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CREEP CRACK GROWTH IN STEEL WELDED JOINTS 

ABSTRACT: 

The welding technology is one of the most commonly used methods to join structural 

components in power plants. This operation may lead to strong modifications of the 

mechanical properties of the base metal, which is obviously the case for P91steel. The 

present study aims at predicting the creep flow and damage behavior of welded 

components made of P91 steel. Study of the high temperature creep analyses of welded 

structures, as well as material properties generation, stress analysis, parametric 

considerations, and components failure life assessment [1]. High chromium alloy steel 

P91 (9Cr1Mo-NbV) is highly required in high-temperature productions facilities. 

Operating under creep conditions, i.e. high temperature and/or high stress, the welds made 

from this steel are potential failure locations and, therefore, life-limiting for the entire 

plant. In this thesis, the results of creep and creep crack growth (CCG) tests, which were 

conducted on P91 welds, are reported. These tests were carried out on welds constituents, 

i.e. base metal (BM) and weld metal (WM), and heat affected zone (HAZ), for the P91 

material at 600°C. For the cross-weld tests, interest was focused on the Type IV region, 

a narrow zone at one end of the heat affected zone (HAZ) at the side of the BM. Also 

reported, in this thesis, are the results of the Finite Element analyses for predicting the 

creep and creep crack growth in the P91 weldment.    

The P91 steel weldment is considered for investigations of creep behavior and creep crack 

growth at the service temperature of 600 °C, creep crack growth was experimentally 

carried out on CT specimen for different weldment zones. The mechanical properties and 

data collected from numerous tensile creep testing, crack initiations and creep crack 

growth tests are analyzed according to standard codes, the assessment methods are used 

to predict the failure in weldment [2]. The data obtained from high temperature crack 

initiation and growth tests were analyzed and used for two most widely used defect 

assessment methods, the British Time Dependent Failure Assessment Diagram (TDFAD) 

of R5 and German Two-Criteria-Diagram (2CD) methods. The assessment methods 

developed originally for base metals, never the less can predict reasonably the failure in 
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weldments of the studied material. The fracture mechanics parameter C* was used to 

correlate the CCG rates in the P91 weldment CT specimens. The load line displacement 

rates and the CCG data, for the CT specimens, were used to calculate C* values according 

to ASTM E 1457-15 [3]. Further, FE analyses were carried out to obtain the values of C*, 

based on the steady-state value of the contour integral C(t). Stationary crack CT models 

were used to obtain the C* values. Damage mechanics theory and equations were used to 

predict the creep and CCG for the P91 weldment using the FE code, ABAQUS. Both the 

Kachanov-Rabotnov and Liu-Murakami damage models were used. In order to use these 

models, material properties have to be determined. The results of creep and creep rupture 

tests were used to determine those properties. It was found that both damage models could 

be used to predict the creep behavior of the tested materials. However, the Liu and 

Murakami model was favored over the Kachanov model in predicting the CCG in the CT 

specimens. 

The results of experimental observations generally show significant differences in the 

creep properties in weldment zones with different microstructure. Thus, HAZ has higher 

creep strain rate and less time to rupture comparing to the same characteristics of the base 

material and weld metal. In general, results of finite element creep modeling predicted 

the critical damage accumulation and further rupture with crack initiation in the fine-

grained and inter-critical HAZ [4]. Such a type of fracture agrees with the experiments, 

and the weldment crack location is of type IV due to the classification of damage types 

in weldments. However, failures due cracks within the weld metal have been encountered 

in practice, these cracks have types I and II in the classification scheme for damage types 

in weldments as presented in Figure 1-2. 

Keywords: Creep crack growth, P91 weldments, finite element damage analysis 

Scientific field:  Mechanical Engineering 

Narrow scientific field: Fracture Mechanics 

UDC number:  

  621.791.05 : 669.15’24 : 539.434(043.3) 

  620.178.38 : 621.311 : 624.04(043.3) 
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РАСТ ПРСЛИНЕ УСЛЕД ПУЗАЊА У ЗАВАРЕНИМ 

СПОЈЕВИМА ОД ЧЕЛИКА 

Rezime: 

Zavarivanje predstavlja jednu od najrasprostranjenijih metoda spajanja nosećih elemenata 

u elektranama. Pri zavarivanju dolazi do značajnih promena u mehaničkim osobinama 

osnovnog materijala, u ovom slučaju čelika P91. Cilj ovog istraživanja je predviđanje 

toka puzanja i ponašanja zavarenih komponenti od čelika P91 pri oštećenju. Istraživanje 

je obuhvatilo analizu zavarenih konstrukcija izloženih puzanju na visokim 

temperaturama, kao i analizu mehaničkih osobina, napona i parametara otkaza i procene 

radnog veka [1]. Čelik sa povišenim sadržajem hroma, P91 (91Cr1Mo-NbV) je veoma 

pogodan za proizvodne pogone u kojima se radi na povišenim tempraturama. U slučaju 

rada pod uslovima puzanja, tj. Pri visokim temperaturama i/ili naponima, zavareni 

spojevima predstavljaju lokacije potencijalnog otkaza, i time ograničavaju radni vek 

celokupne elektrane. U ovoj tezi su prikazani rezultati ispitivanja puzanja i rasta prsline 

usled puzanja (Creep crack growth – CCG), koja su izvršena na zavarernim spojevima od 

čelika P91. Ova ispitivanja su izvršena za sve oblasti zavarenog spoja, odnosno osnovni 

materijal (OM), metal šava (MŠ) i zonu uticaja toplote (ZUT), pri temperaturi od 600°C. 

Za potrebe ispitivanja zavarenog spoja kao celine, posebna pažnja je posvećena oblasti 

prslina Tipa IV, koja predstavlja usku zonu na kraju ZUT-a, sa strane osnovnog 

materijala. U ovom istraživanju su takođe prikazani rezultati analize metodom konačnih 

elemenata, koji predviđaju puzanje i rast prsline usled puzanja u zavarenom spoju od 

čelika P91. 

Zavareni spoj od čelika P91 je uzet u razmatranje za potrebe ovog ispitivanja rasta prsline 

usled puzanja pri radnoj temperaturi od 600°C, pri čemu je puzanje eksperimentalno 

izazvano na CT epruvetama, u četiri različite zone u zavarenom spoju. Mehaničke 

osobine i podaci dobijeni iz brojnih ispitivanja puzanja pri zatezanju, kao i ispitivanja 

inicijacije i rasta prsline usled puzanja su analizirani u skladu sa standardima, primenom 

metoda procene otkaza zavarenih spojeva [2]. Podaci dobijeni iz ispitivanja inicijacije I 

rasta prsline prvi visokom temperaturama su anlizirani i upotrebljeni za dve najčešće 
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primenjivane metode ocene grešaka (Britanska TDFAD od R5 i nemačka 2CD metoda), 

koje su izvorno razvijene za osnovni material, ali bez obzira na to su se pokazale 

pouzdanim pri proceni otkaza zavarenih spojeva od predmetnog čelika. 

Parametar mehanike loma C* je primenjen kako bi se uspostavila veza između brzina 

rasta prsline usled puzanja u epruvetama za zatezanje od čelika P91. Vrednosti C* su 

proračunate, u skladu sa standardom ASTME 1457-15 [3], na osnovu podataka dobijenih 

iz dijagrama pomeranje napadne tačke sile – vreme (LLD –t) i dužina prsline – vreme (a 

–t) sila- pomeranje i ispitivanja rasta prsline usled puzanja. Sledeći korak se sastojao u 

određivanju C* parametra primenom metode konačnih elemenata, na osnovu vrednosti 

konturnog integral C(t). Ove vrednosti su određene na osnovu CT modela stacionarne 

prsline. 

Teorija i jednačine mehanike oštećenja su korišćene u cilju predviđanja puzanja i rasta 

prsline usled puzanja zavarenih spojeva od P91, primenom softvera za MKE, ABAQUS-

a. Primenjeni su Kachanov-Rabotnov i Liu-Murakami modeli oštećenja. Rezultati 

ispitvanja puzanja i loma usled puzanja su upotrebljeni za određivanje ovih parametara. 

Pokazalo se da oba modela mogu da pouzdano predvideti ponašanje ispitivanih materijala 

pri puzanju. Međutim, model Liu-Murakami se pokazao boljim u proceni rasta prsline 

usled puzanja CT epruveta. 

Rezultati eksperimentalnih istraživanja su uglavnom pokazali značajne razlike u 

ponašanju pri puzanju u zonama zavarenog spoja sa različitim mikrostrukturama. Stoga, 

ZUT ima veću brzinu rasta prsline i manje vremena do loma u poređenju sa 

odgovarajućim osobinama osnovnog materijala i metala šava. Sveukupno gledano, 

rezultati modeliranja puzanja konačnim elementima su predvideli akumulaciju puzanja i 

inicijaciju prsline u sitnozrnoj i međukritičnoj ZUT [4]. Takva vrsta loma bila je uskladu 

sa eksperimentom, i lokacijom prsline Tipa IV u zavarenom spoju, usled klasifikacije tipa 

oštećenja. Međutim, u praksi su primećeni otkazi usled prslina u metalu šava (Tip I i II), 

u klasifikacionoj semi vrsta oštećenja u zavarenim spojevima, kao što je prikazano na 

slici 1.2. 
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NOMENCLATURE 

𝑉̇𝑐  Creep component of load line displacement rate for compact tension  

  specimens in creep crack growth tests 

𝑉̇𝑝  Plastic component of load line displacement rate 

𝑉̇𝑡  Total load line displacement rate in creep crack growth tests 

𝜀𝑎̇𝑣𝑒  Average creep strain rate 

𝜀𝑒̇𝑞  Equivalent creep strain rate 

𝜀𝑖̇𝑗  Creep strain rate tensor 

𝜀𝑚̇𝑖𝑛  Minimum creep strain rate 

𝑆𝑖𝑗  Deviatoric stress tensor 

𝑉̇  Load line displacement rate in creep crack growth tests 

𝑎̇  Creep crack growth rate 

𝜀𝑝  Plastic strain 

𝜎𝑒𝑞  Equivalent, von Mises, stress 

∆𝜀𝑐  Creep strain increment 

A   Material constant in Norton's creep law, Kachanov creep damage model,  

  and Liu and Murakami creep damage model 

a   Crack length 

A'   Material constant in Norton creep model for average strain rate 

B   Material constant in Kachanov creep damage model or full thickness of  

  compact tension specimens 

BN   Net thickness of compact tension specimens 

C   Material constant in Monkman-Grant relationship 

C(t)   Contour integral characterizing stresses and strains at the crack tip in  

  creeping cracked bodies 

C*   Fracture mechanics parameter used to correlate creep crack growth rates  

  creeping cracked bodies 

D   Material constants in the relationship 
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D1   Material constant in Ramberg-Osgood relationship 

Di   Inner diameter 

Do   Outer diameter 

E   Modulus of elasticity 

J   J contour integral 

K   Stress intensity factor 

M   Material constant in both Kachanov, and Liu and Murakami creep  

  damage models; M = B(1+ ϕ) 

n   Material constant in Norton's creep law, Kachanov creep damage model,  

  and Liu and Murakami creep damage model 

n'   Material constant in Norton creep model for average strain rate 

P   Applied load to compact tension specimens 

PL   Limiting load 

q   Material constant in the relationship 𝑎̇ = 𝐷(𝐶∗)𝑞 

Q   Mismatch factor of heterogamous compact tension specimens 

q2   Material constant in Liu and Murakami creep damage model 

t   Time 

tf   Failure time 

tT   Transient time 

W   Width of compact tension specimen 

X, Y, Z  Cartesian coordinates 

α   Multiaxial parameter; material constant 

β   Material constant in Monkman-Grant relationship 

Δt   Time increment 

ν   Poisson's ratio 

σ   Stress 

σ1   Maximum principal stress 

σh   Hydrostatic stress 

σnon   Nominal stress 
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σr   Rupture stress 

σref   Reference stress 

σut   Ultimate tensile stress 

σy   Yield stress 

χ   Material constant in both Kachanov, and Liu and Murakami creep  

  damage models 

ω   Damage parameter, ranging from 0 (no damage) to 1 (full damage) 

c   Creep strain 

f   Strain at failure 

ϕ  Material constant in Kachanov creep damage model 

 

ABBREVIATIONS 

2D   Two dimensional 

3D   Three dimensional 

ASTM  American Society for Testing and Materials 

Ave. SR  Average strain rate 

CCG   Creep crack growth 

CCRB   Circumferential cracked round bar 

COD   Crack opening displacement 

CT   Compact tension 

DC   Direct current 

DENT   Double edged notched in tension specimens 

EBW   Electron Beam Welding 

EDM   Electric discharge machining 

FE   Finite element 

GTAW  Gas Tungsten Arc Welding 

HAZ   Heat affected zone 

ID   Inner diameter 

LLD   Load line displacement 
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MMA   Manual metal arc 

Mo   Molybdenum 

Mod.   Modified 

mpc   Multipoint constraint 

MSR   Minimum strain rate 

OD   Outer diameter 

PD   Potential difference 

PM   Parent material 

RSM   The Reference Stress Method 

SEM   Scanning Electron Microscopy 

W   Tungsten 

WM   Weld metal 
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1 INTRODUCTION 

 In order to improve energy efficiency and reduce CO2 emissions and to prevent 

many of the failures in high temperature components in industrial power plants Efforts 

are made to increase the steam temperature of new power plants above 873 K. Substantial 

study effort since 1990’s involved creep damage or cracking in welded joints. A common 

methodology is based on stress analysis of homogeneous material, without taking into 

account cracks, but in the case of welded joints, an analysis that is more complex is 

needed, including the effect of creep cracking. Steel weldment components used in power 

generation plants are continually exposed to high temperatures, failure processes such as 

creep crack growth (CCG), Safe, and accurate methods to predict creep crack growth 

(CCG) are therefore required in order to assess the reliability of such components. 

Evidence has shown that in many cases, creep damage in the form of cracks occur, in the 

heat affected zone (HAZ) region. For example, Type IV cracking generally occurs in the 

low temperature HAZ region, near to the parent material [5]. 

The operational and plant assessment experience indicates that in the majority of cases 

where a failure occurs in components, defects predominate near weldments. Therefore, 

time-dependent failure at high temperatures by creep crack initiation (CCI) and CCG in 

structural joints imposes a limit on component service life in plants. The most widely 

used standard for creep crack growth testing of metallic materials,  by American Society 

for Testing and Materials ASTM E1457-15, is mainly addressing testing homogeneous 

materials in compact tension, C(T), type specimens [3]. Creep deformation of a steel in 

its creep range is inevitable circumstances after a period; therefore, a final structures 

failure due to creep crack growth may not be avoided but can be controlled. Flaw 

contained high-temperature components, which are subjected to creep loading, may fail 

by creep crack growth [1]. 

Martensitic heat resistance steel P91is exceptional in resistance to oxidation, high-

temperature strength and weldability, it has been widely used in fossil-fired power plants, 

boiler, pressure vessel, petroleum engineering, chemical plant and nuclear power station. 

P91 is mainly applied in the elevated temperature component in supercritical power 

plants, for instance, main stream, superheaters and reheaters [6]. Welds mainly fabricate 

most structures and components of industrial power plants; therefore, creep life 

assessment in welded joints is very important. The creep strength of weldments has been 
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established that of such high Cr steels decrease due to Type IV creep damage located in 

the fine-grained heat affected zone (HAZ). In addition, creep crack growth (CCG) can 

occur in components operated under elevated temperatures. Safe and accurate methods to 

predict creep crack growth (CCG) are required in order to assess the reliability of such 

components. Therefore, it is important to predict creep crack initiation and growth in the 

fine-grained HAZ region [7]. Experimental studies of cross-weld specimens performed 

to analyze the cause of type IV creep failure and obtain the criterion for the creep 

behavior. In general, weld boundary is approximately normal to the applied stress for 

uniaxial creep specimens.  

1.1   Steel Weldments 

 Up until the end of the 19th century, a heating and hammering process called forge 

welding joined sections of metal together. Today, a variety of different welding processes 

are available, such that welding is extensively used as a fabrication process for joining 

materials in a wide range of compositions, part shapes and sizes. Welding is still the major 

joining technology for power plant components. The joint of components such as pipes 

and tubes can consist of similar metal welding (SMW) and dissimilar metal welding 

(DMW) [8]. The heat involved in the welding process intensely affects the microstructure 

and mechanical properties of creep resistant steels adjacent to the fusion line. The 

influenced region is known as heat-affected zone (HAZ). Several parameters govern the 

resulting microstructures and mechanical properties of the HAZ.  
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Figure 1-1 Schematic of the sub-zones of the HAZ [8]. 

 

The weldment is a combination of different material zones: parent metal, weld metal, and 

HAZ. Each zone may exhibit quite different material properties, which leads to great 

difficulties in understanding the creep behavior of a complete weldment. In order to 

obtain the necessary material data, some conventional tests were done separately on 

parent metal, weld metal and simulated HAZ. Further, the HAZ region may be divided 

into several different sub-regions, namely; coarse-grained zone (close to the fusion line), 

fine-grained zone (in the middle of HAZ) and inter-critical zone, usually referred to as 

the Type IV region (close to the PM/HAZ boundary) as presented in Figure 1-1. Highly 

complexity of the structure arises from the presence of the different materials that make 

the weld region [1].  

1.2   Cracks in Welded Joints 

Cracks in welded joints are categorized according to their locations. Type I and Type II 

cracks occur within weld metal, Type I is confined to weld metal whereas Type II may 

grow outside the weld metal and into the parent material. Type III cracks occur in coarse-

grained HAZ. Type IV cracks initiate and grow in a narrow zone of HAZ material, 
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adjacent to the BM/HAZ boundary. Type IV cracking is the most severe form of cracks 

because it results in the highest rate of void formation, leading to early failure when 

compared with creep tests on the base metal homogenous specimens [9] 

 

 

Figure 1-2 Types of cracking in weld joint of steel [10] 

 

1.2.1 Type IV Cracks 

Type-IV cracks appear in the inter-critical region of the HAZ in welded components, 

which operate under creep conditions. Type IV cracking can occur after as little as 40,000 

hours in service and up to 200,000 hours or more. The phenomenon occurs because of an 

inherently weak zone at the edge of the visible HAZ. This low creep strength region is 

attributed to the partial transformation of ferrite to austenite during the welding thermal 

cycle and/or the over-tempering or softening of the material in this region. The cracking 

initiates from localized formation and growth of creep voids in the 'Type IV zone'. A 

significant feature of the subsequent cracking is that it can be relatively rapid. Tests 

performed and measured the creep crack growth in a P91 welded pipe, internal gas 

pressure, at 625°C was applied, and the initial cracks were located in the middle of the 
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HAZ region. It was found that the initial cracks deviated until they reached the Type IV 

region, and then they remained in that region, shown in Figure 1-3 [11].  

 

 

Figure 1-3 Type IV crack in P91 Steel [11] 

 

 

1.3 The Hardness Variations in Weldment 

The hardness results across the weldment are shown in Figure 1-4 the position of the 

fusion line is highlighted by the dotted line in the figure. As expected the change in grain 

size as a result of heating during welding leads to a change in the hardness of the heat 

affected zone. The change in the properties of the base metal start approximately 4 mm 

from the weld center, after this point, the hardness drops corresponding to the increase in 

the grain size for the large grained region of the HAZ closer to the fusion line, the hardness 

increases as the HAZ becomes finer grained and the hardness increases. The region of 

higher hardness on the left hand side of the figure corresponds to the weld material which, 

as previously mentioned is overmatched to the parent material. This change in hardness 

with microstructure is consistent with those previously reported in the literature for P91 

steel heat affected zones [12]. 
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Figure 1-4  Representative micro-hardness across a typical P91 weldment [12]  

 

1.4   Flaw Assessment of Weldment 

 Restriction of the high temperature component performance by the performance 

of the welds under service conditions. The broad engineering assessment approach 

requires three elements need to be addressed separately, these are processing, properties, 

and structural integrity that cover the design of the structure, material, and process 

selection to safety and reliability of the plant. Weldments are functionally graded 

materials with complex microstructure due to local effects of heat from the welding 

process. Additionally, the components of the weldment vary containing a range of 

interfaces possessing different local properties as in similar and dissimilar welds with or 

without filler metal [13]. Producers of High temperature fracture mechanics can be 

developed, through which the time-dependent effects of creep could be modeled, uses 

experimental uniaxial and crack growth data from simple laboratory test specimens in 

order to predict failure times under operating conditions. Furthermore, the improvement 

in non-destructive inspections and testing methods (NDT) has allowed smaller defects to 

be detected and the need for more reliable methods for prediction of crack 
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initiation/incubation periods and steady crack growth rates. The input into a code of 

practice for defect assessment should include a number of important variables that the 

designer must obtain. It is vital to obtain information such as plant history, loading 

conditions under normal and abnormal operating conditions, characterization of defects 

stress analysis of the cracked structure and the relevant material properties data. Under 

high temperature, operating conditions creep or fatigue could be the primary mechanism 

for initiating and growing a crack in components, crack propagation can continue until 

structural failure takes place [14]. 

1.5   Creep Crack Growth 

 Creep crack growth is the time-dependent extension of a macroscopic crack at 

elevated temperatures under more or less constant load. A macroscopic crack, as distinct 

from grain boundary cavities, is a crack, which is larger than the structural lengths of the 

material, which are relevant for crack growth (for example, the grain size). Failure by 

crack growth may predominate over homogeneous grain boundary cavitation in the whole 

cross section, if a crack initiated at a pre-existing defect or a sharp notch early in the 

lifetime of the component. If creep crack growth is a potential failure mode, design codes 

and inspection standards should provide a means to assess the relevance of cracks in high-

temperature components. Such an assessment should include crack-like defects, which 

were detected by non-destructive evaluation, and, in critical applications, one must 

assume that cracks of a certain maximum size, which might have escaped detection, are 

present. A lifetime prediction should then be based on the expected growth rates of such 

defects in future service. In the analysis of creep crack growth it is convenient to 

distinguish two aspects [15]: 

 1.  The continuum-mechanical deformation fields in the cracked body. 

 2.  The micromechanisms of crack growth, which operate near the crack tip. 

Methods for determining the creep crack growth properties of materials are broadly 

similar to those used to determine the uniaxial creep data. A cracked specimen is 

subjected to a constant load at elevated temperature and crack extension measured as a 

function of time [16]. The types of the specimen that are used most often are compact 
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tension (CT), single edge notch tension (SENT), single edge notch bend (SENB), center 

cracked plate (CCP) and double cantilever bend (DCB) test specimens. When these 

specimens are subjected to a constant load the magnitude of the stresses generated at the 

crack tip increases with crack extension. 

Knowing that the creep strength of weldments of such high Cr steels decreases due to 

Type IV creep damage located in the fine-grained heat affected zone (HAZ). In addition, 

creep crack growth (CCG) can occur in components operated at elevated temperatures. 

Safe and accurate methods to predict creep crack growth (CCG) are required in order to 

assess the reliability of such components. Therefore, it is important to predict creep crack 

initiation and growth in the fine-grained HAZ region. Representation of CCG path of 

welded joint CT specimens indicated in Figure 1-5. With advances in finite element (FE) 

methods, compound models can be applied in the study of CCG where simple analytical 

solutions or approximate methods are no longer applicable, also the role of fracture 

mechanics parameters in estimating creep crack growth rates is examined using FE 

analysis, and the results are validated with experimental data [17]. 

 

 

Figure 1-5 Creep crack growth of welded joint [18]. 
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1.6   Objectives and Scope of Work 

 The objective of this thesis is to study and predict creep behavior and creep crack 

growth in P91 high temperature steel, which is used in the manufacturing of main steam 

pipes in power plants, chemical plants, and nuclear plants. The improved thermal 

efficiency of the power plant has been the main driver for the development of ferritic-

martensitic 9-12%Cr creep-resistant steels that are also commonly known as creep 

strength enhanced ferritic steels. The target operating temperature for these steels is 

650°C, with a common target design life of 100,000 h. The factors that govern the life of 

materials in high-temperature components include creep, fatigue, and corrosion, which, 

creep is a fundamental damage among them. The study of creep initiation and creep crack 

propagation in weldments materials helps in early predictions of structure and pipe 

components failure. Reliable and precise prediction remaining life provide maintenance 

of plant components and scheduling of safe replacement or repair in order to maximize 

plant efficiency [19].     

The primary aim of this study is to investigate and simulate the effects of creep process, 

creep crack initiation, and growth for P91 steel components, employing both 

experimental methods and finite element modeling techniques. The main objectives are: 

1. Study and predict creep and creep crack growth (CCG) in P91 high temperature steel 

at 600 °C. 

2. To determine the elastic/plastic fracture mechanics parameter J-integral and its 

analogous creep fracture parameter C* properties on a range of welded fracture 

mechanics specimens. 

3. To perform high-temperature experimental testing to measure tensile, creep 

deformation, crack growth behaviors of the service-exposed base, and weld materials 

that can be employed in the creep process model. 

