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INNOVATIVE SYSTEM FOR SEISMIC RESISTANT MASONRY INFILLS 

IN REINFORCED CONCRETE FRAME STRUCTURES  

Abstract 

Reinforced concrete (RC) structures with masonry infill walls constitute a significant portion 

of buildings, since their use is common in many countries due to the good performances of 

infills with respect to, temperature, noise, moisture, fire and durability. Therefore, RC 

structures with masonry infill walls are a popular form of construction in seismic regions too. 

Although, infill walls are mostly considered as non-structural elements and thus are typically 

neglected in the design process, the observations after earthquakes have shown that they 

interact with the structural system during seismic actions and that the traditional infill walls, 

connected with the mortar to the surrounding frame, are vulnerable to earthquake motions. 

Beside economic loss due to the repair or reconstruction of some infills, repair of damages to 

structural system, equipment, rental and relocation costs and general income losses, 

sometimes the consequences were total collapses of buildings and loss of human lives. 

Therefore, a huge effort has been made to consider the interaction of the structural system 

with the infill walls, but due to the complexity of the infill wall behaviour, no practical design 

procedures or solutions have been developed. 

This thesis presents the INODIS system (Innovative Decoupled Infill System) that makes 

seismic resistant masonry infills in RC frames structures. This system decouples infill wall 

form the surrounding frame through a circumferential arrangement of the U-shaped elastomer 

placed between the infill panel and the frame columns and beams. This allows for relative 

displacements between the frame and infill, without damaging an infill and simultaneously 

enabling a support for the out-of-plane loads. 

The behaviour of the decoupling system is investigated through the tests on system 

components and on a RC frames filled with hollow clay bricks subjected to separate and 

combined in-plane and out-of-plane loads. These test results are compared to the results 

obtained from tests on RC frames with and without traditional infills. The experimental 

results showed quite brittle behaviour of traditional infills as well as significant reduction of 

resistances for sequentially applied loading and even higher reductions of the seismic 

resistance if the loads are applied simultaneously. This was all solved with the application of 

the INODIS system, which helped in reaching high in-plane drifts without experiencing 

damage in infill wall and at the same time providеd reliable connection for the out-of-plane 
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loading. Additionally, viscoelastic behaviour of elastomers provided high level of energy 

dissipation and improvеd damping capacity of the infilled frame. 

The experimental data has been used to validate the numerical micro-model. The developed 

numerical model describes the inelastic behaviour of the system, as indicated by the obtained 

results of the overall structural response as well as the formation of damage in the infilled 

wall. Satisfactory agreement was found between experimental and numerical results. The 

validated models have been used in parametric studies to identify the significant parameters 

influencing the behaviour of infilled frames with the INODIS system. The parametric study 

and experimental findings have been used to develop the design concept for the practical 

application of the INODIS system. Economic analysis of the solution showed the negligible 

increase of initial costs, thus it can be concluded that the INODIS systems presents practically 

applicable solution. 

 

Keywords: Earthquakes, INODIS, RC frames, Masonry infill walls, In-plane, Out-of-plane, 

Combined, Simultaneous loading, Finite element analysis, Parametric study.  

Field of science: Civil and Structural Engineering  

Subdivision: Engineering Mechanics and Theory of Structures 

UDC number: 624.012.45:624.042.7(043.3) 
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ИНОВАТИВНИ СИСТЕМ ЗА СЕИЗМИЧКИ ОТПОРНУ ЗИДАНУ 

ИСПУНУ У АРМИРАНОБЕТОНСКИМ РАМОВСКИМ 

КОНСТРУКЦИЈАМА 

Резиме 

Армиранобетонске (АБ) конструкције са зиданом испуном се врло често користе у  

грађевинарству. Због добрих својстава у погледу трајности, термичких карактеристика, 

добре изолације од буке, влаге, ватре, њихова изградња је уобичајена у многим 

земљама. С обзиром на то, АБ конструкције са зиданом испуном су присутне и у 

сеизмички активним подручијима. Иако се зидана испуна сматра неконструктивним 

елементом који се обично занемарује у прорачуну, уочено је да је традиционална зидана 

испуна, повезана са околним рамом преко малтера, подложна значајном оштећењу при 

дејству земљотреса. Поред економских губитака услед поправки и поновне изградње 

испуне, присутни су и трошкови поправке оштећења носећег система, опреме, 

трошкови пресељења станара, као и губици потенцијалне добити. Последице понекад 

могу да буду и катастрофалне, односно може доћи до тоталног рушење конструкција и 

губитка људских живота. Због тога се улаже значајан напор како би се интеракција 

испуне и носећег система узела у обзир на коректан начин у прорачуну. Међутим због 

комплексности понашања зидане испуне, до сада није предложен ни један практично 

примењив прорачунски концепт. 

У овој дисертација представљен је систем INODIS (Innovative Decoupled Infill System) 

чијом применом зидана испуна у АБ конструкцијама постаје сеизмички отпорна. Овај 

систем се заснива на уградњи еластомера између зидане испуне и околног рама. На овај 

начин се омогућавају релативна померања рама у односу на испуну, без оштећивања 

испуне а истовремено се пружа потпора за оптерећење управно на раван зида. 

Експериментално су испитане све компоненте АБ рамова са зиданом испуном и 

предложеним иновативним системом. Затим су експериментално испитани АБ рамови 

са зиданом испуном од шупљих опекарских блокова и примењеним системом INODIS. 

Испитивани су случајеви са оптерећењем у равни испуне као и оптерећењем управно на 

раван испуне, посебно и у комбинацији. Ови експериментални резултати су упоређени 

са резултатима експерименталних тестова на АБ раму без испуне и АБ раму са 

традиционалном зиданом испуном. Резултати су показали изузетно крто понашање 

традиционалне испуне, као и значајно смањење носивости при секвенцијално нанетом 
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оптерећењу и још веће смањење сеизмичке носивости када су оптерећења нанета 

истовремено. Ово је све решено применом INODIS система, који је омогућио да се 

достигну велике вредности релативног међуспратног померања без појаве оштећења у 

испуни и у исто време пружио поуздану везу за прихватање оптерећења управно на 

раван зида. Такође, вискоеластично понашање еластомера допринело је повећању 

дисипације енергије и побољшању нивоа пригушења система. 

Добијени експериментални подаци су искоришћени за валидацију нумеричког модела. 

Развијени нумерички модел може да опише нелинеарно понашање система, што је и 

показано задовољавајућим поклапањем експерименталних и нумеричких резултата у 

одговору конструкције, као и формирању оштећења у испуни. Валидирани модел је 

искоришћен за параметарску анализу како би се идентификовали кључни параметри 

који утичу на понашање рамова са зиданом испуном и INODIS системом. Параметарска 

анализа и експериментални резултати су искоришћени за развијање прорачунског 

концепта за практичну примену INODIS система. Економска анализа предложеног 

система је показалa незнатно повећање иницијалних трошкова, тако да се може 

закључити да INODIS систем представља практично примењиво решење. 

 

Кључне речи: Земљотреси, INODIS, АБ рамови, Зидана испуна, Оптерећење у равни, 

Оптерећење ван равни, Комбиновано оптерећење, Симултано оптерећење, Метод 

коначних елемената, Параметарска анализа. 

Научна област: Грађевинарство  

Ужа научна област: Техничка механика и теорија конструкција  

УДК број: 624.012.45:624.042.7(043.3) 
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Am Area of the infill panel in the horizontal plane 
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Ap Infill panel area 

Ec Modulus of elasticity of concrete 

Ed Modulus of elasticity of infill in strut direction 

Ediss Dissipated energy 

Em Modulus of elasticity of masonry 

Es Modulus of elasticity of reinforcement steel 

Esto Stored energy 

Eu Modulus of elasticity of brick 

GF Fracture energy 

Gm Shear modulus of masonry 

C
nG  Fracture energy in the normal direction 

C
sG  Fracture energy in the shear direction 

C
tG  Fracture energy in the shear direction 

H Frame height 

Ib Moment of inertia of a beam 

Ic Moment of inertia of a column 

Jb Torsion constant of a beam 

Jc Torsion constant of a column 

L Frame length 

R1 Reduction factor for prior in-plane loading 

R2 Reduction factor accounting the flexibility of the boundary conditions 

R3 Reduction factor accounting the effect of openings 
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Wa Weight of the wall 

Wed Design lateral load per unit area of infill 

 

Roman lower case letters  

d Length of infill wall diagonal 

fc Concrete compression strength 

fcm Mean compressive strength of concrete determined by testing cylinders at the age of 28 

days 

fctm Mean value of axial tensile strength of concrete at the age of 28 days 

fct,split Splitting tensile strength 

fm Masonry compression strength 

fmd Design compressive strength of the masonry in the direction of the arch thrust 

fmt Masonry tensile strength 

fu Ultimate tensile strength of reinforcement material 

fxk1 Characteristic flexural strength of masonry having a plane of failure parallel to the bed 

joints 

fxk2 Characteristic flexural strength of masonry having a plane of failure perpendicular to the 

bed joints 

fxd Design flexural strength of masonry 

fy Yield strength of reinforcement material  

h Infill wall height 

hb Beam height 

hu Height of unit 

knn Normal stiffness of contact interaction 

kss Shear stiffness of contact interaction 

ktt Shear stiffness of contact interaction 

l Infill wall length 
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la is the length or the height of the wall between supports capable of resisting the arch thrust 

t Infill wall thickness 

tj Mortar joint thickness 

tn Normal traction 

ts Shear traction 

tt Shear traction 

qu Maximum lateral pressure 

uc Fracture crack opening 

w Strut width 

 

Greek upper case letters 

Δ Maximum in-plane inter-storey drift 

Δcr Cracking drift 

Δinf Mid-height deflection normal to the infill plane 

θ Angle of the infill diagonal with respect to the horizontal 

 

Greek lower case letters  

α Length of contact between the infill and the frame 

γf  Importance coefficient 

γm Partial safety factor for materials 

εc Total compressive strain 

εc1 Strain at peak stress 

pl
c  Equivalent compressive plastic strain 

εcuD Compressive strain in the concrete at point ―D‖ of sinusoidal descending part of stress-

strain curve (upper point) 

εcuE Compressive strain in the concrete at point ―E‖ of sinusoidal descending part of stress-

strain curve (lower point) 
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εcr Strain at the maximum tensile strength 
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Bad times have a scientific value. These are occasions a good learner would not miss.  

Ralph Waldo Emerson 
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1.1 Application of masonry infilled walls 

Masonry construction has been very common construction technique over the whole 

world. Clay bricks have been employed for at least 10,000 years. They were made from 

sun-dried bricks and widely used in Babylon, Egypt, Spain, South America, United 

States and elsewhere (Drysdale et al., 1994). Older buildings mostly consist of 

unreinforced masonry (URM) walls. In modern construction, masonry walls are used 

extensively to fill concrete or steel and internal and external frames due to high impact 

resistance and heat and sound insulation properties. These walls are called masonry 

infill walls and they represent the most traditional enclosure system since they have 

demonstrated reasonable performance and durability with respect to temperature, noise, 

moisture and fire. Reinforced concrete (RC) structures constitute a significant portion of 

the building inventory. The need to arrange infill walls in framed structures naturally 

arises by the necessity to create a separation between internal space of buildings and 

external environment. In fact, the use of masonry infill walls offers an economical and 

durable solution. They are easy to build, attractive for architecture and have a very 

efficient cost-performance. Therefore, the use of masonry infill walls in RC frame 

structures (Figure 1.1) is common in many countries and is a highly used constructive 

technology in  residential and commercial buildings. 

  

Figure 1.1 Typical construction of infill walls in RC frame structures 

Construction of masonry infilled RC frames is relatively simple. First the bounding 

frame (columns and upper and lower beams or slabs) is casted of reinforced concrete. 

During the construction of the bounding frame at the upper storeys, the masonry infills 
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can be constructed in the lower storeys. This construction sequence allows the roof or 

floor to be constructed prior to the masonry being laid, allowing for rapid and 

independent construction of subsequent storeys or application of roofing material. In 

this method of construction, no load transfer between frame and infill is expected under 

the gravity loads. However, due to earthquake induced lateral loads, infill walls are 

activated and the resistance to lateral load is achieved through a composite action until 

the appearance of first cracks. 

   
a) b) c) 

   
d) e) f) 

Figure 1.2 Different masonry units used for infill walls  

The combination of different masonry units made of different materials (Figure 1.2), 

together with various mortars, lead to the existence of many solutions to fill the frame 

structure. The most common material used for the construction of masonry infills, are 

the ceramic bricks, made of clay, soon followed by concrete blocks, autoclaved aerated 

concrete (AAC), calcium silicate (CS) etc. Regarding the use of clay units, masonry 

infills made of solid bricks were mostly used until they started to be replaced by clay 

blocks. Generally, the thickness of enclosure walls increased in the last years due to 

mechanical and thermo/acoustic requirements. Since the present trends in 

thermo/acoustic isolation of the buildings, units with high percentage of holes are more 

in use providing an increased isolation capacity. Therefore, the units on Figure 1.2b, c 

and d present modern unit types filled with isolation material, thus providing high 

isolation capacity and at the same time increasing the speed of construction since there 

is no need for adding additional isolation material on outer side of the wall. 
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Regarding the European use of masonry units, clay is the most common material used in 

most European countries. As for other materials, the two that stand out are the aggregate 

concrete (dense and lightweight), and autoclaved aerated concrete. It should be noted 

that the use of stone to build infill walls is not common in European countries. Another 

material with reduced use is calcium silicate, with notable consumption in Germany. 

There are units of solid brick, with vertical holes, and horizontal holes. Solid bricks are 

used mostly to build veneers and sometimes, but now very rarely, they are used in single 

leaf walls. The shape of the holes of the bricks is generally rectangular, and they usually 

do not have interlocking. In relation to the joints, these are made of mortar, in most cas-

es, with a thickness of 10 mm on average, for the horizontal or the vertical joint. In 

Germany the thin layer joints are commonly used to make horizontal joints and vertical 

joints are left unfilled making dry joint interlocking connection with tongue and grove 

(Figure 1.2b, c and d). Generally neither reinforcements, nor connectors are used in the 

walls. In conclusion, in Europe the most frequently used structural type is the RC frame 

system and precast frame system. The most frequently used type of walls, are the single 

leaf and cavity walls, where the most common material used are clay units. 

1.2 Background and motivation 

Earthquake presents one of the strongest and widespread natural disasters. Its effects 

can be disastrous and therefore a large number of people is involved in different 

activities with the aim to prevent or reduce the consequences of earthquake activities. 

Figure 1.3 and Figure 1.4a show that earthquakes have caused huge loss of life and 

economic activity over the last 65 years. This is consistent with the data from Coburn 

and Spence (2003) showed in Figure 1.5. These figures suggest that approximately 

750,000 people died due to earthquakes in 50 years. It is alarming that this number has 

already been reached in the last 20 years (Figure 1.3). This is even more upsetting since 

the number of earthquakes causing fatalities is increasing almost each decade (Figure 

1.4b). In line with the increasing casualties are also the costs related to earthquakes 

(Figure 1.4a) that represent more than the 1/3 of the costs from all the natural disasters. 

Coburn and Spence (2003) estimated that the damage caused by earthquakes in the 20
th

 

century was approximately $1 trillion in today‘s dollars and the costs keep growing due 

to population increase and the increase in property values affected by earthquakes. 
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Figure 1.3 Number of deaths per disaster type from 1996-2015 (CRED and UNISDR, 2015) 

 

 

 
a) b) 

Figure 1.4 a) Number of deaths and economic losses from great natural catastrophes from 1950-

1999 (Bachmann, 2002) and b) number of fatal earthquakes per decade of 20
th
 century (Coburn 

and Spence, 2003) 

All of these facts are important for the topic of this thesis since reinforced concrete 

frames with masonry infill walls are a popular form of construction in seismic regions 

worldwide. However, construction practice from the middle of the 20th century up until 

today has not been helpful with respect to infilled frames. As a result, today we have RC 

frame structures with infill walls designed without considering seismic action. 

Afterwards, in the 1970s, there was an increase in the number of floors in buildings. 

Also, spans and size of the openings increased and sometimes the ground floor was left 

without walls, to provide wide space for garages, shops, hotel halls etc. All this 
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increased the vulnerability of masonry infilled RC frames. 

  
a) b) 

Figure 1.5 Number of deaths due to earthquakes divided by cause a) for the first half and b) 

second half of the 20
th
 century (Coburn and Spence, 2003) 

Additionally, due to the complexity of the problem and the absence of a realistic, yet 

simple analytical model, infill walls within frame buildings have been generally 

considered as non-structural elements and thus have been typically neglected in the 

design process. However, the observations made after major earthquakes (Duzce 

(Turkey, 1999), L‘Aquila (Italy, 2009), Lorca (Spain, 2011), Christchurch (New 

Zealand, 2011), Emilia-Romagna (Italy, 2012)) have shown that infill walls interact 

with the structural system during seismic actions, thus influencing the dynamic 

characteristics of a structure (Figure 1.6a) and modifying the behaviour of the structure 

significantly (Figure 1.6b). Since thefailure of  infill walls, either in-plane or out-of-

plane frequently occurs during earthquakes the limitation of damages in infill walls is a 

very important public safety issue. The failure to do so may cause injuries or even 

casualties, sometimes caused by an earthquake which may not be as strong as the design 

one. Also, the damage of infills may be significant from the economic point of view due 

to the repair or reconstruction of some infills, repair of damages to structural system, 

non-structural components, equipment, rental and relocation costs and general income 

losses. These negative effects have devastating impact on the economy for a longer 

period as is observed by Langenbach, R. (1992), who described the situation in Oakland 

(California), three years after the Loma Prieta earthquake in 1989. He pointed out that 

the extensive damage was suffered mostly in new steel and concrete frame buildings 

with infill walls. 

Comite Euro-International Du Beton (1996) reported that infill increases the stiffness of 

the bare frame 4 to 20 times, which means that infills cannot be neglected in the design 

process due to the increase in lateral stiffness and thus the decrease of natural period of 



Chapter 1  Introduction 

7 

vibration of the frame, which in turn leads to increased accelerations and inertia forces 

(Figure 1.6b). The same effect is present for the whole structure, depending on the 

number of storeys, infill walls, thickness of the infills, presence of openings etc. Field 

observation after the April 25
th

 earthquake in Nepal showed that infills produced 

significant increase of stiffness that influenced the natural frequencies of the structure 

(Varum et al., 2017). Depending on the predominant periods of the structure, decrease 

in natural period due to infill may produce increase or decrease of the expected seismic 

response (Figure 1.6a). When infill wall fails, wholly or partially, natural period of the 

structure changes. Additionally, the high forces previously attracted and carried by the 

infilled frame, will be suddenly transferred to the more flexible and weak bare frame. 

 

 
a) b) 

Figure 1.6 a) Influence of change of dynamic characteristics on seismic response and b) com-

parison of roof-top accelerations of a bare and infilled frame (Charleson, 2012)  

Without infill walls a bare frame deflects under horizontal forces by bending in its col-

umns and beams. However, due to their low drift capacity of 0.2–0.3% (Tasligedik and 

Pampanin, 2016) and rather stiff and brittle in-plane response, infill panels achieve its 

maximum load capacity very fast which is followed by a sudden decrease of strength. 

Therefore, it can be concluded that infills suffer damage under low inter-storey drift 

values. Infill wall increases the strength of infilled frame, but it highly decreases its duc-

tility, which conflicts with ductile seismic design (Tasligedik and Pampanin, 2016). 

These problems are even more pronounced due to the fact that a large number of char-

acteristics influences the behaviour of infilled frames and on top of that, their values 

differ in a high range (Parisi and Augenti, 2012). 
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a) b) 

Figure 1.7 a) X cracked infill wall (Braga et al., 2011) and b) horizontal and vertical separation 

cracks between frame and infill with the horizontal cracks in infill joints (Dazio et al., 2009) 

Due to the deformation of frame members, a compression strut forms within the infill in 

the direction of one diagonal, while simultaneously, a parallel diagonal tension crack 

opens caused by elongation along the opposite diagonal. After reversed cycles of 

movement induced by earthquake, cracks in the shape of letter X occur (Figure 1.7a). 

This is the most common type of crack that appears in infill. Depending on the strength 

of the infill as well as stiffness ratio between frame and infill, H/L ratio of infill and 

other geometrical and mechanical parameters, different types of infill damage can 

appear (Figure 1.7 and Figure 1.8). They are explained in detail in Section 2.2. Many 

reports (Sezen et al., 2003; Dazio et al., 2009; Braga et al., 2011; Mahfredi et al., 2014) 

show the observations that masonry infills cannot accommodate the high deformability 

of RC frames without experiencing a rather brittle response characterized by sudden 

decrease of resistance, thus resulting in severe damage, possibly even disintegration or 

partial collapse of the wall. This is also confirmed by FEMA 154 (2002) which gives the 

worst Basic Structural Hazard Score to the concrete frame buildings with URM infill 

walls. El-Dakhakhni (2002) concluded that URM infill walls have a poor performance 

record even in moderate earthquakes. This suggests that the damage of masonry infills 

may contribute significantly to economic losses and cause considerable threats to 

human lives, even in the case of infills in newly constructed buildings (Hermanns et al., 

2012). Vicente et al. (2012) and Hermanns et al. (2012) pointed out that there is an 

urgent need for improvements in the current approach for the verification and detailing 

of singular points of infills, especially in order to prevent out-of-plane failure. 
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a) b) 

Figure 1.8 a) Separation of infill wall from the frame and b) corner crushing with the overall 

corner damage (Tasligedik, 2014) 

Beside in-plane damage of infill walls, they can experience failure in out-of-plane 

direction. These failures are responsible for creating additional damage not just to the 

infill walls but also by causing injury or even casualties around the buildings, which is 

especially dangerous for those who manage to exit the building during the earthquake or 

rescue workers entering buildings. This happens as a consequence of their weak 

connection with the surrounding frame and/or because of their large slenderness. In 

2011 Lorca earthquake in Spain, most of casualties were caused by masonry infills and 

parapets falling down from the floors of RC buildings. Insufficient connection was 

reported (Decanini et al., 2005) as the reason for many damaged infills during 

earthquakes. Defective joints between the infill and the upper beam can trigger the 

tilting of the panel (Figure 1.9a). This is expected at upper storeys due to the amplified 

floor accelerations. However, in some situations (Figure 1.9b) complete out-of-plane 

failure of masonry infills occurs at the ground or first storey, as observed after the 2012 

Emilia Romagna (Italy) and 2016 Central Italy earthquakes. This can be attributed to the 

damage produced by in-plane shear forces at the bottom storeys, thus increasing the  

out-of-plane vulnerability of the infills (Pasca et al., 2017). Therefore, it is extremely 

important to consider that out-of-plane vulnerability of masonry enclosures increases 

with the previous in-plane damage (Hak et al., 2012). Not only previous in-plane 

loading causes damage of infill/frame connection, but also workmanship can 

significantly affect the out-of-plane behaviour of the specimen by disturbing their 

boundary conditions (Akhoundi et al., 2016). 
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a) b) 

Figure 1.9 a) Damaged infill in Italy: Emilia Romagna (2012) and b) L‘Aquila (Dazio et al., 

2009)  

Other collapse mechanisms due to the infill/frame interaction occur when infill walls do 

not fully fill the frame i.e. when infill panel is shorter than the column. This is not so 

rare in practice as a result of infill walls with windows at the top, or as a result of infill 

damage during earthquakes (corner crushing or loss of top part of the infill). This cre-

ates a problem by increasing of local shear demand on columns (Haldar et al., 2013; 

Milanesi et al., 2018), while additionally free length of the column is too short to allow 

for the development of ductile plastic hinges. In this case, the columns experience the 

shear failure (Figure 1.10) which is brittle and can lead to partial building collapse. Ad-

ditionally, sliding failure of a masonry infill can also lead to the short column failure; 

therefore RC tie beam at mid-height of the infill should not be used as the strengthening 

measure because it can modify the failure mode (from diagonal cracking to shear sliding 

along a horizontal joint). Guevara and Garcia (2005) reported on unsuccessful attempts 

to improve the seismic performance of short reinforced concrete columns, concluding 

that the best solution is to avoid them. 

An additional shortcoming of traditional infill walls is that particular attention has to be 

given to the arrangement of infills. Unless infill walls are symmetrically placed in plan 

their high stiffness against seismic force changes the location of the Centre of 

Resistance causing large torsional eccentricity resulting in torsion of the building. 

Moreover, irregular distribution of infills over the height of buildings produces strong 

differences in strength and stiffness between storeys being the potential cause of a soft 

storey mechanism (Figure 1.11). Additionally, even if infill walls are regularly 
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distributed both in plan and along the height, during earthquakes some of the walls may 

fail while others remain intact. This also modifies the stiffness distribution and causes 

unpredicted torsional or soft storey effects. Many studies have highlighted the poor 

performance of framed structures with irregular arrangement of infill panels, both in 

plan and in elevation (Fardis and Panagiotakos, 1997; Masi, 2003; Verderame et al., 

2011). This also means that any modification of infill walls in their number or 

arrangement in both plan and vertical direction should be done with engineering advice 

(Charleson, 2012). Since it can‘t be expected that infills are going to be regularly 

distributed in plan and vertically, this presents strong shortcoming of traditional infills. 

  
a) b) 

Figure 1.10 a) Short column failure during 2011 Christchurch earthquake (Tasligedik, 2014) 

and b) 2009 L‘Aquila earthquake (Dazio et al., 2009) 

 

  
a) b) 

Figure 1.11 Soft storey collapse of a building in 2009 L‘Aquila earthquake: a) backside and b) 

frontside (Dazio et al., 2009)  

Beside all negative aspects of traditional infill walls, some studies have proven that the 

masonry infill walls, can positively affect the seismic behaviour of reinforced concrete 

buildings. Liberatore et al. (2004) observed that infills can significantly increase the 

energy dissipation capacity and decrease the maximum displacements. However, it is 
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necessary to avoid the possible negative effects of the frame/infill interaction that cause 

excessive damage of both masonry infill walls and RC frames. It is questionable 

whether this can be achieved in everyday practice. Charleson (2012) confirms beneficial 

effect of infills, but just in cases of low rise buildings, infills without big openings, 

continuous infill panels from foundation to roof and symmetrically placed in plan. He 

added that most infill walls do not satisfy these criteria and thus may introduce 

weaknesses in structures. 

It is clear that RC frames with masonry infills are highly vulnerable to earthquake 

excitations but even so they are commonly used all over the world, as well as in the 

areas with the high seismic activity. This produces frequent reporting of infill damage 

during past earthquakes. Therefore, there is huge motivation to find the solution to 

improve the behaviour of masonry infills. 

1.3 Objectives of the research 

The first objective of the research is the systematization in one place of the knowledge 

about seismic behavior of infill walls assessed through experimental and numerical 

studies as well as analytical solutions for the design of infills, which some of them are 

inserted in international recommendations and national codes. This should provide an 

opportunity to potential readers to find all the necessary information to understand the 

state-of-art in this field. By summarizing solutions for improvement of behaviour of 

infills that are proposed so far, all the advantages and shortcomings are presented, thus 

showing the gaps that justify this research. 

The second objective is to develop the solution for damage reduction of infill walls 

under the seismic loading and elimination of their brittle failure. This solution will be 

used for façades and internal partitions in reinforced concrete frame structures. 

Therefore, it should prevent any damage of both infills and structural system and at the 

same time  keep excellent performance of masonry infills with respect to temperature, 

noise, moisture, fire and durability. This system is expected also to fulfil the 

requirements for the design of new buildings, but also the retrofit of existing buildings 

to conform to the new seismic codes. 

The third objective is to plan and implement experimental program that includes tests 

on system components and on infilled frames. It will be adequately designed to include 
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in a measurable and controlled way the influence of the main parameters affecting the 

behaviour of RC frames with infill walls constructed in the traditional way and by 

applying the proposed system. Experimental results should be useful for analytical and 

comparative purposes. Afterwards, analysis and evaluation of the experimental results 

will be performed. 

In parallel with the experimental program, numerical analysis using finite element 

model will be performed. In the first step development and validation of numerical 

model against experimental results is planned. Later on, comprehensive parametric 

study will be conducted with the aim to give useful conclusions that will be used for 

derivation of design concept for the proposed system. 

In the end, a simple, yet, accurate technique for the design of infilled frame structures 

with the proposed system will be proposed. The technique should be systematic in order 

to produce design aids and application recommendations that can be used in everyday 

practice.  

1.4 Methodology of the research 

Analysis of literature will be performed to present current state-of-art on infilled frames. 

Experimental works will be performed such as: standard material tests, tests on system 

components and separate, sequential and simultaneous in-plane and out-of-plane tests 

on infilled frames. 

Advanced 3D finite element (FE) models of standard material tests, tests on system 

components and infilled frames tests will be built and calibrated based on experimental 

results. Numerical analyses with explicit dynamic solver and damage material models 

will be used which leads to the most realistic prediction of the real behaviour of the 

specimens.  

Parametric study will be performed using the previously developed and validated FE 

models.  

Analytical methods will be used, based on FE analyses and experimental results to 

develop the concept for the design of infilled RC frame structures with the proposed 

system. 
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1.5 Scope of the thesis 

The content of the thesis is organized in nine chapters. 

Chapter 1, i.e. the current chapter, provides the general background and motivation for 

the research, presenting the problems related to the behaviour of masonry infilled RC 

frames. This chapter also presents the objectives of the thesis and the methodology and 

outline of the thesis. 

Chapter 2 presents the literature review of the topic of the thesis, which includes 

description of seismic behaviour of infills and summary of knowledge resulting from 

experimental and numerical campaigns as well as different approaches for numerical 

modelling of infills. This chapter also provides a brief summary of the design of infills 

from international recommendations and national codes as well as a short report on the 

proposed solutions for masonry infills.  

Chapter 3 provides an overview of the proposed system together with a description of 

its general characteristics and steps for its construction. 

Chapter 4 presents tests on system components and standard material tests. Procedures 

and results from material properties tests and system components tests are shown. 

Chapter 5 shows experimental test campaign on infilled RC frames. In-plane and out-

of-plane loads have been applied separately, sequentially and simultaneously. 

Evaluation of the results and comparison of the behaviour, performances and force and 

drift capacities of the traditional infill and infill with the proposed system has been 

presented. 

Chapter 6 deals with the nonlinear numerical analysis, first on system components in 

order to calibrate the material models and afterwards calibration of infilled frames 

against experimental results has been performed. 

Chapter 7 includes results of the parametric study performed using the validated 

numerical model of infilled frame with the proposed system. Effects of important 

material and geometrical characteristics of infill wall, RC frame and system components 

were investigated. The conclusion about the parameters that influence the behaviour of 

infills with the proposed system was used to perform comprehensive parametric study 

with the aim to derive design concept for the proposed system. 
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Chapter 8 describes the design concept and gives recommendations for engineering 

practice and application of the proposed system. It also gives the simple economic 

analysis of the proposed system. 

Chapter 9 presents the main conclusions of the thesis and possible further research in 

this filed. 
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To read without reflecting is like eating without digesting. 

Edmund Burke 
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2.1 Introduction 

The behaviour of infilled frames has been the subject of investigations conducted by 

researchers throughout the whole world. Since the middle of the 20
th

 century intensive 

work has been done, but due to the actuality of the topic the research interest in the 

seismic response of masonry infills has increased notably in the recent years (Asteris et 

al., 2013). This chapter presents an overview of previous research, which is of signifi-

cance for examination of behaviour of RC infilled frames. In some parts also the studies 

carried on steel infilled frames were presented due to the additional information and 

results that could help to draw useful conclusions. Firstly, research regarding the seismic 

behaviour of infill walls is presented, which is classified according to the direction in 

which infill walls are loaded during the earthquakes. In this section an overview of be-

haviour modes and damage patterns that appeared in previous earthquakes is summa-

rized with the aim to help in better understanding the behaviour of infill walls during  

earthquakes. Afterwards, a review of experimental tests is carried out and the findings 

are given in order to get additional information about the behaviour of infill walls with 

different types of masonry, geometry, load histories etc. Since numerical investigations 

are a powerful tool for additional research and parametric studies that cannot be covered 

by experimental tests, overview of proposed approaches for modelling of masonry in-

filled RC frames and its components is presented. As a starting point for the develop-

ment of design rules for infilled RC frames in this thesis, so far proposed recommenda-

tions by several design codes and standards are summarised. Additional attention is also 

given to the already proposed solutions for improvement of behaviour of infill walls 

under the earthquake load, since the work in this direction increased in recent years. 

2.2 Seismic behavior of infill walls 

This section describes the behaviour of infills under earthquake loading by explaining 

different failure modes under separate, sequential and simultaneous in-plane and out-of-

plane loads that appear during earthquakes. 

2.2.1 In-plane behavior of infill walls 

The behaviour of masonry infilled frames subjected to in-plane lateral loads was 

investigated by a number of researchers, both numerically and experimentally. In this 
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section, description of the in-plane behaviour of infills together with the main findings 

influencing their in-plane response under earthquake excitation is summarized. 

In-plane behaviour of infilled frames can be separated into three phases, where the first 

phase relates to small displacements and is characterized by the large initial stiffness, 

when compared to the bare frame. At this phase there are no cracks, therefore infilled 

frame behaves as a monolithic composite system. It is worth mentioning that many 

researchers (Kappos and Ellul, 2000; Kose, 2009; Ricci et al., 2011; Asteris et al., 2015) 

recognized increase in stiffness and thus change in period of structure due to the infills. 

Change in fundamental period of the structure is especially investigated within the first 

phase, when the system is in elastic range. Effects of different parameters on the 

fundamental period of RC buildings with infills were investigated with the aim to derive 

simplified formulas that could be implemented in codes and used in every day design. 

With the continued application of the load, opening of the first cracks starts, which leads 

to the decreasing of lateral stiffness. This phase also presents the beginning of the 

inelastic behaviour. During this phase loaded diagonal of the panel gets compressed, 

while in the non-loaded diagonal corners formation of gaps between the frame and the 

infill is present due to the difference in the deformation mode between the infill and the 

frame. This phase lasts until the failure mode when the system will reach the maximum 

load capacity. In phase three, the behaviour is dependent on the model of failure of infill 

and the behaviour of the frame. Now the infilled frame shows a large dissipation of 

energy when subjected to cyclic loadings. Sliding and cracking of infill contributes the 

most to the energy dissipation. With continued increase in the drift, at each cycle, the 

value of strength and stiffness tend to decrease until the level of damage in the infill is 

so high that its contribution to the system is negligible. 

    
      a)         b)         c)          d) 

Figure 2.1 In-plane failure modes of infill walls (El-Dakhakhni et al., 2003) 

The behaviour of masonry infills for in-plane loads was examined by many researchers 

(Mehrabi et al., 1996; Al-Chaar et al., 2002; Shing and Mehrabi, 2002; Drysdale and 
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Hamid, 2005; Stylianidis, 2012; Morandi et al., 2014; Hak et al., 2017), amongst others, 

and, according to Paulay and Priestley (1992), Crisafulli (1997) and El-Dakhakhni et al. 

(2003), can be described by four failure modes of infill panel (Figure 2.1): Compression 

failure in the corners (a) or in the middle of the infill (b), shear failure in the middle of 

the wall along a mortar joint (c) and diagonal tensile failure (d). 

Compression failure in the corners or corner crushing failure mode (Figure 1.8b) 

appears due to the failure of the compression strut. It is manifested with the crushing of 

compressed corners and it is associated with weak infills surrounded by strong columns 

and beams with weak infill-frame interface joints (Asteris et al., 2011). 

Damage in the centre of the infill appears due to the buckling of the infill panel and 

reveals as a crushing of the centre of the wall. This mode usually occurs in slender 

infills, where in-plane loading is accompanied by out-of-plane deformations. 

Shear failure along the bed joint is the mechanism that occurs quite often when low 

quality mortar is used, but also when infill aspect ratio is low. In this mechanism the 

cracking occurs along one or more bed joints. 

Diagonal tensile failure (Figure 1.7a) occurs on the diagonal compression strut and 

consists of cracks that propagate along the bed and head joints, generally forming a 

stepped diagonal crack. This mode can appear in a case when the bricks are stronger 

than the mortar. In contrary, bricks may crack too. Mixed mode of the diagonal cracking 

and shear sliding may appear. 

Additionally failure mode of the infilled frame can be related to the frame failure, which 

consists of the formation of plastic hinges in columns and beams, or in the column/beam 

joints due to the increased bending or shear forces brought by masonry infills to the 

frames (Liauw and Kwan, 1984 and 1984b; Mehrabi et al., 1996; Milanesi et al., 2018).  

This mode occurs when frame is weak and the infill is quite strong. 

It is worth mentioning that separation of the infill from surrounding frame does not 

mean failure of infill, but it influences on the behaviour of the system (Figure 1.7b and 

Figure 1.8a). 

The appearance of the different modes of failure depends on a number of factors such as 

geometry of the specimen, thickness of the infill, material properties of both frame and 
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infill and stress state induced in the panel. For example, Mauro (2008) concluded that 

the failure mode with the highest strength is compression failure in the corners, 

followed by diagonal and horizontal sliding cracks. On the other hand El-Dakhakhni et 

al. (2003) indicated that only compression failure in the corners and shear sliding along 

the bed joints are of practical importance, since the damage in the centre of the infill 

occurs very rarely and diagonal cracking should not be considered to be structural mode 

of failure because after its appearance infill walls are capable of resisting more loads. 

2.2.2 Out-of-plane behaviour of infill walls 

After seismic behaviour of infilled frames in direction of the wall plane is summarized 

in a previous section, in this section behaviour of infill walls in out-of-plane direction is 

discussed. The behaviour of infill walls under out-of-plane loads was examined by 

McDowell et al. (1956a,b), Dawe and Seah (1989b), Angel et al. (1994), Vougioukas 

(2012), Asteris et al. (2017) and Walsh et al. (2017). The tilting of the entire panel out of 

the frame (Figure 1.9a) was identified as a global failure mode (Figure 2.2a). Based on 

the yield line theory, further typical failure modes occur according to the existing 

boundary conditions. Failure modes for a two-sided support in a vertical direction, a 

two-sided support in a horizontal direction and a four-sided support are illustrated as 

examples in Figure 2.2b-d). 

    
a) b) c) d) 

Figure 2.2 Out-of-plane failure modes of infill walls (Kubalski et al., 2017) 

The fall of the infill walls in out-of-plane, during an earthquake, may be due to the three 

factors: 

- previous or simultaneous in-plane load; 

- inertial forces caused by the seismic acceleration; 

- relative displacements of the top and bottom of the wall due to drifts.  
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Although cracks, resulting from the in-plane actions, have great influence on the out-of-

plane behaviour, in this section it is referred to the studies and to situations where there 

is no previous damage on infill walls. Therefore, beside prior in-plane damage, out-of-

plane capacity can suffer large reductions due to the ineffective connection of an infill 

wall with the surrounding frame caused by poor quality of execution (Manfredi and 

Masi, 2014) or due to the mortar shrinkage. 

Based on the experimental results, Dawe and Seah (1989b) concluded that the 

behaviour of the infill wall under out-of-plane pressure could be divided into four 

phases depending on the applied load and the displacement obtained. In the first phase 

linear elastic behaviour until the opening of the first crack is present. Appearance and 

propagation of initial cracks characterize the second phase, which is followed by the 

development of the arching effect in the third phase. This lasts until the degree of 

crushing of the masonry increases so much that the load decreases until the collapse, 

which presents the end of the fourth phase. 

Important aspect of out-of-plane behaviour of infill walls is its interaction with the 

surrounding frame. If an infill wall is in full contact with the frame, which acts as a rigid 

support, behaviour of infill walls is characterized by a phenomenon called ―arching 

action‖ or ―arching effect‖. The research showed that the arching action is governed by 

a compressive strength of the wall, panel dimensions (slenderness), boundary conditions 

between the infill and the frame and stiffness of the surrounding frame. Formation of 

arching mechanism can increase the out-of-plane capacity of masonry infills 

significantly, in some cases, 2 to 3 times higher than its flexural capacity. According to 

Drysdale et al. (1999) this phenomenon is responsible for the resistance of walls built to 

be much higher than the empirical values of calculation principles. Depending on the 

condition of the infill/frame connection out-of-plane response of infill walls can be 

governed by an arching or rigid-body mechanism (Figure 2.3). Arching appears in a 

case when the connection is sufficient and undamaged, while rigid-body mechanism 

appears if a connection is weakened, either by prior in-plane damage or due to the bad 

execution. Due to this kind of lack of connections between the infill and the surrounding 

frame, during the 2009 L‘Aquila, Italy, earthquake (M=6.3), damage to RC frames was 

often restricted to exterior infill walls and interior partitions, varying from small cracks 

to collapse (Braga et al., 2011; Decanini et al., 2012). Another example of out-of-plane 
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collapse due to defective joints between the infill and the upper beam appeared during 

the 1999 Athens, Greece, earthquake (M=5.9), when tilting of the panels was observed 

(Decanini et al. 2005). 

 

Figure 2.3 a) Arching mechanism and b) rigid-body mechanism 

Asteris et al. (2017) gave a comprehensive literature review of the capacity models 

developed for the prediction of the out-of-plane response of infilled frames and based 

on the typical crack patterns observed after out-of-plane experimental tests that 

concluded that the behaviour of the infill can be described with the arching mechanism 

in both vertical and horizontal direction depending on the flexibility of the surrounding 

frame. Therefore, the out-of-plane response of infill walls depends on the compressive 

strength of masonry rather than tensile strength and the out-of-plane capacity rapidly 

decreases with the increase in the slenderness ratio of the wall. That means that the 

collapse of an infill panel occurs when the masonry reaches the compression limit or 

when the frame is no longer able to provide the necessary confinement. Due to the 

reduced thickness of the partition walls, a height/thickness ratio is large making them 

vulnerable to the out-of-plane inertia forces. Additionally, masonry infill walls made of 

hollow bricks may lose boundary condition for arching mechanism due to the crash of 

the bricks at the top and bottom of the wall. 

2.2.3 Behaviour of infills under prior in-plane or out-of-plane damage (sequential 

loading) 

Although out-of-plane collapse is expected on the upper storeys of buildings, due to 

higher expected accelerations, damage survey after L‘Aquila earthquake in 2009 

showed that the greatest damage is located on the lower storeys (Braga et al., 2011). 
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Since out-of-plane overturning collapse was frequently observed it can be concluded 

that the out-of-plane overturning effects are in fact increased by the horizontal in-plane 

deflection, which causes the separation from the upper beam. Additionally, the collapse 

due to the out-of-plane mechanisms has to be assigned to the cracking damage due to 

in-plane drifts, which are generally greater at lower storeys than those experienced at 

the upper storeys in RC frame structures. Due to the in-plane action, which reduces the 

connection effectiveness with the structural members, infill walls can suffer early dam-

age. In fact, in-plane actions can cause disconnection of the infill panels from structural 

elements, reducing their seismic capacity (Hanoun et al., 2017). Moreover, due to the 

high in-plane stiffness, masonry infill walls attract a large amount of in-plane forces, 

when the structure is subjected to the earthquake excitation. Even after moderate earth-

quakes, a typical x-pattern of cracks may occur, thus weakening infills and making them 

vulnerable to possible further earthquakes. Therefore the out-of-plane collapse may also 

occur as a consequence of a prior in-plane damage experienced by the infills in previous 

earthquakes (Asteris et al., 2017). Moreover, in-plane damage can reduce the out-of-

plane capacity of infill panels leading to their collapse causing severe risk for life safety. 

First to comment on the influence of in-plane stresses on out-of-plane resistance were 

Paulay and Priestley (1992), who stated that out-of-plane resistance highly reduces as 

the stiffness of the boundary conditions of the infill wall decreases. Since appearance of 

gaps between panels and frames is a common situation in practice, due to the shrinkage 

and separation between panels and frames under in-plane loading, they concluded that 

these gaps and/or damage in panels caused by in-plane stresses will cause that mem-

brane action in out-of-plane direction does not develop. Considering this, they conclud-

ed that unreinforced infill walls should not be considered as satisfactory elements of 

structure. Recently this problem was studied numerically by Di Trapani et al. (2017), 

where authors concluded that wall damage due to in-plane loads can significantly re-

duce out-of-plane resistance of an infill wall. This influence especially depends on the 

slenderness (height/thickness) of the wall, where more slender wall suffers a more sig-

nificant loss of out-of-plane resistance. But the authors concluded that this is significant 

only when previous in-plane drift exceeds 0.75%, in contrary the effect is almost the 

same regardless of the slenderness ratio. 

Pasca et al. (2017) showed examples of damage on infilled RC frames after the 2012 
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Emilia (Italy) and 2016 Central Italy earthquakes, where it was observed that failure of 

infills took place at the lower storeys of buildings. Authors attributed this to the fact that 

in-plane shear forces are larger at the bottom storeys, thus producing the damage which 

increases the out-of-plane vulnerability of the infills. Therefore, it is concluded that out-

of-plane damage cannot be related only to out-of-plane floor accelerations, which are 

generally higher at the upper storeys, but it is necessary to take into account the 

interaction between in-plane and out-of-plane loads. 

Also FEMA 274 (1997) stated that although it is expected that due to the out-of-plane 

inertia forces infill walls at upper floors fail, it is more likely for out-of-plane failure to 

occur after an infill panel is damaged due to the prior in-plane loading. 

2.2.4 Behaviour of infills under simultaneous in-plane and out-of-plane loading  

During any seismic event, simultaneous in-plane and out-of-plane loads on masonry 

infill walls are always imposed. There have been less studies dedicated to the behaviour 

of infill walls in the out-of-plane direction, compared to those regarding the in-plane 

behaviour, and even fewer studies have discussed the effects of a combination of in-

plane and out-of-plane actions, which is the most realistic action on infill walls during 

an earthquake (Dona et al., 2017). It is extremely important to consider that out-of-plane 

vulnerability of masonry enclosures increases with in-plane damage due to seismic 

loads since in the case of a real building response the masonry infills would be 

subjected simultaneously to in-plane and out-of plane seismic actions (Hak et al. 2012). 

Furthermore, Al-Chaar (2002) pointed out that the effects of out-of-plane loading cannot 

be neglected when analysing the in-plane capacity of an infilled structure, because the 

in-plane capacity can be significantly reduced if large out-of-plane loads exist. 

Hashemi and Mosalam (Hashemi and Mosalam, 2007) conducted an in-plane shaking 

table test on a ¾ scaled reinforced concrete infilled frame, subsequently used to cali-

brate a numerical model that was developed to include out-of-plane loading. Then the 

calibrated model was used for parametric study to investigate influence of simultane-

ously applied in- and out-of-plane loads. Results are presented as a family of in-plane 

pushover curves (Figure 2.4), where it can be seen that increasing out-of-plane force 

significantly reduces in-plane resistance force and deformation capacity. Obviously 

there is strong interaction between in-plane and out-of-plane loadings, which strongly 
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influence capacity of infill wall when subjected to simultaneous in- and out-of-plane 

loading. It should be noted that the fundamental assumption of their numerical model is 

that the infill is hinge-connected to the reinforced concrete, thus preventing a movement 

of the infill relative to the frame. 

 

Figure 2.4 In-plane pushover curves for different level of out-of-plane load (Hashemi and 

Mosalam, 2007) 

Kadysiewski and Mosalam (2009) improved the model by proposing a fiber-section 

model (MG-model) which considers both the in-plane and the out-of-plane responses of 

the infill, as well as their interaction. The proposed infill model is used for simulation of 

a five-storey RC moment frame building with infill under different ground acceleration 

time histories. Results showed that the interaction between the in-plane and out-of-plane 

strengths increases the vulnerabilities of the structure, and may need to be considered in 

structural engineering practice. Furthermore, Mosalam and Gunay (2015) showed that 

when in-plane and out-of-plane interaction was considered in the model, together with 

the infill element removal, it was possible to capture soft-storey formation during earth-

quake shaking. Authors added that in a building with torsional irregularities, in-plane 

demand in one direction can significantly affect out-of-plane behavior in the other direc-

tion due to storey torsional effects. 

Kuang and Yuen (2010) investigated combined in and out-of-plane loading on masonry 

infill walls with the different level of out-of-plane pressure (5, 10 and 20 kN/m2). They 

concluded that even small initial out-of-plane deflection is significantly magnified by 

the secondary moment induced by the diagonal compressive force, as a result of P-delta 
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effect. More recently Yuen and Kuang published series of papers (Yuen and Kuang, 

2013; 2014; 2015 and Yuen et al., 2016) with the topic related to the modelling of 

masonry infilled RC frames and analysis of their behaviour under earthquake bi-

directional loading. They pointed out that interaction effect of in-plane and out-of-plane 

loads should be properly considered especially in the case of infilled frames with 

irregular and discontinuous infill panels. Also, they showed that the effect of the 

interaction of in- and out-of-plane loads depends largely on the infill/frame interaction 

and is more severe in a case of infill walls with the openings. Furthermore, out-of-plane 

displacements as well as effects on the frame structure are increased. 

Furtado and Rodrigues (2014) and Furtado et al. (2015a,b) presented simplified macro-

model that takes into account the out-of-plane behaviour of the infill panels and the 

corresponding in-plane and out-of-plane interaction. This numerical model also allows 

the removal of elements during an earthquake simulation. The model is implemented in 

the computer software OpenSees (Mckenna et al., 2010) and used for studying the 

interaction of in- and out-of-plane loads on infill walls by simulating the building with 

and without infill walls. The 3D models were subjected to incremental dynamic analysis 

(IDA). A significant difference was observed between the model that considers just in-

plane loading and the one that includes in- and out-of-plane interaction. Hence, it can be 

concluded that there is a need to consider the out-of-plane behaviour of infills in the 

seismic safety assessment of RC infilled structures. 

Longo et al. (2016) presented the work carried out by using the macro-model developed 

by Mosalam and Günay (2015) and implemented it in OpenSees (Mckenna et al., 2010). 

After previous calibration with experimental results (Calvi and Bolognini, 2001; Da 

Porto et al., 2013) the authors used this model for analysis under bidirectional ground 

motions scaled to be compatible with Eurocode 8 (EN 1998-1, 2004) elastic spectra. 

Results of the analysis show that until first cracks out-of-plane displacement of the wall 

is quite small. However, after appearance of the first cracks fur in-plane movement of 

the frame out-of-plane displacements of the infill walls increased significantly, 

especially in the lower two storeys. Also, authors identified that these numerical results 

are consistent with observations of damage to infill walls on similar buildings in recent 

earthquakes and concluded that the most important parameters that can affect infill wall 

expulsion are associated with the condition of the connections between the panels and 
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the surrounding frame. They explained that when frame building is excitated by an 

earthquake, resulting lateral displacement causes the URM infill walls to detach from 

the surrounding frame, which can happen even for relatively low intensity earthquakes 

(Decanini et al., 2004; Luca et al., 2013), and at early stages of a seismic event. 

Additional important aspect in case of simultaneous loading is the formation of the di-

agonal compression strut within the rigidly attached masonry infill accompanied with 

the detachment of the infill wall from the surrounding frame in the opposite direction. 

This goes in a line with findings of many authors (Stafford Smith and Carter, 1969; 

Saneinejad and Hobbs, 1995) who worked on calculation approaches for the contact 

length between frame and infill. All studies and approaches showed that the detached 

parts of the masonry infill without contact to the frame are quite vulnerable to out-of-

plane loading. Although damages and collapses of infill walls caused by alternating and 

simultaneous in- and out-of-plane loading have been observed in past and recent earth-

quakes, clear design rules in the codes are still missing. 

2.3 Experimental research studies on RC frames with masonry infills 

From the middle of the 20
th

 century infilled frames started to be in the focus of many 

experimental studies. At the beginning, infilled frames were mainly investigated by 

means of in-plane tests. Afterwards, out-of-plane tests were also conducted. Influence of 

openings and global and local effects on the frame have also been studied. More recent-

ly, influence of prior in- and out-of-plane loading on the in- and out-of-plane capacity of 

infills has been investigated. And finally, behaviour under simultaneously applied load-

ings in both directions has been studied in just a couple of experimental campaigns. In 

this section, literature review of the experimental work carried on the traditionally in-

filled frames is presented. 

2.3.1 In-plane 

2.3.1.1 Monotonic loading 

First experimental studies on infilled frames were performed by Thomas (1953), who 

applied monotonically increasing load in the direction of the frame plane. At the same 

time, Polyakov (1956) reported a test program on infilled RC frames carried out from 

1948 to 1953. Polyakov performed a number of large-scale tests investigating the ef-
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fects of the type of masonry units, mortar mixes, admixtures, methods of load applica-

tion (monotonic or cyclic), and the effect of openings. Polyakov described that at the 

beginning of lateral loading, the frame and infill behave monotonically until infill starts 

to separate at the interface with the frame. Afterwards, compressed diagonal starts to 

shorten while the tension diagonal extends in the length until the crack along the com-

pressed diagonal appears. In the following steps, appearance of more diagonal cracks 

continues followed by widening of old ones until the appearance of large cracks, when 

specimen experiences failure. Based on these observations, he suggested that the infilled 

frame system can be considered as a braced frame with a compression diagonal strut 

representing the infill wall. In a subsequent paper, Polyakov (1960) described experi-

ments performed on a three-bay, three-storey model steel frame infilled with masonry. 

Further on, Holmes (1961 and 1963), showed test results of steel frames with concrete 

infills, while observations of the tests carried out by Stafford Smith (1962 and 1966) led 

to the conclusion that, the wall could be replaced by an equivalent diagonal strut. 

Fiorato et al. (1970) tested reinforced concrete frames infilled with brick masonry under 

static lateral in-plane loading. Influence of different variables on the behaviour of in-

filled frames was investigated. Authors observed that the vertical loads increase the 

frame lateral strength and stiffness as well as the shear capacity of the infill due to the 

stiffening and strengthening of the columns and confinement of infill. It was noted that 

the horizontal sliding failure of masonry infill introduces a short-column effect, causing 

damage of the columns. Therefore, it was concluded that masonry infill can increase the 

stiffness and strength but causes a decrease of the ductility of concrete frames. At the 

same time, Mainstone (1971) showed that initial lack of fit between the infill and the 

frame and variation in the elastic properties and strength of the infill can result in a wide 

variation in behaviour. Later on, Dawe and Seah (1989a) tested a total amount of twen-

ty-eight large scale, single bay, single storey steel frames with and without masonry 

infills. Different parameters such as infill/frame interface conditions, openings and joint 

reinforcement were varied and in-plane capacity was measured. Based on the results of 

experimental campaign conducted on five 1/2 scale and single storey frames with dif-

ferent number of bays (3 single-bay frames, 1 double-bay frame, and 1 triple-bay 

frame), Al-Chaar (1998) concluded that for multiple bay frames the stiffness increases 
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with the increase of the number of infilled bays and most of the damage in the infill 

walls will take place in the infill wall located near the loaded side. 

2.3.1.2 Cyclic loading 

Esteva (1966) conducted the first cyclic test on infill frames. Afterwards, considerable 

researches have been conducted in order to quantify the in-plane strength of infilled 

frames. Leuchars and Scrivener (1976) showed that infill panel significantly increases 

the stiffness of the frame structure, but at the same time brings less ductile and faster 

degrading stiffness behaviour. Klingner and Bertero (1976) and Brokken and Bertero 

(1981) found that the infills increase stiffness of the frames, but as soon as cracking 

occurs, which was found to happen very early, lateral stiffness decreases significantly 

(up to 80%). Authors also concluded that the addition of the infills brings large increase 

of the stiffness with respect to the increase of the mass, therefore fundamental period of 

the structure decreases significantly. Also infills significantly increase the strength but 

at the same time highly decrease deformation capacity of the infilled frames. Later on, 

Žarnić and Tomaževič (1984, 1985 and 1988) summarised the results of their experi-

mental and analytical investigations on masonry infilled RC frames. Results show that 

the infill increased the stiffness of the system by up to 22 times and lateral resistance in 

average 2.5 times. However, cracking of infill already at 0.2% of drift is observed. 

Schmidt (1989b) tested RC frames with brick infills that had relatively weak mortar 

joints. During the test slippage along the mortar joint appeared which led to the for-

mation of plastic hinges at the top and bottom sections of the columns. Due to this kind 

of behaviour, the increase of the lateral strength due to infill is not very significant. 

Similar as Žarnić and Tomaževič (1984, 1985 and 1988), Pires and Carvalho (1992) 

observed highly brittle behaviour with a loss of stiffness due to masonry infill cracking 

already at about 0.1% drift, when also maximum strength was reached. After this point, 

the strength decreased almost linearly to about 50% of the maximum strength at a drift 

of 1%. 

Mehrabi et al. (1994 and 1996) presented test campaign on fourteen half-scale, single 

storey, single bay, weak and strong RC frame specimens infilled with hollow and solid 

concrete masonry units, which were used to simulate strong and weak infill. Results 

show that the specimens with strong frames and strong infill exhibited much better 
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behaviour, due to the fact that the strong panels provided better energy-dissipation 

capacity for stronger frames. Different failure modes were observed for different 

combinations of weak/strong panels and weak/strong frames. It was reported that infill 

panels with lower aspect ratios (h/l =1/2) sustained higher lateral loading than those of 

higher aspect ratio (h/l=2/3). As expected, higher vertical loads increased the 

confinement of the specimens, which led to increase of the stiffness and lateral load. 

However, the influence of vertical load distribution between the columns and the beams 

was insignificant. The researchers also noticed that the specimens subjected to cyclic 

loading showed lower resistance and faster degradation than those subjected to 

monotonic loading. Authors noted that for specimens tested in this study, the nonlinear 

behaviour was usually initiated by the separation at the frame/infill interface. Similar 

comparison has been done by Haider (1995), whose main findings are that the infills 

significantly increase the strength, stiffness and energy dissipation of the infilled 

frames. Furthermore, infills surrounded with the stiffer frames, exhibit better behaviour 

in terms of smaller stiffness degradation and better energy dissipation when compared 

to infills with relatively flexible columns. It was shown that smaller aspect ratio 

decreases strength and energy dissipation without influencing stiffness. Author pointed 

out that after separation from the frame, infill panels become vulnerable to the falling 

out-of-plane. Later on, Bergami (2007) showed the presence of infill increased the 

maximum strength by about 1.8 times and the initial stiffness by about 9.4 times. It was 

observed that the infill strongly affects the frame collapse mechanism by progressive 

development of plastic hinges in the frame and sudden damage development in the 

infill. Therefore, one of the main conclusions of the work was that codes should be 

revised in order to make engineers aware of the importance of including non-structural 

infills in design and assessment procedures. 

Stavridis (2009) showed that infill started to separate from the frame already at 0.06% 

of in-plane drift, while the peak resistance was reached at 0.25%. Due to the 

development of cracks in infill, both columns failed in shear after opening of shear 

cracks at the top and bottom of the columns. Increase of base shear strength and lateral 

stiffness, but decrease of in-plane drift capacity by about two times when compared 

with the bare frame test was the results of the test conducted by Pujol and Fick (2010). 

Authors also added that measures for preventing out-of-plane failure of the infill and 



Chapter 2  Literature review 

31 

shear failure of the columns should be applied. Further on, Stylianidis (2012) 

investigated the influence of a big variety of parameters (infill materials, aspect ratio, 

infill thickness, reinforcing of infills, connection to the surrounding frame, geometry, 

relative stiffness and strength etc.) affecting the behaviour of infilled frames. It was 

observed that the contribution of the infills to the strength, stiffness and energy 

dissipation capacity depends on the strength of the infill wall in relation to that of the 

frame. Authors also found that the increase of infill thickness caused small and not 

proportional increase of strength, initial stiffness and energy dissipation. Furthermore, 

aspect ratio didn‘t influence the strength, stiffness and energy dissipation of the bare 

frames, but with its increase enhancement of these values was observed in a case of 

infilled frames. It was also found that axial load on the columns almost doubles strength 

in both bare and infilled frames. 

Results of the test performed by Žovkić et al. (2013) show that first stiffness reduction 

and maximum capacity were reached at 0.1% and 0.35% of drift, respectively. Until the 

stage of 0.75% of drift, masonry infill had suffered severe damage and soon after, at 1% 

of drift, RC frame took over most of the load on itself. The same was confirmed by Di 

Trapani (2014) who showed that all specimens experienced significant stiffness 

degradation, especially after the peak strength. 

2.3.1.3 Pseudodynamic tests 

Negro and Verzeletti (1996) conducted pseudo-dynamic tests on a full scale four storey 

RC building with different infill configurations. In the first test, two external frames 

were completely filled in all four storeys, while in the second test, infills at the first sto-

rey were not constructed. Results show that the presence of infill significantly changed 

the response of the structure and the irregularities in the panels resulted in unacceptably 

large damage to the frame. 

Mosalam et al. (1997a,b,c) showed that corner crushing appears in the case of weak 

blocks, while stronger blocks caused mortar cracking. Authors also concluded that the 

bay number affects strength more than the stiffness. It is also observed that the interface 

between the frame and the infills presents a place of weakness. 

Later on, Manos et al. (2000) investigated the earthquake response of multi-storey 

scaled 2D and 3D RC frame structures with and without infill under base motion simu-
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lating an earthquake excitation. Results show a large increase in the fundamental fre-

quency due to infill walls, but this increase was rapidly reduced due to brittle behaviour 

and damage of infills. Similar findings came out from the pseudo-dynamic tests per-

formed by Colangelo (2005). Results show that infills bring initial stiffness increase, but 

with the first cracking of the infill, stiffness decreases to nearly 20% of its initial value. 

The displacement ductility demand increases or remains similar to that of bare frames, 

but additional load concentrated on the frame appears. 

2.3.1.4 Shake table tests 

Since the shake table tests are expensive and require sophisticated laboratory equipment 

and skilled staff, a limited number of shake table experiments have been performed on 

infilled frame structures. Fardis et al. (1999) are among the researchers who have con-

tributed to such studies. They performed a shake table tests on single bay, two storey 

RC frame with eccentric arrangement of masonry infills. The frame was subjected to 

bidirectional ground accelerations. Results showed that a plan-irregular infill distribu-

tion caused torsional effects and increasing load on the corner columns. 

Žarnić et al. (2001) executed two shake table tests on reduced scale 1:4, one and two 

storey RC frame buildings. During the first series of the loading, the cracks mostly 

developed in masonry infills, since the infills were made of relatively strong bricks laid 

in weak mortar. Due to the development of cracks and damages in infills and frames, 

change in the first natural frequency of the model was noticed during the testing. Also, 

structural imperfection of model due to non-symmetric development of cracks in infills 

caused the rotation of model around its vertical axis. 

Shake table test from Lee and Woo (2002) showed significant increase of stiffness and 

inertia forces in a case of infilled frame, when compared to the bare frame. Similarly, 

Hashemi and Mosalam (2006) shake table test results confirm that infill wall stiffened 

the structure, thus shortened the fundamental period, but increased the dissipated energy 

and damping of the structure. 

Furthermore, Stavridis (2009) presented the results of the shake table tests of a 2:3 

scale, three-storey, two-bay, RC frame infilled with unreinforced masonry panels with 

and without openings. Results showed that walls with openings are much more vulnera-

ble to collapse than solid walls. Furthermore, authors pointed out that the out-of-plane 
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loading was absent in this study, which would accelerate the failure of the infills wall 

once they are damaged by in-plane loading. 

Lourenco et al. (2016) performed shake table test of three 1:1.5 scaled RC buildings 

infilled with unreinforced masonry and reinforced masonry using bed joint reinforce-

ment or reinforced plaster. Specimen with the URM infill behaved very badly, with the 

all the walls of the first storey collapsing out-of-plane by rotating as rigid bodies. Also, 

due to the interaction with the infill walls, specimen exhibited a soft storey collapse 

mechanism. Specimen with the bed joint reinforcement did not collapse, but it was un-

reparabily damaged. The last model, with the reinforced plaster had the least damage 

and it was the only one not developing hinges in RC columns. 

Penava and Sigmund (2017) presented the results of the shake table tests of a 1:2.5 

scale, three-storey RC structure with the two longitudinal frames in the direction of 

earthquake excitation and three transverse bays perpendicular to the direction of earth-

quake excitation. RC frames were infilled with unreinforced masonry panels with and 

without openings. The first damage observed was at the ground floor walls, where sepa-

ration at the contact with the top beam appeared. With the increased excitation, top row 

of the bricks was demolished and falling out-of-plane. The same separation at the con-

tact with the top beam was noticed in infills at the upper floors, but damage and falling 

of the bricks didn‘t appear with the increasing sequences. 

2.3.2 Out-of-plane 

During an earthquake, masonry infill walls are subjected to out-of-plane loads due to 

the mass and inertia of the wall. Therefore, an important aspect of the behaviour of 

infilled frames is the performance of the masonry infill under out-of-plane loads. The 

observations during earthquake events showed that out-of-plane collapse of masonry 

infills may occur even during seismic events of low or moderate intensity, causing both 

casualty risks and unfavourable situations affecting the overall structural response 

(Pasca et al., 2017). Despite the great importance of preventing the enclosure of out-of-

plane collapse, only few experimental investigations were conducted before the last 

decade when a number of researches on the out-of-plane behaviour increased. Some of 

the principal research activities carried out in this field are summarised below. 

First experimental campaign of out-of-plane behaviour of infilled frames was reported  
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by McDowell et al. (1956a,b). Authors tested 17 brick beams with different lengths and 

widths having a thickness of 21 cm. Results showed that the ultimate static load is 

inversely proportional to the square of the span length and that specimens behaved as 

three-hinged arch between the two supports. Also, one of the earliest studies on the out-

of-plane behaviour of infill walls was done by Monk (1958) who tested structural clay 

masonry using blast loading. Experiments conducted by Monk (1958) and Gabrielsen 

and Wilton (1974) showed qualitatively that the out-of-plane strength of infills bounded 

by flexible frames was less than that of the infills bounded by rigid frames. 

