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Modeling the behaviour of confined dipolar and
ionic systems

Abstract

In this doctoral thesis confined dipolar and ionic systems have been modelled and
investigated, namely dipolar tubes and helices composed of dipolar hard spheres and
ionic liquids. Mutual for those systems is the fact that their structure and behaviour
are dominated by long-range interactions, i.e., dipole-dipole interaction in case of
dipolar systems and Coulombic interaction in case of ionic systems. The feature
of pronounced ordering of formed configurations and possibility of manipulating
them via externally applied fields (magnetic/electric field in case of magnetic/elec-
tric dipoles and electric field in case of ions) attract attention of condensed matter
physics.

The first part of this doctoral thesis, which is dedicated to dipolar systems, is
dealing with the investigation of the structure and cohesive energy in tubes and
helices composed of dipolar hard spheres. A complex dependence of cohesive energy
on surface packing fraction and dipole moment orientation has been observed. In
case that single-thread helices are considered, the lowest cohesive energy is achieved
at the highest surface packing fraction. Besides that, an interesting non-monotonic
behaviour of the cohesive energy as a function of the surface packing fraction has
been obtained. In case of multi-thread helices, a new phase, showing remarkably
lower cohesive energy, has been determined. This phase is referred to as ZZ tube
and it consists of threads following the confining cylinder’s axis, labeled as the z
axis, in terms of both spatial and dipole moment orientation. Actually, in case of
Z 7 tubes dipolar hard spheres are arranged into a local triangular lattice, with
densely packed threads following the z axis.

In the scope of this doctoral thesis dipolar configurations under the condition
of cylindrical confinement are considered, meaning that dipolar spheres are placed
on a confining cylinder. First question which arises is what are the possible config-

urations, since there is an interplay between the two components, i.e., positioning



and dipole moment orientation of the particles. For a fixed geometry, only certain
dipole moment orientations lead to stable configurations. The above mentioned two
components can be treated as independent variables, while dependent variable is the
cohesive energy emerging from the dipole-dipole interactions. Accordingly, geome-
try is kept fixed, while dipole moment orientation is varied and the dependence of
cohesive energy on dipole moment orientation is determined. In an analogous way;,
dipole moment orientation is kept fixed, while geometry is varied, i.e., the radius
of confining cylinder, leading to the dependence of cohesive energy on geometry.
Besides the cohesive energy, some other dependent variables are considered, like
the total polarization of a dipolar configuration. Except from the theoretical rele-
vance, dipolar tubes and helices represent model systems which might be useful for
other scientific areas. Modeling of dipolar tubes and helices might provide better
understanding of certain biological structures (for example, microtubules) or macro-
molecules (protein folding is dominated by electric dipole-dipole interactions). Due
to the mechanical flexibility of dipolar structures and possibilities of manipulating
them by external electric or magnetic fields, they might be useful in the synthesis
of electronic devices.

In the second part of this doctoral thesis, which is dedicated to ionic systems, a
molecular dynamics (M D) based modeling approach for simulating mesoscopic phe-
nomena related to lubrication with ionic liquid (L) lubricants has been developed.
In that approach, geometry of the system allows a variable confinement gap between
solid plates and consequently a varying amount of lubricant in the gap. A coarse
grain M D description of: (i) IL lubricant, which can expand into lateral reservoirs,
and (i) FCC (111) structured solid plates has been employed. Namely, two models
of IL: (a) the salt-like model (SM) and (b) the tailed model (T'M) have been imple-
mented. In case of (a) SM model, I L consists of spherical cations and anions, while
in case of (b) T'M model, a neutral spherical tail is attached to the cation via an
elastic spring. Three relevant T'M models have been examined by varying the size
of neutral tail. The effects of confinement on flow and lubrication properties of SM
and T'M ionic liquids, that were subjected to dynamic regimes of cyclic loading and

shearing, have been investigated. The impact of confinement on ionic arrangement



and mechanical response of SM and T'M ionic liquids has been studied in detail and
compared to bulk properties. In case of T'M models the influence of the molecular
geometry of the cation on the response of L to confinement and imposed mechan-
ical deformations (normal load, cyclic loading and shearing) has been investigated.
Although it is simple, 7'M model recovers a wide range of structures seen in bulk
ILs: simple cubic lattice for small tails, liquid-like state for symmetric cation-tail
dimers, and layering for large tails. The dependence of normal force on interplate
gap can be related to ionic layering inside the gap. In investigated T'M models of
1L, specific friction is low and friction force decreases with neutral tail size. As a
concluding remark, it has been found that the size of neutral tail from cation-tail
dimer has a huge impact on structure and tribological behaviour of confined ionic
liquids.

Ionic liquids are composed of large asymmetric and irregularly shaped organic
cations and anions. Irregularity effectively prevents low-temperature ordering and
crystallization of I Ls, hence they are usually in the melted or glassy state. Physical
properties of I Ls: negligible vapour pressure, high-temperature stability, high ionic
conductivity, chemical stability and possibility of external control, make them rele-
vant to various applications. Modeling of ionic liquids is an interesting problem from
the theoretical point of view due to their ordering and possibility of manipulating
them via external electric fields. On the other side, ionic liquids are high quality
lubricants used for friction reduction and wear prevention and modeling of I Ls gives
an insight about their industrial applications.

Keywords: dipolar hard spheres, tubes, helices, Lekner summation, ionic lig-

uids, tribological behaviour, molecular dynamics

Scientific field: Physics

Research area: Condensed matter physics

UDC number: 538.9



MopenoBame MOHAINIakhA TPOCTOPHO OrPAHUYIEHUX
JIATIOJTHAX M JOHCKHUX CHCTEMA

Caxerak

Y 0BOj JOKTOPCKO] T€3W MOJEJOBAHUW Cy W HWCIHATAHW ITPOCTOPHO OTPpAHUYEHU
JIUTIOJTHU W JOHCKW CUCTEeMHU, TAYHUje TUTIOIHE TyOe M XeJUKCH CACTAB/BEHH OJT TUTIOJI-
HUX 9BpCTHX chepa U JOHCKEe TeIHOCTH. 3ajeHUYKO 33 OBE CHCTEME je UUEbeHUIA
Jla Cy UM CTPYKTypa M MOHAIIAe MPEeTeKHO ojpeheHn 1yroJoMeTHUM UHTEPAKITU-
jama, JTUTOJ-IATIOTHOM HHTEPAKIHjOM YV CAydajy JAWIOJHUX CHCTeMa, OJHOCHO Ky-
JIOHOBOM MHTEPAKIUJOM Yy CJydajy joHCKuX cucrema. O uiMKa HAIJIAMIEHOI CTPYK-
TypHOr ypehuBama popMupannx KoHMUTyparuja 1 MOTYNHOCT MaHHUITY IAIIjE FTbIMa
IIPEKO €KCTePHO MPUMEhEeHIX [0Jba (MArHETHO /eJIEKTPUIHO TOJbE Y CJYUajy MarHeT-
HUX /€JIeKTPUIHAX JTUMOJA, OJHOCHO JeKTPUIHO MOJbe Y CJydajy joHa) MpHBJIAde
HaXKIby ca acrnekTa (hpu3uKe KOHJIEH30BAHE MaTepuje.

IIpBu seo oBe JOKTOPCKe Te3e, KOju je mocBeheH JUIIOJHUM CUCTEMUMA, OaBH
ce HCTPayKUBAEM CTPYKTYDe W KOXe3WOHe eHepruje y TybaMa M XeJHKCHMa KOju
Cy cacTaB/beHU O/I JIMIOJHUX YBpcTHX cdepa. /lobujena je KOMILIEKCHA 3aBUCHOCT
KOXe3WOHe eHepTHje 07 MOBPITUHCKE TYCTHHE NMaKoBaha W OpPHUjeHTAIHje TUTOJTHUX
MOMeHaTa. ¥ C¢JIy4ajy jeIJHOCTPYKO HAMOTAHUX XeJIMKCa, HajHU2Ka KOXe3MOHA eH-
epruja MOCTUTHYTA je TPU HajBUIIO] MOBPIIUHCKO] TYCTHHHU MaKoBama. llopem Tora,
J00ujena je 3aHUM/bUBa HEMOHOTOHA 3aBUCHOCT KOXE3UOHE eHePIHje O/ IOBPIITUHCKE
I'YCTUHE MAaKOBamba. ¥ CAy4ajy BUIIECTPYKO HAMOTAHUX XEJIUKCA OTKPUBEHA je HOBA
daza, Koja Mokazyje MpUMeTHO HUXKY KOXe3uOoHY eHeprujy. OBa dhasza HazBaHa je /2
Tyba, a cacroju ce oJf HUTU Koje upare ocy koHdunupajyher nuiunjipa, o3HadeHy
Ka0 2z 0Ca, y CMHUCIY TPOCTOPHE W OPHjeHTAllNje IUIOJTHIX MOMEHATa. 3amlpaBo, y
caydajy ZZ Tybda aunoJiHe 4Bpere cdepe cy ypehene y JTJOKaJIHO TPOYTraoHy peleTky,
ca TYCTO MaKOBAHUM HUTUMa KOje Cy MapaJieHe ca 2 OCOM.

Y okBHPY OBe JOKTOPCKE Te3e pasMaTpaHe Cy JAUNOJIHE KOHQUIYypaluje Hpu
YCJOBY MUJIUHJIPUTHOT TPOCTOPHOT KOH(DUHUPAIHA, TITO 3HAYUM J1a CY JUTIOJHE chepe

nocTapsbete Ha KoHduHupajyhu nuiuuagap. [IpBo nmurame Koje ce mocras/ba jecTe



Koje cy Mmoryhe kondwurypamnuje, ca 003uUpoM Jia LOCTOjU IIPEIINTAE JIBE KOM-
NOHEHTE, MPOCTOPHOT MO3WIMOHUPAha W OPUjeHTAIHje JIUIMOIHAX MOMEHATa, 49eC-
TUIA. 3a PUKCHPAHY I'eOMeTpHU]y, caMo ojpehene opujenTaruje JUIOJIHAX MOMEHATA
JIOBoJIe 0 cTabuIHuX KoHdurypamnuja. Ilomenyre a1Be KOMIOHEHTE MOTY Ce TPETH-
paTu Kao HEe3aBHUCHE NMPOMEH/bUBE, & 3aBHUCHA IMPOMEH/bUBA j€ KOXEe3MOHA €HEpruja
ycae AUToJI-AUNONHUX WHTepakimja. [Ipema Tome, reomerpuja je pukcupaHa, a
JIUIIOJIHA, OPHjeHTallija ce Bapupa M ojpelhyje ce 3aBHCHOCT KOXE3HOHE €HEepPrHje O/
opujeHTaluje JAUIOoJHIX MOMeHara. Ha anajoran Ha4vuH, JUIIOJIHA OpUjeHTAllA]a je
¢dukcupana, a reoMeTpuja ce Bapupa, peruMo pajujyc Koudunupajyher muannipa,
IITO JOBOJM JIO 3aBHCHOCTH KOXE3WOHe eHepruje o reomerpuje. OcuM KOXe3HOHE
eHepruje, pasMarpaHe cy M Jpyre 3aBHCHE IIPOMEHJbUBE, KAO IITO je YKYIHa I0-
Jlapu3anmja jaumnosHe koudurypamuje. Ilopes Teopujckor 3nadaja, AMIOJIHE TyOe
U XeJIUKCH TIPEJICTABBAJY MOJeAHE cucmeme KOju MOTY OUTH KOPUCHH Y JIPYTHM
HAy4YHHM objactuMa. MojenoBame JUIOIHUX Ty0a H XeJIUKCA MOYKe HPYKHTH
bosbe pasymesame oxpehenux Guosiomkux crpykrypa (Ha upumep, MHKpoTyOyJia)
WK MaKpPOMOJIEKy/Ia (CaBhjarbe MPOTeHHA TOMHHAHTHO je OJpeeHO eJeKTpUIHIM
JIATOJ-TUIIOTHAM HHTepaKIujama). Ycien MexaHudke (hJeKCHOUIHOCTH JIUITOJTHIX
CTPYKTypa u MOTYhHOCTH 3a MAHUIY/IAIU]Y HAMA IPEKO eKCTEePHUX MArHeTHUX WU
eJeKTPUIHUX T0/ba, JaTe CTPYKTyPe MOry ONTH KOPHCHE y CHHTE3H €JIEKTPOHCKUX
ypebaja.

Y IpyroM Jeny oBe HOKTODPCKe Te3e, KOjU je MocBelieH jJOHCKUM CHCTEMUMA,
pa3BUjeH je HPUCTYI y MOjesoBaiby Ha Oasu Mosekysaapue junamuke (M D) 3a
CUMY/THDAFHe ME30CKOICKUX (DEHOMEHa, TIOBe3aHUX Ca MOIMA3MBAKEM jOHCKUM TeU-
HOCTHUMA. Y TOM IPHUCTYILY, TeOMeTpHuja cucTeMa oMoryhasa HpoMeH/bUBU KOH(DUHE-
pajyhu npoien u3Mehy UBPCTHX IJIOYA M MOCTIEIUIHO ITPOMEH/bUBY KOJIUUHUHY IOJI-
MasuBada y nporemy. IIpumermen je omuc Ha Gasu M D ykpynmwaBama ckana: (i)
JOHCKe TeIHOCTH Kao MO/ IMAa3UBaYa KOjU Ce MOKe IMPOITUPUTH Y JIaTepasHe pe3eBoape
u (ii) FCC (111) cTpyKTypUpaHuX YBPCTHX II09a. HawmMe, MMILUIEMEHTHDAHA CY
JBa Moziesta joucke tednocru: (a) mogen Ha 6asu comm (SM) u (b) momen ca pe-
nom (T'M). YV cayuajy (a) SM momena joHCKa TEIHOCT ce CACTOju 0f cdepmd-

HUX KATHOHA W aHHOHA, JIOK je y cayuajy (b) TM mojena meyrpanuu cheprdHu



pell Be3aH 3a KaTUOH ejlacTu4HoM oupyrom. Hcuwrana cy tpu peseBantna 1T'M
MOJIesIa BapuparbeM BeJndune HeyTpaaHor pena. Vcerpaxenu cy edekTu KOHDUHE-
pama Ha NpPOTHUNake U noaMasmBadke ocobune SM u T'M joHCKHX TEYHOCTH KOje
Cy U3J0KeHe TUHAMUYKHM PeKUMHUMa MUKJINIHOT TMYHemha W CMUIAma. Y TUMA)
KOoH(UHUpama Ha ypehuBame jona u Ha Mexanndkn on3uB SM u T'M joHCKHX Ted-
HOCTHU JIeTa/bHO je TpoydeH u ynopehen ca ocobunama JaTuxX jJOHCKUX TEYHOCTH Yy
banky. ¥ caydajy T'M mMojena UCTIUTAH je YTUIA] MOJEKYJIapHe TeOMeTPpHje KATHOHA
HA OJI3UB JOHCKE TEYHOCTH IIPU KOH(PUHUPALY U IIPU 33JJaTUM MeXaHU4IKuM Jiepop-
Manujama (HOpMaJiHa CHuJa, NUKJINYHO Mymeme n cMmurame). lako jegHocraBa,
TM wmomen peKOHCTPYHINE TIMPOKU OICer CTPYKTYypa BUHEHHUX KOJ OAJK JOHCKUX
TEYHOCTHU: jeTHOCTABHA KyOWUYHA pelleTKa 3a MaJje PernoBe, TEYHO CTAme 33 CUMeT-
puYHEe KATHOH-PEN JuMepe U ypehuBame y CJI0jeBe 3a BeJIMKE PernoBe. 3aBUCHOCT
HOpMAJTHE CUJIe O] BeJIMYWHE Mpolena u3Mehy 4BpCcTHX MI049a MOYKe Ce MOBE3aTH ca
ypehuBameM joHA y cj0ojeBe yHYTap mporena. Y ucnutanuM 1'M Mopennva joHCKe
TEYHOCTH, ClielM(PUYHO TPEbE je MaJIO, & CUJIA TPeHha Olla/la ca [I0PACTOM BeJIUYUHE
HeyTpa/anor perna. Kao 3ak/bydHa HAIIOMEHA MOZKE C€ HABECTH JIa je YCTAHOBJ/HEHO Jia
BeJIMUMHA HEYTPAJHOT Pella U3 KAaTHOH-Pell JIIMepa UMa BeJUKH YTHIA] Ha CTPYK-
TYpy ¥ TPUOOJONIKO MOHAIIAe KOHMUHUPAHUX JOHCKUX TEIHOCTH.

JOHCKE TEeIHOCTH Cy CACTAB/HEHE OJ BEJIMKUX ACUMETPUYHUX OPTaHCKUX KATHOHA
U aHuoHa HenpapwmwiIHOr objimKa. HenpaBuianoct obanka crnpedasa ypehuBame Ha
HUCKUM TeMIlepaTypaMa W KPUCTAJH3ANM]Y JOHCKUX TETHOCTH, TAKO JIa Cy jOHCKe
TEYHOCTH YIJIABHOM Y TOILJbEHOM MJIM CTAKJIACTOM cTamby. Pusnyuke ocobuHe JOHCKHUX
TEYHOCTHU: 3aHEMap/bUB MPUTUCAK TTape, BUCOKOTEMIIEPATypPHA CTAOMIHOCT, BHCOKA
JOHCKA TPOBOJBUBOCT, XeMUjCKa CTAOMITHOCT H MOTYNHOCT eKCTepHe KOHTPOJIe YIHe
UX peJIeBaHTHHM 3a pa3judnTe npuMene. MojgenoBame jOHCKAX TE€YHOCTH je WH-
TepecaHTaH MpobJieM ca TEOPHUjCKOr CTAHOBUIITA YCJeJ CTPYKTYpHOr ypehuBama u
MOTYRHOCTY 32 MaHUIYJIAIN]Y JOHCKAM T€YHOCTUMA TPEKO eKCTEPHUX €JTIeKTPUIHUX
nosba. (Ca JIpyre cTpaHe, jOHCKe TEYHOCTH Cy BHCOKO KBAJUTETHU MOAMAZUBATM
KOjHU Ce KOPUCTE 3a CMalbethe TPeHha U ClipedaBaibe xadara, a MOJIEeJIOBabe JOHCKUX

TEYHOCTH Jaje YBUJ O BbUXOBUM WHIYCTPHjCKAM TpUMEHaMA.
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Chapter 1 Introduction

1.1 General overview

In this doctoral thesis there are two research topics involving systems with long-
range interactions, namely structures composed of dipolar hard spheres and ionic
liquids. Investigation of dipolar hard spheres is directed towards exploring the co-
hesive energy-packing relations, while investigation of ionic liquids is dedicated to
determining the structure, flow properties and tribological behaviour of confined
ionic liquids. In a higher instance the topics share two important aspects which
unify them: long-range interactions and accentuated self-assembly behaviour. Both
dipole-dipole interaction in dipolar systems and Coulombic interaction in ionic sys-
tems are long-ranged. An interaction V () depending on the distance between the
interacting particles r as V (1) oc 7P is considered to be long-range interaction if
it meets the condition: p < ng, where ngq is the dimensionality of the system. In
case of the dipole-dipole interaction, which has the same functional form (up to a
constant) for magnetic and electric dipoles, it stands Vgq oc =3, while in case of
Coulombic interaction Ve, oc 7. In case of a 3D system, i.e., nq = 3, both of the
mentioned interactions meet the criterion of being long-range interactions. Another
mutual feature of both of those systems is accentuated self-assembly under the con-
ditions of spatial confinement. Dipolar hard spheres self-assemble into tubes and
helices on a confining cylinder. It is possible to obtain ordering of ionic liquid into
regular cationic-anionic layers, starting from a random arrangement of ions, in case
that ionic liquid is placed into a gap between two solid surfaces. A common conse-
quence of long-range interactions is ordering of the particles on length scales which

are much longer than the size of the particles itself. One might expect that the na-
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ture of long-range interactions combined with the conditions of spatial confinement
should lead to the emerging of ordered and stable structures. The systems that have
been investigated in this thesis are 3D and they are also infinite: (i) tubular and
helical dipolar structures are 1D infinite and periodic, (#7) ionic liquid is 2D infinite.
Besides the self-assembly under conditions of spatial confinement, mutual for both

systems is rich behaviour in terms of state and phase transitions.

1.2 Confined dipolar systems

Particles with permanent dipole moment are known for outstanding self-assembly
properties [1-3]. Self-assembly of hard dipolar spheres is an active research topic
dedicated to the investigation of the mechanisms by which ordered dipolar struc-
tures form. To be more precise, we are focused on the self-assembly of spatially
confined dipolar systems. Spatial confinement imposes formation of specific struc-
tures, e.g., cylindrical confinement imposes self-assembly of particles into tubular
and helical structures. Interaction of each pair of dipolar particles is the dipole-
dipole interaction, which is described by the same term (up to a constant) in case
of both magnetic and electric dipoles. Therefore, we consider structures composed
of dipolar hard spheres in a general case. Depending on given examples in nature
or technology, we compare considered structures with building elements composed
of particles with permanent magnetic or electric dipole moment. Self-assembly of
dipolar particles and a large number of different ways for their application have al-
ways been attracting interest due to a spontaneous transition from disordered into
ordered state. This topic is attractive because it is relevant from theoretical point of
view since dipole-dipole interaction is a long-range and anisotropic interaction which
leads to the complexity of structures formed via dipole-dipole interaction. Besides
that, examples of dipolar structures in nature and technology are numerous, espe-
cially in biology and some areas of nanotechnology.

Generally speaking from the aspects of geometry and without the need for the
presence of dipole-dipole interaction in given examples, tubular and helical struc-

tures are basic structural elements in many biological systems. Those structures are
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important building blocks of cells. Illustrative examples include bacterial flagella [4]
and microtubules |5, 6]. Additional examples of tubular and helical structures can be
found in various materials with specific building blocks, which can be: coiled carbon
nanotubes [7], DNA molecule [8], nanoparticles [9], amphiphilic molecules [10-12].
In biology there is an example of magnetotactic bacteria whose dynamics is espe-
cially sensitive under external magnetic field, so that microstructures formed by
those bacteria can be manipulated via application of external magnetic field [13].

Another example of the importance of dipole-dipole interaction in biology is the
formation of proteins. All processes in protein formation, i.e., folding of individual
aminoacids into a secondary structure and later-on formation of tertiary and qua-
ternary structures, depend on electric dipole-dipole interactions [14, 15|. Formation
of erythrocytes, which have a vital importance for human health, is realized through
several steps. Each of those steps includes electric dipole-dipole interactions. Any
kind of mutation which harms the dipole-dipole interaction suppresses proper for-
mation of erythrocytes, which as a response disables their capability of transporting
oxygen in the blood system.

In nanotechnology self-assembly of binary mixtures of magnetic nanoparticles
can lead to the synthesis of very strong magnets [16]. Interaction between magnetic
planar layers can enable formation of 3D structures with a great potential of applica-
tions in microfabrication of electronic devices [17]. Ground states of microstructures
in ferofluid monolayers, in which the interaction between magnetic particles is the
dipole-dipole interaction, have been studied in detail [18].

In the following text an overview of the accomplishments in experimental and
numerical studies of helical structures’ formation is given. Self-assembly of cubic
magnetic nanoparticles [19] and colloidal magnetic clusters [20] into helical struc-
tures has been accomplished experimentally, without the need for the pre-existing
templates. Another result following this research line tells that hard spherical par-
ticles confined inside narrow cylinders spontaneously group themselves into helical
structures. This has been achieved both via numerical simulations [21, 22| and
experimentally [23]. Hard spheres with a permanent dipole moment can be uti-

lized as a model for describing more complex helical molecular structures [24] and
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microtubules [25, 26].

The overview of the topic related to the self-assembly of dipolar particles should
mention the pioneering theoretical work of Jacobs and Beans [27] followed by the
work of De Gennes and Pincus [28]. Those works have provided the insight into
the microstructure of self-assembled spatially free spherical dipoles. More recently,
ground states of self-assembled magnetic structures have been thoroughly investi-
gated via numerical simulations [29]. The results of that paper have shown that for
the number of particles N > 14 ground state is obtained via ring stacking into tubes.
In the experimental work [30] mechanical properties of the chains, rings and tubes
composed of ferromagnetic hard spheres of macroscopic dimensions (e.g., diameter
of particles is 6 mm) have been investigated. Besides that, the authors of that
work have provided an illustrative example which shows a spontaneous wrapping
of a straight chain into a tube. A general scientific problem of understanding the
mechanisms via which the building blocks, i.e. dipolar hard spheres, self-assemble
into structures and gain functionality is demanding and has a wide scientific impor-
tance [31-34].

In this thesis one of the two directions of research is dedicated to the modeling of
confined dipolar systems. By confinement we assume cylindrical confinement, i.e.,
dipolar hard spheres are constrained to compose a configuration on top of an imag-
ined cylinder, at a cylinder’s prescribed radius. Following this problem definition,
we systematically investigate long tubes and helices. The tubes are formed via ring
stacking, i.e., by periodical repeating of an unit cell containing a ring along an axis.
The helices are formed by rolling of one or multiple threads on a cylindrical confine-
ment surface. In terms of geometry, rolling is very much like 1D crystal formation,
which is conducted by replicating a patch of dipolar spheres on a cylindrical con-
finement surface along the helix backbone. There is an endless number of different
helical configurations, but we point out that the densely packed structures exist at
well-defined points in parameter space.

In Reference [35], very much in analogy to carbon nanotubes (CNT's), it was
shown that densely packed helices are defined by two numbers: lattice patch dimen-

sions ny,ng. The lattice patch dimension n; is an integer which counts the number
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of spheres in one full turn around the confining cylinder and it is directly related to
the radius of a helix. An increase of n; corresponds to the increase of the radius of
a helix. On the other side, the lattice patch dimension n, is an integer which counts
the number of threads building up the helix and equivalently it counts the number of
spheres along the confining cylinder’s surface between two consecutive helix turns.
Realizing the fact that helix formation is dictated by those two preferential direc-
tions, i.e., turns around the cylinder’s surface (related to n;) and threads along the
cylinder’s surface (related to ny), we have decided to assign to the particles dipole
moments following those two preferential directions. We have defined d; and d,
dipole moment orientations. In both of them the dipole moment of a certain sphere
points to its consecutive sphere, where in the first case consecutive spheres com-
pose turns around the confining cylinder, while in the second case they follow the
threads along the cylinder’s surface. Besides those two dipole moment orientations
assigned according to the geometrical features of helices, we have performed energy
minimization in order to obtain dipole moment orientation which corresponds to
the ground state and that type of dipole moment orientation is called ground state
dipole moment orientation. We show that pairs (ni,ns) represent the two numbers
of threads which can generate geometrically the same densely packed helices, how-
ever those helices are energetically completely different depending on the type of
their dipole moment orientation. We should mention that densely packed tubes are
basically sub-classes of helices (similar to armchair and zig-zag C'NT's) for special

cases of the values of lattice patch dimensions nq, ns.

1.2.1 Outline of the research on cylindrically confined dipolar

systems

The goal of the study of confined dipolar systems, i.e., dipolar tubes and helices,
is to address the intimate link between the microstructure and cohesive energy. In
order to do so, it was necessary to precisely define the geometry, establish dipole
moment orientations and appropriately calculate cohesive energy. The research deal-

ing with confined dipolar systems (except for the parts related to introduction and
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conclusions) is placed in the chapter Confined dipolar systems, which consists of five
sections. In the section Geometry of helices and tubes composed of hard spheres the
geometry is explained in details. Next, the dipolar interaction model is introduced
and a link between the dipole distribution and the microstructure is established in
the section Dipole moments. Speaking in terms of cohesive energy, since the dipolar
hard spheres interact via two interaction potentials: potential of hard spheres and
dipole-dipole interaction potential, an appropriate method for summing the dipole-
dipole interactions should be implemented. Once that task is realized, an efficient
energy minimization method for determining the ground state of dipolar structures
should be introduced. In the section Methods the Lekner-type method for summing
the dipole-dipole interactions which we have implemented for calculating the cohe-
sive energy of considered dipolar structures is presented. Besides that, the method
for obtaining the ground state dipole moment orientation of a given dipolar struc-
ture is presented as well. At that point, after the geometry, dipole moments and
method for treating long-range dipole-dipole interactions are established, it is pos-
sible to switch the focus to configuration-cohesive energy relations. Namely, in the
section Degeneracy in 2D triangular and square lattice and properties of tubes it is
shown that triangular and square lattices of dipolar hard spheres posses degeneracy
in terms of cohesive energy, which breaks-up with curvature in case of AA and AB
tubes. In the following section Cohesive energy-packing relations in dipolar helices
starting from the simplest case corresponding to a single-thread helix, the relation-
ship between the surface packing and the resulting macroscopic properties, such as
cohesive energy or overall polarization, is discussed. Then, the more complex situa-
tion of multi-thread helices with densely packed constitutive particles is addressed.
There, the degree of alignment (especially in the ground state) between dipole mo-
ment orientation and helix axis is analyzed. In the section Confined dipolar systems
of the chapter Conclusions, the conclusions and possible connections of the investi-
gated model system with some real systems, namely with biological microtubules,

are given.
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1.3 Motivation for the research of ionic liquids

Tribology is the name of a multidisciplinary scientific area which is related to the
phenomena of friction, lubrication and wear. In tribology, the knowledge and com-
petences of physics, chemistry and high performance computing are overlapped and
combined [36]. Term nanotribology is related to the specific branch of tribology
which studies the phenomena of friction, lubrication and wear at the nanoscale.
Scientific discipline of computational nanotribology has been well-established in the
last couple of decades [36, 37]. Powerful computational resources enable application
of the methods of computational nanotribology in the cases of increasing complexity.

There are numerous systems which are of interest in the field of computational
nanotribology, however we have focused on ionic liquids. They are a promising
candidate for the applications as a high quality lubricant, especially in automotive
industry. Bearing that in mind, our investigation in the framework of this topic is
directed towards the understanding of physical properties of ionic liquids related to
the friction, lubrication and wear phenomena. After gaining a relevant expertise, we
might realize the potential of using ionic liquids as a lubricant in automotive indus-
try. Let us start the considerations with this, in a certain way surprising fact, that
approximately one-third of the fuel energy in a passenger car is consumed by fric-
tion [38]. Therefore, understanding of the lubrication mechanisms in an automotive
vehicle’s engine is highly important. Numerical simulations at the molecular scale
can provide insights which are necessary for understanding the mechanisms govern-
ing the system’s behaviour, such as structural changes in the lubricant layers during
shearing and normal load application, as well as the interaction between the lubri-
cant and solid surfaces. In recent studies of the nanoscopic friction phenomenon,
based on the Molecular Dynamics (M D) method, ionic liquids are considered as a
lubricant [39]. The width of lubricating films of just a few molecular layers is relevant
for suppressing wear and achieving low friction [40-43]. In 2001, for the first time
it was published that ionic liquids have a great potential as lubricants. Since then,
they attract attention in the field of tribology due to their remarkable characteris-

tics relevant for lubrication and wear prevention, when compared to conventional
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lubricating oils which are generally used. The number of publications dealing with
ionic liquids is constantly increasing, in both forms of journal articles and industrial
patents. Therefore, there is a wide interest for this topic from both fundamental
and industrial aspects [44].

In industrial applications, there are considerations of using ionic liquids as a neat
lubricant and as an additive [45-47]|. Significant improvements in friction and wear
reduction have been achieved experimentally [46]. Namely, in Reference [46] the
authors have achieved coefficient of friction reduction for 60% and wear reduction
for three orders of magnitude. They have added and mixed certain ionic liquids with
synthetic lubricating oils.

Understanding and description of nanoscopic friction in ionic liquids, as well as
their structure under imposed conditions, represents a challenging scientific problem
and so far there have been just a couple of studies in this direction, e.g., Refer-
ences |48, 49]. Detailed studies of ILs at the nanoscale using the methods of com-
putational physics provide a wider perspective as compared to experimental studies
where the investigation is restricted to certain [Ls which posses certain values of
relevant physical parameters. On the other side, in simulations I Ls are considered
in a generic way and it is possible to explore a wide range of parameter values.
Practically, it means that simulations enable the design of favourable characteristics
of I'Ls, and later—on it is possible to experimentally synthesize certain ILs, based
on the simulated ones.

In this thesis one of the two directions of research is dedicated to the modeling
of confined ionic systems, namely ionic liquids (I Ls). In order to better understand
the structure and behaviour of confined ionic liquids, we investigate the same ionic
liquids in the bulk state, as well. We have started from the basis, by implementing
and studying the simplest /L model which includes a positively charged spherical
cation and a negatively charged spherical anion, i.e., SM (salt-like model). This
was followed by the implementation and investigation of a more realistic /L model
which includes a positively charged spherical head connected by an elastic spring
with a neutral spherical tail and a negatively charged spherical anion, i.e., TM

(tailed model). Our interest in modeling ionic liquids comes from its scientific im-
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portance. However, we bear in mind potential applications of ILs as high quality
lubricants, hence we guide our research towards exploring /L lubricating properties.
Simulation setup with two solid plates between which IL is confined, is designed
with the aspirations of probing IL lubricating abilities. To enclose this exposé, in
this section we provide general introduction into ionic liquids, which is followed by
the introduction into SM and T'M model based studies, respectively.

Ionic liquids are two-component systems composed of large asymmetric and ir-
regularly shaped organic cations and anions. The feature of irregularity is important
as it is effectively preventing low-temperature ordering and crystallization. There-
fore, ILs are usually in the melted or glassy state. Physical properties of ILs like
negligible vapour pressure, high-temperature stability, high ionic conductivity and
also a great variety of I Ls and their mixtures highlight them as potentially relevant
to lubrication [44, 50]. In addition, their properties can be modified by an applied
voltage using confining charged surfaces in order to build—up an electric field across
the nanoscale film. The applied potential can affect the structure of IL layers and
lead to externally controllable lubricating properties [49, 51, 52].

A large number of variations in I L composition is possible, estimated at the or-
der of magnitude of 10'® different I Ls [53]. From their variety stems the possibility
of tuning their physicochemical properties which can affect lubrication such as vis-
cosity, polarity, surface reactivity by varying their atomic composition, as well as the
cation-anion combination. Hence, it would be advantageous if we could deduce the
general relations between the molecular structure and the anti-wear and lubrication
properties of ILs.