4. To examine appropriate FE models to predict creep process properties, creep crack 

initiation (CCI) and creep crack growth (CCG) of welded components. 

5. Understand and evaluate the creep deformation and damage models combine with 

constitutive equations for high chromium alloy steel P91. 
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1.7   Arrangement of Thesis 

Succeeding this introduction, the literature review in Chapter 2 is divided into three parts. 

The first covers, in some detail the fracture mechanics theories and the elastic-plastic 

fracture mechanics also evaluations of fracture parameters. The second part reviews the 

general background to creep, high temperature materials and creep in welds, including 

Type IV cracks with the creep constitutive modeling. The third part reviews the time-

dependent fracture mechanics and prediction of CCG using a damage mechanics 

approach. The effects and determination of material properties are also included with 

creep crack growth models. 

Chapter 3 covers details of the damage mechanics approach of weldments modeling and 

creep constitutive models, reviewing the creep damage equations of four well Known 

models also presenting the effects of stress levels on the creep ductility of the P91 

material. Lastly, the implementation of finite element method using the determined 

material constants for damage models to predict the creep crack growth analytically to 

validate the experimental data. 

Chapter 4 presents in detail the experimental procedures of creep flow and creep crack 

initiations and growth testing of P91 weldment material, analysis of results data reached. 

Uniaxial and notched bar specimens were tested to obtain the materials creep and creep 

rupture data for parent material (BM) and weld metal (WM). Creep data for HAZ material 

also obtained using tensile testing and cross-weld uniaxial. Compact tension (CT) 

specimens were utilized to study creep crack growth in P91 weldments. Creep and creep 

crack growth tests were conducted at 600°C for the P91 material. Load line displacements 

were recorded from testing the CT specimens and crack length monitored using the 

potential difference (PD) method. The load line displacement rates and the corresponding 

crack lengths were then used to calculate C*, a fracture mechanics parameter used to 

correlate creep crack growth rates of cracks in cracked specimens of CT specimens. 

Chapter 5 outlines the modeling of creep damage behavior of P91 steel weldment with 

the use of modern mathematical constitutive models to predict material deformation and 

failure in engineering structures. The constitutive models are based on the notion of a 
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damage state variable (ω), which introduced in chapter 3, through the different creep 

damage models.  Finite element analyses were conducted on a two dimensional (2D) FE 

model of a compact tension CT specimen and three material cases have been considered 

using material properties of BM, WM and HAZ for P91 steel at 600 °C. The FEM has 

been widely used to calculate C* using CT specimens. Firstly, it was used to obtain FE 

steady state load line displacement rates, for CT specimens, which were then used to 

calculate C*, and analyzed for P91 BM, WM and HAZ CT specimens with different 

loading conditions and same initial crack lengths. 

Finally, Chapter 6 presents a general discussion, main conclusions, and the 

recommendations. 
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2 LITERATURE REVIEW 

Power generation and petrochemical plants endure failures of high temperature 

components, based on the operational and plant assessment experience indicate that in 

the majority of cases where a failure occurs in components, defects predominate near 

weldments. Therefore, time dependent failure at high temperatures by creep crack 

initiation (CCI) and creep crack growth (CCG) in weldment joints imposes a limit on 

component service life in plants. Although the concepts used for time-dependent fracture 

analysis of homogeneous bodies applied for defect assessment of weldments, complex 

structure of weldments having various weldment zones, which exhibit particular 

interactions, requires a unique approach in testing and failure assessment. 

The evaluation of mechanical properties of welded joints has received considerable 

attention in the past because weldments are often nucleation sites for catastrophic failures. 

The process of welding, during either primary fabrication or field repair, results in the 

development of metallurgical joints with heterogeneous microstructures and properties. 

The term "heterogeneous" indicates that the microstructures vary with the position; this 

is in direct distinction to formed base metals, which presumed to possess essentially 

homogeneous microstructures and mechanical properties [20]. 

The creep damage issue has been disputed for a long time. Creep damage has caused the 

attention of many researchers and industries. The European Creep Collaborative 

Committee (ECCC) is one of the organizations to collect information and data from 16 

countries involving over 40 European organizations. ECCC provides a platform for co-

operation of European industry and research to exchange and update of information and 

data for materials in the creep regime from different projects. ECCC also frequently 

produces guidelines for the generation, treatments, and assessment of large creep datasets 

for industry [21]. Creep Group of European Thematic Network (FITNET) indicate the 

need for novel methods in defect assessment of weldments and harmonies the existing 

knowledge in the industry and academic research for a combined defect assessment 

method for weldments [22]. 
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2.1 Fracture Mechanics Theories 

Fracture mechanics provides the basis for designing machine and structural 

components with materials containing defects such as crack, gives rational approach for 

assessing degree of safety or reliability of an in-service degraded machine component, 

and helps to calculate the life of a component with crack subjected to cyclically 

fluctuating load, corrosion, creep, or a combination of all these. A crack is a discontinuity, 

internal or external, in the material with zero tip radius. The development of the subject 

has been motivated by the severe safety requirements of the aerospace industry, nuclear 

power plants, and other safety-critical applications. The advancement in the 

understanding of the topic coupled with developments in material science, experimental 

methods, and numerical techniques such as finite element, boundary element, and 

meshless methods, has facilitated optimum design and minimization of material usage for 

an application. 

2.1.1 Linear Elastic Fracture Mechanics 

Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture, 

originally developed by Griffith (1921 to1924) and completed in its essential form by 

Irwin (1957, 1958) and Rice (1968). LEFM is a highly simplified, yet sophisticated, 

theory that deals with sharp cracks in elastic bodies. The stress near the crack tip is so 

high that some kind of inelasticity must take place in the immediate vicinity of the crack 

tip. However, if the size of the inelastic zone is small relative to the linear dimensions of 

the body (including the size of the crack itself), then the disturbance introduced by this 

small inelastic region is also small. Therefore, LEFM and point of failure can be verified 

exactly.  

A crack in a two-dimensional body is considered as shown in Figure 2-1. Conditions of 

either plane stress or plane strain are assumed to apply and the crack length is 2a for an 

embedded defect. An important concept in fracture mechanics is that local to the crack 

tip the stress and strain fields vary with the coordinates in a manner which depends only 

on material properties apart from a single scaling parameter. The local variations with 

position are determined by solution of the equilibrium and compatibility equations in 
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conjunction with the boundary conditions on the crack surface. The effects of remote 

loading, geometry and crack size are all included in the single scaling parameter, which 

is termed the stress intensity factor, K. 

 

Figure 2-1 Coordinate system describing a crack in an arbitrary body [16]. 

 

For elastic material behavior, the stresses close to the crack tip are given in terms of the 

coordinates of Figure 2-1as 
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The form of these equations holds irrespective of the remote boundary conditions but 

these affect the parameter K that defines the amplitude of the crack tip singularity. The 

remote boundary conditions also affect the higher order terms but these are negligible 

except away from the crack tip region when r is not small compared with the crack size a 

or any other dimension such as remaining ligament. The second order term, the T stress, 

depends on geometry, crack size and the tractions parallel to the crack plane in the x-

2.1.1.1 Stress Function Methods 
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direction and is sometimes used in two parameter descriptions of fracture. Here only the 

single parameter description involving K is considered. Then Equations (2-1), may be 

written in tensor notation as  

𝜎𝑖𝑗 = 𝐾𝑟−1 2⁄ 𝑓𝑖𝑗(𝜃)  (2-2) 

As the body is linearly elastic, the strains local to the crack tip obey a similar equation, 

namely 

𝜀𝑖𝑗
𝑒 = (

𝐾

𝐸
) 𝑟−1 2⁄ 𝑔𝑖𝑗(𝜃, 𝑣)  (2-3) 

Where the functions gij depend on Poisson's ratio ν and on whether conditions of plane 

stress or plane strain apply. The functions gij can readily be derived from equation (2-1) 

by noting that the out-of-plane stress σzz = 0 in plane stress, and σzz = ν (σxx + σyy) in plane 

strain. 

As the body is linearly elastic, K must be directly proportional to applied load. K also 

depends on the geometry and crack size, a, and solutions are widely available in 

handbooks [23][24]. For an infinite plate loaded by a uniform tensile stress, σ, normal to 

a crack of size, 2a 

𝐾 = 𝜎√𝜋𝑎  (2-4) 

The solution for a crack in a finite body can be written 

𝐾 = 𝑌𝜎√𝑎  (2-5) 

Where Y is a non-dimensional function of crack size and component dimensions, stress 

intensity factor solutions for a number of common test specimen geometries are presented 

in reference [23]. 

An important consequence of Equations (2-2) and (2-3) is that the strain energy density 

varies as (1/r) as the crack tip is approached. Using the summation convention for tensor 

notation involving repeated indices, the strain energy density is 

1

2
𝜎𝑖𝑗𝜀𝑖𝑗

𝑒 = (
𝐾2

𝐸
) 𝑟−1𝑓(𝜃, 𝑣)  (2-6) 

Where the function f (θ, ν) depends on whether conditions of plane stress or plane strain 

apply. By integrating equation (2-6) over a small circular region at the crack tip, 
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demonstrating that the energy stored within a finite region is finite, However, if the 

singularity was any stronger, the r(- ½) singularity in stress and strain is the strongest 

singularity possible at the crack tip for an elastic material [16]. 

An alternative characterization of the crack tip region for elastic materials is possible in 

terms of the energy release rate G, where G is the energy expended in extending a crack 

over unit area. A body of thickness B and arbitrary shape containing an edge crack of 

length a demonstrated in Figure 2-2. The line OA in Figure 2-3 represents its equivalent 

elastic load versus displacement diagram. At A the crack is allowed to extend by an 

amount da along the path AA'.  

 

Figure 2-2 Crack extension in an arbitrary cracked body [16]. 

 

For an elastic material, the point A' is on the loading line O A' of the same body having a 

crack length (a + da). The shaded area dU in Figure 2-3 is, therefore, the energy required 

to extend the crack by an amount da and G becomes 

 

2.1.1.2 Energy Methods 
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Figure 2-3 Elastic load displacement response for crack sizes differing by da [16]. 

 

𝐺 =
𝑑𝑈

𝐵𝑑𝑎
 

(2-7) 

Equation (2-7) may be expressed in special forms for particular loading paths. For crack 

extension at constant load 

𝐺 =
𝑃

2𝐵

𝜕∆𝑒

𝜕𝑎
|

𝑃
  (2-8) 

In addition, for crack extension at constant displacement it becomes 

𝐺 =
∆𝑒

2𝐵

𝜕𝑃

𝜕𝑎
|

∆𝑒
  (2-9) 

Equations (2-7) to (2-9) are convenient expressions for evaluating G experimentally or by 

computation for any cracked body. There is a direct link between the stress intensity factor 

and energy characterizations of fracture through [25]. 

𝐺 =
𝐾2

𝐸′
 

 (2-10) 

where 

𝐸′ = 𝐸                           in plane stress 
(2-11) 

𝐸′ = 𝐸 (1 − 𝜐2)⁄            in plane strain 
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Consequently, the state of stress around a crack tip is characterized in terms of either K 

or G, which can both be evaluated as a function of load and crack length for any geometry. 

In the Griffith theory of fracture, it is assumed that unstable fracture takes place when K 

and G reach their corresponding critical values, Kc and Gc respectively. For mode I 

loading, the critical value of K for plane strain conditions is termed the fracture toughness, 

KIc, and this can be realized in the laboratory from the failure load of a cracked specimen 

and used to predict the failure load or critical crack size in a structure. However, at 

elevated temperatures time dependent crack growth can take place before this value is 

reached. 

 

2.1.2 Small-Scale Yielding 

The stresses near the crack tip extent to infinity as the crack tip is approached as predicted 

by equations (2-1). In elastic-plastic materials, yielding at the crack tip occurs to reduce 

the high stresses. However, in the case of small-scale yielding the plastic deformation is 

contained within a small zone around the crack tip. Provided the plastic zone is 

sufficiently small, the surrounding elastic region can still be characterized by the same 

equations. However, K must be increased, to K', to describe the higher elastic stresses 

away from the crack tip required to balance the reduced stresses in the plastic zone. This 

is represented in Figure 2-4. 

An approximate estimate of K' for small-scale yielding may be made by evaluating the 

stress intensity factor for a crack of size (a + rp), where rp is a plastic zone size correction 

shown schematically in Error! Reference source not found.. The value of rp is chosen 

to make the two shaded areas equal so that equilibrium is maintained. This is achieved by 

making rp approximately equal to the distance over which the elastic stresses exceed yield. 

In plane stress, the stress, σyy, directly ahead of the crack (θ = 0) is equal to the yield 

stress, σy when 

𝑟𝑝 =
𝐾2

2𝜋𝜎𝑦
2
  (2-12) 
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Figure 2-4 Schematic stress field ahead of a crack in small-scale yielding 

This follows from the second part of equations (2-1) provided the plastic zone is buried 

within the region where the terms in r(- ½) are dominant. In plane strain small-scale 

yielding, multi-axial constraint leads to yielding occurring when the stress, σyy directly 

ahead of the crack is approximately equal to √3𝜎𝑦, i.e. from equations (2-1) when 

𝑟𝑝 =
𝐾2

6𝜋𝜎𝑦
2
  (2-13) 

Equations (2-12) and (2-13) may be written in the more general form 

𝑟𝑝 =
𝛽𝐾2

𝜎𝑦
2

  (2-14) 

The multiplier β is influenced not only by whether conditions of plane stress or plane 

strain apply, but also by the remote tractions, geometry and the multi-axial yield 

condition, balancing of the load represented by the shaded area in Figure 2-4, and material 

strain hardening properties is also a function of angular position [25]. 

Within the plastic zone, K´ characterizes the product of stress and strain, which retains 

the (1/r) singularity of Equation (2-6). This equation is modified to 

𝜎𝑖𝑗𝜀𝑖𝑗 = (
(𝐾′)2

𝐸′
) 𝑟−1𝑓(𝜃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)  (2-15) 
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Where the angular function depends on strain hardening properties of the material and on 

condition of plane stress or plane strain. However, both stress and strain have an r(- ½) 

singularity in the elastic case. In the plastic case, the stresses are lower and strains higher 

so that they correspond to a point on the material stress-strain curve with combined r-1 

singularity. 

2.1.3 Elastic-Plastic Fracture Mechanics 

In the presence of a crack, metals give way to plastic deformation near the crack-tip prior 

to fracture. The degree of plastic deformation may be higher than the level that can be 

accommodated in the linear elastic fracture mechanics (LEFM). This has led to the 

development of elastic-plastic fracture mechanics (EPFM) or yielding fracture mechanics 

(YFM) to accommodate for ductile metals. In the early stages of the development, a 

simple plastic zone correction to the stress intensity factor was proposed; later an 

alternative plastic zone correction was developed. The first truly elastic-plastic fracture 

parameter, the crack tip opening displacement (CTOD), was proposed in 1961. Several 

years later, the J contour integral was developed, a parameter that approximates elastic-

plastic deformation with a nonlinear elastic material assumption. The J integral can be 

viewed as both an energy parameter and a stress intensity-like quantity. In addition, J is 

uniquely related to CTOD under certain conditions. 

2.1.4 Crack Opening Displacement Criterion 

In the presence of plastic deformation, the sharp crack-tip is blunted and strains increase 

rapidly than the stresses. Strains become evident in the form of displacements, opening δ 

at the locations of crack-tip. Figure 2-5 represents the extent of deformations. It was 

observed through experiments of different metals that crack opens up considerably at the 

original physical crack-tip locations, and materials are stretched before fracturing, also 

defined the condition for extension of crack for such materials in terms of this opening. 

Since then, the crack opening displacement (COD) or crack-tip opening displacement 

(CTOD) regarded as a fracture resistance parameter.  
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Figure 2-5 Crack-tip blunting and crack opening displacement δ 

 

If there is plastic deformation at the crack-tip and the virtual crack size is (a + rp), then 

the crack opening is given by 

𝛿 =
4𝜎

𝐸
√(𝑎 + 𝑟𝑝)

2
− 𝑥2  (2-16) 

Therefore, the opening at the actual crack-tip (x = a) location is approximated by 

𝛿 =
4𝜎

𝐸
√2𝑎𝑟𝑝  (2-17) 

 

CTOD evaluated using Irwin's plastic zone estimate and the equations for a center crack 

in an infinite elastic body. Specifically, from Equations (2-12) & (2-14) to obtain δ=2ν (rp) 

gives 

𝛿 = 𝛼
𝐾2

𝐸𝜎𝑦
  (2-18) 

Here, α is a numerical factor that in Wells' work was equal to 4/π and later recognized 

that the factor 4/π is inconsistent with an energy balance approach and subsequently 
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adopted α = 1. Other values have been given from Dudgale’s model for plain stress and plain 

strain respectively [26]. 

𝛿 ≅
𝐾2

𝐸𝜎𝑦
 

 (2-19) 

𝛿 ≅ 0.49
𝐾2

𝐸𝜎𝑦
 

The fracture occurs when δ goes beyond a critical value δc corresponding to the value of 

KIC. 

2.1.5 The J Contour Integral 

The crack tip stress fields could be correlated with J –integral for nonlinear elastic 

materials, the use of J provides a means of directly extending LEFM behavior to fully 

plastic behavior Figure 2-6 illustrates the uniaxial stress-strain behavior of elastic-plastic 

and nonlinear elastic materials [27][28]. 

 

Figure 2-6 Stress-strain behavior of an elastic-plastic material 

In a similar manner to the use of the stress intensity factor in LEFM, J integral can be 

used to describe the variations of stress and strain local to a crack tip under elastic-plastic 

conditions. This is defined such that the amplitude of the (1/r) singularity in the product 

of stress and strain in Equations (2-6) and (2-15) becomes: 
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𝜎𝑖𝑗𝜀𝑖𝑗 = 𝐽𝑟−1𝑓(𝜃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)  (2-20) 

 

Under predominantly elastic conditions J = G = K2/E' and in small-scale yielding J = 

(K')2/E'. For extensive conditions of plasticity occur in a structure, J is increased above 

these elastic values, which described schematically in Figure 2-6: 

The value of J can be related to an integral defined on a contour surrounding a crack tip, 

Figure 2-7. The definition is [27] 

 

𝐽 = ∫ [𝑊𝑠𝑑𝑦 − 𝑊𝑠 (
𝜕𝑢𝑖

𝜕𝑥
) 𝑑𝑠]

Γ

  (2-21) 

where Ws is strain energy density given by 

𝑊𝑠 = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀𝑖𝑗

0

  (2-22) 

with σij and εij the stress and strain tensors, respectively. Ti and ui components of the 

traction and displacement vectors and s is arc length along Γ. The contour Γ is a path 

traversed anticlockwise which surrounds the crack tip as shown in Figure 2-7. For non-

linear elastic material, J is path-independent and can be evaluated on any convenient 

contour when computations are performed. For linear elastic materials, J is equal to the 

energy release rate, G [16]. 

Ti would define the normal stresses acting at the boundaries. The components of the 

traction vector are given by 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗  (2-23) 

 

where nj are the components of the unit vector normal to Γ. 

The Equation (2-20) has been examined for materials, which deform according to the 

idealized power law hardening expression 

𝜀 = 𝛼𝜎𝑦 (
𝜎

𝜎𝑦
)

𝑛

  (2-24) 
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where n, α, σy, εy are constants. The constants σy, εy are the yield stress and strain 

respectively, and εy= σy/E when fitting Equation (2-24) to actual stress-strain data. As the 

product of stress and strain varies with (1/r) by Equation (2-20), for the material law of 

Equation (2-20) the stress near the crack tip must vary as (1/r)1/(N+1). 

 

 

Figure 2-7 Integration contour around a crack tip 

 

As a criterion of fracture mechanics, the J -integral could be a crack tip stress or strain 

singularity for large-scale yielding for non-linear power-law hardening materials. Thus, J 

is a stress intensity parameter, which describes the amplitude of the stress and strain 

fields, known as HRR fields [29][30].  

The HRR solutions can be expressed as 

 

𝜎𝑖𝑗 = 𝜎𝑦 (
𝐽

𝛼𝜎𝑦𝜀𝑦𝐼𝑛𝑟
)

1
𝑛+1

𝜎̃𝑖𝑗(𝑛, 𝜃) 
 (2-25) 

 

2.1.5.1 HRR Fields 
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𝜀𝑖𝑗 = 𝛼𝜀𝑦 (
𝐽

𝛼𝜎𝑦𝜀𝑦𝐼𝑛𝑟
)

1
𝑛+1

𝜀𝑖̃𝑗(𝑛, 𝜃) 
 (2-26) 

 

Where J is the J-integral (MPa. N or MN/m), θ and r are the polar coordinates centered at 

the crack tip, 𝜎̃𝑖𝑗(𝑛, 𝜃)  and  𝜀𝑖̃𝑗(𝑛, 𝜃) are dimensionless functions that are functions of θ 

and n, In is a dimensionless integration constant that is a function of n. The numerical 

values of  𝜎̃𝑖𝑗(𝑛, 𝜃) and In are given in [30]. The values for the dimensionless constant IN 

can be estimated from the following equations [16] 

𝐼𝑛 = 7.2√0.12 + 1 𝑛⁄ − 2.9 𝑛⁄                            for plane stress 

(2-27) 
𝐼𝑛 = 10.3√0.13 + 1 𝑛⁄ − 4.9 𝑛⁄                          for plane strain 

 

For a non-linear elastic material, J can be divided into elastic Je and plastic Jp parts, written 

by 

𝐽 = 𝐽𝑒 + 𝐽𝑝  (2-28) 

 

where the elastic part, Je is related to the stress intensity factor K and the effective elastic 

modulus of the material E' which is equal to E and E / (1-ν2) under plane stress and plane 

strain condition respectively 

𝐽𝑒 =
𝐾2

𝐾′
  (2-29) 

Jp can be obtained from the plastic area under the load-displacement curve (Figure 2.9) 

based on the respond of load-line displacement (LLD) or crack mouth opening 

displacement (CMOD), expressed as [31] 

 

2.1.5.2 J-Integral Estimation Methods 
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Figure 2-8 Load-displacement response and definition of (a) plastic displacement Δp and 

plastic area Ap (b) plastic secant area Asec, under the load-plastic curve [31] 
 

𝐽𝑝 =
𝐴𝑝

𝐿𝐿𝐷

𝐵𝑛(𝑊 − 𝑎)
𝜂𝐿𝐿𝐷  (2-30) 

 

𝐽𝑝 =
𝐴𝑝

𝐶𝑀𝑂𝐷

𝐵𝑛(𝑊 − 𝑎)
𝜂𝐶𝑀𝑂𝐷  (2-31) 

 

where Bn is the net thickness between the side grooves, 𝐴𝑝
𝐿𝐿𝐷or 𝐴𝑝

𝐶𝑀𝑂𝐷is plastic area under 

the load versus load line displacement or crack mouth opening displacement, and , 𝜂𝐿𝐿𝐷 

𝜂𝐶𝑀𝑂𝐷is a nondimensional geometric factor obtained from load line displacement and 

crack mouth opening displacement respectively. 

Both, 𝐴𝑝
𝐿𝐿𝐷and 𝐴𝑝

𝐶𝑀𝑂𝐷can be obtained by integrating an appropriate load–displacement 

area for each cracked configurations. In addition, η is related to an appropriately chosen 

area of the load–displacement curve for each specimen. There are two areas, which can 

be selected, namely Ap and Asec, shown in Figure 2-8 (a) and (b) separately. These areas 

are expressed as 
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𝐴𝑝 = ∫ 𝑃𝑑∆𝑝

∆𝑝

0

  (2-32) 

 

𝐴𝑠𝑒𝑐 = ∫ 𝑃𝑑∆𝑝 −
1

2

∆𝑝

0

𝑃∆𝑝  (2-33) 

 

For a power law hardening material based on Ramberg–Osgood material model, the 

plastic areas can then be simplified by [32] 

𝐴𝑝 =
𝑛

𝑛 + 1
𝑃∆𝑝  (2-34) 

 

𝐴𝑠𝑒𝑐 =
1

2

𝑛

𝑛 + 1
𝑃∆𝑝  (2-35) 

Replacing the plastic areas in Equation (2-30) and (2-31) with Equation (2-34) or (2-35) 

the solution of Jp can be rewritten as 

𝐽𝑝 =
𝑃∆𝑝

𝐵𝑛(𝑊 − 𝑎)
𝐻′𝜂  (2-36) 

The parameter H', which is used to simplify the definition of η for different geometries, 

relies on LLD and CMOD records and is dependent on n. The values of HLLD and HCMOD 

for the CT specimen geometry considered in this study are provided in Table 2-1 

 

 

Table 2-1 Definition of H,  H'and A for CT specimen geometry [32]  

Specimen HLLD HCMOD 
Associated 

Area 
H'LLD H'CMOD 

CT N/(N+1) N/(N+1) Ap 1 1 
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Electric Power Research Institution (EPRI) proposed an estimation method of Jp of 

cracked bodies for various fracture geometries, considering CT specimen  the solution 

given as  

𝐽𝑝 = 𝛼𝜀𝑦𝜎𝑦(𝑊 − 𝑎)ℎ1(𝑎 𝑊, 𝑛⁄ ) (
𝑃

𝑃0
)

𝑛+1

  (2-37) 

where h1(a/W,n) is the dimensionless function of the normalized crack length and stress 

exponent, P0 is the limit load of unit thickness, values of which are made available in [25].  