Gabrielsen et al. (1975) tested a series of full scale infilled panels, also under the blast 

loading. In the experimental campaign, the gaps of 0.1 inch (2.54 mm) and 0.2 inch 

(5.08 mm) were considered. Results showed a symmetrical three-hinged arch was 

formed in an infill with tight rigid supports, while the infill with gaps needed to displace 

more in order to engage the support thus creating an unsymmetrical arch as shown in 

Figure 2.3. 

The out-of-plane strength of URM infill walls due to arching has been the subject of 

several studies (Anderson, 1984; Drysdale and Essawy, 1988; Hill, 1994), which 

showed that arching is influenced by many parameters and boundary condition i.e. 

infill/frame connection being one of the most important. 

Tests performed by Dawe and Seah (1989b) show that both the flexural stiffness and 

torsional stiffness of frame had an effect on the out-of-plane strength of infills, which 

was used as a basis for the authors to propose an equation to include this effect in the 

assessment of the out-of-plane strength of infills. They reported that the presence of the 

opening produced no significant decrease in ultimate load, but the ductility was 

significantly reduced. Authors concluded that the central strips are not as significant as 

perimeter strips in developing arching action, therefore relative small central opening 

does not reduce the arching strength significantly. It is also shown that fully restrained 

panels have an ultimate load capacity 4–5 times higher than the capacity of infills with 

gaps or where the slipping of the interfaces occurred. 

After conducting experimental tests, Angel et al. (1994) concluded the arching action 

and thus ultimate load was reduced for infill panels having a large slenderness ratio. 

This study indicated that if the slenderness ratio of infills was reduced in half (h/t ratios 
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of 34 to 17), the out-of-plane strength of the infills is highly increased. Authors 

concluded that for the infills with a slenderness ratio larger than 30, arching action had 

significantly less effect on the out-of-plane resistance of masonry infills. 

Similar was showed in a test from Flanagan and Bennett (1999b), who concluded that 

the increase of thickness causes increase of resistance. 

More recently, the concern for the out-of-plane behaviour has been growing also due to 

observation of damage after earthquakes. Some researchers conducted shaking table due 

to the fact that shaking tables present the best way to obtain the seismic response of a 

structure by simulating a specific recorded ground motion tests. Dafnis et al. (2002) 

studied the effect of gap resulted from shrinkage of the mortar, on the arching behaviour 

and stability of brick masonry walls. It was observed that no significant difference was 

found in the behaviour of the walls with the complete joint and those with the partially 

filled joint, while a horizontal gap in the upper mortar joint caused an increase of the 

relative displacements, leading to the tilting of the panel. However, for small gaps (< 3 

mm) the arching action was still developed, but the gapped specimen experienced a 

larger deformation than the non-gapped specimen before the arching action developed 

and additionally the out-of-plane capacity was smaller. Masonry wall with the 

unsupported top behaved as a cantilever, cracking at the horizontal joint within the first 

brick layer at the bottom. One of the specimens was built with a central opening with 

about 7.6% of the wall area with no gap on top. It was reported that the opening did not 

alter the dynamic response of the wall and no local effect around the opening especially 

at corners was reported. As a final conclusion authors stated that due to the shrinkage of 

the mortar, gaps develop at the top of the walls shortly after construction and in the 

event of an earthquake the walls cannot withstand the out-of-plane forces and they 

collapse due to the lack of adequate binding at the top. 

Tu et al. (2010) executed shake table test on infilled frame showing that at the first stage 

of base excitation, vertical edges at contact with the frame fully cracked, while the top 

edge had minor crack. With the following phases, infill panels showed arching, but top 

and bottom edges fully cracked, which was followed with the separation of the panel 

from the frame. Furthermore, reversed Y-shaped cracks appeared in the wall. Also, 

concrete columns experienced cracks and crushing at the base. At the end of the test 
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infill panel fully cracked and fell out of the frame, due to the inertial force caused by the 

self-weight. Authors concluded that panel thickness or slenderness together with the 

boundary conditions of the panel are the main factors influencing out-of-plane 

behaviour. 

Results of the shake-table tests performed by Rabinovitch and Madah (2011) showed 

that the model with the lower axial compression experienced significantly larger out-of-

plane displacements in comparison with the specimen with the higher axial 

compression. 

Komaraneni et al. (2011) studied three infilled frames with the solid clay bricks and 

reported that the slender walls (h/t=23) experienced larger out-of-plane drifts and higher 

amplification of acceleration at mid-height in contrast to less slender walls (h/t=11). 

This supports the fact that the slenderness is one of the main factors influencing the out-

of-plane behaviour of infill walls. 

Akhoundi et al. (2016) found that the presence of center opening of 13% area of the 

infill decreased the initial stiffness by 12% while no significant reduction in the out-of-

plane strength was observed. Authors pointed out that workmanship can change the 

collapse pattern of the infill by non-proper filling of the gap between top of the infill 

and RC frame with the mortar and thus disabling one way or two way arching 

mechanism. This shows that fill of the top gap with the mortar is a critical point for the 

behaviour of an infill walls. 

Out-of-plane capacity of infill walls was also studied by some authors (Fricke et al., 

1992; Walsh et al., 2017) on walls in a real building. Walsh et al. (2017) tested a total of 

19 URM infill walls located in six buildings in New Zealand. A test showed that restrain 

at the vertical edges of the wall has as a result two-way arching, thus significantly 

improving out-of-plane capacity. 

2.3.3 Influence of sequential loading on in-plane and out-of-plane resistance 

Observations from last earthquakes showed that infill walls which have previously 

sustained larger in-plane drift movements, possess a significantly reduced out-of-plane 

resistance that has to be accounted for in the verifications required for non-structural 

elements at the ultimate limit state (Morandi et al., 2013). Reduction of out-of-plane 
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resistance due to in-plane damage can thus result in the partial or complete collapse of 

the infill walls. These issues are paid increasing attention by the scientific community, 

and in this chapter, several recent international studies analysing the influence of prior 

in-plane damage on reduction of the out-of-plane capacity of masonry infill walls and 

vice versa, are summarized. This chapter presents experimental studies and results 

where infilled frames were sequentially subjected to in-plane and out-of-plane loading.  

Angel et al. (1994) and Shapiro et al. (1994) investigated specimens, first loaded in-

plane to twice the deflection which caused initial cracking in the infill and then 

monotonically increasing out-of-plane load was applied. Results show that the drift 

value corresponding to the first crack on the infill panels is in the range 0.031-0.195%, 

respectively for the lower and the higher considered compressive strength values of the 

masonry panel, which are in the range 3.5-22.9 MPa. The resistance of the infill panel 

showed a significant decrease by reducing the out-of-plane strength approximately by 

half. Results also show that the decrease of the out-of-plane capacity due to previous in-

plane damage is more significant for infill walls with large slenderness ratios. However, 

authors added that if the walls maintain good connections with the surrounding frame 

after in-plane loading, the out-of-plane strength of the infills is still considerable. 

Flanagan and Bennett (Flanagan and Bennett, 1999b) also studied the behaviour of 

masonry infill walls, for combined actions in- and out-of-plane. In the first case, 

specimen was loaded in the in-plane direction to a certain value, removed and out-of-

plane pressure was applied until failure. To investigate the opposite influence, first load 

in out-of-plane direction to a certain value was applied and then removed so the in-plane 

force until failure can be applied. Results show a strong reduction in out-of-plane load 

capacity (up to 80% of the peak load) and at the same time highly increasing out-of-

plane deformations of the wall in a case where prior in-plane loading was subjected. It 

can be concluded that the application of the damage in-plane, before testing in the out-

of-plane direction, leads to a loss of stiffness of masonry infill with larger deformations 

and smaller resistance when compared with undamaged panels. Figure 2.5 presents the 

summary of results of the experimental campaign conducted by the authors, where 

interaction between in-plane and out-of-plane load (Figure 2.5a) and in-plane drift and 

out-of-plane load (Figure 2.5b) is shown. These results show that when first 78% of out-

of-plane load capacity was applied, 33% of in-plane drift level reduction was noted with 
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non-changed in-plane load capacity (in comparison to the pure in-plane loading). In the 

opposite case, when first in-plane loading with the value of 79% of its load capacity was 

applied, out-of-plane load capacity is reduced by almost 19%, together with the increase 

of out-of-plane displacement to 168% (in comparison to the pure out-of-plane loading). 

This shows higher strength reduction and out-of-plane deformation increase when first 

in-plane load is applied. Reduction in in-plane deformation capacity is noted in the 

opposite case. 

  
a) b) 

Figure 2.5 Experimental results of bidirectional testing of infilled RC frames from Flanagan and 

Bennett (1999b) 

Calvi and Bolognini (2001, 2004, 2007) performed experimental tests on frames infilled 

with hollow clay bricks (60% of voids) which were loaded first in-plane up to different 

level of drifts (0.1-0.4% and 1.2%) and then subjected to out-of-plane load until the 

walls collapsed. It is observed that out-of-plane capacity was reduced by 73% and 82%, 

respectively for the mentioned levels of prior in-plane drifts. At the same time out-of-

plane ultimate displacement increased 2.5 times in a case of 0.4% of prior in-plane drift. 

Beside evident high influence of in-plane damage on out-of-plane performances, 

authors also point out that although it is correct to assume higher inertia forces on non-

structural elements at upper storeys due to the amplification effects, since the in-plane 

damage tends to concentrate at lower storeys, the critical situation for out-of-plane 

resistance may derive from a combination of level of out-of-plane force and reduced 

strength due to the in-plane damage. 

Pereira et al. (2012) also investigated the influence of the previous damage on the out-

of-plane strength reduction. Authors strongly pointed out that the damage at the 

interface between frame and infill, due to the in-plane loading, caused weak out-of-

plane resistance and fast failure of the specimens. This was especially pronounced in a 



Chapter 2  Literature review 

39 

case of traditional specimen, with the effects such as large percentage of the upper 

bricks with partial or total damage and complete movement of the infill wall as a 

cantilever out of the frame. Second specimen with the bed joint reinforcement exhibited 

also total damage of the upper units, while only the third specimen (with the external 

reinforcement) kept the structural integrity with the damage in the interface at the top 

but with small damage inside the wall. 

Another relevant experimental study has been performed by da Porto et al. (2013), who 

tested the out-of-plane behaviour of reinforced and unreinforced infill walls, under 

various levels of damage caused by in-plane loading. Unfortunately there is no 

reference wall tested just in out-of-plane direction in order to derive the strength 

reduction, but results of the analysis showed significant out-of-plane strength reduction 

when previous in-plane drift level was increased from 0.5% up to 1.2%. This effect was 

more pronounced in a case of thin infill walls. According to the results, authors 

concluded that limitation of in-plane drift at 0.5%, to prevent excessive damage to non-

structural elements, given by the Italian building code (NTC8, 2008), is especially 

critical for thin masonry infills. 

Results of similar investigation was presented by Morandi et al. (2014) and Hak et al. 

(2014), who tested three fully infilled specimens at three levels of in-plane drift, equal 

to 1.50%, 2.50% and 1.00% respectively. Results clearly show the substantial 

degradation of stiffness and strength in the out-of-plane direction for increasing values 

of previous in-plane drift. 

Furtado et al. (2015d and 2016) also presented an experimental campaign on three full 

scale masonry infill walls. Results show high out-of-plane strength reduction (4 times) 

in a case of previously damaged infill panel in comparison with the specimen without 

previous in-plane damage. This comes mostly from the detachment of the infill panel 

from the surrounding RC frame which was observed already at 0.20% of in-plane drift. 

This produced typical rigid body behavior of the panel and its moving in out-of-plane 

direction, especially pronounced at the top of the infill. Authors noticed that also 

specimens without previous in-plane damage experienced detachment between the infill 

panel and the surrounding RC frames. 
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Walsh et al. (2017) conducted experimental tests on a URM infill walls located in six 

buildings in New Zealand. Infill walls were damaged by saw cutting 50 mm deep 

‗cracks‘ into the wall‘s compression side prior to out-of-plane testing. Results showed 

that in-plane damage reduced out-of-plane capacity up to 40%, pointing out that URM 

infills boundary conditions play an important role in an infill wall performance. 

2.3.4 Simultaneous in-plane and out-of-plane experimental tests 

When an earthquake occurs, infill walls are subjected to the combination of the in-plane 

and out-of-plane loads. Therefore, in order to better understand, the real behaviour of 

masonry infilled frame, it is necessary to study the behaviour of infill walls under simul-

taneously applied in- and out-of-plane loading. Even so, most of the studies dealing 

with masonry infills have focused on either the in-plane or the out-of-plane behaviour, 

and clearly oversimplifying and underestimating the simultaneously loaded infils. This 

is somehow expected due to the difficulties in both experimental setups and theoretical 

modelling. 

Only few authors conducted experimental tests combining the in-plane and out-of-plane 

actions on the wall. As already mentioned in Chapter 2.3.3, study carried out at 

University of Illinois at Urbana-Champaign and published in Shapiro et al. (1994) and 

Angel et al. (1994), was compiled out of a series of tests on a one-storey, single-bay 

ductile reinforced concrete frame which was infilled with varying thicknesses of brick 

and concrete block masonry. Besides investigating the effects of in-plane cracks on the 

out-of plane strength, they tested simultaneously loaded infill walls. Authors concluded 

that the simultaneous application of in-plane and out-of-plane load slightly increases the 

initial out-of-plane stiffness, but had little effect on out-of-plane strength. At the first 

moment this shows that simultaneous load doesn‘t have negative influence on load 

bearing capacity, but it is important to point out that in-plane drifts of specimens tested 

were 0.062% and 0.25% which is not a representative in-plane loading condition. 

As mentioned in Chapter 2.3.3, a similar experimental study was carried out by 

Flanagan and Bennett (1999b) on brick infills in steel frames. Besides investigating 

influence of previous in-plane damage on the out-of-plane resistance and vice versa, 

they also tested infill panels loaded simultaneously in the in-plane and out-of-plane 

directions by holding the in-plane deformation and applying the out-of-plane pressure 
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until failure was reached. Figure 2.6 shows highly damaged masonry panel at the end of 

the test, where complete failure of the bottom course tiles can be noticed. In the case 

when the infilled frame is subjected to simultaneous application of in-plane and out-of-

plane forces, a 42% drop in the in-plane load capacity of the infill wall when it is 

subjected to out-of-plane pressure equal to 57% of its capacity is noticed, reaching just 

0.42% of in-plane drift that presents around 1/3 of the in-plane drift capacity of the 

specimen (Figure 2.5). It can be observed that a wall experienced significant loss of 

ultimate strength in a case of simultaneous load, therefore it can be concluded that there 

is strong interaction between both loading directions. 

 

Figure 2.6 Specimen after testing under simultenous load (Flanagan and Bennett, 1999b) 

Unfortunately, there were no recent experimental tests on infill walls subjected 

simultaneously to in- and out-of-plane load, only just few studies on URM walls. One 

of them presents an experimental investigation aimed at determining the in-plane and 

out-of-plane capacity interaction of masonry walls and it was reported in 

Najafgholipour et al (2013, 2014). The test results indicated noticeable interaction 

between the in-plane shear and out-of-plane bending strengths of brick walls. Test 

results were also used to validate numerical model for wall panels. Then the effects of 

different geometric and material properties on the combined in-plane/out-of-plane 

capacity interaction were numerically investigated. The results showed that the wall 

aspect ratio highly influences the level of interaction. 

2.3.5 Openings 

Although it is very common that infill walls have opening, either doors or windows, 
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significantly larger number of researchers studied behaviour of fully infilled frames 

under an earthquake loading than infilled frames with openings. Common observation 

of the authors studied infill with openings was that openings reduce the lateral strength 

and stiffness of the fully infilled structures. In this section some of these research 

studies are summarized. 

Fiorato et al. (1970) performed tests on one storey, one bay; five storey, one bay; two 

storey three bay infilled frames with openings. Authors observed that wall with the 

opening is less stiff with the lower strength due to the reduced wall area. It was 

concluded that, this reduction is not proportional to the reduction of the area of the wall, 

but it is dependent on the size and position of the opening, which was also observed by 

Mallick and Garg (1971), who showed that presence of openings can reduce lateral 

stiffness up to 85-90% and lateral strength by 75%. 

Liauw (1972) observed that when area of opening is higher than 50% of panel area, 

structural stiffness is almost the same as the stiffness of the bare frame. The same was 

concluded by Dawe and Young (1985) and Dawe and Seah (1989a), who found that 

presence of door openings reduces initial stiffness, especially in the case of central door. 

Kakaletsis and Karayannis (2009) also stated that the infilled frames are affected more 

by the presence of door openings than windows. Furthermore, Mansouri et al. (2013) 

investigated different shape (door and window), size and location (eccentric and central) 

of openings and observed that openings reduce ductility, strength, and stiffness of the 

infilled frame. This effect is more pronounced in a case of door. 

After experimental tests conducted by Mosalam et al. (1997a), authors concluded that 

openings in infill walls result in more ductile behaviour, smaller initial stiffness and 

cracking strength and change in the cracking pattern and failure mode. Later on, Al-

Chaar et al. (2002) showed that the initial stiffness and ultimate capacity of the infilled 

frame with the openings are smaller when compared with the fully infilled frame. The 

same effect is observed in the tests performed by Anil and Altin (2007). Authors also 

observed the possibility for the short column behavior.  

Chiou et al. (1999) reported that the presence of the partial height wall decreases the 

ultimate lateral load capacity of the system by 47%. Authors added that the partial 

height wall induces a short column effect and leads to a severe failure of the column. 
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Blackard et al. (2009) found that the presence of openings reduces the capacity of in-

filled frame, but the peak plateau of the infill with openings is more ductile than for the 

solid infill. 

Results of the test campaign presented by Stavridis (2009) show that presence of win-

dow openings in infill reduces the stiffness but has little effect on the strength of the 

infilled frame. Author concluded that panels with the opening could experience a col-

lapse due to the weak arching effect. 

Sigmund and Penava (2014) found at drift levels higher than 1%, the presence of open-

ings lowered the energy dissipation capacity of the system. It was also observed that the 

failure mechanism is highly dependent on the location and size of the opening. 

Zhai et al. (2016) presented results of the tests on four full-scale single-storey, single-

bay infilled frames with or without openings. Since the result showed that the central 

window opening reduced the lateral stiffness and strength, they concluded that the cen-

tral window opening improved the global lateral force displacement response of the 

infilled frame due to the better distribution and slower propagation of cracking than the 

solid wall. 

Tu et al. (2016) tested a full-sized RC frame with a door opening under cyclic in-plane 

load. Soon after the loading start, panel and frame separated and continued to deform 

separately. Specimen with the infill wall and door experienced significantly higher 

strength and stiffness than the bare frame, but strong decrease in drift capacity. 

2.4 Numerical modelling of masonry infill 

The behaviour of the masonry infill walls has been studied both experimentally and 

analytically. Experimental programs are usually quite expensive, while numerical 

models, once validated, do offer an efficient approach for the investigation of numerous 

parameters influencing the seismic behaviour. The desire to represent and predict the 

behaviour of infilled frames, led to the development and implementation of numerical 

models in the last 50 years. Nevertheless, modelling the behaviour of infilled frames is a 

challenging task due to the large number of parameters involved, which must be taken 

into account, and the uncertainties associated with these parameters. However, the 

presence of modern computer softwares and powerful computing machines help the 
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numerical analysis. 

Essentially there are two approaches for modelling, one that consists of defining  micro 

models, and another that consists of  creating macro models (Mauro, 2008). Some 

models presented in the literature are developed to represent and predict the behaviour 

of a whole infilled frame, or the main features of the infilled frame. Other models only 

serve to evaluate the stiffness in the elastic domain, while the more advanced ones are 

able to cover the degradation of stiffness and strength in order to simulate the nonlinear 

behaviour. 

While studying the literature, the following levels of modelling have been extracted: 

Micro-modelling – Analysis of ―micro-models‖ requires modelling of the frame 

elements, the masonry bricks, mortar, as well as interface between the bricks and mortar 

and between the wall and the frame. According to Lourenҫo (1996), masonry micro-

model can be performed as detailed micro-modelling or simplified micro-modelling. 

The first modelling scheme (Figure 2.7a) implies bricks and mortar joints to be 

discretized using continuum elements, with mortar joint and interface between the units 

and mortar presented by discontinuous elements. The highly nonlinear behaviour of the 

masonry infill wall, including the bricks and mortar, makes this level of modelling very 

challenging. This type of modelling requires calibration of a high number of parameters 

for the material constitutive laws, but it allows tracing the developed stresses and cracks 

within the wall. It gives a quite accurate representation of infill walls‘ behaviour; 

therefore it is often used to take into account local effects for understanding the 

interaction between RC frame and masonry infills. However, it is impractical for global 

analysis due to the large computational effort in terms of time and material properties to 

be inputted into the model. The second scheme (Figure 2.7b) simplifies the problem by 

merging mortar joint and the interface into an average interface of a zero-thickness. The 

units are hereby extended to the geometry of the mortar joints and the behaviour of the 

mortar and the contact is assigned to interface elements between the masonry units. This 

model is less accurate than the previous one, but it saves time in computation and is 

capable of representing the behaviour of infilled frames quite accurately. 

Smeared homogeneous modelling approach – In this approach masonry units, mortar 

joints and interfaces form together one homogenous part (Figure 2.7c) presented with 
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the properties of one material. Since masonry has different behaviour in different 

directions, masonry should be treated as a homogenous continuum having an 

anisotropic behaviour. This approach is useful for studying large walls and development 

of stresses in order to discuss behaviour of the masonry walls in a more general way, but 

not for the detailed stress analysis. 

Macro-modelling approach – This approach presents a simplified method used for to 

describe the effect of the masonry infill walls in the global seismic behaviour of RC 

buildings with masonry infills, rather than to model local failures that might take place 

within the masonry infill panel. In this approach the masonry infill walls are usually 

represented by diagonal struts (Figure 2.7d). Because of its simplicity and easy 

application, this approach is of great interest for designers and engineers. 

 
a) b)   c)     d) 

Figure 2.7 Numerical modelling approaches for masonry infill 

2.4.1 Micro-modelling 

The development of the finite element method has allowed the development of micro 

models and their use in analysis of infilled frames. For micro models it is necessary to 

define each single element being part of the system, such as frame elements, masonry 

bricks and interface between bricks and between bricks and frame. Therefore, numerical 

modelling of infill demands not just knowledge about masonry, but also knowledge 

about concrete and frame structures. 

Frame members can be modelled using 2D or 3D elements. In any case influence of 

reinforcements has to be taken into account, either by literally modelling each bar using 

beam, truss or solid elements or by the use of smeared approach where effect of 

confinement due to the reinforcement is taken through the definition of material model 

for concrete. In any case, modelling of RC frames brings issues related to the bond slip 

effect, proper definition of constitutive material model, definition of stress-strain 

relation for compression and tension, tension stiffening etc. Therefore, a lot of 
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researchers analysed numerical model for the reinforced concrete and proposed different 

approaches. One of the possibilities is to use a smeared crack model with a 

homogeneous material (Schmidt, 1989a; Mosalam et al., 1997c). Smeared crack 

elements experience problems with a stress-locking that does not allow for proper 

modelling of the shear cracks (Rots and de Borst, 1987; Lotfi and Shing, 1991). As a 

solution to this issue, Stavridis and Shing (2010) proposed a model where combination 

of smeared crack and zero-thickness interface elements connected with the steel bars is 

used to model reinforced concrete section. 

Besides proper modelling of bare frame, appropriate model that can represent nonlinear 

behaviour of masonry has to be applied. Therefore, much effort has been given to the 

development of material models for masonry units. Using finite element approach 

masonry infill walls can be presented with either two-dimensional or three-dimensional 

finite elements. Mallick and Severn (1967) were one of the first to study infilled frames 

using finite element method, where authors gave special attention to the modelling of 

interface between frame and infill. Page (1978) and Rots (1991) modelled masonry 

units with continuum elements and mortar joints by means of interface elements. 

Afterwards, Lotfi and Shing (1994) proposed zero-thickness interface element to 

represent the mortar joints, while Mehrabi and Shing (1997) developed a smeared crack 

finite element model to analyse the behaviour of RC frames infilled with solid and 

hollow concrete masonry units in which the effect of the mortar joint was accounted for 

by using constitutive model that incorporates the increase of contact stress due to joint 

closing and plastic compaction of mortar joint. After definition of one interface model 

for both the interface between frame and infill and the interface along mortar joints and 

the second one that simulates the bond-slip behaviour of reinforcing bars in concrete, 

authors used defined models to successfully represent failure modes and the lateral 

strengths of the experimentally tested infilled frames. At the same time, Lourenco and 

Rots (1997) developed an elastoplastic interface model that is able to combine plasticity 

for tension, shear and compression. This model capable of representing masonry 

behaviour for monotonic loading, was expanded by Oliveira and Lourenco (2004) with 

the two yield surfaces in order to incorporate nonlinear unloading/reloading behaviour 

that appears under cyclic loading. On the contrary, Asteris (2003) did not use interface 

element for defining contact between infill and frame, but he developed a step-by-step 
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procedure that considers the contact length by means of a separation criterion. More 

recently Stavridis (2009) and Stavridis and Shing (2010) proposed a model combining 

smeared and discrete crack approaches to capture different failure modes of the infilled 

frames. The masonry units were modelled using the smeared-crack elements as well as 

the RC frame. Interface element was defined for mortar joints, but also for the middle of 

the brick in order to capture possible crack of the brick. Soon after, Koutromanos et al. 

(2011) extended the model by implementing smeared-crack model able to account for 

cyclic loading in combination with the already defined cohesive crack interface model. 

More recently, Zhai et al. (2016) and Nasiri and Liu (2017) used simplified micro-

modelling approach to validate the numerical model using experimental results 

presented in the same paper while the Yuen et al. (2016) implemented user-subroutines 

in order to better represent the behaviour of infilled frames. 

2.4.2 Smeared homogeneous models 

In the case of homogeneous models, bricks, mortar joints and the bricks–mortar 

interface are smeared in an isotropic or anisotropic homogeneous continuum. For this 

approach it is necessary to use a suitable material constitutive law in order to properly 

represent the mechanical behaviour of masonry. Dhanasekar and Page (1986) proposed 

a nonlinear orthotropic model to simulate the behaviour of infilled frames. After its 

validation against experimental results, the model was used in a parametric study which 

resulted in a conclusion that shear and the tensile strengths of the masonry infill have a 

significant influence in the load-deflection behaviour, the ultimate strength and the 

failure mode. Some authors (Schmidt, 1989a) used simple smeared crack model to 

simulate the behaviour of infills. Lotfi and Shing (1991) proposed a smeared finite 

element formulation based on plasticity concepts for brittle materials and isotropic 

behaviour for the uncracked masonry and nonlinear orthotropic constitutive models for 

cracked masonry. As already mentioned, the drawback of this approach is that it cannot 

realistically represent brittle shear behaviour of the panel. Lourenço (1996) made a step 

forward in a use of continuum model, with a combination of plastic and anisotropic 

behaviour, by adopting Hill type yield criteria in compression and a Rankine type 

criteria in tension. Mosalam et al. (1997c) used a smeared crack model with a 

continuum and homogeneous material obtained through a homogenization process to 
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simulate an experimental test of infilled frame. Asteris (2003) used anisotropic material 

to study infilled frames with the openings. Basic characteristic of his approach is that 

the infill-frame interaction is taken into account only in compressed zones. More 

recently, some authors (Mohyeddin et al., 2013) modelled infill with the use of a 3D 

discrete finite element, while others (Pelà et al., 2013; Milani and Bertolesi, 2017) 

developed homogeneous models for the analysis of masonry walls that could be 

extended for the modelling of masonry infills. 

2.4.3 Macro-modelling 

During the long period of studying the behaviour of infilled frames, there have been 

different proposals for macro-modelling approach. Using the strut to model the infill is 

undoubtedly the most accepted and the most studied approach. However, several 

researches have proposed different ways to account for the masonry infill wall. Mallick 

and Severn (1967) introduced an iterative technique whereby the points of separation 

between the frame and the infill, as well as the stress distribution along the length of 

contact between the frame and the infill, were obtained as an integral part of the 

solution. For frame modelling beam elements were used, while plane stress rectangular 

elements were employed for the infill. Barua and Mallick (1977) used finite element 

technique to analyse infilled frames in a similar way as proposed by Sachanski (1960), 

but Barua and Mallick allowed for the separation between the infill and frame and 

included the effect of slip. Liauw (1972) adopted a method for analysing the infilled 

frame through using an equivalent frame to represent the infilled system. Later on, 

Dawe and Charalambous (1983) presented a finite element technique where standard 

beam and membrane elements were used to model the frame and the infill wall, 

respectively. The interface between the frame and the infill was modelled with rigid 

links. Seah (1998) suggested the numerical model, in which the steel frame was 

modelled using elastic beam-column elements connected with nonlinear rotational, 

shear, and normal springs, while elastic plane stress elements connected by a series of 

springs representing the mortar joints were used for representing the masonry wall. 

Although the model was sophisticated enough to account for the variation in contact 

lengths and the failure of mortar joints due to shear, tension or compression, it gave 

positive results only up until the failure. 
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It is worth mentioning that the simplest approach of modelling infilled frames is by 

analysing just bare frames and using derived factors for taking into account presence 

and effect of infill walls (Hak et al., 2017). This approach is attractive because of its 

simplicity, but comprehensive experimental and numerical studies on more precise 

models have to be conducted in order to derive reliable factors. 

In the last couple of years, fiber elements have been used with success in some studies, 

therefore this approach and the strut approach have been selected to be summarized in 

this work. 

2.4.3.1 Strut approach 

Modelling an infill wall with the use of a diagonal strut is attractive because of the 

obvious advantages in terms of simplifying the computational effort and efficiency. The 

idea of modelling an infill masonry panel using one or a few beam elements, being able 

to simulate the overall effect of the masonry panel in the structure response, has been 

studied from the first observations from Polyakov (1960). Based on observation of the 

infill boundary separation, he suggested that the infilled frame system is equivalent to a 

braced frame with a compression diagonal strut replacing the infill wall. Since then 

many analytical studies were presented with proposals of strut models. Over the last 

years, many models have been proposed with the aim of improving the model to better 

predict and reproduce the mechanical properties of the infill, such as strength, stiffness, 

collapse mechanism and the hysteresis behaviour. 

In the work of Polyakov (1963), it was the first time that the concept of equivalent 

diagonal strut was introduced, although at the almost same time, Holmes (1961) 

proposed a method for predicting the deformations and strength of infilled frames based 

on the equivalent diagonal strut concept. He assumed that the infill wall acts as a 

diagonal compression strut, as shown in Figure 2.8, of the same thickness and elastic 

modulus as the infill with a width equal to one-third the diagonal length. 

Then Stafford Smith and Carter (1969) concluded that the lateral stiffness of an infilled 

frame may be obtained by statically analysing the equivalent pin-jointed frame in which 

the infill is replaced by an equivalent diagonal strut. This is confirmed by Liauw and 

Kwan (1984), who observed that under lateral loads tensile corners are subjected to very 

little stresses and only the diagonal region is really effective in the bracing action. Also, 
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Paulay and Priestley (1992) suggested treating the infill walls as diagonal bracing 

members connected by pins to the frame members. After performing experimental study 

and a non-linear FE analyses, Saneinejad and Hobbs (1995) concluded that when 

mechanical properties of infills are known pin-jointed equivalent diagonal struts can be 

used to transform infilled frames into equivalent braced frames in  order to simply but 

effectively study the behaviour of infilled frames. 

 

Figure 2.8 Diagonal compression strut and equivalent strut (Liberatore and Mollaioli, 2015) 

Al-Chaar (2002) introduced the strut model eccentrically pin-connected to the column at 

certain distance from the face of the beam, in order to take into account infill forces 

acting on the columns. 

The equivalent diagonal strut approach can model the global force-displacement 

behaviour of the infilled frame, but model of the infill wall with just one single strut 

element is not capable of properly taking into account the change in the bending 

moment and shear diagram along the column length due to the presence of the panel 

(Crisafulli, 1997) and therefore it is ineffective in modelling the complex behaviour of 

infilled frames as reported by Asteris (2008). To overpass this limit, several researchers 

developed models with different orientations and number of struts. Syrmakezis and 

Vratsanou (1986) employed five parallel compressive struts in each direction (Figure 

2.9a) in order to study the effect of the infill/frame contact length on the moment 

distribution of the frame. Žarnić and Tomažević (1988) conducted a series of cyclic tests 

and based on their experimental results proposed a model with an equivalent 

compressive strut which is not directly connected to the node connecting the column 

and the upper beam but it is in the offset from the diagonal (Figure 2.9b). Schmidt 

(1989a) increased the number of the struts and proposed the model with offsets at both 
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ends as illustrated in Figure 2.9c. Chrysostomou (1991) and Chrysostomou et al. (2002) 

proposed a model with three parallel compressive struts (one diagonal and two off-

diagonal) in each direction (Figure 2.9d). The off-diagonal struts were positioned at 

critical locations along the frame members associated with the position of the formation 

of a plastic hinge in a beam or a column.  

 
a) b) c) d) 

Figure 2.9 Proposed macro models with different orientations and number of struts. For simplic-

ity, struts in only one direction are shown (Sattar, 2013) 

El-Dakhakhni et al. (2003, 2004) proposed a similar model like Chrysostomou (1991) 

and Chrysostomou et al. (2002), but with the off diagonal struts which are not parallel. 

The total area of the diagonal strut is divided into three parts, where off diagonal struts 

have one quarter of the area and the middle strut was taken to have one half of the area. 

Since the masonry presents an orthotropic material, they took into account the change of 

modulus of elasticity of the masonry in terms of its angle of inclination. However, the 

proposed macro-model was capable of simulating some of El-Dakhakhni (2002) 

experimental test results but not all of them. 

The struts models presented are not able to describe horizontal shear sliding of infilled 

frame directly but indirectly through relation between shear and diagonal force. 

Therefore, the task of improving the strut equivalent model continued with several other 

studies. One of the most complex and accurate models was developed by Crisafulli 

(1997), who proposed a triple strut model to take into account tension failure, and for 

shear horizontal sliding failure, he used the idea proposed by Leuchars and Scrivener 

(1976). More recently, Crisafulli and Carr (2007) proposed a modified model (Figure 

2.10) presented as a four-node panel element that is connected to the frame at the beam-

column joints. This panel element contains internally the model from Crisafulli (1997), 

which has two parallel struts and a shear spring in each direction. The limit of the model 

is that it is not able to properly predict the bending moment and shear forces in the 

surrounding frame. This model is implemented in program RUAMOKO (Carr, 2000) 
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and in SeismoStruct (Seismosoft, 2013). 

 

Figure 2.10 Four-node panel element proposed by Crisafulli and Carr (2007) 

Rodrigues et al. (2010) developed the model where each panel is represented by four 

struts with rigid behaviour and a central shear element where the hysteretic nonlinear 

behaviour is concentrated. The model was enhanced by Furtado and Rodrigues (Furtado 

et al., 2015a,b) to perform the studies on the interaction between in-plane and out-of-

plane behaviour of the infilled frames. This macro model is able to consider the 

influence of the in-plane damage on the out-of-plane behaviour, but the shortcoming is 

that force-displacement curve of the masonry infill shear wall must be known in 

advance of modelling. Also, the proposed model fails in capturing the behaviour of 

partial height walls. 

More recently, other models for the diagonal strut with the improved capabilities have 

been introduced. For example, Cavaleri and Di Trapani (2014) proposed a single strut 

model in each diagonal, modelled with the multilinear plastic link elements and rigid-

link elements near to beam-column joints (Figure 2.11a). In the same year, Calio and 

Panto (2014) have proposed similar but a more complex model based on the modelling 

of the entire interface between the panel and the frame through a large number of axial 

and shear springs, as shown in Figure 2.11b. The basic idea of the proposed approach is 

to approximate the in-plane nonlinear response of masonry walls by an equivalent 

discrete quadrilateral element constituted by four rigid edges connected by four hinges 

and two diagonal nonlinear springs. Rigid edges of the quadrilateral element are 

connected with the surrounding frame through the nonlinear springs which are 

orthogonal to the panel side, and an additional longitudinal spring which controls the 

relative motion in the direction of the panel edge. Although, its mechanical simplicity, 
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the model is able to simulate the main collapse mechanisms of infilled frames. The 

model was later improved by its spatial extension to three-dimensional macro-element 

in order to account the behaviour of the wall in the out-of-plane direction too (Panto et 

al., 2017). 

  
a) b) 

Figure 2.11 (a) Macro-models proposed by Cavaleri and Di Trapani (2014) and (b) Calio and 

Panto (2014) 

Many other authors (Bazan and Meli, 1980; Durrani and Luo, 1994; Hendry, 1981; 

Kappos et al., 1998; Hak et al., 2012) and codes (FEMA 306 (1998); CSA S304.1-04, 

2004) suggested the use of the strut approach to model infill walls in order to analyse 

the behaviour of infilled frames under lateral load. 

2.4.3.1.1 Strut width 

In order to use the strut for representing an infill, characteristics such as strut width, 

stiffness and force-displacement relation have to be defined. One of the first to propose 

the width of the strut elements was Holmes (1961), who suggested infills to be modelled 

with the strut element characterized by the same material and thickness of the panel 

with a width defined as a third of the panel‘s diagonal length. In 1962, Smith (1962) 

conducted an extensive experimental campaign on infilled steel frames, adjusting the 

ratio proposed by Holmes (1961) with lower values: w/d = 0.10÷0.25. Priestley and 

Calvi (1991) and Paulay and Priestley (1992) used the same approach just defining the 

effective strut width to be a quarter of the wall‘s diagonal length.. 

In the following years, Stafford-Smith and Carter (1969) studied a more sophisticated 

formulation for the evaluation of the width of the equivalent strut and they found that 

the effective width of infill was found to be dependent on the length of contact between 

the infill and the frame, α, which itself was found to be highly dependent on the relative 

panel-to-frame-stiffness parameter, λ. This parameter was later used by many authors to 
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define effective width of the strut. First, Mainstone (1971) based on the experimental 

work of Mainstone and Weeks (1970) proposed empirical equation for the calculation of 

the equivalent strut width, which was later modified in Mainstone (1974). Since this 

formula has been accepted by many researchers (Fardis and Calvi, 1994; Al-Chaar, 

2002; Klingner and Bertero, 1978) it was also included in FEMA 274 (1997) and FEMA 

306 (1998). More recently, Tucker (2007) modified the approach from Mainstone 

(1974) proposing the equation in the similar manner. Furthermore, based on the results 

of Buonopane and White (1999) which show that Mainstone‘s equation (Mainstone 

1974) underestimates the stiffness of infilled frames, Chrysostomou and Asteris (2012) 

modified the equation from Mainstone (1974) for calculating equivalent strut width. 

Bazan and Meli (1980) introduced the dimensionless parameter β to define the effective 

strut width, which is dependent on the modulus of elasticity and shear modulus. Tassios 

(1984) used the same approach. 

It should be pointed out that Stafford-Smith and Carter (1969) defined contact length α 

to be dependent on the characteristics of a column, but since they have studied squared 

panels, the same contact length appears between the beam and infill, which is not 

realistic in a case of non-squared panels. Therefore, Hendry (1981) proposed a relation 

for the equivalent width of the diagonal based on the distribution of stress on the infill 

under lateral load. 

Liauw and Kwan (1984) concluded that h∙cosθ is an effective part of the panel activated 

under lateral load; therefore they suggested defining the equivalent strut width as a 

fraction of h∙cosθ. 

For definition of the equivalent strut width, Decanini and Fantin (1987) and Bertoldi et 

al. (1993) used the relative stiffness parameter, λ, proposed by Stafford-Smith and 

Carter (1969) and two constants K1 and K2 that are dependent on the relative stiffness 

parameter, λ. 

Durrani and Luo (1994) conducted finite element analysis in order to derive equation 

for calculation of effective width of the diagonal strut, which they expressed in term of 

effective width factor γ. 

Bennett et al. (1996) used the analytical approach developed by Flanagan (1994) to 

propose and equation for calculating the strut width, depending on the empirical 
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constant, C, that varies with the in-plane displacement and is an indicator of the damage 

of the infill. Afterwards, Flanagan and Bennett (1999a and 2001) used experimental 

results from Dawe and Seah (1989a) and Mehrabi et al. (1994) to find the best fit for the 

values of C. They concluded that the values of C are similar for all types of masonry. 

Bennett et al. (1996) proposed that for infills with the offset from the column centrelines 

only the portion of the infill enclosed by the bounding frame should be included in 

calculation of the area of the equivalent strut and the capacity. Additionally, authors 

suggested that contact length alpha should be limited to 20% of the infill height, in 

order to avoid unreasonably high stiffness of the infill in a case of very stiff columns. 

They also recommended that the moment of inertia for both beams and columns should 

be taken as 50% of gross moment inertia. Later on, the Masonry Standards Joint 

Committee (MSJC, 2013) proposed an equation for calculation of strut width, which 

presents modification of the Bennett et al.‘s (1996) equation. 

More recently, Amato et al. (2008) gave expression for calculating equivalent strut 

width which takes into account the influence of vertical load on columns and modulus 

of elasticity of infill in strut direction.  

Pradhan et al. (2014) proposed an expression for determining equivalent strut width by 

taking into account height of masonry wall as well as the height of frame, which makes 

this approach suitable for use for partially infilled frames. 

2.4.3.1.2 Strut strength 

As is the case for the width of the strut, many proposals for the strength are given in 

order to determine the capacities for the various failure modes that infill walls can 

experience. Most of the researches didn‘t give the equations for all the failure modes, 

considering the omitted ones as negligible. Holmes (1961) concluded that, at the infill 

failure, the lateral deflection of the infilled frame is small compared to the flexibility of 

the corresponding bare frame; therefore the frame members remain elastic up to the 

failure of infill. He first derived the equation to determine the ultimate lateral load 

capacity of the infilled frame and then he extracted strut resistance force. Afterwards, 

Stafford-Smith and Carter (1969) suggested the equation for calculating compressive 

failure (corner crushing) force of the compressed diagonal. Beside corner crushing 

force, Mainstone (1971) gave also the expression for defining the diagonal cracking 
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strength (tensile failure). Later on, Hendry (1981) proposed an expression for the 

calculation of horizontal load which infill wall can withstand before shear sliding failure 

mode appears and an expression for compression load that equivalent diagonal strut can 

carry. 

One of the important advantages of the approach proposed by Decanini and Fantin 

(1987) and Bertoldi et al. (1993) for the calculation of strut strength is its ability to 

account for all failure mechanisms. This was also done by Stafford-Smith and Coull 

(1991). 

Priestley and Calvi (1991) and Paulay and Priestley (1992) suggested that it can be 

assumed that infill panel doesn‘t carry vertical load due to gravity effects, because it is 

impossible to construct tight connection of the top of the wall and RC beam. Therefore, 

vertical force acting on the infill will come only from the vertical component of the 

diagonal compression force. This is taken into account in the expression they proposed 

for calculating shear sliding resistance. They also recognized compression failure of 

diagonal strut as a failure that can be used as an ultimate capacity value, which however 

depends on the compressive strength and vertical contact length between panel and 

column. As a third mode of failure, they suggested a diagonal tension cracking to be 

taken due to the possibility to damage an infill wall in a way that it weakness it 

regarding to the out-of-plane load. 

Bennett et al. (1996) used experimental results from Flanagan (1994), Dawe and Seah 

(1989a), Mehrabi et al. (1994), Hendry and Liauw (1994) and Benjamin and Williams 

(1958) to derive the relation for calculation of diagonal cracking resistance. They came 

to the conclusion that corner crushing capacity doesn‘t change because of frame 

properties and geometry. They also suggested equation for calculating diagonal 

cracking. 

cracking strength. 

FEMA 306 (1998) adopted an expression for equivalent strut width based on the work 

of Mainstone (1974) and relative panel-to-frame-stiffness parameter, λh according to 

Stafford-Smith and Carter (1969) to calculate the compression failure of the equivalent 

diagonal strut (corner crushing mode). Using the recommendation of Saneinejad and 

Hobbs (1995), FEMA 306 (1998) also gave expression for calculation of diagonal 
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tension strength of infill panel. FEMA 306 (1998) also suggests Mohr-Coulomb failure 

criteria to be used to assess strut force which would present the initial sliding shear 

capacity of the infill. 

Al-Chaar (2002) proposed the expressions for determining the load required reaching 

masonry infill crushing strength and the load required to reach the masonry infill shear 

strength. 

Based on the comparison of analytical strength methods with the experimental results, 

Tucker (2007) derived equations for cracking and ultimate strength of brick infills, 

while Pradhan (2014) suggested an equation for the calculation of diagonal compression 

failure force. 

2.4.3.1.3 Strut stiffness and lateral stiffness of infill 

Stiffness of the infilled frame consists of a bare frame stiffness and infilled wall stiff-

ness. However, this expression is valid in linear range, until the appearance of the first 

crack. Calculation of the initial stiffness of the frame is less problematic than the calcu-

lation of the stiffness of the infilled wall. Since the most common approach for consid-

ering infill walls is presenting it with the strut, many authors calculated initial lateral 

stiffness of the infill wall by considering the stiffness of the strut as: 

 
2cosm

m

w tE
K

d


 
  (2.1) 

Bertoldi et al. (1993) considered this stiffness as secant stiffness, while he defined an 

initial stiffness as 4 times higher (Figure 2.12). 

However, some authors proposed the methods for calculating the infill stiffness in a 

different way, without considering struts. Fiorato et al. (1970), using a simple method 

based on a cantilever beam model, where the section was composed of a reinforced 

concrete and masonry, proposed the following equation to calculate the lateral stiffness 

of the system: 
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Where: 
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Where h is height of the infill panel, Aw is horizontal section area of the infill panel, Gw 

is shear modulus of the masonry, Ec is modulus of elasticity of the concrete, hb is height 

of the composite beam and I is moment of inertia of the composite beam. Fardis (1996) 

proposed the initial stiffness to be calculated using just the Equation (2.3) 

2.4.3.1.4 Taking into account effect of openings 

As mentioned in section 2.3.5, openings reduce stiffness and strength of infills. 

Therefore, in order to use diagonal struts for modelling of infill walls and at the same 

time to take into account effect of the openings, a relationship between the stiffness and 

strength reduction of the infill and the openings parameters has to be found. This is 

usualy done by defining the factor that reduces the strut width or that directly reduces 

stiffness or strength calculated for a full infill panel. Mostly this factor presents a ratio 

of the area of the opening and the infill panel. 

One of the first to propose the reduction factor to be used for taking into account 

openings was Polyakov (1956), who suggested that the expression is valid for the case 

when the height of an opening is smaller than 65% of infill height and opening area is 

smaller than 60% of panel area. In the similar way, Sachanski (1960) and Imai and 

Miyamoto (1989) proposed the expression for the strut width reduction factor. 

Based on the numerical study, Durrani and Luo (1994) proposed the equation for 

calculating reduction factor that takes into account openings in infills, for both stiffness 

and strength. Authors stated that in a case when opening goes through the whole height 

or width of the infill panel, the effect of infill should be neglected. According to Al-

Chaar (2002), if the area of the opening is greater than 60% of the panel area, influence 

of infills can be neglected. 

Papia et al. (2003) proposed simple reduction factor that takes into account size of the 

openings in the height and the length of the wall. Based on the work from Dawe and 

Seah (1989a), New Zealand Society for Earthquake Engineering (NZSEE, 2006) 

recommends a simplified reduction factor for the strength and the initial stiffness of 
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infill. For the case when opening exceeds 2/3 of the bay length, influence of the infill on 

the system can be neglected. Mondal and Jain (2008) used finite element analysis to 

derive the reduction factor to calculate initial stiffness, for the case of central window 

opening. Authors suggested that in a case of an opening, which is smaller than 5% of 

the infill, effect of opening on the initial lateral stiffness of infilled frames should be 

ignored, while for the case of openings bigger than 40% of the area of the infill the 

effect of infill on the initial lateral stiffness of infilled frame may be neglected. 

After experimental study on infilled steel frames with the openings, Tasnimi and 

Mohebkhah (2011) proposed a reduction factor for the equivalent diagonal strut width 

and stated that for the case when area of opening is higher than 40% of area of the infill 

wall influence of infill should be neglected. 

Decanini et al. (2012) also gave recommendations for calculating unique reduction 

factor for both stiffness and strength, but with taking into account the presence and type 

of reinforcing elements around openings. A non strengthened opening is considered an 

opening without lintel bands or steel reinforcement; a partially strengthened opening has 

at least the upper edge of the opening strengthened by a lintel band; a strengthened 

opening has at least two opposite edges of the opening strengthened by two lintel bands 

or by a lintel band and a steel bar. 

Asteris et al. (2012) investigated the reduction of the stiffness of infilled frames due to 

the presence of openings. First, a finite element technique proposed by Asteris (2003) 

was used to derive variation of reduction factor as a function of the opening percentage. 

Results show that increase in opening percentage leads to a decrease of the lateral 

stiffness of infilled frames, but in a case of openings exceeding 50% of infill area 

reduction factor λ is almost constant. Also, it was concluded that the effects of the 

openings are more significant when they are on the compression strut.  Effect of the 

opening on the fundamental period was also investigated; showing that even with 50% 

of openings there is a significant difference in fundamental period in comparison to the 

bare frame. In line with this, an increase of opening percentage leads to increase of top 

displacement and a decrease of base shear force. Recently, Asteris et al. (2016) 

conducted an extensive numerical investigation in order to derive an analytical 

expression for the determination of the equivalent strut width that takes into account the 
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effect of the vertical load acting on the frame, the infill aspect ratio, the opening 

percentage and the geometrical–mechanical characteristics of the infilled frame. Result 

of this study is the strut width reduction factor, which fits with the equation proposed by 

Asteris et al. (2012). 

Mohammadi and Nikfar (2013) used experimental data from literature to derive a reduc-

tion factor for stiffness and strength which are valid for opening area smaller than 40%. 

Mansouri et al. (2014) also proposed two reduction factors, one for the stiffness and 

another one for the strength. Su et al. (2016) proposed the equation for the stiffness and 

strength reduction factor by fitting the experimental data from literature. Authors added 

that this equation can be used in the case of opening not exceeding 50% of infill area. 

2.4.3.1.5 Force-displacement behaviour of the strut and hysteretic models 

Definition of constitutive relations for the strut is necessary in order to implement a 

strut model in software for structural calculations. The types of constitutive models 

required to set the strut models depend on the type of analysis (linear elastic or 

nonlinear) and the type of loading (monotonic, cyclic or dynamic). In the case of elastic 

linear analysis, it is only necessary to define the area, the length and the modulus of 

elasticity, but to consider the nonlinear behaviour of struts, full relationship between the 

axial force and displacement has to be defined. Additionally, hysteretic behaviour has to 

be incorporated if cyclic loads are applied. In this section, recommendations for force-

displacement curves for the strut presenting an infill wall in a frame under monotonic 

loading will be summarized. 

Bertoldi et al. (1993) were one of the first to propose force-displacement relationship 

(Figure 2.12a) for the equivalent strut defining initial stiffness, hardening and softening 

branch followed with the residual strength. Similarly, Panagiotakos and Fardis (1996) 

used the experimental results (Panagiotakos and Fardis, 1994) on masonry walls, bare 

RC structures and the corresponding infilled frames to propose a nonlinear force-

displacement relationship to describe the response of equivalent struts. Dolsek and Fa-

jfar (2008) defined a similar relation with the tri-linear response for the strut including 

an elastic, hardening and softening branch, but with the key difference of assuming zero 

residual strength (Figure 2.12b). They modified an empirical equation proposed by 

Žarnić and Gostić (1997) to compute the ultimate strength of the masonry infill panel, 
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while the lateral cracking strength was assumed to be 60% of the ultimate strength. 

More recently, Shing and Stavridis (2014) proposed force-displacement envelope simi-

lar to that proposed by Panagiotakos and Fardis (1996). Important difference is that this 

curve should be calibrated with a detailed nonlinear finite element analysis or according 

to the procedure which was derived for structures that have non-ductile RC frames and 

strong infill walls. 

 
 

a) b) 

Figure 2.12 Force-displacement curve for the equivalent strut a) Bertoldi et al. (1996) and b) 

(Dolsek and Fajfar, 2008) 

2.4.3.1.6 Hysteretic models 

In order to run dynamic nonlinear analysis the hysteretic behaviour of the material must 

be established. In literature just a few hysteretic models for diagonal strut can be found, 

because most researchers studied the behaviour of infill masonry under monotonic 

loading, but also due to the fact that the modelling of hysteretic behaviour increases not 

only the computational complexity but also the uncertainties of the problem. One of the 

early attempts was conducted by Klingner and Bertero (1976). They proposed a 

nonlinear hysteretic response for the equivalent diagonal strut model represented in an 

axial force-axial deformation relation which considers the strength degradation and 

reloading stiffness deterioration as shown in Figure 2.13a. More recently, Cavaleri et al. 

(2005) improved the hysteresis law proposed by in Klingner and Bertero (1978) by 

introducing a detailed force–displacement law accounting for cyclic or monotonic 

behaviour of an equivalent strut, calibrated against experimental results. Andreaus et al. 

(1985) proposed a model for the analysis of masonry structure under monotonic and 

cyclic loadings which is able to simulate ultimate strength, stress-strain softening and 

material degradation (Figure 2.13b). One of the most commonly used models was 

proposed by Crisafulli (1997) and Crisafulli and Carr (2007). This model that takes into 
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account the non-linear response of the masonry in compression, tension and shear 

(Figure 2.14).Other authors (Chrysostomou, 1991; Madan et al., 1997; Combescure and 

Pegon, 2000 etc.) also worked on developing hysteretic rules for infilled masonry. 

 
 

a) b) 

Figure 2.13 Force-displacement response of the strut proposed by a) Klingner and Bertero 

(1976) and b) Andreaus et al. (1985) 

 
 

a) b) 

Figure 2.14 a) Masonry strut hysteretic response and b) shear cyclic relationship (Crisafulli, 

1997) 

2.4.3.2 Fiber approach 

Hashemi and Mosalam (Hashemi and Mosalam, 2007) used an in-plane shaking table 

test on a 3:4 scaled reinforced concrete infilled frame to calibrate a numerical three 

dimensional strut-and-tie model that was developed to include both in- and out-of-plane 

loading. Model has two diagonal struts, one in each direction. Each of the two diagonal 

struts is modelled by four pin-connected compression-only fiber-section beam elements. 

The mid-span nodes of the diagonal struts are connected by a tension-only link in the 

out-of-plane direction. Authors proposed the interaction curve for in-plane and out-of-

plane force, but they strongly stressed that the curve presents results which are specific 

to the configuration, geometry, and material properties of the studied test structure and 

should not be used as a generalized interaction relationship. Later on, Kadysiewski and 
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Mosalam (2009) improved the model by proposing a fiber-section model (MG-model) 

with the single strut which consists of two elastic beam-column elements aligned along 

one diagonal and with hinges at the extremities (Figure 2.15). The diagonal strut has 

tensile and compressive strength to provide resistance in both loading directions. The 

fibre sections have the fibres aligned perpendicularly to the wall and their definition 

controls the combined in- and out-of-plane response of the macro-element in terms of 

forces. The constitutive relationship of the fibres is elasto-plastic. Model is suitable for 

use in nonlinear time history analyses and it was implemented in OpenSees finite 

element program (McKenna et al., 2010).  

 

Figure 2.15 Proposed fiber-section infill model (Kadysiewski and Mosalam, 2009) 

In 2015 Mosalam and Günay (2015) refined and implemented the model (MG-model) 

in OpenSees. They introduced the capability to remove the macro-element representing 

an infill panel when it exceeds the interaction curve. Although, all the models proposed 

by this group of authors represent a step forward, they are limited because they do not 

account explicitly for the arching action. Also, the model proposed by Kadysiewski and 

Mosalam (2009), provides a single strut macro-model resisting both in tension and 

compression. This configuration is not representing the actual force distribution of the 

system and of the internal forces in the frame. Moreover, the proposed models were 

validated with only FE numerical studies, thus it is not certain that the interaction 

relationship can be applied for different geometries, material characteristics, types of 

bricks, frame/infill stiffness ratio etc. Therefore it cannot be used for general purpose 

analysis. 

Dona et al. (2017) modified the model from Mosalam and Günay (2015) by having two 
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equivalent struts both of them similarly defined as MG-model (Mosalam and Günay, 

2015) but with half resistance. Instead of elasto-plastic behaviour, hysteretic behaviour 

with softening was adopted and calibrated against experimental results for subsequent 

in- and out-of-plane loading (Calvi and Bolognini, 2001; Da Porto et al., 2013). 

Removal of the element wasn‘t used, because the model already simulates the stiffness 

and strength degradation up to zero.  

Asteris et al. (2017) proposed the model comprising of a two diagonals constituted by 

nonlinear fiber-section elements. Instead of standard elements, fiber elements are to be 

used for equivalent struts. The diagonals are characterized by an assigned concrete-type 

constitutive law. Since the stiffness matrix of the element couples moments and axial 

forces, the model is able to account for an arching mechanism. Missing point of the 

approach is that potential local shear failure of columns due to the local increase of 

shear forces is not included. Di Trapani et al. (2017) further developed the approach by 

defining a four-strut macro element that can account both in- and out-of-plane 

resistance. Diagonal struts are used to model in-plane resistance, while all four struts 

contribute to the out-of-plane resistance. For definition of fiber-section elements, 

authors used concrete-type stress-strain relation according to Kent-Park model (Kent 

and Park, 1971) with the tensile strength assumed to be zero. Parameters of the curve 

are determined by calibrating them against backbone curve formed using 

recommendation from Shing and Stavridis (2014). A model has been validated against 

experimental data giving good matching. This model represents a step forward, 

although the material properties of the diagonal struts are determined by trial and error 

approach. 

2.5 Analytical solutions 

In this section, proposals from different authors for calculation of parameters needed for 

verification of infill walls are summarized. 

2.5.1 In-plane capacity 

Usually, a masonry infill wall is simulated by diagonal strut(s) joining the corners of 

frame's columns together, but some authors have proposed simplified analytical ap-

proaches for analysing infilled frames such as the one proposed by Sachanski (1960). 
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He proposed an analytical model in which he analysed contact forces between the frame 

and the infill by forming and solving the equations for the compatibility of displace-

ments of the frame and the infill. Having found the contact forces, he then proposed a 

stress function for the stress analysis of the infill. In his approach, infills are assumed to 

be isotropic, homogeneous and elastic which can‘t be attributed to the masonry infills. 

Also, Holmes (1963), based on test results of model steel frames with concrete infills, 

proposed semi-empirical method to predict the behaviour of infilled frames subjected to 

lateral and vertical loadings. Wood (1978) has used plastic analysis to find the collapse 

loads of infilled frames, while Liauw and Kwan (1983, 1984b and 1985a) studied the 

effect of the connectors between the masonry panel and bare frame and proposed the 

analytical expressions to calculate the maximum shear force that system can support. 

They have also simplified the technique from Wood (1978) to analyse multi-storey in-

filled frames by proposing four types of failure mechanisms, which involve plastic 

hinges in frame members and the crushing of infill at loaded corners. Series of equa-

tions, involving parameters such as beam and column strength, the aspect ratio of the 

wall as well as its mechanical properties, were derived to give the ultimate load capacity 

regarding various modes of failure. Continuing to present the analytical models, there is 

proposal made by Mehrabi et al. (1994). These authors took into account five failure 

mechanisms, as the most likely to occur and suggested expressions for calculation of 

each resisting force of the system. Authors wanted to extend the approach proposed by 

Liauw and Kwan (1984a), into a more general analytical method containing parameters 

such as cohesion, friction, dimensions and material characteristics of frame members 

and infill wall. 

Although these analytical approaches can be useful, they have limited application 

regarding h/l ratio, geometry, infilling brick type etc. Therefore, their use in practice has 

been omitted. 

2.5.2 Out-of-plane capacity 

Due to the mass and inertia of the wall during the earthquake excitation, infill walls are 

subjected to out-of-plane loads, which can be approximated as uniformly distributed. 

Although earthquakes present dynamic load, in practice buildings are commonly ana-

lysed using equivalent static forces. Therefore, out-of-plane capacity of masonry infills 
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is generally determined by calculating the maximum uniform lateral pressure causing 

the collapse of the panel. 

First methods for analysing infilled walls subjected to out-of-plane loads were based on 

elastic methods (Lawrence, 1979). These approaches, such as determination of maxi-

mum lateral pressure qu, derived from Timoshenko theory (Timoshenko and Woinow-

sky-Krieger, 1959) use tensile strength fmt as the governing parameter: 
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Where β1 is a coefficient depending on the aspect ratio of the panel and its restrain con-

ditions. Since this approach overestimates the stiffness other researches proposed to take 

into account two way action by using yield line analysis (Hendry, 1973; Hendry and 

Kheir, 1976). Among them, the approach from Haseltine (Haseltine, 1976; Haseltine et 

al., 1977) is based on flexural tensile strength fkx2 orthogonal to the bed joints as the 

governing parameter: 
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where a is a bending coefficient based on the panel shape and restraint conditions, γm is 

safety coefficient related to the materials ranging between 2.5 and 3.5 and γf presenting 

importance coefficient taking values between 1.1 and 1.4. Drysdale and Essawy (1988) 

also suggested the yield line approach to determine the out-of-plane strength of masonry 

walls. 

Shortcoming of these approaches was that flexural or tensile strength was considered as 

the governing parameter, and it is active only until the cracking of the masonry. As such, 

it is not suitable for out-of-plane analysis after cracking. Experiments (Anderson, 1984; 

Dawe and Seah, 1989b) showed that after cracking, infill wall deforms and in-plane 

membrane forces occur in the wall (Figure 2.16a). Thus, showing that an infill panel 

exhibits an arching type of behaviour under out-of-plane loading (Flanagan and Ben-

nett, 1999c), proving that the predominant resisting mechanism appears due to the arch-

ing action. 

The first formulation based on the arching theory was proposed by (McDowell et al., 
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1956a,b) and it can be referred to as a one-way arching mechanism incorporating 

compressive strength of masonry instead of tensile strength. Several theories based on 

these assumptions followed. Researchers also recognized that two-way action should be 

considered in the models. Following the comprehensive experimental campaign on steel 

frames infilled by hollow concrete block masonry, where also influence of the supports 

deformability and masonry infills with openings were studied, Dawe and Seah (1989b) 

developed empirical relationship for uniform lateral load capacity, with the assumption 

that the load resistance is based on the two-way arc when the panel bends. Thus, they 

have proposed the following equation for the case when the panel is connected on three 

sides and free at the top: 
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and when the panel is connected on all four sides: 
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Where fm is masonry compressive strength (kPa), t is panel thickness (mm), l is panel 

length (mm), h is panel height (mm), α is coefficient, which must be less than or equal 

to 75 in the case of panels with three connected edges and free at the top and less than 

or equal to 50 in all other cases and β is also coefficient, which must be less than or 

equal to 50. These two coefficients are calculated as follows: 
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Where Ic and Ib are moments of inertia of the column and beam (mm
4
), respectively, Jc 

and Jb are torsion constants of column and beam (mm
2
), respectively, Ec and Gc are 

modulus of elasticity and shear modulus (MPa) of the frame components. 

Angel et al. (1994) and Shapiro et al. (1994) made a step further by proposing a simple 

equation for out-of-plane strength based not just on the compressive strength of mason-

ry and the slenderness ratio, but also on the amount of in-plane damage, and the stiff-

ness of the bounding frame. Based on the experimental results from tests on infills pre-

viously damaged by in-plane, analytical model was proposed based on idealization of an 
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infill panel as a strip panel fully restrained between two rigid supports. Two failure 

modes were identified; one appears due to high compressive strain at the supports and 

center of the wall, occurring in the case of low h/t ratios. The second one appears in a 

case of high h/t ratio manifesting as the snap through of the panel. A critical slenderness 

ratio distinguishing the two possible failure modes was determined. According to this 

formulation, the ultimate out-of-plane load (qu) could be evaluated as follows: 
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Where R1 presents reduction factor for prior in-plane loading (taken from Table 2.1), R2 

reduction factor accounting the flexibility of the boundary conditions and λ presenting 

dimensionless parameter dependent on the h/t ratio (Table 2.1). R1 and R2 factors are 

calculated according to the following expressions: 
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Where EI is flexural stiffness of the smallest member of the confining frame at the panel 

edge with no continuity. In the previous equations, Δ is the maximum in-plane inter-

storey drift experienced by the infilled frame and Δcr is the cracking drift. For values of 

h/t between 10 and 30, which presents common slenderness ratios, data are fitted to an 

exponential function (Flanagan and Bennett, 1999c): 
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Table 2.1 Parameter approximation (Angel et al., 1994) 

h/t λ 
R1 for corresponding ratio Δ/Δcr 

1 2 

5 0.129 0.997 0.994 

10 0.060 0.946 0.894 

15 0.034 0.888 0.789 

20 0.021 0.829 0.688 

25 0.013 0.776 0.602 

30 0.008 0.735 0.540 

35 0.005 0.716 0.512 

40 0.003 0.727 0.528 

 



Chapter 2  Literature review 

69 

  
a) b) 

Figure 2.16 Out-of-plane mechanism: a) development of arching mechanism and b) idealized 

three-pin arch (Asteris et al. 2017) 

Al-Chaar (2002) improved the method proposed by Angel et al. (1994) and Shapiro et 

al. (1994) by considering presence of openings, beside possible existing infill damage 

and flexibility of the surrounding frame: 
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Where λ0 is slenderness parameter as per Table 2.1, but defined until h/l ratio equal to 

25, since the approach is valid up to this value. And reduction factors are calculated as: 
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Where Ic presents smaller moment of inertia between Ib and Ic (in.
4
) and for elements 

with EcIc greater than 9.0∙10
6
 k-in.

