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Synthesis, characterization and application of magnetic 

adsorbents based on sepiolite and zeolite 
 

 

Abstract  
 

Magnetic nano-composite adsorbents have been attracting extensive attention 

recently owing to facilely recovering from liquid phases using an external magnetic 

field, which reduces the operational costs as compared with filtration and centrifugation. 

The magnetic composites are usually synthesized by deposition of magnetic nano-

particles on a support, which should provide good dispersibility of the particles, 

preventing their agglomeration. In this dissertation, natural sepiolite (SEP), partially 

acid-activated sepiolite (ASEP), and natural zeolite (NZ) were used as supports to 

synthesize the magnetic nano-composites (MNCs) for the removal of Cd2+, Cr(VI), 

phosphate and dyes (Reactive Orange 16 and Basic Yellow 28) from water. The goal of 

the dissertation was to analyze the influence of different synthesis conditions on the 

properties of the composites in order to obtain efficient magnetically separable 

adsorbent. The synthesis was performed by co-precipitation of Fe3+ and Fe2+ ions by 

strong (NaOH) or weak (NH3) base in the presence of NZ or SEP or ASEP, whereas the 

base was added before (procedure 1) or after (procedure 2) adding of Fe3+ and Fe2+ in 

the support suspension. In addition, the molar ration Fe2+/Fe3+ and the quantity of iron 

salts were also varied.  

It was shown that the concentration of hydroxyl ions in the suspensions could 

decrease due to the interactions with the support functional groups, that caused in some 

cases the precipitation of Fe(OH)3 instead of the Fe3+/Fe2+ co-precipitation and the 

magnetite formation. Because of the strong interactions of ASEP with hydroxyl ions, it 

was not possible to synthesize the MNCs when NaOH or NH3 was added to the support 

suspension before Fe3+ and Fe2+ adding, but only when NH3 was added in the 

suspension of ASEP having Fe3+ and Fe2+ ions. On the other hand, the magnetic 



composites with SEP and NZ were successfully prepared by both procedures, using 

both bases.  

The synthesized composites contained individual or aggregated magnetite 

crystalliites, sizes about 10 nm. Sepiolite/zeolite structures were preserved in the 

composites, although some alkali leaching was occurred when NaOH was used for co-

precipitation. The dispersibility of the magnetite particles depends on the type of the 

supported material, the type of base and the sequence of reagents mixing, while the ratio 

Fe2+/Fe3+ did not have a significant influence. The best dispersibility was achieved when 

NH3 was added in the SEP or NZ suspension containing Fe2+- and Fe3+-ions. Regardless 

of higher specific surface area of ASEP in comparison to SEP, magnetite dispersibility 

in ASEP-based composites is lower than in SEP-based composite because of stronger 

bonds between sepiolite fibers. Nevertheless, the specific surface area of ASEP-based 

MNC is higher than of SEP-based MNC, obtained at the same conditions. 

The MNCs obtained by using NH3 (NH3-MNCs) and NaOH (NaOH-MNCs) 

differ among themselves by the type of oxidation during heating and the quantity of 

magnetite. Lower quantity of magnetite in NH3-MNCs samples in comparison to 

NaOH-MNCs samples, synthesized at the same content of Fe2+- and Fe3+ ions, is 

explained by different quantity of iron(III)-oxide, formed during synthesis. Regardless 

of higher quantity of magnetite, magnetization of NaOH-MNCs is lower than of NH3-

MNCs, which is a result of the higher quantity of amorphous magnetite formed as a 

layer on the support surface. At room temperature, all the samples show 

superparamagnetic behavior, which ensures that the composites do not retain 

magnetization when the magnetic field is removed. 

The adsorption capacities of the composites are much higher for cations than for 

anions owing to higher affinity of both support and magnetite for cations. The capacities 

of the MNCs for Cd2+ at initial pH = 7 were higher than of pure compounds, as a result 

of lower aggregation of the compounds in the MNCs which provided higher 

accessibility of the surface to the ions. The main mechanism of the adsorption is the 

formation of inner-sphere complexes. The composites prepared by using NaOH had 

higher adsorption capacities for Cd2+ than composites NH3-MNCs, while all MNCs had 

higher capacity than the previously synthesized composites SEP/NZ-iron(III)-oxide. 

The adsorption capacity of the MNCs decreased during storage as a consequence of 



oxidation. Regardless of the low capacity of magnetite for cationic dye Basic Yellow 

28, the magnetite caused just a small decrease of the adsorption capacity of sepiolite. 

Therefore, the composites can be used for efficient removal of Basic Yellow 28 from 

water and can be easily separated from water by magnetic separation. 

