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SINTEZA I KARAKTERIZACIJA POLIMERNIH KOMPOZITA NA 

BAZI MONOKRISTALA POLUPROVODNIČKIH MATERIJALA 

 

Rezime 

 

 Kompoziti sa polimernom matricom na bazi monokristala imaju veliki potencijal u 

oblasti optičkih komunikacionih sistema gde su aktivni mikro do nano kristali dispergovani u 

optički transparentnu matricu. Predmet ove doktorske disertacije obuhvata istraživanja u 

oblasti funkcionalnih optoelektronskih kompozitnih materijala s polimernom matricom za 

primenu u elektronskim tehnologijama kao i u oblasti komunikacijskih i navigacionih tehnika 

i  mogućnosti razvijanja integralne optike i fotonike. U toku izrade ove disertacije izvedena je 

sinteza polimernih optoelektronskih kompozitnih materijala kontrolisanih optičkih svojstava. 

Dobijanje visoko transparentnih kompozita moguće je s jedne strane korišćenjem 

neorganskih punilaca dimenzija čestica manjih od talasne dužine elektromagnetnog zračenja, 

da ne bi došlo do rasejavanja. Drugi način je ugradnja materijala sa sličnim vrednostima 

indeksa refrakcije. U okviru ove disertacije izbor materijala pao je na poli (metil-metakrilat) 

sa indeksom refrakcije n600= 1.49 i kalcijum-fluorid sa n600= 1.43. 

 Istraživanja su išla u dva pravca: a) sinteza  monokristalnog CaF2 kao funkcionalnog 

nosioca u kompozitu i ugradnja u polimernu matricu; b) sinteza i karakterizacija kompozita 

sa polimernom matricom ugradnjom kvantnih tačaka CdSe. Na ovako organizovan način 

istraživanja može se pratiti i uticaj organizacije i dimenzija kristala na optička i mehanička 

svojstva dobijenog kompozita. 

 Modifikovanom metodom vertikalni Bridžman u vakumu dobijen je visoko kvalitetni 

monokristal CaF2. Dobijeni kristal je ispitivan metodam Raman i IC spektroskopijom. 

Kristalna struktura je potvrđena rendgensko strukturnom analizom. U skladu sa teorijom 

grupa primećen je jedan Raman i dva infracrvena optička moda. Niska fotoluminiscencija 

svedoči o tome da je koncentracija defekata kiseonika u CaF2 mala. Sva obavljena 

istraživanja pokazuju da dobijeni monokristal CaF2 ima dobar optički kvalitet. Nakon 
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mlevenja čestice monokristala su ugrađene  u polimernu matricu poli (metil-metakrilata).  

Ugradnjom monokristalnog CaF2 dobijen je kompozit sa očuvanim optičkim svojstvima 

monokristala, dok su termička i mehanička svojstva poboljšana.  

 Kvantne tačke (quantum dots-QD) predstavljaju poluprovodne monokristalne  

nanostrukture, čiji su nosioci naelektirisanja prostorno ograničeni u sve tri dimenzije. 

Materijal od koga su tačke izrađene definiše njihove karakteristične energijske vrednosti, 

međutim tačne vrednosti energijskog procepa su određene veličinom tačke. Posledica ovoga 

je činjenica da kvantne tačke izrađene od istog materijala, ali različitih veličina emituju 

zračenje različitih talasnih dužina. U okviru ovog rada izvedeno je ispitivanje uslova 

dobijanja tankog filma od poli(metil metakrilat)-a dopiranog kvantnim tačkama CdSe 

metodom livenja iz rastvora. Termička svojstva kompozita ispitana su metodom DSC. 

Optička svojstva ispitivana su analizom emisionog spektra pikosekundnim mernim sistemom 

za merenje vremena života luminescencije. Mehanička svojstva su ispitana primenom metode 

nanoindentacije. Rezultati DSC Apokazuju da je za kompozitni film PMMA dopiranog s QD 

dobijena je nešto niža Tg u odnosu na čist PMMA. Razlog za ovo sniženje Tg je interakcija 

QD sa osnovnim polimernim lancem PMMA. Rezultati ispitivanja nanoindentacijom 

pokazuju da dodatak QD povećava redukovani modul elestičnosti i tvrdoću. I ovakvo 

ponašanje kompozitnog filma ukazuje na interakciju nanočestica QD i osnovnog polimernog 

lanca PMMA. Ove čestice sprečavaju pokretanje polimernog lanca i na taj način poboljšavaju 

mehanička svojstva kompozita.Rezultujući fluorescentni spektar kompozitnog filma pokazao 

je da su QD zadržale svoja optička svostva i da odlično reaguju u PMMA matrici na pobudu. 

 

Ključne reči: Kompozitni materijali, monokristal, kvantne tačke, fluoroscencija,   

nanoindentacija  

 

 

Naučna oblast: Inženjerstvo materijala 

 

UDK: 66.017:548.55 
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SYNTHESIS AND CHARACTERIZATION OF OPTICAL POLYMER 

COMPOSITES BASED ON SINGLE CRYSTALS 

 

Abstract 

 

 Composites with a polymer matrix based on single crystals have great potential in 

the field of optical communication systems where active micro to nano crystals dispersed in 

an optically transparent matrix. The subject of this doctoral thesis includes research in the 

field of optoelectronic functional composite materials with a polymer matrix for use in 

electronic technologies, as well as in the field of communications and navigation techniques 

and possibilities for developing integrated optics and photonics. Polymer optoelectronic 

composite materials with controlled optical properties were synthesized. One way is use of 

the inorganic particle size smaller than the wavelength of electromagnetic radiation to avoid 

scattering, another way is the installation of materials with similar values of the refractive 

index. Within this selection of theses materials fell on the poly (methyl methacrylate) with an 

index of refraction n600 = 1.49, and calcium fluoride with n600 = 1.43.  

 Research was organized in two directions: a) synthesis of single-crystal CaF2 as a 

functional carrier and embedding in the polymer matrix; b) synthesis and characterization of 

polymer matrix composites incorporating CdSe quantum dots. In such an organized way 

research can be traced and influence the organization and size of crystals in the optical and 

mechanical properties of the resulting composite.  

 Modified vertical Bridgman method in a vacuum obtained is a high quality single 

crystal CaF2. The resulting crystal was investigated by Raman and IR spectroscopy. The 

crystal structure was confirmed by X-ray structural analysis. In accordance with the theory 

group spotted one and two infrared Raman optical mode. Low photoluminescence testifies 

that the concentration of oxygen defects in CaF2 was small. All completed surveys show that 

the resulting single crystal CaF2 has a good optical quality. After grinding, the particles of the 

single crystal are embedded in a polymer matrix of poly (methyl methacrylate). Incorporating 
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monocrystalline CaF2 composite was obtained with preserved optical properties of single 

crystals, whereas the thermal and mechanical properties improved. 

 Quantum dots (QD) are monocrystalline semiconductor nanostructures, whose head 

electric charge spatially confined in all three dimensions. The material from which the QD 

made defines their characteristic energy. However, the exact value of the energy gap are 

determined by the size of the point. The consequence of this is the fact that quantum dots 

made of the same material but different sizes emit radiation of different wavelengths. The 

present work was carried out testing of the conditions for obtaining a QD doped poly (methyl 

methacrylate) thin film by method of casting from solution. The thermal properties of 

composites were investigated by the DSC method. Optical properties were investigated by 

analyzing the emission spectrum of picosecond measurement system for measuring the 

lifetimes of luminescence. Mechanical properties were tested using the method of 

nanoindentation. The results of DSC revealed that for composite doped PMMA film have 

somewhat lower Tg in comparison with pure PMMA. The reason for this decrease in Tg is QD 

interaction with the main chain of the polymer PMMA. Nanoindentation test results show 

that the addition QD increases reduced modulus of elasticity and hardness. I kind of behavior 

of the composite film points to the interaction of nanoparticles QD and the base polymer 

chain PMMA. These particles prevent the initiation of a polymer chain and thus improve the 

mechanical properties of the composite. Fluorescence spectrum of the film showed that QD 

retain their optical properties and respond well in the PMMA matrix to excite. 

 

 

 

 

Key words: Composite material, single crystal, quantum dots, fluorescence, nanoindentation 

 

Field of Academic Expertise: Materials Engineering 

UDC: 66.017:548.55  
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Introduction to composite materials 

 

 Composite materials formed from two or more material whereby the material formed 

is characterized by new properties compared to the starting materials [1-9]. Composite 

materials are consisting of the corresponding reinforcing materials and matrix who 

connecting the carrier material. These components are typically not solvable one within the 

other and it is possible to determine the physical boundary between them. With the 

combination of starting materials can be produced easy, very strong, tough and impact 

resistant material and the like. One simple scheme for the classification of composite 

materials is shown in Figure 1 [1]. 

 

 

 

 

Figure 1. A classification scheme for the various composite type materials [1]. 

 

 Composites are rightly considered the materials that will be the main direction of 

innovation in the near and distant future, new material. Thanks to the fact that each composite 
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combine the properties of two or more materials, composites are increasingly replacing 

classical materials in engineering. This material poses the specific features that enable their 

dominant functional application, but these materials are called functional composite materials 

(Figure 2). 

 It is important to emphasize that the collection of useful properties of composites can 

be achieved not only by combining simple materials but also the macroscopic and the 

microscopic atomic scale. 

 In search of new composite materials, constantly appearing new combinations: metal-

glass; carbon-glass; ceramic-metal, etc. "Installation" simple substances from simple to 

complex materials achieved by modern methods of synthesis and processing of materials. 

 This tendency leads matter in a row: 

atom → crystal (amorphous) structure → polycrystalline structure → material 

 

 

Figure 2. Functional composites. 
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Structure of composite materials 

 

 Composite materials or a composite, are multi-phase multi-component materials 

whose phases possess physical and mechanical properties which differ significantly, with 

exposed border area and the surface between them, as shown in Figure 3. The structure of the 

composite consists of a continuous phase in which is built-in one or more discontinuous 

phases. The continuous phase is called the matrix; a discontinuous phase is referred to as an 

active filler or reinforcement, depending on the function performed by the composite. The 

properties of composite materials themselves depend on the continuous and discontinuous 

phases of, and formed from the border area between them. Discontinuous phase in addition to 

the mechanical properties can be modified and some other properties of composites such as, 

thermal, acoustic, electric, magnetic and optical. Appropriate choice of constituents and their 

relative mass ratio in the structure of the composite material can be obtained materials with 

the desired density, strength, hardness, stiffness, corrosion resistance, wear resistance, the 

ability of thermal and acoustic insulation, etc. 

 

 

Figure 3. Structure of composite materials. 

 

 The border area is the interfacial area that has adequate capacity and limit the 

interface surfaces that have a very important role in determining the critical properties of 

composites, for example, the intermediate stages of mechanical stress is transferred from the 

matrix to gain and vice versa. Also, the intermediate stage plays a decisive role in the long-

term stability of the composite. 
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 Development of advanced composite materials to a considerable extent based on the 

possibility of designing their structure and properties, various methods of synthesis and 

production. The resulting set of properties of the composite material is achieved not by the 

combination of materials in a simple and more macroscopic and microscopic in nano-scale. 

 In search of new composite materials, constantly appearing new combinations 

between the basic classes of materials: metals, ceramics and polymers. Synthesis of materials 

from simple to more complex materials shall be appropriate to the specific methods of 

making changing the structure of the nano to macro dimensions in order to achieve optimum 

desired properties. This approach enables the development of structurally very complex 

multifunctional materials in which the design of the structure extends from the nano level - 

nano materials, microlevel - microcomposites, to macro levels - macrocomposites. 
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Classification of composite materials 

Classification based on the composite matrix  

 

 Depending on the matrix composite materials can be classified as synthetic 

composites: ceramic (CMC) polymer, (PMC), carbon (SS) and metal (MMC) or natural 

composites: matrix of lignin (wood) or collagen (biocomposites) as shown in Figure 4. 

 

 

Figure 4. Classification of composites based on matrices [2, 3]. 

 

Classification of a composite base on the form of the disperse phase 

 

 The largest number of the composite has been developed and is manufactured with 

the aim to improve their mechanical properties, such as stiffness, strength or toughness high 

temperature resistance. Based on that, the most commonly used methods of classification of 

composite according to a joint mechanism to strengthen, as the latter depends on the 

geometry of the reinforcing composites classified according to the geometry of the 

characteristic amplification unit. Composite materials can be classified into three main 

categories: particles reinforced, fiber reinforced composite materials and laminate. The shape 

of the discontinuous phase can be different and can be approximated by a sphere (particles), 

cylinder (fiber sticks), plate-layer (laminate), irregular tiles (flakes) or irregular particles 
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(filler) [4-5]. Only the classification of composite materials according to the form of discrete 

phase is shown in Figure 5. 

 

Figure 5. Classification of composite materials [6-10]. 

 

Composite materials reinforced with particles 

 

 According to this classification, the essential characteristics of the particles are that 

they are by their nature non fiber. They can be: spherical, cubic, tetragonal, flaked or 

irregular shape, but they are all approximately equal. Fiber is characterized by a large ratio of 

length to cross-section. Composites reinforced particles are often called particulate, and with 

fibers fiber-reinforced composite. Except obvious geometric differences, these two classes of 

materials also differ in the way the exercise load transfer, and hence in the way it affects the 

rigidity and strength of the composite material. The concept of load transfer is crucial for 

understanding the behavior of the composite material to mechanical stress. The composites 

have properties of strength and toughness because of their synergistic ability to share applied 

load between the constituents. The efficiency of the composite are strictly determined by the 

efficiency of the transfer of applied load from the matrix to the reinforcement. And this is on 

the other hand determined by several aspects such as the quality of the boundary surface, the 

geometrical orientation, and mechanical properties of the individual components. 
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Composite materials reinforced with fibers 

 

 The use of fiber as a reinforcement in composite materials based on the following: a) 

the small diameter of the fiber allows to obtain a larger share of the theoretical strength of the 

material than in a larger piece of the same material, because it is less likely for the occurrence 

of defects or deficiencies in the structure of materials that contribute to the reduction of 

strength; b) the optimal ratio of length and diameter of the fibers to a successful transfer the 

external loads to the fiber matrix of the border area; v) a high degree of flexibility and 

elasticity of the fiber allows the use of various techniques to create very complex woven  

structure as a form of reinforcement in composites. The fibers differ according to: a) the type, 

b) the length, c) the diameter, d) orientation and e) hybridization. 

 

Laminate composite materials 

 

 A laminated composite represents a class of very attractive structural materials. 

Exceptional advantage of these signage materials are their excellent mechanical properties, 

particularly their specific mechanical properties, as well as the possibility of the introduction 

of flexibility in the design of structural elements of the composite. The structure and nature of 

the composite laminate are different than those of conventional polycrystalline structural 

materials. Similarly, the initiation and propagation of fracture, as well as criteria of 

destruction and resistance of materials are different than in conventional construction 

materials. 
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Organic/inorganic optical composites: basic concept 

 

 The organic/inorganic optical composite is defined as a composite which consists of 

an organic host material - matrix and inorganic optical active inclusions. Those optical 

inclusions could be in various dimensions meso to micro to nano. One way to obtain highly 

transparent composites is by using fillers with a particle size smaller than the scattering limit 

[11]. Another way is to use the so-called ‘‘refractive index matching’’ technique, which is 

often employed in colloid physics [12-16].  Light scattering not only depends on the particle 

size but also on the difference in refractive index (n) between matrix and filler materials. 

The smaller n, the lower is the amount of scattered light. When nmatrix equals nfiller, the 

composite appears transparent independently of the size of the filler. 