The EPRI estimation for the total value of J obtained by the sum of elastic components 

based on small-scale yielding solution and plastic components by 

 

𝐽𝐸𝑃𝑅𝐼 =
𝐾2(𝑎𝑒)

𝐸′
+ 𝛼𝜀𝑦𝜎𝑦(𝑊 − 𝑎)ℎ1(𝑎 𝑊, 𝑛⁄ ) (

𝑃

𝑃0
)

𝑛+1

  (2-38) 

an effective crack length ae defined by 

𝑎𝑒 = 𝑎 +
1

𝛽𝜋

(𝑛 − 1)

(𝑛 + 1)
(

𝐾

𝜎𝑦
)

2
1

[1 + (𝑃 𝑃0⁄ )2]
  (2-39) 

where β = 2 for plane stress, β = 6 for plane strain and K = K(a). This modification 

essentially provides a plastic zone correction, which is set to have a reduced effect at 

higher loads when plasticity contributions are given by the second term in equation 

(2-38).  

In addition, (EPRI) proposed an estimation method of limit load P0 after studying flaw 

assessments for nuclear vessels. The limit load of CT specimen can be obtained by [33]    

𝑃0 = 1.455𝜂(𝑊 − 𝑎)𝜎0                         plane strain 
(2-40) 

𝑃0 = 1.071𝜂(𝑊 − 𝑎)𝜎0                         plane stress 

where η is defined as  

𝜂 = √[(2𝑎 𝑐⁄ )2 + 2(2𝑎 𝑐⁄ ) + 2] − [(2𝑎 𝑐⁄ ) + 1]  (2-41) 

where a is the crack length, c is the ligament length defined as (W-a). For these limit load 

solutions are usually estimated for defects in non-work-hardening materials, adjustments 

2.1.5.3 Estimation of J for CT specimen by EPRI 
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to allow for the work hardening capacity of real materials are replacing the yield strength 

by flow strength of the material, that is: 

𝜎𝑦 = 𝜎𝑓 =
𝜎𝑠 + 𝜎𝑠

2
  (2-42) 

where σs is the yielding stress and σs is the ultimate strength. 

Large differences in calculated values of .J can arise from different fits of equation (2-24) 

to the stress-strain curve. It is suggested that such curve-fitting errors may be reduced by 

adopting reference stress techniques commonly used in creep analysis. Defining the 

reference stress by [34]: 

𝜎𝑟𝑒𝑓 = (
𝑃

𝑃0
) 𝜎𝑦  (2-43) 

therefore, the estimation of J using reference stress approach can be described by 

𝐽𝑟𝑒𝑓 =
𝐾2(𝑎𝑒)

𝐸′
+ 𝜇𝜎𝑟𝑒𝑓 (𝜀𝑟𝑒𝑓 −

𝜎𝑟𝑒𝑓

𝐸
) (

𝐾2(𝑎)

𝜎𝑟𝑒𝑓
)

2

  (2-44) 

where εref is the total strain at the reference stress σref, which can be obtained by Ramberg-

Osgood equation. The value of μ depends on plane stress/strain condition where μ=1 for 

plane stress and μ=1-ν2 for plane strain respectively. 

 

2.2 Definition of Creep 

Plastic deformation is irreversible and it consists of time-dependent and time-

independent components. In general, creep refers to the time-dependent component of 

plastic deformation. This means that creep is a slow and continuous plastic deformation 

of materials over extended periods under load. Although creep can take place at all 

temperatures above absolute zero Kelvin, classically creep has been associated with time-

dependent plastic deformation at elevated temperatures, often higher than 0.4Tm, where 

Tm is the absolute melting temperature, because diffusion can assist creep at elevated 

temperatures [8].  

2.1.5.4 Estimation of J in Terms of Strain at Reference Stress Approach 
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2.2.1 Creep Mechanisms 

At high temperatures, the atoms of metals are active enough to move from one position 

to another within metal crystals. With the load applied to the material over a long time, 

the movements of the atoms result in creep of the material. This movement, of atoms, is 

caused by diffusion. 

 Bulk diffusion: Interstitial and vacancy diffusion: 

Diffusion in the bulk of a crystal can occur by two mechanisms. The first is interstitial 

diffusion. Atoms in all crystals have spaces, or gaps, between them, and small atoms 

dissolved in the crystal can diffuse by squeezing between atoms, jumping from one gap 

to another Figure 2.1 (a). Carbon, a small atom, diffuses through steel in this way. 

The second mechanism is that of vacancy diffusion, occurs when an atom moves from its 

position to a vacancy, which may be the same size as the atom itself, as shown in Figure 

2.1 (b). Most diffusion in crystals takes place by this mechanism. 

 Fast diffusion Paths: Grain boundary and dislocation core diffusion: 

Diffusion in the bulk crystals may sometimes be short lined by diffusion down grain 

boundaries or dislocation cores. The boundary acts as a planar channel, about two atoms 

wide, with a local diffusion rate which can be as much as 106 times greater than in the 

bulk Figure 2.1 (c). The dislocation core, too, can act as a high conductivity “wire” of 

cross-section about (2b)2, where b is the atom size Figure 2.1 (d). At high stresses, 

dislocation is the dominant creep mechanism while at low stresses and high temperatures 

the diffusion creep is the dominant creep mechanism [35].  
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Figure 2-9 Creep mechanisms (a) Vacancy diffusion (b) Interstitial diffusion 

                    (c) Grain-boundary diffusion  (d) Dislocation-core diffusion [35]. 

 

2.2.2 Creep Curves 

The time-dependent deformation mechanism occurring at an elevated temperature 

that is generally non-reversible known as creep. Creep is most likely to occur in 

components that are subjected to high loads at elevated temperatures for extended periods. 

Creep may ultimately cause fracture or assist in developing a crack in components 

subjected to stresses at high temperatures. The phenomenon of creep is based on a time-

dependent process whereby the material deforms irreversibly. Creep in polycrystalline 

materials occurs because of the motion of dislocations within grains, grain boundary 

sliding, and diffusion processes. A creep curve can essentially be divided into three main 

sections as shown in Figure 2-10. A particular material does not necessarily exhibit all 

the stages of creep for given testing conditions. In Figure 2-11 the representation of the 

rupture times versus the applied stress covers the response of the material throughout the 

three regimes. The primary region is a period of decreasing creep rate where work-
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hardening processes dominate and cause dislocation motion to be repressed. The 

secondary or steady-state region of creep deformation is frequently the longest portion 

and corresponds with a period of constant creep rate where there is a balance between 

work-hardening and thermally activated recovery (softening) processes. The final stage 

is termed the tertiary region. This is a period of accelerating creep rate, which terminates 

in fracture. It can be caused by a number of factors which include an increase in stress in 

a constant load test, formation of a neck (which also results in an increase in stress 

locally), voiding and/or cracking and over aging (metallurgical instability in alloys) [36]. 

 

 

Figure 2-10 Definitions of creep strain rates representation in creep curve [36]. 

 

Creep tests can be performed either at constant load or at constant stress. For experimental 

convenience, most frequently the creep tests of engineering steels are achieved at constant 

tensile load and at constant temperature. The test results can be plotted as creep curves, 

which represent graphically the time dependence of strain measured over a reference or 

gauge length.  
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Figure 2-11 Representation of rupture times versus applied stress [36]. 

 

2.2.3 Power-Law Representation of Creep 

 The initial elastic and the primary creep strain cannot be neglected, they occur 

quickly, and they can be treated in much the way that elastic deflection is allowed in a 

structure, thereafter, the material enters steady state, or secondary creep, the relative 

length of the primary, secondary and tertiary stages in Figure 2.1 will depend on the 

material and testing conditions. The secondary creep is the most important creep region 

for most engineering materials and usually takes the longest portion in the life of creep. 

By plotting the log of the steady creep rate 𝜀𝑠̇, against log σ at constant T, as shown in 

Figure 2-12, the relation written as: 

 

𝜀𝑠̇ = 𝐴𝜎𝑛  (2-45) 

 

Where n is referred to as the steady-state creep exponent. The typical values of n for 

common metallic materials range from 3 to 13, A is Norton power-law constant under the 

secondary stage. The above equation is known as Norton’s law. The reason for its 

popularity is its simplicity in application to stress analysis and its analogy to the Ramberg-
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Osgood law. If plotting minimum creep strain rate 𝜀𝑠̇, versus σ on log-log form, the values 

of the steady state power-law constants A nd n can be extrapolated. 

 

𝐴 = 𝐴′exp(−𝑄𝑐 𝑅𝑇⁄ ) (2-46) 

Where Qc the activation energy for creep, R the gas constant and T the absolute 

temperature. The parameter A′ includes microstructure parameters such as grain size. It 

is well known that the minimum or steady-state creep rate is inversely proportional to the 

time to rupture tr as: 

𝜀𝑚̇𝑖𝑛𝑜𝑟 𝜀𝑠̇ = 𝐶/(𝑡𝑟)𝑚 = 𝐴′𝜎𝑛exp(−𝑄𝑐 𝑅𝑇⁄ )  (2-47) 

Where C is a constant depending on total elongation during creep and m is a constant 

often nearly equal to one, Equation (2-47) is often referred to as the Monkman–Grant 

relationship, which has been experimentally confirmed not only for simple metals and 

alloys but also for a number of engineering creep resistant steels and alloys. Equation 

(2-47) suggests that the minimum or steady-state creep rate and the time to rupture vary 

in a similar manner to stress and temperature [35]. 

 

Figure 2-12 Variation of creep rate with stress [35]. 
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2.2.4 Creep Constitutive Modelling 

A constitutive equation is a relation between two or more physical quantities that 

are specific to the material and represents the response of that material to external 

influences. The requirement for a knowledge of creep constitutive behavior, ε(t, T, σ) is 

no longer just for scientific interest or metallurgical understanding, this is now routinely 

a requirement for computer-based finite element analysis (FEA) of engineering 

components loaded at elevated temperatures to describe the long-time creep behavior of 

a specified alloy type [8]. A wide range of creep model equations, which, are in use today 

to represent the high temperature-time dependent deformation behavior of engineering 

materials.  Table 2-2 presents a number of classical representations of primary, secondary 

and tertiary creep deformation stages. A small number of the presented equations may be 

contained in creep constitutive models to represent the material behavior over all three 

creep deformation stages. This can be simply achieved by summing up the expressions 

representing primary, secondary and tertiary creep strains. 

 

Table 2-2 Classical representations of primary, secondary and tertiary creep [8]. 
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The creep deformation characteristics of all materials over their entire temperature 

application range cannot be represented by a single constitutive equation effectively. The 

effectiveness of a constitutive equation to model primary, secondary and/or tertiary creep 

deformation for specific applications can vary with material characteristics and source 

data distribution. In particular, not all model equations and fitting procedures are suitable 

for the prediction of alloy-mean long-time creep strength behavior [37]. 

The ability of a constitutive equation effectively to characterize the creep deformation 

behavior of a material depends on the following: 

 Model Fitting Approach: model-fitting individual experimental creep curves with the 

selected constitutive equation (simultaneously or consecutively for individual 

deformation regimes) to establish the model parameters for specific conditions of T 

and σ,  and determination of the temperature and stress dependence of the selected 

model parameters to define the material mean master equation for all εf(T, σ, t). 

 Model Selection: The selection of constitutive equation and model-fitting approach 

can depend on a number of factors including material characteristics in representing 

ε(t) curve shape can depend on features such as the relative proportions of primary, 

secondary and tertiary creep as fractions of the strain and time at rupture. Data 

distribution which typically consists of a number of ε(T, σ, t) curves (creep test 

records), each comprising a number of ε(t) observations, and practical application 

depends on the purpose for which the material’s creep strain description is required. 

There is no universally preferred constitutive equation for predicting service life. 

In practice, the selection often depends on which model best represents the high 

temperature deformation characteristics of the material and the preference of the analyst 

and/or the requirements of the available application tools. 

Creep life assessment can also be determined by analyzing the stress-strain state of the 

structure in its entirety using detailed finite element solutions with demanding material 

property input data requirements or by using more simplified approaches involving some 

2.2.4.1 Constitutive Equation Selection 

2.2.4.2 Predicting Service Life 
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form of reference stress, e.g. equivalent yield stress. The application of such reference 

stress approaches is usually limited to creep ductile materials for which both deformation 

and failure are controlled by the von-Mises effective stress. 

2.2.5 Secondary and Average Creep Strain Rates 

Creep strain rates are of the most effective features of creep curves. The minimum or 

secondary creep strain rate 𝜀𝑠̇ and the average creep strain rate 𝜀𝐴̇  are presented in Figure 

2.5. Materials that exhibit low values of 𝜀𝑠̇ or 𝜀𝐴̇ are known as creep resistant materials 

when compared to those, which exhibit higher values 𝜀𝑠̇ of 𝜀𝐴̇, at the same stress and 

temperature. The minimum creep strain rate characterizes the behavior of materials in the 

secondary creep region. The average creep strain rate is associated with rupture data, i.e. 

at failure strain εf, and failure time tf. Therefore, the average creep strain rate accounts for 

all the three stages of creep curves [38]. 

 

Figure 2-13 Schematic creep curve illustrating secondary and average creep rates [38]. 

 

This average creep rate 𝜀𝐴̇ is defined by: 
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𝜀𝐴̇ =
𝜀𝑓

𝑡𝑟
= 𝜀𝐴̇ (

𝜎

𝜎0
)

𝑛𝐴

= 𝐴𝐴𝜎𝑛𝐴  (2-48) 

Where εf is the uniaxial failure strain, tr is the time to rupture and σ is the applied stress. 

The variables, σ0, AA and nA in equation (2-1) are generally taken as material constants 

and may depend on stress. The average creep strain rate for the P91 material was used to 

determine material constants, which are used to calculate fracture mechanics parameter 

C* using FE methods, see Section 5.1.4. 

2.2.6 Creep Strength 

For plant operating at temperatures around 600°C creep is a critical factor and plant 

is designed to operate for a finite life (up to 250 000 hrs., i.e. nearly 30 years). With the 

move to higher temperatures and pressures required for more advanced supercritical 

plant, the materials generally used for operation in subcritical plant were unable to 

provide the performance required for the high temperature sections of the boiler. The 

ferritic steels then available were mainly 0.5Cr0.5Mo0.25V, lCr0.5Mo and 2.25CrlMo. 

These steels lacked sufficient creep strength and corrosion resistance for use at the higher 

temperatures required for supercritical operation. Although the austenitic steels offer 

good creep and corrosion properties, their thermal properties are relatively poor with a 

low thermal conductivity coupled with a high coefficient of expansion. During thermal 

cycling, high stresses can develop in thick-walled components, leading to thermal fatigue. 

It has been assessed that to avoid such unacceptable thermal stresses thick-walled 

components such as headers and pipework would require being heated to the operating 

temperature over an expanded period, which would be unacceptable to plant operators 

meeting real-time electricity demands. Therefore, serious design and operating 

limitations are enforced on the plant using thick section austenitic steels. Hence, the main 

use of these steels is in thin section components such as superheater/reheater tubing and 

stub headers to take advantage of their improved creep and corrosion properties. 

The solution adopted was the introduction of martensitic creep resistant steels containing 

either 9% or 12%Cr, as these show high thermal conductivity with relatively low thermal 

expansion. These steels are fully air hardening and develop a fully martensitic structure 
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even after slow air cooling from the solution treatment temperature and, in part, their 

improved creep strength is derived from this martensitic matrix. To control the high 

hardness and brittle behavior normally associated with martensitic materials low carbon 

levels were employed. Specified nitrogen levels were also introduced as this element 

increases both the hardenability and the creep strength. Currently, these creep resistant 

martensitic steels are the desired materials for the construction of components in 

supercritical boilers. In many cases, the parent material properties of the alloy may be 

ideal but it must be possible to produce the required product forms, normally tube and 

pipe, and to join and form them under both factory and site conditions [39]. 

2.2.7 Creep Resistant Martensitic Steels 

 The first of the creep resistant martensitic steels to be commonly used in power 

generation plant was the European 12Cr steel known as 'X20' (from the DIN designation 

X20CrMoV 12 1). The chemical composition for X20 presented in Table 1, which differs 

from the steels now used in that it has a higher carbon content. This steel exhibits very 

good creep strength and has been used in Europe in high temperature areas of subcritical 

boilers. However, concerns exist over the fabrication and welding of this material. 

Welding has to be performed using a high preheat temperature (up to 400°C) and, on 

thick section weldments, cracking can occur when the weld is cooled to room 

temperature. In addition, the hardness of weldments is very high in welding condition and 

stress corrosion cracking may develop in such welds if they experience damp conditions 

prior to post weld heat treatment. Because of these fabrication difficulties, there was a 

great need in the production of a material with equal or improved creep properties that 

led to the development of the 9Cr martensitic steels, which have now replaced X20 as the 

desired material. Development of 9Cr1Mo steel was as early as 1936 for use in the oil 

industry to provide improved corrosion resistance over 2.25Cr1Mo. The use of this steel 

in the form of tubes starting in 1970s, at the UK nuclear power facilities. Although the 

creep strength was adequate for these applications, it was lower to that of X20 and 

therefore efforts were made to improve it. An early attempt resulted in a 9Cr2Mo steel 

known as EM2 that had improved creep strength but suffered from in service 
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embrittlement and low creep ductility. This has led to the an improved 9Cr1Mo steel 

without the problems associated with EM2 which resulted to the alloy development of 

Grade 91 (P91), and had a lower carbon content than the original 9Cr1Mo steel coupled 

with small additions of vanadium and niobium to retain strengthening precipitates, 

hardenability and the creep strength [39]. 

 

Table 2-3 Chemical Compositions of 9% Cr and 12% Cr martensitic steels [39]. 

 X20 P91 E911 NF616 HCM12A TB12M NF12 

  20CrMo V12             

C % 0.17-0.23 0.08-0.12 0.10-0.13 0.07-0.13 0.07-0.14 0.10-0.15 0.08 

Si % 0.5 max. 0.20-0.50 0.10-0.30 0.5 max. 0.5 max. 0.5 max. 0.05 

Mn % 1.00 max. 0.30-0.60 0.30-0.60 0.30-0.60  0.40-0.60 0.5 

P % 0.03 max. 0.02 max. 0.02 max. 0.02 max. 0.02 max. 0.02 max. ― 

S % 0.03 max. 0.01 max. 0.01 max. 0.01 max. 0.01 max. 0.01 max. ― 

Cr % 10.0-12.5 8.00-9.50 8.50-9.50 8.50-9.50 10.0-12.5 11.0-11.3 11 

Mo % 0.80-1.20 0.85-1.05 0.90-1.10 0.30-0.60 0.25-0.60 0.40-0.60 0.15 

Ni % 0.30-0.80 0.40 max 0.40 max. 0.40 max. 0.50 max. 0.70-1.00 0.5 

Nb % ― 0.06-0.10 0.060-0.10 0.04-0.10 0.040-0.10 0.04-0.09 0.07 

V % 0.25-0.35 0.18-0.25 0.15-0.25 0.15-0.25 0.15-0.30 0.15-0.25 0.2 

W % ― ― 0.90-1.10 1.50-2.00 1.50-2.50 1.60-1.90 2.6 

Al % ― 0.04 max. ― 0.04 max. 0.04 max. 0.01 max. ― 

N % ― 0.03-0.07 0.05-0.08 0.03-0.07 0.04-0.10 0.04-0.09 0.05 

B % ― ― ― 0.001-0.006 0.005 max. ― 0.004 

Co % ― ― ― ― ― ― 2.5 
 

 

2.2.8 Mod - 9Cr1Mo Steel (P91) 

P91 material is an ASTM grade of steel used to manufacture main steam pipes that are 

used in the fossil fuel and nuclear power plants. This material was first developed in the 

US in the early 1980s and was introduced to the industry in the early 1990s. P91 material 

is a modified form of P9 (9Cr 1Mo steel) material. The Mod – 9Cr1Mo steel is used in 

both boilers and in steam turbines for many components including pipes, headers, rotors, 

casings and chests with a maximum operating temperature of ~620°C [40]. These alloys 

have lower coefficients of thermal expansion and higher thermal conductivities than 
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austenitic steels and should, therefore, be more resistant to thermal cycling. In boilers, 

these steels are used for tubing in superheaters and reheaters, the high allowable stress, 

of P91 material, enabled engineers to design pipes with thinner walls. Figure 2-14 shows 

a cross-section of a pipe fabricated from different steels. The figure compares the pipe 

thicknesses of different steels required to operate with steam at 593.3°C and 320 bar (USC 

steam parameters) [10]. 

 

 

Figure 2-14 Comparison of nominal pipe thickness for different steels [10]. 

 

 

The P91 alloy composition was modified with addition of small amount of V, Nb, and N. 

This led to the considerably improved creep and tensile strength and excellent ductility 

and toughness. This grade has been called “ Mod-9Cr1Mo or 9Cr1MoV and was 

incorporated into the ASME specifications as SA-213-T91 for tubing, SA-387-Grade 91 

for plates, SA-335-P91and SA-369-FP91 for pipe and SA-182-F91 and SA-336-F91 for 

forgings. Figure 2-15 shows the microstructure of Mod. P91 Base metal material. 
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Figure 2-15 Microstructure of Mod. P91 BM [41]. 

 

2.3 Deformation and Fracture at High Temperature 

High temperature deformation and fracture is truly an integrative subject. The many 

theories developed for high temperature deformation and fracture are mainly based on 

dislocation and diffusion, but every stage of their development resorts to the fundamental 

principles of solid state physics, physical metallurgy, elastic-plastic mechanics, fracture 

mechanics and damage mechanics, and so forth. High temperature deformation and 

fracture have long been one of the most active research topics in materials science and 

engineering. Since the 1970s, remarkable progress has been achieved in developing the 

relevant microscopic models and theories. For the time being, research and development 

activity has also been extensively carried out on new high temperatures materials such as 

intermetallic compounds, ceramics, polymers and composite materials, and a great 

amount of experimental data have been documented. 
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2.3.1 Deformations under Creep Conditions 

Deformation and fracture of materials under elevated temperature creep conditions 

are time-dependent processes. At temperatures below some 30 percent of the absolute 

melting temperature, it is a reasonable and widely used idealization to consider the elastic-

plastic behavior of metals as time-independent. The strain developed instantaneously in 

response to a load is large compared to the additional strain, which is accumulated within 

any practically time of interest. Many technical applications, however, require 

temperatures far beyond the time-independent regime, which ends at some 400 °C for 

ferritic steels, for example. Then the continuing plastic deformation (creep) under 

sustained load, which eventually leads to creep fracture, often becomes the determining 

factor for the design of a structure. However, the fracture mechanisms are usually closely 

related to the preceding deformation processes [15].  

 

2.3.2 Elastic-Plastic Deformation 

The total strain accumulated in a body can be expressed as the sum of time independent 

strain and time-dependent creep, εc(t), components whereas the time-independent 

component can be divided into elastic εe and plastic εp parts: 

 

𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑐(𝑡)  (2-49) 

 

This expression is usually known as the “theory of total creep deformation” which in 

particular describes the behavior of the material in the steady-state creep region [42].  

The elastic component of total strain under uniaxial conditions is represented by 

 

𝜀𝑒 = 𝜎 𝐸⁄   (2-50) 

 

where σ is the applied stress and E is the elastic (Young’s) modulus of the material. The 

plastic strain may be described using a power law equation as 
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𝜀𝑝 = 𝛼𝜀𝑝0 (
𝜎

𝜎𝑝0
)

𝑁

= 𝐴𝑝𝜎𝑁  (2-51) 

where N is the power law plasticity stress exponent, εp0 and σp0 are the normalizing strain 

and stress for plasticity, respectively, and α and Ap are constants which can be related by 

𝐴𝑝 =
𝛼𝜀𝑝0

𝜎𝑝0
𝑁  

It may be assumed that under stresses less than yield strength, σy, the material behaves 

linearly while a power law equation relates stress and strain at stresses beyond yield. The 

linear and non-linear behavior of material under uniaxial stress can be written as 

 

𝜀

𝜀𝑦
=

𝜎

𝜎𝑦
            𝑓𝑜𝑟 𝜎 < 𝜎𝑦  (2-52) 

 

𝜀

𝜀𝑦
= (

𝜎

𝜎𝑦
)

𝑁

            𝑓𝑜𝑟 𝜎 > 𝜎𝑦  (2-53) 

 

 

where 𝜀𝑦 =
𝜎𝑦

𝐸
 is the yield strain. Note the yield stress in Equations (2-51) and (2-52) is 

often taken as 0.2% proof stress, σ0.2, of the material. 

 

2.3.3 Ramberg-Osgood Material Model 

During plastic deformation, work hardening or strain hardening would occur due to 

dislocation generation and movement within the crystal structures of the materials. 