2
, or elements having infill panels in all four sur-

rounding neighbouring frames, R2 may be taken as unity. While infills with openings of 

less than 20 % of the total area of the panel may be assumed to be fully infilled for the 

out-of-plane evaluation (R3 = 1) and reduction factor for existing panel damage R1 must 

be taken from Table 2.1. 

The same method derived by Angel et al. (1994) and Shapiro et al. (1994) has been 

adopted by FEMA 273 (1997) and FEMA 356 (2000), but with small changes: 
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Where λ2 represents slenderness ratio that takes the same values as λ from Table 2.1, 
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until h/l ratio equal to 25. Asteris et al. (2017) provided a plot of λ2 values in order to 

derive a possible best fitting equation as: 
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FEMA 273 (1997) and FEMA 356 (2000) also provide the following expression to 

determine mid-height deflection normal to the plane, Δinf, of the infill as: 

 
inf

2

0.002

1 1 0.002

h

t

h h

t




 
   

 

 (2.22) 

Flanagan and Bennett (1999c) compared experimental results from Thomas (1953), 

Anderson and Bright (1976), Dawe and Seah (1989b), Fricke et al. (1992), Angel et al. 

(1994) and Flanagan and Bennett (1999b) with the analytical expressions developed by 

Dawe and Seah (1989b), Angel et al. (1994). As a result they concluded that the 

empirical method proposed by Dawe and Seah (1989b) should be the basis for 

evaluation of the out-of-plain strength of infill walls. Therefore, they modified the 

numerical constant 4.5 into 4.1 and recommended a uniform lateral load capacity of an 

infill wall to be determined as: 
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Where if h/t is <8, the thickness of the infill should be considered as 1/8 of the infill 

height and the parameters α and β were simplified by eliminating the terms of torsional 

stiffness of the frame members and calculated as: 
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They also modified the recommendation from FEMA 273 (1997) and FEMA 356 (2000) 

for mid-height deflection: 
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Based on the three-pin arch idealization of the wall under out-of-plane load (Figure 
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2.16b), Eurocode 6 (EN 1996-1-1, 2005) also proposes an expression for calculating 

lateral strength of URM walls, which is similar to the expression from FEMA 273 

(1997) and FEMA 356 (2000): 
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Where t is the thickness of the wall, fmd is the design compressive strength of the 

masonry in the direction of the arch thrust, la is the length or the height of the wall 

between supports capable of resisting the arch thrust. 

Morandi et al. (2013) used the approach of Eurocode 8 (EN 1998-1, 2004) to calculate 

out-of-plane demand pressure acting on infill walls under earthquake excitation and 

proposed the following expression to determine lateral pressure resistance, depending 

on the slenderness ratio and the masonry vertical compressive strength: 
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But the authors pointed out that the expression for lateral pressure resistance may be 

appropriate for undamaged infills while a previous damage of infill walls under in-plane 

loading has to be considered not only for the assessment of existing buildings, but also 

in the design of new RC structures with masonry infills. Therefore, authors used exper-

imental study results from Calvi and Bolognini (Calvi and Bolognini, 2001) to estimate 

out-of-plane strength reduction due to previously imposed in-plane drift. They proposed 

an out-of-plane strength reduction coefficient βa and expression for out-of-plane re-

sistance of a previously damaged infill due to the in-plane loading: 
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Where the reduction coefficient, βa, is defined as a function of the expected in-plane 

drift demand. Additionally, authors assumed that the full contact between the infill and 

the surrounding structure is preserved and the arching action remains active. 

2.5.3 Simultaneous in- and out-of-plane loading 

Al-Chaar (2002) pointed out that effects of out-of-plane loading cannot be neglected 

when analyzing the in-plane capacity of an infilled structure and vice versa. Therefore, 

the following interaction formula that takes this into account was proposed, with the 
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remark that when the out-of-plane demand is less than or equal to 20% of the out-of-

plane capacity, the in-plane capacity should not be reduced: 
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Where IPr is the in-plane capacity considering out-of-plane loading, IPc is the in-plane 

capacity found from the section on general procedures for evaluating the capacity of 

infilled frames using pushover analyses, OPd is the out-of-plane demand placed on the 

infilled frame and OPc is the out-of-plane capacity found from the section on out-of-

plane strength evaluation. 

2.6 Design rules and recommendations in codes and standards 

This section reviews the parts related to the RC frames with infill walls from the 

available codes and standards. 

2.6.1 European norms – Eurocode 8 (EN 1998-1, 2004) 

Eurocode 8 (EN 1998-1, 2004) contains general remarks and provisions related to the 

infill walls traditionally connected to the frame. In section (EN 1998-1, §4.2.2) it is de-

fined that the total contribution to lateral stiffness of all secondary seismic members 

should not exceed 15% of all primary seismic members. Since infills are considered as a 

common case of non-structural elements (EN 1998-1, § 5.2.3.6.5), this relates to them 

too. In this section it is also stated that all the members being part of the lateral force 

resisting system, should be modelled in the structural analysis and designed and detailed 

for earthquake resistance. This is specifically defined in section (EN 1998-1, §4.3.1.8) 

where it is stated that infill walls which contribute significantly to the lateral stiffness 

and resistance of the building should be taken into account in the model. 

Eurocode 8 (EN 1998-1, 2004) specifies that irregular distribution of infill in plan 

should be avoided; otherwise spatial models with infills included should be used for the 

analysis. In a case when infills are not regularly distributed but do not create strong ir-

regularity, a factor of 2 should be used in order to take into account the effects of the 

accidental eccentricity. Also, irregularities in elevation should be taken into account by 

increasing seismic action effects in the vertical elements. 
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Furthermore, it is prescribed that ’’appropriate measures should be taken to avoid brit-

tle failure and premature disintegration of the infill walls (in particular of masonry 

panels with openings or of friable materials), as well as the partial or total out-of-plane 

collapse of slender masonry panels”. Therefore, Eurocode 8 (EN 1998-1, 2004) gives 

the maximum allowed drifts, for DLS verifications as:  

- δr∙ν < 0.005h, for rigidly attached infills  

- δr∙ν < 0.0075h, for ductile infills  

- δr∙ν < 0.010h, for decoupled infills.  

Where:  

δr is the interstorey drift; h is the storey height and ν is a reduction coefficient (EN 

1998-1, § 4.4.3.2.2).  

Eurocode 8 (EN 1998-1, 2004) does not recognize the difference for behaviour factor 

value in a case of bare RC frame or infilled RC frame. But in a case of steel buildings, 

upper limit of reference values of behaviour factors for systems regular in elevation are 

given in Table 6 (EN 1998-1, § 6.3.2), where it can be seen that in a case of infills 

isolated from the moment frame, behaviour factor can be taken the same as for bare 

moment frame. 

It is recommended that the local effects due to the frame/infill interaction shall be taken 

into account. Shear capacity of columns is required to be checked for shear forces 

generated by the diagonal strut action of masonry infills by taking a strut width to be a 

fraction of the panel‘s diagonal length. 

The code does not provide any recommendation for the calculation of both in- and out-

of-plane infill resistance. With regard to the out-of-plane safety verification, Eurocode 8 

(EN 1998-1, 2004) gives directions for the calculation of seismic demand, whereas no 

capacity model is provided, although resistance (Equation (2.27)) based on arching ac-

tion suggested in Eurocode 6 (EN 1996-1-1, 2005) may be used. In order to prevent out-

of-plane collapse of walls, the code recommends that a particular attention should be 

given to masonry panels with slenderness ratio greater than 15. Furthermore, it suggests 

measures for the improvement of both in-plane and out-of-plane behaviour by applying 

light wire meshes, wall ties fixed to the columns and concrete posts and belts. 



Marko M. Marinković  Innovative system for seismic resistant masonry 

infills in reinforced concrete frame structures 

74 

In the code it is stated that the infill panels with more than one significant opening or 

perforation should be disregarded in models for analyses. Additionally, large openings 

must be trimmed with belts and posts. 

2.6.2 Italian National Code (NTC, 2008) 

The seismic design provisions for RC structures in the current Italian National Code 

(NTC, 2008), mostly comply with the Eurocode 8 (EN 1998-1, 2004), but provide less 

detailed recommendations for masonry infilled RC frames. It is stated in the code that 

non-structural elements, which contribute significantly to the lateral stiffness and 

resistance of the building, such as infill walls, should be taken into account, but no clear 

suggestions on how to do it are given. 

According to NTC (2008) provisions infill walls are checked using interstorey 

displacements derived from bare frame models and compared with the Damage Limit 

State (DLS) drifts. For Ultimate Limit States (ULS) out-of-plane verification of infill 

walls and resistance verification of the frame elements is carried out. Even though not 

clearly stated in the code, the drift verifications are commonly carried out on the bare 

frame structural configuration. 

Similar interstorey drift limits prescribed by Eurocode 8 (EN 1998-1, 2004) are indicat-

ed by Italian code (NTC, 2008): 

- δr < 0.005h for infill walls rigidly connected to the frame  

- δr ≤ 0.010h for infill walls designed not to be damaged, due to their deformabil-

ity or their connections to the structure. 

Additionally, Italian code also prescribes a specific verification for public important 

buildings such as schools, hospitals etc., by specifying that inter-storey drift must be 

smaller than 2/3 of previously described drifts. In both Eurocode 8 (EN 1998-1, 2004) 

and NTC (2008) codes, no specific previsions are prescribed with respect to the ultimate 

performance of infill walls. The effects of seismic action on non-structural elements 

should be determined by applying a horizontal force as in Eurocode 8 (EN 1998-1, 

2004). The same as in Eurocode 8 (EN 1998-1, 2004) no specific recommendations for 

the calculation of the infill both in- and out-of-plane resistances are provided. It is only 

stated that appropriate measures should be taken to avoid brittle failure and possible 
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out-of-plane expulsion of non-structural elements. 

NTC (2008) considers the vertical and/or horizontal irregular distribution of infill walls, 

suggesting that accidental eccentricity should be doubled in order to take into account 

irregular distribution in plan. 

2.6.3 Canadian Standard for Masonry Structures (CSA S304-14, 2014) 

The Canadian Standard allows three construction and design approaches for masonry 

infill walls: 

1. Frame and infill composite action – when the masonry infill shear wall is in full 

contact, bonded and tied with the surrounding frame. In this case masonry infill 

shear walls participate in carrying vertical, lateral and out-of-plane loads. 

Therefore, increase of stiffness due to the infill should be taken into account. 

2. Participating infill – when infill is not bonded and tied to the frame, but it does 

not have openings and no gaps between the masonry infill and the surrounding 

frame. In this case it is suggested an infill to be modelled with the diagonal strut. 

3. Isolated infill – when infill walls are separated from the frame structure by a gap 

created by vertical movement joints along the sides and a horizontal movement 

joint under the slab or beam. In that case, masonry infill is a nonloadbearing 

wall and cannot be treated as a shear wall. But the Standard does not provide 

any guidance for the design in this case. 

The standard recognizes shear sliding, diagonal shear failure and compression failure in 

diagonal strut as three in-plane failure mechanisms and provides design equations for 

them. On the contrary, no specific provision for the out-of-plane strength calculation of 

infill walls is provided. 

2.6.4 American Building Code Requirements for Masonry Structures (MSJC, 

2013)  

Building Code Requirements for Masonry Structures (MSJC Code; or TMS 402/ACI 

530/ASCE 5) classifies masonry infill walls into two categories: Participating and Non-

Participating infill walls. Participating infills form a composite structural system with 

the bounding frame, increasing the strength and stiffness of the system. In that sense, 
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participating infill walls contribute in resisting lateral loads. Participating infills can be 

either mortared tight to the bounding frame so that the infill receives lateral loads 

immediately as the frame displaces, or the built with a gap between infill panel and the 

frame. In this case, a gap has to be less than 3/8 in. (9.5 mm), according to MSJC Code 

Section B3.1.2.1. If the gap fulfils this requirement, the infill can be considered as a 

participating infill wall and the code requires reduction in the strength and stiffness by 

50%. 

According to MSJC (2013) participating infill walls should be analysed using an 

equivalent strut, whose thickness is the net thickness of infill; and whose elastic 

modulus is the elastic modulus of the infill. The equations for calculating the in-plane 

capacity of the infill wall are provided by the code. 

The out-of-plane design of participating infills is based on two-way arching of the 

infills, using the approach developed by Dawe and Seah (1989b) and equation (2.23) 

proposed by Flanagan and Bennet (1999c). Gaps between the frame and infill reduce the 

arching mechanism to a one-way arch and should be considered by taking α and/or β to 

be zero. The maximum slenderness ratio (h/t) of the participating infill is limited to 30 

in order to insure construction stability of the wall, while the maximum thickness 

allowed for calculation for the out-of-plane capacity is one-eighth of the infill height. 

In the case of partial infills and infills with openings, the MSJC (2013) does not 

consider infill walls as a part of the lateral-force resisting system, because structures 

with partial-height infills have typically not performed well during seismic events. 

However, due to the fact that partial height infill walls attracts additional load to the 

column, which can result in shear failure of the column, their effect on the surrounding 

frame has to be considered. 

The MSJC (2013) also takes into account additional localized forces due to the presence 

of infills and it provides guidance on the design loads applied to the bounding frame 

members in this case. 

Volumetric changes in the masonry infill material that may occur over time due to 

normal temperature and moisture variations should be taken into account. Shrinkage of 

concrete masonry infill material may open gaps between the infill and the bounding 

frame that need to be addressed. Guidance for these volumetric changes is provided in 
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the MSJC Code Section 1.7.5. 

Non-participating infills are designed and detailed to be structurally isolated from the 

lateral force-resisting system by structural gaps between the infill and the bounding 

frame. These isolation joints must be at least 3/8 in. (9.5 mm) and sized to accommodate 

the expected design displacements of the bounding frame. It is recommended that such 

gaps should be filled with uncompressible materials fulfilling other code requirements 

such as weather protection, air infiltration, sound and thermal insulation etc. The MSJC 

Code (2013) states that non-participating infill walls should only be designed to resist 

the out-of-plane loading, according to the MSJC Code sections for reinforced or 

unreinforced masonry (Section 3.2 for unreinforced infill and Section 3.3 for reinforced 

infill). Since non-participating infills support only out-of-plane loads, they can be 

constructed with full panels, partial height panels, or panels with openings, but the 

effects on the surrounding frame must be included in the design. 

The MSJC Code (2013) suggests using connectors attached to the bounding frame and 

spaced at a maximum of 4 ft (1.22 m) along the supported perimeter of the infill, but 

these connectors are not permitted to transfer in-plane loads from the bounding frame to 

the infill. Research (Dawe and Seah, 1989a) has shown that when connectors transmit 

in-plane loads they create regions of localized stress and can cause premature damage to 

the infill, which reduces the infill's out-of-plane capacity. 

2.6.5 Federal Emergency Management Agency reports and recommendations 

(FEMA 273, 274, 306, 310, 356)  

FEMA reports published in the United States consider the infill walls to contribute in 

the resistance of lateral load. The values presented in these recommendations are 

different than what is present in the MSJC (2013). In particular, FEMA 306 (1998) 

provides guidance on damage classification and performance analysis of infilled frames 

under earthquakes. Infilled panels are categorized according to material and geometric 

configurations. It recognizes and describes the following behaviour modes of infilled frame: 

a) Bed-joint sliding 

b) Diagonal cracking 

c) Corner compression 

d) Out-of-plane failure 
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e) Frame components failure 

A single equivalent-strut approach (two struts per panel for reversed cyclic loading 

analysis, one across each diagonal) is recommended to be used for design and 

evaluation of infilled frame structures. Such an approach has been also adopted by 

FEMA 273 (1997). The width of the diagonal strut that simulates the masonry infill 

wall‘s stiffness was based on the work performed by Mainstone and Weeks (1970) and 

Mainstone (1971 and 1974). FEMA 306 (1998), the same as MSJC (2013), considers 

only the column‘s stiffness for calculation of the width of the strut. Similar to the 

Canadian Standard (CSA S304-14, 2014), this design manual proposes equations for 

calculating resistance of the wall for the same failure mechanisms (i.e.: diagonal tension 

cracking, sliding shear failure and compression failure in the diagonal strut). 

Opposite to Eurocode 8 (EN 1998-1, 2044) and Italian code (NTC, 2008), FEMA 356 

(2000) provides a clearer definition of how to consider infills in structural models. It 

allows the use of a finite element model for the infill panel or, alternatively, the 

introduction of a diagonal struts. Nonlinear static and dynamic procedures are 

acceptable too. Also, local interaction effects are accounted since it is specified that 

beams and columns adjacent to infills should have sufficient strength to support local 

shear effects arising from the infill/frame interaction. In the FEMA 356 (2000) four 

performance levels are defined as Operational, Immediate Occupancy, Life Safety and 

Collapse Prevention levels, with its own acceptance criteria. If infill walls do not meet 

these acceptance criteria, rehabilitation measures are suggested, such as complete 

removal of infill wall from the frame, or providing gaps between the frame and the 

infill. 

FEMA 274 (1997) gives an option to separate the infill from the concrete frame by 

filling the joint between them with the flexible jointing material and suggesting that 

joint thickness should be at least equal to the interstorey drift. It is also recommended 

that partial infills should not be used, because they can cause non-ductile shear failure 

of the concrete columns. 

FEMA 310 (1998) recommends that infill walls should be connected to the frame in 

order to resist out-of-plane forces. Limit values for slenderness ratio are given and they 

vary from 8 to 16 depending on the performance level and on the seismic zone. 
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According to FEMA 356 (2000), unreinforced infill panels with slenderness ratios 

smaller than 25 and are in full contact with the surrounding frame elements, and frame 

components have sufficient stiffness and strength to resist thrusts from arching actions 

can be verified under out-of-plane seismic forces by considering arching action 

according to the Equation (2.20). 

Usually in the codes, in- and out-of-plane design of infill walls is considered separately, 

but in FEMA 306 (1998), the verification for combined in-plane and out-of-plane 

actions has been included using the approach from Angel et al. (1994). 

2.6.6 New Zealand Standard for Masonry Structures (NZS 4230, 2004)  

In this section New Zealand standard for masonry structures (NZS 4230, 2004) and 

Recommendations of a New Zealand Society for Earthquake Engineering (NZSEE) 

study group on earthquake risk buildings (NZSEE, 2006) are summarized. 

According to NZSEE Recommendations (2006) infills: 

a) can have significant contribution to the structural response and it is expected that 

they suffer significant damage; 

b) can have significant contribution to the structural response, but they stay in elas-

tic range; 

c) does not affect the structural response. 

In the first case possibility for appearance of soft storey mechanism have to be taken 

into account, while in the second case ductility capacity should be set to 1 with the infill 

acting as a shear element connecting the columns. For the third case, infill walls are 

either so brittle to fail under even moderate earthquakes or are completely isolated from 

the surrounding frame. As a result, stiffness of infill walls does not play any role in the 

overall stiffness of the frame, thus infills are not considered in the analysis and design 

procedure. It is also mentioned that in a case of isolated infill wall short column effect is 

insignificant. 

2.6.7 Serbian Technical norm for masonry walls (PTNZZ, 1991)  

Serbian Technical norm for masonry walls (PTNZZ, 1991) considers infill walls as non-

structural elements if: 
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a) The wall height is less than 3.5 m; 

b) If the length of single and double wythe walls without the voids is less than 40t, 

where t is its thickness; 

c) If the length of double wythe walls with the voids is less than 30t, where t is its 

thickness. And the wythes are connected; 

d) If openings are smaller than 10% of its area; 

e) If wall is constructed using cement mortar; 

f) And if the surface area is smaller than specified in Table 2.2. 

Table 2.2 Maximal area of non-structural walls in m
2
 

Wall type 
3-sided wall and 

4th side is free 
4-sided wall 

Wall with the an-

chors on 3 sides 

and 4th side is free 

Wall with the an-

chors on all 4 sides 

Single wythe 

wall with the 

thickness 

higher than 19 

cm 

18 22 24 32 

Double wythe 

wall 
14 16 18 24 

This norm defines that non-structural elements does not have to be statically verified, 

but it does not give any recommendation how to calculate infill walls if they do not ful-

fil the above mentioned requirements. 

2.6.8 Russian code (SNIP-II-7-81, 2001)  

The Russian code (SNIP-II-7-81, 2001) recommends isolating the non-structural walls 

from the frame by providing separation gap having minimum thickness of 20 mm. It is 

also suggested that soft material should be added in this gap. In order to prevent out-of-

plane failure it is suggested to use steel profiles. 

2.6.9 Greek Aseismic Code (EAK, 2000) 

Greek code for Seismic Resistant Structures (EAK, 2000) contains specific measures, 

aiming at reducing damages of the infills such as the requirement that the interstorey 

drift in any storey should not exceed 0.5%. It is noted that the unfavourable interaction 

between the frames and the infills should be avoided. Also, it is required that the struc-

tural system is appropriately formed in its plan, in-elevation, as well as in structural de-

tailing. Specifically, it is suggested to avoid irregularities due to infills caused by non-
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symmetric arrangement of infills in-plan (concentration of the infills on one side of the 

structure), which could lead to non-uniform distribution of the mass of the structure and 

thus produce torsional deformations of the building. The code suggests avoiding an ab-

rupt change (discontinuity) in stiffness in vertical direction. Also, it is advisable to avoid 

partial infill walls. If there is an open storey, it is compulsory to provide sufficient RC 

shear walls to restore stiffness and strength that would be provided by infills. After all 

these requirements it is logical that also it is not allowed to modify the arrangement of 

infills in a building without adequate calculation done by a structural engineer. 

2.6.10 Drift limits from other national codes 

Mexican Norm for Masonry Structures (Mexican Code, 2004) limits the interstorey drift 

for infill walls to 0.6%. Peru National Building Code (NBC, 2003) allows drifts for 

reinforced concrete structures to be 0.7%. According to this it can be considered as one 

of the most stringent provisions in the world. This means that also infill walls inside RC 

frames have to fulfil this requirement. FEMA E-74 (2011) summarizes codes and 

standards related to the non-structural components, including the Peruvian code. Here it 

is stated that masonry infill walls in standard school constructions must be isolated from 

the concrete frame, adding that schools fulfilling this criteria have experienced no 

damage in recent earthquakes in Peru. Chilean code for buildings (NCh 433. of 96, 

1996) was found in FEMA E-74 (2011) summary of codes and standards related to the 

non-structural components. Here it is stated that drift must be smaller than 0.3% for 

shear wall building with rigidly attached masonry infill, while for unbraced frames with 

isolated infill maximum drift allowed is 0.75%.  

2.7 Solutions for improvement of behaviour of infill walls 

As it is described so far, a huge effort has been made in order to investigate, both 

experimentally and numerically, the behaviour and influence of infill walls on RC 

frames. In that sense, also different solutions for improvement of the behaviour of infills 

have been developed and proposed. They can be classified into the three approaches 

depending on the degree of confinement of the masonry wall within the frame (Figure 

2.17). 
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a) b) c) 

Figure 2.17 Approaches for improvement of behaviour of infilled frame under earthquake load-

ing 

The first approach goes into the direction of making a stronger infill having rigid 

connection to the frame, thus being a load-bearing element (Figure 2.17a). Second 

approach is based on keeping the infill walls rigidly attached to the frame, or slightly 

disconnected, but at the same time increasing the deformability of the infill wall using 

special construction measures in the wall (Figure 2.17b). The basic intention is to 

provide ductile behaviour to the infill walls. And the third approach is to separate the 

frame and infill so that deformations in the frame do not generate any force in the infill 

(Figure 2.17c), thus allowing relative displacements between the wall and the frame to 

occur without interactions. These systems are providing decoupling of the infill wall 

and the frame. 

  
a) b) 

Figure 2.18 Gap at the top a) before and b) after filling with polyurethane foam 

Eurocode 8 (EN 1998-1, 2004) also recognizes these three main techniques (EN 1998-1, 

§4.4.3.2) that can be employed in the construction of the infill walls and specifies dif-

ferent limits to the inter-storey drift of 0.5%, 0.75% and 1.0% respectively for the three 

approaches. Since three approaches are described in a general form without giving any 

reasonable design approach, the traditional way to install masonry infills rigidly at-

tached to the frame is still the most common approach, thus keeping the problems of 
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traditional infills. One of the problems is contact between frame and infill, especially at 

the top of the infill. The daily practise is to fill the remaining gaps with mortar, polyure-

thane foam (Figure 2.18) or mineral wool. However, filling the gaps is usually not suc-

cessful due to shrinkage, settlements and imprecise workmanship and also does not pro-

vide sufficient boundary conditions/connections for out-of-plane loading. 

In the following subsections, solutions proposed so far are briefly described with their 

main implications. 

2.7.1 Strengthening of infill walls rigidly attached to the frame 

The rigid attachment of masonry infills to the frame is the traditional approach in most 

of the countries all over the world. It makes masonry infills to become a part of the lat-

eral load bearing system with all unfavourable interaction effects. If the masonry infill is 

rigidly attached to the frame, it is necessary to either increase the number of frames with 

infill walls or to improve the behaviour of the infill walls by additional measures. The 

first option includes some disadvantages such as adding significant weight to the build-

ing, which in turn may require foundation adjustments. Furthermore valuable space is 

lost to the framing elements, and in some cases disturbance of the occupants may occur. 

Additionally the rigidly attached infills increase the stiffness substantially, which lead to 

much higher inertia forces under seismic loading. Finally the higher number of walls 

will increase the retrofitting costs in case of a seismic event with structural damages. 

The behaviour of rigidly attached infill walls can be improved with the use of a several 

retrofitting techniques with the aim to increase the strength of masonry infills. Braga et 

al. (2011) added extra reinforced concrete elements in the middle of the walls, connect-

ed to the columns. Thus reducing the slenderness of the wall and stabilizing the infill 

panels. However, the costs for the execution at the building site are high, because the 

casting of the beams needs to be carried out by handcraft. 

Another option is to better connect the walls to the surrounding frame by using dowels 

(Moretti et al., 2014) or shear connectors (Mallick and Severn, 1968). An alternative is 

to attach additional layers to the outer surfaces of the infill wall. A standard procedure 

for multi-wythe walls consists of removing one wythe and replacing it by a layer of 

reinforced concrete. Since this presents time consuming technique, the walls can be 

strengthened by jacketing with the use of sprayed concrete or cement (Kyriakides, 2011) 
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or application of ferrocement coating (Prawel and Reinhorn, 1985; Mander and Nair, 

1994). Steel or wire mesh (Korkmaz et al., 2010), textile reinforced mortar (Valluzzi et 

al., 2014; da Porto et al., 2015; Akhoundi et al., 2018), plaster reinforcements made of 

fibreglass and carbon fibres (El-Dakhakhni, 2002; Ozkaynak et al., 2014) can also be 

used. 

Probably the most studied and applied approach for strengthening infill walls is 

reinforcing. One such study was performed by Jurina (1971), who tested infilled RC 

frames with vertical and horizontal reinforcement. Results of the study show a 

significant increase in the maximum force, while the study from Brokken and Bertero 

(1981) showed that reinforcement in masonry infills improves the stiffness and energy 

dissipation of the wall. However, Dawe and Seah (1989a) concluded that the presence 

of the joint reinforcement in the infill panel has a minor effect on the ultimate load 

capacity, but horizontal joint reinforcement is beneficial for decreasing the cracking in 

the infill panel, as also observed by Hendry and Liauw (1994). Interesting reinforcing 

detail was proposed and tested by Crisafulli (1997), who installed diagonal 

reinforcement in upper corners of infill walls and beam-column joints. This resulted in 

110% higher strength than the traditional one. 

 

Figure 2.19 Specimens tested by Calvi and Bolognini (2001) 

Calvi and  Bolognini (2001) studied the benefits of inserting a reinforcement in bed 

joint mortar layers or in the external plaster. Out-of-plane strength was investigated as a 

function of the previous in-plane damage, for specimen without reinforcement, with 

steel bars inserted in the bed joints, and with steel mesh reinforcement on both sides 
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(Figure 2.19). From the results, the authors concluded that both reinforcement details 

improved the infilled frame response, while reinforcing mesh in plaster improved both 

in-plane and out-of-plane response of the infill wall by increasing the value of 

acceleration required to produce collapse in the out-of-plane direction, even when 

masonry panels suffered in-plane damage.  

Da Porto et al. (2013) investigated the effect of both horizontal and vertical 

reinforcement on out-of-plane resistance after in-plane loading. Results show that out-

of-plane strength and initial stiffness of reinforced infill walls was higher than that of 

unreinforced walls. The presence of embedded reinforcement contributed to the 

reduction of the global damage, thus reducing strength deterioration due to the increase 

of in-plane drift. 

Partners from the INSYSME research project (INSYSME, 2016), NTUA Athens and 

University of Minho, also developed systems which are based on the use of vertical and 

horizontal reinforcement for improving the behaviour of infilled frames (Silva et al., 

2016 and Vintzileou et al., 2016). 

It is worth mentioning that many techniques for strengthening and retrofit of URM 

walls can be applied for masonry infill walls. In this section only measures applied on 

masonry infill walls were summarized. Although some of the strengthening measures 

can reduce damage of the infill walls, they are rather complex and its application 

demands design to take the presence of the infill explicitly into account, which is very 

complicated due to the complex behaviour of infill walls. It has to be pointed out, that 

stiffening of infill walls changes the fundamental period of vibration of the structure and 

leads to an increased seismic demand. It is worth noting that the increased strength of 

infill walls may intensify the interaction stresses acting on the structural elements and 

thus a proper design of the critical sections is required. Furthermore, particular attention 

should be paid to the enclosure distribution in plan and elevation in order to avoid 

torsional or soft storey mechanism due to irregular stiffness distribution. Furthermore, 

due to influence of infill walls on the RC frame such as increase of frame moments and 

shear demand on the columns, measures for strengthening of surrounding RC frame 

(jacketing of columns, composite overlays, grout injection etc.) are necessary to be 

applied. Also in terms of direct monetary losses, it may be more beneficial to consider 
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the retrofitting of the main structural elements contributing to the expected loss, rather 

than applying strengthening and stiffening measures that may actually worsen the 

situation when speaking in terms of Expected Annual Loss (O‘Reilly and Sullivan, 

2017). 

2.7.2 Infill walls with ductile behaviour 

In the second approach, the infills are designed as elements with high deformation 

capabilities to absorb the displacements of the load bearing frame structure. The main 

advantage of this approach consists in the reduction of interaction stresses and at the 

same time increase of damping level, thanks to the dissipative action of deformable or 

sliding elements. 

Considering this fact, Mohammadi and Akrami (2010, 2011) improved the 

deformability of the wall through the integration of a horizontal sliding plane consisting 

of two prestressed steel plates with which the maximum wall forces can be controlled 

using friction. They experimentally investigated the system and observed that crushing 

at the lower boundary of the wall can occur, if the amount of friction is not properly 

adjusted. In addition, at high drift levels, the system may induce shear failure at RC 

columns which is possibly the most dangerous aspect of these types of solutions. 

 

 
a) b) 

Figure 2.20 a) Details of the proposed solution and b) out-of-plane resisting mechanism (Preti et 

al., 2015) 

Another notable research study is the one carried out by Preti et al. (2012, 2015 and 

2016) and Bolis et al. (2016). They proposed a solution consisting of several horizontal 

sliding surfaces in the wall that simultaneously take in-plane loading by sliding and the 



Chapter 2  Literature review 

87 

out-of-plane forces using lateral shear connectors (Figure 2.21). To ensure sliding, 

polyethylene sheets were placed on the upper surface of the sliding planks. A gap 

between the infill and top beam was left, in order to avoid the risk of progressive 

increase in friction force, thus eliminating the possibility for activation of arching 

mechanism in vertical direction. To prevent the infill wall to move in out-of-plane 

direction, special shear keys were installed between the RC columns and the infill wall. 

 

 
a) b) 

Figure 2.21 a) Details of the proposed solution and b) out-of-plane resisting mechanism (Preti et 

al., 2015) 

Experimental tests on the infilled frames with the proposed system confirmed high 

displacement capacity (up to 2.5% of drift) with negligible damage by significantly 

reducing the stiffness and the maximum strength for drift levels below 1%. The 

shortcoming of this approach is that the sliding mechanism for the masonry sub-

portions at the joints was triggered for very small values of drift (less than 0.1%), which 

can produce damage and horizontal sliding cracks under low lateral loads such as wind. 

Also, at higher drift levels sliding of masonry sub-panels produce concentrated and high 

frame-infill contact forces, which can harm columns and especially openings. 

Preti and Bolis (2017) presented the solution which is based on the similar concept, 

where the wall was subdivided by vertical sliding surfaces which allow the individual 

parts of the wall to slide and rotate independently. The out-of-plane loads in this case 

are resisted vertically through the shear connectors.  Reason to divide infill wall in 

vertical sub-panels was to avoid concentration of forces at the contact between frame 

and infill sub-panels, which appeared in horizontally divided infill. Experimental results 

on masonry infills showed that vertically divided infill obtained higher stiffness and 
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damage reduction. Obviously, proposed system reduces infill activation and increases 

system ductility, but its rather complicated construction process which involves 

complex installation of shear keys presents aggravating issue of application of the 

solution. Another problem for the placement of horizontal sliding surfaces is openings, 

around which the additional framing elements have to be installed. 

The approach of Preti et al. (2012, 2015 and 2016) served as a basis for the 

development of more sophisticated systems. University of Padova and ANDIL (Italian 

Association of Clay Bricks and Roofing Tiles Producers) proposed (Verlato et al., 2016 

and Calabria et al., 2016) a construction system named DRES (Damage Reduction 

Enclosure System). The system introduces special horizontal rubber joints in the infill 

wall (Figure 2.22). In addition, the system has two rubber joints between the masonry 

infill and the RC columns characterized by low compression stiffness. Authors 

investigated infilled frames with the proposed system and the results show that DRES 

system reduced the stiffness and damage of the infilled frame during in-plane 

deformations, thus enabling good out-of-plane performances, in terms of both strength 

and initial stiffness. However, this solution can experience the same problems as the 

system proposed by Preti et al. (2012, 2015 and 2016) such as sliding of the masonry 

sub-portions at very small values of drift as well as sliding of masonry sub-panels that 

can produce concentrated and high frame-infill contact forces at higher drift levels, 

which can affect columns and especially openings. 

  
a) b) 

Figure 2.22 a) Schematic presentation of DRES system and b) rubber deformable joint (Verlato 

et al., 2016) 

A similar system with additional shear keys and C-shaped units (Figure 2.23) for 

increasing the out-of-plane resistance has been proposed (Milanesi et al., 2016; Morandi 

et al., 2016) by researcher group from the University of Pavia. The infill wall is also 

divided into horizontal parts, which are able to slide one on each other through suitable 
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"sliding joints" (Figure 2.23). A comparison in terms of in-plane performance between a 

traditional non-engineered infill solution and proposed system has shown a strong 

reduction of the level of damage. Critical aspects of the solution are out-of-plane 

effectiveness of the solution in a case of openings and complexity in construction. 

 
 

a) b) 

Figure 2.23 a) Schematic presentation of the proposed system and details of the system: 1.C-

shape unit; 2.mortar bed-joints; 3.sliding joints; 4.clay units; 5.interface joints; 6.shear keys; 

7.plaster (Morandi et al., 2016) 

The solutions presented here definitively present advantageous way of thinking and 

innovative approaches with the aim to reduce the level of damage to both structural and 

non-structural elements. Furthermore, the sliding and rocking of sub-panels provide 

higher damping levels, which have a positive effect on the overall structural behaviour. 

However, problems that can arise at high drift levels, such as shear failure at reinforced 

concrete present the most dangerous aspect of these type of solutions. Additionally, 

issues related to the out-of-plane loads, and connections proposed may not easily be 

addressed in practical applications (i.e., design and construction). Therefore, the 

proposed solutions are not successfully introduced into the practice, because they are 

expensive and difficultly to apply. Finally it has to be pointed out, that the proposed 

measures require a detailed design, which is not an easy task because of the complex 

sliding behaviour depending on the distribution of compression forces within the wall. 

2.7.3 Decoupling systems 

The third approach considers the complete in-plane isolation of non-structural elements 

from the supporting structure, so to allow frame deformation and at the same time 

postponed infill activation. The simplest way to separate them in-plane is to create gaps 

between infills and frames. However, in order to ensure an adequate out-of-plane 

strength of non-structural elements, the implementation of special devices is required to 
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restrain the displacements in the out-of-plane direction. In this way, the non-structural 

elements do not affect the structural behaviour. Thus, the advantages of this approach in 

the design process are clear, since the eventual implementation of such a system alter 

only marginally the current design practice. This approach has experienced development 

only in the last couple of years, but enough to have examples in practice in recent 

constructions (Figure 2.24). The in-plane detachment between a frame and infill panel 

can be obtained through the insertion of highly deformable materials. In addition, non-

infill walls can be reinforced to provide adequate strength against out-of-plane actions.  

 

Figure 2.24 Isolated infill walls from RC frame with gaps (Aliaari and Memari, 2005) 

As mentioned, the approach of decoupling comes from the idea to prevent the activation 

of the infill wall during in-plane deflections of the frame and therefore to make it as a 

real non-structural element. Logically first tries were based on investigating a gap 

between infill wall and frame, since infilled frame structures may, for a variety of 

reasons, have gaps between the frame and the infill. The gaps can appear 

unintentionally due to the shrinkage or poor construction or they may be deliberately 

introduced to improve the behaviour of the infill walls. Initial gaps between the infill 

and the bounding frame due to shrinkage and settlement of the infill or defects in 

masonry workmanship are common occurrence. These gaps could be located at either 

the beam-infill interface, or column-infill interface, or both. Since the total elimination 

of gaps is not realistic, it is thus important to evaluate the effect of gap on the system 

behaviour and strength. 

This was the reason for the test carried out by Kadir (1974), where he wanted to check 
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the change in the behaviour of the infilled frame due to this lack of fit. Two steel frames 

with the 1/16 inch (≈1.6 mm) gap between the top of the infill panel and frame were 

tested. The results showed that there was no slipping between the frame and infill (as it 

was expected) and ultimate load was nearly the same as in the case without the gap at 

the top, but due to the early cracking of the panel the stiffness was significantly low. 

Riddington (1984) presented the results of the experimental tests on infilled steel frames 

together with finite element analyses of these structures. He investigated top and side 

gaps of width approximately matching to 0.1% of interstorey drift. An effective 

explanation of the stages of behaviour of the structures with both top and side gaps is 

given and illustrated in Figure 2.25. It is concluded that the top gap just slightly 

decreases initial stiffness, while introduction of the side gaps significantly reduces 

initial stiffness. He also states that for the stiff frames with both side and top gaps, the 

moments are close to the ones of a bare frame. It is important to point out that 

dimensions of the gaps investigated suit for unintentional gaps which appear due to the 

shrinkage or poor construction. It is also noted that, the use of masonry infilled RC 

frames is questionable because of the shrinkage in the frame which can produce gap or 

creep of the frame causing additional stresses in the infill wall. Because of this problem, 

author brought into question even the practical use of RC frames with the infill walls. At 

the end it is suggested that the problem could be overcome by filling a top gap with a 

viscoelastic material or some other material with suitable properties. 

 

Figure 2.25 Behaviour of infilled frame structures with top and side gaps (Riddington, 1984) 

Liauw and Kwan (1984b and 1985b) also showed that the gap between infill and frame 

causes reduction in the initial stiffness of the infilled frame. 

So far, presented studies were related to the small size gaps (smaller the than 2mm), 

which mainly appear due to the shrinkage or workmanship work. In the following part 

investigations on the infill frames with the intentionally left gaps between frame and 

infill are summarized. Some solutions are presenting investigations of the researchers 

on the influence of the gap on the behaviour of the infilled frames but others give 
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practical solutions for decoupling of infilled wall. 

Yanev and Mcniven (1985) carried out shaking table test at the Earthquake Engineering 

Research Center, University of California at Berkeley, in order to study the effect of gap 

between the columns and infill panel. One-half inch (≈1.27 cm) gap existed on the sides 

between the wall and the frame and it was filled with the foam rubber. Results showed 

that infill wall didn‘t contribute to the stiffness of the system and remained intact for the 

small motion intensities. However, for the intensity corresponding to a major 

earthquake, the frame deformed significantly and the infill wall was readily destroyed. It 

was noted that the influence of the foam rubber on the response behaviour was minimal. 

The authors concluded that the gap left between infill and frame should be filled with 

the material which has such stiffness that the force it activates is smaller than required 

to destroy the partition. 

Valiasis and Stylianidis (1989) tested infilled RC frames with infills not connected to 

the surrounding frames and the results show that at small lateral drifts the infill didn‘t 

increase the strength of the structure. However at higher drifts strength was increased up 

to 50%. Dawe and Seah (1989a) showed that 20 mm gap at the top between the infill 

and frame produces the reduction of stiffness by 50% and the ultimate strength by 60%.  

Results of Flanagan (1994) show that a gap of 1inch (=2.54 cm) between column and 

infill didn‘t cause reduction of ultimate load, it only occurred at a higher level of drift. 

Aliaari and Memari (2005 and 2007) proposed and investigated the performance of an 

isolation system for masonry infill walls named Seismic infill wall isolator sub-frame 

(SIWIS). The isolator was designed to fail at a specified load limit after which the 

behaviour turned suddenly into bare frame behaviour, thus allowing the masonry infill 

walls to contribute to the in-plane stiffness of the structure at lower levels of lateral load 

and preventing damage to the masonry walls by isolating the infill panels from the 

frame as the lateral loads increase. It can be concluded that the fuse mechanism 

successfully isolated the infill panels from the test frame, preventing damage to the 

brick masonry material. However, the fuses are designed to plastify in case of a seismic 

event, afterwards they have to be replaced, which is costly and time consuming. 

Additionally the method was tested experimentally in 2007 (Aliaari and Memari, 2007) 

and it was observed that the SIWIS added a very brittle nature to the global behaviour, 
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which may be considered to be an undesirable effect, thus it can be concluded that the 

system is not well developed for practical applications. 

 

 
a) b) 

Figure 2.26 a) Application of separation gap and b) separation gaps between infill and columns 

and beam (Charleson, 2012) 

 

 

Figure 2.27 Connection details of separation gaps between infill and frame (Charleson, 2012) 

Charleson (2012) pointed out the problem of a ―short column‖ which can appear in a 

case of non-structural partial-height masonry infills which are in a rigid contact with the 
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columns. As a solution he proposed an application of separation gap to prevent ―short 

column‖ configuration (Figure 2.26a). He also noted that the separation just from the 

columns is not enough because the infills prevent beams from bending when the 

building sways. Therefore, he suggested introduction of gaps of a sufficient width 

(Figure 2.26b), which has to be calculated by the structural engineer. He points out that 

due to the poor performance of infill walls in past earthquakes in seismically active 

countries such as Japan, USA and New Zealand this concept starts to become a practice. 

He also summarized some typical connection details of separation gaps (Figure 2.27) 

saying that the application of this kind of solution brings issues such as acoustic 

isolation, fire protection and aesthetic qualities. 

  

Figure 2.28 Two connection that provide out-of-plane support and at the same in-plane separa-

tion (Charleson, 2012) 

Author stresses out that another concern related to these connections is that by 

separating the infill for in-plane movement, the wall becomes vulnerable to out-of-plane 

forces; therefore some measures have to be installed in order to prevent out-of-plane 

failure. Author presents two options, where the first one considers infill wall to be built 

as a cantilever wall from its base. He comments that this is hard to achieve because the 

floor structure beneath may not be strong enough to resist the bending moments from 

the wall but also infill wall itself may not be strong enough or may require excessive 

vertical reinforcing. Second option is presented on Figure 2.28, where two possible 

structural details for solving this problem are presented. Shortcomings of these two 

solutions are that first one requires use of L-shaped steel profiles, which increase the 

costs and cause problems with the plastering. The second option can‘t be used for 

hollow bricks and the gap of 50 mm at the top creates problems with acoustics and fire 

protection. 
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An alternative option is to provide steel U-profile section to span between columns and 

in that way to give support to the wall due to the out-of-plane forces and at the same 

time to enable sliding in the direction of the plane of the wall. Again the shortcoming is 

acoustic isolation due to the air gaps on the sides, but also if the distance of the columns 

is high then strengthening of the steel channel must be done. 

Kuang and Wang (2014) proposed a solution with an air gap between the masonry infill 

and the columns and a traditional connection at the top (Figure 2.29). Steel connectors 

are placed in the bed joints and connected to the columns in order to prevent the out-of-

plane failure of the wall. Test results show that the gaps can effectively isolate the infill 

the frame. This connection is costly and just applicable with time consuming handwork. 

Therefore, it can be summarized that the basic idea seems reasonable, but the execution 

at site is not possible without further modifications. Crucial points are also sound and 

thermal insulation along the proposed air gap. Additionally, steel connectors placed in 

the bed joints and connected to the columns provide the restrain in the in-plane 

direction, thus damaging the infill. Similar effect was experienced for the solution 

proposed and investigated by Jiang et al. (2015), who studied the behaviour of masonry 

infilled RC frames with the vertical and horizontal gaps of the width of 20 mm between 

the infill wall and the surrounding frame. The gaps were filled with the polystyrene 

plates. In order to prevent out-of-plane failure tie steel bars were anchored in the 

column and embedded into the bed joints. Although the idea of the solution was to 

isolate the infill wall from the frame, inserting tie connection bars introduced significant 

restrain also in in-plane direction. This resulted that the damage occurred in the infill 

wall at an earlier stage than expected. Authors concluded that the flexible connections of 

the masonry infilled RC frames cause unfavorable problems, therefore further 

improvement should be done. 

Tasligedik (2014, 2015) developed the solution for steel and timber framed drywalls, 

but then the solution was tested on URM infill walls too (Tasligedik et al., 2014; 

Tasligedik and Pamapnin 2016). The infill is divided vertically in three parts thus 

enabling individual rocking of panel instead of single shear dominated infill wall. By 

introducing gaps between the parts of the infill, a delay in formation of a strut was 

achieved. Infill panels are placed in steel sub-frame that is attached to the surrounding 

structural frame, thus providing a restrain for the out-of-plane load through the 
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anchorage connection. Due to this, the solution is rather complicated and expensive for 

practical application. 

 

Figure 2.29 Column-isolated masonry infill wall with steel connectors (Kuang and Wang, 2014) 

Tsantilis and Triantafillou (2018) presented the results of experimentally and 

numerically investigated RC frames with infill panels isolated using thin layers of 

cellular materials. Experimental results show that in a case of the frame isolated with 

two vertical joints the activation of the infill occurred at displacement levels 

approximately equal to the joint thickness, while in the frame isolated with joints 

around the perimeter activation occurred at displacement levels nearly four times the 

joint thickness. This was due to the capability of the fully isolated specimen that have 

the vertical uplift and down lift and that rotate similarly to a rocking mechanism. 

Experimental and numerical results show that masonry panels of the traditionally 

infilled frames exhibit much more severe damage than the isolated ones, therefore it can 

be concluded that the proposed technique has a high potential in reducing infill-frame 

interactions and damage of the infills. However, the solution doesn‘t provide any out-of-

plane restrain. 

At the same time (Peng et al., 2018) presented the results of experimental tests of an 

infilled RC frame with the polystyrene plate of 30 mm thick placed in between frame 

and infill. Comparison of behaviour of infilled frames with flexible and rigid connection 

show that flexible connection reduced strength and stiffness of the specimen, but 

increased energy dissipation at higher drifts. 

Beside the authors who proposed solutions for decoupling, other authors (Furtado et al. 

2016) also recognized the potential and suggested the decoupling of infills as a good 
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solution. Paulay and Priestley (1992) defined isolation of infill panels as one of the 

options to solve unfavourable behaviour of infill walls under earthquakes. They 

suggested adding a flexible strip between frame and panel, filled with the highly 

deformable material such as polystyrene. It was stressed that in this case isolated panels 

must be connected to the frame in order to carry out-of-plane forces, adding that this is 

not an easy task. Bennett et al. (1996) in their report, about the performance of masonry 

infills during the Northridge earthquake, noticed that several parking garages in 

Northridge area had concrete frames separated from the concrete masonry infills by 

half-inch to one-inch joint filled with styrofoam. So, already at that time examples of 

constructions with decoupled infill walls appeared, with the intention to isolate infill 

walls from the frame and avoid any interaction between them. It is prestressed that the 

gap should be large enough so the columns would not activate the infill. Additionally 

special attention should be given to adequately anchoring of infill wall against out-of-

plane movement, since due to the gap, arching mechanism cannot develop. At the end 

of the report they gave the recommendations for the isolated infills saying that a gap 

should be sufficient so that seismic drifts can take place without the frame contacting 

the infill. Also they stressed that isolated infills need to have out-of-plane anchorage 

and they pointed out that this is quite difficult because at the same time there is a need 

for free in-plane movement. Any restrain against in-plane movement would cause 

significant force transfer, which can lead to premature activation of the infill and 

localized masonry failure, which can further cause loss of out-of-plane support. 

Therefore, they concluded that isolated infills require careful detailing allowing in-plane 

slip and providing out-of-plane support. The behaviour of the system with the gaps 

between RC frame and infill walls was also elaborately described by Mauro (2008), 

where he pointed out that in the first phase the system behaviour is dominated by the 

presence of gaps, thus the beginning of the force-displacement curve of the system will 

have a lower initial stiffness, close to the stiffness of the bare frame. As the drift 

increases, and the bare frame comes into contact with the masonry panel, stiffness tends 

to increase and the force shall be transmitted by a strut mechanism through the masonry 

panel. Griffith (2008), after summarizing the research done in the field of behaviour of 

RC frames with infill walls, pointed out that infill walls and especially partial-height 

infill walls often cause columns to experience non-ductile shear failures, therefore he 
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suggested adding a sufficient gap between the infill and the column face to prevent 

interaction. 

The decoupling solutions summarized here have been used rarely in practice because 

they are uneconomical due to the high material and installation costs of the built-in 

parts, even though the benefits of isolation have been proven beyond a doubt. Therefore, 

this approach presents the correct method, with the only drawback being that additional 

work in solutions development has to be done. In any case, the new guidelines for infill 

masonry walls should be drawn to improve their seismic performance and they should 

definitively contain rules for decoupling of infill panels from the surrounding RC frame 

as a good possibility. 

2.7.4 Hybrid systems 

Additional category, hybrid systems are based on combination of more than one 

approach described above. For example, in the USA in the recent years, hybrid systems 

developed for concrete masonry infills in steel frames were proposed (Biggs, 2007; 

Abrams and Biggs, 2012). They are classified in three hybrid wall types: Type I, Type II 

and Type III (Figure 2.30). Type I walls have gaps at the columns and the top of the 

wall, that allow lateral drift at the columns or vertical deflection at the top. The framing 

supports the full weight of the masonry walls and other gravity loads. Type II walls 

have gaps at the columns and are built tight at the top of the wall and Type III walls are 

built tight at the columns and the top of the wall. For Type II and III, the masonry walls 

share the vertical loads with the frame. These hybrid systems present combination of 

decoupling and strengthening of the masonry by reinforcing it. Hybrid masonry presents 

the concept for buildings that incorporates the in-plane strength and stiffness of 

reinforced concrete masonry with the ease of erecting conventional steel framing. The 

idea of the authors was to simplify the construction of framed buildings with masonry 

infill and at the same time use the masonry infill as the bracing. Also, the benefit of this 

system is that if a column is damaged, the gravity loads are transferred to the masonry 

or if the masonry is damaged, the gravity load transfers to the frame. 
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a) b) c) 

Figure 2.30 Hybrid Masonry Frames: a) Type I, b) Type II and c) Type III (Abrams and Biggs, 

2012) 

Three possible solutions for connecting a steel frame to a masonry panel in order to 

transfer in-plane lateral shear forces and to provide out-of-plane restrain, are proposed. 

These include: plate connectors, fuses, and headed stud connectors (Figure 2.31). The 

connector can either be bolted or welded to the steel girder. The ductility of the plates is 

relatively high as is their energy dissipation, however because the vertical reinforcement 

in the masonry panel is expected to yield at a smaller lateral force than the strength of 

these plates, nonlinear deformations of the plates will not occur. 

  
 

a) b) c) 

Figure 2.31 a) Steel connector plate, b) steel fuse connector and c) steel stud connector (Abrams 

and Biggs, 2012) 

With respect to the steel fuse connector, the strength of the fuse is low enough that the 

flexural or shear strength of a reinforced masonry panel will not be reached and thus the 

nonlinear inelastic behaviour of the fuse will be realized. Authors stated that such fuses 

are quite ductile and thus an excellent energy dissipater. As an alternative to steel plate 

connectors, steel headed stud connectors can be welded to the bottom of the beam 

flange as shown in Figure 2.31c. These studs are embedded in grout to provide a firm 

connection with the masonry. Because there is no gap between the bottom of the beam 
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and the top of the panel, this detail is appropriate for Type II and Type III. A similar 

detail can be used to connect the steel columns to the side edges of a masonry panel for 

Type III. With this connection, system ductility is dependent upon the wall design and 

detailing. 

Asselin et al. (2012) proposed the system with a horizontal gap at the top and steel fuse 

plates. The fuses are providing out-of-plane support and are designed to plastify in case 

of a strong seismic event. Afterwards they have to be replaced, which is costly and time 

consuming. Although the energy dissipation has a positive influence on the overall 

structural behaviour, the system is not well developed for practical applications. 

In the hybrid systems presented here the infill wall is subjected to vertical as well as 

horizontal loads, but highly concentrated stresses in contact to the frame are avoided by 

means of the gaps to the columns. Proposed hybrid system was developed for steel 

frames and concrete masonry infill walls and it would be difficult to modify it in a way 

that it can be applied for RC frames and especially for hollow clay masonry. Also, 

system requires masonry to be reinforced which limits the application to the different 

types of masonry. Another big issue within this system is application of the bolts 

through the masonry in order to connect the steel plates. These bolts can bring stress 

concentrations in already highly brittle masonry blocks, which can lead to the damage 

of the infill walls and even complete failure of the system. Additional weak point of the 

system is the out-of-plane resistance in case of simultaneous in-plane and out-of-plane 

loading.  

2.7.5 Shortcomings of the proposed solutions 

In the previous sections, comments on the proposed solutions are given. Many solutions 

bring the benefit to the behaviour of infills under the earthquakes. Furthermore, some 

solutions are important to be understood because they show the potential of the 

approach, but so far no complete solution is proposed that solves the problems of the 

behaviour of the masonry infill walls under earthquake excitations that is not expensive, 

complicated and that is practically applicable. All solutions presented and discussed 

have some shortcomings, which are shortly summarized as follows: 

 they are not effective for simultaneous in-plane and out-of-plane load; 
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 they are too complicated and expensive for practical application; 

 they are not applicable for walls with variable openings; 

 their application is problematic with respect to flexible room use; 

 they are not applicable to all types of bricks; 

 they have problems with sound insulation; 

 they have problems with thermal insulation; 

 they have problem with the verification of the out-of-plane stability; 

 they require reinforcing of masonry infill panel; 

 they bring stress concentrations and localization; 

 they have to be replaced after an earthquake. 

2.8 Summary 

A detailed literature review for the seismic behaviour of infills under in-plane, out-of-

plane and simultaneous loading was presented in this chapter. It is clear that the infill 

walls effect the seismic behaviour of RC frames, however it has not been fully 

understood to date. All the authors agree that the presence of walls changes the 

resistance, stiffness, ductility and deformation capacity of infilled frames, but not to big 

extent. Different failure modes are recognized for both in-plane and out-of-plane 

direction, depending on the big variety of parameters such as frame/infill stiffness ratio, 

masonry compression strength, slenderness, height/length ratio etc. It is recognized that 

infills adversely affect the proper frame behaviour imposing unexpected damage to 

boundary columns and they may collapse in out-of-plane direction threatening human 

life. Partial or complete collapse of the infill walls significantly affects the lateral load 

resistance and seismic performance of RC frames. Influence of prior damage of infill 

but also infill/frame connection, to the strength and deformation capacity is observed by 

many authors. Only recently did the behaviour under simultaneous loading start to be 

investigated. 

The performance of infilled frames under lateral loadings has been experimentally 

investigated by a number of researchers. Effects of the relative strength and stiffness of 

an infill to the frame, panel aspect ratio, lateral load history, vertical load etc. have been 

investigated. High stiffness and strength accompanied with the noticeable brittle 

behaviour at low in-plane drifts is observed. The studies on the dynamic properties of 
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masonry infilled RC frames through pseudo-dynamic tests or shaking table tests reveal 

that infill walls are effective in increasing the base shear but reducing the displacement 

demand of the structure. Activation of arching effect in the out-of-plane direction was 

noticed, thus high out-of-plane strengths can be reached. Both in-plane and out-of-plane 

capacities are significantly reduced when infills are subjected to prior damage. This is 

even more pronounced in a case of simultaneous loading. Incomplete filling of the space 

between frame and infill with mortar or detachment from the tensioned diagonal, 

together with the infill damage due in-plane movement of the frame cause this 

reduction. Therefore, there is a need for a reliable connection of frame and infill panel. 

Openings reduce both stiffness and strength of infills, with the door making the 

strongest reduction. The review clearly demonstrated that much research is still needed 

to gain better understanding of the behaviour of masonry infilled frames under 

simultaneous in- and out-of-plane loading. 

In order to extend the experimental investigations, numerical models for studying infill 

walls were developed. From the presented review, it can be seen that modelling 

approaches proposed differ in the level of details with which geometry and material 

behaviour are presented. Representing the structural behaviour of masonry infilled 

frames is complex due to the high number of parameters and phenomena involved, as 

well as due to the considerable uncertainty involved in many of those parameters. For 

detailed studies micro models are suitable, but for the global behaviour use of simplified 

modelling approaches is seen to be more practical. Strut approach is the most used 

approach; therefore many suggestions for calculating its characteristics are given. 

Although a big number of micro and macro models for infilled frames have been 

proposed most of them consider only in-plane actions. Recently, introduction of in-

plane and out-of-plane interaction has been done either by using diagonal strut models 

with the improved capabilities or fiber models. 

Guidelines for the design of these types of walls in different codes/standards were also 

presented. Most of the codes have recognized that also non-structural elements need to 

be designed for earthquake actions. Some of the current Codes/Standards provide 

design provisions for masonry infill shear walls, but these provisions are restricted to 

ideal cases that are hard to achieve. If there are rules for the infill design they are either 

related to just in-plane or out-of-plane behaviour of walls. However, seismic loads 
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mostly impose simultaneous loading demands on. Thus, there is a need to reconsider 

design equations by taking into account bidirectional effects. Some codes give limits for 

the drifts for buildings with the infill walls, but there is no consensus between them. 

Definitely, the significance of specific measures for the damage control of masonry 

infills has been widely recognised; however, code procedures for the design of new 

buildings currently provide only few recommendations for non-structural elements, still 

being in many aspects insufficient, incomplete or not clearly defined. For example, New 

Zealand standard for masonry structures (NZS 4230, 2004) introduces the initial gaps 

between infill walls and frame in order to weaken the frame/infill interaction. 

Furthermore, American Building Code Requirements for Masonry Structures (MSJC, 

2013) has defined the nonparticipating infills as the preferable alternative by applying 

the in-plane isolation joints with at least 9.5 mm of thickness. Therefore, it can be 

assumed that the decoupling approach is very likely to develop into a preferred design 

approach for infilled frames in seismic codes. 

Also, solutions proposed for improvement of behaviour of infill walls are summarized, 

starting with the strengthening methods that should make infills walls stronger 

preserving rigid connection to the frame. This way, infills are a part of load-bearing 

system with all unfavourable interaction effects, thus their presence has to be taken 

explicitly into account during the design. However, this is very complicated due to the 

complex behaviour of infill walls. As an alternative infill walls with high deformation 

capabilities can be used. This is mostly achieved by dividing the wall in a couple of 

segments, thus reducing interaction stresses. Nevertheless, issues related to the shear 

failure of the surrounding frame as well as out-of-plane loads are present. Furthermore, 

its expensive and complicated application prevents the application in practice. Several 

studies have been performed recently whose intention was to decouple infill or partition 

walls from the structural system. The decoupling can be realized by introducing gaps 

between frame and infill and placing soft material between them. However, generally 

these solutions tend to have a problem with the verification of the out-of-plane stability, 

thermal and acoustic isolation. Summarized solutions present a strong base of 

knowledge and experience that can be used for development of the system with which 

the required seismic safety can be reliably achieved and at the same time its cost 

effectiveness and simple application will push it use in practice. 
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Doubt is the father of invention. 

Ambrose Bierce 
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3.1 Description 

As summarized in Chapter 2, infill walls in reinforced concrete frame buildings cause 

an ‗increase‘ in lateral stiffness, strength, and energy dissipation capacity. Whether this 

behaviour is favourable or not, the infill walls are usually the first elements to be 

damaged in seismic events. Reports (Villaverde, 1997) showed that the cost related to 

the failure of a non-structural component in a building may easily exceed the 

replacement cost of a building, due to the loss of inventory, loss of business, repair and 

reconstruction costs, downtime, injuries and casualties. These facts have pushed 

research and development of solutions that disable these negative effects resulting from 

the interaction between the masonry infill walls and concrete structures. Beside 

experimental tests on RC infilled frames and development of appropriate design 

approach for traditional infills, investigations in the direction of development of 

innovative solutions have been conducted. In this context, the European Project 

INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in RC 

Buildings) has been funded within the 7th Framework Programme by the European 

Commission. This research is part of this project and its aim was developing a 

constructive measure that solves the above mentioned problems and provides its simple 

application in practice, thus enabling engineers to apply the system easily and without 

any complicated numerical models. 

As already explained in section 2.7, currently no masonry infill systems are available on 

the market, which are cost effective and fulfil the various requirements. The objective of 

the study was the development of a new system for the improvement of seismic safety 

of infills made of bricks. The boundary conditions for the development of the system 

were a high level of seismic safety for separate and combined in-plane and out-of-plane 

loads, practical installation at the construction site, universal applicability on different 

various types of brick, and high economic efficiency. To fulfil these requirements, a 

solution in which the infill and frame are decoupled was selected because strengthening 

the infill with additional reinforcement and special connection elements is 

uneconomical and represents a shift in wall construction methods towards reinforced 

concrete construction. Furthermore, strengthening the infill stands in contradiction to 

the use of modern energy-efficient bricks with high percentage of holes and low 

strengths. Two systems, IMES (Innovative Masonry Enclosure System) and INODIS 
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(Innovative Decoupled Infill System), for improving the seismic behaviour of masonry 

infilled reinforced concrete frames were developed. The INODIS system is the subject 

of this thesis, since it presents a sufficient and effective solution for infill walls and the 

IMES system is the intermediate solution which helped in the development of the 

INODIS system. The purpose of both systems is to decouple frame and infill instead of 

improving the load-bearing capacity by means of expensive and supplementary 

reinforcing elements and strengthening measures. In order to explain the conceptual 

idea of this research, an example of diagram with force-displacement curves for bare, 

infilled and decoupled frame is given in Figure 3.1. The conceptual idea is to decouple 

infill by applying elastomers between RC frame and infill panel such that the brittle 

behaviour of the infill walls will be avoided. This way activation of infill walls due to 

RC frame in-plane deformations is postponed to higher drifts, thus disabling high 

stresses in both RC frame and infill wall. The elastomer bearings are designed to allow 

the design drift of the RC frame without inducing damages to the infill wall. Therefore, 

the damage to infill walls at moderate seismic events will be prevented and the energy 

dissipation will occur due to the hyperelastic behaviour of elastomers instead of 

damaging the infill walls. By varying the stiffness and thickness of the elastomer it is 

quite easy to adapt the systems to different levels of earthquakes loadings. Moreover, 

due to the viscoelastic behaviour of the elastomeric joints, overall damping capacity of 

the building is enhanced. However, the load transfer mechanism of out-of-plane load is 

limited by decoupling, and to overcome this,  alternative mechanisms for the out-of-

plane load transfer have been proposed. 

  

Figure 3.1 Force-displacement curves for bare, infilled and decoupled frame 

Both IMES and INODIS aim to prevent premature failure and to improve the overall 

structural dynamic behaviour of RC structures with masonry infill. During the 
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INSYSME project first IMES system was developed, which presented the intermediate 

solution which helped in development of the INODIS system as the final successful 

solution. Experimental tests (section 5.5) confirmed shortcomings of anchorage system 

applied within IMES, especially in the case of simultaneously applied in- and out-of-

plane loading. Results and findings on the IMES system pushed the improvement and 

development of the final successful solution presented as the INODIS system. 

Within the IMES system elastomer strips (Figure 3.2) are placed between columns and 

infill panel and top beam and infill, while layer of mortar is placed on the upper face of 

the bottom beam pn which the bricks are laid. Out-of-plane load transfer is realized with 

special fasteners spanning in horizontal direction. The fasteners present a combination 

of elastomers, shear anchors with longitudinal movement capability and perforated 

bricks. Shear anchors are placed in both columns within plastic connector that allows 

longitudinal movement. The connection of the shear bolts to the MZ70 brick is realized 

by means of a side opening in one outer cell of the brick (Figure 3.2). This cell is filled 

with elastomer in which the shear bolt is inserted. Anchors are placed in first, third, 

fifth, seventh and ninth row of bricks, thus providing horizontal spanning of the wall. 

Figure 3.2 shows a front view and a vertical and horizontal section of the wall as well as 

the connection detail of a RC frame with the IMES system. 