 Wafer-based single-crystalline inorganic semiconductors currently enable the most 

efficient solar cells. However, their rigidity precludes the use of inexpensive processing 

schemes such as roll-to-roll manufacturing and/or their installation in flexible forms. While 

amorphous and polycrystalline films of inorganic semiconductors can be grown on flexible 

substrates such as stainless steel or polymeric sheets, solar cells processed from these 

disordered absorber materials exhibit lower solar photovoltaic conversion efficiency than 

single crystal. Organic and hybrid organic/inorganic solar cells offer flexibility and 

processability, but suffer from low efficiency and instability of the organic light-absorbing 

and/or charge-conducting material under prolonged illumination. We describe in this 

dissertation the fabrication of arrays of highly oriented, single-crystalline CaF2 embedded in a 

polymeric film. This composite material combines the photo stability and solar-energy 

conversion potential of high quality single-crystalline semiconductors with the processability 

and flexibility of polymers. 

 

Organic/inorganic optical nanocomposites 

 

 Photonic nanocomposite materials are generally constructed by embedding an 

optically functional nanosized guest material (e.g. nanoparticles, nanocrystals and molecules) 

into an optically transparent host matrix such as organics (e.g. (photo)polymers, polymer 
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blends, liquid crystals) or inorganic solids (e.g. glasses and ceramics). The addition of the 

guest material to the host matrix can yield significant improvement and modification in their 

mechanical, thermal, transport and optical properties over bulk materials. As a result, high-

performance photonic functionalities, with environmentally stable optical characteristics, can 

be achieved. In addition, nanocomposite materials can be tailor-made via the control of their 

linear optical properties, such as the refractive index and absorption as well as their laser, 

electro-optic, and nonlinear optical properties. For example, the incorporation of liquid 

crystalline droplets in polymers gives electrically controllable light scattering characteristics, 

ideally suited for display and optical switching applications. Dispersing inorganic or organic 

nanoparticles in optical materials leads to a strong response to incident light. Indeed, 

ferroelectric nanoparticles in cholesteric liquid crystals enhance the electro-optic response of 

the mixture. In photopolymers, nanoparticles make the formation of a high-contrast 

holographic grating possible, which should prove useful for applications such as optical 

elements and data storage. Moreover, nanoparticles dispersed in photopolymer can be 

assembled by light, providing the realization of multi-dimensionally structured materials, 

highly relevant for photonic and electronic applications. The local-field effects in 

nanostructured materials can provide a large enhancement of the nonlinear optical response 

and the improvement of the light amplifying properties. These areas are represented in this 

special issue, along with contributions to modelling of photonic crystal structures and 

holographic grating formation in polymers. Because nanocomposite materials provide a new 

method to improve the environmental stability of materials, as well as interesting optical 

properties, they should open new routes for applications in photonics. 

  Polymeric nanocomposites consisting of inorganic nanoparticles and organic 

polymers represent a new class of materials that exhibit improved performance compared to 

their microparticle counterparts. It is therefore expected that they will advance the field of 

engineering applications. Incorporation of inorganic nanoparticles into a polymer matrix can 

significantly affect the properties of the matrix. The resulting composite might exhibit 

improved thermal, mechanical, rheological, electrical, catalytic, fire retardancy and optical 

properties. The properties of polymer composites depend on the type of nanoparticles that are 

incorporated, their size and shape. There are two important factors that should be discussed 
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about optical nanocomposites: one is the scattering problem, and the other is the dielectricity. 

Although 1D nanostructures such as carbon nanotubes [10-14], CdS nanoparticles [15], Mo 

nanowires [16] and ZnO nanorods [17] have been embedded in polymers, the process 

described herein uniquely combines flexibility, atomic-scale crystallinity, and long-range 

order in a single material [18]. 

 The essence of the subject can be concisely described as follows: The important 

prerequisite is that the inorganic nano-inclusions are randomly dispersed in the organic host 

material without aggregation to form a heterogeneous composite structure as schematically 

drawn in Figure 6. 

 

Figure 6. Scheme of optical nanocomposite. 

 

 When the nano-inclusions are randomly dispersed, the scattering arisen from the 

interaction between propagating light and nano-inclusions is substantially expressed by the 

Rayleigh scattering theory [19]. For this reason, high transparency could be maintained when 

the diameter of the nano-inclusion is optimized by taking into account the ratio of the 

refractive index of the nano-inclusion to that of the host material. There does not seem to be a 

universal definition on the terminology “nanocomposites”. According to Komarneni [20], the 

word “nanocomposites” was first used during the period 1982-1983 to describe the major 
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conceptual re-direction of the sol-gel process, in which the solution of sol gel process is used 

to create maximally heterogeneous rather than homogeneous materials.  

 According to Prasad [21], nanocomposites are random media containing domains or 

inclusions that are of nanometer size scale. Prasad classifies two types of nanocomposites. 

One is that the size and domains of inclusions are significantly smaller than the wavelength 

of light. The other is that nanocomposite contains domains/inclusions comparable to or larger 

than the wavelength of light. 

 Aside from whether sol-gel technology is used, the key of the nanocomposite is 

“heterogeneity”. As was mentioned above there are two structural members in a 

nanocomposite; one is inclusion and the other is host/matrix material. Our central concern 

research is to study heterogeneous materials whose inclusions are far smaller than the 

wavelength, which is the first type that Prasad classified, as schematically depicted by Fig. 6. 

 Nanocomposite polymer films doped with QD have many commercial or potential 

applications in biological labeling and diagnostics, LED’s, electro-luminescent devices, 

photovoltaic devices, lasers and single electrode transistors [22-26]. High performance in 

polymer blends and composites can be achieved by addition of a nano size filler component 

into a polymer matrix. In this regard polymer nanocomposites present a promising alternative 

of conventional composites. Recently, studies on blends of immiscible polymers containing 

nanoparticles have attracted the attention of several research groups [27-30]. These studies 

suggest that under certain conditions the polymer molecules and the nanoparticles should not 

be regarded as individual entities within the blend, but instead as complex aggregates. 

 Polymeric nanocomposites consisting of inorganic nanoparticles and organic 

polymers represent a new class of materials that exhibit different performance compared to 

their microparticle counterparts. The properties of polymer composites depend on the type of 

nanoparticles that are incorporated, their size and shape. 

 Poly-methyl-methacrylate (PMMA), a transparent thermoplastic polymer, has been 

widely used in many commercial applications due to his high impact-resistance, ease of 

fabrication, low density, and cost-effective technologies [31]. For example, PMMA has been 

one of the most popular substrate materials in making polymer-based micro fluidic devices to 
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perform chemical and biological assays due to its excellent chemical, physical, biological, 

mechanical, optical and thermal properties [32-35].  

 Semiconductor nanoparticles are notable for their wide fundamental research and 

industrial applications [36, 37]. Their defining characteristic is their size which is in the range 

of 1-100nm and excellent chemical processibility. The strong confinement of excited 

electrons and holes leads to dramatically different optical and electronic properties compared 

to the bulk semiconductor [38]. Many studies have been made on III–V and II–VI 

semiconductor quantum dots (QDs) all over the world. For II-VI QDs, CdSe QDs prepared 

by chemical methods are the most popular [39]. Many studies have been focused on CdSe 

QDs because of its high luminescence quantum yield, narrow band gap and a variety of 

optoelectronic conversion properties compared to bulk CdSe [40].  

 Polymer nanocomposites with QDs have a wide range of applications in 

optoelectronics and biosensing as solar cells, light emitting diodes and bio-labeling [41, 42]. 

Those nanocomposites are usually used in film form in which the distance between QDs in 

polymer matrix is fixed. Inter-particle distance between QDs in film plays a crucial role in 

determining the quantum yield of fluorescence. QDs in polymer matrix usually aggregates in 

clusters and reduced quantum yield, so  it is important to control both dispersion and film 

production process to retain its initial quantum yield [43-47]. 

 Scattering phenomena was discussed circumstantially and quantitatively by Rayleigh 

and Mie [48-51]. First, the scattering problem was formulated as that the scattered 

electromagnetic waves can effectively be dipole radiations in origin. In the Mie theory, the 

scattered spherical electromagnetic wave will interfere with the incident light expressed as 

the expansion of vector spherical harmonics to form an electromagnetic wave which is to be 

actually observed. 

 Maxwell-Garnett proposed the concept of the effective dielectric property for the first 

time [50-52]. Dielectric property of a homogeneous material in terms of the relation between 

the microscopic property (the molecular polarizability α) and the macroscopic property (the 

dielectric constant ε) was derived by Clausius and Mosotti, which is equivalent to the formula 

derived by Lorentz and Lorenz later with respect to the refractive index n. 
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Optical nanoparticles-quantum dots (QD) 

 

 Nanoscale reinforcements have found extensive interests in the polymer field, because 

reinforced materials (composites) display better structural mechanical properties compared to 

the pure polymers. Semiconducting nanoparticles (quantum dots) have been material of 

interest when it comes to polymer reinforcement due to their exciting properties especially 

their unusual size-dependent optical properties [53, 54]. 

 Quantization of energy states, or spatial limitation of charge carriers is performed by 

forming a potential barrier. Depending on the choice of the potential barrier confinement can 

be performed in one or more directions, so as to obtain a thin film, or the pit (quantum well, 

QW), the wire (quantum wire, QWR), or point (quantum dot, QD) or box. If you need to 

obtain a semiconductor film spatial limitation is performed in one direction (one-dimensional 

quantum confinement). The wire is a two-dimensional quantum-confined structure, while the 

point of quantum effect occurs in all three directions. In Figure 7 shows a schematic 

representation of these structures, as well as the massive semiconductor in which there is this 

effect. 

  

 

Figure 7. A schematic representation of the quantum-confined structures - bulk, 

quantum well, quantum wire and quantum dot. 
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 In the direction free from the quantum confinement of charge-free to move, so as to 

form so-called electric or gas oscular. In quantum electronic or oscular gas occurs in two 

dimensions, so that one's called 2D structures. Quantum wires are 1D and 0D quantum dots-

structure. Еxistence of gas in quantum well wires and causes the formation of energy subarea, 

while the quantum dots arise discrete states, an analog energy states of an atom, and the 

structures referred to as artificial atoms. 

 Quantum dots are semiconductor nanostructures whose charge carriers spatially 

confined in all three dimensions. As a result, characteristics of these systems are quite 

different from macroscopic properties of semiconductors. One of the more interesting 

properties of quantum dots is their coloration. The material from which are made the point 

defined by their characteristic values of the energy, however, the exact value of the band gap 

are determined by the size of points, or to the strength of the quantum confinement. The 

consequence of this is the fact that points are made of the same material but different sizes 

emit radiation of different wavelengths. Larger point emit radiation at longer wavelengths 

fluorescence spectra as a result of the size of their energy gaps. 

 Recent researches in nanotechnology suggest that the spot size may have shown some 

influence on its coloration or Technical characteristics of its spectrum. It is shown that the 

size of the point directly affects the fluorescence lifetime. Electron-hole pairs in larger counts 

are living longer because they need less energy to excite. 

 By studying excitation and quantum dots in semiconductors led to the conclusion that 

the interaction of longitudinal optical phonons and excitons can be strong or weak depending 

on the used energy. Variability of this interaction comes from the discrete energy levels of 

quantum dots, or the capabilities of their changing size or chemical composition of quantum 

dots. 

 If the difference between the primary and the first excited energy levels of quantum 

dots is comparable with the energy of phonons occurs very strong coupling of excitons and 

longitudinal optical phonons. The result of this regime is the creation of polarons. Еxcitation 

photoluminescent spectra are obtained on which clearly can be observed the formation of 

these particles in the form of Stoks lines. The energy difference between this line and the 

excitation line of the laser corresponds to the energy of binding to the polaron. 
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 By recording the spectra of shallow photoluminescent quantum dots found that 

characterize polaron excited states, whose energy difference corresponds to the energy of 

longitudinal optical phonons. An important feature of polarons is their stability at ambient 

temperatures and relatively long lifetime. 

 Poor excitation-phonon interaction occurs when the energy difference between the 

base and the first excited state is significantly higher than the energy of longitudinal optical 

phonons. In this case, the excitation is formed-phonon complex that can be observed as a 

broad emission line of the photo luminescent and resonantly excited photo luminescent 

spectra. Since the excitation laser line is shared energy value corresponding to the multiple 

phonon energies. 

 Production of semiconductor nanostructures structure rapidly was developed from 

seventies of the last century when it enabled the application of thin layers of semiconductor 

material with a precision deposition to the dimensions of individual atoms. Technologies that 

they were derived are thin layers of epitaxial, molecular beam (Molecular Beam Epitaxy - 

MBA), and metal-organic chemical vapor deposition (Metal - Organic Chemical Vapor 

Deposition MOCVD). 
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Single crystal in optical active polymer composites 

Crystal growth 

  

 Crystal growth involves the controlled deposition of atoms onto a single-crystal seed 

by making use of a phase change: liquid to solid, vapor to solid, or even solid (in a metastable 

form, for example) to solid. The pure metal solidification takes place at a constant 

temperature that is characteristic of a given metal – temperature of solidification-

crystallization. Since the internal energy of the disordered liquid is higher than the ordered 

crystalline state, the transition from the liquid phase to the crystalline state is accompanied by 

release of heat. Latent heat that develops during curing is sufficient to maintain the liquid at a 

constant temperature for the remainder of the cure. Applying elementary thermodynamics of 

the solidification process can be considered the relationship between temperature and the 

latent heat of solidification. The curing temperature is defined as the temperature at which the 

free energy of the liquid and the solid phase equal to: 

 

  GL = GS     (1) 

 

where is GL- Gibbs free energy of the melt, GS- Gibbs free energy of the solid . 

 

 Free energy can be expressed in the following equation: 

 

    G = E - TS + PV    (2) 

 

where is : E - internal energy phase, T - absolute temperature, S - entropy is a measure of 

order phase, P- the pressure, V - volume. 

 At the curing temperature (T0) of the free energy of both phases are equal: 

    

                      HL - T0SL =  HS - T0SS                        (3) 

  

where: HL - enthalpy of the liquid phase, HS - enthalpy of solids. 

  Latent heat that is released during the transformation can now be expressed as:  

 

   L = HL - HS = H = T0S    (4) 

 

 Values for the latent heat ranging from about 2 kJ mol
-1

 for metals with weak 
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cohesive forces, such as alkali metals, up to 20 kJ mol
-1

 for metals with strong cohesive 

forces between the carbon atoms, such as the tungsten and other transition metals 57, 58.  

 S, as a measure of the change of order of atoms during the transformation of the 

liquid-solid can be determined from Eq. (4) as the ratio of the latent heat and the equilibrium 

temperature of solidification 

 

    
0T

L
S       (5) 

 

S is relatively independent of the structure of the solid phase, i.e. arrangement of atoms 

changes during the transition from one phase to another is small.  

 This shows that when the metal solidifies, the change in entropy during solidification 

of metals is relatively small.  

 

Supercooling 

 

 Due to the continuous and rapid cooling of the liquid phase it could be happened that 

melt go to super cooling. In real systems, and usually takes a final subcooling as the driving 

force to begin crystallization. Cooling curve has a different shape depending on the 

conditions of cooling of the melt, temperature, specific heat, thermal conductivity, the 

material of the court and melt latent heat. If there are enough metal in the system, due to the 

released latent heat, the temperature of the melt is rapidly raised until reaching the 

equilibrium temperature of solidification, and hence the hardening process stops. If there is a 

smaller amount of metal released latent heat is not sufficient to increase the temperature of 

the melt to equilibrium, but only reduced supercooling, i.e. reduces the growth of the solid 

phase. When crystallization of alloys is causes supercooling due to changes in the 

composition of the liquid phase along the border area, it is so-called constitutional 

supercooling. 
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Nucleation 

 

 The process of nucleation describes the beginning of the formation of one phase in the 

other where necessary to overcome barriers in the free energy required for the formation of a 

new phase. Nucleation plays an important role in the initial formation of crystals from the 

vapor and liquid phases. During the curing process the transformation of a new phase begins 

with the appearance a few very small particles of a new phase. The growth of a new phase of 

relations depends on the surface to the volume, but small particles tend to dissolve, a big to 

grow. In fact, there is a critical particle size that divides those that tend to be dissolved, called 

embryos, of those that grow, called nuclei. 

