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Summary:

This thesis discusses the use of machine learning to design guidance,
navigation, and control algorithms as an alternative to traditional
algorithms for a missile system. The machine learning algorithm used in
this thesis 1s the neural network. It 1is trained wusing the Neuro
Evolution of Augmenting Topologies algorithm. Furthermore, the missile
system and its environment have been modeled in order to simulate and
compare the missile performances. The terminal guidance neural network
will be compared to the proportional navigation algorithm. In addition,
the neural network GPS/INS integration will be compared to the Kalman
filter GPS/INS integration. Moreover, the neural network roll, pitch,
and yaw autopilots will be compared to the traditional PID roll, pitch,
and yaw autopilots. The goal of this thesis is to design neural network
guidance, navigation, and control solutions which is expected to perform
similar or better than their traditional counterparts. Thereby, the
viability of the neural network designs as a guidance, navigation, or

control solution will be verified.
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CyHTeB3a ajropuTaMa HaBuraumje ¥ Bohewa NpOoJjeKkTuiia 3aCHOBAHMX Ha

MaAalIMHCKOM Y4Yehy

Pesume:

Y 0BOJ] HOOKTOPCKO] Te3M Cce pas3MaTpa yrnorpeda MallMHCKOT yuema Yy CUHTEe3U
ajropmMTaMa HaBuraumuje, yropabBkawma ¥ Bohema pakeTe, Kao aJITePHATUBU
TPAIMUMOHAJIHUM aJITOPUTMMUMAE . AJITOPMTAM MAllMHCKOT yuema KOJM Ce KOPUCTU Y
OBOJ] IOKTOPCKO] Te3M je BaCHOBAH Ha MNIPMMEeHM HEeYyPOHCKMX Mpexa. HeypoHcka
Mpexa ce ofyuaBa Heypo €BOJIYLUMOHMM aJITOPUTMOM Ca IPUIIMPEHOM TOIIOJIOTM]OM.
OcuM TOTa, WM3BPULIEHO Jje MaTeMaTUMUYKO MOIeJIOBawke BOHEeHOT INpojekTuia u
BETOBOT OKpyXema Kako Ou ce M3BpUMIe HyMepruke CcuMmysiaumMje M yroopenuie
Beroee nepbopmaHce. V3BpmeHO Jje nopeheme HeYypPOHCKe Mpexe ajilopUTMa
Bohema TepMmHasnHe ¢asze ca aJTOPUTMOM I[IPONOPLMOHAJIHE HaBuraumje. OcCuUM
Tora, wuHTerpaumja GPS/INS-a Ha 6asmM HEeYPOHCKMX Mpexa Jje yrnopeheHa ca
KanmmanoBuM o¢unrTpoMm. Ha kpajy Je mato nopeheme ayTonmioTa IO KaHaJMMa
Bajamwa, NpOoIMbama M CKpeTawma pPpeaiM30BaHUX HEeYPOHCKMM Mpexama HAaCYyNIpoT
TPAIMUMOHAJIHMM ayTonmjioTuMa ca [N ynopaekadukyM ajropuTMuMa. Lup oBe
IOOKTOPCKe Tes3e Jje CuHTesa auropurMa Bohema M yHopaBkakba NpPOJeKTuia
IPMMEHOM HEYPOHCKMX Mpexa koje Tpefa ma NoKaxe CJIMYHO MM OOoke MNOoHalawke
O TPaIMLMOHAJIHMX pellema. [IpUToM, BepudMKy]je Cce ONPXMBOCT pellema IPUMeHe

HEYPOHCKMX Mpexa y CHMHTEeS3M aJilopuTamMa ylipaBkaka M Bohema.
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1. Introduction

Machine learning has become one of the most popular topics in modern
technology. It is used by major technological companies such as Google,
Microsoft, and Apple. That is because machine learning has shown to have
great potential in solving engineering problems that are otherwise
difficult to solve. For instance, facial recognition and content
suggestion all use machine learning as it performs much better than other

algorithms.

The purpose of this research is to investigate the potential benefits
of machine learning in missile guidance, navigation, and control system
applications. More specifically, this thesis will focus on investigating
whether machine 1learning can be wused in terminal guidance as an
alternative to proportional navigation, GPS/INS integration, as an
alternative to Kalman filter, and roll, pitch, and yaw autopilot as an

alternative to PID controllers.

There are several assumptions made about the thesis. The major assumption
is that the models used to simulate the missile and its environment is
accurate. Moreover, the guidance computer behavior is assumed to be
realistic. This means that the microprocessor is expected to behave
exactly like the simulation. This includes all guidance, navigation, and
control algorithms as well as the trained neural network algorithm

counterpart. Hence, the performances are also assumed to be realistic.

Furthermore, a deep understanding of machine learning and the missile
system is required. Hence, this thesis will discuss machine learning and
its training. Then, it will discuss the modeling of the missile system
and its environment. It will also present the neural network guidance,
navigation, and control designs. Once an understanding has Dbeen
established, the performances of the traditional and neural network
guidance, navigation, and control designs will be compared and analyzed
quantitatively. This allows for the evaluation of the neural network

designs as a viable solution for the missile system.
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1.1.Methodology

1.1.1.Missile Simulation

Since the missile is an autonomous dynamic system, it needs to be
accurately modeled and simulated. Therefore, Simulink will be used to
simulate the environment and the missile. The environment includes
Earth’s gravity, atmosphere, and transformation matrices. Hence, Earth’s
gravity will be modeled using the WGS84 standard. In addition, the COESA
standard will be used to model the variations in wind, pressure, and
temperature with altitude. Furthermore, the transformation matrices will

include the Coriolis correction to account for Earth’s rotation.

Once the environment is modeled, the propulsion of the missile will be
modeled. This is to account for the thrust forces as well as moments due
to misalignment. Then, the structural elements such as the variable mass
and moment of inertia will be modeled. Moreover, the aerodynamic forces
and moments will be modeled. This generates the physical properties of

the missile.

The last step is to model the guidance computer and the actuation system.
The actuation system consists of all the actuator models of the missile.
Moreover, the guidance computer contains the traditional missile
guidance, navigation, and control models. The missile guidance and
control models allow the missile to reach the target. Additionally, the
IMU, GPS, and INS algorithm models allow the missile to find its

location.

1.1.2. Neural Network Design

For each of the guidance, navigation, and control, a unique neural
network will be trained. Then, these neural networks will be integrated
into the simulation replacing their traditional counterparts. This
allows for the viability of the neural network as a solution to be
verified. Furthermore, unlike the traditional neural network which is
trained by back propagation, this thesis will use Neuro Evolution of

Augmenting Topologies method to train the neural network. The uniqueness
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of this training method is that it is an online training method that

grows a neural network to optimally perform the intended purpose.

1.1.3. Data Generation and Collection

The simulation with traditional guidance, navigation, and control will
be executed with variable initial conditions and target location. Then,
the simulation with the neural network guidance, navigation, or control
will be executed with the corresponding wvariable conditions. The
performance of each of the guidance, navigation, and control of both
traditional and neural network simulations will be recorded. Thereby,

this completes the data generation and collection.

1.1.4. Data Analysis

Once the data collection 1s completed, the performances of each
corresponding guidance, navigation, or control will be analyzed. The
performances of the proportional navigation and terminal guidance neural
network will be compared. In addition, the pure INS, Kalman filter
integration, and neural network integration errors will be compared to
the 6 DOF data. Furthermore, the traditional roll, pitch, and yaw
autopilot performances will be compared to the neural network autopilots.
A figure of merit will be wused to evaluate the performance of the
traditional and neural network methods. The figure of merit for guidance
is the miss distance. On the other hand, the figure of merit for the
navigation error and the autopilot performances is the mean square error.
This allows the performances of both traditional and neural network

methods to be quantitatively evaluated.

1.1.5. Expected Results

The expected results are that the neural network guidance, navigation,
and control designs will perform similar or better than their traditional
counterparts. This means that the viability of the neural network as a
guidance, navigation, or control solution will be verified. In addition,
the thesis 1is expected to overcome the challenges with neural network

generalization in order to apply the solutions in real life.
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2. Introduction to Machine Learning

The advent of machine learning allowed computers to learn from past
experiences. This means that computers can learn to adapt mathematical
model Dbehaviors and solve complex problems. Hence, this means that
computers can solve problems that was otherwise difficult to solve using
mathematics. In addition, it can reduce the solving complexity of the
algorithm. Machine learning is a vast and growing field that is divided
into multiple categories. Figure 1 shows an example of the machine

learning categories.
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Compression Discovery Classification
Big data Dimensionality Feature Idenity Fraud Classification Diagnostics

Visualistaion Fedhiis Elicitation Detection

Advertising Popularity
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Learning Learning Weather
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L
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Growth
Prediction

Recommender Unsupervised Supervised

Systemns

Clustering Regression
Targetted

Marketing
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Customer

Segmentation L e a_ r n i n g

Estimating
life expectancy

Real-time decisions

Game Al

Reinforcement
Learning
Robot Navigation Skill Acquisition

Learning Tasks

Figure 1 - Machine Learning Fields (1)

The three major categories of machine learning are supervised,
unsupervised, and reinforcement learning. Supervised learning happens
when a set of data is used to train the machine learning algorithm where
the algorithm receives feedback of its performance. On the other hand,

unsupervised learning also happens when a set of data is wused for
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training the machine learning algorithm. However, it learns without the
supervision. In other words, the machine learning algorithm needs to
figure out its performance independently. Lastly, reinforcement learning
happens when the machine learning algorithm interacts with the
environment. Based on that interaction, the algorithm is awarded a

reward. By maximizing the reward, the optimal algorithm is trained.

Furthermore, machine learning algorithms can be further classified as
shown in Figure 2. Here, the supervised learning can be divided into
classification and regression. Classification happens when a set of input
are mapped to a certain output. For instance, a set of image feature can
be classified to be a cat. On the other hand, regression happens when
the set of input is best fitted to produce an output, similar to linear
or nonlinear regression. Moreover, unsupervised learning can be labeled
clustering. That is because the machine learning algorithm tries to make

sense of the data and groups them in to different clusters.

CLASSIFICATION

SUPERVISED )
LEARNING
Develop predictive
model based on both s S
input and output data
REGRESSION
MACHINE LEARNING L )
UNSUPERVISED w s \
lEARNING CLUSTERING
Group and interpret
data based only g y,

on input data

Figure 2 - Machine Learning Sub-Categories (2)

Additionally, machine learning algorithm can be categorized based on
algorithms as seen in Figure 3. Here algorithms such as Support Vector
Machines (SVM) and Naive Bayes are used for classification. In addition,
algorithms such as Support Vector Regressor (SVR) and Decision Tree can

be used for regression. Moreover, algorithms such as K-means and Hidden
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Markov Model can be wused for clustering. Furthermore, Q-learning

algorithm can be used for reinforcement learning.

It is important to note that the neural networks are a rather unique
family of algorithms. That is because it can be used for classification,
regression, and clustering. In addition, it can be used for reinforcement
learning as well. Hence, it can be seen that the neural networks are
adaptable. It is this exclusive property that is the reason that neural

networks are the leading algorithms in modern science.
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Figure 3 - Machine Learning Algorithms (2)

2.1.Neural Network

The machine learning category used in this thesis is the reinforcement
learning. That is because reinforcement learning allows for the machine
learning algorithm in the missile to interact with the environment. In
addition, neural networks algorithm is chosen because of its adaptability

to different types of learning.
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2.1.1.Neural Network Design

Neural networks algorithm is inspired by the brain’s network of neurons.
Figure 4 shows the biological neuron. Here, the dendrites serve as an
input to the biological neuron. On the other hand, the axons serve as
an output to the biological neuron. These networks of neurons are linked
together as shown in Figure 5 where the dendrites are connected to axons.
The flow of electric pulses 1in the brain allows the neurons to

communicate. This is thought to be the bases of memories and decisions.
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Figure 4 - Biological Neuron (3)
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Figure 5 - Biological Neural Network (3)

The artificial neuron shown in Figure 6 is very similar to the biological
neuron. Here, there are multiple input ports to the artificial neuron
similar to the dendrites. In addition, there are output ports from the
artificial neuron similar to the axons. These networks of artificial
neurons are linked together as shown in Figure 7 where the input and
output ports are connected to form the Artificial Neuronal Network (ANN)
or Neural Network (NN). The flow of logic through the neural network is

how decision 1s made.
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Figure 6 - Artificial Neuron (3)
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Figure 7 - Artificial Neural Network (3)
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The artificial neuron operational concept is shown in Figure 8. Here,
each individual input is weighted then summed with all the inputs. The
sum of the weighted inputs is put through an input-output function. The
most common function is the sigmoid function. That is because it produces
a normalized output for the sum of the inputs. These normalized outputs

are then inputted into the next set of artificial neurons.

Weighted Unit
Input Input
|| . || Total
Weight weighted
input Output

AN

Input—

[  oufput |
function

Figure 8 — Artificial Neuron Operational Concept (3)
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Despite the similarity, the artificial neural network is much simpler
than its biological counterpart. Figure 9 shows the evolution of the
artificial network. Here, it can be seen that the biological network is
simplified into computational neuroscience. These early models were
computational heavy. Hence, they were simplified in order to form the

modern artificial neural networks.

Figure 9 - Biological to Artificial Network (4)

The artificial neural network can be organized as a set of layers. The
first layer is known as the input layer which is denoted with I. The
input layer consists of a set of neurons that take in the input to the
network. The length of the input layer is identical to the number of
inputs. The second set of layers are the hidden layers which is denoted
by H. These set of layers can have variable length and width and serve
as the main computational logic for the network. The last layer is the
output layer which is denoted by 0. These layers serve as the last
adjustment Dbefore the result of the neural network computation is
exported. Moreover, the length of the layer is identical to the number

of outputs.

Figure 10 - Neural Network Layers (3)
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2.1.2. Training

There are vast amounts of training method for neural networks. Depending
on the type of the neural network design, the best training method
differs. Popular training methods such as Bayesian Regularization and
Scaled Conjugate Gradient all have their strengths and weaknesses.
However, since this thesis wuses a traditional feed forward neural
network, the most effective training function used for this type of

networks is the Levenberg-Marquardt (LM) training method (5).

The 1M algorithm is an iterative method for training neural network that
is depended on back propagation technique. This means that the
differential error of the neural network prediction is compared to the
supervised results. This enables the iterative method to adjust the

neuron weights and thereby train the neural network (5).

The LM algorithm is an improvement on the Gauss-Newton algorithm that
is shown in Equation 1. Here, W;4; is the updated weight after each
iteration. In addition, the W; is the current weight of the network. The
current weight is subtracted from the correcting factor. Moreover, the
Jacobian matrix J consists of all the first derivative weights and bias
errors. Additionally, the vector of network error is represented by e

(5) .

Equation 1
(3)

Wigr = W; — [J"(x)J ()] T () - e

The LM algorithm shown in Equation 2 adds a correction term to improve
the training performance. Here, the u; term which can be updated with

each iteration makes the correcting factor invertible (5).

Equation 2
(3)

Wis1 =W, — [J5(2)J(x) + I T (2) - e
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2.1.3. Genetic Algorithm

The genetic algorithm (GA) 1s a Dbiological search algorithm. The
algorithm is modeled based on the natural selection. This means that the
biological search algorithm chooses the fittest of the solutions and
grows it into the next generation and eliminates the unfit solutions.
In addition, the genetic algorithm also cross breads solutions and

randomizes it in order to search for a more optimal solution (6).

Figure 11 show an example of a two-dimensional solution space. Here,
there are a couple of maxima and minima. Assuming that the solution space
represents the errors of the design, the task becomes a minimization
problem. The goal of the genetic algorithm is to search for all the
minima. Hence, by mimicking biological evolution, the genetic algorithm
eliminates solutions that are not minima. This is achieved by evaluating
the solution using fitness function. In addition, it is important to
note that the genetic algorithm does not have a unique solution because

it can converge into different local minimum.

Peaks

Figure 11 - Peak Graph (7)
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2.1.3.1. Fitness Function

The fitness function is used as an evaluation criterion for the genetic
algorithm. The goal of the fitness function is to provide a quantitative
measurement of the genetic algorithm solution performance. It 1is
important to note that output of the fitness function results is a single
value. Hence, it has to be carefully designed to properly evaluate the
genetic algorithm with a single value output. This also means that a
weight W, should be assigned to different evaluation criteria that sums

up the fitness function as shown in Equation 3.

Fitness = WjCriterion, + W,Criterion, + ---+ W, Criterion, Equation 3

One example of an evaluation criteria is the Mean Square Error (MSE)
shown in Equation 4. Here, the MSE takes the input from two sources, the
desire and response for instance. Then, it outputs a quantitative
numerical value that indicates the closeness the two sources are from
each other. This performs very well when comparing the actual

performances of a missile system with the desired performances.

_INy vy
MSE = — % (Vi - ¥)

i=1

Equation 4
(8)

2.1.3.2. Stop Criteria

It is important to identify and choose the correct stop criteria for
genetic algorithm. That is because the genetic algorithm can converge
to a local minimum. It can also diverge to infinity. Moreover, it can
also get stuck in a loop that has very minimal or no improvement from a

generation to another.

The stop criteria can be as a form of time limit for the biological
search. In addition, it can be the average change of solution between
generations. Moreover, the search algorithm should also be limited within
a certain search range. These criteria can be set together or alone in

order to achieve maximum optimization.
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2.1.4.NeuroEvolution of Augmenting Topologies

The NeuroEvolution of Augmenting Topologies (NEAT) is a technique that
utilizes the concept of genetic algorithm and reinforcement learning to
train the neural network. The weight of the neural network is varied
with the genetic algorithm. Here, every generation randomizes some
weights of the neural network while inheriting some others from the
previous generation. In addition, the neural network acts as an agent
that is connected live to the missile environment. This means that the
neural network algorithm in the guidance computer interacts with the
missile environment in order to achieve the desired performances. These
performances are evaluated using fitness function in order to identify
the fittest and unfit solutions. Therefore, growing the neural network
to perform the desired functionality. This process can be seen in Figure

12 (9).

Parentl Parent2

1 2 3 4 5 8 1 2 3 4 5 6 7 9 10
1-=4 | 2—=>4 | 3—>4 | 2->5 | 5—=>4| 1->5 1-=4 | 24 | 3—>4| 2—>5 | 5=4 | 56| 6—>4| 3—=>5| 1-=6
DI 1 DIS

disjoint

1 | 2 |3 4 5 8
Parentl | | og |24 | 354 | 255 | 54 1->5
DISAR|
1| 2 3|4 5 | 6 | 7 9 10
Parent2| | 1554 354 25 [5=4 | 56| 624 3>5 | 16
prsas prsw

disjointdisjoin EXCESSEXCEsS

1 2 3|4 5 6 7 8 9 10
1->4 [ 2->4 | 3—>4 | 2-—>5 | 524 | 526 | 6->4 | 1->5| 3—=>5| 1->6
[pisa DISAB

Offspring

Figure 12 - Neural Network Evolution Concept (9)
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2.1.5.Challenges

The neural network generalization problem can present an 1issue in
designing a neural network solution. That is because neural networks
perform very well for repetitive patterns. However, since the missile
is a dynamic system, it can be a challenge. Moreover, not every
application can be trained using neural network. The challenge is to
find a way to train the neural network that will successfully perform
adequately for all situations. In addition, the selection of inputs and
outputs for the training is challenging. That is because there are no
agreed upon rules for choosing the inputs and the outputs for the neural
network. Consequently, the selection of the incorrect inputs and outputs
can result in very different neural network performance.

Since there are several neural network designs, choosing the optimal
neural network design is a challenge. That is because the design of the
neural network affects the performance greatly. For instance, a
feedforward network might be simpler but prone to errors. However, a
cascade forward network reduces the error but adds complexity to the
system. The complexity of the network design also extends to the number
of layers of the network. Once again, the lower network size might not
be sufficient to produce the optimal result while high network size might
make the network too generalized.

Additionally, since the neural network field is rather modern, there
aren’t many platforms that supports it. And some that support it have
limited functions or require deep knowledge of the field. For instance,
MATLAB and Simulink support neural network design. However, the support
is limited. This means that in order to have full control of the neural
network, deep knowledge is required.

Moreover, the training of neural networks requires a lot of computation
power. This means that it will require a lot of time to design any
network, let along optimizing it. In addition, high computation power
is not readily available. This means that every training needs to be
understood properly. Moreover, it also means that the results should be

predicted before the initiation of the training to optimize time.
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3. Mathematical Modeling

3.1.Missile Environment

Since the missile is flying on Earth, its environment needs to be
modeled. This is achieved by using the gravitational model as well as
the atmospheric model. In addition, the missile needs to be seen from
different perspective. Hence, coordinates frames allow for such point
of wview. Moreover, Transformation matrices allow for the transition
between different coordinate frames. Furthermore, quaternions allow for
a more efficient way to calculate the transition between the coordinate

frames.

3.1.1. Gravitational Model

Earth’s gravity is not consistent throughout the planet. Hence, a
mathematical model was developed to model these changes. The estimation
of the changes in gravity ranges from basic to more complex models. The
basic models enable easier computations while the more complex ones are

more accurate.

3.1.1.1. Flat Earth Model

The flat earth model assumes that Earth is not rotating and that the
gravitational acceleration g is constant. This is the simplest model and
it allows for a quick estimation of the missile’s trajectory. This model
is important for short range missiles where the gravitational
acceleration and Earth’s rotation has minimal effects on the trajectory.
The gravitational acceleration can be calculated using Newton’s law of

gravity as shown in Equation 5.

M
g=0G3
Equation 5

(10)

where Gravitational Constant (G) = 6.67 x 10711Nm?kg™2
M mass of EARTH 6 x 10%*kg

T to earth surface distance = 6.371x10°m
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3.1.1.2. Spherical Earth Model

The spherical earth model also assumes that Earth’s gravity is constant.
However, unlike the flat earth model, the spherical earth model considers
the rotation of Earth as seen in Figure 13. In addition, the effect of
Earth’s curvature is also modeled. This model is important for medium
range missiles where the rotation of Earth has an effect on the missile’s

trajectory. However, the gravitational acceleration effects are minimal.

)"Pmna
/

Nerth Pole

Figure 13 - Spherical Earth Model (11)

3.1.1.3. Elliptical Earth Model

The most popular earth model is the elliptical earth model. That 1is
because it considers the changes in gravitational acceleration as well
as the rotation of Earth. Although Earth 1is not elliptical, the
estimation obtained from the elliptical model is accurate enough. This
model is important for long range missiles where the rotation of Earth
and gravitational acceleration have an effect on its trajectory. One of

the most popular elliptical models is the WGS84 as shown in Figure 14.
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Figure 14 - Elliptical Earth Model (12)

The WGS84 model defines the ellipsoid using the following characteristic

equations.

Equatorial Radius a = 6378137m

1
Reciprocal Flattening]—c = 298.25

Flatness f = 0.00335281

Semiminor Axis b = a(1 — f) = 6356752.314m

Eccentricitye = /f(2— f) = 0.08181919

rad
Angular Rate = w;, = 7.29x 10_5T

. , a(l—e?)
Meridian Radius Ry (¢p) = 3 Equation 6 -
(1 —e?sin?(¢$))2
WGS84
Normal Radius Ry (¢) = I (12)
(1 —e?sin?(¢))2
0 g
Gravitational Accelerationg =| 0 |+ |Mg
y(¢) 8y

Where
1+ 0.0019 sin®(¢p)
V1 —0.00669 sin?(¢)

m
Ye = 9.7803267715— and y(¢) = Ve
s

S
Ng| Are The Local Pertubation of Gravity Vector

Oy
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3.1.2. Atmospheric Model

As altitude increases, the temperature, pressure, and density of air
changes. There 1is no universal standard to model the changes of the
atmosphere. However, the most popular standards are the International
Standard Atmosphere (ISA) and the Committee on Extension to the Standard
Atmosphere (COESA). This thesis will use the COESA standard which is
shown in Table 1. The atmospheric model is important because the air
pressure and density significantly affects the performance of the

missile. Hence, the accuracy of the model is essential.

