx/2 + i∆h1, while the values of the other two coordinates are implicitly

assumed. In this notation, with the three-point formula for the Laplacian on the

right-hand side of Equations (E.5) - (E.7), the equation in the given direction j

reads

i
ψ
n+(j+1)/4
i − ψn+j/4

i

∆t
=

1

4 ∆h2
j

(
ψ
n+(j+1)/4
i+1 − 2ψ

n+(j+1)/4
i + ψ

n+(j+1)/4
i−1

+ ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
,

(E.8)

where j = 1, 2, 3 defines the spatial direction of propagation. In the above equation,

the known quantities have the upper index n + j/4, while the unknown quantities

have the superscript n+ (j + 1)/4. Taking this into account, Equation (E.8) can be

written in the form of a series of tridiagonal equations,

A−j ψ
n+(j+1)/4
i−1 + A0

jψ
n+(j+1)/4
i + A+

j ψ
n+(j+1)/4
i+1 = B

n+j/4
i , (E.9)
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where the following coefficients are defined by the known quantities,

A−j = A+
j = − ∆t

4∆h2
j

, A0
j = 1 + i

∆t

2∆h2
j

, (E.10)

B
n+j/4
i = i

∆t

4∆h2
j

(
ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
+ ψ

n+j/4
i . (E.11)

Equation (E.9) is solved by using the forward recursion method, i.e., by express-

ing the mesh values of the propagated wave function in each spatial direction in the

form

ψ
n+(j+1)/4
i+1 = αjiψ

n+(j+1)/4
i + β

n+j/4
i . (E.12)

Inserting the above rule into Equation (E.9), the propagated mesh values of the

wave function are given by

ψ
n+(j+1)/4
i = γji

(
A−j ψ

n+(j+1)/4
i−1 + A+

j β
n+j/4
i −Bn+j/4

i

)
, (E.13)

with

γji = − 1

A0
j + A+

j α
j
i

. (E.14)

We now obtain the backward recursion relations for the coefficients αji and βn+j/4
i

from Equations (E.12) and (E.13),

αji−1 = γjiA
−
j , (E.15)

β
n+j/4
i−1 = γji

(
A+
j β

n+j/4
i −Bn+j/4

i

)
. (E.16)

In the algorithm, the coefficients αj/4i and β
n+j/4
i are calculated starting from i =

Nj − 2 to i = 0. Since the value of the wave function must vanish at the mesh

boundary, we chose the initial border values of αj/4Nj−1 and βn+j/4
Nj−1 to be equal to 0.

The coefficients A−j , A
+
j , A0

j , α
j
i , and γji do not depend on the time step n, and

are therefore constant for a particular mesh setup. Only the coefficients βn+j/4
i , and

consequentially Bn+j/4
i , have to be recalculated after each time step, for each spatial

direction j = 1, 2, 3.
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F Details on testing of the scaling of programs

Here we give the details related to the testing setup used in Chapter 6. The code

that implements the algorithm for solving the dipolar GPE is optimized for use with

the commercially-licensed Intel and the free, open-source GNU compiler suite. We

have also tested and verified the compilation with IBM’s xlc compiler, PGI’s pgcc

compiler, and Oracle’s suncc (former Sun’s) compiler. Beside of the most generic,

fully-anisotropic three-dimensional trap, we have written additional independent

codes for 1D and 2D systems, for 3D system with cylindrical (effectively 2D) and

spherical (effectively 1D) symmetry, and 2D systems with cylindrical symmetry

(effectively 1D). All outputs from the simulations are stored using the Hierarchical

Data Format (HDF) library [101], which is designed to store and organize large

amounts of data. Using HDF, the average size of the results of a typical simulation

is around 2 GB of storage space. This includes the wave function calculated in the

imaginary-time simulation and all results of the real-time propagation. Compared

to the same amount of information stored in a plain text format, HDF provides

compression by an average factor of ten. Also, since HDF is a widely used format,

various externally developed visualization tools can be used for the analysis of the

obtained results.

In addition to the OpenMP-parallelized version of the code [90–92], our group

has parallelized the algorithm using the Message Passing Interface (MPI) library [92]

that enables utilization of distributed memory computing systems (computer clus-

ters). Furthermore, using the CUDA toolkit, the group has developed algorithms

optimized for the graphics processing units (GPU) able to utilize hardware accel-

erators [93]. Finally, combining all parallelization techniques (OpenMP, MPI, and

CUDA), hybrid programs for solving the dipolar GPE were also developed and made

publicly available [94]. These programs are able to utilize state-of-the-art computing

clusters available today.

The PARADOX computing cluster at the Scientific Computing Laboratory, Cen-
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ter for the Study of Complex Systems of the Institute of Physics Belgrade has been

used for development and testing of the programs. This resource has more than

2,500 Intel Xeon E5-2670 Sandy Bridge processing cores at a frequency of 2.6 GHz

and 32 GB of RAM (2 GB per CPU core). Additional 106 NVIDIA Tesla M2090

graphic cards with 6 GB of RAM are distributed over available computing nodes.

The cluster nodes are interconnected via a QDR Infiniband technology, through a

non-blocking 144-port Mellanox QDR Infiniband switch. The communication speed

of all nodes is 40 Gbps in both directions, while the peak computing power of PARA-

DOX is 105 TFlops. The cluster provides around 100 TB of storage space, which is

distributed via a Lustre high-performance parallel file system that uses Infiniband

technology.
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