 

Figure 3.2 Front view and vertical and horizontal section of the IMES system, with the perforat-

ed brick and elastomer strips prepared for installation (INSYSME, 2017a) 
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The basic idea of the INODIS system (Figure 3.3) is a decoupling of infill masonry and 

RC frame in in-plane direction combined with the out-of-plane protection measures 

along the edges of the infill panel. It aims to raise the in- and out-of-plane resistance by 

means of dissipative and sliding connections along the contact areas of the infill to the 

RC frame. INODIS decouples the infill wall and RC frame with the U-shaped 

elastomers placed at the top and along the vertical edges of an infill, together with the 

elastomer divided in three strips at the bottom of an infill. The U-shaped elastomers are 

designed to allow the design drift of the reinforced concrete frame without inducing 

damages to the infill wall. Furthermore the viscoelastic bearings enhance the overall 

damping capacity of the building. The deformation capacity of the elastomer is chosen 

according to the design needs in order to separate the infill wall from imposed in-plane 

deformations of the concrete frame. 

 

Section A-A 

 

Section B-B 

 

Section C-C 

 
Figure 3.3 Details of the INODIS system 

Plastic profiles are attached by metal nails or screws to the surrounding frame while U-

shaped elastomers are glued to the masonry infill on one side and placed around plastic 

profiles on the other side, thus preventing the out-of plane failure. At the bottom the 
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connection is realized by a subdivision of the elastomer into three strips. The middle 

strip is glued to the concrete and the outer strips are glued to the bottom of the bricks. 

This arrangement avoids the ―walking‖ of the wall in the out-of-plane direction. First 

layer of the U-shaped elastomer is made of a soft elastomer in order to decouple infill 

walls against in-plane movement of the RC frame, while second layer is made of a 

stiffer elastomer so that out-of-plane movement is prevented (Figure 3.3). The interfaces 

along the columns and top beam are furnished with sliding surfaces to avoid any 

unfavourable interaction in case of in-plane movements of the RC frame. INODIS 

system improves the in-plane and out-of-plane resistance and prevents failures of 

masonry infills under unfavourable combinations of in-plane and out-of-plane loading. 

Figure 3.3 shows the arrangement of the system with the connection details of INODIS. 

3.2 Construction steps 

In this section step by step execution of the systems is described. All the steps were 

planned in advance, before constructing the infilled frames for the tests, and now can be 

used as a standard in a practice. 

3.2.1 Construction steps of the IMES system 

The construction process of the IMES system starts with a prefabricated RC frame 

(Figure 3.4 left). Before casting the frame, the plastic connectors for the anchors have to 

be placed accurately (Figure 3.4 right). 

  
a) b) 

Figure 3.4 a) Prefabricated RC frame with elastomer at columns and upper beam and b) in-

stalled anchors  

The elastomer is fixed on both columns and the upper beam using the wire for the 
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fastening that can be removed after completing (Figure 3.4b). The first layer of mortar is 

placed on the lower beam (Figure 3.5a). It has a normal thickness to balance unevenness 

of the concrete structure. The first brick to be placed has a shear anchor with the 

elastomer (Figure 3.5b). Therefore, first the steel anchor with the elastomer has to be 

placed into the brick. With the other end, the shear anchors are inserted into the 

connector. Then, the brick can be placed onto the mortar. All further steps correlate to a 

typical bricklaying of a masonry wall with thin mortar layers in bed joints and without 

any mortar in head joints. 

  
a) b) 

Figure 3.5 a) First layer of normal thick mortar and b) brick with shear anchors and elastomer  

3.2.2 Construction steps of the INODIS system 

The construction process of the INODIS system starts with a nailing or screwing plastic 

bars to the columns and the upper beam of the RC frame (Figure 3.6). 

   

Figure 3.6 Placing plastic bars at the columns and the upper beam 

In order to minimize friction effects, the sliding surfaces are glued on the plastic 

profiles, concrete and the preassembled U-shaped elastomer (Figure 3.7). In the next 

working step the U-shaped elastomers are placed around the plastic profiles at the 
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columns and the top beam. The elastomers are fixed by adhesive strips that are removed 

during the construction of the wall (Figure 3.8). 

The connection at the bottom is realized by subdivision of an elastomeric strip of higher 

stiffness into three strips. The middle strip is glued to the concrete frame and the outer 

strips are glued to the bottom of the bricks (Figure 3.9). The arrangement of the 

elastomers at the bottom avoids stress concentrations with brittle failures of the bricks 

and the glued middle strip serves as an out-of-plane support.  

On top of each finished row thin layer mortar is applied using a special infeed slide. The 

head joints are executed dry without any mortar application. The outer bricks in contact 

to the elastomer are glued during the erection with glue comprised of one component 

(Figure 3.10). 

   

Figure 3.7 Applying a sliding surfaces on the plastic bars 

 

   

Figure 3.8 Placing U-shaped elastomers at the columns and top beam of the RC frame 

The finalization of the wall construction is executed by gluing the top bricks to the 

upper elastomer. The gluing process is supported by wooden wedges, placed between 

the concrete frame and the elastomer. After finishing the placement of all bricks, the 
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construction of the wall is finished (Figure 3.11). 

   
  

Figure 3.9 Three strips of elastomer at the bottom beam and gluing the first row of bricks on the 

elastomer 

 

   

Figure 3.10 Brick up the wall in a usually way but with gluing the edge bricks to the elastomer 

 

   

Figure 3.11 Gluing the last row and finalized wall 

3.3 Summary 

As many studies have shown that behaviour of infilled frames is highly influenced by 

infill/frame interaction, proposed system presents the solution for the problems that 

occur during earthquakes. Two proposed systems for decoupling of infill walls from the 

surrounding frame are described with their components and construction steps for their 

application. Aim of the INODIS system is to provide a predictable in-plane response 

together with a stable and reliable out-of-plane response. The design strategy is to 

reduce the infill activation inside the structural frame, which is provided by a strong 
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reduction of the masonry in-plane stiffness and infill/frame interaction. Application of 

the INODIS system makes an infill wall a real non-structural element by decoupling it 

from the RC frame. Construction steps of the INODIS system are quick and easy thus 

providing its wide applicability in construction practice. Since reinforced concrete 

frame structures, infilled with masonry panels, are widespread and commonly employed 

worldwide, there is a huge market for application of the INODIS system. 
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If you wish to reach the highest, begin at the lowest. 

Pubilius Syrus 
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4.1 Introduction  

In order to design and better understand the behaviour of infilled RC frames under 

earthquake loading, it is required to have detailed knowledge about the material and 

mechanical properties of the different components used. These properties are helpful in 

describing the mechanical and deformation behaviour of the infill masonry walls under 

in-plane, out-of-plane and vertical load, as well as combinations of these loads. 

Table 4.1 Components tested 

Component Material used 
Sec-

tion 
Type of test Reference standard 

Concrete C30/37 4.2 

Compression strength DIN EN 12390-3 

Splitting tensile strength DIN EN 12390-6 

Elastic modulus DIN 1048-5 

Reinforcement 

steel 
B500 4.3 

Yield strength DIN EN ISO 15630-1 

Tensile strength DIN EN ISO 15630-1 

Elastic modulus DIN EN ISO 15630-1 

Mortar ZP99 and M5 4.4 

Slump DIN EN 1015-3 

Air content DIN EN 1015-7 

Compression strength DIN EN 1015-11 

Flexural tensile strength DIN EN 1015-11 

Elastic modulus 
On the basis of DIN 

1048-5 

Masonry unit MZ70 4.5 

Dimensions, web thickness and 

plan parallelism 
DIN EN 772-16 

Flatness of faces DIN EN 772-20 

Percentage of voids DIN EN 772-3 

Net dry and gross dry density DIN EN 772-13 

Compression strength DIN EN 772-1 

Elastic modulus Non-existent 

Masonry 

assembley 
MZ70 and ZP99 4.6 

Bond strength by bond wrench 

method 
DIN EN 1052-5 

Compression strength 
On the basis of DIN 

EN 1052-1 

Elastic modulus 
On the basis of DIN 

EN 1052-1 

Flexural tensile strength in two 

directions 
DIN EN 1052-2 

Elastomer 

Regufoam® 400 

Regufoam® 510 

Regufoam® 570 

Regufoam® 680 

Regupol® 480 

Regupol® 550 

4.7.1 

Static elastic modulus 
On the basis of DIN 

EN 826 

Dynamic elastic modulus 
On the basis of DIN 

53513 

Anchor 

connection 
Type 3 

4.7.2 
Shear test Non-existent 

U-shaped 

elastomer 

Regufoam® 400 

Regufoam® 510 

Regupol® 480 

Regupol® 550 

4.7.3 Shear test Non-existent 
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Therefore, material and mechanical properties of masonry units and mortar, concrete 

and reinforcement, as well as elastomer and shear anchors connections are derived by 

conducting material tests and tests of small subassemblies which are described in this 

chapter. The components used for the RC infilled frame tests are listed in Table 4.1 

together with the overview of the entire test program on systems components. Basic 

idea of the research was to use already existing materials. Therefore from the large 

variety of masonry units available in Germany, MZ70 brick has been selected to be used 

for constructing infill walls. As the material properties of mortar and concrete are more 

scattered, these properties are determined for each infilled frame tested. Samples of 

reinforcement steel and elastomer were used to explore tensile and compression 

strength, respectively. The connection with shear anchors and elastomers between the 

RC frame and infill was tested in detail using the test simulating out-of-plane loading. 

Also U-shaped elastomer connection with RC frame through contact with plastic 

profiles was tested in order to investigate the out-of-plane resistance of the connection. 

In the following sections, the testing procedures and the experimental results are 

presented. 

4.2 Tests on concrete 

The concrete samples were taken during the casting of the RC frames and they are 

tested in order to get the values for compression strength fc, elastic modulus Ec and 

splitting tensile strength fct,split. The reference specimens used (Figure 4.1a) were 

cylinder with a diameter of 150 mm and a height of 300 mm (for Ec and fct,split), as well 

as cubes with a length of 150 mm (for fc). The following Table 4.2 shows the mean 

values for the concrete material properties. Since the frames for the BO and CO test 

were not loaded, they were reused for the tests BI and CI. Therefore, the elastic modulus 

and the splitting tensile strength for the BI and CI tests can be taken the same as the 

values for BO and CO tests. It is important to mention that the requested strength class 

for concrete for RC frames was C30/37 while tests on concrete samples resulted in 

much higher values for compressive strength (Figure 4.1a), probably due to the long-

time curing in water. Therefore, it can not be considered that RC frames have these 

values. 
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a) b) 

Figure 4.1 a) Concrete cylinder and cube specimens and b) stress-strain curve from the com-

pression test 

Table 4.2 Mean values of the material properties for the concrete 

Test 
Compression strength Elastic modulus Splitting tensile strength 

fc  [MPa] no. Ec  [GPa] no. fct,split  [MPa] no. 

A 63.0 4 32.558 3 4.20 3 

BI 52.4 3 29.342 3 3.25 3 

CI 67.9 3 29.785 3 3.80 3 

BO 59.6 1 - - 

CO 68.0 1 - - 

BIO 48.0 3 29.164 3 3.72 3 

CIO 61.2 3 28.138 3 3.22 3 

DIO 55.1 3 30.167 3 3.94 3 

4.3 Tests on reinforcement steel 

The material properties of the reinforcement steel usually have small scatter, for this 

reason material samples were tested only once (for RC frame used in DIO test) and not 

for each RC frame. The yield strength fy, elastic modulus Es and tensile strength ft were 

determined by specimens with a length of 300 mm for different diameters. The mean 

values are listed in Table 4.3. 

Table 4.3 Mean values of the material for the reinforcement steel 

Diameter 

[mm] 

Yield strength Elastic modulus Tensile strength 

fy  [MPa] no. Es  [GPa] no. ft  [MPa] no. 

8 537 2 196.00 2 669 3 

10 547 3 195.38 3 679 3 

12 530 3 194.53 3 626 3 

14 548 3 207.86 3 641 3 

4.4 Tests on mortar 

The thin-bed mortar was used for bed joints, while head joints were left unfilled. 

Normal mortar was used for infill/frame connection in traditional systems for filling the 

gap between infill wall and surrounding frame. Normal mortar was also used for IMES 
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system specimens, for correction of some possible unevenness‘s and bumps on the 

bottom beam of RC frame in order to have perfect levelling while placing first row of 

bricks (Figure 4.2). 

 

Figure 4.2 Placing mortar on bottom beam in order to have perfect levelling while placing first 

row of bricks 

The thin-bed mortar and normal mortar were characterized regarding its compression 

strength fc, elastic modulus Ec and flexural tensile strength fct,flex (Figure 4.3 and Figure 

4.4). The reference specimens used were cylinders with a diameter of 100 mm and a 

height of 200 mm (for Ec), as well as prisms with dimensions of 160/40/40 mm (for fc 

and fct,flex). The following Table 4.4 and Table 4.5 show the results of mean values.  

Table 4.4 Mean values of the material properties for the thin-bed mortar 

Test 
Compression strength Elastic modulus Flexural tensile strength 

fc  [MPa] no. Ec  [GPa] no. fct,flex  [MPa] no. 

BI 15.9 6 - 4.3 3 

CI 17.5 12 8.813 2 3.9 6 

BO 15.6 12 8.855 2 3.5 6 

CO 12.6 12 5.524 2 2.9 6 

BIO 15.6 6 7.388 2 3.2 3 

CIO 16.5 6 8.037 2 3.9 3 

DIO 18.1 6 5.491 2 4.3 3 

Table 4.5 Mean values of the material properties for the normal mortar 

Test 
Compression strength Elastic modulus Flexural tensile strength 

fc  [N/mm²] no. Ec  [N/mm²] no. fct,flex  [N/mm²] no. 

BI 9.3 6 - 2.5 3 

CI 11.5 12 10,104 2 3.4 6 

BO 10.8 6 11,000 2 2.6 3 

CO 12.3 12 14,500 2 3.4 6 

BIO 6.6 6 8,574 2 2.3 3 

CIO 9.7 6 11,668 2 3.0 3 

After casting the thin-bed mortar prisms, they were left in forms for two days to harden, 
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then the forms were removed and the specimens were left in the laboratory at a 

temperature of approximately 20 °C and a relative humidity of 65 % till the date of the 

test. The hardened mortar compression strength properties were determined according 

to DIN EN 1015-11 (2007) and elastic modulus was determined (Figure 4.3) based on 

the DIN 1048-5 (1991). Small cylinders having a diameter of 100 mm and height of 200 

mm were cast using mortar from the same mixture and were stored as described. 

  
a) b) 

Figure 4.3 a) Determination of elastic modulus and b) compressive strength of the mortar (IN-

SYSME, 2017a) 

 

  
a) b) 

Figure 4.4 a) Determination of slump and b) flexural strength of the mortar (INSYSME, 2017a) 

Table 4.6 Mean values for the slump and air content for the mortar types 

Code 
Mortar 

application 

Water / Mortar  

[%] 

Slump 

[cm] 

Air content  

[%] 

Zp99 
Capping 31.3 17.1 12.7 

Dipping 39.1 22.7 9.9 

Poroton Capping 64.7 17.3 21.9 

The characteristic properties of the fresh and hardened mortar were determined for each 

series of small walls constructed for the flexural tensile tests. The determination of the 

fresh mortar properties was conducted according to DIN EN 1015-3 (2007) and DIN 
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EN 1015-7 (1998). The Table 4.6 gives the mean values of the slump and the air content 

of each mortar type. 

4.5 Tests on masonry units 

Since for infill walls MZ70 bricks (Figure 4.5a) were used, they were characterized by 

measuring dimensions, web thickness, plan parallelism, flatness of faces, percentage of 

voids, net dry and gross dry density, compression strength and elastic modulus. Six 

packets of bricks were delivered to the laboratory and 30 bricks were taken randomly 

without considering the quality of the bricks. The bricks that were damaged by transport 

were not considered. These units are thermal insulating clay brick with mineral wool 

insulation material inside the vertical holes of the brick. From the previously chosen 30 

units, six units were taken randomly for the determination of dimensions, web 

thickness, plane parallelism and flatness of surfaces. After this, the insulation filling was 

taken out and the units were left in an oven (Figure 4.5b) with a temperature of 105 ± 5 

°C until reaching the weight consistency for determining the percentage of voids, the 

gross dry and the net dry of the masonry units. The values were determined according to 

the reference standards in Table 4.1. The following Table 4.7 gives the mean values of 

the dimensions (length/depth/height) and the web thickness as well as the maximum 

values of the plan parallelism of each masonry unit. 

Table 4.7 Mean values for the dimensions, web thickness and plan parallelism of the units 

Dimensions 

L/T/H [mm] 

Exterior web thickness Sum of web thickness Plan parallel-

ism 

[mm] 
longitudinal 

[mm] 

transverse 

[mm] 

longitudinal 

[%] 

transverse 

[%] 

251.6/364.2/249.1 14.5 8.8 29.6 10.7 0.58 

 

 
 

a) b) 

Figure 4.5 a) MZ70 brick and b) bricks in oven (INSYSME, 2017a) 
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The Table 4.8 gives the maximum values of the face flatness and the mean values of the 

gross dry and net dry density, percentage of voids, elastic modulus and compressive 

strength determined in vertical and longitudinal direction, tested according to the 

reference standards (Table 4.1). A cap of cement paste was cast on the upper and lower 

surfaces of the brick units before the compression tests were conducted in order to get 

plane surfaces and to avoid concentration of stresses due to surface irregularities (Figure 

4.6) while shows brick after the test. 

Table 4.8 Mean values for the face flatness, gross dry and net dry density, percentage of voids 

elastic modulus and compressive strength for the masonry units 

Face 

flatness 

[mm] 

Gross dry 

density  

[kg/m
3
] 

Net dry 

density  

[kg/m
3
] 

Voids     

[%] 

Elastic modulus Compression strength 

Vertical 

direction 

[GPa] 

Longitudinal 

direction 

[GPa] 

Vertical 

direction 

[MPa] 

Longitudinal 

direction 

[MPa] 

0.14 553 1467 62.3 10.71 8.36 6.3 4.8 

 

  
a) b) 

Figure 4.6 a) Determining compressive strength of the masonry units and b) damaged brick after 

the test  

4.6 Tests on masonry assemblies 

The bond strength of the mortar-unit interface, the compressive strength and elastic 

modulus of the three-brick test as well as flexural strength parallel and perpendicular to 

the bed joints were investigated and the mean values are presented in Table 4.9. 

Ten samples have been constructed and tested for determining the bond strength of the 

mortar-unit interface using the bond wrench method as shown in Figure 4.7. The 

compression strength and the elastic modulus were determined on three-brick 

assembley using three specimens based on the DIN EN 1052-1 (1998). In order to 

determine flexural strength of masonry walls, the four-point bending tests were carried 
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out according to DIN EN 1052-2 (1999). 

Table 4.9 Mean values for the bond strength of the mortar-unit interfaces, compressive strength 

and elastic modulus of the three-brick specimen and flexural strength of small masonry walls 

Mortar 

code 

Mortar 

application 

Bond 

strength  

[MPa] 

Compressive 

strength 

[MPa] 

Elastic 

modulus 

[GPa] 

Flexural strength 

parallel to the bed 

joints 

[MPa] 

Flexural strength 

perpendicular to 

the bed joints 

[MPa] 

ZP99 Capping 0.19 3.1 4.87 0.23 0.14 

 

  
a) b) 

Figure 4.7 a) Determination of bond strength of the mortar-unit interfaces and b) bond failure at 

the end of the test 

4.7 Tests on components for decoupling the masonry infill 

Since elastomer is the most important part in the presented solution, the properties of 

the elastomer in shear and compression as well as the capacity of the shear anchor 

connection (for the IMES system) and U-shaped connection (for the INODIS system) 

are investigated. 

4.7.1 Tests on elastomer 

In order to better understand the behaviour of elastomer material and to acquire 

mechanical characteristics valuable for development of a solution and also for 

numerical studies, additional tests were performed. In the tests campaign conducted, 

two types of elastomers (Regufoam® and Regupol®), produced by the German 

company BSW Berleburger Schaumstoffwerk GmbH (BSW, 2018), and were used. 

Both materials are ideal for use in practice for vibration isolation, for very wide load 

range. While Regufoam® presents a more sophisticated solution; Regupol® is made of 

recycled rubber therefore presenting highly economical and eco-friendly material. 

Additional benefits of Regupol® elastomers are their excellent moisture resistance, their 
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rot-proof properties, their ozone resistance and their permanent elasticity even after 

frost-thaw cycles. Since it is made by recycling and old rubbers, it does not have a 

problem with ageing. 

4.7.1.1 Static compression tests in the range of high strains 

The designation of the elastomers, their static and dynamic elastic modules and the 

dimensions of the specimens (Table 4.10) are provided by the company BSW 

Berleburger Schaumstoffwerk GmbH (BSW, 2018) that produces elastomers used in 

this research. Tests are carried out in laboratory at UniKassel. 

Table 4.10 Static and dynamic elastic modulus of the elastomer 

Type of  

elastomer 

Static elastic modulus  

[MPa] 

Dynamic elastic modulus  

[MPa] 

Dimensions 

L / T / H  [mm] 

Regufoam® 270 0.25 – 0.45 0.60 – 1.05 300 / 300 / 25 

Regufoam® 400 0.6 – 1.0 1.2 – 2.0 300 / 300 / 25 

Regufoam® 510 1.1 – 1.7 2.2 – 3.7 300 / 300 / 25 

Regufoam® 570 2.6 – 2.7 5.1 – 6.3 160 / 120 / 25 

Regufoam® 680 2.0 – 2.9 6.8 – 10.0 160 / 120 / 25 

In order to get the values of stiffness of elastomers in the range of high strains, static 

compression tests were performed in laboratory at UniKassel (Figure 4.8). Specimens 

were subjected to a monotonic compressive load with a velocity of 0.4 mm/s. These 

tests were important to get the information needed for numerical simulations, since it is 

expected that elastomers experience high compressions for higher drift ranges. 

According to this it was important to have the information about the stiffness of 

elastomers in high strain ranges in order order to simulate, more realistically, the 

transfer of stresses from frame to the infill. Mean values of physical characteristics of 

the tested specimens are given in Table 4.11 and density comparison in Figure 4.9. 

    

Figure 4.8 Compression tests on specimen Regufoam® 400 and Regupol® 480 
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Table 4.11 Mean values of physical characteristics of the tested specimens 

Type of  

elastomer 

Dimensions 

L / T / H [mm] 

Surface area  

[mm²] 

Density 

[g/cm
3
] 

Regufoam® 270 248.8 / 249 / 24.9 61950 0.229 

Regufoam® 400 249.4 / 249.1 / 24.74 62115 0.352 

Regufoam® 510 249.4 / 249.2 / 24.8 62154 0.460 

Regufoam® 570 248.8 / 249 / 24.9 62331 0.561 

Regufoam® 680 249.7 / 249.9 / 25.1 62389 0.637 

Regupol® 480 251.9 / 251.8 / 26.3 63425 0.545 

Regupol® 550 250.8 / 250.5 / 25.2 62833 0.698 

 

 

Figure 4.9 Density of tested elastomer specimens 

From the Figure 4.10a it can be concluded that stiffness of elastomers is highly 

increased in higher strain ranges. Also, it is helpful to notice that behaviour of recycled 

rubber materials (Regupol®) is similar to the more sophisticated Regufoam® 

elastomers. The only difference is that at the beginning Regupol® samples have even 

lower stiffness then Regufoam® (Figure 4.10b), but at higher strains it increases faster. 

For both materials, obvious hyperelastic behaviour can be seen, which was one of the 

main reasons to choose this type of material. 

  
a) b) 

Figure 4.10 Stress-strain diagram of the tested elastomers at a) higher and b) lower strains 
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4.7.1.2 Cyclic compression tests 

In order to investigate the hyperelastic behaviour of the elastomers used in experiments, 

cyclic compression tests were carried out in laboratory at UniKassel. Cyclic loads were 

applied in three ramp-like cycles with a velocity of 0.4 mm/s. Both diagrams in Figure 

4.11 indicate a high degree of stiffening depending on the type of elastomer at higher 

compressive strains. Furthermore, the viscoelastic material behaviour with energy 

dissipation is very easy to see in the diagram for cyclical loading and unloading, which 

is an additional beneficial effect, besides decoupling, of using elastomers for this 

connection. Instead of dissipation of energy through the plastification (damage and 

cracks) in infill, energy is dissipated with viscoelastic behaviour of the elastomer. 

 

Figure 4.11 Stress-strain curves of the Regufoam® and Regupol® elastomers under cyclic load 

4.7.1.3 Shear tests 

Since U-shaped connection of elastomer used in the INODIS system is loaded not just 

with compression but also with shear due to the out-of-plane seismic loadings acting on 

the infill, shear testing of elastomer was conducted in the laboratory of BSW. Figure 

4.12a presents test setup, where it can be seen that elastomers were glued to the steel 

plates. Side plates were used to introduce restrain in translation and middle plates were 

used to introduce the load to the elastomer by assigning displacement in longitudinal 

direction of the plates. There was no force applied perpendicular to the steel plates. On 

Figure 4.12b loaded specimen is presented. Mean values of physical and mechanical 

characteristics of the tested specimens are given in Table 4.12. 

Figure 4.13 can be used for the evaluation of which type of elastomer should be applied 

for the second layer of U-shaped connection in the INODIS system. Also, these curves 

are important input for numerical simulations and evaluation of behaviour of the 
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INODIS system. It is valuable noticing that behaviour of recycled rubber materials 

(Regupol®) is similar to the sophisticated Regufoam® elastomers. The only difference 

is that Regufoam® samples have almost linear behaviour up to the tested level of shear 

strain (γ=30%) while stress-strain curves of Regupol® specimens have slight parabolic 

shape. 

  
a) b) 

Figure 4.12 Shear test on elastomer: a) test setup and b) loaded specimen 

Table 4.12 Mean values of physical and mechanical characteristics of the shear tested specimens 

Type of  

elastomer 

Dimensions 

L / T / H  [mm] 

Shear modulus 

[N/mm²] 

Shear stress at 25% of 

shear strain 

[N/mm²] 

Regufoam® 150 50 / 50 / 2x12.5 0.04 0.01 

Regufoam® 510 50 / 50 / 2x12.5 0.61 0.15 

Regufoam® 990 50 / 50 / 2x12.5 2.47 0.62 

Regupol® 200 50 / 50 / 2x25 0.09 0.02 

Regupol® 480 50 / 50 / 2x15 0.27 0.07 

Regupol® 1000 50 / 50 / 2x10 1.65 0.41 

 

 

Figure 4.13 Stress-strain curves of shear tests on the Regufoam® and Regupol® elastomers 

4.7.2 Tests on shear anchor connection (IMES system) 

While decoupling RC frame and masonry infill with the elastomers, special care should 



Chapter 4  Experimental tests on system components 

127 

be given to out-of-plane resistance of infill wall. For the IMES system, tested with 

specimens CO, CI and CIO, an alternative load transfer mechanism in the form of shear 

anchor connection placed on one end in RC frame and on the other end connected to the 

elastomer that is placed in masonry units, is tested. Setup of this connection was quite 

suitable for the masonry unit MZ70. Although this connection can be used also for 

different types of bricks, it needs a hole for installation of anchors with elastomer. 

4.7.2.1 Test setup and instrumentation 

For the test setup, the frame made of steel I-sections, which simulated the fixed support 

of the shear anchor into the RC frame is constructed (Figure 4.14). In order to create a 

setup (Figure 4.15) as close to the reality as possible, the test specimens consisted of 

three masonry units. The brick placed in the middle was loaded by the hydraulic 

cylinder, while two bricks on the side contained shear anchors. In order to minimize the 

effects of friction, the test specimens were placed on a sliding layer. Tests were 

conducted as a displacement controlled with a constant speed of load application. The 

deformation of the specimen was measured by displacement transducers (Figure 4.14). 

  

Figure 4.14 Drawing of the test setup with the location of displacement transducers 
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Figure 4.15 Test setup (INSYSME, 2017a) 

4.7.2.2 Geometry and construction of specimens 

The test specimens consisted of three bricks, as already described. The side bricks were 

made of MZ70 units by opening a chamber. Three different types of connection bricks 

were considered (Figure 4.16). To eliminate stress concentrations in the bricks, the steel 

shear anchors with a diameter of 16 mm were placed within the elastomer Regufoam® 

680. The distance between the surface of the masonry unit and the fixed support was 25 

mm. For the Type 1 connection, elastomer was placed through the whole height of the 

chamber, but in a smaller chamber, while for the Type 2 connection longer chamber was 

used. And Type 3 connection was made of elastomer having the quadratic cross section 

with the same dimension as the width of the chamber. This elastomer was placed in a 

smaller chamber. 

   
a) b) c) 

Figure 4.16 Types of connection tested: a) type 1; b) type 2 and c) type 3 (INSYSME, 2017a) 

4.7.2.3 Test results 

The maximum load-bearing capacity and the corresponding elastomer deformation 

(mean values) of the different connection types are shown in Table 4.13. Furthermore, 

the maximum shear-bearing capacity of the masonry unit MZ70 without opened 

chamber was determined also and is called type 0. First, type 0 connection was tested, 

followed by the tests on the type 3 and type 1 connection. Since the type 1 connection 
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had a significantly lower load-bearing capacity than type 3, the type 2 with an 

apparently even lower load-bearing capacity has not been tested. It should be noted that 

in all the tests for all types of connections, brick was the part that always broke (Figure 

4.17b) at the point when maximum load capacity was reached, due to its low shear 

(splitting) strength. Figure 4.17a clearly shows deformability of the elastomer during the 

test. 

Table 4.13 Capacity of the connection types 

Type of con-

nection 

Capacity of connection 

Force  [kN] Deformation [mm] no. 

0 2.14 - 2 

1 1.30 3.36 4 

3 1.84 5.50 6 

 

  
a) b) 

Figure 4.17 a) Deformation of the elastomer during the test and b) splitting of the brick in a case 

of connection type 3 (INSYSME, 2017a) 

4.7.3 Tests on U-shaped connections of elastomers (INODIS system) 

INODIS uses U-shaped connections build-up of two different types of elastomers. For 

the DIO test the U-shaped elastomers were assembled by gluing stripes of elastomers 

together. Afterwards, U-shaped elastomers were placed on the frame, around plastic 

profiles, and glued to the bricks on the circumference of the infill. During the out-of-

plane loading of infill, the U profiles made of elastomers are subjected to shear and 

bending forces. The circumferential U-shaped elastomer strips must be able to safely 

absorb these forces. The load is transferred by the flange of the U profile to the 

circumferential plastic profile. In this case, various load situations can arise due to 

simultaneously occurring in-plane frame displacements. The critical load situations are 

those in which the frame separates from the elastomer, forming gaps. In this case the 

flange of the U profile is subjected to an eccentric load. 
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In order to test the glue bond and the load bearing capacity of the U-shaped elastomer, 

experimental campaign on small specimen tests was conducted. Experimental tests were 

performed on a brick for the connection situations corresponding to the frame columns 

and frame top beam. In the experiments, the elastomer U profiles were glued on both 

sides of the bricks and subjected to the shear load using a loading plate. Figure 4.18 

shows the test setup for the connection to the columns in which the elastomer is glued to 

the smooth sides of the brick. This corresponds to how the elastomer strips are glued in 

the wall because the first brick in each row has smooth surfaces for gluing. Figure 4.19 

shows the test setup for the connection to the beam in which the 250 mm wide 

elastomer strip, which corresponds to the support width of 250 mm used in the wall 

tests, is glued to the top and bottom of the brick where the holes are located. Like in the 

wall tests, the elastomer strips and bricks are glued together using the one-component 

glues Keraflex® and Regupur® provided by BSW Berleburger Schaumstoffwerk 

GmbH (BSW, 2018). Preparation and testing of the specimens was performed in the 

laboratory of Institut für Ziegelforschung Essen e.V. (IZF). 

  

Figure 4.18 Test setup for the connection of the U-shaped elastomer to the columns 

 

  

Figure 4.19 Test setup for the connection of the U-shaped elastomer to the top beam 
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4.7.3.1 Preparation of the test specimens 

The specimens are prepared in several working steps, described as follows. The 

preparation starts with the application of Regufoam® 400 (250/250/25 mm) to the brick 

surfaces, whereas the glue is applied to the elastomer (Figure 4.20). The next step is the 

application of the second layer of elastomers (100/250/25 mm and 100/250/12.5 mm) 

made of Regufoam® 510. For beam case just 25 mm thick Regufoam® 510 is applied, 

while for column case both 25 mm and 12.5 mm Regufoam® 510 are applied one on 

each other. Finally Figure 4.21 shows the applied elastomeric connections to both sides 

of the brick MZ70. Important to mention is that two types of glue are used, Keraflex® 

and Regupur® (Figure 4.22), in order to choose the best one for final test on the infilled 

frame. Basic difference was that Regupur® is more liquid than Keraflex® (black 

colour), therefore it was more difficult to apply it with spatula which was used for 

application of both glues (Figure 4.23). 

   
a) b) c) 

Figure 4.20 a) Regufoam® 400, b) glue application on Regufoam® 400 and c) Regufoam® 510  

 

  
a) b) 

Figure 4.21 Preparation process: a) prepared specimens for testing the column and b) beam con-

nection 
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a) b) 

Figure 4.22 a) Packages of Keraflex® and b) Regupur® glues 

 

  
a) b) 

Figure 4.23 a) Application of Keraflex® and b) Regupur® 

A concrete plate rigidly connected to the plastic profile was used to provide the support 

and present the concrete frame. Figure 4.24a shows the preparation of the concrete plate 

and Figure 4.24b illustrates the final arrangement of the plastic profile with sliding 

surfaces glued on the plastic profile and concrete plate. 

  
a) b) 

Figure 4.24 a) Preparation of the concrete plate used for testing beam connection and b) plastic 

profile attached to concrete plate used for testing column connection 
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4.7.3.2 Test configurations 

In total twelve specimens were tested under various test configurations. Table 4.14 

summarizes the tests and the corresponding boundary conditions. All tests were 

executed with a low pre-stress, because this condition represents the most unfavourable 

load transfer and will take place, if frame and infill masonry are partially detached. 

Usually it can be expected, that a gapping occurs in the corner regions of the wall in the 

higher deformation range of the frame. The movement of the plastic profile together 

with the frame is simulated by gaps, which are realized by adding wooden plates with 

differing thickness in the contact area between the elastomers and the concrete plates. 

Since the most important elements of the connections are the glued surfaces affected by 

shear and bending stresses. Therefore the focus was set on the behaviour of the 

elastomers and glued connections. As already mentioned, two types of elastomer were 

tested, Regufoam® and Regupol®. Additionally, in order to verify applicability of the 

solution to other types of bricks, tests of U-shaped elastomers with the autoclaved 

aerated concrete (AAC) and calcium silicate (CS) brick were also performed. 

Table 4.14 Summary of the experimental tests 

No. Test Name 
Connection 

type 

Gap/Contact 

width 

Elastomer 

type 
Glue 

Contact-concrete 

plate at the bottom 

1 C Column 0/30 mm Regufoam® Keraflex® no 

2 
CG10MM-a Column 10/20 mm Regufoam® Keraflex® no 

CG10MM-b Column 10/10 mm Regufoam® Keraflex® yes 

3 CG15MM Column 15/15 mm Regufoam® Keraflex® no 

4 CG20MM Column 20/10 mm Regufoam® Keraflex® no 

5 B Beam 0/25 mm Regufoam® Keraflex® no 

6 BG7.5MM Beam 7.5/17.5 mm Regufoam® Keraflex® no 

7 BG10MM Beam 10/15 mm Regufoam® Regupur® no 

8 BG15MM Beam 15/10 mm Regufoam® Keraflex® no 

9 BRP Beam 0/25 mm Regupol® Keraflex® no 

10 CRP Column 0/25 mm Regupol® Keraflex® no 

11 BAACRP Beam 0/20 mm Regupol® Keraflex® no 

12 BCSRP Beam 0/25 mm Regupol® Keraflex® no 

4.7.3.3 Column connection – Test C 

The test C was carried for a column connection without the gap between the elastomer 

and concrete plate. Since the thickness of the plastic profile was 30 mm, this mean that 

also the contact width is 30 mm. Up to a load level of 8.5 kN no damage of the 

connections was observed. After exceeding 8.5 kN, the brick failed with a vertical 

splitting crack, probably because of the bending (Figure 4.25b). Figure 4.25a shows the 
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force-displacement curve, where displacement was measured at the place of load 

application (middle of the length of the brick). From the diagram it can be seen that 

specimen has almost linear behaviour, probably due to the characteristic of elastomer of 

having high elastic deformations. In Figure 4.26 behaviour of the connection at different 

levels of deformation is shown, where it can be seen that elastomer together with glued 

connection is capable of withstanding high level of deformations and that limit capacity 

was governed by the brick. 

  
a) b) 

Figure 4.25 a) Force-displacement curve of the Test C and b) split brick at the end of the test 

 

    
d = 3.4 mm (1 kN) d = 8.0 mm (2 kN) d = 13.8 mm (3.7 kN) d = 42.4 mm (8.5 kN) 

Figure 4.26 Deformations at different load levels of the Test C 

4.7.3.4 Column connection – Test CG10MM 

The test CG10MM was carried out with the gap of 10 mm, provided by placing wooden 

plates of 10 mm thickness in between the elastomer and concrete support. Since 

thickness of the plastic was 3 cm, this setup reduced the contact width between 

elastomer and plastic to 20 mm, creating a less favourable situation. The reason for 

testing this situation and also other specimens with gap was because of gapping that 

appears between U-shaped elastomer and plastic profile in the higher deformation 

ranges due to the movement of the plastic profile together with the frame. 
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a) b) 

Figure 4.27 a) Force-displacement curve of the Test CG10MM-a and CG10MM-b and b) split 

brick at the end of the test 

 

   
d = 10.5 mm (2.5 kN) d = 22.7 mm (4.5 kN) d = 28.3 mm (5.4 kN) 

Figure 4.28 Deformations at different load levels of the Test CG10MM-a 

On Figure 4.27a it can be seen that up to a load level of 5.4 kN no damage of the 

connections and the brick was observed, except slight appearance of delamination of 

glued connection between Regufoam® 400 and brick (Figure 4.28). At this load level 

the test was stopped, because the wooden plate at the bottom was compressed between 

the elastomer and the concrete plate. The lower wooden plate was removed to avoid any 

beneficial influences caused by the clamping effect. Afterwards the experimental test 

was repeated without the wooden plate at the bottom (CG10MM-b). At the level of 6.6 

kN, delamination of glued connection between Regufoam® 400 and brick was more 

pronounced (Figure 4.29) but still not effecting the overall connection. At the force of 

7.7kN crack in the brick appeared. The force dropped down at this point but soon after 

started to rise, because of contact of the brick and plate underneath. This can be seen on 

Figure 4.27a as almost vertical part of the CG10MM-b curve. At this point the test was 

stopped. The final damage of the brick at about 8.0 kN is presented by a side view in 

Figure 4.27b, while Figure 4.28 and Figure 4.29 illustrate the behaviour of the 
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connection at different levels of deformation, where it can be seen that elastomer 

together with glued connection is capable of withstanding high level of deformations 

and that limit capacity was governed by the brick. 

   
d = 30.7 mm (6 kN) d = 41.5 mm (6.6 kN) d = 54.2 mm (7.5 kN) 

Figure 4.29 Deformations at different load levels of the Test CG10MM-b 

4.7.3.5 Column connection – Test CG15MM 

The test CG15MM was carried out with the gap of 15 mm, provided by placing wooden 

plates of 15 mm thickness in between the elastomer and concrete support. This setup 

reduced the contact width between elastomer and plastic to 15 mm, creating a less 

favourable situation. 

  
a) b) 

Figure 4.30 a) Force-displacement curve of experimental tests CG15MM and b) damaged brick 

at the end of the test 

Figure 4.30a shows the force-displacement curve, while Figure 4.31 illustrates the 

behaviour of the connection at different levels of deformation. Up to a load level of 4 

kN no damage of the connections and the brick was observed. At 4.5 kN slight 

appearance of delamination of glued connection between Regufoam® 400 and brick is 

observed (Figure 4.30b). At the load level of 4.8 kN, the reduction of the slope of the 

force-displacement started (Figure 4.30). At the force of 5.15 kN crack in the brick 



Chapter 4  Experimental tests on system components 

137 

appeared. At the same time small delamination between two parts of elastomers was 

noticed. The force started to decrease and soon after the test was stopped. The final 

damage of the brick and deformation of the elastomer at about 5.15 kN is presented in 

Figure 4.31. 

   
d = 11.9 mm (2.5 kN) d = 23.7 mm (4 kN) d = 49.0 mm (5.15 kN) 

Figure 4.31 Deformations at different load levels of the Test CG15MM 

4.7.3.6 Column connection – Test CG20MM 

The test CG20MM was carried out with the gap of 20 mm, provided by placing wooden 

plates of 20 mm thickness in between the elastomer and concrete support. Since 

thickness of the plastic was 3 cm, this setup reduced the contact width between 

elastomer and plastic to 10 mm, creating an even more unfavourable situation than for 

the previous tests. 

  
a) b) 

Figure 4.32 a) Force-displacement curve of the Test CG20MM and b) partly delaminated 

sliding surfaces at the end of the test 

Figure 4.32a shows the force-displacement curves and Figure 4.33 illustrates the 

behaviour of the connection at different levels of deformation. Up to the force of around 

5 kN, which corresponds to the displacement of the brick of 29 mm, no substantial 
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damage of the connections and the brick was observed (Figure 4.33). Only the sliding 

surfaces delaminated along the boundaries caused by the strong deformations of the 

elastomers in the higher displacement range (Figure 4.32b). It has to be pointed out, that 

the glued connection was not damaged although the load was applied near to the glued 

joint. After this point there is a dropdown of the force, because there was delamination 

in glue connection between the brick and Regufoam®400 (Figure 4.33). The force 

dropped down to around 4500N and started to increase a little bit until 4900N. After that 

decrease of the force was followed with the increase of displacement. In Figure 4.32a it 

can be seen that up to 30 mm connection is in the linear range. After exceeding a 30 mm 

of displacement, the connection was able to keep the load level of about 5 kN up to a 

deformation of about 48 mm, after which a drop down of the force can be observed. 

    
d = 5.9 mm (1 kN) d = 12.4 mm (2 kN) d = 22.3 mm (3.5 kN) d = 29.0 mm (4.9 kN) 

Figure 4.33 Deformations at different levels of displacements of the Test CG20MM 

4.7.3.7 Beam connection – Test B 

The test B was carried for a column connection without the gap between the elastomer 

and concrete plate. Since the thickness of the plastic profile was 25 mm, this means that 

also the contact width is 25 mm. 

Up to a load level of about 3.8 kN no substantial damage of the connections and the 

brick was observed. After exceeding this load level horizontal crack appeared at the left 

side of the top of the brick and after a short drop down of the force, the force continued 

to increase (Figure 4.34a). At around 5.57 kN crack appeared on the other side of the 

brick too (Figure 4.34b) which caused sudden decrease of the force, although glued 

connection wasn‘t harmed and the capacity of the connection was still not reached. 

Figure 4.35 illustrates the behaviour of the connection at different load levels, where it 

can be seen that there is no damage at the glued connection at all. 
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a) b) 

Figure 4.34 a) Force-displacement curve of the Test B and b) specimen at the end of the test 

  

   
d = 5.4 mm (1.5 kN) d = 13.5 mm (3.8 kN) d = 23.5 mm (5.5 kN) 

Figure 4.35 Deformations at different load levels of the Test B 

4.7.3.8 Beam connection – Test BG7.5MM 

The test BG7.5MM was carried out with the gap of 7.5 mm, provided by placing 

wooden plates of 7.5 mm thickness in between the elastomer and concrete support. This 

setup reduced the contact width between elastomer and plastic to 17.5 mm. 

  
a) b) 

Figure 4.36 a) Force-displacement curve of the Test BG7.5MM and b) specimen at the end of 

the test 

At the force of about 3.5 kN first crack in the brick was observed. This was followed by 
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a sudden decrease of force, but soon after force started to increase again with the slope 

almost the same as until this moment (Figure 4.36a). Force continued to increase up to 

the load level of around 5.4 kN when upper web of the brick completely failed (Figure 

4.36b) which led to the sudden decrease of force. Figure 4.37 illustrates the behaviour 

of the connection at different load levels. It is important to notice that at the end of the 

test neither elastomer to elastomer glued connection nor the glued connection between 

elastomer and brick was harmed (Figure 4.36b). 

   
d = 6.3 mm (1.5 kN) d = 13.7 mm (3 kN) d = 31.2 mm (5.3 kN) 

Figure 4.37 Deformations at different load levels of the Test BG7.5MM 

4.7.3.9 Beam connection – Test BG10MM 

The test BG10MM was carried out with the gap of 10 mm, provided by placing wooden 

plates of 10 mm thickness in between the elastomer and concrete support. This setup 

reduced the contact width between elastomer and plastic to 15 mm. It is important to 

mention that this specimen was prepared using Regupur® glue instead of Keraflex®. 

Up to a load level of about 4.33 kN no substantial damage of the connections and the 

brick was observed. After exceeding this load level the web of the brittle failure of the 

brick occurred (Figure 4.38b), but the capacity of the connection was still not reached. 

Figure 4.38a shows the force-displacement curve where it can be seen that until the drop 

down of the curve, caused by the brick failure, connection was in linear range. Figure 

4.39 illustrates the behaviour of the connection at different load levels. From the test 

results and pictures it can be observed that Regupur® glue performed very well, maybe 

even better than Keraflex® glue, so it can be concluded that both glues can be used 

satisfactorily for gluing two elastomers, even having different stiffnesses, and also for 

gluing elastomers to the brick. 
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a) b) 

Figure 4.38 a) Force-displacement curve of the Test BG10MM and b) specimen at the end of 

the test 

 

   
d = 2.6 mm (0.5 kN) d = 10.1 mm (2 kN) d = 28.3 mm (4.5 kN) 

Figure 4.39 Deformations at different load levels of the Test BG10MM 

4.7.3.10 Beam connection – Test BG15MM 

The test BG15MM was carried out with the gap of 15 mm, provided by placing wooden 

plates of 15 mm thickness in between the elastomer and concrete support. Since 

thickness of the plastic was 25 mm while Regufoam® 510 had thickness of 25 mm, this 

setup reduced the contact width between elastomer and plastic to 10 mm. 

Up to a load level of about 2.5 kN no substantial damage of the connections and the 

brick was observed. After exceeding this load level connection between elastomers 

started to unglue (Figure 4.41, middle). This was followed by slight decrease of the 

slope of the force-displacement curve (Figure 4.40a). After this, force continued to 

increase up to the load level of around 3.8 kN, when horizontal crack appeared on both 

sides of the top of the brick (Figure 4.40b). This led to the smooth decrease of the force 

followed with the increase of displacement. Figure 4.41 illustrates the behaviour of the 

connection at different levels of deformation. 
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a) b) 

Figure 4.40 a) Force-displacement curve of the Test BG15MM and b) specimen at the end of 

the test 

 

   
d = 10.2 mm (2 kN) d = 13.4 mm (2.5 kN) d = 29.1 mm (3.75 kN) 

Figure 4.41 Deformations at different load levels of the Test BG15MM 

4.7.3.11 Beam connection – Test BRP 

In further development of the solution it was decided that Regufoam® elastomers could 

be substituted with Regupol® elastomers with the same or similar characteristics. This 

would provide reduction of costs for the INODIS system and additionally, since 

Regupol® is made of recycled ruber, an eco-friendly solution. Therefore, two additional 

tests with the same setup for beam and column case were carried out. 

For the preparation of the specimens the same procedure was followed as explained in 

Chapter 4.7.3.1., having in mind that for the first layer of U-shaped elastomer Regupol® 

480 was used instead of Regufoam® 400 and for the second layer Regupol® 550 

instead of Regufoam® 510. 

The test B5RP was carried out without any gap, since thickness of the plastic was 25 

mm while Regupol® 550 had the same thickness. Figure 4.42a shows the force-

displacement curve and Figure 4.43 illustrates the behaviour of the connection at 
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different levels of deformation. Up to a load level of 4 kN no damage of the connections 

and the brick was observed. At this point two cracks in the brick appeared (Figure 

4.42b) and a sudden drop of the force was noticed. Soon after, the test was stopped. 

  
a) b) 

Figure 4.42 a) Force-displacement curve of the Test BRP and b) specimen at the end of the test 

 

   
d = 3.75 mm (1.5 kN) d = 12.4 mm (3.5 kN) d = 15.5 mm (4 kN) 

Figure 4.43 Deformations at different load levels of the Test BRP 

4.7.3.12 Column connection – Test CRP 

The test CRP was carried out without the gap, but the contact width between elastomer 

and plastic was reduced to 25 mm, because the thickness of the plastic profile used in 

this test was 25 mm. Thickness of the upper layer of the U-shaped elastomer for this test 

was 40 mm, while the same elastomer materials and their arrangement as for the BRP 

tests were used. 

Figure 4.44a shows the force-displacement curve and Figure 4.45 Deformations at 

different load levels of the Test CRP 

Figure 4.31 Figure 4.45 illustrates the behaviour of the connection at different load 

levels. Up to a load level of 3.7 kN no damage of the connections and the brick was 

observed. Then, the slope of the force-displacement curve started to decrease, due to the 
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small delamination appeared between two elastomers. At 4.1 kN delamination 

increased. At the level of 4.175 kN, force-displacement curve started to decrease. Soon 

after, the test was stopped. The final damage and deformation of the elastomer at the 

end of the test is presented in Figure 4.44b. From the delaminated elastomers at the end 

of the test it can be seen that the glued connection wasn‘t carried out satisfactorily. So it 

can be concluded that this was the reason for delamination. It is certain that this would 

not happen in factory production. Even in this case of poorly built connection, 

resistance loads reached are very high. 

 
 

a) b) 

Figure 4.44 a) Force-displacement curve of the Test CRP and b) specimen at the end of the test 

 

   
d = 5.2 mm (1.5 kN) d = 14.1 mm (3 kN) d = 30.0 mm (4.175 kN) 

Figure 4.45 Deformations at different load levels of the Test CRP 

4.7.3.13 Beam connection – Test BAACRP 

In order to investigate the applicability of the solution on different types of bricks, two 

additional tests were carried out using autoclaved aerated concrete (AAC) and calcium 

silicate (CS) brick. In both cases Regupol® was used. These two bricks have smaller 

width (AAC-7.5 cm and CS-10 cm) and they present common brick used for 
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partition/separation walls. Therefore, these two tests can present investigation of 

application of the INODIS system on partition/separation walls, plus testing its 

application on different types of the brick. In this sense it was decided just to apply two 

strips of elastomer leaving the space between them. That means that the first layer of 

elastomer, which was so far applied in all experiments, was not applied. Elastomers 

were applied on the side of the brick as it would be applied for the connection between 

the top of the partition wall and beam (Figure 4.46). 

 

Figure 4.46 BAACRP and BCSRP specimens before the test 

In a case of the AAC brick, two strips of elastomer Regupol® 550 having the thickness 

of 20 mm and width of 20 cm were glued to the brick. Since the thickness of the plastic 

profile used in this test was 25 mm, full thickness of elastomer was activated. 

  
a) b) 

Figure 4.47 a) Force-displacement curve of the Test BAACRP b) and specimen at the end of the 

test 

Figure 4.47a shows the force-displacement curve and Figure 4.48 illustrates the 

behaviour of the connection at different load levels. Up to a load level of 3.4 kN no 

damage of the connections and the brick was observed. Then the brick suddenly cracked 

in one corner and soon after the crack in complete length of the brick formed (Figure 
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4.47b). At this point the test was stopped. From the Figure 4.47b it can be concluded 

that the glued connection is so strong that the parts of the brick were torn down and 

stayed glued on the elastomer. 

   
d = 2.9 mm (2 kN) d = 4.5 mm (3 kN) d = 5.9 mm (3.4 kN) 

Figure 4.48 Deformations at different load levels of the Test BAACRP 

4.7.3.14 Beam connection – Test BCSRP 

In the case of CS brick, two strips of elastomer Regupol® 550 having the width of 

30mm and thickness of 15 mm were first glued to each other and then to the brick. 

Since the thickness of the plastic profile used in this test was 25 mm and total thickness 

of the elastomer was 30 mm, the contact width was 25 mm. 

  
a) b) 

Figure 4.49 a) Force-displacement curve of the Test BCSRP and b) specimen at the end of the 

test 

Figure 4.49a shows the force-displacement curve and Figure 4.50 illustrates the 

behaviour of the connection at different load levels. Up to a load level of 5.5 kN no 

damage of the connections and the brick was observed. Then slight delamination of the 

connection between elastomer and the brick appeared. Force continued to rise up to 6.6 

kN when higher delamination was noticed and force started slowly to decrease. Soon 

after this point the test was stopped. The final damage of the connection at the end of 



Chapter 4  Experimental tests on system components 

147 

the test is presented in Figure 4.49b. 

   
d = 7.4 mm (2 kN) d = 15.5 mm (5.5 kN) d = 23.4 mm (6.6 kN) 

Figure 4.50 Deformations at different load levels of the Test BCSRP 

 

  
a) b) 

Figure 4.51 Summary of force displacement curves for the test on U-shaped connections for the 

a) column and b) beam situation 

A total of twelve tests were conducted without a prestressed loading, and with and 

without applying the load eccentrically, which presents the critical load situation in 

which the frame separates and gaps form between the frame and the infill. In none of 

the tests on MZ70 brick failure of the glued connection between the elastomer and brick 

or two elastomers appeared first because the failure of the brick governed the load 

capacity. Only in the case of the CG20MM test, sliding surface damaged before the 

failure of the brick. Table 4.15 and Figure 4.51 show a summary of the load bearing 

capacities achieved in the each test. For the case of specimens made of MZ70 bricks the 

smallest load bearing capacity of 3.8 kN was determined for the connection situation at 

the top beam for the maximum gap of 15 mm and the reduced contact length of 10 mm 

(Test BG15MM). Assuming a four-sided bearing system, this results in an ultimate out-

of-plane load of 23.0 kN/m
2
 for the test on an infilled frame with an infill panel area of 

7 m
2
. For the self-weight of the wall of 1.4 t, this means that the very high accelerations 
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of up to 11.5g can be absorbed by INODIS connection. This presents a lower bound 

because on the one hand the ultimate load of the elastomeric connection had not been 

reached yet and on the other hand the lowest value for the load bearing capacity, at 

which the gap along the entire circumference is greatest, was used in the calculation. It 

is important to point out that these load bearing values present levels of the out-of-plane 

load on the infill wall that U-shaped elastomer connection glued to the brick can 

withstand. Of course the out-of-plane resistance of an infill wall is related to this 

characteristic of the connection but other factors should also be considered (arching 

effect, strength of the brick etc.). 

The smallest load bearing capacity for partition walls of 3.4 kN was determined for the 

case of AAC brick, which is much thinner and lighter than infill walls. Therefore, even 

the force is smaller than for the case of infill walls made of MZ70 bricks, the out-of-

plane acceleration that this wall can withstand is around 56g, which is quite high due to 

its small self-weight. 

Table 4.15 Load bearing capacity of the U-shaped elastomer connection 

No. Test Name 
Connection 

type 

Gap/Contact 

width 

Elastomer 

type 
Glue 

Load 

[kN] 

Pressure 

on the 

wall 

[kN/m2] 

a [g] 

1 C Column 0/30 mm Regufoam® Keraflex® 8.50 51.4 26.0 

2 
CG10MM-a Column 10/20 mm Regufoam® Keraflex® 

8.00 48.4 24.5 
CG10MM-b Column 10/20 mm Regufoam® Keraflex® 

3 CG15MM Column 15/15 mm Regufoam® Keraflex® 5.15 31.1 15.7 

4 CG20MM Column 20/10 mm Regufoam® Keraflex® 4.92 29.7 15.0 

5 B Beam 0/25 mm Regufoam® Keraflex® 5.57 33.7 17.0 

6 BG7.5MM Beam 7.5/17.5 mm Regufoam® Keraflex® 5.40 32.6 16.5 

7 BG10MM Beam 10/15 mm Regufoam® Regupur® 4.33 26.2 13.2 

8 BG15MM Beam 15/10 mm Regufoam® Keraflex® 3.80 23.0 11.6 

9 BRP Beam 0/25 mm Regupol® Keraflex® 4.00 24.2 12.2 

10 CRP Column 0/25 mm Regupol® Keraflex® 4.20 25.4 12.8 

11 BAACRP Beam 0/20 mm Regupol® Keraflex® 3.40 20.6 56.0 

12 BCSRP Beam 0/25 mm Regupol® Keraflex® 6.60 39.9 108.7 

4.8 Summary of the tests on the system components 

The main objective of the described test campaign on system components and 

assemblages was to investigate the mechanical properties of constitutive materials and 

their mutual interaction. This was important in order to choose the best material type 

and characteristics for the INODIS system, but also to provide additional information 

for wider use of solution. Additionally, tests conducted on small specimens provided 
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valuable results for understanding the behaviour of the overall system, but also for 

calibration and validation of numerical models needed for further parametric studies. 

Tests on concrete, reinforcing steel, thin-bed mortar and the normal mortar and masonry 

units were conducted under standardized procedures and were used for extracting 

usually needed values such as compressive and tensile strength, modulus of elasticity 

etc. This data was mostly used to characterize the components and for calibration of 

numerical models. Important to mention is brittle behaviour of clay unit for both 

vertical and horizontal compression loads, due to the high percentage of voids (63%). 

Results of the tests on masonry assemblages gave important base for calibration of 

numerical models, especially for modelling bond strength between the units. 

Mechanical characteristics of the masonry assembly under compression load present 

extremely valuable data for modelling the units and infill wall itself, since the modelling 

approach is based on assigning compressive strength of the masonry assembly to the 

unit and not taking unit strength as it is. 

After finishing the tests on the ―traditional‖ components of the infill walls, tests on 

components for decoupling the masonry infill walls from the frame are conducted. First 

elastomer specimens were tested under static compression tests. This provided better 

understand of hyperelastic behaviour of elastomers. Since the characteristics of 

elastomer showed that it is from 5-50 thousand times softer than contacting concrete 

and masonry, it was obvious that under the high drift levels elastomer is going to enter 

in high compression ranges. Therefore, specimens were tested up to the limits of the 

testing machines, showing that after 60-70% of compression strain stiffness of 

elastomer rises strongly. These results showed that up to 50-60% of compression strain 

of elastomer, it will transfer just small amount of loads to the infill wall due to the 

movement of the frame. Thus, providing high decoupling capability for infill wall. 

Since the infill frame specimens were subjected to the cyclic loading conditions it was 

important to investigate behaviour of elastomers under cyclic compression loading. 

Results of these tests gave additional value to the application of elastomers as a measure 

for decoupling, because the loops of hysteretic curves under cyclic loading of elastomer 

showed that during the earthquake it can be expected that some energy would be spent 

on viscoelastic behaviours of elastomers. This is a big step forward from the situation in 
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traditional masonry infill where energy is spent on plastic deformations (cracking and 

damage) of infill walls. Shear tests on elastomers together with the compression tests 

provided important comparison between different types of elastomers tested, so it can 

be chosen which type to be used in order to provide in-plane decoupling and at the same 

time small out-of-plane displacements of the infill wall. 

Tests on shear anchors inserted in elastomers, used for IMES system, showed that shear 

strength of the brick is rather low therefore the use of this kind of connection for hollow 

clay bricks is questionable. 

For understanding the behaviour of components of INODIS system and its details it was 

very important to investigate U-shaped elastomer and its glued connection to the brick. 

The focus of investigation in these tests was the glued connection of elastomer to 

elastomer and elastomer to the brick and capacity of this connection. In this sense, the 

so called "column" connection does not reflect the real situation on the wall level since 

the load was applied in the direction parallel to the brick holes and in reality out-of-

plane load is applied in direction perpendicular to the holes. This was done in order to 

test the glued connection and to reach higher load levels, which definitively would not 

be possible if the load was applied in the direction perpendicular to the holes. Also 

parameters such as type of elastomer, width and thickness of elastomers, type of glue, 

stiffness of elastomers, contact width of the elastomer and plastic profiles, influence of 

sliding surfaces on the shear behaviour of the connection and type of the brick were 

investigated, trying to assess the behaviour of the connection under different loading 

and contact conditions on the infill wall level. All the specimens tested showed the 

capability of the connection to resist 4-10 times higher loads when applied in the 

experiments on the wall level. This is important information showing that this 

connection can be used in regions with high seismicity level. Both types of glue used 

proved themselves as powerful so no damage on the glued connections appeared except 

in the case of CRP test where this connection was poorly constructed (the glue was 

missing). But even in this case delamination happened at high load levels. Only in the 

BCSRP tests where calcium silicate brick was used, limit of the connection was reached, by 

damaging of elastomers. In all other tests brick cracked before damage limits of the 

elastomer of glued connections were reached. 

It is interesting to point out that in all tests after removing the load from the brick, 
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specimen moved up in the starting position, without permanent deformations on 

elastomer connections. This leads to the conclusion that elastomer connections have a 

great capacity of elastic behaviour. 

For practical applicability of the solution, it is important to conclude that elastomers 

made of Regupol®, which is much cheaper than Regufoam®, the same level of loads 

are reached without any damage to the connection, even when slightly stiffer material 

for Regupol® was used. Proved efficient applicability and behaviour of the solution to 

the other types of the bricks supports the use of the INODIS system in construction 

practice. 
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The roots of education are bitter, but the fruit is sweet. 

Aristotle 
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5.1 Description of the experimental program 

Within the European project INSYSME (2016), funded under the 7th Framework 

Program by the European Commission and aimed at developing innovative systems for 

masonry enclosure walls, new innovative systems were developed and analysed. 

Experimental program was conducted at the University of Kassel, where a total of eight 

tests were performed (Table 5.1). Description of the test and their results are described 

in this chapter. 

Table 5.1 Overview of the tested specimens 

Specimen Description 

A Test of bare frame 

BI 
Test of the traditional infill subjected to the sequential in-plane load and out-of-

plane load and then an in-plane load once again 

CI 
Test of the infill with the IMES system subjected to the sequential in-plane load and 

out-of-plane load and then an in-plane load once again 

BO Test of the traditional infill loaded in out-of-plane direction 

CO Test of the infill with the IMES system loaded in out-of-plane direction 

BIO 
Test of the traditional infill subjected to the simultaneous load in in-plane and out-

of-plane direction 

CIO 
Test of the infill with the IMES system subjected to the simultaneous load in in-

plane and out-of-plane direction 

DIO 
Test of the infill with the INODIS system subjected to the sequential but also to the 

simultaneous load in in-plane and out-of-plane direction 

5.2 Description of the test set-up 

Since experimental testing campaign includes both in-plane and out-of-plane loading, 

equipment and instrumentation had to be built to fulfil planned testing procedures. 

Therefore test setup has been specifically constructed for the INSYSME tests at 

UniKassel testing facilities. Figure 5.1 shows drawings of the equipment and 

instrumentation setup, while Figure 5.2 present test setup prior to the experimental test. 

In-plane tests were performed through the application of horizontal increasing cyclic 

displacements by reaching each displacement amplitude three times. Due to the 

configuration of the three hydraulic jacks, both vertical and horizontal forces as well as 

bending moments can be applied to the test specimen in its plane (Figure 5.2). The 

vertical forces can be transferred directly to the columns of the RC frame by a load 

introduction beam made of steel (Figure 5.4) simulating the vertical load from upper 

storeys of a real structure. Horizontal forces resulting due to earthquake action can be 

transferred by the same load introduction beam to the top beam of the frame. 
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a) b) 

Figure 5.1 a) View of the test set-up and b) section A-A (INSYSME, 2017b) 

 

 

Figure 5.2 In-plane test set-up 

For reduction of stress concentrations, elastomeric bearings are used for the load 

introduction (Figure 5.5a). In order to enable a well-defined loading of the test 

specimen, independently of the resulting deformations, the load introduction beam has 

to be connected to the horizontal hydraulic cylinder such that undesired restraint is 

avoided. This is achieved by hinges eliminating vertical force and bending moment at 

the left end of the load introduction beam (Figure 5.5b).To avoid a horizontal rigid body 
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motion of the whole test specimen, a horizontal fixation in the middle of the bottom 

beam were used. To prevent the frame uplift due to high values of the global 

overturning moment ties near both ends connect the lower beam to the strong floor of 

the laboratory. 

 

Figure 5.3 Out-of-plane test set-up 

Figure 5.1 also shows steel reaction frame that has been designed for the out-of-plane 

tests, to present the self-equilibrium system together with supporting panel and anchors 

connecting RC frame at the top and base to the steel reaction frame. For out-of-plane 

loading, four airbags were placed between supporting panel and infill wall (Figure 5.3), 

which under increased pressure in airbags present a stiff support. That way, all the 

deformation appears only in infill wall. With the equal distribution of four airbags 

almost constantly distributed loading can be applied on the area of the infill wall. 

Capacity limit of the airbags is 50 kN/m². The reaction panel on the backside of the 

airbags is connected to the beams of the RC frame by threaded bars. Hence, the forces 

remain inside the system consisting of test specimen and reaction plate so that no 

overturning or sliding at the base of the frame can be expected. Each threaded bar has 

been equipped with a force transducer so that the overall out-of-plane load can be 

measured. To ensure that the threaded bars have continuous contact to both the reaction 

panel on one side and to the frame on the other side, they are being prestressed before 

start of the test to a preload of about 5 kN and subsequently unloaded to approximately 

0.5 kN. For the tests with combined and simultaneous loading in- and out-of-plane, the 

connections to the threaded bars have been designed as moveable in parallel to the plane 

of the wall. The hydraulic air bags only allow compression loading. Therefore, loading 
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from one side only could be simulated. Since a failure of infill wall falling down at the 

exterior side of a building appears to be more dangerous, only outward oriented loading 

from inside of the building has been simulated. 