Ramberg-Osgood material model is commonly used to describe the stress-strain behavior 

of strain hardening materials. It provides a smooth continuous curve for the total strain in 

terms of stress, with no distinct yield point, and it can be defined by [43]. 

𝜀 =
𝜎

𝐸
+ 𝐴𝑝𝜎𝑁            𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑚  (2-54) 

 

 



CREEP CRACK GROWTH IN STEEL WELDED JOINTS 

 

 

 

45 
 

 

 

𝜀

𝜀𝑝0
=

𝜎

𝜎𝑝0
+ 𝛼 (

𝜎

𝜎𝑝0
)

𝑁

            𝑛𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚  (2-55) 

Typical stress-strain curve in Ramberg-Osgood relation is illustrated in Figure 2-16. The 

hardening behavior of the material relies on the material constants, α and N. The 

normalizing strain, εp0, can be considered as a yield offset. For most materials, the yield 

offset is equal to the accepted value of εp0 = 0 0.2%, the corresponding normalizing stress 

is then taken to be the 0.2% proof stress, written as σ0.2. Due to the power-law form in 

Ramberg-Osgood model, plastic strain is always considered small for very low levels of 

stress (σ < σ0.2). Under this circumstance, the non-linear (plastic) term in Equation (2-55) 

remains negligible, while the linear term dominates. On the other hand, when (σ > σ0.2), 

progressively dominated plastic strain results in a magnified power-law distribution, 

under such condition, the linear component in Equation (2-55) becomes negligible. 

 

 

Figure 2-16 Typical stress-strain in Ramberg-Osgood material model 
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2.3.4 Multi-axial Deformation 

The previous discussion on stress-strain behavior is based on uniaxial conditions. 

However, in practice, the body is majorly subjected to a multi-axial stress state, in this 

case, the effects of the stresses that are applied in different directions cannot be 

superimposed linearly. Two classical plasticity theories are commonly used to determine 

whether and when the yield occurred under multi-axial deformations. The interpretations 

of Tresca criterion is that a critical value of shear stress stored in engineering materials; 

while von Mises criterion suggests a yield occurs when distortional (shear strain) energy 

reaches a critical value. In fracture mechanics, von Mises criterion is generally applied to 

predict yielding of materials under any loading conditions from the results of uniaxial 

tensile tests. The equivalent stress, denoted as σeq, is in the function of principle stresses 

as 

𝜎𝑒𝑞 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎2)2]  (2-56) 

 

where σ1, σ2, σ3 are principle stress components. Note that under uniaxial condition, σ2 = 

σ3 = 0 , von Mises stress is then equal to the principle stress, i.e. σeq = σ1. The hydrostatic 

(or mean) stress, denoted as σh, is required consideration. It is defined as the average of 

the three normal stress components of any stress tensor as 

 

𝜎ℎ =
𝜎1 + 𝜎2 + 𝜎3

3
  (2-57) 

 

2.3.5 Limit Load and Reference Stress Concepts 

The concepts of limit load and reference stress have been widely applied in structural 

engineering design and components’ integrity assessments. The limit (or plastic collapse) 

load describes a maximum sustainable load of the uncracked or cracked body made of 

elastic-perfect plastic materials (N → ∞) and is often used to determine the carrying 

capacity of structures. Knowledge of limit load can aid designing mechanical properties 
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of components and structures since limit load provides information of the modes of failure 

associated with load-controlled effects [44]. The reference stress method has been 

employed for estimating structural integrity of components with and without defects in 

either below or within the creeping range of temperatures. The reference stress is defined 

by 

 

𝜎𝑟𝑒𝑓 = 𝜎0.2

𝑃

𝑃𝐿𝐶
  (2-58) 

 

The normalized reference stress σrerf /σ0.2 denotes the level of plasticity in structural 

components. If the ratio is less than unity, components may store a limit level of plasticity; 

if the ratio is greater than unity, amount of plasticity in the components is expected. The 

limit load, PLC in Equation (2-58) is the function of normalized crack size and specimen 

thickness. PLC is related to the yield stress, σeq (or σeq) whilst σeq is independent of σeq. 

The value of σeq under plane strain condition is generally greater than that under plane 

stress condition [25]. 

 

2.4 Time-Dependent Fracture Mechanics 

Extension of cracks under the application of fixed load conditions gives rise to time 

dependent fracture mechanics. More commonly referred to as creep crack growth, time 

dependent fracture mechanics utilizes analytical solutions to describe the transient 

behavior of cracks. Components that operate at high temperatures relative to the melting 

point of the material may fail by slow, stable extension of macroscopic crack in creeping 

material. Traditional approaches to design in the creep regime apply only when creep 

failure is controlled by a dominant crack in the structure. 

2.4.1 Creep Crack Growth 

Creep crack growth in metals is an important design consideration for several high 

temperature components. The Ct parameter, C*-integral, and the stress intensity 
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parameter K, as crack tip parameters suitable for characterizing creep crack growth in 

metals.    

Deformation at high temperatures can be divided into 4 regimes: instantaneous (elastic) 

strain, ε0, primary creep, secondary (steady state) creep, and tertiary creep. The elastic 

strain occurs immediately upon application of the load; the elastic stress-strain response 

of a material is not instantaneous but viewed as instantaneous in such creep problems, 

where the time scale is usually measured in hours. Primary creep dominates at short times 

after the load is applied where the strain rate decreases with time as the material strain 

hardens. In the secondary creep stage, the deformation reaches a steady state, where the 

strain hardening and softening are balanced. The creep rate is constant in the secondary 

stage. In the tertiary stage, the creep rate accelerates, as the material approaches ultimate 

failure. Microscopic failure mechanisms such as grain boundary cavitation nucleate in 

this final stage of creep. 

During growth of microscopic crack at high temperatures, all four type of creep response 

can occur simultaneously in the most general case as it is realized in Figure 2-17. The 

material at the tip of the growing crack is in the tertiary stage of creep since the material 

is failing obviously locally. The material may be elastic remote from the crack tip, and in 

the primary and secondary stages of creep at moderate distances from the tip. 
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Figure 2-17 Creep response zones at a crack tip [25] 

Most analytical treatments of creep crack growth assume limiting cases, where one or 

more of these regimes are not present or confined to a small portion of the component. If, 

for example, the component deformation is predominantly elastic, and the creep zone is 

confined to small region, near the crack tip, the crack growth can be characterized by the 

stress intensity factor, K. In the other extreme, when the component deforms globally in 

steady state extensive creep, elastic strains and tertiary creep can be disregarded [16].  

There are two competing mechanisms involved in creep crack growth. The creep 

deformation is characterized by crack-tip blunting in the material ahead of the crack tip. 

This relaxes the crack-tip stress field and tends to retard crack growth. The other 

mechanism results in an accumulation of creep damage in the form of microcracks and 

voids that enhance crack growth as they coalesce. Whichever phenomenon dominates 

determines whether creep crack growth takes place. Steady-state crack growth will occur 

when equilibrium between these two effects is achieved. 

Time-dependent crack growth can result from creep effects as well as environmental 

effects or from combination of both. An oxidizing environment can accelerate the creep 

crack growth rate by an order of magnitude or more. In many tests, no attempt was made 

to separate the effects. This has made the interpretation and comparison of data difficult. 
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Efforts have concentrated on trying to identify the loading parameter with which the crack 

growth rate correlates regarding the operating conditions of the material. The most 

commonly employed loading parameters are the elastic stress intensity factor, K, the 

energy rate integral, C*(t), and the reference stress σref, depending on the loading 

conditions and the crack tip deformation regimes [45]. 

2.4.2 Crack-Tip Parameters 

Three regimes of crack growth namely, small-scale, transient, and steady state can be 

distinguished for materials exhibiting elastic, power-law creep behavior, depending on 

the size of the crack-tip creep zone relative to the specimen dimensions, as presented in 

Figure 2-18. Creep crack growth usually begins under small-scale conditions and, as the 

creep proceeds, the steady-state creep conditions develop. In between, the specimen 

passes through the transition creep conditions. The transition time, t1, from small-scale 

creep to steady-state creep conditions depends on several factors, including specimen 

geometry and size, load level, loading rate, temperature, and the kinetics of the creep. 

During the small-scale and transition creep conditions, the size of the creep zone and the 

stress at the crack tip change continuously with time. Under large-scale creep conditions, 

the crack-tip stress no longer changes with time. Therefore, this regime is known as the 

steady-state regime. The nature (plasticity or creep) and size of the crack-tip deformation 

zone relative to the size of the specimen determine which of the parameters K, J, C*, C(t), 

and Ct might be applicable to a given situation. For creeping materials, description of the 

phenomenology surrounding C*, Ct, and C(t) is adequate. The parameters K and J, which 

do not account for time-dependent strain that occurs in the creep regime, are not 

applicable here [46]. 
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Figure 2-18 Schematic representation of levels of creep deformation [46] 

2.4.3 The C* Parameter 

This parameter specifically addresses the steady state (large scale) creep crack growth 

regime. Under steady-state conditions, the path-independent integral C* is defined as 

 

𝐶∗ = ∫ (𝑊̇𝑠𝑑𝑦 − 𝑇𝑖

𝜕𝑢̇𝑖

𝜕𝑥
𝜕𝑠)

Γ

  (2-59) 

where 𝑊̇𝑠 is the strain energy density rate, defined as 

𝑊̇𝑠 = ∫ 𝜎𝑖𝑗 𝑑

𝜀̇𝑖𝑗

0

𝜀𝑖̇𝑗  (2-60) 
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Ti is the traction vector along the path Γ that originates at a point along the lower crack 

surface, goes counterclockwise, and ends at a point on the upper crack surface. Thus, the 

contour encloses the crack tip. The terms σij and 𝜀𝑖̇𝑗 are the stress and strain rate tensors, 

𝑢̇𝑖 is the deflection rate vector along the direction of the traction, and ds is a length element 

along Γ. The C* parameter is analogous to the J contour integral (shown in Equation 

(2-21) and (2-22), and Figure 2-7) with the difference that strain and strain energy density 

are replaced by strain rate and strain energy rate density, respectively. When secondary 

creep dominates, for a given crack length and loading conditions, C* will be independent 

of time, and subject to the same restrictions with respect to path independence as J. Also 

if secondary creep follows a power law 

 

𝜀𝑖̇𝑗 = 𝐴𝜎𝑖𝑗
𝑛  (2-61) 

 

where A and n are material constants. It is possible then to define an HRR-type singularity 

for stresses and strain rates at the crack tip when r/a→0 [47] 

 

𝜎𝑖𝑗 = (
𝐶∗

𝐴𝐼𝑛𝑟
)

1
𝑛+1

𝜎̃𝑖𝑗(𝑛, 𝜃)  (2-62) 

 

 

𝜀𝑖̇𝑗 = (
𝐶∗

𝐴𝐼𝑛𝑟
)

1
𝑛+1

𝜀𝑖̃𝑗(𝑛, 𝜃)  (2-63) 

 

where a is the crack length, r is the distance from the crack tip, θ is the angle from the 

plane of the crack, and the constants In, 𝜎̃𝑖𝑗  and 𝜀𝑖̃𝑗  are identical to the corresponding 

parameters in HRR relationship presented in Section 2.1.5.1, note that, here, n is creep 

exponent rather than strain hardening exponent. Just as the J integral characterizes the 

crack tip fields in an elastic or elastic-plastic material, the C* integral uniquely defines 

crack tip conditions in a viscous material. Therefore, the time dependent crack growth 
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rate in a viscous material should only depend on the value of C*. Experimental studies 

have shown that creep crack growth rates correlate very well with C*, provided steady 

state creep is the dominant deformation mechanism in the specimen [48][49]. The crack 

growth rate follows the power law 

 

𝑎̇ = 𝐷0𝐶∗𝜙  (2-64) 

 

where D0 and ϕ are material constants, and ϕ = n /(n +1) for many materials which 

predicted by grain boundary cavitation models. Experimental measurement of C* is done 

in analogy to the J-integral. J is evaluated by referring to the energy release rate definition 

 

𝐽 = −
1

𝐵
(

𝜕

𝜕𝑎
∫ 𝐹

Δ

0

𝑑Δ)

∆

  (2-65) 

 

where F is the applied load and Δ is the load line displacement. Similarly, C* can be 

defined in terms of a power release 

 

𝐶∗ = −
1

𝐵
(

𝜕

𝜕𝑎
∫ 𝐹

Δ̇

0

𝑑Δ̇)

∆̇

  (2-66) 

 

The J integral can be related to the energy absorbed by a testing specimen, divided by the 

ligament area c, which is energy per unit ligament area 

𝐽 =
1

𝐵𝑐
∫ 𝐹

Δ

0

𝑑Δ  (2-67) 

 

Therefore, C* is given by  
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𝐶∗ =
1

𝐵𝑐
∫ 𝐹

Δ̇

0

𝑑Δ̇  (2-68) 

 

where F is a factor which depends on specimen geometry and creep stress index n and is 

related to the similar factor, η used in J-estimation methods by equation (2-41). 

 

𝐹 =
𝑛

𝑛 + 1
𝜂  (2-69) 

 

In this case, Equation (2-68) reduces to [16] 

 

𝐶∗ =
𝑛

𝑛 + 1

1

𝐵𝑐
𝐹Δ̇  (2-70) 

 

2.4.4 Creep Crack Growth Models 

It was proposed by Nikbin, Smith, and Webster (NSW) [48], that, as presented in 

Figure 2-19, a creep process zone of size rc exists ahead of the crack tip where creep 

damage accumulates, and that creep damage may be measured in terms of creep ductility 

exhaustion. It is considered that material first experiences creep damage when it enters 

the process zone, thus a gradient of creep damage exists between 0 ≤ r ≤ rc. 

Material failure occurs at the crack tip when the creep ductility is exhausted there and 

hence the crack extends. In the NSW model the steady state creep crack growth rate, 𝑎̇ 

is predicted using 

 

2.4.4.1 NSW Model 
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Figure 2-19 Definition of crack tip coordinates and creep process zone size, rc [50] 

 

 

𝑎̇ =
𝑛 + 1

𝜀𝑓
∗ (

𝐶∗

𝐼𝑛
)

𝑛 (𝑛+1)⁄

(𝐴𝑟𝑐)1 (𝑛+1)⁄   (2-71) 

 

The experimental predictions on a large number of materials showed that the creep crack 

growth rate is most sensitive to multiaxial creep ductility, and crack growth rates can be 

predicted approximately by [51] 

𝑎̇ =
3𝐶∗0.85

𝜀𝑓
∗   (2-72) 

 

where 𝑎̇ is in mm/h, 𝜀𝑓
∗ is the appropriate failure strain as a fraction and C* is in MPa m/h. 

In Equation (2-72) 𝜀𝑓
∗ is the level of creep strain appropriate to the state of stress at the 

crack tip. For plane stress conditions 𝜀𝑓
∗ can be taken as the uniaxial creep ductility εf and 

for plane strain conditions as εf /30. This range describes the effects of constraint on crack 

growth due to both material properties and size/geometric factors. Equations (2-64) and 

(2-72) are relevant to when steady state creep and creep damage conditions have been 

achieved at a crack tip. 
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2.4.4.2 Modified NSW Model 

A modified version of the NSW model (designated NSW–MOD) has been proposed, 

which considers the dependence of creep strain on both the crack tip angle θ, and the 

creep stress exponent n, in addition to the stress state [52]. 

 

𝑎̇𝑁𝑆𝑊−𝑀𝑂𝐷 = (𝑛 + 1)(𝐴𝑟𝑐)
1

𝑛+1 [
𝐶∗

𝐼𝑛
]

𝑛
𝑛+1 ℎ̅𝑛

𝜀𝑓
  (2-73) 

 

and 

ℎ̅𝑛 =
𝜎̃𝑒𝑞

𝑛 ( 𝜃, 𝑛)

𝑀𝑆𝐹( 𝜃, 𝑛)
|

𝑚𝑎𝑥

  (2-74) 

 

The form of Equation (2-73) is the same as that of Equation (2-72), but the dependence 

of 𝜎̃𝑒𝑞 and 𝜀𝑓
∗ on angle θ and n is included. 

At θ = 0°, which is the condition assumed in the NSW model, the difference in the value 

of 𝜎̃𝑒𝑞(𝑛, 𝜃) under plane stress and plane strain conditions can be up to a factor of 50-100 

depending on the value of n. It is seen in Figure 2-20 that 𝜀𝑓
∗ increases with angle both 

under plane stress and plane strain conditions. At θ = 0°, the difference of 𝜀𝑓
∗ between 

plane stress and plane strain conditions is well above a factor of 100. 
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Figure 2-20 Dependence of (a)  𝜎̃𝑒𝑞 and (b) 𝜀𝑓
∗ on angle θ and n [53] 

 

 

2.4.5 Creep Crack Initiation 

The initial stage of cracking exhibits a transient phenomenon due to the accumulation of 

damage at a crack tip prior to the onset of steady-state behavior. This can lead to an 

incubation period as presented in Figure 2-21 before measurable crack growth can be 

detected, if the minimum crack extension that can be resolved reliably is da then the 

incubation period is given by [51] 

 

𝑡𝑖 = ∫
𝑑𝑟

𝑎̇

∆𝑎

0

  (2-75) 

 

where dr is distance from the crack tip. Limits on ti can be obtained by representing 

cracking rate by its initial value 𝑎̇0 and its steady state value 𝑎̇. The initial cracking rate 

can be approximated to the steady state rate in Equation (2-64) by 

𝑎̇0 =
𝑎̇

𝑛 + 1
  (2-76) 
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Figure 2-21 Development of crack blunting and crack initiation [51]. 

 

 

𝑎̇0 =
𝑎̇

𝑛 + 1
  (2-77) 

 

The process of crack tip blunting continues until the plasticity of the material at the crack 

tip exhausted and a critical crack tip opening displacement, δi, is reached as seen in 

Figure 2-7, this criterion is used to determine the creep crack initiation time, ti. For ductile 

materials, when steady-state creep conditions are established, the creep crack initiation 

time can be estimated as [54] 

 

𝑡𝑖 =
1

𝜀0
(

𝜎0𝜀0̇𝛿𝑖

𝐶∗
)

𝑛
𝑛+1

  (2-78) 
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3 DAMAGE MECHANICS APPROACH OF WELDMENTS 

MODELING AT ALL CREEP STAGES 

 

3.1 Introduction 

Creep deformation is defined in three distinct stages: primary, secondary, and tertiary, 

creep is sensitive to stress and temperature. Diffusion flow, dislocation slip and climb, 

and grain boundary sliding are all basic mechanisms of creep illustrated in Figure 3-1. 

During the primary creep regime, dislocations slip and climb. Eventually, a saturation of 

dislocation density coupled with recovery mechanics in balance form the secondary creep 

regime. Finally, the tertiary creep regime is observed where grain boundaries slide, voids 

form, and coalescence, leading to rupture [55]. 

 

 

Figure 3-1 Creep deformation and damage evolution parameter [55]. 

 

Preceding efforts concentrated on modeling the minimum creep rate and predicting creep 

rupture through Norton’s power law, considering all three-creep regimes, the required 

material constants can be analytically determined from experimental data. However, the 

Norton power law is not an appropriate representation of the creep behavior of creep 

resistant martensitic steels, as it does not model the tertiary creep regime. 
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3.2 Continuum Damage Mechanics 

Fracture mechanics approaches were used to predict creep crack growth in standard 

specimens for steel weldments. However, it is difficult to utilize fracture mechanics for 

cases other than those used to predict the steady-state behavior of components. Therefore, 

damage mechanics approaches have been used to model all creep stages, i.e. primary, 

secondary and tertiary creep. Damage mechanics can, also, account for material 

deterioration, which will allow accurate predictions of failure times and location of creep 

structures. The damage mechanics approach accounts for the loss of the load carrying 

capacity during the creep process due to material deterioration. This loss, in the load 

carrying capacity, is due to the merging of the voids and microcracks that are formed on 

grain boundaries and lead to the material degradation, which occurs. The generalized 

damage mechanics approach is used to predict progressive deterioration and ultimate 

failure in components working under creep conditions. A life-time prediction of a specific 

load bearing component designed for creep, or a residual life-time estimation of a 

structure operating at elevated temperature requires a model which takes into account 

tertiary creep and damage evolution under multi-axial stress states The damage rate and 

consequently the creep rate are determined by the stress level, the accumulated damage, 

and the temperature. These dependencies can be established based on experimental data 

from the uni-axial creep tests [56]. 

Local approach of fracture based on continuum damage mechanics (CDM) and finite 

element method (FEM) considered the best technique that CDM offers, the local approach 

of fracture enables us to track the local fields of stress, strain and fracture at a crack tip. 

A crack is usually identified by the completely damaged zone, where the damage state 

extended to its critical state. When this condition is satisfied the material in the region 

between the crack tip and the point of failure is assumed to rupture and the crack to 

advance to the failure point, this procedure is repeated until the crack reaches its critical 

length and failure takes place [57]. 
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3.3 Creep Constitutive Models 

Typical creep deformation can generally consist of three regimes, i.e. primary, secondary, 

and tertiary creep regimes. For the purpose of easy application, a model employed which 

considers only the average creep strain rate, ε̇𝑎𝑣𝑒
𝑐𝑟 , presented in Figure 3-2 in FE analyses 

of creep behavior. This simplest model can be written in the power-law form as [17][58]: 

 

 

Figure 3-2 schematic illustration of a typical creep behavior [58]. 

 

𝜀𝑎̇𝑣𝑒
𝑐 = 𝐴′𝜎𝑒𝑞

𝑛′
  (3-1) 

 

where A′ and n′ are the creep coefficient and exponent, respectively. σeq denotes the 

equivalent (von Mises) stress. In order to obtain an accurate description of entire creep 

curves, a strain-hardening creep law composed of three terms is used 

 

𝜀𝑐̇ = 𝐴1𝜎𝑒𝑞
𝑛1𝜀𝑐

𝑚1 + 𝐴2𝜎𝑒𝑞
𝑛2𝜀𝑐

𝑚2 + 𝐴3𝜎𝑒𝑞
𝑛3𝜀𝑐

𝑚3  (3-2) 

 

where A1, n1, A2, n2, A3, and n3 are material constants form creep data, and εc denotes the 

equivalent (von Mises) creep strain. It should be pointed out that Equation (3-4) is a 
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phenomenological material law. The influence of the damage variable, ω, is not included 

in the Equation (3-4) Although the strain-hardening creep curve equation seems to agree 

with the creep data well when creep softening is a consequence of plastic strain. 

3.3.1  The Kachanov and Rabotnov Model 

The phenomenological creep-damage equations were firstly proposed by L. Kachanov 

[59] and Rabotnov [60]. A new internal variable has been introduced to characterize the 

“continuity” or the “damage” of the material. The geometrical interpretation of the 

continuity variable starts from changes in the cross-section area of a uni-axial specimen. 

Specifying the initial cross-section area of a specimen by A0 and the area of voids, 

cavities, micro-cracks, etc. by AD, the Kasyanov’s continuity is defined as follows 

𝜓 =
𝐴0 − 𝐴𝐷

𝐴0
  (3-3) 

The value ψ = 1 indicates the fully undamaged state, the condition ψ = 0 corresponds to 

the fracture (completely damaged cross-section). 

The continuous damage parameter, ω, has not necessarily a precise physical meaning such 

as the nucleation and growth of intergranular cavities. It is assumed that the damage 

parameter ω and the creep strain rate 𝜀̇ depend not only on the stress and temperature but 

also on the value of ω itself. Thus in simple traction: 

𝜀̇ = 𝑓(𝜎, 𝑇, 𝜔) 
 (3-4) 

𝜔̇ = 𝑔(𝜎, 𝑇, 𝜔) 

The lifetime under creep, the deformation at fracture and the shape of the creep curves 

ε(t) are all obtained by integrating these equations between appropriate limits. Under high 

stress and temperature conditions, the tertiary creep regime is dominant; therefore, a 

damage model is necessary. A proposed interfacing the Continuum Damage Mechanics 

(CDM) framework with the proven Norton power law for secondary creep. In CDM, 

damage, ω, is assumed homogeneous and irreversible. The Kachanov- Rabotnov coupled 

creep-damage constitutive equations are as follows [61]: 

 Uniaxial stress: 
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𝜀𝑐̇𝑟 =
𝑑𝜀𝑐𝑟

𝑑𝑡
= 𝐴 (

𝜎𝑒𝑞

1 − 𝜔
)

𝑛

 
 (3-5) 

𝜔̇ =
𝑑𝜔

𝑑𝑡
=

𝑀𝜎𝜒

(1 − 𝜔)𝜙
 

Where A and n are the Norton power law constants, 𝜎𝑒𝑞 is equivalent, von Mises stress, 

and M, χ and ϕ are tertiary creep damage constants. The Norton power law constants A 

and n can be easily determined using the analytical approach, by setting Norton’s power 

law for secondary creep equal to the minimum creep strain rate. For the tertiary creep 

damage constants M, χ, and ϕ there is no analytical method, therefore, numerical 

optimization and/or manual iteration is implemented. 