Height  Temperature Pressure Height  Temperature Pressure

(km) (K) (mb) (km) (K) (mb)
0.0 288.2 1013.2 11.0 216.8 227.0
1.0 281.7 898.8 12.0 210.0 194.0
2.0 275.2 795.0 14.0 216.6 141.7
3.0 268.7 701.2 16.0 216.6 103.5
4.0 262.2 616.6 18.0 216.6 75.65
5.0 255.7 540.5 20.0 216.0 55.29
6.0 249.2 472.2 25.0 221.6 25.49
7.0 242.6 411.0 30.0 226.5 11.97
8.0 236.2 356.5 35.0 236.5 5.746
9.0 229.7 308.0 40.0 250.4 2.871
10.0 2233 265.0 50.0 270.6 0.798

Table 1 - COESA Atmospheric Model (13)

3.1.3. Coordinate Frames

There are several types of coordinate frames each with a unique
perspective design for a particular usage. There is no limit to number
of coordinate frames that could be defined. Nonetheless, this thesis

will discuss the most commonly used frames in the missile applications.

3.1.3.1. Body Fixed Frame

The body frame is located at the center of gravity (CG) of the missile
as seen on Figure 15. This frame is used to see from the missile’s
perspective. It 1is useful because aerodynamic and thrust forces and
moments act along the frame’s axis. Therefore, the forces and moments

are more intuitive.
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Figure 15 - Body Fixed Frame (14)

3.1.3.2. Sensor Frame

Modern missiles depend on the Inertial Measure Unit (IMU), shown in
Figure 16, to estimate its orientation and position. Since the IMU is
not aligned with the CG of the missile but is mounted on it, a unique
frame is defined. This frame enables the navigation algorithm to
compensate the difference between the sensor placement and the body

frame.

gy\./

Figure 16 - Strapped Down IMU (15)

3.1.3.3. Navigation or North East Down (NED) Frame

Figure 17 shows the navigation frame placed on Earth where one axis is
pointed directly north, one east, and one down. This aligns the
navigation frame with the planet. The navigation frame is centered at
the launching point of the missile. This is so that the missile always
fires at initially zero coordinates. Hence, this allows for the distance

travelled and the deviation to be more intuitive.
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Figure 17 - Navigation Frame (12)

3.1.3.4. Wander Frame

The wander frame 1is identical to the navigation frame with one key
difference. Since the navigation frame always points towards north and
east, unless the missile is fired directly north or east, the distance
travelled will have an azimuth angle component. In order to remove the
effect of the angle, the wander frame is created. As seen in Figure 18,
the wander frame is tilted away from the navigation frame, this means
that as long as the missile is travelled forward the Y component will
increase and as long as there is a right deviation, the X component will
increase. It is important to note that the X and Y conventions here are

for the navigation frame with East North Up (ENU) convention.

Yy iz;hf
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€
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Figure 18 - Wander Frame (16)

21 | Page



3.1.3.5. Earth Centered Earth Fixed (ECEF) Frame

The ECEF frame is the frame that represents Earth without rotation. As
seen in Figure 19, the ECEF frame is center at the planet’s core with a
plane on the equator and another on the prime meridian. The frame is
fixed to the planet, and hence, moves with it. This means that it cannot
see the Earth’s rotation. This frame is important because it allows the

missile to be absolutely localized within the planet.
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Figure 19 - ECEF Frame (17)

Equator

3.1.3.6. Earth Centered Inertial (ECI) Frame

The ECI frame is also centered at the core of the planet. However, unlike
the ECEF frame, one of the ECI planes are on the Egquinox. This means
that the frame remains stationary while Earth rotates which allows it
to see Earth’s rotation. This frame is especially important for long

distance flights where Earth’s rotation affects the flight trajectory.

zl

Figure 20 - ECI Frame (16)
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3.1.3.7. Geodetic Frame

Another frame that has its center on Earth’s core is the geodetic frame.
Similar to the ECEF frame, the planes of the geodetic frame are on the
meridian and the equator. However, the geodetic frame uses a polar system
to represent the coordinates. This allows for easier computation. In
addition, global positioning systems use the geodetic frame which makes

it very essential.
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about z
-
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Ellipse f X

Figure 21 - Geodetic Frame (17)
3.1.4. Transformation Matrix

The transformation matrix allows the transition between the coordinate
frames. This is important because it allows for the missile’s forces and

moments to be seen from a different perspective.
3.1.4.1. Body to Navigation Frame

The transformation matrix from the body frame to navigation frame is
shown in Equation 7. Since there are three rotations, the transformation
matrix is broken down into its components of roll, pitch, and yaw. Each
transformation matrix component can be multiplied with forces or moments
in order to change their perspective. It is important to note that the
order of multiplication matters. Equation 7 shows the yaw-pitch-roll
order. In addition, it is essential to keep in mind the ranges specified
in Equation 7. That is because the pitch angle 6 can align the roll and

yaw axis which causes singularity 1in the XYZ or ZYX Euler angle

: 3
notations. This could happen when 6 is %rad or 7;rad.
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1 0 0
Roll Tranformation Matrix Troy = [0 cos¢ sin qb]
0 —sin¢g cos¢
cosf 0 -—sinf
Pitch Tranformation Matrix Tpizen, = | 0 1 0
sinf 0 «cos¥f
cosyp siny O
Yaw Tranformation Matrix Ty, = |—siny cos ¢ 0]
0 0 1

Equation 7

Body to Navigation Transformation Matrix Tavigation

Body (14)
Navigation __ —
Tpoay = Trou * Tritch * Tyaw =
cos 8 cosr cos f sin ¥r —sinf
sin¢ sin# cos 1y —cos ¢ sin ¥ sin¢sinf sin ¥ +cos¢ cos Y sin ¢ cosH
cos¢ sin# cos 1y +sing sin Y cos ¢ sinf sin i —sin¢ cos Y cos ¢ cosd
—nT<¢p<=m or 0<¢<2m,
—T <y <,
—m/f2<8<m/2 or O0<y <2m
3.1.4.2. ECEF To Navigation Frame
Equation 8 shows the transformation matrix from ECEF to Navigation frame.
There are two transitions between the two frames. The latitude

transformation matrix Ty and the longitude transformation matrix T, are

multiplied in longitude-latitude order. The transformation is
illustrated on Figure 22.
cosA sindA 0
T)y=|—-sind cosiA O
0 0 1
+T[ 0 +T[
[COS(d) 2 Sln((,b 2)] —sin¢g 0 cos¢ Fquation 8
T¢=| 0 1 0 |= 0o 1 0
T T — —gi 12
| —sin(¢ +E 0 cos(¢ +E)J cos¢ 0 —sing )
o —sin¢pcosA —singpsind cos¢
TéVCaE’;,lgatwn =Te*x Ty = [ —sinl cos A 0 ]
—cos¢pcosA —cos¢psind —sing
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Figure 22 - Transformation Matrix ECEF to Navigation (12)

3.1.4.3. Geodetic to ECEF Frame

The transformation from geodetic to ECEF Frame can be completed with a
system of equations shown 1in Equation 9. Here, the WGS84 model’s

parameters are used to transform the coordinates.

x = (Ry + h)cos ¢cos 4
y = (Ry + h)cos ¢sin A
z = (Ry(1—e?)+ h)sin ¢

Equation 9
(12)

3.1.4.4. Properties of Transformation Matrix

A unique property of the transformation matrix is the fact that it is
orthogonal. This means that the determinant of the matrix is one. In
addition, it means that the transpose of the matrix is also its inverse.

This allows for simplified mathematical operations.

3.1.4.5. Puasson Equation

Earth’s rotation has an effect on the derivative of the transformation
matrix. Hence, the effect is compensated using Puasson’s equation shown
in Equation 10. R; is an arbitrary matrix in an inertial frame, or a frame
where the point of origin is moving. On the other hand, R, is an arbitrary
matrix in a non-inertial frame, or a frame that its point of origin is

not moving. Here, @, 1s the skew matrix of the rotational rates.
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Equation 10

0 —W; Wy (16)
Oy = | w, 0 — Wy
—Wy Wy 0

3.1.5. Quaternions Matrix

An alternative way to calculate the transition between coordinates frame
is by using quaternions. The challenge with transformation matrix is
that it requires the computation of trigonometry functions, which can
be computationally heavy. Hence, a four-dimensional complex number

method is used as shown in Equation 11.

Equation 11

=qo+ qii+ g.,j+ g3k
Q=qo+ ¢ 4]+ q3 (16)

3.1.5.1. Euler Angles to Quaternions
In order to use quaternions, Euler Angles are used to initialize
quaternions. This can be accomplished using Equation 12.Here, u is the

intensity of rotation, a, f, and Yy are the rotation angles respectively.

qo = COS—

.M
g, = sin—-cosa
2
Equation 12
(1o6)

q, = sin%cos[;’

.M
qs = sin- cosy
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3.1.5.2. Quaternions to Euler Angles

Quaternion can also be converted back into Euler Angles. This is done

using Equation 13. ¢, 8,and Y are roll, pitch, yaw, angles respectively.

sinf = — 2(q2q0 + 9193)

Equation 13

¢ = arctan2[2(q,q3 — 41G0), 1 — 2(q% + 43)] (1)

Y = arctan2[2(q1q; — 9390), 1 — 2(q5 + 43)]

3.1.5.3. Transformation Matrix to Quaternions

An alternative way of initializing quaternions is by using the already
established transformation matrix T. Here, the elements of the
transformation matrix are used to calculate the initial quaternions as

shown in Equation 14.

T[3,2] — T[2,3]

4q,
T[1,3] = T[3,1]

Q — 4q0
T[2,1] — T[1,2] (17)

4qo
1
EJ1+T[1,1]+T[2,2]+T[3,3]

Equation 14

3.1.5.4. Quaternions to Transformation Matrix

Similarly, quaternions can be converted into transformation matrix. This

can be accomplished using Equation 15.

a3 +ai —a3—a3 200192~ q3q)  2(4193 + 4oq2) Equation 15
T=| 2192+ 9093) 96—9i +q5— a5 2(q203 — 9oq1)

(16)
2(q193 — 9092) 20293 — 9091) 96— 91 — 45+ 43
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3.1.5.5. Rotation Rates to Quaternion Derivative

Rotational rates p, g, and r can be used to calculate the next quaternion
step. However, it is calculated with a differential order. The quaternion

can be obtained by integration of the derivative of quaternion.

. gg ;53-—33 p Equation 16
Q= —q2 41 qo q (17)
-1 —q —ql7"

3.1.5.6. Quaternions Normalization

In order to improve computational performance, quaternions can be
normalized using Equation 17. This aids the computation from quaternions

to transformation matrix.

o+ q1i+ q2j + g3k Equation 17
Vai+ai+43+43 (18)

NQ@Q) =

3.1.5.7. Quaternions Puasson Equation

The Puasson’s equation can also be represented using quaternion. This
allows for the computation to be done in the quaternion domain using

Equation 18.

Equation 18
(16)

3.1.5.8. Quaternions Coordinate Transformation

Coordinate transformation can be done with quaternions @ and its
conjugate Q*. Equation 19 shows the transformation from an arbitrary

inertial frame Rpertiat £O @ non-inertial frame Ryonmertial -

Equation 19

Ryon mertiat = QRmertia Q° (16)
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3.2.Missile Kinematics

Missile Kinematics is the description of how forces and moments impact
the missile’s body. Since the missile is considered as a rigid body,
traditional kinematics laws can be used to describe the equations of

motion.

3.2.1. Forces and Moments

Typically, there are six Degrees of Freedom (6DOF) in a missile. There
are three translational forces and three rotational moments. The

corresponding equations in vector form are shown in Equation 20.

Translational Force Z F =ma
Equation 20

(14)

d
Rotational Moment Z T=% (rxmV)

Figure 23 illustrates the 6DOF of the missile. Here, u, v, and w represent
the translational velocities while P, Q, and R represents the rotational

velocity.

Z

Figure 23 - 6 Degrees of freedom (14)
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The force F can be broken down into three components F, F,, and F,. Hence,

the rewritten form is shown in Equation 21.

_ d(mu) E - d(mv)

_d(mw)
x dt 'Y dt -

dt

E

Equation 21
(14)

In addition, the moment T can be broken down into three components L, M,

and N. Hence, the rewritten form is shown in Equation 22.

moment of momentum.

Here, His the

Equation 22
(14)

3.2.2. Inertial Effects on Forces

Since the missile body is on an inertial frame,

the force formula is shown in Equation 23.

the Puasson’s form of

dVy

P=m 5]

+ m(w X Vy),

where Vy is missile’s velocity

w 1s rotational rate

Equation 23
(14)

The cross multiplication of the missile’s velocity and the rotational

rates results in Equation 24.

w X Vi = (wQ —vR)i+ (uR — wp)j + (vP —uQ)k

Equation 24
(14)
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This means that summation form of Equation 23 can be broken down into

components as shown in Equation 25.

Zszm(u+w—vR)

ZFyzm(f;+uR—wP)

ZIfzzm(W+vP—uQ)

Equation 25
(14)

3.2.3. Inertial Effects on Moments

In addition, there are inertial effects on the missile’s moments. That

is because the velocity components of Equation 20 for rotational moments

is affected by inertial. Hence, the Puasson form of the equation needs

to be considered as shown in Equation 26.

dr dr
3 =15 twxr
dt body dt None Inetial
) dr
Since [—] =0
dt None Inetial
V=uwxXr

Equation 26
(14)

Considering the effect of the inertial on the wvelocity, the updated

moment of momentum equation is shown in Equation 27.

H=r xmV=mr X(w Xr)

Equation 27
(14)

The cross multiplication of the moment distance and the rotational rates

results in Equation 28.

r X (w X1)=[(y?+2z3)P —xyQ — xZR]i + [(z? + x?)Q — yzR — xyP];
+ [(x2 + y?)R — xzP — yzQ]k

Equation 28
(14)
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It is important to note that Equation 22 holds true if the object of the
rotation is a particle. However, since missile is an entire body, the

moment of momentum equations is shown in Equation 29.

H=Zr me=Zmr X (w X71)
H= (Zmrz)w—Zmr(r-w)

H=Y8H =Y xV)dm+ X[r X (w X r)]dm Equation 29
Since Y.(r xV)dm =0 (14)

SH = Z[r x (@ X r)]dm

H= fr X (w Xr)dm

By using Equation 29, the components of the moment of momentum can be

written as in Equation 30.

H, =Pf(y2 +zz)dm—fozdm=Plxx—RIxz

5 5 Equation 30
H, = Qf(x + z°)dm = QI,,,

(14)
H, =Rf(x2 +y2)dm—Pfxzdm= RIl,, — Pl,,
Hence, the derivative can be taken to result in Equation 31.
dH, dPI dRI
dt — dt ¥  dt ™"
dH, _ d—Q] Equation 31
dt  dt” (14)

dH, dR dp

=—], ——I
dt dt # dt %
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The Puasson form of the moment equation is presented in Equation 32.

Equation 32
(14)

Here, the result of the cross multiplication of the rotation rates and

moment of momentum is shown in Equation 33.

w x H=(QH, — RH,)i+ (RH, — PH,)j + (PH, — QH,)k

Equation 33
(14)

By substituting Equation 33 and Equation 31

in Equation 32, the

resultant final summation form of the moment equations components is

shown in Equation 34.

Z L =PI, — Rl +QR(I,— I,) — PQI,,

Z M = QI, + PR(I, — I,) + (P? — R®)I,,

z N =RI, — PL, + PQ(l, — L) + QRI,,

Equation 34
(14)

3.2.4. Translational Equations

of Motion

The acceleration of the missile can be calculated from the forces and

rotation rates as presented in Equation 35.
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du =R +

T v—Qw

dv _» — Equation 35
TR T, (14)

dw Qu—P +FZ

dt u v m

3.2.5. Rotational Equations of Motion

Although unintuitive, the derivative of Euler angles cannot be converted
directly into rotation rates. The proper way of converting derivative
of Euler angles to rotation rates, with the matrix form, is presented

in Equation 36.

p=2_ &

=% (E)sme

Q= (%) cos ¢ + (%) cos 0 sin ¢

Equation 36

(14)
R = (Ge)cos0cos - ()
=\ cos 0 cos ¢ T sin ¢
P 1 0 —sinf 1[¢
Q=10 cos¢ cos@sinqb] 0
R 0 —sing cos6cosl|y
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3.3.Propulsion Model

The missile propulsion system consists of two subsystems. The booster
and the sustainer. The purpose of the booster is to launch the missile
and give it the push it needs to get off the ground and reach a desired
state. The sustainer on the other hand is to maintain the velocity of
the missile in order to extend its range. Figure 24 presents a simplified
model of the turbojet engine. Here, it can be seen that turbojet engine
is made up of compressor, fuel injection, combustion section, turbine

section, and nozzle.

Fuel injection

----------------

section section section and nozzle

Compressor Combustion Turbine Aﬁerhurnﬂ
section

Figure 24 - Simplified Turbojet Engine (19)

This thesis will not discuss the turbojet engine modeling. However, the
modeling principles are similar. The focus of this thesis will be the
modeling of a rocket motor engine shown in Figure 25. The rocket motor

consists of a combustion chamber and nozzle.

Nozzle throat i
insert ozzle exit cone
Aft skirt =

Insulation

Propellant grain//
Forward skirt =

—

\\\
. \

@kﬁ : o - - ™ Slots in grain

Thrust © == p— . Motor case body

= — 4,’;‘/"
termination " ignixer = Cylinder perforation

opening device ==

Figure 25 - Simplified Rocket Motor (19)
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3.3.1. Thrust Profile

Typically, the missile propulsion is modeled using the thrust profile.
Figure 26 shows the thrust profile of the booster used in this paper.
The thrust profile is a plot of the magnitude of thrust force FT in (dN)

with time.

x10*

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (s)

Figure 26 - Booster Thrust Profile

By using the thrust profile, the total impulse [; can be calculated as
shown in Equation 37. The total impulse is the amount of thrust energy

in the booster.

Equation 37

t
I; =f FTdt ~FTt
0 (19)

Another important parameter is the specific impulse I shown in Equation
38. The specific impulse 1is the measurement of the quality of the

propellant. Here m, and w, is the mass and weight of propellent

respectively.
I = I _ I
S ompg wy Equation 38
&::—f;—:.f; (19)
mpg Wp
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3.3.2. Thrust Forces, Moments, and Misalignment

Ideally, the booster acting point Xr should be aligned perfectly with
the missile’s center of gravity X . However, in reality it is virtually
impossible to align the two points. That is because X, is changing
throughout the flight as the propellent is being consumed. This in
essence caused unwanted forces and moments on the missile. Hence, it is
important to consider them in modeling the booster. Figure 27 show the
representation of thrust misalignment. Here, €, and €, are the

misalignment angles.

Figure 27 - Thrust Misalignment (20)
By analyzing Figure 27, Equation 39 can be developed. Here, the thrust
force 1is broken down into smaller thrust components while taking

misalignment effects into consideration.

T — 5T [1 — cin2 ¢ —qin2
Fx—F\/l sin® €,, —sin“ €,

FyT = FTsine, Equation 39
(20)

T — _ T
E; = —F sine,,

FT =1mlg, — Aepg
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In addition to force misalignment effects, there are moment effects due
to misalignments My. Similar to the force case, the thrust moment can
be broken down into components that takes into consideration the

misalignment effects as shown in Equation 40.

MT =0

Equation 40
M; = FZT(XT - Xcg)

(20)

M; = —FyT(XT —Xeg)

3.4.Aerodynamic Model

The missile aerodynamics can be modeled by observing the behavior of the
missile due to the changes in conditions. For instance, the pitch moment
of the missile can be observed during the change of angle of attack or
velocity. The observed behavior can be written as an equation with a set
of aerodynamic derivatives. The observed behavior can be aerodynamics
forces or moments. It is important to note that the aerodynamics forces

and moments act on the center of pressure (CP) as shown in Figure 28.
+M, - _
T

-
Fq-ot ‘B(__--\q:f s
e T B—
=
=

- - M’JH’
R;;f:’;ff”%\

Center of
\ pressure

Center of
gravity

Figure 28 - Missile Center of Pressure (14)

3.4.1. Aerodynamics Derivatives

The equation made from aerodynamic derivatives can be linear or non-
linear. The linear equations are good for initial approximation. However,
since accuracy 1is a priority, non-linear equations are preferred. Hence,
Equation 41 shows the aerodynamics equations and derivatives used to
model the missile in this thesis. It is important to note that the

equations provided are of general form in order to be comprehensive.
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a’=a’+ B

Cro =Choo +C, 2 0a2

Coo=Copo +C, - Oa2

Cro =Cyoo +CNa20a2

Cyo=Cyo +C, ., @

Co=Ci+C, .0

AC, =|AC,, +AC_, (o’ +f*)|a+[AC, +AC . (o* + §) 0,
ACy =| ACy, +AC, (o’ + ) |a+[ ACy, +AC, . (o + B7) |,

Ca=Cnao+C,,2 (85 +63)+Cns 67 +C, o (a® + %)+ Cass (S — BSy)

CN = |:CNa +CNa3 (aZ +ﬂ2 )Ja +|:CN5 +CNa2§a2 +CYa25ﬂ2:|6m -
~(Cy, 25 =C, 2, ) B+ ACy +Crg

Cy = _[CNa +C,.3 (az +ﬂ2)]ﬂ+ [CNé + CNa2552 + Cva250‘2}5n _
_(CNa25 _Cya25)aﬂ5m +Cyo

Co =[Crs +C, a5, (% + 57) 6+ Cras (B + )+ Cio + Ci

C, = _[Cma +Cma3 (az +ﬂ2 )Jﬁ+[cm§ +Cma25ﬂ2 +Cna25a2:|5“ -
_(Cma25 _Cna25)aﬁ5m +Cn0 + Cnd

C,= [cma +C_4(a?+ ﬁz)]a +[Cm5 +C o’ +cna25ﬂ2}5m
—~(C, 25 —~Co,25 ) @B +ACk +Crnp +Cprg

Equation 41
(21)

39 | Page




3.4.2. Aerodynamics Forces
Once the equations made from aerodynamic derivatives result in
aerodynamic force coefficients. These coefficients are used to calculate

the aerodynamic forces using Equation 42.

1
Fxy = —Faxia1 = EPVZSCA

Equation 42

1
Fy = Fsige = EPVZSCY (14)

1
Fz = —Fnormal = EPVZSCN

3.4.3. Aerodynamics Moments
Similar to the aerodynamic force, the aerodynamic derivatives equations
can result in aerodynamic moments coefficients. These coefficients are

used to calculate aerodynamic moment using Equation 43.

1
L= 5pV?scd

1 Equation 43

1 2
N = pV2SCyd

3.4.4. Aerodynamics Transfer Functions

Aerodynamic transfer functions allow for the missile behavior to be
simplified. This simplification allows for quick analysis of the missile.
In addition, the linear time invariant model serves as a reference for
the missile control loop. This allows for the missile autopilot to be

design and tested before implementing it with the complete dynamics.
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3.4.4.1. Dynamic Variables

In order to define the aerodynamic transfer function, a set of dynamic
variables, shown in Equation 44, should be defined. These variables are

used to simplify the complex representation of the transfer function.

, __-—QS.CNn
T m
QStL 1 l Equation 44
n%/:'__'v”(cma4'V'Cmazw)
Jy (22)
QSl « l c )
m, = —- ——CpoZ
n ]y mn U2 ma<n

3.4.4.2. Control Variables

There are two important control variables for transfer function which

as natural frequency w% and damping factor {, and shown in Equation 45.