Previous work employing Lennard-Jones fluids has provided insights into the
complete dynamic diagram of confined liquids, including wall slip, shear banding and
solid friction. In terms of fluid complexity these studies have mainly employed mono-
molecular systems, and only a few authors have considered mixtures of molecules [54,
55]. In addition to inherently being a mixture of cation and anion molecules, ILs
involve long-range Coulombic interactions inducing long-range order on far greater
scales than the IL itself [39, 43, 56]. Detailed investigation of ILs as lubricants

at the nanoscale is therefore essential for exploring the potentials of implementing
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them in lubrication systems.

Our specific goal, related to industrial applications of I L lubricants, is to achieve
a representation of the tribological system which is relevant to automotive power-
train applications. As approximately 45% of the engine friction losses occur in the
piston assembly [38], our initial target is to mimic the conditions observed in the
piston ring—cylinder liner contact, in terms of pressure, temperature and shear rates.
In addition, in order to be able to achieve length— and time— scales that can be of
relevance to the real-life systems, it is necessary to apply appropriate simulation

methodologies, such as the use of coarse grain molecular dynamics [57-60].

1.3.1 Salt model of ionic liquid

The focus of our study employing the SM ionic liquid, which contains salt-like
spherical cations and anions, is on investigating lubricating ability and flow proper-
ties of I Ls. Regarding the ability of ionic liquids to dynamically penetrate between
surfaces, i.e. wetting, sometimes it is considered that a low contact angle of the
lubricant indicates the affinity between the liquid and the surface, since the liquid is
more likely to stay in the area in which it was initially placed. It is also expected that
a lubricant is going to penetrate into small-gap components. However, the effect of
wettability of the ionic liquids is not understood well. The wetting of plate surfaces
such as mica is known to be partial by at least some ILs [61, 62]. Lubrication
necessarily involves intimate molecular features of the liquid—solid plate interface,
related with those mechanisms determining the ionic liquid’s wetting of the plate.
When ILs are used as lubricants and, as such, confined between solid plates, their
ions are ordered into layers and adsorbed onto surfaces [63]. These adsorption layers
can reduce friction and wear, particularly in the case of boundary lubrication [63].
Recent studies of IL lubricants [49, 51, 52, 64| have shown that if the molecules
interact via non-bonded potentials (Lennard-Jones and Coulombic potential), this
can capture all main physical attributes of the I L-lubricated nanotribological sys-
tem. Therefore, molecular—scale simulations can provide important insights which
are necessary for understanding the differences in flow behaviour between bulk and

confined liquid lubricants and the mechanisms behind, such as boundary layers for-

10



1. Introduction

mation in case of shearing and/or applied normal load.

We utilize our coarse grain M D simulation setup consisting of two solid plates
and an ionic liquid lubricant placed between them [64]. The motivation for the
chosen values of relevant model parameters (i.e. velocities, pressures, temperatures,
time duration of simulations) comes from potential applications of I Ls as lubricants
in automotive industry. Under typical operation of internal combustion engines,
the conditions inside the combustion chamber vary significantly. Temperature can
range from 300 K to the values higher than 2000 K, while pressure ranges from
atmospheric to the values higher than 10 MPa [38|. The piston reciprocates with
a sinusoidal velocity variation with speeds varying from zero to over 20 m/s, with
a typical velocity being around 1 m/s. The time required for one revolution of the
engine is of the order of 1072 s, while the total distance travelled by the piston over
this period is of the order of 0.2 m. Such scales are typically modeled using contin-
uum mechanics simulations. However, such simulations cannot provide the physical
insight which is necessary for understanding the molecule-dependent processes that
affect the tribological phenomena. Therefore, we have implemented a coarse grain
M D simulation setup which can, inter alia, provide useful insights into lubrication
mechanisms of piston ring—cylinder liner contact in automotive engines. Our sim-
ulation setup consists of two solid plates and an IL placed between them. It also
includes lateral reservoirs into which the /L can dynamically expand.

The determination and design of new applicable lubricants require understanding
of both general and specific behaviour of liquids when exposed to nanoscale confine-
ment, shearing and normal load. In accordance with those facts, our focus is on
determining general features of I Ls as nanoscale lubricants. Hence, we have chosen
the model of a generic I L which is simple in order to provide a wide perspective of

relevant mechanisms governing the /L lubrication principles.

1.3.2 Tailed model of ionic liquid

Since 2001., when ionic liquids were first considered for lubrication applications [65],
there has been a large number of experimental studies in that direction. It has been

observed that the alkyl chain length of the cations affects the IL viscosity [44],
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melting point [44] and pressure-viscosity coefficients [66]. Related specifically to
lubrication, References [53, 67| explored the impact of cationic alkyl chain’s length on
the tribological properties of I Ls. ILs considered in those references have the same
cations but different anions: symmetric hexafluorophosphate [PFg]~ and asymmetric
bis(trifluoromethylsulfonyl) imide [T"f,N]™, respectively. Still, while the authors of
Reference [67] observed that the coefficient of friction (COF') decreases from 0.25 to
0.15 with the increase of alkyl chain length nc = 2 to 12 (n¢ is the number of carbon
atoms), the authors of Reference [53] observed that the COF increases from 0.025
to 0.1. The IL's wetting properties are also sensitive to its molecular geometry. ILs
change wetting behaviour depending on the anion size [61, 62, 68]: from the absence
of wetting to partial or complete wetting. A well-studied IL [BMIM]" [PFs]~
exhibits full wetting at the interface with mica substrates [62, 68]. On contrary,
[BMIM]" [TFSI]” shows partial wetting on mica [61, 62]. In these examples, I Ls
have the same cation and different anions.

An important observation about the structure of confined ILs is their arrange-
ment into positively and negatively charged ionic layers and adsorption onto solid
surfaces [63, 69]. These ionic adsorption layers should reduce friction and prevent
wear, especially in the case of boundary lubrication [63|. The wear is reduced pri-
marily in two ways: via high load-carrying capability and self-healing of adsorbed
1L layers. Still, these two processes seem conflicting with each other since high load-
carrying capability requires strong adsorption of the lubricant to the surface while
self-healing requires high mobility [36]. Understanding the driving forces between
them requires relating the molecular structure and flow properties of confined IL.
In Reference [70] the authors have evaluated tribological properties of different ionic
liquids by pendulum and ball on disk tribo testers. They have considered ILs con-
sisting of imidazolium cations with different alkyl chain length and [T fo N]™ anion as
lubricants. Their main observation is that the increment of alkyl chain length can re-
duce friction and wear of sliding pairs in the elastohydrodynamic lubrication regime
(EHL) as a consequence of increased viscosity. Generally, the conclusion is that
longer alkyl chains lead to better tribological performance. Related to the impact of

alkyl chain length on the structure of I Ls, in Reference [71] the authors have experi-
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mentally obtained the formation of tail-to—tail bilayers of cations if their alkyl chain
length is large, in case of confinement between solid surfaces. Their observations
are in accordance with other experimental investigations of IL lubricants |72-74].
It is worth of mentioning that we have obtained similar configurations via numerical
simulations of I Ls confined between two solid plates, where tail-to—tail formation
in the middle of the interplate gap is visible.

The focus of our T'M model based study is on the systematic investigation of the
flow properties and lubrication mechanisms of ionic liquids modeled with a generic
coarse grain model which considers a variable shape of the cation. We investigate
the impact of cationic tail size on the structural and tribological properties of ILs
via M D simulations. Such an idea is meaningful since previous theoretical studies
have pointed out that confinement modifies the behaviour of [Ls and despite the
good wetting nature, the slip is present at the plates [43]. Coulombic interactions
in ILs induce long-range ordering [39, 43, 56|, which in turn can influence their
lubrication response. Previously, coarse grain M D simulations [40-42, 57-60] were

used to study thin lubricant films subjected to the shearing between solid plates.

1.3.3 Outline of the research on model ionic liquids

The research dealing with ionic systems (except for the parts related to introduction
and conclusions) is presented in chapter lonic liquids, which consists of four sections.
Let us present them briefly in the following text. A method of choice for studying
the structure and lubrication characteristics of ionic liquids at the nanoscale, in the
framework of this doctoral thesis, is Molecular Dynamics (M D) method. Accord-
ingly, in section Methods M D method and LAM M PS code for molecular dynamics
are introduced. This is followed by section Simulation setup and models of ionic
liquid which describes the SM and T'M models of ionic liquid in detail, as well as
the implemented M D simulation setup. The focus of Bulk ionic liquid section is first
on obtaining the relaxed structure and then on calculating the viscosity coefficient
of bulk SM and T'M ionic liquids. In the following Confined ionic liquid section,
static and dynamic behaviour of confined SM and T'M ionic liquids are presented

and discussed. This section also presents the results of confined IL's tribological
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behaviour. In chapter Conclusions, section Ionic liquids, conclusions and prospects
of future directions in the investigation of ILs from both, theoretical and industrial

aspects, are given.
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Chapter 2 Confined dipolar systems

2.1 Geometry of helices and tubes composed of hard spheres

2.1.1 Geometry of helices

2.1.1.1 Geometry of single-thread helices

In the framework of this study, helices are composed of hard spherical particles and
they are confined to a cylinder’s surface, i.e., the helices are formed by rolling threads
of hard spherical particles on the cylindrical surface of radius R, [75]. Geometrical
parameters that define a single helix are: the azimuthal angular shift I' between
the centers of two successive particles and the radius of the helix R = R, + d/2,
where d stands for the hard sphere diameter, see Figure 2.1. The radius R physically
represents the distance of the closest approach between cylinder axis and center of
the spherical particle. The Cartesian coordinates of particle ¢ in a single helix are

calculated as:

r; = Recos(il'),
y; = Rsin(il),

zi = 1Az, (2.1)

where i € Z and assuming that one particle is at (z,y, z) = (R,0,0). The distance
between the centers of each two successive particles along the helix axis is labelled
as Az, see Figure 2.1. When constructing a helix, its radius R and azimuthal
angular distance I' have to be chosen in a way which ensures non-overlapping of

hard spheres. The non-overlapping constraint is expressed for any two particles i, j
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Figure 2.1: Illustration of a single thread helix with relevant geometrical parameters
(R,T', Az) labelled. The black bold line connecting spherical particle centers repre-
sents backbone of the helix. In upper part of the figure, the azimuthal dipole moment
orientation « is defined in a local coordinate system with its origin corresponding

to the particle center. The 2’ axis is parallel to the cylinder axis.

as |7“_1J>| > d. Since the helix thread is connected everywhere, any two successive
particles are touching. Starting from Equation 2.1 we can obtain Az as a function
of other two variables, i.e., as a function of R and I'. Let us write down Equation 2.1
taking the values of the index i = 1,2: 21 = RcosI',y; = Rsinl',z; = Az;z9 =
Rcos (2I') ,yo = Rsin (21'), 29 = 2Az. Distance between the centers of those two

successive spheres is equal to the sphere diameter d, hence it stands:

d= \/(5’?2 — )2+ (o — )"+ (22— 21)% (2.2)
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Taking the relations: 2y — 27 = R(cos2l' —cosl'), yo — y; = R(sin2[' —sinT),

29 — 21 = Az, and replacing them into Equation 2.2 we obtain:
d* = R?(cos 2I' — cosT)” + R? (sin 2" — sin[")* + Az, (2.3)
From Equation 2.3 we obtain:

& = R? (0082 O — 2cos 2 cos T + cos® T + sin? 2T

—2sin20sin [ +sin®T) + Az (2.4)

Bearing in mind the relations of trigonometry: sin? z+cos? z = 1, sin 22 = 2sin z cos ,

2 2, we obtain:

cos 2z = cos? x — sin

d* = 2R* (1 — cosT) + A2%. (2.5)

Rearrangement of the previous equation leads to the relation expressing Az as a

function of R and I':

Az = /d? +2(cosT — 1)R2. (2.6)

Thereby, variables Az, R and I'" are not independent. Clearly, with decreasing Az
(i.e., increasing I') helices become more compact. Because of the connectivity, every
particle in a helix has at least two neighbors, i.e., the coordination number, n., is
always greater or equal than two (n. > 2). We define coordination number of a helix
as the number of neighbors each particle has, with the exception in case of particles
at helix ends, since they have less neighbors. The highest packing density of the
particles for prescribed helix radius R will be achieved when successive helix turns
touch. In this situation of touching turns, the coordination number n. can be either
four or six. Therefore, in general, n. € {2,4,6}, where the case n. = 2 corresponds
to non-touching turns. Based on the coordination number n., we can classify helices
as follows (see Figure 2.2(a)-(c)). Examples of helices with two neighbors n. = 2
and four neighbors n. = 4 at a prescribed cylindrical confinement, e.g., R/d = 1.78,

are sketched in Figure 2.2(a) and (b), respectively. For a number of well-defined
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(a) ng =2 b)yne=4 (c)ne==6 (d) AA tube (e) AB tube (f) Z tube

Figure 2.2: Illustration of different classes of helices, based on coordination number
ne = {2,4,6}. (a) Helix with non-touching turns (n. = 2). (b) Helix with touching
turns (n. = 4). (c) Densely packed helix (n. = 6). The other panels illustrate, the
so called, (d) AA, (e) AB, and (f) Z tubes. The tubes can be created by strict
axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for
Z tubes the unit ring has a ’zig-zag’ shape. The radii of AA and AB tubes are the
same R/d = 1.93.

radii, as discussed in details in the coming sections, densely packed helices with six
neighbors (n. = 6) can be formed, see Figure 2.2(c). In the following sections of
this chapter, we will also investigate stacked rings forming the so-called tubes, also

depicted in Figure 2.2(d)-(f).

2.1.1.2 Order parameters for single-thread helices

The surface packing fraction is defined as the ratio of the area S = 7d?/4 covered by

one particle and the area available for one particle Sy.i, in an unrolled configuration:

n= S/Savail- (27)

Since the distance along the z axis between successive particles is Az, by param-
eterization of the helix backbone we obtain for arc length covered by one particle

Li = [(TR)? + (Az)!]"/2. The available area per particle is Saa = (27/T)AzL;.
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Following the definition of the surface packing density we obtain:

d2
= ) 2.8
T SAR (28)
For comparison we are going also to derive packing fraction for the tubes:
e The surface packing fraction of AA tubes is given by:
NaA = Nringd/8RAA7 (29)

for an AA tube with Ny, particles per ring and the confinement radius
Raa/d =1/ [2sin (7/Nyng)], see Figure 2.2(d) for a microstructure with Ra/d =
1.93.

e Similarly, for AB tubes, the packing fraction is:
NAB = Nringd2/8RABAZAB7 (21())

with Rag = Raa. Here, the elevation Azag between two consecutive rings is:

Azpp = (d/2)\/2 + 2cos (7 /N) — cos? (1/N). (2.11)

e For Z tubes, the packing fraction is:
Nz = Niingd/8 Rz, (2.12)

with confinement radius Rz/d = v/3/ [4sin (7 /Nying)]-

To further characterize the helical microstructures, we introduce an additional
geometrical order parameter ¢ which is valid for n, = 4 and 6. This order parameter
connects an individual reference particle 0 located at 7 in the helix with its two
neighbors: its immediate successive particle 1 in the turn ((75; = ™ — 7) and a

neighboring particle 2 from the next turn (roe = ™ — 79), see Figure 2.3(a). The
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2. Confined dipolar systems

Figure 2.3: (a) Illustration of a helix made of hard spheres, helix backbone (solid
line), and the vectors connecting a reference particle 0 located at (x,y, z) = (R,0,0)
with its neighbours: an immediate successive particle 1 in the turn located at (7o)
and a neighbouring particle 2 from the next thread turn at (7o). (b) Overview
of the principal geometrical parameters of n. = 4,6 helices: elevation angle © and
azimuthal angular shifts T'; and T’y (see Equation 2.17). The corresponding elevation
distances of successive particles along helix axes Az 5 (see Equation 2.20) are also

given for two possible rolling of the same helix configuration.

angular coordination order parameter is conveniently defined as:

Il

E=2 (2.13)

In the two limiting cases, the angular coordination order parameter has values:
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Emin = 0, for a locally square lattices on a cylinder (e.g., AA tubes, check Fig-
ure 2.2(d)) and &nax = 1, for a locally triangular lattice (e.g. AB tubes, check
Figure 2.2(e)). In all other cases, the value of the angular coordination order pa-

rameter £ is between those two extreme values, i.e., 0 < & < 1.

2.1.1.3 Geometry of multi-thread helices

The densely packed helices (n. = 6) can be created, in analogy with carbon nan-
otubes, by rolling a ribbon of a triangular lattice on a cylinder surface [35]. We deal
with cylindrical geometry, infinite in one direction. We can generate these helical
structures by periodical reproduction of a curved patch (unit cell) along the helical
line with spanning vectors (@, dy). This curved unit cell has n; particles along the
ay direction and no particles in the dy direction. The values n; and ny can be seen
as the two possible widths of the ribbon generating the same helical structure.
Since we deal with hard spheres and we aim to build very dense structures,
the parameter space (R, Az, ny,ny) is significantly restricted. We are going to find
out that only two of these parameters are independent. There exists a relationship
linking the elevation angle © = arcsin(Az/d) and the confinement radius R, see
Reference [35]. Bearing in mind that for any pair (nq,ns) or equivalently (ng,n),
we have a unique corresponding structure with n. = 6, one arrives at the following

two independent equations:

3
©(ny,ny) = arctan (%) (2.14)
and
. ( d ) 2711 + No
T = mnparcsin || —
! 4R \/n% +7’L% +n1n2
. d 2712 + Ny
+nq arcsin | | — 2.15
? (4R> VN2 +ng 4+ ning (2.15)

We have solved those two equations in Mathematica software package |76] and ob-

tained the sets (0, R/d) shown in Figure 2.4. For each value of R there are two
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different values of ©, symmetric around © = 30", which correspond to lattice con-
stant pairs (ny, ng) and (ng, ny), respectively. The (nq,ny) pairs are actually identi-
cal structures with opposite chirality [77]. The six-fold rotational symmetry of the
lattice restricts © € [0°,60°].

We now look into properties of (n1,n9) pairs in order to characterize the multi-
thread structure of six neighbor helices (n. = 6). First, we identify the link between
ne = 6-tubes and the (ny,ng) pair values. The pairs (0,n5) and (n1,0) leading
to ©® = 60° and 0°, respectively, represent AB tubes, check Figure 2.4. The pairs
with n; = ny corresponding to © = 30° lead to Z tubes that are characterized by
constitutive straight filaments parallel to the Z tube axis, see Figure 2.2(f). The
curve with ny = 1 (with ny > 3) corresponds to a single helix, n; = 2 (with ny > 3)
corresponds to a double helix, ny = 3 (for any ny > 4) corresponds to a triple helix,
and more generally an ni-helical structure is obtained when ny > n;+1. We employ
Cartesian coordinates to express positions of particles in an n—helix similarly to the

single helix case, using two indices, i € Z and j = {1,n}:

Titjn = Rsin (zFl + ng) s
Yitjn = Rcos (ZFl + jr2> s
Zitjn = iAZl + jAZQ (216)

In Equation 2.16, I'; represents the azimuthal angular shift between each two con-
secutive particles along a given thread and I's is the angular shift between threads,
i.e., densely packed directions in a superstructure, see Figure 2.3(b). The azimuthal

angle I'y is merely provided by :

d 2
I'y = arccos |1 — cos ©
1 [ (\/ER )

. (2.17)

The angular shift I'y between threads is more delicate to derive. Knowing that
starting from the reference particle it is possible to reach the same particle position

following two paths along threads (in @;- or dy-direction), one can arrive at a relation
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Figure 2.4: State diagram in the (©, R/d)-plane showing possible unit cells charac-

terized by (n1, ny) pairs. Solid lines represent unit cells with n, fixed, and the dashed
ones represent unit cells with ny fixed. The three horizontal lines (dot-dashed) cor-

respond to tubes.

linking I'y and T's:
2T = (n1 + ’I’LQ)Fl - 7’LQF2. (218)

The dependence of angle parameters I'; and I's on the reduced helix radius R/d is
displayed in Figure 2.5, for © < 30" in the single helix (ny = 1,7y > 4), the double
helix (ny = 2,m; > ng) and the quadruple helix (ny = 4,11 > ny). In our notation,
multi-thread helices are named after the smallest unit patch particle dimension, i.e.,
the smallest number of generating threads. As the helix radius R/d increases, the
value of I'y monotonically decreases, since additional particles are added to a turn.
The angular parameter I's monotonically decreases only for ny = 1. The scenario
becomes qualitatively different at n, > 2 where non-monotonic behavior is found,

see Figure 2.5. This feature can be rationalized as follows. The smallest compatible
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corresponding spanning vectors dy, ds, respectively, on reduced helix radius R/d, for
single thread (ny = 1), double thread (ny = 2), and four-thread (ny = 4) helices.

radii R with ny > 2 and © < 30, are obtained when n; = ny (check Figure 2.4)
corresponding to Z tubes where I'y; = 0. Besides that, I'; tends to zero for vanishing
cylinder curvature (R/d — oc). These are the reasons why the profile of I'y(R/d)
is non-monotonic when ny > 2. The surface packing fraction of densely packed
multiple helices is simply obtained by multiplying the surface packing fraction of a
single helix with the number of threads ny (9mui = non, see Equation 2.8):

d2

multi = s 2.19
Mhmult n28A2’1R ( )

where the elevation distance Az; (shown in Figure 2.3(b)) is given by:

Az = \/d2 — 4R?sin? (%) (2.20)

The calculated surface packing fraction of single (ny = 1), double (ny, = 2), and

quadruple (ny = 4) helices is shown in Figure 2.6. At a given confinement curvature

(fixed R/d), adding threads results in higher surface packing fraction, see Figure 2.6.
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Figure 2.6: Surface fraction 7, see Equation 2.19 as a function of reduced helix radius
R/d for single thread (ny = 1), double thread (ny = 2), and four-thread (n, = 4)
helices.

2.1.2 Tubes as sub-sets of helices

We refer to tubes made by stacking of rings. In AA tubes all constitutive rings
are exactly aligned, see Figure 2.2(d), and in AB tubes every ring is shifted for
half of the particle’s diameter, in respect to its preceding ring, see Figure 2.2(e).
Alternatively, AA or AB tubes could be generated by rolling of square or triangular
lattices on cylindrical confinement, respectively.

Particle i—positions in AA tubes are calculated as:

r; = Rcos(2mi/N),
y; = Rsin(2mi/N),

5 = |i/N|d, (2.21)

where |z] is the greatest integer function and gives the largest integer less than or
equal to x, while N is the number of particles in a constitutive ring. To simplify
discussion, we refer to N also as curvature since there is a correspondence with the

tube’s geometrical curvature R/d = 1/2sin(7/N), e.g., we obtain R/d = v/2/(v/3 —
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1) ~ 1.3 for N = 8 ring.

One of the ways to obtain AB tubes is stacking of a pair of two successive rings.
Total number of particles in the tube Nie 18 a multiple of the number of particles
in the ring NV and the number of rings Nyings, 1-€., Nitube = Nrings - V.

In both rings particle positions are calculated based on their index ¢ = 1, Nyype:

r; = Rcos(2mi/N +6;),
y; = Rsin(2mi/N +6,),

zi = |i/N|Az, (2.22)

where 6; is angular displacement of rings:

0, = mod (|i/N],2)/N (2.23)

and the displacement between successive rings along AB tube’s axis is:

Az = \/d?> — 2R?[1 — cos (7 /N)). (2.24)

We have already explained when discussing the Figure 2.4 that densely packed tubes,
i,e. AB and Z tubes, can be seen as sub-classes of helices. Bearing this in mind,
in addition to stacking of the rings, we point out that the tubes can be created by
rolling a ribbon with square or triangular lattice on a cylindrical surface. In fact,
every ordered tubular structure can be generated by reproduction of a curved unit
cell along helical lines defined through curved spanning vectors in analogy to crystals
in two dimensions. This curved unit cell has n; and ny particles along two spanning

directions aj and a3, respectively.

2.2 Dipole moments

2.2.1 Dipolar interaction model

We have explained the geometry of helices and tubes composed of hard spheres in

section 2.1 of this chapter. In this section we want to address the situation where the
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constitutive particles are dipolar. Each particle carries an identical dipole moment
in magnitude, m = |ny;|, where m; = (m¥,m?, m?) defines the dipole moment of
a particle 7, see also Figure 2.1 in section 2.1. The potential energy of interaction

U (73;) between two point-like dipoles whose centers are located at 7; and 7; can be

written as:
1 T 7)) (1T - T
U(y) = O |1y iy — 3T Tl T) | (2.25)

for r7;; > d or oo otherwise, where C' represents a constant that depends on the
intervening medium, and r;; = |7j;| = |; — 73|. It is convenient to introduce the
energy scale defined by Uy = C'm?/d® that physically represents the repulsive po-
tential value for two parallel dipoles at contact standing side by side, as clearly
suggested by the notation. Therefore, the total potential energy of interaction in a

given structure Uy is given by:

Utot = Z U(Tij). (2.26)
0]

i>j

One can then define the reduced potential energy of interaction u (per particle) of N
magnetic spheres. It reads u = Uiyt /(U4 V), which will be referred to as the cohesive
energy. Since we are dealing with infinitely long structures (in one direction), we
shall consider only periodic structures in that direction, so this imposed condition
greatly facilitates the calculation of the cohesive energy. Our method of choice is the
Lekner-type summation method for systems with periodicity in one direction which
we have presented in section 2.3. The central feature in Lekner-type methods is the
choice of the periodic cell. For structures with coordination number n. = 2,4 we
can always find helical parameters with a finite number of particles in the unit cell.
The periodicity is achieved by imposing a condition on the angular shift parameter

I' that a helix has to make an integer number of turns within the unit cell.

2.2.2 Relevant dipole moment orientations

Taking into account the symmetry of helices it is intuitive to assume dipole moments

following helix threads. In order to have dipole moments tangential to the helical
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Figure 2.7: The representative structures including dipole moment distributions are

displayed. For AB tube with patch parameters (ny,ny) = (8,0) dipole distributions
which correspond to spanning unit cell vectors (a) @; (oblique to cylinder’s axis),
(b) dy (closer to cylinder’s axes), as well as, (c¢) ground state dipole distribution. For
single thread helix (n1,ns) = (9, 1) dipole distributions which correspond to (d) d;
and (e) dy (closer to helix axes) spanning vectors, as well as, (f) ground state dipole
distribution. For double thread helix (ni,n2) = (8,2) dipole distributions which
correspond to (g) @y, (h) dy (closer to helix axes) spanning vectors, and (i) ground
state dipole distribution. In case of Z tube (j) d; and (k) @y dipole distributions are
shown. Ground state of Z tube follows @ dipole distribution (parallel to cylinder’s

axis).

backbone, we introduce two components of dipole moments. The parallel component

with respect to the helix axis (we have chosen to orient a helix along the z direction)
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is given by:

m* =mAz/d, (2.27)

and the orthogonal one is given by:

17| = my/1 — (Az/d)”. (2.28)

Hence, the dipole moment of a particle ¢ in the single thread helix reads:

m; = —m¥sin (il),
m! = m¥cos(il'),
m; = m,. (2.29)

In the multi-thread case, the Cartesian dipole moment components are given by:

mi; = —m™sin (il + jTy),
mi; = m™cos(il'y + jl9),
mi = mAz/d, (2.30)

where i € Z is the internal particle label within a thread and j = {1,ny} stands
for the thread’s label. In dense helices (n. = 4,6) dipole moments can follow two
directions d; and d,.

In general, the dipole moments do not have to follow helix threads. In order to
find the dipole moment orientation that ensures minimal cohesive energy, we perform
minimization of the cohesive energy using a constrained minimization algorithm
which we have presented in section 2.3.

We have considered three relevant dipole moment orientations: d; and dy orien-
tations which are defined by the helix threads and the ground state dipole moment
orientation, which is determined via cohesive energy minimization procedure. In

Figure 2.7, representative dipole moment distributions are shown.
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2.3 Methods

In this chapter we present the methods applied in the study of confined dipolar sys-
tems. We have carefully and in details derived the Lekner-type summation method
for summing the dipole—dipole interactions in 1D periodic dipolar systems, check
appendix A. In subsection 2.3.1 we present the overview of available methods for
summing the dipole-dipole interactions of infinite periodic structures, followed by
our selection of the proper method and the final expressions of the Lekner-type
method that we have implemented. Next, we describe the energy minimization
method which we have used for determining the ground state dipole orientation of

our dipolar structures.

2.3.1 Methods for summing the dipole-dipole interactions of

infinite periodic structures

2.3.1.1 Overview of available methods

Energy of a dipolar structure with finite number of particles can be calculated via
direct summation of potential energies of the dipole-dipole interaction (DDI) of
every pair of particles. On the other hand, we might be interested in calculating the
energy of infinite periodic dipolar structures. As DDI is a long-range interaction,
a proper approach is needed. We present a brief overview of available numerical
techniques for summing the long-range interactions of spatially periodic structures.

In case of 3D periodic structures a standard method of choice for summing the
long-range interactions is the Ewald method [78]. Besides the periodicity in all three
spatial dimensions, there are three-dimensional systems having the periodicity in one
or two dimensions, let us note them as 1D and 2D periodic systems. Hence, those
are 3D systems possessing the periodicity along one- or two- dimensions. Ewald
type methods for these kinds of periodic systems have been established [79-84].
For example, a 2D Ewald method for the electrostatic [79-81] and dipole-dipole
interactions |79, 80| has been developed. Such a method computes properly the

long range D DI, however its disadvantage is the bad scaling of computational time
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with the number of dipoles N (i.e., it scales o N?). A computationally more efficient
method for summing DDI in a 2D periodic system has been presented in [82]. It
represents a modification of the previously mentioned computationally inefficient
2D Ewald method since its computational time scales o« N. A mutual feature of
Ewald type methods [79-81] is the need for an arbitrary convergence parameter
necessary for the control of the accuracy of summations. Convergence parameter
is a numerical factor related to computation and without physical interpretations.
The modified 2D Ewald method [82, 83| requires one additional parameter, while
the modified 1D Ewald method requires even two additional parameters [84].

Summation techniques which avoid the usage of convergence parameters are ad-
vantageous, leading to both the reduction of complexity and computational time.
For example, such a method for summing long-range Coulombic interactions in pe-
riodic systems has been originally introduced by Lekner [85]. Since it opened a new
direction in the field of long-range interaction summations, this type of approach has
been known under the term Lekner summation. Modifications and improvements
based on Lekner’s work [85] led to the development of Lekner—type methods [86-88|.
In Lekner—type methods [85-88] the forces are calculated first and the interaction
energy is obtained by integrating the force expressions. On the other side, an ap-
proach has been introduced in which the expression for the interaction energy is
directly derived [89, 90]. In the next two References [89, 90] Coulombic interaction
is considered, while in Reference [91] the approach is applied to the DDI.

To conclude our overview, there are several Ewald type [78-84] and Lekner—
type [85-88] methods for summing both Coulombic and dipole-dipole interactions

in all possible cases of periodicity of the system (i.e., 1D, 2D or 3D periodic systems).

2.3.1.2 Selection of the proper method

We are interested in calculating the energy of infinite 1D periodic dipolar tubes
and helices. We have arbitrary chosen to orient them along the z axis, so they are
periodic along this direction. According to that we have chosen the Lekner—type
method for summing the DDI of 1D periodic systems, presented in [91].

Let us explain the key features of this method. An infinite dipolar structure is
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represented by its elementary cell which is periodically replicated along the z axis.
Interaction energy of a structure (i.e., structure’s cohesive energy) is determined as
a sum of self energy Fgyr and cross energy Fe.oss, which are calculated based on the
elementary cell of that structure. Elementary cell is infinitely replicated along the
z axis in both directions, hence we might speak about the particles in the cell and
about their images in the replicas of the cell. Knowing this, we define the self energy
as a sum of the interactions of a given particle from the elementary cell with all its
images. On the other side, the cross energy includes interactions of a given particle
with all other particles belonging to the elementary cell and with all their images.
In Reference [91] the authors consider the DDI which decays with the distance
between the dipoles o< 73, hence the expressions for the self and cross energy are
derived for this type of long-range interaction. Our opinion was that it might be
useful to round-up the derivation and come up with the expressions for the self
and cross energy in function of parameter s which is defined by setting that the
DDI decays with the distance oc r72*. Once we accomplish this and derive closed-
form expressions in function of s, we can simply set s = 3/2 and obtain the final

expressions for the self and cross energy in case of DDI.