 Multiaxial stress: 

𝜀𝑖̇𝑗 =
𝑑𝜀𝑖𝑗

𝑑𝑡
=

3

2
𝐴 (

𝜎𝑒𝑞

1 − 𝜔
)

𝑛 𝑆𝑖𝑗

𝜎𝑒𝑞
𝑡𝑚  (3-6) 

 

𝜔̇ =
𝑑𝜔

𝑑𝑡
= 𝐵

(𝜎𝑟)𝜒

(1 − 𝜔)𝜙
𝑡𝑚  (3-7) 

 

𝜎𝑟 = 𝛼𝜎1 + (1 − 𝛼)𝜎𝑒𝑞  (3-8) 

 

Where εij is the strain tensor, t is the time, Sij is the deviatoric stress tensor, ω is the damage 

parameter, where 0 < ω < 1 and σeq, σ1 and σr are the equivalent, maximum principal and 

rupture stresses, respectively. A, n, B, χ, ϕ, α and m are material constants and 0 < α< 1.  

The time to fracture, tf, is found integrating the appropriate Equation (3-7) for ω with the 

boundary conditions ω = 0 (no damage) at t = 0, ω = 1 (fracture) at t = tf. One obtains for 

uniaxial loading [62]: 

t𝑓 = [
𝑚 + 1

𝐵(1 − 𝜔) σ𝜒
]

1
𝑚+1

  (3-9) 
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Similarly, the uniaxial creep strain versus time relationship can be obtained, i.e. from tf , 

one can calculate the strain to failure: 

ε𝑓
𝑐𝑟 =

𝐴𝜎(𝑛−𝜒)

𝐵(𝑛 − 𝜙 − 1)
([1 −

𝐵(𝜙 + 1)𝜎𝜒𝑡𝑚+1

𝑚 + 1
]

𝜙−𝑛+1
𝜙+1

− 1)  (3-10) 

 

The material constants A, n, B, χ, ϕ, and m can be obtained from curve fitting to the 

experimental strain–time curves, very often n < χ, so that the creep ductility is a 

decreasing function of the applied stress [63]. 

 

3.3.2 The Liu and Murakami Model 

Due to examination of the suggested stress sensitivity of the conventional creep damage 

equations of Kachanov-Rabotnov, it was revealed that this stress sensitivity is one of the 

most essential causes of the damage localization and mesh-dependence in local approach 

of creep fracture analysis. Then in order to avoid this difficulty, alternative constitutive 

and evolution equations of creep and creep damage are proposed from the view point of 

micromechanics. Significant improvement in damage localization and the mesh 

dependence of the numerical results are established [64]. 

Equations (3-6) and (3-7) have been extensively applied to the conventional creep damage 

analysis of high temperature components, and were found to lead to significant damage 

localization and mesh dependence thus attributed mainly to the marked stress sensitivity 

at the final stage of damage. This stress sensitivity initiated by the term (1-ω) in the 

denominator, therefore to avoid this problem a modified form for the damage Equations 

have been introduced [65]. 

𝜀𝑖̇𝑗 =
𝑑𝜀𝑖𝑗

𝑑𝑡
=

3

2
𝐴 𝑒𝑥𝑝 [

2(𝑛 + 1)

𝜋√1 + 3 𝑛⁄
(

𝜎1

𝜎𝑒𝑞
)

2

𝜔3 2⁄ ] 𝜎𝑒𝑞
𝑛−1𝑆𝑖𝑗  (3-11) 
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𝜔̇ =
𝑑𝜔

𝑑𝑡
= 𝐵

(1 + 𝜙)[1 − 𝑒𝑥𝑝(−𝑞2)](𝜎𝑟)𝜒

𝑞2
𝑒𝑥𝑝(𝑞2𝜔)  (3-12) 

 

Rupture stress σr was introduced in Equation (3-8), q2 is a material constant, and σ1 

denotes the maximum principle stress. Integration of Equation (3-12), under uniaxial 

conditions, provides the damage, ω, for the Liu and Murakami model as: 

𝜔 =
1

𝑞2
ln[1 − (1 − 𝑒−𝑞2)]

𝑡

𝑡𝑓
  (3-13) 

where the fracture time is given by 

t𝑓 =
1

𝑀σ𝜒
=

1

𝐵(1 + 𝜙) σ𝜒
  (3-14) 

The material constants A, n, M, B, χ, q2 and ϕ are obtained by curve fitting to the uniaxial 

creep curves [5]. 

3.3.3 The Cocks and Ashby Model 

Both effects of the stress triaxiality, σ1/σeq, and damage parameter ω on the creep rate 

have been included in Equation (3-11), practical results obtained using the previous model 

to simulate creep crack growth. However, the creep constitutive introduced by Liu and 

Murakami is not perfect either. The strain-based model based on the creep ductility 

exhaustion concept gives 

ω̇ =
𝜀𝑐̇

𝜀𝑓
∗    →  𝜔𝑖 = 𝜔𝑖−1 + 𝜔̇𝑖∆𝑡  (3-15) 

 

where 𝜀𝑐̇and 𝜀𝑓
∗ denote the creep strain rate and the multiaxial creep failure strain, 

respectively. The damage parameter approaches unity when the local accumulated creep 

strain reaches the critical creep ductility. It is known that the creep ductility significantly 

depends on the stress state. One widely-used multi-axial creep ductility model based on 

the cavity growth theory by power-law creep was quantified by Cocks and Ashby [66]. 
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𝜀𝑓
∗

𝜀𝑓
= sinh [

2

3
(

𝑛 − 0.5

𝑛 + 0.5
)] / sinh [2 (

𝑛 − 0.5

𝑛 + 0.5
)

𝜎ℎ

𝜎𝑒𝑞
]  (3-16) 

 

where n is the steady-state creep exponent, ɛf is the uniaxial creep failure strain, σh and 

σeq are the hydrostatic (mean normal stress) and the equivalent (von Mises) stress 

components respectively. The multiaxial ductility, therefore, depends on the stress 

triaxiality that is present at the crack tip. 

3.3.4 The Wen and Tu Model 

A multiaxial creep-damage model involving a new physically-based multiaxial creep 

ductility factor defined as 𝜀𝑓
∗ 𝜀𝑓⁄ , using the local critical-strain criterion. the Cocks–Ashby 

cavity growth theory is modified and then a new multiaxial creep ductility factor is 

proposed [67].  

 

𝜀𝑓
∗

𝜀𝑓
= exp [

2

3
(

𝑛 − 0.5

𝑛 + 0.5
)] / exp [2 (

𝑛 − 0.5

𝑛 + 0.5
)

𝜎ℎ

𝜎𝑒𝑞
]  (3-17) 

 

Using differential self-consistent method suggested by Riedel [15], the simplified 

evaluation of stress/strain-rate response of creep solids containing closely-spaced 

microcracks was given by 

 

𝜀𝑖̇𝑗
𝑐 =

3

2
𝐴𝑒𝜌𝑡𝑚𝜎𝑒𝑞

𝑛−1𝑆𝑖𝑗 
 (3-18) 

 

where A, n, m are material constants. 𝜀𝑖̇𝑗
𝑐  and Sij denote the creep strain tensor and 

deviatoric stress tensor, respectively. The term, tm, is introduced to describe the primary 

creep behavior of Bailey type. ρ is the factor reflecting the density of cavitating surfaces 

defined by 

𝜌 =
𝑛 + 1

2√1 + 3 𝑛⁄
𝑁𝑑3  (3-19) 
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where d´ is the diameter of cavitating surfaces shown in Figure 3-3. N = 1/(πL3/4) is the 

number of cavitating grain boundary facets per unit volume if we assume the cavitating 

facet is contained in a cylindrical cell of diameter and height, L.  

 

Figure 3-3 Morphology of crack growth with creep voids and microcracks in the area 

near the macroscopic crack in a C(T) specimen [67]. 

 

Noting that the damage can be considered as the effective area reduction in the cell i.e.,  

ω = d´2/L2, we can rewrite the creep constitutive equation as 

𝜀𝑖̇𝑗
𝑐 =

3

2
𝐴𝜎𝑒𝑞

𝑛−1𝑆𝑖𝑗 𝑒𝑥𝑝 (
2(𝑛 + 1)

𝜋√1 + 3 𝑛⁄
𝜔3 2⁄ ) 𝑡𝑚  (3-20) 

 

Therefore, the creep-damage model, consisting of Equations (3-15), (3-17), and (3-20), 

has been built based on modified cavity growth and microcrack interaction theories. 

 

3.4 The Effects of Stress Level and Stress State on the Creep Ductility 

The creep ductility under uniaxial or multiaxial condition can be defined based on the 

elongation or reduction in area in specimen testing. The importance of uniaxial and 
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multiaxial creep ductility is that the component should have sufficient ductility to avoid 

premature/catastrophic/brittle fracture during operation at high temperature.  

The relations between creep ductility (in terms of reduction in area) and stress 

(normalized by the 0.2% offset yield stress) for martensitic chromium steels, P91 and 

Gr.91 at 500–700 °C, Clearly, higher and lower shelves have been observed in relatively 

high and low stress levels, respectively. It also has been seen that there is a remarkable 

decline of creep ductility at normalized stresses near 0.3 with decrease in the stress level, 

without obvious temperature dependency, the creep ductility of P91 declines drastically 

only at 650 °C and that of Gr. 91 steel does not indicate significant drop, as shown in 

Figure 3-4. 

 

 

Figure 3-4 Variation of creep ductility (in terms of reduction in area) against 

normalized stress 

 

Uniaxial creep tests have generated a large body of experimental data for the 

establishment of the basic dependence of creep ductility on some essential parameters, 
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such as stress/strain rate, temperature and rupture time. The multiaxial ductility factor and 

the stress triaxiality in Figure 3-5 show increase of the triaxiality variable, for both 

materials namely 9Cr-1Mo at 600 °C and Mod. 9Cr-1Mo at 650 °C. It is worthy to 

emphasize that the axially tensile tests on bars are only able to generate ductility data in 

a high stress triaxiality range (σh/σe > 0.33) and there is a lack of data points in the range 

from 0 to 0.33. 

 

 

Figure 3-5 Effect of stress triaxiality on creep ductility for bar specimens at elevated 

temperature 

 

 

 

3.5 Estimations of Material Constants for Damage Models 

In order to predict the deformation of components which are undergoing creep, the 

material creep constants for the components must be known and precisely determined. 
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Material constants of high temperature materials change over time, especially when they 

are exposed to extremely high temperatures and/or stresses. Therefore, the creep 

properties of these materials used in the power plants. Accurate determination of material 

creep properties, together with appropriate material behavior models, can give a very 

close estimation of the components creep deformation and failure [68]. 

Most material constants mentioned in Section 3.3, can be obtained experimentally. The 

constants A and n in Norton's law are temperature dependent, together they control the 

secondary creep strain rate. They can be obtained by plotting the uniaxial minimum creep 

strain rates against the applied stresses (log-log scale). The constants B, χ and ϕ, control 

failure through controlling the acceleration of the tertiary creep strain rate, and they can 

be obtained from curve fitting to the experimental strain-time curves. The multiaxial 

stress state parameter α lies between 0 and 1, it determines the value of the rupture stress, 

by quantifying the contribution of the maximum principal stress and equivalent von Mises 

stress. The multiaxial stress state parameter α can be obtained by comparing the results 

of notched bar specimens test results and Finite Element notched bar analyses results. By 

modifying the α value in the FE analyses until its failure time corresponds to the 

experiment failure time, this α value can be taken as the correct α value for the material 

[69]. The material constants determined for the constitutive equations presented for 

models in the previous section are strictly only applicable for the stress and temperature 

range of the data used to obtain them and appropriate for the specific materials 

investigated [70]. Previous research and materials constants for damage models are 

reported in Table 3-1. 

 

 

 

Table 3-1 Material constants for damage models (σ in MPa and time in hour) 

Material A n M B φ χ α q2 

  P91 steel weldment at 650 °C [71] 
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PM 1.092x10-20 8.462 -4.754x10-4 3.537x10-17 7.346 6.789 0.313 3.2 

WM 1.370x10-20 7.650 -0.0361 1.600x10-20 11.463 7.950 0.590 5.0 

HAZ 1.300x10-20 8.462 0 1.522x10-14 7.346 5.502 0.750 2.8 

  P92 steel weldment at 675 °C [72] 

PM 4.335x10-20 7.659 0 3.377x10-17 8.3 6.459 0.383 3.0 

WM 1.065x10-17 6.485 0 1.499x10-15 7.5 5.671 0.187 3.0 

  Inconel 718 weldment at 620 °C [73] 

PM 2.037x10-61 19.300 0 4.322x10-47 12.0 14.728 0.1  

WM 5.260x10-56 17.984 0 2.623x10-50 4.0 16.367 0.2  

  P91 steel weldment at 625 °C [74] 

PM 9.016x10-27 10.268 0 1.258x10-25 9.5 9.914 0.500  

WM 1.782x10-28 10.836 0 9.519x10-26 12.5 9.874 0.600  

HAZ 3.000x10-26 10.268 0 1.150x10-16 9.5 5.700 0.500  

  P91 steel at 650 °C and 316 stainless steel at 600 °C [75] 

P91 1.09x10-20 8.462 0 2.95x10-16  6.789 0.313 3.20 

SST 316 1.47x10-29 10.147 0 2.73x10-30   10.949 0.478 6.35 
 

 

3.6 Implementation of Finite Element Method to Creep-Damage Research 

The objective of creep modeling is to reflect basic features of creep in engineering 

structures including the development of inelastic deformations, relaxation and 

redistribution of stresses as well as the local reduction of material strength. A model 

should be able to account for material wear processes in order to predict long-term 

structural behavior, to estimate the in-service life-time of a component and to analyze 

critical zones of failure caused by creep. Structural analysis under creep conditions 

usually requires the following steps [56]: 

1. Assumptions must be made with regard to the geometry of the structure, types of 

loading and heating as well as kinematical constraints. 

2. A suitable structural mechanics model must be applied based on the assumptions 

concerning kinematics of deformations, types of internal forces (moments) and 

related balance equations. 

3. A reliable constitutive model must be formulated to reflect time-dependent creep 

deformations and processes accompanying creep like hardening/recovery and 

damage. 
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4. A mathematical model of the structural behavior (initial-boundary value problem) 

must be formulated including the material independent equations, constitutive 

(evolution) equations as well as initial and boundary conditions. 

5. Numerical solution procedures to solve non-linear initial-boundary value 

problems must be developed. 

6. The verification of the applied models must be performed including the structural 

mechanics model, the constitutive model, the mathematical model as well as the 

numerical methods and algorithms. 

In recent years, the finite element method (FEM) has become the widely accepted tool 

for structural analysis. The advantage of the FEM is the possibility to model and analyze 

engineering structures with complex geometries, various types of loadings and boundary 

conditions. Common tool finite element code ABAQUS [76], was developed to solve 

various problems in solid mechanics. In application to the creep analysis one should take 

into account that a general purpose constitutive equation which allows reflecting the 

whole set of creep and damaging processes in structural materials over a wide range of 

loading and temperature conditions is not available at present. Therefore, a specific 

constitutive model with selected internal state variables, special types of stress and 

temperature functions as well as material constants identified from available experimental 

data should be incorporated into the commercial finite element code by writing a user-

defined material subroutine [77]. The ABAQUS finite element code is applied to the 

numerical analysis of creep in structures [78][18]. The standard features of the 

commercial FEM-based software includes only conventional creep models. Strain 

hardening, time hardening, and exponential models are proposed for the primary creep 

stage and exponential and Norton models are proposed for the secondary creep stage. 

Using standard creep models incorporated into FEM-based software it is impossible to 

model the tertiary creep stage accompanied by damage accumulation process and fracture 

see Figure 3-6 [Block Diagram]. In order to consider damage processes, the user-defined 

subroutines are developed and implemented. The subroutines serve to utilize constitutive 

and evolution equations with damage state variables, in addition, they allow the 
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postprocessing of damage, i.e. the creation of contour plots visualizing damage 

distributions. 

 

Figure 3-6 Creep analysis procedures in a commercial FEM Abaqus code with 

conventional creep laws and with user-defined creep-damage models [56]. 
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4 EXPERIMENTAL INVESTIGATIONS OF CREEP BEHAVIOUR 

IN P91 WELDMENTS  

 

 This chapter outlines in detail the experimental procedures of creep flow and creep 

crack initiations and growth testing of P91 weldment material, analysis of results data 

reached. Uniaxial and notched bar specimens were tested to obtain the materials creep 

and creep rupture data for parent material (BM) and weld metal (WM). Creep data for 

HAZ material also obtained using tensile testing and cross-weld uniaxial. Compact 

tension (CT) specimens were utilized to study creep crack growth in P91 weldments. 

Creep and creep crack growth tests were conducted at 600°C for the P91 material. Load 

line displacements were recorded from testing the CT specimens and crack length 

monitored using the potential difference (PD) method. The load line displacement rates 

and the corresponding crack lengths were then used to calculate C*, a fracture mechanics 

parameter used to correlate creep crack growth rates of cracks in cracked specimens of 

CT specimens. CT specimens were cut from the P91 BM and weldment. The initial cracks 

in the weldment CT specimens were located on the boundary between the BM and HAZ 

material, to simulate the Type IV region. Macrostructure analyses and hardness tests were 

carried out on some of the CT specimens to verify the correct locations of the initial 

cracks. 

4.1 P91 Steel Weldment and Specimens 

 There are combinations of base, weld, and HAZ properties that need to be 

considered in a weldment specimen. Usually for base and weld, properties homogenous 

specimens cut from these regions can serve the purpose for deriving CCI and CCG 

properties of these regions. However, for HAZ properties which are sandwiched between 

the base and the weld material, the specimen has to be designed to align, as best as 

possible, the line of the HAZ on the crack path. Figure 4-1 (a) and (b) present the 

comparison for the CT specimen with weld and the standard specimen containing one 

material property. It is noted that regardless of where the crack path is positioned the 
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crack may grow through a preferred path of least resistance. Fatigue pre-cracking is 

recommended for introducing a starter crack if a flat and straight crack front can be 

continued which may reduce the time for initiation, where this may be difficult for weld 

materials with variations in grain size and hardness. However, an electro-discharge 

machined (EDM) slit can also be used as a starter crack provided the crack tip radius is 

0.05 mm or less. The EDM method is particularly suitable for starter cracks in HAZ and 

fusion line tests [79]. 

 

Figure 4-1 Schematic of CT specimens (a) starter crack position of HAZ 

(b) starter crack position of weldment or base material regions [79]. 
 

In this study compact tension CT specimen has been used to realize the behavior of the 

creep crack growth in P91 material. Specimens of the tube wall and welded joints 

comprising three regions (weld metal, heat affected zone and base metal) were taken from 

the circumferential welded joint of the pipe. The chemical composition of the base metal 

and weld metal, welding parameters and details of the microstructural characterization 

are shown in Table 4-1. The compositions of elements for BM fall in the P91 material 

composition range. 
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Table 4-1 Chemical Composition of P91 Weldment [80]. 

Material C Mn Si P S Cr Ni Mo V AL Nb 
Ni + 

Cu 

P91 BM 0.091 0.409 0.369 0.028 0.013 8.44 0.272 0.922 0.24 0.07 0 0.04 

P91 WM 0.087 0.692 0.285 0.013 0.007 9.39 0.63 0.98 0.267 0 0.04 0.64 
 

 

4.1.1 Similar Weldments 

 The experimental material is the ASTM P91 (Mod 9Cr 1Mo) steel is a newly 

developed high strength, high ductility martensitic steel, which attained from similar 

circumferential butt-welded pipes of P91 steel, which was produced by the shielded metal 

arc welding (SMAW) process using a suitable consumable, i.e. a 9CrMoNbV weld metal. 

Metallographic sample sections showed a good quality weld with refined microstructure 

and little evidence of coarse grains of the weld fusion line that is observed in industrial 

welds. The simulated HAZ materials were produced for mechanical and creep properties 

determination by thermal cycling in a Gleeble weld simulator machine, this simulated 

material had the microstructure and hardness of real HAZ weldment. 

The pipes were re-heated prior to welding and Single V-type bevels was machined with 

one-side inclined (30°) bevel applied to ensure sufficient welding quality. The test 

materials were extracted welded pipes were of the dimensions 295 mm outer diameter 

and 58 mm wall thickness as presented in Figure 4-2. 

The weldment pipes sections were then heat-treated at 760°C for two hours to relieve the 

welding induced residual stresses and to obtain the desired mechanical properties of 

weldments [80]. 
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Figure 4-2 P91 Pipe circumferential weldment [80]. 

 

4.1.2 Mechanical and Creep properties  

Standard tensile and uniaxial creep test specimens were machined from the welded 

material and from simulated HAZ materials Figure 4-3. Mechanical and uniaxial creep 

rupture test for P91 steel were carried out at 600 °C, which, were used to obtain creep and 

creep rupture data for the P91 material.  

Weldment uniaxial specimens have been used to obtain creep and creep rupture data for 

the P91 HAZ material. The weldment uniaxial specimen has the same geometry and 

dimensions as the single material uniaxial specimens but it consists of BM, HAZ and 

WM, the results of the creep tests, carried out on the weldment uniaxial specimens, are in 

the form of strain-time records. The applied stresses and failure times are utilized to obtain 

the creep rupture data, for the HAZ material, while the applied stress and the minimum 

creep strain are applied to obtain the material constants A and n. 
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Figure 4-3 Uniaxial creep test specimen 

 

The materials tensile and creep properties at test temperatures for P91with BM and WM 

were determined as indicated in Table 4.2. Uniaxial creep testing data and values of high 

chromium alloy steel P91 and its weldment based on the previous research and creep data 

range well assorted by Dr. B. Petrovski [80]. 

 

Table 4-2 Material Data Determined in Tensile and Creep Tests 

Material σ0.2 (MPa) σm(MPa) E (MPa) 
D m A n 

Equation (4-19) Equation (2-45) 

P91 BM-600 °C 441 464 164 0.0018 27.73 1.57 X 10-45 18.51 

P91 WM-600 °C 362 385 125 0.0015 23.86 5.99 X 10-24 8.55 

P91 HAZ-600 °C Type IV 320 333 155 0.0016 17.38 7.16 X 10-35 14.35 

P91 HAZ-600 °C Center 293 317 139 0.0016 20.74 7.16 X 10-35 14.09 
 

 

The stress strain curves of material P91 and its weldment zones are shown in Figure 4.4, 

the yield strength data at test temperature of 600 °C show a decrease in WM and 

particularly HAZ, where the welds are undermatched in terms of strength values.  
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Figure 4-4 Stress-strain curves of P91 weldment tensile specimens at 600 °C 

 

Creep rupture data for various temperatures are presented as stress versus rupture time as 

shown in Figure 4-5. Here straight lines were obtained for each temperature to indicate 

that the magnitude of the rupture strength decreases rapidly with increasing temperature, 

for P91 steel at 105 hours in a temperature range to which this material is mostly operated. 

Comparing Creep rupture data of parent and welded samples for various temperatures 

demonstrate the parent material specimens have better creep strength compared to welded 

ones. Here straight lines were obtained for each temperature. No change in the slope was 

prominent for any particular temperature implying that the creep damage mechanism 

remained the same. Nevertheless, the knowledge of such microstructural instabilities is 

important since they could lead to significant errors in extrapolation of the data to longer 

time [81].   
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Figure 4-5 Stress and temperature dependence of creep rupture life [81]. 

 

Creep tests were carried out on uniaxial creep test specimens cut from P91 PM, WM and 

across the P91 weldment. These tests were carried out at a temperature of 600°C, and at 

stresses equivalent to the working stresses of actual P91 pipes ranging from 110 MPa to 

180 MPa. One of the reasons of testing at temperatures and/or stresses higher than their 

working temperatures and/or stresses is to reduce the testing time, and corresponding 

times to failure between 350 hours and 6600 hours.as presented in Figure 4-6. Creep test 

results for BM, WM and HAZ under various sustained loadings indicate as for the creep 

behavior of the three weldment zones (BM, WM, and HAZ), that creep strain was highest 

in weld metal and lowest for base metal. It can be seen that all of the curves exhibit 

relatively small primary creep and comparatively long secondary and tertiary regions, 

also the WM exhibits low ductility when compared to the BM and that the rupture life of 

the P91 BM creep specimens is about nine times higher than that of the WM and HAZ  

creep specimens. 
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Figure 4-6 Creep test data for P91 weldment at 600 °C 

 

4.1.2.2 Creep Test Data for Different Temperatures 

The P91 steel has been also tested at somewhat higher temperatures to find the upper limit 

of its applicability. Results for strain vs. time, at three different temperatures, 600 °C, 625 

°C and 650 °C, are given in Figure 4-7. They clearly indicate detrimental effect of 

temperature, limiting P91 usage to 600 °C, the only advantage of using higher testing 

temperature than service temperature is to decrease experimental time. 