 Nucleation develops in several stages: 1) the collection of appropriate kind of atom 

diffusion or some other kind of movement; 2) structural changes in one or more unstable 

intermediate structure; 3) forming the nucleus of a new phase. This is followed by a new 

phase of growth also in several stages: 1) transport of materials by diffusion through the old 

stage; 2) transport across the interface into a new phase; 3) transfer of the interior of a new 

phase diffusion. All these stages are thermally activated processes, which means that the 

barriers to overcome thermal energy. 

 Depending on whether the emergence of a new phase particles coming spontaneously 

or due to the presence of foreign particles as centers of formation of the new phase are 

different homogeneous and heterogeneous nucleation. 

 

Homogenous  nucleation 

 

 It is assumed that a small area of a new,stable phases occurs in the middle of an old, 

unstable materials. We consider the growth of the solid from the liquid phase thus eliminating 

the problem of stress. It is also assumed spherical shape of the nucleus. If the temperature 

suddenly drops below the melting point, the change of free energy per unit volume of 

solidified phase, Gv will be negative. The total free energy changes for the particle radius r 

will be:  

   G = 4r
2 - 4/3 r

3
Gv    (6) 

 

where   is surface tension. Each member of this equation is shown in Figure 8. 
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 Since the particles increases, and its free energy increases until it reaches a radius 

r
*
. Particles smaller than the radius r

*
 will be dissolved, thus lowering the free energy. These 

are embryos. Particles larger than the radius r* lower free energy face growth, and are called 

nuclei 59. For a nucleus formation, energy must be added G
*
 and it is thermal activation of 

process. From Figure 8, it is clear that G
*
 and r

*
 can be calculated from the maximum 

determining the Equation (6). By equating the first derivative to zero:   

 

VG
r




2*
 (7)  

         2

3
*
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



    (8) 

 

 In this way, it is possible to determine the critical size of the nucleus and the energy 

for its formation in order to begin growth of a new phase. 

 

 
Figure 8. Gibbs free energy dependence on nucleus diameter 59. 

 

 

 Temperature dependence of G
*  

could be obtained if it is assumed that Hv and Sv 

have slow temperature dependence. On melting point, T0, is Gv=0,: 
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where T0 - equilibrium melting temperature , HV - specific volume enthalpy, SV  - volume 

entropy change:   
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From tnhis equation could be obtained supercooling for starting solidification: 
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 (10a) 

 

 

It takes subcooling in real systems is of the order T= 0.2×T0 57. For crystal growth from 

the melt expression for subcooling for homogeneous nucleation is approximated by the 

equation (11) 60 with: 

 

*

0 r

a

T

T



     (11) 

where a is atomic diameter.   

 

 If the total number of particles of a new phase N0, the number of nuclei of critical 

size, N
*
, can be calculated from equation: 

 

Tk

G

eNN

*

0

*



     (12)  

 

where k –Boltzman constant. 
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This equation relates the probability of nucleation of solid phase with the probability 

of the existence of the critical nucleus size. N
*
 is very low until a critical value Gv  is 

acheived  when growing rapidly in a very small interval. This has the effect of increasing the 

saturation, subcooling, whereby no nucleation occurs until a critical condition.  

Then suddenly begins to form a large number of nuclei. Further development of the 

term leads to the equation for the velocity of nucleaton 60: 
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where are: B1 - a constant that depends on the particle size and the surface energy, DL -

difussion coeficient, DLM - melt difussion coeficient on T0, VS - molar volume of solid phase                      

 

 The shape of the curve is nearly vertical, which means that an increase of a few 

percent saturation increases the rate of nucleation and up to a hundred times 60. The 

explanation for this should be sought in the exponential dependence of the free energy 

relationships created nucleus and kT, the thermal energy of the individual atoms. For the 

heterogeneously nucleating critical droplet, the radius is exactly the same as for the 

homogeneous case (Figure 9). 
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Figure 9. The rate of nucleation depending on the difference of free energy 

  undrcooled melt and crystalline phases: a – homogenous nucleation, b - heterogeneous 

nucleation curve.  

 

 

Heterogenous nucleation 

 

 Heterogeneous nucleation occurs due to the presence of foreign particles in the melt 

serving as a substrate on which it appears a new phase. Theory of heterogeneous nucleation 

treated the nucleus as a drop on a flat surface substrata - nucleus agent (Figure 10). Give 

nucleus also has the critical size at homogeneous nucleation when the spherical shape. In this 

case introduces a new notion,  - contact angle. 
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Figure 10. Heterogeneous nucleation 57. 
 

At the intersection of three surfaces equilibrium forces will be: 

 

                       n.a-S = n.a-L - S-Lcos (15) 

 

where  is n.a-S - the surface tension of the contact surface nucleation agent - solid phase;  n.a-L 

- the surface tension of the contact surface nucleation agent-liquid phase; S-L - the surface 

tension of the contact surface of the solid-liquid phase. 

 It is obvious that the surface “n.a-S”  will replace one equivalent size “n.a-L”surface 

and that n.a-S  n.a-L. Because of this phenomenon, “n.a-S” surface reduces the energy 

associated with that area. It is thus possible to reach the surface energy of the heterogeneous 

nucleation if the total surface energy of the subtracted said amount of energy that decreases 

the occurrence of “n.a-S” area. It is obvious that the surface energy of heterogeneous 

nucleation surface energy lower than the homogeneous nucleation and will do it much easier 

to reach. 

 When performing expressions for the free energy for formation of the nucleus should 

take into account the contact angle while coming to the fore: 
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Surface agents for formation of  a nucleus can be described value of contact angle . 

Better are those agents with low values of the angle , or those that allow solid phase "wets" 

soluble component. By developing the expression of heterogeneous nucleation rate [60]: 
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It can be seen that it is from the homogeneous nucleation rate varies by a factor of  f ()

   
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f     (18) 

 

Dependence rate of homogeneous and heterogeneous nucleation is shown in Figure 9 

61 where curve a) corresponds to a homogeneous, and curve b) the rate of heterogeneous 

nucleation. It is obvious that for heterogeneous nucleation takes much less than the 

subcooling for homogeneous nucleation. 

 

Growth of  new  phase 

 

 When it formed the nucleus of the further growth of a new phase depends on the 

surface structure of the solid phase and the possibility of further growth by forming new 

level. Although the importance of forming a new level has long been recognized, the 

complexity of the problem makes it difficult mathematical treatment. Therefore introduced a 

large number of approximations that shed light on the problem and allow the execution of 

mathematical solutions. Thus, Jackson 62, using the Bragg-Williams-term statistics are 

given for the change of surface energy of new phase: 

 xxxxxx
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where: N - total number of seats on the surface, k - Boltzmann's constant, T0 - equilibrium 

temperature, x - the share of occupied places on the surface,  - is given by the equation: 



37 

 


0kT

L
     (20) 

 

where are: L - latent heat,  - factor which depends on the structure of the solid phase and the 

orientation of the boundary surface.  

For values   2 free energy surface has a minimum for x = 1/2, which means half of 

the city when completed. For   2 area has a minimum free energy, or when very few places 

are filled or when there are very few vacancies. For large values of  minimum of G
S
 for a 

fraction of the city filled e
-

 and for a fraction of vacancies e
-

. 

 Factor  according to Equation (20) consists of two baths: ,  which as has been said, 

depends on the structure and orientation of the border area, and of Lk/T0 represents the 

change in entropy of the system during the phase transformation. Term  is always less than 

1, and the closest to the value of 1 for the most densely packed levels in the structure of the 

solid phase, while its value decreases progressively less densely packed levels. The change in 

entropy of the system is close to the value of 1 for the growth of melt metal, some ionic and 

organic compounds. Something more value from 2 to 4, for some transition metals, 

semiconductors and ionic materials in the growth from the melt. During the growth from the 

vapor phase value Lk / T0 is about 10. For the growth of the value of this solution baths are 

moving in a wide range of values close to that of the growth of the melt during the growth of 

the stock solution to high levels of growth from dilute solutions. For high molecular weight 

materials, such as organic molecules and polymers values of the baths can be very high. 

 If the interface between the solid and liquid phases defined as the boundary that 

divides all those atoms occupying the position in grid nodes than those who are not in that 

position observed two basic structures of border areas: rough  and flat 63. 

 Crystallographic level low   - factor (materials with low entropy change such as 

metals) were "roughened" at the atomic level. In this case, there are whole layers levels that 

are parallel to the interface and the atoms of the solid phase and liquid phase atoms. Growth 

of the crystal in this case is relatively fast. 

 When crystallographic level with high -factor, such as densely packed with high 

levels of material change in entropy, there are difficulties in initiating new levels of growth. 
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These are flat  crystallographic plane at the atomic level. Growth is possible with surface 

dislocation nucleation or much slower than the growth of the "roughened" surface. 

 The classification of materials on faceted and nefacetirane types based on their 

morphology growth. Atomic flat boundaries to maximize the bonding of atoms in the crystal 

and those at the border. Consequently, such a limit shows a small number of connections to 

the atoms that come by diffusion through the liquid phase. This crystal has a tendency to 

close any gap at the interface in atomic scale leading education faceted crystals. High entropy 

creation increases the difference in growth rates between low and high index level. In faceted 

materials such as intermetallic components high index level easily accept atoms and growing 

fast. As a result of that level disappear and crystal remains limited slowgrowing planes (low 

index level). 

 On the other hand, the atomic rough boundaries still owns many suitable sites for 

installation of atoms from the liquid phase. Atoms can be added to almost any point of the 

surface and formed nonfaceted growth. In nonfaceted materials, such as metals, crystal shape 

is mainly determined by the shape field of heat transfer and diffusion of soluble components. 

 It should also be emphasized that the border nonfaceted material growth at a 

temperature close to the melting point, so it takes a little subcooling, while the borders 

faceted material can have a very high subcooling. 

 Growth with little change in entropy is isotropic and for a given atomic mobility is 

relatively fast and at low hypothermia. Materials with large entropy change of slower growth 

and growth is anisotropic. The greater the change in entropy, the greater the anisotropy and 

slower growth. 

 From all we can conclude that the characteristics of crystal growth depends on the 

entropy of the system changes during growth, crystallographic orientation and mobility of the 

boundary surface atoms, and not on whether the material is metal, organic compound, or 

molecular ion. 
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Shape of crystallization front 

 

 The temperature of the boundary surface is different from the temperature and the 

solid liquid interface due to the latent heat which is released or added, or depending on which 

process is carried out. The hatch systems still need a final subcooling to hardening process 

started: 

 

    
Lr

T
T 02
      (21) 

 

where: T - subcooling necessary to begin the process of curing   - surface tension, L - latent 

heat. 

 

 It takes subcooling in real systems is of the order T= 0.2×T0 57. 

 
 If the temperature of the boundary surface is lower than the equilibrium and leads to 

solidification, latent heat is generated, and subcooling which leads to solidification  is 

decreased. The solidification slows down and stops at the end of the process. So, to continue 

the process of promotion of border areas, i.e. solidification, be conveyed free of latent heat. In 

doing so, we can say that the velocity of conveyed latent heat controls the velocity of 

progression of the crystallization front (boundary surface), while the direction of the removal 

of latent heat defines the shape of the boundary surface. 

 There are two cases that could be describe the direction of the removal of latent heat: 

a) in the direction of crystal and b)in direction of melt. 

a) It is assumed that the boundary surface is initially flat, that the crystal is isotropic and 

that there is a heat sink in the form of a plane which is parallel to the boundary surface 

and to maintain the temperature lower than the temperature at the interface. Stability 

of plane boundary surface can be explained as follows: if the disorder appeared in one 

region (A) in the direction of the liquid phase, the temperature gradient at A will be 

less than that the rest region of interface, because part A it is farther from the heat 

sink. In accordance with the ratio of growth rate and under cooling, but also because 

of lower velocity of the removal of latent heat, this part will grow more slowly than 

Part B, so the phase boundary is re-treated. So, if the under cooling is sufficient for 
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crystallization ensures removal of latent heat in the direction of the crystal, the 

boundary surface is moving uniformly and tends to be flat without the presence of the 

disorder.  

b) In case of contact of the solid phase with under cooled liquid leads to dendritic 

growth. The temperature profile in the case of heat dissipation in the direction of the 

liquid phase. In case of a disturbance-protrusions, the under cooling in the section A is 

higher than in the part B in relation to the temperature of the boundary surface, so that 

the section A will have faster growth than section B. 

 
The constitutional subcooling 

 
 In cases insufficiently pure elements or alloy, with liquid phase along boundary 

surface has a different composition relative to the bulk of the melt. Changing the composition 

causes a change in liquidus temperature along the border area. This phenomenon is called 

"constitutional under cooling" and is often used to explain many problems during the curing 

process. Realistically, there is no hypothermia, a new front boundary surface, but only up to a 

temperature of solidification. Therefore, some authors believe that it is much more effective 

to talk about constitutional or compositional reduce subcooling [57]. 

 Consider the solidification of binary alloy phase diagram as shown in Figure 11 where 

equilibrium coefficient, k0 lower from 1. 

 The equilibrium distribution coefficient, k0, is defined as the ratio of the concentration 

of soluble components in the solid phase (CS) and the concentration of solute in the liquid 

phase (CL) which is at equilibrium with a given solid phase: 
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Figure 11. Temperature and concentration distribution. 

 
When the liquid concentration of the soluble components C0 cooled to a temperature T 

the first particles of the solid phase have a concentration of the soluble components k0C0. 

Excess soluble components C0(1-k0) is secreted outside of the boundary surface, into the 

melt. Since there is not enough time for the soluble component diffuses into the mass of 

liquid will cause its accumulation along the boundary surface, and therefore comes to 

lowering the temperature of that part of fluid. 

The actual temperature in the liquid phase in front of the boundary surface and the 

corresponding equilibrium liquidus temperature for the case of the absence of (a) and 

presence (b) accumulation of the soluble components. Initial thermal subcooling  will be 

reduced due to the lowering of the equilibrium liquidus temperature, which is the result of 

changes in the composition of the liquid phase along the border area. Hence will slow down 

the growth of the solid phase. 

 The build-up (segregation) soluble components with the boundary surface is not 

uniformly, as is shown schematically in Figure 12. The local parts of the boundary surface 

(A) where the concentration of the soluble components of the lowest (and the reduction of 

subcooling), the faster it will grow and be allocated as bulges on the boundary surface. 
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Figure 12. Distribution of real and liquidus temperature. 

 

 As previously mentioned, a decrease in hypothermia, in addition to constitutional, is 

also a result of the latent heat released, would chart the distribution of actual and liquidus 

temperature should be realistic that looks like Figure 12 64. 

 As a result of constitutional downdraft occurs instability flat crystallization front by 

disturbances that occurred at the surface does not disappear but continue to grow in the 

direction of downdraft. That part of growing as a bulge until it reaches the part where balance 

is achieved due to a combination of gradient downdraft and develop their own latent heat, 

sufficient to provide a driving force for the cure. A convex shape of the projections ensures a 

stable temperature, which is above that of the plane front of crystallization and hence to lower 

the concentration of soluble components in the solid phase. Secreted soluble component 

accumulates on the sides and limits the growth projections in the lateral direction. In a similar 

manner the growth of the other surrounding the projections and their merged into densely 

packed cellular structure 63, 65-70. 