Adsorption capacity of the composites for anions decreases with pH increase. At 

initial pH = 2, chromates adsorb dominantly by formation of outer-sphere complexes 

with protonated surface. The content of magnetite is the factor that determines the 

adsorption capacity, because the capacity of the support is negligible. The highest 

removal efficiency was achieved with the composite having the highest content of 

magnetite. 

 The adsorption of all asorbates onto the composites was best fitted with the Sips 

model. The pseudo-second-order model fitted the adsorption kinetics for both Cd2+ and 

chromates much better than the pseudo-first-order model. The adsorption capacity of the 

composites for Cd2+ ions increased with increasing temperature, indicating endothermic 

nature of the adsorption, while the adsorption of chromates is an exothermic process. 

The results enable the optimization of the synthesis of magnetic composite 

adsorbents with a high adsorption capacity and high magnetization, which provides 

efficient treatment of water by the adsorbent and its subsequent removal by magnetic 

separation.  

 

Key words: Magnetic nanocomposites, Zeolite, Sepiolite, Acid-activated sepiolite, Co- 

precipitation, Synthesis parameters; Adsorption, Metal ions, Phosphate, Dyes.  

 

Scientific field: Technical engineering 

Major in: Chemical engineering  
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Sinteza, karakterizacija i primena magnetnih adsorbenata na 

bazi sepiolita i zeolita 

 

 
Izvod 
 

Magnetni nano-kompozitni adsorbenti privlače veliku pažnju poslednjih godina 

zahvaljujući mogućnosti uklanjanja iz vode primenom magnetnog polja, što smanjuje 

operativne troškove u poređenju sa filtracijom i centrifugiranjem. Magnetni kompoziti 

se obično sintetišu deponovanjem magnetnih nano-čestica na nosač, koji obezbeđuje 

dobro dispergovanje čestica, sprečavajući njihovu aglomeraciju. U ovoj disertaciji, kao 

nosači za deponovanje magnetnih nano-čestica korišćeni su prirodni minerali zeolit 

(NZ) i sepiolit (SEP), kao i parcijalno kiselinski aktiviran sepiolit (ASEP), u cilju 

dobijanja magnetnih nano-kompozita (MNC) kao adsorbenata za uklanjanje Cd2+, 

Cr(VI), fosfata i boja (Reactive Orange 16 i Basic Yellow 28) iz vode. Cilj ove 

disertacije je bio da se analizira uticaj različitih parametara sinteze na osobine 

kompozita da bi se dobio efikasan magnetno separabilni adsorbent. Kompoziti su 

sintetisani koprecipitacijom Fe3+- i Fe2+-jona korišćenjem jake (NaOH) ili slabe (NH3) 

baze u prisustvu NZ ili SEP ili ASEP, pri čemu je baza dodavana pre (procedura 1) ili 

nakon (procedura 2) dodatka Fe3+ i Fe2+ u vodenu suspenziju nosača. Dodatno, variran 

je i molski odnos Fe2+/Fe3+ i količina soli gvožđa.  

Pokazano je da se koncentracija hidroksilnih jona u suspenziji smanjivala u 

većoj ili manjoj meri usled interakcije sa površinskim funkcionalnim grupama nosača, 

što je u nekim slučajevima dovodilo do precipitacije Fe(OH)3 umesto koprecipitacije 

Fe3+/Fe2+ i formiranja magnetita. Zbog jakih interakcija kisele površine ASEP sa 

hidroksilnim jonima, nije bilo moguće sintetizovati magnetne kompozite kada su NaOH 

ili NH3 dodavani u suspenziju nosača pre dodatka Fe3+ i Fe2+, već samo u slučaju kada 

je NH3 dodavan u suspenziju ASEP sa Fe3+ i Fe2+ jonima. S druge strane, magnetni 

kompoziti sa SEP i NZ su uspešno sintetisani po obe procedure, korišćenjem obe baze. 



Sintetisani kompoziti sadrže pojedinačne ili aglomerisane kristalite magnetita, 

veličine oko 10 nm. Nije došlo do narušavanja osnovne strukture sepiolita/zeolita u 

sintetisanim kompozitima, mada je korišćenje jake baze (NaOH) dovelo do izvesnog 

alkalnog izluživanja. Stepen dispergovanja magnetnih čestica zavisi od vrste nosača, 

vrste baze i redosleda mešanja reagenasa, dok odnos Fe2+/Fe3+ nije imao velikog uticaja. 

Najbolja disperznost čestica magnetita je postignuta kada je NH3 za koprecipitaciju 

dodavan u suspenziju SEP ili NZ sa Fe2+- i Fe3+-jonima. Bez obzira na veću specifičnu 

površinu ASEP u odnosu na SEP, disperznost magnetita u kompozitima sa ASEP je 

manja nego u kompozitima sa SEP usled jačih veza između vlakana sepiolita. Ipak, 

specifična površina ASEP-MNC je veća od specifične površine kompozita SEP-based 

MNC, dobijenog pri istim ostalim uslovima. 