 

Figure 5.4 Steel beam for transfer of vertical forces to the columns 

 

  
a) b) 

Figure 5.5 a) Elastomeric bearings for reduction of stress concentrations and b) hinges for elim-

inating vertical force and bending moment at the left end of the load introduction beam 

5.3 Test specimens 

The reinforced concrete frames have been designed according to DIN EN 1992-1-1 

(2011) and DIN EN 1998-1 (2010) considering the German national annexes for 

ductility class L. As a design basis, the results from the analysis for the exterior frame of 

a five storey frame structure with regular geometry and stiffness distribution are taken. 

Furthermore, the capacity of the testing setup had to be considered such as capacity of 

the hydraulic actuators. Columns were designed to have 25/25 cm quadratic cross 

section with the 1.48% of longitudinal reinforcement and 0.63% and 0.42% of 
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transverse reinforcement in corners and middle section respectively. Height of the beam 

is 25 cm and the width 45 cm with the 1.05% of longitudinal reinforcement and 0.35% 

and 0.23% of transverse reinforcement in corners and middle section respectively. 

  

Figure 5.6 Transportation and delivery of the RC frames 

 

 

Figure 5.7 Dimensions and reinforcement of the RC frame (test A, BI/BO and BIO) (IN-

SYSME, 2017b) 
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RC frames were prefabricated and then delivered to the laboratory for testing at 

UniKassel (Figure 5.6). The dimensions and the reinforcement of the test specimen A, 

BO/BO and BIO are shown in Figure 5.7. In order to install decoupling elastomer on the 

circumference of infill, dimensions of RC frames for innovative systems specimens 

(CO, CI, CIO and DIO) are slightly changed (Figure 5.8).  

 

Figure 5.8 Dimensions and reinforcement of the RC frame (test CI/CO, CIO and DIO) (IN-

SYSME, 2017b) 

Traditional infilled frame is constructed in a usual way of bricklaying, and it is just as 

important to mention that for bed joints thin layer mortar was used, while head joints 

were made as dry joint connection without mortar. As in all test specimens, MZ70 brick 

was used. Figure 5.9 illustrates that the MZ70 monolithic exterior wall brick with a 

thickness of 36.5 cm protrudes outwards over the columns (25/25 cm). This corresponds 

to the current installation situation since external insulation is also applied to the frame. 
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Figure 5.9 Reinforced concrete frame with masonry infill made of MZ70 bricks 

Within IMES system, 2.5 cm thick elastomer strips (Figure 3.2) are placed between 

columns and infill panel and top beam and infill, while layer of mortar is placed on the 

upper face of the bottom beam and then bricks are laid. The anchors are on one end 

installed in the bricks within the combination with elastomers and on the other end they 

are also placed in the columns within plastic connector that allows longitudinal 

movement. Anchors are placed in first, third, fifth, seventh and ninth row of bricks, thus 

providing horizontal spanning of the wall. Figure 3.2 shows a front view and a vertical 

and horizontal section of the complete wall as well as a connecting detail of a RC frame 

with infill wall and the IMES system. 

For pure out-of-plane tests (BO and CO) infill walls were constructed with the 5 cm gap 

between frame and infill panel on one side. That way infill wall is considered as three-

sided panel that should present infill wall with the opening (door) on one side. 

Figure 5.10  shows the specimen used for DIO test, while Figure 5.11 presents details of 

connections between frame and infill. MZ70   brick with a thickness of  36.5 cm 

protrudes over the column dimensions ( 250/250 mm) by 11.5 cm , the same as for the 

traditional infill. Regufoam® 400 having 2.5 cm of thickness was used for the first layer 

of the U-shaped elastomer and Regufoam® 510 was used for the second layer. 
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Figure 5.10 Infilled frame for the DIO test with the INODIS system 

 

   
a) b) c) 

Figure 5.11 Details of the INODIS system used for the DIO test: a) top beam connection, b) 

column connection and c) bottom beam connection 

U-shaped elastomer attached to the top beam had a second layer with the thickness of 

2.5 cm, while U-shaped elastomer at the columns had 3.75 cm thick second layer. Left 

and right side of the second layer of U-shaped elastomer had the width of 10 cm, 

leaving the 5 cm gap between them. Sliding surfaces with the thickness of 2-4mm, were 
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glued to the U-shaped elastomer, concrete frame and plastic profiles, thus reducing this 

gap to 4 cm. Therefore, plastic profile had the width of 4 cm and the thickness at the top 

beam of 2.5 cm and at the columns 3 cm. Middle strip of bottom elastomer made of 

Regufoam® 570 with the width of 5 cm and thickness of 2.5 cm was first glued, to the 

frame. Afterwards, two side strips of the same material and thickness, just with the 

width of 10 cm were placed on the bottom frame beam and glued to the first row of the 

brick. 

5.4 Description of the instrumentation 

Forces and deformations of the hydraulic cylinders are recorded by the integrated 

displacement and force transducers. The force capacity of the two vertical hydraulic 

jacks amounts to ± 400 kN each. The maximum stroke amounts to ± 125 mm. For 

horizontal loading a cylinder with a maximum force capacity of ± 320 kN and a stroke 

limit of ± 150 mm was used. The deformations of the test specimen in both horizontal 

and vertical direction were measured by inductive transducers LVDTs named W1 to W9 

at wall top and bottom. These displacement transducers are fixed to an independent 

measuring frame. Furthermore, the deformations in diagonal direction are captured by 

cable potentiometers S3 and S4 (for test A additionally with S1 und S2). The following 

Figure 5.12 to Figure 5.19 depict the positions of the transducers for each test. In the 

tests of the innovative solutions (tests CI/CIO–IMES and test DIO–INODIS), the 

compressive strains of the elastomers as well as the opening of the joint between RC 

frame and the infill wall are recorded by LVDTs W16 until W21. For all the tests except 

bare frame (Test A) the deformations of frame and infill were also captured 

independently by an optical measurement system (Figure 5.20a). To make the 

measuring points identifiable for the system, circular pads (Figure 5.20b) are glued onto 

the surface of the test specimen (see blue squares in Figure 5.13 to Figure 5.19). Since 

the system uses 2 cameras, not only the in-plane deformations but also the out-of-plane 

displacements were recorded. Deformations measured with the trancducers and 

hydraulic trancuders are compared with the values measured with the optical 

measurement system, in order to prove the reliability of both systems. In all the tests, 

differences between the measured values were neglectable. In order to allow crack 

visibility, the specimen was painted with a thin layer of white paint, which was the only 
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surface finishing. In addition, the masonry infills are being protected from a sudden 

falling out by securing it with the four tension belts (Figure 5.20b) which are being 

positioned at a distance of 5 cm from the exterior wall surface. The belts are attached to 

the columns of the frame and have a capacity of 10 kN. However, they are only slightly 

prestressed by hand. 

 

 

Figure 5.12 Instrumentation and measuring points for the test A (INSYSME, 2017b) 

 

 

Figure 5.13 Instrumentation and measuring points for the test BI (INSYSME, 2017b) 
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Figure 5.14 Instrumentation and measuring points for the test CI (INSYSME, 2017b) 
 

 

Figure 5.15 Instrumentation and measuring points for the test BO (INSYSME, 2017b) 
 

 

Figure 5.16 Instrumentation and measuring points for the test CO (INSYSME, 2017b) 
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Figure 5.17 Instrumentation and measuring points for the test BIO (INSYSME, 2017b) 
 

 

Figure 5.18 Instrumentation and measuring points for the test CIO (INSYSME, 2017b) 
 

 

Figure 5.19 Instrumentation and measuring points for the test DIO (INSYSME, 2017b) 
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a) b) 

Figure 5.20 a) Optical measurement system and b) circular pads glued onto the surface of the 

test specimen presenting measuring points for optical measurement system 

5.5 Experimental results 

For easier comparison, presenting the experimental results is subdivided in four 

sections. First, section 5.5.1 is related to the in-plane test on the bare frame (Specimen 

A). Then second section describes experimental tests on the traditionally infilled frame 

(Specimens BI, BO and BIO). Afterwards, results associated with the infilled frame 

with the IMES system (Specimens CI, CO and CIO) are presented. Finally, results of 

the tests on the infilled frame with the INODIS system (Specimen DIO) are shown. 

Results and comparison of the DIO test with all previous tests are presented in section 

5.5.5 of this chapter. 

Table 5.2 gives an overview of the experimental campaign. All specimens were made in 

full scale. At the start of each test the vertical force was applied and increased until 200 

kN per column and it was held constant throughout the whole duration of the tests. The 

horizontal in-plane loading was applied by displacement control in sinusoidal cycles. 

The duration of each cycle amounts to 60 s and, hence, can be considered as quasi 

static. The amplitude was increased with three load cycles for each amplitude level until 

failure or reaching a maximal interstorey drift angle of 3.5 %, which presents 

displacement capacity of the horizontal cylinder. The interstorey drift was based on a 

storey height of h = 2.75 m. The behavior of the test specimens subject to horizontal in-

plane loading can be illustrated most effectively by force vs. drift hysteresis diagrams. 

The restoring force consists of the contribution from the horizontal hydraulic cylinder as 

well of the horizontal force components of the vertical cylinders which experience a 

certain inclination due to the applied horizontal displacements. The horizontal 
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displacement of the test specimen is being measured at the upper beam of the RC frame. 

The interstorey drift is then being calculated after subtraction of the horizontal rigid 

body motion as measured at the lower beam of the frame. 

Table 5.2 Overview of the experimental program 

A: Bare 

frame 

Loading 

protocol 
A: IP   

Sketch 

of the 

tested 

speci-

men  

  

B: Tradi-

tionally 

infilled 

frame 

Loading 

protocol 
BI: IP - OOP - IP BO: OOP BIO: OOP + IP 

Sketch 

of the 

tested 

speci-

men    

C: 

Infilled 

frame with 

the IMES 

system 

Loading 

protocol 
CI: IP - OOP - IP CO: OOP CIO: OOP + IP 

Sketch 

of the 

tested 

speci-

men    

D: 

Infilled 

frame with 

the INODIS 

system 

Loading 

protocol 

DIO: IP; OOP; OOP + 

IP 
  

Sketch 

of the 

tested 

speci-

men  

  

Bare frame is tested under in-plane load (IP) in order to determine the capacity of the 

RC frame. In the BI and CI test, the frame is subjected to a sequential in-plane load, and 

out-of-plane load and then an in-plane load once again (IP–OOP–IP) in order to 

examine influence of prior damage on infill capacity. Out-of-plane tests were performed 

to investigate the behavior of the masonry infills under out-of-plane loading and to 

assess their load capacity as well as the capacity of the connection to the RC frame. The 

horizontal load perpendicular to the wall was controlled manualy using pneumatic 

control system. During loading, the out-of-plane deformation measured in the middle of 

the infill wall was recorded continiosly with transducer LVDT W15 (Figure 5.13 to 

Figure 5.19). The first test has been conducted for a masonry infill wall traditionally 

connected to the frame via mortar. It has been denoted as BO. The second test specimen 

represents the infilled frame with the system IMES and is called CO. In both tests, an 
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out-of-plane (OOP) load is applied whereby a gap is present on one side of the panel in 

order to depict an opening with an unfavourable effect, i.e. the frame is supported on 

three sides. Simultaneous application of in- and out-of-plane loading (Specimen BIO, 

CIO and DIO) has been performed in a way that first the out-of-plane has been 

increased until 5 kN/m². According to the technical possibilities, the pressure in the 

airbags/pillows has been kept as constant as possible afterwards. Afterwards, the 

horizontal in-plane loading was applied by displacement control in a sinusoidal cycles. 

The amplitude was increased stepwise by keeping the out-of-plane loading constant. 

5.5.1 Bare frame – Test A 

In order to identify the contribution of the RC frame to the resistance capacity, first a 

reference test without masonry infill has been performed (bare frame-specimen A). As it 

is described on Figure 5.21 and Table 5.3, load has been assigned as a sinusoidal cyclic 

displacement up to 3.5% of inter-storey drift. 

 

Stage Drift [%] Stage Drift [%] 

1 0.018 12 1.00 

2 0.036 13 1.25 

3 0.055 14 1.50 

4 0.073 15 1.80 

5 0.10 16 2.10 

6 0.20 17 2.40 

7 0.30 18 2.70 

8 0.40 19 3.00 

9 0.50 20 3.25 

10 0.60 21 3.50 

11 0.80  
 

Figure 5.21 Load protocol of the Test A Table 5.3 In-plane drifts of the test A 

As can be seen from the graph in Figure 5.22, the RC bare frame has a horizontal load 

capacity of about 120 kN at the drift angle of 2.0 %. The restoring force increases 

steadily until reaching this maximum value. For the maximum value of the applied drift 

of about 3.5 %, the resistance decreases until about 95 kN in the positive direction and 

90 kN in the negative direction (Figure 5.22). 

Wile conducting the test, an error of the test control occurred when the second load 

cycle with amplitude of 2.7 % was applied. As a consequence, the horizontal load 

cylinder moved to its end position in negative direction. Hence, a pre-damage of the 

R/C frame must be considered for the subsequent cycles at amplitudes of 3.0 and 3.5 %. 
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The development of the hysteresis clearly shows this effect. Clearly, the pre-damage has 

a more pronounced effect on the resistance in the negative load direction. The force 

resistance in positive direction, however, seems to be affected insignificantly until 

reaching the maximum drift angle of 3.5%. 

The degradation of stiffness is caused mainly by cracking of concrete and later on by 

yielding of the reinforcement. According to Figure 5.23 the deformations are 

concentrated near the upper and lower ends of the columns near the positions of the 

maximum absolute bending moments as expected. Due to the larger cross section 

dimensions, the beams show a less pronounced cracking pattern than the columns. 

Furthermore, the continuous support of the lower beam on the strong floor has led to 

much less cracking in the lower beam. Failure of the test specimen could be observed 

due to the formation of plastic hinges at top and bottom ends of the columns. 

 

Figure 5.22 Hysteretic curve and envelope for the in-plane loading of the Test A 

 

  
a) b) 

Figure 5.23 a) Cracks in the frame top corner and b) at the base of the columns 
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5.5.2 Traditionally infilled RC frame 

5.5.2.1 Test BO 

As described in Figure 5.24 and Table 5.4 out-of-plane loads is applied in four cycles. 

Amplitudes of the following cycles were increased until failure of the wall. As already 

described, vertical forces of 200 kN have been applied by each vertical cylinders at the 

start of the tests. This value has been force controlled and kept constant over the 

duration of the tests. 

The behaviour of the test specimens can be illustrated most effectively by force-

displacement diagrams using the sum of all 10 force transducers versus the measured 

deflection in the center of the wall using displacement transducer LVDT W15 (Figure 

5.15).  

 

Stage 
Load 

[kN/m2] 

1 14.85 

2 22.14 

3 23.86 

4 18.93 
 

Figure 5.24 Load protocol for out-of-plane loading of the 

Test BO 

Table 5.4 Out-of-plane load of the 

Test BO 

The masonry infill specimen BO was able to activate a maximum resistance of about 

170 kN, corresponding to a uniformly distributed load of about 24 kN/m² (Figure 

5.25a). The corresponding horizontal deflection at the center of the wall amounts to 

about 4 mm at this point. At the start of loading, the masonry infill shows a high 

stiffness, while stable arching effect initially occurs in the wall at the third load cycle. 

The resistance of the infill appears to be limited by sudden contact failure between RC 

frame and the uppermost and the lowest row of bricks. This results in a tilting of the 

wall (Figure 5.26a) as well as an overloading and splitting of the bricks in the top infill 

row (Figure 5.27); hence, the boundary condition on the top of the wall is completely 

lost. Due to the support on three sides, the free edge undergoes the largest deflections, 

especially at the top (Figure 5.25b). When forth cycle of the load was applied, complete 
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damage of the wall occurred with very sudden and fast increase of displacement (Figure 

5.26b) with a small increase of the load. This caused the right side of the wall to go out 

of the plane of the frame (Figure 5.28). As expected the gap on the right side influenced 

the failure mode of the wall, having high deformations of the right side of the wall while 

deformations of the left side stayed almost intact (Figure 5.26b). Apparently, loss of 

connection/support at the top and bottom lead to the loss of capability to form arching 

mechanism, which further lead to the sudden and brittle failure of the right side of the 

wall. This kind of behaviour shows that traditional connection of infill walls with the 

frame through the mortar presents a weak place for the infilled frames. 

  

a) b) 

Figure 5.25 a) Force-displacement curve for out-of-plane loading of the Test BO and b) side 

view of the wall deformation in the out-of-plane direction of the vertical section on the free edge 

of the wall 

 

  
a) b) 

Figure 5.26 a) Side view of the wall deformation in the out-of-plane direction at the start and b) 

at the end of the fourth load cycle 
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Figure 5.27 Local failure of the bricks at the top and bottom of the wall at the end of the Test 

BO 

 

  
a) b) 

Figure 5.28 a) Out-of-plane deformation of the wall and b) damage within the wall at the end of 

the Test BO 

5.5.2.2 Test BI 

Masonry infill traditionally connected to the surrounding RC frame with a mortar 

connection has been tested in-plane as described in section 5.2. First specimen was 

unfortunately destroyed suddenly, because one of the transducers connected to the 

actuator jammed and actuator pushed the beam very fast up to the limit. This caused 

immediate collapse of infill wall and heavy damage in RC frame, so this test had to be 

repeated with the new specimen built using new RC frame and infill wall. As described 

in Figure 5.29 in-plane and out-of-plane loads are sequentially applied. The test begins 
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with an in-plane sine load up to an interstorey drift of 1.25%. The in-plane load is then 

stopped and a gradual out-of-plane loading and unloading takes place up to an 

equivalent surface load of 3 kN/m
2
. After removing the out-of-plane load, a sinusoidal 

in-plane load up to a maximum interstorey drift of 2.1% is applied (Table 5.5). As 

already described, vertical forces of 200 kN have been applied by each vertical 

cylinders at the start of the tests. This value has been force controlled and kept constant 

over the duration of the tests. 

 

Stage 
Drift 

[%] 
Stage 

Drift 

[%] 

1 0.018 12 1.00 

2 0.036 13 1.25 

3 0.055 14 1.50 

4 0.073 15 1.80 

5 0.10 16 2.10 

6 0.20 

 

7 0.30 

8 0.40 

9 0.50 

10 0.60 

11 0.80 
 

Figure 5.29 Load protocol for sequential in- and out-of-plane 

loading of the Test BI 
Table 5.5 In-plane drifts of the 

Test BI 

 

 

Figure 5.30 Hysteretic curve and envelope for the first in-plane loading phase of the Test BI 

First part of the in-plane cyclic load was applied until 34.38 mm of displacement which 

corresponds to 1.25% of in-plane drift. At the beginning, infill acts in a linear manner 

up to a load of 110 kN. A reduction in stiffness occurs in the further cycles as a result of 

initial cracks that occur in the wall and opening of bed joints (Figure 5.31a). Afterwards, 

the restoring forces increase steadily but with decreased stiffness up to force of around 
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225 kN (Figure 5.30). At this point strongly visible stepwise cracks in diagonal direction 

of the infill wall were noticed together with the big crack in bed joint on the top of the 

brick at the middle bottom of the wall and cracks in some bricks on the diagonal (Figure 

5.31b). 

  
a) b) 

Figure 5.31 a) Opening of bed joints and b) stepwise cracks in compressed diagonal and cracks 

in the bricks  

After reaching 1.25% of in-plane drift and having notable cracks in the infill wall, in-

plane loading was stopped and frame returned to the zero position. Then out-of-plane 

load was applied using airbags as described in section 5.2. Pressure in airbags was 

increased and decreased in cycles until reaching out-of-plane capacity of 21 kN which 

corresponds to a constant load of about 3 kN/m² while producing a maximum 

deformation of 29 mm (Figure 5.32). From the very beginning of the application of out-

of-plane loading it was noticed that during unloading, deformations did not decrease so 

that significant residual deformations remained. The deformations due to the preceding 

in-plane loading are not showed in Figure 5.32, which means that there was already 3 

mm of out-of-plane displacement due to the previous in-plane test. Displacements 

measured with Optical measurement system (Figure 5.20), as explained in section 5.4, 

are used to compile deformed shape of the wall, after first in-plane loading phase (IP1). 

Figure 5.33a illustrates the out-of-plane deformations for five horizontal sections across 

the length of the wall, while Figure 5.33b illustrates the out-of-plane deformations for 

five vertical sections across the height of the wall following completion of the first 

loading phase. The deformation sequences clearly demonstrate a tilting effect on the 

wall which measures approximately 1.5 cm at the top of the wall. This effect is a result 
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of the repeated eccentric load of the infill masonry wall which, for reasons of energy 

efficiency, protrudes over the column dimensions by 11.5 cm (Figure 5.34). The 

eccentricity causes an alternating rotation which successively leads to an out-of-plane 

movement. 

 

Figure 5.32 Force-displacement curve for the out-of-plane loading of the Test BI 

 

  
a) b) 

Figure 5.33 Deformation of the wall in the out-of-plane direction at the end of the first in-plane 

loading phase (drift: 1.25%): a) top view and b) side view  

The displacements at the maximum loading in the direction perpendicular to the wall 

plane are shown in Figure 5.35 where deformed shape of infill wall is presented. It can 

be seen from Figure 5.36a, that in-plane load damaged mortar connection of the infill 

wall and concrete beam so out-of-plane load produced tilting of the infill wall and 

moving out-of-plane as a rigid body. This proves that the weakness of the traditional 

system is in the contact between RC frame and infill wall. A sufficient contact closure is 

particularly difficult when dealing with the highly thermally-insulating bricks with the 

percentage of voids being 62.3%; thus, extreme care is needed to uniformly fill them 

with mortar. Also with application of out-of-plane load splitting of the brick at the top 



Chapter 5  Experimental tests on infilled frames 

175 

corner (Figure 5.36b) occurred which contributed to the failure of infill wall. This 

additionaly weakend the connection between frame and infill and increased the tilting of 

the infill wall in out-of-plane direction. Therefore for solving this problem attention 

should be paid. 

 

Figure 5.34 Top view: deformation of the frame and out-of-plane infill movement due to the 

eccentric loading of the infill wall  

 

  
a) b) 

Figure 5.35 Deformation of the wall in the out-of-plane direction under maximum out-of-plane 

load of 3 kN/m
2
: a) top view and b) side view  

 

  
a) b) 

Figure 5.36 a) Damaged mortar connection between infill wall and concrete beam and b) split-

ting of the brick  

In Figure 5.37 complete hysteresis, presenting both first and second in-plane loading 

results, is shown. The restoring forces increased steadily but with decreased stiffness 

until reaching a plateau with a maximum resisting force of approximately 240 kN at an 

interstorey drift of 1.5 %. At the maximum drift of 2.1 %, the resistance still amounts to 
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about 180 kN. The deformation behaviour as well as the failure is being dominated by 

opening and closing of bed joints (Figure 5.39b) as well as failure of the bricks. In 

Figure 5.39a, the diagonal stairstep cracks, through bed joints and head joints at a large 

value, are well visible. The failure of the bricks starts near the upper frame corners 

(Figure 5.40a) and seems to carry on to the middle of the wall with increasing drift 

values. The damage to the bricks occurs mainly on the backside of the specimen (Figure 

5.40a). This is somehow expected since the brick is 36.5 cm wide and columns are just 

25 cm wide, therefore other side of the wall presented by the part of the bricks that are 

not in contact with frame is less damaged. The front side of the specimen, however, 

does not show such a pronounced damage which might lead to a wrongly positive 

assessment of the remaining load bearing capacity. 

 

Figure 5.37 Hysteretic curve and envelope for the first and second in-plane loading phase of the 

Test BI 

 

  
a) b) 

Figure 5.38 Deformation of the wall in the out-of-plane direction at the end of the BI test: a) top 

view and b) side view  

When out-of-plane load was removed, out-of-plane displacements continued to increase 
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highly under second in-plane load (Figure 5.38). At the end of the test, the specimen 

had some additional in-plane capacity, but regarding out-of-plane direction it was 

completely unstable. It can be assumed that smaller amount of out-of-plane load would 

cause the wall to fall out-of-plane. The test was stopped because of the safety of the 

laboratory staff and equipment. 

 

  
a) b) 

Figure 5.39 a) Diagonal cracks in the wall and b) opening of bed joints  

 

  
a) b) 

Figure 5.40 a) Failure of the brick in the upper corner of the wall and b) damage of the backside 

of the wall at the end of the whole loading protocol  

5.5.2.3 Test BIO 

In the BIO test out-of-plane first applied and increased until reaching 5 kN/m². 

According to the technical possibilities, the pressure in the airbags/pillows has been 

kept as constant as possible afterwards. Next, in-plane loading was applied by 
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displacement control and in sinusoidal cycles. Due to the considerable deflection in out-

of-plane direction, the out-of-plane pressure was reduced to 2.5 kN/m² (Figure 5.41). 

Load protocol and in-plane drift amplitudes are shown in Figure 5.41 as well as in Table 

5.6. 

 

Stage Drift [%] 

1 0.018 

2 0.036 

3 0.055 

4 0.073 

5 0.10 

6 0.20 

7 0.30 

8 0.40 

9 0.50 

10 0.60 

11 0.80 

12 1.00 
 

Figure 5.41 Load protocol for simultaneous in- and out-of-plane 

loading of the Test BIO 
Table 5.6 In-plane drifts of 

the Test BIO 

 

  
a) b) 

Figure 5.42 a) Hysteretic curve and envelope for the in-plane loading and b) force-displacement 

curve for out-of-plane loading  

The resulting hysteresis curve in Figure 5.42a demonstrate a maximum horizontal force 

of 225 kN at an interstorey drift of 0.65%. The resistance was increasing steadily until 

drift angle of approximately 0.05 %, when a significant decrease in stiffness can be 

observed. After reaching the peak of the force deflection curve, the horizontal forces 

drastically decrease. After having performed one cycle of 0.8% of in-plane loading, 

pressure in the pneumatic airbags decreased and with recovering pressure to the value of 

5kN/m
2
 the wall continued to move out-of-plane. Shortly after starting the next cycle, 

the infill is again pushed out even more, which causes an increase of the airbags volume 
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and, thus, a reduction of the pressure load from the airbags. After this point, last in-

plane cycle was performed with 2.5 kN/m
2
 of out-of-plane pressure and then, due to the 

extensive increase of out-of-plane displacements (Figure 5.42a and Figure 5.44), it was 

decided to stop with the test. 

It is important to mention that first out-of-plane load of 5 kN/m
2
 was applied, before 

starting with in-plane cycles. At this point out-of-plane displacements were negligible. 

They remained small until 0.3% (8.25 mm) of in-plane drift, when notable out-of-plane 

displacements started to appear (Figure 5.43). 

  
a) b) 

Figure 5.43 Deformation of the wall in the out-of-plane direction at 0.3% of in-plane drift: a) 

top view and b) side view 

 

  
a) b) 

Figure 5.44 Deformation of the wall in the out-of-plane direction at the end of the BIO test 

(drift: 1.00%): a) top view and b) side view  

At the beginning, highest displacements were in the middle (arching mechanism), but 

slightly higher on the left side than on the right side of the wall. Figure 5.45 illustrates 

the increase in deformations throughout the in-plane load cycles with a side view for a 

vertical section in the centre of the wall along the height of the wall. For small applied 

interstorey drifts, it can clearly be seen that the deformations correspond to the bending 
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line of an arching effect. An interstorey drift of only 0.3% results in a displacement of 

2.5 mm at wall mid-height. In the following load cycles, the arching effect is 

substantially decreased due to the loss of the support boundary conditions and the infill 

reacts with sudden and rapidly increasing out-of-plane deformations. The bending line 

now corresponds to a tilting movement of the infill superimposed on a rigid body 

movement caused by the loss of the boundary conditions on both the top as well as the 

base of the wall. The out-of-plane deformations at a drift of 0.8% already measure 8.5 

cm. Furthermore, in the last in-plane cycles (drift=1.00%), out-of-plane load was 

reduced to 2.5 kN/m
2
, and even then the displacements of the left side of the wall and at 

the top highly increased, followed by quite high out-of-plane displacements at the 

bottom (Figure 5.44). 

 

Figure 5.45 Side view of the wall deformation in the out-of-plane direction for combined load-

ing for the vertical section in the centre of the wall along the height of the wall 

 

   
a) b) c) 

Figure 5.46 a) Damage of the infill, b) failure of the brick at the top and c) tilting of the infill 

panel at the end of the Test BO 

The test had to be aborted shortly afterwards as the wall deformations uncontrollably 

increased. The reasons for such high out-of-plane displacements at the top and bottom 

of the infill wall are the loss of the arching mechanism and the loss of the horizontal 
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support due to the frame deformation. In-plane cyclic loading damages the mortar 

connection between the upper brick and the frame which caused the movement to start 

at the top. This tilting movement is initiated by a combined friction and brick failure in 

the contact between the top of the infill and the bottom of the beams of the reinforced 

concrete frame (Figure 5.46). 

5.5.2.4 Summary 

Figure 5.47a provides a comparison of the in-plane hysteretic curves for BI and BIO 

tests. The curves show that the infilled frames generate horizontal forces that are almost 

the same (BI: 240 kN, BIO: 255 kN), but at different levels of interstorey drift (BI: 1.5 

%, BIO: 0.65 %). In contrast, the maximum drifts are significantly different (BI: 2.1 %, 

BIO: 1.0%). According to this, the maximum loads are achieved more rapidly in the 

case of combined loads and the deformation capacity decrease by a factor of 

approximately 2. Also, the loss of resistance in the post peak range is more pronounced 

for Test BIO than for Test BI. 

  
a) b) 

Figure 5.47 a) Comparison of hysteretic curves and envelopes for in-plane loading of the Test 

BI and BIO and b) force-displacement curves for out-of-plane loading for the Tests BO, BI and 

BIO 

The comparison of the out-of-plane force-deformation curves in Figure 5.47b also 

illustrates severe differences. The BO test exhibits an extremely high load capacity of 

24 kN/m
2 

for a wall supported on three sides and subjected to the pure out-of-plane 

load. In contrast, the load capacity drops to 3–5 kN/m
2
 when the in- and out-of-plane 

loads are applied sequentially (Test BI) or in combination (Test BIO). This corresponds 

to a reduction by a factor of 5–8 although the infill panels in the BI and BIO tests were 

supported on four sides. 
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Figure 5.48 presents pairs of values of the interstorey drift and the out-of-plane load 

from experiments on traditionally infilled frames. The resulting trend line of the 

interaction curve is convex, which shows significant interaction of in- and out-of-plane 

loading. This illustrates the importance of taking the interaction between the two load 

directions into consideration, when determining the load and deformation capacities of 

infilled frames. The interaction curve presents the results of the tested specimens and 

cannot be directly transferred to other frame dispositions. 

 

Figure 5.48 Interaction diagram with the trend line based on test results 

Comparison of the results of the tests on the RC frames filled with highly thermally-

insulating bricks have illustrated that the load bearing and deformation capacities are 

highly reduced in the case of sequentially or simultaneously applied in- and out-of-

plane load. The results show that these capacities are dependent on the existing contact 

between the infill and the frame. The contact is particularly important at the connection 

of the infill with the upper frame beam as the out-of-plane loads are primarily accepted 

in a vertical direction via the arching effect. A basic requirement for this is the existence 

of normal forces which are due to the support by the frame in its plane. The infill 

masonry, thus, is practically prestressed by the compression forces and will behave 

stiffer. Hence, it may reach the ultimate resistance at lower values of interstorey drift. 

Furthermore, the eccentric position of the resulting normal forces might have an effect 

on the capacity of the masonry infill and thus on the total resistance. Also, gap 

formations may even occur during construction as a result of shrinkage effects, poor 

execution or settling effects of the mortar when dealing with bricks with a high 

percentage of voids. These effects reduce the out-of-plane load capacity. The contact 

between frame and infill can also be damaged by the cyclic movement of the frame that 

occurs during sequential and combined loading. Figure 5.49 shows displacements of 
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measurement point 2018 on infill and 1006 on the frame (Figure 5.13). These two 

points are in vertical alignment, therefore it can be seen that displacements of the frame 

are 4-10 mm bigger than displacements of infill wall. This definitively produced 

damage of mortar connection. 

A specific situation occurs when the infill is subjected to a combined in- and out-of-

plane load. In this case, the boundary conditions for the formation of the arching effect 

change due to the in-plane frame deformations. Figure 5.50a shows the situation for a 

pure out-of-plane loading with the formation of a stable arching effect and the 

compression points between the frame beams and the infill. Figure 5.50b illustrates the 

deformed reinforced concrete frame in which the struts can no longer form vertically 

due to the detachment between the frame and infill. This may lead to a reduction of 

contact zone and normal force and the infill will fail earlier. The BI and BIO tests 

showed that, in such cases, it is more likely that the wall will experience a tilting 

movement in the out-of-plane direction that corresponds to a rigid body movement. 

 
Figure 5.49 Displacement of measurement points 1006 and 2018 in the in-plane direction during 

the Test BI 

Clearly, the combination of in-plane load, which leads to the loss of mortar connection 

between frame and infill wall, with the out-of-plane inertial load lead to the huge 

reduction of the deformation capacity, making this kind of connection unreliable for use. 

As Paulay and Pristley (1992) stated, these gaps and/or damage in panel caused by in-

plane stresses will cause that membrane action in out-of-plane direction won‘t develop. 

Considering this, they concluded that unreinforced infill walls should not be considered 

as satisfactory element of structure. Therefore, it can be concluded that RC frames filled 

with hollow masonry blocks, traditionally connected to the frame, are not safe to be 
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used, under simultaneous earthquake load, without additional measures. 

 
a) b) 

Figure 5.50 a) Infill with arching effect and b) tilting of the wall in case of a gap  

5.5.3 Infilled RC frame with the IMES system 

5.5.3.1 Test CO 

Specimens C present infilled RC frame with the applied Infill Masonry Enclosure 

system (IMES), where masonry infill wall is decoupled from the RC frame by 

elastomers and restrained for out-of-plane loads with anchors. Detailed description of 

the system is given in Chapter 3. As described in Figure 5.51 and Table 5.7 out-of-plane 

loads are applied in six cycles. Amplitudes of the following cycles were increased until 

failure of the wall. As already described, vertical forces of 200 kN have been applied by 

each vertical cylinders at the start of the tests. This value has been force controlled and 

kept constant over the duration of the tests. 

The behaviour of the test specimens can be illustrated most effectively by force-

displacement diagrams using the sum of all 10 force transducers versus the measured 

deflection in the center of the wall using displacement transducer LVDT W15 (Figure 

5.15). 
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Stage 
Load 

[kN/m
2
] 

1 4.64 

2 6.50 

3 8.14 

4 10.10 

5 11.00 

6 10.57 
 

Figure 5.51 Load protocol for out-of-plane loading of the Test CO 
Table 5.7 Out-of-plane 

load of the Test CO 

The masonry infill with the system IMES is able to activate a maximal resistance 

perpendicular to the wall plane of about 77 kN according to Figure 5.52. This 

corresponds to approximately 11 kN/m² of surface pressure load. The pertinent 

deflection at wall center amounts to approx. 27 mm, from which 17 mm are recovered 

after the last unloading. Specimen has experienced small permanent deformations, 

which can be seen on the hysteretic curve (Figure 5.52) where the returning curve 

always goes in the direction of zero displacements in the first three cycles. Then, next 3 

cycles produce 2 mm of permanent displacement at the centre of the wall, while only 

the last cycle produces high increase of permanent displacement (10 mm). 

 
Figure 5.52 Force-displacement curve for the out-of-plane loading of the Test CO 

Until reaching a force of 57 kN, the stiffness is high and almost constant. The 

subsequent sudden drop of about 5 kN can be attributed to reaching the flexural strength 

in direction parallel to the bed joint followed by opening of the bed joint in the middle 
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height of the wall (Figure 5.54). The following increase of the resistance continues until 

about 18 mm, after this point there is an increase of displacement without increase of 

load until 25mm when decrease of resistance started to be significant. 

  
a) b) 

Figure 5.53 Side view of the wall deformation in the out-of-plane direction a) at the 3
rd

 cycle 

and b) at the end of the 6
th
 load cycle 

 

 

 

a) b) 

Figure 5.54 a) Failure pattern and b) gaping of bed joint in the wall at the end of Test CO 

For the first out-of-plane load cycles highest displacement was at the top, probably 

because of elastic behaviour of elastomer. However, these displacements were too small 

(less than 2 mm), and can therefore be neglected. From the 3
rd

 cycle, (around 8kN/m2) 

the displacement in the middle started to increase and the formation of the arching 

mechanism can be seen (Figure 5.53a). Until the end of the test (27mm-11 kN/m2) 

displacements in the middle height of the wall stayed dominant. As can be seen from 

Figure 5.53b, the deflections increase towards the free edge (as expected because of the 
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gap on the right side). It should be noticed that the displacements at the top and the 

bottom of infill wall were increasing with each cycle of out-of-plane loading. This again 

confirms that reliable support for out-of-plane loading should be applied also at the top 

and bottom of an infill wall. 

5.5.3.2 Test CI 

As described in Figure 5.55, specimen was first loaded just in-plane up to a level of 

2.4% of drift, then just out-of-plane up to a certain level of out-of-plane displacement 

and then again just in-plane up to the limit of actuator (Table 5.8), since the ultimate 

limit wasn‘t reached. 

 

Stage 
Drift 

[%] 
Stage 

Drift 

[%] 

1 0.018 12 1.00 

2 0.036 13 1.25 

3 0.055 14 1.50 

4 0.073 15 1.80 

5 0.10 16 2.10 

6 0.20 17 2.40 

7 0.30 18 2.70 

8 0.40 19 3.00 

9 0.50 20 3.25 

10 0.60 21 3.50 

11 0.80  
 

Figure 5.55 Load protocol for sequential in- and out-of-plane 

loading of the Test CI 
Table 5.8 In-plane drifts of 

the Test CI 

At first part of the in-plane cyclic load up to 2.4% of drift, specimen acted almost 

linearly as it can be seen on Figure 5.56. Starting with a drift angle of 0.6 %, it can be 

seen that some of the bed joints slightly open. However, the hysteresis does not show a 

temporary decrease of resistance. Hence, the influence on the stiffness appears to be 

marginal. On the hysteresis (Figure 5.56) three slopes of the envelope curve could be 

noticed. First slope until 35mm (1.2% of drift) and then second (slightly lower slope) 

from 35-50mm (1.2-1.78% of drift) and then from 50 mm (1.78% of drift) third slope of 

the envelope curve with the increased stiffness. In the first part just frame and elastomer 

are activated, since elastomer a much lower stiffness in comparison with surrounding 

frame and infill wall. Second (lower) slope of the curve is probably related to the 

hyperelastic behaviour of elastomer, where elastomer has lower stiffness at this 

compression stage. After this point, the stiffness of elastomer rises as it becomes more 
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compressed, which leads to the full activation of the infill and appearance of the 

stairstep cracks in infill diagonal direction (Figure 5.58b). Force at this point is around 

200 kN and drift is 2.4%. 

 

Figure 5.56 Hysteretic curve end envelope for the first loading phase of the Test CI 

 

  
a) b) 

Figure 5.57 a) Gapping and b) highly compressed elastomers at corners 

 

  
a) b) 

Figure 5.58 a) Formation of stairstep cracks and b) cracks in the blocks at 2.1% of drift 
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At 41.25 mm of displacement (1.5% of drift) gap in upper corners of the specimen 

between elastomer and infill wall can be seen. Figure 5.57 shows gapping on one side 

and highly compressed elastomer on the other side at 2.4% of drift. This confirms that 

the deformation of the frame is accepted by the softness of the elastomer. At 57.75 mm 

of displacement (2.1% of drift) cracks appeared in some blocks (Figure 5.58b). 

 

Figure 5.59 Force-displacement curve for the out-of-plane loading of the Test CI 

 

  
a) b) 

Figure 5.60 Deformation of the wall in the out-of-plane direction under maximum out-of-plane 

load of 6 kN/m
2
: a) top view and b) side view  

From the test results it can be seen that the masonry infill is able to carry an out-of-

plane total load of 42 kN (corresponding to a constant distributed loading of about 6 

kN/m²) while deforming to 31 mm (Figure 5.59). The restoring force increases steadily 

together with the deformation in the center of the wall, but upon unloading, a significant 

part of the deformation is reversible. The residual deformation after the last loading 

cycle amounts to only 8 mm. The deformations from the preceding loading cycles are 

not shown in Figure 5.59. Therefore, the hysteresis curve starts at 4 mm, which has 

displacement in the center of the wall after first in-plane load (IP1), while displacements 
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of all other points, measured with optical measurement system, are so small that they 

can be neglected. From the out-of-plane displacements of the wall (Figure 5.60), it can 

be observed that arching mechanism is activated in both directions. This is confirmed 

with the distribution of the cracks in the wall (Figure 5.61). Maximum displacements 

are in the center of the wall, and they are increasing from the periphery to the inside. 

There is small movement of the top of the wall in the out-of-plane direction but these 

displacement values are negligible, and they start to appear at the level of load of 30 kN 

(4.3 kN/m
2
) and continue to increase after that. Therefore, this shows the need to put 

some anchorages or any other measure for prevention of out-of-plane deformation, at 

the connection of the top of the infill wall and the upper beam. 

 

Figure 5.61 Cracks in the wall under maximum out-of-plane load of 6 kN/m
2
 

The infilled frame with the IMES system was able to withstand a maximum in-plane 

shear force of 210 kN at a pertinent drift of 2.75 % (Figure 5.62). At the beginning of 

the second in-plane loading phase, in-plane force increased for the first cycle and started 

to decrease afterwards, but not rapidly (around 10 kN=5% per amplitude cycle). For the 

maximum applied drift angle of 3.5 % the resistance still amounts to about 160 kN. 

After reaching a drift angle of about 3.0 %, several stairstep cracks appear (Figure 

5.63a) and noise from falling pieces of brick fragments was present. Out-of-plane 

displacement also started to rise and that was highly pronounced in the next amplitude 

causing a rapid decrease of resistance (Figure 5.62). Brick failure first occurs at the 

corners followed by the failure of the bricks at the bottom as well (Figure 5.63a).Out-of-

plane displacements continued to increase substantially until the end of the test, causing 

the displacement at the bottom of the wall in the middle of the width of the wall to 
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become the highest. The damage concentrates on the backside of the wall, while the 

front side shows much less damage (Figure 5.63b). 

Considering the larger amplitude of interstorey drift, it can be assumed that the 

resistance of the reinforced concrete frame has been fully activated, showing cracks 

similar to the test A. The surrounding elastomers absorbed a part of the horizontal 

displacements and, thus, lead to much less damage of the masonry infill wall. The load 

versus deformation behaviour in the ascending branch, hence, can be regarded as a 

combination of the frame, the elastomers and the masonry infill. In the descending 

branch, however, the behaviour is mainly affected by damage of the masonry infill.  

 

Figure 5.62 Hysteretic curve and envelope for the first and second in-plane loading phase of the 

Test CI 

 

  
a) b) 

Figure 5.63 a) Cracks in the wall and b) damage of the backside of the wall at the end of Test CI 
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5.5.3.3 Test CIO 

For the CIO test, the same load protocol was applied as for the BIO test, with the only 

difference being that out-of-plane loading, due to the considerable deflection in out-of-

plane direction, has been earlier (at drift=0.5%) reduced from 5 kN/m² to 2.5 kN/m². 

Load protocol and in-plane drift amplitudes are shown in Figure 5.64 as well as in Table 

5.9. 

 

Stage Drift [%] 

1 0.018 

2 0.036 

3 0.055 

4 0.073 

5 0.10 

6 0.20 

7 0.30 

8 0.40 

9 0.50 

10 0.60 

11 0.80 

12 1.00 
 

Figure 5.64 Load protocol for simultaneous in- and out-of-plane 

loading of the Test CIO 

Table 5.9 In-plane drifts 

of the Test CIO 

The test specimen CIO, prepared according to the principles explained in section 3.2.1 

was able to activate a maximum in-plane resistance of about 130 kN under the 

simultaneous in- and out-of-plane loading when reaching a drift angle of about 0.90 % 

(Figure 5.65a). At the beginning steady increase of resistance occurs, but soon after 

having reached a drift angle of about 0.3 % stiffness started to decrease, continuing until 

the end of the test (drift 1.0%). Although cycles until this point did not lead to a 

decrease of the in-plane resistance, extreme out-of-plane displacements (Figure 5.66b) 

have been the reason for the decision to stop the test.  

It is important to mention that first out-of-plane load of around 5kN/m
2
 was applied, 

before starting with in-plane cycles. At this point out-of-plane displacements were 

negligible. From 0.1% (2.75 mm) of in-plane drift notable out-of-plane displacements 

(around 5-7 mm) started to appear. With the next amplitudes, out-of-plane 

displacements at the bottom suddenly started to be higher than at the top and continued 

to increase especially in the left side of the wall (Figure 5.66a). This caused the wall to 

start to move out-of-plane at 0.3% of drift, because the arching effect was reduced.  
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a) b) 

Figure 5.65 a) Hysteretic curve end envelope for the in-plane loading and b) force-displacement 

curve for out-of-plane loading  

 

  
a) b) 

Figure 5.66 Side view of the wall deformation in the out-of-plane direction a) at 0.3% of drift 

and b) at the end of the CIO test 

After passing an interstorey drift of 0.3 %, the deflections in out-of-plane direction 

increased significantly. The first cracks in bed-joints but also brick at the right bottom 

corner (Figure 5.67a) appeared at the next cycle (0.4%=11 mm). With this, pressure in 

the pneumatic airbags decreased and with recovering the pressure to the value of 

5kN/m
2
 wall continued to move out-of-plane. In-plane cycles of 0.5% of drift pushed 

the infill even more, which causes an increase of the airbags volume and, thus, a 

reduction of the pressure load from the airbags. After this point, next in-plane cycles 

were performed with 2.5 kN/m
2
 of out-of-plane pressure, but with each in-plane cycle 

out-of-plane movement increased rapidly (Figure 5.65b) causing a step-by-step failure 

of the upper connection bricks too (Figure 5.67b). It is obvious that the remaining edge 

brick units along the column as well as along the bottom beam fail due to excessive 

shear load and overcome of tensile splitting capacity of the brick. The deformations of 

the masonry infill look like a rigid body movement according to the Figure 5.66. Both 

top and especially bottom of infill wall have high out-of-plane displacements. Although 
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the infill wall does not show any cracks in the inner area and looks more or less intact 

(Figure 5.68a), additional out-of-plane loading could not be accepted, since connection 

of the wall to the frame is destroyed (Figure 5.68b). 

  
a) b) 

Figure 5.67 a) Complete failure of the brick in right bottom corner and b) failure of the bricks 

on connection with the right column  

 

  
a) b) 

Figure 5.68 a) Front view and b) damage of the masonry wall on the backside at the end of the 

test CIO 

5.5.3.4 Summary 

Figure 5.69a provides a comparison of the in-plane hysteretic curves for CI and CIO 

tests. It can be seen that specimen CIO shows a slightly higher initial stiffness. Similar 

as for the traditionally infilled frames (specimens B), the higher stiffness might be 

caused by the prestressing effect due to the arch action from out-of-plane loading. With 
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increasing interstorey drift, it loses stiffness and reaches a similar resistance as test 

specimen CI at the point of maximum applied drift. The curves show that the infilled 

frames generated maximal horizontal forces that are quite different (CI: 200 kN, 

CIO: 130 kN), at also different levels of interstorey drift (CI: 2.4 %, CIO: 0.90 %). It is 

important to note that the maximum drifts are significantly different (CI: 3.5 %, CIO: 

1.0 %). According to this, the deformation capacity of the CIO specimen decreased by a 

factor of around 3.9. 

 
 

a) b) 

Figure 5.69 a) Comparison of hysteretic curves and envelopes for in-plane loading of the Test 

CI and CIO and b) force-displacement curves for out-of-plane loading for the Tests BO, BI and 

BIO 

The comparison of the out-of-plane force-deformation curves in Figure 5.69b also 

illustrates severe differences. When loading the system in out-of-plane direction only, 

the IMES system has a capacity of about 11 kN/m² of uniformly distributed loading. 

After the pre-damage due to loading in-plane, the out-of-plane resistance is reduced to 

about one half (about 6 kN/m²) although a two way load bearing to all four edges still 

has been possible. In Figure 5.69b, it can be seen that displacement reached at the 

maximum strength in a case of CO specimen is almost two times smaller than for CIO 

specimen. Also specimen CIO experienced permanent displacement from the very 

beginning of application of out-of-plane load, while CO specimen always had elastic 

displacements until the last cycle of load. 

Reason for the reduction of out-of-plane capacity in a case of specimen CI, were the 

preceding in-plane loading cycles, which reached high level of in-plane drift and which 

caused the tensile strength of the masonry to exceed in some areas. This became visible 

by the opening of the bed-joints, which in turn lead to a reduction of bending stiffness 

of the masonry infill and, hence, to larger out-of-plane deformations. 
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High reduction of in-plane deformation capacity in a case of CIO test is a strong 

indicator of unfavourable effect of simultaneous in- and out-of-plane load. Decrease of 

the reached drift in comparison to CI specimen undoubtedly shows that this effect has to 

be taken into account. It is important to point out that at the beginning of CIO test, first 

out-of-plane load of 5 kN/m2 was applied and the specimen was completely intact, but 

as soon as in-plane displacement reached 0.3% of drift significant cracks in wall started 

to appear. Although the system with anchors (IMES) was helpful in increasing capacity 

for just in-plane (Test CI) and out-of-plane load (Test CO), when simultaneous load was 

applied specimen reached almost the same in-plane displacement capacity as traditional 

system (specimen BIO). This happened because of the unfavourable situation that 

appears under simultaneous in- and out-of-plane loading, as explained for the traditional 

system (section 5.5.2.4). The only difference in this situation is that anchors of the 

IMES system take out-of-plane loading and keep the connection between frame and 

infill. However, due to the gapping and reduction of contact areas, load concentrates at 

the compressed corners which result in high stress concentration to the anchor brick 

connection. Also, during this load combination not all the anchors are activated, so the 

out-of-plane load is being carried by the smaller number of anchors, thus the load is 

more concentrated. Additionally, hollow brick used for infill walls is highly brittle and 

its splitting and shear capacity are so low that for this brick, which is commonly used in 

modern buildings, different type of connection with the frame has to be used. 

5.5.4 Infilled RC frame with the INODIS system – Test DIO 

In contrast to the above-mentioned tests A, B and C, for the INODIS system all three 

load types (in-plane, out-of-plane and simultaneous in- and out-of-plane) are 

investigated on one specimen (DIO). As described before, vertical forces of 200 kN 

have been applied on each column at the start of the test. This value has been force 

controlled and kept constant over the duration of the tests. An overview of the total test 

is given in Figure 5.70. The load protocol can be divided into the five phases as 

described in Table 5.10, while amplitude steps for in-plane loading are depicted in Table 

5.11. 
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Table 5.10 Load phases in the loading protocol of the DIO test 

Phase 1 Increasing in-plane sinusoidal load up to a maximum interstorey drift of  1.25% (34.375 mm). 

Phase 2 Constant out-of-plane load of 5kN/m
2 
 (35 kN). 

Phase 3 
Simultaneous load: Increasing in-plane sinusoidal load up to a maximum interstorey drift of 

1.0% (27.5 mm) and a constant out-of-plane load of 1.5 kN/m
2 
(10.5 kN). 

Phase 4 
Simultaneous load: Increasing in-plane sinusoidal load up to a maximum interstorey drift of 

1.8% (49.5 mm) and a variable out-of-plane load varying from 2.5 to 5.0 kN/m
2
 (10.5 kN). 

Phase 5 

Simultaneous: Increasing in-plane sinusoidal load starting with a interstorey drift of  1.0% 

(27.5 mm) up to a maximum interstorey drift of  3.25% (89.375 mm). The out-of-plane load 

starts at an initial of 6.25 kN/m
2
 (43.63 kN) and is then reduced to 1.5 kN/m

2 
(10.5 kN). 

 

Table 5.11 In-plane drifts of the Test DIO 

Stage 
Phase 1 

Drift [%] 

Phase 3 

Drift [%] 

Phase 4 

Drift [%] 

Phase 5 

Drift [%] 

1 0.018 0.018 0.018 1.00 

2 0.036 0.036 0.036 1.00 

3 0.055 0.055 0.055 1.25 

4 0.073 0.073 0.073 1.50 

5 0.10 0.10 0.10 1.80 

6 0.20 0.20 0.20 2.10 

7 0.30 0.30 0.30 2.40 

8 0.40 0.40 0.40 2.70 

9 0.50 0.50 0.50 3.00 

10 0.60 0.60 0.60 3.25 

11 0.80 0.80 0.80 - 

12 1.00 1.00 0.60 - 

13 1.25 - 0.80 - 

14 - - 1.00 - 

15 - - 1.25 - 

16 - - 1.00 - 

17 - - 1.25 - 

18 - - 1.50 - 

19 - - 1.80 - 

20 - - 1.50 - 

21 - - 1.80 - 

22 - - - - 
 

 

Figure 5.70 Load protocol of the Test DIO 
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5.5.4.1 Phase 1 – In-plane load 

Under pure in-plane loading up to the drift of 1.25 % no damage and cracks appear in 

the bricks and bed joints. The masonry infill remained completely intact while the test 

was carried out. Out-of-plane displacements are negligible. The hysteresis curves and 

the envelope curve of the first loading phase are shown in Figure 5.71, where it can be 

seen that the resistance increases harmoniously and steadily up to the maximum force of 

125 kN which corresponds to 1.25% of drift. Hysteretic loops present energy that is 

spent on viscoelastic behaviour of elastomer. 

 

Figure 5.71 Hysteresis curve and the envelope curve for the phase 1 of the Test DIO 

5.5.4.2 Phase 2 – Out-of-plane load 

In the phase 2 of the test, out-of-plane load has been increased until reaching 5 kN/m² 

(35 kN). The corresponding deformation increase is approximately 5.8 mm (6.2 mm - 

0.4 mm) in the center of the infill (Figure 5.72). The deformations from the preceding 

loading cycles are not shown, so the hysteresis curve starts at 0.9 mm. The deformation 

drop at the start of the test occurred during the application of the vertical loads. The 

linear hysteresis up to the maximum indicates a fully intact masonry infill, which is also 

confirmed by visual observations. During the load removal, a difference in the 

hysteresis can be seen, which can be explained by the viscoelastic properties of the U-

shaped elastomer connection. The residual deformation after the test is approximately 

1.8 mm (2.2 mm - 0.4 mm). At the end of this phase, the masonry infill was apparently 

intact. Figure 5.73 shows displacements of the wall measured with the optical 

measurement system. The maximum deformations of about 8 mm occur at the top of the 

wall due to the low stiffness of the elastomer strips. The maximum deformations on the 
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base of the wall are about half as large.  Figure 5.73b shows that after removing the 

load, the system returns to its original position and only negligible deformations remain. 

 

Figure 5.72 Force-displacement curve for phase 2 of the Test DIO 

 

  
a) b) 

Figure 5.73 Side view of the wall deformation in the out-of-plane direction a) at the 5 kN/m
2
 of 

out-of-plane load and b) at the end of the phase 2 of the DIO test 

5.5.4.3 Phase 3 – Simultaneous loading 

Phase 3 was introduced as a testing phase which represents simultaneous load 

combination derived from the codes (Section 4.3.3.5 of Eurocode 8). This combination 

is in accordance with recommendation for combination of the effects of the components 

of the seismic action (Section 4.3.3.5 of Eurocode 8), where it is stated that 30% of a 

force in one direction should be applied together with the horizontal force in 

perpendicular direction. Therefore, first out-of-plane surface load of 1.5 kN/m
2
 (10.5 

kN) was applied and then in-plane displacement increasing from 0 to 1% of drift. Linear 

behaviour of the specimen can be seen Figure 5.74, which presents in-plane hysteresis 

of phase 3. Hysteretic loops present energy that is spent on viscoelastic behaviour of 

elastomer. This combination of out-of-plane and in-plane load produced very small out-
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of-plane displacements (less than 2 mm) causing no damage of the specimen at all. 

 

Figure 5.74 Hysteresis curve and the envelope curve for the phase 3 of the Test DIO 

5.5.4.4 Phase 4 – Simultaneous loading 

Reason for Phase 4 of the test was the same as Phase 3, combined application of two 

perpendicular loads. In this case, variable out-of-plane load varying from 2.5 to 5.0 

kN/m
2
 was applied together with increasing in-plane load. First, out-of-plane surface 

load of 5 kN/m2 (34.5 kN) was applied and then in-plane displacement rising from 0-

0.5% of drift. Afterwards, simultaneous application of in-plane displacement was 

increasing from 0.6% up to 1.8% (49.5 mm) and out-of-plane load changing each two 

amplitudes of the in-plane displacement. This means that each two amplitudes of in-

plane displacements were first applied together with 2.5 kN/m
2 

(17.5 kN) of out-of-

plane load and then the same two in-plane amplitudes were repeated together with 5 

kN/m
2
 (34.5 kN) of out-of-plane load (Figure 5.70). The reason to stop at 1.8% of in-

plane drift was because of the need to replace testing instrumentation, since the 

construction of the load cells was designed for a maximum drift angle of 1.8 %. 

Until in-plane drift of 1.8 % specimen behaved linearly (Figure 5.75), due to the elastic 

deformations of U-shaped elastomer connection. During the first cycle of in-plane drift 

of 1.8 % in combination with an out-of-plane loading of 5.0 kN/m², together with the 

first sound of cracking, a horizontal crack was noticed in the third bed joint from the 

bottom of infill (Figure 5.77a). During the third cycle, furthermore, the vertical crack 

arose on the right side of the wall, through the units (Figure 5.77b). From this point 

onwards the out-of-plane deformation started to increase (Figure 5.76). Until this point 

displacements of the wall were less than 10 mm. After the load is removed, some of the 
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deformations caused by the formation of cracks remain in the wall, but the deformations 

in the hyperelastic elastomers reverse for the most of the wall (Figure 5.76). 

 

Figure 5.75 Hysteresis curve and the envelope curve for the phase 4 of the Test DIO 

 

  
a) b) 

Figure 5.76 a) Top view of the deformation in the out-of-plane direction for the horizontal sec-

tion in the middle height of the wall and b) side view of the deformation in the out-of-plane 

direction for the vertical section in the middle length of the wall 

Figure 5.77b shows the damage pattern with the horizontal crack above the third row of 

bricks and the vertical crack along the third row of bricks from the right. Formation of 

these cracks is caused by the combined stress and strain of in-plane and out-of-plane 

loading. Both cracks appear when the frame deformed towards the right. Figure 5.78 

shows the resulting load situation with the diagonal compression strut and the areas of 

the frame that are detached. The first crack in the horizontal direction arose due to the 

reduction of the clamping effect at the base of the wall as a result of the frame 

deformation on the unloaded side of the infill. This leads to an increase in the bending 

stresses from out-of-plane load until the flexural strength of the masonry is exceeded. In 

the next load cycle, the vertical crack in wall appears because the clamping effect is 
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reduced in the unloaded upper right corner of the frame and again the bending stresses 

due to the out-of-plane load exceeds the flexural strength of the masonry. The wall does 

not move out-of-plane due to the circumferential support provided by the elastomers. In 

spite of the crack formation, the wall stays stable in the frame. 

  
a) b) 

Figure 5.77 a) Appearance of the first crack in the wall and b) cracks in the wall at the end of 

phase 4  

 

 

Figure 5.78 Deformation of the frame with the compressed diagonal, detachment and cracks 

occurred 

During the test, gaping at the upper corners but also at the bottom corners (Figure 5.79) 

appeared, showing rigid body rotation of the whole infill wall due to the deformation of 

the elastomers and not the wall itself. The gap formation in the unloaded corners of the 

frame (Figure 5.78) was measured continuously during of the test using LVDTs (Figure 

5.19) and resulted in maximum values for the fourth loading phase of 17 mm for the 
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upper column section, 6 mm for the lower column section, 15 mm for the frame top 

beam, and 10 mm for the uplift from the base of the frame. The values specified are 

smaller than the maximum permissible displacements of 30 mm for the column section, 

25 mm for the frame top beam, and 25 mm for the base of the wall. 

  
a) b) 

Figure 5.79 a) Gap formation in the corner of the frame and b) uplift of the wall base  

5.5.4.5 Phase 5 – Simultaneous loading 

At the end of phase 4, the limit for possibility to apply in-plane and out-of-plane load at 

the same time and to measure the out-of-plane force with load cells was reached. 

Therefore, it was decided to stop with the experiment and to replace the load cells by 

threaded rods. Before this was done it was decided to test the specimen under even 

higher out-of-plane load of 6.25 kN/m
2
 (43.63 kN) in combination with in-plane 

displacement of 27.5 mm, which represents 1.0% of in-plane drift. First out-of-plane 

surface load was applied and then two cycles of in-plane displacement up to the 1.0% of 

drift. Under this loading combination, specimen behaved linearly and showed that it still 

had high strength and deformation capacity, although at the end of phase 4, specimen 

had cracks in bed joints and a couple of units. This can be assigned to the U-shaped 

connection of the INODIS system, which with hyperelastic behaviour of elastomers 

provides deformation capability and postpones the start of damage under in-plane 

loading. Linear behaviour of specimen confirms that up until higher drift ratios most of 

the deformations of the frame are transferred to the elastomers. 

Due to the cracks developed at the end of phase 4 out-of-plane deformability of 

specimen is increased, respectively out-of-plane strength of the wall is decreased 

causing higher displacements of the wall (Figure 5.80), but still having reversible 

displacements, due to the elastomer connection. 
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Figure 5.80 Force-displacement curve for simultaneous load of 6.25 kN/m
2
 and 1% of in-plane 

dirft 

When the load cells were replaced by threaded rods, an out-of-plane surface loading of 

1.5 kN/m² was applied simultaneously with the in-plane drift increasing from 1.0% until 

3.25%. Thus, the real out-of-plane loading can only be determined via the air pressure 

and the surface of the airbags. 

Figure 5.81 shows the hysteresis curves for the fifth loading phase up to the maximum 

interstorey drift of 3.25% together with the envelope curve. The hystereses are also 

stable and wide in this high range of in-plane drifts. Maximum in-plane resistance of 

150 kN was reached at an interstorey drift angle of 2.2 %, followed by the slow fall of 

the in-plane resistance to 135 kN at the maximum drift angle of 3.25 %. 

 

Figure 5.81 Hysteresis curve and the envelope curve for the phase 5 of the Test DIO 

Figure 5.82 shows the damage pattern after completion of the fifth load phase. In 

general, the crack paths match those detected in the damage pattern of the fourth phase, 

but in this case they are much more evident. It should be pointed out, that even after 

high in-plane displacements were applied together with the various combinations with 
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out-of-plane load, infill wall was highly damaged but it didn‘t fall out-of-plane, and 

instead remained stable, which is very important from the side of safety. Similar damage 

pattern can be seen on the backside of the wall (Figure 5.82b), where the bricks are 

damaged up and down from the bed joint which was sliding and also in vertical 

direction in the right part of the wall. It is very important to note that glued connection 

of U-shaped elastomer and bricks remained intact until the very end of the test (Figure 

5.83), which shows that this kind of connection is reliable. This is also confirmed when 

the wall was demolished after the test, in order to investigate the parts of the INODIS 

system in a more detailed manner. It is interesting to mention that even when the wall 

was already damaged during the test, it was very difficult to completely demolish it by 

pushing it out-of-plane with the forklift maschine. Figure 5.84a shows parts of the 

bricks still remaining glued to the elastomer after demolishing the wall, even causing 

the splitting the bricks and tearing the elastomers, but not losing glued connection. Also 

layers of elastomers remained glued (Figure 5.84b). This shows that glued connection of 

elastomers and brick is stable and reliable. Also plastic profiles easily kept intact. Also, 

RC frame was highly damaged with a lot of cracks (Figure 5.85), due to high level of 

drifts reached. This shows that the INODIS system transferred the attribute of critical 

element from infill wall to the frame. 

  
a) b) 

Figure 5.82 a) Damage of the front side and b) of the backside of the wall at the end of the DIO 

test 
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Figure 5.83 Intact glued connection between the U-shaped elastomers and bricks at the end of 

test 

 

  
a) b) 

Figure 5.84 a) Strong glued connection between the U-shaped elastomers and bricks and b) 

between two layers of elastomer 

 

    

Figure 5.85 Cracked frame at the end of the test 

5.5.4.6 Summary 

Figure 5.86a presents in-plane hysteresis, while Figure 5.86b presents out-of-plane 

hysteresis of all the phases of the test on the INODIS system submitted on the specimen 
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DIO. Taking into account the total test, the INODIS system is able to withstand a 

maximum in-plane shear of 155 kN at 1.8 % of drift. The resistance increases 

harmoniously and steadily up to the maximum. During the test, no damage of the 

masonry infill was observed until high levels of in-plane drifts. The force of nearly 180 

kN in the first cycle of in-plane load at the drift of 1.8% is neglected (it is probably a 

wrong record of the equipment), due to the fact that the maximum horizontal force of 

the second and third cycles corresponds to the maximum force in negative direction. For 

the maximum applied drift angle of 3.25 % the resistance still amounts to about 140 kN. 

In-plane hysteretic curve shows a high level of drift reached until the first crack in infill 

(Damage Limit State-DLS) and until failure of infill wall (Ultimate Limit State-ULS). 