To avoid frequent inspections or monitoring creep damage required for components 

operating in the significant creep regime it is recommended to design for service below 

the No Creep temperature (TNC) or the time-dependent Negligible Creep temperature 

(TNEC). The TNEC curve describes the time and temperature limits below which 

accumulated creep strain and damage are insignificant at a specified reference or design 

stress as presented in Figure 4-8 [82].  
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Figure 4-7 Creep strain vs. time of P91 parent material for different temperatures 

 

 

Figure 4-8 Time-temperature regions at specified reference stress [82] 
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4.1.3 CT Specimens 

 weldments contain microstructural variations and even micro-voids. Therefore, 

the orientation of the crack in the specimen should be chosen to be normal to the defect 

orientation and weaken zone, which might exist in the component being assessed. In 

addition the tensile and creep material properties in the direction of the orientation chosen 

as well as various weldment zones should be available as they will be needed for the 

analysis of the CCI and CCG data. The required specimen orientation, together with the 

volume and dimensions of available material can significantly influence the choice of 

specimen geometry, therefore, CT specimens were used to study creep crack growth in 

P91 weldments. These specimens were cut from the P91 base metal (BM)  and weld metal 

(WM). Figure 4-9 (a) shows the geometry and dimensions of a CT specimen. These CT 

specimens conform to the ASTM standard [83]. The CT specimen's width, W, is a 

characteristic dimension of CT specimens and, in general, it should be as large as 

practically possible. The length is determined based on the testing facility and the 

availability of tested materials. W is 25 mm for all of the CT specimens tested in this 

study. The crack length, a is 12.5 mm, for these specimens is the distance between the 

loading point and the crack tip. B is 12.5 mm, the specimen's thickness and if the specimen 

is side grooved, then the net section thickness is BN, in this case BN is 10 mm as shown 

in Figure 4-9 (a), i.e. the depth of the groove on each side of the specimen was 10% of 

the specimen's original thickness (B). The side grooves are recommended by ASME 

E1457-15 [3], which, specifies the groove depth to be 10% of the specimen's original 

thickness to ensure that a straight crack front is produced, Electric Discharge Machining 

(EDM), also known as wire erosion machining, was used to cut the initial cracks. The 

wire diameter, 0.25 mm, was the smallest size available. This method enabled the initial 

crack length and position to be accurately defined prior to the test beginning. 
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Figure 4-9 Specifications and dimensions of CT specimens(a) Base metal specimen and side 

groove (b) Cross weld specimen consist of BM, WM and HAZ 

 

P91 BM and WM CT specimens were cut from a P91 weldment. The P91 BM CT 

specimens were cut from the BM side of the P91 weldment, while the WM specimens 

were cut across the weld. Therefore, the WM CT specimens consist of BM, HAZ material, 

and WM. The weldment CT specimens were cut so that the initial cracks were located, as 

far as practically possible, on the PM/HAZ boundary, i.e. in the Type IV region. In order 

to accurately position the initial cracks, the cross-weld CT specimens were, firstly, 

polished and etched to show the PM/HAZ boundary then wire erosion machining was 

used to cut the initial cracks, Figure 4-9 (b) shows the geometry and dimensions of the 

cross-weld CT specimens. All of the P91 cross-weld CT specimens were fully side 

grooved. Figure 4-10 (b) shows a schematic drawing of the P91 weldment and the 

sampling position for the cross-weld CT specimens of a welded pipe. 
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Figure 4-10 Compact tension specimens extracting from P91 steel welded joint. WM, BM 

and HAZ [5]. 

 

Experimental determination and analysis of Creep Crack Initiation (CCI) and Creep 

Crack Growth (CCG) rate data of weldments including Base Metal (BM), Heat Affected 

Zone (HAZ) and Weld Metals (WM). CCI is defined as the extension of a pre-existing 

defect by a small amount of growth, typically 0.2 mm or 0.5 mm [79]. 

4.2 Creep Crack Growth Behavior of P91 Weldments 

Failures due to creep can be classified either as resulting from widespread creep damage 

or resulting from localized creep damage. The components of first case are typically 

subjected to uniform temperatures and stress during service, such as thin-wall pipes. Their 

life can be estimated from creep rupture data, engineers have used that approach for 

several decades. However, high temperature components of second case are subjected to 

stress and temperature gradients and do not fail by creep rupture. It is more likely that at 

the end of the predicted creep rupture life, a crack develops at a high stress location, which 

propagates and ultimately causes failure. Failure can also result from pre-existing defects 

on the material, in which case the entire lifetime of the component is consumed with crack 

propagation. Creep rupture data can only take so much into consideration, and it is 
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therefore important to develop the capability to predict crack propagation life at elevated 

temperatures in the presence of creep deformation [84]. 

The creep data focus on the microstructural variation and especially to the effect of stress 

level on the creep deformation. The yield strength of WM and particularly in the HAZ 

(center) is lower than that of the BM, therefore, the welds are undermatched in terms of 

yield strength. The creep data directs attention to the microstructural variation and 

especially the effect of stress level on the creep deformation. However, the creep 

resistance of material rather than the yield strength determine the crack growth behavior 

under creep conditions.as presented in Figure 4-11. Constant load creep tests were 

performed for P91 at 600 °C, with various stress levels ranging from 145 to 160 MPa, 

110 to 145 MPa and 100 to 145 MPa for BM, WM and HAZ, respectively and presented 

in Table 4-3: 

 

 

Figure 4-11 Steady state Creep rates as a function of stress for P91 weldment at 600 °C 
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Table 4-3 Steady-state creep rate as a function of stress of P91 weldments at 600 °C 

STRESS 

(MPa) 
BM WM HAZ; T-IV WM/BM IV/BM 

100 1.622E-08 1.321E-06 9.773E-07 81.396 60.239 

110 9.467E-08 3.029E-06 3.836E-06 31.999 40.524 

120 4.738E-07 6.465E-06 1.337E-05 13.645 28.218 

130 2.084E-06 1.298E-05 4.216E-05 6.229 20.228 

140 8.215E-06 2.476E-05 1.221E-04 3.014 14.862 

150 2.945E-05 4.516E-05 3.285E-04 1.533 11.154 

160 9.725E-05 7.925E-05 8.294E-04 0.815 8.528 

170 2.986E-04 1.344E-04 1.979E-03 0.450 6.628 
 

 

In Figure 4-12, the minimum creep strain rates are plotted against the applied stress of 

P91 weldment zones, by inspection of curves the BM and WM exhibit better creep 

resistance than HAZ which also under go higher minimum creep rates with increasing 

applied stresses. The minimum creep rates are proportional to applied stress up to about 

150 MPa for BM and WM. From test data, constants for power-law creep can be fitted, 

as shown in Figure 4-12 for all three weldment zones, as given by the following Equation 

(4-1) 

 

Base metal 𝜀2̇𝑐 = 1.568 × 10−45𝜎18.507 

 (4-1) Weld metal 𝜀2̇𝑐 = 9.73 × 10−24𝜎8.553 

Heat-affected zone 𝜀2̇𝑐 = 1.968 × 10−35𝜎14.348 
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Figure 4-12 Comparison of creep rate of weldments versus stress 

 

 

4.2.1 The DCPD method of Crack Length Measuring 

The Direct Current Potential Drop (DCPD) method utilizes the fact that the electrical 

resistance of a CT specimen change with crack growth. By applying a constant current 

over the specimen and measuring the resulting voltage over the crack, the crack length 

can be related to the voltage and the difference in crack length with difference in voltage. 

A constant DC supply, a voltmeter, current input wires and voltage pick-up wires 

summarize the equipment utilized in a DCPD system, presented in Figure 4-13 a basic 

schematic drawing of a DCPD system [85]. The placements of the DC supply wires and 

the voltage pick-up wires were determined using ASTM standard recommendations [3]. 
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Figure 4-13 DCPD system including a CT specimen 

 

High temperature fracture mechanics tests on the weldments of P91 steel at 600 °C 

including the weldment zones of BM, WM and HAZ, various specimens were used to 

insure consistency in CCI and CCG data, all tests are carried out under constant load. 

Details of the conducted tests are given in Table 4-4 of P91steel weldments, for constant 

loading and at T= 600 °C. 

 

Table 4-4 Details of the test conditions for the BM, WM and HAZ of P91steel at 600 °C 

Sl. 

No. 
Specimen 

Duration 

(hr) 

Load 

(N) 

K 

(MPa.m0.5) 

C* 

(N/mm/hr) 

a0 

(mm) 

af 

(mm) 

Δa 

(mm) 

1 CT25-BM 1542.9 3300 19.52 0.014 13.243 14.771 1.828 

2 CT25-BM 766.8 3800 22.56 0.056 13.211 14.373 1.528 

3 CT25-BM 742.7 3600 21.70 0.198 13.231 14.200 1.162 

4 CT25-WM 410.6 3800 19.33 0.055 11.880 13.618 1.738 

5 CT25-WM 365.2 3800 19.33 0.085 11.920 14.682 2.762 

6 CT25-WM 367.6 3800 19.10 0.095 11.993 14.434 2.441 

7 CT25-WM 1463.2 3100 16.31 0.011 12.210 16.178 3.968 

8 CT25-WM 1153.1 3100 16.57 0.011 12.426 16.666 4.240 

9 CT25-WM 2141.2 3300 13.04 0.007 11.927 17.422 5.495 

10 CT25-HAZ 1792.6 3100 16.35 0.008 12.210 14.880 2.670 

11 CT25-HAZ 750.1 3600 19.05 0.013 12.223 12.470 0.247 

12 CT25-HAZ 2860.9 3100 15.79 0.003 11.870 13.069 1.199 

13 CT25-HAZ 4852.5 2600 13.68 0.004 10.692 16.067 4.075 
 

 

The temperature, load, potential drop (PD), load line displacement (VLLD) and crack tip 

opening displacement (δCTOD) data are monitored and recorded instantaneously starting 
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from pre-load to full load for the subsequent analysis of the data for crack size and crack 

tip parameters C* and K determination. The data acquired from CT specimens of P91 

BM, WM and HAZ tested for 4850 hours at 600 °C is shown in Table 4-5. The tests are 

terminated as soon as both the potential drop and the displacement measurements show 

acceleration in crack growth rates and displacement rates, indicating that final failure of 

the specimen is pending. 

 

 

 

Table 4-5 The data attained from CT specimens of P91weldment tests 

Material Specimen  W (mm) B (mm) Bn (mm) a0 (mm) ae (mm)  

P91-WM W003 25.000 12.530 10.050 11.993 14.434  

E (MPa) σy (MPa) P(N)  Uo(mV) T (°C) ν Y0 (mm)  

125000 362 3081.00 1028.60 600.000 0.330 3.0  

   D m A n   

   0.0015 23.86 5.990E-24 8.55   

     

Equation 

4-1 

Equation 

4-2  

Time 

(h) 
Ut 

(mV) 
F 

 (N) 
VLLD  

(mm) 

δCDOM 

 (mm) 
a  

(mm) 
acor  

(mm) 
Δa 

 (mm) 

0.0 1028.6 3078.1 0.000 0.002 11.993 11.993 0.000 

191.3 1030.4 2981.9 0.044 0.015 12.011 12.018 0.025 

233.1 1032.2 2981.9 0.053 0.019 12.029 12.043 0.050 

266.8 1034.1 3126.2 0.059 0.021 12.047 12.068 0.075 

297.2 1035.9 3030.0 0.065 0.023 12.065 12.093 0.100 

326.0 1037.8 3078.1 0.070 0.025 12.084 12.118 0.125 

353.7 1039.6 3030.0 0.074 0.027 12.102 12.143 0.150 

381.4 1041.5 3078.1 0.079 0.028 12.120 12.168 0.175 

409.1 1043.3 3078.1 0.084 0.030 12.138 12.193 0.200 

437.9 1045.1 3078.1 0.088 0.031 12.156 12.218 0.225 

468.0 1047.0 2933.8 0.093 0.033 12.174 12.243 0.250 

499.2 1048.8 3078.1 0.098 0.034 12.192 12.268 0.275 

532.6 1050.7 3078.1 0.104 0.036 12.211 12.293 0.300 

566.5 1052.5 3078.1 0.110 0.038 12.229 12.318 0.325 

601.5 1054.4 3030.0 0.116 0.041 12.247 12.343 0.350 
 

An accurate measurement of the initial a0 and final af crack size were made when the 

specimen were broken open outside the furnace after testing. The final measured crack 

length may be used to calibrate the crack lengths obtained from potential data using 

Johnson’s formula given for CT geometry [86] 
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𝑎 =
2𝑊

𝜋
cos−1 [

cosh(𝜋𝑌0 2𝑊⁄ )

cosh[(𝑈𝑡 𝑈0⁄ ) cosh−1(cosh(𝜋𝑌0 2𝑊⁄ ) cos(𝜋𝑎0 2𝑊⁄ )⁄ )]
]  (4-2) 

 

Where a0 is initial crack size with reference to voltage U0, Y0 equal the half distance 

between the output voltage leads and Ut is the actual value of the potential. 

 

The high temperature experimental set-up designed for high temperature crack growth 

studies is presented in Figure 4-14. All creep tests performed on standard dead weight, 

lever creep test rigs and work in a similar manner even if the individual design varies The 

system facilitates testing under constant load, the test setup comprises of an insulated 

furnace of a split type opening to allow for specimen installation and to keep the 

temperature stable during the test. The specimen is placed inside the furnace and 

preloaded with the empty lever arm, yielding a load of approximately 100 N, 

thermocouples are tied to the gauge length and the specimen is heated to test temperature. 

The thermocouples, known as type S (Pt/PtRd wires) are made from certified metals and 

new metal is used for the thermal junction for each new test. After a soaking time of at 

least 2 h during which the temperature gradient is adjusted and minimized, the previously 

calibrated weights are loaded onto the lever arm and the test started. The maximum 

tolerances allowed are ± 1 °C for temperature stability and the load is applied within 2 

minutes. 

4.2.1.1 Test Procedures 
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Figure 4-14 High temperature experimental set-up 

 

Load line displacement curves, obtained from the P91 weldment CT specimens, are 

shown in Figure 4-15. BM specimen was initially loaded by 3300 N applied for about 

1500 hours, a sudden increase in displacement near 1000 hours. WM specimen was 

loaded by 3080 N applied for about 2100 hours, a small gradual increase in displacement 

until rupture. HAZ specimen was loaded by 3600 N applied for about 5000 hours, a small 

gradual increase in displacement until rupture, which followed the pattern of WM 

behavior for more time duration to show the characteristic of material structure of HAZ.   

4.2.1.2 Load Line Displacement 
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Test durations of the plotted CT specimens vary between 60 to 5000 hours. A longer crack 

growth Δa, with shorter load line displacement VLLD, observed in WM specimens. A 

comparison between BM and HAZ specimens tests reveal that a longer Δa, can be 

obtained for a shorter VLLD in creep-weaker weldment zone tests.  

These data were used to calculate the displacement rates, specimens of P91weldments 

were tested until well into tertiary regime (i.e. creep crack growth acceleration region). 

This resulted in very large displacements in BM specimens at which point they include 

significant plastic deformation near the end of the test. Tests for WM and HAZ 

specimens, were stopped near the beginning of tertiary region in order to ensure that the 

resulting displacements, and the corresponding crack growth, are predominantly due to 

creep ones. 

 

 

Figure 4-15 Load Line Displacement of  P91 weldment at 600 °C 
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On completion of the creep crack growth tests, CT specimens were subjected to fatigue 

loading to break the remaining ligament and measure final creep crack extension and to 

measure the crack surfaces. Once the initial and final crack size a0, af respectively are 

available, a correction to all data between size a0 and af must be done by linear 

interpolation using: 

 

𝑎𝑐𝑜𝑟 = [(𝑎 − 𝑎0) (
𝑎𝑓 − 𝑎𝑚𝑎𝑥

𝑎𝑚𝑎𝑥 − 𝑎0
)] + 𝑎0  (4-3) 

 

Where amax is the maximum value determined by Equation (4-2), a0 is the initial crack 

length (a0 is 12.5 mm in all of the CT specimens used in our creep tests), Δa is the overall 

increment of crack length as measured by following relation 

∆𝑎 = (𝑎 − 𝑎0) (1 +
𝑎𝑓 − 𝑎𝑚𝑎𝑥

𝑎𝑚𝑎𝑥 − 𝑎0
)  (4-4) 

 

Creep crack growth curves for the P91 weldments CT specimens tested at 600°C are 

presented in Figure 4-16. Data included in these curves were used to calculate the creep 

crack growth rates and the C* values, and for validating the finite elements damage 

predictions. Comparing the creep crack growth for P91 steel weldment it can be seen that 

larger Δa can be obtained in creep weak weldment regions relative to base metal and the 

gradual increase in the crack length with time while it is faster in weld metal and heat 

affected zone [87]. 

 

 

4.2.1.3 Crack Length 
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Figure 4-16 Crack extension comparison of  P91 weldment at 600 °C [87] 

 

4.2.2 Validity of Test Results 

The validation of the test results are based on extensive evaluation of the data, the 

experimental data are analyzed and correlated with pre-determined crack tip parameters. 

Validity criteria are specified in ASTM E1457-15 [3], for the use of C* as a correlating 

parameter for CCG data determined by testing C(T) specimens. 

 The data are valid for further evaluation if  

 

0.85 ≤
∆𝑎𝑝𝑓

𝑎𝑓 − 𝑎𝑜
≤ 1.15  (4-5) 

If the Equation (4-5) was not satisfied, the difference between the predicted and 

calculated crack growth was noted and data processed further. Due to crack front 

irregularities and crack grooving, the crack length values determined on fracture 

surfaces may vary from the calculated ones using DCPD. It mainly depends on 

the way the crack length measurement was made on the fracture surface. 
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 Only data points that exceed the transition time, tT, were considered. The 

transition time, for plane strain conditions is estimated as follows: 

 

𝑡𝑇 =
𝐾2(1 − 𝜈2)

𝐸(𝑛 − 1)𝐶∗
  (4-6) 

 where ν is the Poisson's ratio, E is the modulus of elasticity, n is the creep exponent 

 in Norton's creep law, C* and K are the C*-parameter and stress intensity factor, 

 respectively, and K is given by : 

𝐾 =
𝑃

(𝐵𝐵𝑁)1 2⁄ 𝑊1 2⁄

2 + 𝑎 𝑊⁄

(1 − 𝑎 𝑊⁄ )3 2⁄
𝑓(𝑎 𝑤⁄ )  (4-7) 

 

 and 

𝑓(𝑎 𝑤⁄ ) = 0.866 + 4.64(𝑎 𝑊⁄ ) − 13.32(𝑎 𝑊⁄ )2 

+14.72(𝑎 𝑊⁄ )3 − 5.6(𝑎 𝑊⁄ )4 

 (4-8) 

 

 where P is the applied load, a is the instant crack length, W is the specimens width, 

 B is the CT specimen full thickness, i.e. without side grooves, BN is the CT 

 specimen net thickness, i.e. with side grooves. 

 

 Data points prior the first 0.2mm crack growth has been excluded. Time for this 

0.2mm increase in crack length is known as the crack initiation time. 

 

 Ductility condition for creep process is met by 𝑉̇𝑐 𝑉̇𝑡 > 0.5⁄  , where 𝑉̇𝑐  is the creep 

component of the load line displacement rate and 𝑉̇𝑡 is the total load line 

displacement rate. For all of the creep tests conducted for our study, it was found 

that values range from 0.832 to 0.989 at all durations for P91 weldments 

experiments at 600 °C.  
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These criteria were applied to all of the creep crack growth tests conducted on the P91 

specimens. The Secant method has been used to obtain the creep crack growth rates and 

the corresponding load line displacement rates, by calculating the slope of a straight line 

connecting every two consecutive points was taken as the rate at an average point, which 

lies in between these two points. 

(
𝑑𝑎

𝑑𝑡
)

𝑎̅
=

𝑎𝑖+1 − 𝑎𝑖

𝑡𝑖+1 − 𝑡𝑖
  (4-9) 

 

(
𝑑𝑉

𝑑𝑡
)

𝑎̅
=

𝑉𝑖+1 − 𝑉𝑖

𝑡𝑖+1 − 𝑡𝑖
  (4-10) 

 

And 

 

𝑎̅ =
𝑎𝑖+1 − 𝑎𝑖

2
  (4-11) 

 

The crack growth rate, da/dt, as a function of crack extension Δa of weldment CT 

specimens, tested at 600 °C, shows two stages of crack growth, as presented in 

Figure 4-17. Lower crack growth rate following the crack growth initiation extends to Δa 

= 1.5 mm, crack growth in stage I. Higher crack growth rate is observed in stage II where 

the CCG rate is plotted because the creep crack tends to grow towards the softer zone. In 

addition, the region adjacent to the HAZ/BM interface have low values of mechanical 

and creep strength [5]. 
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Figure 4-17 Crack growth rate versus crack extension of  P91 weldment [5] 

 

A typical representation of the creep crack propagation path for the CT specimen can be 

realized in Figure 4-18. It can be clearly seen that the creep crack grows towards the 

boundary between the HAZ and BM. The creep and CCG in P91 welds indicate that 

failure in CT specimens occurs in the fine-grained HAZ region close to the BM, even if 

the initial cracks were located in the middle of the HAZ region, they deviated and grew 

into the type IV region [88]. The test results data are correlated to assess the CCG 

behavior of P91 weld material. 
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Figure 4-18 Creep crack growth in a welded joint [5] 

 

4.3 Creep Crack Initiation in P91 Weldment 

The experimental determination of creep crack initiation on specimens of P91 steel and 

weldments are investigated, in an attempt to define creep crack initiation using fracture 

mechanics test data. CCI is defined by a technical creep crack initiation length Δai = ai - 

a0, or for CT specimens ai = 0.004W. 

4.3.1 Initial Creep Crack Growth Rates 

Models to estimate CCI times can be based on the time for a slowly growing crack to 

propagate a certain distance (typically 0.2 mm or 0.5 mm). On initial loading, transient 

conditions exist, during which the damage distribution ahead of the crack tip builds up to 

a steady state. Prior to steady-state conditions being achieved, the crack growth rate is 

often less than the steady-state value and it may be shown that the initial creep crack 

growth rate 𝑎̇0, may be in the order of 1/(n + 1) times slower than the steady state CCG 

rate [89]. 

Thus, from the NSW model Equation (2-72) the initial creep crack growth rate may be 

approximated as 
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𝑎̇𝑁𝑆𝑊 ≈
𝑎̇𝑁𝑆𝑊

𝑛 + 1
=

3𝐶∗0.85

(𝑛 + 1)𝜀𝑓
∗  (4-12) 

Similarly, if the modified NSW model Equation (2-73) is used, 

 

𝑎̇𝑁𝑆𝑊−𝑀𝑂𝐷 ≈
𝑎̇𝑁𝑆𝑊−𝑀𝑂𝐷

𝑛 + 1
= (𝐴𝑟𝑐)

1
𝑛+1 [

𝐶∗

𝐼𝑛
]

𝑛
𝑛+1 ℎ̅𝑛

𝜀𝑓
  (4-13) 

 

4.3.2 Creep Crack Initiation Time Predictions 

If the minimum crack extension that can be measured reliably is Δa and assuming that 

CCG rate is constant during the increment of crack growth Δa, then, the initiation time, 

ti, may be estimated as [90] 

 

𝑡𝑖 =
∆𝑎

𝑎̇
  (4-14) 

where 𝑎̇ in Equation (4-14) refers to a general CCG rate. By substituting an appropriate 

value of the initial crack growth rate 𝑎̇0, Equations (4-17) and (4-18) into Equation (4-19), 

an upper bound estimate of the initiation time may be obtained. A lower bound initiation 

time prediction is obtained from the steady state crack growth rate Equations (2-72) and 

(2-73). The NSW model thus indicates that 

∆𝑎𝜀𝑓
∗

3𝐶∗0.85
≤ 𝑡𝑖 ≤

∆𝑎(𝑛 + 1)𝜀𝑓
∗

3𝐶∗0.85
  (4-15) 

and similarly from the NSW-MOD model 

 

∆𝑎

(𝑛 + 1)(𝐴𝑟𝑐)
1

𝑛+1

[
𝐶∗

𝐼𝑛
]

𝑛
𝑛+1 𝜀𝑓

ℎ̅𝑛

≤ 𝑡𝑖 ≤
∆𝑎

(𝐴𝑟𝑐)
1

𝑛+1

[
𝐶∗

𝐼𝑛
]

𝑛
𝑛+1 ℎ̅𝑛

𝜀𝑓
  (4-16) 

 

Equations (4-15) and (4-16) also depend on the assumption of plane stress or plane strain. 

The shortest (lower bound, most conservative) initiation time prediction is obtained from 

using the steady state NSW or NSW-MOD model under plane strain conditions. An upper 
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bound initiation time prediction is obtained by using the initial crack growth rate NSW 

or NSW-MOD model under plane stress conditions. 