 It was noted that during the solidification of a binary alloy in the presence of a 

temperature gradient stop surface liquid-tight cell structure weight when growth parameters: 
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growth rate (R), a temperature gradient in the melt (GL) and the initial concentration of the 

soluble components (C0) in a controlled framework. 

 The first systematic study gave Chalmers et al 71, 72. Dependence of morphology of 

the boundary surface of the liquid-solid growth parameters was tested using alloys based on 

lead. It was noted that a flat interface becomes unstable above the critical rate given by the 

expression:  
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where  DL is the diffusion coefficient in the liquid phase, k0 the equilibrium coefficient and m 

slope of the liquidus line at the appropriate equilibrium diagram. 

 With further increase of  the growth rate comes to crossing structures in the dendritic 

cell. The exact transition when it becomes dendritic cell structure is not precisely defined. 

Some authors believe that this is the moment when the cell begins growth in the 

crystallographic directions, while some consider a transition into the dendritic structure only 

when it is clearly observed secondary branching. Although there is a large volume study of 

the growth of dendritic transition of one  structure to another is not sufficiently understood. 

Development of microstructure depending on growth conditions (R, C0) is shown in Figure 

13. 

 
Figure 13. Dependence of the shape of the boundary surface of the conditions of growth. 
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Solute segregation during crystal growth 

 

 During crystal growth it is very important to predict the distribution of the 

concentration of soluble components deliberately add-dopant to achieve satisfactory 

mechanical, electronic or optical characteristics. Analysis of the distribution of the solute in 

the melt is relatively easily accessible while the connection with the distribution of 

components soluble in a solid phase (crystal) is used coefficient. 

 Distribution coefficient is defined as the ratio of the concentration of solute in the 

solid and liquid phase. At the interface, liquid-tight it is possible to define three distribution 

coefficients (Figure 14): 

 
Figure 14. Solute distribution near interface. 

     
where: CSi - the concentration of solute in the solid phase with the boundary surface, and with 

the assumption of neglected diffusion in the solid phase, (as is justified because of the very 

small value of the diffusion coefficient), to minimize the concentration of soluble 

components in the whole of the solid phase; CL - the concentration of solute in the weight of 

the melt; CLi - concentration of solute in the melt with the boundary surface.  
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 The equilibrium coefficient - k0 - in steady-state conditions (very slow growth rate) 
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 The equilibrium distribution coefficient can be calculated from the equilibrium 

diagram for the solid solution  as the ratio of the concentration of soluble components in the 

solid and the liquid phase which is in equilibrium with it. If there are areas of low 

concentration of the soluble components of the liquid solution slightly can be seen as an ideal 

solutions in which the change of the thermodynamic properties the same as in the case of 

ideal gases. In this case, the liquidus and solidus lines can be seen as the right. In the area of 

low concentration may be taken as a ratio of CS/CL constant, while at higher concentrations k0 

depends on the concentration. 

 In a case where the k0 < 1 during solidification there is a build-up of soluble 

components in the liquid phase to the boundary surface; in the case where the k0 > 1 comes to 

the impoverishment of the soluble component in the liquid phase with the boundary surface. 

Equilibrium value of the distribution coefficient can be taken into account for the reading and 

analysis of the curing process only at very low rates where the growth of the multiply assume 

that prevailing equilibrium conditions. 

 

 The interphase coefficient - ki: 
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Since it is in practice very difficult to determine the concentration of soluble components 

in the solid phase with a boundary surface to define the real system; 

 Effective distribution coefficient - ke: 
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During solidification of the melt of the binary compound of the initial concentration C0 

composition originally resultant solid phase would be k0C0 at equilibrium. Excess soluble 



46 

 

components are excreted in the melt continues to diffuse into the mass melt. During further 

cooling the solid phase and melt enriched soluble component. In actual cases, the crystal 

growth is present in the convection, because a low value of diffusion coefficient in the solid 

phase, it can be ignored. Temporal and spatial changes in the composition of the melt can be 

described by differential equation for conservation of mass: 
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where: C - concentration of soluble components in the liquid phase, the growth rate - R, DL -

diffusion coefficient of the soluble components in the melt. 

 Burton, Prim and Slichter (BPS) 73 are performed the solution of this differential 

equation model, the so-called boundary diffusion layer. The effect of convective transport of 

the soluble components in the melt are solved dividing the melt into two parts: a part with a 

boundary surface where the thickness  is  assumed pure diffusion mass transport and part 

outside   in the mass of the melt where it is assumed the complete homogenization of the 

liquid phase by convection (Figure 15). With the boundary conditions: 

 

   C = CLi for x = 0 

   

   C = C0             for  x   

 

   C = CSi for x  0    (28)   

get solution: 
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 In addition to the foregoing definition of coefficients performed by the distribution of 

the effective dependency of the distribution coefficient of the growth conditions of the solid 

phase (so-called BPS-criteria): 
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At low growth rate it is k0 = ki 74 and after that: 

 

 

LD

Re

ekk

k
k







)1( 00

0

   (31)  

 

 
In this way, it is possible to monitor the dependence of the distribution of the soluble 

components in the solid phase of the growth conditions of the solid phase- crystals. 

 

 
 

Figure 15. Solute distribution near interface. 
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 During long-term tests of the process of crystal growth of the question arose of how 

the process parameters such as growth rate, temperature gradient, the initial composition of 

the alloy, the method and the intensity of stirring of the melt affect both the shape of the 

boundary surface 73  and the distribution of the soluble components. Namely, in recent 

years in the development and engineering requirements of the material observed dependence 

of material properties on the distribution of the soluble components (e.g., the mechanical 

properties of superalloys are dependent on the distribution of alloying elements). 

 When a distribution of the solute is considered, there are two different types- 

microsegregation (distribution of components soluble in the context of the dendrites or cell) 

and macrosegregation (distribution of components soluble long-range order). 

 As was previously said, the distribution of the solute  may be monitored through the 

values of the effective coefficients of the distribution points, and hence, the influence of the 

conditions of crystal growth (growth rate, the initial concentration of the melt, convection) 

may be examined on the basis of the expression of BPS in dependence ke of the conditions 

growth: 
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 With the increase in the growth rate changes and the value of ke and k0 value to 1, 

when practically no segregation soluble components. In case macrosegregation, this is the 

case for dendritic growth [72] while microsegregation within dendrites still present. The way 

to avoid microsegregation the growth of crystals with a flat abutment surface. For the 

dependence of the rate of growth will carried out several theoretical models that predict an 

abrupt change of the value of ke in the vicinity of the rate D/a0, where a0 is the lattice 

parameter. If the rate of change will increase the rate is not great, the criterion for the 

instability of the border area to look for the CS criterion, the equation (32). In the area where 

the growth rate is large and sudden change points with the rate of orbital theory predicts the 

instability of the boundary surface. 

  From the foregoing, it is evident that the shape of the boundary surface and the 

distribution of the soluble components are closely linked and interdependent and should not 
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be considered as separate phenomena. On the one hand forms the boundary surface affects 

macrosegregation in the crystal, on the other hand itself segregation at the interface dictates 

the form and progress of border areas. In accordance with the characteristic attitude 

parameters of growth of crystal G/RC0 it can be said that the increase of growth rate and the 

initial concentration of the melt, as well as reducing the temperature gradient leads to 

instabilities of the boundary surface to the dendritic structure, and the distribution of water-

soluble components of the crystal growing without macrosegregation. 
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Melt crystal growth methods  

 

     For growing single crystals, many kinds of crystal growth methods have been 

developed for various materials such as metals, oxides and semiconductors. These various 

methods have been reviewed by several authors [75-93]. For most compound semiconductor 

materials, melt growth methods are the main methods of industrial manufacture. This is 

because they are appropriate to grow large single crystals quickly. In the case of solution 

growth methods and vapor phase growth methods, growth rates are rather lower compared to 

melt growth methods and they are in general limited to growing compound semiconductor 

materials which are difficult to grow by the melt growth method from the viewpoint of 

physical properties such as high melting temperature and/or high decomposition vapor 

pressure. In this section, melt growth methods which applied to compound semiconductor 

materials are reviewed. 

     The simplest method of forming crystals by melt–solid equilibrium is by uncontrolled 

freezing of a melt. In this process, the initial nucleation is random, and the resultant product 

is generally a fine-grained polycrystalline ingot.  

            Sometimes, however, single crystal grains of appreciable sizes can be identified in the 

solid matrix. When such large-sized grains are seen, one can infer that single crystal growth 

of that material can be achieved with relative ease. 

In all the melt–solid growth techniques, the main effort is directed toward controlling 

nucleation so that a single nucleus (or at worst a few) will be formed first and act as a seed on 

which the growth will proceed. This is achieved by a process that is commonly known as 

directional solidification. Of course, use of a seed crystal simplifies the nucleation control.  

  All materials can be grown in single crystal form from the melt provided they melt 

congruently without decomposition at the melting point and do not undergo any phase 

transformation between the melting point and room temperature. Depending on the thermal 

characteristics, the following techniques are employed: 1. Bridgman technique; 2. 

Czochralski technique; 3. Zone melting technique; 4. Floating zone and 5. Verneuil 

technique. 
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Bridgman techniques 

 

 This technique was originally developed by Bridgman in 1925 to grow Single crystals 

of certain metals such as tungsten, antimony, and bismuth [87], and later the method was 

exploited by Stockbarger to grow large crystals of lithium fluoride [88, 89] and hence the 

name. However, in recent years, it is mainly called by the name of its original inventor. As 

with all the growth techniques, since the design of the growth apparatus is material specific, 

the basic technique has been modified by various workers depending on the specific 

conditions required to grow the chosen crystals. 

 The Bridgman technique (also referred to as the Bridgman-Stockbarger method) is 

one of the oldest techniques used for growing crystals [93]. Bridgman is used for single 

element growth and purification, and for binary (or ternary) semiconductor crystal growth of 

two (or three) group III/V elements. The crystal growth can be implemented in either a 

vertical (vertical Bridgman technique) or horizontal system configuration (horizontal 

Bridgman technique). Schematics of the two configurations are shown in Figures 16a) 

and16b). The growth systems typically consist of a single- or multi zone furnace. A single-

zone furnace has a parabolic temperature profile with the highest temperature being at the 

center along the length of the furnace. On both sides of the hottest section, a temperature 

gradient exists that is used during the crystal growth. For a multizone furnace, specific 

temperature gradients between different zones can be established. 

The principle of crystal growth using Bridgman technique is based on directional 

solidification by translating a molten charge (melt) from the hot to the cold zone of the 

furnace.  

 Due to the special geometry of the court after only one crystallization crystal 

continues to grow. Boundary surface liquid-tight is completely surrounded and in contact 

with the court so that the released latent heat must be discharged by conduction through the 

walls of the court or through the crystal. The advantage of this method is its simplicity and 

the possibility of variation. It is also easy to control the vapor pressure of volatile 

components; it is possible to carry out growth in vacuum and sealed container. Easily gets 

hungry shape and size of the crystals. In addition, growth can be performed using relatively 
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well stabilized by the temperature gradient which at the same time stabilizes the convective 

mixing and segregation. The limitations of this method lie primarily in growing crystals 

expand during crystallization, since the generation of defects in the crystal. In addition, it is 

impossible to predict not get the desired crystal orientation. 

 

 

 

 

 

a) b) 

 

Figure 16. Schematic diagram of b) vertical Bridgman (VB) in a two-zone furnace and  

b) horizontal Bridgman (HB) crystal growth process in a single-zone furnace. 

 

 The presence of a seed at the end of the crucible (container) ensures single-crystal 

growth in specific crystallographic orientation. Using the single crystal seed; the entire 

growth process takes place in the following sequence. At the beginning of the experiment, the 

crucible with the polycrystalline charge and seed is placed inside the growth chamber. 

 

Czochralski method 

 

 In this method of crystal growth 94 also the entire batch is melted in a vessel (Figure 

17). Seed crystal descends vertical support (with the possibility of rotation) to the surface of 

the melt and the time of contact, and then is allowed to reach thermal equilibrium. The 

temperature of the melt is adjusted so that the part of the seed crystal melts, then the 
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temperature is slowly reduced until the call begins to crystallize. Then begins slowly drawing 

calls. Crystal diameter is controlled by adjusting the feed rate, the rate of rotation and 

temperature control of the melt. The characteristic of this method is that, although the court is 

used for crystal growth, no contact boundary surface of the liquid-tight with the court. In it 

lies one of the major advantages of this method, namely the possibility of crystal growth with 

an increase in volume, as well as semiconductors 95. It is also possible to obtain crystals of 

good quality (no dislocation), large diameter and with high-rate growth. In addition, this 

method is suitable for the respective control of doping and chemical analysis of the 

components. Finally, it allows for control and good atmosphere during crystal growth. A 

limitation of this method lies in the difficulty in the growth of crystals with the components 

that have a high vapor pressure at the melting temperature. It is necessary to maintain 

constant pressure, which complicates the system configuration. In addition, this method is not 

sufficiently adapted for continuous growth. Also there is the problem of choice vessel to melt 

and the possibility of contamination of the melt. 

 
Figure 17. Czochralski crystal growth. 

 

Zone melting – refining 

 

 The molten zone (Figure 18) of finite thickness (which is a lot less than the length of 

the crystal) moves from one end of the batch to another. This method is often used for the 

treatment of materials, a better effect is achieved by multiple passes through the charge zone. 

You may exercise control incorporating soluble components. 
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a) b) 

            
Figure 18. a) Horizontal and b) vertical configuration of zonal melting - rafining. 

 
 

Floating zone method 

 

 In a vertical configuration avoids the use of the court and only a part (zone) melted 

and maintained on the basis of surface tension. It is suitable for materials with high surface 

tension of the melt and low density (Figure 19). Utilized the advantage zonal melting - 

treatment and control of the incorporation of soluble components, and avoided the 

contamination of the melt court [89, 90. A limitation of this method is that it can not be used 

for materials with low surface tension, and for those with volatile components. This method 

also has several modifications of laser melting zone, use calls, etc. 

  
Figure 19.  Floating zone method. 
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Verneuil method  

 

 The methods of crystal growth without crucible should also be mention is Verneuil 

method. From dozer dust material that hardens falling through the flames and molten arrives 

on the surface of crystal growth (Figure 20). As the crystal grows, it drops down proportional 

to the rate of arrival of the melt. Rotation of the crystal used for homogenization. Due to the 

difficulty in controlling the parameters of this method is rarely used, despite the benefits of 

the growing crystal without trial. 

 
 

Figure 20. Verneuil method. 
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Vertical Bridgman method - features and benefits 

 

 For a long time the Bridgman technique used only for the growth of crystals in the 

laboratory. In fact, many problems such as contamination and contact with the court and fluid 

flow problems have limited its use. Methods of crystal growth by the Czochralski (CZ) is 

definitely have an advantage in the preparation of large diameter crystals in the industrial 

production. With the advent of large demands regarding the use of semiconductor materials, 

the perfection of the crystals must be controlled at the submicron level. CZ method has an 

inherent constraints such as the rotational asymmetry of the thermal field which affects the 

occurrence of rotating stretch marks, and a high temperature gradient in the crystal may cause 

thermal stresses and occurrence of dislocations. Regardless in mind the application of 

magnetic fields, encapsulation techniques and the application of "hot wall", there was a need 

to consider other methods, such as Bridgman, to overcome these problems [96. Excellent 

results have been achieved in obtaining the crystals of GaAs and InP large diameter, the 

vertical Bridgman method [97 have shown great potential of this technique. Therefore, it is 

necessary to analyze and optimize the process parameters of crystal growth in a Bridgman 

configuration. As a first task there was a need to examine the influence of growth conditions 

on the quality of the resulting crystals. 