2.3.1.3 Application of the derived Lekner-type method in case of infinite

1D periodic dipolar structures

We have derived the expressions which define the self energy FE. ¢ and cross energy
Eross in & Lekner type method for summing the DDI in case of 1D periodic struc-
tures. Since our investigation considers 1D periodic infinite dipolar helices, this
method is appropriate for calculating their cohesive energy. We can state that the
cohesive energy of a dipolar structure corresponds to the potential energy of DDI
between the hard dipolar spheres which the structure is composed of. In every struc-
ture we should determine its periodic cell and within this cell we should calculate
the self and cross energy. Expression for the self energy A.10 is the same in case of
any periodic cell. On the other hand, we should carefully choose the expression for
the cross energy depending whether the condition p7j # 0 does or does not apply,

the indices ¢ and j can take any value from the range 1, N, where N is the total
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number of particles in the periodic cell. As in case of infinite dipolar tubes and
helices the elementary cell of every structure fulfills the condition p? # 0, we take
the expression A.120 for the cross energy. Hence, the total energy of an infinite
dipolar tube or helix, where NN is the total number of particles in its periodic cell,

is computed using the next expression:

N N o SN (T P
1 8 [2(1i? - pij) (5° - pig) (Wi’ - p15?)
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Cohesive energy of a dipolar structure is defined per particle, hence we just have to

divide Ei.¢ by the number of particles in the periodic cell:

Ecohesive = Etot/N- (232)

2.3.2 Energy minimization method for obtaining ground state

dipole orientation of dipolar structures

In dipolar structures’ analysis an obvious question which arises is related to the
determination of the dipole moment orientation of a structure. By this term dipole

moment orientation we consider a logical and meaningful rule of orienting the dipole
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moment of each particle. We have deduced that dipole orientations which follow
the thread structure (i.e., @ and dy dipole orientation) are relevant, since there
is a tight relation between the geometry of a dipolar structure and a favourable
dipole orientation. Dipolar structures which we consider are spatially 3D structures,
however with a 1D periodicity along the z direction. Hence, there are two threads
a structure is made of: a circular thread (leading to d@; dipole orientation) and a
slanted thread (leading to ds dipole orientation). We have asked ourselves how would
an optimal dipole orientation look like, i.e., a dipole orientation which minimizes the
cohesive energy of a structure. Besides that, we should in general determine dipole
orientations which allow a negative cohesive energy: FEeopesive < 0, i.€., realistically
possible configuration of dipolar spheres. To do so, we perform minimization of
cohesive energy using a constrained minimization algorithm [29, 92|, namely the
fmincon minimization procedure from Matlab software package [93]. The name
of the fmincon procedure has been constructed according to its purpose which is
function minimization under constraints. Minimization procedure fmincon [93] finds
a minimum of a constrained nonlinear multivariable function. Its mathematical

definition is given as:
minf (z) over z under the constraints:

c(2) <0,ceq () =0,A 2 < b, Aeq - T = beq, Ib <z < ub,

where b and b, are vectors, A and A, are matrices, ¢ (z) and ceq () are functions
which return vectors, f(x) is a function being minimized which returns a scalar
value. The argument x over which minimization is performed can be a vector or a
matrix, [b and ub are the lower and upper boundaries for the argument x, respec-
tively, hence they are the same data type as z, i.e., a vector or a matrix. A dipolar
structure has a given fixed geometry which is not subjected to minimization, hence
the particles stay in place during the minimization. Their dipole moments ﬁz are
subjected to minimization. A randomly oriented dipole moment is assigned to every
particle of a dipolar structure, defined in the spherical coordinate system using two

angles: 6 and ¢. Those angles are standard coordinates of a spherical coordinate
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system. Each particle 7 is assigned with a randomly oriented dipole moment, where
0; € [0, 7] and ¢; € [0,27]. Mathematically speaking, we can write down the previ-
ous considerations (bearing in mind that rand (1) returns a random real number in

the range [0,1]) as:

0; = m-rand(1),

w; = 2m-rand(1). (2.33)
The dipole moment of i-th particle, i.e., @ = (uf, p?, pu?) in spherical coordinate

system is:

pi = sin(6;) cos (i),
pi = sin(0;)sin (o) ,
pi = cos(0;), (2.34)

where i = 1, N, with N being the total number of particles in a dipolar structure.
The function which we minimize is the cohesive energy of a given dipolar struc-
ture, i.e., f = Feopesive and the argument x = 6y, 0,, ..., 0n; ©1, Y2, ..., pn. The lower
and upper boundaries are: [b =0,0,...,0;0,0,....,0 and ub = m,m, ..., m; 2w, 27, ..., 2m,
respectively. We have determined two important features emerging from energy min-
imization computations employing the fmincon procedure [93]:
(7) dipole moments are tangential to the confining cylinder’s surface, and
(77) component of a dipole moment in the z-axis direction m, of a given dipolar
structure is identical for all particles.
We have found that under some circumstances the dipole moment orientations alter-
nate, i.e., we have obtained the antiferromagnetic-like coupling between the neigh-
bouring threads. This actually occurs with any AA tube. Similar behaviour is
reported for some moderately dense n. = 4-helical structures. Therefore, we need
just one angular parameter to characterize the dipole moment orientation. We

choose the dipole moment angular parameter, a € [—, 7], relative to the z axis, see
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Figure 2.1. Doing so we arrive at:

mi; = —msin(a)sin (il'} +jTy),
mf’j = msin («) cos (il'1 + jTy),
mi; = mcos (a), (2.35)

where the indices 7 and j have the same meaning as in Equation 2.30. Consequently,
the angular parameter « is most of the time a unique variable, at prescribed helical
structures, entering into the energy minimization procedure. Obtaining an optimal
dipole orientation which leads to the minimal cohesive energy of a certain dipolar
structure, in other words obtaining ground state dipole orientation, comes down to
determining the right value of the angular parameter «. In general, except for some
cases where we have obtained the antiferromagnetic-like dipole orientation, dipole
moments of all particles are parallel, building the same angle a with the z axis
direction.

To sum up, we have started with the most general case of each particle having
an independent and randomly oriented dipole moment. Application of the fmincon
minimization procedure 93] significantly narrowed down the diversity of possible
dipole orientations, leading to just one scalar parameter a determining the ground
state dipole orientation. This is a significant finding, meaning that for obtaining the
ground state dipole orientation of a dipolar structure we do not need computationally
demanding fmincon procedure [93] anymore. Just a simple direct search over the
range of o, using a reasonable precision (i.e., & € [—, 7] with a step of 1073), solves

our optimization problem.

2.4 Degeneracy in 2D triangular and square lattice and prop-

erties of tubes

2.4.1 Ground state of 2D triangular and square lattice

First, we investigate the dependence of ground state energy on dipole moment ori-

entation. All dipoles in triangular lattice are parallel and allowed to rotate only
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around a fixed axis orthogonal to the plane, see Figure 2.8(a). There is a continuous
ground state for any in-plane angle 6 with cohesive energy value uxg ~ —2.7586,
which is the cohesive energy of an infinite triangular two dimensional lattice. This
value is defined as |94, 95]:

“+o0o0 400

usp = —2¢(3) + 167> Z Z cos (klm) Ko (k)l\/§ﬂ'> . (2.36)
k=1 1=1

For an infinite square two dimensional lattice, similarly, there is a continuous de-
generacy of its ground state, described in Figure 2.8(b)-(c). A continuous state,
in this case, involves a unit cell of four particles. The moments in a unit cell are
synchronously coupled and in our notation take directions 6, # — 6, w4+ 6, and —0,
in anti-clockwise direction in Figure 2.8(b). The ground states found are obviously
antiferromagnetic, with the total dipole moment within the cell conserved and equal
to zero. The most striking is the so-called vortex state for 6 = /4 with a fully en-
closed circulation of the magnetic dipole moment within the unit cell. The ground
state cohesive energy value is uppy ~ —2.5494, which is the cohesive energy of an

infinite square two dimensional lattice. This value is defined as [94, 95]:
+oo +o00o
uaa = —20(3) + 167> Y > kK {Ko [4k(l + V)] — Ko [2k(20+ D)7} . (2.37)

k=1 1=0

We will use the calculated ground state energy value as an absolute point for compar-

ison of energies of different states in tubes with square or triangular lattice structure.
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Figure 2.8: Visualization of degenerate states in infinite (a) triangular and (b) square
lattice, i.e., AB and AA packings, respectively. The dipoles are depicted as arrows
located in the center of the spheres. In case of triangular lattice the unit cell consists
of a single particle (as noted in panel (a) of this figure) and in case of square lattice it
consists of four particles (as noted in panel (b) of this figure). (c¢) Energy landscape
for square lattice is shown with respect to two 6; and 6y out of four magnetic
moments in the unit cell. Other two moments were oriented so the energy of the
system is minimal. One can observe a flat valley of degenerate ground state, 6y =
—01, with energy uaa >~ —2.5494. The saddle point which represents square plane
with uniform dipole moment orientation with energy u3l{ = —2.26 is also marked.
The curves are drawn through the discrete points and they are smooth. The results

are in principle scale independent.
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2.4.2 Degeneracy break-up with curvature in case of AA and

AB tubes

Wrapping of the plane around the confinement cylinder will make the system quasi
one-dimensional and break the degeneracy [96]. We will discuss repercussions of the
degeneracy breakup on cohesive energy for different dipole moment orientations.
We analyze the degeneracy breakup in infinite tubes: according to tube’s cylindri-
cal geometry, we represent the dipole moment of the i—th particle in cylindrical
coordinates like:

Tﬁi = mi¢e;5 + mize_;, (238)

with constraints m* = mZ, + m?, (i = 1,...,N). The parallel component with
respect to tube’s axis is given by m, and the orthogonal component is m (i.e., my
is tangential to cylinder’s circumstance). In Figure 2.9, we follow the dependence of
energy on angular parameter 0, m;, = msin (6). We find that axial dipole moment
orientation (i.e., @ = m/2) represents the ground state for both AA and AB tubes
while circular orientation (i.e., § = 0) is the most unfavorable, as seen in Figure 2.9.

Between circular and axial dipole moment orientation (i.e., for the range 0 <
0 < w/2), we observe a continuous decrease of cohesive energy with increasing axial
alignment of dipole moment orientation. These transition states we call vortex in
case of square AA tubes and helical in case of triangular AB tubes, e.g., § = 7/4 in
Figures 2.9(a) and (b), respectively. The cohesive energy of different configurations
in Figure 2.9 converges to a continuously degenerate state with increasing curvature

N following the next power law (see inset in Figure 2.9):

u —u® ~ N2 (2.39)
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0 /3 %4 38 w2

Figure 2.9: Cohesive energy spectrum of configurations for dipole orientations in
Figure 2.8 on a curved surface of the infinitely long tube for (a) square AA and (b)
triangular AB tubes. Breaking of degeneracy with respect to angle 6 due to the
curvature, i.e., proportional to the number of particles in the constitutive ring NV,
is shown. The axial dipole moment orientation corresponds to § = m/2. The inset
shows convergence of cohesive energies for # = 0 and 6 = 7/4 to the infinite two
dimensional planar value w (for square lattice uap = —2.5494 and for triangular
lattice upp = —2.7586).

2.5 Cohesive energy-packing relations in dipolar helices

We have described geometry of helices and tubes composed of hard spheres in sec-
tion 2.1. In the following section 2.5 we have introduced dipolar interaction model
and three relevant dipole moment orientations. Setting up the geometry and dipole
moments represents a preparation for the key considerations which are dedicated to

the investigation of cohesive energy-configuration relations of dipolar helices (and

40



2. Confined dipolar systems

dipolar tubes, as their sub-classes). A dipolar configuration is determined by the
next two components: (i) structure by means of geometry (how are the hard spheres
positioned spatially) and (zi) dipole moment orientation (how are the dipole mo-
ments of those hard spheres oriented). Two dipolar configurations can be identical
in structure, but can have different dipole moment orientation, and vice versa they
can have a different structure and the same dipole moment orientation. In this chap-
ter we present our findings about the relations of both configurational components

with cohesive energy in case of dipolar configurations under investigation.

2.5.1 Compression of a single-thread helix

A simple way to deform a helix is to compress (or extend) it along its axis, i.e., the
z-direction, while ensuring the dipole moments follow the thread. Compression of a
helix results in a continuous increase of its surface packing fraction n. Figure 2.10
shows the dependence of cohesive energy ug on the surface packing fraction 7 for a
single helix with reduced radius (R/d ~ 1.7, chosen in the vicinity of n. = 6 point).
Recalling geometrical considerations in section 2.1 the increase of the azimuthal
angular shift I at prescribed curvature results in a continuous decrease of Az and
in a compression of a helix. The compression process begins with a fully extended
helix (i.e., n — d/8R ~ 0.073) where the chain stands up with Az/d = 1, and the
cohesive energy of an infinite chain is u ~ —2.404 [29]. The compression ends when
two successive turns of the helix touch, i.e., the coordination number of particles in
the helix changes from n. = 2 to n. = 4. We also address the minimal energy of the
helix with respect to the dipole moment orientation (i.e., not necessarily prescribed
by tangentially following the helix). From Figure 2.10, we observe that ug = ug (1)
is non-monotonic. We can identify two regimes: (i) At small packing fraction up
to n < 0.4 (with no touching turns), the compression of the helix requires energy
input and therefore cohesive energy increases. The reason for this is that two dis-
tant consecutive turns of the helix experience weaker attraction upon increasing 7.
(77) In the regime of high n > 0.4 where successive turns are allowed to be close or
even touching, the cohesive energy starts to decrease as 7 increases, i.e., the helix

would compress on its own without the input of energy. This is a consequence of
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Figure 2.10: Compression of single thread helix on a cylindrical confinement with
fixed radius (R/d ~ 1.7). Dependence of cohesion energy (upper left panel) and axial
component of the dipole moment (lower left panel) on packing fraction is shown for
two characteristic dipole moment orientations: one that follows the thread structure,
i.e., spanning vector a;, and ground state dipole moment orientation obtained by
full energy minimization (check subsection 2.3.2 of section 2.3) . The illustrations of
characteristic structures and corresponding dipole moment orientations are provided

as well, in the panels on the right side.

enhanced attraction caused by the discreteness of the constitutive dipolar spheres,
see Reference [97]. The overall polarization order parameter (m.) is also analyzed
in Figure 2.10. During most of the course of the helix compression, see Figure 2.10,
a dipole moment orientation following the helix corresponds to the ground state
structure up to n ~ 0.8, check points C and D in Figure 2.10 (the details of ground
state calculations are presented in section 2.3). Only for very high packing frac-
tions, i.e., 7 > 0.8, the helix direction is accompanied by a significant reduction in

cohesive energy (see points E and F in Figure 2.10). The highest difference in (m,)
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occurs for n ~ 0.887, where n, = 4 helix with touching turns is formed, and the
energy difference is uf — uk ~ 0.06. Corresponding values of axial dipole moment

component m, for points E and F are m® ~ 0.12, mY ~ 0.88, respectively.

2.5.2 From square to triangular arrangement of a single-thread

helix

The crucial question which we ask about dipolar helices and tubes is: how does their
cohesive energy depend on structural changes and especially on curvature (quanti-
fied by the helix radius R). With increasing curvature the structure changes from
the triangular to square arrangement and vice versa through a continuous series
of rhombic configurations. We study first in detail systems with dipole moments
following the spanning vector that are most oblique to helix axes, see Figure 2.7(d).
For the sake of comparison with tubes (AA/AB tubes), we also chose dipole mo-
ments that are building vortices along the rings, check Fig 2.7(a). Motivation for
that choice stems from a previous study [29], where it has been shown that finite
AB tubular systems are energetically favorable, see Figure 2.7(a) (dipole moment
orientation is perpendicular to the tube’s axis).

The surface packing fraction 1 (Equation 2.8), the angular coordination order pa-
rameter £ (Equation 2.13), and the cohesive energy per particle ug (Equation 2.26),
are plotted versus the reduced helix radius R/d in Figure 2.11. Actually, the en-
ergy and structural properties change in an oscillatory quasi-periodic manner and
they are enveloped from both sides with the properties of AA and AB tubes, see
Figure 2.11. In Figure 2.12 behavior of these observables is depicted within one
period (R/d € [2.09,2.26], which has been chosen arbitrary). In one period, the
number of particles (n) in a constitutive ring of (AA/AB) tubes is increased for
one, i.e., from n-ring to n+ 1-ring. Within this period, the order parameter changes
from £ = 0, i.e., square arrangement, to & = 1, i.e., triangular arrangement, via a
continuous rhombic transformation, see Figure 2.12(a). The radii of densely packed
helices are roughly in the middle between two corresponding (AB/AA) tube radii,

see Figure 2.12(a). This is a result of the radial constraint and excluded volume.

43



2. Confined dipolar systems

(L@ ABtube e
M 0.5
O e R A wibe
001 B ABtube 1o oo L e
0.88 I .""IO‘_'_@»"D .
0.86 :
0.84} .
<7 0.82¢ ]
0.8¢
0.74
0.72¢ .
—1.6_-.\0\((:)' o
18K o AA tube 1
AN . o AB tube
2 N helix
§ _2'2_ """" L e N ]
4R, A
_26 | g Lol | -
18 e o-d Ly

081 12141618 2 22242628 3 3.23.4
R/d

Figure 2.11: Dependence of (a) angular coordination order parameter £, (b) packing
density 1 and (c) cohesive energy ug on helix radius R/d, for @; dipole orientation.
AA and AB tube points are clearly indicated, they bracket the parameter values of
helices, like a kind of envelopes (solid and dashed lines connecting the tube points

are power law fits).
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Figure 2.12: Dependence of (a) angular coordination order parameter £, (b) packing
density 1 and (c) cohesive energy ug on helix radius R/d, for a segment in vicinity
of R131y/d = 2.17 of Figure 2.11. AA and AB tubes are represented with discrete
points since they can be formed only with a fixed number of particles in a ring, the

fitted (power law) curves serve only as a guide to the eye.

Though in a single thread helical structure we cannot close rings in the plane per-
pendicular to the cylinder axis, one can nevertheless realize a full 360" helix turn

with roughly n 4+ 1/2 particles. We observe discontinuity and strong asymmetry of
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the angular coordination order parameter § at the mid-period (Ri31)/d =~ 2.17),
see Figure 2.12(a). This is due to a change of the number of lateral threads ns, see
Figure 2.7(e), at the mid period going from ns = 9 to ny = 10, see Figure 2.12(a).
With decreasing curvature, the surface packing fraction increases globally, see Fig-
ure 2.11(b). We observe oscillatory behavior as the system continuously evolves
from the square to triangular arrangement and vice versa. The AA and AB tubes
still roughly bound the values taken by the surface packing fraction. At the helix
radius R/d > 3.4, see Figure 2.11(b), we are already within 3% of the asymptotic ex-
pected values in the planar case. In contrast to the angular coordination parameter
&, the surface packing fraction 7 is continuous everywhere, compare Figures 2.12(a)
and (b). Moreover, at the mid-period the n value is slightly (and systematically,
see Figure 2.11(b)) above the interpolated value stemming from AB tubes (see Fig-
ure 2.12(b)). In Figure 2.11(b) and (c), it can be clearly seen that the profiles of
energy oscillations ur and the surface packing fraction n are anti-correlated. The
mid-period values ug coincide with interpolated values stemming from AB tube

radii (confirmed by Figures 2.11(c) and 2.12(c)).

2.5.2.1 Looking for the ground state

At this point, we would like to discuss mechanisms which govern the minimal energy
dipole moment orientation near the mid-period transition point (more details about
implementation are provided in section 2.3). There are three privileged directions
in a helix: two which follow helix spanning vectors (determined by @y, ds) and the
third one which is the direction of the helix axis. These privileged directions come
into play in two competing mechanisms: (i) The first mechanism is typically dic-
tated by first neighbor interactions which favor dipole moments following the thread
directions. (ii) The distant-neighbor interactions favor the distribution of dipole mo-
ments parallel to the helix axis. We can justify these two mechanisms as follows. It
is well known for a small finite system that rings are formed with dipole moments
building vortices, see Reference [29]. When a helix turn is projected along the z-axis,
the resulting figure is highly reminiscent of the vortex discussed above. The head

to tail configuration is favored at long distances, explaining the second advocated
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mechanism. The abrupt change in dipole orientation in the direction of the axis
(m.), seen in Fig 2.13(b), is correlated with the discontinuous change in the angular
coordination order parameter £ in the vicinity of transition, see Figure 2.12(a). At
the mid-period point R(131)/d = 2.17 dipole orientation in the direction of the axis
(m,) is close to one, but not exactly one, see Figure 2.13. For the sake of comparison
with tubes (AA/AB tubes), we choose dipole moments that are parallel with the
helix axis, see Figure 2.7(c). The fact that the system is able to relax its dipole
moment orientation to the ground state results in more dependence of energy on
confinement curvature around the mid-point. The degree of asymmetry of ug is
stronger around the transition point, see Figure 2.13(b), than in the excited state
in Figure 2.12(c). The ground state calculations confirm the high stability of AB
tubes (see Figure 2.12(c)).

2.5.3 Cohesive energy of multi-thread helices at high surface

packing fraction

In this part, we consider the high surface packing fraction regime with n. = 6. Some
representative structures including dipole moment streamlines are displayed in Fig-
ure 2.7. The streamlines following spanning unit cell vectors d@; (oblique to the helix
axis) and @, (more aligned to the helix axis) are also shown. It is possible to polarize
the helix by a homogeneous external field parallel to its axis. For symmetry reasons,
a reversal of the external field should result in the reversal of the dipole orientation.
In the case of magnetic dipoles, it should also be possible to polarize the system
to follow d; and @, spanning vectors by combination of a curling magnetic field of
electric current flowing through the confining cylinder and the homogeneous exter-
nal magnetic field parallel to its axis. Dipole moment distributions in the ground
states are also indicated for comparison in Figure 2.7. In analogy with the study of
a single helix case, we start analysis with a dipole moment distribution prescribed
by tangentiality with thread backbone. In Figure 2.14, cohesive energy for the ;-
generated dipole moment distribution is shown for different helical structures. The

cohesive energy in a planar triangular lattice, u,, ~ —2.759, represents the energy
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value which will be reached asymptotically (R/d — +o0) for all considered struc-
tures. As already found for AB tubes in Reference [29], cohesive energy exhibits
the scaling law of the form ugr — us ~ R~2, see Figure 2.14. The cohesive energies
of all three helices and AB tubes are weakly dependent on the number of threads
for d;-generated dipole moment distribution. This is in accordance with surface
packing fraction behavior reported in Figure 2.6. A comparison with the azimuthal
angular shift parameter 'y, see Figure 2.5, and the corresponding cohesive energy
(for d;-generated dipole moment distribution) clearly reveals a correlation between
there two quantities. In Figure 2.15, cohesive energy for ds-generated dipole moment
distribution is compared with ground state energy for different number of threads.
There exists an analogous correlation (as discussed for d,-dipole distribution) be-
tween the azimuthal shift I's and the resulting cohesive energy, compare Figures 2.5
and 2.15. The smallest compatible radius R for multi thread helices (ny = 2,4)
is obtained for ZZ tubes (n; = ny). In Figure 2.15, the corresponding radii read
R(39)/d = 0.61 and R(44)/d = 1.13. In this case the @y and ground state dipole mo-
ment orientations are the same, see Figure 2.7(k). Strikingly, ZZ tube ground states
converge very fast to the expected planar value u., at the smallest accessible radii,
i.e., the largest curvature, within less than 1% of the planar case, see Figure 2.15
for R(59)/d = 0.61. A structural similarity of ZZ tubes, with typical experimental
images of microtubules is striking, see Figure 2.7(k). ZZ tubes can be created by
closing the rectangular strip on a cylinder. We should notice the structural charac-
teristic of ZZ tubes’ decomposition into chains which are analogous to filaments in

microtubules.
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Figure 2.13: Dependence of (a) cohesive energy, and (b) polarization in the direction
of z axis m, on helix radius R/d (in the ground state), for a chosen segment of
Figure 2.11. AA and AB tubes are represented with discrete points since they can
be formed only with a fixed number of particles in a ring, the fitted (power law)
curves serve only as a guide to the eye. The point which represents the dense helix
with (n1,n9) = (13,1) and R(131)/d = 2.17, is marked with a rectangle.
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Chapter 3 Ionic liquids

3.1 Methods

In this section we present the methods applied in the study of ionic systems. First we
explain the basics of the molecular dynamics (M D) method. Next, we give a short
overview of the LAMMPS code for M D simulations, since all M D simulations
presented in this thesis were performed using the LAM M PSS software package [98].

3.1.1 Molecular Dynamics method

Molecular dynamics (M D) represents a simulation technique which generates trajec-
tories of a system of N particles by numerical time integration of Newton’s classical
mechanics equations of motion [99]. An M D simulation is defined by: the interac-
tion potential by which the particles interact, initial conditions (IC) and boundary
conditions (BC). Let us consider a system of N particles (check Figure 3.1) in a
volume V. The Newton’s equations of motion for the system of N particles are:

d*7; =, oy
dt2 = i(’l"l,’f’g,...,’f’N),Z:1,...,]\[7 (3]_)

m

where 7} are the position vectors and F, are the forces acting on the particles of
a system. It is often case in M D simulations that the forces can be derived from
interaction potential functions U (7, 7, ..., "x ), representing the potential energy of
the system:

F (7, 7y oy ) = =V U (F1, Py ooy PN - (3.2)

Equation 3.2 is consistent with the conservation of the total energy. We might define

mechanical energy of the system as: F = K + U, where kinetic energy is defined as:
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K= i%m (@), (3.3)

=1

and potential energy is defined as:
U=U(™ (), (3.4)

where 7 (t) denotes position vectors of all N particles in the system. We emphasize
that E should be a conserved quantity, if the system is isolated. The potential of
an isolated system (no external forces present) can be written in the simplest case

as a sum of pairwise interactions:

U= ZZu i) s (3.5)

=1 5>

where 73; = 73 — 7}, rij; = |7};| and ¢ > j eliminates the double counting of the particle
pairs. Practically it means that the forces acting on the particles are resultants of

the forces coming from the individual interactions with the rest of the particles:

d “v\tig) _;j
F Zfl]?flj = U(T ) : T_ (36)

i d’l“lj Tij

According to the Newton’s third law it stands: f;l = — ﬁj Computational effort of
solving the equations of motion 3.1 is proportional to N? and is mostly related to
the force computations. Accordingly, to speed-up the computations it is desirable to
express the forces analytically. In order to further more reduce the computational
effort, it is a standard practice in M D simulations to cut off the potential at some
limiting distance, i.e., we neglect the potential if the distance between two interacting
atoms is 7j; > 7eu, Where 7, is reasonably chosen. For example, in case of the
Lennard-Jones potential (standard potential in M D simulations) usually it is set
that re,, = 2.5 - 0, where o determines the length scale.

In principle, we might treat an M D simulation as a numerical experiment [100],
hence the methodology is practically the same like in a real experiment, as we can

see in the schematic of a typical M D simulation in Figure 3.2.
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Figure 3.1: Illustration of an M D system with N particles.
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Figure 3.2: Basic schematic of an M D simulation.

In the first step we should setup the system, which means: selecting a proper

interaction potential, choosing the number of particles in the system and setting up
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their properties (shape, mass, charge), defining initial and boundary conditions. The
subsequent step, after the system setup has been done, is the system equilibration
which means achievement of desired temperature and pressure (macroscopic prop-
erties which depend on the microstate of the system). After the system setup and
equilibration are done, simulation is run a given number of simulation steps and
averaged characteristics are calculated (for example, radial distribution function
g (). In the end, output data is analyzed and based on that, the desired quanti-
ties are computed. Besides equilibrium M D simulations, there are non—equilibrium
molecular dynamics (NEM D) simulations. For example, a system is exposed to
perturbation or high external forces and its response is analyzed, like in simula-
tions of mechanical deformations. We have used NEM D simulations in the way
that shearing of the simulation box (mechanical deformation) was imposed, and by
analyzing bulk /L’s response to the imposed shearing, we have determined IL's vis-
cosity coefficient. There are five key components of M D simulations and those are:
(7) initial conditions (IC), (z¢) boundary conditions (BC), (éii) force computation,

(1v) integrator and (v) computation of system’s characteristics.

3.1.1.1 The Lennard-Jones potential

The most common pair potential for describing the interaction of van der Waals

systems is the Lennard-Jones potential (L.J potential), given by the formula:

o= (7)- (3)]

where rj; is the distance between the atoms 7 and j. The e parameter defines
the strength of the LJ interaction and the o parameter defines the length scale.
LJ potential is strongly repulsive at short distances, it crosses zero at ry; = o,
ie, U (ryy=0) = 0. LJ potential reaches its minimum U (r,,) = —e at
rm = 200 &~ 1.12250 and it has an attractive tail at long distances. Values of
the parameters {€,o} are chosen to model physical properties of a real system.
For example, LJ potential was initially proposed to model liquid argon. Let us

now analyze the two terms from the square brackets of Equation 3.7. The term
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X T 12" dominates at short distances and it models the repulsion due to the non-
bonded overlap of electronic orbitals. It might have an arbitrary form meaning that
other exponents or even other functional forms are possible. However, we should
think about minimizing the computational effort, hence in most cases this form with
(%) " is fine. The term o 7“1;6 dominates at long distances and models the van
der Waals forces caused by the dipole-dipole interactions due to the fluctuation of
dipoles. These weak forces are responsible for the bonding character of systems like

rare gases, such as argon or krypton. The interaction force due to the interaction

via LJ potential, see Equation 3.7 is:

- 48¢ o\? 1/c0\°
= — || — — = — . 3.8
& i [(ﬁj) 2 (Tij) ]TJ &8)

As the force is expressed analytically, this is advantageous in terms of the reduction

of computational effort.

3.1.1.2 Thermodynamic properties

Key thermodynamic properties of an M D system are the temperature and pressure.
Temperature of the system might be introduced via mean kinetic energy of the

system:

! i N s i Iy’ (3.9)
2N &\ dt 2" 8Nkp < ' \ dt
By expressing the temperature 7" in function of the kinetic energy K we obtain the

next relation:
2K

T = .
3Nkp

(3.10)

In case that we consider the temperature 7" and the density p as independent vari-
ables, we might express the energy of the system F and the pressure p. These
quantities link the microscopic and macroscopic level and can be easily measured in
an M D simulation. We should mention that in an M D simulation usually the en-

ergy is conserved, while the temperature fluctuates, hence the average temperature
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(T') should be used instead of T'. Pressure is defined by the formula:

N

1 _—
pV—N@T+#Z?yE} (3.11)
In case of a pair potential this formula is:
| N
i<j

Bearing in mind the relation 3.10 between the temperature 7" and the kinetic energy

K, we express the pressure p as:

N
p 5 —
i<j
Contrary to the total energy FEi,x = K 4 U which should be conserved during a
simulation, the temperature and the pressure fluctuate and should be averaged over

a chosen number of timesteps.

3.1.1.3 Analysis of the key components of a typical molecular dynamics

simulation

In the following text we briefly analyze the key components of a typical M D simula-
tion, which include: (7) initial conditions (IC), (i) boundary conditions (BC), (i)
force computation, (iv) integrator and ensemble and (v) computation of system’s
characteristics [99].

(7) Initial conditions (IC)
As Newton’s equations of motion are ordinary differential equations of the second

order, initial conditions are defined as:

N dN"”
Pt =0) =" = (t=0) = ——. (3.14)

Generating of IC is simple for ordered systems like crystals, but in case of amorphous

solids or for polymer chains it should be treated carefully. Setting the IC is important
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Figure 3.3: Illustration of periodic boundary conditions (PBC'). Trajectories of

only the atoms in the central cell, also known as supercell (square filled with gray)
are explicitly followed. The supercell is infinitely replicated in a given 2D or 3D
space. In this figure we show an example of a 2D system with periodic boundaries
in both directions in a plane. An atom (let us label it as referent atom) from the
supercell interacts with other atoms from the supercell, as well as with the atoms
from neighbouring copies of the supercell, under the condition that their distance
from the referent atom is within the cutoff radius. Interaction is neglected in case

the distance is larger than the cutoff radius.

because often it causes errors. For example, if the particles are positioned too close
at the beginning of a simulation, the forces between them get too high.
Related to assignment of initial velocities, it should be taken into account that

each independent degree of freedom should carry kinetic energy of kgT'/2. Such
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a condition can be met by taking initial velocities from the Maxwell-Boltzmann
distribution.
(77) Boundary conditions (BC)

The behaviour of finite systems is quite different from the behaviour of infinite
systems. The number of particles for simulating bulk properties of macroscopic
systems has an important role, unless we simulate clusters of atoms in which case
the number of constituents is well-defined. No matter how large the simulated
system is, the number of particles NV is negligible as compared to the number of
particles contained in a macroscopic system (at the order of 1021t010%3). In case of
macroscopic systems just a small fraction of the particles are located close to the
boundaries (walls of the container in which the system is placed). In case of a typical
liquid with the order of magnitude of N = 10?1 particles, the number of particles in
the vicinity of the walls is at the order of N%/3 = 10'4, which means that 1 out of 107
is a surface particle. Therefore, in systems like liquids the fraction of particles in the
vicinity of the walls is negligible. In modern M D simulations the typical number of
particles which can be handled is at the order of 10% particles. In such a system, the
fraction of the surface particles is more significant and the behaviour of the system
is very impacted by the surface effects. An efficient solution for solving the finite-
size problem and for minimizing the surface effects is the application of periodic
boundary conditions. When periodic boundary conditions are applied the particles
are enclosed in the simulation box, which is replicated to infinity by translation in
all three directions {z,y, z} completely filling the space. When a particle enters or
leaves the simulation box, an image particle leaves or enters the simulation box,
hence the number of particles is kept constant. Accordingly, the surface effects are
suppressed. Summing up the previous discussion, we note that there are two types
of boundary conditions: isolated (I BC) and periodic (PBC') boundary conditions
(for the illustration of PBC' check Figure 3.3). IBC' are suitable for the analysis of
clusters and molecules, while PBC' are suitable for the analysis of bulk materials.
There are mixed boundary conditions as well, where the system is periodic along
one or two dimensions, but not in all three dimensions. In case of PBC a system of

particles is surrounded by vacuum, those particles interact between each other and
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do not interact with anything outside the system, except in case that some external
force is introduced.

