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Modeling the behaviour of confined dipolar and
ionic systems

Abstract

In this doctoral thesis confined dipolar and ionic systems have been modelled and

investigated, namely dipolar tubes and helices composed of dipolar hard spheres and

ionic liquids. Mutual for those systems is the fact that their structure and behaviour

are dominated by long-range interactions, i.e., dipole-dipole interaction in case of

dipolar systems and Coulombic interaction in case of ionic systems. The feature

of pronounced ordering of formed configurations and possibility of manipulating

them via externally applied fields (magnetic/electric field in case of magnetic/elec-

tric dipoles and electric field in case of ions) attract attention of condensed matter

physics.

The first part of this doctoral thesis, which is dedicated to dipolar systems, is

dealing with the investigation of the structure and cohesive energy in tubes and

helices composed of dipolar hard spheres. A complex dependence of cohesive energy

on surface packing fraction and dipole moment orientation has been observed. In

case that single-thread helices are considered, the lowest cohesive energy is achieved

at the highest surface packing fraction. Besides that, an interesting non-monotonic

behaviour of the cohesive energy as a function of the surface packing fraction has

been obtained. In case of multi-thread helices, a new phase, showing remarkably

lower cohesive energy, has been determined. This phase is referred to as ZZ tube

and it consists of threads following the confining cylinder’s axis, labeled as the z

axis, in terms of both spatial and dipole moment orientation. Actually, in case of

ZZ tubes dipolar hard spheres are arranged into a local triangular lattice, with

densely packed threads following the z axis.

In the scope of this doctoral thesis dipolar configurations under the condition

of cylindrical confinement are considered, meaning that dipolar spheres are placed

on a confining cylinder. First question which arises is what are the possible config-

urations, since there is an interplay between the two components, i.e., positioning



and dipole moment orientation of the particles. For a fixed geometry, only certain

dipole moment orientations lead to stable configurations. The above mentioned two

components can be treated as independent variables, while dependent variable is the

cohesive energy emerging from the dipole-dipole interactions. Accordingly, geome-

try is kept fixed, while dipole moment orientation is varied and the dependence of

cohesive energy on dipole moment orientation is determined. In an analogous way,

dipole moment orientation is kept fixed, while geometry is varied, i.e., the radius

of confining cylinder, leading to the dependence of cohesive energy on geometry.

Besides the cohesive energy, some other dependent variables are considered, like

the total polarization of a dipolar configuration. Except from the theoretical rele-

vance, dipolar tubes and helices represent model systems which might be useful for

other scientific areas. Modeling of dipolar tubes and helices might provide better

understanding of certain biological structures (for example, microtubules) or macro-

molecules (protein folding is dominated by electric dipole-dipole interactions). Due

to the mechanical flexibility of dipolar structures and possibilities of manipulating

them by external electric or magnetic fields, they might be useful in the synthesis

of electronic devices.

In the second part of this doctoral thesis, which is dedicated to ionic systems, a

molecular dynamics (MD) based modeling approach for simulating mesoscopic phe-

nomena related to lubrication with ionic liquid (IL) lubricants has been developed.

In that approach, geometry of the system allows a variable confinement gap between

solid plates and consequently a varying amount of lubricant in the gap. A coarse

grain MD description of: (i) IL lubricant, which can expand into lateral reservoirs,

and (ii) FCC (111) structured solid plates has been employed. Namely, two models

of IL: (a) the salt-like model (SM) and (b) the tailed model (TM) have been imple-

mented. In case of (a) SM model, IL consists of spherical cations and anions, while

in case of (b) TM model, a neutral spherical tail is attached to the cation via an

elastic spring. Three relevant TM models have been examined by varying the size

of neutral tail. The effects of confinement on flow and lubrication properties of SM

and TM ionic liquids, that were subjected to dynamic regimes of cyclic loading and

shearing, have been investigated. The impact of confinement on ionic arrangement



and mechanical response of SM and TM ionic liquids has been studied in detail and

compared to bulk properties. In case of TM models the influence of the molecular

geometry of the cation on the response of IL to confinement and imposed mechan-

ical deformations (normal load, cyclic loading and shearing) has been investigated.

Although it is simple, TM model recovers a wide range of structures seen in bulk

ILs: simple cubic lattice for small tails, liquid-like state for symmetric cation-tail

dimers, and layering for large tails. The dependence of normal force on interplate

gap can be related to ionic layering inside the gap. In investigated TM models of

IL, specific friction is low and friction force decreases with neutral tail size. As a

concluding remark, it has been found that the size of neutral tail from cation-tail

dimer has a huge impact on structure and tribological behaviour of confined ionic

liquids.

Ionic liquids are composed of large asymmetric and irregularly shaped organic

cations and anions. Irregularity effectively prevents low-temperature ordering and

crystallization of ILs, hence they are usually in the melted or glassy state. Physical

properties of ILs: negligible vapour pressure, high-temperature stability, high ionic

conductivity, chemical stability and possibility of external control, make them rele-

vant to various applications. Modeling of ionic liquids is an interesting problem from

the theoretical point of view due to their ordering and possibility of manipulating

them via external electric fields. On the other side, ionic liquids are high quality

lubricants used for friction reduction and wear prevention and modeling of ILs gives

an insight about their industrial applications.

Keywords: dipolar hard spheres, tubes, helices, Lekner summation, ionic liq-

uids, tribological behaviour, molecular dynamics

Scientific field: Physics

Research area: Condensed matter physics

UDC number: 538.9



Modelova�e ponaxa�a prostorno ograniqenih

dipolnih i jonskih sistema

Sa�etak

U ovoj doktorskoj tezi modelovani su i ispitani prostorno ograniqeni

dipolni i jonski sistemi, taqnije dipolne tube i heliksi sastav	eni od dipol-

nih qvrstih sfera i jonske teqnosti. Zajedniqko za ove sisteme je qi�enica

da su im struktura i ponaxa�e prete�no odre�eni dugodometnim interakci-

jama, dipol-dipolnom interakcijom u sluqaju dipolnih sistema, odnosno Ku-

lonovom interakcijom u sluqaju jonskih sistema. Odlika naglaxenog struk-

turnog ure�iva�a formiranih konfiguracija i mogu�nost manipulacije �ima

preko eksterno prime�enih po	a (magnetno/elektriqno po	e u sluqaju magnet-

nih/elektriqnih dipola, odnosno elektriqno po	e u sluqaju jona) privlaqe

pa��u sa aspekta fizike kondenzovane materije.

Prvi deo ove doktorske teze, koji je posve�en dipolnim sistemima, bavi

se istra�iva�em strukture i kohezione energije u tubama i heliksima koji

su sastav	eni od dipolnih qvrstih sfera. Dobijena je kompleksna zavisnost

kohezione energije od povrxinske gustine pakova�a i orijentacije dipolnih

momenata. U sluqaju jednostruko namotanih heliksa, najni�a koheziona en-

ergija postignuta je pri najvixoj povrxinskoj gustini pakova�a. Pored toga,

dobijena je zanim	iva nemonotona zavisnost kohezione energije od povrxinske

gustine pakova�a. U sluqaju vixestruko namotanih heliksa otkrivena je nova

faza, koja pokazuje primetno ni�u kohezionu energiju. Ova faza nazvana je ZZ

tuba, a sastoji se od niti koje prate osu konfiniraju�eg cilindra, oznaqenu

kao z osa, u smislu prostorne i orijentacije dipolnih momenata. Zapravo, u

sluqaju ZZ tuba dipolne qvrste sfere su ure�ene u lokalno trougaonu rexetku,

sa gusto pakovanim nitima koje su paralelne sa z osom.

U okviru ove doktorske teze razmatrane su dipolne konfiguracije pri

uslovu cilindriqnog prostornog konfinira�a, xto znaqi da su dipolne sfere

postav	ene na konfiniraju�i cilindar. Prvo pita�e koje se postav	a jeste



koje su mogu�e konfiguracije, sa obzirom da postoji preplita�e dve kom-

ponente, prostornog pozicionira�a i orijentacije dipolnih momenata qes-

tica. Za fiksiranu geometriju, samo odre�ene orijentacije dipolnih momenata

dovode do stabilnih konfiguracija. Pomenute dve komponente mogu se treti-

rati kao nezavisne promen	ive, a zavisna promen	iva je koheziona energija

usled dipol-dipolnih interakcija. Prema tome, geometrija je fiksirana, a

dipolna orijentacija se varira i odre�uje se zavisnost kohezione energije od

orijentacije dipolnih momenata. Na analogan naqin, dipolna orijentacija je

fiksirana, a geometrija se varira, recimo radijus konfiniraju�eg cilindra,

xto dovodi do zavisnosti kohezione energije od geometrije. Osim kohezione

energije, razmatrane su i druge zavisne promen	ive, kao xto je ukupna po-

larizacija dipolne konfiguracije. Pored teorijskog znaqaja, dipolne tube

i heliksi predstav	aju modelne sisteme koji mogu biti korisni u drugim

nauqnim oblastima. Modelova�e dipolnih tuba i heliksa mo�e pru�iti

bo	e razumeva�e odre�enih bioloxkih struktura (na primer, mikrotubula)

ili makromolekula (savija�e proteina dominantno je odre�eno elektriqnim

dipol-dipolnim interakcijama). Usled mehaniqke fleksibilnosti dipolnih

struktura i mogu�nosti za manipulaciju �ima preko eksternih magnetnih ili

elektriqnih po	a, date strukture mogu biti korisne u sintezi elektronskih

ure�aja.

U drugom delu ove doktorske teze, koji je posve�en jonskim sistemima,

razvijen je pristup u modelova�u na bazi molekularne dinamike (MD) za

simulira�e mezoskopskih fenomena povezanih sa podmaziva�em jonskim teq-

nostima. U tom pristupu, geometrija sistema omogu�ava promen	ivi konfini-

raju�i procep izme�u qvrstih ploqa i poslediqno promen	ivu koliqinu pod-

mazivaqa u procepu. Prime�en je opis na bazi MD ukrup�ava�a skala: (i)

jonske teqnosti kao podmazivaqa koji se mo�e proxiriti u lateralne rezevoare

i (ii) FCC (111) strukturiranih qvrstih ploqa. Naime, implementirana su

dva modela jonske teqnosti: (a) model na bazi soli (SM) i (b) model sa re-

pom (TM). U sluqaju (a) SM modela jonska teqnost se sastoji od sferiq-

nih kationa i aniona, dok je u sluqaju (b) TM modela neutralni sferiqni



rep vezan za kation elastiqnom oprugom. Ispitana su tri relevantna TM

modela varira�em veliqine neutralnog repa. Istra�eni su efekti konfini-

ra�a na protica�e i podmazivaqke osobine SM i TM jonskih teqnosti koje

su izlo�ene dinamiqkim re�imima cikliqnog pu�e�a i smica�a. Uticaj

konfinira�a na ure�iva�e jona i na mehaniqki odziv SM i TM jonskih teq-

nosti deta	no je prouqen i upore�en sa osobinama datih jonskih teqnosti u

balku. U sluqaju TM modela ispitan je uticaj molekularne geometrije kationa

na odziv jonske teqnosti pri konfinira�u i pri zadatim mehaniqkim defor-

macijama (normalna sila, cikliqno pu�e�e i smica�e). Iako jednostavan,

TM model rekonstruixe xiroki opseg struktura vi�enih kod balk jonskih

teqnosti: jednostavna kubiqna rexetka za male repove, teqno sta�e za simet-

riqne kation-rep dimere i ure�iva�e u slojeve za velike repove. Zavisnost

normalne sile od veliqine procepa izme�u qvrstih ploqa mo�e se povezati sa

ure�iva�em jona u slojeve unutar procepa. U ispitanim TM modelima jonske

teqnosti, specifiqno tre�e je malo, a sila tre�a opada sa porastom veliqine

neutralnog repa. Kao zak	uqna napomena mo�e se navesti da je ustanov	eno da

veliqina neutralnog repa iz kation-rep dimera ima veliki uticaj na struk-

turu i triboloxko ponaxa�e konfiniranih jonskih teqnosti.

Jonske teqnosti su sastav	ene od velikih asimetriqnih organskih kationa

i aniona nepravilnog oblika. Nepravilnost oblika spreqava ure�iva�e na

niskim temperaturama i kristalizaciju jonskih teqnosti, tako da su jonske

teqnosti uglavnom u top	enom ili staklastom sta�u. Fiziqke osobine jonskih

teqnosti: zanemar	iv pritisak pare, visokotemperaturna stabilnost, visoka

jonska provod	ivost, hemijska stabilnost i mogu�nost eksterne kontrole qine

ih relevantnim za razliqite primene. Modelova�e jonskih teqnosti je in-

teresantan problem sa teorijskog stanovixta usled strukturnog ure�iva�a i

mogu�nosti za manipulaciju jonskim teqnostima preko eksternih elektriqnih

po	a. Sa druge strane, jonske teqnosti su visoko kvalitetni podmazivaqi

koji se koriste za sma�e�e tre�a i spreqava�e haba�a, a modelova�e jonskih

teqnosti daje uvid o �ihovim industrijskim primenama.
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Chapter 1 Introduction

1.1 General overview

In this doctoral thesis there are two research topics involving systems with long-

range interactions, namely structures composed of dipolar hard spheres and ionic

liquids. Investigation of dipolar hard spheres is directed towards exploring the co-

hesive energy-packing relations, while investigation of ionic liquids is dedicated to

determining the structure, flow properties and tribological behaviour of confined

ionic liquids. In a higher instance the topics share two important aspects which

unify them: long-range interactions and accentuated self-assembly behaviour. Both

dipole-dipole interaction in dipolar systems and Coulombic interaction in ionic sys-

tems are long-ranged. An interaction V (r) depending on the distance between the

interacting particles r as V (r) ∝ r−p is considered to be long-range interaction if

it meets the condition: p ≤ nd, where nd is the dimensionality of the system. In

case of the dipole-dipole interaction, which has the same functional form (up to a

constant) for magnetic and electric dipoles, it stands Vdd ∝ r−3, while in case of

Coulombic interaction VClb ∝ r−1. In case of a 3D system, i.e., nd = 3, both of the

mentioned interactions meet the criterion of being long-range interactions. Another

mutual feature of both of those systems is accentuated self-assembly under the con-

ditions of spatial confinement. Dipolar hard spheres self-assemble into tubes and

helices on a confining cylinder. It is possible to obtain ordering of ionic liquid into

regular cationic-anionic layers, starting from a random arrangement of ions, in case

that ionic liquid is placed into a gap between two solid surfaces. A common conse-

quence of long-range interactions is ordering of the particles on length scales which

are much longer than the size of the particles itself. One might expect that the na-
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ture of long-range interactions combined with the conditions of spatial confinement

should lead to the emerging of ordered and stable structures. The systems that have

been investigated in this thesis are 3D and they are also infinite: (i) tubular and

helical dipolar structures are 1D infinite and periodic, (ii) ionic liquid is 2D infinite.

Besides the self-assembly under conditions of spatial confinement, mutual for both

systems is rich behaviour in terms of state and phase transitions.

1.2 Confined dipolar systems

Particles with permanent dipole moment are known for outstanding self-assembly

properties [1–3]. Self-assembly of hard dipolar spheres is an active research topic

dedicated to the investigation of the mechanisms by which ordered dipolar struc-

tures form. To be more precise, we are focused on the self-assembly of spatially

confined dipolar systems. Spatial confinement imposes formation of specific struc-

tures, e.g., cylindrical confinement imposes self-assembly of particles into tubular

and helical structures. Interaction of each pair of dipolar particles is the dipole-

dipole interaction, which is described by the same term (up to a constant) in case

of both magnetic and electric dipoles. Therefore, we consider structures composed

of dipolar hard spheres in a general case. Depending on given examples in nature

or technology, we compare considered structures with building elements composed

of particles with permanent magnetic or electric dipole moment. Self-assembly of

dipolar particles and a large number of different ways for their application have al-

ways been attracting interest due to a spontaneous transition from disordered into

ordered state. This topic is attractive because it is relevant from theoretical point of

view since dipole-dipole interaction is a long-range and anisotropic interaction which

leads to the complexity of structures formed via dipole-dipole interaction. Besides

that, examples of dipolar structures in nature and technology are numerous, espe-

cially in biology and some areas of nanotechnology.

Generally speaking from the aspects of geometry and without the need for the

presence of dipole-dipole interaction in given examples, tubular and helical struc-

tures are basic structural elements in many biological systems. Those structures are

2



1. Introduction

important building blocks of cells. Illustrative examples include bacterial flagella [4]

and microtubules [5, 6]. Additional examples of tubular and helical structures can be

found in various materials with specific building blocks, which can be: coiled carbon

nanotubes [7], DNA molecule [8], nanoparticles [9], amphiphilic molecules [10–12].

In biology there is an example of magnetotactic bacteria whose dynamics is espe-

cially sensitive under external magnetic field, so that microstructures formed by

those bacteria can be manipulated via application of external magnetic field [13].

Another example of the importance of dipole-dipole interaction in biology is the

formation of proteins. All processes in protein formation, i.e., folding of individual

aminoacids into a secondary structure and later-on formation of tertiary and qua-

ternary structures, depend on electric dipole-dipole interactions [14, 15]. Formation

of erythrocytes, which have a vital importance for human health, is realized through

several steps. Each of those steps includes electric dipole-dipole interactions. Any

kind of mutation which harms the dipole-dipole interaction suppresses proper for-

mation of erythrocytes, which as a response disables their capability of transporting

oxygen in the blood system.

In nanotechnology self-assembly of binary mixtures of magnetic nanoparticles

can lead to the synthesis of very strong magnets [16]. Interaction between magnetic

planar layers can enable formation of 3D structures with a great potential of applica-

tions in microfabrication of electronic devices [17]. Ground states of microstructures

in ferofluid monolayers, in which the interaction between magnetic particles is the

dipole-dipole interaction, have been studied in detail [18].

In the following text an overview of the accomplishments in experimental and

numerical studies of helical structures’ formation is given. Self-assembly of cubic

magnetic nanoparticles [19] and colloidal magnetic clusters [20] into helical struc-

tures has been accomplished experimentally, without the need for the pre-existing

templates. Another result following this research line tells that hard spherical par-

ticles confined inside narrow cylinders spontaneously group themselves into helical

structures. This has been achieved both via numerical simulations [21, 22] and

experimentally [23]. Hard spheres with a permanent dipole moment can be uti-

lized as a model for describing more complex helical molecular structures [24] and
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microtubules [25, 26].

The overview of the topic related to the self-assembly of dipolar particles should

mention the pioneering theoretical work of Jacobs and Beans [27] followed by the

work of De Gennes and Pincus [28]. Those works have provided the insight into

the microstructure of self-assembled spatially free spherical dipoles. More recently,

ground states of self-assembled magnetic structures have been thoroughly investi-

gated via numerical simulations [29]. The results of that paper have shown that for

the number of particles N ≥ 14 ground state is obtained via ring stacking into tubes.

In the experimental work [30] mechanical properties of the chains, rings and tubes

composed of ferromagnetic hard spheres of macroscopic dimensions (e.g., diameter

of particles is 6 mm) have been investigated. Besides that, the authors of that

work have provided an illustrative example which shows a spontaneous wrapping

of a straight chain into a tube. A general scientific problem of understanding the

mechanisms via which the building blocks, i.e. dipolar hard spheres, self-assemble

into structures and gain functionality is demanding and has a wide scientific impor-

tance [31–34].

In this thesis one of the two directions of research is dedicated to the modeling of

confined dipolar systems. By confinement we assume cylindrical confinement, i.e.,

dipolar hard spheres are constrained to compose a configuration on top of an imag-

ined cylinder, at a cylinder’s prescribed radius. Following this problem definition,

we systematically investigate long tubes and helices. The tubes are formed via ring

stacking, i.e., by periodical repeating of an unit cell containing a ring along an axis.

The helices are formed by rolling of one or multiple threads on a cylindrical confine-

ment surface. In terms of geometry, rolling is very much like 1D crystal formation,

which is conducted by replicating a patch of dipolar spheres on a cylindrical con-

finement surface along the helix backbone. There is an endless number of different

helical configurations, but we point out that the densely packed structures exist at

well-defined points in parameter space.

In Reference [35], very much in analogy to carbon nanotubes (CNTs), it was

shown that densely packed helices are defined by two numbers: lattice patch dimen-

sions n1, n2. The lattice patch dimension n1 is an integer which counts the number
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of spheres in one full turn around the confining cylinder and it is directly related to

the radius of a helix. An increase of n1 corresponds to the increase of the radius of

a helix. On the other side, the lattice patch dimension n2 is an integer which counts

the number of threads building up the helix and equivalently it counts the number of

spheres along the confining cylinder’s surface between two consecutive helix turns.

Realizing the fact that helix formation is dictated by those two preferential direc-

tions, i.e., turns around the cylinder’s surface (related to n1) and threads along the

cylinder’s surface (related to n2), we have decided to assign to the particles dipole

moments following those two preferential directions. We have defined ~a1 and ~a2

dipole moment orientations. In both of them the dipole moment of a certain sphere

points to its consecutive sphere, where in the first case consecutive spheres com-

pose turns around the confining cylinder, while in the second case they follow the

threads along the cylinder’s surface. Besides those two dipole moment orientations

assigned according to the geometrical features of helices, we have performed energy

minimization in order to obtain dipole moment orientation which corresponds to

the ground state and that type of dipole moment orientation is called ground state

dipole moment orientation. We show that pairs (n1, n2) represent the two numbers

of threads which can generate geometrically the same densely packed helices, how-

ever those helices are energetically completely different depending on the type of

their dipole moment orientation. We should mention that densely packed tubes are

basically sub-classes of helices (similar to armchair and zig-zag CNTs) for special

cases of the values of lattice patch dimensions n1, n2.

1.2.1 Outline of the research on cylindrically confined dipolar

systems

The goal of the study of confined dipolar systems, i.e., dipolar tubes and helices,

is to address the intimate link between the microstructure and cohesive energy. In

order to do so, it was necessary to precisely define the geometry, establish dipole

moment orientations and appropriately calculate cohesive energy. The research deal-

ing with confined dipolar systems (except for the parts related to introduction and
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conclusions) is placed in the chapter Confined dipolar systems, which consists of five

sections. In the section Geometry of helices and tubes composed of hard spheres the

geometry is explained in details. Next, the dipolar interaction model is introduced

and a link between the dipole distribution and the microstructure is established in

the section Dipole moments. Speaking in terms of cohesive energy, since the dipolar

hard spheres interact via two interaction potentials: potential of hard spheres and

dipole-dipole interaction potential, an appropriate method for summing the dipole-

dipole interactions should be implemented. Once that task is realized, an efficient

energy minimization method for determining the ground state of dipolar structures

should be introduced. In the section Methods the Lekner-type method for summing

the dipole-dipole interactions which we have implemented for calculating the cohe-

sive energy of considered dipolar structures is presented. Besides that, the method

for obtaining the ground state dipole moment orientation of a given dipolar struc-

ture is presented as well. At that point, after the geometry, dipole moments and

method for treating long-range dipole-dipole interactions are established, it is pos-

sible to switch the focus to configuration-cohesive energy relations. Namely, in the

section Degeneracy in 2D triangular and square lattice and properties of tubes it is

shown that triangular and square lattices of dipolar hard spheres posses degeneracy

in terms of cohesive energy, which breaks-up with curvature in case of AA and AB

tubes. In the following section Cohesive energy-packing relations in dipolar helices

starting from the simplest case corresponding to a single-thread helix, the relation-

ship between the surface packing and the resulting macroscopic properties, such as

cohesive energy or overall polarization, is discussed. Then, the more complex situa-

tion of multi-thread helices with densely packed constitutive particles is addressed.

There, the degree of alignment (especially in the ground state) between dipole mo-

ment orientation and helix axis is analyzed. In the section Confined dipolar systems

of the chapter Conclusions, the conclusions and possible connections of the investi-

gated model system with some real systems, namely with biological microtubules,

are given.
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1.3 Motivation for the research of ionic liquids

Tribology is the name of a multidisciplinary scientific area which is related to the

phenomena of friction, lubrication and wear. In tribology, the knowledge and com-

petences of physics, chemistry and high performance computing are overlapped and

combined [36]. Term nanotribology is related to the specific branch of tribology

which studies the phenomena of friction, lubrication and wear at the nanoscale.

Scientific discipline of computational nanotribology has been well-established in the

last couple of decades [36, 37]. Powerful computational resources enable application

of the methods of computational nanotribology in the cases of increasing complexity.

There are numerous systems which are of interest in the field of computational

nanotribology, however we have focused on ionic liquids. They are a promising

candidate for the applications as a high quality lubricant, especially in automotive

industry. Bearing that in mind, our investigation in the framework of this topic is

directed towards the understanding of physical properties of ionic liquids related to

the friction, lubrication and wear phenomena. After gaining a relevant expertise, we

might realize the potential of using ionic liquids as a lubricant in automotive indus-

try. Let us start the considerations with this, in a certain way surprising fact, that

approximately one-third of the fuel energy in a passenger car is consumed by fric-

tion [38]. Therefore, understanding of the lubrication mechanisms in an automotive

vehicle’s engine is highly important. Numerical simulations at the molecular scale

can provide insights which are necessary for understanding the mechanisms govern-

ing the system’s behaviour, such as structural changes in the lubricant layers during

shearing and normal load application, as well as the interaction between the lubri-

cant and solid surfaces. In recent studies of the nanoscopic friction phenomenon,

based on the Molecular Dynamics (MD) method, ionic liquids are considered as a

lubricant [39]. The width of lubricating films of just a few molecular layers is relevant

for suppressing wear and achieving low friction [40–43]. In 2001, for the first time

it was published that ionic liquids have a great potential as lubricants. Since then,

they attract attention in the field of tribology due to their remarkable characteris-

tics relevant for lubrication and wear prevention, when compared to conventional
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lubricating oils which are generally used. The number of publications dealing with

ionic liquids is constantly increasing, in both forms of journal articles and industrial

patents. Therefore, there is a wide interest for this topic from both fundamental

and industrial aspects [44].

In industrial applications, there are considerations of using ionic liquids as a neat

lubricant and as an additive [45–47]. Significant improvements in friction and wear

reduction have been achieved experimentally [46]. Namely, in Reference [46] the

authors have achieved coefficient of friction reduction for 60% and wear reduction

for three orders of magnitude. They have added and mixed certain ionic liquids with

synthetic lubricating oils.

Understanding and description of nanoscopic friction in ionic liquids, as well as

their structure under imposed conditions, represents a challenging scientific problem

and so far there have been just a couple of studies in this direction, e.g., Refer-

ences [48, 49]. Detailed studies of ILs at the nanoscale using the methods of com-

putational physics provide a wider perspective as compared to experimental studies

where the investigation is restricted to certain ILs which posses certain values of

relevant physical parameters. On the other side, in simulations ILs are considered

in a generic way and it is possible to explore a wide range of parameter values.

Practically, it means that simulations enable the design of favourable characteristics

of ILs, and later–on it is possible to experimentally synthesize certain ILs, based

on the simulated ones.

In this thesis one of the two directions of research is dedicated to the modeling

of confined ionic systems, namely ionic liquids (ILs). In order to better understand

the structure and behaviour of confined ionic liquids, we investigate the same ionic

liquids in the bulk state, as well. We have started from the basis, by implementing

and studying the simplest IL model which includes a positively charged spherical

cation and a negatively charged spherical anion, i.e., SM (salt-like model). This

was followed by the implementation and investigation of a more realistic IL model

which includes a positively charged spherical head connected by an elastic spring

with a neutral spherical tail and a negatively charged spherical anion, i.e., TM

(tailed model). Our interest in modeling ionic liquids comes from its scientific im-
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portance. However, we bear in mind potential applications of ILs as high quality

lubricants, hence we guide our research towards exploring IL lubricating properties.

Simulation setup with two solid plates between which IL is confined, is designed

with the aspirations of probing IL lubricating abilities. To enclose this exposé, in

this section we provide general introduction into ionic liquids, which is followed by

the introduction into SM and TM model based studies, respectively.

Ionic liquids are two-component systems composed of large asymmetric and ir-

regularly shaped organic cations and anions. The feature of irregularity is important

as it is effectively preventing low-temperature ordering and crystallization. There-

fore, ILs are usually in the melted or glassy state. Physical properties of ILs like

negligible vapour pressure, high-temperature stability, high ionic conductivity and

also a great variety of ILs and their mixtures highlight them as potentially relevant

to lubrication [44, 50]. In addition, their properties can be modified by an applied

voltage using confining charged surfaces in order to build–up an electric field across

the nanoscale film. The applied potential can affect the structure of IL layers and

lead to externally controllable lubricating properties [49, 51, 52].

A large number of variations in IL composition is possible, estimated at the or-

der of magnitude of 1018 different ILs [53]. From their variety stems the possibility

of tuning their physicochemical properties which can affect lubrication such as vis-

cosity, polarity, surface reactivity by varying their atomic composition, as well as the

cation-anion combination. Hence, it would be advantageous if we could deduce the

general relations between the molecular structure and the anti-wear and lubrication

properties of ILs.

Previous work employing Lennard-Jones fluids has provided insights into the

complete dynamic diagram of confined liquids, including wall slip, shear banding and

solid friction. In terms of fluid complexity these studies have mainly employed mono-

molecular systems, and only a few authors have considered mixtures of molecules [54,

55]. In addition to inherently being a mixture of cation and anion molecules, ILs

involve long-range Coulombic interactions inducing long-range order on far greater

scales than the IL itself [39, 43, 56]. Detailed investigation of ILs as lubricants

at the nanoscale is therefore essential for exploring the potentials of implementing
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them in lubrication systems.

Our specific goal, related to industrial applications of IL lubricants, is to achieve

a representation of the tribological system which is relevant to automotive power-

train applications. As approximately 45% of the engine friction losses occur in the

piston assembly [38], our initial target is to mimic the conditions observed in the

piston ring–cylinder liner contact, in terms of pressure, temperature and shear rates.

In addition, in order to be able to achieve length– and time– scales that can be of

relevance to the real–life systems, it is necessary to apply appropriate simulation

methodologies, such as the use of coarse grain molecular dynamics [57–60].

1.3.1 Salt model of ionic liquid

The focus of our study employing the SM ionic liquid, which contains salt–like

spherical cations and anions, is on investigating lubricating ability and flow proper-

ties of ILs. Regarding the ability of ionic liquids to dynamically penetrate between

surfaces, i.e. wetting, sometimes it is considered that a low contact angle of the

lubricant indicates the affinity between the liquid and the surface, since the liquid is

more likely to stay in the area in which it was initially placed. It is also expected that

a lubricant is going to penetrate into small–gap components. However, the effect of

wettability of the ionic liquids is not understood well. The wetting of plate surfaces

such as mica is known to be partial by at least some ILs [61, 62]. Lubrication

necessarily involves intimate molecular features of the liquid–solid plate interface,

related with those mechanisms determining the ionic liquid’s wetting of the plate.

When ILs are used as lubricants and, as such, confined between solid plates, their

ions are ordered into layers and adsorbed onto surfaces [63]. These adsorption layers

can reduce friction and wear, particularly in the case of boundary lubrication [63].

Recent studies of IL lubricants [49, 51, 52, 64] have shown that if the molecules

interact via non–bonded potentials (Lennard–Jones and Coulombic potential), this

can capture all main physical attributes of the IL–lubricated nanotribological sys-

tem. Therefore, molecular–scale simulations can provide important insights which

are necessary for understanding the differences in flow behaviour between bulk and

confined liquid lubricants and the mechanisms behind, such as boundary layers for-
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mation in case of shearing and/or applied normal load.

We utilize our coarse grain MD simulation setup consisting of two solid plates

and an ionic liquid lubricant placed between them [64]. The motivation for the

chosen values of relevant model parameters (i.e. velocities, pressures, temperatures,

time duration of simulations) comes from potential applications of ILs as lubricants

in automotive industry. Under typical operation of internal combustion engines,

the conditions inside the combustion chamber vary significantly. Temperature can

range from 300 K to the values higher than 2000 K, while pressure ranges from

atmospheric to the values higher than 10 MPa [38]. The piston reciprocates with

a sinusoidal velocity variation with speeds varying from zero to over 20 m/s, with

a typical velocity being around 1 m/s. The time required for one revolution of the

engine is of the order of 10−2 s, while the total distance travelled by the piston over

this period is of the order of 0.2 m. Such scales are typically modeled using contin-

uum mechanics simulations. However, such simulations cannot provide the physical

insight which is necessary for understanding the molecule–dependent processes that

affect the tribological phenomena. Therefore, we have implemented a coarse grain

MD simulation setup which can, inter alia, provide useful insights into lubrication

mechanisms of piston ring–cylinder liner contact in automotive engines. Our sim-

ulation setup consists of two solid plates and an IL placed between them. It also

includes lateral reservoirs into which the IL can dynamically expand.

The determination and design of new applicable lubricants require understanding

of both general and specific behaviour of liquids when exposed to nanoscale confine-

ment, shearing and normal load. In accordance with those facts, our focus is on

determining general features of ILs as nanoscale lubricants. Hence, we have chosen

the model of a generic IL which is simple in order to provide a wide perspective of

relevant mechanisms governing the IL lubrication principles.