2 — __ —
wy = —(myU — z,mg) Equation 45
m, + z
(= -Matz (22)
2w,

3.4.4.3. Roll Transfer Function

The roll factor of reinforcement K¢ and time constant T¢ in Equation 46

are used to simplify the roll transfer function.

l

L, Equation 46

1 (22)
Qf——Z—

p

Hence, with all the parameters at hand. The roll transfer function can
be represented as shown in Equation 47.

p(s) Ky
Roll Rate TF: @ = —T¢S 1
¢ 1p6) Ky
&(s) s &(s) Tps+1

Equation 47
(22)

Roll Angle TF:
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3.4.4.4., Pitch or Yaw Transfer Function

The pitch or yaw factor of reinforcement K; and time constant T, in

Equation 48 are used to simplify the pitch or yaw transfer function.

_ Zymy, — Z,My

q (‘)Tzl
m
T, = U

ZpMy, — Z, My

Equation 48
(22)

Similarly, with the required parameters, the pitch or vyaw transfer

function can be represented in Equation 49.

q(s)  wiKe(Tys+ 1)
n(s) 2+ 20,w,s + w2

Pitch or Yaw Rate TF:

0(s) 1q(s wiK, (Tys+ 1
Pitch or Yaw Angle TF: () _1as) _ nKq (Tq )

n(s)  sn()  s(sZ + 2{pwys + wd)

Equation 49
(22)

3.4.4.5. Normal Acceleration Transfer Function

Although contrary to intuition, the pitch or yaw autopilot in this thesis

regulates the normal acceleration for lateral control. Hence, the normal

acceleration transfer function 1is required. Equation

50 shows the

reinforcement factor and time constant for the angle of attack.

=l_m,,U—qu,7

a 2
U wy

_ n
nl_1n U—-—m,z
n aZn

Equation 50
(22)

In addition, Equation 51 shows the time constant and damping ratio for

the normal acceleration.

Equation 51
(22)
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Hence, with all the available parameters, the normal force transfer

function can be represented as shown in Equation 52.

a,(s)  UwiK,(T}s? +2¢,Tys + 1)
n(s) $2 4+ 20 wps + w3 Equation 52
n,(s) UwiK,(T}s* +2¢,T,s+1) (22)

Normal Load TF: =— >
nis) g s2 4+ 20, w,S + wi

Normal Acceleration TF:

3.5.Actuator Model

In order to control the missile’s canards, there has to be an actuating
system. Therefore, it is necessary to model the actuating system. To
reduce the complexity of the system, the actuator system is modeled using
a first order transfer function shown in Equation 53. Here, T, is the

actuator time constant.

1 Equation 53
Tps+1 (23)

Since the missile has four canards, the deflection convention needs to
be agreed upon. Figure 29 shows the deflection convention in this thesis.
Here, four canards are deflected for roll and two canards for pitch or

yaw respectively. In addition, Equation 54 shows the mathematical formula

to calculate the total deflection of roll §,, pitch §;, and yaw 6, .

¢a =0°

Figure 29 - Canard Deflection Convention (24)
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61 +08, +63 +04,
p = 4
5 8, -6, Equation 54
a2 (24)
8, — &3
o, = >

4. Autopilot Design

4.1.Roll Autopilot

As implied by the name, the function of the roll autopilot is to stabilize
the roll angle of the missile. This 1is the most important missile
autopilot despite the fact that it is the simplest. That is because
without the stability of the roll angle, the pitch and yaw planes will
be off. Hence, the command received on those autopilots will be operating

at an incorrect orientation.

4.1.1.Roll Autopilot Loop

The roll autopilot used in this missile 1s a modified proportional-
derivative controller design. Figure 30 shows the autopilot design where
T, is the actuator time constant, G4 is the roll rate transfer function
from Equation 47. The proportional gain of the loop 1is K and the

derivative gain is Gg.

b ]

Figure 30 - Roll Autopilot (25)
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4.1.2.Roll Gain Calculation

The roll gains for the autopilot was tuned manually using Ziegler-Nichols
method. The method works by first setting all gains to zero except Kp.
Then, gradually increase K, until the response starts oscillating. This
value of K, is now set as K.. The oscillation period of the response is
Tc.. By using the rules provided in Table 2, the PD controller gains can
be calculated. It is important to note that since the PD controller rules
is not in the table, the PID rules is used to calculate the gains while

ignoring the integral gain.

Controller Type K, K; Ky
P 0.5K.
PI 0.4Kc 0.8Tc
PID 0.6K. 0.5Tc 0.125T.

Table 2 - Ziegler-Nichols Method Rules (26)

4.2.Pitch and Yaw Autopilot

The pitch and yaw autopilots are used to stabilize and control the
missile during its flight. The pitch and yaw autopilots are identical
because the missile in this thesis is cruciform. This means that the
pitch and yaw dynamics are identical. Since its easier to adjust the
acceleration to obtain the desired position, the normal acceleration

transfer function from Equation 52 is used.

4.2.1.Pitch or Yaw Autopilot Loop

The pitch or yaw autopilot loop is a modified version of a proportional-
integral-derivative controller. Figure 31 shows the autopilot loop
design. Here, G, 1is the transfer function of the derivative of the
flight path angle. In addition, Qh is the conversion from derivative of
the flight path angle to pitch rate transfer function as presented in
Equation 55. Lastly, in order to simplify the autopilot, a is set to

zero.
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e = _ wrKy
AT TS24 20,wpS + w2

q

Gy, Ga, (1 +T,5)

Equation 55
(23)

It is important to note that K= K,GyU, is the proportional gain,

KaGR

Uy is the velocity of the missile.

GR =

is the differential gain, and Gy is the integral gain. In addition,

Gzp | 1 1 | Pro 8 ® - —1 n Tp ] @z
i Cr K Gy, Tos+1 Cay 24
@ 4
K.Cr Tys+1
a‘s
+ -
Uy
&
Figure 31 - Pitch or Yaw Autopilot (23)

4.2.2.Pitch or Yaw Gain Calculation

The pitch or yaw autopilot can be evaluated analytically. By transforming

the autopilot loop and solving for the gain, the resultant gain equations

are presented in Equation 56.

1
=——(=—+2
Wo 1.75 3 + {nwn)

G :LE (ﬂ>2<215_ 2¢n &)_1
R™_k, T,\\w, ' T,wo Wo

Equation 56

" 1( . (wo)z 1> G (23)
= — — w — J— —_—
Kq 0ta wn R
Gy = —K Kq
N T 1 - K (Gr +K)
46 | Page




4.3.Neural Network Autopilot

The purpose of the neural network autopilot (NNA) is to stabilize and
control the missile during its flight. This is achieved by designing two
unique neural networks that mimic the behavior of the traditional missile
autopilot. One autopilot design is responsible for roll control and the
other is for lateral pitch or yaw control. It is important to note that
although the lateral design can be used for pitch or yaw control, the

trainings and implementations are done separately.

4.3.1.Roll Neural Network Autopilot Algorithm

The Roll Neural Network Autopilot (RNNA) algorithm is shown in Figure
32. Here, the roll angle ¢ is subtracted from the Roll Demand Rollpe, of
zero. The resultant can be denoted as A¢. Thereby, it creates the roll
angle error. In addition, the roll angle error as well as the roll rate

P are inputted into the RNNA where the roll command Rollcpg is calculated.

Ag
¥ Roll Neural Network

{ ¢ f \_/ Autopilot
[» ]

Figure 32 - Roll Neural Network Autopilot Algorithm
4.3.2.RNNA Design

The design of the RNNA is a traditional feedforward network shown in
Figure 33. The input neuron consists of roll angle error and roll rate.
The output neuron consists of the roll command. The number of hidden
layers has been varied during the training process where 10 layers
delivered the optimum result. The length of each hidden layers as well
as the connections between the layers, hence the weight and biases, are

also varied during the training to obtain the optimum result.
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10 Hidden Layer

Figure 33 - Roll Neural Network Autopilot Design
4.3.3.RNNA Training Environment

In order to train the RNNA using NEAT Training method, the missile
environment simulation must be prepared. Although traditional control
missile dynamics can be simplified with transfer functions, the
generalization nature of neural network can present a challenge. That
is because the performance of the RNNA is affected by the time variant
and non-linear missile dynamics. Hence, the full simulation should be
used. Nevertheless, in order to simplify the training, some simulation
parameters were fixed. The RNNA simulation is shown in Figure 34. Here,
the RNNA algorithm commands the Actuator Systems which consists of all
the four actuators. However, the pitch and yaw commands are set to zero.
In addition, the aerodynamics assumes that the center of mass, side slip
angle, velocity, and altitude are constant. Additionally, the missile
body assumes that the inertia and the mass is constant. Moreover, the
gravity is assumed to be zero as well. The simulation is set to run for
a maximum time, 10s in this case, and the roll demand is an initial roll
angle of 20degs and step function to 0deg at 1 second. The velocity is
set at 0.5 Mach. In addition, the training session is run for 48 hours.
This is to ensure that there is sufficient time for the optimal solution

to be found.

RNNA Actuator
Algorithm System

Aerodynamics Missile Body Environment

Figure 34 - Roll Neural Network Autopilot Simulation
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4.3.4. RNNA Training Genetic Algorithm Parameters

The GA fitness function Fitnessgyya shown in Equation 57 1is used to
evaluate the quality of RNNA. Fitnessgynya consists of the Mean Square Error
of the Roll Demand Rollp,, and Roll Response Rollg,s. This forces the
algorithm to match Rollge,s to Rollpg, in order to obtain minimum MSE. In
addition, the overshoot term minimizes the overshoot of the RNNA.
Moreover, there are two terms that are used to quickly ignore bad RNNA
results. The roll angle error term Angle, is zero except when the missile
roll angle is too high in the simulation during training. The value of
Angle, is 200 in this experiment. Additionally, the zero error term Zero,
is zero except when the output of the RNNA is not zero when all the
inputs are zero. The value of Zero, is 500 in this experiment. This is

to minimize the neural network static error when all inputs are zero.

Fitnessgyya = MSE(Rollpem, Rollg,s) + Overshoot? + Angle, + Zero, Equation 57

4.3.5. Lateral Neural Network Autopilot Algorithm

The Lateral Neural Network Autopilot (LNNA) algorithm is shown in Figure
35. Here, the design of the lateral acceleration Accpq: is subtracted from
the acceleration demand Accpey. The resultant can be denoted as AAcc.
Thereby, it creates the acceleration error. In addition, the acceleration

error, the lateral rate, and Mach number are inputted into the LNNA where

the acceleration command Lateralq,; is calculated.

AAcc

Accpem

Accar
v Lateral
Neural Network
Autopilot

Lateral
Rate

)

Mach »
Number

el

Figure 35 - Lateral Neural Network Autopilot Algorithm
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4.3.6. LNNA Design

The design of the ILNNA is a traditional feedforward network shown in
Figure 36. The input neurons consist of the acceleration error, the
lateral rate, and the Mach number. The output neuron consists of the
lateral acceleration command. The number of hidden layers has been varied
during the training process where 15 layers delivered the optimum result.
The length of each hidden layers as well as the connections between the
layers, hence the weight and biases, are also varied during the training
to obtain the optimum result.

15 Hidden Layer

Figure 36 - Lateral Neural Network Autopilot Design

4.3.7.LNNA Training Environment

In order to train the LNNA using NEAT Training method, the missile
environment simulation must be prepared. Similar to the RNNA, the full
simulation should be used. Nevertheless, in order to simplify the
training, some simulation parameters were fixed for either pitch or yaw
simulations. The LNNA simulation is shown in Figure 37. Although the
RNNA training runs the simulation once, the LNNA requires the simulation
to be run multiple times. That is Dbecause the Mach number of the
simulation is changed for each time it is run. This is to reduce the
generalization problem of neural networks. This loop is seen in Figure

37 where the Mach number is varied from 0.1 to 1.3 with a step of 0.2.
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Furthermore, the Actuator Systems consists of all the four actuators.
However, for the pitch case, the yaw and roll commands are set to zero.
In addition, for the yaw case, the pitch and roll commands are set to
zero. In addition, the aerodynamics assumes the center of mass and
altitude are constant. Unlike the RNNA, the side slip angle and velocity
vary. The side slip angle changes dynamically with the simulation. On
the other hand, the velocity is constant for each simulation run.
Additionally, the missile body assumes that the inertia and the mass are
constant. Moreover, the gravity is assumed to be zero as well. The
simulation is set to run for a maximum time, 10s in this case. The
initial pitch or vyaw acceleration is zero. However, the acceleration
demand slopes to -12 at 1 sec. Then, it slopes to 0 at 4sec. Lastly, it
slopes to 12 at 7 seconds. This behavior is to account for the missile
acceleration needs. Moreover, the training session is run for 4 days.
This is to ensure that there is sufficient time for the optimal solution

to be found.

True LNNA Actuator
Algorithm System

— Aerodynamics —* Missile Body — Environment

Figure 37 - Lateral Neural Network Autopilot Simulation

4.3.8. LNNA Training Genetic Algorithm Parameters

The GA fitness function Fitness;yys shown in Equation 58 is used to evaluate
the quality of LNNA. Fitness;yva consists of the summation of all the Mean
Square Error of the Lateral Demand Latp., and Lateral Response Lateralges
as well as the lateral angle error Angle,. The MSE forces the algorithm
to match Latg,s to Latpey, in order to obtain minimum MSE. On the other
hand, Angle, is used to quickly ignore bad LNNA results. The lateral
angle error term Angle, is zero except when the missile lateral angle is
too high in the simulation during training. The value of Angle, is 200
in this experiment. This sum reduces the generalization problem and it

allows for a global quantification of the performance of the LNNA.

Fitness;yna = Xi=o(MSE(Latpem,Latges) + Angle,): Equation 58
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5. Guidance Design

A guidance algorithm is needed to calculate the command given to the
autopilot to perform the required maneuver to reach the target. There
are many forms of guidance algorithm. Nevertheless, this thesis discusses

the trajectory guidance and proportional guidance.

5.1.Trajectory Guidance

The trajectory guidance is used for the missile to maintain a constant
trajectory parallel to the ground. Although the missile discussed in
this thesis does not have sustainer, trajectory guidance can still be
used for a short period. For instance, the missile can maintain a
constant altitude when 1t 1is launched from air switching guidance
algorithms. Figure 38 shows the missile or aircraft flying above the
desired trajectory. By setting a reference points and geometrical
relationship, the trajectory guidance algorithm can be derived as shown
in Equation 59. This equation is wvalid when the reference point is

perpendicular to the lateral acceleration ag,, -

aircraft-.__
a.
“"4'mf.f r i
desired path reference point
R
LIn
Figure 38 - Trajectory Guidance (27)
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V2 Equation 59
a = 2—sin
Scmd Ll n (27)

Therefore, 1in order to account for the situation where the missile is
not perpendicular to the references point as seen in Figure 39, a more

general equation should be developed.

desired path

reference point
Figure 39 - Trajectory Guidance for Line of Sight (27)

By using the relation between line of sight acceleration a,;9s and lateral
acceleration ag, Equation 60 can be developed. Here, the equation
accounts for the line of sight of the missile and the reference point

does not need to be perpendicular to the lateral acceleration.

1105 = AsCOST
VZ
Since ag = 2—sinn
Ly (27)

Equation 60

2
airos = 2 ‘Z—l sinncosn =2 (V cosn) (L—V1 sin r;)
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5.2.Proportional Navigation

The Proportional Navigation (PN) guidance algorithm is used to guide the
missile towards the target during the terminal stage. Here, the missile
uses the line of sight between itself and the target to calculate the
acceleration needed to reach the target. Figure 40 shows the missile,

target, and geometry properties relating the two entities.

A
2 .
_____ -:i_____..L"“‘--———--__ Tal‘gercg
GC
Missile (_:E_: ________________________
1
Figure 40 - Proportional Navigation (28)

The PN algorithm is shown in Equation 61. Here, the lateral acceleration
a, is calculated with the closing velocity V., the line of sign rate A,

and the navigation constant N’ that usually ranges between 3 and 5.

Equation 61

aczN’Vc/l.m (28)

Although as simple as it seems, the parameters of the PN algorithm are
not readily available. This means that the parameters need to be
estimated in order to calculate the required lateral acceleration. By
using the approximation in Equation 62, the missing parameters can be
calculated. It is important to keep in mind the effects resulted from

the approximation of the PN algorithm parameters.
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Rry1 = Rri — Run

Rrmz = Ry — Ry

R%M :‘/R%M14'R%M2

Vemi = Ve =V
Equation 62

(28)

Vemz = Vrz — Vi

_1Rrme

A =tan
Ry

A‘ _ [RTMlvTMZ - RTMZVTMl]
- 2
RTM

:‘—(RTM1V%M14‘RTM2V%M2)

c
RTM

5.3.Terminal Guidance Neural Network

The purpose of the Terminal Guidance Neural Network (TGNN) is to guide
the missile towards the target during the terminal phase of the flight.
This is achieved by designing a neural network that mimics and improves

the functionality of terminal guidance.

5.3.1. TGNN Algorithm

The TGNN algorithm is shown in Figure 41. Here, the line of sight rate
A1 is subtracted from the demand line of sight rate of zero. The resultant
can be denoted as AA. Thereby, it creates the line of sight rate error.

The error is fed into the TGNN where the acceleration command A, is
calculated. The acceleration command can be fed into the lateral
autopilot. It is important to note that the line of sight rate can be

either read by seeker or calculated using Equation 62 as in this case.

AA

0
;l + Terminal Guidance
Neural Network

Figure 41 - Terminal Guidance Neural Network Algorithm
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5.3.2. TGNN Design

The design of TGNN is a traditional feedforward network as shown in
Figure 42. The input neuron consists of the line of sight rate error and
the output neuron consists of the acceleration command. The output neuron
consists of the acceleration command. The number of hidden layers has
been varied during the training process where 10 layers delivered the
optimum result. The length of each hidden layers as well as the
connections between the layers, hence the weight and biases, are also

varied during the training to obtain the optimum result.

10 Hidden Layer

Figure 42 - Terminal Guidance Neural Network Design

5.3.3. TGNN Training Environment

In order to train the Terminal Guidance Neural Network using NEAT
Training method, the missile environment simulation must be prepared.
Figure 43 shows the simulation used to train the network. Here, the line
of sight rate error 1is fed into the neural network. Then, the
acceleration command is saturated with the missile lateral tolerance.

The acceleration command is used to calculate the missile dynamics.

A simplified missile dynamics model is used in the training. The purpose
of the simplification is to speed up the training process. A second order

Pitch or Yaw Rate transfer function shown in Equation 49 is used. The
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calculated pitch or yaw rate is used to calculate the angle of the
missile. In addition, a constant magnitude of velocity, 200m/s, is used
for simplification. The magnitude of velocity and missile angle are
used to calculate the components of velocity. The components of the
velocity are integrated to calculate the position. Both velocity and

position are used to calculate the line of sight rate error.

. Terminal Guidance ; .
Al »{ Saturation [ Missile Dynamics [ VeIOC|ty&P.05|t|on
Neural Network Calculation —‘
Figure 43 - Terminal Guidance Neural Network Simulation

The simulation is set to run for a maximum time, 100s in this case. This
is to prevent infinite loop. In addition, the missile is fired from a
constant position, xm = Om and ym = 3000m, and 0O to a constant the
target, xt =10km and yt = Om. The initial launch angle of the missile
is at 0 deg. This 1is to remove any errors due to the initial angle
position. In addition, the training session is run for 24 hours. This
is to ensure that there is sufficient time for the optimal solution to

be found.

5.3.4. TGNN Training Genetic Algorithm Parameters

The GA fitness function Fitnessygyy shown in Equation 63 1is used to
evaluate the quality of the TGNN. Fitnessroyny consists of the Mean Square
Error of the line of sight rate demand ZDmnof zero and ZR“ response.
This forces the algorithm to match iR% to iDmn in order to obtain minimum
MSE. In addition, it includes the absolute wvalue of the vertical and
horizontal miss distance denoted with |X|yiss and |Y|yiss respectively. The
MSE of the idea acceleration of zero Azjz.q and the acceleration response
AzZpes are included. This minimizes the acceleration command generated by

the TGNN to minimize lateral loading on the missile.

Fitnessyoyy = MSE(iDemriRes) + |X|Miss + |Y|Miss + .
Equation 63

MSE(AZ;geq1, AZres) + Alt, + Angle, + Range,
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Furthermore, there are a couple of terms that are used to quickly ignore
bad TGNN results. The altitude error term Alt, is zero except when the
missile flies too high in the simulation during training. The value of
Alt, is set to be huge, 1x10* in this experiment. This signifies that
the missile headed in the wrong direction. In addition, the angle error
term Angle, is zero except when the missile angle 1is above or below
1+80degs. This is to prevent the missile from turning with too high of
an angle. Lastly, the range error Range, is zero except when the range

is negative. This is to prevent the missile from flying backwards.

6. Navigation Design

Missile navigation allows for the missile to locate itself and the target
in space. The missile measures its linear acceleration as well as its
rotational rate using the inertial measurement unit (IMU). The output
of the IMU is then fed into the Inertial Navigation System (INS)
algorithm, thereby calculating the location of the missile. In addition,
in order to improve the accuracy of the INS algorithm, a GPS sensor 1is

integrated with the INS algorithm.

6.1.Inertial Measurement Unit Modeling

At the core level, the function of the IMU is to read the acceleration
and rotation rates of the missile. There are several sensor technologies
that can accomplish this such as gimballed, strapdown, and laser IMUs.

Each technology has its challenges.

6.1.1. Gimballed IMU

Figure 44 show the inner working of the gimballed IMU. Here, the entire
platform is gyro stabilized. This means that they are rotating so far
that it has the tendency to maintain its precession. The changes in the
precession is measured to estimate the missile’s change of orientation.
The challenge with this technology is that it takes up space, the gyro
precession drifts with time, and the risk of gimbal lock, which is when

two gimbals axis overlap.
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Figure 44 - Gimballed Gyro (29)

6.1.2. Strapdown IMU

The strapdown IMU is shown in Figure 45. Unlike the gyro IMU, there 1is
no gimbaled platform. Instead, there is a set of electronic sensors that
are strapped down to the missile body which measures the acceleration
and rotation of the missile. The challenge with these sensors is the
accuracy of the measurement. However, since they can be small and cheap
to produce while providing a good enough accuracy, it is the most popular

sensor in modern missiles. Hence, this sensor is assumed in this thesis.

Figure 45 - Strapdown IMU (29)
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6.1.3. Ring Laser IMU

When high accuracy is required, the ring laser IMU sensor can be used.
Figure 46 shows the ring laser gyro. Here, the acceleration and rates
are measured by the variation in the laser’s paths. The challenges of

this technology are that the sensor is complex and the cost of such

sensor is high.

, lerodur cavity block
(Anodes & cathode
not shown)

Mirrors (6) |

(Input Axes of
0 nal
paths)

Figure 46 - Ring Laser Gyro (29)

6.1.4. IMU Errors

The IMU can be modeled by introducing a set of errors to the true missile
acceleration and rotation rates. Equation 64 shows the IMU error model.
Here, the g, is the rotation rate output of the IMU, r is the true
rotational rate, ¢, is the offset, b, is the bias, and Wgyro 1s the white
noise associated wit the gyro. Similarly, az is the acceleration output
of the IMU, ¥ is the true acceleration, c;y; is the offset,b; is the
bias, Wgecetr 1s the white noise. In addition, to the defined error, the
sensitivity, quantization, saturation, and delay of the IMU error can

be included to improve the accuracy of the IMU model.

gr =T+ ¢+ bp + Wy Equation 64
(30)

azy =%+ ¢z + by + Waccel

60 | Page



6.2.Inertial Navigation Algorithm

This thesis uses the INS algorithm proposed by Salychev. The flow chart
of the algorithm is shown in Figure 48 and Figure 49. The Salychev’s INS
algorithm addresses the errors associated with the IMU and compensates
it. Hence, by using this algorithm, the position and orientation of the

missile can be calculated more accurately.

6.2.1. Reading IMU Data

The output of the IMU data consists of three gyroscope data and three
accelerometer data. A series of four or eight data in sequence is stored
as it is needed for the algorithm. The data is read by two separate

channels as shown in the flowchart.