Also wide hysteretic loops show that the high amount of energy is dissipated. This is 

possible due to the viscoelastic behaviour of elastomers used for the INODIS system. 

  
a) b) 

Figure 5.86 a) Hysteretic curve and envelope for the in-plane loading and b) force-displacement 

curve for out-of-plane loading of the Test DIO 

 

  
a) b) 

Figure 5.87 a) Comparison of the in-plane hysteretic curves and b) envelopes for all the phases 

of the Test DIO 

Figure 5.87 shows the in-plane hystereses and envelopes of the System INODIS, 
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subdivided into test phases. It can be seen that all the phases of the test have similar 

initial stiffness. This can be explained with the fact that at the beginning deformation of 

the frame is taken by the elastomers and not transferred to the infill wall. The stiffness 

of the envelope of phase 5 is slightly smaller due to the cracks in the RC frame. On the 

basis of this fact, it can be concluded that the out-of-plane loading has no or only a 

small effect on the in-plane resistance of the DIO specimen. 

Figure 5.86b shows out-of-plane curve for all the phases of the DIO test, where it can be 

seen that higher out-of-plane displacements are related to phase 5 of the DIO test. But 

even at this level of out-of-plane displacements in the center of the wall, connection of 

the infill with the frame through the U-shaped elastomers stayed strong and intact 

(Figure 5.83). This was the reason for the wall to stay stable and not to present the 

danger of falling out. 

Cracks and damage of the RC frame at the end of the DIO test (Figure 5.88) show that 

cracks in frame developed in a similar way as in a bare frame (Figure 5.23), which 

proves the efficiency of the INODIS system in the decoupling of infill wall and frame. 

  

Figure 5.88 Cracks in the frame at the end of the DIO test 

5.5.5 Comparison of the experimental results 

In the following sections, a comparison between the behaviour of infilled frame with the 

INODIS system and traditionally infilled frame and infilled frame with the IMES 

systems is shown for in-plane loading, out-of-plane loading and simultaneous in-plane 

and out-of-plane loading. 
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5.5.5.1 In-plane behavior 

In the following, the behaviour is illustrated by the hysteresis diagrams of the 

experiments as well as with a simplified procedure for the evaluation by using envelope 

curves. Therefore, the corresponding resistance of the infill has been evaluated as the 

difference between the response of the infilled frame and of the corresponding bare 

configuration. Such approach allows a consistent comparison of the experimentally 

obtained infill properties in terms of strength, stiffness and deformation capacity to 

similar results for other masonry typologies. 

First, the behaviour of DIO specimen with the bare frame (Test A) is compared. The 

hysteresis curve and the envelope curve of the first loading phase are shown in Figure 

5.89a. The hysteresis curves are stable and no damage occurs in the infill up to the 

interstorey drift of  1.25%. In addition, the envelope curve of the bare frame (Test A) and 

the load contribution of the infill as the difference of the two envelope curves are 

shown. Difference of the envelope curves is calculated using short code made in 

MATLAB. The small load contribution of 20.6 kN at an interstorey drift of 1.25% 

shows that the infill is only activated to a small degree. 

  
a) b) 

Figure 5.89 a) Hysteresis curves and envelope curves with the comparison to the bare frame 

envelope for the first and b) third loading phase of the Test DIO  

In the third loading phase, a combination of  in-plane  and out-of-plane loads is applied 

simultaneously. Even when subjected to this combined load, the infill remains 

undamaged. Figure 5.89b shows the hysteresis curves for the first and third loading 

phases. A comparison of the curves shows that the influence of the out-of-plane load of 

1.5 kN/m
2
 does not have a large impact. 

The hysteresis curves and the envelope curve of the fourth loading phase are shown in 
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Figure 5.90a. In addition, the envelope curve of the bare frame (Test A) and the load 

contribution of infill as well as the difference of the two envelope curves are shown. 

The small level of load contribution of 30.7 kN at an interstorey drift of 1.5% shows 

that the infill is only activated to a small degree even when subjected to a combined 

loading and for large interstorey drift. 

  
a) b) 

Figure 5.90 a) Hysteresis curves and the envelope curves with the comparison to the bare frame 

envelope for the fourth and b) fifth loading phase of the Test DIO  

Figure 5.90b shows the hysteresis curves for the fifth loading phase up to the maximum 

interstorey drift of 3.25% together with the envelope curve. The hystereses are also 

stable and wide in this high range of in-plane drifts. In addition, the envelope curve of 

the bare frame (Test A) is shown. The frame with the INODIS system and masonry infill 

is able to withstand a 1.3 times higher horizontal force (A: 120 kN, Dio: 155 kN). Also, 

the drift angle at maximum in-plane loading is almost the same (A: 2.0%, Dio: 1.8%). 

In both tests, the restoring force increases steadily until reaching the maximum value. 

After reaching the maximum horizontal force of the test DIO, both hystereses are 

approximately parallel with a distance of about 30 kN. When the curves are compared, 

it can also be noticed that the initial stiffness of the bare frame is matching with the 

initial stiffness with the infilled frame with the INODIS system. Only phase 5 of the 

DIO test has smaller initial stiffness when compared to the bare frame, which is due to 

the repeated and numerous applications of loads beforehand that led to the formation of 

cracks in the frame. Therefore, it can be concluded that damage in the frame started 

sooner than damage in the infill wall, which confirms the successfulness of the 

application of the INODIS system, by transferring the critical criteria for design from 

the infill wall to the frame. As the interstorey drift increases, though, the infill is 

gradually activated. At the end of the fifth loading phase, the load contribution of the 
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infill is 38 kN in the positive loading direction. Even for the whole range of interstorey 

drifts, the envelope curve for the infilled frame is close to the envelope curve of the bare 

frame. Due to this it can be concluded that natural frequencies of the bare frame and 

infilled frame with the INODIS system are almost the same, which presents one of the 

most important benefits of the INODIS system. This makes the design and calculation 

of the RC frame buildings with infill walls more simple, certain and reliable. 

Figure 5.91a shows the comparison of the hysteresis curves for the first loading phase in 

tests BI, CI and DIO up to the interstorey drift of 1.25%. Infilled frame in the first 

loading phase of the CI test was subjected up to the 2.4% of drift, while BI and DIO 

specimens were subjected up to 1.25% of drift. Therefore, for the purpose of 

comparison the part of the CI curves just until 1.25% is going to be shown. It can be 

seen that the infill with the INODIS system has the lowest stiffness and a much lower 

horizontal force of 130 kN arises in comparison to 225 kN for the traditionally infilled 

frame. The hysteresis curves for the DIO test are wide and exhibit a constant stiffness in 

the loading and unloading stages. In the contrast to this, the hysteresis curves for the 

traditional infill (Test BI) are narrower and exhibit a decreasing stiffness. CI specimen 

has similar behaviour and is almost matching the curves of the DIO specimen. 

Figure 5.91b shows the envelope curves of the hystereses for tests A, BI, CI, and DIO 

together with the contribution curves for the BI, CI and DIO tests. The curves show that 

the envelope curves for tests A and DIO are very close to each other and that the load 

supported by the infill is only 26 kN. Contribution curve for CI test is slightly stiffer 

than the curve from DIO test. It is obvious that there is a high difference in initial 

stiffness and continuous and smooth rise of the resistance in a case of DIO and CI 

specimen in contrast to the sudden drops of the load in the case of BI specimen. This 

indicates that the infill is only activated to a small degree due to the deformation 

capability of the elastomers. 

Also BI specimen showed relatively strong resistance of the infill, which led to the more 

shear cracks in the RC columns, caused by the activation of the infill strut. This proved 

that possibility for occurrence of shear failure mechanisms is high in the case of strong 

infills and it should be prevented through adequate measures such as decoupling 

through elastomers, which solved this problem in the case of DIO and CI specimen. 
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a) b) 

Figure 5.91 a) Hysteresis curves and b) envelopes with the comparison to the bare frame enve-

lope for the first loading phase of the Test BI, CI and DIO up to 1.25% of drift 

5.5.5.2 Out-of-plane behaviour 

Since the INODIS system has not been tested up to the limits under out-of-plane load 

and DIO specimen is supported on four sides, comparison of the out-of-plane behavior 

of the INODIS system with the traditional system (Test BO) and the IMES system (Test 

CO) is not possible. However, comparison of out-of-plane behaviour after previous in-

plane behaviour is possible and for BI, CI and DIO test will be presented here. For BI 

and BIO test, out-of-plane load is applied after previous in-plane drift of 1.25%, while 

in CI test previous drift level was 2.4%. These experiments give valuable information 

about the influence of prior in-plane loading on out-of-plane capacity. 

  
a) b) 

Figure 5.92 a) Out-of-plane force-displacement curves and b) side view of the out-of-plane de-

formations for the maximum loads for the second loading phase of the BI, CI and DIO test 

Figure 5.92a shows the force-displacement curves of the out-of-plane deformations at 

the centre of the wall for the second loading phase of the BI, CI and DIO test. The load 

in BI and CI test was applied in 8 cycles and in one cycle in the DIO test. In the BI and 

CI test, the ultimate load was reached in the eighth cycle at a value of 3 kN/m
2
 and 6 
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kN/m
2
, respectively. Both specimens experienced high out-of-plane deformations in 

comparison to the DIO specimen with no cracks formed during the out-of-plane load of 

5 kN/m
2
. 

Displacements perpendicular to the wall in the case of CI specimen were mostly in 

elastic range without reaching high values of residual displacement (BI: 24 mm / CI: 8 

mm / DIO: 1.8 mm), although CI and BI specimens reached almost the same maximal 

out-of-plane displacement. This can be explained due to the elastomer connection and 

its elastic behaviour. BI specimen had high values of residual displacement increasing at 

each cycle, even though in the case of CI previous in-plane load was applied up to 2.4% 

of drift in contrast to the BI test where it was only 1.25%. Therefore, it seems that in the 

case of BI test damage due to the in-plane loads earlier applied (section 5.5.2.1) 

damaged the connection between infill and frame and produced out-of-plane 

displacements of the traditional infill greater by a factor of 5, when compared to the 

DIO specimen. Figure 5.92b shows the side view of the deformations measured in all 

three tests for the maximum out-of-plane loads in five vertical cross-sections along the 

height of the wall. The cross-section shows the tilting of the traditional infill in test BI 

with deformations of up to 100 mm at the top of the wall, in comparison to the 

negligible deformations in the DIO test. At the maximum of out-of-plane load on 

specimen CI, displacements at the top of the wall were small, while displacements at the 

bottom due to the mortar connection were larger (around 10 mm). This probably 

occurred because of brittleness of mortar which was slightly damaged by the in-plane 

load. Fortunately, on the top there was an elastomer, otherwise the connection of the 

infill wall and the frame would be destroyed by the in-plane load as in the case of 

traditional specimen BI.  For CI specimen, from the beginning until the end of phase 2, 

highest displacement was in the middle, showing that arching mechanism was activated 

in contrast to the BI specimen where it was not possible to activate arching mechanism 

since connection of the infill wall and frame at the top was damaged. Due to the U-

shaped elastomer connection on all four sides on the infill wall, DIO specimen 

experienced 5 times smaller displacements when compared to the CI specimen. 

5.5.5.3 Simultaneous in-plane and out-of-plane loading 

Figure 5.93 shows the hysteresis curves for BIO and CIO test and for the third, fourth 
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and fifth loading phases of the DIO test, because these phases include both in-plane and 

out-of-plane loading. These curves show again the low stiffness and small amount of 

force absorbed by the infilled frame with the INODIS system. CIO specimen activated 

an infill wall much less than BIO specimen, but again more than DIO. The contribution 

curve of the infill in the DIO test illustrates that the activation of the infill is delayed and 

begins at an interstorey drift of 0.6%. At this drift, the traditional infill in the BIO test 

has almost reached its maximum load. Furthermore, the comparison shows that the 

maximum deformability of the traditionally infilled RC frame (BIO) and infilled frame 

with the IMES system (CIO) is already reached at 1.0% while the DIO specimen with 

the INODIS system reaches a maximum interstorey drift of 3.25%. 

  
a) b) 

Figure 5.93 a) Hysteresis curves and b) envelopes with the comparison to the bare frame for the 

BIO and CIO test and for the third, fourth and fifth loading phases of the DIO test  

 

  
a) b) 

Figure 5.94 a) Force-displacement curves and b) side view of the out-of-plane deformations for 

5 kN/m
2
 of out-of-plane load and interstorey drifts of 1.0% (BIO and CIO) and 1.8% (DIO)  

Also, an important difference is that the masonry infill of DIO specimen is not pushed 

out of the wall plane in contrast to the BIO and CIO. This is due to the fact that along 

the circumferential support of infill wall, only small out-of-plane deformations are 
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visible and the bricks are apparently intact, which is not the case for BIO and CIO 

where bricks in contact with the frame experienced splitting and high level of damage. 

Therefore, the reason to stop the BIO and CIO test was high out-of-plane displacements, 

while DIO test was performed up to the limit of testing equipment. DIO can absorb 

smaller maximum shear force than the specimen BIO, but higher than CIO (BIO: 255 

kN, CIO: 130 kN, DIO: 155 kN), at the greater interstorey drift (BIO: 0.65 %, CIO: 

0.9%, Dio: 1.8% %). Also contribution of the INODIS system is a couple of times 

smaller than in a case of the IMES system and even more so when compared to the 

traditional system. 

Figure 5.94a shows the force-displacement curves for the BIO and CIO test and the 

third and fourth loading phases of the DIO test for the out-of-plane deformations at the 

centre of the wall. In the BIO and CIO test, a constant out-of-plane load of 5 kN/m
2
 is 

applied in combination with an increasing sinusoidal in-plane load with a maximum 

interstorey drift of 1.0%. In the DIO test, the out-of-plane load is varied between 2.5 

and 5.0 kN/m
2
, whereby the maximum interstorey drift for the third and fourth phase is 

1.8%. A comparison of the results shows that the deformations for the infilled RC frame 

with the INODIS system were smaller by a factor of about 3-5 times and the infill stays 

stable, while the load for the BIO and CIO test infill drops further and further because 

the wall moves out of the frame. For both specimens, BIO and CIO, sudden increase of 

the deflections could be observed, accompanied by a reduction of the out-of-plane 

loading shortly after start of the in-plane cycles. In the case of simultaneous loading of 

BIO specimen, out-of-plane resistance is reduced to 12.5%. The same happened in the 

case of the IMES system, but the resistance was reduced first to 50% and then to 25%. 

Also, in the case of BIO and CIO specimens damage started already at small drifts (0.3-

0.4%) and at the drift of 1.0% they were completely destroyed. In contrast, specimen 

DIO experienced first crack at the 1.8% of drift. 

Figure 5.94b shows the side view of the deformations measured in both tests for an out-

of-plane load of 5 kN/m
2
 and interstorey drifts of 1.0% (BIO) and 1.8% (DIO). Results 

show the rigid body movement with tilting of the traditional infill wall in the BIO test 

with deformations of up to 120 mm at the top of the wall and 140 mm at the bottom of 

the CIO specimen, in comparison to the much smaller deformations in the DIO test even 

though the interstorey drift was 1.8 times higher. It can be observed that infill 



Marko M. Marinković  Innovative system for seismic resistant masonry 

infills in reinforced concrete frame structures 

216 

deformation reflects activation of arching effect in the case of DIO specimen. BIO and 

CIO specimens experienced high out-of-plane deformations at both the bottom and the 

top of infill wall, because of the reduction of contact areas and the change of boundary 

conditions that are important for the formation of the arching effect, due to the in-plane 

frame deformations, as explained in section 5.5.2.4. U-shaped connection of elastomers 

used in the INODIS system successfully prevents this behaviour, which in a real case of 

an earthquake presents a huge risk for the public. 

5.5.5.4 Stiffness degradation 

In the following section, in-plane stiffness values for tested specimen are summarized 

and compared. Calculation of stiffness for the specimens experimentally tested was 

done using short code made in MATLAB. Figure 5.95 shows the initial stiffness of the 

test specimens A, BI, BIO, CI, CIO and DIO. The stiffnesses of the test specimens A, CI 

and DIO are very close to each other since the infill at first is not activated because it is 

decoupled by the elastomers. Stiffness of the CIO specimen is around 2 times higher 

than the stiffness of the bare frame. This is due to the simultaneous in- and out-of-plane 

loading. This effect is also seen in the case of traditional infill (Test BIO), but not in the 

case of the INODIS system (Test DIO). This confirms that application of the INODIS 

system successfully decouples infill wall from the surrounding frame for all loading 

combinations. 

Change of secant and tangential stiffness of the tested specimens is presented in Figure 

5.96. The evolution of the secant stiffness at each level of lateral drift is calculated using 

the secant stiffness of the peak value determined at each positive and negative hysteretic 

loop. The secant stiffness at each lateral drift is defined as the slope of the line 

connecting the origin to the point corresponding to the maximum force obtained in the 

first cycle of force-displacement diagram. Tangential stiffness degradation was assessed 

as the slope of the line connecting the point of the envelope with the previous point. 

While the stiffnesses of the bare frame A and the infilled frames CI, CIO and DIO 

decrease slowly and moderately, the stiffness of the traditional infill abruptly decreases 

as the interstorey drift increases. Figure 5.96b confirmed that the degradation of 

stiffness for the BIO specimen is so fast that the tangential stiffness quickly changes its 

sign to negative. CIO specimen also for small level of drifts exhibits stiffness 
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degradation. However, its initial stiffness is 6 times smaller than for the BIO specimen, 

thus stiffness degradation is somewhat slower. It is observed that the stiffness 

degradation exhibits similar path in the positive and negative directions, for specimens 

A, CI, CIO and DIO. 

 

Figure 5.95 Initial in-plane stiffness of the tested specimens 
 

  
a) b) 

Figure 5.96 a) Change of secant stiffness and b) tangential stiffness of the tested specimens 
 

  
a) b) 

Figure 5.97 a) Tangential stiffness ratio of the tested infilled frames and bare frame and b) of the 

DIO test and bare frame 

Figure 5.97 shows the ratio of tangential stiffness of the tested infilled frames and the 

bare frame, at the corresponding drift. Ratio for the BIO specimen is not showed on the 
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diagram, because it has the values going from -25 to 27, for the corresponding drift. For 

small level of drifts, BI specimen has 7 times higher tangential stiffness than the bare 

frame, but this ratio drops rapidly to the values between 1 and 2. CI and CIO specimens 

have almost the same ratio ranging from 1-2 at the beginning. Afterwards, stiffness of 

the CIO specimen drops, while CI specimen experiences stiffness ratio increase up to 5-

7 times and then sudden decrease around 2% of drift. Figure 5.97b presents only the 

ratio of stiffness for the DIO specimen, in order to be able to clearly see the values. It 

can be seen that the ratio goes from 1 to 2 for the big range of drifts until 1.8%. At this 

point first damage in infill wall appeared followed by a decrease of stiffness ratio at the 

end of the load phase 4. It is important to notice is the stiffness recovery at the 

beginning of the load phase 5. This can be attributed to the U-shaped elastomers, which 

provide satisfactory and reliable connection to the infill walls, even for the aftershocks. 

5.5.5.5 Energy dissipation 

The ability of a structure to dissipate the seismic input energy is an accurate measure of 

its expected seismic performance. The cumulative dissipated energy is determined as 

the sum of the area enclosed by each hysteretic loop. For this, the short code made in 

MATLAB was used. The cumulative dissipated energy for all the specimens tested 

under in-plane loading is given in Figure 5.98a, while energy dissipated during the in-

plane testing for increasing lateral drifts is presented in Figure 5.98b. Here, energy 

dissipated versus in-plane drifts for specimen DIO is not presented, because load 

protocol (Figure 5.70) for this test contains repeated cycles for the same drifts due to the 

combination of different loading situations. Figure 5.99 shows energy dissipated per 

each cycle for all the tested specimens. 

  
a) b) 

Figure 5.98 a) Cumulative dissipated energy and b) energy dissipation for increasing drifts 
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a) b) 

  
c) d) 

  
e) f) 

Figure 5.99 Energy dissipated per each cycle of specimen a) A; b) BI; c) BIO; d) CI; e) CIO and 

f) DIO 

The deformation energy for test DIO has been computed to be almost 290000 Nm, 

which is much higher than in the other tests. Especially BIO and CIO tests dissipated 

the least energy. In the CI test significant amount of energy is dissipated. If compared 

with the bare frame, which was subjected to the same level of in-plane drift it can be 

concluded that around 55000 Nm of energy is more dissipated in the case of CI 

specimen. This can be attributed to the infill damage, but also to the energy spent on 

viscoelastic behaviour of elastomers. Figure 5.99 confirms that BI, BIO and CIO 

specimen performed the worst from all the specimens, by spending the least of energy. 

This proves again that traditionally infilled frames are not suitable for earthquake 
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loading and also infilled frame with the IMES system does not present a proper solution 

for infilled frame with the simultaneously applied in- and out-of-plane load. 

Since different combinations of in- and out-of-plane loading have been used in load 

protocols for specimen testing, especially for the DIO test, it is suitable to compare the 

energy dissipation per loading phases. According to that, Figure 5.100 shows energy 

dissipated in the first phase of the DIO and BI test and A and CI tests until 1.25% of 

drift. Until this level of drift pure in-plane loading has been applied. It can be seen that 

dissipated energies are around the same level, with the DIO specimen dissipated the 

most, while not experiencing any damage. On the contrary, infill wall of the BI 

specimen already experienced some damage, but even so it dissipated slightly less 

energy than the DIO specimen. Energy dissipation of A, CI and DIO specimen is the 

same until 0.8% of drift when it decreased a slightly for specimens A and CI, while 

continuing to increase in the same trend for specimen DIO. This can be attributed to the 

energy dissipation on viscoelastic behaviour of elastomers. 

  

a) b) 

Figure 5.100 a) Cumulative dissipated energy and b) energy dissipation for increasing drifts up 

to 1.25% of drift 

Figure 5.101a shows comparison of dissipated energy in the BIO, CIO and third, fourth 

and fifth phase of the DIO tests, which present simultaneously loaded specimens. It is 

clear that the infilled frame with the INODIS system dissipated considerably more 

(around 10 times more) energy than BIO and CIO specimen. This presents the 

comparison of dissipated energy until the infill failure, which shows the benefit of use 

of the INODIS system. Given that in phases 3 to 4 of the DIO test there is no damage of 

the infill wall that means that the whole system stayed in elastic range, because the 

energy is spent on viscoelasticity of elastomer and frame plastification. During the third 
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and fourth loading phase of DIO specimen, infill stayed without any cracks until the last 

cycle of loading. Even in that case dissipated energy is higher than for the case of BIO 

and CIO (Figure 5.101a). If comparison of dissipated energy is done until 1% of drift 

(Figure 5.101b), it can be seen that BIO and CIO specimens spent more energy, but they 

reached ultimate limit states in comparison to the DIO specimen who didn‘t experience 

even any minor crack in the first load phase. 

  
a) b) 

Figure 5.101 a) Cumulative dissipated energy for simultaneously loaded specimens BIO, CIO 

and DIO and b) energy dissipation for increasing drifts up to 1.0% of drift  

 

  
a) b) 

Figure 5.102 a) Cumulative dissipated energy for bare frame up to 1.8% of drift and fourth 

phase of the DIO test and b) for the first, third and fourth phase of the DIO test 

In order to estimate the level of energy spent on viscoelastic behaviour of elastomers, 

dissipated energy for the phase 4 of the DIO test and for the bare frame (Test A) are 

compared. Since in the phase 4 of the DIO test specimen is subjected to the in-plane 

drift up to 1.8%, comparison with the bare frame is done until 1.8% of drift (Figure 

5.102a). It can be noted that the difference in energy dissipated is quite high. This 

energy can be recognized as the energy dissipated on viscoelasticity of the elastomers. 

As a summary, Figure 5.102b shows energy dissipated in the first, third and fourth 
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phase of the DIO test. This represents considerably high level of the energy spent, under 

various load combinations that can appear during an earthquake, without damaging the 

infill wall. Therefore, it can be concluded that extreme level of energy can be dissipated 

in earthquakes if INODIS system is applied. 

5.5.5.6 Equivalent viscous damping ratio 

In order to additionally asses the behaviour of the tested infilled frames, equivalent 

viscous damping ξeq ratio was calculated for each cycle, based on the following 

equation: 

  2

diss

eq

sto sto
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E E


  



 (5.1) 

where Ediss is the dissipated energy calculated as the sum of the areas enclosed in the 

hysteretic loop for each cycle stoE
  and stoE

  are the stored energy calculated as the area 

of triangles generated from connecting the origin point to maximum and minimum load 

of each cycle, respectively (Figure 5.103). 

 

Figure 5.103 Definition of dissipated and stored energy 

Accordingly, the evolution of the equivalent viscous damping ratios has been 

determined for the tested specimens and plotted against the imposed drifts (Figure 

5.104), based on an estimation from the experimentally obtained load-displacement 

loops considering the first, the second and the third cycle at each target displacement 

and calculating the equivalent damping ratio on the basis of the average of the results of 

three cycles. Although the evaluation of the damping has been computed for all the 

applied cycles, the plots of the following figures begin from a drift of 0.1% (13
th

 cycle), 

since the values of damping at very low level of in-plane displacement demand are not 

considered realistic, given that the lateral response of the frame is not characterized by 

any significant hysteretic dissipation with the risk of providing ratios between the 
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dissipated energy of the cycle over the elastic energy being unrealistically high. 

 

Figure 5.104 Equivalent viscous damping for increasing drifts 

For the bare frame (specimen A) and infilled frame with the IMES system (specimen 

CI), the equivalent viscous damping increases substantially from about 8% up to 18% 

and 14%, respectively, starting from drifts larger than 2.0% up to a drift of 3.50%. For 

the traditionally infilled frame (specimen BI) the damping, lies in the range between 6% 

and 10%, only increasing after 1.5% of drift up to about 10%. For the traditionally 

infilled frame (specimen BIO) the damping, after a first sharp decrease from 16% to 

8%, increases up to 15% at the drift of 1%. The damping of the infilled frame with the 

IMES system (specimen CIO) is higher than for specimen CI and remains between 

about 10% and 12%. Since different combinations of in- and out-of-plane loading have 

been used in load protocols for testing the DIO test, the change of the equivalent 

viscous damping per each load cycle presented in Figure 5.105 shows the change of 

equivalent viscous damping ratio per each cycle, where it can be seen that equivalent 

viscous damping for the DIO specimen takes values from 9% up to 20%. This gives the 

attribute of the highest dissipative specimen to the DIO specimen with the INODIS 

system. Equivalent viscous damping is also presented for the first phase of the DIO and 

BI test and A and CI tests until 1.25% of drift (Figure 5.106a). It can be seen that 

highest level of damping relates to the DIO specimen, having the values almost two 

times higher than BI specimen at 1% of drift. Also, the values are higher around 50% 

when compared to the bare frame, indicating the positive effect of the elastomers of the 

INODIS system. Comparison of the values for the equivalent viscous damping (Figure 

5.106b), for the same loading conditions, confirm once again the beneficial effect of 

applied elastomers as a decoupling measure of the infilled frame. 
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a) b) 

  
c) d) 

  
e) f) 

Figure 5.105 Change of the equivalent viscous damping ratio per each cycle for specimen a) A; 

b) BI; c) BIO; d) CI; e) CIO and f) DIO  
 

  
a) b) 

Figure 5.106 Change of the equivalent viscous damping ratio for increasing drifts a) up to 

1.25% for specimens A, BI, CI and DIO and b) for BIO, CIO and 3
rd

 phase of the DIO specimen 
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5.6 Summary 

Eight tests were performed with the purpose to investigate the behaviour of reinforced 

concrete frames with masonry infill walls constructed using tongue and groove highly 

thermally-insulating hollow clay bricks. One bare frame (marked with the letter A) was 

tested in order to be able to extract the results of contribution of different infill systems. 

Three systems were investigated under in-plane, out-of-plane and simultaneous load. 

System marked with the letter B presents traditional system where connection of infill 

wall and RC frame is conducted by filling the gap with mortar. Specimens with the 

letter C present the IMES system, where elastomers are used in combination with steel 

anchors to reduce in-plane damage and prevent the infill wall to fall out-of-plane.  And 

the system marked with the letter D presents the third type of connection (the INODIS 

system), where U-shaped elastomers are used to decouple infill wall from the frame, but 

at the same to prevent any damage due to the out-of-plane load. 

The tests were performed in a specially produced test frame in which the vertical and 

horizontal loads were applied to the reinforced concrete frame via hydraulic cylinders. 

The out-of-plane loads were applied using airbags, which ensures a uniform application 

of the load. Forces and deformations of the hydraulic cylinders are recorded by the 

integrated displacement and force transducers, while the deformations of the test 

specimens in both horizontal and vertical direction were measured by inductive 

displacement transducers (LVDTs) and by cable potentiometers in diagonal direction. 

Optical measurement system was also employed to obtain vector displacements of 

marked points on the infill wall and frame. 

The focus of the experimental study was the improvement of the understanding of the 

cyclic response of three types of connections of masonry infill walls and RC frame. 

Furthermore, the focus was placed on the examination of the interaction between the in- 

and out-of-plane loads and comparison of the behaviour between traditionally infilled 

RC frames, infilled RC frames with the IMES system and infilled RC frames with the 

INODIS system. 

Furthermore, particular attention has been devoted to the analysis of the infill 

performance, resulting in the identification of the characteristic failure mode. In 

particular, the development of a diagonal stepwise crack pattern due to shear sliding in 
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the bed joints and slight opening of the dry head joints followed by the creation of 

diagonal cracks on the masonry units has been identified at different drift levels. Based 

on a simplified representation of the average infill response and observations during the 

test, the drift levels and load resistance have been found. 

The tests yielded the following results: 

 A Test: 

o Larger cross section dimensions of the beams led to much less cracking 

in the beams, thus the specimen experienced the failure due to the for-

mation of plastic hinges at top and bottom ends of the columns. 

o The frame test confirmed the principally high deformation capability of 

the RC frame even though it was dimensioned and constructively de-

signed in accordance with the lowest ductility class L according to DIN 

EN 1998-1 (2010). 

 BO Test: 

o When subjected to an out-of-plane load, an extremely high load capacity 

of 24 kN/m
2 

for a wall supported on three sides is achieved due to the 

wall thickness of 36.5 cm. Until the load capacity is reached the masonry 

infill shows a high stiffness and stable arching effect. A friction and brick 

failure then suddenly occurs on the top of the wall which, due to the sup-

port on three sides, results in the free edge of the wall undergoing the 

largest deflections, especially at the top. 

 BI Test: 

o First phase of the in-plane loading up to 1.25% of drift produced cracks 

in bed joints and some bricks on the diagonal. This sequential load in 

three phases (IP-OOP-IP) produces the reduction of the out-of-plane load 

capacity by a factor of 8 due to the damage to the circumferential mortar 

joint and the lack of arching effect. 

o Additionally, the eccentric loading of the infill leads to a successive rigid 

body movement of the wall out of the frame (Figure 5.34). Following the 
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out-of-plane load phase, the out-of-plane movement of the wall increases 

uncontrollably. 

o In-plane load damaged mortar connection of the infill wall and concrete 

beam so out-of-plane load produced tilting of the infill wall and moving 

out-of-plane as a rigid body. This proves that the weakness of the tradi-

tional system is contact between RC frame and infill wall, due to the fact 

that a sufficient contact closure is particularly difficult when dealing with 

the highly thermally-insulating bricks with the percentage of voids being 

62.3%; thus, extreme care is needed to uniformly fill them with mortar. 

o Application of the out-of-plane load produced splitting of the brick at the 

top corner (Figure 5.36b), which contributed to the failure of the infill 

wall. 

 BIO Test: 

o Test BIO: For a combined load, a traditional infill only achieved a max-

imum interstorey drift of 1.0%. The wall behaves in a very brittle man-

ner, and failure comes in the form of movement of the infill out of the 

frame triggered by the damage to the connection joints and the variable 

boundary conditions that depend on the interstorey drift due to the small-

er and eccentrically arranged contact areas. 

o Simultaneous application of in- and out-of-plane load provides the reduc-

tion of out-of-plane load capacity by a factor of 5 and the maximum in-

plane drift drops to 1.0%. 

o Out-of-plane displacements correspond to a tilting movement of the infill 

superimposed on a rigid body movement caused by the loss of the 

boundary conditions on both the top as well as the base of the wall. The 

out-of-plane deformations reach 12 cm at the top and 6 cm at the bottom 

of the infill. 

o The failure is caused by an uncontrollable movement of the wall out of 

the frame which is increased by damage to the circumferential mortar 
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joint and bricks. Due to this, the test had to be aborted shortly afterwards 

as the wall deformations uncontrollably increased. 

 CO Test: 

o Specimen showed high and almost constant stiffness until activating sig-

nificant level of out-of-plane surface pressure load of 11 kN/m². Due to 

the opening of the bed joint in the middle height of the wall, increase of 

displacement without increase of load occurred until 25 mm when de-

crease of resistance started to be significant. 

o The displacements at the top and the bottom of infill wall were increas-

ing with the each cycle of out-of-plane loading, showing that reliable 

support for out-of-plane loading should be applied also at the top and 

bottom of an infill wall. 

 CI Test: 

o In the first in-plane loading phase up to 2.4% of drift, specimen acted 

almost linearly. In the region of the diagonal, bed joints slightly opened, 

even so the hysteresis does not show a temporary decrease of resistance.  

o It is observed that due to the surrounding elastomer in CI specimen it 

was succeeded to ―postpone‖ activation of infill and to increase DLS 

(damage limit state) as well as ULS (ultimate limit state), so the 

appearance of diagonal cracks in specimen CI started later and it is less 

pronounced in comparison to the BI specimen. The easiest way to see the 

effect of decoupling due to the elastomer connection is through the 

contribution curves. At the same time when maximal contribution of the 

infill wall in a case of BI specimen amounts 125 kN contribution of the 

infill wall and surrounding elastomer is around 50 kN. Also, maximal 

contribution of specimen CI was reached much after when compared to 

specimen BI. 

o Previous in-plane loading up to the drifts of 2.4 % produced significant 

out-of-plane resistance degradation, equal to approximately 50%. 

o At the beginning of out-of-plane loading, a significant part of the 
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deformation is reversible having maximal displacements in the center of 

the wall. 

o Second in-plane loading phase produced out-of-plane displacement to 

start to rise causing a rapid decrease of resistance in-plane. 

 CIO Test: 

o A comparable response was observed during the simultaneous load tests 

of the specimens BIO and CIO, which were subjected to 5kN/m2 of out-

of-plane load and simultaneously cyclic displacements of in-plane drift 

of 1.0 %, resulting in correspondingly more extensive damage, as well as 

sudden drop of out-of-plane resistance. 

o Failure of the edge bricks along the column as well as along the bottom 

beam caused the increase of out-of-plane deformations of the masonry 

infill. Rigid body movement with especially high displacements at the 

top and bottom of infill wall was observed. 

o Although the infill wall does not show any cracks in the inner area of the 

wall, additional loading could not be accepted, since connection of the 

wall to the frame is destroyed. This showed that the IMES system with 

the anchors connection between frame and infill does not present suitable 

solution for simultaneously applied in- and out-of-plane loading.  

 DIO Test: 

o DIO specimen was subjected to 5 load phases, combining just in-plane 

loading, out-of-plane loading and their combinations and simultaneous 

application. First four phases infill wall passed with the crack in the last 

loading cycles of the fourth phase, reaching the in-plane drift of 1.8%. 

o The DIO test yields a maximum interstorey drift of 3.25% for sequential 

and combined loads. The infill wall does not move out of the frame due 

to the U-shaped elastomers. Damage only occurs in the infill in the 

combined load situation at high in-plane drifts. Also, no damage is 

observed in the connection areas or to the elastomers. 

o The detailed comparison of the results of the conducted tests shows that 
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with the INODIS system, the infill is activated only after a long delay 

and even then the load contribution of the infill is low, also at the 

interstorey drifts of 3.25%. This significantly reduces the stresses in the 

infill, and therefore the damage in the infill. 

o The tests show that sequential and combined in-plane and out-of-plane 

loads can be safely absorbed by the U-shaped elastomers in combination 

with the plastic profiles connected to the frame. 

o When compared to the B and C specimens, DIO infill experienced 

around 5 times smaller out-of-plane displacements, even when it reached 

more than 3 times higher in-plane drifts. 

o It is also important to note that the arching behaviour of the specimen 

was activated in all phases of the DIO test. And it stayed active until the 

very end of the test. Thus showing that U-shaped elastomers provide 

stable connection for the development of the arching effect. 

o Only the INODIS system seems to be able to show the good behaviour 

even with simultaneous in-plane and out-of-plane loading. Both, 

traditional system (B specimens) and the IMES system (C specimens) 

have large deficiencies with simultaneous in-plane and out-of-plane 

loading. 

o Additional advantages of the system can be found in the prevention of 

stress concentrations in the contact areas to the frame and in the energy 

dissipation due to the hyperelastic behaviour of elastomers. 

o It is also very important to note that initial stiffness of the DIO specimen 

is in line with the initial stiffness of the bare frame. This means that 

natural frequency of the bare frame and infilled frame with the INODIS 

system are almost the same, which represents one of the most important 

benefits of the INODIS system. This makes the design and calculation of 

the RC frame buildings with infill walls more simple, certain and 

reliable. 
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o Additionally, viscoelastic behaviour of elastomers provides high level of 

energy dissipation, without having an infill damaged. And at the same 

time enhancing damping capacity of the infilled frame. 

Based on the experimental results, the significant conclusions can be summarised as 

follows: 

 The in-plane response of the infilled frames (B and C) was found to be 

characterised by quick and rather high degradation of strength. This is even 

more pronounced by the influence of out-of-plane load especially when assigned 

simultaneously. 

 The out-of-plane capacity of the infilled frames (B and C) is highly influenced 

by in-plane drifts. Even out-of-plane load resistance is extremely high, small in 

plane drifts can lead to a substantial reduction of the out-of-plane capacity. The 

results demonstrate clearly the significant degradation of stiffness and strength 

in the out-of-plane direction for increasing values of previous in-plane drift and 

related damage, in particular related to relatively high levels of drift and 

extensive preceding damage.  

 The connection joints located between the infill and the frame that are filled with 

mortar are damaged when exposed to prior loads and can lead to a reduced arch-

ing effect and, as a result, to a lower out-of-plane load capacity. 

 The complete filling of the upper joint with mortar becomes particularly im-

portant as this is the prerequisite for establishing the arching effect in the vertical 

direction. The out-of-plane capacity is fully dependent on the quality of filling 

with mortar. But a complete filling cannot be assumed in practice for the follow-

ing reasons: shrinkage effects, difficult mortar application in a small gap be-

tween frame and infill and workmanship quality. Especially, when dealing with 

bricks with a high percentage of voids, great care is required when filling the 

mortar that is difficult to implement due to reasons of time and cost. During the 

test specimen BO experienced larger displacements on the top of the infill than 

on the bottom. This shows that the mortar connection of an infill wall and con-

crete beam is a weak spot. The same has been observed in testing of the speci-

men BI where after first phase of in-plane load mortar connection of an infill 
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wall and concrete beam was damaged which caused that out-of-plane load pro-

duce tilting of the infill wall and falling out-of-plane as a whole part. 

 The modern hollow brick with 60% of openings can‘t be used for traditional ma-

sonry, because it is nearly impossible to satisfactorily fill the gaps with mortar 

on construction side.  

 Also, combination of anchors and brick in a case of simultaneous loading does 

not produce good results, because of load concentration. 

 The test results highlight substantial differences between a separate and com-

bined application of the loads.  The load transfer is significantly more complex 

when dealing with combined loads. The boundary condition, for the infill panel, 

changes depending on the in-plane drift level and leads to an eccentric arrange-

ment and a decrease in the contact areas. The local load concentrations in the 

connecting bricks increases and the occurring eccentricities can lead to a succes-

sive rigid body movement of the wall out of the frame. 

 Also, under simultaneous in-plane and out-of-plane load, even small initial out-

of-plane deflection can be significantly magnified by in-plane load. 

 When taking all of the test results into consideration, a convex interaction curve 

(Figure 5.48), which illustrates a severe reduction of the out-of-plane load ca-

pacity, becomes apparent. 

 The effect of simultaneous in-plane and out-of-plane loads should be considered 

when accessing the performance of RC infilled frames in design practice. But 

due to the fact that the decrease of capacity and contact length is not controlla-

ble, traditional infill is not a reliable solution. 

 Therefore, as an alternative, it appears to be prudent to supplement the tradition-

al construction of infill walls by implementing new innovative systems with 

which the required seismic safety can be successfully achieved. 

 INODIS proved itself as an effective solution for infill walls by providing no 

damage in the wall up to the high interstorey drifts, even in the experimental 

case where highly brittle bricks and strong thin layer mortar was used. 
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 INODIS also provides reduction of the stresses within the infill masonry and on 

contact with the frame, due to the elastomer, cause stresses to be smeared on 

higher length of infill wall.  

 Additionally, application of the INODIS system leads to the reduction of the 

seismic action by means of distributed energy dissipation. 

 One of important conclusions can be derived from phase 5 of the test on the DIO 

specimen. Namely, after the infill wall was damaged in the previous loading 

phase, the wall could still withstand outstanding level of in-plane drifts with the 

simultaneous out-of-plane load. This shows that the INODIS system provides 

the possibility for infill to withstand not just strong earthquakes but also after-

shocks even when it is damaged. This is due to the fact that INODIS system 

connections based on elastomers is stable, reliable and with its hyperelastic be-

haviour provides deformation capability all over again. 

 Besides the fact that the INODIS system provides less damage and resulting in 

lower costs, due to the capability to withstand additional earthquakes and after-

shocks, it also gives important increase in safety during the after earthquakes in-

spections. 

 All of this indicated that the INODIS system used for decoupling of infill wall 

and RC frames is a supreme and powerful solution for these kinds of structures. 

 



 

 

6 NUMERICAL ANALYSIS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to 

the gates of the temple of science are written the words: 'Ye must have faith.'.  

Max Planck 
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6.1 Introduction 

The behaviour of infilled reinforced concrete frames under horizontal load is 

investigated both experimentally and numerically. In order to extend the results obtained 

in the experimental campaign, a numerical study has been carried out. After 

comprehensive literature overview (see section 2.4) about the approaches for modelling 

the masonry infilled RC frames, for the purpose of this study, two approaches are used 

for numerical analyses. First, simplified micro-modelling approach is used for 

simulating experimental tests and later on for parametric study. Second, smeared 

homogenized model is used for presenting load transfer for the case of simultaneously 

applied in- and out-of-plane loading. 

In this section, first a calibration of micro model using small specimen tests on system 

components has been carried out. Afterwards, these material parameters were used for 

simulations of experimental tests on infilled frames in order to validate the numerical 

model. At the end, smeared homogenized model is used to explain the unfavourable 

conditions that appear under simultaneous loading. 

6.2 Description of the model 

A three dimensional finite element model was developed to determine the strength, 

lateral displacement and stress distribution throughout the infill wall. Finite element 

analyses were conducted using software Abaqus (2013). This software has proven to be 

effective in treating material and geometric nonlinearity. Some simplifications are 

introduced in the model, such as not taking into account bond slip effect directly by 

defining interaction between reinforcement and concrete. Also material model used for 

bricks does not take into consideration orthotropic behaviour of masonry and mortar 

joints were modeled using interaction contact between the bricks instead of full size 

continuum elements. However, model was able to satisfactorily represent behaviour of 

traditionally infilled frames and infilled frame with the INODIS system under 

monotonic loading. Both detailed and global analyses were successfully performed 

using the developed model. 

6.2.1 Finite element mesh 

Elements available in Abaqus library (Figure 6.1a,b) were used to model the masonry 
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infilled frames. According to recommendations (Abaqus, 2013), three-dimensional 8-

node hexahedral continuum finite elements, with the reduced integration (C3D8R) are 

most appropriate for the explicit dynamic analyses. The downside of 3D modelling is 

the large number of elements in the model which requires a longer time for analysis. 

C3D8R elements were used to model concrete frames and masonry blocks. This 

element has three translational degrees of freedom for each node in the global directions 

and is capable of performing nonlinear analyses involving contact, plasticity and large 

deformations. The reduced integration scheme for these elements is based on a single 

point uniform strain formulation where the strains are obtained as average strain over 

the element volume. Using reduced integration will basically mean it will take less time 

to run the analysis, which is significant for large scale problems. Therefore, in some 

cases, particularly for nonlinear problems it is actually advisable to use reduced 

integration instead of full integration. In order to prevent hourglassing of solid elements 

with reduced integration, default hourglass control was included in element definition.  

For reinforcement, truss elements (T3D2) have been used and they are embedded in 

solid concrete elements. This truss element has two translation degrees of freedom, one 

at each node and can carry only tensile or compressive loads without having resistance 

to bending. The embedment leads to a constraint of the translational degrees of freedom 

at the node of the truss elements to the interpolated values of the corresponding degrees 

of freedom of the solid elements. 

At the beginning, a number of simulations were performed in order to find the size of 

elements for which the accuracy of the results and analysis time are in balance. Not only 

because of computational time, but also due to accuracy, it is not advisable to use small 

elements. This is because numerical errors due to the size and number of elements 

govern the results and error can increase as shown in Figure 6.1c (Minaie, 2009). 

Strain-softening behaviour of the material brings strong mesh dependency of the finite 

elements resulting in that the energy dissipated decreases upon mesh refinement. To 

overcome this, Abaqus (Abaqus, 2013) recommends introduction of a characteristic 

length into the formulation by expressing the softening part of the constitutive law as a 

stress-displacement relation. The geometry and the meshing of the model are shown in 

Figure 6.2. 
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a) b) c) 

Figure 6.1 a) 8-node 3D solid element b) 2-node 3D truss element (Abaqus, 2013) c) Mesh size 

optimization (Minaie, 2009) 

6.2.2 Geometry 

RC frame is represented with its actual geometry and size, except for the base of the 

frame which is not modelled. Since RC base of the frame is quite stiff and strong, for 

the purpose of reducing of computational costs, it was modelled with the rigid base 

presented with the discrete rigid plate (Figure 6.2). Each reinforcement bar and stirrups 

is modelled and incorporated in an assembly as a separate part with its exact length and 

position as shown in Figure 6.2. 

 

 

Figure 6.2 Geometry and finite element mesh of the numerical model of infilled frame 

As explained, the simplified micro-modelling technique is used for the numerical 

model, where masonry units are extended from all directions by half the thickness of the 

mortar joint. Interaction between the units representing the mortar joint behaviour is 

defined. This interaction is used as the crack source as well as the units modelled using 
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smeared crack approach. Masonry units were modelled as solid elements without holes, 

although blocks used in experimental campaign are hollow blocks. Effect of holes is 

taken into account through material definition, by assigning material characteristics of 

masonry assembly to the units. 

6.2.3 Loads and boundary conditions 

In order to be as close as possible to the real experimental conditions, external loads and 

constraints have been defined with special care. All the steps were defined as Dynamic 

(Explicit) divided in three phases: gravity, vertical load and horizontal displacement (in-

plane load) or pressure perpendicular to the wall (out-of-plane load). First, gravity load 

has been defined in order to take into account the weight of the model components. 

Afterwards, vertical load of 200 kN per column has been applied on the columns top 

surface. These first two steps have been applied in all simulations. In the third step, the 

upper beam horizontal displacement has been applied to a shell plate (Figure 6.2) being 

in contact with the end of the beam. Displacement is defined as a boundary condition of 

a steel plate having defined U1 displacement in direction of the frame plane. Out-of-

plane load was applied as a pressure load over the infill surface. All the loads were 

applied as monotonically increasing, using smooth amplitude (Figure 6.3 and Table 6.1) 

in order to avoid sudden ramp loading effects. Duration of the gravity steps was defined 

to be 0.1s, vertical loading on the columns 0.3s and in-plane or out-of-plane loading 

step having a length of 1s. In all loading steps, geometric nonlinearity has been 

assigned. 

 

Time/Frequency Amplitude 

0 0 

1 1 
 

Figure 6.3 Smooth amplitude Table 6.1 Smooth amplitude 

Fixed boundary condition (BC) was assigned to the reference point (RP) of the rigid 
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plate, which was then tied to the bottom of the columns. Also, out-of-plane 

displacement of the frame (U3) has been constrained in order to prevent out-of-plane 

movement of the frame during perpendicular loading on the infill. 

6.2.4 Contact/Interface definition  

All the joints between the bricks, both vertical and horizontal, as well as joints between 

the frame and infill have been defined using general contact with the specified 

interaction properties. Three interaction properties have been defined, with the first 

defined as global property assignment to the all elements that are in contact. For this 

interaction, ―hard‖ contact normal behaviour is defined which minimizes the penetration 

of the slave surface into the master surface at the constraint locations and does not allow 

the transfer of tensile stress across the interface. Together with the ―hard‖ contact, 

penalty friction formulation with the friction coefficient being 0.6 has been assigned to 

the global property assignment. This means that just compression stresses and frictional 

forces are transferred, when the surfaces are in contact, without having any tensile 

strength. Since head joints did not have mortar applied, global property assignment has 

been used for them. Other interactions have been assigned as individual contact 

property assignments that override global assignments for the surfaces assigned. 

Second interaction property was defined to represent bed joint behaviour and it was 

assigned to the horizontal surfaces of the bricks being in contact. This interaction 

property, beside ―hard‖ contact and penalty friction assignment, contains surface-based 

cohesive interaction. Surface-based cohesive behaviour offers capabilities that are very 

similar to cohesive elements that are defined using a traction-separation law, but 

surface-based cohesive behaviour is easier to define and is suitable for situations in 

which the interface thickness is negligibly small. Since in experimental campaign, thin 

layer mortar of 0.5’3mm thickness has been used, this approach is chosen as the 

appropriate one. The traction-separation model (Figure 6.4a) in Abaqus (Abaqus, 2013) 

assumes initially linear elastic behavior and uncoupled stiffness expressed as follows: 
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 (6.1) 

Where t is the nominal traction stress vector, consisting of three components: tn, ts, tt 
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which represent the normal and the two shear tractions. The corresponding separations 

are denoted by δn, δs, δt. knn, kss and ktt are the normal stiffness and the two shear 

stiffnesses. 

Traction separation model behaves linearly until it reaches maximum tensile and shear 

stresses assigned to as damage initiation criterion, which refers to the beginning of 

degradation and eventual failure of the bond between two cohesive surfaces. The 

quadratic traction criterion for damage initiation is selected as follows: 
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 (6.2) 

where 0
nt , 0

st , 0
tt  are the peak values of the contact stress when separation is either 

purely normal to the interface or purely in the first or second shear direction, 

respectively. 

The third phase is the damage evolution law describing the rate at which the cohesive 

stiffness is degraded once the corresponding damage initiation criterion is reached. The 

energy-based exponential mixed mode evolution power law (Benzeggagh and Kenane, 

1996) as shown in Figure 6.4b is selected, which is defined as: 

   sC C C C
n s n

T

G
G G G G

G


 

   
 

 (6.3) 

where Gs=Gs+Gt, GT=Gn+Gs and C
nG , C

sG  and C
tG  are the fracture energies in the 

normal and the two shear directions and η is a cohesive property parameter specified to 

be 2. 

 
 

a) b) 

Figure 6.4 a) Traction separation response with exponential damage evolution and b) mixed-

mode response in cohesive interactions (Abaqus, 2013) 

The third interaction property defined is the interface between the masonry panel and 
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the bare frame, modelled with the interaction property adopted to represent the bed 

joint, but being weaker as suggested by Mehrabi and Shing (1997) since they normally 

have lower quality (Koutromanos et al., 2011). After failure of the cohesion, only 

friction force developed from the Coulomb-friction model is left between different 

elements. 

As described, the behaviour of the interface before damage is linear elastic with normal 

and shear stiffnesses calculated according to the modified equation proposed by Nazir 

and Dhanasekar (2014): 
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where Eu and Em are modulus of elasticity of brick unit and masonry, respectively. 

Height of unit is denoted as hu and joint thickness as tj. 

The value of 0.19MPa for maximum tensile stress assigned to as damage initiation 

criterion ( 0
nt ) is taken from experimental bond strength test. Maximum shear stresses (

0
st , 0

tt ) are defined by trial and error in the calibration process on masonry assembly. 

Values used are ranging from 0.15-0.7 MPa, as suggested in the literature for thin layer 

mortar (Brameshuber et al., 2016). For damage evolution, values for fracture energies 

are also determined during the calibration process on masonry assembly. Friction 

coefficient, μ, was calibrated in order to get the best fit with the experimental results. 

All the values that are available from experimental data can be taken, but in the absence 

of such data, the values of these parameters have to be determined indirectly by trial and 

error in the calibration process on masonry assembly. 

6.2.5 Materials definition 

For material definition, built-in material models in Abaqus (2013) were used to describe 

the behaviour of concrete, masonry units, reinforcing steel and elastomer. Their 

description with the recommendations for some values for materials is presented in the 

following sections. 
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6.2.5.1 Concrete 

Similar to the approach used by Stavridis and Shing (2010), smeared crack models are 

enforced on the concrete and brick elements. The constitutive model adopted for 

concrete is the concrete damage plasticity (CDP) model for quasi-brittle material 

implemented in Abaqus (2013). The model is a continuum, plasticity-based, damage 

model suitable for quasi brittle materials. 

  
a) b) 

Figure 6.5 Yield surface of the CDP model in a) plane stress and b) deviatoric plane, corre-

sponding to different values of Kc (Abaqus, 2013) 

 

Table 6.2 Adopted plasticity parameters for CDP model, for concrete frame and masonry units 

 Dilation angle Eccentricity 
   

   

    

Concrete 36 0.1 1.16 0.667 

Masonry units 30 0.1 1.16 0.667 

The model uses the yield function of Lubliner et al. (1989), with the modifications 

proposed by Lee and Fenves (1998) to account for different evolution of strength under 

tension and compression. A non-associated potential flow rule is assumed in the CDP 

model. The yield surface in the plane stress and deviatoric conditions are shown in 

Figure 6.5. Determination of the yield surface and flow rule parameters for concrete and 

masonry requires accurate biaxial and triaxial tests on the materials, which are beyond 

the scope of this research. However, the available literature showed low sensitivity to 

these parameters (Nasiri and Liu, 2017). Therefore, the values used in this study (Table 

6.2) were determined indirectly in the calibration process, and by use of common values 

recommended in the literature (Kupfer et al., 1969; Lee and Fenves, 1998; Jankowiak 

and Lodygowski, 2005; Pavlović, 2013). 
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The elastic response is assumed to be linear and isotropic. It can be assessed through the 

use of modulus of elasticity and Poisson‘s ratio. Modulus of elasticity is taken from the 

experimental tests, while the value of 0.2 is used for Poisson‘s ratio as suggested in 

Eurocode 8 (EN 1998-1, 2004). As for the plastic part, it requires the definition of 

stress-strain curves to be assigned for compression and tension  in combination with 

plasticity parameters. CDP model assumes that the main two failure mechanisms are 

tensile cracking and compressive crushing of the concrete material. The stress-strain 

relations under uniaxial tension and compression (Figure 6.6) are defined as in the 

following equations, respectively: 

    01 pl
t t t td E      (6.6) 

    01 pl
c c c cd E      (6.7) 

Where E0 is the initial elastic stiffness and εt as well as εc are the total tensile and 

compressive strains of the material, while pl
t  and pl

c  are the equivalent plastic strains. 

  
a) b) 

Figure 6.6 Response of concrete to uniaxial loading in a) compression and b) tension (Abaqus, 

2013) 

CDP model allows to describe separately the nonlinear tensile and compressive 

behaviour of plain concrete. In compression, the stress-strain curve is first linear until 

0.4fcm according to Eurocode 2 (EN 1992-1-1, 2004). Beyond this point, concrete is in 

the plastic region in which plastic strain is input to define the stress-strain relationship 

in the finite element model in Abaqus (Abaqus, 2013). For this part, expression given in 

Eurocode 2 (EN 1992-1-1, 2004) is used, which can be regarded as a specialisation of 

the non-linear stress-strain curve according to Sargin (1971): 
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Where εc1 is the strain at peak stress, while η and k are determined according to the 

following equations: 
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This curve is defined only up to the nominal ultimate strain. To reach experimental 

levels of deformation, the curve is extended (Figure 6.8) with respect to the equation 

proposed by Pavlović (2013): 
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Where μ presents relative coordinate defined as: 
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Where εcuD=3.5‰ and εcuE =3%. Factor α=fcm/fcuE and factors αtD and αtE governing 

tangent angles of sinusoidal part after point D are calibrated to match the best fit with 

the experimental results and β=fcm/fcuD. 

The behaviour in tension is defined using a fracture energy criterion and a stress-

displacement curve instead of a stress-strain curve (Figure 6.8). The relationship 

between the crack width and the corresponding tension stress is based on an equation 

proposed by Hordijk (1992): 
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Where fctm presents maximum tensile strength and c1 = 3, c2 = 6.93. In Figure 6.8b, uc 

corresponds to the critical crack opening when tensile stress drops to zero, therefore uc 

can be considered as the fracture crack openingu . The maximal crack opening, uc, is 

calculated according to Hordijk (1992) with respect to the fracture energy GF and 

maximum tensile strength fctm: 
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 5.14 /F ctmcu G f  (6.14) 

The fracture energy of concrete is calculated according to CEB-FIP Model Code 2010 

(MC10) (CEB-FIP, 2010) by using the following relation: 

 
0.18 0.18

0.7 73 1.3 73Fcm cm
Gf f   

 

 

(6.15) 

Herein fcm is the mean compressive strength. 

 

Figure 6.7 Stress-strain curve for concrete in compression 

 

 

Figure 6.8 Stress-displacement curve for the concrete in tension (Hordijk, 1992) 

This model for reinforced concrete considers independently the concrete behaviour from 

the rebar. Effects associated with the rebar/concrete interface, such as bond slip and 

dowel action, are modelled approximately by introducing ―tension stiffening‖ into the 

concrete material to simulate load transfer across cracks through the rebar. In this way 

effects of the reinforcement interaction with concrete are simulated in a simple manner. 

Tension stiffening data are given in terms of the cracking displacement taking into 

account characteristic length for finite elements, therefore stress-displacement curve for 

tension defined as described above takes into account tension stiffening. In this way, 
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residual strength of RC element, coming from bond-slip effect, sliding of reinforcement 

and friction, is taken into account indirectly. 

To account for different damage characteristics in tension and compression, the 

degradation of the elastic stiffness due to the cracking is characterized by two damage 

variables, namely dt and dc, which are assumed as functions of the inelastic strains. The 

damage parameters are equal to zero for undamaged material and equal to one for 

completely damaged material. The damage parameters are calculated using an 

exponential function as proposed by Lee and Fenves (1998): 
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Where ac and at are parameters for the uniaxial compression and tension respectively, 

and can be calibrated to match the best fit with the experimental results.  

When tensile damage, dt, is specified, Abaqus (2013) automatically converts the 

cracking displacement values to ―plastic‖ displacement values using the following 

relationship: 
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Where l0 is assumed to be one unit length, l0=1. Also for compression, Abaqus (2013) 

automatically converts the inelastic strain values to plastic strain values using the 

following relationship: 
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Abaqus (2013) will issue an error message if the calculated plastic strain or ―plastic‖ 

displacement values are negative and/or decreasing with increasing cracking 

strain/displacement, which typically indicates that the compression/tensile damage 

curves are incorrect. 

6.2.5.2 Masonry 

Non-linear model used for masonry allows for the effects of cracking and crushing of 

masonry units as isotropic homogeneous elements. The smeared crack concrete model 

was used to represent the behaviour of masonry wall. The same as for concrete material, 
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the constitutive model for masonry used in this study is concrete damage plasticity 

(CDP) model. Stavridis and Shing (2010) recommended that the material characteristics 

of masonry units based on that of masonry prisms should be used, rather than that of 

individual brick units. This approach has been accepted in this study. Also, a modified 

approach according to Stavridis and Shing (2010) is used to generate the required stress 

curves in both compression and tension (Figure 6.9). For compression, linear elastic 

behaviour is defined from point A until point B (Figure 6.9). Strain at point B is 

determined as intersection point of linear elastic curve and curve proposed by Stavridis 

and Shing (2010) as defined in the following equation: 
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Where ε1 is strain at maximal stress, fm. After this point, plastic behaviour of concrete 

starts and until point D is defined with this equation. From point D, stress-strain curve is 

defined with the following equation: 
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 (6.21) 

Where ζD and ε2 are stress and strain at point D, and they are together with the 

coefficient α determined in calibration process to provide best fit with the experimental 

results. This equation is very suitable for calibration process, because increase/decrease 

of residual strength of bricks i.e. infill can be easily accomplished.  

The curve for tension is defined using the approach from Stavridis and Shing (2010): 
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Where εcr is the strain at the maximum tensile strength, fmt. The parameters rt and α1 

define the slope of the applied curve and have to be calibrated using experimental 

results. As suggested by Stavridis and Shing (2010), for calibration process is 

recommended to define tension using displacement instead of strain. Therefore, the 

crack opening displacement is calculated using the following approach proposed by 

Almansa et al. (2014): 
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Herein, leq is the length of the regarded finite element. 

  

a) b) 

Figure 6.9 a) Stress-strain curves for compression and b) for tension (Stavridis & Shing, 2010) 

6.2.5.3 Reinforcement 

The reinforcing steel is represented by an elasto-plastic material using Von Mises 

criterion, characterised by a isotropic hardening behaviour. Plasticity part of material 

behaviour is assigned with true stress and strain instead of engineering stress and strain, 

as suggested in Abaqus (2013). If ζnom is engineering stress and εnom engineering strain 

then true stress and strain are calculated according to equations: 

  1true nom nom     (6.24) 
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The total strain, ε, is expressed in terms of elastic, εel, and plastic strain, εpl, that the 

element will experience: 

 el pl     (6.28) 

The same as for concrete, plastic part of the behavior is assigned to the CDP model. 

6.2.5.4 Elastomer 

Elastomer material used for decoupling infill wall from the RC frame is rubber-based 

material, with hyperelastic behaviour. This material is characterized with the small 

stiffness and elastic response up to large strains, which can be the best described with 
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the hyperelastic behavior. Since the material used is highly compressible, it can be 

characterized as elastomeric foam. Therefore, it was decided to use hyperfoam material 

available in Abaqus (2013) to model its behaviour. Uniaxial and shear test data from 

small scale tests on elastomers have been assigned to the hyperfoam material. Figure 

6.10 shows typical compressive stress-strain curve of elastomeric foam materials, 

having three phases. At first, material behaves elastically in a range of small strains (up 

to 5%). Afterwards, material experiences almost constant stress at the plateau of 

increasing deformation. In the third phase, densification of material occurs with the fast 

increase of stress. This behaviour is characteristic for compressive loading, while tensile 

deformation is similar for small strains but it differs for large strains. Tensile behavior of 

elastomeric foams won‘t be described because in the INODIS system elastomer 

experiences only compression. 

 
Figure 6.10 Typical stress-strain curve for elastomeric foam materials (Abaqus, 2013) 

6.3 Small specimen tests 

Experimental tests on small specimens were used for calibration procedure in process 

for determination of values for material characteristics of FE model in software package 

Abaqus (2013). These values are later used in section 6.4 and Chapter 7 for simulations 

on infilled frames. 

6.3.1.1 Tests on concrete 

Since requested strength class for concrete for RC frames was C30/37 and tests on 

concrete samples gave much higher values for compressive strength, all parameters for 

definition of concrete material for numerical model were calibrated on the bare frame 

specimen (Test A). Adopted values are shown in section 6.4.1, Table 6.5. 
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6.3.1.2 Reinforcement 

Since reinforcement is modelled using truss elements, there is no need for calibration on 

one bar. Values for material characteristics, needed to define steel material for 

reinforcement in Abaqus (2013), are calibrated on the bare frame specimen (Test A). 

Adopted values are shown in section 6.4.1, Table 6.5. 

6.3.1.3 Vertical compression of masonry assembly 

All the data available from experimental tests on small scale specimens were assigned 

to the model, while not available values were calibrated using vertical compression test 

on masonry assembly. Therefore, vertical compression test on masonry assembly was 

used for calibration of masonry material used for bricks in the model and the interaction 

between the bricks. As already described (section 6.2.5.2), to indirectly account for the 

3D brick/mortar interaction effect, the compressive behaviour of the elements modelling 

the brick should be calibrated with compression tests of masonry prisms (Stavridis i 

Shing, 2010). Therefore, compressive strength and modulus of elasticity of masonry 

assembly are assigned to brick units. The tensile strength of the masonry units is 

assumed to be 10% of its compressive strength (Drysdale et al., 1999). Material 

property values used for masonry units and the interaction are summarized in Table 6.3, 

where it can be seen which values are taken directly from the experiment, calculated 

according to the recommendation from the literature or calibrated. Stress curves 

generated for masonry units are presented on Figure 6.11, while plasticity parameters 

for definition of CDP model were taken as described in  

Table 6.2. For calculating of initial stiffness of bed joint interaction, all the values for 

the Equation (6.4) and (6.5) are taken from experimental tests on small specimens. 

Thickness of thin layer joint is taken to be 2 mm. During calibration process it was 

needed to take 10 times smaller shear stiffness than calculated, in order to get 

satisfactory behaviour. Results from the bond strength test were used directly to define 

tensile strength of contact interface between the bricks. Since experimental campaign 

didn‘t consider determination of bed joint behaviour through direct shear test or triplet 

test, parameters for definition of interface between bricks are calibrated on masonry 

assembly models, using the range of values recommended in the literature 

(Brameshuber et al., 2016). For damage evolution, values for fracture energies are also 
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determined within the calibration process on masonry assembly. Interaction between the 

masonry panel and the bare frame is modelled with the interaction property adopted to 

represent the bed joint with the values calibrated on the BI test simulation (section 

6.4.2). As described in section 6.2.4, head joints didn‘t have mortar, thus global property 

interaction having ―hard‖ contact normal behaviour and penalty friction formulation 

with the friction coefficient being 0.6 has been used for them. 