1.3.2 Tailed model of ionic liquid

Since 2001., when ionic liquids were first considered for lubrication applications [65],

there has been a large number of experimental studies in that direction. It has been

observed that the alkyl chain length of the cations affects the IL viscosity [44],
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melting point [44] and pressure-viscosity coefficients [66]. Related specifically to

lubrication, References [53, 67] explored the impact of cationic alkyl chain’s length on

the tribological properties of ILs. ILs considered in those references have the same

cations but different anions: symmetric hexafluorophosphate [PF6]− and asymmetric

bis(trifluoromethylsulfonyl) imide [Tf2N ]−, respectively. Still, while the authors of

Reference [67] observed that the coefficient of friction (COF ) decreases from 0.25 to

0.15 with the increase of alkyl chain length nC = 2 to 12 (nC is the number of carbon

atoms), the authors of Reference [53] observed that the COF increases from 0.025

to 0.1. The IL′s wetting properties are also sensitive to its molecular geometry. ILs

change wetting behaviour depending on the anion size [61, 62, 68]: from the absence

of wetting to partial or complete wetting. A well–studied IL [BMIM ]+ [PF6]−

exhibits full wetting at the interface with mica substrates [62, 68]. On contrary,

[BMIM ]+ [TFSI]− shows partial wetting on mica [61, 62]. In these examples, ILs

have the same cation and different anions.

An important observation about the structure of confined ILs is their arrange-

ment into positively and negatively charged ionic layers and adsorption onto solid

surfaces [63, 69]. These ionic adsorption layers should reduce friction and prevent

wear, especially in the case of boundary lubrication [63]. The wear is reduced pri-

marily in two ways: via high load-carrying capability and self-healing of adsorbed

IL layers. Still, these two processes seem conflicting with each other since high load-

carrying capability requires strong adsorption of the lubricant to the surface while

self-healing requires high mobility [36]. Understanding the driving forces between

them requires relating the molecular structure and flow properties of confined IL.

In Reference [70] the authors have evaluated tribological properties of different ionic

liquids by pendulum and ball on disk tribo testers. They have considered ILs con-

sisting of imidazolium cations with different alkyl chain length and [Tf2N ]− anion as

lubricants. Their main observation is that the increment of alkyl chain length can re-

duce friction and wear of sliding pairs in the elastohydrodynamic lubrication regime

(EHL) as a consequence of increased viscosity. Generally, the conclusion is that

longer alkyl chains lead to better tribological performance. Related to the impact of

alkyl chain length on the structure of ILs, in Reference [71] the authors have experi-
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mentally obtained the formation of tail–to–tail bilayers of cations if their alkyl chain

length is large, in case of confinement between solid surfaces. Their observations

are in accordance with other experimental investigations of IL lubricants [72–74].

It is worth of mentioning that we have obtained similar configurations via numerical

simulations of ILs confined between two solid plates, where tail–to–tail formation

in the middle of the interplate gap is visible.

The focus of our TM model based study is on the systematic investigation of the

flow properties and lubrication mechanisms of ionic liquids modeled with a generic

coarse grain model which considers a variable shape of the cation. We investigate

the impact of cationic tail size on the structural and tribological properties of ILs

via MD simulations. Such an idea is meaningful since previous theoretical studies

have pointed out that confinement modifies the behaviour of ILs and despite the

good wetting nature, the slip is present at the plates [43]. Coulombic interactions

in ILs induce long-range ordering [39, 43, 56], which in turn can influence their

lubrication response. Previously, coarse grain MD simulations [40–42, 57–60] were

used to study thin lubricant films subjected to the shearing between solid plates.

1.3.3 Outline of the research on model ionic liquids

The research dealing with ionic systems (except for the parts related to introduction

and conclusions) is presented in chapter Ionic liquids, which consists of four sections.

Let us present them briefly in the following text. A method of choice for studying

the structure and lubrication characteristics of ionic liquids at the nanoscale, in the

framework of this doctoral thesis, is Molecular Dynamics (MD) method. Accord-

ingly, in section Methods MD method and LAMMPS code for molecular dynamics

are introduced. This is followed by section Simulation setup and models of ionic

liquid which describes the SM and TM models of ionic liquid in detail, as well as

the implementedMD simulation setup. The focus of Bulk ionic liquid section is first

on obtaining the relaxed structure and then on calculating the viscosity coefficient

of bulk SM and TM ionic liquids. In the following Confined ionic liquid section,

static and dynamic behaviour of confined SM and TM ionic liquids are presented

and discussed. This section also presents the results of confined IL′s tribological
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behaviour. In chapter Conclusions, section Ionic liquids, conclusions and prospects

of future directions in the investigation of ILs from both, theoretical and industrial

aspects, are given.
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Chapter 2 Confined dipolar systems

2.1 Geometry of helices and tubes composed of hard spheres

2.1.1 Geometry of helices

2.1.1.1 Geometry of single-thread helices

In the framework of this study, helices are composed of hard spherical particles and

they are confined to a cylinder’s surface, i.e., the helices are formed by rolling threads

of hard spherical particles on the cylindrical surface of radius Rcyl [75]. Geometrical

parameters that define a single helix are: the azimuthal angular shift Γ between

the centers of two successive particles and the radius of the helix R = Rcyl + d/2,

where d stands for the hard sphere diameter, see Figure 2.1. The radius R physically

represents the distance of the closest approach between cylinder axis and center of

the spherical particle. The Cartesian coordinates of particle i in a single helix are

calculated as:

xi = R cos (iΓ) ,

yi = R sin (iΓ) ,

zi = i∆z, (2.1)

where i ∈ Z and assuming that one particle is at (x, y, z) = (R, 0, 0). The distance

between the centers of each two successive particles along the helix axis is labelled

as ∆z, see Figure 2.1. When constructing a helix, its radius R and azimuthal

angular distance Γ have to be chosen in a way which ensures non-overlapping of

hard spheres. The non-overlapping constraint is expressed for any two particles i, j
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Figure 2.1: Illustration of a single thread helix with relevant geometrical parameters
(R,Γ,∆z) labelled. The black bold line connecting spherical particle centers repre-
sents backbone of the helix. In upper part of the figure, the azimuthal dipole moment
orientation α is defined in a local coordinate system with its origin corresponding
to the particle center. The z′ axis is parallel to the cylinder axis.

as |−→rij | ≥ d. Since the helix thread is connected everywhere, any two successive

particles are touching. Starting from Equation 2.1 we can obtain ∆z as a function

of other two variables, i.e., as a function of R and Γ. Let us write down Equation 2.1

taking the values of the index i = 1, 2: x1 = R cos Γ, y1 = R sin Γ, z1 = ∆z;x2 =

R cos (2Γ) , y2 = R sin (2Γ) , z2 = 2∆z. Distance between the centers of those two

successive spheres is equal to the sphere diameter d, hence it stands:

d =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (2.2)
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Taking the relations: x2 − x1 = R (cos 2Γ− cos Γ), y2 − y1 = R (sin 2Γ− sin Γ),

z2 − z1 = ∆z, and replacing them into Equation 2.2 we obtain:

d2 = R2 (cos 2Γ− cos Γ)2 +R2 (sin 2Γ− sin Γ)2 + ∆z2. (2.3)

From Equation 2.3 we obtain:

d2 = R2
(
cos2 2Γ− 2 cos 2Γ cos Γ + cos2 Γ + sin2 2Γ

−2 sin 2Γ sin Γ + sin2 Γ
)

+ ∆z2. (2.4)

Bearing in mind the relations of trigonometry: sin2 x+cos2 x = 1, sin 2x = 2 sin x cosx,

cos 2x = cos2 x− sin2 x, we obtain:

d2 = 2R2 (1− cos Γ) + ∆z2. (2.5)

Rearrangement of the previous equation leads to the relation expressing ∆z as a

function of R and Γ:

∆z =
√
d2 + 2(cos Γ− 1)R2. (2.6)

Thereby, variables ∆z, R and Γ are not independent. Clearly, with decreasing ∆z

(i.e., increasing Γ) helices become more compact. Because of the connectivity, every

particle in a helix has at least two neighbors, i.e., the coordination number, nc, is

always greater or equal than two (nc ≥ 2). We define coordination number of a helix

as the number of neighbors each particle has, with the exception in case of particles

at helix ends, since they have less neighbors. The highest packing density of the

particles for prescribed helix radius R will be achieved when successive helix turns

touch. In this situation of touching turns, the coordination number nc can be either

four or six. Therefore, in general, nc ∈ {2, 4, 6}, where the case nc = 2 corresponds

to non-touching turns. Based on the coordination number nc, we can classify helices

as follows (see Figure 2.2(a)-(c)). Examples of helices with two neighbors nc = 2

and four neighbors nc = 4 at a prescribed cylindrical confinement, e.g., R/d = 1.78,

are sketched in Figure 2.2(a) and (b), respectively. For a number of well-defined
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2. Confined dipolar systems

Figure 2.2: Illustration of different classes of helices, based on coordination number
nc = {2, 4, 6}. (a) Helix with non-touching turns (nc = 2). (b) Helix with touching
turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate, the
so called, (d) AA, (e) AB, and (f) Z tubes. The tubes can be created by strict
axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for
Z tubes the unit ring has a ’zig-zag’ shape. The radii of AA and AB tubes are the
same R/d = 1.93.

radii, as discussed in details in the coming sections, densely packed helices with six

neighbors (nc = 6) can be formed, see Figure 2.2(c). In the following sections of

this chapter, we will also investigate stacked rings forming the so-called tubes, also

depicted in Figure 2.2(d)-(f).

2.1.1.2 Order parameters for single-thread helices

The surface packing fraction is defined as the ratio of the area S = πd2/4 covered by

one particle and the area available for one particle Savail, in an unrolled configuration:

η = S/Savail. (2.7)

Since the distance along the z axis between successive particles is ∆z, by param-

eterization of the helix backbone we obtain for arc length covered by one particle

L1 = [(ΓR)2 + (∆z)2]1/2. The available area per particle is Savail = (2π/Γ)∆zL1.
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Following the definition of the surface packing density we obtain:

η =
d2

8∆zR
. (2.8)

For comparison we are going also to derive packing fraction for the tubes:

• The surface packing fraction of AA tubes is given by:

ηAA = Nringd/8RAA, (2.9)

for an AA tube with Nring particles per ring and the confinement radius

RAA/d = 1/ [2 sin (π/Nring)], see Figure 2.2(d) for a microstructure withRAA/d =

1.93.

• Similarly, for AB tubes, the packing fraction is:

ηAB = Nringd
2/8RAB∆zAB, (2.10)

with RAB = RAA. Here, the elevation ∆zAB between two consecutive rings is:

∆zAB = (d/2)
√

2 + 2 cos (π/N)− cos2 (π/N). (2.11)

• For Z tubes, the packing fraction is:

ηZ = Nringd/8RZ, (2.12)

with confinement radius RZ/d =
√

3/ [4 sin (π/Nring)].

To further characterize the helical microstructures, we introduce an additional

geometrical order parameter ξ which is valid for nc = 4 and 6. This order parameter

connects an individual reference particle 0 located at ~r0 in the helix with its two

neighbors: its immediate successive particle 1 in the turn ((~r01 = ~r1 − ~r0) and a

neighboring particle 2 from the next turn (~r02 = ~r2 − ~r0), see Figure 2.3(a). The
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2. Confined dipolar systems

Figure 2.3: (a) Illustration of a helix made of hard spheres, helix backbone (solid
line), and the vectors connecting a reference particle 0 located at (x, y, z) = (R, 0, 0)

with its neighbours: an immediate successive particle 1 in the turn located at (~r01)
and a neighbouring particle 2 from the next thread turn at (~r02). (b) Overview
of the principal geometrical parameters of nc = 4, 6 helices: elevation angle Θ and
azimuthal angular shifts Γ1 and Γ2 (see Equation 2.17). The corresponding elevation
distances of successive particles along helix axes ∆z1,2 (see Equation 2.20) are also
given for two possible rolling of the same helix configuration.

angular coordination order parameter is conveniently defined as:

ξ = 2
|−→r01 · −→r02|

d2
. (2.13)

In the two limiting cases, the angular coordination order parameter has values:
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2. Confined dipolar systems

ξmin = 0, for a locally square lattices on a cylinder (e.g., AA tubes, check Fig-

ure 2.2(d)) and ξmax = 1, for a locally triangular lattice (e.g. AB tubes, check

Figure 2.2(e)). In all other cases, the value of the angular coordination order pa-

rameter ξ is between those two extreme values, i.e., 0 ≤ ξ ≤ 1.

2.1.1.3 Geometry of multi-thread helices

The densely packed helices (nc = 6) can be created, in analogy with carbon nan-

otubes, by rolling a ribbon of a triangular lattice on a cylinder surface [35]. We deal

with cylindrical geometry, infinite in one direction. We can generate these helical

structures by periodical reproduction of a curved patch (unit cell) along the helical

line with spanning vectors (~a1,~a2). This curved unit cell has n1 particles along the

~a1 direction and n2 particles in the ~a2 direction. The values n1 and n2 can be seen

as the two possible widths of the ribbon generating the same helical structure.

Since we deal with hard spheres and we aim to build very dense structures,

the parameter space (R,∆z, n1, n2) is significantly restricted. We are going to find

out that only two of these parameters are independent. There exists a relationship

linking the elevation angle Θ = arcsin(∆z/d) and the confinement radius R, see

Reference [35]. Bearing in mind that for any pair (n1, n2) or equivalently (n2, n1),

we have a unique corresponding structure with nc = 6, one arrives at the following

two independent equations:

Θ(n1, n2) = arctan

( √
3n2

2n1 + n2

)
(2.14)

and

π = n1 arcsin

[(
d

4R

)
2n1 + n2√

n2
1 + n2

2 + n1n2

]

+n2 arcsin

[(
d

4R

)
2n2 + n1√

n2
1 + n2

2 + n1n2

]
. (2.15)

We have solved those two equations in Mathematica software package [76] and ob-

tained the sets (Θ, R/d) shown in Figure 2.4. For each value of R there are two
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2. Confined dipolar systems

different values of Θ, symmetric around Θ = 30̊ , which correspond to lattice con-

stant pairs (n1, n2) and (n2, n1), respectively. The (n1, n2) pairs are actually identi-

cal structures with opposite chirality [77]. The six-fold rotational symmetry of the

lattice restricts Θ ∈ [0̊ , 60̊ ].

We now look into properties of (n1, n2) pairs in order to characterize the multi-

thread structure of six neighbor helices (nc = 6). First, we identify the link between

nc = 6-tubes and the (n1, n2) pair values. The pairs (0, n2) and (n1, 0) leading

to Θ = 60̊ and 0̊ , respectively, represent AB tubes, check Figure 2.4. The pairs

with n1 = n2 corresponding to Θ = 30̊ lead to Z tubes that are characterized by

constitutive straight filaments parallel to the Z tube axis, see Figure 2.2(f). The

curve with n1 = 1 (with n2 ≥ 3) corresponds to a single helix, n1 = 2 (with n2 ≥ 3)

corresponds to a double helix, n1 = 3 (for any n2 ≥ 4) corresponds to a triple helix,

and more generally an n1-helical structure is obtained when n2 ≥ n1 +1. We employ

Cartesian coordinates to express positions of particles in an n−helix similarly to the

single helix case, using two indices, i ∈ Z and j = {1, n}:

xi+jn = R sin (iΓ1 + jΓ2) ,

yi+jn = R cos (iΓ1 + jΓ2) ,

zi+jn = i∆z1 + j∆z2. (2.16)

In Equation 2.16, Γ1 represents the azimuthal angular shift between each two con-

secutive particles along a given thread and Γ2 is the angular shift between threads,

i.e., densely packed directions in a superstructure, see Figure 2.3(b). The azimuthal

angle Γ1 is merely provided by :

Γ1 = arccos

[
1−

(
d√
2R

cos Θ

)2
]
. (2.17)

The angular shift Γ2 between threads is more delicate to derive. Knowing that

starting from the reference particle it is possible to reach the same particle position

following two paths along threads (in ~a1- or ~a2-direction), one can arrive at a relation
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2. Confined dipolar systems

Figure 2.4: State diagram in the (Θ, R/d)-plane showing possible unit cells charac-
terized by (n1, n2) pairs. Solid lines represent unit cells with n2 fixed, and the dashed
ones represent unit cells with n1 fixed. The three horizontal lines (dot-dashed) cor-
respond to tubes.

linking Γ1 and Γ2:

2π = (n1 + n2)Γ1 − n2Γ2. (2.18)

The dependence of angle parameters Γ1 and Γ2 on the reduced helix radius R/d is

displayed in Figure 2.5, for Θ < 30̊ in the single helix (n2 = 1, n1 ≥ 4), the double

helix (n2 = 2, n1 ≥ n2) and the quadruple helix (n2 = 4, n1 ≥ n2). In our notation,

multi-thread helices are named after the smallest unit patch particle dimension, i.e.,

the smallest number of generating threads. As the helix radius R/d increases, the

value of Γ1 monotonically decreases, since additional particles are added to a turn.

The angular parameter Γ2 monotonically decreases only for n2 = 1. The scenario

becomes qualitatively different at n2 ≥ 2 where non-monotonic behavior is found,

see Figure 2.5. This feature can be rationalized as follows. The smallest compatible
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2. Confined dipolar systems

Figure 2.5: Dependence of azimuthal angular shift parameters Γ1,Γ2 coming from
corresponding spanning vectors ~a1,~a2, respectively, on reduced helix radius R/d, for
single thread (n2 = 1), double thread (n2 = 2), and four-thread (n2 = 4) helices.

radii R with n2 ≥ 2 and Θ < 30̊ , are obtained when n1 = n2 (check Figure 2.4)

corresponding to Z tubes where Γ2 = 0. Besides that, Γ2 tends to zero for vanishing

cylinder curvature (R/d → ∞). These are the reasons why the profile of Γ2(R/d)

is non-monotonic when n2 ≥ 2. The surface packing fraction of densely packed

multiple helices is simply obtained by multiplying the surface packing fraction of a

single helix with the number of threads n2 (ηmulti = n2η, see Equation 2.8):

ηmulti = n2
d2

8∆z1R
, (2.19)

where the elevation distance ∆z1 (shown in Figure 2.3(b)) is given by:

∆z1 =

√
d2 − 4R2 sin2

(
Γ1

2

)
. (2.20)

The calculated surface packing fraction of single (n2 = 1), double (n2 = 2), and

quadruple (n2 = 4) helices is shown in Figure 2.6. At a given confinement curvature

(fixed R/d), adding threads results in higher surface packing fraction, see Figure 2.6.
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2. Confined dipolar systems

Figure 2.6: Surface fraction η, see Equation 2.19 as a function of reduced helix radius
R/d for single thread (n2 = 1), double thread (n2 = 2), and four-thread (n2 = 4)
helices.

2.1.2 Tubes as sub-sets of helices

We refer to tubes made by stacking of rings. In AA tubes all constitutive rings

are exactly aligned, see Figure 2.2(d), and in AB tubes every ring is shifted for

half of the particle’s diameter, in respect to its preceding ring, see Figure 2.2(e).

Alternatively, AA or AB tubes could be generated by rolling of square or triangular

lattices on cylindrical confinement, respectively.

Particle i−positions in AA tubes are calculated as:

xi = Rcos(2πi/N),

yi = Rsin(2πi/N),

zi = bi/Ncd, (2.21)

where bxc is the greatest integer function and gives the largest integer less than or

equal to x, while N is the number of particles in a constitutive ring. To simplify

discussion, we refer to N also as curvature since there is a correspondence with the

tube’s geometrical curvature R/d = 1/2 sin(π/N), e.g., we obtain R/d =
√

2/(
√

3−
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1) ≈ 1.3 for N = 8 ring.

One of the ways to obtain AB tubes is stacking of a pair of two successive rings.

Total number of particles in the tube Ntube is a multiple of the number of particles

in the ring N and the number of rings Nrings, i.e., Ntube = Nrings ·N .

In both rings particle positions are calculated based on their index i = 1, Ntube:

xi = R cos (2πi/N + θi) ,

yi = R sin (2πi/N + θi) ,

zi = bi/Nc∆z, (2.22)

where θi is angular displacement of rings:

θi = π mod (bi/Nc, 2)/N (2.23)

and the displacement between successive rings along AB tube’s axis is:

∆z =
√
d2 − 2R2[1− cos (π/N)]. (2.24)

We have already explained when discussing the Figure 2.4 that densely packed tubes,

i.e. AB and Z tubes, can be seen as sub-classes of helices. Bearing this in mind,

in addition to stacking of the rings, we point out that the tubes can be created by

rolling a ribbon with square or triangular lattice on a cylindrical surface. In fact,

every ordered tubular structure can be generated by reproduction of a curved unit

cell along helical lines defined through curved spanning vectors in analogy to crystals

in two dimensions. This curved unit cell has n1 and n2 particles along two spanning

directions ~a1 and ~a2, respectively.

2.2 Dipole moments

2.2.1 Dipolar interaction model

We have explained the geometry of helices and tubes composed of hard spheres in

section 2.1 of this chapter. In this section we want to address the situation where the
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constitutive particles are dipolar. Each particle carries an identical dipole moment

in magnitude, m = |~mi|, where ~mi = (mx
i ,m

y
i ,m

z
i ) defines the dipole moment of

a particle i, see also Figure 2.1 in section 2.1. The potential energy of interaction

U (~rij) between two point-like dipoles whose centers are located at ~ri and ~rj can be

written as:

U(~rij) = C
1

r3
ij

[
~mi · ~mj − 3

(~mi · ~rij)(~mj · ~rij)
r2
ij

]
, (2.25)

for rij ≥ d or ∞ otherwise, where C represents a constant that depends on the

intervening medium, and rij = |~rij| = |~rj − ~ri|. It is convenient to introduce the

energy scale defined by U↑↑ ≡ Cm2/d3 that physically represents the repulsive po-

tential value for two parallel dipoles at contact standing side by side, as clearly

suggested by the notation. Therefore, the total potential energy of interaction in a

given structure Utot is given by:

Utot =
∑
i,j
i>j

U(~rij). (2.26)

One can then define the reduced potential energy of interaction u (per particle) of N

magnetic spheres. It reads u = Utot /(U↑↑N), which will be referred to as the cohesive

energy. Since we are dealing with infinitely long structures (in one direction), we

shall consider only periodic structures in that direction, so this imposed condition

greatly facilitates the calculation of the cohesive energy. Our method of choice is the

Lekner-type summation method for systems with periodicity in one direction which

we have presented in section 2.3. The central feature in Lekner-type methods is the

choice of the periodic cell. For structures with coordination number nc = 2, 4 we

can always find helical parameters with a finite number of particles in the unit cell.

The periodicity is achieved by imposing a condition on the angular shift parameter

Γ that a helix has to make an integer number of turns within the unit cell.

2.2.2 Relevant dipole moment orientations

Taking into account the symmetry of helices it is intuitive to assume dipole moments

following helix threads. In order to have dipole moments tangential to the helical
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Figure 2.7: The representative structures including dipole moment distributions are
displayed. For AB tube with patch parameters (n1, n2) = (8, 0) dipole distributions
which correspond to spanning unit cell vectors (a) ~a1 (oblique to cylinder’s axis),
(b) ~a2 (closer to cylinder’s axes), as well as, (c) ground state dipole distribution. For
single thread helix (n1, n2) = (9, 1) dipole distributions which correspond to (d) ~a1

and (e) ~a2 (closer to helix axes) spanning vectors, as well as, (f) ground state dipole
distribution. For double thread helix (n1, n2) = (8, 2) dipole distributions which
correspond to (g) ~a1, (h) ~a2 (closer to helix axes) spanning vectors, and (i) ground
state dipole distribution. In case of Z tube (j) ~a1 and (k) ~a2 dipole distributions are
shown. Ground state of Z tube follows ~a2 dipole distribution (parallel to cylinder’s
axis).

backbone, we introduce two components of dipole moments. The parallel component

with respect to the helix axis (we have chosen to orient a helix along the z direction)
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is given by:

mz = m∆z/d, (2.27)

and the orthogonal one is given by:

|~mxy| = m

√
1− (∆z/d)2. (2.28)

Hence, the dipole moment of a particle i in the single thread helix reads:

mx
i = −mxy sin (iΓ) ,

my
i = mxy cos (iΓ) ,

mz
i = mz. (2.29)

In the multi-thread case, the Cartesian dipole moment components are given by:

mx
ij = −mxy sin (iΓ1 + jΓ2) ,

my
ij = mxy cos (iΓ1 + jΓ2) ,

mz
ij = m∆z/d, (2.30)

where i ∈ Z is the internal particle label within a thread and j = {1, n2} stands

for the thread’s label. In dense helices (nc = 4, 6) dipole moments can follow two

directions ~a1 and ~a2.

In general, the dipole moments do not have to follow helix threads. In order to

find the dipole moment orientation that ensures minimal cohesive energy, we perform

minimization of the cohesive energy using a constrained minimization algorithm

which we have presented in section 2.3.

We have considered three relevant dipole moment orientations: ~a1 and ~a2 orien-

tations which are defined by the helix threads and the ground state dipole moment

orientation, which is determined via cohesive energy minimization procedure. In

Figure 2.7, representative dipole moment distributions are shown.
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2.3 Methods

In this chapter we present the methods applied in the study of confined dipolar sys-

tems. We have carefully and in details derived the Lekner-type summation method

for summing the dipole–dipole interactions in 1D periodic dipolar systems, check

appendix A. In subsection 2.3.1 we present the overview of available methods for

summing the dipole-dipole interactions of infinite periodic structures, followed by

our selection of the proper method and the final expressions of the Lekner-type

method that we have implemented. Next, we describe the energy minimization

method which we have used for determining the ground state dipole orientation of

our dipolar structures.

2.3.1 Methods for summing the dipole-dipole interactions of

infinite periodic structures

2.3.1.1 Overview of available methods

Energy of a dipolar structure with finite number of particles can be calculated via

direct summation of potential energies of the dipole-dipole interaction (DDI) of

every pair of particles. On the other hand, we might be interested in calculating the

energy of infinite periodic dipolar structures. As DDI is a long-range interaction,

a proper approach is needed. We present a brief overview of available numerical

techniques for summing the long-range interactions of spatially periodic structures.

In case of 3D periodic structures a standard method of choice for summing the

long-range interactions is the Ewald method [78]. Besides the periodicity in all three

spatial dimensions, there are three-dimensional systems having the periodicity in one

or two dimensions, let us note them as 1D and 2D periodic systems. Hence, those

are 3D systems possessing the periodicity along one- or two- dimensions. Ewald

type methods for these kinds of periodic systems have been established [79–84].

For example, a 2D Ewald method for the electrostatic [79–81] and dipole-dipole

interactions [79, 80] has been developed. Such a method computes properly the

long range DDI, however its disadvantage is the bad scaling of computational time
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with the number of dipoles N (i.e., it scales ∝ N2). A computationally more efficient

method for summing DDI in a 2D periodic system has been presented in [82]. It

represents a modification of the previously mentioned computationally inefficient

2D Ewald method since its computational time scales ∝ N . A mutual feature of

Ewald type methods [79–81] is the need for an arbitrary convergence parameter

necessary for the control of the accuracy of summations. Convergence parameter

is a numerical factor related to computation and without physical interpretations.

The modified 2D Ewald method [82, 83] requires one additional parameter, while

the modified 1D Ewald method requires even two additional parameters [84].

Summation techniques which avoid the usage of convergence parameters are ad-

vantageous, leading to both the reduction of complexity and computational time.

For example, such a method for summing long-range Coulombic interactions in pe-

riodic systems has been originally introduced by Lekner [85]. Since it opened a new

direction in the field of long-range interaction summations, this type of approach has

been known under the term Lekner summation. Modifications and improvements

based on Lekner’s work [85] led to the development of Lekner–type methods [86–88].

In Lekner–type methods [85–88] the forces are calculated first and the interaction

energy is obtained by integrating the force expressions. On the other side, an ap-

proach has been introduced in which the expression for the interaction energy is

directly derived [89, 90]. In the next two References [89, 90] Coulombic interaction

is considered, while in Reference [91] the approach is applied to the DDI.

To conclude our overview, there are several Ewald type [78–84] and Lekner–

type [85–88] methods for summing both Coulombic and dipole-dipole interactions

in all possible cases of periodicity of the system (i.e., 1D, 2D or 3D periodic systems).

2.3.1.2 Selection of the proper method

We are interested in calculating the energy of infinite 1D periodic dipolar tubes

and helices. We have arbitrary chosen to orient them along the z axis, so they are

periodic along this direction. According to that we have chosen the Lekner–type

method for summing the DDI of 1D periodic systems, presented in [91].

Let us explain the key features of this method. An infinite dipolar structure is
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represented by its elementary cell which is periodically replicated along the z axis.

Interaction energy of a structure (i.e., structure’s cohesive energy) is determined as

a sum of self energy Eself and cross energy Ecross, which are calculated based on the

elementary cell of that structure. Elementary cell is infinitely replicated along the

z axis in both directions, hence we might speak about the particles in the cell and

about their images in the replicas of the cell. Knowing this, we define the self energy

as a sum of the interactions of a given particle from the elementary cell with all its

images. On the other side, the cross energy includes interactions of a given particle

with all other particles belonging to the elementary cell and with all their images.

In Reference [91] the authors consider the DDI which decays with the distance

between the dipoles ∝ r−3, hence the expressions for the self and cross energy are

derived for this type of long-range interaction. Our opinion was that it might be

useful to round-up the derivation and come up with the expressions for the self

and cross energy in function of parameter s which is defined by setting that the

DDI decays with the distance ∝ r−2s. Once we accomplish this and derive closed-

form expressions in function of s, we can simply set s = 3/2 and obtain the final

expressions for the self and cross energy in case of DDI.

2.3.1.3 Application of the derived Lekner-type method in case of infinite

1D periodic dipolar structures

We have derived the expressions which define the self energy Eself and cross energy

Ecross in a Lekner type method for summing the DDI in case of 1D periodic struc-

tures. Since our investigation considers 1D periodic infinite dipolar helices, this

method is appropriate for calculating their cohesive energy. We can state that the

cohesive energy of a dipolar structure corresponds to the potential energy of DDI

between the hard dipolar spheres which the structure is composed of. In every struc-

ture we should determine its periodic cell and within this cell we should calculate

the self and cross energy. Expression for the self energy A.10 is the same in case of

any periodic cell. On the other hand, we should carefully choose the expression for

the cross energy depending whether the condition −→ρij 6= 0 does or does not apply,

the indices i and j can take any value from the range 1, N , where N is the total
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number of particles in the periodic cell. As in case of infinite dipolar tubes and

helices the elementary cell of every structure fulfills the condition −→ρij 6= 0, we take

the expression A.120 for the cross energy. Hence, the total energy of an infinite

dipolar tube or helix, where N is the total number of particles in its periodic cell,

is computed using the next expression:

Etot = Ecross + Eself =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
−8π

L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

− (−→µi ρ · −→µj ρ)
ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

Lz

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ4
ij

− (−→µi ρ · −→µj ρ)
ρ2
ij

]}
+

1

L3
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(3). (2.31)

Cohesive energy of a dipolar structure is defined per particle, hence we just have to

divide Etot by the number of particles in the periodic cell:

Ecohesive = Etot/N. (2.32)

2.3.2 Energy minimization method for obtaining ground state

dipole orientation of dipolar structures

In dipolar structures’ analysis an obvious question which arises is related to the

determination of the dipole moment orientation of a structure. By this term dipole

moment orientation we consider a logical and meaningful rule of orienting the dipole
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moment of each particle. We have deduced that dipole orientations which follow

the thread structure (i.e., ~a1 and ~a2 dipole orientation) are relevant, since there

is a tight relation between the geometry of a dipolar structure and a favourable

dipole orientation. Dipolar structures which we consider are spatially 3D structures,

however with a 1D periodicity along the z direction. Hence, there are two threads

a structure is made of: a circular thread (leading to ~a1 dipole orientation) and a

slanted thread (leading to ~a2 dipole orientation). We have asked ourselves how would

an optimal dipole orientation look like, i.e., a dipole orientation which minimizes the

cohesive energy of a structure. Besides that, we should in general determine dipole

orientations which allow a negative cohesive energy: Ecohesive < 0, i.e., realistically

possible configuration of dipolar spheres. To do so, we perform minimization of

cohesive energy using a constrained minimization algorithm [29, 92], namely the

fmincon minimization procedure from Matlab software package [93]. The name

of the fmincon procedure has been constructed according to its purpose which is

function minimization under constraints. Minimization procedure fmincon [93] finds

a minimum of a constrained nonlinear multivariable function. Its mathematical

definition is given as:

minf (x) over x under the constraints:

c (x) ≤ 0, ceq (x) = 0, A · x ≤ b, Aeq · x = beq, lb ≤ x ≤ ub,

where b and beq are vectors, A and Aeq are matrices, c (x) and ceq (x) are functions

which return vectors, f (x) is a function being minimized which returns a scalar

value. The argument x over which minimization is performed can be a vector or a

matrix, lb and ub are the lower and upper boundaries for the argument x, respec-

tively, hence they are the same data type as x, i.e., a vector or a matrix. A dipolar

structure has a given fixed geometry which is not subjected to minimization, hence

the particles stay in place during the minimization. Their dipole moments −→µi are

subjected to minimization. A randomly oriented dipole moment is assigned to every

particle of a dipolar structure, defined in the spherical coordinate system using two

angles: θ and ϕ. Those angles are standard coordinates of a spherical coordinate
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system. Each particle i is assigned with a randomly oriented dipole moment, where

θi ∈ [0, π] and ϕi ∈ [0, 2π]. Mathematically speaking, we can write down the previ-

ous considerations (bearing in mind that rand (1) returns a random real number in

the range [0, 1]) as:

θi = π · rand (1) ,

ϕi = 2π · rand (1) . (2.33)

The dipole moment of i-th particle, i.e., −→µi = (µxi , µ
y
i , µ

z
i ) in spherical coordinate

system is:

µxi = sin (θi) cos (ϕi) ,

µyi = sin (θi) sin (ϕi) ,

µzi = cos (θi) , (2.34)

where i = 1, N , with N being the total number of particles in a dipolar structure.