 

The interface shape and the solute distribution in vertical Bridgman method 

 

 There are many variations in the design of the apparatus Bridgman method 98, 99, 

but the basic design is the same. The heat supply and the melting of the charge takes place in 

the part of the furnace for heating, then the vessel containing molten move at a constant rate 

through the field of furnaces of a certain temperature gradient, wherein there is less heat loss 

in a radial direction, while the main part of the released heat is removed in the axial direction. 

 Therefore, there is a cooling of the melt and at one point the melt temperature reaches 

a curing temperature and comes to the boundary surface of the forming liquid-tight. It is 

usually assumed that the stop surface remains stationary in relation to the furnace in the 

vicinity of the point that corresponds to the curing temperature. This means that the sample 
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moves at a certain rate R, which is generally assumed to be equal to the rate of movement of 

the court. However, there is a possibility that these two different rates and in the quasi-

steady-state border area migrate within the furnace. This phenomenon is also studied, but was 

not observed a clear regularity, which would describe a deviation from expected rates under 

given conditions. 

 As for the shape of the boundary surface, it is, in accordance with the general criteria, 

at low rates the growth of a flat and perpendicular to the axial axis of the furnace. With an 

increase in the growth rate there is a disturbance of the boundary surface and the transition to 

the cell, and then dendritic growth. The influence of the initial concentration of soluble 

components, C0, is reflected in the fact that an increase in the areas of critical C0 moving rate 

change of the form of the boundary surface towards lower temperature. The influence of 

growth conditions on the shape of the boundary surface still best describes the parameter GL / 

RC0 whose reduction below a critical value leads to a disruption of border areas, cellular and 

dendritic growth. 

 The simplest description, depending on the distribution of the soluble components of 

the conditions for crystal growth based on a model of the equilibrium solidification, where it 

is assumed that the process is very low rate and the presence of and diffusion in the liquid and 

in the solid phase. In practice, it is more applicable description based on nonequilibrium lever 

rule, so-called. Scheil's model [100] that describes the concentration of soluble components 

in the solid phase as a function of the work hardened fractions according to the equation: 
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where: CS
*
concentration of the soluble components which is consistent with the volume 

fraction (fraction) of the solid phase relative to the total volume of the charge - g, C0 is the 

initial concentration of the soluble components in the melt, k0 equilibrium distribution 

coefficient. 
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Calcium fuoride single crystal 

 

 Fluorides have attracted considerable research interest because they exhibit many 

unique properties that may increase their applications in optics and electronics. Among them, 

alkaline-earth fluorides are dielectric and have a wide transmission range, and therefore they 

are widely used in optical components, microelectronic and optoelectronic devices [101-103]. 

CaF2 is a kind of typical alkaline-earth fluorides. It has a well-known fluorite structure, in 

which Ca
2+

 ions lie at the nodes in a face-centered lattice, while F
−
 ions lie at the centers of 

the octants [104]. Furthermore, with an optically isotropic fluorite structure, the CaF2 crystal 

is suitable as a phosphor host because it exhibits outstanding transmission characteristics for 

a wide range of wavelength (0.3-8 mm) [105]. When CaF2 is doped with rare-earth (RE), 

some interesting luminescence properties can be expected. As a result, general attention has 

been drawn on this field recently. CaF2 doped with RE could be used as laser [106, 107] and 

fluorescent labeling material in biological applications [108-110].  

 Also, CaF2 crystals exhibit some excellent properties such as high transmittance in the 

far UV to mid IR range, low refractive index, high chemical resistance and high laser damage 

threshold. These properties make this crystal an important optical medium material and have 

been used as an important lens material for photolithographic applications [111, 112]. 

 Generally CaF2 single crystals are grown by Bridgman method and the applications 

require large diameter CaF2 single crystals 113, 114. But growing large size single crystals 

have been very tough because of the grain boundaries during the growth and the cracks 

during the cooling process 115. Recently ceramic laser technology are found to exhibit -

more advantages over the single crystal growth processes and in particular, the ceramics can 

be produced in large volumes and with the homogeneous doping of laser active ions in the 

host materials 116. Polycrystalline CaF2 has been synthesized for the first time with 

dysprosium as an active ion 117. Recently, thermal conductivity of the natural calcium 

fluoride ceramics has been investigated and compared with single crystals of CaF2 and are 

found to exhibit better mechanical properties over single crystals 118. Also, it was 

confirmed that the grain boundaries are transparent to phonons as well as to photons in 

synthetic optical ceramics of CaF2.  
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 Calcium fluoride or fluorite is a well-known face-centered cubic mineral [119]. The  

fluorite structure is shared with a wide variety of other compounds, for which CaF2 is 

considered the type compound. The structure of fluorite has eight fluorine atoms arranged in 

a cube around the calcium atom, with the cubes of fluorine edge-connected in a face-centered 

cubic array. Conversely, the fluorine atom is surrounded by four calcium atoms arranged in 

an ideal tetrahedron, with the tetrahedra also edge-connected. Fluorite has a very simple 

structure  (Figure 21).  

 

 

Figure 21. Calcium fuoride crystal structure. 

 

Calcium (green) atoms in a face-centered pattern contain a cube of fluorine atoms (purple). 

Darker shades are used to portray calcium atoms toward the rear of the unit cell. We can also 

view the structure as a simple cubic array of fluorine atoms with a calcium atom in the center 

of alternate cubes. Considered that way, there are obviously diagonal planes of cubes 

containing no cations. These planes will obviously be planes of weakness, accounting for 

fluorite's excellent octahedral cleavage.  
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Polymer composites with single crystals 

 

 Recently, polymers are finding an important place in different research laboratories 

for the study of their various properties. Many polymers have been proved suitable matrices 

in the development of composite structures due to their ease production and processing, good 

adhesion with reinforcing elements, resistance to corrosive environment, light weight, and in 

some cases ductile mechanical performance. Single crystals have been widely studied due to 

their unique structural, electronic and spectroscopic properties, which may be exploited for 

their diverse applications in chemistry, biology, and nanoscience. Lately interest of 

researchers engaged in different fields of knowledge is seen to be focused on determination 

of the action of single crystal particles addition,on properties of polymers and their 

compositions. Incorporation of single crystal particles into chemical composition of polymers 

gives one more opportunities for their study and application as composite materials, films, 

and fibers serving different purposes 120. Also, the research of polymer material has been 

directed to blend or copolymer of different polymers to obtain new products having some of 

the desired properties of each component.  

 PMMA (polymethyl methacrylate) (Figure 22) and its derivatives are known for their 

optical applications [121-125]. The aim of this dissertation concerns on studying the change 

in the optical absorption, the optical parameters and photoluminescence spectra for the 

samples of single crystal particles polymer composites which are recorded at room 

temperature. In addition, X-ray diffraction (XRD) and scanning electron microscope (SEM) 

are used to characterize the these nanocomposites. 

 Hybrid polymer composites, both organic-organic and organic-inorganic are 

candidate materials for high density storage. The essential elements for a polymer to be 

photorefractive are – sensitizer, photoconductor, chromophore and plasticizer. These agents 

are incorporated into the polymers by adopting various approaches to engineer the desired 

functionality. One of the important compositions for photorefractive applications is 40-60 

wt% of photoconductor or semiconductors (like PVK, PSX, BSO, BGO, CaF2), 25-35 wt% 

of chromophore (like dyes, liquid crystals) 15-30 wt% of a plasticizer (like ECZ, BBP) and 

about 1 % of sensitizer. Among the organic-inorganics, about 1% of gold nanoparticles added 

to PVK, DCVDEA and TNF, and other similar compositions are of interest in data storage. In 
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photopolymers the monomers are polymerized on exposure to light resulting in local change 

in density. This causes a diffusion of the binder, a chemically inactive component with 

specific optical properties, to regions of low intensity. These density variations in polymer 

matrix result into a refractive index grating and the information is stored and retrieved 

through the processes mentioned earlier. In organic-inorganic nanoparticle photopolymer 

composites, the inhomogeneous illumination results in an index grating due to a difference in 

refractive indices of periodically distributed inorganic nanoparticles and uniformly 

distributed polymerized monomers. 

 

Figure 22. Structural formula of polymethyl methacrylate (PMMA). 
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Characterization of single crystal and polymer nanocomposites 

 

 Various experimental techniques have been utilized to characterize single crystal and 

polymer nanocomposites behavior. 

X-ray diffraction (XRD) 

 

 XRD is an important analytical technique for the characterization of intercalation and 

exfoliation in composites comprising polymer and layered materials. XRD can accurately 

measure the interlayer or basal plane d-spacing of single crystals and its composites. X-ray 

diffraction is a nondestructive technique, and is one of the widely used for determining lattice 

parameters, preferred orientation of the crystal, phase composition (qualitatively and 

quantitatively), grain sizes, lattice strain, residual stress etc. XRD can provide the information 

from a relative lager area of the specimen compared to TEM. 

 When a monochromatic Χ-ray beam incident onto a crystal sample, the constructive 

diffractions (or interference) from parallel planes of atoms with inter-planar spacing, d occur 

if Bragg’s law is satisfied (Figure 23) [131]: 

 

                                                   2dsin  n                         (34) 

 

where n is integer that indicates the order of the reflection, θ is Bragg angle, and λ is the 

wave length of the X-ray beam. By measuring the Bragg angle θ, the interplanar distant d can 

be obtained if the wavelength of the X-ray beam is known.  

 

Figure 23. Schematic diagram of Brags diffraction from a set of parallel planes. 
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 When X-ray light reflects on any crystal, it leads to form many diffraction patterns 

and the patterns reflect the physico-chemical characteristics of the crystal structures. In 

powder specimen, diffracted beams are typically come from the sample that reflects its 

structural physico-chemical features. Thus XRD technique can analyze structural features 

with other ambiguities of a wide range of materials such as inorganic catalysts, 

superconductors, biomolecules, glasses, polymers and so on. 

 On the other hand, the first treatment of particle size broadening was done by 

Scherrer. By making some simplifications, e.g., taking a powder sample of a small cubic 

crystal, and assuming they are free from strains and faulting, so that the peak broadening is 

due only to the small size, the following Scherer’s equation [132] 

                                                   D  K   / Bcos                      (35)  

where D is the particle diameter, θ is the diffraction angle, and B is the full width at the half 

high maximum (FWHM). The factor K involves different instrumental aspects, such as 

geometry, penetration of X-Ray in the sample, etc. From the width of the diffraction peak 

using the Scherrer’s equation, one can calculate the average particle size. However, the width 

of diffraction peaks is broadening due to presence of defects or strain in the crystal lattice. 

The extreme case corresponds to amorphous materials, for which the peaks disappear totally. 

In nanostructured materials, the Scherrer’s equation provides an estimated value of the crystal 

size.  

Nanoindentation 

 

 Nanoindentation was used as another approach to gather comparative elastic modulus 

and hardness data for the six systems. The basic concept of indentation testing involves 

touching a material whose mechanical properties are of interest with a material whose 

properties are known. Nanoindentation is a specialized indentation test in which the 

penetration distance is measured in nanometers. Because the sample surface area and depth 

requirements are so small, thin film samples are appropriate for this type of testing. One of 

the key factors in analyzing indentation data is the contact area between the indenter and 

specimen. In typical indentation testing the area of contact is simply calculated from 

measurements of the residual impression left on the specimen. With nanoindentation, 



64 

 

however, the area is on the order of microns and is too small to measure accurately [133-

135]. Instead, the depth of penetration into the specimen surface is measured and combined 

with the known geometry of the indenter to calculate the contact area. The load displacement 

data gathered during the indentation process, shown in Figure 24, provides the means to 

calculate modulus and hardness. For each loading /hold /unloading cycle, the applied load 

value was plotted with respect to the corresponding position of the indenter. The resulting 

load/displacement curves provide data specific to the mechanical nature of the material under 

examination.  

 The maximum indenter depth achieved for a particular load and the slope of the 

unloading curve measured at the tangent to the data point at maximum load is used to 

calculate hardness and modulus following the method developed by Oliver and Pharr [126]. 

Under indentation loading, creep within a specimen can occur and results in a change of 

indentation depth with a constant test force applied. It is indistinguishable from thermal drift 

so one must interpret results accordingly. Several studies performing nanoindentation on 

polymers, including specifically PS and PMMA, have shown larger modulus values than 

reported by tensile testing or DMA on the same materials [129]. 

 The values of modulus tend to increase with indentation depth. Although the values 

might be larger than other characterization techniques, this study assumes nanoindentation 

can provide sound comparative data as all six systems in this study were analyzed using the 

same parameters. Unlike DMA and nanoindentation is generally considered a non-destructive 

technique [129]. The American Society for Testing and Materials (ASTM) Task Group 

E28.06.11 is developing a standard test method for indentation testing. 
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Figure 24. Typical loading-unloading curve of a nano-indentation test. Pmax and hmax are 

the maximum load and displacement, respectively. S* is the slope of the tangent to the 

maximum load on the unloading curve [129]. 

  

Fourier transform infrared spectroscopy 

 

 Fourier transform infrared spectroscopy (FT-IR) was used to analyze the bonding 

between the polymer matrix and nanoparticles. FT-IR measures the absorption of infrared 

radiation by the sample material with respect to the wavelength of the radiation. Using 

absorption data, one may identify molecular components and structures. The signal detected 

is analyzed using Fourier transforms to provide infrared absorption spectra, usually presented 

as plots of intensity versus wavenumber in cm
-1

. Infrared wavelengths absorbed by a material 

identify its molecular structure. The absorption spectrum is most often compared against a 

spectrum from a known material for identification. Absorption bands in the range of 4000-

1500 wavenumbers are typically due to functional groups such as –OH, C==O, N—H, and –

CH2. The range from 1500-400 is referred to as the fingerprint region and generally caused 

by intra-molecular phenomena very specific to each material [132, 133].  

         Koenig et al. have extensively researched polymer dissolution with FT-IR imaging 

[134-143]. By coupling a step-scan interferometer with an FT-IR spectrometer and a focal 
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plane array (FPA) detector, spatial and spectral information may be collected simultaneously 

(Figure 25). The ability of FT-IR to measure the behavior of multiple components within a 

system simultaneously, when coupled with the spatial resolution of an FPA provides a unique 

opportunity for observing the dissolution process. With this experimental setup, the behavior 

of multiple components diffusing into a polymer matrix may be observed. 

 

 

Figure 25. Schematic of FT-IR imaging set-up. 

 

 The behavior of binary solutions diffusing into a polymer has been characterized 

[135-138, 140-142]. A single experiment yields data on all components in the system, 

allowing for real-time analysis of both the dissolution process and the behavior of each 

component within the system. To measure dissolution, a spectral profile may be taken across 

the sample, noting the intensity of polymer- or solvent-specific bands across the interface. 

From these profiles, the behavior of the system may be characterized quickly and easily. The 

spatial resolution of these images is about 6 mm. Because no apertures are used, the 

diffraction effects that usually affect resolution do not come into play using this method. 
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Raman spectroscopy 

 

 When light is scattered from a molecule or crystal, most photons are elastically 

scattered. The scattered photons have the same energy (frequency) and, therefore, 

wavelength, as the incident photons. Raman scattering can occur with a change in vibration, 

rotational or electronic energy of a molecule. If the scattering is elastic, the process is called 

Rayleigh scattering. If it’s not elastic, the process is called Raman scattering [143]. In 

quantum mechanics the scattering is described as an excitation to a virtual state lower in 

energy than a real electronic transition with nearly coincident de-excitation and a change in 

vibration energy. 