Table 6.3 Material property values used for masonry unit and interaction 

Unit Value Source 
Bed joint 

Interaction 
Value Source 

Frame/infill 

Interaction 

Val-

ue 
Source 

E 

[GPa] 
4.87 

Experi-

ment 

knn 

[GPa/m] 
35.2 Calculated 

knn 

[GPa/m] 
35.2 Calculated 

fm’ 

[MPa] 
3.1 

Experi-

ment 

kss 

[GPa/m] 
1.48 Calculated kss [GPa/m] 1.48 Calculated 

εm,el 

[‰] 
0.25 Calibrated ktt [GPa/m] 1.48 Calculated ktt [GPa/m] 1.48 Calculated 

ε1 

[‰] 
1.2 Calibrated tn [MPa] 0.19 

Experi-

ment 
tn [MPa] 0.06 Calculated 

ζD 

[MPa] 
2.76 Calibrated ts [MPa] 0.15 Calibrated ts [MPa] 0.05 Calibrated 

ε2  

[‰] 
1.6 Calibrated tt [MPa] 0.15 Calibrated tt [MPa] 0.05 Calibrated 

α [-] 1.1 Calibrated Gn [N/m] 20 Calibrated Gn [N/m] 1 Calibrated 

ac [-] 320 Calibrated Gs [N/m] 20 Calibrated Gs [N/m] 10 Calibrated 

ft’ 

[MPa] 
0.31 Calculated Gt [N/m] 20 Calibrated Gt [N/m] 10 Calibrated 

εcr 

[‰] 
0.0637 Calculated η [-] 2 Calibrated η [-] 2 Calibrated 

rt [-] 0.05 Calibrated μ [-] 0.7 Calibrated μ [-] 0.7 Calibrated 

α1 [-] 250 Calibrated 

 

at [-] 350 Calibrated 

leq 

[m] 
0.05 Calibrated 

ν [-] 0.19 Calibrated 

 

  
a) b) 

Figure 6.11 Stress-strain curves for masonry unit for a) compression and b) tension 

Model representing vertical test on masonry assembly was made as similar as possible 
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to the experimental test. It is consisted of three bricks connected with the described 

contact characteristics for bed joint. Two rigid steel plates were used, lower one to 

represent fixed bottom and upper one as a loading plate (Figure 6.12a). Fixed boundary 

condition is assigned to the reference point of the rigid bottom plate, while for the 

reference point of the upper plate all degrees of freedom were fixed except vertical 

displacement, which was assigned as a loading. ―Hard‖ contact for normal behaviour 

and penalty friction were assigned as contact between the steel plates and bricks. 

Friction coefficient of 0.7 was used in the model. Reaction and displacement at upper 

plate were measured in order to get force-displacement i.e. stress-strain curves. Figure 

6.13 shows the comparison of the simulation and experimental results, while Figure 

6.12b presents tensile strain distribution within the masonry. The comparison clarifies 

that the simulation results are satisfactory. 

  
a) b) 

Figure 6.12 a) Numerical model and b) tensile strain of the vertical compression test on the ma-

sonry assembly 

 

    

Figure 6.13 Comparison of experimental and numerical stress-strain curves 
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6.3.1.4 Static compression tests on elastomer 

In order to calibrate hyperfoam model for elastomer material, numerical model 

simulating static compression test was used (Figure 6.14). Two strong steel plates were 

modelled, with one representing base of the compression machine being fixed at the 

bottom. Second plate presents upper plate with the all degrees of freedom fixed except 

vertical displacement, which was assigned as a loading. ―Hard‖ contact for normal 

behaviour and penalty friction were assigned as contact between the steel plates and 

elastomer. Friction coefficient of 0.75 was used in the model. For uniaxial test data, 

exact curves from experimental test were assigned, so it was just needed to calibrate 

strain energy potential order. After ranging from 1 to 6, it was obvious that the best fit 

with the experimental results gives the value of 2 assigned for strain energy potential 

order. Reaction and displacement at upper plate were measured in order to get force-

displacement i.e. stress-strain curves. Figure 6.15 and Figure 6.16 present diagrams 

showing a good match between experimental and numerical curves. 

  
a) b) 

Figure 6.14 a) Elastomer compression tests setup and b) numerical model assembly 

 

  
a) b) 

Figure 6.15 Comparison between experimental and numerical stress-strain curves for a) 

Regufoam® 270 and b) Regufoam® 400 and Regufoam® 510  
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a) b) 

Figure 6.16 Comparison between experimental and numerical stress-strain curves for a) 

Regufoam® 570 and Regufoam® 680 and b) Regupol® 480 and Regupol® 550  

6.3.1.5 Shear tests on elastomer 

Since just Regufoam® 510 and Regupol® 480 were submitted to the shear test, only 

stress-strain curves for these two materials were available. In order to perform 

parametric study changing first and second layer of U-shaped elastomer, it was needed 

to estimate the shear-strain curves for other materials used in the study. These curves 

were approximately assessed by simply dividing or multiplying stress values of the 

shear-strain curves of Regufoam® 510 and Regupol® 480 (Figure 6.17a). Stresses were 

divided/multiplied by factor representing the ration of modulus of elasticity. In this 

section just experimentally tested materials were simulated in order to check and 

calibrate the approach for definition of hyperfoam material used for simulating 

elastomer material. 

 
 

a) b) 

Figure 6.17 a) Stress-strain curves for shear behavior of elastomer and b) numerical model  

Model consists of four rigid plates that are tied to the elastomers (Figure 6.17b). Fixed 

boundary conditions were assigned to the reference point of one middle plate, while 

displacement in the longitudinal direction of the second middle plate was assigned to its 
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reference point. All four rigid plates are tied to the elastomers. Material is defined by 

assigning shear stress-strain curves from experimental test to the hyperfoam material 

using strain energy potential order of 2. 

Figure 6.18 shows good matching of numerical and experimental results. This confirms 

that for defining shear behaviour of elastomer stress-strain curves from experiments can 

be used, using the same strain energy potential order as for the uniaxial test data. 

 

Figure 6.18 Comparison of experimental and numerical results for simple shear test 

6.3.1.6 Tests on U-shaped elastomer connection 

The intention of these small scale experimental tests was to check glued connection 

between elastomers and elastomer and brick. The test showed that these connections are 

strong and definitively not the critical place for any possible damage. During the tests 

on U-shaped elastomer connection, both shear and uniaxial strength of elastomer were 

activated, therefore simulations of these experiments on U-shaped elastomer connection 

were used to check and calibrate stress-strain curves and definition of hyperfoam 

material, when both shear and compression of elastomer is activated. Also, just 

Regufoam® 510 and Regupol® 480 shear stress-strain curves were available from 

experiments, while shear stress-strain curves for other elastomers were assessed by 

simply dividing/multiplying stresses of available curves by factor representing the 

ration of modulus of elasticity. Therefore, simulation of U-shaped tests with other 

elastomers is used to check this approach for estimation of not available shear-strain 

curves. 

Six models were made, in order to simulate column and beam case with and without 

gap and with Regufoam® or Regupol® material. Model representing test on U-shaped 

connection made of elastomer was made as similar as possible to the experimental test. 
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It consists of one brick placed to simulate column or beam case (Figure 6.19). Since 

experiments showed that glued connection between elastomers and bricks and between 

two elastomers behave perfectly without damage, it was decided to model it with the tie 

connection. For the same reason, two parts of the elastomer were modelled as one part 

having two sections, in order to assign different material characteristics of the first and 

second layer of elastomer. Two concrete plates, as in experiment, were tied to the 

plastic profiles. Both concrete plates had fixed boundary conditions, while vertical 

displacement was applied directly on the brick. Concrete was modelled as an elastic 

material with modulus of elasticity of 30 GPa and Poisson‘s ratio being 0.2. Since the 

intention of this simulation model is to check the definition of shear behaviour assigned 

to hyperfoam material and not to simulate local failure of the brick, the brick was 

modelled as an elastic part having modulus of elasticity and Poisson‘s ratio as in the 

Table 6.3. Material characteristics assigned to plastic profile are the same as given by 

the producer (Table 6.4) with the Poisson‘s ratio being 0.35. ―Hard‖ contact for normal 

behaviour and penalty friction were assigned as contact between the concrete plates and 

elastomer and plastic and elastomer. Friction coefficient of 0.1 was used in the model to 

account for sliding surfaces. Reaction and displacement of the brick were measured in 

order to get force-displacement curves. 

Table 6.4 Material characteristics of the plastic profile 

Material 
Density 

[g/cm
3
] 

Modulus of elasticity 

E [N/mm²] 

Yield stress 

[N/mm²] 

Strain at yield stress 

[%] 

Plastic profile (PVC-CAW) 1.44 3300 5.27 4 

 

  
a) b) 

Figure 6.19 Models for a) column and b) beam connections without gaps 
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a) b) 

Figure 6.20 Simulated and experimental load-displacement curves for the a) beam (Test B) and 

b) column (Test C) connection without gap 

 

  
a) b) 

Figure 6.21 Simulated and experimental load-displacement curves for the a) beam connection 

with gap of 10 mm (Test BG10MM) and b) column connection with gap of 20 mm (Test 

CG20MM) 

 

    

Figure 6.22 Simulated and experimental load-displacement curves for the beam connection 

made of Regupol® material (Test BRP) 

Figure 6.20 shows the comparison of the simulation and experimental results. The 

comparison confirms that defined curves for shear behaviour of elastomer give good 

match with the experimental results in a sense of stiffness. Good matching with the 

experimental results is also confirmed for the case when contacting surface between 
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elastomer and plastic profile is reduced due to the gap and for the both Regufoam® and 

Regupol® materials (Figure 6.21 and Figure 6.22). With this numerical analysis shear-

strain curves for Regufoam® 400 and and Regupol® 550, made with the simple 

estimation using factor representing ratio of modulus of elasticity, were confirmed as 

correct. Therefore, it can be assumed that shear-strain curves for other materials are 

valid to be used in infilled frame models. Also, this numerical analysis confirmed that 

definition of hyperfoam material used for U-shaped elastomer connection can be done 

with the stress-strain curves from uniaxial and simple shear test data. 

6.4 Numerical simulations of experimental tests on infilled frames 

In order to validate the modelling approach described in section 6.2, experimental tests 

on infilled frames described in Chapter 5 are simulated. Calibrated and validated models 

are later used in Chapter 7 for parametric studies. Since the parametric study was used 

for simulating in-plane behaviour of infilled frames with the INODIS system, numerical 

model was only validated against in-plane experimental tests, although they include also 

out-of-plane loading steps that are simulated too. Also, out-of-plane design concept is 

based on the simple mechanical model and analytical solution; therefore there was no 

need for out-of-plane simulations on the micro model. 

6.4.1 In-plane simulation of the bare frame (Test A) 

The bare frame model was the first analysed FE model. Bare frame is modelled 

according to the explanation given in section 6.2. This model was used for concrete 

material as well as reinforcement material calibration. The properties of the concrete 

and of the reinforcement steel used in the FE model are reported in Table 6.5, where it 

can be seen which values are taken directly from the experiment, calculated according 

to the recommendation from the literature or calibrated. As already mentioned, 

requested strength class for concrete for RC frames was C30/37, but tests on concrete 

samples gave much higher values for compressive strength which when used in 

numerical model highly overestimated stiffness and strength of the bare frame. 

Therefore it was decided, for definition of concrete material, to use properties of 

concrete strength class C30/37. Only modulus of elasticity was taken from experimental 

results. All other values are taken and calculated as described in section 6.2.5.1. Stress 

and damage evolution curves generated for concrete material are presented on Figure 
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6.23 and Figure 6.24, respectively. Plasticity parameters for definition of CDP model 

were taken as described in  

Table 6.2. As explained in section 6.2, full bonding between concrete and steel is 

considered and simulated using embedded element constraint. This formulation has 

been proven satisfactory for monotonic behaviour of reinforced concrete (Alfarah et al., 

2017). 

Table 6.5 Material property values used for concrete and reinforcement steel 

Concrete Value Source Reinforcement steel Value Source 

Ecm [GPa] 32.558 Experiment Es [GPa] 200 Experiment 

fcm [MPa] 38 Calibrated Poisson‘s ratio 0.3 Calculated 

εc,el [‰] 0.47 Calculated fy [MPa] 540 Experiment 

fc,el [MPa] 15.2 Calculated fu [MPa] 650 Experiment 

εc1 [‰] 2.2 Calculated εu [%] 10 Calibrated 

k [-] 1.9792 Calculated 

 

εc,uD [‰] 3.5 Calculated 

fcuD [MPa] 24.28 Calculated 

εcuE [%] 3.0 Calibrated 

α [-] 30 Calibrated 

αtD [-] 0.45 Calibrated 

αtE [-] 0.96 Calibrated 

β [-] 1.56 Calculated 

fctm [MPa] 2.9 Calculated 

εt,el [‰] 0.089 Calculated 

c1[-] 3 Calibrated 

c2 [-] 6.93 Calibrated 

GF [N/m] 183 Calculated 

uc [mm] 0.33 Calculated 

ac [-] 160 Calibrated 

at [-] 500 Calibrated 

leq [m] 0.05 Calibrated 

Poisson‘s ratio 0.2 Calculated 

 

  
a) b) 

Figure 6.23 Stress-strain curves for concrete a) compression and b) tension 
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a) b) 

Figure 6.24 Damage curves for concrete a) compression and b) tension 

Material used for reinforcement steel is elasto-plastic isotropic material and values for 

material characteristic are calibrated on the bare frame specimen and shown in Table 

6.5. The same characteristics are assigned to all bar diameters. Modulus of elasticity 

was taken from experimental results as an average value from different bar diameters. 

The same was done for the yield and tensile strength. 

 
 

a) b) 

Figure 6.25 a) Comparison of the force-displacement curves and b) deformed shape with the 

tensile damage distribution at 3.5% of drift  

As shown in Figure 6.25a, the obtained force-displacement curve is close to the one of 

experimental test results. A very good matching is succeeded in terms of stiffness 

decrease. According to the Table 6.6, the differences for the forces and drifts when infill 

cracking started, maximum force is reached and at the maximal displacement are quite 

small. Experimental values in the Table 6.6 are extracted from positive envelope. Figure 

6.25b shows bare frame deformed shape with the tensile damage distribution showing 

position of cracks in concrete. The cracks are distributed as observed and described in 

experiment evaluation in section 5.5.1, showing satisfactory matching. Damage is 
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concentrated at the top and bottom ends of the columns near the positions of the 

maximum bending moments. Due to the larger cross section dimensions, the beam 

shows a less pronounced cracking pattern than the columns. Failure of the test specimen 

could be observed due to the formation of plastic hinges at top and bottom ends of the 

columns. Such a mechanism is found to be very similar to the one observed during the 

tests. 

Table 6.6 Comparison of numerical and experimental results on bare frame 

 
Cracking initiation Max. load Max. displacement 

F [kN] drift [%] F [kN] drift [%] F [kN] drift [%] 

Experiment 53 0.29 120 2.0 95 3.5 

Simulation 55 0.28 115.5 1.85 94 3.5 

Difference [%] 3.77 3.45 3.75 7.5 1.05 -  

6.4.2 In-plane plane simulation of the traditional infill (Test BI) 

The second numerical analysis was performed on the traditionally infilled frame model. 

For the numerical simulation of the tests, the masonry has been modelled using the 

parameters calibrated through the FE analyses conducted on the vertical compression 

test on masonry assembly, as described in section 6.3.1.3. Infilled frame model is 

assembled using bare frame model and just adding bricks and defining interaction 

between the bricks and infill panel and frame, using the values from Table 6.3. 

Numerical model of infilled frame of the BI test is presented on Figure 6.2. 

  
a) b) 

Figure 6.26 Comparison of force-displacement curves a) for the first in-plane loading phase up 

to 1.25% of drift b) for the whole test 

Loading protocol applied was the same as in experimental test, first in-plane 

displacement up to 1.25% of drift was applied, followed by the out-of-plane pressure 

load of 3 kN/m
2
 and then after removing it application of second in-plane loading up to 

2.1% of drift. Figure 6.26a shows comparison of pure in-plane loading results up to 
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1.25% of drift, while Figure 6.26b shows in-plane force-displacement curves for the 

whole test. 

  
a) b) 

Figure 6.27 a) Deformed shape with compression damage distribution (5 times scaled defor-

mation) and b) experimental crack pattern at 1.25% of in-plane drift 

 

  
a) b) 

Figure 6.28 a) Deformed shape with compression damage distribution (5 times scaled defor-

mation) and b) experimental crack pattern at 2.1% of in-plane drift 

Figure 6.27 and Figure 6.28 present damage distribution in the infill together with the 

cracks distribution from the experiment, at the 1.25% and 2.1% of in-plane drift. 

Damage distribution at the end of the test is spreaded all over the wall and level of 

damage is higher, than at the 1.25% of drift, which is in a line with what was observed 

during the experimental test. Table 6.7 shows that difference in force and displacement 

values between experimental and numerical results is negligible. Experimental values in 

the Table 6.7 are extracted from positive envelope. Again, it can be seen that the 

numerical analysis output was close to the test results in terms of initial stiffness, 

stiffness degradation and force-displacement (Figure 6.26) as well as deformed shape 
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and damage distribution (Figure 6.27 and Figure 6.28). Figure 6.27 and Figure 6.28 

show a comparison between the experimental and analytical crack patterns, where it can 

be seen that the results of the FE analysis is able to capture the position and direction of 

cracks, although it cannot predict in a precise way some of the minor cracks. 

Table 6.7 Comparison of numerical and experimental results on traditionaly infilled frame 

 
Cracking initiation Max. load Max. displacement 

F [kN] drift [%] F [kN] drift [%] F [kN] drift [%] 

Experiment 110 0.06 240 1.50 180 2.1 

Simulation 108 0.06 239 1.54 205 2.1 

Difference [%] 1.8 0 0.42 2.67 13.9 -  

6.4.3 In-plane simulation of the IMES system (Test CI) 

Experimental tests on infilled frames with the IMES system showed good behaviour in 

a case of just in-plane or just out-of-plane loading. Circumferential elastomers improved 

in-plane behaviour of infill wall by postponing damage to higher drift levels. Out-of-

plane load capacity was reduced due to the weaker boundary conditions. However, for 

the case of simultaneously applied in- and out-of-plane loading the behaviour was 

disastrous, showing that anchor connection is not the good solution. Therefore, infilled 

frames with the IMES system weren‘t modelled in detail (anchor connection was 

omitted), instead CI experiment was modelled just as another test used for validation of 

infilled frame model with elastomers. Good thing with CI experiment is that it was 

loaded up to 3.5% of drift, so it was used to confirm the validity of the numerical model 

at high level of drifts. 

Numerical model was made using the model for BI test, just 2.5 cm of Regufoam® 400 

elastomer was added at the top and sides. Material for elastomer is defined as explained 

in section 6.3.1.4. The model was loaded just in-plane up to 3.5% of drift. 

Results of the analysis are shown on Figure 6.29, Figure 6.30 and Table 6.8. 

Experimental values in the Table 6.8 are extracted from the positive envelope. The 

results acquired from numerical analysis show again that numerical model is capable to 

predict with enough precision the stiffness, the peak lateral force and the overall 

behaviour of the specimen, as illustrated in Figure 6.29, where it can be seen that the 

force-displacement curve from the analysis matches quite accurately the envelope of the 

test. Figure 6.29b shows the effect of decoupling and how the infill wall is much less 
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and later activated when compared to the traditional infill. 

  
a) b) 

Figure 6.29 a) Comparison of experimental and numerical force-displacement curves and b) 

comparison with the bare frame and traditionally infilled frame  

 

  
a) b) 

Figure 6.30 a) Deformed shape with compression damage distribution (5 times scaled defor-

mation) and b) experimental crack pattern at the maximum load 

Table 6.8 Comparison of numerical and experimental results on infilled frame with the IMES 

system 

 
Cracking initiation Max. load Max. displacement 

F [kN] drift [%] F [kN] drift [%] F [kN] drift [%] 

Experiment 145 1.2 210 2.75 160 3.5 

Simulation 155 1.15 200 2.7 170 3.5 

Difference [%] 6.9 4.16 4.76 1.8 6.25 -  

6.4.4 In-plane simulation of the INODIS system (Test DIO) 

In this section infilled frame with the INODIS system is simulated under in-plane 

loading. In experiment DIO specimen was loaded in couple of phases combining in- and 

out-of-plane loading, as explained in section 5.5.3.4. The first loading phase was pure 

in-plane loading, and it was used to validate numerical model of the INODIS system 

(Figure 6.31a). Afterwards, model was simulated up to around 5.70% of in-plane drift 



Chapter 6  Numerical analysis 

265 

(Figure 6.31b) in order to investigate what would happen if in experiment test specimen 

was loaded up to this level. It can be seen that numerical model predicts very well 

stiffness and strength of an infilled frame with the INODIS system. Figure 6.31b shows 

that the cracking initiation and at the same time maximum load capacity of an infilled 

frame with the INODIS system will appear at 2.8% of in-plane drift giving 195 kN of 

force resistance. This high level of in-plane drift reached can be explained with the 

contribution curve showing that activation of the infill is postponed to the high drift 

levels. 

  
a) b) 

Figure 6.31 Comparison of experimental and numerical force-displacement curves a) for the 

phase 1 of the test and b) simulation results up to a drift level of 5.70% 

 

  
a) b) 

Figure 6.32 a) Deformed shape with compression damage distribution at cracking initiation and 

b) at 4% of in-plane drift (5 times scaled deformation) 

Damage of infill wall (Figure 6.32a) occurs due to the crack openings, which leads to 

the abrupt drop of the resistance force. Afterwards, residual strength of an infill is 

activated due to the fact that contact between frame and infil is soft and not hard as in 

traditional infill. U-shaped elastomers around infill allow for reconsolidation of infill 

bricks (Figure 6.32b) after occurrence of cracks which brings additional capacity to the 
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infill. It can also be seen that cracks in RC frame appeared much sooner than in the infill 

(Figure 6.32b), which proves that when the INODIS system is applied it is enough to 

properly design structural frame system as it is the usual practice today. 

Figure 6.33 shows horizontal section just under the top beam of deformed infilled frame 

with INODIS system (view from the top). On Figure 6.33b deformed infilled frame with 

INODIS system is shown, where it can be seen that even at very high in-plane drifts 

(5.70%) there is still contact between plastic profile and U-shaped elastomer. This 

provides reliable boundary condition for out-of-plane loads, which is not the case for 

traditionally infilled frame and gap between infill and column appears already at small 

in-plane drifts. This gap presents a loss of contact between infill and frame, making 

infill corners of traditional infills vulnerable to out-of-plane loads. Figure 6.33a shows 

compressed elastomer in the other top corner. 

  
a) b) 

Figure 6.33 Deformed shape with a) compressed elastomer on one side and b) gap between in-

fill column on the other side at 5.5% of in-plane drift 

6.4.5 Combined in-plane and out-of plane simulation 

Developed numerical model is not capable to adequately represent infill walls subjected 

simultaneously to in- and out-of-plane loads. Therefore smeared homogenized model is 

employed for simulating this loading condition in order to explain load transfer and 

behavior of infill under unfavourable conditions that appear under simultaneous loading 

and not to assess exact values of drift and resistance force. 

Numerical model was used to simulate BIO and DIO specimens under combined 

loading. CIO test wasn‘t modelled since in experiment the same disastrous behaviour as 

in BIO tests was observed, which showed that anchors are not sufficient measure for 

combined loading. Infill wall is modelled with the one part presenting infill panel, 
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instead of each brick connected with the interaction as it was done so far. This model 

does not make a distinction between individual units and joints but treats masonry as a 

homogeneous and isotropic continuum. The same material as for the brick is used for 

infill panel part, with the same characteristics. All other characteristics are defined as for 

the detailed model. First out-of-plane load of 5 kN/m
2
 is applied followed by in-plane 

displacements applied at the top beam. 

Figure 6.34a illustrates the distribution of the contact stress when out-of-plane load is 

applied and Figure 6.34b shows the same for a combined loading. It can be seen that the 

contact surfaces form in accordance with the arching effect when subjected to an out-of-

plane load and in an eccentric manner when exposed to a combined loading.  

  
a) b) 

Figure 6.34 Contact stresses at a) out-of-plane loading and b) combined loading 

The contact stress distributions for the different load situations are qualitatively 

illustrated in Figure 6.35. The contact area for an in-plane load with the load dissipation 

via the diagonal compression strut is shown in Figure 6.35a, where it can be seen that 

contact is reduced to some part of the infill width/height. This was observed by many 

researchers and it is first investigated by Stafford Smith and Carter (1969), and 

afterwards by Hendry (1981), Crisafulli (1997) and Al-Chaar et al. (2002). In Figure 

6.35b, the contact stresses correspond to the support areas of the compression arch that 

form in both directions of the wall with the four-sided support in case of out-of-plane 

loading. Figure 6.35c qualitatively illustrates the contact stresses that form when loads 

are applied in both directions. In this case, the forces in the compression struts have to 

be dissipated via reduced contact areas and the arching effect is eliminated. Finally, 

Figure 6.35d illustrates the contact stress distribution in the case when there is a top gap, 
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which produces a tilting movement of the wall when exposed to a combined load. In 

this case, the diagonal compression strut runs diagonally through the corner points on 

the inner side and outer of the wall. 

  
a) b) 

  
c) d) 

Figure 6.35 Contact stresses for a) in-plane loading, b) out-of-plane loading, c) in- and out-of-

plane loading with the full contact and d) with a gap at the top 

The contact stress distributions show that the contact areas become smaller when 

exposed to combined loads which results in the loads that are placed on the bricks in the 

contact areas becoming significantly greater. In the BIO and CIO tests, this has led to 

local failure in the contact area due to the cracking and splitting of the bricks. A further 

important aspect of the combined load transfer is the eccentric formation of the contact 

area which, when subject to cyclical in-plane loads, can lead to a successive out-of-

plane infill movement. This effect has already been described in section 5.5.2.2 for the 

BI test and is illustrated in Figure 5.34. This effect is amplified in the event of a 

diagonal compression strut when a tilting movement occurs in the wall (Figure 6.35d). 

This was one of the reasons to design the INODIS system having U-shaped elastomer, 

which has the second layer of elastomer that prevents loss of contact between infill and 

frame as it can be seen on Figure 6.33. Figure 6.36 confirms that contact areas remain 
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unreduced all around infill panel, when INODIS system is applied. Contact stresses (red 

colour) on U-shaped elastomer show that the same areas of elastomer are in contact with 

the plastic profiles during out-of-plane loading and combined in-and out-of-plane 

loading. It can be noticed that the contact between plastic profiles and elastomer is 

continuous, thus avoiding stress concentrations. Therefore, out-of-plane load is taken by 

the whole circumferential of an infill. This is an important feature of the INODIS 

system because this means that infill wall with the INODIS system can be designed 

separately for in-plane and out-of-plane loading and if fulfils both requirements it will 

be sufficient for combined loading too. Therefore it is not necessary to simulate 

combined loading on infill panel, it is just necessary to design the INODIS system in a 

way that no loss of contact between plastic profiles and elastomer appears. 

  
a) b) 

Figure 6.36 Contact stresses at a) out-of-plane loading and b) combined loading for infilled 

frame with the INODIS system (OOP=5 kN/m
2
 and IP=2%)  

6.5 Summary 

FE model for comparison with the tests shown in Chapter 4 and Chapter 5 have been 

developed. Advanced analysis methods, using Abaqus/Explicit solver were employed in 

order to deal with complicated contact interactions and high plasticity and damage. 

Simplified micro-modelling approach for three-dimensional finite element analysis of 

masonry infilled RC frame is introduced. Models were made with the exact geometry as 

in the experiment. Each reinforcement bar and stirrups is modelled using truss elements 

and incorporated into the concrete 3D continuum elements, using embedded technique. 

Also masonry units are modelled as separate parts connected with the defined 
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interaction the mortar joint behaviour. 

Concrete damage plasticity model was used for the concrete and masonry material 

models, while hyperfoam material model is employed for modelling an elastomer. 

Separate definition of compression and tension for concrete and masonry materials has 

been done, using the stress-strain curves for the compression and stress-displacement 

curves for the tension. Softening part of the stress-strain curve for the compression of 

masonry has been developed (Equation 6.21) to be very suitable for calibration process, 

because increase/decrease of residual strength of bricks i.e. infill can be easily 

accomplished. For defining the hyperfoam material uniaxial test data and shear stress-

strain curves from experimental test are used. For the reinforcement material an elasto-

plastic material model characterised by an isotropic hardening behaviour is used. 

The material models were first calibrated on the small scale specimen tests on masonry 

and elastomer components. Concrete and reinforcement material are calibrated on the 

bare frame test (Test A). Afterwards, tests on infilled frames are simulated, showing that 

the model can effectively predict the load-displacement response of the structures and 

the crack damage of masonry infill wall with the satisfactory accuracy. 

Developed numerical model is not capable to adequately represent infill walls under 

simultaneous in- and out-of-plane loads. Therefore, for simulating BIO and DIO 

specimens smeared homogenized model is employed. This was useful in order to 

explain load transfer and behaviour of infill under the unfavourable conditions that 

appear during simultaneous loading. 

The model does not take into account orthotropic behaviour of masonry and is not 

capable to satisfactorily represent cyclic behaviour of infilled frames. However, it 

provides very good matching under monotonic loading. Therefore, the same analysis 

technique and model parameters are used for parametric study shown in Chapter 7. 
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It’s not that I’m so smart, it’s just that I stay with problems longer. 

Albert Einstein 
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7.1 Parametric analysis program 

After being properly calibrated and validated through experimental data, the developed 

numerical model presented in Chapter 6 is used for an extensive parametric study 

presented in the following. The parametric study is performed on infilled frames with 

the INODIS system to analyse their behaviour with respect to the variation of 

mechanical characteristics, mechanical properties and boundary conditions. The results 

of the parametric study are used to provide a basis for the derivation of a practical 

design concept. The following parameters of the infill frames with INODIS system are 

varied in detail: 

 Thickness of the elastomers 

 Mechanical properties of the elastomers 

 Level of axial loading 

 Strength of the infill masonry/variation of unit and mortar strength 

 Wall geometry (height/length and height/thickness ratio 

 Cross sections of beams and columns 

 Reinforcement ration of the frame 

The parametric study is executed in two consecutive steps: First, an initial parametric 

study was conducted on the experimentally tested frame to identify the key influencing 

parameters. Therafter the main parametric study is carried out with variation of the key 

influencing parameters. The results of the parametric studs are summarized and 

presented in diagrams and tables, which are further used to derive the design concept.  

7.1.1 Friction coefficient of sliding surfaces 

As described in Chapter 3, the INODIS system applied in experimental campaign 

contained sliding surfaces glued on the concrete frame, plastic profiles and elastomers. 

They were installed to reduce a transfer of shear forces during in-plane loading. For the 

sliding surfaces, a double-layer film with PTFE sliding pads with a coefficient of 

friction of 0.1 was assigned in the validated model (Section 6.4.4). The simulations are 

carried out for friction coefficients of 0.02 and 0.7 in order to check the influence of a 

rather low friction and the situation without any sliding surface. 
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Figure 7.1 shows no significant differences between the results with friction coefficients 

of 0.02 and 0.1. The increase of stiffness and maximum base shear obtained for a 

friction coefficient of 0.7 is insignificant. The result shows clearly, that an application of 

sliding surfaces in the INODIS system is not required. 

 

Figure 7.1 Force-displacement curves for different friction coefficients 

7.1.2 Infill wall with or without elastomer at the bottom 

In order to check the necessity to install an elastomer at the bottom of the infill, 

simulations of an infill with the U-shaped elastomer at columns and top beam, with and 

without and elastomer at the bottom has been performed. The comparison in Figure 7.2 

shows that the specimen without elastomeric support at the bottom is much stiffer and 

the maximum load is reached quickly. Thus, the infill is faster activated and cracking in 

infill starts earlier (at 2% of drift). The simulation results are confirmed by the 

experimental results of the CI specimen without an elastomer at the bottom and plain 

elastomers on three sides with 2.5 cm thickness. Similar to the simulation results, the 

response is stiffer and maximum load is reached earlier. 

 

Figure 7.2 Force-displacement curves for an infill wall with the INODIS system with and with-

out elastomer at the bottom 
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From the out-of-plane behaviour of the CIO specimen (Section 5.5.3.3 and Section 

5.5.5.3) it can be seen that the application of the elastomer at the bottom is even more 

important to avoid out-of-plane displacements. It can be concluded that the elastomeric 

support at the bottom is needed and improves the behaviour of the INODIS system. 

7.1.3 Stiffness of bottom elastomer 

Since it was concluded in the previous section that the application of the elastomer 

improves the efficiency of the INODIS system, the influence of elastomer stiffness is 

further investigated. In the DIO test, Regufoam® 570 was used for the elastomer at the 

bottom of the infill. This type of elastomer is approximately 10 stiffer than Regufoam® 

400 (Table 4.10 and Figure 4.10) which is used for the first layer at the columns and top 

beam. The numerical simulation was carried out with the stiffest elastomer Regufoam® 

680 at the bottom, 10 times stiffer than Regufoam® 570. Figure 7.3 illustrates that the 

increases stiffness of the elastomer at the bottom does not influence the behaviour of the 

INODIS system. However, a higher stiffness of the elastomer at the bottom will increase 

the formation of the arching effect in case of out-of-plane loading. Therefore the main 

parametric study will be carried out with the stiffer elastomer Regufoam® 680. 

 

Figure 7.3 Force-displacement curves for an infill wall with the INODIS system with different 

stiffness of the elastomer at the bottom 

7.1.4 Stiffness of the first layer of the U-shaped elastomer 

Figure 7.4 shows the force-displacement curves for an infilled frame with the INODIS 

system, if different types of elastomers are used for the first layer of the U-shaped 

connection, both at columns and top beam. Figure 7.4 shows that for all types of 

elastomers the infill activation is delayed and the maximum load capacity is reached at 
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high drift values. After exceeding the drift at the maximum load capacity cracking 

within the infill takes place. The lower the stiffness of the elastomer, the lower the 

maximum base shear and the slower the infill is activated. The results show, that the 

choice of the first layer is quite important as the influence on the force-displacement 

curve is clearly visible. 

 

Figure 7.4 Force-displacement curves for an infill wall with the INODIS system with different 

stiffnesses of the first layer 

7.1.5 Stiffness of the second layer of the U-shaped elastomer 

Since the U-shaped elastomer of the INODIS system consists of two layers, the 

influence of stiffness of the second layer of elastomer, both at columns and top beam, is 

studied. In the experimental test Regufoam® 510 was used for the second layer, thus the 

initial DIO model contains this type of elastomer. Additional simulations are executed 

using the stiffest elastomer (Regufoam® 680) and the softest elastomer (Regufoam® 

270), while keeping the Regufoam® 400 for the first layer. 

 

Figure 7.5 Force-displacement curves for an infill wall with the INODIS system with different 

stiffnesses of second layer of the U-shaped elastomer 

Figure 7.5 depicts that the influence of the stiffness of the second layer on the overall 
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response is much smaller. It can be concluded that the characteristics of the first layer of 

U-shaped elastomer should be in focus during the design of the INODIS system for the 

case of in-plane loading. It is recommended to chose the second layer much stiffer to 

provide reliable boundary conditions to avoid out-of-plane movements of the masonry 

infill. 

7.1.6 Stiffness of the first layer of U-shaped elastomer at the beam/column 

Figure 7.6 shows the change in the force-displacement curves when the first layer of the 

U-shaped elastomer is changed at the beam or column. The stiffest elastomer 

Regufoam® 680 was applied instead of Regufoam® 400, while Regufoam® 510 was 

kept for the second layer as was used in experimental tests. Figure 7.6 shows the the 

initial stiffness and the activation is more influenced in case of a higher elastomeric 

stiffness along the columns. At really high drifts of more than 3%, the influence of of 

the beams is more pronounced and lead to an increase of the base shear. However, as 

ductile reinforced concrete frames are usually designed for drifts up to 2% (FEMA 356, 

2000), it is more important to adjust the stiffness of the elastomers placed along the 

columns. The higher stiffness for the elastomers at the top beams should be chosen in 

order to increase the formation of an arching effect in vertical direction under out-of-

plane loading. 

 

Figure 7.6 : Force-displacement curves for an infill wall with the INODIS system with different 

stiffnesses of the first layer for the beam or column connection U-shaped elastomer 

7.1.7 Thickness of elastomer 

Three additional models with the elastomers at columns having thicknesses of 15, 25 

and 35 mm for the first layer are simulated. The thickness of the second layer was taken 

to be the same as for the first layer, while the thickness of the top beam elastomer is 
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calculated as 2/3 of thickness of column elastomer. This results in total thicknesses of 

30, 50 and 70 mm of the decoupling element along the columns. The thickness of the 

plastic profile is equal to the thickness of the second elastomeric layer. The elastomer at 

the bottom is modelled with the same thickness as the thickness of the first layer 

elastomer at the top beam. Figure 7.7 shows that the thickness of elastomer changes the 

initial stiffness and the drift when infill cracking starts. Hence, the thickness of the first 

layer is one key parameter for the design to reach the required drift demand governed by 

the frame structure. 

 

Figure 7.7 Force-displacement curves for an infill wall with the INODIS system with different 

thicknesses of U-shaped elastomer 

7.1.8 Vertical load 

In the following the influence of the vertical load level on the columns is investigated. 

In the experimental tests each column was subjected with vertical loads of 200kN, 

simulating loads from upper stories of a building. Additional simulations are carried out 

with the vertical forces of 50kN and 400kN per column. Figure 7.8a shows the increase 

of maximum load level for higher vertical loads, especially in the case of traditionally 

infilled frames. This effect is less pronounced in a case of infills with the INODIS 

system, which is more detailed clarified with the curves presenting the contribution of 

the infill walls (Figure 7.8b). Since the bare frame model was simulated up to around 

3.7% of drift, the curves for the contribution of the infill are presented up to this level. 

Figure 7.8b shows that the force-displacement curves for different vertical load levels 

do not significantly influence the initial stiffness and the maximum load up to drifts of 

about 2.5%. At higher drift levels the contribution decreases coused by the increasing 

geometrical stiffness of the RC frame. It can be summarized, that the the vertical load 
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level does not have a significant influence on the force-displacement curve and can be 

neglected within the main parametric study. 

  
a) b) 

Figure 7.8 a) Force-displacement curves for different vertical load levels and b) curves of infill 

contribution  

7.1.9 Height to length ratio 

Since the literature review (Chapter 2) showed that the failure mode of infill wall 

changes for different aspect ratios. Therefore the influence of the aspect ratio, defined as 

the height to length ratio, is investigated in the following. The experimentally tested 

infilled frames had a length of 302 cm and a height of 275 cm, with the infill wall 

having a length of 277 cm and a height of 252 cm. In this parametric study, two 

additional frames having the same height and being shorter (150 cm) and longer (450 

cm) are investigated. Given that, the aspect ratios of infill walls are: 2, 0.9 and 0.6. With 

these aspect ratios the behaviour of short, square and long walls is investigated. 

  
a) b) 

Figure 7.9 a) Force-displacement curves for an infill wall with and without INODIS system for 

different h/l ratios and b) deformed shape with damage distribution at maximum load capacity 

(INODIS- h/l=0.9) 

Force-displacement curves for different h/l ratios, for both traditionally infilled frames 

and frames with the INODIS system are presented in Figure 7.9. Obviously, the 
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occurrence of infill cracking as well as maximum load and corresponding drift levels 

are changing in accordance with the variation of the h/l ratio. This happens due to the 

change in failure modes for different h/l ratios (Figure 7.9b, Figure 7.10). Shorter infill 

walls are dominated by rocking while longer walls are characterized by shear transfer. 

However, for all aspect ratios the INODIS system postpones the activation of the infill 

to the higher drift levels, but the contribution of the infill at higher drift levels is clearly 

influenced by the h/l ratio. 

  
a) b) 

Figure 7.10 Deformed shape with damage distribution for a) INODIS - h/l=0.6 and b) INODIS- 

h/l=2 at maximum load capacity (5 times scaled deformation) 

7.1.10 Infill thickness 

The RC frames tested in experiments were filled with highly thermal-insulating MZ70 

bricks with a thickness of 36.5 cm. In order to investigate the influence of the infill 

thickness on the behaviour of infilled frames with the INODIS system, the 

experimentally investigated infill frame is simulated with bricks of 24 cm. 

 

Figure 7.11 Force-displacement curves for different infill thicknesses 

Figure 7.11 shows the influence of the thickness on the results due to in-plane loading. 

The comparison shows, that the initial stiffness and behaviour up to a drift level of 1.7% 
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is quite similar, but the maximum load is reduced for the infill with a thickness of 

24 cm. It can be summarized, that the thickness of the infill must be considered within 

the design of the INODIS system. 

7.1.11 Masonry infill stiffness (frame to infill stiffness ratio) 

In order to investigate influence of the frame to infill stiffness ratio on the behaviour of 

infilled frames with the INODIS system, an infill with a masonry compressive strength 

of 1.0 MPa and a modulus of elasticity of 1.0 GPa is simulated and compared to the 

results of the validated numerical model (Chapter 6) with a compressive strength of 3.1 

MPa and a modulus of elasticity of 4.87 GPa (Table 7.1). 

 

Model          E [GPa] 

Infill  3.1 4.87 

Infill 2 1.0 1.0 
 

Figure 7.12 Force-displacement curves for dif-

ferent material characteristics of the bricks 
Table 7.1 Infill brick material characteristics 

 

  
a) b) 

Figure 7.13 Deformed shape with the compression damage distribution at maximum load capac-

ity for a) Infill 1 and b) Infill 2 (5 times scaled deformation) 

Figure 7.12 shows that initial stiffness of the infilled frame with the INODIS system is 

not influenced by the stiffness of the infill, but the maximum load and the drifts with 

occurrence of first damages are different. This is due to the different failure modes 

(Figure 7.13) governed by strength of the masonry. Infill 1 shows damage and gapping 

of the joints while Infill 2 experiences brick failures without joint opening. It can be 

concluded, that the stiffness ratio can be neglected as long as the infill is not activated. 
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After the activation of the infill, the strength ratio plays an important role and must be 

considered. The level of influence depends on the choice of the thickness and stiffness 

of the elastomers, governing the degree of decoupling between frame and infill. 

7.1.12 RC frame stiffness (frame to infill stiffness ratio) 

Beside the infill stiffness and the dimensions of the RC frame, the cross sections of the 

columns and the top beam influence the frame to infill stiffness ratio. The 

experimentally tested frame had columns of 25x25cm and a top beam of 25/45cm. To 

study the influence of the frame stiffness, an additional simulation with quadratic cross 

sections of 35x35 cm for columns and top beam iscarried out.  

Figure 7.14 shows that the increase of the column dimensions leads to an increase of the 

initial stiffness and maximum load. However, the contribution of the infill is postponed 

in both cases and on a rather low level (Figure 7.14). It can be also observed that in both 

cases, initial stiffness of the bare frame and infilled frame with the INODIS system is 

the same. It can be concluded, that the frame stiffness is an important parameter as it 

directly influences the maximum load capacity of the bare frame and the displacement 

demand generated by the RC frame system. 

 

Figure 7.14 Force-displacement curves for different frame cross sections 

7.1.13 Reinforcement ratio 

Another characteristic investigated is the reinforcement ratio of the RC frame. 

Reinforcement ratio of experimentally tested frame was 1.48% and 1.05% for columns 

and beam, respectively. Two additional simulations are executed, where only the cross 

sections of the longitudinal bars were changed, giving the reinforcement ratios as 
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presented in the Table 7.2. From Figure 7.15 it can be concluded that change of the 

reinforcement ratio influences the bare frame response but the maximum drift levels of 

the infilled frame with the INODIS system are still compareable. Thus, this parameter 

will be neglected in the main parametric study. However, the displacement demand of 

the frame system is highly influenced by the choice of the ductility class according to 

Eurocode 8 (EN 1998-1, 2004). If the ductility class DCL is chosen, it can be expected 

that the INODIS system is able to avoid any infill damages as the displacements are 

small. If the frame is designed for a higher ductility class, the system postpones and 

reduces the contribution of the infill. 

 

Model Column Beam 

RR1 1.09% 0.77% 

RR2 1.48% 1.05% 

RR3 1.93% 1.37% 
 

Figure 7.15 Force-displacement curves for different frame rein-

forcement ratios 

Table 7.2 Reinforcement 

ratios used in the numerical 

models 

7.1.14 Concrete class 

The influence of concrete strength on the behaviour of infilled frames with the INODIS 

system has been also investigated. Numerical model presenting experimental test has a 

concrete class C30/37. A second model with concrete class C35/45 was used to 

investigate the effect of changing the concrete class on the drift limits of an infilled 

frame with the INODIS system. Figure 7.16 shows that the concrete class slightly 

increases the stiffness of the model, but it does not influence the drift level when 

cracking of infill starts. 
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Figure 7.16 Force-displacement curves for different concrete classes 

7.1.15 Short column case 

In the case when infill wall in a reinforced concrete frame is shorter than the column 

height, the short column effect can occur during an earthquake shaking. As it can be 

seen in section 1.2, this form of damage is frequently observed in many earthquakes. 

Therefore, this kind of infilled frame setup is numerically studied on traditionally 

infilled frame and infilled frame with the INODIS system. The situation when an infill 

wall has an opening in the upper part within the whole length of the wall is simulated. 

Two models are made, one with the opening having the height of 75 cm and second one 

with the opening of 125 cm of height. This makes an infill walls having contact with the 

frame in the 70% and 50% of its height. 

On Figure 7.17 it can be seen that the INODIS system decouples RC frame and infill 

walls producing less stiff response compared to the traditionally infilled frames. In this 

way, the INODIS system reduces the level of shear forces on the frame, which is the 

main governing parameter for the damage of columns due to the short column effect. 

INODIS system also postpones start of damage in infill walls too. Figure 7.18 shows 

damage distribution for the case when infill wall has the half of the full height. It can be 

seen that damage in infill wall with the INODIS system hasn‘t even started, while 

traditional infill is already heavily damaged. It should also be noticed that level of 

damage in frame columns in a case of the INODIS system is only influenced by the 

deformation of RC frame in contrary to the traditionally infilled frame where damage of 

columns is increased due to the stiff contact with the infill wall. 
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Figure 7.17 Force-displacement curves for short infill walls 

 

  
a) b) 

Figure 7.18 Deformed shape with damage distribution at 1.8% of drift for a) traditional infill b) 

infill with the INODIS system 

7.2 Combination of all the influential parameters 

After the evaluation of the result of the initial parametric studies presented in the 

previous sections of this chapter, significant are identified and combined for the 

consecutive main parametric study. It can be summarized that the number of significant 

parameters is smaller in comparison to traditional infills. However, the main parametric 

study still includes a total number of 144 numerical models. Finally, the following 

parameters are considered and combined: 

 Height to length ratio of an infill wall: 

a) h/l=2; 

b) h/l=0.9; 

c) h/l=0.6.; 

 RC frame stiffness: 
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a) Frame 1 – RC used in the experimental tests with cross sections of the 

columns and the top beam of 25/25 cm and 45/25 cm, respectively; 

b) Frame 2 – RC with cross sections of the columns and the top beam of 

35/35 cm; 

 Mean compressive strength of masonry: 

a) fm=1 MPa; 

b) fm=3.1 MPa; 

 Thickness of the masonry infill: 

a) tm=24 cm; 

b) tm=36.5 cm; 

 Elastomer type: 

a) INODIS 1 – U-shaped elastomer with two layers. Regufoam® 400 and 

Regufoam® 680 are chosen for the first and second layer, respectively; 

b) INODIS 2 – INODIS 2 – U-shaped elastomer with two layers. Regupol® 

480 and Regupol® 550 are chosen for the first and second layer respec-

tively; 

 Thickness of the elastomer for the first layer: 

a) te=15 mm; 

b) te=25 mm; 

c) te=35 mm; 

The first layer thickness refers to the thickness of the first layer of the U-shaped 

elastomer at the columns. The thickness of the second layer and layers at the top and 

bottom beam are calculated as explained in Section 7.1.7. With Regufoam® 680 and 

Regupol® 550 materials with higher stiffnesses are chosen for the second layer to 

prevent out-of-plane movements, as it was proven in Section 7.1.5, that the beneficial 

in-plane behaviour of the INODIS system is not influenced by a higher stiffness of the 

second layer. In that way, in-plane behaviour loading stays unchanged, but stronger 

arching effect under out-of-plane loading is provided. Regufoam 680 and Regupol 550 

are also applied at the bottom of the two systems. Figure 7.19 shows the chart of the 

combination of parameters in the parametric study for the aspect ratio of h/l=0.6. The 

same models were simulated for h/l=0.9 and h/l=2.0. 
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Figure 7.19 Combination of parameters in the main parametric study for h/l=0.6 
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7.3 Results of the main parametric study 

Results of the numerical simulations are presented on Figure 7.20, as one example of 

the results, while the force-displacement curves for all other models are given in 

Appendix A. Notation of model numbers is given in Table 8.1. On all the diagrams it 

can be observed that infilled frames with the bigger frame cross sections (Frame 2) can 

withstand higher loads. Also, infilled frames with the thicker elastomers can reach 

higher drift levels without infill cracking, as expected. 

  
a) b) 

Figure 7.20 Force-displacement curves for h/l=2 for a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 35 mm 

From the results the following conclusions can be drawn: 

 infill wall with the lower masonry compressive strength assigned to the bricks in 

the numerical model, experience cracking of the bricks in comparison to the 

infill wall with the stronger bricks where cracking occurs in mortar joints; 

 for all 144 combinations of parameters extremely high drifts are reached; 

 infilled frames with the stiffer RC frame (Frame 2) produced more than 2 times 

higher maximum load capacity; 

 longer infilled frames (h/l=0.6) experienced mostly faster decrease of load 

resistance after reaching maximum load capacity; 

 longer infilled frames (h/l=0.6) mostly experienced bed joint shear sliding 

failure, while quadratic (h/l=0.9) and short infilled frames (h/l=2) usually 

experienced cracking in the diagonal of the infill panel; 

 INODIS 1 and INODIS 2 systems produced almost the same behaviour of 

infilled frames, with the frames with the INODIS 2 system having slightly lower 

initial stiffness; 

 for infills with the 36.5 cm of thickness cracking started at the same time or at 
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slightly higher drifts as for infills with the thickness of 24 cm; 

 as expected, infilled frames with the thicker elastomer reached maximum load 

capacity and cracking initiation at higher drift levels, due to the postponed infill 

activation. 

7.4 Summary 

The simulation model calibrated and validated through the experimental results of the 

test DIO has been used to determine the key influence parameters governing the 

behaviour of infilled frames with the INODIS system. Parameters related to the INODIS 

system such as necessity to have sliding surfaces, elastomer at the bottom of an infill, 

stiffness/type and thickness of U-shaped elastomer are initially investigated. 

Two variations of the INODIS system are chosen for the main parametric study. 

INODIS 1 with Regufoam® and INODIS 2 made of Regupol® material. Also, 

parameters related to the RC frame and infill characteristics (vertical load, geometry of 

frame and infill, column and beam sections, reinforcement ratio, class of concrete, infill 

thickness and strength) are analysed. Additionally, short column effect is investigated 

and important finding is derived that the INODIS system solves the problem with the 

short column effect, by eliminating its negative influence on the frame. 

Based on the sensitivity studies by varying single parameter, a comprehensive 

parametric study with 144 numerical simulations, considering combinations of the 

identified key influencing parameters, is carried out. For each numerical simulation a 

force-displacement curves is extracted, used as the base for the derivation of the design 

concept. 
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I learned a dozen languages, studied literature and arts, spent my best years in libraries reading every-

thing that came my way, and though I sometimes felt I was losing time, I quickly realized it was the best 

thing I ever did. 

Nikola Tesla 
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8.1 Design concept 

In the following the design concept for infilled frames with the system INODIS is 

presented. The development of the design concept is based on the results of the 

experimental tests (Chapter 5) and the parametric study presented in Chapter 7.  

The experimental tests presented in Chapter 5 showed that out-of-plane capacity of 

traditional infill walls is quite high due to the arching effect, but can be highly reduced 

due to previous in-plane loading and even more reduced in case of combined in- and 

out-of-plane loading. The main reasons, already explained and summarized in Chapter 5 

and Chapter 6, are: Previous damage of the infill, damage of the mortar connection 

between frame and infill and loss of connection between infill and frame under 

combined in- and out-of-plane loading. 

The experimental test DIO shows much lower interaction effects between the in-plane 

and out-of-plane response of the infill panel, if the system INODIS is installed. It was 

observed, that the force-displacement curve for pure in-plane loading matches 

completely the experimental curves of sequentially, simultaneously and combined in- 

and out-of-plane loading up to drift values of 1.8% (Figure 6.31b), as the infill panel 

was completely undamaged. This confirms that almost no interaction between in-plane 

and out-of-plane takes place as long as the infill is not damaged through crack 

formations. This fact clarifies that the INODIS system makes masonry infill walls a real 

non-structural elements up to drift levels which are mostly sufficient for the design of 

RC structures in all ductility classes. The proposed solution decouples infill and frame 

by absorbing the frame deformations and providing reliable support conditions for the 

transfer of the out-of-plane loads to the frame. 

Based on these facts, the design of the system INODIS can be divided into in-plane and 

out-of-plane verification. First, type and thickness of the elastomer are chosen to fulfil 

in-plane requirements, while separately the out-of-plane load capacity is checked. The 

design shall be carried out to meet the design objectives for the damage limitation state 

(SLS) and the ultimate limit state (ULS). The limit states for the system INODIS are 

defined in terms of drift limits. The damage limitation state corresponds to the 

maximum drift that can be absorbed by the system without any damage in the masonry 

infill. The ultimate limit state is the maximum in-plane drift characterized by the drop 
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down of the wall capacity to 80%. Figure 8.1 shows the design flow chart of the system 

INODIS considering both DLS and ULS. 

 

Figure 8.1 Design concept for infill walls with the INODIS system 

8.1.1 In-plane verification 

Using the results of the parametric study presented in section 7.2, drifts when infill 

cracking starts are extracted from all the numerical models and summarized in Table 

8.1. The drifts from Table 8.1 present the Damage Limitation State (DLS) values. The 

definition of the Ultimate Limit State (ULS) drift values is much more difficult, but the 

force-displacement curves in Figure 7.20 and Appendix A show for all simulated 

specimens really high drift levels. Such high drift values are usually not utilized through 

the design of the RC frames. The drift values for the ULS are determined at the point, 

where the maximum load capacity drops down to 80%. As the maximum drifts are quite 

high, it can be expected that the infill decoupled with the system INODIS will be 

undamaged or just slightly damaged even at the ULS. This is again a step forward with 

respect to traditionally infilled frames, which experience heavy damages at rather low 

drift levels. Therefore it is contradictory to fill RC frames designed for moderate or high 

ductility and behaviour factors between 3 and 6 in full contact with highly brittle 

masonry (Hak et al., 2012a). The drift limits given in Table 8.2 are based on nonlinear 
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calculations and shall be reduced by a safety factor of γ=1.5. If the information of the 

drift limits for ULS and DLS are known in a tabulated form, the design can be carried 

out with the following consecutive working steps: 

a) Calculation of the drift demand at DLS and ULS using an adequate two or three 

dimensional building models. 

b) Selection of the table rows with the h/l ratio of the infill panel, as well as cross 

sections of the frame components. 

c) According to corresponding masonry compressive strengths and infill thickness, 

six (three for INODIS 1 and three for INODIS 2) drift limits for DLS and ULS 

are provided. 

d) The thickness and type of the elastomer shall be chosen to fulfil the drift de-

mands of ULS and DLS. 

e) Once the type of the INODIS system and the thickness of the first layer of elas-

tomer at the column is chosen, all other values can be easily calculated. The se-

cond layer is designed to have the same thickness as the first one. The thickness 

of the first layer of the elastomer at the top beam is adopted to be 2/3 of the 

thickness of the column elastomer. The same proportion for the thickness of the 

second layer of elastomer is applied for the beam elastomer. The thickness of the 

bottom elastomer is also taken as 2/3 of the thickness of the first layer of the 

column elastomer. 

f) The width of the first layer corresponds to the smaller width of the column/beam 

and width of the infill wall. The same value is taken for the total width of the 

three strips at the bottom beam, where the middle elastomer can always be taken 

as 5 cm. Since the width of the plastic profile is in all cases 5 cm, the width of 

the remaining two parts of the second layer of the U-shaped elastomer at the 

columns and top beam can be easily calculated to have the same size. 

g) The thickness of the plastic profiles is the same as the thickness of the second 

layer of the U-shaped elastomer. 

The drift demands for the design of the infill walls must be calculated with appropriate 

two or three-dimensional models. Therefore it is important to define the stiffness of the 

calculation models properly. Therefore, the stiffness ratios between the bare and infilled 

frames with the system INODIS are checked and summarized in Table 8.3 for all 144 
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models. The usual practice for RC structures is a stiffness reduction to 50% for taking 

into account the formation of cracks during an earthquake excitation. This simplification 

still allows the use of linear calculations instead of complex nonlinear analyses. As the 

influence of the decoupled infill on the stiffness is rather low, the initial stiffness of the 

system INODIS is calculated using the same rigorous approach. The stiffness is 

calculated as shown in Figure 8.2. At first, the intersection point of the curve 

representing 50% of the initial bare frame stiffness and the force-displacement curve of 

the bare frame is determined. Then, the stiffness of the system INODIS is determined 

for the drift at the intersection point and the corresponding point on the force-

displacement curve of the frame with the system INODIS. 

The results summarized in Table 8.3 show, that the increase of stiffness in most of the 

variants is negligible and will not lead to a substantial increase of the fundamental peri-

od. The results in Table 8.3 clarify, that the increase of the stiffness is slightly higher in 

case of 15 mm thick 1
st
 layer of elastomer and configuration ―Frame 1‖ with a cross 

section of 25/25 cm for the columns. As it can be expected, that a 25/25 cm cross-

section can be regarded as a lower bound for the frame dimensions in practise, the in-

crease of stiffness through the activation of the infill can be neglected within the linear 

calculations. Furthermore, the system INODIS 2 lead to a smaller increase in stiffness 

due to the fact that the material Regupol® has a lower stiffness at smaller strains com-

pared to the material Regufoam®. Overall, it can be summarized that it is sufficient to 

calculate the drift demand by means of a bare frame model. 

 

Figure 8.2 Determination of stiffness ratio between bare frame and infilled frame with the sys-

tem INODIS 
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Table 8.1 Summary of the drift limits when cracking started 

h/l 

infill 

ratio 

Frame 

type 

Masonry 

compressive 

strength fm 

[MPa] 

Infill 

thickness 

[cm] 

 
1

st
 layer 

thickness 
15 mm 25 mm 35 mm No. 

INODIS 

type 
 

2.0 

Frame 1 

1.0 

24 
INODIS 1 1.05% 1.10% 1.65% 1 

INODIS 2 1.10% 1.35% 1.85% 2 

36.5 
INODIS 1 0.80% 1.35% 2.05% 3 

INODIS 2 0.95% 1.45% 2.25% 4 

3.1 

24 
INODIS 1 1.05% 1.85% 2.75% 5 

INODIS 2 1.05% 1.80% 2.75% 6 

36.5 
INODIS 1 1.30% 2.35% 3.80% 7 

INODIS 2 1.35% 2.45% 3.80% 8 

Frame 2 

1.0 

24 
INODIS 1 1.20% 1.55% 1.85% 9 

INODIS 2 1.10% 1.75% 2.15% 10 

36.5 
INODIS 1 1.20% 1.55% 2.10% 11 

INODIS 2 1.25% 1.75% 2.35% 12 

3.1 

24 
INODIS 1 1.05% 2.45% 3.05% 13 

INODIS 2 1.20% 2.45% 2.95% 14 

36.5 
INODIS 1 1.20% 2.15% 3.30% 15 

INODIS 2 1.25% 2.15% 3.30% 16 

0.9 

Frame 1 

1.0 

24 
INODIS 1 0.80% 1.10% 1.35% 17 

INODIS 2 0.90% 1.20% 1.55% 18 

36.5 
INODIS 1 1.10% 1.45% 1.65% 19 

INODIS 2 1.20% 1.65% 1.85% 20 

3.1 

24 
INODIS 1 0.80% 1.20% 1.65% 21 

INODIS 2 0.80% 1.30% 1.65% 22 

36.5 
INODIS 1 1.20% 1.85% 2.45% 23 

INODIS 2 1.05% 1.65% 2.30% 24 

Frame 2 

1.0 

24 
INODIS 1 0.95% 1.05% 1.25% 25 

INODIS 2 1.10% 1.35% 1.55% 26 

36.5 
INODIS 1 1.10% 1.25% 1.65% 27 

INODIS 2 1.05% 1.35% 1.85% 28 

3.1 

24 
INODIS 1 0.80% 1.20% 1.65% 29 

INODIS 2 0.80% 1.25% 1.75% 30 

36.5 
INODIS 1 0.90% 1.35% 2.05% 31 

INODIS 2 0.95% 1.35% 2.05% 32 

0.6 

Frame 1 

1.0 

24 
INODIS 1 1.20% 1.55% 1.95% 33 

INODIS 2 1.05% 1.55% 1.75% 34 

36.5 
INODIS 1 1.20% 1.65% 2.15% 35 

INODIS 2 1.20% 1.75% 2.15% 36 

3.1 

24 
INODIS 1 1.05% 1.55% 2.10% 37 

INODIS 2 0.95% 1.35% 1.85% 38 

36.5 
INODIS 1 1.30% 1.80% 2.45% 39 

INODIS 2 1.15% 1.75% 2.25% 40 

Frame 2 

1.0 

24 
INODIS 1 1.10% 1.25% 1.55% 41 

INODIS 2 1.10% 1.20% 1.35% 42 

36.5 
INODIS 1 1.10% 1.25% 1.55% 43 

INODIS 2 0.90% 1.35% 1.65% 44 

3.1 

24 
INODIS 1 1.05% 1.55% 2.15% 45 

INODIS 2 0.95% 1.35% 1.90% 46 

36.5 
INODIS 1 1.10% 1.65% 2.35% 47 

INODIS 2 1.05% 1.55% 2.15% 48 
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Table 8.2 ULS drift limits for all the models 

h/l 

infill 

ratio 

Frame 

type 

Masonry 

compressive 

strength fm 

[MPa] 

Infill 

thickness 

[cm] 

 
1

st
 layer 

thickness 
15 mm 25 mm 35 mm No. 

INODIS 

type 
 

2.0 

Frame 1 

1.0 

24 
INODIS 1 4.40% 4.55% 4.45% 1 

INODIS 2 4.40% 4.55% 4.55% 2 

36.5 
INODIS 1 4.35% 4.75% 4.70% 3 

INODIS 2 4.35% 4.75% 4.75% 4 

3.1 

24 
INODIS 1 5.50% 5.55% 5.65% 5 

INODIS 2 5.55% 5.55% 5.65% 6 

36.5 
INODIS 1 5.55% 5.55% 5.65% 7 

INODIS 2 5.60% 5.60% 5.65% 8 

Frame 2 

1.0 

24 
INODIS 1 4.90% 4.95% 5.00% 9 

INODIS 2 4.95% 5.00% 4.95% 10 

36.5 
INODIS 1 4.95% 5.00% 5.05% 11 

INODIS 2 5.05% 5.10% 5.05% 12 

3.1 

24 
INODIS 1 5.50% 5.60% 5.60% 13 

INODIS 2 5.50% 5.60% 5.65% 14 

36.5 
INODIS 1 5.50% 5.60% 5.65% 15 

INODIS 2 5.55% 5.60% 5.65% 16 

0.9 

Frame 1 

1.0 

24 
INODIS 1 4.25% 4.35% 4.45% 17 

INODIS 2 4.45% 4.55% 4.70% 18 

36.5 
INODIS 1 3.90% 4.05% 4.15% 19 

INODIS 2 3.85% 3.90% 4.15% 20 

3.1 

24 
INODIS 1 3.45% >5.70% >5.70% 21 

INODIS 2 4.35% 5.65% >5.70% 22 

36.5 
INODIS 1 3.10% 4.10% 5.60% 23 

INODIS 2 3.30% 4.90% 5.50% 24 

Frame 2 

1.0 

24 
INODIS 1 4.15% 4.25% 4.40% 25 

INODIS 2 4.10% 4.45% 4.45% 26 

36.5 
INODIS 1 3.95% 4.15% 4.45% 27 

INODIS 2 4.10% 4.20% 4.65% 28 

3.1 

24 
INODIS 1 4.65% 5.65% 5.65% 29 

INODIS 2 5.60% 5.50% >5.70% 30 

36.5 
INODIS 1 5.65% 5.65% 5.65% 31 

INODIS 2 4.70% 5.70% 5.70% 32 

0.6 

Frame 1 

1.0 

24 
INODIS 1 4.20% 4.65% 5.00% 33 

INODIS 2 4.25% 4.65% 5.15% 34 

36.5 
INODIS 1 3.75% 4.00% 4.60% 35 

INODIS 2 4.15% 4.40% 4.80% 36 

3.1 

24 
INODIS 1 3.30% 4.55% 5.25% 37 

INODIS 2 4.70% 4.80% 5.50% 38 

36.5 
INODIS 1 3.30% 4.80% 5.50% 39 

INODIS 2 3.30% 4.80% 5.30% 40 

Frame 2 

1.0 

24 
INODIS 1 4.35% 4.40% 4.45% 41 

INODIS 2 3.35% 3.75% 4.15% 42 

36.5 
INODIS 1 4.25% 4.25% 4.30% 43 

INODIS 2 3.85% 3.85% 4.45% 44 

3.1 

24 
INODIS 1 4.20% 4.35% 4.45% 45 

INODIS 2 4.00% 4.50% 4.65% 46 

36.5 
INODIS 1 3.45% 4.50% 5.55% 47 

INODIS 2 3.75% 3.65% 3.45% 48 
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Table 8.3 Stiffness ratio between bare frame and infilled frame with the system INODIS  

h/l 

infill 

ratio 

Frame 

type 

Masonry 

compressive 

strength fm 

[MPa] 

Infill 

thickness 

[cm] 

 
1

st
 layer 

thickness 
15 mm 25 mm 35 mm No. 