The function which we minimize is the cohesive energy of a given dipolar struc-

ture, i.e., f = Ecohesive and the argument x = θ1, θ2, ..., θN ;ϕ1, ϕ2, ..., ϕN . The lower

and upper boundaries are: lb = 0, 0, ..., 0; 0, 0, ..., 0 and ub = π, π, ..., π; 2π, 2π, ..., 2π,

respectively. We have determined two important features emerging from energy min-

imization computations employing the fmincon procedure [93]:

(i) dipole moments are tangential to the confining cylinder’s surface, and

(ii) component of a dipole moment in the z-axis direction mz of a given dipolar

structure is identical for all particles.

We have found that under some circumstances the dipole moment orientations alter-

nate, i.e., we have obtained the antiferromagnetic-like coupling between the neigh-

bouring threads. This actually occurs with any AA tube. Similar behaviour is

reported for some moderately dense nc = 4-helical structures. Therefore, we need

just one angular parameter to characterize the dipole moment orientation. We

choose the dipole moment angular parameter, α ∈ [−π, π], relative to the z axis, see
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Figure 2.1. Doing so we arrive at:

mx
ij = −m sin (α) sin (iΓ1 + jΓ2) ,

my
ij = m sin (α) cos (iΓ1 + jΓ2) ,

mz
ij = m cos (α) , (2.35)

where the indices i and j have the same meaning as in Equation 2.30. Consequently,

the angular parameter α is most of the time a unique variable, at prescribed helical

structures, entering into the energy minimization procedure. Obtaining an optimal

dipole orientation which leads to the minimal cohesive energy of a certain dipolar

structure, in other words obtaining ground state dipole orientation, comes down to

determining the right value of the angular parameter α. In general, except for some

cases where we have obtained the antiferromagnetic-like dipole orientation, dipole

moments of all particles are parallel, building the same angle α with the z axis

direction.

To sum up, we have started with the most general case of each particle having

an independent and randomly oriented dipole moment. Application of the fmincon

minimization procedure [93] significantly narrowed down the diversity of possible

dipole orientations, leading to just one scalar parameter α determining the ground

state dipole orientation. This is a significant finding, meaning that for obtaining the

ground state dipole orientation of a dipolar structure we do not need computationally

demanding fmincon procedure [93] anymore. Just a simple direct search over the

range of α, using a reasonable precision (i.e., α ∈ [−π, π] with a step of 10−3), solves

our optimization problem.

2.4 Degeneracy in 2D triangular and square lattice and prop-

erties of tubes

2.4.1 Ground state of 2D triangular and square lattice

First, we investigate the dependence of ground state energy on dipole moment ori-

entation. All dipoles in triangular lattice are parallel and allowed to rotate only
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around a fixed axis orthogonal to the plane, see Figure 2.8(a). There is a continuous

ground state for any in-plane angle θ with cohesive energy value uAB ' −2.7586,

which is the cohesive energy of an infinite triangular two dimensional lattice. This

value is defined as [94, 95]:

uAB = −2ζ(3) + 16π2

+∞∑
k=1

+∞∑
l=1

cos (klπ)K0

(
kl
√

3π
)
. (2.36)

For an infinite square two dimensional lattice, similarly, there is a continuous de-

generacy of its ground state, described in Figure 2.8(b)-(c). A continuous state,

in this case, involves a unit cell of four particles. The moments in a unit cell are

synchronously coupled and in our notation take directions θ, π − θ, π + θ, and −θ,

in anti-clockwise direction in Figure 2.8(b). The ground states found are obviously

antiferromagnetic, with the total dipole moment within the cell conserved and equal

to zero. The most striking is the so-called vortex state for θ = π/4 with a fully en-

closed circulation of the magnetic dipole moment within the unit cell. The ground

state cohesive energy value is uAA ' −2.5494, which is the cohesive energy of an

infinite square two dimensional lattice. This value is defined as [94, 95]:

uAA = −2ζ(3) + 16π2

+∞∑
k=1

+∞∑
l=0

k2 {K0 [4k(l + 1)π]−K0 [2k(2l + 1)π]} . (2.37)

We will use the calculated ground state energy value as an absolute point for compar-

ison of energies of different states in tubes with square or triangular lattice structure.

37



2. Confined dipolar systems

Figure 2.8: Visualization of degenerate states in infinite (a) triangular and (b) square
lattice, i.e., AB and AA packings, respectively. The dipoles are depicted as arrows
located in the center of the spheres. In case of triangular lattice the unit cell consists
of a single particle (as noted in panel (a) of this figure) and in case of square lattice it
consists of four particles (as noted in panel (b) of this figure). (c) Energy landscape
for square lattice is shown with respect to two θ1 and θ2 out of four magnetic
moments in the unit cell. Other two moments were oriented so the energy of the
system is minimal. One can observe a flat valley of degenerate ground state, θ2 =

−θ1, with energy uAA ' −2.5494. The saddle point which represents square plane
with uniform dipole moment orientation with energy usdd

AA = −2.26 is also marked.
The curves are drawn through the discrete points and they are smooth. The results
are in principle scale independent.
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2.4.2 Degeneracy break-up with curvature in case of AA and

AB tubes

Wrapping of the plane around the confinement cylinder will make the system quasi

one-dimensional and break the degeneracy [96]. We will discuss repercussions of the

degeneracy breakup on cohesive energy for different dipole moment orientations.

We analyze the degeneracy breakup in infinite tubes: according to tube’s cylindri-

cal geometry, we represent the dipole moment of the i−th particle in cylindrical

coordinates like:

~mi = miφ ~eφ +miz~ez, (2.38)

with constraints m2 = m2
iφ + m2

iz (i = 1, . . . , N). The parallel component with

respect to tube’s axis is given by mz and the orthogonal component is mφ (i.e., mφ

is tangential to cylinder’s circumstance). In Figure 2.9, we follow the dependence of

energy on angular parameter θ, miz = m sin (θ). We find that axial dipole moment

orientation (i.e., θ = π/2) represents the ground state for both AA and AB tubes

while circular orientation (i.e., θ = 0) is the most unfavorable, as seen in Figure 2.9.

Between circular and axial dipole moment orientation (i.e., for the range 0 <

θ < π/2), we observe a continuous decrease of cohesive energy with increasing axial

alignment of dipole moment orientation. These transition states we call vortex in

case of square AA tubes and helical in case of triangular AB tubes, e.g., θ = π/4 in

Figures 2.9(a) and (b), respectively. The cohesive energy of different configurations

in Figure 2.9 converges to a continuously degenerate state with increasing curvature

N following the next power law (see inset in Figure 2.9):

uN − u∞ ∼ N−2. (2.39)
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Figure 2.9: Cohesive energy spectrum of configurations for dipole orientations in
Figure 2.8 on a curved surface of the infinitely long tube for (a) square AA and (b)
triangular AB tubes. Breaking of degeneracy with respect to angle θ due to the
curvature, i.e., proportional to the number of particles in the constitutive ring N ,
is shown. The axial dipole moment orientation corresponds to θ = π/2. The inset
shows convergence of cohesive energies for θ = 0 and θ = π/4 to the infinite two
dimensional planar value u (for square lattice uAA = −2.5494 and for triangular
lattice uAB = −2.7586).

2.5 Cohesive energy-packing relations in dipolar helices

We have described geometry of helices and tubes composed of hard spheres in sec-

tion 2.1. In the following section 2.5 we have introduced dipolar interaction model

and three relevant dipole moment orientations. Setting up the geometry and dipole

moments represents a preparation for the key considerations which are dedicated to

the investigation of cohesive energy-configuration relations of dipolar helices (and
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dipolar tubes, as their sub-classes). A dipolar configuration is determined by the

next two components: (i) structure by means of geometry (how are the hard spheres

positioned spatially) and (ii) dipole moment orientation (how are the dipole mo-

ments of those hard spheres oriented). Two dipolar configurations can be identical

in structure, but can have different dipole moment orientation, and vice versa they

can have a different structure and the same dipole moment orientation. In this chap-

ter we present our findings about the relations of both configurational components

with cohesive energy in case of dipolar configurations under investigation.

2.5.1 Compression of a single-thread helix

A simple way to deform a helix is to compress (or extend) it along its axis, i.e., the

z-direction, while ensuring the dipole moments follow the thread. Compression of a

helix results in a continuous increase of its surface packing fraction η. Figure 2.10

shows the dependence of cohesive energy uR on the surface packing fraction η for a

single helix with reduced radius (R/d ' 1.7, chosen in the vicinity of nc = 6 point).

Recalling geometrical considerations in section 2.1 the increase of the azimuthal

angular shift Γ at prescribed curvature results in a continuous decrease of ∆z and

in a compression of a helix. The compression process begins with a fully extended

helix (i.e., η → d/8R ≈ 0.073) where the chain stands up with ∆z/d = 1, and the

cohesive energy of an infinite chain is u ' −2.404 [29]. The compression ends when

two successive turns of the helix touch, i.e., the coordination number of particles in

the helix changes from nc = 2 to nc = 4. We also address the minimal energy of the

helix with respect to the dipole moment orientation (i.e., not necessarily prescribed

by tangentially following the helix). From Figure 2.10, we observe that uR = uR (η)

is non-monotonic. We can identify two regimes: (i) At small packing fraction up

to η ≤ 0.4 (with no touching turns), the compression of the helix requires energy

input and therefore cohesive energy increases. The reason for this is that two dis-

tant consecutive turns of the helix experience weaker attraction upon increasing η.

(ii) In the regime of high η ≥ 0.4 where successive turns are allowed to be close or

even touching, the cohesive energy starts to decrease as η increases, i.e., the helix

would compress on its own without the input of energy. This is a consequence of
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Figure 2.10: Compression of single thread helix on a cylindrical confinement with
fixed radius (R/d ' 1.7). Dependence of cohesion energy (upper left panel) and axial
component of the dipole moment (lower left panel) on packing fraction is shown for
two characteristic dipole moment orientations: one that follows the thread structure,
i.e., spanning vector ~a1, and ground state dipole moment orientation obtained by
full energy minimization (check subsection 2.3.2 of section 2.3) . The illustrations of
characteristic structures and corresponding dipole moment orientations are provided
as well, in the panels on the right side.

enhanced attraction caused by the discreteness of the constitutive dipolar spheres,

see Reference [97]. The overall polarization order parameter 〈mz〉 is also analyzed

in Figure 2.10. During most of the course of the helix compression, see Figure 2.10,

a dipole moment orientation following the helix corresponds to the ground state

structure up to η ≈ 0.8, check points C and D in Figure 2.10 (the details of ground

state calculations are presented in section 2.3). Only for very high packing frac-

tions, i.e., η > 0.8, the helix direction is accompanied by a significant reduction in

cohesive energy (see points E and F in Figure 2.10). The highest difference in 〈mz〉
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occurs for η ≈ 0.887, where nc = 4 helix with touching turns is formed, and the

energy difference is uER − uFR ' 0.06. Corresponding values of axial dipole moment

component mz for points E and F are mE
z ' 0.12, mF

z ' 0.88, respectively.

2.5.2 From square to triangular arrangement of a single-thread

helix

The crucial question which we ask about dipolar helices and tubes is: how does their

cohesive energy depend on structural changes and especially on curvature (quanti-

fied by the helix radius R). With increasing curvature the structure changes from

the triangular to square arrangement and vice versa through a continuous series

of rhombic configurations. We study first in detail systems with dipole moments

following the spanning vector that are most oblique to helix axes, see Figure 2.7(d).

For the sake of comparison with tubes (AA/AB tubes), we also chose dipole mo-

ments that are building vortices along the rings, check Fig 2.7(a). Motivation for

that choice stems from a previous study [29], where it has been shown that finite

AB tubular systems are energetically favorable, see Figure 2.7(a) (dipole moment

orientation is perpendicular to the tube’s axis).

The surface packing fraction η (Equation 2.8), the angular coordination order pa-

rameter ξ (Equation 2.13), and the cohesive energy per particle uR (Equation 2.26),

are plotted versus the reduced helix radius R/d in Figure 2.11. Actually, the en-

ergy and structural properties change in an oscillatory quasi-periodic manner and

they are enveloped from both sides with the properties of AA and AB tubes, see

Figure 2.11. In Figure 2.12 behavior of these observables is depicted within one

period (R/d ∈ [2.09, 2.26], which has been chosen arbitrary). In one period, the

number of particles (n) in a constitutive ring of (AA/AB) tubes is increased for

one, i.e., from n-ring to n+ 1-ring. Within this period, the order parameter changes

from ξ = 0, i.e., square arrangement, to ξ = 1, i.e., triangular arrangement, via a

continuous rhombic transformation, see Figure 2.12(a). The radii of densely packed

helices are roughly in the middle between two corresponding (AB/AA) tube radii,

see Figure 2.12(a). This is a result of the radial constraint and excluded volume.
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Figure 2.11: Dependence of (a) angular coordination order parameter ξ, (b) packing
density η and (c) cohesive energy uR on helix radius R/d, for ~a1 dipole orientation.
AA and AB tube points are clearly indicated, they bracket the parameter values of
helices, like a kind of envelopes (solid and dashed lines connecting the tube points
are power law fits).
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Figure 2.12: Dependence of (a) angular coordination order parameter ξ, (b) packing
density η and (c) cohesive energy uR on helix radius R/d, for a segment in vicinity
of R(13,1)/d = 2.17 of Figure 2.11. AA and AB tubes are represented with discrete
points since they can be formed only with a fixed number of particles in a ring, the
fitted (power law) curves serve only as a guide to the eye.

Though in a single thread helical structure we cannot close rings in the plane per-

pendicular to the cylinder axis, one can nevertheless realize a full 360̊ helix turn

with roughly n + 1/2 particles. We observe discontinuity and strong asymmetry of
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the angular coordination order parameter ξ at the mid-period (R(13,1)/d ≈ 2.17),

see Figure 2.12(a). This is due to a change of the number of lateral threads n2, see

Figure 2.7(e), at the mid period going from n2 = 9 to n2 = 10, see Figure 2.12(a).

With decreasing curvature, the surface packing fraction increases globally, see Fig-

ure 2.11(b). We observe oscillatory behavior as the system continuously evolves

from the square to triangular arrangement and vice versa. The AA and AB tubes

still roughly bound the values taken by the surface packing fraction. At the helix

radius R/d > 3.4, see Figure 2.11(b), we are already within 3% of the asymptotic ex-

pected values in the planar case. In contrast to the angular coordination parameter

ξ, the surface packing fraction η is continuous everywhere, compare Figures 2.12(a)

and (b). Moreover, at the mid-period the η value is slightly (and systematically,

see Figure 2.11(b)) above the interpolated value stemming from AB tubes (see Fig-

ure 2.12(b)). In Figure 2.11(b) and (c), it can be clearly seen that the profiles of

energy oscillations uR and the surface packing fraction η are anti-correlated. The

mid-period values uR coincide with interpolated values stemming from AB tube

radii (confirmed by Figures 2.11(c) and 2.12(c)).

2.5.2.1 Looking for the ground state

At this point, we would like to discuss mechanisms which govern the minimal energy

dipole moment orientation near the mid-period transition point (more details about

implementation are provided in section 2.3). There are three privileged directions

in a helix: two which follow helix spanning vectors (determined by ~a1,~a2) and the

third one which is the direction of the helix axis. These privileged directions come

into play in two competing mechanisms: (i) The first mechanism is typically dic-

tated by first neighbor interactions which favor dipole moments following the thread

directions. (ii) The distant-neighbor interactions favor the distribution of dipole mo-

ments parallel to the helix axis. We can justify these two mechanisms as follows. It

is well known for a small finite system that rings are formed with dipole moments

building vortices, see Reference [29]. When a helix turn is projected along the z-axis,

the resulting figure is highly reminiscent of the vortex discussed above. The head

to tail configuration is favored at long distances, explaining the second advocated
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mechanism. The abrupt change in dipole orientation in the direction of the axis

〈mz〉, seen in Fig 2.13(b), is correlated with the discontinuous change in the angular

coordination order parameter ξ in the vicinity of transition, see Figure 2.12(a). At

the mid-period point R(13,1)/d = 2.17 dipole orientation in the direction of the axis

〈mz〉 is close to one, but not exactly one, see Figure 2.13. For the sake of comparison

with tubes (AA/AB tubes), we choose dipole moments that are parallel with the

helix axis, see Figure 2.7(c). The fact that the system is able to relax its dipole

moment orientation to the ground state results in more dependence of energy on

confinement curvature around the mid-point. The degree of asymmetry of uR is

stronger around the transition point, see Figure 2.13(b), than in the excited state

in Figure 2.12(c). The ground state calculations confirm the high stability of AB

tubes (see Figure 2.12(c)).

2.5.3 Cohesive energy of multi-thread helices at high surface

packing fraction

In this part, we consider the high surface packing fraction regime with nc = 6. Some

representative structures including dipole moment streamlines are displayed in Fig-

ure 2.7. The streamlines following spanning unit cell vectors ~a1 (oblique to the helix

axis) and ~a2 (more aligned to the helix axis) are also shown. It is possible to polarize

the helix by a homogeneous external field parallel to its axis. For symmetry reasons,

a reversal of the external field should result in the reversal of the dipole orientation.

In the case of magnetic dipoles, it should also be possible to polarize the system

to follow ~a1 and ~a2 spanning vectors by combination of a curling magnetic field of

electric current flowing through the confining cylinder and the homogeneous exter-

nal magnetic field parallel to its axis. Dipole moment distributions in the ground

states are also indicated for comparison in Figure 2.7. In analogy with the study of

a single helix case, we start analysis with a dipole moment distribution prescribed

by tangentiality with thread backbone. In Figure 2.14, cohesive energy for the ~a1-

generated dipole moment distribution is shown for different helical structures. The

cohesive energy in a planar triangular lattice, u∞ ' −2.759, represents the energy
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value which will be reached asymptotically (R/d → +∞) for all considered struc-

tures. As already found for AB tubes in Reference [29], cohesive energy exhibits

the scaling law of the form uR − u∞ ∼ R−2, see Figure 2.14. The cohesive energies

of all three helices and AB tubes are weakly dependent on the number of threads

for ~a1-generated dipole moment distribution. This is in accordance with surface

packing fraction behavior reported in Figure 2.6. A comparison with the azimuthal

angular shift parameter Γ1, see Figure 2.5, and the corresponding cohesive energy

(for ~a1-generated dipole moment distribution) clearly reveals a correlation between

there two quantities. In Figure 2.15, cohesive energy for ~a2-generated dipole moment

distribution is compared with ground state energy for different number of threads.

There exists an analogous correlation (as discussed for ~a2-dipole distribution) be-

tween the azimuthal shift Γ2 and the resulting cohesive energy, compare Figures 2.5

and 2.15. The smallest compatible radius R for multi thread helices (n2 = 2, 4)

is obtained for ZZ tubes (n1 = n2). In Figure 2.15, the corresponding radii read

R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In this case the ~a2 and ground state dipole mo-

ment orientations are the same, see Figure 2.7(k). Strikingly, ZZ tube ground states

converge very fast to the expected planar value u∞ at the smallest accessible radii,

i.e., the largest curvature, within less than 1% of the planar case, see Figure 2.15

for R(2,2)/d = 0.61. A structural similarity of ZZ tubes, with typical experimental

images of microtubules is striking, see Figure 2.7(k). ZZ tubes can be created by

closing the rectangular strip on a cylinder. We should notice the structural charac-

teristic of ZZ tubes’ decomposition into chains which are analogous to filaments in

microtubules.
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Figure 2.13: Dependence of (a) cohesive energy, and (b) polarization in the direction
of z axis mz on helix radius R/d (in the ground state), for a chosen segment of
Figure 2.11. AA and AB tubes are represented with discrete points since they can
be formed only with a fixed number of particles in a ring, the fitted (power law)
curves serve only as a guide to the eye. The point which represents the dense helix
with (n1, n2) = (13, 1) and R(13,1)/d = 2.17, is marked with a rectangle.
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Figure 2.14: Dependence of cohesive energy uR on helix radius R/d, for different
families of helices having {1, 2, 4} threads, and AB tubes, with ~a1 dipole orientation.

Figure 2.15: Dependence of cohesive energy uR on helix radius R/d, for different
families of helices having {1, 2, 4} threads, and AB tubes, with ~a2 and optimized
dipole moment orientation.
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Chapter 3 Ionic liquids

3.1 Methods

In this section we present the methods applied in the study of ionic systems. First we

explain the basics of the molecular dynamics (MD) method. Next, we give a short

overview of the LAMMPS code for MD simulations, since all MD simulations

presented in this thesis were performed using the LAMMPS software package [98].

3.1.1 Molecular Dynamics method

Molecular dynamics (MD) represents a simulation technique which generates trajec-

tories of a system of N particles by numerical time integration of Newton’s classical

mechanics equations of motion [99]. An MD simulation is defined by: the interac-

tion potential by which the particles interact, initial conditions (IC) and boundary

conditions (BC). Let us consider a system of N particles (check Figure 3.1) in a

volume V . The Newton’s equations of motion for the system of N particles are:

m
d2~ri

dt2
= ~Fi (~r1, ~r2, ..., ~rN) , i = 1, ..., N, (3.1)

where ~ri are the position vectors and ~Fi are the forces acting on the particles of

a system. It is often case in MD simulations that the forces can be derived from

interaction potential functions U (~r1, ~r2, ..., ~rN), representing the potential energy of

the system:
~Fi (~r1, ~r2, ..., ~rN) = −∇̃riU (~r1, ~r2, ..., ~rN) . (3.2)

Equation 3.2 is consistent with the conservation of the total energy. We might define

mechanical energy of the system as: E = K +U , where kinetic energy is defined as:
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K =
N∑
i=1

1

2
mi

(
d~ri

dt

)2

, (3.3)

and potential energy is defined as:

U = U
(
~rN (t)

)
, (3.4)

where ~rN (t) denotes position vectors of all N particles in the system. We emphasize

that E should be a conserved quantity, if the system is isolated. The potential of

an isolated system (no external forces present) can be written in the simplest case

as a sum of pairwise interactions:

U =
N∑
i=1

N∑
j>i

u (rij) , (3.5)

where ~rij = ~ri−~rj, rij = |~rij| and i > j eliminates the double counting of the particle

pairs. Practically it means that the forces acting on the particles are resultants of

the forces coming from the individual interactions with the rest of the particles:

~Fi =
N∑
j 6=i

~fij, ~fij = −du (rij)

drij

· ~rij

rij

. (3.6)

According to the Newton’s third law it stands: ~fji = −~fij. Computational effort of

solving the equations of motion 3.1 is proportional to N2 and is mostly related to

the force computations. Accordingly, to speed-up the computations it is desirable to

express the forces analytically. In order to further more reduce the computational

effort, it is a standard practice in MD simulations to cut off the potential at some

limiting distance, i.e., we neglect the potential if the distance between two interacting

atoms is rij > rcut, where rcut is reasonably chosen. For example, in case of the

Lennard-Jones potential (standard potential in MD simulations) usually it is set

that rcut = 2.5 · σ, where σ determines the length scale.

In principle, we might treat an MD simulation as a numerical experiment [100],

hence the methodology is practically the same like in a real experiment, as we can

see in the schematic of a typical MD simulation in Figure 3.2.
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Figure 3.1: Illustration of an MD system with N particles.

[System setup]

sample selection

(interaction potential, N, IC, BC)

[Equilibration]

sample preparation

(achieve T, p)

[Simulation run]

property average

(run selected number of timesteps)

[Output]

data analysis

(calculation of system properties)

Figure 3.2: Basic schematic of an MD simulation.

In the first step we should setup the system, which means: selecting a proper

interaction potential, choosing the number of particles in the system and setting up
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their properties (shape, mass, charge), defining initial and boundary conditions. The

subsequent step, after the system setup has been done, is the system equilibration

which means achievement of desired temperature and pressure (macroscopic prop-

erties which depend on the microstate of the system). After the system setup and

equilibration are done, simulation is run a given number of simulation steps and

averaged characteristics are calculated (for example, radial distribution function

g (r)). In the end, output data is analyzed and based on that, the desired quanti-

ties are computed. Besides equilibrium MD simulations, there are non–equilibrium

molecular dynamics (NEMD) simulations. For example, a system is exposed to

perturbation or high external forces and its response is analyzed, like in simula-

tions of mechanical deformations. We have used NEMD simulations in the way

that shearing of the simulation box (mechanical deformation) was imposed, and by

analyzing bulk IL′s response to the imposed shearing, we have determined IL′s vis-

cosity coefficient. There are five key components of MD simulations and those are:

(i) initial conditions (IC), (ii) boundary conditions (BC), (iii) force computation,

(iv) integrator and (v) computation of system’s characteristics.

3.1.1.1 The Lennard-Jones potential

The most common pair potential for describing the interaction of van der Waals

systems is the Lennard-Jones potential (LJ potential), given by the formula:

ULJ (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.7)

where rij is the distance between the atoms i and j. The ε parameter defines

the strength of the LJ interaction and the σ parameter defines the length scale.

LJ potential is strongly repulsive at short distances, it crosses zero at rij = σ,

i.e., ULJ (rij = σ) = 0. LJ potential reaches its minimum ULJ (rm) = −ε at

rm = 21/6σ ≈ 1.1225σ and it has an attractive tail at long distances. Values of

the parameters {ε, σ} are chosen to model physical properties of a real system.

For example, LJ potential was initially proposed to model liquid argon. Let us

now analyze the two terms from the square brackets of Equation 3.7. The term
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∝ r−12
ij dominates at short distances and it models the repulsion due to the non-

bonded overlap of electronic orbitals. It might have an arbitrary form meaning that

other exponents or even other functional forms are possible. However, we should

think about minimizing the computational effort, hence in most cases this form with(
σ
rij

)12

is fine. The term ∝ r−6
ij dominates at long distances and models the van

der Waals forces caused by the dipole-dipole interactions due to the fluctuation of

dipoles. These weak forces are responsible for the bonding character of systems like

rare gases, such as argon or krypton. The interaction force due to the interaction

via LJ potential, see Equation 3.7 is:

~fij =
48ε

r2
ij

[(
σ

rij

)12

− 1

2

(
σ

rij

)6
]
~rij. (3.8)

As the force is expressed analytically, this is advantageous in terms of the reduction

of computational effort.

3.1.1.2 Thermodynamic properties

Key thermodynamic properties of anMD system are the temperature and pressure.

Temperature of the system might be introduced via mean kinetic energy of the

system:

1

2N

N∑
i=1

mi

(
d~ri

dt

)2

=
3

2
kBT ⇒ T =

1

3NkB

N∑
i=1

mi

(
d~ri

dt

)2

. (3.9)

By expressing the temperature T in function of the kinetic energy K we obtain the

next relation:

T =
2K

3NkB
. (3.10)

In case that we consider the temperature T and the density ρ as independent vari-

ables, we might express the energy of the system E and the pressure p. These

quantities link the microscopic and macroscopic level and can be easily measured in

an MD simulation. We should mention that in an MD simulation usually the en-

ergy is conserved, while the temperature fluctuates, hence the average temperature
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〈T 〉 should be used instead of T . Pressure is defined by the formula:

pV = NkBT +
1

3
〈
N∑
i=1

~ri · ~Fi〉. (3.11)

In case of a pair potential this formula is:

pV = NkBT +
1

3
〈
N∑
i<j

~rij · ~fij〉. (3.12)

Bearing in mind the relation 3.10 between the temperature T and the kinetic energy

K, we express the pressure p as:

p =
ρ

3N
〈2K +

N∑
i<j

~rij · ~fij〉. (3.13)

Contrary to the total energy Etot = K + U which should be conserved during a

simulation, the temperature and the pressure fluctuate and should be averaged over

a chosen number of timesteps.

3.1.1.3 Analysis of the key components of a typical molecular dynamics

simulation

In the following text we briefly analyze the key components of a typicalMD simula-

tion, which include: (i) initial conditions (IC), (ii) boundary conditions (BC), (iii)

force computation, (iv) integrator and ensemble and (v) computation of system’s

characteristics [99].

(i) Initial conditions (IC)

As Newton’s equations of motion are ordinary differential equations of the second

order, initial conditions are defined as:

~rN (t = 0) = ~rN
(0)

;
d~rN

dt
(t = 0) =

d~rN
(0)

dt
. (3.14)

Generating of IC is simple for ordered systems like crystals, but in case of amorphous

solids or for polymer chains it should be treated carefully. Setting the IC is important
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rcut

Figure 3.3: Illustration of periodic boundary conditions (PBC). Trajectories of
only the atoms in the central cell, also known as supercell (square filled with gray)
are explicitly followed. The supercell is infinitely replicated in a given 2D or 3D

space. In this figure we show an example of a 2D system with periodic boundaries
in both directions in a plane. An atom (let us label it as referent atom) from the
supercell interacts with other atoms from the supercell, as well as with the atoms
from neighbouring copies of the supercell, under the condition that their distance
from the referent atom is within the cutoff radius. Interaction is neglected in case
the distance is larger than the cutoff radius.

because often it causes errors. For example, if the particles are positioned too close

at the beginning of a simulation, the forces between them get too high.

Related to assignment of initial velocities, it should be taken into account that

each independent degree of freedom should carry kinetic energy of kBT/2. Such
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a condition can be met by taking initial velocities from the Maxwell-Boltzmann

distribution.

(ii) Boundary conditions (BC)

The behaviour of finite systems is quite different from the behaviour of infinite

systems. The number of particles for simulating bulk properties of macroscopic

systems has an important role, unless we simulate clusters of atoms in which case

the number of constituents is well-defined. No matter how large the simulated

system is, the number of particles N is negligible as compared to the number of

particles contained in a macroscopic system (at the order of 1021to1023). In case of

macroscopic systems just a small fraction of the particles are located close to the

boundaries (walls of the container in which the system is placed). In case of a typical

liquid with the order of magnitude of N = 1021 particles, the number of particles in

the vicinity of the walls is at the order of N2/3 = 1014, which means that 1 out of 107

is a surface particle. Therefore, in systems like liquids the fraction of particles in the

vicinity of the walls is negligible. In modern MD simulations the typical number of

particles which can be handled is at the order of 106 particles. In such a system, the

fraction of the surface particles is more significant and the behaviour of the system

is very impacted by the surface effects. An efficient solution for solving the finite-

size problem and for minimizing the surface effects is the application of periodic

boundary conditions. When periodic boundary conditions are applied the particles

are enclosed in the simulation box, which is replicated to infinity by translation in

all three directions {x, y, z} completely filling the space. When a particle enters or

leaves the simulation box, an image particle leaves or enters the simulation box,

hence the number of particles is kept constant. Accordingly, the surface effects are

suppressed. Summing up the previous discussion, we note that there are two types

of boundary conditions: isolated (IBC) and periodic (PBC) boundary conditions

(for the illustration of PBC check Figure 3.3). IBC are suitable for the analysis of

clusters and molecules, while PBC are suitable for the analysis of bulk materials.

There are mixed boundary conditions as well, where the system is periodic along

one or two dimensions, but not in all three dimensions. In case of PBC a system of

particles is surrounded by vacuum, those particles interact between each other and
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do not interact with anything outside the system, except in case that some external

force is introduced.

(iii) Force computation

Equation of motion for the i-th particle can be written as [99]:

mi
d2~ri

dt2
= −

∑
j 6=i

∂U (ri − rj)
∂ (ri − rj)

, i = 1, ..., N. (3.15)

Computation of the right-hand side of the above equation is the key step which

consumes the most computational time in MD simulations, so the efficiency of that

computation is of crucial importance. For long-range Coulombic interaction there

are special algorithms which break it into two terms: one term represents short-

range interaction and the other term represents smooth interaction, like a field.

Both of those terms can be computed efficiently in different ways. When PBC are

applied, movement of particles within the basic cell is monitored and the basic cell

is surrounded by its periodic copies. A consequence of the application of PBC is

that each particle i in the simulation box interacts not only with the other particles

in the box, but with their images also. This means that the number of interacting

pairs is very large. However, this obstacle us usually overcome by setting a cutoff

distance, since the interaction of two particles separated by a distance larger than

the chosen rcut is neglected. There is the term minimum image criterion which

claims that among all images of a particle we should consider only the closest ones

and neglect the others.