Kompoziti dobijeni korišćenjem NH3 (NH3-MNC) se razlikuju od kompozita 

dobijenih korišćenjem NaOH (NaOH-MNCs) po načinu oksidacije tokom zagrevanja i 

po količini magnetita. Manji sadržaj magnetita u uzorcima NH3-MNC nego u uzorcima 

NaOH-MNCs, koji su sintetisani sa istom količinom jona Fe2+- i Fe3+ se objašnjava 

prisustvom različitih količina gvožđe(III)-oksida, formiranog tokom sinteze. Bez obzira 

na veću količinu magnetita, magnetizacija kompozita NaOH-MNC je manja nego NH3-

MNC kompozita, što je verovatno rezultat prisustva veće količine amorfnog magnetita 

formiranog u obliku sloja na površini nosača. Svi magnetni kompoziti pokazuju 

superparamagnetno ponašanje na sobnoj temperaturi, što ukazuje da ne zadržavaju 

magnetizaciju u odsustvu magnetnog polja. 

Sintetisani kompoziti imaju znatno veći adsorpcioni kapacitet za katjone nego za 

anjone, zahvaljujući velikom afinitetu i magnetita i nosača prema katjonima. Kapacitet 

svih sintetisanih MNC za Cd2+ na početnoj vrednosti pH = 7 je veći od kapaciteta čistih 

komponenti zahvaljujući manjem stepenu aglomeracije i time većoj dostupnosti 

površine. Dominantni mehanizam adsorpcije je formiranje kompleksa unutrašnje sfere. 

Kompoziti dobijeni korišćenjem NaOH imaju veći kapacitet adsorpcije od kompozita 

koji su dobijeni korišćenjem NH3, pri čemu svi kompoziti imaju veći adsorpcioni 

kapacitet od kompozita SEP/NZ-gvožđe(III)-oksid, sintetisanih u prethodnim 

istraživanjima. Adsorpcioni kapacitet MNC se smanjuje sa vremenom usled oksidacije. 

Bez obzira na mali kapacitet adsorpcije čistog magnetita za katjonsku boju Basic 

Yellow 28, deponovanje magnetnih nano-čestica je u maloj meri smanjilo adsorpcioni 



kapacitet sepiolita. Na taj način, dobijen je efikasam adsorbent za ovu boju, koji se 

može ukloniti magnetnom separacijom iz obrađene vode. 

Adsorpcioni kapacitet kompozita za anjone se smanjuje sa povišenjem pH. Pri 

početnoj vrednosti pH = 2, hromati se adsorbuju dominantno formiranjem kompleksa 

spoljašnje sfere sa protonovanom površinom. Sadržaj magnetita je faktor koji određuje 

adsorpcioni kapacitet, jer je kapacitet nosača zanemarljiv. Najveći adsorpcioni kapacitet 

za hromate je imao kompozit sa najvećim sadržajem magnetita. 

 Proces adsorpcije se u svim slučajevima najbolje opisuje modelom Sipsa. 

Kinetika adsorpcije i Cd2+ jona i hromata se opisuje bolje modelom pseudo-drugog reda 

nego modelom pseudo-prvog reda. Adsorpcioni kapacitet kompozita za Cd2+ jone raste 

sa povišenjem temperature, što ukazuje na endoterman process, dok je adsorpcija 

hromatnih jona egzoterman proces. 

Dobijeni rezultati omogućavaju optimizaciju procesa sinteze magnetnih 

kompozitnih adsorbenata velikog adsorpcionog kapaciteta i visoke magnetizacije, što 

obezbeđuje efikasan adsorpcioni tretman vode i magnetnu separaciju adsorbenta.  

 

Ključne reči: Magnetni nano-kompoziti, zeolit, sepiolit, kiselinski aktiviran sepiolit, 

koprecipitacija, parametri sinteze, adsorpcija, joni metala, fosfati, boje.  
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1. Introduction 
 

Magnetite (Fe3O4) nanoparticles have a huge potential in the field of water 

treatment owing to their adsorption/reduction activities and the possibility to easily 

separate them from a treated water by applying an external magnetic field [1,2]. These 

advantages make magnetite appropriate for the removal of vast pollutants from 

contaminated waters, including different toxic cations and anions [3-6]. 

However, the strong tendency of the nanoparticles to aggregate and the chemical 

instability against oxidation reduce the surface area and the adsorption/reduction 

activities [7] that cause a decrease of the efficiency in the process of water pollutants 

removal. To prevent the aggregation of magnetite nanoparticles, different materials 

have been used as a support during magnetite synthesis, such as montmorillonite [7], 

zeolite [8,9], sepiolite [10,11], paligorskite [12], diatomite [2], pillared bentonite 

[13,14], activated carbon [15], microporous carbon [16], chitosan [17], cross-linked 

pectin [18] etc. In that way, the nanoparticles are dispersed in a solid matrix, 

precluding them from any local movement, as they are firmly embedded in the matrix. 