6.2.2.Compensation of Gyro and Acceleration

By using the IMU gyro error in Equation 64, the read gyro and acceleration
data can be corrected for the error. It is important to note that an
accurate model for the offset, bias, and white noise is needed to ensure
the optimal correction. In the case where an accurate model is not
feasible, then this step of the algorithm can be ignored as an incorrect

model might decrease the accuracy.

6.2.3. Calculation of Angle Increment

Once the compensation is completed, the angular rate can be converted
to angle increments using Equation 65. It is important to note that since
computational speed is important in a missile, the integration can be

simplified as a multiplication by sampling time Tj.

tethyy Equation 65
a= j wdt ~ wT;
t (16)

k
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6.2.4. Calculation of Velocity Increment

Similarly, once the compensation is completed,

converted to velocity increments using Equation 66.

the integration can be used here as well.

the acceleration can be

A shorter form of

ty+hye
AW = J- adt ~aTy
t

k

Equation 66
(16)

6.2.5. Coning Correction

Since the rotational vector ¢ does not match the true rotation rate of

the missile w as discussed in section 3.2.5,

in Equation 67 is required.

the coning correction shown

— 4 -

=1
Apyl |
Ab = [Ady| =) a,()|+
4
> a0
=1 |
ay(2) e (4)
P |a@ |+ a@|+
a0, (2) 2, (4)

) ©@)] [a@®
E(P1+P2) ay3) |+ |ay(B) | +
a,(3) az(4)

ax(3)]  |ax(4)

—Qy (]) Ay (]) 0

— (P, — Py - |ay@) | +

30 @3] |a @
0 —ay (]) ay (])
where P; = | a;(j) 0 —ax(j)

Equation 67
(16)
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©6.2.0. Quaternion Calculation

Once the coning correction is completed, the quaternions can be
determined. The quaternion calculation and correction use the algorithm
presented in Figure 47. Therefore, the quaternion calculation is broken

into two parts to reduce calculation error.

Q. = Qi Ak
I L]
[ i
()iii 0 53”1 ()n+|

Figure 47 -Quaternion Calculation (16)

Equation 68 presents the discrete version of Euler angles to gquaternion.
Here, AA is the quaternion, A¢ is the intensity of rotation, A¢y,Ad,,

and A¢p, are the rotation angles.

Ad
Ay = —
Ao = cos >
AN = %Sin% Equation 68
Ag Ag (16)
A/12 = A—(PySiHT
A A
Az = A(ZZ sin7¢

The initial condition of the final quaternion Q£ is set to form the
transformation matrix between body to navigation frame. Once calculated,
the final quaternion can be used to calculate the preliminary quaternion

using Equation 69.

Equation 69

er;.’+1=:Qr}ZA/1 (16)
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The conjugate of the quaternion Am* is shown in Equation 70. The
conjugate 1s needed to calculate the final quaternions. hys 1is the

sampling interval and w is the absolute angular velocity.

Am* = Amy — Am;i — Am,j — Amsk

wh

Amy = cos N3
w wh .

Am; = —sin N3 Equation 70
W 2 (16)
w wh

Am, = — 5in —22
w

A w, . whys

ms; = —sin

37 w 2

Once the conjugate and preliminary quaternion are obtained, Equation 71

can be used to obtain the final quaternion.

Equation 71

f _ *
Qn+1 - Am QTI;,’+1 (16)

6.2.7.Quaternion to Transformation Matrix
The final quaternion is first normalized wusing Equation 17. Then,
TNavigation

Equation 15 is used to calculate the transformation matrix Body from

quaternion.

©6.2.8. Attitude Calculation

The resultant transformation matrix can Dbe used to calculate the
orientation, or attitude, of the missile. This is accomplished by taking

parts of the matrix and its geometry property as shown in Equation 72.
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Navigation _ Navigation Navigation
TBody [0] - \/TBody [3’1]2 + TBody [3’3]2
Navigation
o - Tbody [3,2]
= ata TNavigation [0]
Body Equation 72
Navigation
3 Tso0ay [3,1 (16)
y = —atan Navigation 33
Body [ ’ ]
Navigation
_ Body [1'2]
P = atan Navigation 29
Body [ 4 ]
6.2.9. Sculling Compensation
Since the measured body acceleration 1s in an inertial frame, the
Puasson’s version of the equation should be wused. However, since
computational speed 1is essential, a discrete version of the body
acceleration shown in Equation 73 is used.
Wik = W1+ Wy 1@z — Wypo1@y o + AWy i
Wy = Wykoq1+ Wyp1@yp — Wy g1z, + AWy,
Wz,k = Wz,k—l + Wx,k—lay,k - Wy,k—lax,k + AWZ,k
Equation 73
Wz,k = Wz,k—l + Wx,kay,k - Wy,kax,k + AVVz,k (16)
Wy,k = Wy,k—l + Wz,kax,k - Wx,kaz,k + AWy,k
Wx,k = Wx,k—l + Wy,kaz,k - Wz,kay,k + AVVx,k
Where Initial Condision, W, = Wy, =W,=0

6.2.10. Velocity Increment to Navigation Frame

Once the sculling correction is completed, the velocity increment can

be transformed, using the transformation matrix from section 6.2.7, to

the navigation frame using Equation 74.

AW Wy .

AW, _ TNavigation W Equation 74
y ~— "Body y

AW, (16)
Z1Navigation Z1Body
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6.2.11. Velocity Calculation

The velocity of the missile can be calculated with respect to the
projection of velocity to Earth by using Equation 75. AW, AW, ,and AW
are the running sum of the velocity increment. U,, U,, U, are the
projection of Earth rotation on the none-inertial frame. (, and (), are

the projection of angular velocity on the none-inertial frame.

t
Ve = AWS + | (42U, — V,(Q, + 2U,)dt

to

t

V, = AWy — | (2U, — V,(Qy + 2U,)dt
to (16)

Equation 75

t t
V, = AW, — f V, (Qy + 2U,)dt — f (9, +2U,)dt+ g

to to

The angular velocity projection can be calculated using Equation 76.
Here, T is the transformation matrix from ECEF to navigation frame from

section 3.1.4.2.

v, V,
Q, = —=< —Ze2T[1,2]T[2,3] ,
R, a Equation 76

(16)

A
0y = 2+~ e’T[13]T[23]

X

The elliptical Earth model radii are calculated using Equation 77. Here
a and e are from the elliptical earth model from section 3.1.1.3. In

addition, H is the altitude of the missile.

1 1 T[3,3]? H

(1 _e2 2 2 _ 1

R, a(1 ¢ et TL3] a) Equation 77
1 T[3,3]? H (16)

—=—(1-¢ 331 +e?T[2,3]* ——)

Ry a a

Equation 78 calculates the projection of the absolute angular velocity.

wy =80, + U,
Q m Equation 78
wy =y, +
y y y (16)
w, = U,
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Earth’s angular velocity components can be calculated using Equation 79.

U, = UT[1,3]
U, = UT[2,3]
U, = UT[3,3]

Equation 79
(16)

©6.2.12. Puasson Discrete Transformation Matrix

Once the velocity is calculated, the transformation matrix should be put

in Puasson form as shown in Equation 80.

T[12]y =T[1,2]y-1 — Q,T[3,2]y-1hn3
T[22]y = T[2,2]y-1 + QxT[3,2]y-1hn3
T[3,2]y = T[3,2]y-1 + (QyT[1,2]y_1 — QxT[2,2]y_1) hn3
T[13]y =T[13]y-1 — Q,T[3,3]n-1hn3
T[23]y = T[23]y-1 + A TI3,3]y-1hn3
T[3,3]y = T[3,3]n-1 + (Q,T[1,3]y_1 — QxT[2,3]y_1) N3
T[3,1]y = T[1,2]5T[2,3]y — T[2,2]5T[1,3]y

Equation 80
(16)

©6.2.13. Coordinate Calculation

Now that all the parameters are found, the coordinate of the missile can

be calculated. Here ¢ is the latitude, A is the longitude, and € is the

azimuth of the missile.

T[0] = {/T[3,1]2 + T[2,3]?
T[3,3]
¢ = atan T[0]
A= atanT[g'Z]
T[3,1]
T[1,3]
€= atanT[z’g]

Equation 81
(16)

67 | Page




errors according
to model (6.1)

IMU[G] (G| [Ga| (A= [Avd] [Axy
D] O] O] G Gyn), am]
Compensation Compensation
of gyro of acceleration

errors according
to model (6.1)

v v
Calculation of Calculation of
angle increments velocity increments
Lt hy, Lithy,
QX xb,yb,2b= J' @ xb,yb,zb dt AWxbybzb= | QY xbyb,zb dt
hxi ly I h
o xb.yb.zb' v l AW xb,yb,zb
Caas - Sculling

oning Correc compensation

has|  (equation 4.10) (equgteion 4.4) hw
A¢xblA¢){>lA¢-‘bl lbe lWylem
Quaternion Recalculationof | A,
alignment cz:lculat;on -1 .velocit).' in(.:rements il
945 | Qni=Q, AN into navigation frame |alignment
fin £ =
AN A
V= AA%b SinAZQ AWW = CbN W)b

g/l | an=4%sindP | | [ AW, | 1o

A)'Z = AA%'-.' sin Azg l 1 l

Wi IO N

Figure 48 - INS Algorithm Part 1

(16)

68 | Page




ﬂiﬁ%_lqo”lqn" 145’ Es” AleAW szl

X,ys2

Quaternion calculation - 2
anl Am Qul
Amo _— mh,v) .
| = "0 5in 2 mh’”
Am = —m-smmh
®
Am, == sin—&mh
®
/ It /
T q 0 q,| 9, 495
h 4 h 4

Normalization procedure
for quaternion parameters
(equation (4.13))

Calculation of matrix C: :
(equation (4.14))

h N
N3 C i
Attitude calculation
9 =arcig £a
0
Co =‘J(%lz+(?nz
Gy,
Y =—arctg ——
1
Ci
Wy = arclg

S Vl“’l

Velocity calculation
(equations
(4.16)-(4.18))

Calculatlon of
matrix B
(equation (4. 19))

15, [V.,

Coordinate calculation

= arcl by

¢ =arclg—> B,
bn

A =arclg7= b,
; b
€ = arctg——
4 b,,

b=\ +b;

Vy =V, cose +V, sine

Vi ==V, sing +V, cose

v
© A€ V¥,

Figure 49 - INS Algorithm Part 2 (16)
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6.3.GPS/INS Integration

6.3.1. GPS Modeling

There is a wide range of models that can accurately represent the GPS.
Similar to the IMU modeling, the GPS error modeling is shown in Equation
82. Here the range from missile to each satellite R; consists of the true
range 1;, X4 antennae phase error, Xp position error, Xy velocity error,
and Xrgp scale factor error. Each error is multiplied with a coefficient
C that is shorter form of the transformation matrix and vector presented

in the original paper.

Equation 82

Ry =1+ CoXp + C1Xp + CoXy + CoXrsr (31)

Once the range is obtained for at least three satellites, and since the
position of each satellite X;, Y, Z; is known, a system of three equation
can be generated from Equation 83 to solve for the missile position, x,

y, and z.

Equation 83
(32)

Ri=J(x—X)*+(y—-Y)2+ (z—Z)?

Nevertheless, a simpler yet effective GPS modeling method is used in
this thesis. Since the chosen GPS has the sampling frequency f; of 10Hz,
and the position of the missile in the simulation can be obtained, the

GPS is modeled using a delayed sampling time shown in Equation 84.

X = Z x:0(t —nTy)
n= —oo
__2nrad Equation 84
TS (33)
1
fs = Fs Hz
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©6.3.2.Kalman Filter

In order to make sure of the GPS, a Kalman filter is used to integrate
both INS algorithm data and GPS data. Hence, it 1is essential to
understand the Kalman filter. The Kalman filter consists of two major

part, the state space model and the Kalman equation.

6.3.2.1. State Space Model

The first part of the state space model, shown in Equation 85, is used

to predict the behavior of the missile. This serves as the reference
behavior of the missile. Here, X} 1is the state vector, @y, 1is the
transition matrix, Ggk-; is the input matrix, and wy_; is the input white

noise with covariance matrix Q.

Equation 85

X = Prr—1Xp-1+ Grr-1Wk-1 (16)

In addition, the second part is the measurement part, where the behavior
of the missile is measured and computed using Equation 86. Here, Zz; 1is
the measurement vector, H is the output matrix, and v, is the measurement

white noise with covariance matrix R.

Equation 86

Z, = Hx, +v
k k k (16)

6.3.2.2. Kalman Equation

The traditional Kalman equation is shown in Equation 87. Here, X; is the

optimal estimation and K, is the Kalman gain.

Equation 87

Xk = Pr—1%k-1 + K (2 — H®p o1 X5—1) (16)
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6.3.2.3.

Kalman Filter Integration Algorithm

One approach to integrate the GPS and INS is the use Kalman filter to

predict the error instead of the position and velocity of the missile.

This algorithm is presented in Figure 50.

1 Xkt =Dy 1 Xy <

4

N

2
IALI

x5 > 7
o (I)i,l lll l([)i,l

 +G, . 0GT,

k

Figure 50 - GPS/INS Integration Algorithm

KA' 7111111?[}”: k-1

H” +R]"

Ve = X T K (2,

= ll’i'r k1)

v

P, =(1- k’kll)/)k/A-—l

(16)

The first step of the algorithm is to find the previous prediction Xp_i.

The previous prediction for position is set to be the difference, 6N,

0E,and 6U between the INS algorithm output and the GPS output as stated

in Equation 88.

6N
O6E
6U

Nins — Ngps
= |Eins — Egps
Uins — Ugps

Equation 88
(16)

In addition,

as stated in Equation 89.

the velocity difference 6V,

SV,

and 6Vy is also computed

6Vy Vn_ns — Vn_gps Equation 89
Vg | = [Veins — Vegps (16)
Vy Vu_ins — Vu gps
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Moreover, Equation 90 computes the angular difference ¢y, ¢, and ¢y.

o
5
b

Equation 91 shows the three previous prediction Xy_; which are represented

Equation 90

-60
SH (16)

as Northy_,, Easty_,, and Upg_i. Here, the Kalman filter algorithm is

computed three times. Each time for a navigation axis channel.

SN
SV
oF

SE
SV
dn

8U
5V,

bu

North,_, =

Equation 91

Fast;,_, =
k-1 (16)

Upg-1 =

The transfer matrix ®, for each of the individual channel is presented
in Equation 92. This is the state space model of the behavior of the

missile.

1 Ts 0 1
0 1 —gT.
Oy = T, ’
0 1
L Rgarrn .
1 T 0 7
0 1 —gT.
Cp o = T, 9l Equation 92
0 1
- RearTH 4 (16)
[ 1 Ts 0 0]
|_—29 I
| T, 1 0 0|
Py, = RearTH
0 0 —=tanZ 1
l 0 0 1 0J
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The state place model can be multiplied by the previous prediction to
obtain the updated previous prediction X,_;. It is made of three channels
as seen 1in Equation 93. It 1is important to note that b, is the

accelerometer bias error.

6North, = ®y Northy_,
0Easty = ®g xEasty_q Equation 93
0 (16)
b
0Upx = Py xUpg-1 + Oa
0

Before progressing to the second step, a couple of parameters needs to

be defined. These parameters are tuned for the missile presented in this

thesis. Hence, it is essential to consider the proper parameters for

other missiles. Equation 94 shows the output matrix for the missile.

Here, it is set to identity matrix because the output is assumed to be

not skewed.

1 0 O
HNorth= 0 1 0
0O 0 1
1 0 O
HEastz [0 1 0] Equation 94
0 0 1 (16)
1 0 0 O
10 1 0 O
Hw =10 0 1 0
0O 0 0 1

In addition, the measurement noise matrix R is shown in Equation 95.

10 0 O

Ryoren =10 10 0
0 0 10

10 0 0 Equation 95
Rggse =10 10 0
0 0 10 (16)

10 0 O
Ryp,=10 10 O
0 0 10
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Moreover, the initial

input noise

Q is presented in Equation 96.

1x1073 1x107% 1x1073
Qnorth = Pk_North_Initial =[1x10"® 1x1073® 1x1073
1x107% 1x107% 1x1073
1x107% 1x107% 1x1073 ,
Qgast = Pk_East_Initial = [1x1073% 1x10™3% 1x1073 Equation 96
1x1073 1x1073 1x1073 (16)
1x107% 1x107% 1x10™%® 1x1073
0y, = P . _|1x107® 1x107® 1x107® 1x1073
Up = Tk Updnitial ™ 19 v 1073 1x1073 1x1073 1x1073
1x107® 1x1073® 1x1073 1x1073
Lastly, the measurement vector zp is shown in Equation 97.
SN
ZNorth = 5VN
(o
SE ,
Zgast = |6Vz Equation 97
dn (16)
5U
SVy
Z =
Up SVg
du

The second step of the algorithm is to calculate the input noise.

This

is accomplished by using Equation 98 where the previous input noise 1is

multiplied by the transfer matrix and its conjugates.

Equation 98
(16)

— !
Px north = PN kPr—1.North®P N ke
J— !
Pk_East - q)E_kPk—l_Eastq) E k
J— !
Pk_Up - q)U_kpk—l_UpcI) U_k
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The third step is to calculate the Kalman gain as shown by Equation 99.

— ! . 12
KNorth - Pk_North H Northlnv(HNorth PkNorthH North + RNorth)

— ! . I
KEast - Pk_East H Eastlnv(HEast PkEastH East + REast)

KUp = Pk_Up H,UpinU(HUp PkUpH,Up + RUp)

Equation 99
(16)

After obtaining all the parameters, the fourth step is to calculate the

optimal prediction X, in Equation 100.

SN
6‘7; = ONorthy + Knortn(Znortn — Hyoren6Northy)
Sdg
SE
SVE = 5EaStk + KEast(ZEast - HEast(SEaStk)
Spn
85U
6& = 6Upk + KUp(ZUp —HUp(SUpk)
Sy

Equation 100
(16)

Equation 101 updates the input noise as the fifth step of the algorithm.

P k—1_North = (I = KnortnHyoren) P k_North

Pk—l_East ={- KEastHEast)Pk_East

Pi_1 up = U — KypHyp)Pr_up

Equation 101
(106)
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Finally, the GPS/INS integration output can be obtained using Equation
102. Here the 1INS algorithm output is subtracted by the optimal

prediction. Hence, this corrects the error that was generated from the

INS algorithm.

Northgpsins = Niys — 6N

Equation 102

-~

East = Eye— OF
GPSINS INS (16)

Northgpsiys = Uys — 6U

Similarly, Equation 103 shows that the GPS/INS velocity can be obtained
from the subtraction of the INS algorithm velocity and the optimally
predicted wvelocity. Thereby, concluding the GPS/INS integration

algorithm.

Velcoityy gpsins = Vi ins — 6Vy

_ - Equation 103
Velcoityg gpsins = Ve ins — Ve (16)

Velcoityy gpsins = Vu ins — Wy

6.3.3. Neural Network GPS/INS Integration

The purpose of the Neural Network GPS/INS Integration (NNI) 1s to
integrate GPS and INS data during the missile flight. This is achieved

by designing a neural network that mimics and improves the functionality

of GPS/INS integration.
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6.3.3.1. NNI Algorithm

The NNI algorithm is shown in Figure 51. Here, the GPS data is subtracted
from the INS data. The resultant can be denoted as ANED. Hence, it
creates the NED frame error. The error is fed into the NNI. In addition,
a delayed sample of the NED frame error is also fed into the NNI. This
is to allow the NNI to obtain more information when predicting the NED
coordinates. The larger the previous error the bigger the correction
should become. Moreover, the previous correction data is also fed into
the NNI. This is to allow the NNI to know how far the previous correction
was from the actual NED frame coordinates. The larger the correction,

the more NNI prediction was incorrect. Hence, it needs to compensate for

it.
ANED

GPS » +
L N NED
z

INS o+ I_ N Neural Network Correction o - Prediction

i’ n GPS/INS Integration
Real

Figure 51 - Neural Network Integration Algorithm

Once all the three data are imported into the NNI, it produces a
correction prediction. The correction prediction is subtracted from the
GPS data. This results in the NED prediction which can be used in the
guidance and autopilot of the missile. The reason the GPS is used as a
point of reference is because it is assumed to be the most accurate. It
is important to keep in consideration that with this design, a
significantly faulty GPS data will greatly impact the performance of the
NNI. However, assuming the GPS performance 1is acceptable, the NNI
performs as designed. The GPS data is produced using the GPS model in
Equation 84. In addition, the IMU model in Equation 64 is used to produce
gyro rates and acceleration. The results are fed into the INS algorithm

in Figure 48 and Figure 49 to produce the INS data.
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6.3.3.2. NNI Design

The design of NNI is a traditional feedforward network as shown in Figure
52. The input neuron consists of previous NED frame error, current NED
frame error, and previous correction. The output neuron consists of the
correction prediction. The number of hidden layers has been varied during
the training process where 10 layers delivered the optimum result. The
length of each hidden layers as well as the connections between the
layers, hence the weight and biases, are also varied during the training
to obtain the optimum result.

10 Hidden Layer

(’“\
....... |
N
IR
Corr |
_/
[c ] ) \/\
\-J ‘\k_r /;' ....... '\_7- /‘
Figure 52 - Neural Network Integration Design

©6.3.3.3. NNI Training Environment

In order to train the Neural Network NNI using NEAT Training method, the
missile environment simulation must be prepared. However, unlike with
TGNN Training Environment, the missile simulation model cannot be
simplified. That is because the time variant and non-linear dynamics
affect the NNI performance greatly. Hence, a full simulation needs to
be used. Since the full simulation of the missile will take very long
to execute, the simulation is pre-executed and the resulted INS Data and
GPS Data are recorded. Furthermore, one of the biggest challenges with
neural network 1is generalization. The generalization problem can be
reduced by evaluating the performance of the NNI across a range of pre-
executed simulation. Therefore, the NNI simulation, shown in Figure 53,

consists of a loop. The simulation reads the launch angle 6,. Then, based
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on a look up table of the previously executed full missile simulation,
the NNI algorithm, shown in Figure 52, reads the corresponding GPS and
INS Data to obtain the NED prediction. The launch angle is varied from
10deg to 80deg in order to include a comprehensive set of INS and GPS
behaviors. It is important to note that each of the three position and
three velocity channels are trained separately. In addition, the training
for the side component fixes the launch angle at 45degs and the initial
Azimuth Az, is varied from -80 to 80 deg as shown in Figure 54. 1In
addition, the training session is run for 4 hours which proved to be

sufficient to obtain the optimum results.

- True
f 8, ,‘ gg =% NNI Algorithm

Figure 53 - NNI Simulation Launch Angle Variation

- True
Az, . A"Zzﬂi_-fgf'o NNI Algorithm

Y

Figure 54 - NNI Simulation Azimuth Angle Variation

6.3.3.4. NNI Training Genetic Algorithm Parameters

The GA fitness function Fitnessyy; shown in Equation 104 is used to
evaluate the quality of NNI. Fitnessyy; consists of the summation of all
the Means Square Error of the Simulation Real XNED XNEDgpor and the XNED
Prediction XNEDprediction- This sum reduces the generalization problem and

it allows for a global quantification of the performance of the NNI.

FitneSSNNI = ?=0(MSE(XNEDGDOF'XNEDPTediCtiOTl))t Equation 104
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7. Implementation and Verification

7.1.High Level Simulation

Figure 55 shows the highest-level simulation block diagram. Here, it can
be seen that the booster affects the missile body. In addition, the
gravitational model and aerodynamics also affects the missile body. The
missile body flies within the environment where the coordinate
transformation, actual missile velocity, position, and rotation rates
are calculated. The environment effects are felt by the aerodynamics and
guidance computer. The guidance computer control output affects the
actuator. The actuator deflection affects the aerodynamics. Hence, this

completes the high-level missile simulation cycle.