(iv) Integrator and ensemble

Newton’s equations of motion represent a set of ordinary differential equations of

the second order, which can be very nonlinear. Transforming them into ordinary

differential equations of the first order in 6N -dimensional space
{
~rN , ~vN

}
, general

numeric algorithms for solving ordinary differential equations can be applied, such

as Runge-Kutta method. However, general numeric algorithms are rarely applied

in MD simulations, because the existence of Hamiltonian enables more accurate

integration algorithms, such as predictor-corrector integrator. There are three main

ensembles: micro-canonical, canonical and grand-canonical ensemble. They are dis-
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tinguished based on the distribution of initial conditions. When the system is defined

by a certain ensemble, it should strictly follow equations of motion, with conserved

mechanical energy. Ensemble and integrator are often grouped since there is a class

of methods which generate desired ensemble under time integration. In a micro-

canonical (NVE) ensemble, system is isolated from the changes in the number of

particles (N), volume (V ) and energy (E). It corresponds to an adiabatic process

in which there is no heat exchange. Micro-canonical MD trajectory can be seen

as exchange of potential and kinetic energy, under the condition that the total en-

ergy is conserved. In a canonical (NV T ) ensemble, the number of particles (N),

volume (V ) and temperature (T ) are conserved. Canonical ensemble is often called

constant temperature molecular dynamics (CTMD). In NV T ensemble the energy

of endothermic and exothermic processes is exchanged with a thermostat. There

is a large number of thermostat algorithms which add or remove energy keeping

temperature constant. It is not easy to obtain canonical distribution of spatial ar-

rangement and velocities using thermostat algorithms. A wide and relevant topic

is which thermostat should be chosen and how its parameters should be set, how

does that depend on the system size, how to choose the timestep and integrator.

Grand-canonical ensemble represents possible states of a system of particles which is

kept in thermodynamic equilibrium (thermal and chemical) with a reservoir. System

is considered to be open, in a sense that it can exchange the energy and particles

with a reservoir and accordingly, possible states of a system differ in terms of to-

tal energy and total number of particles. Volume is the same in all possible states

of a system. Thermodynamic variables of a grand-canonical system are chemical

potential and temperature. It is called (µVT ensemble, since each of those three

quantities is an ensemble constant. There are two main classes of MD integrators:

(i) low-order integrators like leapfrog, Verlet, velocity Verlet which is characterized

by easy implementation and stability, and (ii) predictor-corrector integrators which

are characterized by high accuracy for large timesteps.

- Examples of integrators

We present common integrators in MD simulations, namely: (i) The Leapfrog al-

gorithm, (ii) The Verlet algorithm and (iii) The Velocity Verlet algorithm. In
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all three examples the integration of Newton’s equations of motion is done with a

small timestep δt. In the following text index i is used for an i-th particle where

i = 1, ..., N , where N is the total number of particles in the system. Its position,

velocity and acceleration are labeled as ~ri, ~Vi = d~ri
dt
,~ai = d2~ri

dt2
, respectively.

(i) The Leapfrog algorithm

In the Leapfrog algorithm the velocities are first computed at the time moment t+ δt
2

and these are used to compute the positions ~ri, at the time moment t+ δt:

~ri (t+ δt) = ~ri (t) + ~Vi

(
t+

δt

2

)
δt. (3.16)

In this way, the velocities leap over the positions, then the positions leap over the

velocities:
~Vi

(
t+

δt

2

)
= ~Vi

(
t− δt

2

)
+ ~ai (t) δt. (3.17)

The advantage of this algorithm is that the velocities are explicitly calculated. How-

ever, the disadvantage is that the velocities are not calculated at the same time

moment as the positions. The velocities at the time moment t can be computed as:

~Vi (t) =
1

2

[
~Vi

(
t− δt

2

)
+ ~Vi

(
t+

δt

2

)]
. (3.18)

(ii) The Verlet algorithm

New positions and velocities of particles are computed after every timestep. Position

of a particle i in time moment t + δt can be computed via Taylor expansion over

degrees of timestep δt:

~ri (t+ δt) = ~ri (t) + δt
d~ri

dt
(t) +

1

2
δt2

d2~ri

dt2
(t) +

1

6
δt3

d3~ri

dt3
(t) + ... (3.19)

In a similar way, position of particle i in previous timestep can be written as:

~ri (t− δt) = ~ri (t)− δtd~ri

dt
(t) +

1

2
δt2

d2~ri

dt2
(t)− 1

6
δt3

d3~ri

dt3
(t) + ... (3.20)

Summing of previous two equations leads to the expression which determines posi-
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tion of particle i in time moment t+ δt

~ri (t+ δt) = 2~ri (t)− ~ri (t− δt) + δt2
d2~ri

dt2
(t) +O

(
δt4
)
. (3.21)

This integrator is called Verlet algorithm, as we can see from Equation 3.21 it

uses positions and accelerations at time moment t and positions at time moment

t− δt to compute new positions at time t+ ∆t. The Verlet algorithm does not use

explicit velocities. There are two main advantages of the Verlet algorithm: (i) its

straightforwardness, and (ii) reasonable storage requirements. The disadvantage is

the algorithm’s moderate precision. Acceleration of particle i is determined from

Newton’s equation of motion:

d2~ri

dt2
= − 1

mi

∑
j 6=i

∂U (ri − rj)
∂ (ri − rj)

. (3.22)

Position of a particle is computed with precision of δt4 as it is noted with O (δt4).

Velocity of particle i in time moment t can be determined from its positions in time

moments t+ δt and t− δt with precision of O (δt3), by subtracting the equation for

~ri (t− δt) from the equation for ~ri (t+ δt):

d~ri

dt
=
~ri (t+ δt)− ~ri (t− δt)

2δt
+O

(
δt3
)
. (3.23)

Positions and velocities of all particles in a system are computed in each step ofMD

simulation, producing complete time evolution of the system. In order for this time

evolution to be of high accuracy, integration timestep δt should be much shorter

than the shortest characteristic time of the system. Simple Verlet integrator is used

for systems with constant number of particles, constant volume and constant total

energy, which is micro-canonical (NVE) ensemble.

(iii) The Velocity Verlet algorithm

In the Velocity Verlet algorithm, positions, velocities and accelerations at time mo-

ment t are used for computing position at time moment t+ δt:

~ri (t+ δt) = ~ri (t) + ~Vi (t) δt+
1

2
~ai (t) δt2. (3.24)
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For computing velocity at time moment t + δt, velocity at time moment t and

acceleration at time moments t and t+ δt are used:

~Vi (t+ δt) = ~Vi (t) +
1

2
[~ai (t) + ~ai (t+ δt)] δt. (3.25)

(v) Computation of system’s characteristics

A big advantage of MD simulations is their applicability at the level of classical

atoms. All characteristics which are well defined in classical and statistical me-

chanics can be computed. The two main problems to be taken into account when

performing MD simulations, are accuracy and efficiency. System’s characteristics

can be roughly divided into four categories:

(1) Structural characteristics, for example radial distribution function

(2) State equation, for example phase diagrams, static response like coefficient of

thermal expansion

(3) Transport characteristics, for example viscosity, thermal conductivity, diffusivity

(4) Non-equilibrium response - for example plastic deformation

Physical quantity 〈A〉 is determined as mean value of its values A (t) in time mo-

ments t during a long time interval (large number n of MD steps) after initial

relaxation during long enough time (with relaxation time t0) [99]:

〈A〉 =
1

n

n∑
j=1

A (t0 + jδt) . (3.26)

If simulation is long enough so that the system can achieve equilibrium state (if

simulation is much longer than all relaxation times), this time averaging of quantity

〈A〉 is equivalent to the ensemble averaging.

3.1.2 LAMMPS code for molecular dynamics

An usual algorithm for developingMD simulations can be roughly divided into next

subsequent steps:

(i) geometric formation of the simulation setup

(ii) definition of the atom types and their attributes (e.g., shape, mass, charge)
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(iii) definition of the interactions between all atom types

(iv) implementation of the model and MD simulation of a certain physical phe-

nomenon, (e.g., in our case we simulate effects related to nanoscopic tribological

behaviour of ionic liquids)

(v) storage of the relevant data and its analysis with the goal of obtaining results

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a well-

known and widely usedMD code [98]. Development ofMD simulations in LAMMPS

code can be roughly divided into three subsequent phases:

(a) pre-processing, which includes points (i), (ii), (iii) from the above list

(b) processing, actually this is MD simulation which corresponds to the point (iv)

from the above list and

(c) post-processing, which corresponds to the point (v) from the above list

Processing is done via development of LAMMPS scripts, while for pre- and post-

processing we write codes in C programming language. MD simulations are com-

putationally highly demanding since we work with systems that contain tens of

thousands of atoms. The key advantage of LAMMPS is parallelization, which

means that LAMMPS codes can be run on a supercomputer. We write Linux

bash scripts for submitting simulations to the supercomputer, as well as for the ef-

ficient manipulation with the output files. For visualization we use VMD (Visual

Molecular Dynamics) software package [101].

3.1.2.1 Multi-level summation method for summing long-range Coulom-

bic interactions

Long-range Coulombic interactions are treated in LAMMPS with methods that

work in the inverse k-space [102–104]. In our LAMMPS simulations we apply the

Multi-level summation (MSM) method which maps the charge of atoms onto a

3D mesh and uses hierarchy of several levels of coarse-graining of the mesh on

which it directly computes Coulombic interaction. Competitive methods to MSM

method for summing Coulombic interactions are Ewald and Particle Particle Particle

Mesh (PPPM) methods, but they can be applied in case of a 3D simulation just

if periodic boundary conditions are present along all three directions. On the other
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side, MSM method can be applied in case of a 3D simulation without restrictions

related to periodic boundary conditions, i.e., it can be applied for non-periodic as

well as for mixed periodic and non-periodic boundary conditions. When we work

with bulk ILs, our system is periodic in all three directions. On the other side,

in case of confined ILs, our system is periodic along the x and y directions and

it is fixed along the z direction. Actually, we might state that our system with

confined IL includes mixed periodic (along two directions) and non-periodic (along

one direction) boundary conditions, hence MSM method is adequate for treating

long-range Coulombic interactions in our simulations.

3.2 Simulation setup and models of ionic liquid

3.2.1 Simulation setup

We have developed our simulation setup bearing in mind lubrication role of IL,

hence it consists of two solid plates and IL which is confined between them and

also present in the lateral reservoirs. Schematic of simulation setup together with

configuration snapshots in three cross-sections, i.e., xz, yz, xy cross-sections which

are exported from the VMD (Visual Molecular Dynamics program [101]) is shown

in Figure 3.4 in case of SM model and in Figure 3.5 in case of TM model (e.g.,

diameter of neutral tail is arbitrary chosen to be the same as the diameter of cationic

head). Schematic in simulation setup figures (i.e., Figures 3.4 and 3.5) indicates the

number of particles used and the imposed normal load Fz and lateral velocity Vx. In

VMD configuration snapshots dimensions of the system along the three axes, i.e.,

x, y, z, are noted. The simulation setup was loosely inspired by previously published

research by others [39, 49, 51, 52]. By implementing such a geometry we have at-

tempted to achieve:

(i) a realistic particle squeeze–out behaviour with the formation of two lateral lu-

bricant regions (in a similar manner to the simulations of Capozza et al. [52]) and

(ii) a system that allows the lubricant to be externally pressurized.

For the description of the solid surfaces we have combined rigid layers of particles

moving as a single entity on which the external force or motion is imposed, denoted
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Figure 3.4: (a) Schematic of the simulation setup shown as yz cross-section. There
are two solid plates at the top and bottom of the system, consisting of two regions: at
the outermost ones the particles are moving as a single entity (Top/Bottom Action)
and at the innermost ones the particles are at a controlled temperature (Top/Bottom
Thermo). The thermalized layers are in direct contact with the lubricant while the
action layers are used to impose external velocity and/or force to the solid plates.
(b)-(d) Side views of the typical simulation configuration and key dimensions of the
geometry. (b) Side (xz) view with respect to the shear direction. (c) Front (yz)
view in the direction of the Top plate motion. (d) Top (xy) view of the system. The
solid plates are made up of FCC (111) atomic layers. The ionic liquid is composed
of an equal number of cations (blue spheres) and anions (red spheres).

by "Top Action" and "Bottom Action" in Figures 3.4 and 3.5 (a), with thermalized

layers (denoted by "Top Thermo" and "Bottom Thermo") in which particles vibrate

thermally at T = 330 K.

The Nose-Hoover NV T thermostat is used to control the temperature. As in

previous MD simulations [43, 49, 51, 52, 56], under similar operating conditions,

the details of the adopted dissipation scheme are not expected to change the essence

of the system response on mechanical deformation. The relaxation time of the

Nose-Hoover NV T thermostat for the lubricant and the solids is 200 fs (check Ref-

erence [43]). The plates were treated as rigid bodies, with the lower one being fixed
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Figure 3.5: Schematic of the simulation setup shown as yz cross-section. Dimensions
of the system along the y and z axes, together with the directions of the imposed
normal load Fz and lateral velocity Vx are noted. The total system length in the
x direction is 125 Å. There are two solid plates at the top and bottom of the
system. Ionic liquid is composed of an equal number of cation–tail pairs and anions
(cations: blue spheres; tails: cyan spheres; anions: red spheres). (a) Schematic of
the simulation setup presented as yz cross-section, showing the number of atoms in
each region. (b) Side (xz) view of the system showing the dimensions along the x
and z direction. (c) Side (yz) view of the system. (d) Top (xy) view of the system
showing the dimension along the y direction.

and the upper one subjected to a force oriented along the z direction, i.e., normal

load Fz , as shown in Figures 3.4 and 3.5 (a) and driven along the x direction at a

constant velocity Vx. The solid plates were made up of densely packed atomic layers

at a FCC (111) lattice arrangement. Periodic boundary conditions were applied in

the x and y directions. The Bottom plate can therefore be considered to be infinite,

while the Top plate is surrounded by vacuum pockets on its sides, the so called

lateral reservoirs, in which the lubricant can freely expand. The lateral reservoirs

were implemented as a mechanistic way for allowing the lubricant to be dynami-

cally squeezed in or out as an external load or velocity is applied, or due to local

fluctuations during the simulation progression. At the same time, the lubricant re-

mains an infinite continuous body in the x and y directions, similar to the conditions
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observed in a real tribological system from a mesoscopic point of view. This is espe-

cially important if the system experiences partial or complete crystallization under

compression, check Figure 3.29 in section 3.4. While the total number of considered

lubricant molecules is constant, the finite upper plate width and the resulting free

space enable the particles to be squeezed-out into the lateral reservoirs. The number

of lubricant molecules effectively confined inside the gap can therefore dynamically

change depending on the loading conditions. This is important for exploring the

possible states of a mechanical system of particles that is being maintained in ther-

modynamic equilibrium (thermal and chemical) with a lubricant reservoir (i.e., void

spaces in tribological system). The nanotribological system is open in the sense

that it can exchange energy and particles, realizing an effectively grand-canonical

situation, check Figures 3.4 and 3.5 (c) and Reference [105].

3.2.2 Models of ionic liquid

In this subsection we present implementation details about the modeled solid plates

and IL lubricants in case of SM and TM models of ionic liquid, respectively.

3.2.2.1 Salt model of ionic liquid

The model used in this work is a coarse–grained model of IL which has already been

exploited in previous studies [49, 51, 52, 64] and it is known as SM model (salt–

like model). It is a charged Lennard–Jones system consisting of cations and anions.

There are two types of interatomic interactions in our system and both of them are

non–bonded: Lennard–Jones (LJ) potential and Coulombic electrostatic potential.

In the current work we are comparing bulk and confined IL properties. Therefore,

there are three different atom types taken into consideration: (i) cations, (ii) anions

and (iii) solid plate atoms. The solid plates consist of nine densely packed layers in

a FCC (111) lattice arrangement. Between all types of atoms we apply full LJ 12-6

potential, with the addition of Coulombic electrostatic potential for the interactions

between ions. In our system the cations and the anions are charged particles, while

the solid plate atoms are electroneutral. Accordingly, we have implemented a LJ
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12-6 potential combined with Coulombic electrostatic potential:

Vαβ (rij) = 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

+
1

4πε0εr

qiqj
rij

, (3.27)

where i, j = 1, . . . , N are particle indices, and N is the total number of particles.

Parameters {εαβ, σαβ} define the LJ potential between different types of particles:

α, β ∈ {A,C, P} which refer to anions, cations and solid plate atoms, respectively.

The diameter of cations and anions is set to σCC = 5 Å and σAA = 10 Å, respec-

tively. The mass of cations and anions is mC = 130 g/mol and mA = 290 g/mol,

respectively. The asymmetry of ion sizes is typical in many experimentally explored

systems and the parameters have already been explored in literature, check Refer-

ence [52, 64]. The atoms of the solid plates have a diameter of σPP = 3 Å. The mass

of the solid plate atoms is mP = 65 g/mol. The LJ potential has a short–range im-

pact, since it vanishes rapidly as the distance increases ∝ r−6, while the Coulombic

potential has a long–range impact, ∝ 1/r. To handle long–range interactions, we

have used a multi–level summation method (MSM) [104], since it scales well with

the number of ions and allows the use of mixed periodic (in x and y directions) and

non-periodic (in z direction) boundary conditions, which are present in our simula-

tion setup with confined IL. On the other hand, in our simulation setup with bulk

IL, periodic boundary conditions are applied in all three directions ({x, y, z}). Ions

are modeled as coarse grain particles, the charge of which is set equal to elementary:

qC = +e and qA = −e, i.e., e = 1.6 · 10-19 C. The dielectric constant is set to εr = 2

to account for the dielectric screening, as in Refs. [51, 52, 64].

In engineering applications, the lubricant molecules typically interact with metal

surfaces. Computationally efficient many–body potentials such as embedded atom

method (EAM) potential [106, 107] can be applied for the description of such solids.

Such schemes have been employed extensively for modeling a wide range of systems

including metals [107] and metal-metal oxide interfaces [108]. In addition, in order

to account for the induced charges on the metallic conductor surface by the ions, the

Drude-rod model developed by Iori and Corni [109] which consists of the addition

of an embedded dipole into each metal atom, thus rendering it polarizable, has been
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applied in previous studies [39]. In this study, modeling the elasticity of metallic

plates plays a secondary role (central role belongs to IL lubricant). Therefore, we

have selected a simplified model in which plate atoms interact strongly with each

other if they belong to the same plate, i.e., εPP = 120 kCal/mol, as opposed, to

a very weak interaction between the different plates εtop/bottom = 0.03 kCal/mol.

The parameter εPP is so strong in order to ensure that the initial configuration of

the solid bodies will basically remain unchanged (apart from high frequency oscil-

lations). Furthermore, even though typical engineering systems are often metallic,

our initial coarse grained MD studies of liquid behaviour according to the applied

conditions justified the implementation of a simpler solid system which does not

feature substrate polarization, check Reference [64]. Finally, it is possible that the

actual surfaces might feature carbon coatings or depositions, in which case the sur-

face polarization can be of secondary importance. In the Table 3.1 we present the

values of {εαβ, σαβ} parameters used in our model. Cross-interaction parameters are

calculated by Lorentz-Berthold mixing rules: εαβ =
√
εα · εβ and σαβ = (σα + σβ) /2.

The starting configuration for our MD simulations was obtained via a relaxation

process. In order to obtain a stable and reproducible initial configuration, the re-

laxation was performed through a step-wise increase of absolute ion charge at steps

of ∆|qi| = e/10, i = {A,C}. Each time the charge of the ions was increased, a mini-

mization of the system’s energy through conjugated gradient method was performed.

In this way, the system characteristics were gradually converted from pure LJ to a

Coulomb interaction dominated system through a series of stable configurations. As

we are aiming at understanding the lubricant behaviour at mesoscopic conditions

observed in a ring–liner system, we have attempted to include in ourMD model the

potential IL pressurization that can occur due to the liquid flow resistance, as well

as the variable pressure arising from the reacting gas in the combustion chamber.

Inserting gas molecules directly in the simulation for this purpose would require a

reduction of the time step due to higher thermal velocities of the gas. In turn, the

computational cost would increase significantly making simulations impossible to

run in realistic computational time. Therefore, in order to understand the effect of

external pressure on the IL behaviour, we have applied a repulsive force between
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Table 3.1: List of LJ parameters of SM model of ionic liquid.
pair αβ εαβ [kCal/mol] σαβ [Å]

CC 0.03 5
AA 0.03 10
CA 0.03 7.5
PC 0.3 4
PA 0.3 6.5
PP 120 3

the topmost rigid solid layer and the IL particles in the form of a truncated and

shifted LJ potential. Two cases with cut-off distances at 15 Å and 4 Å above the

outermost Top plate layer were studied so that the IL inside the confinement gap

would remain outside the influence zone of this mechanistic force. By appropriate

selection of the LJ parameters for this potential, the resulting external pressures

applied on the unconfined surface of the IL were 120 kPa and 250 kPa, respectively.

3.2.2.2 Tailed model of ionic liquid

In this study, we have applied a generic coarse grained IL model, introduced in

Reference [52]. In this model, the anion is represented as a negatively charged

large–sized spherical particle, while the cation is a dimer consisting of a positively

charged small–sized spherical particle (i.e. cationic head), and a neutral spherical

particle (tail) attached to the corresponding cationic head via an elastic spring, see

Figure 3.6 and Reference [110]. Since the cationic tail is the principal feature of the

model used in this paper, we will refer to it as tail model (TM). The asymmetry

of the cation leads to amorphous (glassy) states for realistic values of interaction

parameters (e.g., for hydrocarbons), in contrast to the simplest coarse–grained model

of IL known as SM model (salt–like model), where both cations and anions are

spherical. The SM model has already been exploited in previous studies [49, 52, 64,

111]. Despite an obvious advantage of simplicity, in order to avoid crystallization,

the SM model relies on a very weak non-bonded Lennard-Jones interaction which

makes any comparison with real IL only qualitative.
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Figure 3.6: Schematic representation of (a) anion and (b) cation molecules in TM
model. The anion is represented by a spherical particle with a diameter σAA = 10 Å.
The cation molecule consists of a charged head with a diameter σCC = 5 Åand a
neutral tail. In order to be more concise, we refer just to cationic head as the cation.
The cation and its tail are connected by a spring with length L = (σC +σT)/2. The
size of the tail has been varied and (a) TM3, (b) TM5 and (c) TM9 ionic liquids
have a tail diameter of 3, 5 and 9 Å, respectively. The molecular asymmetry is a
feature of real ionic liquids and chosen parameters resemble [BMIM ]+ [PF6]− IL

properties, check References [49, 51].

In addition, the SM model cannot account for molecular asymmetry featured in

real ILs. Nevertheless, the SM model has been proven to be quite useful for the

development of the simulation methodology, as it reduces computational complexity

and enables faster equilibration (e.g., for obtaining static force-distance characteris-

tics as in Reference [64]). More complex extensions of TM coarse grain models can

involve several tails of different size, like in Reference [49]. For simplicity reasons,

we restrain our considerations in this study to a single neutral tail of a variable size.

Although a whole cationic dimer is an entity which actually represents a cation, in

order to be more concise we refer just to cationic head as the cation. One might raise

a question what are the reasons for the attaching of a neutral tail to a cation? First

of all, real ILs usually include cations that consist of the cationic head (positively

charged) and alkyl chain (neutral part of cation). Alkyl chains can have different

lengths (different number of C atoms). Furthermore, the tail enhances the general
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tendency of ILs to form a glass rather than a crystal at low temperatures [52]. As

the previous studies have shown, the shape of IL molecules may affect their layering

structure [49]. According to that, the central question which we address in this

study is how does the tail size affect the structure, static and dynamic behaviour,

as well as, lubrication properties of a generic IL represented via tailed–model.

- Interaction model

In the current work we are dealing with both bulk and confined ILs. Hence, in

case of simulation setup with confined ILs, there are two solid plates consisting of

solid plate atoms. To sum up, in total there are four different atom types taken into

consideration:

(i) cations, (ii) tails, (iii) anions and (iv) solid plate atoms.

In cation–tail dimers an elastic spring connects cations and tails enabling the tail’s

freedom of moving independently from its cation, since their connection is not rigid.

Interatomic interactions taken into consideration in our molecular dynamics simu-

lations are:

(i) non–bonded interactions (Lennard–Jones (LJ) and Coulombic electrostatic po-

tential) and

(ii) bonded interaction (elastic spring potential in cation–tail pairs). The next equa-

tion defines the interaction potential:

Vαβ (rij) = 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

+
1

4πε0εr

qiqj
rij

, (3.28)

where i, j = 1, . . . , N are particle indices, and N is the total number of particles.

Particles which comply to the interaction potential written in the above equation,

i.e., Equation 3.28, can be of different types: α, β ∈ {A,C, P} which refer to anions,

cations and solid plate atoms, respectively. On the other hand, interaction of tails

with all other atom types, including tails themselves, is implemented using a purely

repulsive potential, namely a shifted and cut LJ 12-6 potential. It means that full

LJ 12-6 potential is shifted up for the value of potential well depth (ε) and cut at

the distance corresponding to the potential well minimum (rcut = 21/6σ). The next
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equation defines the above mentioned interaction potential:

Vαβ (rij) = εαβ + 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]
, rij ≤ 21/6σαβ (3.29)

and Vαβ (rij) = 0, rij > 21/6σαβ, where in Equation 3.29 at least one of indices

α, β = T which refers to tails. The ionic liquid is electroneutral, i.e., the number of

cations and anions is the same. The total number of ionic liquid molecules (cation–

tail dimers and anions) is NIL = 3000. Therefore, the total number of ions is

NC = NA = 1000 and the number of tails is NT = NC = 1000.

- Model Parameters

In this study we have fixed the diameter of the cationic heads and anions to σCC =

5 Å and σAA = 10 Å, respectively. Such choice respects the asymmetry that exists in

ILs and it is consistent with other models, as well as, for example [BMIM ]+ [PF6]−

ionic liquid, check Reference [49, 51, 52, 64]. The solid plate atoms have a diameter

of σPP = 3 Å. We have taken into consideration three different TM models of IL

depending on the tail size which is defined as Lennard–Jones σTT parameter: small–

tail cationic dimer (i.e., TM3 model with σTT = 3 Å), symmetric cationic dimer

(i.e., TM5 model with σTT = σCC = 5 Å) and large–tail cationic dimer (i.e., TM9

model with σTT = 9 Å). The values of the tail size are chosen to take into account

their relation to the size of the cationic head which is σCC = 5 Å, hence our choice

can be described as: tail size less–, equal to– and greater than– the size of cation.

Drawing a comparison with the experiment in Refs. [53, 67], the TM IL mimics

a folded alkyl chain and the radius of the sphere is related to the gyration radius of

the chains. Depending on the length of the alkyl chain, the sphere has a smaller or

lager radius. Thus, the size of a sphere which represents a neutral tail in TM ILs

does not compare directly with the alkyl chain length. However, we can make a

qualitative analogy. While the representation of the alkyl chain as a neutral LJ

sphere does not include all the microscopic level features, we will show that the

three selected radii, i.e., σTT = {3, 5, 9} Å, result in clear differences of the bulk

properties of ILs and their lubrication response. Each cation–tail pair is connected

via identical elastic spring defined by the next two parameters: elastic constant
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Table 3.2: List of LJ parameters of TM models of ionic liquid; the tail size is
denoted by σTT since it is variable.

pair αβ εLJ
αβ [kCal/mol] σαβ [Å]

CC 1.1 5
AA 1.1 10
TT 1.1 σTT

CA 1.1 7.5
CT 1.1 (5 + σTT) /2

AT 1.1 (10 + σTT) /2

PC 5.3 4
PA 5.3 6.5
PT 5.3 (3 + σTT) /2

PP 120 3

K = 80 kcal/molÅ2 and equilibrium length of the spring l0 = (σCC + σTT) /2. The

strength of the LJ interactions between different charged parts of ions (i, j = {A,C})

is εij = 1.1 kcal/mol. The LJ parameters are chosen to compare well with one of

the most widely studied ionic liquids [BMIM ]+ [PF6]−, check Reference [49, 51].

The charge of ions is set to elementary: qC = +e and qA = −e, where e = 1.6 ·

10-19 C. The strength of the ion-substrate interaction was tuned to ensure complete

wetting, εαP = 5.3 kcal/mol, α ∈ {A,C, T}. Only when the strength of ion-substrate

LJ interaction εαP equals the strength of inter-ionic LJ interaction εαβ, partial

wetting is observed, i.e., εαP = 1.1 kcal/mol, where α, β ∈ {A,C, T} (more details

about the wetting behaviour of TM ionic liquids are provided in section 3.3 in

the subsubsection 3.3.2.3). In the table 3.2 we present the values of {εαβ, σαβ}

parameters used in our models. Cross-interaction parameters are calculated by

Lorentz-Berthold mixing rules: εαβ =
√
εα · εβ and σαβ = (σα + σβ) /2.

3.3 Bulk ionic liquid

The main focus of our research is oriented towards revealing the properties and

behaviour of confined IL, since IL accomplishes its lubricating role when confined
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between solid surfaces. The length scale of confinement we are interested in is

expressed in nanometers, hence the nanoscale confinement affects the structure and

behaviour of IL. In order to better understand the effects of nanoconfinement

on IL, we should first understand the IL itself, which means that we should first

characterize bulk IL. For this purpose we have relaxed bulk IL and determined its

viscosity characteristics, as well as its wetting behaviour. This section is dedicated

to our study of bulk IL in case of SM model (subsection 3.3.1) and in case of three

representative TM models (subsection 3.3.2).

3.3.1 Bulk salt model of ionic liquid

3.3.1.1 Solidification and melting of bulk salt model of ionic liquid

In order to confirm that the SM modeled IL used in our MD simulations remains

in a liquid state for the conditions of interest, its liquid–solid and solid–liquid phase

transitions have been studied. The bulk ionic liquid was implemented by randomly

placing a chosen number of ions (NC = NA = 1000) into a 3D simulation box

that is periodic in all three directions, with pressure kept constant at 100 kPa.

Phase transitions were then achieved via the application of linear ramping to the

temperature, in a similar approach to the calculations performed in Reference [52].

Starting from an initial temperature T1 = 330 K where the IL is in a liquid state,

the temperature was decreased linearly down to T2 = 180 K. The absolute rate of

temperature change was: |dT | /dt = 1.67 K ns−1. A liquid–solid phase transition

was observed during the IL cooling.

After reaching T2 = 180 K, the temperature was increased back to the initial

value of T1 = 330 K. A solid–liquid phase transition was observed during this heating

process. In Figure 3.7 the IL internal energy change ∆Eint and temperature T are

shown as functions of time t. The temperature profile follows the applied conditions

and its superimposition to internal energy change allows the observation of the

dynamic behaviour of the liquid. By plotting the averaged internal energy change

of the IL against its temperature in Figure 3.8, the hysteresis behaviour in the

solidification–melting cycle is clearly observed, while the phase transition locations
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Figure 3.7: (Left panel): Bulk internal energy change and temperature of the ionic
liquid as a function of simulation time. (Right panel) Snapshots of ion arrangement
at liquid (A), (C) and solid (B) state.

can be clearly defined. It can be seen that during the cooling process, the internal

energy of IL linearly decreases until the temperature reaches Tls = 190 K, at which

point a sharp drop is observed. This indicates a first order thermal phase transition

(liquid–solid). During the heating process, a similar sharp jump of energy is observed

at Tsl = 305 K which corresponds to an opposite phase transition (solid–liquid).

The obtained results are in a good agreement with Reference [52] and confirm that

the IL behaves as a liquid for temperatures higher than 310 K, under atmospheric

pressure conditions. In the rest of our calculations a temperature value of T = 330 K

was applied, in order to allow a liquid state that is combined with local solidification

under elevated contact pressure conditions.

3.3.1.2 Relaxation simulations

We have revealed the solidification and melting phase transitions of bulk SM ionic

liquid, under the condition of atmospheric pressure. The subsequent step was to
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Figure 3.8: Bulk internal energy change of the ionic liquid as a function of temper-
ature. The internal energy was calculated by averaging on segments of ∆T = 0.5K.

make the bulk IL comparable with its confined counterpart and to do so we had

to determine simulation box volume which enables the pressure experienced by the

confined IL. More specifically, for the present system of bulk SM ionic liquid

confined between the solid plates (c.f. Figure 3.4), the pressure was p ≈ 1 MPa.

The Nose–Hoover NV T thermostat was used to control the temperature and was set

to T = 330 K. The system was relaxed for ttot = 3 · 107 fs until the internal energy

had converged and the pressure had approached the desired value. The simulation

timestep was dt = 0.5 fs. We have obtained pressure stabilization at 〈p〉 = 1.1 MPa

with a side length of the cubic simulation box at L = 99 Å. The energy relaxed to a

value of 〈Eint〉 = 0.7597 kCal/mol. The molar and mass density of the bulk IL was

ρn = 3400 mol/m3 and ρm = 719 kg/m3 respectively.

3.3.1.3 Viscosity characteristics

We have calculated the viscosity in two ways: using the Green–Kubo relation since

the viscosity of a system can be represented as an integral of the auto-correlation
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Figure 3.9: Dependences of internal energy Eint and pressure p on simulation time
ts in case of bulk SM ionic liquid. Solid line in p (ts) plot denotes the value of target
pressure p = 1 MPa (p ≈ 10 atm).

function [112], and using non–equilibrium molecular dynamics simulations with dif-

ferent shear strains.