The magnetic properties of such composites depend on both the quantity of magnetite 

in the composite and the size of magnetite particles meaning that the magnetization is 

higher if the quantity of magnetite is higher and the magnetite particles are larger. On 

the other hand, the adsorption capacity of the composite is higher if the magnetite 

particles are smaller. Therefore, in order to obtain the composite with good magnetic 

and adsorption properties, it is necessary to increase the quantity of magnetite in the 

composite and to optimize the size of magnetite particles, as well as to prevent the 

magnetite oxidation [2,7].  

The quantity of magnetite in the composite can be increased by using support 

materials with a high specific surface area and an appropriate porosity. Therefore, 

natural minerals zeolite and sepiolite are good candidates for magnetite particle 

supporting. Sepiolite is a fibrous, non-swelling clay mineral, with the ideal formula 

Si12Mg8O30(OH)4(OH2)4∙8H2O. Structurally, sepiolite is formed by blocks and interior 

channels along the fiber direction, while each block consists of two SiO4 tetrahedral 

sheets enclosing a central MgO6 octahedral sheet. Natural zeolites are hydrated 
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aluminosilicate minerals that are characterized by cage like structure, high surface area 

and high cation-exchange capacities [19]. The specific surface area and the porosity of 

the minerals can be further increased by an acid activation due to the removal of 

mineral impurities and Al3+ or Mg2+ ions from the structure. It was shown that the 

degree of acid-activation could be controlled by the type and concentration of acid, as 

well as by the duration and temperature of the treatment. In the case of sepiolite, if the 

treatment is very aggressive, the octahedral Mg2+ cations are completely dissolved, 

while the tetrahedral sheets form a free amorphous silica gel, insoluble in the acid 

solution. However, by controlling the acid treatment, it is possible to increase the 

specific surface area and to preserve the sepiolite structure [20]. 

In this study, natural zeolite, natural sepiolite and the partially acid-activated 

sepiolite were used to prepare the magnetic nano-composites (MNCs) for the removal of 

cadmium (Cd2+), hexavalent chromium (Cr(VI)), phosphate and dyes (Reactive Orange 

16 and Basic Yellow 28) from water. For this purpose, a chemical co-precipitation 

method was used and the synthesis parameters were varied in order to obtain MNCs 

with a high adsorption capacity and good magnetic properties. In the case of pure 

magnetite synthesized by a co-precipitation method, the influence of different 

parameters, such as: iron salts concentration; the ratio of Fe2+/Fe3+; nature of the base 

used for the co-precipitation; the rate of the addition of the base solution; ratio of OH-

/(Fe2+ + Fe3+); temperature; and drying modality on the properties has been investigated 

[21-25].  On the other hand, the synthesis of sepiolite/zeolite MNCs was performed only 

under constant conditions [26,9,10], without examining the influence of synthesis 

parameters on the composites properties and the adsorption capacity. Therefore, the 

goal of this study was: 

- to synthesize the magnetic composites on the basis of natural minerals sepiolite 

and zeolite for the removal of some cations and some anions from water;  

-   to investigate the influence of the synthesis parameters, such as the type and 

concentration of the base used for the co-precipitation, the order of the mixing of 

the reagents, ratio of Fe2+/Fe3+ and quantity of iron salts on the properties and the 

adsorption capacities of the synthesized composites, 

-   to investigate the influence of the support type (natural zeolite, natural sepiolite or 

acid-activated sepiolite) on the adsorption capacity of the composites, 
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-  comparison of the adsorption properties of the synthesized magnetic composites 

and composite based on sepiolite/zeolite and trivalent iron oxide; 

-  to examine the effect of contact time and temperature on the adsorption capacity of 

the synthesized composites.  
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2. Structure, properties, applications and modifications of sepiolite and 

zeolite 
 

2.1. Structure, properties and applications of sepiolite 

 

Sepiolite is a naturally occurring clay mineral of sedimentary origin. It is a non-

swelling, lightweight, porous clay. The name comes from a perceived resemblance of 

the material to the porous bones of the cuttlefish or sepia [27]. The important deposits of 

sepiolite occur in southeastern United States, China, Senegal, Spain, and Ukraine. 

 

 

2.1.1. Sepiolite structure  

   

Chemically, sepiolite is a hydrated magnesium silicate with the ideal formula 

Si12Mg8O30(OH)4(OH2)4·8H2O characterized by its fibrous morphology and 

intracrystalline channels. Sepiolite belongs to the phyllosilicate group because it contains 

continuous sheets composed of interconnected SiO4
4- tetrahedrons. It differs, however, 

from the other layered silicates because of the lack of a continuous octahedral sheet (Fig. 