INODIS 

type 
 

2.0 

Frame 1 

1.0 

24 
INODIS 1 1.20 1.20 1.10 1 

INODIS 2 1.10 1.10 1.05 2 

36.5 
INODIS 1 1.20 1.20 1.10 3 

INODIS 2 1.10 1.10 1.05 4 

3.1 

24 
INODIS 1 1.25 1.15 1.10 5 

INODIS 2 1.20 1.10 1.05 6 

36.5 
INODIS 1 1.25 1.15 1.10 7 

INODIS 2 1.20 1.10 1.05 8 

Frame 2 

1.0 

24 
INODIS 1 1.15 1.15 1.10 9 

INODIS 2 1.10 1.10 1.10 10 

36.5 
INODIS 1 1.15 1.15 1.10 11 

INODIS 2 1.10 1.10 1.10 12 

3.1 

24 
INODIS 1 1.15 1.15 1.10 13 

INODIS 2 1.10 1.10 1.10 14 

36.5 
INODIS 1 1.15 1.15 1.10 15 

INODIS 2 1.10 1.10 1.10 16 

0.9 

Frame 1 

1.0 

24 
INODIS 1 1.30 1.20 1.15 17 

INODIS 2 1.20 1.20 1.15 18 

36.5 
INODIS 1 1.30 1.25 1.20 19 

INODIS 2 1.25 1.20 1.15 20 

3.1 

24 
INODIS 1 1.40 1.30 1.20 21 

INODIS 2 1.30 1.20 1.15 22 

36.5 
INODIS 1 1.40 1.30 1.20 23 

INODIS 2 1.30 1.20 1.15 24 

Frame 2 

1.0 

24 
INODIS 1 1.10 1.05 1.03 25 

INODIS 2 1.05 1.03 1.00 26 

36.5 
INODIS 1 1.10 1.05 1.03 27 

INODIS 2 1.05 1.03 1.00 28 

3.1 

24 
INODIS 1 1.15 1.10 1.05 29 

INODIS 2 1.10 1.05 1.00 30 

36.5 
INODIS 1 1.15 1.10 1.05 31 

INODIS 2 1.10 1.05 1.00 32 

0.6 

Frame 1 

1.0 

24 
INODIS 1 1.35 1.20 1.15 33 

INODIS 2 1.35 1.15 1.10 34 

36.5 
INODIS 1 1.40 1.20 1.15 35 

INODIS 2 1.40 1.15 1.10 36 

3.1 

24 
INODIS 1 1.35 1.20 1.15 37 

INODIS 2 1.40 1.15 1.10 38 

36.5 
INODIS 1 1.40 1.20 1.15 39 

INODIS 2 1.40 1.15 1.10 40 

Frame 2 

1.0 

24 
INODIS 1 1.15 1.10 1.05 41 

INODIS 2 1.05 1.10 1.05 42 

36.5 
INODIS 1 1.15 1.10 1.05 43 

INODIS 2 1.10 1.10 1.05 44 

3.1 

24 
INODIS 1 1.15 1.10 1.05 45 

INODIS 2 1.05 1.10 1.05 46 

36.5 
INODIS 1 1.15 1.10 1.05 47 

INODIS 2 1.10 1.10 1.05 48 
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8.1.2 Out-of-plane verification 

As the system INODIS decouples the in-plane movement of frame and infill, the 

verification for out-of plane loading of the infill walls is carried out separately from the 

verification for in-plane loading.  

The experimental tests and numerical simulations under out-of-plane loading showed, 

that the arching effect is reduced in comparison to traditional infilled frames due to the 

soft circumferential elastomers. At a first glance, this appears to be a considerable 

disadvantage compared to traditional infills, but it can be eliminated by taking a detailed 

look at the interaction behaviour. The experimental and numerical investigations 

clarified that it is quite questionable to count on the arching effect in case of sequential 

or combined in- and out-of-plane loading for two reasons:  

Firstly, at higher drifts gapping occurs and the contact between frame and infill is 

limited to the compressed diagonally opposite corners. This does not allow the 

generation of an arching effect under combined loading conditions and produces the 

risks of out-of-plane movements.  

Secondly, a damage of the joints between the frame and the infill takes place due to in-

plane loading and weakens the generation of the arching effect, which in turn can lead 

to an undesired out-of-plane movements of the masonry infill. 

Therefore, it can be concluded that relying on arching effect in infills walls is justified 

only for pure out-of-plane loading and undamaged mortar joints between the frame and 

infill. The uncontrollable interaction behaviour of traditional infill walls is corrected by 

the system INODIS, which decouples the in-plane movements of frame and infill up to 

a high drift level and provides stable and reliable boundary conditions for out-of-plane 

loading by means of the circumferential plastic profile in combination with the U-

shaped elastomer. Even in case of higher in-plane drifts with gapping effects, out-of-

plane movements are prevented by the installed circumferential connection.  

The proposed out-of-plane verification of the system INODIS is simple and covers all 

situations of pure in-and out-of-plane loading, sequential loading and combined loading. 

To be on the safe side for all types of loading sequences and conditions, a hinged 

connection between the frame and the infill is assumed. This approach leads to 

conservative results, but is reliable and applicable for any load combination. Keeping in 
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mind the devastating damages and collapses of infilled framed in past earthquakes it 

seems reasonable to keep the design of the new system as simple as possible. 

At the ultimate limit state (ULS), the design value of the moment applied Med, shall be 

less than or equal to the design value of the moment of resistance of the wall MRd: 

 ed RdM M  (8.1) 

The design value of the moment applied can be calculated with respect to the support 

boundary conditions using the bending moment coefficients according to Eurocode 6 

(EN 1996-1-1, 2005). The calculation of the applied moment, Medi, may be taken as: 

 Plane of failure parallel to the bed joints, i.e. in the fxk1 direction: 

 2
1ed edW lM     (8.2) 

 Plane of failure perpendicular to the bed joints, i.e. in the fxk2 direction: 

 2
2ed edW lM     (8.3) 

Herein l is the length of the wall between supports, Wed is the design lateral load per unit 

area and α1 and α2 are the bending moment coefficients. The coefficients take account of 

the degree of fixity at the edges of the walls (two-, three- or four sided support), the 

height to length ratio of the walls and have to be determined with orthogonal ratio of the 

design flexural strength of the masonry μ. The values of the bending coefficients α1 and 

α2 may be obtained from Annex E of Eurocode 6 (EN 1996-1-1, 2005). Since the infill 

wall with the INODIS system is considered to be simply supported on all 4 edges, the 

wall support condition ―E‖ according to Appendix E of Eurocode 6 (EN 1996-1-1, 

2005) should be applied. The design lateral load per unit area Wed can be calculated as 

follows: 

 
a

ed

F
W

hl
  (8.4) 

Where Fa represents the horizontal seismic force, acting at the centre of the wall, 

calculated using the approach of Eurocode 8 (EN 1998-1, 2004) for non-structural 

elements: 

 
a a

a

a

W S
F

q


  (8.5) 

Herein, Wa is the weight of the wall, qa is the behaviour factor of the wall applied in the 

range between 1.5 and 2 and Sa is the seismic coefficient calculated as follows: 
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 (8.6) 

Where α is the ratio of the design ground acceleration on type A ground ag to the 

acceleration of gravity g, S is the soil factor, z is the height from the foundation to the 

centre of the mass of the element, H is the total height of the structure, Ta is the 

fundamental period of vibration of the infill wall and T1 is the fundamental period of 

vibration of the structure in the relevant direction. The fundamental period of vibration 

of the infill wall must be calculated with respect to the support boundary conditions. In 

case of a two-sided wall spaning in vertical direction, the period Ta can be calculated as 

proposed by Morandi et al. (2013): 

 
22 w

a

m wy

h m
T

E I



 (8.7) 

where h is the infill height, mw is the mass of the infill per unit height, Em is the vertical 

modulus of elasticity of masonry and Iwy the moment of inertia about the longitudinal 

axis of the horizontal cross section of the panel. In case of three- and four-sided walls 

the period Ta can be calculated using a finite element model or analytical solutions 

(Leissa, 1969). 

The out-of-plane capacity is calculated using the flexural strength of the wall. The de-

sign value of the lateral moment of resistance of a masonry infill MRd per unit height or 

length is given by: 

 Rd xd
ZfM    (8.8) 

Herein, Z is the elastic section modulus of unit height or length of the wall and fxd is the 

design flexural strength appropriate to the plane of bending, to be calculated from the 

characteristic flexural strength fxk divided by the partial safety factor γm = 1.5. The 

moment resistance must be calculated for the two planes of failures: In case of a plane 

of failure parallel to the bed joints MRd is calculated with fxkl and in case of a plane of 

failure perpendicular to the bed joints MRd is calculated with fxkl. The flexural strengths 

fxk1 and fxk2, shall be determined from experimental tests on masonry or when the test 

data are not available, the standard values from the Eurocode 6 (EN 1996-1-1, 2005) 
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can be taken. The resistances must be compared with the design values of moments Med1 

and Med2.  

The experimental test DIO (Section 5.5.4) and small specimen tests on the elastomeric 

connections in Section 4.7.3 show a sufficient resistance of the U-shaped elastomers and 

their connections to the frame through the plastic profile. For this reason further safety 

verifications are not needed. 

8.1.3 Combined in- and out-of-plane verification 

The combined in- and out of plane loading acting on RC frames with infill walls can be 

analysed by using the 30% rule according to Eurocode 8 (EN 1998-1, 2004). Following 

this rule, the action effects due to the combination of the horizontal components of the 

seismic action can be computed using the following combinations: 

 1.00 " "0.3Edx EdyE E    (8.9) 

 0.3 " "1.0Edx EdyE E    (8.10) 

where ―+‖ implies ―to be combined with alternating signs‖, EEdx represents action 

effects due to the seismic action in x-direction and EEdy  in y-direction. The application 

of this rule leads to the following load combinations. 

Combination 1: 1.0∙IP ± 0.3∙OOP 

The in-plane-drift is calculated by means of the two- or three dimensional linear 

calculation models and compared to the permissible values given for DLS (Table 8.1) 

and ULS (Table 8.2). The out-of-plane capacity can be verified using Equation 8.1, 

which leads to an out-of-plane capacity of 10.7 kN/m
2
 (ag = 3g). The interaction of in-

plane and out-of-plane loading is rather low, since the infill wall was proofed in the DIO 

test to withstand an out-of-plane loading of 5 kN/m
2
 (ag = 1.4g) combined with in-plane 

drifts up to 1.8%. 

Also for other wall ratios from the Table 8.1 and Table 8.2, the out-of-plane capacity is 

sufficient even for the long wall (h/l = 0.6) and thickness of the wall being 24 cm. This 

wall configuration can withstand 6.33 kN/m
2
 (ag = 1.8g) out-of-plane pressure, which 

represents the smallest out-of-plane capacity from all 144 models. Since 30% of the full 

out-of-plane pressure corresponds to 1.9 kN/m
2
, the interaction of in-plane and out-of-

plane loading is again negligble and the wall can fulfil the requirements of this load 
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combination by checking the in-plane capacity. 

Combination 2: 0.3∙IP ± 1.0∙OOP 

As in ―Combination 1‖, the in-plane-drift is calculated by means of the two- or three 

dimensional linear calculation models and compared to the permissible values given for 

DLS (Table 8.1) and ULS (Table 8.2), while out-of-plane capacity is verified using the 

Equation 8.1. Since the ductile RC frames are usually designed for drifts up to 2% 

(FEMA 356, 2000), in-plane drifts for this load combination are much lower than the 

drifts for DLS given in Table 8.1 and ULS given in Table 8.2. Therefore, due to the 

decoupling capability of the INODIS system, the infill wall will stay almost unactivated 

in in-plane direction. This means that it is sufficient to carry out the out-of-plane 

verification of the infill wall to satisfy the requirements of this load combination too. 

8.2 Economic feasibility of the INODIS system 

This section provides the information about the costs for the application of the INODIS 

system. The costs of construction of the infill wall with the INODIS system have been 

compared to the costs of realization of a traditional infill masonry wall. The economic 

feasibility study is based on the experiences collected through the construction of the 

masonry infill walls with reinforced concrete frames within the test campaign, literature 

and web surveys as well as oral interviews with the most relevant material producers 

from Germany. The consultations with the producers of the elastomers (BSW, 2018) led 

to the decision to execute the cost calculation on the assumption of a series production 

instead of a single-unit production of a masonry infill frame.  

Furthermore it has been decided to perform the study for the experimentally tested DIO 

specimen with the Regufoam® material, as it is used, but also for numerically 

investigated systems INODIS 1 and INODIS 2. Since the design concept has been 

developed for these two systems, calculation of costs for three thicknesses are estimated 

in order to cover all the options from Table 8.1. This will provide sufficient information 

for engineers in practice and for investors. 

In the following tables, a simple comparison of the construction costs for the innovative 

and traditional systems expressed in terms of € per square meter of wall area are 

presented. The added-value of damage reduction if the innovative system is applied is 
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not considered. The evaluation of the costs has been carried out referring to an infill 

masonry panel without openings, being 2.77 m long, 2.52 m high and 36.5 cm thick. 

The regarded geometry corresponds to the dimensions of the infilled frame specimens 

DIO tested in the experimental campaign. Additional 2 cm of plaster at each side of the 

infill are considered, as it would be the case in practice. 

The economic feasibility starts with the calculation of the costs for the traditional infill 

wall. The costs are summarized in Table 8.4 and used to rate the costs of the INODIS 

system. The increases of the construction costs for the INODIS system applied to the 

regarded specimen DIO are summarized in Table 8.5. The resulting increase with 

respect to the traditional solution is estimated to 53%. Table 8.6 to Table 8.11 present 

the costs for application of the system INODIS 1 and INODIS 2. It can be seen that the 

increase of costs for the system INODIS 1 compared to the traditional infill ranges 

between 19 - 38% depending on the thickness of the decoupling element. This 

percentage is even more reduced to 10-15%, for the case of the system INODIS 2. The 

results clarify, that the usage of Regupol material used for the system INODIS 2 leads to 

justifiable costs in comparison to the traditional system, especially if the substantial 

damage reduction and lower amount for repair costs are considered. Furthermore the 

risk of casualties and deaths are highly reduced. The simplest comparison would be the 

case when during the earthquake traditional infill wall is damaged and infill wall with 

the INODIS system stays intact. In that sense, the costs for traditional infill wall are 

from 70-90% higher when compared to the INODIS 2 system. Keeping in mind the high 

costs for repair or reconstruction after a seismic event, the choice of the two systems 

with higher costs seems quite attractive for building owners. The costs are taken as the 

values that are valid for production and installation costs in Germany. The costs to 

install infill walls with or without the system INODIS needs to be calculated country-

specific as the prices for material and workmanship will differ. In doing so, it is possible 

to get a realistic estimation of costs for different countries. 
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Table 8.4 Calculation of costs for the traditional infill wall 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1560 223 

 

Table 8.5 Calculation of costs for the INODIS system applied to the DIO specimen 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 40 0 0 40 6 

Sliding surfaces 50 0.5 25 75 11 

Placing 

elastomers to the frame 
614 0.5 25 639 92 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    2384 341 

Cost increase [%]     53 

 
Table 8.6 Calculation of costs for the INODIS 1 system (15mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 20 0 0 20 3 

Placing 

elastomers to the frame 
185 0.5 25 210 30 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1925 266 

Cost increase [%]     19.3 

 
Table 8.7 Calculation of costs for the INODIS 1 system (25mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 35 0 0 35 5 

Placing 

elastomers to the frame 
300 0.5 25 325 47 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1990 285 

Cost increase [%]     27.8 
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Table 8.8 Calculation of costs for the INODIS 1 system (35mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 45 0 0 45 6.5 

Placing 

elastomers to the frame 
450 0.5 25 475 68 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    2150 307.5 

Cost increase [%]     37.9 

 
Table 8.9 Calculation of costs for the INODIS 2 system (15mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 20 0 0 20 3 

Placing  

elastomers to the frame 
37 0.5 25 62 9 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1712 245 

Cost increase [%]     9.9 

 
Table 8.10 Calculation of costs for the INODIS 2 system (25mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 35 0 0 35 5 

Placing 

elastomers to the frame 
60 0.5 25 85 12 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1750 250 

Cost increase [%]     12.1 

 
Table 8.11 Calculation of costs for the INODIS 2 system (35mm) 

Working step 
Material Costs 

[€] 

Working hours 

[h] 

Personnel costs 

[€] 

Total costs 

[€] [€/m
2
] 

Hilti: Nails 20 1 50 70 10 

Plastic profiles 45 0 0 45 6.5 

Placing 

elastomers to the frame 
90 0.5 25 115 16.5 

Bricking up 580 8 400 980 140 

Internal plaster    195 28 

External plaster    385 55 

Total    1790 256 

Cost increase [%]     14.8 
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Although at the moment a rigorous economic analysis is out of the scope of this work, it 

cannot be ignored that the innovative solution possesses costs of repairing after a 

seismic event much lower (in some cases even negligible) in comparison with 

traditional infill panels. It must be also taken into account that in new buildings the 

construction of the infill wall represents only a small portion of the overall cost, 

whereas in case of earthquake, the costs for reconstruction of the damaged non-

structural elements are significant, in particular considering the replace of all 

installations and finishing.  

In general, earthquake losses comprise costs for repairing the damage of structural and 

non-structural components, loss of contents, rental and relocation costs, downtime, 

business interruption, general income losses (especially for commercial buildings), 

permits, injuries and human lives. Strong earthquakes that hit in recent years caused 

huge negative economic impact due to the damage imposed to non-structural elements 

and the indirect cost of disruption of use for repair or replacement (Miranda et al., 2012; 

Baird et al., 2014). Some examples (FEMA E-74, 2011) show that total economic loss 

due to the replacement and repair of non-structural walls can be higher than the 

economic loss due to the damage of structural elements. In some cases this can amount 

to up to 80–90% of the direct losses (Tiedeman, 1980). Taghavi and Miranda (2003) 

divided the costs of non-structural components depending on the type of the building: 

62% of total costs for offices, 70% for hotels, 48% for hospitals. These costs can even 

exceed the replacement cost of a building (Villaverde, 1997). Furthermore, repair time 

of non-structural components can be almost 1.5 times longer than structural repair 

(Pencereci et al., 2018). Additionally, intangible losses due to the loss of culture, sense 

of community and quality of life come more and more to the focus. Therefore, investors 

must take the decision of additional seismic measures with respect to the investigations 

and consequences. However, the decision should consider not only the increase of the 

initial construction costs, but also the cost-benefit connected to the reduction of the 

repair costs in case of seismic events. This goes in a line with the current trend in 

evaluating investment practices in buildings to take into consideration the total life-

cycle costs rather than the initial construction costs. It can be expected that cost-benefit 

analyses will gain more attention in near future, which will lead to more reasonable 

decisions about seismic measures like the proposed system INODIS. 
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8.3 Summary 

This Chapter presents the part of the thesis, which is of most importance to the 

engineering practice. Based on the results of the experimental campaign and parametric 

study presented in the previous chapters, the concept for the design of infill walls with 

the INODIS system is derived. The approach is based on the design of the components 

of the INODIS system, instead of the masonry infill wall. The design process is divided 

in in-plane verification of the system and out-of-plane verification of the wall. First, 

type and thickness of the U-shaped elastomer is chosen according to the geometrical 

and mechanical characteristics of the infill wall and the drift is calculated using two or 

three dimensional models. The calculation models can contain struts representing infills 

in order to take them into account, or they can be represented by a bare frame structure. 

The second case is justified if the stiffness of the infilled frame with the INODIS system 

is only slightly higher than the stiffness of the bare frame. Otherwise, additional 

stiffness contribution has to be taken into account by adding struts with an equivalent 

stiffness. 

When type and size of the U-shaped elastomers are chosen, the out-of-plane verification 

of the infill wall can be carried out. This is done by using a simple analytical solution to 

calculate out-of-plane resistance based on the flexural strength. The out-of-plane forces 

can be calculated using the approach proposed in Eurocode 8 (EN 1998-1, 2004). 

Additionally, an economic analysis of the INODIS system is presented. Higher up-front 

costs in comparison to the traditional solution are insignificant, especially in the case of 

the INODIS 2 system, which is made of Regupol material that is twice as cheap as 

Regufoam and made from recycled rubbers, thus providing an eco-friendly solution. 

Given that infill walls represent a small portion of costs in the construction of new 

buildings and that the costs for reconstruction of the damaged infills during earthquakes 

can sometimes be higher than the totel costs of investment, the application of the 

INODIS systems provides a favourable solution for the investors. It minimizes damage 

for both the building structure and its contents, thus reducing the risk of financial loss, 

downtime, and casualties. 
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After climbing a great hill, one only finds that there are many more hills to climb. 

Nelson Mendela 
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9.1 Conclusions 

The research done within the scope of this thesis was motivated by the wish to improve 

the devastating behaviour of RC frames with infill walls during earthquake excitation. 

In particular, the thesis addressed the problem of damage to infills under in-plane, out-

of-plane and their sequential and simultaneous loading. The increased damage and 

losses caused by the failure of infill during earthquakes were the main motivating 

factors for the conducted research. Therefore, an effective solution for decoupling infill 

walls from the surrounding frame was developed and experimentally investigated under 

in-plane, out-of-plane and their sequential and simultaneous application. Afterwards, the 

numerical model was developed and validated against experimental results. The 

validated model was further used to study various configurations as a basis for the 

development of the design concept. 

Through the literature review, experimental works, numerical simulations, parametric 

studies, analytical and feasibility studies and all investigations described in previous 

chapters, the following conclusions can be summarized: 

 Awareness of damage caused by infills during earthquakes is on a considerable 

level due to recent earthquakes that accelerate the research in this field. The 

understanding of the seismic behaviour of infilled frames has been significantly 

improved with respect to in-plane and out-of-plane loading. Numerous 

experimental and numerical studies showed that the unfavourable effect of 

traditional infills cannot be neglected in frame structures, but so far a complete 

design concept is still not available. Some national codes incorporated infill 

walls into the design, but mostly in a general manner, without precise formulas 

and measures. Furthermore, in-plane and out-of-plane loading is always 

considered separately, although recent studies show that their mutual interaction 

and simultaneous application should be taken into account. Since the modelling 

of traditional infills is quite complex, this is not an easy task. Therefore, many 

studies aimed into the direction of developing the measures that should improve 

the behaviour of infilled frames. So far, all the solutions fail to prove themselves 

successful for simultaneous in- and out-of-plane loading and at the same time to 

remain simple and practically applicable; 
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 Experimental tests on system components indicated that rubber-based material 

represents an adequate option for decoupling infills from a surrounding frame, 

due to their high compressibility; 

 Furthermore, the viscoelastic behaviour of the elastomer presents a strong source 

of energy dissipation during earthquakes; 

 Experiments also showed that glued connection between elastomers and 

elastomer and brick are strong and reliable under different in-plane and out-of-

plane loading conditions; 

 An extremely high out-of-plane load capacity for a traditional infill was reached 

for a three side supported wall. Sudden and brittle failure occurred at a high load 

level due to sudden friction and brick failure at the top of the wall which 

produced failure of the wall; 

 Specifically, the experimental results show that it is unlikely that out-of-plane 

failure would occur for usual infill height-to-thickness aspect ratios of modern 

high insulating masonry. If an out-of-plane failure is observed, then the 

contribution from prior in-plane damage can be expected. This is confirmed by 

means of the results of sequential loading protocols that produced a reduction of 

the out-of-plane load capacity by a factor of 8 due to previous in-plane damage 

of the circumferential mortar joint and the subsequent lack of arching effect; 

 The damage of the mortar joints between frame and infill and the eccentric 

loading of the infill due to differing thicknesses of frame and infill produced an 

countinious out-of-plane infill movement and a tilting of the wall. This confirms 

that the weak spot of the traditional system is in the contact between RC frame 

and infill wall. This connection is even more questionable in the case of hollow 

bricks with a high percentage of voids; 

 Simultaneously applied in- and out-of-plane loading on traditional infill caused 

the reduction of out-of-plane load capacity by a factor of 5 at rather low in-plane 

drifts. The wall behaves in a very brittle manner and failure occurs due to the 

movement of the infill out of the frame. This movement was triggered by the 

damage to the connection joints and the destroyed boundary conditions caused 

by smaller and eccentrically arranged contact areas; 

 The specimen CI with the system IMES with simple decoupling was a 
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successful solution for in-plane loading, by postponing the activation of the infill 

and thus increasing DLS and ULS drift limits; 

 Although the IMES system proved to be successful for in-plane loading, 

simultaneously applied in- and out-of-plane loads caused disastrous behaviour of 

infill wall and brittle and fast failure was observed. The connecting bricks at the 

contact to the columns split, causing a rigid body movement in out-of-plane 

direction with high displacements at the top and bottom of the infill wall. The 

results clarified that the IMES system with the steel anchor connection between 

frame and infill does not present a suitable solution for simultaneously applied 

in- and out-of-plane loading; 

 The U-shaped connection made of elastomers was proven as an adequate 

measure for masonry infills under separate in-plane and out-of-plane loading, as 

well as sequentially and simultaneously applied in- and out-of-plane loading. 

The DIO test confirms this by reaching an interstorey drift of 3.25% for 

sequential and combined loads, with infill damage but a still stable infill wall. It 

is important to point out that infill/frame connections remained completely 

undamaged; 

 The application of the U-shaped connection of the INODIS system led to a 

delayed activation of the infill wall. The activation took place at higher drift 

ratios, but even then the load contribution of the infill was low. This was 

experimentally confirmed up to an interstorey drift of 3.25%; 

 The connection of the system INODIS showed a stable and continuous support 

of the specimen through all phases of the DIO test. It remained active under 

combined loading conditions and leads to sufficient out-of-plane support 

conditions till the very end of the test; 

 Additional advantages of the system can be found in the prevention of stress 

concentrations in the contact areas to the frame. This is achieved with the soft 

elastomers placed circumferentially around the infill wall, thus avoiding 

unfavourable interactions (e.g. short column effect, compression and shear 

failure) between frame and masonry infill. Since the system INODIS solves the 

problems with the unfavourable short column effects, it additionally reduces the 

amount of reinforcement and work for its installation as requested for the critical 
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length in Eurocode 8 (EN 1998-1, 2004 - Section 5.9); 

 Additionally, viscoelastic behaviour of elastomers provides a high level of 

additional energy dissipation, without any damages in the infill. And at the same 

time enhancing damping capacity of the infilled frame and the overall building. 

The system INODIS is especially beneficial in a case of thin layer joints in 

masonry infills, since they produce less energy dissipation when compared to 

the traditional 10 mm thick mortar joints. Furthermore, the modern construction 

practice ejects the application of mortar in head joints, thus reducing energy 

dissipation capacity further. The decreasing damping effect is avoided with the 

application of the INODIS system, since the decoupling enables the activation of 

damage in mortar joints. Therefore, the INODIS system supports the modern 

and economic way of construction in the areas of high seismicity as well; 

 Decoupling with the INODIS system reduces the stiffness of the infills nearly to 

the level of the bare frame. Thus providing just a slight decrease of the natural 

frequency compared to the bare frame. Therefore, the induced seismic forces are 

not increased as in a case of traditional infills. This makes the design and 

calculation of the RC frame buildings with infill walls more simple, certain and 

reliable;  

 When separately determining the out-of-plane capacity, current design concepts 

assume intact boundary conditions and determine high load capacities due to the 

activation of the arching effect. However, an implementation of these boundary 

conditions in practice appears to be questionable. Furthermore, these boundary 

conditions are not present in the event of combined loads and the in- and out-of-

plane failure modes are no longer separated. The development of a design 

approach which includes the interaction of the load directions, the variable 

boundary conditions in the contact area, the numerous further influencing factors 

such as thickness of the infill, stiffness of the frame and infill, as well as the 

characteristics of the used materials, is extremely complex. Therefore, a 

reasonable alternative during the traditional erecting of infill walls with full-

contact to the frame is the implementation of decoupling systems to enhance the 

seismic safety up to the required level; 

 The system INODIS also simplifies the design process for the RC frame since 
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interactions that cause damage do not need to be taken into account any more. 

Therefore, in-plane and out-of-plane verification can be separately performed. In 

the design process, the first step is the choice of the type and thickness of the 

elastomers according to the in-plane drift demands. This enables the engineer to 

control the drift level at which the infill will start to experience damages. 

Secondly, the possible out-of-plane failure of the infill can be checked using the 

simple expressions given in Section 8.1.2; 

 The system INODIS transforms the infill to a real non-structural component. 

This simplifies and reduces the effort for the design of the reinforced concrete 

frame; 

 Additionally, the shear forces seem to be distributed in a more uniform and 

effective way inside the frame by using the INODIS system. In this way limit 

states occur at higher displacements, thus the damage of the masonry infill 

occurs after yielding of the frame; 

 The system INODIS is in line with the tendency of the codes that the seismic 

reliability of the construction is ensured primarily by appropriate details and the 

concept of construction, and less by complex numerical models and numerical 

analysis; 

 The connection of the system INODIS ensures a safe and controllable failure 

mechanism for the infill. Even at the high drift levels, the U-shape of the 

elastomer keeps the infill wall together and disables a brittle failure; 

 The connections of the systems are relatively cheap and easily applicable; 

 The application of the proposed system INODIS may lead to a more efficient 

design of building components and subsequent reduction in cost, time, energy, 

solid waste and other resources associated with deconstruction, partial 

reconstruction/replacement, or retrofit solutions that are costly and invasive. 

This is in line with today‘s trends that the maintenance and sustainability of the 

structures is of a primary concern; 

 The decoupling through the INODIS system helps in preventing the problems 

associated with the asymmetric placement of masonry infills. Its application 

disables stiffness concentration in one part of the building, thus preventing 

eccentricities and soft story mechanism; 
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 The results showed that the main reason for the numerous examples of seismic 

damage to infill walls during earthquakes is attributed to the unstable boundary 

conditions between frame and infill. However, a proper and precise execution of 

these boundary conditions in practice using mortar appears to be more than 

questionable. This problem is also solved with the application of the U-shaped 

elastomer, which provides stable and reliable boundary condition; 

 The developed system is intended to be used both in new building construction 

and in existing buildings to improve their seismic behaviour by replacing 

traditional infills; 

 The effectiveness of the solution is presented here for hollow clay masonry 

units, but the system INODIS is applicable to all types and sizes of bricks, 

different masonry infill typologies and frame types (steel frames); 

 The transformation of the infills to real non-structural infill components allows a 

flexible room use, which is very important during the life-cycle of a building. 

The solution allows the change of the infill wall arrangement without additional 

calculations and design. This is a common scenario in commercial buildings, 

after a change of the occupants due to differing arrangement of walls; 

 The system INODIS 2, made of the material Regupol® that is couple of times 

cheaper than Regufoam®, is a very attractive alternative material. It successfully 

solves all the problems of the infilled frames and at the same time represents a 

cheap and an eco-friendly solution; 

 Since the system INODIS 2 is made of Regupol®, whose main component is 

recycled rubber, it does not have problems with the rubber ageing, thus the 

characteristics stay unchanged during the life of construction; 

 The system INODIS enables a fast erection on site and allows the assembly to 

be performed with a minimum of manpower, by enabling usual construction 

steps in practice and site erection tolerances; 

 Additional benefit of this solution is that circumferential elastomer softens the 

contact with the upper/lower beam/slab, thus allowing beam/slab deflection due 

to shrinkage and creep or flexure during earthquakes without producing any 

damage to the infills. This is even more pronounced in the case of beams/slabs 

with high spans. The system INODIS is also capable to compensate small 
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relative movements caused by thermal changes and shrinkage of the masonry 

associated with water loss of the units and mortar, moisture and freezing 

expansion of brick, foundation movement and other differential movements. 

9.2 Recommendations for future work 

Two major contributions of this thesis are the confirmation of disastrous effects that 

simultaneously applied in- and out-of-plane loading have on traditional infill walls and 

the proposal of the solution that solves this issue. Therefore, this thesis opens a new 

field for research from which many results useful for the practical application of the 

developed decoupling approach can be developed. 

Based on the conclusions drawn above, the following recommendations for future work 

activities can be derived: 

 Since the INODIS system is already patented on the European level, it will be 

further developed for market introduction. The next steps for the further 

development of the system includes the optimization of the material selection 

and construction process; 

 Parametric study must be extended in order to cover all reasonable values for the 

parameters influencing the behaviour of the infills with the INODIS system, 

such as strength of masonry units in order to cover all the Groups of units 

defined in Eurocode 6 (EN 1996-1-1, 2005), frame cross section dimension, 

stiffness and strength of mortar joints and h/l ratio of infill walls. The expected 

results are design sheets, which can serve as a basis for the design in the 

engineering practice; 

 Since openings are common in infill walls in practice, the effectiveness of the 

system should be tested on infilled frames with the openings. This should be 

done experimentally and numerically for in-plane and out-of plane loading and 

all the relevant loading combinations; 

 Further work must be carried out to improve the understanding of the interaction 

between in-plane and out-of-plane loading, to take into account the reduction of 

the infill wall capacity; 

 Comprehensive economic analysis that takes into account all costs related to an 

earthquake event and application of the developed system shall be carried out; 



Chapter 9  Conclusions and future work 

315 

 Furthermore, application and influence of the developed system on different 

types of bricks (AAC, CS etc.) as well as on steel frames with infill walls should 

be investigated; 

 Also, the application of the system can be expanded to double leaf and 

prefabricated walls; 

 The system INODIS has the potential to reduce vibration effects. This can be 

additionally investigated, as well as the examination of sound isolation and fire 

protection; 

 Since the system INODIS has the potential to be used for partition/separation 

walls, this should be further investigated; 

 Furthermore, the impact of the system INODIS on the development of a global 

seismic response structure needs to be investigated. In this regard, a numerical 

macro-model taking into account all the characteristics of the infills with the 

INODIS system is currently under development; 

 Additional calculations using models on micro and macro level should be 

carried out in order to derive design sheets for all infill situations; 

 The solution can be further developed to a product and incorporated BIM 

modelling and automatically generated simulation models. 
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Appendix A – Force-displacement curves from parametric study 

Force-displacement curves form parametric study from section 7.2 are summarized in 

this Appendix. 

  
a) b) 

Figure A.1: Force-displacement curves for h/l=2 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 15 mm 

 

 
 

a) b) 

Figure A.2: Force-displacement curves for h/l=2 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 25 mm 

 

  
a) b) 

Figure A.3: Force-displacement curves for h/l=0.9 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 15 mm 
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a) b) 

Figure A.4: Force-displacement curves for h/l=0.9 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 25 mm 

 

  
a) b) 

Figure A.5: Force-displacement curves for h/l=0.9 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 35 mm 

 

  
a) b) 

Figure A.6: Force-displacement curves for h/l=0.6 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 15 mm 
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a) b) 

Figure A.7: Force-displacement curves for h/l=0.6 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 25 mm 

 

  
a) b) 

Figure A.8: Force-displacement curves for h/l=0.6 and a) INODIS 1 and b) INODIS 2 with the 

thickness of the 1
st
 layer of 35 mm 
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Appendix B – Input data for material models in Abaqus 

Concrete 

*Material, name=Concrete 

*Density 

2482., 

*Elastic 

 3.2558e+10, 0.2 

*Concrete Damaged Plasticity 

36.,   0.1,  1.16, 0.667,    0. 

*Concrete Compression Hardening 

    1.52e+07,         0. 

 1.52021e+07, 3.3078e-05 

 1.65132e+07, 4.2807e-05 

 1.77861e+07, 5.3711e-05 

 2.02169e+07, 7.9049e-05 

 2.24942e+07,  0.0001091 

 2.46174e+07, 0.00014389 

 2.65862e+07, 0.00018342 

 2.84001e+07, 0.00022771 

 2.92488e+07, 0.00025164 

 3.00586e+07, 0.00027677 

 3.08294e+07, 0.00030309 

 3.15613e+07, 0.00033061 

 3.22541e+07, 0.00035933 

 3.29078e+07, 0.00038926 

 3.35222e+07, 0.00042038 

 3.40975e+07, 0.00045272 

 3.46335e+07, 0.00048625 

 3.51301e+07,   0.000521 

 3.55873e+07, 0.00055696 

 3.60051e+07, 0.00059412 

 3.63834e+07, 0.00063251 

  3.6722e+07,  0.0006721 

 3.70211e+07, 0.00071292 

 3.72805e+07, 0.00075495 

 3.75001e+07, 0.00079821 

 3.76799e+07, 0.00084268 

 3.78199e+07, 0.00088839 

 3.79199e+07, 0.00093531 

   3.798e+07, 0.00098347 

     3.8e+07,  0.0010329 

 3.79799e+07,  0.0010835 

 3.79197e+07,  0.0011353 

 3.78193e+07,  0.0011884 

 3.76787e+07,  0.0012427 

 3.74977e+07,  0.0012983 

 3.72763e+07,  0.0013551 

 3.70144e+07,  0.0014131 

 3.67121e+07,  0.0014724 

 3.63692e+07,  0.0015329 

 3.59857e+07,  0.0015947 

 3.55616e+07,  0.0016577 

 3.50966e+07,   0.001722 

 3.45909e+07,  0.0017876 

Masonry 

*Material, name=Masonry 

*Density 

550., 

*Elastic 

 4.87e+09, 0.15 

*Concrete Damaged Plasticity 

36.,   0.1,  1.16, 0.667,    0. 

*Concrete Compression Hardening 

  1.2175e+06,         0. 

 1.35625e+06, 2.1509e-05 

 1.54462e+06,  3.283e-05 

 1.72222e+06, 4.6361e-05 

 1.79025e+06, 5.2392e-05 

 2.04514e+06, 8.0054e-05 

 2.14225e+06, 9.3112e-05 

   2.325e+06, 0.00012259 

 2.56181e+06, 0.00017396 

 2.75556e+06, 0.00023418 

 2.90625e+06, 0.00030323 

 3.01389e+06, 0.00038113 

 3.07847e+06, 0.00046787 

 3.09462e+06, 0.00051455 

     3.1e+06, 0.00056345 

 3.09462e+06, 0.00061455 

 3.07847e+06, 0.00066787 

 3.05156e+06,  0.0007234 

 3.01389e+06, 0.00078113 

 2.96545e+06, 0.00084108 

 2.90625e+06, 0.00090323 

 2.83628e+06,  0.0009676 

 2.75556e+06,  0.0010342 

 2.69956e+06,  0.0010957 

 2.64604e+06,  0.0011567 

 2.59486e+06,  0.0012172 

 2.54588e+06,  0.0012772 

 2.49898e+06,  0.0013369 

 2.45403e+06,  0.0013961 

 2.41093e+06,  0.0014549 

 2.36958e+06,  0.0015134 

 2.32988e+06,  0.0015716 

 2.29174e+06,  0.0016294 

 2.25507e+06,  0.0016869 

 2.21981e+06,  0.0017442 

 2.18586e+06,  0.0018012 

 2.15318e+06,  0.0018579 

 2.12168e+06,  0.0019143 

 2.09132e+06,  0.0019706 

 2.06203e+06,  0.0020266 

 2.03376e+06,  0.0020824 

 2.02273e+06,  0.0021047 

 2.01549e+06,  0.0021194 

  1.9546e+06,  0.0022486 
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 3.40444e+07,  0.0018543 

 3.34569e+07,  0.0019224 

 3.28284e+07,  0.0019917 

 3.21589e+07,  0.0020623 

 3.14483e+07,  0.0021341 

 3.06966e+07,  0.0022072 

 2.99036e+07,  0.0022815 

 2.90694e+07,  0.0023572 

 2.81938e+07,   0.002434 

 2.72768e+07,  0.0025122 

 2.63184e+07,  0.0025916 

 2.53185e+07,  0.0026724 

 2.42769e+07,  0.0027543 

 2.13108e+07,  0.0029455 

 2.05186e+07,  0.0030398 

  1.9441e+07,  0.0032029 

 1.87864e+07,   0.003323 

  1.8221e+07,  0.0034404 

 1.72634e+07,  0.0036698 

 1.64581e+07,  0.0038945 

 1.57557e+07,  0.0041161 

 1.51285e+07,  0.0043353 

 1.45597e+07,  0.0045528 

 1.35546e+07,  0.0049837 

 1.26821e+07,  0.0054105 

 1.19087e+07,  0.0058342 

 1.12132e+07,  0.0062556 

 1.05811e+07,   0.006675 

 9.86428e+06,   0.007197 

 9.21542e+06,   0.007717 

 8.62365e+06,  0.0082351 

 8.08079e+06,  0.0087518 

 7.58048e+06,  0.0092672 

 7.11765e+06,  0.0097814 

 6.68817e+06,   0.010295 

 6.28865e+06,   0.010807 

 5.91623e+06,   0.011318 

  5.5685e+06,   0.011829 

 5.24339e+06,   0.012339 

  4.9391e+06,   0.012848 

 4.65406e+06,   0.013357 

 4.38691e+06,   0.013865 

 4.13643e+06,   0.014373 

 3.90153e+06,    0.01488 

 3.68123e+06,   0.015387 

 3.47468e+06,   0.015893 

 3.28107e+06,   0.016399 

  3.0997e+06,   0.016905 

  2.9299e+06,    0.01741 

 2.77109e+06,   0.017915 

 2.62271e+06,   0.018419 

 2.48425e+06,   0.018924 

 2.35526e+06,   0.019428 

 2.23529e+06,   0.019931 

 2.12396e+06,   0.020435 

 2.02088e+06,   0.020938 

 1.92571e+06,   0.021441 

 1.83813e+06,   0.021944 

 1.92994e+06,  0.0023037 

 1.90609e+06,  0.0023586 

   1.883e+06,  0.0024133 

 1.86064e+06,  0.0024679 

 1.83898e+06,  0.0025224 

 1.81798e+06,  0.0025767 

 1.79762e+06,  0.0026309 

 1.77786e+06,  0.0026849 

 1.75869e+06,  0.0027389 

 1.74008e+06,  0.0027927 

   1.722e+06,  0.0028464 

 1.70444e+06,     0.0029 

 1.68737e+06,  0.0029535 

 1.67077e+06,  0.0030069 

 1.65463e+06,  0.0030602 

 1.63892e+06,  0.0031135 

 1.62363e+06,  0.0031666 

 1.59424e+06,  0.0032726 

 1.57457e+06,  0.0033467 

 1.53984e+06,  0.0034838 

 1.51462e+06,   0.003589 

  1.4906e+06,  0.0036939 

 1.44583e+06,  0.0039031 

 1.40495e+06,  0.0041115 

  1.3675e+06,  0.0043192 

 1.33307e+06,  0.0045263 

  1.3013e+06,  0.0047328 

 1.24465e+06,  0.0051444 

 1.19564e+06,  0.0055545 

 1.15285e+06,  0.0059633 

 1.11516e+06,   0.006371 

 1.08173e+06,  0.0067779 

 1.04492e+06,  0.0072854 

 1.01267e+06,  0.0077921 

     984192.,  0.0082979 

     958868.,  0.0088031 

*Concrete Tension Stiffening, 

type=DISPLACEMENT 

 310000.,         0. 

 309052.,      2e-07 

 308578.,      3e-07 

 307635.,      5e-07 

 305288.,      1e-06 

 302961.,    1.5e-06 

 300652.,      2e-06 

 296089.,      3e-06 

 291600.,      4e-06 

 287182.,      5e-06 

 274349.,      8e-06 

 266133.,      1e-05 

 258177.,    1.2e-05 

 246714.,    1.5e-05 

 235793.,    1.8e-05 

 228800.,      2e-05 

 222029.,    2.2e-05 

 212273.,    2.5e-05 

 202979.,    2.8e-05 

 197028.,      3e-05 
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 1.75782e+06,   0.022446 

 1.68452e+06,   0.022948 

 1.61794e+06,    0.02345 

 1.55784e+06,   0.023952 

 1.50397e+06,   0.024454 

 1.45612e+06,   0.024955 

 1.41407e+06,   0.025457 

 1.37762e+06,   0.025958 

 1.34658e+06,   0.026459 

 1.32078e+06,   0.026959 

 1.30002e+06,    0.02746 

 1.28417e+06,   0.027961 

 1.27305e+06,   0.028461 

 1.26652e+06,   0.028961 

 1.26444e+06,   0.029461 

*Concrete Tension Stiffening, 

type=DISPLACEMENT 

     2.9e+06,         0. 

 2.88813e+06,      2e-07 

 2.88222e+06,      3e-07 

 2.87042e+06,      5e-07 

 2.84114e+06,      1e-06 

 2.81217e+06,    1.5e-06 

 2.78349e+06,      2e-06 

 2.72702e+06,      3e-06 

 2.67173e+06,      4e-06 

 2.61761e+06,      5e-06 

 2.46204e+06,      8e-06 

 2.36387e+06,      1e-05 

 2.26997e+06,    1.2e-05 

 2.13687e+06,    1.5e-05 

 2.01267e+06,    1.8e-05 

  1.9346e+06,      2e-05 

 1.86015e+06,    2.2e-05 

   1.755e+06,    2.5e-05 

 1.65727e+06,    2.8e-05 

 1.59604e+06,      3e-05 

 1.50974e+06,    3.3e-05 

 1.45574e+06,    3.5e-05 

 1.42975e+06,    3.6e-05 

 1.37972e+06,    3.8e-05 

  1.3322e+06,      4e-05 

 1.31051e+06, 4.0948e-05 

 1.22364e+06,    4.5e-05 

 1.12838e+06,      5e-05 

 1.04487e+06,    5.5e-05 

     971691.,      6e-05 

     907541.,    6.5e-05 

     851247.,      7e-05 

     801752.,    7.5e-05 

     758113.,      8e-05 

     719490.,    8.5e-05 

     685144.,      9e-05 

     654422.,    9.5e-05 

     626758.,     0.0001 

     578698.,    0.00011 

     501741.,    0.00013 

     438277.,    0.00015 

 188453.,    3.3e-05 

 182963.,    3.5e-05 

 180284.,    3.6e-05 

 175053.,    3.8e-05 

 169988.,      4e-05 

 167643., 4.0948e-05 

 158019.,    4.5e-05 

 146976.,      5e-05 

 136790.,    5.5e-05 

 127392.,      6e-05 

 118723.,    6.5e-05 

 110725.,      7e-05 

 103347.,    7.5e-05 

 96541.1,      8e-05 

 90262.1,    8.5e-05 

 84469.6,      9e-05 

 79125.9,    9.5e-05 

 74196.3,     0.0001 

 58012.4,    0.00012 

 46290.8,    0.00014 

 37801.1,    0.00016 

 31652.2,    0.00018 

 31139.4,   0.000182 

 27198.6,     0.0002 

 23973.1,    0.00022 

 21636.8,    0.00024 

 19944.8,    0.00026 

 18719.3,    0.00028 

 17831.6,     0.0003 

 17188.8,    0.00032 

 16141.6,    0.00038 

 15707.5,    0.00045 

 15592.6,     0.0005 

*Concrete Compression Damage 

     0.,         0. 

 0.0069, 2.1509e-05 

 0.0105,  3.283e-05 

 0.0147, 4.6361e-05 

 0.0166, 5.2392e-05 

 0.0253, 8.0054e-05 

 0.0294, 9.3112e-05 

 0.0385, 0.00012259 

 0.0541, 0.00017396 

 0.0722, 0.00023418 

 0.0925, 0.00030323 

 0.1148, 0.00038113 

  0.139, 0.00046787 

 0.1518, 0.00051455 

  0.165, 0.00056345 

 0.1785, 0.00061455 

 0.1924, 0.00066787 

 0.2066,  0.0007234 

 0.2212, 0.00078113 

  0.236, 0.00084108 

  0.251, 0.00090323 

 0.2663,  0.0009676 

 0.2817,  0.0010342 

 0.2957,  0.0010957 
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     326991.,    0.00019 

     276152.,    0.00021 

     185888.,    0.00025 

     114077.,    0.00029 

     61046.9,    0.00033 

     40757.6,    0.00035 

*Concrete Compression Damage 

     0.,         0. 

 0.0053, 3.3078e-05 

 0.0068, 4.2807e-05 

 0.0086, 5.3711e-05 

 0.0126, 7.9049e-05 

 0.0173,  0.0001091 

 0.0228, 0.00014389 

 0.0289, 0.00018342 

 0.0358, 0.00022771 

 0.0395, 0.00025164 

 0.0433, 0.00027677 

 0.0473, 0.00030309 

 0.0515, 0.00033061 

 0.0559, 0.00035933 

 0.0604, 0.00038926 

  0.065, 0.00042038 

 0.0699, 0.00045272 

 0.0749, 0.00048625 

   0.08,   0.000521 

 0.0853, 0.00055696 

 0.0907, 0.00059412 

 0.0962, 0.00063251 

  0.102,  0.0006721 

 0.1078, 0.00071292 

 0.1138, 0.00075495 

 0.1199, 0.00079821 

 0.1261, 0.00084268 

 0.1325, 0.00088839 

  0.139, 0.00093531 

 0.1456, 0.00098347 

 0.1523,  0.0010329 

 0.1592,  0.0010835 

 0.1661,  0.0011353 

 0.1732,  0.0011884 

 0.1803,  0.0012427 

 0.1876,  0.0012983 

 0.1949,  0.0013551 

 0.2024,  0.0014131 

 0.2099,  0.0014724 

 0.2175,  0.0015329 

 0.2252,  0.0015947 

  0.233,  0.0016577 

 0.2408,   0.001722 

 0.2487,  0.0017876 

 0.2567,  0.0018543 

 0.2648,  0.0019224 

 0.2729,  0.0019917 

  0.281,  0.0020623 

 0.2893,  0.0021341 

 0.2975,  0.0022072 

 0.3058,  0.0022815 

 0.3094,  0.0011567 

 0.3226,  0.0012172 

 0.3355,  0.0012772 

 0.3481,  0.0013369 

 0.3603,  0.0013961 

 0.3722,  0.0014549 

 0.3839,  0.0015134 

 0.3952,  0.0015716 

 0.4063,  0.0016294 

 0.4171,  0.0016869 

 0.4277,  0.0017442 

 0.4381,  0.0018012 

 0.4482,  0.0018579 

 0.4581,  0.0019143 

 0.4677,  0.0019706 

 0.4772,  0.0020266 

 0.4864,  0.0020824 

 0.4901,  0.0021047 

 0.4925,  0.0021194 

  0.513,  0.0022486 

 0.5215,  0.0023037 

 0.5299,  0.0023586 

  0.538,  0.0024133 

  0.546,  0.0024679 

 0.5539,  0.0025224 

 0.5616,  0.0025767 

 0.5691,  0.0026309 

 0.5765,  0.0026849 

 0.5837,  0.0027389 

 0.5908,  0.0027927 

 0.5978,  0.0028464 

 0.6047,     0.0029 

 0.6114,  0.0029535 

  0.618,  0.0030069 

 0.6244,  0.0030602 

 0.6308,  0.0031135 

  0.637,  0.0031666 

 0.6491,  0.0032726 

 0.6573,  0.0033467 

  0.672,  0.0034838 

 0.6829,   0.003589 

 0.6934,  0.0036939 

 0.7132,  0.0039031 

 0.7317,  0.0041115 

  0.749,  0.0043192 

 0.7651,  0.0045263 

 0.7801,  0.0047328 

 0.8072,  0.0051444 

 0.8309,  0.0055545 

 0.8517,  0.0059633 

 0.8698,   0.006371 

 0.8857,  0.0067779 

 0.9028,  0.0072854 

 0.9174,  0.0077921 

 0.9297,  0.0082979 

 0.9402,  0.0088031 

*Concrete Tension Damage, 

type=DISPLACEMENT 
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 0.3142,  0.0023572 

 0.3226,   0.002434 

  0.331,  0.0025122 

 0.3394,  0.0025916 

 0.3479,  0.0026724 

 0.3564,  0.0027543 

 0.3758,  0.0029455 

 0.3851,  0.0030398 

  0.401,  0.0032029 

 0.4124,   0.003323 

 0.4233,  0.0034404 

 0.4441,  0.0036698 

 0.4637,  0.0038945 

 0.4824,  0.0041161 

 0.5003,  0.0043353 

 0.5173,  0.0045528 

 0.5495,  0.0049837 

 0.5792,  0.0054105 

 0.6068,  0.0058342 

 0.6324,  0.0062556 

 0.6563,   0.006675 

 0.6838,   0.007197 

 0.7091,   0.007717 

 0.7322,  0.0082351 

 0.7535,  0.0087518 

  0.773,  0.0092672 

 0.7909,  0.0097814 

 0.8074,   0.010295 

 0.8226,   0.010807 

 0.8365,   0.011318 

 0.8493,   0.011829 

 0.8611,   0.012339 

  0.872,   0.012848 

  0.882,   0.013357 

 0.8912,   0.013865 

 0.8997,   0.014373 

 0.9075,    0.01488 

 0.9147,   0.015387 

 0.9214,   0.015893 

 0.9275,   0.016399 

 0.9331,   0.016905 

 0.9383,    0.01741 

 0.9431,   0.017915 

 0.9475,   0.018419 

 0.9516,   0.018924 

 0.9553,   0.019428 

 0.9588,   0.019931 

  0.962,   0.020435 

 0.9649,   0.020938 

 0.9676,   0.021441 

 0.9701,   0.021944 

 0.9724,   0.022446 

 0.9746,   0.022948 

 0.9765,    0.02345 

 0.9783,   0.023952 

   0.98,   0.024454 

 0.9816,   0.024955 

  0.983,   0.025457 

     0.,         0. 

 0.0015,      2e-07 

 0.0022,      3e-07 

 0.0037,      5e-07 

 0.0073,      1e-06 

 0.0109,    1.5e-06 

 0.0146,      2e-06 

 0.0218,      3e-06 

 0.0289,      4e-06 

  0.036,      5e-06 

 0.0569,      8e-06 

 0.0705,      1e-05 

  0.084,    1.2e-05 

 0.1038,    1.5e-05 

 0.1231,    1.8e-05 

 0.1357,      2e-05 

 0.1481,    2.2e-05 

 0.1664,    2.5e-05 

 0.1843,    2.8e-05 

  0.196,      3e-05 

 0.2132,    3.3e-05 

 0.2244,    3.5e-05 

   0.23,    3.6e-05 

  0.241,    3.8e-05 

 0.2518,      4e-05 

 0.2569, 4.0948e-05 

 0.2781,    4.5e-05 

 0.3035,      5e-05 

  0.328,    5.5e-05 

 0.3515,      6e-05 

 0.3742,    6.5e-05 

 0.3961,      7e-05 

 0.4172,    7.5e-05 

 0.4375,      8e-05 

 0.4571,    8.5e-05 

  0.476,      9e-05 

 0.4942,    9.5e-05 

 0.5118,     0.0001 

  0.576,    0.00012 

 0.6317,    0.00014 

   0.68,    0.00016 

  0.722,    0.00018 

 0.7258,   0.000182 

 0.7584,     0.0002 

   0.79,    0.00022 

 0.8174,    0.00024 

 0.8413,    0.00026 

 0.8621,    0.00028 

 0.8801,     0.0003 

 0.8958,    0.00032 

 0.9315,    0.00038 

  0.958,    0.00045 

 0.9704,     0.0005 
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 0.9843,   0.025958 

 0.9855,   0.026459 

 0.9866,   0.026959 

 0.9876,    0.02746 

 0.9886,   0.027961 

 0.9895,   0.028461 

 0.9903,   0.028961 

  0.991,   0.029461 

*Concrete Tension Damage, 

type=DISPLACEMENT 

     0.,         0. 

 0.0022,      2e-07 

 0.0033,      3e-07 

 0.0054,      5e-07 

 0.0108,      1e-06 

 0.0162,    1.5e-06 

 0.0216,      2e-06 

 0.0321,      3e-06 

 0.0426,      4e-06 

 0.0529,      5e-06 

 0.0831,      8e-06 

 0.1026,      1e-05 

 0.1216,    1.2e-05 

 0.1493,    1.5e-05 

  0.176,    1.8e-05 

 0.1933,      2e-05 

 0.2102,    2.2e-05 

 0.2348,    2.5e-05 

 0.2585,    2.8e-05 

 0.2739,      3e-05 

 0.2963,    3.3e-05 

 0.3108,    3.5e-05 

 0.3179,    3.6e-05 

 0.3319,    3.8e-05 

 0.3456,      4e-05 

  0.352, 4.0948e-05 

 0.3786,    4.5e-05 

 0.4097,      5e-05 

 0.4393,    5.5e-05 

 0.4672,      6e-05 

 0.4937,    6.5e-05 

 0.5188,      7e-05 

 0.5426,    7.5e-05 

 0.5652,      8e-05 

 0.5867,    8.5e-05 

  0.607,      9e-05 

 0.6264,    9.5e-05 

 0.6447,     0.0001 

 0.6788,    0.00011 

 0.7373,    0.00013 

 0.7851,    0.00015 

 0.8562,    0.00019 

 0.8824,    0.00021 

 0.9213,    0.00025 

 0.9473,    0.00029 

 0.9647,    0.00033 

 0.9711,    0.00035 
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Reinforcement 

*Material, name=Reinforcement 

*Density 

7850., 

*Elastic 

 2e+11, 0.3 

*Plastic 

 5e+08, 0. 

 5.4e+08, 0.05 

Plastic 

*Material, name=Plastic 

*Density 

1440., 

*Elastic 

 3.3e+09, 0.35 

 

Elastomer 

Material, name="Regufoam® 270" 

*Density 

229., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

0.,0.,0. 

 5392.15, 0.0298, 0. 

 15196.1, 0.0904, 0. 

 24754.9, 0.1503, 0. 

 33088.3, 0.2103, 0. 

 40931.3, 0.2699, 0. 

 44607.8, 0.3, 0. 

*Uniaxial Test Data 

 -1.43161e+06,  -0.782258, 0. 

 -1.22492e+06,  -0.777419, 0. 

 -796353.,  -0.758065, 0. 

 -583587.,   -0.73871, 0. 

 -389058.,  -0.708065, 0. 

 -270517.,  -0.668548, 0. 

 -185410.,  -0.616129, 0. 

 -133739.,  -0.551613, 0. 

 -100304., -0.45, 0. 

 -79027.4, -0.35, 0. 

 -75987.8,  -0.265323, 0. 

 -69908.8,  -0.195161, 0. 

 -63829.8,  -0.103226, 0. 

 -45592.7, -0.0532258, 0. 

 -21276.6, -0.0233871, 0. 

 0., 0., 0. 

*Material, name="Regufoam® 400" 

*Density 

250., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

 0., 0., 0. 

 12324.9, 0.0298, 0. 

 34733.9, 0.0904, 0. 

 56582.6, 0.1503, 0. 

 75630.3, 0.2103, 0. 

 93557.4, 0.2699, 0. 

 101961., 0.3, 0. 

*Uniaxial Test Data 

 -8.11848e+06,  -0.693564, 0. 

 -6.44076e+06,  -0.692074, 0. 

 -4.99052e+06,  -0.687624, 0. 

 -4.13744e+06,     -0.685, 0. 

 -3.12796e+06,  -0.677228, 0. 

 -1.91943e+06,  -0.657921, 0. 

 -1.03791e+06,  -0.619307, 0. 

 -568720.,  -0.552475, 0. 

 -398104.,   -0.49901, 0. 

 -270142.,  -0.400248, 0. 

 -213270.,  -0.288861, 0. 

 -184834.,  -0.226485, 0. 

 -170616.,  -0.123267, 0. 

 -99526.1, -0.0497525, 0. 

 0., 0., 0. 

 

 

*Material, name="Regufoam® 510" 

*Density 

460., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

0., 0., 0. 

 21568.6, 0.0298, 0. 

 60784.4, 0.0904, 0. 

 99019.6, 0.1503, 0. 

 132353., 0.2103, 0. 

 163725., 0.2699, 0. 

 178431.,    0.3,     0. 

*Uniaxial Test Data 

*Material, name="Regufoam® 570" 

*Density 

561., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

 0., 0., 0. 

 42291.4, 0.0298, 0. 

 119185., 0.0904, 0. 

 194156., 0.1503, 0. 

 259516., 0.2103, 0. 

 321030., 0.2699, 0. 

 349865., 0.3, 0. 

*Uniaxial Test Data 
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 -7.79202e+06,  -0.611421, 0. 

 -6.53846e+06,  -0.609331, 0. 

 -5e+06,   -0.60376, 0. 

  -3.7037e+06,  -0.594011, 0. 

 -2.70655e+06,  -0.580084, 0. 

 -2.00855e+06,  -0.559889, 0. 

 -1.55271e+06,  -0.534819, 0. 

 -1.19658e+06, -0.5, 0. 

 -883191.,  -0.442201, 0. 

 -669516.,  -0.380919, 0. 

 -541311.,  -0.299443, 0. 

 -441595.,  -0.226323, 0. 

 -370370.,  -0.151114, 0. 

 -313390.,  -0.112117, 0. 

 -213675., -0.0731198, 0. 

 -56980., -0.0243733, 0. 

 0., 0., 0. 

 

 -8.04739e+06, -0.540964, 0. 

 -7.15166e+06, -0.536145, 0. 

 -5.81517e+06, -0.529518, 0. 

 -4.891e+06, -0.524096, 0. 

 -3.95261e+06, -0.515663, 0. 

  -3.1564e+06, -0.506024, 0. 

 -2.38863e+06, -0.486145, 0. 

 -1.84834e+06, -0.462048, 0. 

 -1.4218e+06, -0.429518, 0. 

 -1.13744e+06, -0.391566, 0. 

 -924171., -0.340964, 0. 

 -796209., -0.289157, 0. 

-639810., -0.214458, 0. 

 -540284., -0.154217, 0. 

 -483412., -0.127108, 0. 

 -369668., -0.095181, 0. 

 -255924., -0.062048, 0. 

 -99526.1, -0.019277, 0. 

 0., 0., 0. 

 

*Material, name="Regufoam® 680" 

*Density 

637., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

 0., 0., 0. 

 61624.6, 0.0298, 0. 

 173670., 0.0904, 0. 

 282913., 0.1503, 0. 

 378151., 0.2103, 0. 

 467787., 0.2699, 0. 

 509804., 0.3, 0. 

*Uniaxial Test Data 

 -8.05285e+06,  -0.496936, 0. 

 -6.67276e+06,  -0.480223, 0. 

  -5.3455e+06,  -0.467967, 0. 

 -4.31098e+06,  -0.453482, 0. 

 -3.38616e+06,  -0.440111, 0. 

 -2.43293e+06,  -0.414485, 0. 

 -1.69309e+06,   -0.37493, 0. 

 -1.29472e+06,  -0.330362, 0. 

 -1.03862e+06,  -0.286908, 0. 

 -882114.,   -0.23454, 0. 

 -711381.,  -0.179944, 0. 

-583333.,  -0.129248, 0. 

 -398374., -0.0841226, 0. 

-184959., -0.0428969, 0. 

0., 0., 0. 

 

*Material, name="Regupol 480" 

*Density 

545., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 

 0., 0., 0. 

 6114.4, 0.01, 0. 

 14990.1, 0.0301, 0. 

 21301.8, 0.0485, 0. 

 32741.6, 0.0887, 0. 

 48126.2, 0.1509, 0. 

 64497., 0.2301, 0. 

 78698.2, 0.2995, 0. 

*Uniaxial Test Data 

 -8.00893e+06,   -0.61568, 0. 

 -5.98661e+06,  -0.593873, 0. 

 -4.09821e+06,  -0.572066, 0. 

 -2.34375e+06,  -0.548806, 0. 

 -1.45982e+06,  -0.527726, 0. 

 -870536.,  -0.487747, 0. 

 -562500.,  -0.429595, 0. 

 -348214.,  -0.343094, 0. 

 -241071.,  -0.273313, 0. 

 -174107.,  -0.186812, 0. 

 -133929.,  -0.135202, 0. 

 -80357.1, -0.0501558, 0. 

 0., 0., 0. 

 

*Material, name=" Regupol 550" 

*Density 

698., 

*Hyperfoam, n=2, testdata 

*Simple Shear Test Data 
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0., 0., 0. 

 12228.8,   0.01, 0. 

 29980.3, 0.0301, 0. 

 42603.6, 0.0485, 0. 

 65483.2, 0.0887, 0. 

 96252.4, 0.1509, 0. 

 128994., 0.2301, 0. 

 157396., 0.2995, 0. 

*Uniaxial Test Data 

 -8.13076e+06,  -0.510719, 0. 

 -7.34175e+06,  -0.497478, 0. 

 -6.00446e+06,   -0.47541,  0. 

 -4.35958e+06,  -0.449559, 0. 

 -3.16939e+06,  -0.424968, 0. 

 -2.50074e+06,  -0.410467, 0. 

 -1.81872e+06,  -0.388398, 0. 

 -1.32392e+06,  -0.364439, 0. 

 -842496.,  -0.315259, 0. 

 -561664.,  -0.258512, 0. 

 -374443.,  -0.199243, 0. 

 -307578.,  -0.165826, 0. 

 -254086.,  -0.139975, 0. 

 -187221.,   -0.09836, 0. 

 -133730., -0.0491803, 0. 

 0., 0., 0. 
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