In the non–equilibrium shearing simulations, the bulk IL is placed into a triclinic

(non–orthogonal) simulation box with periodic boundary conditions applied in all

three directions. Due to the deformation of the simulation box, every point in the

box has an additional velocity component (a so called streaming velocity). In order to

prevent the streaming velocity from affecting the thermal kinetic energy, we use the

so-called SLLOD thermostat [113, 114]. The SLLOD thermostat accounts for the

streaming velocity which depends on an atom’s position within the simulation box
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Figure 3.10: Configuration snapshot (yz cross–section) of a bulk IL at the end of
relaxation simulation. Cations are represented as smaller blue spheres and anions
as larger red spheres.

and it needs to be accounted for controlling the temperature. Controlled shearing of

the simulation box results in a stress acting on IL, which is quantified via the stress

tensor. The relation between the stress tensor components τij and the shear rate γ̇ij

of corresponding shear strain εij, with coefficient of viscosity ηij as a proportionality

constant is:

τij = ηij · γ̇ij, (3.30)

where ij = {xy, xz, yz}. We have applied three independent shear strains (εxy, εxz, εyz).

For each of them we have calculated its corresponding stress tensor component

(τxy, τxz, τyz). All shear strains were the same, i.e., εxy = εxz = εyz = ε = 1 leading

to the shear rate of:

γ̇ = ε · 1

ttot

=
1

ttot

, (3.31)

where ttot is the total simulation time of the shearing simulations. We have per-

formed simulations at four orders of magnitude of the total simulation time: ttot =

{0.1, 1, 10, 100} ns, and thus at four orders of magnitude of the corresponding shear

rate. In this way we wanted to check the quality of our relaxation procedure and if

there are shear rate dependence changes in the system. We have iterated the shear-

ing simulations (at a shearing velocity of 1 m/s) using the output of the previous
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Figure 3.11: Dependence of Green–Kubo (GK) viscosity coefficient ηGK on simula-
tion time ts in case of bulk SM ionic liquid. The time needed to obtain the viscosity
coefficient is around trel = 5 ns.

run as the input of the next run, obtaining higher strains (up to a strain of 5). We

did not observe a strain dependence in the response of the system, meaning that the

result is unaffected if the strain is further increased.

In Figure 3.11, we show the time relaxation of the Green–Kubo viscosity coef-

ficient, which stabilizes around ηGK = 0.2039 mPa · s. The configuration snapshot

of the bulk IL at the end of the simulation (check Figure 3.10) shows that the ions

remain randomly positioned, like they were at the start of simulation, which indi-

cates the liquid state of the bulk ionic liquid. The simulations for all three shear

strains give similar values of stress components, and resulting values are shown in

Figure 3.12. The points {γ̇, τ} were obtained via shearing simulations and the solid

line was obtained according to τ = ηGK · γ̇, where ηGK was obtained via Green–Kubo

relation. Hence, we conclude that the results of shearing simulations are in agree-

ment with the results of relaxation simulation and therefore there are no changes in

the bulk system which are shear rate dependent.

3.3.1.4 Wetting properties

Besides the necessary relaxation of bulk IL and determination of its viscosity charac-

teristics, the liquid–solid interface should be well–known so that we can understand
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Figure 3.12: Average stress tensor component τ in function of the shear rate γ̇ of
a bulk SM ionic liquid. We have conducted shearing simulations on four orders
of magnitude of the shear rate γ̇, therefore with three orders of magnitude span,
which is followed by three orders of magnitude span of τ . Points are obtained via
shearing simulations and solid line is obtained according to: τ = ηGK · γ̇, where ηGK

is obtained via Green–Kubo relation.

the behaviour of liquids confined between solid plates. Accordingly, it is important

to investigate the wetting properties of modeled ILs. For this purpose we examine

the wetting properties of SM ionic liquid by placing an IL droplet consisting of

NIL = 2000 ions, i.e., NC = NA = 1000, above a neutral solid plate (where the term

above means a higher z coordinate) which consists of one atomic layer in a FCC

(111) lattice.

Wetting properties simulation consist of two parts: (1) movement of the solid

plate at a constant velocity of Vz = 1 m/s towards the IL droplet, which promotes

the contact of IL droplet with the plate. Due to the LJ interaction between the

ions and solid plate atoms, the IL droplet starts covering the plate. The ending

configuration of this part (1) simulation is used as the starting configuration of the

part (2) simulation in which the solid plate rests and a long simulation time of

ts = 5 ns is given to the ionic liquid, so that it can spread over the plate. In the end
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Figure 3.13: Results of wetting properties simulation in case of SM ionic liquid.
Left panels show yz cross–section, while right panels show xy cross–section of the
system consisting of an SM ionic liquid droplet and a solid plate.

of the part (2) simulation, the ionic liquid is placed on the solid plate in the way that

it forms a cationic-anionic layer over the whole plate, with an amorphous droplet

in the center of the plate. We might conclude that, for the value of the strength of

ions-plate LJ interaction, i.e., εIP = 0.3 kCal/mol, SM ionic liquid completely wets

the given solid plate (LJ interaction parameters {σαβ, εαβ} are taken from Table 3.1

in subsubsection 3.2.2.1 of section 3.2). In Figure 3.13 we show the results of wetting

properties simulation in three vertical panels: the top one shows the yz (in the left-
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hand side of the panel) and xy (in the right-hand side of the panel) configuration of

the system at the start of part (1) simulation. The middle panel shows the same two

configurations of the system at the end of part (1) simulation, which is taken as the

start of part (2) simulation. The bottom panel shows the same two configurations

of the system at the end of part (2) simulation.

3.3.2 Bulk tailed models of ionic liquid

3.3.2.1 Relaxation simulations

In an analogous way like in the case of bulk SM ionic liquid, check subsubsec-

tion 3.3.1.2, we have performed relaxation simulations in case of three representative

TM ionic liquids. An initial configuration for a bulk TM ionic liquid was obtained

by a random placement of ions (NC = NT = NA = 1000) into the simulation box

(cube) with periodic boundary conditions in all three directions. We have chosen

the simulation box volume which ensures, after the relaxation of the IL structure,

the pressure comparable to the one experienced by confined IL. In case of the

present system the pressure was p ≈ 10 MPa, which corresponds to the normal force

of 103 pN acting on a surface of 104 Å2 (see Figures 3.5 and 3.35). We provide

implementation details related to the relaxation simulations: a Nose–Hoover NV T

thermostat at T = 330 K is used to control the temperature; the system is relaxed

for ttot = 3 × 107 fs until internal energy converges and pressure approaches the

desired value of p ≈ 100 atm; simulation timestep is dt = 0.5 fs.

Table 3.3: Overview of the results of relaxation simulations: σTT is the tail size, L
is the side length of cubic simulation box, trel is the estimated relaxation time, 〈p〉
and 〈Eint〉 are the mean values of pressure and internal energy respectively, averaged
over the time span trel ≤ t ≤ ttot, where ttot is the total simulation time.

σTT [Å] L [Å] trel [ns] ttot [ns] 〈p〉 [atm] 〈Eint〉 [kCal/mol]

3 104.5 11 30 95.31 −0.62

5 110 0 19 103.81 −0.57

9 129 20 30 118.21 −0.54
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Figure 3.14: Dependences of internal energy Eint and pressure p on simulation time
ts in case of bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquid. Solid lines in p (ts)

plots denote the value of target pressure p = 10 MPa (p ≈ 100 atm) in all cases.

In Table 3.3 we are showing the overview of the relevant parameters of relaxation

simulations, for TM3, TM5 and TM9 bulk IL. In Figure 3.14 we are showing the

dependences of bulk IL′s internal energy Eint and pressure p on simulation time

ts for bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquid. Figure 3.15 presents

the xy cross–section snapshots of bulk IL configurations at the end of relaxation

simulations for (a) TM3, (b) TM5 and (c) TM9 model. Those results have clearly

revealed a strong dependence of IL′s structure on the tail size. We have obtained

three completely different outcomes of relaxation simulations in terms of internal

energy and structure (check Figure 3.14), depending on the tail size.

- Tail significantly smaller than cation (TM3 model)

We can notice three different segments (check Figure 3.14(a)) in the dependences of

internal energy and pressure on simulation time. First, there is a smooth decrease

of both parameters over the time interval of t ≤ 10 ns. The first segment is followed

by a sudden drop of Eint and p in the time interval 10 ≤ ts ≤ 11 ns. For ts ≥ 11 ns

both system parameters remain stable in terms of their average values. Therefore,

we might estimate the relaxation time as trel ≈ 11 ns. Actually, the values of Eint and

p are oscillating around their averages (a common result in MD simulations) which

remain fixed in the time span trel ≤ ts ≤ ttot. Since the temperature is thermostated
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at T = 330 K we might not speak about a phase transition, but those sharp drops

of internal energy and pressure are a demonstration of a state transition. Structural

changes consistently follow the changes in system parameters, hence there is a clear

transition from initially randomly positioned atoms into an ordered structure. We

might conclude that a small tail does not affect the cationic–anionic ordering into a

cubic lattice, which arises due to Coulombic interaction. We should emphasize that

the obtained cubic lattice is not an ordinary simple cubic lattice, but it is tilted.

Ionic layers are oriented in the way that they follow the face diagonal of the cube.

A conclusion is that TM3 bulk IL does not stay in initially assigned liquid state

during the relaxation process, but it leaves the relaxation process as an ordered

structure (check Figure 3.15(a)).

- Tail of the same size like cation (i.e. symmetric cationic dimer, TM5

model)

Both system parameters Eint and p remain stable (check Figure 3.14(b)) and with

practically the same average values throughout the whole simulation, indicating

that a state transition does not happen. The structure of bulk IL remains the same

during the simulation, which is consistent with the behaviour of those parameters.

We can claim that relaxation of bulk TM5 ionic liquid gives a liquid state as the

outcome (check Figure 3.15(b)).

- Tail significantly larger than cation (TM9 model)

There is a continuous and smooth decrease of both Eint and p over a long time

span ts ≤ 20 ns (check Figure 3.14(c)). Later during the relaxation simulation

those parameters remain stable, hence we estimate the relaxation time in this case

as trel ≈ 20 ns. It is almost two times longer than the relaxation time of TM3

model. Structural changes are consistent with system parameters’ changes, hence

we notice a clear state transition from initially randomly positioned atoms into an

ordered structure (check Figure 3.15(c)). We can state that a large tail enables

cationic-anionic ordering, which arises due to Coulombic interaction. All layers are

oriented along the face diagonal of the cube and they are composed of alternating

ionic and tail layers, namely ionic layers consisting of two cationic–anionic sublayers

separated by tail layers consisting of two tail sublayers. Tail sublayers are organized

86



3. Ionic liquids

Figure 3.15: Configuration snapshots of bulk (a) TM3, (b) TM5 and (c) TM9 ionic
liquid (i.e., with tail of diameter 3, 5 and 9 Å, respectively). We may notice that each
configuration snapshot represents a different state, i.e. TM3 bulk IL crystallizes into
a tilted simple cubic crystal structure, oriented along the face diagonal; TM5 bulk
IL is in liquid state; TM9 bulk IL crystallizes into crystal planes with alternating
ionic–tail layers, oriented along the face diagonal as well.

in the way that the tails of cationic sublayers in successive ionic layers belong to the

tail layer which separates those successive ionic layers. Simply said, the structure

looks like this: ionic layer (consisting of two cationic–anionic sublayers) - tail layer

(consisting of two tail sublayers) - ionic layer - tail layer and so on.

These observations are in agreement with Reference [115] in which the authors

discuss the relationship between the length of alkyl chain and the structure of bulk

IL. When the cationic alkyl chain is short Coulombic forces are dominant, enabling

ordering. We observe this kind of result with TM3 model. Alkyl chain must be

long enough in order to suppress Coulombic interaction, e.g. number of C atoms

nC ≈ 12, which corresponds to (nC−1) ·1.53 Å = 16.83 Å of tail length, taking into

account that a C-C bond has a length of 1.53 Å. Suppressed Coulombic interaction

suppresses lattice arrangement, as we obtain with TM5 model. However, alkyl chain

should not be too long since cohesive interactions increase with the length of non-

polar groups. This leads to a reappearance of structural ordering, like in the case of

TM9 model.

87



3. Ionic liquids

0 4 8 12 16 20

ts [ns]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

2 6 10 14 18

η
G
K
 [

m
P

a
 s

]

Figure 3.16: Dependence of Green–Kubo (GK) viscosity coefficient ηGK on simu-
lation time ts in case of bulk TM5 ionic liquid. The time needed to obtain the
viscosity coefficient is around trel = 10 ns.

3.3.2.2 Viscosity characteristics

In an analogous way like in the case of bulk SM ionic liquid, we have calculated

the viscosity coefficient of bulk TM ionic liquids using non–equilibrium molecular

dynamics (NEMD) simulations with different shear strains, taking configurations

obtained by relaxation. For each value of the shear rate γ̇ in the range 0.01−10 ns-1,

we calculate the average stress tensor component: τ = (τxy + τxz + τyz) /3. The

average stress tensor component τ and shear rate γ̇ are connected by the relation:

τ = η · γ̇α, (3.32)

where η is a generalized viscosity coefficient and α is an exponent. Besides the

NEMD method of simulation box shearing, we have also calculated the viscosity

coefficient using Green-Kubo (GK) relation. In Figure 3.16, we show the time

relaxation of the GK viscosity coefficient of bulk TM5 ionic liquid, which stabilizes

around ηGK = 0.62 mPa · s. In Figure 3.17 we present the dependence of the average

stress tensor component τ on the shear rate γ̇ for TM3, TM5 and TM9 bulk IL.

We notice that the average tensor component stays within the same order of

magnitude in TM3 and TM9 cases, although the shear rate changes four orders
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Figure 3.17: Average stress tensor component τ in function of shearing rate γ̇ of
TM3, TM5 and TM9 bulk IL. We have conducted shearing simulations with four
orders of magnitude of the shearing rate (γ̇ = 0.01−10 ns-1). The lines are obtained
by fitting the points with Equation 3.32.

of magnitude. Contrary to that, in case of TM5 model there is a two orders of

magnitude change of the average stress tensor component. We have obtained ordered

bulk IL in case of TM3 and TM9 model, hence their values of α are low, i.e.

αTM3 = 0.15 ± 0.02, αTM9 = 0.12 ± 0.04. We have obtained rather high values of

their GK viscosity coefficients, i.e. ηGK
TM3 = 4.72 mPa · s, ηGK

TM9 = 1.67 mPa · s, which

makes sense due to their ordered structure. In case of TM5 model we have obtained

αTM5 = 0.8 ± 0.1, which is fair enough close to the viscous fluid, i.e., α = 1. This

is in accordance with the liquid-like state of TM5 model, as obtained in relaxation

simulations, check Figure 3.15(b). Viscosity coefficients determined via shearing

simulations and via GK method in case of TM5 model are different, however they

are of the same order of magnitude: ηTM5 = 0.1435 mPa · s, ηGK
TM5 = 0.6144 mPa · s.

3.3.2.3 Wetting properties

Analogously to the case of SM ionic liquid, we have determined the wetting prop-

erties of TM ionic liquids. The relaxed bulk IL obtained via relaxation simulations
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represents the input of wetting simulations, i.e. a liquid droplet (with a cubic shape

initially) is placed on a neutral solid plate which consists of one atomic layer in a

FCC (111) lattice. The LJ interaction parameters take the values εII = 1.1 kCal/-

mol and εIP = 5.3 kCal/mol in all cases (i.e. for TM3, TM51 and TM9 model)

except in case of TM52 model where they are equal (i.e. εII = εIP = 1.1 kCal/mol),

where εII, εIP correspond to ion–ion and ion–plate LJ interaction, respectively. The

results of wetting simulations are presented in Figure 3.18. We have obtained par-

tial wetting (to lower or higher extent) in all cases except in case of TM52 model

in which practically there is no wetting. We notice that with the increase of the

tail size σTT the wetting angle increases, i.e. partial wetting becomes weaker. The

wetting process occurs in the way that a mixed cationic–anionic layer forms right

next to the surface (a monolayer coating), and the rest of ions get "spilled" over this

first layer. The tail size affects the quality of wetting. Neutral tails are responsible

for the weakening of Coulombic interaction between the cations and anions. The

formation of a monolayer coating is a mutual mechanism of wetting for every tail

size, but the spilling of ions over that first layer becomes lower with the increase of

the tail size. Comparison of TM51 and TM52 cases indicates that the strength of

εIP parameter affects the wetting properties strongly. We have obtained a transition

from partial to non– wetting behaviour when changing the value of εIP from 5.3 to

1.1 kCal/mol. This result is in agreement with Reference [49] where they conclude

that the increase of LJ interaction between IL and substrate increases the quality

of wetting.

3.4 Confined ionic liquid

We have learned about the characteristics of bulk IL and consequently prepared

for exploring the confined IL, which is the main focus of our modeling of ionic

liquids. This section is dedicated to the study of confined IL in case of SM model

(subsection 3.4.1) and in case of three representative TM models (subsection 3.4.2).

Each of those subsections includes three subsubsections, which are dealing with the

static and dynamic force-distance characteristics of given ILs, as well as with their
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Figure 3.18: Wetting properties results in case of: (a) TM3, (b) TM51, (c) TM52

and (d) TM9 model of IL. Left panels show yz cross–section of the system, while
right panels show xy cross–section of the system.
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tribological behaviour.

3.4.1 Confined salt model of ionic liquid

We have shown that our bulk IL is a Newtonian fluid: the validity of τ = ηGK · γ̇

relation over the whole range of shearing rate γ̇ supports that fact. Our model does

not assume the nature of viscous response of IL. Only based on simulation results we

conclude that bulk salt model (SM) IL behaves as a Newtonian fluid. For a different

choice of parameters one could obtain power law or solid like behaviour. On the

other hand, confinement strongly impacts the structure of ILs in thin films [64, 69,

105, 116], therefore when the same IL is confined it does not behave as a Newtonian

fluid, as we will show in the rest of this section.

3.4.1.1 Static force-distance characteristic

The confinement has a profound influence on the structure of ILs in thin films [69,

105, 116]. The confining surfaces can induce ordering of the particles in their vicinity.

The resulting structure and forces are a result of the interplay between the limited

volume and the particles which fill the space.

We have used MD simulations to obtain the static force–distance characteristic.

In order to determine a reliable static force–distance characteristic, at each calcula-

tion point we have to ensure that the system is in equilibrium. Concerning the real-

ization of those simulations the interplate gap is modified in the following manner:

the gap is increased or decreased (i.e., the Top–Bottom plate distance is changed)

with a constant velocity Vz = 5 m/s for a move period of time tmove = 20 ps; there-

after, we apply conjugated gradient minimization on the ions in order to minimize

their internal energy and relax them after the move period. As the energy minimiza-

tion is performed, the ions take positions which ensure their minimal internal energy

and the Top plate stays fixed for a stay period of time tstay = 50 ps, during which

period the average value of the normal force is calculated; that value is presented

as a simulation point in Fz (dz) static characteristic, check Figures 3.19 and 3.21.

The process was repeated until a distance dz,min = 11 Å was reached. In order to

avoid systematic errors due to the initial position or direction, the plate movement
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is performed in different directions and from different initial configurations, hence

Figures 3.19 and 3.21 show the averaged values of several realizations.

- Detailed analysis of the static force-distance characteristic

In Figure 3.19, the static force-distance characteristic of our system is presented.

The red horizontal line denotes the zero normal force level (i.e., Fz = 0). A non–

monotonous behaviour of the normal force Fz acting on the Top plate can be ob-

served as the plate-to-plate distance is changing. This distance corresponds to the

gap between the plates where the IL is under confinement. The points (dz, Fz) have

been obtained through our simulations, while the dashed line serves as a visual guide.

It can be seen that the normal force strongly depends on the interplate distance. The

presence of negative values of normal force Fz can be understood as the IL trying

to reduce the plate-to-plate distance due to adhesion phenomena. These changes

of the normal force are correlated with the extraction and inclusion of IL layers

into the gap, as already observed experimentally, check Reference [69]. During the

performed stationary state simulations, the cationic–anionic layers were squeezed

out in pairs, in order to keep the system locally neutral, as observed in experimental

studies [63, 69, 105, 116, 117]. In order to understand the structural evolution of

our system, snapshots of the system from the MD simulations corresponding to

several characteristic points in the Fz (dz) curve from Figure 3.19 were selected and

studied in more detail. Figure 3.20 shows the configuration and ionic density distri-

bution along the z–direction for eight characteristic points {A,B,C,D,E, F,G,H},

corresponding to plate-to-plate distances dz = {11, 14, 17, 20, 22, 24, 27, 32} Å re-

spectively. The ions are deliberately depicted smaller than their LJ radii in order to

allow a direct observation of the layering. The position of the atomic centers of the

innermost atomic layers of the Top and Bottom plate are indicated in Figure 3.20 as

zT and zB respectively. As the Bottom plate was fixed, zB remains constant while

zT changes with the Top plate displacement.

A general feature observed under all conditions was the formation of cationic

layer close to the plates. The reason for this is the smaller size of the cations

(σCC = 5Å) compared to the anions (σAA = 10Å). Following this, the second layer

gets induced by the first one (due to Coulombic interaction) and it is populated by
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Figure 3.19: Dependence of normal force Fz on plate-to-plate distance dz. Eight
characteristic points {A,B,C,D,E, F,G,H} with corresponding interplate dis-
tances dz = {11, 14, 17, 20, 22, 24, 27, 32} Å are marked on the Fz (dz) curve. The
horizontal solid line denotes Fz = 0 pN. The dashed line connects the points obtained
from the simulation and serves as a visual guide.

anions. The distance between the first and the second layer from the bottom is in

the range of 1 − 2.5 Å, meaning that while the centers of mass of the particles are

in different layers, the layers themselves overlap as their distance is smaller than

the particle diameters. From Figure 3.20 we observe that the anionic monolayer

thickness is roughly 7Å and corresponds to 10/
√

2Å, i.e., the anions are placed

in the centers of the squares formed by the cations of the neighboring layers (the

diameter of an anion is 10Å). We will present the changes in the number of layers

as the interplate gap is reduced and correlate them with the changes in the normal

force Fz which is acting on the Top plate.

For the minimum simulated plate-to-plate distance dz = 11 Å, shown in Fig-

ure 3.20(A) we can observe a pronounced peak in the anion density distribution

close to the Bottom plate which is aligned with a well-defined anionic layer inside

the gap. The anion peak is marked with the 1CU indication. In the case of cations,

there are two peaks attached below and above the anionic peak. This situation
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Figure 3.20: Snapshots of system configurations at points {A,B,C,D,E, F,G,H}
from Figure 3.19 and corresponding density distribution of cations/anions along the
z axis. The position of the atomic centers of the innermost layer of the Top and
Bottom plate is denoted by zT and zB, respectively. The Bottom plate is fixed and
zB = 21 Å. The ions are deliberately depicted smaller than their LJ radii in order
to allow a direct observation of the layering. In Figures (A) and (C) the annotations
indicate the anion layer vertical order from the bottom (1, 2, 3) and the lateral
placement: (C)onfined and (U)nconfined.

corresponds to the formation of two incomplete cationic layers inside the gap. With

increasing plate-to-plate distance dz the normal force Fz is decreasing, with a sign

change of Fz at dz = 12.7 Å. In the range 12.7 Å< dz < 15.7 Å the normal force
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remains negative. This means that the IL is pulling the plates together, since

the ions strive to reduce their interlayer distance, as well as the distance between

themselves and the plate atoms. Such behaviour is typically observed in systems

exhibiting layering transition, already seen in systems of both neutral molecules

[36] and ILs [69]. With further increase of dz the force becomes positive again, and

reaches a local maximum at the point (C) in Figure 3.19. At this point we observe a

change in the number of anion layers confined in the gap from one to two, as shown

in Figure 3.20(C). In Figure 3.20(C), the plate-to-plate distance is dz = 17 Å and

the two bottom peaks of the anion/cation density distribution, denoted by 1CU

and 2C, are inside the gap. A third smaller anion/cation density peak, denoted by

2U in Figure 3.20(C), is the result of the ordering initiated at the Bottom plate’s

surface and is actually outside the confinement gap. The vertical distance between

the peaks 2C and 2U is approximately 3.5 Å and corresponds to the effect of the

compression of the IL from the Top plate. Further increase of the plate-to-plate

distance results in a continuous decrease of the normal force without a sign change

as the positions of peaks 2C and 2U become aligned, check Figure 3.20(D) for a

distance dz = 20 Å. Further increase of the interplate distance results once more in

a reversal of the sign of the normal force (i.e., Fz < 0 for 21 Å < dz < 23.5 Å). At

the midpoint between the plates a broad maximum of cation density distribution

can then be observed, see Figure 3.20(E). The cations, as smaller particles, have a

tendency to fill the space between the more stable anionic layers. When the anions

also start to form a third layer at the midpoint between the two plates the corre-

sponding cationic peak of density becomes sharper and the normal force becomes

positive again, see Figure 3.20(F). In this case the cations can form a layer more

easily while the anions remain scattered. This is the opposite behaviour to the one

typically observed, where the larger anions tend to order more strongly due to the

excluded volume effect [118]. From Figure 3.20(F) to Figure 3.20(G) an interest-

ing transition can be observed, during which the single well resolved cation peak

disappears and a less pronounced cation–anion pair peak takes its place. Finally

in Figure 3.20(H) at dz = 32 Å, we observe the clear formation of three anion and

four cation peaks. Considering engineering applications, the steep rise of the normal
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force at small plate-to-plate distances, i.e., dz < 14 Å can be beneficial for protecting

against solid-solid contact and consequent wear.

- Analysis of the static force-distance characteristic over intervals

There is a strongly decreasing trend of the maximal normal force which can be

sustained by the system as the number of ionic layers confined between the plates

increases, i.e., for the two ionic layers the maximal force F I
z,max = 3 pN, while

for the three ionic layers it is F II
z,max = 0.25 pN. In our model, the Lennard-Jones

interaction between the plates and the ions is ten times stronger than between the

ions themselves. The ionic layers closest to the plates are therefore more stable than

the layers in the midpoint of the gap (interval II). As a result, the three-layer system

becomes less dense and can build up a lower normal force compared to the two-layer

system.

We have selected two intervals of interest for the interplate distance which cap-

ture the presence of local maxima and subsequent minima of the normal force Fz

accompanied with the compression of IL. This corresponds to the expulsion of

a cation–anion layer pair from the gap. The intervals are: dIz = [14.2, 20] Å,

dIIz = [22, 27] Å, and they are labeled as I and II respectively. In order to un-

derstand the changes of the system configurations and to correlate them with the

changes of the interplate distance, snapshots of the system from theMD simulations

corresponding to several characteristic points of the intervals I and II have been

selected and studied in more detail: I 1,2, II 1,2 which correspond to the limits of the

intervals, and the local maximum of the interval I, labeled as I3.

The left vertical panel of Figure 3.22 shows the system configuration in the yz

cross-section and the ionic density distribution along the z–direction obtained in the

equilibrium force–distance simulations for the three characteristic points of the inter-

val I : {I 1, I 2, I 3}, corresponding to the interplate distances dz = {14.2, 20, 17.2}Å,

respectively. In Figure 3.23 the left vertical panels show analogous results for the two

characteristic points of the interval II : {II 1, II 2}, corresponding to the interplate

distances dz = {22, 27}Å, respectively. In addition to the yz cross–section configu-

ration snapshots together with the ionic density distribution along the z axis, shown

in the left panels of Figures 3.22 and 3.23 for the cases of intervals I and II, respec-
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tively, we have prepared the xy cross–section configuration snapshots, shown in the

left panels of Figures 3.24 and 3.25.
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Figure 3.21: Dependence of normal force Fz acting on the Top plate on interplate
distance dz. Five characteristic points {I 1, I 2, I 3, II 1, II 2} with corresponding
interplate distances dz ≈ {14, 20, 17, 22, 27} Å are marked on the Fz (dz) curve. Also,
the two characteristic intervals of dz are labeled, where the interval I is bounded
by the points I 1 and I 2, while the interval II is bounded by the points II 1 and II 2.
The horizontal solid line denotes Fz = 0 pN. The dashed line connects the points
obtained from the simulation and serves as a visual guide.
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Figure 3.22: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in three representative points of the interval
I : {I 1, I 2, I 3}. Left panels correspond to the static case of Top plate’s movement,
while right panels correspond to the dynamic case of Top plate’s movement.

3.4.1.2 Dynamic force-distance characteristic

We have investigated the dynamic behaviour of the IL during a periodic linear

movement of the Top plate along the z axis, between the two limiting points of the

intervals I and II. The space between the solid plates was in this way periodically

expanded and compressed. Periodic movements of the Top plate were performed at

three constant velocities Vz = {0.1, 1, 10} m/s but no velocity dependent differences

in the system behaviour were observed. We have performed ten cycles in order to

determine how much do the cycles differ and to determine a statistically reliable

average cycle. The confined ionic liquid lubricant responds to the cyclic movement

with a hysteresis in the normal force Fz (dz) as shown in Figure 3.26. We present
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Figure 3.23: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in two representative points of the interval
II : {II 1, II 2}. Left panels correspond to the static case of Top plate’s movement,
while right panels correspond to the dynamic case of Top plate’s movement.

Figure 3.24: Configuration snapshots (xy cross–section) in two representative points
of the interval II : { II 1, II 2}. Left panels correspond to the static case of Top
plate’s movement, while right panels correspond to the dynamic case of Top plate’s
movement. We have highlighted the confined region with dashed lines (Top plate’s
width along the y axis is a half of the total system’s width) and also we have sketched
crystallization patterns with solid lines.
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Figure 3.25: Configuration snapshots (xy cross–section) in three representative
points of the interval I : {I 1, I 2, I 3}. Left panels correspond to the static case
of Top plate’s movement, while right panels correspond to the dynamic case of Top
plate’s movement. We have highlighted the confined region with dashed lines (Top
plate’s width along the y axis is a half of the total system’s width) and also we have
sketched crystallization patterns with solid lines. Periodic boundary conditions are
applied in the x and y directions, while simulation box, which is cubic, is kept fixed
in the z direction.

both the raw data of all cycles (thin solid lines) and a smooth average cycle (thick

solid line). In the case of interval I there are three points of interest {I 1, I 2, I 3},

corresponding to the points noted in Figure 3.21. Points I 1 and I 2 are the starting

and ending point respectively and the point I 3 corresponds to the maximum of the

normal force Fz in the smooth average cycle. We observe that between each two of

those points there are clear tendencies in the average cycle of the normal force as a

function of the interplate distance Fz (dz). First, in the segment I 1 →I 2, i.e., in the

extension half of the cycle, there is a continuous increase of the normal force Fz from

negative values up to the value around zero in point I 2. In point I 1 there is one

anionic layer confined in the gap and normal force Fz has a negative value. With the
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dynamic increase of the gap ions are pulled–in from lateral reservoirs into the gap.

In point I 2 an additional cationic–anionic layer pair is fully formed in the gap, hence

increasing the number of confined anionic layers to two. Next, there is the segment

I 2 →I 3 where the ions are compressed within the gap, which is consistent with the

continuous increase of the normal force Fz. In this segment, the normal force Fz takes

positive values meaning that the ionic liquid shows resistance to the compression

but does not flow out. After that, in segment I 3 →I 1 there is a sharp decrease of

the normal force Fz which is correlated with the squeezing–out of the additional

cationic-anionic layer taken in from the lateral reservoirs during the extension half–

cycle. During the compression half–cycle there is a return to the initial state I 1,

where the interplate gap contains one compact anionic layer. We should note that

the distributions of cations and anions in the dynamic case for interval I bear close

resemblance. Let us now discuss the changes in the number of confined ionic layers

as a function of the interplate distance and correlate them with the changes in the

normal force Fz acting on the Top plate: in the range dz = [11, 14.2] Å the normal

force Fz acting on the Top plate has a steep decrease, reaching the minimum at

point I 1. For the point I 1 at dz = 14.2 Å, check Figure 3.22, we can observe a

pronounced peak in the anion density distribution which is aligned with a well–

defined anionic layer inside the gap. In the case of cations, there are two peaks

attached below and above the anionic peak. This situation corresponds to the

formation of two incomplete cationic layers inside the gap. The value of normal

force Fz is negative and in point I 1 it has the deepest minimum when considering the

whole Fz (dz) characteristic. With increasing plate-to-plate distance dz the normal

force Fz is increasing, with a sign change of normal force Fz around dz = 15.7 Å in

the equilibrium case and dz = 17.8 Å in the dynamic case, check Figures 3.21 and

3.26(a), respectively. This means that before this point the IL is pulling the plates

together, since the ions strive to reduce their interlayer distance. After this point,

for Fz > 0, enough ions are pulled inside the gap and the IL now pushes the plates

apart. Such behaviour is typically observed in systems exhibiting layering transition,

already seen in systems of both neutral molecules [36] and ILs [69]. With reversing

into compression in Figure 3.26(a), the normal force Fz reaches a local maximum
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Figure 3.26: This figure presents the results of dynamic extension–compression cy-
cles in the intervals I and II. In panel (a) we present dynamic Fz (dz) characteristic
in the interval I : thin lines represent the hystereses of ten dynamic cycles, solid line
on top of them is the smooth average hysteresis. There is also a solid horizontal
line which corresponds to Fz = 0. Panel (b) is analogous to the panel (a), just it
presents the results in the interval II.

in the point I 3 at dz = 17.2 Å. This is actually the location of the maximum in the

equilibrium case as well, check Figure 3.21. With the further decrease of dz beyond

the point I 3 there is a continuous decrease of the normal force up to the distance

dz = 14.2 Å as IL starts flowing out of the gap. Still, one should note that there
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are two differences between the two systems:

(i) the sign of the normal force in point I 2 and

(ii) the magnitude of the normal force at local maximum I 3.