(7i1) Force computation
Equation of motion for the i-th particle can be written as [99]:

d27_’; B 8U (7”1' — Tj)

Jati g =1, N, 3.15
m dtQ por 0(7“1 —7"]') ! ( )

Computation of the right-hand side of the above equation is the key step which
consumes the most computational time in M D simulations, so the efficiency of that
computation is of crucial importance. For long-range Coulombic interaction there
are special algorithms which break it into two terms: one term represents short-
range interaction and the other term represents smooth interaction, like a field.
Both of those terms can be computed efficiently in different ways. When PBC' are
applied, movement of particles within the basic cell is monitored and the basic cell
is surrounded by its periodic copies. A consequence of the application of PBC' is
that each particle ¢ in the simulation box interacts not only with the other particles
in the box, but with their images also. This means that the number of interacting
pairs is very large. However, this obstacle us usually overcome by setting a cutoff
distance, since the interaction of two particles separated by a distance larger than
the chosen r., is neglected. There is the term minimum image criterion which
claims that among all images of a particle we should consider only the closest ones
and neglect the others.
(1v) Integrator and ensemble

Newton’s equations of motion represent a set of ordinary differential equations of
the second order, which can be very nonlinear. Transforming them into ordinary
differential equations of the first order in 6/N-dimensional space {F’N N }, general
numeric algorithms for solving ordinary differential equations can be applied, such
as Runge-Kutta method. However, general numeric algorithms are rarely applied
in M D simulations, because the existence of Hamiltonian enables more accurate
integration algorithms, such as predictor-corrector integrator. There are three main

ensembles: micro-canonical, canonical and grand-canonical ensemble. They are dis-
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tinguished based on the distribution of initial conditions. When the system is defined
by a certain ensemble, it should strictly follow equations of motion, with conserved
mechanical energy. Ensemble and integrator are often grouped since there is a class
of methods which generate desired ensemble under time integration. In a micro-
canonical (NVE) ensemble, system is isolated from the changes in the number of
particles (N), volume (V') and energy (E). It corresponds to an adiabatic process
in which there is no heat exchange. Micro-canonical M D trajectory can be seen
as exchange of potential and kinetic energy, under the condition that the total en-
ergy is conserved. In a canonical (NVT') ensemble, the number of particles (IV),
volume (V') and temperature (7') are conserved. Canonical ensemble is often called
constant temperature molecular dynamics (CTM D). In NVT ensemble the energy
of endothermic and exothermic processes is exchanged with a thermostat. There
is a large number of thermostat algorithms which add or remove energy keeping
temperature constant. It is not easy to obtain canonical distribution of spatial ar-
rangement and velocities using thermostat algorithms. A wide and relevant topic
is which thermostat should be chosen and how its parameters should be set, how
does that depend on the system size, how to choose the timestep and integrator.
Grand-canonical ensemble represents possible states of a system of particles which is
kept in thermodynamic equilibrium (thermal and chemical) with a reservoir. System
is considered to be open, in a sense that it can exchange the energy and particles
with a reservoir and accordingly, possible states of a system differ in terms of to-
tal energy and total number of particles. Volume is the same in all possible states
of a system. Thermodynamic variables of a grand-canonical system are chemical
potential and temperature. It is called (uVT ensemble, since each of those three
quantities is an ensemble constant. There are two main classes of M D integrators:
(1) low-order integrators like leapfrog, Verlet, velocity Verlet which is characterized
by easy implementation and stability, and (i7) predictor-corrector integrators which
are characterized by high accuracy for large timesteps.
- Examples of integrators
We present common integrators in M D simulations, namely: (i) The Leapfrog al-

gorithm, (i7) The Verlet algorithm and (éi7) The Velocity Verlet algorithm. In
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all three examples the integration of Newton’s equations of motion is done with a
small timestep 0t. In the following text index ¢ is used for an i-th particle where
i =1,..., N, where N is the total number of particles in the system. Its position,
velocity and acceleration are labeled as 73, Vi = ‘2—7;‘, a; = %, respectively.

(1) The Leapfrog algorithm

In the Leapfrog algorithm the velocities are first computed at the time moment ¢+ %

and these are used to compute the positions 75, at the time moment ¢ + dt:
S . - ot

In this way, the velocities leap over the positions, then the positions leap over the

v (t + %) =V (t - %) +a@; (1) ot. (3.17)

The advantage of this algorithm is that the velocities are explicitly calculated. How-

velocities:

ever, the disadvantage is that the velocities are not calculated at the same time

moment as the positions. The velocities at the time moment ¢ can be computed as:

‘Z(t):%{ﬁ(t—%)JrVi(H%)} (3.18)

(7i) The Verlet algorithm
New positions and velocities of particles are computed after every timestep. Position
of a particle 7 in time moment ¢ + 0t can be computed via Taylor expansion over

degrees of timestep dt:

7 1 25
R+ 6t) = 7 () + 0t (1) 4 LoD

1 &
dt 2" A

)+ 6 g

(t) + .. (3.19)

In a similar way, position of particle ¢ in previous timestep can be written as:

dr; 1 _,d%F 1o d%F
Pt — O0t) = 7 () — 0t— (8) + =02 ——= (t) — =63 ——
7i ( ) =Ti(t) dt()+2 dtQ() S0t

(t) + .. (3.20)

Summing of previous two equations leads to the expression which determines posi-
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tion of particle ¢ in time moment ¢ + dt

&,

dt?

i (t 4 0t) = 27 (t) — 7 (t — 6t) + 6> — (t) + O (ot?) . (3.21)

This integrator is called Verlet algorithm, as we can see from Equation 3.21 it
uses positions and accelerations at time moment ¢ and positions at time moment
t — 0t to compute new positions at time ¢ + At. The Verlet algorithm does not use
explicit velocities. There are two main advantages of the Verlet algorithm: (i) its
straightforwardness, and (i7) reasonable storage requirements. The disadvantage is
the algorithm’s moderate precision. Acceleration of particle ¢ is determined from
Newton’s equation of motion:
d* 1 oU (r; —ry)

=y =9 (3.22)
dt2 m; oy 8 (T’Z‘ — T‘j)

Position of a particle is computed with precision of §t* as it is noted with O (§t*).
Velocity of particle ¢ in time moment ¢ can be determined from its positions in time
moments ¢ + 6t and ¢ — ¢ with precision of O (§t®), by subtracting the equation for
73 (t — dt) from the equation for 7} (¢t + 0t):

dr; 7 (t+ ) — 7 (t — ot)

= 3
pn 55 + O (0t°) . (3.23)

Positions and velocities of all particles in a system are computed in each step of M D
simulation, producing complete time evolution of the system. In order for this time
evolution to be of high accuracy, integration timestep 0t should be much shorter
than the shortest characteristic time of the system. Simple Verlet integrator is used
for systems with constant number of particles, constant volume and constant total
energy, which is micro-canonical (NVE) ensemble.
(7i1) The Velocity Verlet algorithm
In the Velocity Verlet algorithm, positions, velocities and accelerations at time mo-

ment t are used for computing position at time moment ¢ + dt:

7 (t+ 6t) = 7 (t) + Vi (t) 6t + %ai (t) ot*. (3.24)
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For computing velocity at time moment ¢ + dt¢, velocity at time moment ¢ and

acceleration at time moments ¢ and ¢ + dt are used:
- - 1
Vi(t+ot) =Vi(t) + 3 d; (t) + a; (t + dt)] ot. (3.25)

(v) Computation of system’s characteristics
A big advantage of M D simulations is their applicability at the level of classical
atoms. All characteristics which are well defined in classical and statistical me-
chanics can be computed. The two main problems to be taken into account when
performing M D simulations, are accuracy and efficiency. System’s characteristics
can be roughly divided into four categories:
(1) Structural characteristics, for example radial distribution function
(2) State equation, for example phase diagrams, static response like coefficient of
thermal expansion
(3) Transport characteristics, for example viscosity, thermal conductivity, diffusivity
(4) Non-equilibrium response - for example plastic deformation
Physical quantity (A) is determined as mean value of its values A (¢) in time mo-
ments ¢ during a long time interval (large number n of M D steps) after initial

relaxation during long enough time (with relaxation time () [99]:
1< ,
(4) = — 2; Aty + jot) . (3.26)
]:

If simulation is long enough so that the system can achieve equilibrium state (if
simulation is much longer than all relaxation times), this time averaging of quantity

(A) is equivalent to the ensemble averaging.

3.1.2 LAMMPS code for molecular dynamics

An usual algorithm for developing M D simulations can be roughly divided into next
subsequent steps:
(1) geometric formation of the simulation setup

(77) definition of the atom types and their attributes (e.g., shape, mass, charge)
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(7i1) definition of the interactions between all atom types

(1v) implementation of the model and M D simulation of a certain physical phe-
nomenon, (e.g., in our case we simulate effects related to nanoscopic tribological
behaviour of ionic liquids)

(v) storage of the relevant data and its analysis with the goal of obtaining results
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a well-
known and widely used M D code [98]. Development of M D simulations in LAM M PS
code can be roughly divided into three subsequent phases:

(a) pre-processing, which includes points (i), (i), (¢i7) from the above list

(b) processing, actually this is M D simulation which corresponds to the point (iv)
from the above list and

(¢) post-processing, which corresponds to the point (v) from the above list
Processing is done via development of LAM M PS scripts, while for pre- and post-
processing we write codes in C programming language. M D simulations are com-
putationally highly demanding since we work with systems that contain tens of
thousands of atoms. The key advantage of LAMMPS is parallelization, which
means that LAMMPS codes can be run on a supercomputer. We write Linux
bash scripts for submitting simulations to the supercomputer, as well as for the ef-
ficient manipulation with the output files. For visualization we use VM D (Visual

Molecular Dynamics) software package [101].

3.1.2.1 Multi-level summation method for summing long-range Coulom-

bic interactions

Long-range Coulombic interactions are treated in LAMMPS with methods that
work in the inverse k-space [102-104]. In our LAMMPS simulations we apply the
Multi-level summation (MSM) method which maps the charge of atoms onto a
3D mesh and uses hierarchy of several levels of coarse-graining of the mesh on
which it directly computes Coulombic interaction. Competitive methods to M SM
method for summing Coulombic interactions are Ewald and Particle Particle Particle
Mesh (PPPM) methods, but they can be applied in case of a 3D simulation just

if periodic boundary conditions are present along all three directions. On the other
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side, M\SM method can be applied in case of a 3D simulation without restrictions
related to periodic boundary conditions, i.e., it can be applied for non-periodic as
well as for mixed periodic and non-periodic boundary conditions. When we work
with bulk ILs, our system is periodic in all three directions. On the other side,
in case of confined ILs, our system is periodic along the x and y directions and
it is fixed along the z direction. Actually, we might state that our system with
confined I'L includes mixed periodic (along two directions) and non-periodic (along
one direction) boundary conditions, hence M SM method is adequate for treating

long-range Coulombic interactions in our simulations.

3.2 Simulation setup and models of ionic liquid

3.2.1 Simulation setup

We have developed our simulation setup bearing in mind lubrication role of IL,
hence it consists of two solid plates and IL which is confined between them and
also present in the lateral reservoirs. Schematic of simulation setup together with
configuration snapshots in three cross-sections, i.e., xz,yz, xy cross-sections which
are exported from the VM D (Visual Molecular Dynamics program [101]) is shown
in Figure 3.4 in case of SM model and in Figure 3.5 in case of TM model (e.g.,
diameter of neutral tail is arbitrary chosen to be the same as the diameter of cationic
head). Schematic in simulation setup figures (i.e., Figures 3.4 and 3.5) indicates the
number of particles used and the imposed normal load F), and lateral velocity V. In
VM D configuration snapshots dimensions of the system along the three axes, i.e.,
x,y, z, are noted. The simulation setup was loosely inspired by previously published
research by others [39, 49, 51, 52]. By implementing such a geometry we have at-
tempted to achieve:

(1) a realistic particle squeeze—out behaviour with the formation of two lateral lu-
bricant regions (in a similar manner to the simulations of Capozza et al. [52]) and
(77) a system that allows the lubricant to be externally pressurized.

For the description of the solid surfaces we have combined rigid layers of particles

moving as a single entity on which the external force or motion is imposed, denoted
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Figure 3.4: (a) Schematic of the simulation setup shown as yz cross-section. There
are two solid plates at the top and bottom of the system, consisting of two regions: at
the outermost ones the particles are moving as a single entity (Top/Bottom Action)
and at the innermost ones the particles are at a controlled temperature (Top/Bottom
Thermo). The thermalized layers are in direct contact with the lubricant while the
action layers are used to impose external velocity and/or force to the solid plates.
(b)-(d) Side views of the typical simulation configuration and key dimensions of the
geometry. (b) Side (zz) view with respect to the shear direction. (c¢) Front (yz)
view in the direction of the Top plate motion. (d) Top (zy) view of the system. The
solid plates are made up of F'C'C (111) atomic layers. The ionic liquid is composed

of an equal number of cations (blue spheres) and anions (red spheres).

by "Top Action" and "Bottom Action" in Figures 3.4 and 3.5 (a), with thermalized
layers (denoted by "Top Thermo" and "Bottom Thermo") in which particles vibrate
thermally at T' = 330 K.

The Nose-Hoover NV'T' thermostat is used to control the temperature. As in
previous M D simulations [43, 49, 51, 52, 56|, under similar operating conditions,
the details of the adopted dissipation scheme are not expected to change the essence
of the system response on mechanical deformation. The relaxation time of the
Nose-Hoover NVT thermostat for the lubricant and the solids is 200 fs (check Ref-

erence [43]). The plates were treated as rigid bodies, with the lower one being fixed
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Figure 3.5: Schematic of the simulation setup shown as yz cross-section. Dimensions
of the system along the y and z axes, together with the directions of the imposed
normal load F, and lateral velocity V, are noted. The total system length in the
z direction is 125 A. There are two solid plates at the top and bottom of the
system. Ionic liquid is composed of an equal number of cation—tail pairs and anions
(cations: blue spheres; tails: cyan spheres; anions: red spheres). (a) Schematic of
the simulation setup presented as yz cross-section, showing the number of atoms in
each region. (b) Side (zz) view of the system showing the dimensions along the z
and z direction. (c) Side (yz) view of the system. (d) Top (zy) view of the system

showing the dimension along the y direction.

and the upper one subjected to a force oriented along the z direction, i.e., normal
load F, , as shown in Figures 3.4 and 3.5 (a) and driven along the z direction at a
constant velocity V.. The solid plates were made up of densely packed atomic layers
at a FCC (111) lattice arrangement. Periodic boundary conditions were applied in
the x and y directions. The Bottom plate can therefore be considered to be infinite,
while the Top plate is surrounded by vacuum pockets on its sides, the so called
lateral reservoirs, in which the lubricant can freely expand. The lateral reservoirs
were implemented as a mechanistic way for allowing the lubricant to be dynami-
cally squeezed in or out as an external load or velocity is applied, or due to local
fluctuations during the simulation progression. At the same time, the lubricant re-

mains an infinite continuous body in the x and y directions, similar to the conditions
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observed in a real tribological system from a mesoscopic point of view. This is espe-
cially important if the system experiences partial or complete crystallization under
compression, check Figure 3.29 in section 3.4. While the total number of considered
lubricant molecules is constant, the finite upper plate width and the resulting free
space enable the particles to be squeezed-out into the lateral reservoirs. The number
of lubricant molecules effectively confined inside the gap can therefore dynamically
change depending on the loading conditions. This is important for exploring the
possible states of a mechanical system of particles that is being maintained in ther-
modynamic equilibrium (thermal and chemical) with a lubricant reservoir (i.e., void
spaces in tribological system). The nanotribological system is open in the sense
that it can exchange energy and particles, realizing an effectively grand-canonical

situation, check Figures 3.4 and 3.5 (c¢) and Reference [105].

3.2.2 Models of ionic liquid

In this subsection we present implementation details about the modeled solid plates

and IL lubricants in case of SM and T'M models of ionic liquid, respectively.

3.2.2.1 Salt model of ionic liquid

The model used in this work is a coarse—grained model of I L which has already been
exploited in previous studies [49, 51, 52, 64| and it is known as SM model (salt—
like model). It is a charged Lennard—Jones system consisting of cations and anions.
There are two types of interatomic interactions in our system and both of them are
non-bonded: Lennard-Jones (LJ) potential and Coulombic electrostatic potential.
In the current work we are comparing bulk and confined I L properties. Therefore,
there are three different atom types taken into consideration: () cations, (i) anions
and (7ii) solid plate atoms. The solid plates consist of nine densely packed layers in
a FCC (111) lattice arrangement. Between all types of atoms we apply full LJ 12-6
potential, with the addition of Coulombic electrostatic potential for the interactions
between ions. In our system the cations and the anions are charged particles, while

the solid plate atoms are electroneutral. Accordingly, we have implemented a L.J
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12-6 potential combined with Coulombic electrostatic potential:

12 6
Oup Tap L qg;
Vg (1i) = 4eq — _ 3.27
5 (1) = deas [() (%) ] L (327
where 4,7 = 1,..., N are particle indices, and N is the total number of particles.

Parameters {€,s, 045} define the LJ potential between different types of particles:
a, € {A,C, P} which refer to anions, cations and solid plate atoms, respectively.
The diameter of cations and anions is set to occ = 5 A and oas = 10 A, respec-
tively. The mass of cations and anions is m¢c = 130 g/mol and my = 290 g/mol,
respectively. The asymmetry of ion sizes is typical in many experimentally explored
systems and the parameters have already been explored in literature, check Refer-
ence [52, 64]. The atoms of the solid plates have a diameter of opp = 3 A. The mass
of the solid plate atoms is mp = 65 g/mol. The L.J potential has a short-range im-
pact, since it vanishes rapidly as the distance increases o< r~¢, while the Coulombic
potential has a long-range impact, o 1/r. To handle long-range interactions, we
have used a multi-level summation method (MSM) [104], since it scales well with
the number of ions and allows the use of mixed periodic (in x and y directions) and
non-periodic (in z direction) boundary conditions, which are present in our simula-
tion setup with confined /L. On the other hand, in our simulation setup with bulk
I L, periodic boundary conditions are applied in all three directions ({z,y, z}). lons
are modeled as coarse grain particles, the charge of which is set equal to elementary:
gc = +eand gy = —e, ie., e = 1.6- 10" C. The dielectric constant is set to €, = 2
to account for the dielectric screening, as in Refs. [51, 52, 64].

In engineering applications, the lubricant molecules typically interact with metal
surfaces. Computationally efficient many-body potentials such as embedded atom
method (EAM) potential [106, 107| can be applied for the description of such solids.
Such schemes have been employed extensively for modeling a wide range of systems
including metals [107] and metal-metal oxide interfaces [108]. In addition, in order
to account for the induced charges on the metallic conductor surface by the ions, the
Drude-rod model developed by Iori and Corni [109] which consists of the addition

of an embedded dipole into each metal atom, thus rendering it polarizable, has been
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applied in previous studies [39]. In this study, modeling the elasticity of metallic
plates plays a secondary role (central role belongs to /L lubricant). Therefore, we
have selected a simplified model in which plate atoms interact strongly with each
other if they belong to the same plate, i.e., epp = 120 kCal/mol, as opposed, to
a very weak interaction between the different plates €iop/bottom = 0.03 kCal/mol.
The parameter epp is so strong in order to ensure that the initial configuration of
the solid bodies will basically remain unchanged (apart from high frequency oscil-
lations). Furthermore, even though typical engineering systems are often metallic,
our initial coarse grained M D studies of liquid behaviour according to the applied
conditions justified the implementation of a simpler solid system which does not
feature substrate polarization, check Reference [64]. Finally, it is possible that the
actual surfaces might feature carbon coatings or depositions, in which case the sur-
face polarization can be of secondary importance. In the Table 3.1 we present the
values of {€,5, 045} parameters used in our model. Cross-interaction parameters are
calculated by Lorentz-Berthold mixing rules: €, = /€4 - €5 and 045 = (04 + 05) /2.
The starting configuration for our M D simulations was obtained via a relaxation
process. In order to obtain a stable and reproducible initial configuration, the re-
laxation was performed through a step-wise increase of absolute ion charge at steps
of Alg;| = €/10,i = {A, C}. Each time the charge of the ions was increased, a mini-
mization of the system’s energy through conjugated gradient method was performed.
In this way, the system characteristics were gradually converted from pure LJ to a
Coulomb interaction dominated system through a series of stable configurations. As
we are aiming at understanding the lubricant behaviour at mesoscopic conditions
observed in a ring-liner system, we have attempted to include in our M D model the
potential IL pressurization that can occur due to the liquid flow resistance, as well
as the variable pressure arising from the reacting gas in the combustion chamber.
Inserting gas molecules directly in the simulation for this purpose would require a
reduction of the time step due to higher thermal velocities of the gas. In turn, the
computational cost would increase significantly making simulations impossible to
run in realistic computational time. Therefore, in order to understand the effect of

external pressure on the IL behaviour, we have applied a repulsive force between
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Table 3.1: List of LJ parameters of SM model of ionic liquid.

pair aff | eas [kCal/mol] | s [A]
cC 0.03 5
AA 0.03 10
CA 0.03 7.5
PC 0.3 4
PA 0.3 6.5
PP 120 3

the topmost rigid solid layer and the IL particles in the form of a truncated and
shifted L.J potential. Two cases with cut-off distances at 15 A and 4 A above the
outermost Top plate layer were studied so that the IL inside the confinement gap
would remain outside the influence zone of this mechanistic force. By appropriate
selection of the LJ parameters for this potential, the resulting external pressures

applied on the unconfined surface of the I L were 120 kPa and 250 kPa, respectively.

3.2.2.2 Tailed model of ionic liquid

In this study, we have applied a generic coarse grained /L model, introduced in
Reference [52|. In this model, the anion is represented as a negatively charged
large—sized spherical particle, while the cation is a dimer consisting of a positively
charged small-sized spherical particle (i.e. cationic head), and a neutral spherical
particle (tail) attached to the corresponding cationic head via an elastic spring, see
Figure 3.6 and Reference [110]. Since the cationic tail is the principal feature of the
model used in this paper, we will refer to it as tail model (T'M). The asymmetry
of the cation leads to amorphous (glassy) states for realistic values of interaction
parameters (e.g., for hydrocarbons), in contrast to the simplest coarse—grained model
of IL known as SM model (salt-like model), where both cations and anions are
spherical. The SM model has already been exploited in previous studies [49, 52, 64,
111]. Despite an obvious advantage of simplicity, in order to avoid crystallization,
the SM model relies on a very weak non-bonded Lennard-Jones interaction which

makes any comparison with real /L only qualitative.
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(a)anion

(b) TM3 cation/tail  TM5 cation/tail ~ TM9 cation/tail

o 00
o o 00

Lrws=4 A Lms=5A
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Figure 3.6: Schematic representation of (a) anion and (b) cation molecules in 7'M
model. The anion is represented by a spherical particle with a diameter oaa = 10 A
The cation molecule consists of a charged head with a diameter occ = 5 Aand a
neutral tail. In order to be more concise, we refer just to cationic head as the cation.
The cation and its tail are connected by a spring with length L = (0¢ +or)/2. The
size of the tail has been varied and (a) TM3, (b) TM5 and (c) T M9 ionic liquids
have a tail diameter of 3, 5 and 9 A, respectively. The molecular asymmetry is a
feature of real ionic liquids and chosen parameters resemble [BMIM|* [PFs]” IL
properties, check References [49, 51].

In addition, the SM model cannot account for molecular asymmetry featured in
real ILs. Nevertheless, the SM model has been proven to be quite useful for the
development of the simulation methodology, as it reduces computational complexity
and enables faster equilibration (e.g., for obtaining static force-distance characteris-
tics as in Reference [64]). More complex extensions of 7'M coarse grain models can
involve several tails of different size, like in Reference [49]. For simplicity reasons,
we restrain our considerations in this study to a single neutral tail of a variable size.
Although a whole cationic dimer is an entity which actually represents a cation, in
order to be more concise we refer just to cationic head as the cation. One might raise
a question what are the reasons for the attaching of a neutral tail to a cation? First
of all, real ILs usually include cations that consist of the cationic head (positively
charged) and alkyl chain (neutral part of cation). Alkyl chains can have different

lengths (different number of C' atoms). Furthermore, the tail enhances the general
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tendency of ILs to form a glass rather than a crystal at low temperatures [52]. As
the previous studies have shown, the shape of I L molecules may affect their layering
structure [49]. According to that, the central question which we address in this
study is how does the tail size affect the structure, static and dynamic behaviour,
as well as, lubrication properties of a generic IL represented via tailed—model.

- Interaction model
In the current work we are dealing with both bulk and confined /Ls. Hence, in
case of simulation setup with confined ILs, there are two solid plates consisting of
solid plate atoms. To sum up, in total there are four different atom types taken into
consideration:
(1) cations, (i7) tails, (4i7) anions and (7v) solid plate atoms.
In cation—tail dimers an elastic spring connects cations and tails enabling the tail’s
freedom of moving independently from its cation, since their connection is not rigid.
Interatomic interactions taken into consideration in our molecular dynamics simu-
lations are:
(1) non-bonded interactions (Lennard—Jones (L.J) and Coulombic electrostatic po-
tential) and
(77) bonded interaction (elastic spring potential in cation—tail pairs). The next equa-

tion defines the interaction potential:

12 6
Oap Tap L qg;
Voc ij) — 4 @ - P EEE—— 3.28
B (r]) € B [( ,r,ij > (TU ) ] + 47T€D€r Tij ( )
where 4,7 = 1,..., N are particle indices, and N is the total number of particles.

Particles which comply to the interaction potential written in the above equation,
i.e., Equation 3.28, can be of different types: a, 8 € {A, C, P} which refer to anions,
cations and solid plate atoms, respectively. On the other hand, interaction of tails
with all other atom types, including tails themselves, is implemented using a purely
repulsive potential, namely a shifted and cut LJ 12-6 potential. It means that full
LJ 12-6 potential is shifted up for the value of potential well depth (¢) and cut at

the distance corresponding to the potential well minimum (7., = 2%/%¢). The next
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equation defines the above mentioned interaction potential:

ng rij

12 6
Vap () = €ap + 4€ap [(Uaﬂ> - (%6) ] iy < 200, (3:29)

and Vg (ry) = 0,1y > 21/60a5, where in Equation 3.29 at least one of indices
a, B =T which refers to tails. The ionic liquid is electroneutral, i.e., the number of
cations and anions is the same. The total number of ionic liquid molecules (cation—
tail dimers and anions) is Ny, = 3000. Therefore, the total number of ions is
Ne = Ny = 1000 and the number of tails is N = N = 1000.

- Model Parameters
In this study we have fixed the diameter of the cationic heads and anions to occ =
5 A and oaa = 10 A, respectively. Such choice respects the asymmetry that exists in
ILs and it is consistent with other models, as well as, for example [BMIM]" [PFy)~
ionic liquid, check Reference [49, 51, 52, 64|. The solid plate atoms have a diameter
of opp = 3 A. We have taken into consideration three different TM models of L
depending on the tail size which is defined as Lennard—Jones o1 parameter: small—
tail cationic dimer (i.e., TM3 model with opr = 3 A), symmetric cationic dimer
(i.e., TM5 model with opp = occ = 5 A) and large-tail cationic dimer (i.e., TM9
model with o =9 A) The values of the tail size are chosen to take into account
their relation to the size of the cationic head which is occ = 5 A, hence our choice
can be described as: tail size less—, equal to— and greater than— the size of cation.

Drawing a comparison with the experiment in Refs. [53, 67|, the TM IL mimics
a folded alkyl chain and the radius of the sphere is related to the gyration radius of
the chains. Depending on the length of the alkyl chain, the sphere has a smaller or
lager radius. Thus, the size of a sphere which represents a neutral tail in TM ILs
does not compare directly with the alkyl chain length. However, we can make a
qualitative analogy. While the representation of the alkyl chain as a neutral L.J
sphere does not include all the microscopic level features, we will show that the
three selected radii, i.e., orp = {3,5,9} A, result in clear differences of the bulk
properties of I Ls and their lubrication response. Each cation—tail pair is connected

via identical elastic spring defined by the next two parameters: elastic constant
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Table 3.2: List of LJ parameters of T'M models of ionic liquid; the tail size is

denoted by ot since it is variable.

pair af3 egé [kCal /mol] Oup [A]

CcC 1.1 5

AA 1.1 10

TT 1.1 oTT

CA 1.1 7.5

CT 1.1 5+ orr) /2
AT 1.1 (10 + opr) /2
pPC 5.3 4

PA 9.3 6.5

PT 5.3 3+ orr) /2
PP 120 3

K = 80 kcal/ molA” and equilibrium length of the spring Iy = (0cc + orr) /2. The
strength of the L.J interactions between different charged parts of ions (i, j = {A, C})
is €5 = 1.1 kcal/mol. The L.J parameters are chosen to compare well with one of
the most widely studied ionic liquids [BMIM]" [PFg]~, check Reference [49, 51].
The charge of ions is set to elementary: go = +e and g4 = —e, where e = 1.6 -
101? C. The strength of the ion-substrate interaction was tuned to ensure complete
wetting, e,p = 5.3 keal/mol, o € {A, C, T}. Only when the strength of ion-substrate
LJ interaction e,p equals the strength of inter-ionic L.J interaction e,g, partial
wetting is observed, i.e., €,p = 1.1 kcal/mol, where a, f € {A,C, T} (more details
about the wetting behaviour of T'M ionic liquids are provided in section 3.3 in
the subsubsection 3.3.2.3). In the table 3.2 we present the values of {e,s,0a5}
parameters used in our models. Cross-interaction parameters are calculated by

Lorentz-Berthold mixing rules: €, = /€, - €5 and 0,5 = (0, + 0p) /2.

3.3 Bulk ionic liquid

The main focus of our research is oriented towards revealing the properties and

behaviour of confined /L, since I L accomplishes its lubricating role when confined
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between solid surfaces. The length scale of confinement we are interested in is
expressed in nanometers, hence the nanoscale confinement affects the structure and
behaviour of IL. In order to better understand the effects of nanoconfinement
on IL, we should first understand the L itself, which means that we should first
characterize bulk I L. For this purpose we have relaxed bulk /L and determined its
viscosity characteristics, as well as its wetting behaviour. This section is dedicated
to our study of bulk /L in case of SM model (subsection 3.3.1) and in case of three

representative 7'M models (subsection 3.3.2).

3.3.1 Bulk salt model of ionic liquid

3.3.1.1 Solidification and melting of bulk salt model of ionic liquid

In order to confirm that the SM modeled IL used in our M D simulations remains
in a liquid state for the conditions of interest, its liquid—solid and solid-liquid phase
transitions have been studied. The bulk ionic liquid was implemented by randomly
placing a chosen number of ions (Ng = N4 = 1000) into a 3D simulation box
that is periodic in all three directions, with pressure kept constant at 100 kPa.
Phase transitions were then achieved via the application of linear ramping to the
temperature, in a similar approach to the calculations performed in Reference [52].
Starting from an initial temperature 7} = 330 K where the IL is in a liquid state,
the temperature was decreased linearly down to 7, = 180 K. The absolute rate of

1. A liquid-solid phase transition

temperature change was: |dT'|/dt = 1.67 K ns~
was observed during the I L cooling.

After reaching T, = 180 K, the temperature was increased back to the initial
value of T} = 330 K. A solid-liquid phase transition was observed during this heating
process. In Figure 3.7 the IL internal energy change AF;; and temperature 1" are
shown as functions of time t. The temperature profile follows the applied conditions
and its superimposition to internal energy change allows the observation of the
dynamic behaviour of the liquid. By plotting the averaged internal energy change

of the IL against its temperature in Figure 3.8, the hysteresis behaviour in the

solidification—melting cycle is clearly observed, while the phase transition locations
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Figure 3.7: (Left panel): Bulk internal energy change and temperature of the ionic
liquid as a function of simulation time. (Right panel) Snapshots of ion arrangement
at liquid (A), (C) and solid (B) state.

can be clearly defined. It can be seen that during the cooling process, the internal
energy of IL linearly decreases until the temperature reaches Ti; = 190 K, at which
point a sharp drop is observed. This indicates a first order thermal phase transition
(liquid-solid). During the heating process, a similar sharp jump of energy is observed
at Ty = 305 K which corresponds to an opposite phase transition (solid-liquid).
The obtained results are in a good agreement with Reference [52] and confirm that
the I'L behaves as a liquid for temperatures higher than 310 K, under atmospheric
pressure conditions. In the rest of our calculations a temperature value of 7' = 330 K
was applied, in order to allow a liquid state that is combined with local solidification

under elevated contact pressure conditions.

3.3.1.2 Relaxation simulations

We have revealed the solidification and melting phase transitions of bulk SM ionic

liquid, under the condition of atmospheric pressure. The subsequent step was to
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Figure 3.8: Bulk internal energy change of the ionic liquid as a function of temper-
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ature. The internal energy was calculated by averaging on segments of AT = 0.5K.

make the bulk /L comparable with its confined counterpart and to do so we had
to determine simulation box volume which enables the pressure experienced by the
confined IL. More specifically, for the present system of bulk SM ionic liquid
confined between the solid plates (c.f. Figure 3.4), the pressure was p ~ 1 MPa.
The Nose-Hoover NVT thermostat was used to control the temperature and was set
to T'= 330 K. The system was relaxed for t,,, = 3 - 107 fs until the internal energy
had converged and the pressure had approached the desired value. The simulation
timestep was dt = 0.5 fs. We have obtained pressure stabilization at (p) = 1.1 MPa
with a side length of the cubic simulation box at L = 99 A. The energy relaxed to a
value of (Fiy) = 0.7597 kCal/mol. The molar and mass density of the bulk /L was
prn = 3400 mol/m? and p,,, = 719 kg/m? respectively.

3.3.1.3 Viscosity characteristics

We have calculated the viscosity in two ways: using the Green—Kubo relation since

the viscosity of a system can be represented as an integral of the auto-correlation
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Figure 3.9: Dependences of internal energy Fi. and pressure p on simulation time
ts in case of bulk SM ionic liquid. Solid line in p (t5) plot denotes the value of target
pressure p = 1 MPa (p =~ 10 atm).

function [112], and using non—equilibrium molecular dynamics simulations with dif-
ferent shear strains.

In the non—equilibrium shearing simulations, the bulk I L is placed into a triclinic
(non—orthogonal) simulation box with periodic boundary conditions applied in all
three directions. Due to the deformation of the simulation box, every point in the
box has an additional velocity component (a so called streaming velocity). In order to
prevent the streaming velocity from affecting the thermal kinetic energy, we use the
so-called SLLOD thermostat [113, 114]. The SLLOD thermostat accounts for the

streaming velocity which depends on an atom’s position within the simulation box
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Figure 3.10: Configuration snapshot (yz cross—section) of a bulk /L at the end of

relaxation simulation. Cations are represented as smaller blue spheres and anions

as larger red spheres.

and it needs to be accounted for controlling the temperature. Controlled shearing of
the simulation box results in a stress acting on /L, which is quantified via the stress
tensor. The relation between the stress tensor components 7;; and the shear rate +;;
of corresponding shear strain €;;, with coefficient of viscosity 7;; as a proportionality

constant is:
Tij = Nij * Vijs (3.30)

where ij = {xy, xz,yz}. We have applied three independent shear strains (e, €,5, €;).
For each of them we have calculated its corresponding stress tensor component
(Tuwys Twz, Tyz). All shear strains were the same, i.e., €, = €,, = €,, = € = 1 leading
to the shear rate of:

) 1 1

y=¢€ = (3.31)

' — 7
ttot ttot

where ty,; is the total simulation time of the shearing simulations. We have per-
formed simulations at four orders of magnitude of the total simulation time: i, =
{0.1,1, 10,100} ns, and thus at four orders of magnitude of the corresponding shear
rate. In this way we wanted to check the quality of our relaxation procedure and if
there are shear rate dependence changes in the system. We have iterated the shear-

ing simulations (at a shearing velocity of 1 m/s) using the output of the previous
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Figure 3.11: Dependence of Green-Kubo (GK) viscosity coefficient n%K on simula-
tion time ¢, in case of bulk SM ionic liquid. The time needed to obtain the viscosity

coefficient is around ¢, = 5 ns.

run as the input of the next run, obtaining higher strains (up to a strain of 5). We
did not observe a strain dependence in the response of the system, meaning that the
result is unaffected if the strain is further increased.