1a) that caused fibrous morphology. Sepiolite structure can be considered to contain 

ribbons of a 2:1 phyllosilicate structure (Fig. 1b), each ribbon being linked to the next by 

inversion of SiO4 tetrahedral along a set of Si-O-Si bonds. Ribbons extend parallel to the 

x-axis and have an average width along y-axis of three linked pyroxene-like single 

chains (Fig. 1a); in this framework, rectangular channels run parallel to the x-axis 

between opposing 2:1 ribbons. Because of the covalent link between different blocks, 

sepiolite has been described as non-swellable clay. As the octahedral sheet is 

discontinuous at each inversion of tetrahedra, oxygen atoms in the octahedra at the edge 

of the ribbons are coordinated to cations on the ribbon side only, and coordination and 

charge balance are completed along the channel by protons, coordinated water (H2Ocoord) 

and a small number of exchangeable cations. Also, a variable amount of zeolitic water 

(H2Ozeol) is present in channels [28,29].  
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Fig. 1. Structure of sepiolite: a) unit cell of sepiolite, b) schematic representation of a 

sepiolite fiber [30]. 

 

As it can be seen from the Fig. 1a, there are three types of water in sepiolite 

structure: zeolitic water, bound or coordinated water and hydroxyl water. These types of 

water are removed at different temperatures: zeolitic water is removed by heating at 

temperatures up to 150 °C, while bound water is removed in two steps: one half of 

bound water is removed at ~ 300 °C and second half of bound water is removed at about 

500 °C. The removal of zeolitic water does not influence the sepiolite structure, while 

the removal of bound water caused the structure folding (Fig. 2) [31-33]. In the structure 

of sepiolite, the hydrogen bridges between coordinated water and oxygen of the 

neighboring silica surface stabilize the structure. The loss of coordinated water 

molecules eliminates the bridge effect and permits the crystal to fold in order to satisfy 

the coordination of the octahedral magnesium by the oxygen of the neighboring silica 

surface.  

 

 
Fig. 2. Folding of sepiolite structure: a) unfolded structure, b) folded structure [33]. 
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Heating of sepiolite at the temperatures around 800 °C causes the removal of 

hydroxyl groups, i.e. dehydroxylation, which is followed by formation of enstatite 

(MgSiO3) and SiO2 [31,32]. 

 

 

2.1.2. Sepiolite properties 

 

Sepiolite is composed of elemental particles with fibre-like or needle-like shape. 

The dimensions of a single sepiolite fibre vary between 0.2-4 μm in length, 10-30 nm in 

width and 5-10 nm in thickness, with open channels of dimensions 3.6 Å x 10.6 Å 

running along the axis of the particle (Fig. 1). These particles are arranged forming 

loosely packed and porous aggregates, bundles (Fig. 3), with an extensive capillary 

network, which explains the high porosity. Sepiolite has the highest surface area of all 

the clay minerals, about 300 m2/g. High specific surface area and the porosity of each 

sepiolite are the result of the sum of the intracrystalline or structural microporosity and 

the textural porosity (interfibre microporosity and mesoporosity), as well as 

macroporosity due to aggregation of bundles (Fig. 3). As a consequence, there is a 

hierarchical distribution of pore sizes which is different for each sepiolite. 

 
Fig. 3. Schematic representation of the hierarchical distribution of pores in sepiolite 

[34]. 
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The structure of sepiolite includes three types of active adsorption sites: (a) 

oxygen ions on the tetrahedral sheets of the ribbons; (b) water molecules coordinated to 

Mg ions at the edges of structural ribbons (two H2O molecules per Mg 2+ ion) and (c) 

Si-OH (silanol) groups along the fibre axis. Silanol groups are formed by broken of Si-

O-Si bonds at external surfaces, balancing their residual charge by accepting either 

proton or a hydroxyl group to form Si-OH groups. The relative abundance of these 

groups can be related to fibre dimensions and crystal defects, and increases with acid 

treatment [28,29]. 

Apart from the outstanding adsorptive capacity, sepiolite is also known for its 

colloidal properties. When dispersed in a liquid, it forms a structure of randomly 

intermeshed elongated particles, which is maintained by secondary bonds. Sepiolite 

exhibits a pseudoplastic and thixotropic behavior [29].  

The cation exchange capacity of sepiolite is quite low; it ranges from 4 to 40 

mmol M+/100 g, but the higher values are probably related to impurities [35]. Usual 

impurities of sepiolite are quartz, feldspars, carbonates, gypsum, cristobalite, smectite, 

illite, kaolinite, chlorite and iron oxides.  