 

Figure 26. Schematic of Raman experiments. 

 

Differential scaning calorimetry  - DSC 

 

 Differential scanning calorimetry is a method of testing each thermal properties of 

substances based on differences heat flow to the sample and to the standard of during their 

simultaneous warming. As for the data on the temperatures at which begin and end the 

processes followed by a change of enthalpy, DTA and DSC methods are equivalent. However 

DSC method is much more convenient and accurate for quantitative determination of 

enthalpy changes because of its technical solutions tailored primarily to the task. 
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 The essential parts of the device for the DSC are two cells with the identical slots for 

the sample and standard with appropriate thermocouples attached in opposition, oven with 

the stove controller, amplifier EMS thermocouple and recorder of the DSC curves (Figure 

27). 

 The temperature difference between the sample and the standard obtained when the 

sample process begins by changes in enthalpy. Lagging temperature of the sample compared 

to the standard (due to the endothermic process) increases the heat flux to the sample; 

precedence (due to the exothermic process) is reduced. In Figure 27 sis presented the DSC 

curve in general. Change of heat capacity during heating to maintain the drift of the base line, 

and the exothermic and endothermic processes as peaks at corresponding side of the base 

line. 

 

Figure 27. DSC curve. 

Scanning electron microscopy (SEM) 

 

 Scanning electron microscope (SEM) is a very important instrument that gives a high 

resolution image of the sample surface. Schematic of a typical SEM is shown in Figure 28. 

The electrons are emitted from thermal cathodes of tungsten and accelerate toward the anode. 

Tungsten has the highest melting point and the lowest vapor pressure of all the metals and 

therefore can be heated sufficiently to emit electrons. Electron beam carries a power ranging 

from a few hundred up to 100 keV. Beam is focused with the condensing lens in the two one 

site of 1 to 5 nm. Beam passes through the pairs of scanning lens in the lens of the thread 

which causes it to be cleared for the stack horizontally and vertically in order to scan more 
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quickly formed in the shape of a rectangle on the surface of the sample. When the primary 

electron beam contact with the sample, electrons lose energy due to scattering and absorption 

of the constant in a certain volume of the sample (the so-called volume of interaction) that 

extends less than 100 nm and up to about 5 μm from the surface of the sample. The energy 

exchange between the electron beam and the sample causes the emission of secondary 

electrons, electromagnetic radiation that can be detected, carried forward and used to obtain 

images. Black and white image of the sample is obtained by combining sample scans with the 

received signal. 

 

Figure 248. SEM layout and function [144]. 

 

Time resolved laser induced fluorescence measurements 

 

 Time resolved laser induced fluorescence measurements (TRLIF) is a very sensitive 

and selective method for ultra trace analysis in the different fields of nuclear, environmental, 

and medical science. This technique is based on laser excitation followed by temporal 

resolution of the fluorescence signal. The other great advantage of TRLIF is its triple 

resolution: (1) excitation resolution by the proper choice of the laser wavelength (N2, tripled 

or quadrupled Nd:YAG, dye, (2) emission fluorescence, which gives characteristic spectra of 

the fluorescent cation (free or complexed); and (3) fluorescence lifetime, which is 

characteristic of its environment (complexation, quenching). These two latter types of data 
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provide useful information on the chemical species present in solution as well as for 

complexation studies. For example, this technique used as a fluorescent titration method’ has 

allowed the determination of complex formation at a low level between trivalent elements 

[145].  Excitation part of the system is based on nanosecond Nd:YAG laser and Optical 

Parametric Oscillator (OPO). The fluorescence detection part of our system is based on 

picoseconds streak camera. The laser is more than powerful enough (365 mJ at 1064 nm, 

variable OPO output >5 mJ) for LIBS, but somehow slow (the length of fundamental laser 

harmonic output pulse is about 5 ns) for fluorescence measurements in our present area of 

interest, namely plants and food products. Fortunately, the pulse length of tunable OPO 

output (320-475 nm) is less than 1 ns, so by means of a correct deconvolution procedure it is 

possible to measure the fluorescence lifetimes in the range as small as a few nanoseconds 

[146]. 

 

Figure 29. Schematic illustration of experimental setup for TR-LIF spectroscopy [146]. 
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 The experimental set-up consists of excitation and detection part (Figure 29). Pulsed 

excitation was provided by a tunable Nd-YAG laser system (Vibrant model 266 made by 

Opotek, Inc.). This system incorporates the Optical Parametric Oscillator (OPO) that is 

pumped by the fourth harmonics of the laser at 266 nm.  The laser induced fluorescence in 

the samples is recorded using streak scope (Hamamatsu model C4334-01) with integrated 

video streak camera. 
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Materials 

 

 Powder CaF2 (Rare Earth Products Limited) purity of 99.99% was used in the single 

crystal growth. Commercially available PMMA Acryrex
®
 CM205 (Chi Mei Corp. Korea, 

(Mw≈90400 g/mol, n = 1.49,   = 633 nm) pellets were used as a polymer matrix for 

preparing composite films. The quantum dots of cadmium selenide (CdSe) nanoparticles, 

were supplied from QD particles, Future Chemistry, Netherland, 610nm, a solution in 

toluene.  Dimethylformamide (DMF, anhydrous, 99.8%, Sigma-Aldrich) and acetone (Zorka 

Pharma, Serbia) were used as solvent for preparation of composite films by solution casting.   

 

Experimental procedures  

Crystal growth 

 

 The Bridgman method of crystal growth is relatively simple and allows operation in a 

vacuum, and also in an inert atmosphere. In this method, the crucible uses a cylindrical shape 

with a conical bottom. The procedure consisted of the following: the crucible cylindrical 

shape with melted batch CaF2 down from the upper hot chamber of the furnace in the cooler 

lower chamber of the same furnace. The bottom of the crucible was in the shape of a cone 

and that in the formation of germs and begins the process of crystallization. The crucible was 

from spectroscopically pure graphite [147-153]. One of the main drawback of this method is 

that in the course of growth can be seen the process of crystal growth, so that if it comes to 

the appearance of polycrystalline, this can be concluded only after the completion of the 

process of growth and cooling crystals.  

 To obtain single crystals of CaF2 by the Bridgman method in a vacuum has been used 

device BCG 356. Initial samples of single crystals were mostly transparent, but some were 

cracked. Because of the small temperature gradient there were a sudden crystallization 

process and the appearance of dendrites in the lower part of the crucible, and therefore made 

changes to the structure of the crucible. Therefore, we had to make some changes in 

conditions of growth and construction of crucible. With this change we have achieved that 
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cone of the lower part of the crucible is in the form of a tube. Therefore we have achieved 

that by the sudden crystallization takes an extended part of the crucible, thus avoiding the 

occurrence of dendrites. The crystals that were obtained on the crucible constructed in this 

way were of better quality. However, when grinding the upper surface of the crystal, because 

the dirt that clung to that, there have been cracks crystal along a plane of cleavage. 

 Experiments have been performed with CaF2 in the form of a powder. Since this 

device works in a vacuum, there was a danger that the air contained in the powder CaF2, 

when you turn on the vacuum pump, disperses the powder throughout the apparatus. 

Therefore, the CaF2 powder was compacted and sintered in the form of pills. With such 

obtained pills could easily and quickly be filled crucible. Powder CaF2 (Rare Earth Products 

Limited) purity of 99.99% was used in the experiment. CaF2 powder was compacted under a 

pressure of 3500 kg cm
-2

, and the sintering of the obtained tablet was carried out at 900 C 

under an inert atmosphere of argon. We tried out combinations of various growth rates and 

generator powers with the aim to define the optimal growth conditions. 

  Power generator was initially Pgen = 3.8 kW, and was later increased to Pgen = 3.94 

kW. The crystal growth rates were 6 mm h
-1

, 12 mm h
-1

, 24 mm h
-1

 and 48 mm h
-1

.  

 Crucible with the charge placed on the holder in the upper chamber furnace. Then the 

apparatus is sealed, and then put into operation a vacuum apparatus and cooling water. By 

establishing a vacuum inaugurated generator that is done gradually warming to melt the 

batch. The power generator is a maximum of 30 kW. When melting the batch used power 

generators of 3.64 kW. Since the charge melted, the crucible is dissolved slowly by hand 

down to the bottom (cold) chamber furnace. At the top of the cone, which comes first in a 

cooler area, creates a germ that begins with the crystallization. Continued further lowering 

the crucible, and the power supply generators have been gradually decreasing. 

 When lowered muffle up to 30 mm in length, the descent rate was R = 6.8 mm h
-1

. In 

a further descent we increased the speed at R = 12.7 mm h
-1

. In subsequent experiments, we 

used only the rate of descent crucible of R = 6.8 mm h
-1

 over the entire length of the crucible. 

In growing single crystals used a modified holder when casting. With him are the cooling fins 

slightly higher at the upper end than the lower, while in normal bracket when casting the 
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cooling fins of the same size. In Figure 30 shows a schematic representation of the apparatus, 

and Figure 31 gives the look and dimensions of crucible that was used during the experiment.  

 

 

Figure 30.  A schematic view of an apparatus for Bridgman-grown CaF2 single crystals: 

1) quartz tube; 2) ceramics; 3) line for cooling; 4) graphite crucible; 5) spiral for 

heating; 6) graphite crucible carrier and 7) spindle. 
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Figure 31. Schematic view - layout and dimensions of the crucibles used in the 

experiment for Bridgman-grown CaF2 single crystals. 
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Preparation of PMMA, PMMA-CaF2 and PMMA- CdSe films 

 

 In order to obtain the composite, CaF2 in PMMA, it was first necessary to do several 

operations. First, it was necessary to get a CaF2 powder of nanometer dimensions. CaF2 

single crystal plate was milled in air atmosphere in planetary ball mill Fritsch Pulverisette 5 

(Figure 32). Then the mixture of PMMA and the previously obtained powder of CaF2 further 

milled in the same vessel. Balls-to-powder mass ratio was 20:1. The angular velocity of the 

supporting disc and vial was 32 and 40 rad s
-1

, respectively. 

 

 

a) b) 

Figure 32. a) A planetary ball mill (Fritsch Pulverisette 5). b) Working principle of 

planetary ball mill. Schematic view of motion of the ball and powder mixture. 

  

 For the preparation of precursor solutions, acetone was used as the solvent for the 

PMMA. Homogenous solution of polymer with respect to the amount of composite films was 

prepared by dissolving the polymeric granules (PMMA, m = 10.65g) in 40 ml of acetone 
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under magnet stirring for 48 h at room temperature on the mixture. PMMA was therefore 

produced in form of film by solvent casting method, i.e. casting the resulting PMMA solution 

which we previously prepared on Petri dish in horizontal position. The solution was air dried 

for 24 h at room temperature and the obtained film was kept for further 24h in dryer under 60 

ºC in order to eliminate residual solvent. For the preparation of composite film PMMA-CaF2 

the procedure was the same, and the appropriate content of CaF2 for preparing 1% wt 

composite films was added. The mixture was stirred for 24 h. The casting solution method on 

Petri dish was performed by placed it on Petri dish, and then the spacemen was dried for 24 h 

at room temperature and further drier for 24 h in dryer oven under 60 ºC. 

 For the composite film PMMA-CdSe DMF was used as the solvent for the PMMA. In 

a typical process, homogenous solution of polymer with respect to the amount of composite 

films was prepared by dissolving the polymeric granules (PMMA, m = 10.65 g) in 40 ml of 

DMF under magnet stirring for 48 h at room temperature on the mixture. The concentration 

of PMMA in DMF solution was 22 %wt. PMMA was therefore produced in form of film by 

solvent casting method, i.e. casting the resulting PMMA solution which we previously 

prepared on Petri dish in horizontal position. The solution was air dried for 24 h at room 

temperature and the obtained film was kept for further 24h in dryer under 60 ºC in order to 

eliminate residual solvent. 

 For the synthesis of polymer/quantum dots (PMMA/ CdSe) composite films the 

procedure for solutions was similar. The concentration of PMMA in DMF solution was 22 % 

wt. The concentration of CdSe particles in films was 0.06 % wt. which prepared by dispersed 

CdSe particles in toluene, being the powder. The resulting suspension was directly added to 

PMMA solution previously prepared. The mixture was stirred for 24 h. The same procedure 

we did with CdSe-PMMA solution, i.e. casting CdSe-PMMA solution on Petri dish by placed 

it on Petri dish, and then the spacemen was dried for 24 h at room temperature and further 

drier for 24 h in dryer oven under 60 ºC. 

 The observations relating to the dislocation were recorded by observing an etched 

surface of CaF2 crystal, using a Metaval of Carl Zeiss Java metallographic microscope with 

magnification of 270x. To test the dislocations were used CaF2 samples that are obtained by 

cleaving the crystals CaF2 per plane splitting 111. The samples were etched with 
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concentrated sulfuric acid from 10 to 30 min. It has been shown that the best results are 

obtained on the sample crystal is etched for 15 min.  

 The crystal structure of CaF2 single crystal was approved using the X-ray 

diffractometer (XRD, Model Philips PW 1050 diffractometer equipped with a PW 1730 

generator, 40 kV x 20 mA, and using CuKα radiation of 1.540598 Å at the room temperature. 

Measurements were done in 2θ range of 10-90° with scanning step width of 0.05° and 10 s 

scanning time per step. 

 The micro-Raman spectra were taken in the backscattering configuration  

and analyzed by Jobin Yvon T64000 spectrometer, equipped with nitrogen  

cooled charged coupled device detector (Figure 33). As an excitation source we used  

the 532 nm line of Ti: Sapphire laser, with laser power 20 mW. The measurements were 

performed in the spectrum range 100 cm
-1 

to 800 cm
-1

. 

 

 

Figure 33. Raman spectrometer  Jobin-Yvon T64000. 

 The room temperature far-infrared measurements were carried out with a BOMEM 

DA-8 FIR spectrometer (Figure 34). A DTGS pyroelectric detector was used to cover the 

wave number range from 40 to 500 cm
-1

. 
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Figure 34. BOMEM DA-8 FIR spectrometer. 

 

 The transmission  spectrum of PMMA, CaF2 sample and composites (powdered and 

pressed in the disc with KBr) was obtained by transmission Fourier transforms infrared 

(FTIR) Hartmann&Braun spectrometer, MB-series. The FTIR spectrum was recorded 

between 4000 and 400 cm
-1

 with a resolution of 4 cm
-1

. 

 Photoluminescence (PL) studies reported in this work were performed at room 

temperature using Optical Parametric Oscillator (Vibrant OPO) tuned at 350 nm as excitation 

source. The experimental setup used in this study consists of excitation and detection part. 

Pulsed excitation was provided by a tunable Nd:YAG laser system with pulse duration of 

about 5 ns and repetition rate of 10 Hz. Time resolved streak images of the emission 

spectrum excited by OPO system are collected by using a spectrograph (SpectraPro 2300i) 

and recorded with a Hamamatsu streak camera (model C4334). All streak camera operations 

are controlled by the HPD-TA (High Performance Digital Temporal Analyzer) software. The 

fundamental advantage of the streak camera is its two dimensional nature, enabling the 

acquiring of the temporal evolution of laser induced phenomena. The camera is equipped 

with image intensifier so single photons can be detected and counted, enabling the detection 

of even very small photoluminescence response of excited sample. The excitation and 
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detection optical axes were aligned using the beam splitter, so it was possible to tune the 

angle of excitation beam regarding the surface of sample and to maintain the high sensitivity 

of detection. 