In the case of cyclic (dynamic) movement of the plates, the normal force is positive

Fz > 0, i.e. the IL keeps pulling apart the plates at point I 2 and the maximum

of the normal force in the point I 3 (F dyn
z = 1 pN) is lower than in the static case

(F stat
z = 3 pN). Both observations indicate that the plate’s motion is preventing

the ionic liquid to fully fill the void space of the gap. Also, there is a substantial

slip during the ejection of IL from the gap, which results in a lower normal force.

Otherwise, if no slip would be present the maximal normal force at velocity Vz =

1 m/s should be about two orders of magnitude higher based on the bulk viscosity

coefficient calculated in section 3.3.

Partial filling of the gap due to the motion of the walls is even better observable

in the results for the interval II. While the equilibrium characteristic has a local

maximum, check Figure 3.21, in the dynamic case there are only two characteristic

points (starting and ending point {II 1, II 2} and a monotonously increasing normal

force between them. At point II 1 at dz = 22 Å in the static case, we notice that

at the midpoint between the plates there is a broad maximum of the cation density

distribution, see Figure 3.23. In the static case we notice that, similar to the tran-

sition from one to two anionic layers within the interval I, there is a transition from

two to three anionic layers within the interval II, which happens in proximity of the

point dz = 24 Å. At point II 2 we notice two sharp anionic layers in the proximity

of the plates and the third anionic layer which is broader, less sharp and positioned

in the middle of the interplate gap, check Figure 3.23. In the dynamic case the

number of layers remains the same in the interval II, they just get separated during

the extension and a formation of additional ionic layers by the ions flowing from the

lateral reservoirs into the gap does not take place, check Figure 3.23.

We can conclude that in a confined system with strong interaction between the

walls and the IL, the major driving force that pulls IL into the gap between the

plates is the interaction with the wall atoms rather than the inter–IL interactions.

In order to visualize what happens in the vicinity of the plates, we are presenting
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snapshots of xy cross–section configurations in the intervals I and II, check Fig-

ures 3.24 and 3.25, respectively. Even on a cursory look, one sees that the phase

behaviour of the confined IL is complex: in Figure 3.24 there was no movement of

the IL in and out of the gap and the IL formed a two–dimensional square crystal on

both surfaces during the dynamic case. In the equilibrium configurations, there are

probably enough ions in the gap that allow the IL to obtain its liquid–like character.

On the other hand, in Figure 3.25, we observe a salt–like ordering taking place in

all representative points {I1, I2, I3} of the static configurations. In the dynamic case

the IL exhibits some level of ordering for a small gap (I1) and it is amorphous in

the other two points.

At this point, we would like to quantify how could the processes described above

contribute to the energy losses. If two macroscopically smooth surfaces come into

contact, initially they only touch at a few of these asperity points. A motion of two

bodies in contact lubricated by an ionic liquid would involve the generation of new

contacts and the separation of the existing ones. Ionic liquids are characterized by

strong Coulombic interactions between the particles. By calculating the area covered

within the average cycle of the Fz (dz) curves in Figure 3.26, we calculate the amount

of work invested per average dynamic cycle, i.e., the hysteretic energy losses. There

is a big difference in the amount of invested work in the two intervals: 3.5236 pN ·Å

for the interval I compared to 0.2844 pN · Å for the interval II, where the vertical

displacement of the Top plate in the two intervals is roughly the same ∆dz ≈ 5 Å).

This is consistent with a strongly decreasing trend of the maximal normal force which

can be sustained by the system as the number of ionic layers confined between the

plates increases, i.e. for the two ionic layers the maximal normal force F I
z,max = 3 pN,

while for the three ionic layers it is F II
z,max = 0.25 pN, corresponding to the two

maxima of the static force–distance characteristic in Figure 3.21.

3.4.1.3 Tribological behaviour of confined salt model of ionic liquid

- Tribological behaviour under different conditions in terms of interplate

gap and external pressure

Following the detailed study of the static and dynamic system, we turn our focus to

105



3. Ionic liquids

exploring tribological behaviour of confined SM ionic liquid under given conditions.

Namely we impose a relative motion between the plates in the x-direction and as a

result frictional forces can be observed. The dynamics of the plates impact the IL

and result in an overall longitudinal force acting on each solid body. In order to eval-

uate the trends of specific friction we have performed simulations at different plate

velocities and at two interplate distances. The simulations have been performed for

a broad range of the Top plate velocities Vx = {0.1, 0.2, 0.5, 1, 2, 5, 10} m/s, with the

Bottom plate kept fixed. We have compared cases with different external pressures

applied on the IL: pext = {0, 120, 250} kPa and two different interplate distances

dz = 17 and 27 Å. The simulations were performed as follows: Points (C) and (G)

in Figure 3.20 were chosen as the starting configurations. The simulations ran until

the Top plate had covered a distance of dx = 50 Å along the x-direction.

Table 3.4: Results for the coefficients a, b in the relation 〈Fx〉/〈Fz〉 = a log(Vx/Vref )+
b, where Vref = 1 m/s. The results were obtained using the least-squares method.

Case a b R2

(A) dz = 17 Å, pext = 0 kPa -0.0006(2) 0.0039(2) 0.63
(B) dz = 27 Å, pext = 0 kPa 0.016(5) 0.036(3) 0.72
(C) dz = 27 Å, pext = 120 kPa 0.007(2) 0.017(2) 0.26
(D) dz = 27 Å, pext = 250 kPa 0.002(1) 0.003(1) 0.62

Therefore, the cases with lower velocities required an increased total time. The forces

acting on the Top plate were monitored, as shown in Figure 3.27 for a randomly

chosen case. It was observed that the normal force remained roughly the same

after the onset of the simulation. Steady–state conditions were assumed following

a displacement of dx = 10 Å, and then average values were calculated using the

statistics until the completion of the simulation. The results for the specific friction

〈Fx〉/〈Fz〉 are shown as a function of the sliding velocity Vx in Figure 3.28. The

specific friction 〈Fx〉/〈Fz〉 is defined as the ratio of the time averaged frictional

and normal force Fx and Fz respectively and is different to the Coulomb friction

coefficient µ = ∂Fx/∂Fz. In our simulated cases we have observed either a weak

or a logarithmic dependence of specific friction on velocity. The numerical values
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Figure 3.27: Temporal evolution of total normal and axial forces acting on sliding
surface for the interplate distance dz = 27 Å and Top plate axial velocity Vx =

10 m/s. Dashed lines show the raw numerical data which are smoothed using the
solid lines for a clearer identification of trends.

were fitted to a linear function of the form 〈Fx〉/〈Fz〉 = a log (Vx/Vref ) + b, where

Vref = 1 m/s. The coefficients a, b obtained from the simulation data are listed in

Table 3.4. A reasonable fit to the linear regression curve can be observed for most

cases. In the case of pext = 120 kPa, the system is potentially in a transition between

the two significantly different cases of zero and high pressure, which can explain the

poorer quality of the fit to the linear curve. The logarithmic dependence indicates

typical elasto-hydrodynamic lubrication conditions [119]. On the other hand, the

weak dependence of specific friction on velocity has also been observed in previous

studies of IL lubrication, check Reference [39, 56].

- Impact of ionic liquid confinement gap and pressurization

The influence of the interplate distance on specific friction was initially analyzed,

while the applied external pressure on the IL pext was kept equal to zero. In contrast
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Figure 3.28: Dependence of specific friction 〈Fx〉/〈Fz〉 on velocity Vx at external
pressures pext = {0, 120, 250} kPa and interplate distances dz = 17 and 27 Å. The
error bars represent the standard deviation of the average values obtained from the
simulation data. The curves showing the specific friction trends were obtained by
linear regression and the corresponding parameters are listed in Table 3.4.

to the previous studies of IL lubrication [39, 56], our system has shown a strong

crystalline ordering induced by confinement. The normal force was roughly ten times

higher in the case of the smaller interplate distance, i.e., for dz = 17 Å compared

to dz = 27 Å. On the other hand, the lateral force Fx remained at similar levels,

therefore leading to a sharp decrease of the specific friction values. At the same

time, the weaker confinement and the smaller normal force for dz = 27 Å resulted

in a steeper slope of the curve 〈Fx〉/〈Fz〉.

In order to understand the potential correlation of the IL structure with the aris-

ing frictional forces, the confinement zone was observed in detail using Figure 3.29,

where a side view (left side) and top view (right side) of the system is shown. In

the top view, the system is shown with the solid and IL particles above the upper

plate’s plane removed. In this plot the ions are depicted with their corresponding

LJ radii in order to achieve a realistic visualization of the structure. The anions
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form a locally cubic structure, check right panel Figure 3.29(A), while the crystal

direction of the cubic structure is indicated with the dashed lines. If we look into

the structure of the IL in the confinement zone, Figure 3.29(A) and (B), we can

observe a single, well-resolved crystal structure in the case of dz = 17 Å, while in

the case of dz = 27 Å some defects are present. It can also be observed that outside

the gap, the IL remains in a disordered, liquid state.

Further clarification can be attained by plotting the ionic density distribution

profiles inside and outside the gap in Figures 3.30(A) and (B). It can be observed

that at the plate-to-plate distance dz = 17 Å, both cation and anion peaks of

density distribution function inside the gap are narrow and sharp. In addition, both

the anion and cation peaks in each paired layer are located at approximately the

same z location. These findings confirm that under these conditions the IL is in

a crystalline, "solid-like" state with minimum disorder. In the case of a wider gap

dz = 27 Å the anion peaks next to the walls remain narrow, with a third broader

one appearing in the center. The cation arrangement is more dispersed, with double

peaks appearing above and below each anion peak. These statistics indicate a more

layered, less strictly ordered state.
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Figure 3.29: Side (yz) and top (xy) views of the snapshots from four separate friction
simulations. The top views correspond to the planes marked with dashed lines in
the side views and do not include the solid and IL particles above the upper plate
plane. The ions are depicted according to their LJ radii in order to visualize the
crystalline structures. The dashed lines in the top views denote the crystal direction
of self-formed cubic structures.
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Figure 3.30: Density distributions of ions along the z axis inside (dashed lines) and
outside (solid lines) the confinement zone between the solid plates for configurations
shown in Figure 3.29. The position of the atomic centers of the innermost layer of
the Top and Bottom plate is denoted with zT and zB, respectively. Bottom plate is
fixed with zB = 21 Å.

The difference in the extent of confinement-induced crystallization is a probable

reason for the observed steep slope of specific friction since the observed defects

can interact more strongly with the upper plate at higher velocities and contribute

to the increase of friction force. Our observations show some similarity to the be-

haviour previously seen in Lennard-Jones systems where systems at pressures above

a certain critical value and at sufficiently low velocities exhibited such behaviour. In

these studies, check Reference [42], the shape of fluid molecule was identified as the

main parameter that controls crystallization through the promotion or prevention

of internal ordering.

In addition to the impact of different confinement gaps, the effect of IL pressur-

ization was studied, while the interplate distance was kept constant. More specifi-

cally, a gap of dz = 27 Å was used, while different pressures pext = {0, 120, 250} kPa

were applied.
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Through observation of Figure 3.30(B)-(D), it can be seen that the application

of external pressure prevents the wetting of the side walls of the Top plate and leads

to a distinct crystallization of the unconfined IL. On the other hand, the ion density

profiles inside the confinement zone are moderately influenced.

Friction results for increasing values of applied pressure pext are consistent with

the observations from Figure 3.28 with specific friction decreasing as the ordering of

the IL increases. It can be seen that for high external pressure, i.e., pext = 250 kPa,

the slope of the specific friction curve almost vanishes.

Figure 3.29(C) shows that for pext = 120 kPa the local cubic structure induced

by confinement between the plates served as a nucleus for further crystallization

between the plates and a well-ordered single crystallite was formed in this region.

Outside the confinement zone another crystallite was formed with a different orien-

tation. Further increase of external pressure to pext = 250 kPa forced the IL in the

void space to crystallize, while at the same time the IL in the confinement zone was

converted to a number of smaller crystallites, check Figures 3.29(D) and 3.30(D).

The reported results show a dual nature of IL lubrication, with EHL character-

istics at low to medium pressures and confinement gaps that allow more than two

distinct anion/cation pair layers to form. At higher pressures and smaller distances,

which can be translated as mixed lubrication conditions, the IL is transformed into a

solid-like body, while specific friction decreases to low values which are independent

of the sliding velocity. This behaviour can be beneficial in engineering applications

such as the piston ring–cylinder liner system, where it can be assumed that the IL

crystallization can potentially help in preventing the solid contact between the solid

surfaces, along with the associated high friction and wear.

- Shear behaviour of confined salt model of ionic liquid

In order to study the behaviour of our confined SM ionic liquid under shearing

we apply a relative motion between the plates along the x direction. The Bottom

plate is kept fixed and a constant velocity Vx is imposed on the Top plate. We are

interested in establishing how does the lateral (frictional) force Fx depend on the

confinement gap dz = {12, 14, 16, 18, 22, 25} Å. In Figure 3.31 we are showing the

dependence of the time averaged frictional force divided by the contact area of the
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Figure 3.31: Dependence of the frictional force divided by the contact area of the
Top plate with IL lubricant 〈Fx〉/Sxy on the interplate distance dz. The three
representative points {P1, P2, P3} are marked. Points obtained in simulations are
shown as circle markers, accompanied with errors along the y axis. Linear fit through
those points is shown as a solid line. In the inset dependence of specific friction
〈Fx〉/〈Fz〉 on the interplate distance dz is shown, with y axis in log scale. Simulation
points are shown as circle markers, while the dashed line serves as a visual guide.

Top plate and the IL lubricant, i.e. 〈Fx〉/Sxy on the interplate distance dz. We

observe a linear increase of the frictional force per contact area with the increase

of the interplate distance, with a slope of 4 nN/µm3. In the inset of Figure 3.31,

we are showing the dependence of specific friction defined as the ratio of the time

averaged frictional and normal force 〈Fx〉/〈Fz〉 on the interplate distance dz. By

comparing Figure 3.31 with the results for the bulk liquid in Figure 3.12 we observe

that there is no correlation with the lubricant viscosity (i.e., otherwise frictional

force would be three orders of magnitude higher). This leads us to the assumption

that our pressurized systems, whether they form a crystalline lattice or not, do not

lie in a typical hydrodynamic regime and operate under full slip conditions in which

the ionic liquid moves together with one of the walls. As there is no solid–solid

contact between the two surfaces, but lubrication through very thin, highly viscous

films which are solid–like, mixed or dry lubrication are the two potential regimes
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Figure 3.32: Dependence of the frictional force divided by the contact area of the Top
plate with IL lubricant 〈Fx〉/Sxy on the Top plate’s lateral velocity Vx = 0.1−10 m/s.
The error bars represent the standard deviation of the average values obtained from
the simulation data. The lines showing the friction trends are obtained by linear
regression.

that can describe the observed conditions. A parametric study on different shearing

velocities Vx = 0.1−10 m/s at two wall separations dz = 17, 27 Å provides additional

information for the characterization of the tribological regime of our system. In

Figure 3.32 one can observe a logarithmic (weak) dependence of the frictional force

per contact area on lateral velocity of the Top plate’s movement, which is consistent

with the observations of previous studies of IL lubrication, check Refs. [39, 56].

From Figure 3.31 we have selected three representative points with dz = {12, 18, 25}Å

labeled as {P1, P2, P3} respectively. We provide an overview of the yz configuration

cross–sections together with ionic density distributions along the z axis (check Fig-

ure 3.33) at the simulation onset t = 0 and after t = 3 ns. In the panels of

Figure 3.34 we have highlighted the confined region with dashed lines (the Top

plate’s width along the y axis is half of the total system’s width) and we have also
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Figure 3.33: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in three representative points {P1, P2, P3}.
Left panels correspond to the start of friction simulations t = 0, while right panels
correspond to the end of friction simulations t = 3 ns. Top plate’s lateral velocity is
set to Vx = 2 m/s, total simulation time is ttot = 3 ns, hence all friction simulations
have run until the Top plate had covered a distance of dx = Vx · ttot = 60 Å along
the x direction.

sketched crystallization patterns with solid lines. In Figures 3.33 and 3.34 we show

initial configurations at the input of shearing simulations, together with the final

configurations obtained after the shearing simulations. We observe that any ini-

tial crystallization is not lost due to the lateral motion of the Top plate, but only

slightly modified due to the motion, which suggests that the lateral movement does

not alter the ordering. This is a significant finding since the longitudinal movement,

i.e., movement along the z-axis does alter the local ordering (it destroys the crystal

structure in small gaps and induces it in larger ones).
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Figure 3.34: Configuration snapshots (xy cross–section) in three representative
points {P1, P2, P3}. Left panels correspond to the start of friction simulations t = 0,
while right panels correspond to the end of friction simulations t = 3 ns. We have
highlighted the confined region with dashed lines (Top plate’s width along the y
axis is a half of the total system’s width) and also we have sketched crystallization
patterns with solid lines. Top plate’s lateral velocity is set to Vx = 2 m/s, total
simulation time is ttot = 3 ns, hence all friction simulations have run until the Top
plate had covered a distance of dx = Vx · ttot = 60 Å along the x direction.

3.4.2 Confined tailed models of ionic liquid

For the study of TM ionic liquids under confinement, we use the MD simulation

setup of ILs under confinement shown in Figure 3.5 in section 3.2. We use that

setup throughout this section in order to investigate both the static and dynamic

behaviour of confined TM ionic liquids, as well as, their lubrication performance.
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We keep the simulation setup geometry fixed, and we change the ionic liquid.

3.4.2.1 Static force-distance characteristic

Confinement induces layering in IL thin films [64, 116]. In order to understand

how does an interplay between layering and molecular geometry of TM ionic liq-

uids alter the load bearing capability of IL thin films, we calculate the quasi-static

force-distance characteristic. We follow the evolution of the normal load Fz acting

on the Top plate as a function of the interplate distance dz. In order to ensure static

conditions, the interplate distance is changed through a series of alternating steps,

calledmove and stay steps, related to the movement of the Top plate and subsequent

relaxation of the IL structure, respectively. We provide a detailed description of the

procedure of modifying the interplate gap in the simulations of the static behaviour

of confined ionic liquid: Top plate is moved along the z axis at a constant velocity

Vz = 5 m/s for a period of time tmove = 5 ps; During the move period the elastic

constant of cation–tail bonds takes its original value of K = 80 kCal/molÅ2. After

the transition regime happening during the move period finishes, we apply conju-

gate gradient (CG) minimization (for the details about CG minimization method

check ) on the ions, in order to minimize their internal energy and relax them after

the move period. As the ion minimization procedure is done, ions take positions

which ensure their minimal internal energy. In case of SM model of IL, ion mini-

mization procedure performs fine, enabling well–relaxed IL [64]. However, we have

noticed that in case of TM models of IL, due to a rather high value of the elastic

constant of cation–tail bonds, ion minimization procedure does not perform fine.

The key action of minimization procedure is the repositioning of the charged parti-

cles (i.e. cations and anions), since they interact strongly via Coulombic potential.

Cations are bonded to neutral tails via bonds, hence they do not have that much

freedom to rearrange during the minimization procedure, compared to anions. We

have solved this problem by taking a low value of the elastic constant (i.e., 1% of

its original value, Kmin = K/100 = 0.8 kCal/molÅ2) during the ion minimization

procedure. As the ion minimization procedure finishes, elastic constant K gradu-

ally increases and restores to the original value. This gradual increase is realized
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via subsequent steps in which elastic constant takes the values from the next list:

K ∈ {0.8, 2, 4, 10, 20, 40} kCal/molÅ2, where elastic constant takes each of the listed

values for a period of time ∆t = 2.5 ps. As the elastic constant gets restored to the

original value, Top plate stays fixed for another 2∆t = 5 ps during which period the

average value of the normal force Fz is calculated and that value is presented as a

simulation point in Fz (dz) static characteristic, i.e., in Figure 3.35. Hence, a stay pe-

riod is made up of: ion minimization procedure with elastic constantKmin = K/100,

the stepwise increase of K for 6∆t = 15 ps and the calculation of the average value

of the normal force Fz with the original elastic constant K for 2∆t = 5 ps. In total,

the time duration of the stay period is tstay = 20 ps. In order to avoid a systematic

error due to the initial position or direction, the Top plate movement is performed

in different directions and from different initial configurations, hence Figure 3.35

shows the averages. The Top plate movement procedure consisting of move and

stay periods is repeated until the distance dminz = 11 Å is reached.

The results for the force-distance characteristic of the three TM ILs are pre-

sented in Figure 3.35, where three different markers correspond to the three IL

models. The normal force Fz strongly and non-monotonically depends on the dis-

tance dz. These changes of the normal force Fz are correlated with the squeezing

in and out of cation/anion layer pairs into the gap, as already observed experimen-

tally [117] and theoretically [64]. The normal force becomes negative, i.e., Fz < 0

only in the case of small tails (TM3). The negative values are a result of the IL try-

ing to reduce the plate-to-plate distance due to the adhesion forces inside of IL. The

increasing tail size seems to reduce the effect of adhesion: for large tails (TM9) the

normal force at the minimum is close to zero, while for symmetric cation molecule

(TM5) it becomes positive, i.e., Fz = 2 pN. For all three curves corresponding to

the three TM ionic liquids we can identify three characteristic ranges of the plate-

to-plate distance dz:

Segment(1): initial segment (11 Å≤ dz ≤ 13.8 Å) characterized by a monotonous

and steep decrease of the normal force Fz

Segment(2): interval I (13.8 Å≤ dz ≤ 19.8 Å) characterized by the presence of local

minima and maxima peaks of the normal force Fz, and
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Figure 3.35: Dependence of normal force Fz on interplate distance dz. Five charac-
teristic points denoted with {A,B,C,D,E} with corresponding interplate distances
dz = 13.8, 15.5, 18.0, 19.8, 25.8 Å, respectively, are marked in the figure. They are
chosen in the way that: point A is located in the proximity of a local minimum for
all three cases; point B corresponds to a local maximum for TM5 model; point C
is located in the proximity of a local minimum for TM3 and TM5 model; point D
is located in the proximity of a local maximum for TM3 and TM5 model; point E
is chosen according to the condition DE = AD. For reference, the black horizontal
line denotes Fz = 0. The lines connecting points (averages of normal force) serve as
visual guide.

Segment(3): interval II and beyond (dz ≥ 19.8 Å) characterized by a continuous

and gentle decrease of the normal force Fz, where in all three cases the normal force

practically becomes zero when dz > 32 Å.

We will briefly describe the segments of Fz (dz) curves, pointing out similarities and

differences between the different IL models. In the initial segment, (i.e., for small

gaps dz < 13 Å), the normal force Fz is practically the same for all three systems,

meaning that it does not depend on the tail size. The steep rise of the normal force

with compression in the range dz < 13 Å is a sign of a very high resistance of the

single anionic layer left in the gap to squeezing out. On the other hand, at large gap

values (i.e., dz > 32 Å), the normal load Fz in all three TM ionic liquids is similar

and small. We can conclude that at large gaps there is a low resistance of IL to the
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gap changes. Significant differences in the force-distance curves, depending on the

tail size, exist only in the interval I, (i.e., 13.8 Å≤ dz ≤ 19.8 Å). In the case of the

TM3 model, the Fz (dz) characteristic has two local minima and maxima and one

saddle point, in the TM5 model there are two local minima and maxima, and in

the TM9 model, there is one local minimum and maximum.

In the present setup, IL lubricant remains an infinite continuous body in x and

y directions. However, there is a difference in IL′s structure depending on the fact

whether it is confined inside the gap between the Top and Bottom plate or it is

located in the lateral reservoirs (LRs), see Figure 3.38. Ionic liquid confined inside

the gap forms alternating cationic–anionic layers, while ionic layering in LRs is less

pronounced beyond first two layers, see Figure 3.38. Besides that, from Figure 3.38,

we notice that in all three systems the layer closest to the solid plates is formed by

cation–tail dimmers. We might label the layers formed alongside the solid plates as

fixed layers, since they always form first. Inside the interplate gap ionic ordering is

dictated according to the layers formed next to the solid plates:

(i) Bottom plate - cation–tail layer - anionic layer, looking from the bottom,

(ii) Top plate - cation–tail layer - anionic layer, looking from the top, where bottom

and top correspond to the position along the z axis.

In Figures 3.36 and 3.37 we present 5 × 3 panels of configuration snapshots for 5

chosen characteristic points of 3 TM models. The atoms are depicted keeping the

ratios of their sizes.
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Figure 3.36: Configuration snapshots (xy cross section) of TM3, TM5 and
TM9 models in five characteristic points {A,B,C,D,E}. Five characteristic
points, denoted with {A,B,C,D,E}, have corresponding interplate distances dz =

{13.8, 15.5, 18.0, 19.8, 25.8} Å, respectively (see also Figure 3.35).

- IL structure inside and outside the interplate gap

In Figure 3.39 we are showing the ionic density distribution along the z axis for
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Figure 3.37: Configuration snapshots (yz cross section) of TM3, TM5 and TM9

models in five characteristic points {A,B,C,D,E} (see also Figure 3.35). This
figure presents the changes taking place in the confined ionic layers as the interplate
distance changes in case of static force–distance simulations.

the three IL models, in points A to E, i.e, dz = {13.8, 15.5, 18.0, 19.8, 25.8} Å. A

common feature of all investigated IL models is the formation of fixed cationic layers

along the whole length of the solid plates (Top and Bottom plate). The fixed layers

and their stability are a result of strong LJ interactions between the plates and ions.

In general, the smallest particles form the first layer next to the plates.
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Figure 3.38: Configuration snapshots (yz cross section) of TM3, TM5 and TM9

models in a characteristic point A marked in Figure 3.35. This figure represents an
illustration of ionic layering.

For TM3 the first layer to the plates is formed by the tail particles (which are

part of the cation-tail pair), while for TM5 and TM9 models these particles are

the cations. The consecutive layers are formed inside the interplate gap via com-

bined volume exclusion and Coulombic interactions and their ordering is consistent

with the fixed layers. As a result, tails migrate to the plates in TM3 model, they

mix with the cationic layer when cation-tail dimer is symmetric in TM5 model,

and finally they mix into the anionic layer when they are large in TM9 model.

Since Coulombic interactions cause the layering with alternating charge sign, an-

ionic layers always separate cationic layers. We focus on analyzing the changes in

the segment between the points A and D, i.e., the interval I. The normal force Fz
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(b) TM5 ( T = 5 [Å])

(c) TM9 ( T = 9 [Å])

(a) TM3 ( T = 3 [Å])
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Figure 3.39: Ionic density distribution of ions inside the interplate gap of (a) TM3,
(b) TM5 and (c) TM9 models in characteristic points {A,B,C,D,E} taken from
the static force–distance characteristic presented in Figure 3.35. The positions of the
atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
Bottom plate are labeled as zA−ET and zB, respectively.
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(b) TM5 ( T = 5 [Å])

(c) TM9 ( T = 9 [Å])

(a) TM3 ( T = 3 [Å])
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Figure 3.40: Ionic density distribution of ions outside the interplate gap of (a) TM3,
(b) TM5 and (c) TM9 models in characteristic points {A,B,C,D,E} taken from
the static force–distance characteristic presented in Figure 3.35. The positions of the
atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
Bottom plate are labeled as zA−ET and zB, respectively.
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changes rapidly and non-monotonically with the interplate distance dz in the inter-

val I, check Figure 3.35. For the minimum of Fz in the vicinity of point A, i.e., for

the interplate distance dAz = 13.8 Å, we can observe a well-defined anionic layer in

Figure 3.39. The most interesting change takes place during the transition A →

B when the single layer of anions is split into two layers, check Figure 3.39. As a

result, the normal force Fz increases and reaches a local maximum in the proximity

of point B, i.e., for plate-to-plate distance dBz = 15.5 Å. We observe that additional

anion-cation pairs are pulled inside the gap in Figure 3.41. We also observe that

the two anionic layers in Figure 3.39 for point B and the one for point A have the

same maximum number density. As we increase dz further, the number of anionic

layers confined inside the gap remains unchanged and the normal load drops slowly.

At the same time, the number of ions inside the gap steadily increases with the gap

width. Nevertheless, this increase is not sufficient to keep the density of IL inside

of the gap constant (check Figure 3.41). Looking into the changes in the spatial

distribution of IL components, as more cation-anion pairs are pulled into the gap

(going from A → E), we observe a steady increase of the concentration of anions in

the layer next to the Bottom plate. In the case of TM5 model we have an increase

from nATM5 = 18 atoms/nm3 to nDTM5 = 27 atoms/nm3, check Figure 3.39. When we

further look at configuration snapshots for TM3 and TM5 model, a formation of

additional layers inside the gap is visible, between the points C and D. This can also

be clearly observed in Figure 3.39 and results in smaller maximum around dz =19 Å,

in Figure 3.35. We can conclude that the form of the normal force-plate distance

characteristic is not correlated with the number density of the IL molecules inside

the gap, but the layer formation seen in Figure 3.39. As the interplate distance dz

increases further, from point D to E, we notice additional cations in the middle of

the gap and formation of a third cationic layer in all three systems. We can make

an interesting observation that for all three models the tails in the middle of the

confinement are grouped in three regions: with cations at z = 34 Å, and in the

middle between cationic and anionic layers, i.e., z = 30, 38 Å, check in Figure 3.39.

This outcome is reminiscent of the findings from Reference [71] where the authors

have experimentally obtained the formation of the tail–to–tail bilayer of cationic
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Figure 3.41: Evolution of the number of confined ionic liquid (IL) molecules (bottom
curves) and density (top curves) inside the gap with gap width dz for TM3, TM5

and TM9 models in characteristic points {A,B,C,D,E} selected from the static
force–distance characteristic (Figure 3.35). The corresponding axes for the number
of IL molecules and the density are given on the left and right side, respectively.
The densities at characteristic points for the dynamic cases (intervals I, II) of TM5

model are also given, i.e., I1,2,3 and II1,2, for the purpose of comparison with the
static case of TM5 model.

dimers in case the alkyl chain length is oversized. In Figure 3.42 we present how do

the number of confined IL molecules and density depend on the interplate distance

dz in dynamic cases for TM3, TM5 and TM9 models. In all three TM models, we

notice the same tendencies for both NIL and ρIL dependences on dz.
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Figure 3.42: Evolution of the number of confined ionic liquid (IL) molecules (bottom
curves) and density (top curves) inside the gap with gap width dz for TM3, TM5

and TM9 models for the dynamic cases (intervals I, II), i.e., I1,2,3 and II1,2. The
corresponding axes for the number of IL molecules and the density are given on the
left and right side, respectively.

- IL crystallinity: influence of the gap

We show the xy cross-section snapshots in Figure 3.36 in order to observe the IL′s

in-plane structure at the cross-section just below the Top plate. We mark the

boundaries of the Top plate spatial region with the vertical dashed lines. The

central area of the panels in Figure 3.36 corresponds to the interplate gap region

and it represents a half of the total cross-section’s width in the y direction, while

the remaining area corresponds to the lateral reservoirs. The solid lines mark the

orientation of crystal grains in those areas, where we can observe the presence of

structural ordering. In the case of TM3 model, we observe the presence of partial

triangular ordering only at point B when the structure is the most compressed. We

do not notice any crystallization for symmetric dimers (TM5 model), which confirms

that the symmetric tail prevents ordering both under confinement and in the bulk.

Contrary to the previous two cases, we observe crystallization for all configurations
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with the large tail (TM9 model). Additionally, we observe changes in the type of

crystalline structure. While in the lateral reservoirs a triangular lattice arrangement

is always present, depending on the amount of compression we observe triangular

lattice arrangements in points A and D and square lattice arrangements in points

B and C. Even more surprisingly, the order is lost when the tail–to–tail bilayer is

formed in point E.

3.4.2.2 Dynamic force-distance characteristic

The Top plate was moved between the two limiting points of the intervals I (dAz ≤

dz ≤ dDz ) and II (dDz ≤ dz ≤ dEz ). We have investigated the dynamic behaviour

of the confined IL thin film during the cyclic movement of the Top plate along

the z axis, i.e., the interplate gap was periodically extended (extension half–cycle)

and compressed (compression half–cycle). We have investigated our system at three

velocities Vz = {0.1, 1, 10} m/s, but we did not observe any velocity dependent

differences in the system behaviour. The confined ionic liquid lubricant responds to

the cyclic movement of the Top plate with a hysteresis in normal force Fz (dz) shown

in Figure 3.43. We present the detailed results of the TM5 model dynamic behaviour

in (a) and (c) panels of Figure 3.43. Also, in (b) and (d) panels of the same figure,

we present together smooth average cycles of our three IL models (TM3, TM5, and

TM9).