 

 

2.1.3. Sepiolite applications 

 

Sepiolite is used in numerous areas due to its high surface area, fibrous structure, 

porosity, crystal morphology and composition, surface activity, production of stable 

suspensions of high viscosity at low concentrations, etc. These properties provide the 

basis for a variety of catalytic, adsorptive and rheological applications for sepiolite 

[36,37]. Common industrial applications of sepiolite are listed in Table 1. 
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  Table 1. Sepiolite characteristics and common industrial applications [37] 

 
Characteristics Applications 

High liquid absorption, mechanical strength in wet 

conditions, non-flammability, chemical inertness  
 

Adsorbent/absorbent in 

industry 

Adsorption of active chemicals, effective release of the 

chemicals 

Carrier for chemicals 

Control of rheological properties in heat application 

systems, improving fire resistance 

Bitumen 

Stability, pseudo-plasticity and thixotropy in paints, 

adhesives, mastics and sealants 

Rheological additives  

 

Light weight, high liquid absorption, odor control Cat and pet litter 

Absorb moisture and odours  Household uses 

Technological additive for animal feed Animal feedstuffs 

 

 

2.2. Structure, categorization, characterization, properties and applications of 

zeolite 

 

 Zeolites are microporous, aluminosilicate minerals. Natural zeolites occur in 

mafic volcanic rocks as cavity fillings, probably as a result of deposition by fluids or 

vapors. In sedimentary rocks zeolites occur as alteration products of volcanic glass and 

serve as cementing material in detrital rocks; they also are found in chemical 

sedimentary rocks of marine origin. Extensive deposits of zeolites occur in all oceans. 

Metamorphic rocks contain a sequence of zeolite minerals useful for assigning relative 

metamorphic grade; these minerals form at the expense of feldspars and volcanic glass 

[38]. 

 Zeolites are the most important group of aluminum silicates. There are almost 

40 types of natural zeolites and more than 150 types of synthetic zeolites manufactured 

[39,40]. Due to the large variability in chemical composition, a reliable classification in 

the zeolite family is possible only on the basis of structural considerations. 
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Common forms of zeolite are clinoptilolite, mordenite, phillipsite, chabazite, 

stilbite, analcime and laumontite, whereas offretite, paulingite, barrerite and mazzite are 

much rarer.  

 

 

 2.2.1. Zeolite structure 

 

Structurally, zeolites are framework aluminosilicates consisting of infinity 

extending three-dimensional four-connected networks of AlO4 and SiO4 tetrahedra, 

which are liked to each other by sharing all of oxygen ions. Each AlO4 thetrahedron in 

the framework bears a net negative charge, which is balanced by extra-framework 

cation. The framework structure contains channels or interconnected voids that are 

occupied by the cations and water molecules. The cations are mobile and ordinarily 

undergo ion exchange (exchangeable cations). The water may be removed reversibly, 

generally by the application of heat (heating to approximately 400 °C) [41]. 

The general chemical formula for zeolite minerals is:  

Mx/n[AlxSiyO2(x+y)]·pH2O      (1) 

where:  M is exchangeable cation (Na, K, Li and/or Ca, Mg, Ba, Sr), n is cation charge, 

y/x = 1 – 6, p/x = 1 – 4 [42]. The exchangeable cations compensate the negative charge 

of the framework due to the presence of Al3+ in tetrahedral position instead of Si4+. 

Aforementioned [SiO4] and [AlO4] tetrahedra are the basic structural building 

units of a zeolite framework, which is called the primary building units. In a zeolite 

structure, each (Al, Si) atom is coordinated to four oxygen atoms (Fig. 4a), with each 

oxygen atom bridging two (Al, Si) atoms (Fig. 4b) [43]. 

 
Fig. 4. a) AlO4 or SiO4 tetrahedron, b) The tetrahedra sharing common oxygen. 
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Groups of primary building units can be arranged to form polymeric subunits 

known as secondary building units (SBUs). The secondary building units shown in Fig. 

5a are characteristic configurations of tetrahedral to be recurrent in many zeolite 

structures. In this figure, the atoms drown are the tetrahedral (T) atoms (the oxygen ions 

are not shown). One type of framework can comprise several SBUs. For example, the 

LTA (Linde Type A zeolite) framework contains five types of SBUs, including 4, 8, 4-

2, 4-4, and 6-2 units, any of which can be used to describe its framework structure [43]. 

Secondary building units are combined to form cage-like units. Cages are 

generally described in terms of the n-rings defining their faces. For example, a truncated 

octahedron (sodalite unit (SOD) or β-cage), whose surface is defined by six 4-rings and 

eight 6-rings, would be designated as [4668] cage. Fig. 5b shows the cage-building units 

in the zeolite frameworks.  

 
Fig. 5.a) Secondary building units in zeolite structure [43] 
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Fig. 5.b) Cage-building units [43]. 