In Figure 3.11, we show the time relaxation of the Green—Kubo viscosity coef-
ficient, which stabilizes around 7% = 0.2039 mPa -s. The configuration snapshot
of the bulk /L at the end of the simulation (check Figure 3.10) shows that the ions
remain randomly positioned, like they were at the start of simulation, which indi-
cates the liquid state of the bulk ionic liquid. The simulations for all three shear
strains give similar values of stress components, and resulting values are shown in
Figure 3.12. The points {#, 7} were obtained via shearing simulations and the solid
line was obtained according to 7 = 79K -4, where n“K was obtained via Green-Kubo
relation. Hence, we conclude that the results of shearing simulations are in agree-
ment with the results of relaxation simulation and therefore there are no changes in

the bulk system which are shear rate dependent.

3.3.1.4 Wetting properties

Besides the necessary relaxation of bulk /L and determination of its viscosity charac-

teristics, the liquid—solid interface should be well-known so that we can understand
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Figure 3.12: Average stress tensor component 7 in function of the shear rate ¥ of

10

a bulk SM ionic liquid. We have conducted shearing simulations on four orders
of magnitude of the shear rate 4, therefore with three orders of magnitude span,
which is followed by three orders of magnitude span of 7. Points are obtained via
shearing simulations and solid line is obtained according to: 7 = n%K .4, where n%K

is obtained via Green—Kubo relation.

the behaviour of liquids confined between solid plates. Accordingly, it is important
to investigate the wetting properties of modeled I Ls. For this purpose we examine
the wetting properties of SM ionic liquid by placing an IL droplet consisting of
Ny, = 2000 ions, i.e., No = N4 = 1000, above a neutral solid plate (where the term
above means a higher z coordinate) which consists of one atomic layer in a FCC
(111) lattice.

Wetting properties simulation consist of two parts: (1) movement of the solid
plate at a constant velocity of V, = 1 m/s towards the IL droplet, which promotes
the contact of IL droplet with the plate. Due to the LJ interaction between the
ions and solid plate atoms, the /L droplet starts covering the plate. The ending
configuration of this part (1) simulation is used as the starting configuration of the
part (2) simulation in which the solid plate rests and a long simulation time of

t, = 5 ns is given to the ionic liquid, so that it can spread over the plate. In the end
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part 1 (start)

Figure 3.13: Results of wetting properties simulation in case of SM ionic liquid.
Left panels show yz cross—section, while right panels show xy cross—section of the

system consisting of an SM ionic liquid droplet and a solid plate.

of the part (2) simulation, the ionic liquid is placed on the solid plate in the way that
it forms a cationic-anionic layer over the whole plate, with an amorphous droplet
in the center of the plate. We might conclude that, for the value of the strength of
ions-plate LJ interaction, i.e., e;p = 0.3 kCal/mol, SM ionic liquid completely wets
the given solid plate (LJ interaction parameters {o,p, €ap} are taken from Table 3.1
in subsubsection 3.2.2.1 of section 3.2). In Figure 3.13 we show the results of wetting

properties simulation in three vertical panels: the top one shows the yz (in the left-
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hand side of the panel) and xy (in the right-hand side of the panel) configuration of
the system at the start of part (1) simulation. The middle panel shows the same two
configurations of the system at the end of part (1) simulation, which is taken as the
start of part (2) simulation. The bottom panel shows the same two configurations

of the system at the end of part (2) simulation.

3.3.2 Bulk tailed models of ionic liquid

3.3.2.1 Relaxation simulations

In an analogous way like in the case of bulk SM ionic liquid, check subsubsec-
tion 3.3.1.2, we have performed relaxation simulations in case of three representative
T M ionic liquids. An initial configuration for a bulk 7'M ionic liquid was obtained
by a random placement of ions (No = Ny = N4 = 1000) into the simulation box
(cube) with periodic boundary conditions in all three directions. We have chosen
the simulation box volume which ensures, after the relaxation of the IL structure,
the pressure comparable to the one experienced by confined IL. In case of the
present system the pressure was p ~ 10 MPa, which corresponds to the normal force
of 10* pN acting on a surface of 10* A? (see Figures 3.5 and 3.35). We provide
implementation details related to the relaxation simulations: a Nose-Hoover NV'T
thermostat at T" = 330 K is used to control the temperature; the system is relaxed
for tior = 3 x 107 fs until internal energy converges and pressure approaches the

desired value of p ~ 100 atm; simulation timestep is dt = 0.5 fs.

Table 3.3: Overview of the results of relaxation simulations: opr is the tail size, L
is the side length of cubic simulation box, . is the estimated relaxation time, (p)
and (FEi,) are the mean values of pressure and internal energy respectively, averaged

over the time span t. <t < tot, Where t;,; is the total simulation time.
OTT [A] L [A] trel [08] | Lot (18] | (p) [atm] | (Eiy) [kCal/mol]

3 104.5 11 30 95.31 —0.62
5 110 0 19 103.81 —0.57
9 129 20 30 118.21 —0.54
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Figure 3.14: Dependences of internal energy FEj,; and pressure p on simulation time
ts in case of bulk (a) TM3, (b) TM5 and (c) T'M?9 ionic liquid. Solid lines in p (¢;)
plots denote the value of target pressure p = 10 MPa (p ~ 100 atm) in all cases.

In Table 3.3 we are showing the overview of the relevant parameters of relaxation
simulations, for TM3, T'M5 and T'M9 bulk IL. In Figure 3.14 we are showing the
dependences of bulk IL's internal energy Ej,; and pressure p on simulation time
ts for bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquid. Figure 3.15 presents
the zy cross—section snapshots of bulk /L configurations at the end of relaxation
simulations for (a) TM3, (b) TM5 and (¢) TM9 model. Those results have clearly
revealed a strong dependence of IL's structure on the tail size. We have obtained
three completely different outcomes of relaxation simulations in terms of internal
energy and structure (check Figure 3.14), depending on the tail size.

- Tail significantly smaller than cation (TM3 model)

We can notice three different segments (check Figure 3.14(a)) in the dependences of
internal energy and pressure on simulation time. First, there is a smooth decrease
of both parameters over the time interval of ¢ < 10 ns. The first segment is followed
by a sudden drop of Ei; and p in the time interval 10 < ¢, < 11 ns. For t, > 11 ns
both system parameters remain stable in terms of their average values. Therefore,
we might estimate the relaxation time as t,o; &~ 11 ns. Actually, the values of E},; and
p are oscillating around their averages (a common result in M D simulations) which

remain fixed in the time span t,o < t, < tit. Since the temperature is thermostated
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at T' = 330 K we might not speak about a phase transition, but those sharp drops
of internal energy and pressure are a demonstration of a state transition. Structural
changes consistently follow the changes in system parameters, hence there is a clear
transition from initially randomly positioned atoms into an ordered structure. We
might conclude that a small tail does not affect the cationic-anionic ordering into a
cubic lattice, which arises due to Coulombic interaction. We should emphasize that
the obtained cubic lattice is not an ordinary simple cubic lattice, but it is tilted.
Ionic layers are oriented in the way that they follow the face diagonal of the cube.
A conclusion is that T'M3 bulk IL does not stay in initially assigned liquid state
during the relaxation process, but it leaves the relaxation process as an ordered
structure (check Figure 3.15(a)).

- Tail of the same size like cation (i.e. symmetric cationic dimer, TM5
model)
Both system parameters Fi; and p remain stable (check Figure 3.14(b)) and with
practically the same average values throughout the whole simulation, indicating
that a state transition does not happen. The structure of bulk I L remains the same
during the simulation, which is consistent with the behaviour of those parameters.
We can claim that relaxation of bulk T'M5 ionic liquid gives a liquid state as the
outcome (check Figure 3.15(b)).

- Tail significantly larger than cation (TM9 model)
There is a continuous and smooth decrease of both Ei and p over a long time
span t; < 20 ns (check Figure 3.14(c)). Later during the relaxation simulation
those parameters remain stable, hence we estimate the relaxation time in this case
as te ~ 20 ns. It is almost two times longer than the relaxation time of T'M3
model. Structural changes are consistent with system parameters’ changes, hence
we notice a clear state transition from initially randomly positioned atoms into an
ordered structure (check Figure 3.15(c)). We can state that a large tail enables
cationic-anionic ordering, which arises due to Coulombic interaction. All layers are
oriented along the face diagonal of the cube and they are composed of alternating
ionic and tail layers, namely ionic layers consisting of two cationic—anionic sublayers

separated by tail layers consisting of two tail sublayers. Tail sublayers are organized
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(@) TM3 (or=3A) (b)TM5(or=5A) (c) TM9 (or=9A)
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Figure 3.15: Configuration snapshots of bulk (a) TM3, (b) TM5 and (c) T'M9 ionic
liquid (i.e., with tail of diameter 3, 5 and 9 A, respectively). We may notice that each
configuration snapshot represents a different state, i.e. TM3 bulk I L crystallizes into
a tilted simple cubic crystal structure, oriented along the face diagonal; 7'M 5 bulk
1L is in liquid state; T'M9 bulk IL crystallizes into crystal planes with alternating

ionic—tail layers, oriented along the face diagonal as well.

in the way that the tails of cationic sublayers in successive ionic layers belong to the
tail layer which separates those successive ionic layers. Simply said, the structure
looks like this: ionic layer (consisting of two cationic-anionic sublayers) - tail layer
(consisting of two tail sublayers) - ionic layer - tail layer and so on.

These observations are in agreement with Reference [115] in which the authors
discuss the relationship between the length of alkyl chain and the structure of bulk
IL. When the cationic alkyl chain is short Coulombic forces are dominant, enabling
ordering. We observe this kind of result with T'M3 model. Alkyl chain must be
long enough in order to suppress Coulombic interaction, e.g. number of C' atoms
ne ~ 12, which corresponds to (ng —1)-1.53 A = 16.83 A of tail length, taking into
account that a C-C bond has a length of 1.53 A. Suppressed Coulombic interaction
suppresses lattice arrangement, as we obtain with 7'M 5 model. However, alkyl chain
should not be too long since cohesive interactions increase with the length of non-
polar groups. This leads to a reappearance of structural ordering, like in the case of

TM9 model.
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Figure 3.16: Dependence of Green-Kubo (GK) viscosity coefficient nK on simu-

lation time s in case of bulk T'M5 ionic liquid. The time needed to obtain the

viscosity coefficient is around ¢, = 10 ns.

3.3.2.2 Viscosity characteristics

In an analogous way like in the case of bulk SM ionic liquid, we have calculated
the viscosity coefficient of bulk T'M ionic liquids using non—equilibrium molecular
dynamics (NEM D) simulations with different shear strains, taking configurations
obtained by relaxation. For each value of the shear rate % in the range 0.01 —10 ns™!,
we calculate the average stress tensor component: 7 = (7 + Ty + 7y2) /3. The

average stress tensor component 7 and shear rate 4 are connected by the relation:

T=n-9% (3.32)

where 7 is a generalized viscosity coefficient and « is an exponent. Besides the
NEMD method of simulation box shearing, we have also calculated the viscosity
coefficient using Green-Kubo (GK) relation. In Figure 3.16, we show the time
relaxation of the GK viscosity coefficient of bulk T'"M5 ionic liquid, which stabilizes
around n“K = 0.62 mPa-s. In Figure 3.17 we present the dependence of the average
stress tensor component 7 on the shear rate 4 for TM3, TM5 and T M9 bulk IL.
We notice that the average tensor component stays within the same order of

magnitude in T'"M3 and T'M9 cases, although the shear rate changes four orders
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Figure 3.17: Average stress tensor component 7 in function of shearing rate 4 of
TM3, TM5 and TM9 bulk IL. We have conducted shearing simulations with four

orders of magnitude of the shearing rate (¥ = 0.01 — 10 ns!). The lines are obtained

by fitting the points with Equation 3.32.

of magnitude. Contrary to that, in case of T'M5 model there is a two orders of
magnitude change of the average stress tensor component. We have obtained ordered
bulk /L in case of TM3 and T'M9 model, hence their values of a are low, i.e.
aryvz = 0.15 £ 0.02, aryg = 0.12 £ 0.04. We have obtained rather high values of
their GK viscosity coefficients, i.e. n$i, = 4.72 mPa - s, n$ly = 1.67 mPa - s, which
makes sense due to their ordered structure. In case of T'M5 model we have obtained
aryvs = 0.8 £ 0.1, which is fair enough close to the viscous fluid, i.e., & = 1. This
is in accordance with the liquid-like state of T'M5 model, as obtained in relaxation
simulations, check Figure 3.15(b). Viscosity coefficients determined via shearing
simulations and via GK method in case of TM5 model are different, however they

are of the same order of magnitude: nrys = 0.1435 mPa - s, n$r: = 0.6144 mPa - s.

3.3.2.3 Wetting properties

Analogously to the case of SM ionic liquid, we have determined the wetting prop-

erties of T'M ionic liquids. The relaxed bulk IL obtained via relaxation simulations
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represents the input of wetting simulations, i.e. a liquid droplet (with a cubic shape
initially) is placed on a neutral solid plate which consists of one atomic layer in a
FCC (111) lattice. The LJ interaction parameters take the values ey = 1.1 kCal/-
mol and ep = 5.3 kCal/mol in all cases (i.e. for TM3, TM5' and TM9 model)
except in case of TM5% model where they are equal (i.e. e = erp = 1.1 kCal/mol),
where €1, €;p correspond to ion—ion and ion—plate LJ interaction, respectively. The
results of wetting simulations are presented in Figure 3.18. We have obtained par-
tial wetting (to lower or higher extent) in all cases except in case of TM5* model
in which practically there is no wetting. We notice that with the increase of the
tail size ot the wetting angle increases, i.e. partial wetting becomes weaker. The
wetting process occurs in the way that a mixed cationic—anionic layer forms right
next to the surface (a monolayer coating), and the rest of ions get "spilled" over this
first layer. The tail size affects the quality of wetting. Neutral tails are responsible
for the weakening of Coulombic interaction between the cations and anions. The
formation of a monolayer coating is a mutual mechanism of wetting for every tail
size, but the spilling of ions over that first layer becomes lower with the increase of
the tail size. Comparison of TM5! and T'M5?% cases indicates that the strength of
erp parameter affects the wetting properties strongly. We have obtained a transition
from partial to non— wetting behaviour when changing the value of ep from 5.3 to
1.1 kCal/mol. This result is in agreement with Reference [49] where they conclude
that the increase of LJ interaction between /L and substrate increases the quality

of wetting.

3.4 Confined ionic liquid

We have learned about the characteristics of bulk /L and consequently prepared
for exploring the confined 7L, which is the main focus of our modeling of ionic
liquids. This section is dedicated to the study of confined IL in case of SM model
(subsection 3.4.1) and in case of three representative 7'M models (subsection 3.4.2).
Each of those subsections includes three subsubsections, which are dealing with the

static and dynamic force-distance characteristics of given ILs, as well as with their
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(@) TM3 i
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(b) TM5?
£,= 1.1, g,= 5.3 [kcal/mol]

(c) TM5?
£,=€,= 1.1 [kcal/mol]

(d) TM9

Figure 3.18: Wetting properties results in case of: (a) TM3, (b) TM5', (c) TM5?
and (d) TM9 model of IL. Left panels show yz cross—section of the system, while

right panels show xy cross—section of the system.

91



3. Ionic liquids

tribological behaviour.

3.4.1 Confined salt model of ionic liquid

We have shown that our bulk /L is a Newtonian fluid: the validity of 7 = n%K .4
relation over the whole range of shearing rate 4 supports that fact. Our model does
not assume the nature of viscous response of / L. Only based on simulation results we
conclude that bulk salt model (SM) I L behaves as a Newtonian fluid. For a different
choice of parameters one could obtain power law or solid like behaviour. On the
other hand, confinement strongly impacts the structure of I Ls in thin films [64, 69,
105, 116], therefore when the same I'L is confined it does not behave as a Newtonian

fluid, as we will show in the rest of this section.

3.4.1.1 Static force-distance characteristic

The confinement has a profound influence on the structure of ILs in thin films [69,
105, 116]. The confining surfaces can induce ordering of the particles in their vicinity.
The resulting structure and forces are a result of the interplay between the limited
volume and the particles which fill the space.

We have used M D simulations to obtain the static force—distance characteristic.
In order to determine a reliable static force—distance characteristic, at each calcula-
tion point we have to ensure that the system is in equilibrium. Concerning the real-
ization of those simulations the interplate gap is modified in the following manner:
the gap is increased or decreased (i.e., the Top—Bottom plate distance is changed)
with a constant velocity V, = 5 m/s for a move period of time ¢,,,,. = 20 ps; there-
after, we apply conjugated gradient minimization on the ions in order to minimize
their internal energy and relax them after the move period. As the energy minimiza-
tion is performed, the ions take positions which ensure their minimal internal energy
and the Top plate stays fixed for a stay period of time 44, = 50 ps, during which
period the average value of the normal force is calculated; that value is presented
as a simulation point in F, (d,) static characteristic, check Figures 3.19 and 3.21.
The process was repeated until a distance d ;n, = 11 A was reached. In order to

avoid systematic errors due to the initial position or direction, the plate movement
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is performed in different directions and from different initial configurations, hence
Figures 3.19 and 3.21 show the averaged values of several realizations.

- Detailed analysis of the static force-distance characteristic
In Figure 3.19, the static force-distance characteristic of our system is presented.
The red horizontal line denotes the zero normal force level (i.e., F, = 0). A non—
monotonous behaviour of the normal force F, acting on the Top plate can be ob-
served as the plate-to-plate distance is changing. This distance corresponds to the
gap between the plates where the I L is under confinement. The points (d., F,) have
been obtained through our simulations, while the dashed line serves as a visual guide.
It can be seen that the normal force strongly depends on the interplate distance. The
presence of negative values of normal force F, can be understood as the IL trying
to reduce the plate-to-plate distance due to adhesion phenomena. These changes
of the normal force are correlated with the extraction and inclusion of IL layers
into the gap, as already observed experimentally, check Reference [69]. During the
performed stationary state simulations, the cationic-anionic layers were squeezed
out in pairs, in order to keep the system locally neutral, as observed in experimental
studies [63, 69, 105, 116, 117]. In order to understand the structural evolution of
our system, snapshots of the system from the M D simulations corresponding to
several characteristic points in the F, (d,) curve from Figure 3.19 were selected and
studied in more detail. Figure 3.20 shows the configuration and ionic density distri-
bution along the z—direction for eight characteristic points {A, B,C, D, E, F,G, H},
corresponding to plate-to-plate distances d, = {11,14,17,20, 22,24, 27,32} A re-
spectively. The ions are deliberately depicted smaller than their L.J radii in order to
allow a direct observation of the layering. The position of the atomic centers of the
innermost atomic layers of the Top and Bottom plate are indicated in Figure 3.20 as
zr and zp respectively. As the Bottom plate was fixed, zp remains constant while
zr changes with the Top plate displacement.

A general feature observed under all conditions was the formation of cationic
layer close to the plates. The reason for this is the smaller size of the cations
(ccc = BA) compared to the anions (o744 = 10A). Following this, the second layer
gets induced by the first one (due to Coulombic interaction) and it is populated by

93



3. Ionic liquids

12 ?A T OéA T T T
5 A IV | | _
o 5 0 P* AR S ——
— 8 I L":J_O 5L EJ . . *‘-Itlﬂ‘ . |
=Z gl ¢ 20 25  30. 35 40 |
S o d. (Al
N 4F :
L ! oC
2t J\\ 1
0 Q‘,. i “*-.P‘_ F‘ . G ]
W B E H !
_2 . 1 L 1 i 1

25
d, [A]
Figure 3.19: Dependence of normal force F, on plate-to-plate distance d,. Eight
characteristic points {A, B,C, D, E,F,G,H} with corresponding interplate dis-
tances d, = {11,14,17,20,22,24,27,32} A are marked on the F, (d.) curve. The
horizontal solid line denotes F, = 0 pN. The dashed line connects the points obtained

from the simulation and serves as a visual guide.

anions. The distance between the first and the second layer from the bottom is in
the range of 1 — 2.5 A, meaning that while the centers of mass of the particles are
in different layers, the layers themselves overlap as their distance is smaller than
the particle diameters. From Figure 3.20 we observe that the anionic monolayer
thickness is roughly 7A and corresponds to 10/ V2A, ie., the anions are placed
in the centers of the squares formed by the cations of the neighboring layers (the
diameter of an anion is 10A). We will present the changes in the number of layers
as the interplate gap is reduced and correlate them with the changes in the normal
force F, which is acting on the Top plate.

For the minimum simulated plate-to-plate distance d, = 11 A, shown in Fig-
ure 3.20(A) we can observe a pronounced peak in the anion density distribution
close to the Bottom plate which is aligned with a well-defined anionic layer inside
the gap. The anion peak is marked with the 1C'U indication. In the case of cations,

there are two peaks attached below and above the anionic peak. This situation
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Figure 3.20: Snapshots of system configurations at points {A, B,C, D, E, F,G, H}
from Figure 3.19 and corresponding density distribution of cations/anions along the
z axis. The position of the atomic centers of the innermost layer of the Top and
Bottom plate is denoted by z7 and zp, respectively. The Bottom plate is fixed and
zp = 21 A. The ions are deliberately depicted smaller than their L.J radii in order
to allow a direct observation of the layering. In Figures (A) and (C) the annotations
indicate the anion layer vertical order from the bottom (1, 2, 3) and the lateral

placement: (C)onfined and (U)nconfined.

corresponds to the formation of two incomplete cationic layers inside the gap. With
increasing plate-to-plate distance d. the normal force F, is decreasing, with a sign

change of F, at d. = 12.7 A. In the range 12.7 A< d. < 15.7 A the normal force
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remains negative. This means that the IL is pulling the plates together, since
the ions strive to reduce their interlayer distance, as well as the distance between
themselves and the plate atoms. Such behaviour is typically observed in systems
exhibiting layering transition, already seen in systems of both neutral molecules
[36] and ILs [69]. With further increase of d, the force becomes positive again, and
reaches a local maximum at the point (C) in Figure 3.19. At this point we observe a
change in the number of anion layers confined in the gap from one to two, as shown
in Figure 3.20(C). In Figure 3.20(C), the plate-to-plate distance is d, = 17 A and
the two bottom peaks of the anion/cation density distribution, denoted by 1CU
and 2C, are inside the gap. A third smaller anion/cation density peak, denoted by
2U in Figure 3.20(C), is the result of the ordering initiated at the Bottom plate’s
surface and is actually outside the confinement gap. The vertical distance between
the peaks 2C' and 2U is approximately 3.5 A and corresponds to the effect of the
compression of the IL from the Top plate. Further increase of the plate-to-plate
distance results in a continuous decrease of the normal force without a sign change
as the positions of peaks 2C' and 2U become aligned, check Figure 3.20(D) for a
distance d, = 20 A. Further increase of the interplate distance results once more in
a reversal of the sign of the normal force (i.e., F, < 0 for 21 A < d, < 23.5 A). At
the midpoint between the plates a broad maximum of cation density distribution
can then be observed, see Figure 3.20(E). The cations, as smaller particles, have a
tendency to fill the space between the more stable anionic layers. When the anions
also start to form a third layer at the midpoint between the two plates the corre-
sponding cationic peak of density becomes sharper and the normal force becomes
positive again, see Figure 3.20(F). In this case the cations can form a layer more
easily while the anions remain scattered. This is the opposite behaviour to the one
typically observed, where the larger anions tend to order more strongly due to the
excluded volume effect [118]. From Figure 3.20(F) to Figure 3.20(G) an interest-
ing transition can be observed, during which the single well resolved cation peak
disappears and a less pronounced cation—anion pair peak takes its place. Finally
in Figure 3.20(H) at d. = 32 A, we observe the clear formation of three anion and

four cation peaks. Considering engineering applications, the steep rise of the normal
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force at small plate-to-plate distances, i.e., d, < 14 A can be beneficial for protecting
against solid-solid contact and consequent wear.

- Analysis of the static force-distance characteristic over intervals
There is a strongly decreasing trend of the maximal normal force which can be

sustained by the system as the number of ionic layers confined between the plates

increases, i.e., for the two ionic layers the maximal force FZI mae = 9 PN, while
for the three ionic layers it is F!! = = 0.25 pN. In our model, the Lennard-Jones

interaction between the plates and the ions is ten times stronger than between the
ions themselves. The ionic layers closest to the plates are therefore more stable than
the layers in the midpoint of the gap (interval II). As a result, the three-layer system
becomes less dense and can build up a lower normal force compared to the two-layer
system.

We have selected two intervals of interest for the interplate distance which cap-
ture the presence of local maxima and subsequent minima of the normal force F,
accompanied with the compression of IL. This corresponds to the expulsion of
a cation-anion layer pair from the gap. The intervals are: d! = [14.2,20] A,
d’ = [22,27] A, and they are labeled as I and II respectively. In order to un-
derstand the changes of the system configurations and to correlate them with the
changes of the interplate distance, snapshots of the system from the M D simulations
corresponding to several characteristic points of the intervals I and II have been
selected and studied in more detail: 1,9, IT; 2 which correspond to the limits of the
intervals, and the local maximum of the interval I, labeled as I5.

The left vertical panel of Figure 3.22 shows the system configuration in the yz
cross-section and the ionic density distribution along the z—direction obtained in the
equilibrium force—distance simulations for the three characteristic points of the inter-
val I: {I, I, I3}, corresponding to the interplate distances d, = {14.2,20,17.2}A,
respectively. In Figure 3.23 the left vertical panels show analogous results for the two
characteristic points of the interval II: {II, I}, corresponding to the interplate
distances d, = {22, 27}A, respectively. In addition to the yz cross—section configu-
ration snapshots together with the ionic density distribution along the 2z axis, shown

in the left panels of Figures 3.22 and 3.23 for the cases of intervals I and II, respec-
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tively, we have prepared the xy cross—section configuration snapshots, shown in the

left panels of Figures 3.24 and 3.25.
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Figure 3.21: Dependence of normal force F, acting on the Top plate on interplate
distance d,. Five characteristic points {I, Is, I3, II1, IIs} with corresponding
interplate distances d, ~ {14, 20, 17, 22,27} A are marked on the F, (d,) curve. Also,
the two characteristic intervals of d, are labeled, where the interval I is bounded
by the points I; and [, while the interval I is bounded by the points I1; and I1,.
The horizontal solid line denotes F, = 0 pN. The dashed line connects the points

obtained from the simulation and serves as a visual guide.
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Figure 3.22: Configuration snapshots (yz cross—section) accompanied with ionic
density distribution along the z direction in three representative points of the interval
I: {Iy, I, I3}. Left panels correspond to the static case of Top plate’s movement,

while right panels correspond to the dynamic case of Top plate’s movement.

3.4.1.2 Dynamic force-distance characteristic

We have investigated the dynamic behaviour of the I'L during a periodic linear
movement of the Top plate along the z axis, between the two limiting points of the
intervals I and II. The space between the solid plates was in this way periodically
expanded and compressed. Periodic movements of the Top plate were performed at
three constant velocities V., = {0.1, 1,10} m/s but no velocity dependent differences
in the system behaviour were observed. We have performed ten cycles in order to
determine how much do the cycles differ and to determine a statistically reliable
average cycle. The confined ionic liquid lubricant responds to the cyclic movement

with a hysteresis in the normal force F, (d,) as shown in Figure 3.26. We present
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Figure 3.23: Configuration snapshots (yz cross—section) accompanied with ionic
density distribution along the z direction in two representative points of the interval

II: {II, II,}. Left panels correspond to the static case of Top plate’s movement,

while right panels correspond to the dynamic case of Top plate’s movement.

static case dynamic case

Figure 3.24: Configuration snapshots (zy cross—section) in two representative points
of the interval II: { II1, IIs}. Left panels correspond to the static case of Top
plate’s movement, while right panels correspond to the dynamic case of Top plate’s
movement. We have highlighted the confined region with dashed lines (Top plate’s
width along the y axis is a half of the total system’s width) and also we have sketched

crystallization patterns with solid lines.
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static case dynamic case

Figure 3.25: Configuration snapshots (zy cross—section) in three representative
points of the interval I: {I;, I, I3}. Left panels correspond to the static case
of Top plate’s movement, while right panels correspond to the dynamic case of Top
plate’s movement. We have highlighted the confined region with dashed lines (Top
plate’s width along the y axis is a half of the total system’s width) and also we have
sketched crystallization patterns with solid lines. Periodic boundary conditions are
applied in the x and y directions, while simulation box, which is cubic, is kept fixed

in the z direction.

both the raw data of all cycles (thin solid lines) and a smooth average cycle (thick
solid line). In the case of interval I there are three points of interest {I;, Is, I3},
corresponding to the points noted in Figure 3.21. Points I, and [5 are the starting
and ending point respectively and the point I3 corresponds to the maximum of the
normal force F, in the smooth average cycle. We observe that between each two of
those points there are clear tendencies in the average cycle of the normal force as a
function of the interplate distance F, (d,). First, in the segment I; —1, i.e., in the
extension half of the cycle, there is a continuous increase of the normal force F), from
negative values up to the value around zero in point /5. In point /; there is one

anionic layer confined in the gap and normal force F), has a negative value. With the
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dynamic increase of the gap ions are pulled-in from lateral reservoirs into the gap.
In point I, an additional cationic-anionic layer pair is fully formed in the gap, hence
increasing the number of confined anionic layers to two. Next, there is the segment
Iy — 13 where the ions are compressed within the gap, which is consistent with the
continuous increase of the normal force F},. In this segment, the normal force F, takes
positive values meaning that the ionic liquid shows resistance to the compression
but does not flow out. After that, in segment I3 —1; there is a sharp decrease of
the normal force F, which is correlated with the squeezing—out of the additional
cationic-anionic layer taken in from the lateral reservoirs during the extension half-
cycle. During the compression half-cycle there is a return to the initial state I,
where the interplate gap contains one compact anionic layer. We should note that
the distributions of cations and anions in the dynamic case for interval I bear close
resemblance. Let us now discuss the changes in the number of confined ionic layers
as a function of the interplate distance and correlate them with the changes in the
normal force F, acting on the Top plate: in the range d, = [11, 14.2] A the normal
force F, acting on the Top plate has a steep decrease, reaching the minimum at
point I;. For the point I; at d, = 14.2 A, check Figure 3.22, we can observe a
pronounced peak in the anion density distribution which is aligned with a well—
defined anionic layer inside the gap. In the case of cations, there are two peaks
attached below and above the anionic peak. This situation corresponds to the
formation of two incomplete cationic layers inside the gap. The value of normal
force F, is negative and in point /; it has the deepest minimum when considering the
whole F, (d,) characteristic. With increasing plate-to-plate distance d, the normal
force F. is increasing, with a sign change of normal force F, around d, = 15.7 A in
the equilibrium case and d, = 17.8 A in the dynamic case, check Figures 3.21 and
3.26(a), respectively. This means that before this point the 7L is pulling the plates
together, since the ions strive to reduce their interlayer distance. After this point,
for F, > 0, enough ions are pulled inside the gap and the I L now pushes the plates
apart. Such behaviour is typically observed in systems exhibiting layering transition,
already seen in systems of both neutral molecules [36] and I Ls [69]. With reversing

into compression in Figure 3.26(a), the normal force F, reaches a local maximum
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Figure 3.26: This figure presents the results of dynamic extension—compression cy-
cles in the intervals [ and II. In panel (a) we present dynamic F, (d,) characteristic
in the interval I: thin lines represent the hystereses of ten dynamic cycles, solid line
on top of them is the smooth average hysteresis. There is also a solid horizontal
line which corresponds to F, = 0. Panel (b) is analogous to the panel (a), just it

presents the results in the interval I1.

in the point I3 at d, = 17.2 A. This is actually the location of the maximum in the
equilibrium case as well, check Figure 3.21. With the further decrease of d, beyond
the point I3 there is a continuous decrease of the normal force up to the distance

d, = 14.2 A as IL starts flowing out of the gap. Still, one should note that there
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are two differences between the two systems:

(1) the sign of the normal force in point /5 and

(77) the magnitude of the normal force at local maximum /3.

In the case of cyclic (dynamic) movement of the plates, the normal force is positive
F, > 0, i.e. the IL keeps pulling apart the plates at point /5 and the maximum
of the normal force in the point I3 (F%" = 1 pN) is lower than in the static case
(Fetat = 3 pN). Both observations indicate that the plate’s motion is preventing
the ionic liquid to fully fill the void space of the gap. Also, there is a substantial
slip during the ejection of IL from the gap, which results in a lower normal force.
Otherwise, if no slip would be present the maximal normal force at velocity V, =
1 m/s should be about two orders of magnitude higher based on the bulk viscosity
coefficient calculated in section 3.3.

Partial filling of the gap due to the motion of the walls is even better observable
in the results for the interval II. While the equilibrium characteristic has a local
maximum, check Figure 3.21, in the dynamic case there are only two characteristic
points (starting and ending point {1, I15} and a monotonously increasing normal
force between them. At point II; at d, = 22 A in the static case, we notice that
at the midpoint between the plates there is a broad maximum of the cation density
distribution, see Figure 3.23. In the static case we notice that, similar to the tran-
sition from one to two anionic layers within the interval I, there is a transition from
two to three anionic layers within the interval /I, which happens in proximity of the
point d, = 24 A. At point II, we notice two sharp anionic layers in the proximity
of the plates and the third anionic layer which is broader, less sharp and positioned
in the middle of the interplate gap, check Figure 3.23. In the dynamic case the
number of layers remains the same in the interval /I, they just get separated during
the extension and a formation of additional ionic layers by the ions flowing from the
lateral reservoirs into the gap does not take place, check Figure 3.23.

We can conclude that in a confined system with strong interaction between the
walls and the IL, the major driving force that pulls /L into the gap between the
plates is the interaction with the wall atoms rather than the inter—/L interactions.