The C* correlation with crack initiation times for Δa=0.2 and Δa=0.5 mm crack extension 

are presented in Figure 4-19and Figure 4-20, respectively. P91 WM has the lowest crack 

initiation resistance. However, the P91 HAZ has the highest crack initiation resistance 

with longer initiation time. For the crack initiation defined at Δa=0.2 mm Figure 4-19, the 

decrease of crack initiation resistance with increasing crack initiation time ti is the lowest 

for P91 BM. Note that the crack initiation data at Δa=0.2 mm crack extension has higher 

scatter than that at Δa=0.5 mm crack extension as evidently seen in Figure 4-20. 

 

 

Figure 4-19 Creep crack initiation resistance of  P91 weldment with NSW bounds at Δa = 0.2 

mm  
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The upper and lower bound NSW model prediction lines determined using Equation 

(4-15) are plotted for different weldment zones of P91. The experimental P91 WM data 

lie closer to the upper bound prediction lines for both crack initiation at Δa=0.2 mm and 

Δa=0.5 mm crack extension as in Figure 4-19 and Figure 4-20 respectively. Therefore, 

the NSW model predicts conservative crack initiation time for P91 WM. The 

experimental data, which lie above the upper bound NSW prediction line, is directing 

attention to the need for more experimental data to verify NSW model predictions. 

 

 

Figure 4-20 Creep crack initiation resistance of  P91 weldment with NSW bounds at Δa = 0.5 

mm 
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4.3.3 The Behavior of Creep Crack Initiation 

The behavior of components under creep loading conditions is described by load line 

displacement versus time diagrams. On application of steady (constant) load to a pre-

cracked component the load point displacement increases with time, the data analyzed to 

determine crack growth rate vs. crack tip parameter K or C* that gives an initial “tail” 

with a decreasing growth rate prior to steady-state growth rate. 

The data for creep crack initiation (CCI) are taken at crack extensions of Δa=0.2 mm and 

Δa=0.5 mm based on engineering definitions and recommendations of CCI [54]. The CCI 

times are correlated with the crack tip parameters, stress intensity factor, K, and C* in 

order to determine the crack initiation resistance of P91 steel weldments. An indication 

of CCI resistance of different weldment zones of P91 steel are presented in Figure 4-21 

to Figure 4-22. The CCI data are correlated with the loading parameters K and C*, at 

crack extensions Δa=0.2 and 0.5 mm.  

Comparison of correlations of CCI resistance of weldment zones of P91 steel in terms of 

K or C* reveals that the corresponding BM zone of P91 steel at 600 °C has a higher CCI 

resistance than WM zone and HAZ zone respectively at both at crack extensions Δa=0.2 

and 0.5 mm. However, the correlation of CCI resistance with C* shows that the CCI 

resistance of HAZ zone of P91 steel at 600 °C has a higher CCI than BM and WM, and 

CCI resistance of P91 BM drops much quicker than the HAZ, although it is slower than 

WM and HAZ for C* comparison at early crack initiation times. 

The reason for higher CCI resistance obtained at Δa=0.5 mm than at Δa=0.2 mm is that 

the load is increased to grow crack in crack resistant material. Hence, the crack tip 

parameter has higher values at larger crack extension of 0.5 mm. Therefore, the choice of 

engineering definition of CCI changes the amount of resistance as well and the 

determined CCI resistance should not be treated as absolute but an engineering relevant 

value [91]. 

 



CREEP CRACK GROWTH IN STEEL WELDED JOINTS 

 

 

 

104 
 

 

 

 

Figure 4-21 Comparison of CCI resistance behavior in terms of K of  P91 steel weldment [91] 

 

 

 

Figure 4-22 Comparison of CCI resistance behavior in terms of C* of  P91 steel weldment [91] 
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Crack initiation times at crack extension of Δa=0.2 mm and 0.5 mm determined for 

different weldment zones are correlated with stress intensity factor, K and C* in 

Figure 4-23 and Figure 4-24, respectively. The WM has the lowest, and BM the highest 

crack initiation resistance for crack initiation times defined at Δa=0.2 mm and 0.5 mm. 

The rate of reduction in crack initiation resistance is the lowest in the HAZ with crack 

initiation time, ti at Δa=0.5 mm. The type IV fracture mode in the HAZ leads to lower 

fracture resistance and shorter CCI times [92]. 

 

 

Figure 4-23 Crack initiation resistance of P91 weldment zones at 600 °C in terms of K and 

C* correlated with the time to crack initiation at Δa = 0.2 mm [92]. 
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data at Δa=0.2 mm crack extension has higher scatter than that at Δa=0.5 mm crack 

extension as seen in Figure 4-24. 

 

 

Figure 4-24 Crack initiation resistance of P91 weldment zones at 600 °C in terms of K and 

C* correlated with the time to crack initiation at Δa = 0.5 mm [92]. 

 

 

4.4 Experimental Determination of C* Integral 

For CT specimens, C* values were calculated using experimental load line displacement 

rates and creep crack growth data, and then used to correlates the creep crack growth 

rates. The C* is calculated from the load line displacement rate (also known as crack 

mouth opening displacement rate) of the recorded data, whereas the magnitude of the 

C*(t) integral was determined at each point from [80]: 

 

𝐶∗(𝑡) =
𝑃𝑉̇𝑐

𝐵𝑁(𝑊 − 𝑎)
(

𝑛

𝑛 + 1
) (

2 + 0.522(𝑊 − 𝑎)

𝑊
)  (4-17) 
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where 𝑉̇𝑐  is the creep component of the load line displacement rate and is given as follows 

 

𝑉̇𝑐 = 𝑉̇ −
𝑎𝐵𝑁

𝑃
[
2𝐾2

𝐸
+ (𝑚 + 1)𝐽𝑝]  (4-18) 

 

where K represents the stress intensity factor given by Equation (4-7), Jp corresponding 

to the fully plastic component of the J-integral and m is the stress exponent in the 

Ramberg–Osgood stress versus strain relationship: 

 

𝜀𝑝 = 𝐷1 (
𝜎

𝜎𝑦
)

𝑚

  (4-19) 

 

where ɛp is the plastic strain, σy the yield strength, D a constant, and E is the elastic 

modulus. The Jp is predicted from 

 

𝐽𝑝 =
𝐷ℎ1(𝑎 𝑊, 𝑚⁄ )

(𝜎𝑦(𝑊 − 𝑎))
𝑚 (

𝑃

1.455𝐵𝑁𝛼
)

𝑚+1

  (4-20) 

 

where 

 

𝛼 = (𝜑2 + 2𝜑 + 2)1 2⁄ − (𝜑 + 1) (4-21) 

 

and 

𝜑 =
2𝑎

(𝑊 − 𝑎)
  (4-22) 

 

Finally, h1 is a function of (a/W) and m, as given in Table X2.1 of ASTM E1457-15 [3] 
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The traditional way of presenting C* results is to give the creep crack propagation rate 

(da/dt) as a function of C*. This allows for evaluation of the experimentally obtained 

cracking rates against the calculated C*-value. When performing remaining life estimates 

for real components in service, the C*-value for the component is calculated and the 

predicted cracking rate is taken from the diagram. The rate is then converted to time until 

rupture by integrating over the material thickness. The estimate depends on whether plane 

strain or plane stress conditions dominate at the crack tip. If the material is creep ductile 

and constraint effects are relatively small, the crack tip stress state can be approximated 

with plane stress conditions. On the other hand, if the material is creep brittle and the 

constraint effects are large, a plane strain condition results. In the laboratory specimen, 

the constraint effects can be changed by altering the specimen size and by introducing 

side grooves. 

It has been shown that for testing and material conditions where secondary creep is 

dominant, the relationship between da/dt and C* can be expressed as [93]: 

𝑎̇ =
𝐶∗0.85

𝜀𝑓
                 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠  (4-23) 

 

𝑎̇ =
150𝐶∗0.85

𝜀𝑓
                 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛  (4-24) 

 

 

High temperature crack growth data are determined on specimens from P91 steel 

weldments at 600 °C. The data are evaluated and CCG rate is correlated with crack tip 

parameters K and C*[8]. The crack growth correlations for P91 BM, P91 HAZ and P91 

WM are given in Figure 4-25 and Figure 4-26. 

The detailed analyses of test data include CCG rate correlated with the crack tip parameter 

C*, using the complete dataset and the data after the CCI (Δa>0.2 mm and 0.5 mm). The 

data from early crack extension up to crack growth initiation (Δa>0.5 mm are correlated 
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with K for transition creep crack growth assessment. The NSW model plane stress and 

plane strain predictions from Equation (2-72) are overlaid on the CCG correlation charts. 

The correlations of steady-state crack growth rate with K and C* can be represented by 

straight lines of different slopes on log/log plots and expressed by power laws of the form: 

𝑎̇ = 𝐴′𝐾𝑚′
  (4-25) 

 

𝑎̇ = 𝐷𝑜𝐶∗∅  (4-26) 

 

where  𝐴′, 𝑚′, Do and ɸ are material constants. A steady state relationship between crack 

growth rate and the parameters in Equations (4-25) and (4-26) physically imply a 

progressively accelerating creep crack growth rate [16], for cracked bodies, at a specific 

C* value, using Equation (4-26) the corresponding creep crack growth rate can be 

calculated, and hence the failure time for a component can be predicted. Material 

constants 𝐴′, 𝑚′, Do and ɸ are given in Table 4-6 and used for the NSW prediction upper 

and lower bounds. Generally, Figure 4-25 and Figure 4-26 show a high scatter in K 

correlation of CCG rate whereas much improved correlation with C* in the valid steady 

state range is seen. 

Table 4-6 Material constants collected from CCG tests of P91 weldments at 600 °C 

Material 𝐴′ 𝑚′ Do ɸ 

P91 BM 9.14E-15 8.236 0.0313 0.618 

P91 WM 3.02E-19 12.7 0.1143 1.0087 

P91 HAZ 1.09E-13 8.36 0.295 1.3523 
 

 

Crack growth rate versus K for different weldment zones of P91 steel at 600 °C is shown 

in Figure 4-25, together with the exponential correlations obtained by fitting the data. One 

can see that BM has significantly higher CCG resistance than both WM and HAZ [94]. 

Figure 4-25 shows that the creep crack growth rates for the HAZ material is about twelve 

times higher than that for the BM material and about nine times higher for the HAZ 

material than the BM material, at the same K values. 
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Figure 4-25 Correlation of creep crack growth rate with K for different weldment zones of 

P91steel at 600 °C 

 

 

Crack growth rate versus C* for different weldment zones of P91 steel at 600 °C is shown 

in Figure 4-26, together with the exponential correlations obtained by fitting the data. 

Scatter can be seen to exist in the data, especially at the upper values of C* for the HAZ 

values [80],  Creep crack growth rates are correlated with the C* values using Equation 

(4-26), by curve fitting technique based on the least squares method the values of 

materials constants Do and ϕ are obtained for P91 weldment as presented in Table 4-6.  

Creep crack growth in HAZ CT specimens is higher than that in BM CT specimens, that 

is because, in HAZ specimens, initial cracks were positioned in Type IV region, which is 

the weakest region in a weld. Figure 4-26 shows that the creep crack growth rates for the 

WM material is about four times higher than that for the BM material and about nine 

times higher for the HAZ material than the BM material. 
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Figure 4-26 Correlation of creep crack growth rate with C* for different weldment zones of 

P91 steel at 600 °C 

 

  

4.4.1 Time Dependent Failure Assessment Diagram (TDFAD) Approach 

Failure Assessment Diagram (FAD) method has been developed to assess defect-

containing components. The FAD method has been extended to the creep regime, named 

as TDFAD. This diagram generally gives the prediction whether or not the structure with 

defined defect will sustain given load. A central feature of the TDFAD approach is the 

definition of appropriate creep crack initiation toughness, 𝐾𝑚𝑎𝑡
𝑐 . When used in 

conjunction with the failure assessment diagram, it ensures that crack growth in the 

assessment period is less than a value Δa. Creep crack initiation toughness values may be 

estimated indirectly from conventional creep crack incubation and growth data or 

evaluated directly from experimental load versus displacement information [95]: 
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𝐾𝑚𝑎𝑡
𝑐 = [𝐾2 +

𝑛

𝑛 + 1

𝐸𝑃Δ𝑐

(𝑊 − 𝑎)
𝜂]

1 2⁄

 
 (4-27) 

 

Where η is the geometric factor used for determining C* given as [2+0.522(1-a0/W)], K 

is the stress intensity factor of the specimen, and Δc is the experimental load line 

displacement due to creep at the time for which the crack extension is equal to Δa. 

The failure assessment diagram is then defined by the quantities Kr and Lr, which 

describes fracture and plastic failure mode respectively. These parameters are defined as: 

 

K𝑟 = (
𝐸𝜀𝑟𝑒𝑓

𝐿𝑟𝜎0.2
𝑐 +

𝐿𝑟
3𝜎0.2

𝑐

2𝐸𝜀𝑟𝑒𝑓
)

−1 2⁄

        𝐿𝑟 ≤ 𝐿𝑟
𝑚𝑎𝑥 

 (4-28) 

 

 

K𝑟 = 0                 𝐿𝑟 > 𝐿𝑟
𝑚𝑎𝑥  (4-29) 

 

 

𝐿𝑟
𝑚𝑎𝑥 =

𝜎𝑟

𝜎0.2
𝑐   (4-30) 

 

where E is Young’s modulus, εref is the total strain from the stress-strain curve for given 

temperature and time and for given value of the reference stress. The variable σr is the 

creep rupture stress obtained from the creep rupture data. Reference stress is obtained 

from equation: 

𝜎𝑟𝑒𝑓 = 𝐿𝑟𝜎0.2
𝑐   (4-31) 

 

where 𝜎0.2
𝑐  is the 0.2% yield stress from the stress–strain curve for given temperature and 

time [96]. 
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The TDFAD curves are constructed and plotted for different weldment zones of P91 steel 

using the related creep and crack growth properties, as shown in Figure 4-27. The failure 

predictions for specimen are shown on the TDFADs for engineering definitions of CCI 

at crack extensions of Δa=0.2 and 0.5 mm. The curves are constructed for different service 

times of interest varying from t=0 hr to 105 hr.  

 

 

Figure 4-27 TDFAD of P91 weldment at 600 °C for crack growth Δa = 0.2 mm and 0.5mm 

 

It is observed that all experimental data from CT specimen lie in the unsafe failure region 

of the TDFAD for different weldment zones. However, the only point of P91 HAZ 

specimen lies in the safe region of the TDFAD. The crack initiation determined in this 

specimen may not have reached the critical value of crack extension. 
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4.4.2 Application of Two Criteria Diagram (2CD) 

The 2CD has been developed to assess creep crack initiation in ferritic steels. Crack tip 

and ligament damage parameters, RK and Rσ, respectively, are used in 2CD approach, 

which are similar to the TDFAD parameters Kr and Lr. For the description of crack 

initiation using 2CD approach there are three parameters, namely; the stress intensity 

factor KI, the path independent integral C* and the nominal stress in the far field/ligament, 

σn . Among these parameters, KI is chosen to be used in 2CD, which is designated as KIid, 

which is the fictitious elastic K that describe the crack tip stress state. KIid parameter is 

being used to characterize crack tip geometry since KI solutions are available for a wide 

range of geometries [97]. 

The component loading parameters are normalized by time and temperature dependent 

data, which indicates material resistance. 

 

𝑅𝜎 =
𝜎𝑛0

𝑅𝑚𝑡
  (4-32) 

 

𝑅𝑘 =
𝐾𝐼𝑖𝑑0

𝑅𝐼𝑖
  (4-33) 

 

where Rσ is the far field stress ratio and RK is the crack tip stress intensity ratio. Rmt is the 

creep rupture strength obtained from tensile specimens. KIid0 is the fictitious elastic value 

at time zero at the crack tip of the component. KIi is the creep crack initiation value of the 

material, which is a material property. 

 

 

 

 



CREEP CRACK GROWTH IN STEEL WELDED JOINTS 

 

 

 

115 
 

 

 

The experimental data from P91 weldment zones of BM, WM, and HAZ are used for 

2CD as presented in Figure 4-28. All data fall in the mixed mode damage zone as also 

confirmed metallographically on tested and fractured CT (W=25 mm, B=12.5 mm) type 

specimens. Note that the parameter KIi characterizing the creep crack initiation of the 

material need to be determined from high constrained specimens with high KIid/σnpl. For 

the specimens on which higher loads were applied higher nominal stress, σno, hence Rσ is 

increased leading to CCI with higher ligament damage. 

 

Figure 4-28 2CD of P91 weldment at 600 °C for crack growth Δa = 0.2 mm and 0.5mm 
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5 MODELLING OF CREEP CRACK GROWTH AND DAMAGE 

BEHAVIOUR OF P91 STEEL WELDMENT 

 

The modelling of creep damage behavior of P91 steel weldment is concerned with the use 

of modern mathematical constitutive models to predict material deformation and failure 

in engineering structures. The constitutive models used in accordance with the observed 

microstructural mechanisms of creep deformation and creep failure, which are described 

in Section 2.2. The constitutive models are based on the notion of a damage state variable 

(ω), which introduced in chapter 3, through the different creep damage models. The 

damage state variable is in some sense a measure of the amount of internal voiding present 

within the material that increases monotonically with time. Damage is included in the 

constitutive model to provide a coupling with strain rates, as damage evolves then 

material softens and strain rates increase, during tertiary creep until the material 

ultimately fails. The amount of damage present within a material may be quantified in 

terms of the volume or area of voids on a material plane. Measurements of damage 

detected by optical means, giving an area measurement or by material density changes, 

giving a volume measurement. Some researchers relate the damage state to the ratio of 

the damaged area to the original un-damaged area of a material element [98]. 

 

5.1 Finite Element Model 

Creep crack growth tests were performed at 600 °C on the geometry shown in Figure 5-1 

as per ASTM E1457-15 (2015) standard [3]. Side grooves reduced the section thickness 

B to the net section thickness BN in order to achieve a straighter crack front. Crack 

propagation was monitored through the potential drop (PD) measurement system [99], 

and the test temperature of 600 °C was controlled to allow a fluctuation of no more than 

±1 °C. Test conditions are fully described in Table 4-4. 
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Figure 5-1 CT Dimensions and arrangement of tested CT specimen 

 

Finite element analyses were conducted on a two dimensional (2D) FE model of a 

compact tension CT specimen of width, W = 25 mm, thickness B = 12.5 mm and initial 

normalized crack length a0/W = 0.5 using ABAQUS code as shown in Figure 5-2. Half 

of the specimen has been modelled and symmetry conditions employed. In the region of 

the crack path, regular square elements of size 20 μm, have been used as shown in the 

magnified region bounded by a box in Figure 5-2. Note that this mesh has been designed 

for CCG simulations, however, to study CCI a focused mesh similar to those employed 

in [100] are used. The mesh size effects have previously been examined by other 

researchers [101]. A small geometry change analysis has been performed employing four 

nodded continuum elements for plane stress analyses (CPS4) and “hybrid” elements 

(CPE4H) for plane strain analyses.  
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Figure 5-2 CT specimen FE modelling for CCG simulations 

 

Previous work has demonstrated that plane strain analyses are consistent with full three-

dimensional (3D) analyses. Three material cases have been considered using material 

properties of BM, WM and HAZ for P91 steel at 600 °C, as described in Table 5-1, under 

both plane stress and plane strain conditions. These applied loads are corresponding to 

the initial stress intensity factors in the CCG tests performed on the P91 weldment 

material. Simulations have therefore been run, using the constant loading conditions, and 

reduced integration to reduce computing time. 
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Table 5-1 Details of CT specimens modelled and loading conditions 

Sl. 
No. 

Specimen 
Duration 

(hr) 
Load 
(N) 

K 
(MPa.m0.5) 

C* 
(N/mm/hr) 

a0 
(mm) 

Δa 

(mm) 
ɛf 

1 CT25-BM 766.8 3800 22.56 0.056 13.211 1.528 0.130 

2 CT25-WM 2141.2 3300 13.04 0.007 11.927 5.495 0.020 

3 CT25-HAZ 4852.5 2600 13.68 0.004 10.692 4.075 0.130 
 

 

5.1.1 The Load Line Displacement (LLD) FE Prediction 

The LLD and crack extension predicted by 2D FE simulations under plane stress and 

plane strain conditions using the stress dependent ductility criteria have been compared 

to the existing experimental data for weldment material where the data were available 

from the tests performed at a similar initial stress intensity factor. Note that the designed 

mesh employed in this work is made to study the CCG behavior of the weldment. Thus 

to exclude the initiation effects in direct comparisons between the FE predictions and the 

experimental data, the CCG time, LLD and crack extensions beyond 0.5 mm crack growth 

are presented in Figure 5-4. 

The dimensions of a standard CT specimen presented in Figure 4-1 were used to model 

the specimen in the general finite element software of Abaqus. This means that the W of 

the specimen was equal to 25 mm. A model of the whole CT specimen is shown in 

Figure 5-3. The crack ratio (a/W) was 0.5. The crack-tip region had a much finer mesh 

than the other regions, such that C(t) could be calculated using the standard domain 

integral function provided in Abaqus. The minimum mesh size at the crack-tip region was 

10 μm and the ratio of this value to W was 25x104. In the model, 1327 elements were 

used with 4204 nodes. Loading was directly applied to the loading point of the rigid pin, 

as seen in Figure 5-3. Therefore, the loading was applied to the specimen by the rigid pin, 

as in actual tests. The element type CPE8R was used, which is an eight node, plane strain, 

and reduced integration element. All of the applied loads were fixed at 3000 N. The 

material properties of the P91 materials for BM, WM and HAZ were considered through 

the use of the partition options for different materials implementations. 
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Figure 5-3 Finite element simulation results and comparison with the experimental CCG data 

 

The simulated load-line displacement gives a good correlation with the corresponding 

experimental results at K0= 22.56 MPa m0.5, K0= 13.04 MPa m0.5 and K0= 13.68 MPa 

m0.5 for BM, WM and HAZ respectively. This might be an indication that the uniaxial 

creep behavior is accurately represented at low stresses while at higher stresses additional 

uniaxial creep tests are required. In fact, in Figure 5-4, the main difference with the 

experimental data is in the tertiary part of the curve, which strongly depends on creep 

behavior and controlling of test termination before fracture, while in the first and second 

part of the curve that depends on crack propagation, the load-line displacement slope is 

consistent with the simulated values. It can be seen that the FE results are always lower 

than the experimental results in its magnitude. However, the FE and experimental results 

have nearly the same gradients in the steady-state region. 
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Figure 5-4 Finite element simulation results and comparison with the experimental CCG data 

 

5.1.2 The Fracture Parameter (C*) FE Prediction 

The FEM has been widely used to calculate C* using CT specimens. Firstly, it was used 

to obtain FE steady state load line displacement rates, for CT specimens, which were then 

used to calculate C* [102]. Latest versions of FE modeling codes namely ABAQUS has 

built-in functions to calculate the contour integral C(t). In creep analysis C(t) approaches 

a constant value when the analysis reaches steady-state creep. This constant value of C(t) 

is C* parameter. Whether using FE load line displacement rates or the built-in contour 

integral function C(t), to obtain C*, FE analyses have been carried out using stationary 

crack CT specimens [103].  

FE determined C* values, based on steady-state values of C(t), for P91 CT specimens at 

600°C, are presented. Stationary crack analyses were performed initially, and these were 

used to predict growing crack behavior. Using collapsed elements (singular elements) to 

accurately model the crack tip singularity, and hence to obtain accurate contour integral 
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values, the collapsed elements are placed at the crack tip, which are recommended for 

crack analysis to reduce the mesh sensitivity at the crack tip as shown in Figure 5-5 the 

CT model meshes using 2D (4 nodes) collapsed elements. However, it was necessary to 

use quadrilateral elements to ease the modeling of growing cracks by 2D (8 nodes) 

quadrilateral elements seen in Figure 5-6. One-half complete thickness of the specimen 

was modelled because of symmetry; the crack plane is the plane of symmetry on which 

the boundary conditions were applied. In both models, the plane of symmetry was 

constrained in the Y-direction while the load point was constrained in the X-direction; to 

prevent rigid body motion in the X-directions. Plane strain linear elements were used for 

the collapsed element model and plane strain quadratic elements were used for the 

quadrilateral elements model. The geometry and dimensions of the CT model are the 

same as those used for the experimental CT specimens, shown in Figure 5-1, the FE 

analyses for P91 weldment zones BM, WM and HAZ for the same loading conditions 

provided in Table 5-1. 

 

Figure 5-5 FE CT model using collapsed elements ahead of the crack tip 
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Figure 5-6 FE CT model using quadrilateral 8-node elements ahead of crack tip 

 

 In comparison, the FE contour integrals achieved with the use of both models that are 

collapsed 4-nodes elements model and quadrilateral 8-nodes elements model as presented 

in Figure 5-7, when the initial crack was 12.5 mm. It can be seen that the contour integral 

C(t) decreases as time increases until it reaches an approximately constant value. This 

constant value is C*. In addition, it can be seen that the contour integral obtained for both 

models are practically the same. These results reinforce the use of quadrilateral elements 

in the analyses in which crack propagation is included. 