Booster Missile Body ——= Environment —— Aerodynamics
Gravitational Guidance Actuator
Model Computer

Figure 55 - High Level Simulation

7.1.1. Booster Simulation

Figure 56 shows the booster simulation block diagram. Here, the Thrust
profile from Figure 26 is read using a look-up table. The misalignment
calculation uses Equation 39 to calculate the thrust forces. Moreover,
the thrust moments are calculated using Equation 40. They are outputted

in body frame.

Thrust / Misalignment [ Thrust
Profile | Calculation | Forces

Thrust
Moments |

Figure 56 - Booster Simulation
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7.1.2. Gravitational Model Simulation

Figure 57 shows the gravitational model simulation block diagram. Here,
the earth gravity parameters are read. It could be either for a flat,
spherical, or elliptical model. The gravity is calculated using Equation
5 for flat and spherical earth models. However, it uses the WGS84
standard in Equation 6 for the elliptical model. The gravity is then
outputted in body frame.

/
/ Earth Gravity Gravity / Gravity
/ Parameters Calculation :f In Body Frame

Figure 57 - Gravitational Simulation

7.1.3. Aerodynamics Simulation

Figure 58 shows the aerodynamic simulation block diagram. Here, structure
parameter such as the center of mass is read. Moreover, the environmental
parameters such as angle of attack, side angle, missile wvelocity and
Mach, dynamic pressure, and rotation rates are read. In addition, the
aerodynamic derivatives are read as well. These are predetermined by the
missile model. Additionally, the actuator deflections are inputted too.
These are the results of the guidance computer commands. The aerodynamic
calculation 1is then performed wusing Equation 41 to obtain Dboth
aerodynamic force and moment coefficients. The aerodynamic forces are
calculated using Equation 42. On the other hand, the aerodynamic moments
are calculated using Equation 43. Both force and moments are outputted

in body frame.

 —
/ Structure ."‘I
Parameters |
f f f ]
| Environmental | Force / Aerodynamic |
I | — . . | Y | /
/ Parameters | Coefficients / Forces /
/ Aerodynamics | Aerodynamic
Derivatives | Calculation
/ /
Actuator ."" Moment / Aerodynamics ‘-"‘
— - s /
Deflection ! Coefficients ! Moments /

Figure 58 - Aerodynamic Simulation
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7.1.4.Missile Body Simulation

Figure 59 shows the missile body simulation block diagram. Here, the
gravitational forces, aerodynamic forces, and thrust forces are summed
together to form the total force on the missile. In addition, the
aerodynamic moments and the thrust moments are summed together to form
a total moment on the missile. The total moments and forces are outputted
in body frame. Furthermore, the structure parameters such as the missile
body inertia, mass, and center of mass as a function of time is read and

outputted.

Gravitational
Forces

Structure Parameters

/ Aerodynamic /
Forces and / —
Moments ‘.‘f

Summation Of _(‘-‘" Total
Forces and Moments / Forces and Moments

Trust Forces
and Moments |

Figure 59 - Missile Body Simulation

7.1.5. Environment Simulation

Figure 60 shows the environment simulation block diagram. Here, the
atmospheric model shown 1in Table 1 is used to find the atmospheric
parameters such as angle of attack, side angle, missile velocity and
Mach, and dynamic pressure. In addition, the mass and the total force
are used to calculate the body acceleration using Equation 20. However,
for an accurate simulation Equation 21 can be used. Moreover, the
inertial and total moments are read to calculate the rotation rates using
Equation 34. The rotation rates are used to calculate the quaternion
derivative using Equation 16. Then, the quaternion is used to calculate
the missile angles using Equation 13. Furthermore, the quaternion can
be used to calculate the transformation matrix Body to NED using the

transpose of Equation 15.
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The body acceleration and transformation matrix are corrected using
Pausson’s equation shown in Equation 10. In addition, the corrected
velocity and position can be obtained as well. These localization
parameters can be converted into ECEF frame using transpose of Equation
8. Moreover, 1t can be converted into geodetic frame using Equation 9.
It is important to note that in case wander frame is used it can be
converted into wander frame as well using the yaw transportation matrix

of Equation 7.

Atmospheric
Parameters

Atmosphere Model

Inertial F Body To NED

Rotation Rate
Calculation

Total Moments Missile Angle

/ Body Acceleration
Total Forces | e — Cvalcu ation Puasson Correction

NED To ECEF — ECEF To LLA

NED To Wander

Mass —

Figure 60 - Environment Simulation

7.1.6. Actuator Simulation

Figure 61 shows the actuator simulation block diagram. Here, the roll,
pitch, and yaw commands are received from the guidance computer. These
commands are summed together while prioritizing the roll command. That
is because if the roll angle is not stabilized, the pitch and yaw commands
could be incorrect since the guidance does not consider the roll angle.
Each sum is inputted into an actuator model. Equation 53 is used to model
the actuating system. In addition, the output response of the roll,

pitch, and yaw deflection is calculated using Equation 54.
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Actuator One Actuator One J Actuator One
/ Command Sum Roll Priority Model /
Roll [ Roll /
Command | ﬂ Deflection |
Actuator Two Actuator Two N Actuator Two
Pitch Command Sum Roll Priority Model pitch
Command Deflection
Actuator Three Actuator Three Actuator Three
Yaw EEEE— - — Yaw
Command Sum Roll Priority Model .
Command Deflection
Actuator Four Actuator Four Actuator Four
L -
Command Sum Roll Priority Model

Figure 61 - Actuator Simulation

7.1.7.Guidance Computer Simulation

Figure 62 shows the guidance computer simulation block diagram. Here,
the environmental parameters such as acceleration and rotation rates are
read into the navigation. The navigation calculates the wvelocity,
position, and angle of the missile. The navigation output is fed into
both the guidance and the control. On the other hand, the seeker block
outputs the target location. This simulation assumes an ideal seeker
where the target location is exactly known. The seeker output is fed
into the guidance. The guidance calculates the guidance command then it
feeds it to the control where the roll, pitch, and yaw commands are

calculated. The control commands are then outputted.

Seeker Guidance
Control
Control Commands
Environmental L
Navigation
Parameters
Figure 62 - Guidance Computer Simulation
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7.1.8.Navigation Simulation

Figure 63 shows the navigation simulation block diagram. Here, the
environmental parameters such as the acceleration and rotation rates are
fed into the IMU. The IMU parameter is then fed into the INS block. In
addition, the environmental parameter such as the missile position in
geodetic frame is fed into the GPS. Then, the GPS parameter and INS

parameter are fed into the GPS/INS integration.

GPS/INS
Integration

Environmental
Parameters

IMU

NE— |

GPS

Figure 63 — Navigation Simulation

7.1.9. IMU Simulation

Figure 64 shows the IMU simulation block diagram. Here, the environmental
parameters such as acceleration and rotation rates are read. The IMU
model from Equation 64 is used to calculate the IMU parameters. Then,

the IMU parameters such as the noisy acceleration and noisy rotation

IMU Model IMU i
Parameters

Figure 64 - IMU Simulation

rates are outputted.

Environmental
Parameters

7.1.10. GPS Simulation

Figure 65 shows the GPS simulation block diagram. Here, the environmental
parameters such as the missile position in geodetic frame is read. The
GPS model from Equation 84 is used to calculate the GPS parameters. Then,

the GPS parameters such as noisy position and velocity are outputted.

GPS
Parameters

| Environmental | GPS Model

e
i‘ Parameters /

Figure 65 - IMU Simulation
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7.1.11. Inertial Navigation System Simulation

Figure 66 shows the INS simulation block diagram. Here, the IMU parameters
such as acceleration and rotating rates are read into the INS algorithm.
The INS algorithm from Figure 48 and Figure 49 calculates the estimated
missile velocity, position, and angle in NED and geodetic frame. These
INS parameters are then outputted. It is important to note that in the
case of GPS/INS integration with reset, the INS reset trigger is used
to reset the INS. Moreover, the GPS/INS integration prediction 1is

inputted to the INS algorithm for reset.

IMU / , / INS
f INS Al h —_—
Parameters NS Algorithm Parameters

7

{

/ INS Reset [
1 s
Trigger |

GPS/INS
Integration
Prediction

Figure 66 - Inertial Navigation System Simulation
7.1.12. GPS/INS Integration Simulation

Figure 67 shows the GPS/INS Integration simulation block diagram. Here,
the INS parameters such as the missile velocity, position, and angle are
read. Moreover, the GPS parameters such as the velocity, position, and
geodetic coordinates are read. Then, the GPS/INS integration algorithm
calculates the prediction using Figure 50 for Kalman filter method. On
the other hand, the GPS/INS integration algorithm calculates the
prediction using Figure 51 for the NNI. The GPS/INS integration
prediction is then outputted. It is important to note that the desired

algorithm is pre-selected before the simulation is executed.

{ / GPS/INS | GPS/INS

Para‘r:ﬁters "‘I Integration ——' Integration ‘."‘I
/ Algorithm / Prediction |

GPS
Parameters

Figure 67 - GPS/INS Integration Simulation

87 | Page



7.1.13. Guidance Simulation

Figure 68 shows the guidance simulation block diagram. Here, the
predefined trajectory is fed into the trajectory guidance block. 1In
addition, the navigation parameters such as the missile position is also
fed into the trajectory guidance block. This is where the trajectory

guidance command is calculated using Equation 59.

Moreover, the seeker parameters, such as target location, and the
navigation parameters such as the missile position and velocity are fed
into the terminal guidance block. Here, the terminal guidance command
is calculated using Equation 61 for Proportional Navigation algorithm.
However, the terminal guidance command is calculated using Figure 41 for
TGNN. It 1is important to note that the type of terminal guidance

algorithm is pre-selected before the simulation is executed.

In addition, the terminal guidance and trajectory guidance cannot be
happening at the same time. Hence, an exclusive OR block is used to allow
only a single type of the guidance to be used. It is also important to
note that the type of guidance 1is pre-selected before the simulation

execution. However, it can be coded to switch during the missile flight.

|

Trajectory

EEE— Guidance

/ Calculation

Predefined
Trajectory

Guidance
Command

Terminal Guidance
Calculation

Navigation
Parameters

Seeker
Parameters

Figure 68 —-Guidance Simulation
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7.1.14. Control Simulation

Figure 69 shows the control simulation block diagram. Here, the roll
demand of zero is inputted into the roll autopilot. In addition, the
navigation parameters such as roll angle and rate are also inputted into
the roll autopilot. The roll autopilot calculates the command using
Figure 30. However, its uses Figure 32 for Roll Neural Network Autopilot.
Moreover, the pitch demand from guidance is inputted into the pitch
autopilot. The navigation parameters such as vertical acceleration,
velocity, and pitch rate are also inputted into the pitch autopilot. The
pitch autopilot calculates the command using Figure 31. However, it uses
Figure 35 for Pitch Neural Network Autopilot. Furthermore, the yaw demand
from guidance 1is inputted into the vyaw autopilot. The navigation
parameters such as side acceleration, velocity, and yaw rate are also
inputted into the yaw autopilot. The yaw autopilot calculates the command
using Figure 31. However, it uses Figure 35 for Yaw Neural Network
Autopilot. It 1s important to note that the gains are wvaried with
velocity for traditional autopilot and the type of autopilot is pre-

selected before the simulation execution.

Roll Demand .“I—‘ Roll Autopilot 41" Roll Command ‘-‘"

Navigation
Parameter

Pitch

Pitch Demand ;r—- Pitch Autopilot Command

Navigation |

Parameter

Yaw Demand .*"I—' Yaw Autopilot 47" Yaw Command I‘-"‘

Navigation :"‘

Parameter

Figure 69 - Control Simulation
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7.2.Performance Comparison

In order to verify the dependability of the Guidance, Navigation, and
Control neural network algorithm, they will be compared to traditional
algorithms. The comparison is done by implementing both neural network
and traditional algorithms in a full missile simulation that is time
variant and non-linear. This allows for an adequate estimation of the

algorithms performance for a real system.

7.2.1.TGNN vs PN Guidance Comparison

The missile is launched at a constant 45degs launch angle. This angle
is chosen for the comparison because it allows the missile to fly to the
maximum range. In addition, it ensures sufficient altitude to evaluate
the performance of the missile. However, it is important to note that
since the launch angle is fixed, minimum range will cause problems.
Hence, the minimum target range for this comparison is 8000m while the
maximum target range is 14000m. Moreover, the minimum target deviation
for this comparison is Om while the maximum target deviation is 10000m

in the negative direction.

Furthermore, the terminal guidance algorithm along with the lateral
autopilot is turned on at 20 seconds as shown in Figure 70. This is to
allow the missile to reach the apex before the guidance starts. These
guidance scenarios are repeated for both terminal guidance algorithms.

The missile miss distance will be used as the evaluation criteria.

Guidance Start

Figure 70 - Guidance Comparison Scenario
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Figure 71 and Figure 72 show the performance of the missile for the
target at 8000m range and Om deviation. Here, it can be seen that for
the range TGNN performed better than PN. The TGNN range error is 202m
while PN is 1724m. However, PN performed better for deviation. Here, it
can be seen that the deviation error for TGNN is 928m while PN is 102m.
This is because the TGNN algorithms design struggles with zero command.

Moreover, TGNN took longer than PN to reach the altitude of the target.

XNED For Target at Xt = 8000m and Yt = Om
T T

10000 T T T
8000 — n
= PN Range
6000 s PN Deviation
n PN Height
% 4000 s TGNN Range
S s TGNN Deviation
2000 mss TGNN Height
0 ‘R 7
_2000 | | | | |
0 10 20 30 40 50 60

Seconds
Figure 71 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 8000m and Yt = Om
Miss Disance For Target at Xt = 8000m and Yt = Om
T T

8000 T T T
= PN Range Error
s PN Deviation Error
6000 - PN Height Error 4
== TGNN Range Error
s TGNN Deviation Error
s TGNN Height Error
4000 |- .
o
2
[}
=
2000 - n
0 —
_2000 | | | | 1
0 10 20 30 40 50 60
Seconds
Figure 72 - Comparison of NED Frame Position Miss Distance Between

TGNN and PN for Target Located at Xt = 8000m and Yt = Om
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Figure 73 and Figure 74 show the performance of the missile for the
target at 8000m range and -2000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is
248m while PN is 801lm. In addition, TGNN performed better for deviation.
Here, it can be seen that the deviation error for TGNN is 205m while PN
is 458m. It is important to note that TGNN took longer to reach the
altitude of the target.

XNED For Target at Xt = 8000m and Yt = -2000m

T | |

10000 = PN Range
s PN Deviation

8000 PN Height 4-‘:_'/4—

= TGNN Range

s TGNN Deviation
TGNN Height

6000

® 4000 =
L
[0
= 2000 |
0
-2000 \-—l
_4000 | | | | | | | | Il
0 5 10 15 20 25 30 35 40 45 50
Seconds
Figure 73 - Comparison of NED Frame Position Between TGNN and PN for
Target Located at Xt = 8000m and Yt = -2000m
Miss Disance For Target at Xt = 8000m and Yt = -2000m
8000 T T T T T T T T T
s PN Range Error
s PN Deviation Error
6000 PN Height Error =
mmss TGNN Range Error
s TGNN Deviation Error
s TGNN Height Error
4000 i
@
i
[
=
2000 - n
0
-2000 : . ! 1 1 1 | 1 1
0 5 10 15 20 25 30 35 40 45 50
Seconds
Figure 74 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 8000m and Yt = -2000m
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Figure 75 and Figure 76 show the performance of the missile for the
target at 8000m range and -4000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is Om
while PN is 7m. In addition, TGNN performed better for deviation. Here,
it can be seen that the deviation error for TGNN is Om while PN is 623m.
It is important to note that both TGNN and PN took the same amount of

time to reach the altitude of the target.

XNED For Target at Xt = 8000m and Yt = -4000m
T T T

10000

e PN Range
s PN Deviation
PN Height
= TGNN Range
s TGNN Deviation
TGNN Height

5000

Meters

-5000 : '
0 5 10 15 20 25 30 35 40 45 50

Seconds

Figure 75 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 8000m and Yt = -4000m
Miss Disance For Target at Xt = 8000m and Yt = -4000m
8000 T T T T I I " | s PN Range Errror
s PN Deviation Error
L PN Height Error
6000 == TGNN Range Error
s TGNN Deviation Error
4000 |- TGNN Height Error
@
[0
4 2000 [- .
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0 -
-2000 —
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Figure 76 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 8000m and Yt = -4000m
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Figure 77 and Figure 78 show the performance of the missile for the
target at 8000m range and -6000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is 3m
while PN is 365m. In addition, TGNN performed better for deviation. Here,
it can be seen that the deviation error for TGNN is 19m while PN 1is
4595m. It is important to note that TGNN took longer to reach the altitude

of the target.
XNED For Target at Xt = 8000m and Yt = -6000m
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=
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Figure 77 - Comparison of NED Frame Position Between TGNN and PN for
Target Located at Xt = 8000m and Yt = -6000m
Miss Disance For Target at Xt = 8000m and Yt = -6000m
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Figure 78 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 8000m and Yt = -6000m
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Figure 79 and Figure 80 show the performance of the missile for the
target at 8000m range and -8000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is Om
while PN is 1540m. In addition, TGNN performed better for deviation.
Here, it can be seen that the deviation error for TGNN is 3069m while
PN is 6895m. It is important to note that TGNN took longer to reach the

altitude of the target.
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Figure 79 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 8000m and Yt = -8000m
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Figure 80 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 8000m and Yt = -8000m
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Figure 81 and Figure 82 show the performance of the missile for the
target at 8000m range and -10000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is Om
while PN is 1683m. In addition, TGNN performed better for deviation.
Here, it can be seen that the deviation error for TGNN is 6924m while
PN is 9430m. It is important to note that TGNN took longer to reach the
altitude of the target.
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Figure 81 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 8000m and Yt = -10000m
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Figure 82 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 8000m and Yt = -10000m
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Figure 83 and Figure 84 show the performance of the missile for the
target at 10000m range and Om deviation. Here, it can be seen that for
the both TGNN and PN performed similarly. The TGNN range error is Om
while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. However, TGNN deviated from the center axis before
settling back to zero. It is important to note that TGNN and PN took the
same amount of time to reach the altitude of the target.
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Figure 83 - Comparison of NED Frame Position Between TGNN and PN for
Target Located at Xt = 10000m and Yt = Om
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Figure 84 - Comparison of NED Frame Position Miss Distance Between

TGNN and PN for Target Located at Xt = 10000m and Yt = Om
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Figure 85 and Figure 86 show the performance of the missile for the
target at 10000m range and -2000m deviation. Here, it can be seen that
for the both TGNN and PN performed similarly. The TGNN range error is
Om while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. It is important to note that TGNN and PN took the same

amount of time to reach the altitude of the target.
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Figure 85 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 10000m and Yt = -2000m
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Figure 86 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 10000m and Yt = -2000m
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Figure 87 and Figure 88 show the performance of the missile for the

target at 10000m range and -4000m deviation. Here, it can be seen that

for the both TGNN and PN performed similarly. The TGNN range error is

Om while PN is also Om. In addition, PN performed a little bit better

than TGNN for deviation. It can be seen that the deviation error for

TGNN is 0.5m while PN is Om. It is important to note that TGNN and PN
took the same amount of time to reach the altitude of the target.
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Figure 87 - Comparison of NED Frame Position Between TGNN and PN for
Target Located at Xt = 10000m and Yt = -4000m
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Figure 88 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 10000m and Yt = -4000m
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Figure 89 and Figure 90 show the performance of the missile for the
target at 10000m range and -6000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is
1.3m while PN is 107m. In addition, TGNN performed better for deviation.
Here, it can be seen that the deviation error for TGNN is Om while PN
is 538m. It is important to note that TGNN and PN took the same amount

of time to reach the altitude of the target.
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Figure 89 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 10000m and Yt = -6000m
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Figure 90 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 10000m and Yt = -6000m
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Figure 91 and Figure 92 show the performance of the missile for the
target at 10000m range and -8000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is 4m
while PN is 124m. In addition, TGNN performed better for deviation. Here,
it can be seen that the deviation error for TGNN is 14m while PN 1is

4831m. It is important to note that TGNN took longer to reach the altitude

of the target.
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Figure 91 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 10000m and Yt = -8000m
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Figure 92 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 10000m and Yt = -8000m
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Figure 93 and Figure 94 show the performance of the missile for the
target at 10000m range and -10000m deviation. Here, it can be seen that
for the range PN performed better than TGNN. The TGNN range error is 10m
while PN is 2m. However, TGNN performed better for deviation. Here, it
can be seen that the deviation error for TGNN is 114m while PN is 8226m.
It is important to note that TGNN took longer to reach the altitude of

the target.
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Figure 93 - Comparison of NED Frame Position Between TGNN and PN for
Target Located at Xt = 10000m and Yt = -10000m
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Figure 94 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 10000m and Yt = -10000m
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Figure 95 and Figure 96 show the performance of the missile for the
target at 12000m range and Om deviation. Here, it can be seen that for
the both TGNN and PN performed similarly. The TGNN range error is Om
while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. However, TGNN deviated from the center axis before
settling back to zero. It is important to note that TGNN and PN took the
same amount of time to reach the altitude of the target.
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Figure 95 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 12000m and Yt = Om
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Figure 96 - Comparison of NED Frame Position Miss Distance Between

TGNN and PN for Target Located at Xt = 12000m and Yt = Om
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Figure 97 and Figure 98 show the performance of the missile for the
target at 12000m range and -2000m deviation. Here, it can be seen that
for the both TGNN and PN performed similarly. The TGNN range error is
Om while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. It is important to note that TGNN and PN took the same

amount of time to reach the altitude of the target.
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Figure 97 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 12000m and Yt = -2000m
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Figure 98 Comparison of NED Frame Position Miss Distance Between TGNN
and PN for Target Located at Xt = 12000m and Yt = -2000m
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Figure 99 and Figure 100 show the performance of the missile for the
target at 12000m range and -4000m deviation. Here, it can be seen that
for the both TGNN and PN performed similarly. The TGNN range error is
Om while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. It is important to note that TGNN and PN took the same
amount of time to reach the altitude of the target.
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Figure 99 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 12000m and Yt = -4000m
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Figure 100 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 12000m and Yt = -4000m

105 | Page



Figure 101 and Figure 102 show the performance of the missile for the

target at 12000m range and -6000m deviation. Here, it can be seen that

for TGNN performed better than PN. The TGNN range error is 3m while PN

is
It
It
to

also 79m. In addition, TGNN performed better than PN for deviation.
can be seen that the deviation error for TGNN is Om while PN is 144m.
is important to note that TGNN and PN took the same amount of time

reach the altitude of the target.
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Figure 101 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 12000m and Yt = -6000m
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Figure 102 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 12000m and Yt = -6000m
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Figure 103 and Figure 104 show the performance of the missile for the

target at 12000m range and -8000m deviation.
for the range TGNN performed better than PN.

Here, it can be seen that

The TGNN range error is bm

while PN is 691m. In addition, TGNN performed better for deviation. Here,

it can be seen that the deviation error for TGNN is 8m while PN is 2408m.