In order to visualize what happens in the vicinity of the plates, we are presenting
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snapshots of zy cross—section configurations in the intervals I and II, check Fig-
ures 3.24 and 3.25, respectively. Even on a cursory look, one sees that the phase
behaviour of the confined /L is complex: in Figure 3.24 there was no movement of
the I'L in and out of the gap and the I L formed a two—dimensional square crystal on
both surfaces during the dynamic case. In the equilibrium configurations, there are
probably enough ions in the gap that allow the I L to obtain its liquid-like character.
On the other hand, in Figure 3.25, we observe a salt-like ordering taking place in
all representative points {1y, I5, I3} of the static configurations. In the dynamic case
the IL exhibits some level of ordering for a small gap (/1) and it is amorphous in
the other two points.

At this point, we would like to quantify how could the processes described above
contribute to the energy losses. If two macroscopically smooth surfaces come into
contact, initially they only touch at a few of these asperity points. A motion of two
bodies in contact lubricated by an ionic liquid would involve the generation of new
contacts and the separation of the existing ones. lonic liquids are characterized by
strong Coulombic interactions between the particles. By calculating the area covered
within the average cycle of the F, (d,) curves in Figure 3.26, we calculate the amount
of work invested per average dynamic cycle, i.e., the hysteretic energy losses. There
is a big difference in the amount of invested work in the two intervals: 3.5236 pN - A
for the interval I compared to 0.2844 pN - A for the interval II, where the vertical
displacement of the Top plate in the two intervals is roughly the same Ad, ~ 5 A)
This is consistent with a strongly decreasing trend of the maximal normal force which
can be sustained by the system as the number of ionic layers confined between the
plates increases, i.e. for the two ionic layers the maximal normal force F/ = 3 pN,

zZ,max

while for the three ionic layers it is F!Z = 0.25 pN, corresponding to the two

zZ,max

maxima of the static force-distance characteristic in Figure 3.21.

3.4.1.3 'Tribological behaviour of confined salt model of ionic liquid

- Tribological behaviour under different conditions in terms of interplate
gap and external pressure

Following the detailed study of the static and dynamic system, we turn our focus to
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exploring tribological behaviour of confined SM ionic liquid under given conditions.
Namely we impose a relative motion between the plates in the x-direction and as a
result frictional forces can be observed. The dynamics of the plates impact the IL
and result in an overall longitudinal force acting on each solid body. In order to eval-
uate the trends of specific friction we have performed simulations at different plate
velocities and at two interplate distances. The simulations have been performed for
a broad range of the Top plate velocities Vi, = {0.1,0.2,0.5,1,2,5,10} m/s, with the
Bottom plate kept fixed. We have compared cases with different external pressures
applied on the IL: pey, = {0,120,250} kPa and two different interplate distances
d, = 17 and 27 A. The simulations were performed as follows: Points (C) and (G)
in Figure 3.20 were chosen as the starting configurations. The simulations ran until

the Top plate had covered a distance of dy = 50 A along the z-direction.

Table 3.4: Results for the coefficients a, b in the relation (Fy)/(F,) = alog(Vx/Vies)+
b, where Vi.y = 1 m/s. The results were obtained using the least-squares method.

| Case \ a \ b | R? |
(A) d, =17 A, peyy = 0 kPa -0.0006(2) | 0.0039(2) | 0.63
(B) d, = 27 A, pest = 0 kPa 0.016(5) | 0.036(3) | 0.72
(C) d, = 27 A, peyr = 120 kPa | 0.007(2) | 0.017(2) | 0.26
(D) d, = 27 A, per = 250 kPa | 0.002(1) | 0.003(1) | 0.62

Therefore, the cases with lower velocities required an increased total time. The forces
acting on the Top plate were monitored, as shown in Figure 3.27 for a randomly
chosen case. It was observed that the normal force remained roughly the same
after the onset of the simulation. Steady-state conditions were assumed following
a displacement of d, = 10 A, and then average values were calculated using the
statistics until the completion of the simulation. The results for the specific friction
(Fx)/(F,) are shown as a function of the sliding velocity Vi in Figure 3.28. The
specific friction (Fy)/(F,) is defined as the ratio of the time averaged frictional
and normal force F; and F, respectively and is different to the Coulomb friction
coefficient p = 9Fy/0F,. In our simulated cases we have observed either a weak

or a logarithmic dependence of specific friction on velocity. The numerical values
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Figure 3.27: Temporal evolution of total normal and axial forces acting on sliding
surface for the interplate distance d, = 27 A and Top plate axial velocity Vi =
10 m/s. Dashed lines show the raw numerical data which are smoothed using the

solid lines for a clearer identification of trends.

were fitted to a linear function of the form (Fk)/(F,) = alog (Vi/Vies) + b, where
Vier = 1 m/s. The coefficients a, b obtained from the simulation data are listed in
Table 3.4. A reasonable fit to the linear regression curve can be observed for most
cases. In the case of pe,; = 120 kPa, the system is potentially in a transition between
the two significantly different cases of zero and high pressure, which can explain the
poorer quality of the fit to the linear curve. The logarithmic dependence indicates
typical elasto-hydrodynamic lubrication conditions [119]. On the other hand, the
weak dependence of specific friction on velocity has also been observed in previous
studies of /L lubrication, check Reference |39, 56].
- Impact of ionic liquid confinement gap and pressurization

The influence of the interplate distance on specific friction was initially analyzed,

while the applied external pressure on the I L pey was kept equal to zero. In contrast
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Figure 3.28: Dependence of specific friction (Fy)/(F,) on velocity V, at external
pressures peg: = {0,120, 250} kPa and interplate distances d, = 17 and 27 A. The
error bars represent the standard deviation of the average values obtained from the
simulation data. The curves showing the specific friction trends were obtained by

linear regression and the corresponding parameters are listed in Table 3.4.

to the previous studies of IL lubrication [39, 56|, our system has shown a strong
crystalline ordering induced by confinement. The normal force was roughly ten times
higher in the case of the smaller interplate distance, i.e., for d, = 17 A compared
to d, = 27 A. On the other hand, the lateral force F, remained at similar levels,
therefore leading to a sharp decrease of the specific friction values. At the same
time, the weaker confinement and the smaller normal force for d, = 27 A resulted
in a steeper slope of the curve (Fy)/(F,).

In order to understand the potential correlation of the I L structure with the aris-
ing frictional forces, the confinement zone was observed in detail using Figure 3.29,
where a side view (left side) and top view (right side) of the system is shown. In
the top view, the system is shown with the solid and IL particles above the upper
plate’s plane removed. In this plot the ions are depicted with their corresponding

LJ radii in order to achieve a realistic visualization of the structure. The anions
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form a locally cubic structure, check right panel Figure 3.29(A), while the crystal
direction of the cubic structure is indicated with the dashed lines. If we look into
the structure of the /L in the confinement zone, Figure 3.29(A) and (B), we can
observe a single, well-resolved crystal structure in the case of d, = 17 A, while in
the case of d, = 27 A some defects are present. It can also be observed that outside
the gap, the L remains in a disordered, liquid state.

Further clarification can be attained by plotting the ionic density distribution
profiles inside and outside the gap in Figures 3.30(A) and (B). It can be observed
that at the plate-to-plate distance d, = 17 A, both cation and anion peaks of
density distribution function inside the gap are narrow and sharp. In addition, both
the anion and cation peaks in each paired layer are located at approximately the
same 2z location. These findings confirm that under these conditions the IL is in
a crystalline, "solid-like" state with minimum disorder. In the case of a wider gap
d, = 27 A the anion peaks next to the walls remain narrow, with a third broader
one appearing in the center. The cation arrangement is more dispersed, with double
peaks appearing above and below each anion peak. These statistics indicate a more

layered, less strictly ordered state.
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(A) dz=1 ?ﬁ\,. Pext=0

(D) dz=27A, pext=250kP

Figure 3.29: Side (yz) and top (zy) views of the snapshots from four separate friction
simulations. The top views correspond to the planes marked with dashed lines in
the side views and do not include the solid and L particles above the upper plate
plane. The ions are depicted according to their L.J radii in order to visualize the
crystalline structures. The dashed lines in the top views denote the crystal direction

of self-formed cubic structures.

110



3. Ionic liquids

(A) d,=174, (B)d,=278,  (C)d,=274, (D)d,=274,
pexr=0 pexr=0 pextzlzokpa pext:250kpa
0 I I 0 ' ' ' ' ' ) anions, gap -------
65 ] 65 1t 1 'cga?onnss, guaupt
60 ] \ ] _cations: out
55 ]
|
20 k 157 _
L a5} o S
N F,._A._..----= ---- - CollilizEs.

|
W/

] 408
B )
] 35 ﬁ’ 1.
] 30f> B |3
e TITEAIIEETrrressan P e A i .
] 25 i

0 5 10 15 20 0 5 10 15 0 5 10 15
n [atomsfnm3j n [atoms/nmaj

Figure 3.30: Density distributions of ions along the z axis inside (dashed lines) and
outside (solid lines) the confinement zone between the solid plates for configurations
shown in Figure 3.29. The position of the atomic centers of the innermost layer of
the Top and Bottom plate is denoted with z1 and zg, respectively. Bottom plate is
fixed with 2 = 21 A.

The difference in the extent of confinement-induced crystallization is a probable
reason for the observed steep slope of specific friction since the observed defects
can interact more strongly with the upper plate at higher velocities and contribute
to the increase of friction force. Our observations show some similarity to the be-
haviour previously seen in Lennard-Jones systems where systems at pressures above
a certain critical value and at sufficiently low velocities exhibited such behaviour. In
these studies, check Reference [42], the shape of fluid molecule was identified as the
main parameter that controls crystallization through the promotion or prevention
of internal ordering.

In addition to the impact of different confinement gaps, the effect of I L pressur-
ization was studied, while the interplate distance was kept constant. More specifi-
cally, a gap of d, = 27 A was used, while different pressures pe,s = {0, 120,250} kPa

were applied.
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Through observation of Figure 3.30(B)-(D), it can be seen that the application
of external pressure prevents the wetting of the side walls of the Top plate and leads
to a distinct crystallization of the unconfined L. On the other hand, the ion density
profiles inside the confinement zone are moderately influenced.

Friction results for increasing values of applied pressure p.,; are consistent with
the observations from Figure 3.28 with specific friction decreasing as the ordering of
the I L increases. It can be seen that for high external pressure, i.e., pess = 250 kPa,
the slope of the specific friction curve almost vanishes.

Figure 3.29(C) shows that for pe,; = 120 kPa the local cubic structure induced
by confinement between the plates served as a nucleus for further crystallization
between the plates and a well-ordered single crystallite was formed in this region.
Outside the confinement zone another crystallite was formed with a different orien-
tation. Further increase of external pressure to pe,; = 250 kPa forced the IL in the
void space to crystallize, while at the same time the I'L in the confinement zone was
converted to a number of smaller crystallites, check Figures 3.29(D) and 3.30(D).

The reported results show a dual nature of I L lubrication, with EHL character-
istics at low to medium pressures and confinement gaps that allow more than two
distinct anion/cation pair layers to form. At higher pressures and smaller distances,
which can be translated as mixed lubrication conditions, the I'L is transformed into a
solid-like body, while specific friction decreases to low values which are independent
of the sliding velocity. This behaviour can be beneficial in engineering applications
such as the piston ring—cylinder liner system, where it can be assumed that the I L
crystallization can potentially help in preventing the solid contact between the solid
surfaces, along with the associated high friction and wear.

- Shear behaviour of confined salt model of ionic liquid
In order to study the behaviour of our confined SM ionic liquid under shearing
we apply a relative motion between the plates along the = direction. The Bottom
plate is kept fixed and a constant velocity Vy is imposed on the Top plate. We are
interested in establishing how does the lateral (frictional) force Fy depend on the
confinement gap d, = {12, 14,16, 18,22, 25} A. In Figure 3.31 we are showing the

dependence of the time averaged frictional force divided by the contact area of the
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Figure 3.31: Dependence of the frictional force divided by the contact area of the

Top plate with IL lubricant (F,)/Sy, on the interplate distance d,. The three

representative points {P;, P, P3} are marked. Points obtained in simulations are

shown as circle markers, accompanied with errors along the y axis. Linear fit through
those points is shown as a solid line. In the inset dependence of specific friction
(F,)/(F.) on the interplate distance d, is shown, with y axis in log scale. Simulation

points are shown as circle markers, while the dashed line serves as a visual guide.

Top plate and the IL lubricant, i.e. (Fy)/Sy, on the interplate distance d,. We
observe a linear increase of the frictional force per contact area with the increase
of the interplate distance, with a slope of 4 nN/um3. In the inset of Figure 3.31,
we are showing the dependence of specific friction defined as the ratio of the time
averaged frictional and normal force (Fx)/(F,) on the interplate distance d,. By
comparing Figure 3.31 with the results for the bulk liquid in Figure 3.12 we observe
that there is no correlation with the lubricant viscosity (i.e., otherwise frictional
force would be three orders of magnitude higher). This leads us to the assumption
that our pressurized systems, whether they form a crystalline lattice or not, do not
lie in a typical hydrodynamic regime and operate under full slip conditions in which
the ionic liquid moves together with one of the walls. As there is no solid—solid
contact between the two surfaces, but lubrication through very thin, highly viscous

films which are solid-like, mixed or dry lubrication are the two potential regimes
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Figure 3.32: Dependence of the frictional force divided by the contact area of the Top
plate with /L lubricant (F) /Sy on the Top plate’s lateral velocity V,, = 0.1—-10 m/s.
The error bars represent the standard deviation of the average values obtained from
the simulation data. The lines showing the friction trends are obtained by linear

regression.

that can describe the observed conditions. A parametric study on different shearing
velocities Vi = 0.1—10 m/s at two wall separations d, = 17, 27 A provides additional
information for the characterization of the tribological regime of our system. In
Figure 3.32 one can observe a logarithmic (weak) dependence of the frictional force
per contact area on lateral velocity of the Top plate’s movement, which is consistent
with the observations of previous studies of /L lubrication, check Refs. [39, 56].
From Figure 3.31 we have selected three representative points with d, = {12,18,25} A

labeled as { Py, P», P3} respectively. We provide an overview of the yz configuration
cross—sections together with ionic density distributions along the z axis (check Fig-
ure 3.33) at the simulation onset ¢ = 0 and after ¢ = 3 ns. In the panels of
Figure 3.34 we have highlighted the confined region with dashed lines (the Top
plate’s width along the y axis is half of the total system’s width) and we have also
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Figure 3.33: Configuration snapshots (yz cross—section) accompanied with ionic
density distribution along the z direction in three representative points { Py, Py, P3}.
Left panels correspond to the start of friction simulations ¢ = 0, while right panels
correspond to the end of friction simulations ¢ = 3 ns. Top plate’s lateral velocity is
set to V, = 2 m/s, total simulation time is i, = 3 ns, hence all friction simulations
have run until the Top plate had covered a distance of d, = V. - tio; = 60 A along
the x direction.

sketched crystallization patterns with solid lines. In Figures 3.33 and 3.34 we show
initial configurations at the input of shearing simulations, together with the final
configurations obtained after the shearing simulations. We observe that any ini-
tial crystallization is not lost due to the lateral motion of the Top plate, but only
slightly modified due to the motion, which suggests that the lateral movement does
not alter the ordering. This is a significant finding since the longitudinal movement,
i.e., movement along the z-axis does alter the local ordering (it destroys the crystal

structure in small gaps and induces it in larger ones).
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t=0 t=3ns
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Figure 3.34: Configuration snapshots (xy cross—section) in three representative
points { P, P, Ps}. Left panels correspond to the start of friction simulations ¢ = 0,
while right panels correspond to the end of friction simulations t = 3 ns. We have
highlighted the confined region with dashed lines (Top plate’s width along the y
axis is a half of the total system’s width) and also we have sketched crystallization
patterns with solid lines. Top plate’s lateral velocity is set to V, = 2 m/s, total
simulation time is t;,; = 3 ns, hence all friction simulations have run until the Top

plate had covered a distance of d, =V, - t;o; = 60 A along the z direction.

3.4.2 Confined tailed models of ionic liquid

For the study of T'M ionic liquids under confinement, we use the M D simulation
setup of ILs under confinement shown in Figure 3.5 in section 3.2. We use that
setup throughout this section in order to investigate both the static and dynamic

behaviour of confined T'M ionic liquids, as well as, their lubrication performance.
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We keep the simulation setup geometry fixed, and we change the ionic liquid.

3.4.2.1 Static force-distance characteristic

Confinement induces layering in IL thin films [64, 116]. In order to understand
how does an interplay between layering and molecular geometry of T'M ionic lig-
uids alter the load bearing capability of IL thin films, we calculate the quasi-static
force-distance characteristic. We follow the evolution of the normal load F, acting
on the Top plate as a function of the interplate distance d,. In order to ensure static
conditions, the interplate distance is changed through a series of alternating steps,
called move and stay steps, related to the movement of the Top plate and subsequent
relaxation of the I L structure, respectively. We provide a detailed description of the
procedure of modifying the interplate gap in the simulations of the static behaviour
of confined ionic liquid: Top plate is moved along the z axis at a constant velocity
V, = 5 m/s for a period of time ¢y, = 5 ps; During the move period the elastic
constant of cation—tail bonds takes its original value of K = 80 kCal/ molA®. After
the transition regime happening during the move period finishes, we apply conju-
gate gradient (C'GG) minimization (for the details about C'G' minimization method
check ) on the ions, in order to minimize their internal energy and relax them after
the move period. As the ion minimization procedure is done, ions take positions
which ensure their minimal internal energy. In case of SM model of IL, ion mini-
mization procedure performs fine, enabling well-relaxed IL [64]. However, we have
noticed that in case of T'M models of L, due to a rather high value of the elastic
constant of cation—tail bonds, ion minimization procedure does not perform fine.
The key action of minimization procedure is the repositioning of the charged parti-
cles (i.e. cations and anions), since they interact strongly via Coulombic potential.
Cations are bonded to neutral tails via bonds, hence they do not have that much
freedom to rearrange during the minimization procedure, compared to anions. We
have solved this problem by taking a low value of the elastic constant (i.e., 1% of
its original value, K™" = K /100 = 0.8 kCal/ molA2) during the ion minimization
procedure. As the ion minimization procedure finishes, elastic constant K gradu-

ally increases and restores to the original value. This gradual increase is realized
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via subsequent steps in which elastic constant takes the values from the next list:
K €{0.8,2,4,10,20,40} kCal/molAz, where elastic constant takes each of the listed
values for a period of time At = 2.5 ps. As the elastic constant gets restored to the
original value, Top plate stays fixed for another 2At¢ = 5 ps during which period the
average value of the normal force F) is calculated and that value is presented as a
simulation point in F, (d,) static characteristic, i.e., in Figure 3.35. Hence, a stay pe-
riod is made up of: ion minimization procedure with elastic constant K™ = K /100,
the stepwise increase of K for 6At = 15 ps and the calculation of the average value
of the normal force F, with the original elastic constant K for 2At¢ = 5 ps. In total,
the time duration of the stay period is ¢4, = 20 ps. In order to avoid a systematic
error due to the initial position or direction, the Top plate movement is performed
in different directions and from different initial configurations, hence Figure 3.35
shows the averages. The Top plate movement procedure consisting of move and
stay periods is repeated until the distance d™" = 11 A is reached.

The results for the force-distance characteristic of the three T'M ILs are pre-
sented in Figure 3.35, where three different markers correspond to the three IL
models. The normal force F,, strongly and non-monotonically depends on the dis-
tance d,. These changes of the normal force F, are correlated with the squeezing
in and out of cation/anion layer pairs into the gap, as already observed experimen-
tally [117] and theoretically [64]. The normal force becomes negative, i.e., F, < 0
only in the case of small tails (T'M3). The negative values are a result of the IL try-
ing to reduce the plate-to-plate distance due to the adhesion forces inside of /L. The
increasing tail size seems to reduce the effect of adhesion: for large tails (7'M9) the
normal force at the minimum is close to zero, while for symmetric cation molecule
(T'M5) it becomes positive, i.e., F, = 2 pN. For all three curves corresponding to
the three T'M ionic liquids we can identify three characteristic ranges of the plate-
to-plate distance d,:

Segment (1): initial segment (11 A< d, < 13.8 A) characterized by a monotonous
and steep decrease of the normal force F,
Segment(2): interval I (13.8 A< d, < 19.8 A) characterized by the presence of local

minima and maxima peaks of the normal force F},, and
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Figure 3.35: Dependence of normal force F, on interplate distance d,. Five charac-
teristic points denoted with {A, B, C, D, E'} with corresponding interplate distances
d, = 13.8,15.5,18.0,19.8,25.8 A, respectively, are marked in the figure. They are
chosen in the way that: point A is located in the proximity of a local minimum for
all three cases; point B corresponds to a local maximum for T'M5 model; point C
is located in the proximity of a local minimum for T'M3 and T'M5 model; point D
is located in the proximity of a local maximum for TM3 and T'M5 model; point E

is chosen according to the condition DE = AD. For reference, the black horizontal

line denotes F, = 0. The lines connecting points (averages of normal force) serve as
visual guide.

Segment (3): interval II and beyond (d, > 19.8 A) characterized by a continuous
and gentle decrease of the normal force F,, where in all three cases the normal force
practically becomes zero when d, > 32 A.

We will briefly describe the segments of F), (d,) curves, pointing out similarities and
differences between the different /L models. In the initial segment, (i.e., for small
gaps d, < 13 A), the normal force F, is practically the same for all three systems,
meaning that it does not depend on the tail size. The steep rise of the normal force
with compression in the range d, < 13 A is a sign of a very high resistance of the
single anionic layer left in the gap to squeezing out. On the other hand, at large gap
values (i.e., d, > 32 A), the normal load F), in all three 7'M ionic liquids is similar

and small. We can conclude that at large gaps there is a low resistance of IL to the
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gap changes. Significant differences in the force-distance curves, depending on the
tail size, exist only in the interval I, (i.e., 13.8 A< d, <198 A). In the case of the
TM3 model, the F, (d,) characteristic has two local minima and maxima and one
saddle point, in the T'M5 model there are two local minima and maxima, and in
the T'M9 model, there is one local minimum and maximum.

In the present setup, I'L lubricant remains an infinite continuous body in = and
y directions. However, there is a difference in IL's structure depending on the fact
whether it is confined inside the gap between the Top and Bottom plate or it is
located in the lateral reservoirs (LRs), see Figure 3.38. Ionic liquid confined inside
the gap forms alternating cationic—anionic layers, while ionic layering in LRs is less
pronounced beyond first two layers, see Figure 3.38. Besides that, from Figure 3.38,
we notice that in all three systems the layer closest to the solid plates is formed by
cation—tail dimmers. We might label the layers formed alongside the solid plates as
fixed layers, since they always form first. Inside the interplate gap ionic ordering is
dictated according to the layers formed next to the solid plates:
(1) Bottom plate - cation—tail layer - anionic layer, looking from the bottom,
(77) Top plate - cation—tail layer - anionic layer, looking from the top, where bottom
and top correspond to the position along the z axis.
In Figures 3.36 and 3.37 we present 5 x 3 panels of configuration snapshots for 5
chosen characteristic points of 3 T'M models. The atoms are depicted keeping the

ratios of their sizes.
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Figure 3.36: Configuration snapshots (zy cross section) of T'M3, TM5 and
TM9 models in five characteristic points {A, B,C,D,E}. Five characteristic
points, denoted with {A, B, C, D, E'}, have corresponding interplate distances d, =
{13.8,15.5,18.0,19.8,25.8} A, respectively (see also Figure 3.35).

- IL structure inside and outside the interplate gap

In Figure 3.39 we are showing the ionic density distribution along the z axis for

121



3. Ionic liquids
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Figure 3.37: Configuration snapshots (yz cross section) of TM3, TM5 and T M9
models in five characteristic points {A, B,C, D, E} (see also Figure 3.35). This
figure presents the changes taking place in the confined ionic layers as the interplate

distance changes in case of static force-distance simulations.

the three IL models, in points A to E, i.e, d, = {13.8,15.5,18.0,19.8,25.8} A. A
common feature of all investigated I L models is the formation of fized cationic layers
along the whole length of the solid plates (Top and Bottom plate). The fixed layers
and their stability are a result of strong L.J interactions between the plates and ions.

In general, the smallest particles form the first layer next to the plates.
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3. Ionic liquids

Figure 3.38: Configuration snapshots (yz cross section) of TM3, TM5 and T'M9
models in a characteristic point A marked in Figure 3.35. This figure represents an

illustration of ionic layering.

For TM3 the first layer to the plates is formed by the tail particles (which are
part of the cation-tail pair), while for TM5 and TM9 models these particles are
the cations. The consecutive layers are formed inside the interplate gap via com-
bined volume exclusion and Coulombic interactions and their ordering is consistent
with the fixed layers. As a result, tails migrate to the plates in 7'M 3 model, they
mix with the cationic layer when cation-tail dimer is symmetric in 7'M 5 model,
and finally they mix into the anionic layer when they are large in T'M9 model.
Since Coulombic interactions cause the layering with alternating charge sign, an-
ionic layers always separate cationic layers. We focus on analyzing the changes in

the segment between the points A and D, i.e., the interval I. The normal force F,
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Figure 3.39: Tonic density distribution of ions inside the interplate gap of (a) T M3,
(b) TM5 and (c) TM9 models in characteristic points {A, B,C, D, E'} taken from
the static force-distance characteristic presented in Figure 3.35. The positions of the

atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
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Figure 3.40: Ionic density distribution of ions outside the interplate gap of (a) T M3,
(b) TM5 and (c) TM9 models in characteristic points {A, B,C, D, E'} taken from
the static force-distance characteristic presented in Figure 3.35. The positions of the

atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
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3. Ionic liquids

changes rapidly and non-monotonically with the interplate distance d, in the inter-
val I, check Figure 3.35. For the minimum of F, in the vicinity of point A, i.e., for
the interplate distance d = 13.8 A, we can observe a well-defined anionic layer in
Figure 3.39. The most interesting change takes place during the transition A —
B when the single layer of anions is split into two layers, check Figure 3.39. As a
result, the normal force F, increases and reaches a local maximum in the proximity
of point B, i.e., for plate-to-plate distance d? = 15.5 A. We observe that additional
anion-cation pairs are pulled inside the gap in Figure 3.41. We also observe that
the two anionic layers in Figure 3.39 for point B and the one for point A have the
same maximum number density. As we increase d, further, the number of anionic
layers confined inside the gap remains unchanged and the normal load drops slowly.
At the same time, the number of ions inside the gap steadily increases with the gap
width. Nevertheless, this increase is not sufficient to keep the density of IL inside
of the gap constant (check Figure 3.41). Looking into the changes in the spatial
distribution of IL components, as more cation-anion pairs are pulled into the gap
(going from A — E), we observe a steady increase of the concentration of anions in
the layer next to the Bottom plate. In the case of T'M5 model we have an increase
from n4ys = 18 atoms/nm? to n2,; = 27 atoms/nm?, check Figure 3.39. When we
further look at configuration snapshots for T'M3 and T M5 model, a formation of
additional layers inside the gap is visible, between the points C and D. This can also
be clearly observed in Figure 3.39 and results in smaller maximum around d, =19 A,
in Figure 3.35. We can conclude that the form of the normal force-plate distance
characteristic is not correlated with the number density of the I L molecules inside
the gap, but the layer formation seen in Figure 3.39. As the interplate distance d,
increases further, from point D to E, we notice additional cations in the middle of
the gap and formation of a third cationic layer in all three systems. We can make
an interesting observation that for all three models the tails in the middle of the
confinement are grouped in three regions: with cations at z = 34 A, and in the
middle between cationic and anionic layers, i.e., z = 30,38 A, check in Figure 3.39.
This outcome is reminiscent of the findings from Reference [71] where the authors

have experimentally obtained the formation of the tail-to—tail bilayer of cationic
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Figure 3.41: Evolution of the number of confined ionic liquid (/L) molecules (bottom

curves) and density (top curves) inside the gap with gap width d, for TM3, TM5
and T'M9 models in characteristic points {A, B,C, D, E'} selected from the static
force—distance characteristic (Figure 3.35). The corresponding axes for the number
of IL molecules and the density are given on the left and right side, respectively.
The densities at characteristic points for the dynamic cases (intervals I, 1) of TM5
model are also given, i.e., I 23 and I o, for the purpose of comparison with the
static case of T"M5 model.

dimers in case the alkyl chain length is oversized. In Figure 3.42 we present how do

the number of confined I L molecules and density depend on the interplate distance
d, in dynamic cases for TM3, TM5 and T M9 models. In all three T'M models, we

notice the same tendencies for both Ny, and py;, dependences on d,.
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Figure 3.42: Evolution of the number of confined ionic liquid (/L) molecules (bottom
curves) and density (top curves) inside the gap with gap width d, for TM3, TM5
and T'M9 models for the dynamic cases (intervals I, 1), i.e., I; 23 and II; 5. The
corresponding axes for the number of L molecules and the density are given on the

left and right side, respectively.

- IL crystallinity: influence of the gap
We show the xy cross-section snapshots in Figure 3.36 in order to observe the IL's
in-plane structure at the cross-section just below the Top plate. We mark the
boundaries of the Top plate spatial region with the vertical dashed lines. The
central area of the panels in Figure 3.36 corresponds to the interplate gap region
and it represents a half of the total cross-section’s width in the y direction, while
the remaining area corresponds to the lateral reservoirs. The solid lines mark the
orientation of crystal grains in those areas, where we can observe the presence of
structural ordering. In the case of T'M3 model, we observe the presence of partial
triangular ordering only at point B when the structure is the most compressed. We
do not notice any crystallization for symmetric dimers (7'M 5 model), which confirms
that the symmetric tail prevents ordering both under confinement and in the bulk.

Contrary to the previous two cases, we observe crystallization for all configurations
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3. Ionic liquids

with the large tail (T'M9 model). Additionally, we observe changes in the type of
crystalline structure. While in the lateral reservoirs a triangular lattice arrangement
is always present, depending on the amount of compression we observe triangular
lattice arrangements in points A and D and square lattice arrangements in points
B and C. Even more surprisingly, the order is lost when the tail-to-tail bilayer is

formed in point E.

3.4.2.2 Dynamic force-distance characteristic

The Top plate was moved between the two limiting points of the intervals I (d4 <
d, < dP) and II (d? < d, < d¥). We have investigated the dynamic behaviour
of the confined IL thin film during the cyclic movement of the Top plate along
the z axis, i.e., the interplate gap was periodically extended (extension half-cycle)
and compressed (compression half-cycle). We have investigated our system at three
velocities V, = {0.1,1,10} m/s, but we did not observe any velocity dependent
differences in the system behaviour. The confined ionic liquid lubricant responds to
the cyclic movement of the Top plate with a hysteresis in normal force F, (d,) shown
in Figure 3.43. We present the detailed results of the T'M'5 model dynamic behaviour
in (a) and (c) panels of Figure 3.43. Also, in (b) and (d) panels of the same figure,
we present together smooth average cycles of our three I L models (TM3, TM5, and
TMD9).
- Narrow gap (interval I): normal force hysteresis

We will now discuss in detail the response of the T'M5 model to the cyclic motion of
the Top plate, in the interval I shown in Figure 3.43(a). Ten cycles of compression-
extension are shown (thin lines) with an average cycle superimposed on them (thick
line). We identify three points of interest: {Iy, I, I3}, i.e., the two terminal points
of the cycle and the point with the maximal normal force, respectively. These three
points also correspond to the points {A, D, B} respectively, in the static characteris-
tics shown in Figure 3.35. Point /3 corresponds to the maximum of normal force F,
both in the cyclic compression cycle and in the static characteristic of 7'M 5 model,
which makes the comparison more straightforward.

The normal force F, decreases down to a value close to zero during the extension
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Figure 3.43: The results of dynamic extension—compression cycles are shown for the
intervals I and II. In the panels (a) and (c) we present dynamic F, (d,) characteristic
in case of T'M5 model, for the intervals I and II, respectively; thin lines represent
the hystereses of ten dynamic cycles, solid line on top of them is the smooth average
hysteresis. There is also a solid horizontal line which corresponds to F, = 0. In
(a) points Iy, I5, I3 denote representative points: I; - starting point, /5 - ending
point, I3 - global maximum of the F, (d,) curve. In (c) points II; and II, denote
representative points: II; - starting point and I, - ending point. The arrows show
the direction of hysteresis (extension I/I11 — I/Il, followed by compression /11,
— I/II,). In the panels (b) and (d) we show together smooth average hystereses
F, (d.) of our three T'M ionic liquids, for the intervals I and II, respectively. Starting

and ending points and arrows are denoted, analogous to the panels (a) and (c).

half of the cycle I —I,. The anion-cation pairs are pulled into the gap from the
lateral reservoirs as the gap is extended and at point /5 an additional anionic layer is
fully formed inside the gap. Actually, instead of the two fixed layers of cations which
share one anionic layer, we obtain two separate anionic layers. The total number of
ions pulled in is about 60 atoms or 0.22 atoms/(nm?ns) at 1 m/s plate linear speed.
In the first part of the compression half-cycle, Iy — 13, the ions are compressed and

the density and the normal force F, increase. Somewhat surprisingly, we observe that
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3. Ionic liquids

an equal number of ions flows out while the normal force increases, i.e., I —I3 and
during its sharp drop I3 —1; (check Figure 3.41). The sharp decrease of the normal
force F, in the segment I3 —1; is therefore a result of two processes: out-flow of the
ions from the gap and the collapse of the anionic double layer and its rearrangement
into a single anionic layer. The resulting final density p?g" = 1.95 atoms/nm? of
the system is slightly higher than in the static case p{i* = 1.85 atoms/nm?, check
Figure 3.41. The value of the normal force F, at point [, is similar, i.e., F, = 4 pN
in both static and dynamic case.