In order to study the electrical and dielectric properties of synthesized CaF2 single 

crystal, the plan-parallel plate with dimensions of 11x11x 2 mm
3
 was coated with high purity 

silver paste on adjacent faces as electrodes. AC (alternating current) parameters were 

measured using an impedance analyzer (Hewlett-Packard 4194A) at various temperatures 

between 25°C and 175°C in the frequency range 100 Hz to 1 MHz. For more details see 

Ref.[154] and Figure 35.   

 

 

Figure 35. Schematic representation of prepared CaF2 and its equivalent electric circuit. 
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Results and discussion 

Single crystal 
 

 CaF2 single crystals are obtained by the vertical Bridgman method in vacuum. 

Experiments were carried out with the crystal growth rate of 6-48 mm h
-1

. The best result was 

obtained with a crystal growth rate of 6 mm h
-1

. If the growth rate of the single crystal CaF2 

larger, experiments showed that these crystals contain more stress and that in this case it is 

more likely to obtain polycrystals. Stresses in single crystals we have tried to eliminate 

annealing of crystals. The process of annealing was carried out on the plate and bulk crystal 

CaF2. The temperature of annealing of the plate was at 1000 °C for 3 h, and the temperature 

of annealing of the bulk crystal was at 1000 °C and 1080 °C for 1 - 3 h. Annealing is carried 

out under an inert atmosphere of argon. It was noticed that after annealing, plate CaF2 did not 

have enough stress. Annealing bulk single crystal CaF2 had less stress than non-annealing. 

The obtained single crysta of CaF2 was 20 mm in diameter and 90 mm in length (Figure 36). 

A polished plate of CaF2 with a diameter of 20 mm is displayed in Figure 37. 

 

 
 

Figure 36. Photographs of Bridgman-grown CaF2 single crystal. 
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Figure 37. A polished plate of CaF2. 

 

 The general conclusion is that in all samples was observed relatively high dislocation 

density (ranging from 60000 to 140000) as a consequence of greater internal stresses, which 

have emerged in the process of cooling. From the Figure 38 it can be observed dislocations 

on CaF2 single crystal. Etch pits have the shape of a three-sided pyramid. Number of 

dislocations in CaF2 crystals which were made by the method of Bridgman was 5·10
4 

- 2·10
5
 

per cm
2 

(Figure 38). Earlier we pointed out that it would eliminate the stress exerted we 

annealing process. During the annealing process is concluded that there is a movement of 

dislocations. The leads to the formation of sub-boundaries, and as a result, the internal stress 

in the crystal partially disappear. During the movement of dislocations their stress fields are 

partially reversed, but the dislocation density is practically not changed. 

 

Figure 38. The microscopic image of the surface CaF2 crystal plate in  

the direction 111. Magnification of 270x. 
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 The sample of CaF2 single crystal was of cubic structure with the Fm3m space group 

155. XRD pattern (Figure 39) was indexed by using JCPDS database (card no. 87-0971). 

The XRD pattern was found to match exactly with those reported in the literature [103, 

156,157]. The displayed peaks correspond to (h k l) values of (1 1 1), (2 2 0), (3 1 1), (4 0 0), 

(3 3 1) and (4 2 2). Using the (h k l) values of different peaks, the lattice constant (a) of the 

sample was calculated. Their lattice parameter was calculated from the equation of plane 

spacing for cubic crystal system and Bragg’s law for diffraction [158]. The lattice parameter 

was 5.4520.011 Å, calculated from the obtained XRD diagram, which was in good 

agreement with the literature 159.  
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Figure 39. X-ray diffraction pattern of the CaF2.  

 

 The primitive cell of a fluorite structure contains three nonequivalent atoms, 

corresponding to nine phonon modes in the dispersion relations, with three of them being the 

acoustic modes 160. At the Γ point, there are three distinct optic phonon modes based on 

group theory analysis, and their representations are a doubly degenerate infrared-active TO 

T1u, a triply degenerate Raman-active mode T2g, and an infrared-active nondegenerate LO T1u 

in the order of increasing phonon frequency. From the Γ to the X point along the <100> 

direction, the T1u (TO) mode is correlated to a doubly degenerate dispersion following the 
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notation of Schmalzl et al., the T2g mode is split into a doubly degenerate  dispersion and a 

nondegenerate dispersion; and the T1u (LO) mode is correlated to a nondegenerate dispersion 

[161].  

 Three atoms in cubic O
5

h (Fm3m) primitive cell of the CaF2 crystal are given nine 

fundamental vibrations, described by the following Oh-irreducible representations (at k = 0): 

Γ = 2T1u + T2g. According to several comprehensive work (see, e.g. [162-167]), their 

distribution among optical and acoustical are: the triply degenerate T2g optical phonon is 

Raman active and IR inactive; one of the T1u representations (triply degenerate as well) 

corresponds to the zero frequency acoustic mode, while the other T1u species is actually split 

into a double degenerate transverse optical mode and a nondegenerate longitudinal optical 

mode, all the above are IR active. The room-temperature first order T2g one-band spontaneous 

Raman scattering spectra of CaF2 crystal is shown in Figure 40. In this single allowed SRS-

promoting optical mode with frequency ωSRS = 319.7 cm
-1

 Ca
2+

 cation remains stationary and 

the neighboring substitutional fluoride F
-1

 ions vibrate against each other [169, 170]. 
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Figure 40. Raman spectra of the CaF2 single crystal at  room temperature. 
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       FTIR transmission was measured in order to check the purity of the obtained CaF2. As 

shown in Figure 41, the sharp peaks of the absorption at 2854 cm
-1

 and 2936 cm
-1 

are
 

assigned to the symmetric and antisymmetric stretching vibration of -CH2 groups [171]. Also, 

the spectra shows two broad IR absorption peaks at ~3432 cm
-1

 and 1628 cm
-1

 are assigned to 

the symmetrically stretching vibration and antisymmetric stretching vibration of hydroxyl 

groups -OH, implying the presence of H2O molecules [172]. The peak at 671 cm
-1

 in the 

FTIR spectra was assigned to the Ca-F stretching vibration of CaF2 [173]. The band at ~2357 

cm
-1

 is due to KBr pellets used for recording FTIR spectrum [174]. 
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Figure 41. FTIR spectra of CaF2. 

 

      The far-infrared reflectivity spectrum of the CaF2 substrate is shown in Figure 42(a). 

The experimental data are presented with circles. The solid line in Figure 42(a) was obtained 

using the dielectric function in the factorized form given by Eq.(34) [175-177] 
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           ε(ω) = ε∞ 
 

n

j jTOjTO

jLojLO

i

i

1
22

22




                            (34) 

The number of modes is n, ωjLO and ωjTO are the longitudinal and transverse optical 

frequencies, γjLO and γjTO denote longitudinal and transverse damping constants, respectively, 

and ε∞ is the dielectric constant (permittivity) at high frequency. 

  As a result of the best fit we obtained the ωTO = 272 cm
-1

 and ωLO = 475 cm
-1

, some 

what higher than in Ref.[178] (TO/LO = 257/463). In pure CaF2, only two infrared active 

modes are allowed by the crystal symmetry (splitted TO-LO mode), but we see that the main 

reflectivity band of CaF2 exhibits a feature centred about 360 cm
-1

 as a result of a two-phonon 

combination. This feature has been observed in all stoichiometric fluorite-structured crystals 

[179]. There are two additional weak modes with relatively high dampings in the range of 

low energies. We suppose that mode about 130 cm
-1

 could be caused by impurities and about 

200 cm
-1

 is a TO-mode from the X point <100>. Kramers-Kröning analysis of far-IR 

reflectance data gives ωTO = 272 cm
-1

 and ωLO = 475 cm
-1

, in the accordance with fitting 

procedure (Figure 42(b)). 
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Figure 42. IR spectra of CaF2 single crystals, recorded at room temperature. 

 

     We have measured the photoluminescence response of the CaF2 crystal sample for 

various excitation wavelengths and different angles of excitation beam. The streak image of 

the fluorescence emission spectrum of CaF2 is presented in Figure 43a). The 

photoluminescence response was very small, see Figure 36a) where typical optical response 

of sample is presented. Although the streak images were acquired in photon counting mode 

using very large number of expositions (20000), very small number of photons were counted. 

The vertical axis in Figure 43a) corresponds to the fluorescence development in time domain 

of 200 ns. The beginning of the vertical axis is cut off in order to avoid undesirable part of the 

spectra (excitation at 320 nm and second harmonic of Nd:YAG laser at 532 nm).  
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Figure  43. a) Streak image of the fluorescence spectra of CaF2 crystal.  b) Fluorescence 

spectra of CaF2 crystal as a function of wavelength (integrated profile). c) Fluorescence 

spectra of CaF2 crystal as a function of time (integrated profile) and fitted curve. 

  The photoluminescence response was very small, see Figure 43a) where typical 

optical response of sample is presented. Although the streak images were acquired in photon 

counting mode using very large number of expositions (20000), very small number of 

photons were counted. The vertical axis in Figure 43a) corresponds to the fluorescence 

development in time domain of 200 ns. The beginning of the vertical axis is cut off in order 
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to avoid undesirable part of the spectra (excitation at 320 nm and second harmonic of 

Nd:YAG laser at 532 nm). 

 Enlarged integrated profile of the fluorescence of CaF2 is presented in Figure 43b). 

Our pure sample of CaF2 crystal shows a broad band in 300-500 nm range. As pointed out in 

[180] this band might be induced due to the formation of color centers. These centers perhaps 

could be created by oxygen defects within the host of CaF2. The luminescence of our sample 

is very weak compared to the luminescence of structure described in [180]. To obtain good 

luminescence response, the samples of CaF2 are doped with Ag, Eu, Tb, Cu or Dy [180, 181]. 

However, CaF2 crystal is usually used in applications where high optical transmission is 

needed and photoluminescence is not welcomed characteristics [182]. 

 Fluorescence line profile (fluorescence decay) from image Figure 43a) is selected 

using the integration process in region from 340 nm to 460 nm. That profile is fitted using 

High Performance Digital Temporal Analyzer (HPD-TA) software, provided by Hamamatsu. 

Fluorescence decay and fitted curve are shown together in Figure 43c). The obtained lifetime 

is 33 ns (χ
2
 = 1.07). 

      The properties of the crystal, such as density of dislocations, cystallinity, and 

impurities concentrations, determine the optical quality.  

 The frequency dependence of the AC electrical conductivity i.e. conductivity 

spectrum for studied CaF2 single crystal at various temperatures is shown in Figure 44. These 

plots indicate the existence of two contributions inside our sample. Namely, DC conductivity 

contribution is predominant at low frequencies and high temperatures, whereas the 

frequency-dependent term dominates at high frequencies. Moreover, the observed dispersion 

in the conductivity spectrum is shifted toward the higher frequency side with the increase of 

temperature. This variation of AC conductivity with frequency at different temperatures 

obeys the power law given by the empirical formula (Eq.(35)) proposed by Jonscher [183]: 

                        sA )(
AC

                                      (35) 

where ω is the angular frequency of AC field. A and s (0 ≤ s ≤ 1) are the characteristic 

parameters which are temperature dependent. The Jonscher's coefficient s represents the 

degree of interaction between mobile ions with the lattices around them, and the prefactor 

parameter A determines the strength of polarizability [184]. In general, the nature of the 
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temperature dependence of frequency exponent s determines the AC conduction mechanism 

in the material [154]. 

 

 

Figure 44. Frequency dependence of AC conductivity for  

CaF2 single crystal at different temperatures. 

 

 Changes in the real and imaginary part of complex impedance with frequency at 

different temperatures for CaF2 single crystal are shown in Figure 45. It can be noticed that 

the magnitude of part of complex impedance (Z') decreases with an increase in both applied 

frequency and temperature, indicating an increase in AC electrical conductivity of the CaF2 

sample with increasing frequency and temperature. In addition, the temperature-dependent Z' 

shows a plateau on the low frequency side followed by a nearly negative slope on the high 

frequency side, indicating a crossover from low frequency relaxation behavior to high 

frequency dispersion phenomenon. This segment of nearly constant real impedance becomes 

dominant with increasing temperature, suggesting strengthened relaxation behavior [185].  
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Figure 45. The variation of real part (left) and imaginary part (right) of the complex 

impedance with frequency at measured temperatures for CaF2 single crystal. 

 

  The imaginary part of complex impedance (Z'') initially increases, reaches a peak and 

then decreases continuously with increasing frequency at all temperatures. It is evident that 

the Z'' spectrum of CaF2 is characterized by the appearance of only one peak at a certain 

frequency that is called relaxation frequency. This suggests that a single relaxation process 

dominates over the conduction mechanism in synthesized CaF2. As the temperature rises the 

magnitude of observed peak in Z'' spectrum decreases considerably with the peak shift 

towards higher frequency side. Such behavior indicates the presence of temperature 

dependent electrical relaxation phenomenon and that the relaxation time decreases with 

increasing temperature. 

 The representation of complex impedance data for CaF2 single crystal in Nyquist/Cole-

Cole plot at different temperatures is illustrated in Figure 46. All these plots are characterized 

by the presence of a single semicircle which corresponds to the bulk effects and indicates that 

the material is homogeneous. No residual semicircle at low frequencies attributed to the 

electrode effects has been noticed. Further, impedance spectra show depressed semicircles 

with their center below the real axis which points to the non-Debye type of relaxation [186].  
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Figure 46. Impedance spectra of CaF2 single crystal at selected temperatures. Inset 

shows the proposed equivalent circuit model for analysis of the impedance data. 

 

 In addition, the radius of the semicircles, which corresponds to the resistance of the 

material, decreases as temperature increases indicating a thermally activated conduction 

mechanism in studied CaF2. It is well known that in single crystal materials this kind of 

impedance response can be interpreted by means of an equivalent electrical circuit model 

consisting of one parallel RC element [187]. But taking into account the observed non-ideal 

Debye type behavior of sample, it is usual that the constant phase element (CPE) is used 

instead of ordinary capacitor as shown in the insert of Figure 46. 

 The effect of applied electric field frequency on the dielectric constant of CaF2 single 

crystal at different temperatures is represented in Figure 47. It is clear from the analysis of the 

graph that dielectric constant decreases continuously with increasing frequency, exhibiting a 

normal dielectric behavior [188].   
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Figure 47. Frequency dependence of dielectric constant for CaF2 single crystal at 

different temperatures. 

 

  A more significant dispersion in low frequency region can be explained based on the 

fact that the dielectric constant, in general, is directly related to the dielectric polarization. It 

can be observed that the variation of dielectric constant with temperature at low frequencies 

is much more pronounced than at higher frequencies. This relatively insignificant variation of 

dielectric constant with temperature at higher frequencies can be ascribed to the atomic and 

electronic polarizations which are temperature independent.  

 The nanoindentation test vas performed with the aim of obtained mechanical 

properties of CaF2. Figure 48 shows typical force-depth curve obtained in the 

nanoindentation tests for CaF2 single crystal. The curve appear sto be with continuity and 

without pop in or pop out in both loading and unloading phases. The results of reduced elastic 

modulus and hardness for CaF2 single crystal are presented in Figure 48, and they are in 

according literature data. 
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Figure 48. Load-depth nanindentation curve for CaF2. 

 

Composite PMMA-CaF2 

 

 Results od DSC analysis for omposite films PMMA-CaF2 are presented on Figure 49. 

Theese rasults revealed that the thermal propertis od polyner was improved by embedinf 

inorganic particles. Tg for composit was higher the for pure polymer. 