- Narrow gap (interval I ): normal force hysteresis

We will now discuss in detail the response of the TM5 model to the cyclic motion of

the Top plate, in the interval I shown in Figure 3.43(a). Ten cycles of compression-

extension are shown (thin lines) with an average cycle superimposed on them (thick

line). We identify three points of interest: {I 1, I 2, I 3}, i.e., the two terminal points

of the cycle and the point with the maximal normal force, respectively. These three

points also correspond to the points {A,D,B} respectively, in the static characteris-

tics shown in Figure 3.35. Point I 3 corresponds to the maximum of normal force Fz

both in the cyclic compression cycle and in the static characteristic of TM5 model,

which makes the comparison more straightforward.

The normal force Fz decreases down to a value close to zero during the extension
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Figure 3.43: The results of dynamic extension–compression cycles are shown for the
intervals I and II. In the panels (a) and (c) we present dynamic Fz (dz) characteristic
in case of TM5 model, for the intervals I and II, respectively; thin lines represent
the hystereses of ten dynamic cycles, solid line on top of them is the smooth average
hysteresis. There is also a solid horizontal line which corresponds to Fz = 0. In
(a) points I 1, I 2, I 3 denote representative points: I 1 - starting point, I 2 - ending
point, I 3 - global maximum of the Fz (dz) curve. In (c) points II 1 and II 2 denote
representative points: II 1 - starting point and II 2 - ending point. The arrows show
the direction of hysteresis (extension I/II 1 → I/II 2 followed by compression I/II 2

→ I/II 1). In the panels (b) and (d) we show together smooth average hystereses
Fz (dz) of our three TM ionic liquids, for the intervals I and II, respectively. Starting
and ending points and arrows are denoted, analogous to the panels (a) and (c).

half of the cycle I 1 →I 2. The anion-cation pairs are pulled into the gap from the

lateral reservoirs as the gap is extended and at point I 2 an additional anionic layer is

fully formed inside the gap. Actually, instead of the two fixed layers of cations which

share one anionic layer, we obtain two separate anionic layers. The total number of

ions pulled in is about 60 atoms or 0.22 atoms/(nm2ns) at 1 m/s plate linear speed.

In the first part of the compression half-cycle, I 2 →I 3, the ions are compressed and

the density and the normal force Fz increase. Somewhat surprisingly, we observe that
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an equal number of ions flows out while the normal force increases, i.e., I 2 →I 3 and

during its sharp drop I 3 →I 1 (check Figure 3.41). The sharp decrease of the normal

force Fz in the segment I 3 →I 1 is therefore a result of two processes: out-flow of the

ions from the gap and the collapse of the anionic double layer and its rearrangement

into a single anionic layer. The resulting final density ρdyn
IL = 1.95 atoms/nm3 of

the system is slightly higher than in the static case ρstat
IL = 1.85 atoms/nm3, check

Figure 3.41. The value of the normal force Fz at point I 1 is similar, i.e., Fz = 4 pN

in both static and dynamic case.

In Figure 3.43(b), we observe that each one of the three investigated ionic liquids

(TM3, TM5, and TM9) exhibits different behaviour in the average Fz (dz) cycle

during the extension and compression half-cycle. First, at the onset of the extension

half-cycle, i.e. in the point I 1, the normal force Fz has a positive value for symmetric

cations (TM5 model), it is close to zero for large tails (TM9 model), and it is

negative for small tails (TM3 model). Somewhat surprisingly, the normal force

increases for both TM ILs with asymmetric cations (TM3/TM9 models) while it

decreases for symmetric cation (TM5 model). The reason for this behaviour is the

strong interaction of the fixed layers of ions adjacent to the plates with the plate

particles. This interaction drives as many ions inside the gap as possible, resulting

in the non-intuitive behaviour of the normal force due to an interplay of density and

intra-IL LJ interactions. During the compression half-cycle for all three ILs the

maximal normal force sustained was about 50% smaller than in the quasi-static case,

i.e., for TM5 model the maximal force is Fmax
z = 17 pN in the dynamic case and

Fmax
z = 40 pN in the static case (see Figures 3.43(b) and 3.35). This observation

indicates that the Top plate’s motion prevents the IL to fill the gap. We can also

conclude that the mechanical response is mainly due to a rearrangement of the fixed

layer and that the mobility of the ILmolecules is too low to significantly increase the

normal force resisting to the compression. If we analyze the rate of mass transfer

outside of the gap, we conclude that there is a substantial slip, which results in

a lower normal force. Without slip at a velocity Vz = 1 m/s, the normal force

calculated based on the bulk viscosity coefficient would be roughly two orders of

magnitude higher. Figure 3.44 shows configurations snapshots accompanied with
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Figure 3.44: Configuration snapshots accompanied with ionic density distribution
along the z direction in the three characteristic points (I 1, I 2, I 3) from the panel
(a) of Figure 3.43.

the ionic density distribution along the z direction, for the interval I of dynamic

cycle of TM5 modeled ionic liquid. In the point I 1 there is one compact anionic

layer leading to a rather low positive value of the normal force Fz. In the extension

half–cycle ions from the LRs get taken into the gap. This leads to the formation of

another compact anionic layer, which means that from one compact anionic layer at

the starting point I 1, we arrive at two compact anionic layers at the ending point I 2.

In the return compression half–cycle, those extra ions get pushed back into the LRs,

leading to the reduction of the number of compact anionic layers confined inside the

gap to one.

- Wide gap (interval II ): monotonic force-distance characteristics
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The extension-compression force-distance characteristic for the interval II in case

of TM5 model is given in Figure 3.43(c). The difference from the quasi-static

extension/compression in Figure 3.35 is the monotonic behaviour during the cycle.

The quasi-static characteristics in the interval II featured local minima and maxima

in the case of TM3 and TM5 models. In the dynamic case, there are only two

characteristic points (starting and ending point II 1 and II 2, respectively and a

monotonically changing normal force between them. In the extension half–cycle

there is a continuous decrease of the normal force Fz followed by its continuous

increase in the compression half–cycle. The difference in the normal force between

the cycles is small. In the dynamic characteristic of the interval II the layer structure

is similar to the static case, i.e., two fixed layers stay-in-place and the tail double

layer is formed during the extension half-cycle (check Figure 3.45). In contrast to

the interval I, the formation of the additional layer of tails is not a result of the ions

flowing from the lateral reservoirs into the gap. The density inside the gap is 10%

higher in the dynamic case and a few atoms (less than 30) are displaced during the

cycle. We should note that the gap is also 50% larger in the interval I compared

to the interval II, therefore the drop in density is even less striking. Actually, the

cyclic motion has a tendency to increase the density inside the gap. Since there is no

large displacement of the ions in and out of the gap in the interval II, there is also

no maximum of the normal force Fz, similar to the one we have seen in the case of

the interval I, check Figure 3.43(a). In order to make comparisons of different TM

ionic liquid models, in Figure 3.43(d) we show together Fz (dz) average cycle dynamic

characteristics of all three TM models of ionic liquid (i.e., TM3, TM5, TM9 model)

for the interval II. Compared to the interval I, the tail size does not have such a

pronounced impact on Fz (dz) hysteresis curves in the interval II. Figure 3.45 shows

configurations snapshots accompanied with the ionic density distribution along the

z direction, for the interval II of dynamic cycles of TM5 model IL. In the point

II 1 there are two compact anionic layers opposite to each other leading to a high

positive value of the normal force Fz. In the extension half–cycle the fixed layers

become separated, and a marginal number of cation–tail dimers diffuses from the

lateral reservoirs (LRs) into the gap. However, another anionic layer does not form,
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Figure 3.45: Configuration snapshots accompanied with ionic density distribution
along the z direction in the two characteristic points (II 1, II 2) from the panel (c)
of Figure 3.43.

which means that from the two compact anionic layers with the cationic layer in-

between at the starting point II 1, we arrive at two separated layers in the ending

point II 2 with the tail bi-layer in-between.

- Energy losses due to cyclic extension-compression

At this point, we would like to quantify how do the processes arising during the

dynamic cyclic movement of the Top plate contribute to energy losses. We calculate

the area covered during the extension-compression cycle (i.e., the area inside the

Fz (dz) hysteresis). This area is equivalent to the work invested per average dynamic

cycle, i.e., the hysteretic energy losses. We show the dependence of the energy losses

on the tail size for both intervals I and II in Figure 3.46. We observe a clear tendency

of the increase of the invested work per dynamic cycle, with the increase of the tail

diameter. This is primarily due to the larger volume occupied by the tails resulting

in larger normal forces resisting compression. There is a striking difference in the

amount of invested work between the two intervals I and II (e.g. 27 pN ·Å for the

interval I of TM9 model compared to 5 pN · Å for the interval II of TM9 model).
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Figure 3.46: Energy losses per average cycle in function of the tail size, for intervals
I and II of dynamic extension–compression cycles.

This difference is proportional to the maximal normal force which is sustained by

the systems in the two intervals (check Figure 3.35).

3.4.2.3 Tribological behaviour of confined tailed models of ionic liquid

We have conducted static and dynamic characteristic analysis of the three generic

IL models, focusing on the influence of their molecular structure on the anti-wear

performance. In order to obtain a full picture, it is crucial to determine IL′s friction

behaviour under different shear conditions. In this section we apply a relative motion

between the plates by moving the Top plate along the x-axis (see Figure 3.5 from

section 3.2) and we observe the resulting frictional force (also along the x-axis, i.e.,

Fx). We have performed two types of friction simulations:

(i) at a constant Top plate’s velocity Vx = 2 m/s, the simulations are performed at

different fixed values of the gap: dz = 12 Å to 25.5 Å, and

(ii) at a fixed gap dz = 15 Å Top plate’s lateral velocity takes five different values:

Vx = {0.1, 0.3, 1.0, 3.0, 10.0} m/s.

In all friction simulations, the total distance covered by the Top plate was ∆x =

100 Å in the x direction. The dependence of the time-averaged frictional force 〈Fx〉
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on the interplate gap dz for the three IL models is shown in Figure 3.47. The

points obtained in the simulations are shown as markers. Linear fits through these

points are provided as visual guides. For the TM3 model ionic liquid, we observe a

decrease of the frictional force 〈Fx〉 with the size of the gap. On the other hand, the

frictional force weakly depends on the gap width in case of TM5 and TM9 model

ionic liquids. Both the TM3 and TM9 have high zero shear-rate (Green-Kubo) bulk

viscosities correlated with extent of their ordering, i.e., ηGK
TM3 > ηGK

TM9 > ηGK
TM5. When

comparing with their tribological performance in a thin film we can conclude that

there is no correlation since the TM5 ionic liquid has the highest average frictional

force. In Figure 3.48, we show the dependence of specific friction 〈Fx〉/〈Fz〉 on

the Top plate’s lateral velocity Vx in case of TM5 model ionic liquid. We obtain

specific friction values of the order 〈Fx〉/〈Fz〉 ≈ 0.01 which are comparable to the

result from Reference [53] for symmetric [PF6]− anion. We observe also a similar

tendency of decreasing friction force with respect to tail size, as reported in the

same Reference [53]. The specific friction 〈Fx〉/〈Fz〉 is defined as the ratio of the

time averaged frictional 〈Fx〉 and normal 〈Fz〉 force and it is different from the

Coulombic friction coefficient µ = ∂Fx/∂Fz. Consistently with our previous results

for model ionic liquids, we have observed a logarithmic dependence of specific friction

on the lateral velocity, check Reference [64]. The numerical values are fitted to a

linear function of the form 〈Fx〉/〈Fz〉 = a log (Vx/Vref ) + b, where Vref = 1 m/s. The

coefficients of the linear fit took those values: a = 0.001, b = 0.008. A reasonable fit

to the linear regression curve can be observed. The logarithmic dependence indicates

typical elastohydrodynamic lubrication (EHL) conditions [119].
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Chapter 4 Conclusions

In this doctoral thesis two research topics, related to dipolar and ionic systems,

namely tubes and helices composed of dipolar hard spheres and ionic liquids, have

been modeled and investigated. Pronounced ordering under the conditions of spatial

confinement has been obtained in both systems. The ordering is a consequence of the

dominant long-range interactions, i.e., dipole-dipole interaction in dipolar structures

and Coulombic interaction in ionic liquids. In both systems long-range interactions

have led to the ordering that spans the system. A rich phase behaviour, sensitive to:

variations of packing in case of dipolar systems and particle shape in case of ionic

systems, has been obtained.

4.1 Confined dipolar systems

A study about cohesive energy of helical and tubular structures composed of hard

spheres with permanent dipole moments has been presented. Helices were created

by replication of a particle or patch of particles on a confining cylindrical surface.

Even for the most simple situation, namely the single thread helix, a non-trivial

behaviour is found when monitoring the cohesive energy as a function of surface

packing (i.e., axial compression).

In particular, a non-monotonic dependence of the cohesive energy on the packing

fraction (or equivalently the amount of compression) as a result of a delicate interplay

of dipole-dipole interactions and excluded volume effects can be observed. The

lowest cohesive energy is achieved at the highest packing fraction with touching

turns. In parallel, the polarization order parameter, i.e., the mean dipole moment

per particle 〈mz〉, also displays a striking non-monotonic behavior as a function of

the extent of compression. In the regime of very high surface packing fraction with

138



4. Conclusions

local triangular arrangement compatible with certain cylinder radius R over particle

diameter d ratio (R/d), a pronounced cohesive energy is found.

Accordingly, the polarization order parameter indicates a sharp change in the

dipole moment orientation, which tends to be parallel to the helix axis. Finally, co-

hesive energies of dense multiple (i.e., double or quadruple) helices, as well as, AB

and ZZ tubes made up of stacking rings that can also be seen as special multiple

helices have been compared. A remarkable finding is the enhanced cohesive energy

for the ZZ tube structure. The latter already emerges at strong substrate curvature

with cohesive energies very close to that obtained at vanishing curvatures. In these

ZZ tube structures, an alignment of the helix threads with its axis is a microstruc-

tural signature for this low cohesive energy. As a final note, it should be emphasized

that the implemented model of dipolar tubes and helices mimics nicely the geometry

and microstructure of biological microtubules. It could also provide a possible clue

about the self-assembly mechanisms and cohesion within microtubular structures.

4.2 Ionic liquids

4.2.1 Salt model of ionic liquid

In the study conducted in this doctoral research an molecular dynamics (MD) sim-

ulation setup in order to study the behaviour of model ionic liquids (ILs) confined

between plates which are in close proximity while being in relative motion has been

implemented. In the framework of this doctoral thesis theMD setup was developed

in a way that allows the mesoscopic study of the lubrication processes in automo-

tive applications such as the piston ring–cylinder liner interaction inside the internal

combustion engine. More specifically, the geometry was selected in order to allow

a variable lubricant confinement gap combined with a varying lubricant quantity in

the gap, while avoiding the squeeze-out of the lubricant into vacuum. Odd-number

layering and near-wall solidification was observed between the solid plates, similar

to published experimental findings. The friction simulations have uncovered an in-

teresting behaviour of ILs, with a logarithmic dependence of specific friction on

velocity hinting at elasto-hydrodynamic lubrication at low loads. This behaviour
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completely changed under more critical conditions of high load, with specific fric-

tion decreasing to lower values and becoming independent of sliding velocity. This

behaviour was strongly correlated with the internal structure of the IL and can

provide guidance for implementing lubrication concepts that can lead to friction

reduction in internal combustion engines.

Also, the implemented MD simulation setup has been used in order to study

the response of a model ionic liquid to imposed mechanical deformation. The prop-

erties of bulk and confined ionic liquid have been investigated under both static

and dynamic conditions. First, it has been shown that the Green–Kubo viscosity

coefficient fits the shearing simulation results of the bulk salt model ionic liquid,

indicating its liquid state. The simulation results have shown the significant impact

of the confinement and interaction with the walls on the ionic liquid response to

mechanical deformation. The force–distance hysteresis surface under cyclic loading

is smaller than one would expect considering only the viscosity value of the liquid.

The simulations have also shown the transition from a liquid to a highly dense and

ordered, potentially solidified state of the IL taking place under variable normal

load and under shear. The wall slip has a profound influence on all the forces which

arise as a response to the mechanical deformation. It has also been observed that

the interaction of the IL with the walls represents a principal driving force for all

processes observed in the dynamic regime for a range of studied velocities. If suffi-

cient time is allowed for the system to reach the equilibrium, inter–ionic interactions

pull more ionic liquid inside the confinement gap.

Ionic liquids feature strong long–ranged Coulombic forces and their models re-

quire significant computational effort. Coarse grained models, such as the salt model

implemented in the current study, are useful for bridging the gap between the molec-

ular processes that control the lubrication phenomena and the macroscopic perfor-

mance in engineering applications. The implementation of simplified models that

describe fundamental physicochemical phenomena at a reduced computational cost

can provide deep insights which shed light onto the mechanisms and processes that

can render ILs as potentially interesting lubricant candidates.
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4.2.2 Tailed models of ionic liquid

Since ionic liquids interact via long–ranged Coulombic forces and their models re-

quire high–performance computational resources, there rises a question of the min-

imal model needed to capture the properties of the molecular processes governing

lubrication mechanisms and the macroscopic performance relevant for engineering

applications. A generic tailed-model (TM) of ionic liquids which includes: an asym-

metric cation consisting of a positively charged head and a neutral tail of variable

size and a large spherical negatively charged anion has been investigated. It has

been observed that, though simple, this model results in striking differences of the

equilibrium IL bulk structure governed by the tail size relative to cationic head:

(i) simple cubic lattice for the small tail,

(ii) liquid-like state for symmetric cation-tail dimer, and

(iii) molecular layer structure for the large tail.

The influence of the molecular structure of cation dimer on the response of the three

representative ionic liquids to confinement and mechanical strain has been investi-

gated using MD simulations. Properties of three IL models are compared in and

out of equilibrium. The evolution of normal force with inter-plate distance has been

related to the changes in the number and structure of the confined IL layers. It has

been found that the density inside the gap has a secondary effect on the evolution

of the normal force. It has been observed that symmetric molecule offsets intra-

IL adhesion due to the ordering of IL. As a result, the thin layer of symmetric

IL molecules exhibits non-negative normal force independent of the gap width. In

analogy to the experimental observations, a tail–to–tail bilayer is formed for wide

gaps in all three investigated model ILs. A mutual feature of all investigated model

ILs is the formation of fixed (stable) layers of cations along the solid plates. The

fixed layer formation is a result of strong LJ interaction between the plates and ions.

A consequence of the fixed layer stability is a steep rise of the normal force at small

interplate gaps. The steep rise of the normal force is an effect useful for preventing

solid-solid contact and accompanying wear. The tails attached to the cations in the

fixed layer migrate with increasing tail size. Small tails form the first layer next to
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the plates. For symmetric molecules the tails form a mixed layer with cations, while

large tails form a mixed layer with anions.

The dynamic behaviour of IL thin film under cyclic extension–compression move-

ments of the Top plate has been explored. Two intervals of the interplate distances

are investigated: narrow gap interval, where the anionic layer is split into two, and

a wide gap interval where tail–to–tail layer is formed. For the narrow gap interval, a

significant flow of ions during the cyclic motion of the Top plate has been observed.

A sharp decrease of the normal force at the final stage of compression is not only a

consequence of the density change due to the flow, but it is also a result of merging

of two anionic layers that repel each-other by the electrostatic Coulombic forces into

a single one. The mobility of ions in and out of the gap is driven by their inter-

action with plates, i.e., filling of the fixed layers. As a result, for the narrow gap,

the number of ions that entered the gap is 50% smaller in the dynamic case than

in the static case. This results in a smaller density inside the moving narrow gap.

The difference between dynamic and static cases for the wide gap was even more

striking, the number of ions that entered the gap is 80% smaller in the dynamic

case than in the static case. Surprisingly, in wide gap the density is higher in dy-

namic case due to the lack of mobility of ions. The invested work per average cycle

increases with the tail size increase for all three IL models. As one could expect,

the invested work is higher for the narrow gap, where the number of confined ionic

layers changes during the cycle. Nevertheless, the low hysteretic losses suggest the

presence of strong slip inside the gap facilitating in– and out– flow of ions in the gap.

An increase of the tail size reduces friction force in the implemented TM model of

ionic liquid. Depending on the tail size, friction force decreases with increasing gap

for small tails and it increases for large tails.

Understanding the interplay between the different processes taking place in thin

lubricant films is important due to the conflicting demands imposed on how IL

lubricant should behave in dynamic confinement. On the one hand, a high load-

carrying capability requires strong adsorption of the lubricant to the surface, while

on the other hand fast self-healing and low friction require high mobility/low vis-

cosity. The obtained results confirm that the behaviour of ILs in confinement can
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be unrelated to their bulk behaviour and therefore it should be possible to achieve

simultaneously, typically conflicting, low friction and good anti–wear performance.

A search for optimal IL lubricants, either using synthesis and test methods or state-

of-the-art computer-based molecular design methods [120], should take into account

the microscale properties of lubricating thin films (e.g., normal force vs. number

of layers characteristics), in which the effects of molecular-level processes are more

pronounced. Directing the optimization efforts to the microscale would enable us a

better differentiation of the qualities of different ionic liquids.
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Appendix A Lekner-type summation method for 1D

periodic dipolar structures

A.1 Total interaction energy in the selected Lekner–type method

Let us consider N particles with i−th particle (i = 1, N) having a dipole moment −→µi .

Its position is defined as −→ri = (xi, yi, zi). Position vector between dipoles i and j is

given as −→rij = −→ri −−→rj . We use the notation for the projection of the vectors −→rij and
−→µi on the xy plane: −→ρij and −→µi ρ, respectively. Precisely speaking, −→ρij = (xij, yij, 0)

and −→µi ρ = (µxi , µ
y
i , 0). Projection of the above mentioned vectors on the z axis is

noted as: zij and µzi .

This is the expression for the potential energy of the DDI between the dipole −→µi
positioned at −→ri and the dipole −→µj positioned at −→rj :

udd = C

[−→µi · −→µj
r3
ij

− 3
(−→µi · −→rij) (−→µj · −→rij)

r5
ij

]
, (A.1)

where C represents a constant which depends on the intervening medium and for

simplicity reasons we set C = 1 in the following derivations.

Knowing the interaction energy udd in case of a pair of dipoles i and j (i, j = 1, N)

let us form the expression for the total interaction energy of the system whose

elementary cell contains N dipoles. We take into account the fact udd ∝ r−2s which

replaces udd ∝ r−3:

Edd =
1

2

N∑
i,j=1

∑
m′

{ −→µi · −→µj[
ρ2
ij + (zij +mLz)

2]s
−3

[−→µi ρ · −→ρij + µzi (zij +mLz)]
[−→µj ρ · −→ρij + µzj (zij +mLz)

][
ρ2
ij + (zij +mLz)

2]s+1

}
, (A.2)
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where the quantity Lz has a physical meaning of length, i.e., it determines the

periodicity of a structure along the z-direction. The elementary cell contains N

particles and it is positioned in the way that for its each particle i stands zi ≥ 0

(i.e., the lower end of the elementary cell is placed at z = 0). The 1/2 factor

regulates the fact that we consider the interaction of each i, j pair twice, due to the

double sum
∑N

i,j=1. In each i, j pair the i-th particle belongs to the elementary cell,

while the particle j can belong to the elementary cell or to the one of elementary

cell’s copies along the z axis. Hence, m = 0 corresponds to the elementary cell,

while m 6= 0 counts the copies. This is why we define the distance between two

dipoles along the z axis as: zij +mLz. It is clear that m is an integer which counts

how many periods along the z axis is a given copy shifted from the elementary cell.

Summation index m is denoted as m′ in Equation A.2 to mark the fact that for

m = 0 the terms with i = j are excluded, since the dipoles do not auto-interact.

Let us define the lattice sums Ψr(s) and Ξr,ξ(s) for −→r 6= 0 as:

Ψr(s) =
1

L2s
z

∑
m

[(
ρ

Lz

)2

+

(
z

Lz
+m

)2
]−s

, (A.3)

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ

L2s
z

∑
m

[(
ρ

Lz

)2

+

(
z

Lz
+m

)2
]−s

e−iξz(z+mLz). (A.4)

By comparing Equations A.3 and A.4 we notice that Ξr,ξ(s) = e−i
−→
ξρ ·−→ρ e−iξz(z+mLz)Ψr(s).

The terms e−i
−→
ξρ ·−→ρ and e−iξz(z+mLz) are introduced in order to enable the conversion

of real-space sums into reciprocal-space sums, in the further steps of derivation.

Quantity
−→
ξ has the physical meaning of reciprocal length and it can be represented

as:
−→
ξ =

(−→
ξρ , ξz

)
,
−→
ξρ = (ξx, ξy).

Using the lattice sums Ψr(s) and Ξr,ξ(s) we can rewrite Equation A.2 coming up

with:

Edd =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi · −→µjΨrij(s) + 3 (−→µi · 5ξ) (−→µj · 5ξ) Ξrij,ξ(s+ 1)|ξ=0

]
+

1

2

N∑
i=1

[
|−→µi |2 − 3 (µzi )

2]Ψ0(s), (A.5)
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where the condition ξ = 0 ensures that the terms intentionally introduced in the defi-

nition of the lattice sum Ξr,ξ(s) in Equation A.4 are e−i
−→
ξρ ·−→ρ = 1 and e−iξz(z+mLz) = 1.

A.2 Derivation of the expression for the self energy

From the expression for the total energy of interaction in Equation A.5 we can

extract the expression for the self energy:

Eself(s) =
1

2

N∑
i=1

[
|−→µi |

2 − 3(µzi )
2
]

Ψ0(s),

⇒ Eself(s) =
1

2

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]

Ψ0(s), (A.6)

taking into account that: |−→µi |
2

= |−→µi ρ|
2

+ (µzi )
2.

From Equation A.3 we see that the lattice sum Ψ0(s) for −→r = 0 is:

Ψ0(s) =
1

L2s
z

∑
m 6=0

|m|−2s =
1

L2s
z

(
−1∑

m=−∞

|m|−2s +
+∞∑
m=+1

|m|−2s

)
. (A.7)

A fact that:
−1∑

m=−∞
|m|−2s =

+∞∑
m=+1

|m|−2s, leads to the next form of Equation A.7:

Ψ0(s) =
2

L2s
z

+∞∑
m=+1

|m|−2s. (A.8)

By replacing Ψ0(s) from Equation A.8 into Equation A.6 and according to the

definition of the Riemann zeta function, ζ(s) =
+∞∑
m=+1

m−s, we arrive to the general

expression for the self energy Eself(s):

Eself(s) =
1

L2s
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(2s). (A.9)

By applying s = 3/2 we obtain the expression for the self energy in case of the DDI:
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Eself

(
3

2

)
=

1

L3
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(3), (A.10)

where ζ(3) is a numerical factor with the value of ζ(3) = 1.2020569031... [76].

A.3 Derivation of the expression for the cross energy

Let us start from the expression for the cross energy from Equation A.5:

Ecross(s) =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi−→µjΨrij(s) + 3(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(s+ 1)|ξ=0

]
. (A.11)

There are the two lattice sums in Equation A.11 (i.e., Ψr(s), Ξr,ξ(s+1)) which should

be determined. We will calculate them following the procedure presented in [89] by

using the integral representation of the Gamma function [121]:

a−s =
1

Γ(s)

∫ +∞

t=0

ts−1e−atdt. (A.12)

In Equation A.3 we recognize that we might write down:

a =

(
ρ

Lz

)2

+

(
z

Lz
+m

)2

. (A.13)

According to this observation we can rewrite Equation A.3 as:

Ψr(s) =
1

L2s
z

∑
m

a−s. (A.14)

By replacing a in the right-hand side of Equation A.12 with the expression from

Equation A.13 and keeping the left-hand side as a−s we arrive at:

a−s =
1

Γ(s)

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.15)
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Now we replace the factor a−s in Equation A.14 with the right-hand side expression

from Equation A.15:

Ψr(s) =
1

L2s
z Γ(s)

∑
m

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.16)

In the next step we switch the order of the sum and integral and extract the sum-

mation over m inside the integral:

Ψr(s) =
1

L2s
z Γ(s)

∫ +∞

t=0

ts−1e−( ρ
Lz

)
2
t
∑
m

e−( z
Lz

+m)
2
tdt. (A.17)

We use the general form of the Poisson summation formula [122], thus converting

from the real-space summation to the reciprocal-space summation:

+∞∑
m=−∞

e
−
(
u+c
L0

+m
)2
t

=
(π
t

) 1
2

+∞∑
k=−∞

e
i2πk u+c

L0 e−
π2k2

t . (A.18)

Looking at Equation A.17, we decide to write down those identities: u+ c = z, L0 =

Lz. We apply the Poisson summation formula, taking into account the previously

mentioned identities, therefore coming up with:

∑
m

e−( z
Lz

+m)
2
t =

(π
t

) 1
2

+∞∑
k=−∞

ei2πk
z
Lz e−

π2k2

t . (A.19)

⇒ Ψr(s) =
1

L2s
z Γ(s)

∫ +∞

t=0

ts−1e−( ρ
Lz

)
2
t
(π
t

) 1
2

×

[
+∞∑

k=−∞,k 6=0

ei2πk
z
Lz e−

π2k2

t + 1

]
dt. (A.20)
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At this point we switch the order of the sum and integral, hence the integral comes

inside the sum over k:

Ψr(s) =
π1/2

L2s
z Γ(s)

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

π2k2

t dt

+
π1/2

L2s
z Γ(s)

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
tdt. (A.21)

From Equation A.21 we can extract the integral:

I =

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

π2k2

t dt. (A.22)

We have solved this integral in Mathematica software package [76]:

I = 23/2−s
(
Lz
ρ

)s−1/2

(2πk)s−1/2Ks−1/2

(
2πk

ρ

Lz

)
, (A.23)

where Kn (u) is the modified Bessel function of the second kind [123].

This expression can be simplified in the following manner:

I = 23/2−s
(

2πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)
. (A.24)

By replacing the expression for the integral I from Equation A.24 to the sum in the

first term in Equation A.21, we obtain:

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz

[
2

(
πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)]
=

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz f(k).

(A.25)

Applying the identity:

cos

(
2πk

z

Lz

)
=
ei2πk

z
Lz + e−i2πk

z
Lz

2
, (A.26)

we come up with the next expression:

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz f(k) =

(
2

+∞∑
k=1

cos

(
2πk

z

Lz

)
f(k)

)
. (A.27)
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Hence, the first term of Equation A.21 is equal to:

π1/2

L2s
z Γ(s)

× 4
+∞∑
k=1

cos

(
2πk

z

Lz

)(
πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)
.

So far we have computed the first term in Equation A.21 for k 6= 0 and now we

should compute the second term which corresponds to k = 0, which means that we

should compute the integral:

II =

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
tdt. (A.28)

We notice that Equation A.12 which represents the integral representation of the

Gamma function can be a good starting point for this. Setting the exponent to

s− 1/2 instead of s gives us:

a−(s−1/2) =
1

Γ(s− 1/2)

∫ +∞

t=0

ts−3/2e−atdt, (A.29)

⇒ a−(s−1/2)Γ(s− 1/2) =

∫ +∞

t=0

ts−3/2e−atdt. (A.30)

By comparing the right-hand side of Equations A.30 and A.28 we conclude that we

can say a =
(

ρ
Lz

)2

which enables the solution of the integral II:

II = a−(s−1/2)Γ(s− 1/2). (A.31)

Hence, the second term of Equation A.21 is equal to π1/2

L2s
z Γ(s)

(
ρ
Lz

)1−2s

Γ
(
s− 1

2

)
.