 

Different zeolite frameworks may feature the same cage building unit, that is to 

say, the same cage-building unit may construct different framework types via different 

linkages. For example, starting from the SOD cage (Fig. 6), several structures can be 

obtained:  

SOD - β-cages are linked by sharing 4-rings, 

LTA - β-cages are arranged in a primitive cubic way, connecting the neighbors 

through double 4-rings, 

FAU (Faujasite) and EMT (EMC-2) - the β-cages connect through double 6-

rings, but the way β-cages arranged is different; for the FAU zeolite, β-

cages are arranged in the same way as carbon atoms in the diamond 

structure. This is also one of the reasons for the excellent thermal stability 

of the FAU zeolite [43-45]. 
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Fig. 6. The construction of four different zeolite frameworks built up from sodalite or β-

cages [45]. 

 

 

2.2.2. Categorization and characterization of natural zeolites 

 

Natural zeolites are divided into seven main groups (Table 2) according to their 

crystal structure, morphology, physically properties, ways of binding secondary units in 

the three-dimensional framework, the free pore volume and types of exchangeable 

cations in zeolite structure. These diverse types of zeolite are a reflection of the 

fascinating structures of these microporous materials [46]. 

Among the zeolites, clinoptilolite is the most abundant natural zeolite and is 

widely used in the world. A ratio between silicon and aluminium (Si/Al) of the 

clinoptilolite varies from 4.0 to 5.3. Sodium and potassium dominate among 

exchangeable cations of clinoptilolite [47]. 
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Table 2. Categorization and structural properties of seven main groups of natural 

zeolites (channel dimensions in nm; free volume in cm3 H2O/cm3 of zeolite) [46] 
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 The clinoptilolite has framework structure that consists of three types of 

channels. The channels A (10-member ring) and B (8-member ring) are parallel to each 

other, while 8-member ring channel C intersects the channels A and B (Fig. 7a). Besides 

the compensating cations M, surrounded by water molecules in the channels, the H+ 

ions may also be considered as exchangeable cations present in Si–OH and Al–OH. The 

structure of clinoptilolite is shown in Fig. 7b. [48,49]. 

 

 
    a)     b) 

Fig. 7. a) Orientation of clinoptilolite channel axis, b) Model framework for the 

structure of clinoptilolite [48,49] 

 

 

2.2.3. Properties and applications of natural zeolite 

 

Natural zeolites are rarely pure and are normally contaminated to varying 

degrees by other minerals. Zeolites are commonly associated with minerals like calcite, 

pectolite, datolite, quartz and other zeolites. For this reason, naturally occurring zeolites 

are excluded from many important commercial applications where uniformity and 

purity are essential. In those cases where purity is required, synthetic zeolites are used 

[50].  

Zeolites are white in color when free from iron and other impurities. Due to the 

presence of impurities, natural zeolites are usually light colored. The hardness is 

generally between 3.5 and 5.5 of Mohs scale [39,51].  

Physical characteristics of some natural zeolites are shown in Table 3. 
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Table 3.  Physical characteristics of some natural zeolites [52] 

Zeolite Porosity 

(%) 

Heat 

stability 

Ion exchange 

capacity 

 (mmol M+/100 g) 

Specific 

gravity 

(g/cm3) 

Bulk 

density 

(g/cm3) 

Analcime 18 High 454 2.24-2.29 1.85 

Chabazite 47 High 384 2.05-2.10 1.45 

Clinoptilolite 34 High 216 2.15-2.25 1.15 

Erionite 35 High 312 2.02-2.08 1.51 

Heulandite 39 Low 291 2.18-2.20 1.69 

Mordenite 28 High 429 2.12-2.15 1.70 

Philipsite 31 moderate 331 2.15-2.20 1.58 

 

Natural and synthetic zeolites are used commercially because of their unique 

adsorption, ion-exchange, catalytic properties [42], thermal stability, stability of the 

crystal framework structure when dehydrated [39], low density etc. These properties of 

a zeolite are dependent on the topology of its framework, size, shape, and accessibility 

of its free channels [53]. 

The most fundamental consideration regarding the adsorption of chemical 

species by zeolites is molecular sieving. Species with a diameter larger than a zeolite 

pore are effectively "sieved." This "sieve" effect can be utilized to produce sharp 

separations of molecules by size and shape. 

The strong electrostatic field within a zeolite cavity results in very strong 

interactions with polar molecules such as water moleculs. Non-polar molecules are also 

strongly adsorbed due to the polarizing power of these electric fields. Thus, excellent 

separations can be achieved by zeolites even when no steric hindrance occurs. 

Adsorption based on molecular sieving, electrostatic fields, and polarizability 

are always reversible in theory and usually reversible in practice. This allows the zeolite 

to be reused many times, cycling between adsorption and desorption. This accounts for 

the considerable economic value of zeolite in adsorptive applications [54]. 