It is important to note that TGNN took longer to reach the altitude of

the target.
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Figure 104 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 12000m and Yt = -8000m
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Figure 105 and Figure 106 show the performance of the missile for the
target at 12000m range and -10000m deviation. Here, it can be seen that
for the range TGNN performed better than PN. The TGNN range error is 8m
while PN is 599m. In addition, TGNN performed better for deviation. Here,
it can be seen that the deviation error for TGNN is 28m while PN 1is
4928m. It is important to note that TGNN took longer to reach the altitude

of the target.
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Figure 105 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 12000m and Yt = -10000m
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Figure 106 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 12000m and Yt = -10000m
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Figure 107 and Figure 108 show the performance of the missile for the
target at 14000m range and Om deviation. Here, it can be seen that for
the both TGNN and PN performed similarly. The TGNN range error is Om
while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. However, TGNN deviated from the center axis before
settling back to zero. It is important to note that TGNN took a little

bit longer to reach the altitude of the target.
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Figure 107 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = Om
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Figure 108 - Comparison of NED Frame Position Miss Distance Between

TGNN and PN for Target Located at Xt = 14000m and Yt = Om
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Figure 109 and Figure 110 show the performance of the missile for the
target at 14000m range and -2000m deviation. Here, it can be seen that
for the both TGNN and PN performed similarly. The TGNN range error is
Om while PN is also Om. In addition, TGNN and PN performed similarly for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is also Om. It is important to note that TGNN took a little bit longer

to reach the altitude of the target.
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Figure 109 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = -2000m
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Figure 110 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 14000m and Yt = -2000m
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Figure 111 and Figure 112 show the performance of the missile for the
target at 14000m range and -4000m deviation. Here, it can be seen that
for the both TGNN and PN performed similarly. The TGNN range error is
Om while PN is also Om. However, TGNN performed better than PN for
deviation. It can be seen that the deviation error for TGNN is Om while
PN is 4m. It is important to note that TGNN took a little bit longer to

reach the altitude of the target.
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Figure 111 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = -4000m
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Figure 112 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 14000m and Yt = -4000m
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Figure 113 and Figure 114 show the performance of the missile for the
target at 14000m range and -6000m deviation. Here, it can be seen that
TGNN performed better than PN. The TGNN range error is 1lm while PN is
also 615m. In addition, TGNN performed better than PN for deviation. It
can be seen that the deviation error for TGNN is 1.3m while PN is 733m.

It is important to note that TGNN took longer to reach the altitude of

the target.
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Figure 113 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = -6000m
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Figure 114 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 14000m and Yt = -6000m

112 | Page



Figure 115 and Figure 116 show the performance of the missile for the
target at 14000m range and -8000m deviation. Here, it can be seen that
TGNN performed better than PN. The TGNN range error is 3m while PN is
also 1383m. In addition, TGNN performed better than PN for deviation.
It can be seen that the deviation error for TGNN is 1.5m while PN is
2571m. It is important to note that TGNN took longer to reach the altitude
of the target.
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Figure 115 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = -8000m
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Figure 116 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 14000m and Yt = -8000m
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Figure 117 and Figure 118 show the performance of the missile for the
target at 14000m range and -10000m deviation. Here, it can be seen that
TGNN performed better than PN. The TGNN range error is 4m while PN is
also 1632m. In addition, TGNN performed better than PN for deviation.
It can be seen that the deviation error for TGNN is 16m while PN 1is

4719m. It is important to note that TGNN took longer to reach the altitude

of the target.
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Figure 117 - Comparison of NED Frame Position Between TGNN and PN for

Target Located at Xt = 14000m and Yt = -10000m
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Figure 118 - Comparison of NED Frame Position Miss Distance Between
TGNN and PN for Target Located at Xt = 14000m and Yt = -10000m
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Figure 119 and Figure 120 show the comparison of the histogram
distribution between PN and TGNN for range and deviation miss distances.
It can be seen that PN has a higher mean and a higher standard of
deviation. This means that for both cases PN has more error. This leads
to the conclusion that TGNN is a viable if not better alternative to PN

for Terminal Guidance.
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Figure 120 Comparison of The Histogram Distribution Between PN and
TGNN For Deviation Miss Distance
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7.2.2.Autopilot NN vs Autopilot

Similar to the guidance comparison, the missile is launched at 45degs
launch angle. The angle is chosen for the comparison because it allows
the missile to fly to the maximum range. In addition, it ensures
sufficient amount of altitude to evaluate performance of the missile.
The proportional navigation algorithm is used to guide the missile
towards the target. In order to reduce the terminal guidance limitations,
the target range is varied between 10000m and 14000m. Moreover, the
target deviation is varied between Om and 3000m. It is important to note
that the missile guidance and autopilot starts at 20 seconds after launch
as shown in Figure 121. This is to ensure that the missile reaches the
apex before the guidance start. In addition, the scenario will be
repeated with a maximum actuator deflection of 15degs and 20degs. This
will allow the controllers to be tested with and without aerodynamic
limitations caused by the maximum actuator deflection of 15degs.
Additionally, the IMU refresh rate is set to 0.2mili seconds in order
for the NNA to work properly.

Both PID and Neural Network Autopilot will be used to control the missile
in these scenarios. Unlike the guidance comparison where only the miss
distance of the missile is used as the evaluation criteria, the Mean
Square Error will be used as well. Here, the MSE of both algorithms for
roll, pitch, and yaw responses will be compared. Hence, this creates a
quantifiable criterion to see which controller followed the demand
better. Furthermore, the Euler angles of the missile will be presented
in order to see the smoothness of each of the controllers. This is

important because an oscillating missile is not desirable.

Autopilot Start QC

Figure 121 - Autopilot Comparison Scenario
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Figure 122 and Figure 123 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 10000m range
and Om deviation. Here, it can be seen that both PID and NNA algorithms

performed almost perfectly. However, PID has a small range miss distance.

XNED for Act 15deg, Target X =10000m, & Target Y = O0m
T T T T T

15000 T T
s NN North

s NN East
NN Down

== P|D North

s P|D East

s P|D Down
5000 -

10000

_5000 1 1 1 1 I 1 1 1 1

Figure 122 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
10000m and Yt = Om
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Figure 123 - Comparison of NED Frame Position Miss Distance Between

NNA and PID for a Maximum Actuator Deflection of 15deg and Target
Located at Xt = 10000m and Yt = Om
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Figure 124 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target

at 10000m range and Om deviation. Here, it can be seen that

controller 1s smoother than the NNA controller, which has

oscillation.
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Figure 124 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =

10000m and Yt = Om

Figure 125 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 10000m range and
Om deviation. Here, it can be seen that the RNNA controller performed

better than the PID controller as 1t has a lower MSE value.

It is

important to note that the roll demand is adjusted to account for the

static error.
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Figure 125 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt

= Om
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Figure 126 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 10000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller shows an unusual behavior which contributed to the
small miss distance.

Pitch Response for Act 15deg, Target X = 10000m, & Target Y = Om
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Figure 126 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= Om

Figure 127 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 10000m range
and Om deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
Nevertheless, the performance of both controllers is very similar.
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Figure 127 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt

= Om
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Figure 128 and Figure 129 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that both PID and NNA

algorithms performed almost perfectly.

XNED for Act 15deg, Target X = 10000m, & Target Y = -1000m
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Figure 128 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
10000m and Yt = -1000m
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Figure 129 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target
Located at Xt = 10000m and Yt = -1000m
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Figure 130 shows the missile Euler angles comparisons between NNA and

PID controllers for a maximum actuator deflection of 15deg and the target

at 10000m range and -1000m deviation. Here, it can be seen that the PID

controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 130 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
10000m and Yt = -1000m

Figure 131 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 10000m range and
-1000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.
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Figure 131 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= -1000m
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Figure 132 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 132 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= -1000m

Figure 133 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
Nevertheless, the performance of both controllers is very similar.

Yaw Response for Act 15deg, Target X = 10000m, & Target Y = -1000m
T

20 T T T
| s Yaw Demand
15 | e Yaw NN Response with MSE of 812.26 |

Yaw PID Response with MSE of 837.44

10 .
5 -
0| = : seeSES—
///‘ilr o
-5 / _
-10 !* .
_1 5 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Figure 133 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt

= -1000m
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Figure 134 and Figure 135 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 10000m range
and -3000m deviation. Here, it can be seen that the NNA controller
performed better for range with less miss distance. However, the PID

controller performed better for deviation with less miss distance.
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Figure 134 - Comparison of NED Frame Position Between NNA and PID for

a Maximum Actuator Deflection of 15deg and Target Located at Xt =
10000m and Yt = -3000m
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Figure 135 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target

Located at Xt = 10000m and Yt = -3000m
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Figure 136 shows the missile Euler angles comparisons between NNA and

PID controllers for a maximum actuator deflection of 15deg and the target

at 10000m range and -3000m deviation. Here, it can be seen that the PID

controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 136 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
10000m and Yt = -3000m

Figure 137 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 10000m range and
-3000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE wvalue. It 1is
important to note that the roll demand is adjusted to account for the
static error.
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T T T T T T T T T

10
5 (— —
|
0 = o S .
5+ 4
== Roll Demand
s Roll NN Response with MSE of 796.38
10 | | Roll PID Response with MSE of 818.30 | | |
0 5 10 15 20 25 30 35 40 45 50

Figure 137 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= -3000m
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Figure 138 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 10000m range
and -3000m deviation. Here, 1t can be seen that the Pitch LNNA
controllers performed better than the PID controller as it has a lower
MSE value. The PID controller does not match as well because it was tuned
for the transfer function.
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Figure 138 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= -3000m
Figure 139 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 10000m range
and -3000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
It is interesting because despite Yaw LNNA controller having a better
performance, the PID resulted in less range miss distance. Nevertheless,

the performance of both controllers is very similar.
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Figure 139 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 10000m and Yt
= -3000m
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Figure 140 and Figure 141 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 12000m range
and Om deviation. Here, it can be seen that the NNA controller performed
better for range with less miss distance. However, the PID controller

performed better for deviation with less miss distance.
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Figure 140 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = Om
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Figure 141 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target
Located at Xt = 12000m and Yt = Om
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Figure 142 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target
at 12000m range and Om deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 142 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = Om

Figure 143 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 12000m range and
Om deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE wvalue. It is
important to note that the roll demand is adjusted to account for the

static error.
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Figure 143 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= Om
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Figure 144 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 12000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 144 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= Om
Figure 145 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 12000m range
and Om deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
It is interesting because despite Yaw LNNA controller having a better
performance, the PID resulted in less range miss distance. Nevertheless,

the performance of both controllers is very similar.

Yaw Response for Act 15deg, Target X = 12000m, & Target Y = Om
T

20 T T
’ m——— Yaw Demand
15 == Yaw NN Response with MSE of 862.30
Yaw PID Response with MSE of 873.04
10 .
5 —
0 — P s =
-5 —
_1 O L 1 | | | |
0 10 20 30 40 50 60
Figure 145 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt

= Om
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Figure 146 and Figure 147 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 12000m range
and -1000m deviation. Here, 1t can be seen that the NNA controller

performed better for both range and deviation.
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Figure 146 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = -1000m
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Figure 147 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target

Located at Xt = 12000m and Yt = -1000m
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Figure 148 shows the missile Euler angles comparisons between NNA and
PID controller for a maximum actuator deflection of 15deg and the target
at 12000m range and -1000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small
oscillation.
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Figure 148 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = -1000m

Figure 149 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 12000m range and
-1000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the
static error.
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Figure 149 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -1000m
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Figure 150 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 12000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 150 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -1000m
Figure 151 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 12000m range
and -1000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 151 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -1000m
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Figure 152 and Figure 153 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 152 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = -3000m
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Figure 153 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target

Located at Xt = 12000m and Yt = -3000m
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Figure 154 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target
at 12000m range and -3000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.

Missile Euler Angles for Act 15deg, Target X =12000m, & Target Y = -3000m
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Figure 154 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
12000m and Yt = -3000m

Figure 155 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 12000m range and
-3000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the

static error.

Roll Response for Act 15deg, Target X = 12000m, & Target Y = -3000m
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Figure 155 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -3000m
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Figure 156 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 156 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -3000m
Figure 157 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 157 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 12000m and Yt
= -3000m
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Figure 158 and Figure 159 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 14000m range
and Om deviation. Here, it can be seen that the NNA controller performed
better for range. However, the PID controller performed better for

deviation.
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Figure 158 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = Om
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Figure 159 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target
Located at Xt = 14000m and Yt = Om
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Figure 160 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target
at 14000m range and Om deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 160 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = Om

Figure 161 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 14000m range and
Om deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.

Roll Response for Act 15deg, Target X = 14000m, & Target Y = Om
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Figure 161 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= Om
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Figure 162 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 14000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 162 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= Om
Figure 163 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 15deg and the target at 14000m range
and Om deviation. Here, it can be seen that the PID controller performed
better than the Yaw LNNA controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 163 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= Om
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Figure 164 and Figure 165 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 14000m range
and -1000m deviation. Here, it can be seen that the NNA controller
performed better for range. However, the PID controller performed better

for deviation.
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Figure 164 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = -1000m
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Figure 165 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target
Located at Xt = 14000m and Yt = -1000m
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Figure 166 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target
at 14000m range and -1000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 166 - Comparison of Missile Euler Angles Between NNA and PID

for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = -1000m

Figure 167 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 15deg and the target at 14000m range and
-1000m deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.

Roll Response for Act 15deg, Target X = 14000m, & Target Y =-1000m
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Figure 167 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= -1000m
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Figure 168 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 14000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 168 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= -1000m

Figure 169 shows the comparison between Yaw LNNA and PID controllers for

a maximum actuator deflection of 15deg and the target at 14000m range

and -1000m deviation. Here, it can be seen that the PID controller

performed better than the Yaw LNNA controller as it has a lower MSE

value. Nevertheless, the performance of both controllers is very similar.
Yaw Response for Act 15deg, Target X = 14000m, & Target Y = -1000m

2 T T T
( m—— Yaw Demand
15k = Yaw NN Response with MSE of 1095.04
5 Yaw PID Response with MSE of 1093.40
10 .
5 —
0 —— Y 7
\4 B —
-5 —
_1 0 L | | | | |
0 10 20 30 40 50 60
Figure 169 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt

= -1000m
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Figure 170 and Figure 171 show the autopilot performance of the missile
for a maximum actuator deflection of 15deg and the target at 14000m range
and -3000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 170 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = -3000m
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Figure 171 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 15deg and Target

Located at Xt = 14000m and Yt = -3000m
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Figure 172 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 15deg and the target

at 14000m range and -3000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small
oscillation.
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Figure 172 - Comparison of Missile Euler Angles Between NNA and PID

for a Maximum Actuator Deflection of 15deg and Target Located at Xt =
14000m and Yt = -3000m

Figure 173 shows the comparison between RNNA and PID controllers for a
deflection of 15deg and the target at 14000m range and
-3000m deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the

maximum actuator

static error.
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Figure 173 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= -3000m
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Figure 174 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 15deg and the target at 14000m range
and -3000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 174 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt
= -3000m

Figure 175 shows the comparison between Yaw LNNA and PID controllers for

a maximum actuator deflection of 15deg and the target at 14000m range

and -3000m deviation. Here, it can be seen that the PID controller

performed better than the Yaw LNNA controller as it has a lower MSE

value. Nevertheless, the performance of both controllers is very similar.
Yaw Response for Act 15deg, Target X = 14000m, & Target Y = -3000m
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Figure 175 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 15deg and Target Located at Xt = 14000m and Yt

= -3000m
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Figure 176 shows the comparison of the histogram distribution between
PID and NNA controllers for range and deviation miss distances with a
maximum actuator deflection of 15deg. It can be seen that PID has a
higher mean and a higher standard of deviation. This means that for both
cases PID resulted in more error. This leads to the conclusion that NNA

is a viable if not a better alternative to the PID controller.
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Figure 176 - Comparison of The Histogram Distribution Between PID and
NNA Controllers for Range and Deviation Miss Distance

Figure 176 shows the comparison of the histogram distribution between
the performances of the Roll PID and RNNA controllers. It can be seen
that the RNNA controller has a lower mean. This means that the RNNA
controller is more precise. On the other hand, the PID controller has a
lower standard of deviation. This means that the PID controller is more

accurate.
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Figure 177 - Comparison of The Histogram Distribution Between The
Performances of Roll PID and RNNA Controllers
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Figure 178 shows the comparison of the histogram distribution between
the performances of the Pitch PID and LNNA controllers. It can be seen
that the PID controller has a higher mean and standard of deviation.

This means that Pitch LNNA performed better overall.
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Figure 178 - Comparison of The Histogram Distribution Between The
Performances of Pitch PID and LNNA Controllers
Figure 179 shows the comparison of the histogram distribution between
the performances of the Yaw PID and LNNA controllers. It can be seen
that the Yaw LNNA controller has a lower mean. This means that the Yaw
LNNA controller is more precise. On the other hand, the PID controller
has a lower standard of deviation. This means that the PID controller

is more accurate.
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Figure 179 - Comparison of The Histogram Distribution Between The

Performances of Yaw PID and LNNA Controllers
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Figure 181 and Figure 186 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 10000m range
and Om deviation. Here, it can be seen that both PID and NNA algorithms

performed almost perfectly. However, PID has a small range miss distance.
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Figure 180 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = Om
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Figure 181 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 10000m and Yt = Om
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Figure 182 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 10000m range and Om deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small
oscillation.
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Figure 182 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = Om

Figure 183 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 10000m range and
Om deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the

static error.
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Figure 183 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= Om
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Figure 184 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 10000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller shows an unusual behavior which contributed to the
small miss distance.
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Figure 184 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= Om

Figure 185 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 10000m range
and Om deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
Nevertheless, the performance of both controllers is very similar.
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Figure 185 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt

= Om
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Figure 186 and Figure 187 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that both PID and NNA

algorithms performed almost perfectly.
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Figure 186 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = -1000m
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Figure 187 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 10000m and Yt = -1000m
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Figure 188 shows the missile Euler angles comparisons between NNA and

PID controllers for a maximum actuator deflection of 20deg and the target

at 10000m range and -1000m deviation. Here, it can be seen that the PID

controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 188 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = -1000m

Figure 189 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 10000m range and
-1000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.
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Figure 189 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -1000m

150 | Page



Figure 190 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.

Pitch Response for Act 20deg, Target X = 10000m, & Target Y = -1000m
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Figure 190 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -1000m

Figure 191 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 10000m range
and -1000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
Nevertheless, the performance of both controllers is very similar.
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Figure 191 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -1000m
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Figure 192 and Figure 193 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 10000m range
and -3000m deviation. Here, it can be seen that the PID controller

performed better for both range and deviation with less miss distance.

XNED for Act 20deg, Target X = 10000m, & Target Y = -3000m
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Figure 192 - Comparison of NED Frame Position Between NNA and PID for

a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = -3000m
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Figure 193 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 10000m and Yt = -3000m
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Figure 194 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 10000m range and -3000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 194 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
10000m and Yt = -3000m

Figure 195 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 10000m range and
-3000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.

Roll Response for Act 20deg, Target X =10000m, & Target Y = -3000m
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Figure 195 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -3000m
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Figure 196 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 10000m range
and -3000m deviation. Here, it <can be seen that the Pitch LNNA
controllers performed better than the PID controller as it has a lower
MSE value. It is interesting because despite Pitch LNNA controller having
a better performance, the PID resulted in less range miss distance. The
PID controller does not match as well because it was tuned for the
transfer function.

Pitch Response for Act 20deg, Target X = 10000m, & Target Y = -3000m
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Figure 196 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -3000m
Figure 197 shows the comparison between Yaw LNNA and PID controllers for

a maximum actuator deflection of 20deg and the target at 10000m range
and -3000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
It is interesting because despite Yaw LNNA controller having a better
performance, the PID resulted in less range miss distance. Nevertheless,
the performance of both controllers is very similar.

Yaw Response for Act 20deg, Target X = 10000m, & Target Y = -3000m
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Figure 197 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 10000m and Yt
= -3000m
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Figure 198 and Figure 199 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 12000m range
and Om deviation. Here, it can be seen that the NNA controller performed
better for range with less miss distance. However, the PID controller

performed better for deviation with less miss distance.
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Figure 198 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = Om
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Figure 199 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 12000m and Yt = Om
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Figure 200 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 12000m range and Om deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 200 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = Om

Figure 201 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 12000m range and
Om deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the

static error.

Roll Response for Act 20deg, Target X = 12000m, & Target Y = Om
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Figure 201 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= Om
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Figure 202 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 12000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 202 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= Om
Figure 203 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 12000m range
and Om deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.
It is interesting because despite Yaw LNNA controller having a better
performance, the PID resulted in less range miss distance. Nevertheless,

the performance of both controllers is very similar.
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Figure 203 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt

= Om
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Figure 204 and Figure 205 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 12000m range
and -1000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 204 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = -1000m
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Figure 205 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target

Located at Xt = 12000m and Yt = -1000m
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Figure 206 shows the missile Euler angles comparisons between NNA and
PID controller for a maximum actuator deflection of 20deg and the target
at 12000m range and -1000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.

Missile Euler Angles for Act 20deg, Target X =12000m, & Target Y = -1000m
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Figure 206 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = -1000m

Figure 207 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 12000m range and
-1000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the
static error.

Roll Response for Act 20deg, Target X =12000m, & Target Y = -1000m
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Figure 207 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= -1000m
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Figure 208 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 12000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 208 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= -1000m
Figure 209 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 12000m range
and -1000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 209 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt

= -1000m
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Figure 210 and Figure 211 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 210 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = -3000m
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Figure 211 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target

Located at Xt = 12000m and Yt = -3000m
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Figure 212 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 12000m range and -3000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small
oscillation.
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Figure 212 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
12000m and Yt = -3000m

Figure 213 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 12000m range and
-3000m deviation. Here, it can be seen that the RNNA controller performed
better than the PID controller as it has a lower MSE value. It is
important to note that the roll demand is adjusted to account for the

static error.
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Figure 213 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= -3000m
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Figure 214 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.
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Figure 214 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= -3000m
Figure 215 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 12000m range
and -3000m deviation. Here, it can be seen that the Yaw LNNA controller
performed better than the PID controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 215 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 12000m and Yt
= -3000m
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Figure 216 and Figure 217 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 14000m range
and Om deviation. Here, it can be seen that the NNA controller performed
better for range. However, the PID controller performed better for

deviation.
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Figure 216 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = Om

XNED for Act 20deg, Target X = 14000m, & Target Y = Om
T

15000 T T - - -
=== NN North with Miss Distance of 437.07
== NN East with Miss Distance of 1.37
NN Down with Miss Distance of 0.01
10000 - s PID North with Miss Distance of 552.25
= P|D East with Miss Distance of 0.01
s P|D Down with Miss Distance of 0.01
5000 ]
0 \ / |
_5000 | 1 Il | |
0 10 20 30 40 50 60
Figure 217 - Comparison of NED Frame Position Miss Distance Between

NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 14000m and Yt = Om
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Figure 218 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 14000m range and Om deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small
oscillation.
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Figure 218 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = Om

Figure 219 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 14000m range and
Om deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE wvalue. It 1is
important to note that the roll demand is adjusted to account for the
static error.
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Figure 219 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt

= Om
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Figure 220 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 14000m range
and Om deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 220 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= Om
Figure 221 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 14000m range
and Om deviation. Here, it can be seen that the PID controller performed
better than the Yaw LNNA controller as it has a lower MSE value.

Nevertheless, the performance of both controllers is very similar.
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Figure 221 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= Om
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Figure 222 and Figure 223 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 14000m range
and -1000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 222 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = -1000m
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Figure 223 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target

Located at Xt = 14000m and Yt = -1000m
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Figure 224 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 14000m range and -1000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.
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Figure 224 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = -1000m

Figure 225 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 14000m range and
-1000m deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.
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Figure 225 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= -1000m
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Figure 226 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 14000m range
and -1000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the

transfer function.
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Figure 226 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= -1000m

Figure 227 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 14000m range
and -1000m deviation. Here, it can be seen that the PID controller
performed better than the Yaw LNNA controller as it has a lower MSE
value. It is interesting because despite PID controller having a better
performance, the Yaw LNNA resulted 1in less range miss distance.
Nevertheless, the performance of both controllers is very similar.