FE C* analyses were conducted for P91 weldment CT specimens at twelve different 

initial crack lengths. C* values were taken as the steady state value of the contour integral 

C(t). It is assumed that steady state is reached when the changes in the analysis time 

increments produce negligible changes in the C(t) values. The resulting value of C(t) is 

taken to be C* and the corresponding time is taken to be the transient time, that is the time 

at which the creep zone is well spread in the CT specimen. These values are given in  

Table 5-2, also indicated in Figure 5-8 for P91 weldment with a crack length of 12.5 mm. 

The FE predictions show higher values for HAZ at initial crack growth. 
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Figure 5-7 FE C(t) integral by quadrilateral 4-node and collapsed elements for P91 weldment 

 

Table 5-2 FE models C* values and transient times for P91 weldment 

Crack 

Length 

(mm) 

BM - 600 °C WM - 600 °C HAZ - 600 °C 

C* 

(N/mm/hr) 

FE tT 

(hr) 

C* 

(N/mm/hr) 

FE tT 

(hr) 

C* 

(N/mm/hr) 

FE tT 

(hr) 

12.5 0.03167 9.915 0.00873 23.686 0.05314 2.058 

13.0 0.19339 6.808 0.01365 17.177 0.06981 1.781 

13.5 0.35511 3.700 0.04173 6.442 0.25505 0.557 

14.0 0.51683 2.993 0.29852 2.419 0.41552 0.371 

14.5 0.67855 2.485 0.55531 2.168 0.95319 0.192 

15.0 0.84027 2.078 0.81209 1.917 1.35177 0.150 

15.5 1.00199 1.971 1.06888 1.666 2.47838 0.099 

16.0 1.16371 1.863 1.32567 1.414 4.41063 0.067 

16.5 1.32543 1.731 1.58246 1.163 6.34288 0.035 

17.0 1.48715 1.328 1.83925 0.912 8.27513 0.022 

17.5 1.64887 0.824 2.09604 0.660 10.20738 0.016 

18.0 1.81059 0.320 2.35283 0.409 12.13964 0.009 
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Figure 5-8 Variations of time increment Δt and contour integral C(t) for P91 weldment 

 

5.1.3 FE Modelling of CT Specimen Growing Crack 

The 2D CT growing crack model of plane strain quadrilateral elements that found to give 

values of C* closer to the corresponding experimentally obtained values, and because of 

symmetry, only half the specimen was modelled. Element thicknesses were taken to be 

12.50 mm, this being the actual CT specimen net thickness as presented in Figure 5-9. To 

grow the crack, the first 5 mm ahead of the crack tip was divided into 40 segments Δa, 

each being 0.125 mm in length, because the largest creep crack growth extension obtained 

experimentally is about 5 mm for the WM at 600 °C see Figure 4-16. Boundary conditions 

were applied to these segments to constrain them in the Y-direction. These boundary 

conditions were then released, during the analysis, one after another allowing the crack 

to grow by 0.125 mm each time. This technique is known as the node release technique, 

for growing cracks. This extension of the crack was modelled in a stepwise manner. Two 

steps are needed to grow the crack by one increment Δa. The first step is to release the 
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boundary condition; the time taken for this step is very small (about 0.01h). In the 

following step, creep takes place and a C* value was obtained. 

 

 

Figure 5-9 Fine meshed crack segments ahead of crack tip 

 

Enabling the step times given in Table 5-2 and the growing crack model, an FE analysis 

was carried out to calculate C* values. The boundary conditions applied to the elements 

ahead of the crack tip were released one after another, in order to grow the crack. 

Figure 5-10 shows the deformed shape of the CT model and the released boundary 

conditions. 

Figure 5-11 compares the values of C* obtained from the growing crack model with those 

of the experimental results. It can be seen that the growing crack model gave practically 

the same C* values as experimental results at the same crack lengths. This indicates that 

the C* values determined by the growing crack model can be used to characterize the 

behavior of the P91 weldment materials. 

The FE growing crack modelling of CT specimens using Abaqus provides FE load line 

displacements curves presented previously in Figure 5-4, these displacement curves can 

then be used to calculate displacement rates which can be used to calculate the 

corresponding C* values [104]. This approach was used and resulted in good correlation 

between experimental and FE load line displacement rates, and hence C* values in 

modelling P91 weldments CT specimens at 600 °C [87]. 
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Figure 5-10 Released elements of the growing crack mode 

 

 

Figure 5-11 FE C* predictions for growing crack models vs. experimental data 
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The benefit of using the growing crack model is the ability to obtain the load line 

displacement curves and to calculate the creep crack growth rates, which used in 

comparing the da/dt vs. C* from the experimental data with the FE results. Figure 5-12 

present this comparison for the P91 WM at 600°C. It can be seen that the FE results, 

obtained using the growing crack model, are in good agreement with the experimentally 

calculated results. Creep crack growth correlation when using plane strain and plane stress 

C* FE predictions, clearly, it can be seen that for the same C* the plane strain conditions 

produce higher creep crack growth rates than the plane stress conditions do. Similarly, 

for the plane strain conditions, WM CT specimens exhibit higher scatter than the BM CT 

specimens under the plane stress conditions. Furthermore, both the plane strain and the 

plane stress conditions have the same slope for weldment CT specimens. 

 

 

Figure 5-12 Comparison of FE obtained C* vs. CCG with experimental data [87] 
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5.1.4 FE Evaluations of C* by Secondary and Average Creep Strain Rates 

As briefly described in Section 2.2.5, predictions of deformation in a component will be 

underestimated when using the minimum creep strain rate 𝜀𝑠̇ , that is because the 

components of deformation related to tertiary and primary creep are neglected and 

only the steady state deformation is considered. Therefore, if Norton's equation is to be 

used to predict deformation of "average" strain rate 𝜀𝐴̇, defined in Figure 2-13, would be 

an alternative method which would produce more representative deformation rates for 

extended times. The average creep rate 𝜀𝐴̇ is defined by: 

 

𝜀𝐴̇ = 𝐴𝐴𝜎𝑛𝐴  (5-1) 

 

where  𝜀𝐴̇ is the average creep strain rate and AA and nA are material constants, which are 

obtained in a similar way to that used to obtain A and n of the minimum creep rate, by 

plotting log(𝜀𝐴̇) against log(𝜎), from the straight line of the best fit to the test data the 

slope of the line is n and the intercept of the line is  log(𝜎) . 

Table 5-3 presents the values of Norton equation constants for minimum A, n, and 

average AA, nA for the P91 steel weldment at 600°C. 

Table 5-3 Material constants of minimum and average creep rates of P91 weldment at 600 °C 

Material A n AA nA 

P91 BM-600 °C 1.570x10-45 18.510 1.478x10-39 12.515 

P91 WM-600 °C 5.990x10-24 8.550 8.408x10-26 9.728 

P91 HAZ-600 °C 7.160x10-35 14.350 6.740x10-29 9.702 
 

 

C* analyses using FEM by ABAQUS were conducted for P91 BM, WM and HAZ CT 

specimens with different loading conditions and same initial crack lengths. C* values 

were taken as the steady state value of the contour integral C(t). 

Figure 5-13 shows the variation of the FE C* values with creep crack extension for P91 

weldment including comparison with the experimental results, the FE and Experimental 
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were calculated using minimum strain rate material constants, i.e. A and n, and average 

creep strain rate constants, i.e. AA and nA. Clearly seen that the FE C* values calculated 

using minimum constants agree well with experimental results. However, the FE C* 

values calculated using the average constants are higher in all weldment different 

materials that is simply due to the fact that average values cover all three creep regimes 

and extend to longer time. 

 

Figure 5-13 FE C* versus creep crack length for minimum and average creep strain rate 

 

5.2 Creep and Damage Models of P91 Steel Weldments 

The practical experience and approaches to creep modeling in welded structures using 

FEM during the last 10 years considering the partition of the weldment volume to three 

zones considering different material behavior under the creep conditions [105]. 

Creep damage modelling in cracked components to study the rupture life of components 

made of engineering materials under creep deformation conditions to simulate CCG 
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behavior of materials using FE simulations. In the previous section, fracture mechanics 

approaches have been used to predict creep crack growth in CT specimens for P91 

weldment. However, it is difficult to use fracture mechanics for cases other than those 

used to predict the steady-state behavior of components. Therefore, damage mechanics 

approaches have been used to model all creep stages, i.e. primary, secondary and tertiary 

creep. Damage mechanics can, also, account for material deterioration, which will allow 

accurate predictions of failure times and location of components.  

The approach is to simulate crack growth by element removal when the damage parameter 

ω, reaches a critical value at two integration points in an element located ahead of the 

crack tip, the crack tip node releases and virtual crack propagation is modelled [87], as 

presented in Figure 5-14. In this method, which is often referred to as node release model, 

the crack path has to be specified prior to CCG simulations. The defined crack path in 

node release model is usually along the symmetry line at the mid-height of the specimen 

geometry [48]. 

 

 

Figure 5-14 Schematic of node release modeling for creep crack growth [87] 

 

Damage mechanics have been used to predict creep crack growth in CT specimens, using 

the Abaqus Student Edition FE package [76]. A FORTRAN subroutine, CR_DAMAGE  

subroutine [77], was used to implement the damage models for the FE analyses. 

Considering two creep damage models were used to predict deformation and lifetime of 
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creep behavior of components namely the Kachanov and Rabotnov model introduced in 

Section 3.3.1 and the Liu and Murakami model presented in Section 3.3.2. I t is necessary 

to determine several material constants to facilitate these damage models. The 

experimental results given in Chapter 4 were used to determine these material constants. 

5.2.1 Determination of Material Constants for Creep Damage Models 

Creep behavior is often represented by coupled, continuum damage constitutive 

equations, which can be used in finite element analyses to predict the time-dependent 

deformation and creep failure times of engineering components, and structures at elevated 

temperatures. The accuracy of these predictions is strongly dependent upon the accuracy 

of the material constants in the creep continuum damage constitutive equations. 

In order to determine the material constants in the constitutive equations of a material 

model, the common practice is to reduce the tri-axial model to its uniaxial form and then 

to fit the uniaxial constitutive equations to the test data obtained from sets of uniaxial 

creep tests at desired temperatures. Most of the material constants in constitutive 

equations can be determined from uniaxial test data; however, for some material 

constants, bi-axial tests or multiaxial finite element damage analysis has to be employed. 

The uniaxial parameters A, n, ϕ, B, χ and m shown in equations (3-6) and (3-7) can be 

determined by fitting a group of creep test strain curves for different stress levels at fixed 

temperature to the theoretical strain equation (3-10). To obtain the α values, notched 

specimen rupture testing can be used in conjunction with FE damage modelling of 

notched bar rupture tests [70]. 

 

Norton's law is the most commonly used model to describe the secondary creep region 

(steady state region), because of its simplicity and accuracy [106].  

 

𝜀𝑐̇ = 𝐴𝜎𝑛  (5-2) 

 

5.2.1.1 Determination of Norton Model Material Constants (A and n) 
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where A and n are temperature dependent material constants, σ is the stress and 𝜀𝑐̇ is the 

minimum strain rate which depend only on the strass and the temperature. The material 

constants A and n were obtained using the uniaxial creep tests of specimens for P91 steel 

at 600°C, by plotting the minimum strain rate  against the applied stresses on a log-log 

scale and then determining a line of best fit. The slope of the line of best fit is n and the 

intercept is log (A), which are presented in Table 5-3 

 

The most commonly used damage models are the Kachanov and Rabotnov material 

behavior model [61], and the Liu and Murakami model [64]. Both are capable of 

modeling the entire creep strain curves. The models consist of pairs of coupled creep and 

damage equations that are capable of representing the damage in the material during 

creep, both models have been described in Sections 3.3.1 and 3.3.2 respectively. The 

material constants for Kachanov-Rabotnov and Liu-Murakami models, i.e., (M, χ, B, ϕ, 

α and q2) for P91 steel weldment zones BM, WM and HAZ at 600 °C have been obtained 

using uniaxial creep strain versus time curves results for weldment materials which are 

presented in Figure 5-15. 

In practice, only initial estimates of the model’s material constants are determined directly 

from experimental data. These initial estimates are then fine tuned using an optimization 

procedure; fitting the predicted behavior of a material model to the true experimental 

response. An optimization iteration (i.e. an instantaneous solution for the optimum set of 

material constants) is based on the evaluation of an objective function. For the 

optimization of creep material parameters, the objective function may take the form of 

Equation (5-3), where M1 is the number of creep tests performed and M2 is the number 

of data points for the ith creep curve. Experimental and predicted strain values 𝜀𝑗
𝑒𝑥𝑝

 and  

𝜀𝑗
𝑝𝑟𝑒(𝑥) respectively, where x is a set of material constants are compared for each data  

5.2.1.2 Determination of Material Constants for Damage Models (M, χ, B, ϕ, α and 

q2) 
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Figure 5-15 Uniaxial creep strain versus time curves for P91 weldment at 600 °C 
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  (5-3) 

 

point in each creep curve. Predicted and experimental times to failure 𝑡𝑓𝑖
𝑝𝑟𝑒

 and 𝑡𝑓𝑖
𝑒𝑥𝑝

 

respectively are also compared by using the weighting value ωi to ensure that times and 

strains are are accounted for with similar magnitudes.  

Material constants M and χ can be determined in a straightforward manner using the 

minimum strain rate and failure times of uniaxial creep data, given by  

t𝑓 =
1

𝑀σ𝜒
  (5-4) 

 

values of constants M and χ can be determined by plotting Log( tf) versus Log(σ). By 

taking Log ( ) function to Equation (5-4) and becomes 
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log(𝑡𝑓) = − log(𝑀) − 𝜒 log(𝜎)  (5-5) 

 

M and χ values can be obtained as the slope of the line of the best fit is -χ and the 

intercept is –Log (M), and 

 

𝑀 = 𝐵(1 + 𝜙)  (5-6) 

 

Similarly, the material constant ɸ can be determined by fitting a set of uniaxial creep 

curves calculated using Equation (3-10) to the corresponding experimental creep curves 

at different values of ɸ, keeping all the other material constants the same. The ɸ value 

that gives the best fitting is then taken as the correct value. Then, the B value is updated 

whenever the ɸ value changes, according to Equation (5-6) 

The material constant m is initially set to zero until the exact value of ɸ was obtained, 

then, ɸ kept constant and the m value is changed accordingly to enhance the fitting, not 

much improvement achieved to the fitting by adjusting m value, so it is kept equal to zero 

for all weldments material. Other material constants, such as q2 and α, are determined 

using fitting to the overall experimental data. P91 Material constants for damage models 

at 600°C (σ in MPa and time in hr) are presented in Table 5-4 

 

Table 5-4 P91 weldment constants for damage models at 600 °C 

Material A n m B ɸ χ α q2 

P91 BM 1.478x10-39 12.51 0 2.335x10-27 9.745 9.588 0.515 2.7 

P91 WM 8.408x10-26 9.728 0 7.354x10-28 13.667 9.751 0.620 6.0 

P91 HAZ 6.740x10-29 9.702 0 1.123x10-16 9.747 5.914 0.490 3.6 
 

 

5.3 CCG Predictions by Damage Models  

Damage mechanics have been used to predict creep crack growth (CCG) in P91 weldment 

CT specimens. In order to simulate the actual CT specimens, reported in Chapter 4, FE 

analyses were conducted by examining 2D FE model of a CT specimen with W = 25 mm, 

B = 12.5 mm for a/W = 0.50 and using a fine-meshed model as presented in Figure 5-9, 
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of  mesh size at the crack tip is approximately 0.010 mm, which is similar to the grain 

size of the P91 steel examined. All finite element analyses were conducted using 

ABAQUS 6.14-1 and a typical fine mesh with 1327 elements were used with 4204 nodes  

Two methods for modelling crack extension were considered. The first, is The 2D CT 

growing crack model considered in Section 5.1.3 will be identified as the fixed-node 

model, considers that the crack has propagated when damage ω, as derived from equations 

(10)–(12), reaches 0.999 at two integration points ahead of the crack tip. There is no 

change in the boundary conditions and the damage parameter simply acts as an indicator 

to locate the position of the crack tip as damage spreads throughout the specimen. In the 

second method, identified as the node-release model, the node at the crack tip is released 

when ω reaches 0.999 and as a result the crack propagates through the mesh along the 

axis of symmetry. Figure 5-16 shows a typical damage contours for a two-dimensional 

elastic–plastic creep damage analysis using the node-release method, in a typical plane 

strain analyses. SDV1 stands for the first solution dependent state variable, which denotes 

the damage variable ω. It can be seen that the damage zone is accumulated ahead of the 

initial crack tip so that the crack grows in the symmetric plane. 

 

 

Figure 5-16 Damage contour plot for creep analysis using the node release model 
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Figure 5-17 Predicted crack growth for node-release and growing crack models 

The difference in the predicted creep crack growth with time for the two models as 

presented in Figure 5-19 for the applied load is 3 kN. The experimental data for BM, WM, 

and HAZ of P91 are also shown for comparison, therefore the extent of crack growth 

predicted by the node-release model is greater than that from the growing crack model, 

and is closer to the experimental data. However, in all cases the predicted amount of crack 

growth is less than that observed in the experiments. 

Using 3D CT models, which have the same geometry and dimensions as the tested CT 

specimens. Another reason to use the 3D models is that the FE results are more sensitive 

to whether plane strain elements or plane stress elements were used. The FE analyses 

were carried out at the same loads as those used for the experiments. The appropriate 

boundary conditions were applied to the models. The Liu and Murakami damage model, 

presented in Section 3.3.2, was used, to obtain damage accumulation in the models In 

order to avoid the very high damage, and hence high strain rates which occur for the 

Kachanov and Rabotnov model when ω approaches unity (these can cause convergence 
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problems in FE creep analyses). Experimentally determined material constants were used 

for the P91 weldment at 600 °C. 

Based on the geometry and dimensions of the CT specimen, shown in Figure 5-1, a 3D 

FE CT model has been created. Due to the symmetry of the CT model, only one-quarter 

of the specimen was modelled with half of thickness value of 6.25 mm, as shown in 

Figure 5-19 (a). The crack propagation is controlled by a field variable defined in the 

USDFLD user subroutine so that as soon as the damage reaches a value of 0.99, the elastic 

modulus E is gradually reduced to a unit value. With a low elastic modulus, the element 

is no longer able to support stresses simulating crack propagation conditions. In this 

simulation, side grooves were considered in order to obtain a realistic representation of 

the actual specimen that was used in the experimental CCG tests. For this purpose, eight 

nodes hexahedral elements with reduced integration were used Figure 5-19 (b) [107]. 

 

 

Figure 5-18 FE simulations of  P91 (a) 3D model CT specimen (b) Crack tip detail [107] 

 

The crack propagation rate da/dt as a function of the normalized C* for the numerical 

simulations, the experimental results and the comparison with the C(t) integral calculated 

using a large contour as the path surrounding the entire ligament. All the data in 

Figure 5-19 are plotted starting from the transient time tT of 35 hours calculated as per 

definition by ASTM E1457-15 standard [3]. The transient time was also verified through 

the finite element analysis by evaluating the C(t) integral at two different contours, one 
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small close to the crack tip that was automatically updated at every node release and the 

other significantly larger in order to include the entire ligament. The two contour integrals 

trend to a unique value after 30 hours of simulation demonstrating the path independence 

of C(t) thus indicating that the steady-state creep conditions are reached quickly under 

these test conditions. A significant similarity was found between the experimental data 

and the 3D simulations at large crack sizes leading to the similar final crack front. On the 

other hand, the 2D-simulation shows considerable differences in the calculated C* and 

the numerical C(t) integral. However, numerical simulations and experimental data 

suggest that the relationship between crack propagation rate da/dt and C* is not unique 

as seen in both experiments and simulations [107]. 

 

 

Figure 5-19 FE simulation results of C* and comparison with the experimental CCG data 

[107] 
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6 CONCLUSIONS AND RECOMMENDATIONS 

 

In the power generation and nuclear industries, predicting the life of aging equipment has 

become both a safety issue and an economic necessity. Processes such as creep crack 

initiation and growth limit the lifetime of components operating at high temperatures in 

the range of 500-650 °C. Due to the existence of welding residual stresses and 

inhomogeneous properties in weldments, defects may initially exist and propagate in this 

region of the weldment. For this reason, research work on the creep behavior of welds in 

structural components is of great importance and has been carried out in our study. 

This thesis dealt with the study of the creep crack growth, creep damage modelling and 

resistance properties of P91 (9Cr1Mo-NbV) power plant steel. The methodological 

approach used in this work was strongly focused on the application of time-dependent 

fracture mechanics concepts in creep behavior to structures with the aim to: 

 Present a critical review of the classical approaches to high temperature 

assessments of steel structures under creep conditions. 

 Examine in detail the experimental procedures of creep flow, creep crack 

initiations and growth testing of P91 weldment material and analysis of results 

data reached. 

 Study a numerical approach to simulate time-dependent crack propagation in 

components by means of accurate FE analyses. 

The starting point was the understanding of the crack tip parameters that govern the 

initiation and propagation of defects under creep conditions, and their transposition to 

large scale components in order to analyze the effects of critical operating conditions, as 

high temperatures and stresses.  In addition to this, the finite element method was used to 

recreate not only the experimental test conditions but also the crack tip parameters 

evolution in order to validate its application to estimate the residual life of components. 

In this thesis, the results of creep and creep crack growth (CCG) tests, which were 

conducted on P91 welds, are reported. These tests were carried out on welds constituents, 

i.e. base metal (BM) and weld metal (WM), and heat affected zone (HAZ), for the P91 
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material at 600°C. For the cross-weld tests, interest was focused on the Type IV region, 

a narrow zone at one end of the heat affected zone (HAZ) at the side of the BM. The 

importance of the distinct weld zones on the creep rupture strength of various stresses and 

crack extensions has also been investigated, Also reported, in this thesis, are the results 

of the Finite Element analyses for predicting the creep and creep crack growth in the P91 

weldment. 

C* has successfully correlated creep crack growth behavior of the P91 steel weldment for  

CT specimen, because it is consistent with the time-dependent failure mechanism 

that prevails at operating temperatures. The results of experimental observations 

generally show significant differences in the creep properties in weldment zones with 

different microstructure. Thus, HAZ has higher creep strain rate and less time to rupture 

comparing to the same characteristics of base material and weld metal. In general, results 

of finite element creep modeling predicted the critical damage accumulation and further 

rupture with crack initiation in the fine-grained and inter-critical HAZ. Such a type of 

fracture agrees with the experiments, and the weldment crack location is of type IV. 

However, failures due to cracks within the weld metal have been encountered in practice, 

these cracks have types I and II in the classification scheme for damage types in 

weldments. The existence of the weldment zones can drastically reduce the creep life of 

the welded connection compared to a homogeneous component. Typical reductions in 

predicted steady-state creep rupture life of about 75 %. 

The experimental results obtained for the P91 steel weldment at 600 °C, that are presented 

in Chapter 4 have been shown to be able to be used to obtain a full set of material 

constants, for a variety of creep models, including the Norton’s law, Kachanov and 

Rabotnov model introduced in Section 3.3.1and the Liu and Murakami model presented 

in Section 3.3.2 

A three material representation i.e. the base metal, the weld metal and the weakest HAZ, 

were chosen to model creep flow and damage behavior of weldments. Therefore, finite 

element (FE) calculations were performed with using the models fitted for the three 

materials. The results of FE calculations exhibits a quite good agreement with 
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experiments on cross-weld specimens. It was finally shown that the model could be used 

to predict the creep lifetime of industrial components. 

The discussion on FE model performed in Chapter 5 is based on a 2D axi-symmetric 

model. 3D FEM model could be used to examine the entire creep curves. However, this 

route would only be advisable once there is increased confidence in the material 

properties used. In addition, since creep damage is significantly sensitive to creep 

ductility and geometrical constraint, further understanding of the role of ductility 

dependency on the model is needed by modelling different shapes of specimens with 

different material properties. Further specific tests can provide reliable creep ductility 

examination which will assist in the life assessment of structural components. 

Furthermore, modelling and meshing improvements, for example simulating actual grain 

shapes and sizes may allow a more realistic approach to predict these cracks. 

In summary, it is possible to successfully predict CCG in cracked bodies using a damage 

mechanics approach. This requires accurate material properties and an appropriate 

material damage model. The Liu/Murakami damage model has been found to be suitable 

for use in predicting CCG in cracked bodies. Further, both the notched bar and the CT 

specimens approaches can be used to define the material multiaxiality parameter α. 

Improving the creep strength of weldments is a great challenge. Indeed, it was shown that 

even if the creep strength of the base metal is improved the gap in creep strength between 

the base metal and the weldment is still high. The solutions to limit the loss of creep 

strength due to welding are obviously the optimization of the post weld heat treatment. A 

normalizing treatment of the welded components would be the best way to improve the 

weldment creep strength but this operation is hardly realizable on industrial components. 

The half tempering procedure which consists in a tempering of the base metal in the 

temperature range between 600°C and 650°C and a post weld heat treatment at 750°C is 

also probably quite interesting. 
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