 

Figure 49. DSC analysis. 
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 Figure 50 a) shows the FTIR spectrum of as prepared CaF2 single crystal. The 

spectrum shows two strong IR absorption bands at ~3432 and 1628 cm
-1

. They are 

characteristic of H-O-H bending of the H2O molecules. This reveals the presence hydroxyl 

groups in the as prepared sample. The fundamental frequency at ~364 cm
-1

 arises due to 

hindered rotations of the hydroxyl ions. The band at ~2357 cm-1 is due to KBr pellets used 

for recording FTIR spectrum. 
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Figure 50. FTIR spectrum of a) CaF2 and b) PMMA and composite. 
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 The transmission spectra (Figure 50 b)) of PMMA, PMMA with the addition of 1% of 

the microcrystals CaF2, or 2% CaF2 powder, are shown together with the spectrum of a single 

crystal CaF2 in the range of wave number 4000 cm
-1

 and 500 cm
-1

. It is notable that the 

transmittance spectra of PMMA with the addition of CaF2 lower than the transmittance of 

pure PMMA in parts of the spectrum which correspond to a lower value of the transmittance 

of the single crystal CaF2, i.e. for a wave number more than about 3000 cm
-1

 and below 1500 

cm
-1

. The reduction of transmittance is higher when the CaF2 particles dispersed in the 

PMMA matrix finer (powder). In the area of wave number than 600 cm
-
, CaF2 has a 

reflectance equal to zero in practice, and in the same area have the transmittance which 

differs from 100% in the parts of the spectrum that correspond to the absorbed water vapor or 

gases from the atmosphere. Visible minima in the spectra of PMMA corresponding to 

literature values [189-191]. Spectrum for PMMA (Figure 50 b)) exhibits typical vibrational 

bands, i.e., vibrational bands at 987 and 1453 cm
-1

 that belong to O-CH3 bending and 

stretching deformation of PMMA, respectively, bands at 1730 and 1250 cm
-1

 that are 

assigned to stretching of C=O groups, a band at 1065 cm
-1

 that could be ascribed to the C-O 

stretching vibration and a band at 1197 cm
-1

 that belongs to the skeletal chain vibration. The 

other bands appearing in the 3000-2800 cm
-1

, 1490-1275 cm
-1

 and 900-750 cm
-1

 spectral 

regions correspond to different CH3– and CH2– vibrational modes [189, 190]. FTIR spectrum 

of composites there are well defined peaks for PMMA and some of the vibration modes of 

Ca–F bond at 671 cm
-1

. This means that CaF2 crystals in the composite have been identified 

and that no other bounds with PMMA were created during the processing. 

 The Raman spectra of CaF2 single crystal, PMMA and the composites 1% and 2% 

CaF2 with PMMA in spectral range from 200 to 1000 cm
-1

 at room temperature are shown in 

Figure 51. The Raman spectra shows of a composite that makes the PMMA matrix with 

addition of 1% and 2% CaF2 crystallites - microcrystals the average size of 50 nm, i.e, a finer 

powder with a grain size of 10-20 nm. Also, in addition to the composite spectrum are shown 

in both spectra, i.e. spectra of pure PMMA and CaF2 single crystal, for ease of comparison. In 

the composite spectra of PMMA with CaF2 powder, the peak intensity of the nanocrystal 

CaF2 is very bad. In the composite spectra of PMMA and microcrystals of CaF2 can be 

clearly seen CaF2 peak whose intensity increases with increasing concentration of 
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microcrystals. In Figure 51b) is the result of the deconvolution of a part of Raman spectrum 

peak in the vicinity of CaF2 in the case of composites with a 2% of nanocrystallites  or 2% 

CaF2 powder. The peaks were fit with the Lorentzian function, and the positions of the 

PMMA peaks practically coincide in both cases is selected. However, the peak of CaF2 

nanopowder is 0.4 cm
-1

 less than peak CaF2 microcrystals. This is the expected effect of 

lowering energy Raman peaks with decreasing dimensions of nanoparticles. Lowering energy 

peaks should be particularly pronounced in relation to balk. Unfortunately, our crystal sample 

was measured second Raman spectrometer with a higher excitation energy, and is due to 

heating of the sample was a shift towards lower peak energies. Peaks in the Raman spectrum 

of PMMA can assign to the Ref.-s Willis and Bensaid [191].  
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a)                                                                     b) 

Figure 51. a) Raman shift of CaF2 single crystal, PMMA and PMMA-CaF2 composites. 

b) Details from the Raman spectrum of 2% CaF2 single crystal and 2% CaF2 powder in 

the range 250-400 cm
-1

.  
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Nanocomposite film PMMA-CdSe 

 

 The PMMA film and nanocomposite have been further characterized with FTIR 

(Figure 52) to determine if any changes in functionality occurred in the composite film due to 

chemical interactions between the PMMA and the quantum dots. Spectrum of PMMA 

exhibits typical vibrational bands, i.e., vibrational bands at 986 and 1453 cm
-1

 that belong to 

O–CH3 bending and the stretching deformation of PMMA, respectively, bands at 1732 and 

1250 cm
-1

 that are assigned to the stretching of C=O groups, a band at 1065 cm
-1

 that could 

be ascribed to the C–O stretching vibration and a band at 1197 cm
-1

 that belongs to the 

skeletal chain vibration. The other bands appearing in 3000-2800 cm
-1

, 1490-1275 cm
-1

 and 

900-750 cm
-1

 spectral regions correspond to different CH3– and CH2– vibrational modes 

[189, 193].  

 The spectra of pure PMMA and of CdSe/PMMA nanocomposite are almost identical. 

All of the stretching vibrations observed in the PMMA appeared in the nanocomposite with a 

higher intensity. A band at 624 cm
-1

 is due to the stretching frequency of Cd–Se bond [194].  
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Figure 52. FTIR spectrum of pure PMMA film and PMMA/CdSe film. 
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 FESEM photos of the fracture surfaces of composite films with QD particles are 

presented in Figure 53. As could be seen, some level of the agglomeration of QD is 

presented. 

 

Figure 25. FESEM of composite film surface (the arrows marked QD). 

 

 Results of DSC for pure PMMA and composite are presented in Figure 54. The phase 

behavior of the polymer nanocomposite affected by an inclusion of a small fraction of QDs 

was exploited in a DSC by checking the glass transition temperature Tg change. Thermal 

analysis presented on Figure 54 shows that there is around 1% increase in Tg value for 

PMMA-CdSe nanocomposite, compared to the pure PMMA film. This finding has revealed 

that the agglomerates of QDs did not disrupt mechanical properties of the polymer. A small 

increase in Tg suggested that QDs behave as a functional physical crosslink, which would 

confirm the absence of a covalent bond between the polymer and the particles assumed by the 

FTIR analysis. 
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Figure 54. DSC of pure PMMA and the composite. 

 

 In order to obtain an overview of the possible inhomogenity in the sample, 

nanoindentation measurements were performed on nine positions for every sample. Figure 

55a) shows typical force-depth curves obtained in the nanoindentation tests for neat PMMA 

film and a composite with CdSe. The curves appear to be with continuity and without pop-in 

or pop-out in both loading and unloading phases. Figure 55b) displays the plastic imprint of 

the indent for the sample with QD particles. In-situ imaging mode used for scanning the 

surface trace reveals the absence of cracks and fractures around the indent. The relative 

increase of reduced elastic modulus and hardness compared to the neat PMMA was 3.8 % 

and 15.9 % respectively (Table 1). The hardness (H) of a material is a measure of its 

resistance to shear stresses under local volume compression. The increased resistance to 

surface deformation of the PMMA nanocomposite may be due to a decrease in the free 

volume of the matrix associated with the formation of apparent physical crosslinking and the 

entanglements. This increase of the hardness is in the agreement with the increase of Tg 

because both of them are closely related to the cohesive energy density of the polymer [195-

197]. 
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 Table 1. Results of nanoindentation test. 

Sample Er, GPa St Dev, GPa H, GPa St Dev, GPa 

 PMMA 5.528861 0.320653 0.327145 0.022659 

 PMMA CdSe film 5.742875 0.282497 0.379106 0.023848 
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Figure 55. a) Force-depth curves obtained by nanoindentation, for pure PMMA and 

composite films. b) The plastic imprint of the indent for the sample with QD particles. 

 

 Streak images of fluorescence spectra of CdSe QDs liquid solution (as received) and 

CdSe QD/PMMA film are shown in Figure 56. The images, recorded as a 2D matrix, enable 

both lifetime and fluorescence spectral characteristics analysis of the samples. Fluorescence 

emission peak of CdSe QDs liquid solution (Figure 56a)) is at 610 nm, as expected, because 

quantum dots with such fluorescence characteristics were obtained and used in this study. 

The typical nanosized CdSe is a cluster of several smaller nanocrystals. Due to extremely 

small dimension and high surface energy, these nanocrystallites agglomerate to give a 
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resultant average size [198, 199]. For CdSe QD/PMMA film (Figure 56b)), there is a slight 

blue shift (peak is at 606 nm) due to a deagglomeration of some of the quantum dots during 

the process of the fabrication of the film. 

 The fluorescence lifetime of CdSe QD liquid solution and CdSe QD/PMMA film was 

calculated, obtaining the values of 1.8 ns and 2.1 ns respectively. The fluorescence lifetime of 

analyzed CdSe QD material is slightly increased when quantum dots are hosted in PMMA.  

 

 
 

(a) (b) 

Figure 56. Streak images of fluorescence spectra of a) CdSe QD liquid solution and  

b) CdSe QD/PMMA film [200]. 
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Conclusion 

 

 In this dissertation the posibility of synthesis of optical active composites with 

improoved mechanical, thermal properties and functionality  was investigated.  Synthesis and 

characterisation of nano to mikro modified polymer composites on the basis of single crystal 

are performed. The plymer matrix was poly (methyl methacrylate) – PMMA. One approach 

was the embedding of materials with similar values of the refractive index. Within this 

selection of this materials fell on the poly (methyl methacrylate) with an index of refraction 

n600 = 1.49, and calcium fluoride with n600 = 1.43. Another approach was use of the inorganic 

particle size smaller than the wavelength of electromagnetic radiation to avoid scattering. The 

single crystal one dimension (1D) quantum dots CdSe was embedded in PMMA.  

 Experimental part was performed in two directions: synthesis of single-crystal CaF2 

as a functional carrier and embedding in the polymer matrix; and synthesis and 

characterization of polymer matrix composites incorporating CdSe quantum dots. All 

materials, started and obtained composites, were characterized with aim to investigate 

influence of processing parameters and components on the quality of obtained optical active 

composite materials.   

Firstly, XRD analysis was used  for the crystalline phase detection  and orientation of 

CaF2 single crystal obtained by modified method the vertical Bridgman in vacuum. Method 

of photoluminescence was used to determined whether there are defects due to the presence 

of oxygen. Testing of the optical properties was conducted using the Raman spectroscopy, 

infrared spectroscopy, and the emission spectrum of the method of time-resolved laser-

induced fluorescence. Established chemical bonding in the composite, and the modified 

polymer were tested using FTIR spectroscopy. The thermal properties were examined using 

DSC analysis. Morphology as well as composites of structure and distribution of particles in 

the composite was examined by scanning electron microscopy (SEM). Mechanical properties 

were tested by  method of nanoindentation, Vickers microhardness and tensile tests. 

 CaF2 single crystals in diameter of 20 mm are obtained by the vertical Bridgman 

method in vacuum. The crystal growth rate was 6.0 mm h
-1

. In order to eliminate stresses in 

the crystal, a crystal annealing is carried out on the plate and bulk CaF2. Number of 

dislocations is of the order of 5×10
4 

- 2×10
5
 per cm

2
. During the annealing process is 
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concluded that there is a movement of dislocations. The leads to the formation of sub-

boundaries, and as a result, the internal stress in the crystal partially disappear. During the 

movement of dislocations their stress fields are partially reversed, but the dislocation density 

is practically not changed.  

 As a result of the best fit we obtained the ωTO = 272 cm
-1

 and ωLO = 475 cm
-1

, some 

what higher than in literture data (TO/LO = 257/463). In pure CaF2, only two infrared active 

modes are allowed by the crystal symmetry (splitted TO-LO mode), but we see that the main 

reflectivity band of CaF2 exhibits a feature centred about 360 cm
-1

 as a result of a two-phonon 

combination. This feature has been observed in all stoichiometric fluorite-structured crystals . 

There are two additional weak modes with relatively high dampings in the range of low 

energies. We suppose that mode about 130 cm
-1

 could be caused by impurities and about 200 

cm
-1

 is a TO-mode from the X point <100>. Kramers-Kröning analysis of far-IR reflectance 

data gives ωTO = 272 cm
-1

 and ωLO = 475 cm
-1

, in the accordance with fitting procedure. 

The FTIR transmission spectra indicate that there are some amounts of -CH2, -OH or water 

molecules and organic groups adhering to the surfaces. Photoluminescence intensity of the 

obtained crystal is very low, what is an advantage for applications where high optical 

transmission is needed. Based on our work and observations during the experiment, it could 

be concluded that the obtained transparent single crystal CaF2 is of good optical quality, 

which was the goal of our work. The variation of dielectric constant with temperature at 

higher frequencies can be ascribed to the atomic and electronic polarizations which are 

temperature independent.  

 Composite films PMMA-CaF2 was obtained with preserved optical properties of 

single crystals, whereas the thermal and mechanical properties improved. Results od DSC 

analysis for omposite films PMMA-CaF2 revealed that the thermal propertis od polyner was 

improved by embedinf inorganic particles. Tg for composit was higher the for pure polymer. 

FTIR spectrum of composites there are well defined peaks for PMMA and some of the 

vibration modes of Ca–F bond at 671 cm
-1

. This means that CaF2 crystals in the composite 

have been identified and that no other bounds with PMMA were created during the 

processing. The Raman spectra of CaF2 single crystal, PMMA and the composites revelaed 

all modes found are well matched with literatures. By addition of 1% and 2% CaF2 crystals 
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can be seen the peaks are the same as in the spectrum of PMMA. The intensity of these peaks 

in the composite are about 364, 481, 600, 812 and 964 cm
-1

. It was also noted a sharp peak at 

323 cm
-1 

which is characteristic of CaF2. A weak band near 400 cm
-1

 in possibly be 

(COC) in spectrum of the PMMA and the composites 1% and 2% CaF2 with PMMA. 

 The preparation of composites PMMA doped with CdSe QDs  was performed utilizing 

the solution casting technique. The results obtained from the DSC showed that on the 

addition of QDs, Tg value of the PMMA slightly increased, suggesting that the nanoparticles 

formed aggregates which have not disrupted mechanical performance of the polymer. The 

time resolved analysis of the nanocomposites revealed that the fluorescence of the powder 

was preserved in the composite. The fluorescence lifetime of PMMA doped with QDs has 

also slightly increased. As shown by the nanoindentation tests, incorporation of 3 wt % of 

QDs increased the reduced modulus and the hardness of PMMA composite for 3.8 % and 

15.9 %, respectively. The presented results suggested that PMMA/QD nanocomposites have 

good potential for the use in light sensitivity elements and optoelectronic devices. 
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1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и 

прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца 

лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци. 

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно 

саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране 

аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. 

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију 

и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, 

ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова 

лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, 

овом лиценцом се ограничава највећи обим права коришћења дела.  

 4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате 

умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име 

аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада 

дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава 

комерцијалну употребу дела и прерада. 

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно 

саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се 

наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова 

лиценца дозвољава комерцијалну употребу дела. 

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и 

јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од 

стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или 

сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. 

Слична је софтверским лиценцама, односно лиценцама отвореног кода. 
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