Yaw Response for Act 20deg, Target X = 14000m, & Target Y = -1000m
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Figure 227 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt

= -1000m
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Figure 228 and Figure 229 show the autopilot performance of the missile
for a maximum actuator deflection of 20deg and the target at 14000m range
and -3000m deviation. Here, it can be seen that the NNA controller

performed better for both range and deviation.
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Figure 228 - Comparison of NED Frame Position Between NNA and PID for
a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = -3000m
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Figure 229 - Comparison of NED Frame Position Miss Distance Between
NNA and PID for a Maximum Actuator Deflection of 20deg and Target
Located at Xt = 14000m and Yt = -3000m
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Figure 230 shows the missile Euler angles comparisons between NNA and
PID controllers for a maximum actuator deflection of 20deg and the target
at 14000m range and -3000m deviation. Here, it can be seen that the PID
controller 1s smoother than the NNA controller, which has a small

oscillation.

Missile Euler Angles for Act 20deg, Target X = 14000m, & Target Y = -3000m
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Figure 230 - Comparison of Missile Euler Angles Between NNA and PID
for a Maximum Actuator Deflection of 20deg and Target Located at Xt =
14000m and Yt = -3000m

Figure 231 shows the comparison between RNNA and PID controllers for a
maximum actuator deflection of 20deg and the target at 14000m range and
-3000m deviation. Here, it can be seen that the PID controller performed
better than the RNNA controller as it has a lower MSE value. It 1is
important to note that the roll demand is adjusted to account for the
static error.

Roll Response for Act 20deg, Target X = 14000m, & Target Y = -3000m
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Figure 231 - Comparison of Roll Response Between RNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= -3000m
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Figure 232 shows the comparison between Pitch LNNA and PID controllers
for a maximum actuator deflection of 20deg and the target at 14000m range
and -3000m deviation. Here, it can be seen that the Pitch LNNA controller
performed better than the PID controller as it has a lower MSE value.
The PID controller does not match as well because it was tuned for the
transfer function.

Pitch Response for Act 20deg, Target X = 14000m, & Target Y = -3000m
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Figure 232 - Comparison of Pitch Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt
= -3000m

Figure 233 shows the comparison between Yaw LNNA and PID controllers for
a maximum actuator deflection of 20deg and the target at 14000m range
and -3000m deviation. Here, it can be seen that the PID controller
performed better than the Yaw LNNA controller as it has a lower MSE
value. It is interesting because despite PID controller having a better
performance, the Yaw LNNA resulted 1in less range miss distance.
Nevertheless, the performance of both controllers is very similar.

Yaw Response for Act 20deg, Target X = 14000m, & Target Y = -3000m
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Figure 233 - Comparison of Yaw Response Between LNNA and PID for Max
Actuator Deflection of 20deg and Target Located at Xt = 14000m and Yt

= -3000m
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Figure 234 shows the comparison of the histogram distribution between
PID and NNA controllers for range and deviation miss distances with a
maximum actuator deflection of 20deg. It can be seen that PID has a
higher mean and a higher standard of deviation. This means that for both
cases PID resulted in more error. This leads to the conclusion that NNA

is a viable if not a better alternative to the PID controller.
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Figure 234 - Comparison of The Histogram Distribution Between PID and

NNA Controllers for Range and Deviation Miss Distance
Figure 235 shows the comparison of the histogram distribution between
the performances of the Roll PID and RNNA controllers. It can be seen
that the RNNA controller has a lower mean. This means that the RNNA
controller is more precise. On the other hand, the PID controller has a
lower standard of deviation. This means that the PID controller is more

accurate.
) Roll Autopilot Historgram for Act 20deg
T T T T T T T
1.8 —
1.6 -
14k [__IPID Roll Controller with ¢ = 127.80 and u = 911.31 B
’ I RNNA Controller with 0 = 142.78 and u = 900.43
- 1.2 |
[$)
C
S — .
o
o
L 08 .
0.6 s
0.4 -
0.2 —
0 l
700 750 800 850 900 950 1000 1050 1100
MSE
Figure 235 - Comparison of The Histogram Distribution Between The

Performances of Roll PID and RNNA Controllers
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Figure 236 shows the comparison of the histogram distribution between
the performances of the Pitch PID and LNNA controllers. It can be seen
that the PID controller has a higher mean and standard of deviation.

This means that Pitch LNNA performed better overall.
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Figure 236 - Comparison of The Histogram Distribution Between The
Performances of Pitch PID and LNNA Controllers
Figure 237 shows the comparison of the histogram distribution between
the performances of the Yaw PID and LNNA controllers. It can be seen
that the Yaw LNNA controller has a lower mean. This means that the Yaw
LNNA controller is more precise. On the other hand, the PID controller
has a lower standard of deviation. This means that the PID controller

is more accurate.
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Figure 237 - Comparison of The Histogram Distribution Between The

Performances of Yaw PID and LNNA Controllers
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7.2.3.NNI vs GPS/INS Integration Comparison

The missile is launched at wvarying launch angles from 10deg to 80deg
with a step of 10 deg. At each launch angle, the target is located at
either Om or 2000m. The reason for varying the launch angle and target
location 1is to see the effects it has on the GPS/INS integration
performance. It is important to note that the GPS/INS integration can
only happen if the GPS signal is available. Since the simulation assumes

a commercial GPS, the limitation has to be taken into consideration.

Therefore, Figure 238 shows the GPS/INS Comparison Scenario when the GPS
signal is available. The GPS first becomes available once the missile
is launched and its velocity drops below 500m/s. That 1is Dbecause
commercial GPS is software limited to not report data faster than the
500m/s velocity 1limit. Since the GPS signal can be lost during the
flight, it should be tested in the simulation. In addition, the
reacquisition of the GPS signal is important. Hence, it is also tested

in the simulation.

N e

60 GPS Acquired Guidance Start GPS Loss GPS Reacquired

Figure 238 - GPS/INS Comparison Scenario

Furthermore, there are two methods of handling the loss of GPS signal.
One method is to switch the INS algorithm with no reset. The No Reset
method keeps the INS estimation as a backup localization of the missile.
The Rest method will reset the INS with the predicted estimation.
Therefore, the INS is corrected with the prediction although no backup
localization 1is kept. The performance of the two methods will be
presented separately in the comparison. That is because each method has

its unique advantage. The performance of the No Reset method will assume
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constant GPS signal. This is to ensure that error from not resetting
does not overshadow the integration performance. However, for the Reset
method, the performance will include the GPS loss of signal. That is
because it is important to see the effects of resetting the INS on the
integration algorithm performance. In addition, it is also the more
popular method used in the missile industry. Moreover, the performance
of the integration algorithm will be evaluated using Mean Square Error.
This is to allow an overall quantifiable comparison criterion.

Figure 239 shows the no reset GPS/INS integration concept. Here, the
blue line is the pure INS performance. In addition, the green line 1is
the actual location of the missile. Moreover, the red line is the GPS/INS
integration with no reset. It can be seen that the GPS/INS integration
performance is better than INS. However, once the GPS signal is lost,
the algorithm switches directly to the INS. This makes the performance
gains useless if the GPS signal is lost. The algorithm switches back
once the GPS signal is regained. On the other hand, Figure 240 shows the
reset GPS/INS integration concept. Similarly, green line is the actual
location of the missile. However, there is no pure INS blue line because
it is being reset at every iteration. The red line is the GPS/INS
integration with reset. It can be seen that once the GPS signal is lost,
the algorithm switches to the cyan pure INS performance. Then, once the

GPS is regained, it continues with the algorithm from where it left off.

Figure 239 - GPS/INS Integration Concept of Operation with No INS

Reset

Figure 240 - GPS/INS Integration Concept of Operation with INS Reset
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Figure 241 and Figure 242 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
In addition, the Kalman filter performed fine as well. However, it can
be seen that the INS struggled with a high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 241 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
20deg and Target Y = Om

No Reset XNED Down for EI0 = 20deg and TarY = 0m
T T

1200 T T T T
s XNED
1000 s NN| with MSE = 90.06
800 - INS with MSE = 2823.69 |
K alman with MSE = 197.11

600

Meters

400
200

_200 | I I 1
0 5 10 15 20 25 30 35 40

Seconds

Figure 242 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
20deg and Target Y = 2000m
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Figure 243 and Figure 244 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
In addition, the Kalman filter performed fine as well. However, it can
be seen that the INS struggled with a high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 243 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
30deg and Target Y = Om
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Figure 244 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
30deg and Target Y = 2000m
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Figure 245 and Figure 246 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least and small MSE.
On the other hand, although NNI performed fine and better than the Kalman
filter, the GPS error worsens the navigation performance. Hence, pure
INS was a better choice for this particular case. It is important to

note that the deviation did not affect the performance much.

No Reset XNED Down for EI0 = 40deg and TarY = Om
T

4000 T T T T T T T T
3000 .
» 2000 - .
L
[}
= 1000 - .
p —— XNED
0 s NN with MSE = 533.79 .
INS with MSE = 60.89
s Kalman with MSE = 810.25
_1 000 | | | | 1
0 5 10 15 20 25 30 35 40 45 50

Seconds
Figure 245 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
40deg and Target Y = Om
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Figure 246 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
40deg and Target Y = 2000m

179 | Page



Figure 247 and Figure 248 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least MSE but also
close to NNI performance. The NNI performed fine and better than the
Kalman filter. However, the GPS error worsens the navigation performance.
Hence, pure INS was a better choice but not much better. It is important

to note that the deviation did not affect the performance much.
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Figure 247 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =

50deg and Target Y = Om
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Figure 248 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
50deg and Target Y = 2000m
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Figure 249 and Figure 250 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for both cases with the
least MSE. In addition, the NNI performed fine as well. However, it can
be seen that the INS struggled with a high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 249 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60

deg and Target Y = Om
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Figure 250 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = 2000m
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Figure 251 and Figure 252 show the comparison of down position GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE
that is also twice better than the Kalman filter. However, the Kalman
filter did perform fine. In addition, it can be seen that the INS
struggled with a very high MSE. It is important to note that the deviation
did not affect the performance much.
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Figure 251 - Comparison of Down Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = Om
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Figure 252 - Comparison of Down Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 253 and Figure 254 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for no deviation. However,
the NNI algorithm performed best for the case with deviation. That is
because the NNI design struggles with zero input condition by introducing

a bias. In addition, it can be seen that the INS struggled with a high

MSE.
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Figure 253 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20

deg and Target Y = Om
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Figure 254 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = 2000m
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Figure 255 and Figure 256 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for no deviation. However,
the NNI algorithm performed best for the case with deviation. That 1is
because the NNI design struggles with zero input condition by introducing
a bias. In addition, it can be seen that the INS struggled with a very

high MSE.
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Figure 255 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = Om
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Figure 256 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = 2000m
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Figure 257 and Figure 258 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for no deviation. However,
the NNI algorithm performed best for the case with deviation. That 1is
because the NNI design struggles with zero input condition by introducing
a bias. In addition, it can be seen that the INS struggled with a very
high MSE.
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Figure 257 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = Om
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Figure 258 - Comparison of East Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = 2000m
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Figure 259 and Figure 260 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for no deviation. However,
the NNI algorithm performed best for the case with deviation. That 1is
because the NNI design struggles with zero input condition by introducing
a bias. In addition, it can be seen that the INS struggled with a very
high MSE.
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Figure 259 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50

deg and Target Y = Om
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Figure 260 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = 2000m
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Figure 261 and Figure 262 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for no deviation. However,
the NNI algorithm performed best for the case with deviation. That 1is
because the NNI design struggles with zero input condition by introducing
a bias. In addition, it can be seen that the INS struggled with a very

high MSE.
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Figure 261 - Comparison of East Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = Om
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Figure 262 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = 2000m
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Figure 263 and Figure 264 show the comparison of east position GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed best for both cases. However, the
NNI algorithm performed fine and close to Kalman filter for the deviation
case. In addition, it still struggles with zero input with a bias. In
addition, it can be seen that the INS struggled with a very high MSE.
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Figure 263 - Comparison of East Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70

deg and Target Y = Om
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Figure 264 - Comparison of East Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 265 and Figure 266 show the comparison of north position GPS/INS

integration in NED frame without reset for the missile launched at 20deg

and target located at Om and 2000m deviation. Here, it can be seen

the NNI algorithm performed the best for both cases with the least

However,

the Kalman filter performed fine. In addition, it can be

that the INS struggled with a very high MSE. It is important to
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Figure 265 - Comparison of North Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 =
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Figure 267 and Figure 268 show the comparison of north position GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
However, the Kalman filter performed fine. In addition, it can be seen
that the INS struggled with a very high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 267 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = Om
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Figure 268 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = 2000m

190 | Page



Figure 269 and Figure 270 show the comparison of north position GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
However, the Kalman filter performed fine. In addition, it can be seen
that the INS struggled with a very high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 269 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = Om
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Figure 270 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = 2000m
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Figure 271 and Figure 272 show the comparison of north position GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
However, the Kalman filter performed fine. In addition, it can be seen
that the INS struggled with a very high MSE. It is important to note

that the deviation did not affect the performance much.
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Figure 271 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = Om
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Figure 272 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = 2000m
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Figure 273 and Figure 274 show the comparison of north position GPS/INS

integration in NED frame without reset for the missile launched at 60deg

and target located at Om and 2000m deviation. Here, it can be seen
the NNI algorithm performed the best for both cases with the least
However, the Kalman filter performed fine. In addition,

that the INS struggled with a very high MSE. It is important to

that the deviation did not affect the performance much.
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Figure 273 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10

deg and Target Y = Om
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Figure 274 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10

deg and Target Y = 2000m
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Figure 275 and Figure 276 show the comparison of north position GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for both cases with the
least MSE. However, the NNI filter performed fine. In addition, it can
be seen that the INS struggled with a very high MSE. It is important to

note that the deviation did not affect the performance much.
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Figure 275 - Comparison of North Position GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = Om
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Figure 276 - Comparison of North Position GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 277 and Figure 278 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
In addition, the INS performed fine but with almost double the MSE.
Moreover, the Kalman filter also performed fine but with a higher MSE.

It is important to note that the deviation did not affect the performance

much.
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Figure 277 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = Om
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Figure 278 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = 2000m
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Figure 279 and Figure 280 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least MSE. The GPS
error worsened the navigation performance. Nevertheless, the NNI
performed fine. Moreover, the Kalman filter also performed fine but with

a higher MSE. It is important to note that the deviation did not affect

the performance much.
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Figure 279 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = Om
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Figure 280 - Comparison of Down Velocity GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = 2000m
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Figure 281 and Figure 282 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least MSE. The GPS
error worsened the navigation performance. Nevertheless, the NNI
performed fine. Moreover, the Kalman filter also performed fine but with
a higher MSE. It is important to note that the deviation did not affect

the performance much.
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Figure 281 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = Om
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Figure 282 - Comparison of Down Velocity GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = 2000m
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Figure 283 and Figure 284 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least MSE. The GPS
error worsened the navigation performance. Nevertheless, the NNI
performed fine. Moreover, the Kalman filter also performed fine but with
a higher MSE. It is important to note that the deviation did not affect
the performance much.
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Figure 283 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = Om
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Figure 284 - Comparison of Down Velocity GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = 2000m
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Figure 285 and Figure 286 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the INS performed the best for both cases with the least MSE. The GPS
error worsened the navigation performance. Nevertheless, the NNI
performed fine. Moreover, the Kalman filter also performed fine but with
a higher MSE. It is important to note that the deviation did not affect

the performance much.
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Figure 285 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = Om
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Figure 286 - Comparison of Down Velocity GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = 2000m
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Figure 287 and Figure 288 show the comparison of down velocity GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for both cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 287 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = Om
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Figure 288 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 289 and Figure 290 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for the case with no deviation.
However, the NNI performed best for the case with deviation. That is
because the NNI algorithm struggles with =zero input with a bias. In

addition, the INS algorithm performed fine although with a higher MSE.
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Figure 289 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = Om
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Figure 290 - Comparison of East Velocity GPS/INS Integration in NED

Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = 2000m

201 | Page



Figure 291 and Figure 292 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for the case with no deviation.
However, the NNI performed best for the case with deviation. That is
because the NNI algorithm struggles with =zero input with a bias. In

addition, the INS algorithm performed fine although with a higher MSE.
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Figure 291 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = Om
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Figure 292 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = 2000m
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Figure 293 and Figure 294 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for the case with no deviation.
However, the NNI performed best for the case with deviation by a little.
That is because the NNI algorithm struggles with zero input with a bias.
In addition, the INS algorithm performed fine although with a higher

MSE.
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Figure 293 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = Om
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Figure 294 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = 2000m
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Figure 295 and Figure 296 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for both cases. However, the NNI
performed fine with a bigger error with the deviation case. That is
because the NNI algorithm struggles with =zero input with a bias. In

addition, the INS algorithm performed fine although with a higher MSE.
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Figure 295 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = Om
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Figure 296 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = 2000m
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Figure 297 and Figure 298 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for both cases. However, the NNI
performed fine with a bigger error with the deviation case. That is
because the NNI algorithm struggles with =zero input with a bias. In

addition, the INS algorithm performed fine although with a higher MSE.
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Figure 297 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = Om
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Figure 298 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = 2000m
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Figure 299 and Figure 300 show the comparison of east velocity GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter performed the best for both cases. However, the NNI
performed fine with a bigger error with the deviation case. That is
because the NNI algorithm struggles with =zero input with a bias. In
addition, the INS algorithm performed fine although with a higher MSE.
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Figure 299 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = Om
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Figure 300 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 301 and Figure 302 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 301 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = Om
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Figure 302 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 20
deg and Target Y = 2000m
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Figure 303 and Figure 304 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 303 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = Om
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Figure 304 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 30
deg and Target Y = 2000m
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Figure 305 and Figure 306 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 305 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = Om
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Figure 306 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 40
deg and Target Y = 2000m
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Figure 307 and Figure 308 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 307 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = Om
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Figure 308 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 50
deg and Target Y = 2000m
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Figure 309 and Figure 310 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 309 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = Om
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Figure 310 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 60
deg and Target Y = 2000m
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Figure 311 and Figure 312 show the comparison of north velocity GPS/INS
integration in NED frame without reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI performed the best for Dboth cases with the least MSE.
Nevertheless, the INS performed fine. Moreover, the Kalman filter also
performed fine but with a higher MSE. It is important to note that the

deviation did not affect the performance much.
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Figure 311 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = Om
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Figure 312 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between INS, Kalman Filter, and NNI Without Reset for E10 = 70
deg and Target Y = 2000m
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Figure 313 shows a comparison of the histogram distribution of down
position GPS/INS integration in NED frame without reset for INS, NNI,
and Kalman filter. It can be seen that INS has the highest mean and
standard of deviation. This means that it is the least accurate overall
despite having better performances in some cases. In addition, the NNI
has the lowest mean and deviation. This means that is the most accurate
despite having cases where it did not perform the best. Moreover, it can

be seen that the Kalman filter performed fine overall.
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Figure 313 - Comparison of The Histogram Distribution for Down
Position GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.

Figure 314 shows a comparison of the histogram distribution of east
position GPS/INS integration in NED frame without reset for INS, NNI,
and Kalman filter. It can be seen that INS has the highest mean and
standard of deviation. This means that it is the least accurate overall
which was clearly seen in 1its performances. In addition, the Kalman
filter has the lowest mean and deviation. This means that it is the most
accurate despite having cases where it did not perform the best.
Moreover, it can be seen that the NNI performed fine overall. However,
the NNI distribution is skewed because of its challenges with zero input.
Thus, making the Kalman filter a better solution for side navigation

integration.
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Figure 314 - Comparison of The Histogram Distribution for East

Position GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.
Figure 315 shows a comparison of the histogram distribution of north

position GPS/INS integration in NED frame without reset for INS, NNI,
and Kalman filter. It can be seen that INS has the highest mean and
standard of deviation. This means that it is the least accurate overall
which was clearly seen in its performances. In addition, the NNI has the
lowest mean and deviation. This means that it 1s the most accurate
despite which was also seen in its performances. Moreover, it can be

seen that the Kalman filter performed fine overall.
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Figure 315 - Comparison of The Histogram Distribution for North

Position GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.
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Figure 316 shows a comparison of the histogram distribution of down
velocity GPS/INS integration in NED frame without reset for INS, NNI,
and Kalman filter. It can be seen that Kalman filter has the highest
mean and standard of deviation. This means that it is the least accurate
overall which was seen in its performances. In addition, the NNI has the
lowest mean and deviation. This means that it is the most accurate
despite having cases where it did not perform the best. In addition, it

can be seen that the INS filter performed fine overall.
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Figure 316 - Comparison of The Histogram Distribution for Down

Velocity GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.
Figure 317 shows a comparison of the histogram distribution of east
velocity GPS/INS integration in NED frame without reset for INS, NNT,
and Kalman filter. It can be seen that INS has the highest mean but the
lowest standard of deviation. This means that it is the least accurate
but the most precise. In addition, the Kalman filter has the lowest mean
and a low stand of deviation. This means that it is the most accurate
as seen from its performances. In addition, the NNI performed fine.
However, its distribution is mostly skewed because of its challenges

with zero input.
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Figure 317 - Comparison of The Histogram Distribution for East

Velocity GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.
Figure 318 shows a comparison of the histogram distribution of north

velocity GPS/INS integration in NED frame without reset for INS, NNI,
and Kalman filter. It can be seen that INS has the highest mean but the
lowest standard of deviation. This means that it is the least accurate
but most precise. In addition, the NNI has the lowest mean and a low
stand of deviation. This means that it is the most accurate as seen from
its performances. In addition, the Kalman filter performed fine. However,

it is the least accurate and least precise.
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Figure 318 - Comparison of The Histogram Distribution for North

Velocity GPS/INS Integration in NED Frame Without Reset Between INS,
NNI, and Kalman Filter.
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Figure 319 and Figure 320 show the comparison of down position GPS/INS
integration in NED frame with reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
In addition, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.

Reset XNED Down for EI0 = 20deg and TarY = Om
T T

1200 T T T XNED
1000 s NN| with MSE = 312.93
Kalman with MSE = 321.41
800 - —
[ L -
E’ 600
[}
S 400 - 4
200 - —
0 -
_200 1 1 1 | | 1 1
0 5 10 15 20 25 30 35 40

Seconds

Figure 319 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= Om
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Figure 320 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= 2000m
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Figure 321 and Figure 322 show the comparison of down position GPS/INS

integration in NED frame with reset for the missile launched at 30deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

In addition,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 321 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
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Figure 322 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y

= 2000m
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Figure 323 and Figure 324 show the comparison of down position GPS/INS
integration in NED frame with reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
In addition, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 323 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= Om
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Figure 324 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= 2000m
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Figure 325 and Figure 326 show the comparison of down position GPS/INS

integration in NED frame with reset for the missile launched at 50deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

In addition, the Kalman filter performed fine as well.

to note that the deviation did not affect the performance much.
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Figure 325 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y

= Om
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Figure 327 and Figure 328 show the comparison of down position GPS/INS

integration in NED frame with reset for the missile launched at 60deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

In addition,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 327 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
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Figure 328 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y

= 2000m
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Figure 329 and Figure 330 show the comparison of down position GPS/INS

integration in NED frame with reset for the missile launched at 70deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

In addition,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 329 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y

8000

6000

4000

Meters

2000

-2000

Reset XNED Down for EI0 = 70deg and TarY = 2000m
T T

= Om

T T T . T e XNED
Ty, s NN| with MSE = 843.58
L // Kalman with MSE = 849.80
- // -
| Il 1 | | | | |
0 10 20 30 40 50 60 70 80 90
Seconds

Figure 330 - Comparison of Down Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y

= 2000m
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Figure 331 and Figure 332 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 331 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= Om
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Figure 332 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= 2000m
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Figure 333 and Figure 334 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 333 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
= Om
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Figure 334 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
= 2000m
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Figure 335 and Figure 336 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 335 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= Om
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Figure 336 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= 2000m
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Figure 337 and Figure 338 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 337 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= Om
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Figure 338 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= 2000m

226 | Page



Figure 339 and Figure 340 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 339 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= Om

2500 Reset XNED East for EI0 = 60deg and TarY = 2000m
T T T T T

2000 - ]

1500 _

Meters
)
o
o
T
|

500 - -
J e X NED

s NN | with MSE = 193.05
Kalman with MSE = 214.99

_500 1 1 1 1
0 10 20 30 40 50 60 70

Seconds

Figure 340 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= 2000m
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Figure 341 and Figure 342 show the comparison of east position GPS/INS
integration in NED frame with reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 341 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y
= Om
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Figure 342 - Comparison of East Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y
= 2000m
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Figure 343 and Figure 344 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is

important to note that the deviation did not affect the performance much.
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Figure 343 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= Om
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Figure 344 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= 2000m
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Figure 345 and Figure 346 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 30deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is

important to note that the deviation did not affect the performance much.
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Figure 345 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
= Om

Reset XNED North for EI0 = 30deg and TarY = 2000m
T T

14000 T T T T T T
12000 - -
—
10000 — -
) B ,,/~/””// N
& 8000 -
5] —
= 6000 = i
4000 _
s X NED
2000 - > s NN| ith MSE = 1654.49
Kalman with MSE = 1395.90
O | Il Il | |
0 5 10 15 20 25 30 35 40 45

Seconds

Figure 346 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
= 2000m
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Figure 347 and Figure 348 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is
important to note that the deviation did not affect the performance much.
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Figure 347 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= Om
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Figure 348 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= 2000m

231 | Page



Figure 349 and Figure 350 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is

important to note that the deviation did not affect the performance much.
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Figure 349 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= Om
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Figure 350 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= 2000m
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Figure 351 and Figure 352 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is

important to note that the deviation did not affect the performance much.
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Figure 351 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= Om
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Figure 352 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= 2000m
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Figure 353 and Figure 354 show the comparison of north position GPS/INS
integration in NED frame with reset for the missile launched at 70deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is an interesting
phenomenon because with the No Reset case NNI performed better. It is

important to note that the deviation did not affect the performance much.
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Figure 353 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y
= Om
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Figure 354 - Comparison of North Position GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y
= 2000m
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Figure 355 and Figure 356 show the comparison of down velocity GPS/INS
integration in NED frame with reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman algorithm performed the best for both cases with the least
MSE. Nevertheless, the NNI performed fine as well. It is important to

note that the deviation did not affect the performance much.
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Figure 355 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= Om

Reset VNED Down for EI0 = 20deg and TarY = 2000m
200 T T T T T

e X NED
I s NN| with MSE = 5.66
150 [ Kalman with MSE = 3.86

100 jf

50 |/

Meters

-50 - > .