Finally, the expression for the lattice sum Ψr(s) is:

Ψr(s) =
4π1/2

L2s
z Γ(s)

+∞∑
k=1

(
cos

(
2πk

z

Lz

)(
π2k2L2

z

ρ2

)s/2−1/4

Ks−1/2

(
2πk

ρ

Lz

))

+
π1/2

L2s
z Γ(s)

(
ρ

Lz

)1−2s

Γ

(
s− 1

2

)
. (A.32)

The other unknown lattice sum from Equation A.11 is Ξr,ξ(s). Let us apply a

procedure analogous to the previous derivation of the unknown lattice sum Ψr(s).
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In the first step, using the integral representation of the Gamma function from

Equation A.12 and the definition of the parameter a as in Equation A.13 we obtain:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ

L2s
z Γ(s)

∑
m

e−iξz(z+mLz)

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.33)

Now we use the complete Poisson summation formula from Equation A.18 (ξz 6= 0)

which leads to:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
t

+∞∑
k=−∞

ei2πk
z
Lz e−

(2πk+ξzLz)
2

4t dt. (A.34)

By placing the sum in front of the integral (which is the same step like in Equa-

tion A.21) we obtain:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

(2πk+ξzLz)
2

4t dt. (A.35)

In the expression for Ξr,ξ(s) in Equation A.35 we have encountered the same in-

tegral I like in Equation A.22. By replacing its solution from Equation A.23 into

Equation A.35 we obtain the final expression for the lattice sum Ξr,ξ(s):

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz 23/2−s

(
Lz
ρ

)s−1/2

× (2πk + ξzLz)
s−1/2Ks−1/2

(
|2πk + ξzLz|

ρ

Lz

)
. (A.36)

Simplification of the previous expression leads to:

Ξr,ξ(s) =
2π1/2e−i

−→
ξρ ·−→ρ

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz

(
(ξzLz + 2πk)2 L2

z

4ρ2

)s/2−1/4

×Ks−1/2

(
|ξzLz + 2πk| ρ

Lz

)
. (A.37)

Now, as we have derived the general expression for the lattice sum Ξr,ξ(s), we can

proceed to the derivation of the general expression for the cross energy from Equa-

tion A.11. The next step is the application of the operator:
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(−→µi · 5ξ)(
−→µj · 5ξ),

where due to the simplicity reasons we introduce the variables: ηz = 2πz
Lz

and

ηρ = 2πρ
Lz

. We first apply the next scalar product:

(−→µj · 5ξ) =

(
µxj

∂

∂ξx
+ µyj

∂

∂ξy
+ µzj

∂

∂ξz

)
. (A.38)

We can introduce the substitution A = 2π1/2

L2s
z Γ(s)

and label the part of the function

Ξr,ξ(s) that depends just on ξz as F (ξz):

Ξr,ξ(s) = Ae−i(ξxx+ξyy)F (ξz), (A.39)

F (ξz) =
+∞∑

k=−∞

ei2πk
z
Lz

(
(ξzLz + 2πk)2 L2

z

4ρ2

)s/2−1/4

×Ks−1/2

(
|ξzLz + 2πk| ρ

Lz

)
. (A.40)

Application of the operator (−→µj · 5ξ) on Ξr,ξ(s) gives:

(i)

µxj
∂

∂ξx
Ξr,ξ(s) = µxj (−ix)Ae−i(ξxx+ξyy)F (ξz). (A.41)

(ii)

µyj
∂

∂ξy
Ξr,ξ(s) = µyj (−iy)Ae−i(ξxx+ξyy)F (ξz). (A.42)
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(iii)

µzj
∂

∂ξz
Ξr,ξ(s) = µzjAe

−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

×

[(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
(ξzLz + 2πk)(2s−3)/2 LzKs−1/2(α)

+

(
(ξzLz + 2πk)Lz

2ρ

)(2s−1)/2

ρ
∂Ks−1/2(α)

∂α

]
. (A.43)

In the previous equation, due to the simplicity of the further analysis, the argument

of the modified Bessel functions Ks−1/2 is labeled as α:

|ξzLz + 2πk| ρ
Lz

= α.

In order to obtain the full expression for (−→µj ·5ξ)Ξr,ξ(s), let us make a summation

of all three components computed in the previous equations. Prior to obtaining the

final expression it is convenient to write down the terms that correspond to the x, y

components separately from the terms that correspond to the z component:

Pxy = (−i)
(
µxjx+ µyjy

)((ξzLz + 2πk)Lz
2ρ

)(2s−1)/2

Ks−1/2(α),

Pz = µzj

[(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
(ξzLz + 2πk)(2s−3)/2 LzKs−1/2(α)

+

(
(ξzLz + 2πk)Lz

2ρ

)(2s−1)/2

ρ
∂Ks−1/2(α)

∂α

]
.

The application of the scalar product (−→µj · 5ξ) on the lattice sum Ξr,ξ(s) gives:

(−→µj · 5ξ)Ξr,ξ(s) = Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(Pxy + Pz) . (A.44)

Bearing in mind the practical importance of simplifying the forthcoming computa-

tions, let us repeat the definition of α and introduce another two variables, β and
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γ:

α = |ξzLz + 2πk| ρ
Lz
,

β = (ξzLz + 2πk)
Lz
2ρ
,

γ = ξzLz + 2πk.

The expression in Equation A.44 can be represented as a sum of three indepen-

dent terms, and each of those terms will be treated separately:

Term C1

C1 = (−i)−→µj ρ · −→ρ Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α), (A.45)

Term C2

C2 = Ae−i
−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−3)/2LzKs−1/2(α), (A.46)

Term C3

C3 = Ae−i
−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.47)

The next step is the application of the scalar product

−→µi ·
−→
∇ξ = µxi

∂

∂ξx
+ µyi

∂

∂ξy
+ µzi

∂

∂ξz

on Equation A.44, which produces new terms.

In the mentioned scalar product there are three independent operators which act

on each of the three terms {C1, C2, C3}, hence producing nine new terms, numerated

as Cij, with i ∈ {1, 2, 3} , j ∈ {1, 2, 3}.
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In the next equation we write down the term C11:

Term C11

C11 = µxi
∂

∂ξx

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.48)

Since it stands
∂

∂ξx
e−i
−→
ξρ ·−→ρ = (−ix)e−i

−→
ξρ ·−→ρ , (A.49)

the final expression for the term C11 becomes

C11 = −xµxi−→µj ρ · −→ρ Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.50)

In the next equation we write down the term C21:

Term C21

C21 = µyi
∂

∂ξy

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.51)

Since it stands
∂

∂ξy
e−i
−→
ξρ ·−→ρ = (−iy)e−i

−→
ξρ ·−→ρ , (A.52)

the final expression for the term C21 becomes

C21 = −yµyi
−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.53)

In the next equation we write down the term C12:

Term C12

C12 = µxi
∂

∂ξx
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.54)
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Taking into account Equation A.49 the final expression for the term C12 becomes:

C12 = −ixµxi µzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.55)

In the next equation we write down the term C22:
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Term C22

C22 = µyi
∂

∂ξy
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.56)

Taking into account Equation A.52 the final expression for the term C22 becomes:

C22 = −iyµyiµzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.57)

In the next equation we write down the term C13:

Term C13

C13 = µxi
∂

∂ξx

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.58)

Taking into account Equation A.49 the final expression for the term C13 becomes:

C13 = −ixµxi µzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.59)

In the next equation we provide the term C23:

Term C23

C23 = µyi
∂

∂ξy

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.60)

Taking into account Equation A.52 the final expression for the term C23 becomes:

C23 = −iyµyiµzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.61)

In the next equation we provide the term C31:
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Term C31

C31 = µzi
∂

∂ξz

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.62)

In the term C31 we encounter two constituents of the expression depending on ξz

(i.e., β(2s−1)/2 and Ks−1/2(α)) and therefore we obtain two terms inside the square

brackets, according to the product rule for derivatives:

C31 = (−i)−→µj ρ · −→ρ µziAe−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

[
(2s− 1)

2
β(2s−3)/2L

2
z

2ρ
Ks−1/2(α)

+β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.63)

In the next equation we write down the term C32:

Term C32

C32 = µzi
∂

∂ξz
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.64)

Similarly to the case of term C31 we obtain:

C32 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

(
Lz
2ρ

)(2s−1)/2

Lz

(
2s− 1

2

)
×

+∞∑
k=−∞

eikη
z

[(
2s− 3

2

)
γ(2s−5)/2LzKs−1/2(α)

+γ(2s−3)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.65)

In the next equation we write down the term C33:
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Term C33

C33 = µzi
∂

∂ξz

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.66)

Similarly to the previous two terms we obtain:

C33 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

ρ

[(
2s− 1

2

)
β(2s−3)/2

(
L2
z

2ρ

)
∂Ks−1/2(α)

∂α

+β(2s−1)/2ρ
∂2Ks−1/2(α)

∂α2

]
. (A.67)

As we have obtained all nine terms Cij, i, j ∈ {1, 2, 3}, the next step is grouping

them according to the mutual sum over k or mutual constituent terms.

Group 1

This group includes the sum
∑+∞

k=−∞ e
ikηzβ(2s−1)/2Ks−1/2(α), hence GR1 = C11+C21,

GR1 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )Ae−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.68)

Group 2

This group includes the sum
∑+∞

k=−∞ e
ikηz
(
Lz
2ρ

)(2s−1)/2 (
2s−1

2

)
γ(2s−3)/2LzKs−1/2(α),

hence GR2 = C12 + C22,

GR2 = (−i) (−→µi ρ · −→ρ )µzjAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−3)/2LzKs−1/2(α). (A.69)

Group 3

This group includes the sum
∑+∞

k=−∞ e
ikηzβ(2s−1)/2ρ

∂Ks−1/2(α)

∂α
, therefore GR3 = C13 +
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C23,

GR3 = (−i) (−→µi ρ · −→ρ )µzjAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.70)

Group 4

This group includes the mutual factor µziµzj , therefore GR4 = C32 + C33,

GR4 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

{(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)(
2s− 2

3

)
γ(2s−5)/2L2

zKs−1/2(α)

+

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−2)/3Lzρ

∂Ks−1/2(α)

∂α

+ρ

(
2s− 1

2

)
β(2s−3)/2

(
L2
z

2ρ

)
∂Ks−1/2(α)

∂α

+β(2s−1)/2ρ2∂
2Ks−1/2(α)

∂α2

}
. (A.71)

Group 5

This group includes the factor (−→µj ρ · −→ρ )µzi , hence GR5 = C31,

GR5 = (−i) (−→µj ρ · −→ρ )µziAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

[
(2s− 1)

2
β(2s−3)/2

(
L2
z

2ρ

)
Ks−1/2(α)

+β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.72)

At this point let us overview what have we realized up to this step, towards

obtaining the expression for the cross energy from Equation A.11. We have derived

the expression for Ψr(s) and the expressions for (−→µi · 5ξ)(
−→µj · 5ξ)Ξr,ξ(s), written

down as GRi, i = 1, 5, bearing in mind that (−→µi · 5ξ)(
−→µj · 5ξ)Ξr,ξ(s) =

∑5
i=1GRi.

By applying s = 3/2 in Equation A.11 we obtain the expression for the cross energy

in case of the DDI, hence we should compute the terms: −→µi−→µjΨrij (3/2) and (−→µi ·

5ξ)(
−→µj ·5ξ)Ξrij,ξ(5/2)|ξ=0. We proceed the derivations by determining the first term
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in Equation A.11, i.e., −→µi−→µjΨrij (3/2):

Ψr(3/2) =
4
√
π

L3
zΓ(3/2)

+∞∑
k=1

cos (kηz)

(
πkLz
ρ

)
K1 (kηρ)

+

√
π

L3
zΓ(3/2)

(
ρ

Lz

)−2

Γ(1). (A.73)

Taking into account the facts that Γ(3/2) =
√
π

2
,Γ(1) = 1 [76],

⇒ Ψr(3/2) =
8π

L2
zρ

+∞∑
k=1

k cos (kηz)K1 (kηρ) +
2

Lzρ2
. (A.74)

We might write the scalar product −→µi · −→µj as:

(−→µi ρ, µzi ) ·
(−→µj ρ, µzj) = −→µi ρ · −→µj ρ + µziµ

z
j . (A.75)

⇒ −→µi−→µjΨrij (3/2) =
(−→µi ρ · −→µj ρ + µziµ

z
j

) 8π

L2
zρ

+∞∑
k=1

k cos (kηz)K1 (kηρ)

+
(−→µi ρ · −→µj ρ + µziµ

z
j

) 2

Lzρ2
. (A.76)

We have obtained the first term in Equation A.11 and now we proceed the deriva-

tions by obtaining the second term, i.e., 3(−→µi ·5ξ)(
−→µj ·5ξ)Ξrij,ξ(5/2)|ξ=0. By taking

s = 5/2 and setting ξ = 0 we come up with:

Group 1 (s = 5/2) |ξ=0

GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2K2 (kηρ) . (A.77)
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Group 2 (s = 5/2) |ξ=0

GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4πkLzK2 (kηρ) . (A.78)

Group 3 (s = 5/2) |ξ=0

GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2ρ
∂K2 (kηρ)

∂ (kηρ)
. (A.79)

Group 4 (s = 5/2) |ξ=0

GR4 (s = 5/2) |ξ=0 = µziµ
z
j

2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

{
1

2−1
L2
zK2 (kηρ)

+4Lzπkρ
∂K2 (kηρ)

∂ (kηρ)

+4ρπkLz
∂K2 (kηρ)

∂ (kηρ)

+4π2k2ρ2∂
2K2 (kηρ)

∂ (kηρ)2

}
. (A.80)

Group 5 (s = 5/2) |ξ=0

GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

[
1

4−1
πkLzK2 (kηρ)

+4π2k2ρ
∂K2 (kηρ)

∂ (kηρ)

]
. (A.81)

We notice that in allGRi terms a modified Bessel function of the second kind with

index 2, i.e., K2 (u) figures, together with its first and second derivative. In order to

simplify the above mentioned terms, we express K2 (u), as well as its derivatives, in
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function of K0 (u) and K1 (u). Let us remind about the recurrence relations which

apply to the modified Bessel function of the second kind [123]:

2ν

u
Fν (u) = Fν−1 (u)− Fν+1 (u) , (A.82)

and to its derivative [123]:

∂Fν (u)

∂u
= Fν−1 (u)− ν

u
Fν (u) = Fν+1 (u) +

ν

u
Fν (u) , (A.83)

where Fν (u) = eiπνKν (u).

Utilizing the above mentioned relations and knowing that F0 (u) = K0 (u) , F1 (u) =

−K1 (u) , F2 (u) = K2 (u) we come up with the expression for K2(u) in function of

K0(u) and K1(u):

K2 (u) = K0 (u) +
2

u
K1 (u) . (A.84)

For its first derivative we get:

∂K2 (u)

∂u
= −K1 (u)− 2

u
K2 (u) , (A.85)

where, replacing K2(u) from Equation A.84, we get:

∂K2 (u)

∂u
= −2

u
K0(u)−K1(u)− 4

u2
K1(u). (A.86)

The second derivative ∂2K2(u)
∂u2

is computed straightforward by taking the first deriva-

tive of Equation A.86:

∂2K2 (u)

∂u2
= −2

(
−K0(u)

u2
+

1

u

∂K0 (u)

∂u

)
− ∂K1 (u)

∂u

−4

(
− 2

u3
K1(u) +

1

u2

∂K1 (u)

∂u

)
. (A.87)

From the recurrence relation given in Equation A.83 we obtain:

∂K0 (u)

∂u
= −K1(u),

∂K1 (u)

∂u
= −K2(u) +

1

u
K1(u), (A.88)
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which together with Equation A.84 leads to the final expression for the second

derivative ∂2K2(u)
∂u2

:

∂2K2 (u)

∂u2
= K0(u) +

6

u2
K0(u) +

3

u
K1(u) +

12

u3
K1(u). (A.89)

Now we replace K2(u), ∂K2(u)
∂u

, ∂
2K2(u)
∂u2

(knowing that u = kηρ) in Equations A.77

to A.81, coming up with:

Group 1 (s = 5/2) |ξ=0

GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2

(
K0 (kηρ) +

2

kηρ
K1 (kηρ)

)
,(A.90)

⇒ GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

[
8π2

3L3
zρ

2
×

+∞∑
k=−∞

k2eikη
z

K0 (kηρ)

+
8π

3L2
zρ

3
×

+∞∑
k=−∞

keikη
z

K1 (kηρ)

]
. (A.91)

Group 2 (s = 5/2) |ξ=0

GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4πkLz

(
K0 (kηρ) +

2

kηρ
K1 (kηρ)

)
,(A.92)

⇒ GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj

[
8π

3L2
zρ

2
×

+∞∑
k=−∞

keikη
z

K0 (kηρ)

+
8

3Lzρ3
×

+∞∑
k=−∞

eikη
z

K1 (kηρ)

]
. (A.93)
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Group 3 (s = 5/2, ξ = 0)

GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2
×

+∞∑
k=−∞

eikη
z

4π2k2

(
− 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ)

)
(A.94)

⇒ GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj

[
− 8π

3L2
zρ

2
×

+∞∑
k=−∞

keikη
z

K0 (kηρ)

− 8π2

3L3
zρ
×

+∞∑
k=−∞

k2eikη
z

K1 (kηρ)

− 8

3Lzρ3
×

+∞∑
k=−∞

eikη
z

K1 (kηρ)

]
. (A.95)

Group 4 (s = 5/2) |ξ=0

GR4 (s = 5/2) |ξ=0 = µziµ
z
j

2

3L3
zρ

2
×

+∞∑
k=−∞

eikη
z

×
[
2L2

zT1 + 4LzπkρT2 + 4ρπkLzT3 + 4π2k2ρ2T4

]
(A.96)

where the terms T1, T2, T3, T4 are defined as:

T1 = K0 (kηρ) +
2

kηρ
K1 (kηρ) , (A.97)

T2 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.98)

T3 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.99)

T4 = K0 (kηρ) +
6

(kηρ)2K0 (kηρ) +
3

kηρ
K1 (kηρ) +

12

(kηρ)3K1 (kηρ) , (A.100)
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respectively.

⇒ GR4 (s = 5/2) |ξ=0 = µziµ
z
j

[
− 4π

3L2
zρ
×

+∞∑
k=−∞

keikη
z

K1 (kηρ)

+
8π2

3L3
z

×
+∞∑

k=−∞

k2eikη
z

K0 (kηρ)

]
. (A.101)

Group 5 (s = 5/2) |ξ=0

GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z [

4πkLzR1 + 4π2k2ρR2

]
, (A.102)

where the terms R1, R2 are defined as:

R1 = K0 (kηρ) +
2

kηρ
K1 (kηρ) , (A.103)

R2 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.104)

respectively.

⇒ GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi

[
− 8π2

3L3
zρ

+∞∑
k=−∞

k2eikη
z

K1 (kηρ)

]
. (A.105)

We can furthermore simplify the Equations A.90 to A.105 applying the relations:

eikη
z

+ e−ikη
z

= 2 cos (kηz) , eikη
z − e−ikηz = 2i sin (kηz) , (A.106)

that allow us to switch from the
∑+∞

k=−∞ summation to the
∑+∞

k=1 summation, where

the case k = 0 should be considered separately. Accordingly, let us resolve the k = 0

case first:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0,k=0 =

5∑
i=1

GRi (s = 5/2|ξ=0,k=0 . (A.107)
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Based on the next relations [123]:

u2K1 (u)→ 0, u2K0 (u)→ 0, uK1 (u)→ 1, (A.108)

which are valid when k → 0, setting that u = kηρ we obtain that:

5∑
i=1

GRi (s = 5/2) |ξ=0,k=0 = − 8π

3L2
zρ

3

Lz
2πρ

(−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

− 4π

3L2
zρ

Lz
2πρ

µziµ
z
j , (A.109)

⇒
5∑
i=1

GRi (s = 5/2) |ξ=0,k=0 = − 4

3Lzρ4
(−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )− 2

3Lzρ2
µziµ

z
j . (A.110)

Now we resolve the k 6= 0 case:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0,k 6=0 =

5∑
i=1

GRi (s = 5/2) |ξ=0,k 6=0. (A.111)

Let us modify the expressions for GRi (s = 5/2) |ξ=0 following the Equation A.106:

Group 1 (s = 5/2) |ξ=0,k 6=0

GR1 (s = 5/2) |ξ=0,k 6=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

[
16π2

3L3
zρ

2
×

+∞∑
k=1

k2 cos (kηz)K0 (kηρ)

+
16π

3L2
zρ

3
×

+∞∑
k=1

k cos (kηz)K1 (kηρ)

]
. (A.112)

Group 2 (s = 5/2) |ξ=0,k 6=0

GR2 (s = 5/2) |ξ=0,k 6=0 = (−→µi ρ · −→ρ )µzj

[
16π

3L2
zρ

2
×

+∞∑
k=1

k sin (kηz)K0 (kηρ)

+
16

3Lzρ3
×

+∞∑
k=1

sin (kηz)K1 (kηρ)

]
. (A.113)
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Group 3 (s = 5/2) |ξ=0,k 6=0

GR3 (s = 5/2) |ξ=0,k 6=0 = (−→µi ρ · −→ρ )µzj

[
− 16π

3L2
zρ

2
×

+∞∑
k=1

k sin (kηz)K0 (kηρ)

− 16π2

3L3
zρ
×

+∞∑
k=1

k2 sin (kηz)K1 (kηρ)

− 16

3Lzρ3
×

+∞∑
k=1

sin (kηz)K1 (kηρ)

]
. (A.114)

Group 4 (s = 5/2) |ξ=0,k 6=0

GR4 (s = 5/2) |ξ=0,k 6=0 = µziµ
z
j

[
− 8π

3L2
zρ
×

+∞∑
k=1

k cos (kηz)K1 (kηρ)

+
16π2

3L3
z

×
+∞∑
k=1

k2 cos (kηz)K0 (kηρ)

]
. (A.115)

Group 5 (s = 5/2) |ξ=0,k 6=0

GR5 (s = 5/2) |ξ=0,k 6=0 = (−→µj ρ · −→ρ )µzi

[
− 16π2

3L3
zρ

+∞∑
k=1

k2 sin (kηz)K1 (kηρ)

]
. (A.116)

We can now compute the summation from Equation A.111:

5∑
i=1

GRi (s = 5/2) |ξ=0,k 6=0 = − 8π

3L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

+
µziµ

z
j

ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
. (A.117)

Adding up the result from Equation A.110 for k = 0 to the result from Equa-
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tion A.117 for k 6= 0 we obtain:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0 = − 8π

3L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

+
µziµ

z
j

ρij

]
×

+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

3Lz

×
[

2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)
ρ4
ij

+
µziµ

z
j

ρ2
ij

]
.(A.118)

At this point, let us rewrite the expression defining the cross energy:

Ecross =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi−→µjΨrij(3/2) + 3(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0

]
. (A.119)

From Equation A.76 we take the term −→µi−→µjΨrij (3/2) and from Equation A.118 we

take the term (−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0 and multiply it by 3, which leads to
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the final form of the cross energy:

Ecross =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
−8π

L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

− (−→µi ρ · −→µj ρ)
ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

Lz

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ4
ij

− (−→µi ρ · −→µj ρ)
ρ2
ij

]}
. (A.120)

We should note that the expressions for Ψr(s),Ξr,ξ(s) and consequently for Ecross

are undefined in case −→ρ = 0. Hence, the previously written expressions are valid

under the condition −→ρ 6= 0. For the special case −→ρ = 0, i.e., when two dipoles have

the same x and y coordinate (the position vector connecting them is parallel to the

z axis), the next equation for Ψr(s = 3/2) applies [89]:

Ψr(3/2)|−→ρ =0 = − 1

L3
z

[
Ψ”
(
|z|
Lz

)
+ π3 cos

(
π|z|
Lz

)
sin−3

(
π|z|
Lz

)]
, (A.121)

where Ψ” is the tetra-gamma function [123]. Using Equations A.118 and A.121 we

obtain the cross energy in case −→ρij = 0 as:

Ecross|−→ρij=0 =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
Tp

[
Ψ”
(
|zij|
Lz

)
+ π3 cos

(
π|zij|
Lz

)
sin−3

(
π|zij|
Lz

)]}
,

(A.122)

where the term Tp is defined as:

Tp = −
(−→µi ρ · −→µj ρ)− 2µziµ

z
j

L3
z

. (A.123)
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Appendix B Conjugate gradient method

The conjugate gradient (CG) method represents a general method for minimiz-

ing function f (~x), where f can be any function of argument ~x in N -dimensional

space [124]. In our case, we want to minimize the potential energy of atoms in the

system, hence f = V , where the independent variable ~x are the positions of our

atoms ~ri, i = 1, ..., N . The parameter space over which the minimization is realized

is 3N -dimensional, since it stands that:

~r = (r1x, r1y, r1z, r2x, r2y, r2z, r3x, r3y, r3z, ..., rNx, rNy, rNz) . (B.1)

We can state that we are interested in minimization of the function V (~r). In the

CG method, the gradient of the function, which is in our case the force, since it

stands ~F = −∇V , is used for finding the minimum of the function. The gradient

determines in which direction the function changes the most rapidly. Bearing this

in mind, we can come up with a natural, but not very efficient way to minimize the

energy, which is to always move in the direction of the negative gradient, since neg-

ative gradient means lowering the function value. This method is known as steepest

descent method and for MD systems its algorithm can be defined as [125]:

Step(0): start from the point ~r0 setting up j = 0

Step(1): calculate Vj (~rj) and ~Fj = −∇Vj (~rj)

Step(2): if Vj−1−Vj < ε (where ε is the chosen convergence tolerance, usually at the

order of 10−6) then end the algorithm

Step(3): minimize V
(
~rj + α~Fj

)
by varying the scalar quantity α

Step(4): update ~rj+1 = ~rj + α~Fj; j = j + 1

Step(5): return to the step (1)

The line minimization in step (3) is a one dimensional operation in which the min-
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imum of a function is looked for by moving in a defined direction α~Fj. Let us now

explain how does the line minimization work. The line minimization is a straight-

forward operation which is carried out in two steps [124]:

(i) confirm that there is a minimum and bracket it

(ii) search for that minimum with a given accuracy

Step (i) is easy to conduct: starting from a point ~r and known direction ~F , we

move forward along some direction β ~F . If the following conditions are met (for the

illustration check Figure B.1):

V

(
~r +

β ~F

2

)
< V (~r) , V

(
~r +

β ~F

2

)
< V

(
~r + β ~F

)
, V (~r) < V

(
~r + β ~F

)
(B.2)

then the minimum is bracketed with these three points:{
V (~r) , V

(
~r +

β ~F

2

)
, V
(
~r + β ~F

)}
. (B.3)

In case the above mentioned conditions are not met, we increase β and try again

until we meet the conditions.

As the step (i) of bracketing the minimum is completed, we move on to the step

(ii) of searching for that minimum within the given accuracy. One way of doing

this is applying bisection. However, it turns out that it is better to apply golden

section rule, which means that the new guess for the minimum is distant from either

ends
(

1+
√

5
2
− 1
)
· 100% = 61.803% of the distance between the ends, i.e., points (1)

and (2) from Figure B.1 are the ends in the first iteration of the procedure. Later

on, the bracketing narrows around the minimum with the goal of converging to it.

The golden section rule tells us how should we narrow down the bracketing interval,

i.e., the distance between the ends. Besides the line minimization which includes

bracketing and golden section rule search for the minimum, there is another method

which is called inverse parabolic interpolation. The name comes from the fact that

a parabola is fitted through the points {a, b, c} which correspond to the points (1),

(2), (3) from Figure B.1. Our guess for the minimum of the curve we are looking for,
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1

2

3

V(r)

V(r + F)

V(r + F/2)

4

5
6

Figure B.1: Bracketing a minimum, points (1), (2) and (3) are the initial bracketing
points, jumps to the points (4), (5) and (6), respectively, illustrate the process of
line minimization and convergence towards the minimum of the given red curve.

is the minimum of the fitting parabola x, which is computed by the formula [124]:

x = b− 1

2

(b− a)2 [V (b)− V (c)]− (b− c)2 [V (b)− V (a)]

(b− a) [V (b)− V (c)]− (b− c) [V (b)− V (a)]
. (B.4)

After the current parabola is fitted, we replace one of the ending points a or c by point

x (this depends on which side of point b is current x) and the inverse parabolic inter-

polation is repeated. This process of inverse parabolic interpolation continues until

the minimum is found with the given accuracy. An advanced method of line min-

imization built-up upon the previously presented ones is the Brent’s method [124].

It employs the inverse parabolic interpolation (IPI) and changes to the golden sec-

tion in case that there are problems with IPI. We have explained the basis of the

steepest descent (SD) approach and the Brent’s line minimization. A further step

in advancing the minimization algorithms would be their combination. However,

such a combined minimization method is not too efficient in many-dimensional pa-

rameter spaces because there is a high chance of SD falling into a zig-zag trajectory,

which means that the convergence towards the minimum would be very inefficient.

A question rises: how can we eliminate this obstacle of the steepest descent method
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2

4

3

1

min1

min2

parabola1 through 

parabola2 through 

1 2 3

1 3 4

Figure B.2: Inverse parabolic interpolation through the points (1), (2) and (3) via
parabola1 leads to the point (4) as that parabola’s minimum, noted as min1. In
the next iteration inverse parabolic interpolation through the points (1), (3) and (4)
via parabola2 leads to that parabola’s minimum, noted as min2, which is closer to
the minimum of the red curve which we are looking for. Further inverse parabolic
interpolations lead to the convergence towards the minimum of the given red curve.

and achieve efficient convergence? The solution comes with the conjugate gradient

(CG) method where a new direction, known as conjugate direction, is chosen and it

depends on the previous direction, hence the zig-zag trajectory can be avoided. Let

us explain what does it mean to have two directions that are conjugate. Let us take

an arbitrary function f (~x) where the argument ~x is N -dimensional and write down

its Taylor series around a certain point ~T [125]:

f (~x) = f
(
~T
)

+
∑
i

∂f

∂xi

xi +
1

2

∑
i,j

∂2f

∂xi∂xj

xixj + ... ≈ c−~b · ~x+
1

2
~x ·A · ~x, (B.5)

where the scalar c is defined as c = f
(
~T
)
, the vector ~b is defined as ~b = −∇f |̃T and

the matrix A is defined as A = ∂2f
∂xi∂xj

|̃T and it is known as the Hessian matrix. Let

us label the previous direction of movement as ~u and the gradient as ~g. We want to
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determine the next direction of movement ~v. Bearing in mind that the gradient and

the previous direction of movement in a current point are orthogonal, i.e., ~g · ~u = 0

and that we want, after the next step, new gradient to be orthogonal to the previous

direction of movement, i.e., ~g∗ · ~u = 0, we come up with the condition:

~u · δ (∇f) = 0 (B.6)

which means that the change of the gradient labeled as δ (∇f) should be also per-

pendicular to the previous direction of movement vecu. We start the derivation from

the quadratic form of the function f , which is given as: f (~x) = c−~b · ~x+ 1
2
~x ·A · ~x.

The gradient of the function f derived from its quadratic form is:

∇f = A · ~x−~b. (B.7)

Now from the Equation B.7 we calculate the change of the gradient ∇f along a

certain distance labeled as δ~x is:

δ (∇f) = A · δ~x (B.8)

and now by setting that δ~x corresponds to the new direction of movement ~v, i.e.,

δ~x = ~v, we return to Equation B.6:

~u · δ (∇f) = ~u ·A · ~v = 0. (B.9)

Summing up the previous discussion, if the relation ~u · A · ~v = 0 holds, we say

that the directions ~u and ~v are conjugate. The main task of the CG method is

the computation of the new direction along which to move, hence the two vectors

~g and ~h are used for the realization of this task. At the start, there are arbitrary

initial vectors ~g0 and ~h0 = ~g0. The next equations define how are they iterated

(i = 0, 1, 2, 3, ...) [124]:

~gi+1 = ~gi − λi

(
A · ~hi

)
,~hi+1 = ~gi+1 + γi

~hi. (B.10)
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In Equation B.10 scalars λi and γi are figuring, they are defined as [124]:

λi =
~gi · ~gi

~hi ·A · ~hi

=
~gi · ~hi

~hi ·A · ~hi

(B.11)

and

γi =
~gi+1 · ~gi+1

~gi · ~gi

. (B.12)

Those vectors ~g and ~h fulfill the orthogonality and conjugation conditions [124]:

~gi · ~gj = 0,~hi ·A · ~hj = 0, ~gi · ~hj = 0 (B.13)

From Equations B.10, B.11, B.12 and B.13, by knowing the Hessian matrix A,

we are able to determine successive conjugate directions ~hi along which the line

minimization is conducted. With n such steps, where n is the dimensionality of the

problem, we can find the minimum of the quadratic form f~x. However, since the

dimensions of the Hessian matrix A are 3N×3N , the dimensionality of the problem

is n = 3N in case of energy minimization of an MD system with N particles. It is

highly inefficient to operate with the Hessian matrix in case of MD systems since

the number of particles in the system N can be up to 106. Hopefully, there is a

theorem which solves the problem by circumventing the usage of the Hessian matrix

A. It claims that if we minimize the function f in the direction ~h to a point ~xi+1,

the new gradient can be calculated as [124]:

~gi+1 = −∇f (~xi+1) (B.14)

In that case, this vector ~gi+1 would be the same as if it had been determined via

Equation B.10. More details and the proof of this theorem can be found in the chap-

ter 10 "Minimization or maximization of functions" of the book [124]. Based on the

previously presented equations we can come up with a sketch of the CG algorithm

for the energy minimization of an MD system consisting of N particles [125]:

Step(0): start from the point ~r0 setting up j = 0, V0 = V (~r0), ~q0 = −∇V (~r0),

~g0 = ~h0 = ~q0
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Figure B.3: Steepest descent method can easily fall into a zig-zag trajectory.

Step(1): minimize V (~rj + α~qj) with respect to the scalar α, after that update

~rj+1 = ~rj + α~qj and compute V (j + 1) = V (~rj+1)

Step(2): if Vj+1−Vj < ε (where ε is the chosen convergence tolerance, usually at the

order of 10−6) then end the algorithm

Step(3): compute ~qj = −∇V (~rj+1) and set Vj = V (~rj+1)

Step(4): compute γ = ~qj · ~qj/~gj · ~gj

Step(5): set ~gj+1 = ~qj

Step(6): set ~hj+1 = ~gj+1 + γ~hj and ~qj+1 = ~hj+1

Step(7): increase the counter of iterations: j = j + 1 and return to the step(1)

The algorithm we have presented is known as Fletcher-Reeves algorithm. Sometimes

it is more efficient to use its modification, known as Polak-Ribiere algorithm. The

only difference between the two algorithms is in the step (4) which is in the later

case [125]:

Step(4)∗: compute γ = (~qj + ~gj) · ~qj/~gj · ~gj.

As a concluding remark, CG method is efficient in finding a local minimum and it

is often the method of choice in MD simulations.
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