In Figure 3.43(b), we observe that each one of the three investigated ionic liquids
(TM3, TM5, and TM9) exhibits different behaviour in the average F, (d,) cycle
during the extension and compression half-cycle. First, at the onset of the extension
half-cycle, i.e. in the point [, the normal force F), has a positive value for symmetric
cations (T'M5 model), it is close to zero for large tails (M9 model), and it is
negative for small tails (T'M3 model). Somewhat surprisingly, the normal force
increases for both TM [ Ls with asymmetric cations (T'M3/T M9 models) while it
decreases for symmetric cation (7'M5 model). The reason for this behaviour is the
strong interaction of the fixed layers of ions adjacent to the plates with the plate
particles. This interaction drives as many ions inside the gap as possible, resulting
in the non-intuitive behaviour of the normal force due to an interplay of density and
intra-I L LJ interactions. During the compression half-cycle for all three ILs the
maximal normal force sustained was about 50% smaller than in the quasi-static case,
i.e., for T'M5 model the maximal force is F}"** = 17 pN in the dynamic case and
F™M@ = 40 pN in the static case (see Figures 3.43(b) and 3.35). This observation
indicates that the Top plate’s motion prevents the I'L to fill the gap. We can also
conclude that the mechanical response is mainly due to a rearrangement of the fixed
layer and that the mobility of the I L molecules is too low to significantly increase the
normal force resisting to the compression. If we analyze the rate of mass transfer
outside of the gap, we conclude that there is a substantial slip, which results in
a lower normal force. Without slip at a velocity V, = 1 m/s, the normal force
calculated based on the bulk viscosity coefficient would be roughly two orders of

magnitude higher. Figure 3.44 shows configurations snapshots accompanied with
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Figure 3.44: Configuration snapshots accompanied with ionic density distribution
along the z direction in the three characteristic points (I, I3, I3) from the panel
(a) of Figure 3.43.

the ionic density distribution along the z direction, for the interval I of dynamic
cycle of T'M5 modeled ionic liquid. In the point I; there is one compact anionic
layer leading to a rather low positive value of the normal force F,. In the extension
half-cycle ions from the LRs get taken into the gap. This leads to the formation of
another compact anionic layer, which means that from one compact anionic layer at
the starting point /1, we arrive at two compact anionic layers at the ending point 7.
In the return compression half-cycle, those extra ions get pushed back into the LRs,
leading to the reduction of the number of compact anionic layers confined inside the
gap to one.

- Wide gap (interval IT): monotonic force-distance characteristics
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The extension-compression force-distance characteristic for the interval II in case
of TM5 model is given in Figure 3.43(c). The difference from the quasi-static
extension/compression in Figure 3.35 is the monotonic behaviour during the cycle.
The quasi-static characteristics in the interval II featured local minima and maxima
in the case of TM3 and TMb5 models. In the dynamic case, there are only two
characteristic points (starting and ending point /17 and I, respectively and a
monotonically changing normal force between them. In the extension half—cycle
there is a continuous decrease of the normal force F, followed by its continuous
increase in the compression half-cycle. The difference in the normal force between
the cycles is small. In the dynamic characteristic of the interval I the layer structure
is similar to the static case, i.e., two fixed layers stay-in-place and the tail double
layer is formed during the extension half-cycle (check Figure 3.45). In contrast to
the interval I, the formation of the additional layer of tails is not a result of the ions
flowing from the lateral reservoirs into the gap. The density inside the gap is 10%
higher in the dynamic case and a few atoms (less than 30) are displaced during the
cycle. We should note that the gap is also 50% larger in the interval I compared
to the interval II, therefore the drop in density is even less striking. Actually, the
cyclic motion has a tendency to increase the density inside the gap. Since there is no
large displacement of the ions in and out of the gap in the interval I, there is also
no maximum of the normal force F}, similar to the one we have seen in the case of
the interval I, check Figure 3.43(a). In order to make comparisons of different 7'M
ionic liquid models, in Figure 3.43(d) we show together F), (d,) average cycle dynamic
characteristics of all three 7'M models of ionic liquid (i.e., TM3, TM5, T'M9 model)
for the interval II. Compared to the interval I, the tail size does not have such a
pronounced impact on F, (d,) hysteresis curves in the interval /1. Figure 3.45 shows
configurations snapshots accompanied with the ionic density distribution along the
z direction, for the interval II of dynamic cycles of T'M5 model IL. In the point
11, there are two compact anionic layers opposite to each other leading to a high
positive value of the normal force F,. In the extension half-cycle the fixed layers
become separated, and a marginal number of cation—tail dimers diffuses from the

lateral reservoirs (LRs) into the gap. However, another anionic layer does not form,
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Figure 3.45: Configuration snapshots accompanied with ionic density distribution
along the z direction in the two characteristic points (11y, Il5) from the panel (c)
of Figure 3.43.

which means that from the two compact anionic layers with the cationic layer in-
between at the starting point I7;, we arrive at two separated layers in the ending
point 115 with the tail bi-layer in-between.
- Energy losses due to cyclic extension-compression

At this point, we would like to quantify how do the processes arising during the
dynamic cyclic movement of the Top plate contribute to energy losses. We calculate
the area covered during the extension-compression cycle (i.e., the area inside the
F, (d,) hysteresis). This area is equivalent to the work invested per average dynamic
cycle, i.e., the hysteretic energy losses. We show the dependence of the energy losses
on the tail size for both intervals [ and I7 in Figure 3.46. We observe a clear tendency
of the increase of the invested work per dynamic cycle, with the increase of the tail
diameter. This is primarily due to the larger volume occupied by the tails resulting
in larger normal forces resisting compression. There is a striking difference in the
amount of invested work between the two intervals I and I (e.g. 27 pN - A for the
interval I of TM9 model compared to 5 pN - A for the interval II of TM9 model).
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Figure 3.46: Energy losses per average cycle in function of the tail size, for intervals

I and II of dynamic extension—compression cycles.

This difference is proportional to the maximal normal force which is sustained by

the systems in the two intervals (check Figure 3.35).

3.4.2.3 'Tribological behaviour of confined tailed models of ionic liquid

We have conducted static and dynamic characteristic analysis of the three generic
1L models, focusing on the influence of their molecular structure on the anti-wear
performance. In order to obtain a full picture, it is crucial to determine I L's friction
behaviour under different shear conditions. In this section we apply a relative motion
between the plates by moving the Top plate along the z-axis (see Figure 3.5 from
section 3.2) and we observe the resulting frictional force (also along the z-axis, i.e.,
Fy). We have performed two types of friction simulations:

(1) at a constant Top plate’s velocity Vi = 2 m/s, the simulations are performed at
different fixed values of the gap: d, = 12 A to 25.5 A, and

(#4) at a fixed gap d, = 15 A Top plate’s lateral velocity takes five different values:
Ve =40.1,0.3,1.0,3.0,10.0} m/s.

In all friction simulations, the total distance covered by the Top plate was A, =

100 A in the 2 direction. The dependence of the time-averaged frictional force (F)
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on the interplate gap d, for the three /L models is shown in Figure 3.47. The
points obtained in the simulations are shown as markers. Linear fits through these
points are provided as visual guides. For the T'"M3 model ionic liquid, we observe a
decrease of the frictional force (Fy) with the size of the gap. On the other hand, the
frictional force weakly depends on the gap width in case of TM5 and T'M9 model
ionic liquids. Both the T'M3 and T'M9 have high zero shear-rate (Green-Kubo) bulk
viscosities correlated with extent of their ordering, i.e., n%re, > n¥i, > n$k.. When
comparing with their tribological performance in a thin film we can conclude that
there is no correlation since the T'M5 ionic liquid has the highest average frictional
force. In Figure 3.48, we show the dependence of specific friction (F)/(F,) on
the Top plate’s lateral velocity Vy in case of T'M5 model ionic liquid. We obtain
specific friction values of the order (Fy)/(F,) ~ 0.01 which are comparable to the
result from Reference [53| for symmetric [PFg]”™ anion. We observe also a similar
tendency of decreasing friction force with respect to tail size, as reported in the
same Reference [53]. The specific friction (Fy)/(F,) is defined as the ratio of the
time averaged frictional (Fy) and normal (F,) force and it is different from the
Coulombic friction coefficient p = 0F, /OF,. Consistently with our previous results
for model ionic liquids, we have observed a logarithmic dependence of specific friction
on the lateral velocity, check Reference [64|. The numerical values are fitted to a
linear function of the form (Fy)/(F,) = alog (Vi/Vies) +b, where Vi.y = 1 m/s. The
coefficients of the linear fit took those values: a = 0.001,b = 0.008. A reasonable fit
to the linear regression curve can be observed. The logarithmic dependence indicates

typical elastohydrodynamic lubrication (EHL) conditions [119].
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Figure 3.47: Average frictional force (F,) acting on the Top plate as a function of
the interplate distance d, for confined T'M3, TM5 and T'M9 ionic liquid lubricant.
In case of TM3 model there is a clear linear dependence showing the decrease of
frictional force intensity with the gap increase, while on the other side in case of

TM5 and T'M9 model frictional force is practically constant and does not depend

on the gap.
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Chapter 4 Conclusions

In this doctoral thesis two research topics, related to dipolar and ionic systems,
namely tubes and helices composed of dipolar hard spheres and ionic liquids, have
been modeled and investigated. Pronounced ordering under the conditions of spatial
confinement has been obtained in both systems. The ordering is a consequence of the
dominant long-range interactions, i.e., dipole-dipole interaction in dipolar structures
and Coulombic interaction in ionic liquids. In both systems long-range interactions
have led to the ordering that spans the system. A rich phase behaviour, sensitive to:
variations of packing in case of dipolar systems and particle shape in case of ionic

systems, has been obtained.

4.1 Confined dipolar systems

A study about cohesive energy of helical and tubular structures composed of hard
spheres with permanent dipole moments has been presented. Helices were created
by replication of a particle or patch of particles on a confining cylindrical surface.
Even for the most simple situation, namely the single thread helix, a non-trivial
behaviour is found when monitoring the cohesive energy as a function of surface
packing (i.e., axial compression).

In particular, a non-monotonic dependence of the cohesive energy on the packing
fraction (or equivalently the amount of compression) as a result of a delicate interplay
of dipole-dipole interactions and excluded volume effects can be observed. The
lowest cohesive energy is achieved at the highest packing fraction with touching
turns. In parallel, the polarization order parameter, i.e., the mean dipole moment
per particle (m.), also displays a striking non-monotonic behavior as a function of

the extent of compression. In the regime of very high surface packing fraction with
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local triangular arrangement compatible with certain cylinder radius R over particle
diameter d ratio (R/d), a pronounced cohesive energy is found.

Accordingly, the polarization order parameter indicates a sharp change in the
dipole moment orientation, which tends to be parallel to the helix axis. Finally, co-
hesive energies of dense multiple (i.e., double or quadruple) helices, as well as, AB
and ZZ tubes made up of stacking rings that can also be seen as special multiple
helices have been compared. A remarkable finding is the enhanced cohesive energy
for the ZZ tube structure. The latter already emerges at strong substrate curvature
with cohesive energies very close to that obtained at vanishing curvatures. In these
Z 7 tube structures, an alignment of the helix threads with its axis is a microstruc-
tural signature for this low cohesive energy. As a final note, it should be emphasized
that the implemented model of dipolar tubes and helices mimics nicely the geometry
and microstructure of biological microtubules. It could also provide a possible clue

about the self-assembly mechanisms and cohesion within microtubular structures.

4.2 Ionmic liquids

4.2.1 Salt model of ionic liquid

In the study conducted in this doctoral research an molecular dynamics (M D) sim-
ulation setup in order to study the behaviour of model ionic liquids (ILs) confined
between plates which are in close proximity while being in relative motion has been
implemented. In the framework of this doctoral thesis the M D setup was developed
in a way that allows the mesoscopic study of the lubrication processes in automo-
tive applications such as the piston ring—cylinder liner interaction inside the internal
combustion engine. More specifically, the geometry was selected in order to allow
a variable lubricant confinement gap combined with a varying lubricant quantity in
the gap, while avoiding the squeeze-out of the lubricant into vacuum. Odd-number
layering and near-wall solidification was observed between the solid plates, similar
to published experimental findings. The friction simulations have uncovered an in-
teresting behaviour of ILs, with a logarithmic dependence of specific friction on

velocity hinting at elasto-hydrodynamic lubrication at low loads. This behaviour
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completely changed under more critical conditions of high load, with specific fric-
tion decreasing to lower values and becoming independent of sliding velocity. This
behaviour was strongly correlated with the internal structure of the IL and can
provide guidance for implementing lubrication concepts that can lead to friction
reduction in internal combustion engines.

Also, the implemented M D simulation setup has been used in order to study
the response of a model ionic liquid to imposed mechanical deformation. The prop-
erties of bulk and confined ionic liquid have been investigated under both static
and dynamic conditions. First, it has been shown that the Green-Kubo viscosity
coefficient fits the shearing simulation results of the bulk salt model ionic liquid,
indicating its liquid state. The simulation results have shown the significant impact
of the confinement and interaction with the walls on the ionic liquid response to
mechanical deformation. The force-distance hysteresis surface under cyclic loading
is smaller than one would expect considering only the viscosity value of the liquid.
The simulations have also shown the transition from a liquid to a highly dense and
ordered, potentially solidified state of the IL taking place under variable normal
load and under shear. The wall slip has a profound influence on all the forces which
arise as a response to the mechanical deformation. It has also been observed that
the interaction of the IL with the walls represents a principal driving force for all
processes observed in the dynamic regime for a range of studied velocities. If suffi-
cient time is allowed for the system to reach the equilibrium, inter—ionic interactions
pull more ionic liquid inside the confinement gap.

Ionic liquids feature strong long-ranged Coulombic forces and their models re-
quire significant computational effort. Coarse grained models, such as the salt model
implemented in the current study, are useful for bridging the gap between the molec-
ular processes that control the lubrication phenomena and the macroscopic perfor-
mance in engineering applications. The implementation of simplified models that
describe fundamental physicochemical phenomena at a reduced computational cost
can provide deep insights which shed light onto the mechanisms and processes that

can render [ Ls as potentially interesting lubricant candidates.
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4.2.2 Tailed models of ionic liquid

Since ionic liquids interact via long—ranged Coulombic forces and their models re-
quire high—performance computational resources, there rises a question of the min-
imal model needed to capture the properties of the molecular processes governing
lubrication mechanisms and the macroscopic performance relevant for engineering
applications. A generic tailed-model (T'M) of ionic liquids which includes: an asym-
metric cation consisting of a positively charged head and a neutral tail of variable
size and a large spherical negatively charged anion has been investigated. It has
been observed that, though simple, this model results in striking differences of the
equilibrium 7L bulk structure governed by the tail size relative to cationic head:
() simple cubic lattice for the small tail,

(17) liquid-like state for symmetric cation-tail dimer, and

(771) molecular layer structure for the large tail.

The influence of the molecular structure of cation dimer on the response of the three
representative ionic liquids to confinement and mechanical strain has been investi-
gated using M D simulations. Properties of three IL models are compared in and
out of equilibrium. The evolution of normal force with inter-plate distance has been
related to the changes in the number and structure of the confined I L layers. It has
been found that the density inside the gap has a secondary effect on the evolution
of the normal force. It has been observed that symmetric molecule offsets intra-
IL adhesion due to the ordering of IL. As a result, the thin layer of symmetric
1L molecules exhibits non-negative normal force independent of the gap width. In
analogy to the experimental observations, a tail-to-tail bilayer is formed for wide
gaps in all three investigated model I Ls. A mutual feature of all investigated model
ILs is the formation of fixed (stable) layers of cations along the solid plates. The
fixed layer formation is a result of strong LJ interaction between the plates and ions.
A consequence of the fixed layer stability is a steep rise of the normal force at small
interplate gaps. The steep rise of the normal force is an effect useful for preventing
solid-solid contact and accompanying wear. The tails attached to the cations in the

fixed layer migrate with increasing tail size. Small tails form the first layer next to
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the plates. For symmetric molecules the tails form a mixed layer with cations, while
large tails form a mixed layer with anions.

The dynamic behaviour of I L thin film under cyclic extension—compression move-
ments of the Top plate has been explored. Two intervals of the interplate distances
are investigated: narrow gap interval, where the anionic layer is split into two, and
a wide gap interval where tail-to—tail layer is formed. For the narrow gap interval, a
significant flow of ions during the cyclic motion of the Top plate has been observed.
A sharp decrease of the normal force at the final stage of compression is not only a
consequence of the density change due to the flow, but it is also a result of merging
of two anionic layers that repel each-other by the electrostatic Coulombic forces into
a single one. The mobility of ions in and out of the gap is driven by their inter-
action with plates, i.e., filling of the fixed layers. As a result, for the narrow gap,
the number of ions that entered the gap is 50% smaller in the dynamic case than
in the static case. This results in a smaller density inside the moving narrow gap.
The difference between dynamic and static cases for the wide gap was even more
striking, the number of ions that entered the gap is 80% smaller in the dynamic
case than in the static case. Surprisingly, in wide gap the density is higher in dy-
namic case due to the lack of mobility of ions. The invested work per average cycle
increases with the tail size increase for all three IL models. As one could expect,
the invested work is higher for the narrow gap, where the number of confined ionic
layers changes during the cycle. Nevertheless, the low hysteretic losses suggest the
presence of strong slip inside the gap facilitating in— and out— flow of ions in the gap.
An increase of the tail size reduces friction force in the implemented T'M model of
ionic liquid. Depending on the tail size, friction force decreases with increasing gap
for small tails and it increases for large tails.

Understanding the interplay between the different processes taking place in thin
lubricant films is important due to the conflicting demands imposed on how IL
lubricant should behave in dynamic confinement. On the one hand, a high load-
carrying capability requires strong adsorption of the lubricant to the surface, while
on the other hand fast self-healing and low friction require high mobility /low vis-

cosity. The obtained results confirm that the behaviour of I Ls in confinement can
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be unrelated to their bulk behaviour and therefore it should be possible to achieve
simultaneously, typically conflicting, low friction and good anti-wear performance.
A search for optimal I L lubricants, either using synthesis and test methods or state-
of-the-art computer-based molecular design methods [120], should take into account
the microscale properties of lubricating thin films (e.g., normal force vs. number
of layers characteristics), in which the effects of molecular-level processes are more
pronounced. Directing the optimization efforts to the microscale would enable us a

better differentiation of the qualities of different ionic liquids.
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Appendix A Lekner-type summation method for 1D

periodic dipolar structures

A.1 Total interaction energy in the selected Lekner—type method

Let us consider N particles with i—th particle (i = 1, N') having a dipole moment EZ
Its position is defined as T = (@i, i, z;). Position vector between dipoles i and j is
given as r_z]) =7 — 7]) We use the notation for the projection of the vectors 77; and
ﬁz on the zy plane: p_Z; and mp, respectively. Precisely speaking, p7] = (2, Yi5,0)
and 71° = (u?, p?,0). Projection of the above mentioned vectors on the z axis is
noted as: z;; and p;.

This is the expression for the potential energy of the DDI between the dipole ﬁz
positioned at 7/ and the dipole ;T; positioned at 7])
B @R )]

(A1)

Udd:C

where C' represents a constant which depends on the intervening medium and for
simplicity reasons we set C' = 1 in the following derivations.

Knowing the interaction energy uqq in case of a pair of dipoles i and j (i, j = 1, N)
let us form the expression for the total interaction energy of the system whose
elementary cell contains N dipoles. We take into account the fact uqq o< 72 which

replaces ugq o< r3:

1o 1
Ey = - Ly _
h 2 Z { (P2 + (215 + mL.)?]
%

(i - piy + w3 (255 + mL2)] [15° - by + g3 (215 + mLz)] } (A.2)

(0% + (25 + mLz)z}SH
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where the quantity L, has a physical meaning of length, i.e., it determines the
periodicity of a structure along the z-direction. The elementary cell contains N
particles and it is positioned in the way that for its each particle ¢ stands z; > 0
(i.e., the lower end of the elementary cell is placed at z = 0). The 1/2 factor
regulates the fact that we consider the interaction of each i, j pair twice, due to the
double sum Zivj:r In each ¢, 7 pair the i-th particle belongs to the elementary cell,
while the particle 7 can belong to the elementary cell or to the one of elementary
cell’s copies along the z axis. Hence, m = 0 corresponds to the elementary cell,
while m # 0 counts the copies. This is why we define the distance between two
dipoles along the z axis as: z;; +mL,. It is clear that m is an integer which counts
how many periods along the z axis is a given copy shifted from the elementary cell.
Summation index m is denoted as m' in Equation A.2 to mark the fact that for
m = 0 the terms with ¢ = j are excluded, since the dipoles do not auto-interact.

Let us define the lattice sums W, (s) and Z,¢(s) for 7 # 0 as:

1 p 2 z 2
= gm 3 l(z) ()] &9
- _lgp z : ? 48 —i&z(z+mL)
HLE = L23 L—Z —f— m e # 27, (A4)

By comparing Equations A.3 and A.4 we notice that =, ¢(s) = e‘ia'ﬁe_iﬁz(”m@)\l'r(s).
The terms e*if_g’7 and e~ %(#*mL2) gre introduced in order to enable the conversion
of real-space sums into reciprocal-space sums, in the further steps of derivation.
Quantity ? has the physical meaning of reciprocal length and it can be represented
as € = (£.£), & = (6.6).

Using the lattice sums WU, (s) and =, ¢(s) we can rewrite Equation A.2 coming up

with:
1 N N
Baa = 53 > [H-m(s) +3 (7 - Ve) (1 - Ve) Enyels + Dleo)
i=1 j=1,j7#1¢
1 N
+5 2 [P =3 ()] ols), (A.5)

i=1
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where the condition £ = 0 ensures that the terms intentionally introduced in the defi-

g .
nition of the lattice sum Z, ¢(s) in Equation A.4 are e~ 7 = 1 and e~%:(=+mL:) — 1,

A.2 Derivation of the expression for the self energy

From the expression for the total energy of interaction in Equation A.5 we can

extract the expression for the self energy:

Barls) = 530 [IRF = 30:)] wo(s),
= Barls) = 320 (IR0 = 2000 ] wols), (A6

taking into account that: |&/|° = [1?|° + (uZ)2.
From Equation A.3 we see that the lattice sum Wy(s) for 7 = 0 is:

0= 2 Sl = (3 e i)

m=—oo m=+1

—1 +o0
A fact that: >, |m|™2* = Y |m|™%, leads to the next form of Equation A.7:

m=—o0 m=+1

2 R
5) =13 > Im|7. (A.8)

Z m=+1

By replacing ¥o(s) from Equation A.8 into Equation A.6 and according to the

+o0
definition of the Riemann zeta function, ((s) = > m™*, we arrive to the general
m=+1
expression for the self energy Fq(s):

Bun(s) = 732 2 [P — 2067] c(29) (4.9)

By applying s = 3/2 we obtain the expression for the self energy in case of the DDI:
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B (3) - i[ - 2)7] ((3) (A10)

i=1

where ((3) is a numerical factor with the value of ((3) = 1.2020569031... [76].

A.3 Derivation of the expression for the cross energy

Let us start from the expression for the cross energy from Equation A.5:

N N
1 -
Eeross(s) = E E [mﬁjq’rg@) + 3@) : V§>(/TJ>' : Vf):rij,£<3 + 1)|£=0} - (A11)

There are the two lattice sums in Equation A.11 (i.e., U,(s), Z;¢(s+1)) which should
be determined. We will calculate them following the procedure presented in [89] by

using the integral representation of the Gamma function [121]:

a’ = 1 /+OO e At (A.12)
I'(s) Jizo ' '

In Equation A.3 we recognize that we might write down:

a= (L%)Z (Liz+m)2. (A.13)

According to this observation we can rewrite Equation A.3 as:

U, (s) = L128 > a (A.14)

By replacing a in the right-hand side of Equation A.12 with the expression from
Equation A.13 and keeping the left-hand side as a™® we arrive at:

g [T () ()
=) /t:o t dt. (A.15)
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Now we replace the factor a=® in Equation A.14 with the right-hand side expression

from Equation A.15:
N pp—_—— Z/m ptem () ) Ty, (A.16)
' L2T(s) — Ji=0

In the next step we switch the order of the sum and integral and extract the sum-

mation over m inside the integral:

L [T () ()
\IJT(S)_LESF(S) /t:()t e \Iz Ze L dt. (A.17)

m

We use the general form of the Poisson summation formula [122], thus converting

from the real-space summation to the reciprocal-space summation:

Foo u+tc 2 T 1 +oo . utc 2k2
E 67< fem) e _ (?> : E e?™ 0y e (A.18)
m=—o00 k=—o00

Looking at Equation A.17, we decide to write down those identities: u+c = z, Ly =
L,. We apply the Poisson summation formula, taking into account the previously

mentioned identities, therefore coming up with:

Z ’(LLJFm)Qt _ (T 2 = i2mk - _ x?k?
e \L: =7 Z e M IzeT . (A.19)
m k=—o00

1 e s—1 —(L)2t T\ 2
=00 = gmrgy [, ()

+oo 2,2

; 2z _ 7%k

> 2 : 67,27rk e 1 + 1
k=—00,k#0

dt. (A.20)
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At this point we switch the order of the sum and integral, hence the integral comes

inside the sum over k:

7T1/2 2 . z +0o0 P 2 7r2k2
Uo(s) = s Y eszZ/ 15320~ (&) ==y
LZ P(S> k=—00,k0 t=0
7T1/2 +00 )22
t2=3/2¢~(£2) tqt. A21
L, 2y
From Equation A.21 we can extract the integral:
+oo b \2 <212
I= / 1573026 (£2) e g, (A.22)
t=0
We have solved this integral in Mathematica software package |76]:
Lz s—1/2 -
I = 23/2—5 (?> (27T]€)8 1/2 stl/Q (27#{}%) s (A23)

where K, (u) is the modified Bessel function of the second kind [123].

This expression can be simplified in the following manner:

s (o L) v
I1=2 21k stl/Z 27TkL . <A24)
P 2

By replacing the expression for the integral I from Equation A.24 to the sum in the

first term in Equation A.21, we obtain:

+o00 ' . I s—1/2 P +o00 . .
Z 6127”65 [2 (’/Tk?'z) stl/g (27T]€L—Z>] = Z 612ﬂ'kif(k).

k=—00,k#0 k=—00,k#0

(A.25)
Applying the identity:
12wk A —i2wk A
z e L: + e Lz
2rk— | = A.26
cos( T Lz) 5 : ( )
we come up with the next expression:
+oo +oo .
12wk A o <
Z "™z f(k) = (22008 (27rk:Lz) f(k:)) . (A.27)
k=—00,k#0 k=1
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Hence, the first term of Equation A.21 is equal to:

7T1/2 +o0 - Lz s—1/2 P
2T (s) X 4;COS (QWkL—Z) (7‘(']{3?) Ks_1/2 (27Tk:L—Z) .

So far we have computed the first term in Equation A.21 for £ # 0 and now we

should compute the second term which corresponds to £ = 0, which means that we

should compute the integral:

+o0 o \2
I = / =32~ (£2) 1, (A.28)
t

=0

We notice that Equation A.12 which represents the integral representation of the
Gamma function can be a good starting point for this. Setting the exponent to

s —1/2 instead of s gives us:

1 /*OO
—(s—1/2) _ s—3/2 —at
a = 5732 matqy, (A.29)
I(s—1/2) )i
+oo
0 (s =12 = [ (4.30)
t=0

By comparing the right-hand side of Equations A.30 and A.28 we conclude that we

2
can say a = <L%> which enables the solution of the integral I1:

IT=a 7YIT(s — 1/2). (A.31)

1-2s
Hence, the second term of Equation A.21 is equal to % (Li) r (s — %)

Finally, the expression for the lattice sum W, (s) is:

477'1/2 +o00 » 7T2]€2Lz s/2—1/4 p
U,.(s) = 3T (s) Z <cos (ZWkL—) < e ) K 1)2 (27T]{ZL—)
z k=1 Z z
7_‘_1/2 p 1-2s 1
— T ——=]. A.32
mr () T(s) (452)

The other unknown lattice sum from Equation A.11 is =, ¢(s). Let us apply a

procedure analogous to the previous derivation of the unknown lattice sum W, (s).
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In the first step, using the integral representation of the Gamma function from

Equation A.12 and the definition of the parameter a as in Equation A.13 we obtain:

—
e—iﬁp.ﬁ ) /-‘rOO (e \2 s 2

= — —i€.(z+mLz) s—1 [(L ) +(L +m) ]t

Ze(s) = g e t* e E 2 dt. A.33

Now we use the complete Poisson summation formula from Equation A.18 (£, # 0)

which leads to:

N

—ig, P _1/2  ptoo = heaLa)?

=) = gy [ U S e
z t=

k=—o00

By placing the sum in front of the integral (which is the same step like in Equa-
tion A.21) we obtain:

—zs P2 +°° .
Ere(s) = L;—F() z?wkz/ 4573/25— LL)Q,: (2 k+ftsz)2 e (A.35)
zs S _

In the expression for Z,¢(s) in Equation A.35 we have encountered the same in-
tegral I like in Equation A.22. By replacing its solution from Equation A.23 into

Equation A.35 we obtain the final expression for the lattice sum =, ¢(s):

zgp pﬂ_l/Q +oo . I s—1/2
— _ 27 3/2—s [ 2
=) = gy o (%)

% (271—]'{5 + SZLZ)871/2 Ks—l/Q (|27ka + €ZLZ| Lﬁ) . (A36)

Simplification of the previous expression leads to:

. . s/2—1/4
= (s) o\ /2e 6 7 +Z omie [ (&L: + 2mk)* L2 [y
Zeels) = —— e P
¢ L¥D(s) = 4p?
K12 (|§ZLZ + 2rk| Lﬁ> . (A.37)

Now, as we have derived the general expression for the lattice sum =, ¢(s), we can
proceed to the derivation of the general expression for the cross energy from Equa-

tion A.11. The next step is the application of the operator:
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(7t - 7e) (1) - )

where due to the simplicity reasons we introduce the variables: n* = QL”—ZZ and
nf = 27”3 We first apply the next scalar product:
8 8 8
%
> A.38

We can introduce the substitution A = L%’jll,/f and label the part of the function

Z,¢(s) that depends just on &, as F(&,):

Ere(s) = Ae GO0 P(E), (A.39)

4p?

& €L+ 2212\
F(fz) _ Z ez27rkLz< zHz z)

k=—o00

<Koy <|§sz + 27k Lﬁ) . (A.40)

z

Application of the operator (12 - 7¢) on Z,¢(s) gives:

(2)
T a — x . —i(&zx
wag@ﬁﬁznﬁﬂwAe@fﬁmF@» (A.41)
(12)
8 — . —i(&xx
1 e Zrsls) = w(—iy)Ae Grteam) p(e,). (A.42)
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(iid)

-0 - 2 Aoy P s ikn?
Higg Trels) = 1GACTOT 3 | o

k=—o00

L\ V2 1906 .
(2—p> <32 )(§sz+27T/f)(2 V2 LK 1 9(a)

+ ((gsz + 277]{7) Lz) e p—aKsl/2(a)] .

A.43
2p O ( )
In the previous equation, due to the simplicity of the further analysis, the argument

of the modified Bessel functions K;_;, is labeled as a:

€. L. + 2rk| Lﬁ = a.

z
In order to obtain the full expression for (i} -57¢)Zx¢(s), let us make a summation
of all three components computed in the previous equations. Prior to obtaining the
final expression it is convenient to write down the terms that correspond to the x,y

components separately from the terms that correspond to the z component:

L, +2rk) L\ (27D/2
(£ ) ) stl/2(a)a

Py = (—1) (,U;U'CE + H?y) ( 2

/L. (25-1)/2 1o 4 .
P. = i l(%) ( 2 )(ﬁszJrQWk)(Q VLK po(a)

N (€.L. + 27k) L\ ® 7 0K,y pa()
2p P 0a '

The application of the scalar product (12 - 7¢) on the lattice sum Z, ¢(s) gives:

+o0o
(7 - Ve)Zne(s) = A&7 3 7" (P 1 P.). (A.44)

k=—o00

Bearing in mind the practical importance of simplifying the forthcoming computa-

tions, let us repeat the definition of v and introduce another two variables, 8 and
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a =1L, + 2rk| Lﬁ’

z

B = (£.L. +2rk) g—

v=£& L, + 2nk.

The expression in Equation A.44 can be represented as a sum of three indepen-

dent terms, and each of those terms will be treated separately:

Term C;
“+oc0o
= o
Cr = (=)@ - P AT N MBI (), (A.45)
k=—o0
Term Cs

, LB Y2 196
Cy = A= 7y, Z ( ) ( 5 )WS‘”/%szl/z(a), (A.46)

k—foo

Term C;

0K, ()
zfp ? z E ikn® n(2s—1) /2 s— 1/2 A4
03 € /B aa ‘ ( . 7)

k—foo
The next step is the application of the scalar product

? , 0 N 0 N 0
Mg T ag TR e

on Equation A.44, which produces new terms.
In the mentioned scalar product there are three independent operators which act
on each of the three terms {C, Cy, C3}, hence producing nine new terms, numerated

as Cij, with 7 € {1,2,3} ,] € {1,2,3}
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In the next equation we write down the term Ci;:

Term C;

0

—+o00
fud 12 _
1= Mff (—i)ﬁjp : ?Aeizgpj Z e 3 1)/2[(8—1/2@‘)

k=—o00

C

Since it stands

0 = =
_ng.ﬁ — (s _ng.j
agxe (—ix)e

9

the final expression for the term C'; becomes
o =
Ch = —xﬂfﬁjp : 71467@7 Z e 5(2571)/2Ks—1/2(05)'
k=—o00

In the next equation we write down the term Co;:

Term Cy;
o RN -, =
Cor = i e | (=0i" AT ST B IRK, (o)
) k=—o00
Since it stands

0 = =
e_zfp'ﬁ — —Z e_zfp'ﬁ
7, (—iy)

Y

the final expression for the term C5; becomes

+o0
fud L2 _
Cor = —ypl 0" - F A7 N M EEIDRR o (a).

k=—o00

In the next equation we write down the term C'o:

Term C,

8 i +oo i Lz (2s-1)/2 2¢ — 1
Cip = Mnge e 7,%2- Z ethn <%) ( 5

k=—0o0

x7(2573)/2Lsz—1/2(Q)-

)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)
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Taking into account Equation A.49 the final expression for the term CY5 becomes:

PN +oo ‘ I (2s—1)/2 2¢ — 1
Cipa = —ixufquG_Zs”'ﬁ Z etkn® (—Z) ( )
att 2p 2
xyETIRL K (). (A.55)

In the next equation we write down the term Cos:
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Term 022
0 NS AN ey PR |
Coy = pf—Ae” & ?MZ' e’ (—Z) ( )
o0&, J kz_oo 2p 2
xy &L K (). (A.56)

Taking into account Equation A.52 the final expression for the term Cyy becomes:

(25-1)/2
2s —1
Cop = —iyplyi A&7 Z ( ) ( 2 )

k=—o00

xyETIRL K (). (A.57)
In the next equation we write down the term Ci3:

Term (3

Cis = i €

. 0K
Aefzgp Z et g2s=1/2, 810/42( @) ) (A.58)

k——oo

Taking into account Equation A.49 the final expression for the term C'3 becomes:

0K 1/2(cx)

z &7 otk g(2s—1) 2,200 1/2

Ci3 = —izpip;Ae™" kz_ " g2s=1)/ e (A.59)
In the next equation we provide the term Cos:
Term Cs;

&7 — ik 2 0Ky 12(a)

Cas = /ﬁ% Ae™ Py Z e gl )/QPT (A.60)
Y k=—o0

Taking into account Equation A.52 the final expression for the term Cy3 becomes:

8KS,1/2(O()

Coz = —iypi s Ae” &P Z i g2 R

k=—00

(A.61)

In the next equation we provide the term Cj;:
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0 : BT N ikt a2
Ot = i | (—)E - P AT N e*r g D2K | h(a)| . (A.62)
z k=—o0
In the term C3; we encounter two constituents of the expression depending on &,
(i.e., B27U/2 and K, 2(a)) and therefore we obtain two terms inside the square

brackets, according to the product rule for derivatives:

_>
Cy1 = (—i ,uJ 7#2146 &7
+o0 2
i | (28 — 1) (2s-3)/2 Lz
5 [
0K 1/2(c
_’_B(2s—1)/2p a1()/42( )} ‘ (A.GS)

In the next equation we write down the term Cjs:

Term Cs,

xy 22 K /Q(a). (A.64)

Similarly to the case of term Cj3; we obtain:

I\ 2s-1/2 96 — 1
o = waer (1) L (25)

2p
2s—3
X Z {( )7(23_5)/2[/sz—1/2(04)
k=—00
. 0K 1/2(ax)
2802, 810/4_ . (A.65)

In the next equation we write down the term Css:
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Term (s
0 > X OKy_1/5(c)
— 2 —i&, 0 2 ikn® n(2s—1)/2 s—1/2
Css = 1 ot Ae 14 kg_ooe I6] P e ] : (A.66)

Similarly to the previous two terms we obtain:

o d
Cig = piAe &7

J
+oo
ik (2s-3)/2 [ &= s—1/2
XZ&WK 2 )ﬁ (2p> Ao
k=—o00

25-1)/2 pM}

oo
As we have obtained all nine terms Cjj, 4,5 € {1,2,3}, the next step is grouping

them according to the mutual sum over £ or mutual constituent terms.