0 5 10 15 20 25 30 35 40
Seconds

Figure 356 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= 2000m
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Figure 357 and Figure 358 show the comparison of down velocity GPS/INS

integration in NED frame with reset for the missile launched at 30deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 357 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
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Figure 358 - Comparison of Down Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y

= 2000m
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Figure 359 and Figure 360 show the comparison of down velocity GPS/INS

integration in NED frame with reset for the missile launched at 40deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 359 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
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Figure 360 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y

= 2000m

237 | Page



Figure 361 and Figure 362 show the comparison of down velocity GPS/INS
integration in NED frame with reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
Nevertheless, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 361 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= Om
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Figure 362 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= 2000m
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Figure 363 and Figure 364 show the comparison of down velocity GPS/INS

integration in NED frame with reset for the missile launched at 60deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 363 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
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Figure 364 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y

= 2000m
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Figure 365 and Figure 366 show the comparison of down velocity GPS/INS

integration in NED frame with reset for the missile launched at 70deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 365 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y
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Figure 366 - Comparison of Down Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y

= 2000m
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Figure 367 and Figure 368 show the comparison of east velocity GPS/INS
integration in NED frame with reset for the missile launched at 20deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.

Reset VNED East for EI0 = 20deg and TarY = 0m
T

5 T T T T = XNED
s NN| with MSE = 9.94
4 Kalman with MSE = 9.50
3L i
¢
[0]
D 2 7
=
1 — |
0 e — 7
_1 | | | | | | |
0 5 10 15 20 25 30 35 40

Seconds

Figure 367 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= Om
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Figure 368 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
= 2000m
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Figure 369 and Figure 370 show the comparison of east velocity GPS/INS

integration in NED frame with reset for the missile launched at 30deg

and target located at Om and 2000m deviation. Here, it can be seen that

the Kalman
deviation.
case. That

deviation.

filter algorithm performed the best for the case with no
On the other hand, the NNI performed better in the deviation
is because the NNI has challenges with zero input for no

Nevertheless, the NNI performed close to the Kalman filter.
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Figure 369 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y

= Om
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Figure 370 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y

= 2000m
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Figure 371 and Figure 372 show the comparison of east velocity GPS/INS
integration in NED frame with reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the best for the case with no
deviation. On the other hand, the NNI performed better in the deviation
case. That 1is because the NNI has challenges with zero input for no

deviation. Nevertheless, the NNI performed close to the Kalman filter.
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Figure 371 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= Om
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Figure 372 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= 2000m
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Figure 373 and Figure 374 show the comparison of east velocity GPS/INS
integration in NED frame with reset for the missile launched at 50deg
and target located at Om and 2000m deviation. Here, it can be seen that
the Kalman filter algorithm performed the Dbest for both cases.

Nevertheless, the NNI performed fine and close to the Kalman filter.
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Figure 373 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= Om
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Figure 374 - Comparison of East Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
= 2000m
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Figure 375 and Figure 376 show the comparison of east velocity GPS/INS

integration in NED frame with reset for the missile launched at 60deg

and target located at Om and 2000m deviation. Here, it can be seen that

the Kalman

Nevertheless,

Meters

filter

algorithm performed the best for both cases.

the NNI performed fine and close to the Kalman filter.
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Figure 375 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
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Figure 376 - Comparison of East Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y

= 2000m
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Figure 377 and Figure 378 show the comparison of east velocity GPS/INS

integration in NED frame with reset for the missile launched at 70deg

and target located at Om and 2000m deviation.

the

Nevertheless,

Meters

Kalman

filter

Here, 1t can be seen that

algorithm performed the best for both cases.

the NNI performed fine and close to the Kalman filter.

s XN ED

Reset VNED East for EI0 = 70deg and TarY = 0m
T T T T

5 T T T NNI with MSE = 5.64
| ] Kalman with MSE = 5.03

4 L - -

3 L -

24 | -

10 ‘ — | \J * 7

0 (— - //// ‘\x, = ’ﬂ _
-1 1 | | I I I I I

0 10 20 30 40 50 60 70 80 90
Seconds

Figure 377 - Comparison of East Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 =
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Figure 378 - Comparison of East Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 =

70 deg and Target Y
= 2000m
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Figure 379 and Figure 380 show the comparison of north velocity GPS/INS

integration in NED frame with reset for the missile launched at 20deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 379 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y
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Figure 380 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 20 deg and Target Y

= 2000m
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Figure 381 and Figure 382 show the comparison of north velocity GPS/INS

integration in NED frame with reset for the missile launched at 30deg

and target located at Om and 2000m deviation. Here, it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 381 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y
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Figure 382 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 30 deg and Target Y

= 2000m
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Figure 383 and Figure 384 show the comparison of north velocity GPS/INS
integration in NED frame with reset for the missile launched at 40deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
Nevertheless, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 383 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= Om
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Figure 384 - Comparison of North Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 = 40 deg and Target Y
= 2000m
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Figure 385 and Figure 386 show the comparison of north velocity GPS/INS

integration in NED frame with reset for the missile launched at 50deg

and target located at Om and 2000m deviation. Here,

it can be seen that

the NNI algorithm performed the best for both cases with the least MSE.

Nevertheless,

the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 385 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 50 deg and Target Y
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Figure 386 - Comparison of North Velocity GPS/INS Integration in NED

Frame Between Kalman and NNI With Reset for E10 =

= 50 deg and Target Y
= 2000m
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Figure 387 and Figure 388 show the comparison of north velocity GPS/INS
integration in NED frame with reset for the missile launched at 60deg
and target located at Om and 2000m deviation. Here, it can be seen that
the NNI algorithm performed the best for both cases with the least MSE.
Nevertheless, the Kalman filter performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 387 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= Om
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Figure 388 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 60 deg and Target Y
= 2000m
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Figure 389 and Figure 390 show the comparison of north velocity GPS/INS

integration in NED frame with reset for the missile launched at 70deg

and target located at Om and 2000m deviation. Here, it can be seen that

the Kalman filter algorithm performed the best for both cases with the

least MSE. Nevertheless, the NNI performed fine as well. It is important

to note that the deviation did not affect the performance much.
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Figure 389 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y

= Om
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Figure 390 - Comparison of North Velocity GPS/INS Integration in NED
Frame Between Kalman and NNI With Reset for E10 = 70 deg and Target Y

= 2000m
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Figure 391 shows a comparison of the histogram distribution of down
position GPS/INS integration in NED frame with reset between NNI and
Kalman filter. It can be seen that Kalman filter has the higher mean.
This means that it is less accurate overall. In addition, the NNI has
the lower mean. This means that it is more accurate. Since the difference
between the standard deviation of the Kalman filter and NNI is small,

it can be assumed that they are equally precise.

Reset XNED Down Historgram

T T T I T T
I NN with 0 = 231.41 and p = 611.68
[T Kalman with 0 = 231.05 and u = 619.73

10 T

Frequency
[9)]

200 300 400 500 600 700 800 900 1000
MSE
Figure 391 - Comparison of The Histogram Distribution for Down

Position GPS/INS Integration in NED Frame With Reset Between NNI and

Kalman Filter.

Figure 392 shows a comparison of the histogram distribution of east
position GPS/INS integration in NED frame with reset between NNI and
Kalman filter. It can be seen that NNI has the higher mean. This means
that it is less accurate overall. This could be because of the challenges
the NNI has with zero input for the no deviation case. In addition, the
Kalman filter has the lower mean. This means that it is more accurate.
Since the standard deviation of the NNI is smaller than the Kalman

filter, it is more precise.
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Figure 392 - Comparison of The Histogram Distribution for East
Position GPS/INS Integration in NED Frame With Reset Between NNI and
Kalman Filter.

Figure 393 shows a comparison of the histogram distribution of north
position GPS/INS integration in NED frame with reset between NNI and
Kalman filter. It can be seen that NNI has the higher mean. This means
that it is less accurate overall. In addition, the Kalman filter has the
lower mean. This means that it is more accurate. Since the standard

deviation of the NNI is lower than the Kalman filter, it is more precise.
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Figure 393 - Comparison of The Histogram Distribution for North

Position GPS/INS Integration in NED Frame With Reset Between NNI and

Kalman Filter.
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Figure 394 shows a comparison of the histogram distribution of down
velocity GPS/INS integration in NED frame with reset between NNI and
Kalman filter. This means that it is less accurate overall. In addition,
the NNI has the lower mean. This means that it is more accurate. Since
the standard deviation of the Kalman filter is lower than the NNI, it

is more precise.

Reset VNED Down Historgram

18 T T T T T T
] I NI with 0 = 3.66 and u = 4.75
16 [ [ Kalman with 0 =2.91 and u = 5.99 | |
14 o
12 - n
&
c 10 B
[0)
o __
o
O 8 .
[T
6 _
4+ _
2+ _
0 ! L I
0 2 4 6 8 10 12 14
MSE
Figure 394 - Comparison of The Histogram Distribution for Down

Velocity GPS/INS Integration in NED Frame With Reset Between NNI and

Kalman Filter.

Figure 395 shows a comparison of the histogram distribution of east
velocity GPS/INS integration in NED frame with reset for between NNI and
Kalman filter. It can be seen that NNI has the higher mean. This means
that it is less accurate overall. In addition, the Kalman filter has the
lower mean. This means that it 1is more accurate. Since the standard

deviation of the NNI is lower than the Kalman filter, it is more precise.

255 | Page



15 Reset VNED East Historgram
T T T T T

I \NI with o = 4.49 and u = 9.24
[ Kalman with 0 = 4.71 and p = 8.90

Frequency

4 6 8 10 12 14 16 18 20
MSE

Figure 395 - Comparison of The Histogram Distribution for East
Velocity GPS/INS Integration in NED Frame With Reset Between NNI and
Kalman Filter.

Figure 396 shows a comparison of the histogram distribution of north
velocity GPS/INS integration in NED frame with reset between NNI and

It can be seen that Kalman filter has the higher mean.
the NNI has

Kalman filter.
This means that it is less accurate overall. In addition,

the lower mean. This means that it is more accurate. Since the standard

deviation of the NNI is lower than the Kalman filter, it is more precise.
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Figure 396 - Comparison of The Histogram Distribution for North
Velocity GPS/INS Integration in NED Frame With Reset Between NNI and

Kalman Filter.
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8. Conclusion

This thesis investigated the possibility of using machine learning to
design missile guidance, navigation, and control algorithms. This was
accomplished by modeling the missile and its environment. In addition,
the missile system and traditional guidance, navigation, and control
algorithms were modeled. This allowed for a benchmark to test the
algorithms designed by machine learning. It is important to keep in mind
that the thesis assumes that the simulation is accurate enough to

represent a physical missile system.

Proportional navigation was used as the benchmark for the terminal
guidance. The Terminal Guidance Neural Network algorithm was developed
using machine learning to perform the task of terminal guidance. The
TGNN algorithm resulted in a more accurate and precise terminal guidance
algorithm than traditional PN. In fact, when pushing the limits of both
algorithms, the TGNN algorithm resulted in significant improvements over
the PN. This means that the TGNN is a viable if not a better alternative
to the traditional PN algorithm.

In addition, a modified version of the roll, pitch, and yaw PID
controller was used as the benchmark for the missile autopilot. The
missile was tested for 15deg and 20deg maximum actuator deflection. In
both cases, the Roll Neural Network Autopilot controller was more precise
than the PID controller. On the other hand, the Roll PID controller was
more accurate. Additionally, the Pitch Lateral Neural Network Autopilot
controller was more precise and accurate than the Pitch PID controller.
Moreover, the Yaw Lateral Neural Network Autopilot controller was more
precise. However, the Yaw PID controller was more accurate. This means
that the Neural Network Autopilot algorithms designed by machine learning
is also a wviable alternative 1if not a Dbetter alternative to the

traditional PID controller.

Furthermore, the Kalman filter was used as the benchmark for the GPS/INS
integration. The integration was tested using No Reset and Reset methods.

In the No Reset Method, both north and down position channels were more
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accurate and precise on Neural Network Integration algorithm. However,
because of the challenge with zero input condition, Kalman filter was
more accurate and precise for the east position channel. The same
behavior holds true for the NED velocities. However, the east velocity
is more accurate on the NNI than the Kalman filter. On the other hand,
the behavior changes with the Reset case. The Kalman filter is more
accurate and precise for down position channel. Although the Kalman
filter was more precise, the NNI was more accurate for the east and north
position channels. The north velocity channel was more precise and
accurate on the NNI algorithm. Nonetheless, the Kalman filter was more
precise for the east velocity channel but less accurate. In addition,
the NNI was more accurate on the down velocity channel but less accurate.
This competitive behavior could be resulted from the fact that the NNI
was trained only for the No Reset case despite being tested on the Reset
case. Hence, with proper training, the NNI algorithm could be improved
further. Since the NNI showed improvements on the No Reset case and was
competitive with Kalman filter on the Reset case, the NNI algorithm is

a viable alternative to the Kalman filter for GPS/INS integration.

The lesson learned from this thesis is that machine learning is a viable
solution to design missile guidance, navigation, and control algorithm.
However, in addition to its advantages in improving the performances of
the traditional algorithms, it is important to keep in mind the time it
took to design and train the solution. Since the training time ranged
from several hours to several days, traditional algorithm might be a
more practical solution. That 1s Dbecause 1in the industry where
development is limited with time and budget, time needed to find an
adequate solution might not be acceptable. However, this could be
combated by using super computers and parallel processing in order to
speed up the training process. Moreover, another lesson is that the
neural network algorithm is a tool and not a magical algorithm that will
solve any problem. It requires deep understanding of both the matter and
the network design. The best results were achieved not when the neural

networks were working alone, but when the neural network worked with
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traditional mathematical model such as the case with TGNN where the line
of sight rate was calculated. Lastly, it 1is difficult to predict
generalization challenge of the neural network. Nevertheless, one
solution for this problem is by allowing the network to interact with

as many cases as possible so that it can learn to interact with changes.

The future step for this thesis is to test the neural network algorithm
with physical systems. That 1is because despite the assumptions, the
physical system behaves differently for the simulated one. That is
because of all elements that has not been considered in the simulation.
In addition, it is because mathematical models are not identical to the
physical system and is limited to the understanding of the system.
Additionally, the neural network guidance, navigation, and control
algorithms can be further improved in order to increase its accuracy and
design. For instance, the NNA can be improved to reduce oscillation and
the NNI can be improved to work better with Reset case and solve the
zero-input condition challenge. In conclusion, the field of research
and development is a growing field where new challenges and opportunities
present itself every day. Hence, there will always Dbe wonderful

opportunities to expand the knowledge and travel beyond the horizons.
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Ipunor 1.

N3jaBa 0 ayTopcTBY

Nornucanu Saif AlAmeri

6po]j mHmexkca D36/2015

UsjaBnyjem

Ia je OOKTOpCka OucepTauuja II0JI HaCJIOBOM

CuuTesa ajnropmraMa HaeBuraummije m Bohjema mnpojexTmia

BaCHOBaHMX Ha MaUMHCKOM ydueny (Missile Guidance Navigation

and Control Algorithms Design Using Machine Learning)

re3sysiTaT COICTBEHOI' MCTPaAXMBAUYKOI pana,

Ioa MOpelnjioxeHa »OucepTalMja Yy LeJIMHM HM Yy »OeJIoOBMMa Huje O0uia
npenjoxeHa 3a znobujawme OMJIO KkOje IUIIJIOMe IIpeMa CTYIOU]CKUM
nmporpamMrMa OpyI'MX BUMCOKOIKOJICKMX YCTAaHOBA,

oa Cy pe3yJiTaTV KOPEeKTHO HaBeIeHUM U

Ia HMCAaM KpuMo/jla ayTopcCKa MnpaBa UM KOPUCTUO MHTEJIEKTYAaJIHy CBOJUHY
OPYyTUX Jnlia.

I[loTnmc poxTopaHma

Y Beorpamy, 27/01/2019
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Ilpusnor 2.

3jaBa 0O NICTOBETHOCTU LUTAMMNaHe N eNnekTPoHCKe Bep3nje

[IOKTOPCKOr paga

Vme m mpes3uMme ayTopa Saif AlAmeri
Bpoj uHmekca D36/2015
Crynujcku nporpaMm Joxkropcke Cucremm Haopyxama Crypmuje

Hacnoe pazma CumHTeBa anropuTaMa HaBuraumje m Bohjema npojexTmna
BaCHOBaHMX Ha MalMHCKOM ydYeny (Missile Guidance Navigation and Control
Algorithms Design Using Machine Learning)

MenTop pgp HOparax Jlasmh pemoBHM npodecop

Nornmucaum Saif AlAmeri

VzjaBmyjeM @Hma Jje wWTraMIaHa Beps3Kja MO IOOKTOPCKOI' palla MCTOBETHA
EJIEKTPOHCKO] Bep3uJlM KOJy caMm Ipemao/jga 3a of0jaBhMBaKke Ha [OPTAJY
IurnranHor penosmuTopMjyMa YHMBepSuTeTa y Beorpamy.

Jo3pomaBaM Ha ce objaBe MOJM JIMUHM [IOJalM Be3aHM 3a Jobujame aKaIeMCKOT
3Bama OOKTOpa Hayka, Kao WTO Cy MMe U IpesuMe, TOAMHA UM MecTo pohewma Uu
maTyMm onmbpaHe pazna.

OBM JMYUHM IOJauM MOTy ce 00JaBUTM Ha MPEeXHMM CTpaHMlaMa OUTUTajiHe
BubnmoTeke, Yy €JEeKTPOHCKOM kaTajioTy M y IoybamukalujaMa YHUBepauTeTa Yy
Beorpany.

I[loTnnc goxTopaHna

Y Beorpamy, 27/01/2019
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Ipunor 3.

N3jaBa o kopuwhery

OBjlamhyjeM YHUMBepP3UTeTCKy Oubamorexky ,CBeTozap MapkoBuh™ ma y IOUIHUTaAJIHU
peno3uTopmujyM YHUMBep3UTeTa y Beorpamy yHece MOJ]Yy HOOKTOPCKY IOuUcCepTaumjy

oI HacCJIOBOM.

CuuTesa anropmuramMa HaeBuraumje m Bohema npojexTmia
BaCHOBaHMX Ha MalMHCKOM yduewny (Missile Guidance Navigation
and Control Algorithms Design Using Machine Learning)
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1. AytopcTtBo - [lo3BorbaBaTe yMHOXaBake, AUCTPUOYLMjy M jaBHO caonwTaBawe Aena, u
npepage, ako ce HaBede UMe ayTopa Ha HauvH ofpeheH of cTpaHe aytopa wnu gasaoua
nuueHue, Yak n 'y komepuujanHe cepxe. OBO je HajcnobogHuja o CBUX NNLEHUMW.

2. AytopcTtBO — HekomepuujanHo. [o3BorbaBaTe yMHOXaBawe, AUCTPUbyuujy un jaBHO
caonwTasawe fena, u npepage, ako ce HaBe[e VMMe ayTopa Ha HauvH ofpefeH of cTpaHe
ayTopa unu gasaoua nuueHue. OBa nuueHua He [03BOrbaBa KomepumjanHy ynotpeby aena.

3. AyTopCTBO - HEkOMepumjanHo — 6e3 npepaae. [Jo3BorbaBaTe yMHOXaBakwe, ANCTPUbYLUujy 1
jaBHO caonwTaBake aena, 6e3 npomeHa, npeobnukoBara nnm ynotpebe genay cBom geny, ako
ce HaBede Mme ayTopa Ha HauvMH ogpeheH of cTpaHe ayTtopa unu gasaoua nvueHue. Osa
nvueHua He Jo3BOrbaBa koMepumjanHy ynotpeby aena. Y ogHocy Ha cBe ocTarne nuueHLe, OBOM
NMLEHLIOM ce orpaHnyaBa Hajsehu obum npaea kopuwhena gena.

4. AyTOpCTBO - HEKOMEpPLMjanHoO — AENUTK Nog UCTUM ycnoBuma. [lo3BosbaBaTe yMHOXaBahse,
anctpmbyuujy 1 jaBHO caoniwiTaBawe ferna, u npepage, ako ce HaBege ume aytopa Ha HayuH
ogpeheH of cTpaHe ayTopa Unv Aaeaoua nuueHLUe 1 ako ce npepaga guctpubympa nog nctom
unn cnumdHoMm nuueHuom. OBa nuueHua He [A03BoSfbaBa koMmepuuvjanHy ynoTpeby gena wm
npepaaa.

5. AyTopcTBo — 6e3 npepage. [lo3BorbaBate yMHOXaBake, AUCTPUOYLNjY 1 jaBHO caornLuTaBake
Aena, 6e3 npomMeHa, npeobnvkoBaka Unu ynotpebe gena y cBoM Aeny, ako ce HaBede vme
ayTopa Ha HauvH ogpeheH of cTpaHe ayTopa unu Aaeaoua nvueHue. OBa nuueHua 4o3BoSbaBa
KomepuujanHy ynoTpeby gena.

6. AyTOPCTBO - AIENUTM NOA UCTUM ycrnoBuma. [lo3sorbaBate yMHOXaBake, AUCTPUOBYLU]Y 1 jaBHO
caorwitaBarwe gena, v npepage, ako ce HaBede MMe ayTopa Ha HauvH ogpeheH on cTpaHe
ayTopa wunu paBaoua nuueHUe M ako ce npepaja AucTpubyuMpa nogd UCTOM WK CIIMYHOM
nuueHuom. OBa nuueHUa [o3BorbaBa koMmepuujanHy ynotpeby gena u npepaga. CnvdHa je
copTBEPCKMM NILIeHLIaMa, OQHOCHO N1LEHLamMa OTBOPEHOr Koaa.
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