Group 1
This group includes the sum Z;:O’ioo e*n* B2s=D2 K (), hence GRy = C1q+Cay,

rud
GRy = —(m" 7)) (- 7) A7

+oo
x Y eFTBETIRK L (a). (A.68)

k=—o0

Group 2
. (25-1)/2

This group includes the sum $°7°° et (é—p) (252) @32 LKy o (o),

hence GRQ == 012 + 022,

GRy = (=) (" ) piAe 7

« f g (L5 (25 =1\ owwep g (a60)
20 5 Y 2g—1/72(Q). .

k=—o00

Group 3

This group includes the sum Y ;> e"k”zﬁ@s*l)/zpwsé—fm, therefore GR3 = Ci3+
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023a
Rud
GFs = (-0 (1r - 7) A7
i s— aKs ( )
X Z hn® 3(2s-1)/2 alo/f (A.70)
k=—o00
Group 4

This group includes the mutual factor u; 13, therefore GRy = C33 4 Cha,

GR4 = IU’Z M]Ae 7’5;0 7

L\ZV2 1906 1\ /25 —2 -
3 e {(—) (757) (557 st

k=—o00

(2s—1)/
+ & 1 7(25 2) /3L aKs 1/2< )
2p Ja

25 — L?\ 0K,_
o) () e

0?K,
4 Bes/2 2 aoif o } (A.71)

Group 5

This group includes the factor (;7;-” . ?) pi, hence GRs = Cyy,

GRy = (=i) (- ) piAe™ 7

+oo
a2 | (28 —1 L?
% E 67,k77 |:( 32 )/8(28—3)/2 (Q_Z) stl/g(a)
p

k=—o00

(25—1)/2P8Ks—1/2(04)}

+8 Oa

(A.72)

At this point let us overview what have we realized up to this step, towards
obtaining the expression for the cross energy from Equation A.11. We have derived
the expression for W, (s) and the expressions for (1] - Ve)(ji - Ve)Zre(s), written
down as GR;,i = 1,5, bearing in mind that (7] - ¢) (12} - Ve)Zre(s) = S0, GR.
By applying s = 3/2 in Equation A.11 we obtain the expression for the cross energy
in case of the DDI, hence we should compute the terms: 77, ¥ r; (3/2) and (12 -
Ve) (71 - Ve)Zr;,6(5/2)]e=0. We proceed the derivations by determining the first term
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in Equation A.11, i.e., mﬁ;\prij (3/2):

AT o (ThL. )
U.(3/2) = W;COSUW?)( p )Kl(kﬂ)

Vi (e
e (2) T AT

Taking into account the facts that I'(3/2) = 55, I'(1) = 1 [76],

= U,(3/2) = ngp ikcos (k") K (k) 4+ . (A.74)
We might write the scalar product Ez . /Tj as:
(eP ps) - (30 p3) = el - 1 + pi s (A.75)
> R (B2 = (-7 + i) 1o Sk cos (k) K (k)
2P =1
+ (1" B+ i) (A.76)

L.p*

We have obtained the first term in Equation A.11 and now we proceed the deriva-
tions by obtaining the second term, i.e., 3(%; - V¢)(J2] - Ve)Zry;,e(5/2)|e=0. By taking
s = 5/2 and setting £ = 0 we come up with:

Group 1 (s =5/2) |¢=0

2

GRi(s=5/Dle=0 = — (") (W 7) 3155

+oo
x Y AT K (k). (A.77)

k=—o00
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Group 2 (s =5/2) |¢=o

2
3L3p?

GRy (s =5/2)|ez0 = (—1) (FZ” : 7) 1

+00
x 3 M AnkL K, (k). (A.78)

k=—00

Group 3 (s =5/2) |¢=o

GR3(s=5/2)|¢e=0 = (—1) (mp : 7) 14

Group 4 (s =5/2) |¢e=o

GRy(s=05/2)|eco = P18

AR pz#} | (A.80)

Group 5 (s =5/2) |¢e=o

GR5(s=5/2)|e=0 = (—1) (/ij : 7) P 2

+472k2p

‘9[(2_0”7”)] (A.81)

9 (kne)

We notice that in all GR; terms a modified Bessel function of the second kind with
index 2, i.e., Ky (u) figures, together with its first and second derivative. In order to

simplify the above mentioned terms, we express Kj (u), as well as its derivatives, in
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function of Ky (u) and K (u). Let us remind about the recurrence relations which

apply to the modified Bessel function of the second kind [123]:

2
TF (W) = Fyy (u) = Fga (), (A.82)
and to its derivative [123]:
oF, (u) v B v
ou = F,j,1 (u) — EFV (U) = Fy+1 (U) + EFV (u) s <A83)

where F), (u) = ¢™ K, (u).

Utilizing the above mentioned relations and knowing that Fy (u) = Ko (u), Fy (u) =
—Kj (u), F5 (u) = Ky (u) we come up with the expression for Ky(u) in function of
Ko(u) and K;(u):

K (u) = Ko (u) + %Kl (u). (A.84)

For its first derivative we get:

5’K2 (U)
ou

=—K;(u) — %KQ (u), (A.85)

where, replacing Ks(u) from Equation A.84, we get:

o= = Ko(u) — K (u) — 5 K (u). (A.86)
The second derivative 82?52(“) is computed straightforward by taking the first deriva-

tive of Equation A.86:

82[8(52(@ _ (_Kzgu) N %8lgou(u)) B afngu)
4 (—%Kl(u) + %a%;“)) . (A.87)

From the recurrence relation given in Equation A.83 we obtain:

8[(0 (U)
ou

= (), Y gy + L), (A.88)
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which together with Equation A.84 leads to the final expression for the second

%K (u) .

derivative =%

—822(52(“) = Ko(u) + %Ko(u) + %K1(U) + %Kl(u)‘ (A.89)

9Ks(u) 82K2(u

Now we replace K2(U)a T ou 0 ou2

(knowing that v = kn”) in Equations A.77
to A.81, coming up with:

Group 1 (s =5/2) |¢e=o

2

GRi(s=5/D =0 = — (@’ 7) (@’ 7) 3555

+o0
I 2
X e 4 k2 [ Koy (kn?) + —K; (kn®) ) ,(A.90
knp

k=—00

8 <= -
=GR (s=5/2) 0 = — (") (" 7) lgLsp > KK (ki)
k=—o00
8 ikn®
+3L2p X k_zoo ke Ky (kn? )] (A.91)
Group 2 (s = 5/2) |¢=o
2
A e d z
GRy (s =5/2)|e=o = (1) (" 7) HisLsp?
+oo ‘ 9
% Z ezknzll’ﬂ'kjLz (KO (k?T] >+ mKl (k’?’]p)) 7<‘A92)
k=—00
: 2| 87 i
=GR (s =5/Dlewo = ()P | 555 S kK ()
k=—00
X Z *n* ) (kP ] (A.93)
k=—0o0
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Group 3 (s =5/2,£ =0)

. 2 i
GRs(5=5/2)|eco = (=i)(m"-7) ustSPQ X Z R g2 )2

k=—o00

(—%KO (kn*) — Ky (kn®) — (l{;:ﬂ)ZKl (kn”))<A'94)

. z 8 K3
=GRy (s =5/2) ez = (=) (" 7)1 [ 312, § ke Ko (kn?)
k=—o0
8 g 2 ik
3L3px§jk " Ky (kn)

k=—o00

8 <=
BT e > MK (knp)] : (A.95)

k=—o00

Group 4 (s = 5/2) |¢=o

GRy(5=5/2)[¢=0 = M@MJ?)LP, 5 Z ¢

k=—00

X [2L2Ty + AL.mkpTs + 4prk L. Ts + An*k* p* T4 A.96)
where the terms 77,715, T3, T, are defined as:

2
Ti = Ko (kn”) + k_npKl (kn”) (A.97)

2
Ty = —— Ko (kn’) — Ky (kn") —

b (lmp)QKl (knf) | (A.98)
2 Iz 0
T3 = _k'_nPKO (kn”) — Ky (kn”) — (knp)2K1 (kn”) (A.99)
3 p
Ty = Ko (kn”) + (lmp)ﬂo (kn”) + mKl (kn”) + (knp)gKl (kn”),  (A.100)
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respectively.
Z,.Z 4m ikn?
= GRi(s =5/D =0 = pit | ~3p5 k_z_ooke T Ky (k)
8 2 ik
303 Z k2™ Ko (kn?) | . (A.101)
k=—o00

Group 5 (s =5/2) |¢e=o

GR5(5=5/2)|e=0 = (—1) (17 7)1 3L23p

+0o0
x Y M [AnkL. Ry + 47K pR,y], (A.102)

k=—oc0

where the terms R, Ry are defined as:

2
Ry = Ky (kn’) + k_npKl (kn), (A.103)

Ry=——K,(k Ky (kn?) —
2 e o (kn”) — K1 (kn”) (k’ﬁp)2

(k) | (A.104)

respectively.

 GRy (s = 5/2) o = (=0) (B - 7)1 |~ Z R K (k) | (A.105)
kf
We can furthermore simplify the Equations A.90 to A.105 applying the relations:
ek e = 2 cos (kn?) , e — e = 2isin (kn?), (A.106)

that allow us to switch from the Zz:“ioo summation to the Z,j:; summation, where
the case k = 0 should be considered separately. Accordingly, let us resolve the k =0

case first:

5
(71 - V) (1 - Ve)Bry e(5/2)le=okm0 = > GRi (5 =5/2|_q 4 (A.107)
=1
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Based on the next relations [123]:

w Ky (u) — 0,u? Ko (u) = 0,ukK; (u) — 1,

which are valid when k — 0, setting that u = kn” we obtain that:

5

> GRi(s =5/2) [e=or=o

i=1

5
=Y GRi(s=5/2)|¢=op=0 = —

i=1

Now we resolve the k # 0 case:

(1 - 7¢) (5

“Ve) =6 (5/2)|e=0, k0

(A.108)
8 Lz —p —p
4 L,
z Al
“302 2 0 (A.109)
2
— —\ [~ — z, .z
i’ p) (") ~ 3Lt (A.110)
5
= GRi(s =5/2) |e=okr0. (A.111)
=1

Let us modify the expressions for GR; (s = 5/2) |¢=o following the Equation A.106:

GI‘Ollp 1 (S = 5/2) |§:0,k7é0

GRi (s =5/2) |ecopro = — ("

167
3L2p3

_|_

Group 2 (s = 5/2) |e=o k20

GRy (s =5/2) leonro = (W 7)1 [

16
3sz

o0
X Z k cos (kn®) K (knp)] .
k=1

X Zsm kn*) Ky (kn” )]

1672 <X
7) [3L3p X Zkzz cos (kn*) Ko (kn”)
k=1

(A.112)

167

+oo
32,7 X Z ksin (kn®) Ko (kn”)

(A.113)
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GI‘Ollp 3 (S = 5/2) |§:0,k:7£0

; 167
GRs (s =5/2)|e=onzo = (ﬁ?” : 7) Hj [ 3L2p X stm kn®) Ko (kn”)
k=1
1672

~30, X Zk2 sin (kn*) Ky (kn®)

k=1

Z sin (kn?) Ky (kn” )] (A.114)

k=1

16
X
SLZ/)

GI'OLIp 4 (8 = 5/2) |§:0,k7§0

8w

312, " chos kn?) Ky (knP)

GRi(s =5/2) le=orzo = Hik; [

N 1672
3L3

X Z k? cos (kn*) Ky (knp)] . (A.115)

k=1

GI‘OLlp 5 (S = 5/2) |§:0,k7$0

et &S,
GRs (s =5/2) [ecoppo = (1" 7)1 [— Y Z k*sin (kn*) Ky (kn?)| . (A.116)
2P =1
We can now compute the summation from Equation A.111:
5 — —p = z,,2
8 [2 (i - pij ) (15° - pij) | Hil5
GRi $=195/2) |= = — |: J J + J
; (s =5/2) e=0.r0 312 o Py
+00
X Z k cos (k;nf]) K (k:nfj)
k=1
1602 [(I° - i) i + (0 - piy) g
3L§ Pij
+oo
x Y K sin (kng;) Ky (knf)
k=1
o (G D
3L3 P?j !
+00
x Y K cos (knj;) Ko (knf) - (A.117)
k=1

Adding up the result from Equation A.110 for £ = 0 to the result from Equa-
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tion A.117 for k£ # 0 we obtain:

8t [2(m - pi )(/7" ) | M
— — = o Y v
- - 2 e(0/2)|¢=0 = —
+oo
X Z kcos (knj;) Ky (knf))
k=1
167 [( - piy) s + (7 - piy) 1
3L3 Pij
+00
X Z k*sin (k:nf]) K, (k?mpj)
k=1
167> |:< pz]) (/7;/) ) p_zj>) _M;u;]
- 3L3 Pi; ’
2
2
s o) Ko 52
5 —p =
Xl (uz szl(/lj p%J)Jr“’MJ].(A.llS)
Pij pm

At this point, let us rewrite the expression defining the cross energy:
TR
—— — =
Eeross = 5 DD [EEY(3/2) + 3(1 - Ve) (1 - Ve)Enye(5/2)]e=o] - (A119)

From Equation A.76 we take the term mﬁjlllrij (3/2) and from Equation A.118 we
take the term (12} - ve¢)(j2) " Ve)Zn;,6(5/2)|e=0 and multiply it by 3, which leads to
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the final form of the cross energy:

N N Sy =\ = = —, —
1 87 (2 (i - pij) (15° - pij) — (Wi” - p5”)
Ecross - QZ Z {_ﬁ|:

3 ..
i=1 j=1,ji Pij P
+o00o
X Z kcos (knj) K1 (knf))
k=1
167 {(W-@)uﬁ@”@)uf]
L3 Pij
+oo
X Z k? sin (kni;) Ky (kn?)
k=1
16w [u? P () i
L3 P Y
+oo
X Z k% cos (knfj) Ky (knfj)
k=1
2 F(Wﬁ) (" p5) _ (e ﬁf’)” (A.120)
L. P Pij

We should note that the expressions for U, (s), =, ¢(s) and consequently for Feos
are undefined in case 7 = 0. Hence, the previously written expressions are valid
under the condition 7 # 0. For the special case ? =0, i.e., when two dipoles have
the same x and y coordinate (the position vector connecting them is parallel to the

z axis), the next equation for ¥, (s = 3/2) applies [89]:

U, (3/2)] 50 = —% {\If <|Li|) + 78 cos (?) sin~3 (WLMH . (A121)

where U is the tetra-gamma function [123]. Using Equations A.118 and A.121 we

obtain the cross energy in case P—w> =0 as:

N N

1 [ 1% Tzij| \ . _3 [ 7|z
et =33 3 (v () erree (7)o (732 ]}
i=1 j=1,j#i
(A.122)
where the term 7}, is defined as:
(@ 720) — 2
T, =— ]Lg g (A.123)
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Appendix B Conjugate gradient method

The conjugate gradient (C'G) method represents a general method for minimiz-
ing function f (), where f can be any function of argument # in N-dimensional
space [124]. In our case, we want to minimize the potential energy of atoms in the
system, hence f = V, where the independent variable & are the positions of our
atoms 73,7 = 1, ..., N. The parameter space over which the minimization is realized

is 3N-dimensional, since it stands that:

T = (P12, T1ys T12s T22 T2y T22, T35 T3y, T3z oy TNws TNys TNz ) - (B.1)

We can state that we are interested in minimization of the function V (7). In the
CG method, the gradient of the function, which is in our case the force, since it
stands F = —VV, is used for finding the minimum of the function. The gradient
determines in which direction the function changes the most rapidly. Bearing this
in mind, we can come up with a natural, but not very efficient way to minimize the
energy, which is to always move in the direction of the negative gradient, since neg-
ative gradient means lowering the function value. This method is known as steepest
descent method and for M D systems its algorithm can be defined as [125]:

Step(0): start from the point 7 setting up j = 0

Step(1): calculate V; (7) and F; = —VV; (7))

Step(2): if Vi_; —Vj < € (where € is the chosen convergence tolerance, usually at the
order of 107%) then end the algorithm

Step(3): minimize V <f’3 + aF}) by varying the scalar quantity «

Step(4): update 7541 = 75 + Ozﬁj;j =7+1

Step(5): return to the step (1)

The line minimization in step (3) is a one dimensional operation in which the min-
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imum of a function is looked for by moving in a defined direction ozF;. Let us now
explain how does the line minimization work. The line minimization is a straight-
forward operation which is carried out in two steps [124]:

(7) confirm that there is a minimum and bracket it

(1) search for that minimum with a given accuracy

Step (i) is easy to conduct: starting from a point 7 and known direction ]3, we
move forward along some direction Bﬁ. If the following conditions are met (for the
illustration check Figure B.1):

v<f+%ﬁ> <V(F),v<f+%ﬁ> <V(F+Bﬁ),V(F)<V(F+5ﬁ) (B.2)

then the minimum is bracketed with these three points:

{V(F),V <F+ %ﬁ> ,V<F+ 5ﬁ)}. (B.3)

In case the above mentioned conditions are not met, we increase  and try again
until we meet the conditions.

As the step (i) of bracketing the minimum is completed, we move on to the step
(77) of searching for that minimum within the given accuracy. One way of doing
this is applying bisection. However, it turns out that it is better to apply golden
section rule, which means that the new guess for the minimum is distant from either
ends <%§ - 1) -100% = 61.803% of the distance between the ends, i.e., points (1)
and (2) from Figure B.1 are the ends in the first iteration of the procedure. Later
on, the bracketing narrows around the minimum with the goal of converging to it.
The golden section rule tells us how should we narrow down the bracketing interval,
i.e., the distance between the ends. Besides the line minimization which includes
bracketing and golden section rule search for the minimum, there is another method
which is called inverse parabolic interpolation. The name comes from the fact that
a parabola is fitted through the points {a, b, ¢} which correspond to the points (1),

(2), (3) from Figure B.1. Our guess for the minimum of the curve we are looking for,
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i W+ BF)
V(F)

@

V(F + BE/2)

Figure B.1: Bracketing a minimum, points (1), (2) and (3) are the initial bracketing
points, jumps to the points (4), (5) and (6), respectively, illustrate the process of

line minimization and convergence towards the minimum of the given red curve.

is the minimum of the fitting parabola x, which is computed by the formula [124]:

(B.4)

After the current parabola is fitted, we replace one of the ending points a or ¢ by point
x (this depends on which side of point b is current x) and the inverse parabolic inter-
polation is repeated. This process of inverse parabolic interpolation continues until
the minimum is found with the given accuracy. An advanced method of line min-
imization built-up upon the previously presented ones is the Brent’s method [124].
It employs the inverse parabolic interpolation (IPI) and changes to the golden sec-
tion in case that there are problems with IPI. We have explained the basis of the
steepest descent (SD) approach and the Brent’s line minimization. A further step
in advancing the minimization algorithms would be their combination. However,
such a combined minimization method is not too efficient in many-dimensional pa-
rameter spaces because there is a high chance of SD falling into a zig-zag trajectory,
which means that the convergence towards the minimum would be very inefficient.

A question rises: how can we eliminate this obstacle of the steepest descent method
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== == === =parabolal through @ @ @

s=sssmssnsssparabola2 through@ @ @

Figure B.2: Inverse parabolic interpolation through the points (1), (2) and (3) via
parabolal leads to the point (4) as that parabola’s minimum, noted as mini. In
the next iteration inverse parabolic interpolation through the points (1), (3) and (4)
via parabola2 leads to that parabola’s minimum, noted as min2, which is closer to
the minimum of the red curve which we are looking for. Further inverse parabolic

interpolations lead to the convergence towards the minimum of the given red curve.

and achieve efficient convergence? The solution comes with the conjugate gradient
(CG) method where a new direction, known as conjugate direction, is chosen and it
depends on the previous direction, hence the zig-zag trajectory can be avoided. Let
us explain what does it mean to have two directions that are conjugate. Let us take
an arbitrary function f (Z) where the argument ' is N-dimensional and write down

its Taylor series around a certain point T' [125]:
} . af 1 92 f L
f($)=f<T>+ i 8—xi$i+§izjmxixj+...~c—b~x+

where the scalar c is defined as ¢ = f (f ) , the vector bis defined as b = —V fr and

the matrix A is defined as A = 3325;' [ and it is known as the Hessian matriz. Let
i0T;j

us label the previous direction of movement as « and the gradient as g. We want to
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determine the next direction of movement ¢. Bearing in mind that the gradient and
the previous direction of movement in a current point are orthogonal, i.e., g- 4 = 0
and that we want, after the next step, new gradient to be orthogonal to the previous

direction of movement, i.e., ¢* - @ = 0, we come up with the condition:
u-6(Vf)=0 (B.6)

which means that the change of the gradient labeled as ¢ (V f) should be also per-
pendicular to the previous direction of movement vecu. We start the derivation from
the quadratic form of the function f, which is given as: f (Z) = c—b- 7+ ST-A-T

The gradient of the function f derived from its quadratic form is:
Vfi=A-Z—b (B.7)

Now from the Equation B.7 we calculate the change of the gradient Vf along a

certain distance labeled as 07 is:
0(Vf)=A. 7 (B.8)

and now by setting that 67 corresponds to the new direction of movement v, i.e.,

0% = v, we return to Equation B.6:
w-0(Vf)=u-A-7=0. (B.9)

Summing up the previous discussion, if the relation @ - A - ¥ = 0 holds, we say
that the directions @ and ¢ are conjugate. The main task of the CG method is
the computation of the new direction along which to move, hence the two vectors
g and h are used for the realization of this task. At the start, there are arbitrary

initial vectors gy and ho = go- The next equations define how are they iterated

(i=0,1,2,3,...) [124]:

§71+1 = L(71 — /\i (A . }_7:1> ,ﬁi+1 = ?]}_1_1 -+ 'Yi}_ii- (BlO)
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In Equation B.10 scalars A; and 7; are figuring, they are defined as [124]:

Gi - Gi G - I
N=Bg o 9T (B.11)
hi- AR R A
and
= Il il (B.12)
i Gi

Those vectors ¢ and h fulfill the orthogonality and conjugation conditions [124]:
Gi-G=0,hi-A-hj=0,G h=0 (B.13)

From Equations B.10, B.11, B.12 and B.13, by knowing the Hessian matrix A,
we are able to determine successive conjugate directions h; along which the line
minimization is conducted. With n such steps, where n is the dimensionality of the
problem, we can find the minimum of the quadratic form fZ¥. However, since the
dimensions of the Hessian matrix A are 3N x 3N, the dimensionality of the problem
is n» = 3N in case of energy minimization of an M D system with N particles. It is
highly inefficient to operate with the Hessian matrix in case of M D systems since
the number of particles in the system N can be up to 10°. Hopefully, there is a
theorem which solves the problem by circumventing the usage of the Hessian matrix
A. Tt claims that if we minimize the function f in the direction h to a point 1,

the new gradient can be calculated as [124]:
Gir1 ==V [ (Tin1) (B.14)

In that case, this vector gi;1 would be the same as if it had been determined via
Equation B.10. More details and the proof of this theorem can be found in the chap-
ter 10 "Minimization or maximization of functions" of the book [124]. Based on the
previously presented equations we can come up with a sketch of the C'G algorithm
for the energy minimization of an M D system consisting of N particles [125]:

Step(0): start from the point 7 setting up j = 0, Vo = V (75), o = —VV (70),

Jo =ho = o
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Figure B.3: Steepest descent method can easily fall into a zig-zag trajectory.

Step(1): minimize V (75 + ag) with respect to the scalar «, after that update
Fit1 = 7 + ag; and compute V (j + 1) =V (741)

Step(2): if Vi;1 — Vj < € (where € is the chosen convergence tolerance, usually at the
order of 107°%) then end the algorithm

Step(3): compute ¢; = —VV (7j41) and set V; =V (7}41)

Step(4): compute v = G - G/ - g;

Step(5): set Git1 = g

Step(6): set hjp1 = g1 + b and Gy = hi

Step(7): increase the counter of iterations: j = j + 1 and return to the step(1)
The algorithm we have presented is known as Fletcher-Reeves algorithm. Sometimes
it is more efficient to use its modification, known as Polak-Ribiere algorithm. The
only difference between the two algorithms is in the step (4) which is in the later
case [125]:

Step(4)*: compute v = (¢} + G;) - ¢/G; - G-

As a concluding remark, C'G method is efficient in finding a local minimum and it

is often the method of choice in M D simulations.
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Mpunor 1.

MUsjaBa o ayTopcTBy

Wme 1 npesume aytopa: Murbax Jawuh

Bpoj nHaekca: 8004/2014

UsjaBmyjem

Aa je JOKTOpCKa AucepTaumja nos HacrnoBom

Modeling the behaviour of confined dipolar and ionic systems

(Mopenosate noHawawa NPOCTOPHO OrpaHUYEHUX AUNONHUX U JOHCKMX
cucrema)

¢ pe3ynTaT CONCTBEHOr UCTPaXMBa4Kor paaa;

* Aa AaucepTaumja y LENvHU HY y AenoBuMa Huje Guna npeanoxeHa 3a cruuare
Apyre Aaunnome npema CTYAUCKUM nporpammumMa Lpyrux BUCOKOLLKONCKMX
yCTaHoBa;

* [a Cy pesynTatu KOPEKTHO HaBeaEeHU U

* Aa HUCaM KpLUIMO ayTopcka npasa W KOPUCTUO WHTENEKTYanHy CBOjUHY ApYrvX
niua.

Mornuc ayTopa
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Mpunor 2.

VlsjaBa O UCTOBETHOCTHU WUTaMMnaHe U eNeKTPpoHCKe

Bep3uje AOKTOPCKOr paaa

Mme n npesume aytopa: Murban fawwuh
Bpoj ungekca: 8004/2014
Cryaujckun nporpam: ®usmnkKa KOHAEH30BaHe MaTepuje U cTaTUCTUUKA PU3mnKa

Hacnos paga: Modeling the behaviour of confined dipolar and ionic systems
(MogenoBawe NoHalaka NPOCTOPHO OrpaHUYeHUX AUNOSTHUX U jOHCKUX
cucrema)

MeHnTop: ap Urop CtankoBuh

MsjaBrbyjem Aa je wtamnada Bepanja Mor JOKTOPCKOr paja MCTOBETHa €neKTPOHCKO)
BEP3njun Kojy cam npegao 3a objasrousare Ha noprtany [ilururanHor penosutopujyma
YHuBep3utera y Beorpaay.

[os3BosbaBam fa ce objaBe MoOju NUYHU nodauu BesaHW 3a Jobujame akagemckor
3Bara AOKTOpa Hayka, Kao LITO Cy MMe U npe3ume, roguHa n Mecto poferwa 1 aatym
onbpaHe papa.

OBu nu4HM nogaun mory ce o06jaBUTM Ha MPEeXHUM CTpaHuuama AururtanHe
OubnunoTeke, y eNeKTPOHCKOM KaTtanory v y nybnukauujama YHusepsuteta y beorpagy.

Mornuc ayTopa

Y Beorpagy, 30.8.2019. 0 /
J l/ / oLk




Mpunor 3.

UsjaBa o kopuwhemwy

Osnawhyjem YHuBepauteTcky 6ubnuoteky ,Csetosap Mapkosuh“ ga y AurutanHu
penosuTopujym YHusepsuteta y beorpagy yHece Mojy AOKTOPCKY AwucepTauujy noa
HacnoBoM:

Modeling the behaviour of confined dipolar and ionic systems (MoaenoBamwe
noHalwama NPoOCTOPHO OrpaHUYEeHUX AUMNONHUX U jOHCKUX CUCTema)

Koja je Moje ayTopCKO Aeno.

AvcepTauujy ca cBUM NpunosvmMa npefao caM y enekTpoHCKoM hopmary norogHom 3a
TpajHO apxXvBUpamE.

Mojy AoKkTopcKy AucepTauujy noxpaweHy y [urutanHu penosutopujym YHueepautera y
Beorpaay mory aa kopucTte CBU Koju nowTyjy oapenbe cappxaHe y ogabpaHom Tuny
nuueHue KpeatusHe 3ajegHuue (Creative Commons) 3a Kojy cam ce oanyuvo.
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2. AytopcTteo — HekoMepuujanHo (CC BY - NC)
@Ay‘ropcmo — HekomepuujanHo — 6e3 npepage (CC BY-NC-ND)
4. AyTOpCTBO — HEKOMEpLWjanHo — AenuTu noa uctum ycnosuma (CC BY-NC-SA)
5. Aytopcteo — 6e3 npepage (CC BY-ND)
6. AyTopcTBo — AenuTu nog uctum ycnosuma (CC BY-SA)
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1. AyTtopcTBO. [lo3BOrbaBare yMHOXaBake, AUCTPMOYLM)y W jaBHO caonwTaBawe
Aena, u npepage, ako ce Hasede MMme ayTopa Ha HauvH oppefeH og cTpaHe ayTopa
unu agasaoua nuueHue, Yak u y komepuujanHe cepxe. OBo je HajcnobogHuja og CBUX
NALEHLMN.

2. AyTOpCcTBO — HekoMepuujanHo. [lo3sorbaBaTe yMHOXaBawe, AUCTPUOYUMjy W
jaBHO caonwTaBame Aena, U Npepage, ako ce HaBeAe MMe ayTopa Ha HauvH ogpeheH
0f CTpaHe ayTopa unu gasaoua nuueHue. OBa nuueHua He 403BOSbaBa KOMepLjanHy
ynotpeby gena.

3. AyTopcTBO — HeKkomepuujanHo — 6e3 npepage. [lo3BorbaBaTe yMHOXaBaH-E,
auctpubyumnjy 1 jaBHO caonwTaBawe pgena, 6e3 npomeHa, npeobnukoBara wnu
ynotpebe Aena y CBOM [eny, ako ce HaBeae Me ayTopa Ha HauvH ogpeReH of cTpaHe
ayTopa unv gasaoua nuueHue. Osa nuueHLa He [03Borbasa KoMepuujanHy ynotpeby
Aena. Y ofHocy Ha cBe ocTane nuueHue, OBOM NULEHLIOM ce orpaHudaBa Hajsehu
obum npaea kopuwhera gena.

4. AyTOpCTBO — HEKOMEpLUMjanHO — AeNnUTU Noa UCTUM ycnoBuma. [lo3sorbasarte
yMHOXaBare, ANCTpubyunjy 1 jaBHO caonwiTaBawe gena, u npepage, ako ce Haseae
nMe ayTopa Ha HauyuH ofpeheH of cTpaHe ayTopa unu gaBaoua NuueHLe U ako ce
npepaga Auctpubyupa nog WCTOM WNW CNMYHOM nuueHuom. OBa nuueHua He
[03BoSbaBa komepuujanHy ynotpeby gena u npepaga.

5. AytopcTBO — 6e3 npepape. [Jo3BorbaBaTe yMHOXaBawe, AUCTPUBYLM)Y U jaBHO
caonwTaBawe gena, 6es npomeHa, npeobnukosara nnu ynotpebe aena y CBom aeny,
aKo ce HaBefe UMe ayTopa Ha HauvH oapefeH of CTpaHe ayTtopa wnu gasaoua
nuueHue. Osa nuueHua Ao3Borbasa komepuujanHdy ynotpeby aena.

6. AyTOpPCTBO — AeNnUTU noAa WUCTUM YycnoBuMa. [l03BO/baBaTe YMHOXaBawe,
AnCTpnByumjy 1 jaBHO caonwiTaBawe Aena, U npepajge, ako ce HaBeae MMe ayTopa Ha
HauuH opapeheH of cTpaHe ayTopa WM fAasaola NUUEHLE W ako ce npepaja
Aanctpubympa nog WMCTOM wWnu cnMYHOM nuueHuom. OBa nuueHua [Ao3Borbasa
KomepuujanHy ynotpeby gena u npepaga. CnuyHa je COTBEPCKUM mnuMLUEHLUama,
OLHOCHO NnuLeHLlama OTBOPEHOr Koaa.