 Zeolites are widely used as adsorbents and ion-exchangers in water purification 

and softening, as molecular sieves and also for precise and specific separation of gases. 

Due to their micro-porous structure, zeolites can capture some ions while allowing 
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others to pass freely, allowing many fission products in nuclear industry to be efficiently 

removed from nuclear waste and permanently trapped. The high heat of adsorption and 

ability to hydrate and dehydrate while maintaining structural stability allow zeolites 

application as solar thermal collectors and for adsorption refrigeration. The largest 

single use of zeolite is the global laundry detergent market.  

Development of many biochemical and biomedical applications of zeolites has 

been ongoing. Zeolites, especially a natural zeolite clinoptilolite, are used for a soil 

treatment. It provides a source of slowly released potassium. If previously loaded 

with ammonium, the zeolite can have a similar function in the slow release of nitrogen. 

Zeolites can also act as water moderators, in which they will absorb up to 55 % of their 

mass in water and slowly release it under the plant's demand [55,56]. 

 

 

2.3. Sepiolite and zeolite modifications 

 

It was shown in recent studies that adsorption capacity and general physical and 

chemical properties of sepiolite and zeolite can be highly improved by various 

treatments such as acid/base treatment [20,57-62], heat treatment [60,63], surfactant 

modification [64], modification by metals oxides or hydroxides [19, 65-68], etc. For this 

dissertation, acid/base treatment and the modification by iron oxides/hydroxides are of 

particular importance. 

 

 

2.3.1. Acid/base treatment 

 

2.3.1.1. Treatment of sepiolite 

 

Natural sepiolite minerals usually contain amounts of impurities, such as 

calcites, quartz, talcum and some other minerals. Besides, some carbonates adhere to the 

surface of the sepiolite, which can greatly reduce the specific surface area and restrict 

the applications of sepiolite in many fields. Hence, acid-activating treatment is adopted 

to purify the natural sepiolite [63]. In addition, acid treatment is used to increase the 
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surface area of sepiolite and to obtain solids with higher porosity and higher number of 

acidic centers [69]. 

During acid treatment of sepiolite, structural magnesium is removed and 

changed by H+ ion. In that way, silanol groups are formed, which undergo the 

condensation reactions ana Si-O-Si bonds feormation. A possible reaction mechanism 

of the complete phenomenon of the acid dissolution of sepiolite is proposed and 

schematically summarized in Fig. 8 [57], where: 

(a) the structure of original sepiolite,  

(b) the structure in which the octahedral Mg-layer is eliminated by acid 

dissolution, 

(c) the projection of the atoms of a unit cell after the acid-activation, and  

(d) the structure after the condensation of silanol groups [57]. 

 
Fig. 8. Possible reaction mechanism of acid dissolution of sepiolite [57]. 
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During acid treatments of sepiolite, variable amounts of structural Mg2+ ions can 

be removed, depending on the intensity of the acid treatment. If the treatment is 

aggressive enough, the octahedral cations are completely dissolved, while the 

tetrahedral sheets form free amorphous silica gel, insoluble in the acid solution [57]. It 

was shown [57] that the process of acid dissolution of sepiolite was controlled by the 

rate of diffusion of Mg2+ cations through a product layer consisting of amorphous silica. 

Dissolution rate increased with increase in temperature and acid concentration, and with 

decrease in particle size of sepiolite and sepiolite/acid solution ratio. The changes of 

texture of silicas (specific surface area and microporosity) obtained by acid dissolution 

of sepiolite depend on the reaction conditions (type and concentration of acid and 

reaction temperature). All investigations of the structural and textural changes of 

sepiolite under acid treatment [58- 60,69-71] show that the more intense the acid attack 

(higher concentration, higher temperature, stronger acid, longer treatment), the more 

affected the structure of the sepiolite. Generally, an important increase in the surface 

area of the solids obtained was observed. The modification in the micro- and 

mesoporosities together with particle disaggregation, surface cleaning and free silica 

generation contribute to the increase in surface area. The greatest surface area is 

observed when the octahedral layer is partially destroyed and microporosity is 

generated. During partial acid treatment [20], the crystal lattice of sepiolite and fibrous 

morphology is maintained, albeit with some decrease in crystallinity.  

Treatment of sepiolite by base causes Si4+ leaching of from the structure. The 

comparison with the of Mg2+ leaching during acid-treatment showed that the amount of 

leached Si4+ was lower, indicating more tolerance of the sepiolite toward the base 

treatment [60]. While long-term treatment at room temperature did not cause any 

significant change, the treatments above 70 ºC decreased the surface area, which was 

explained by the partial destruction of nano-sized channels in the sepiolite, which were 

possibly related to the changes in its crystal structure or by the formation of Mg-rich 

compounds with low surface areas [60]. 
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2.3.1.2. Treatment of zeolite                     

 

Zeolite structure and its chemical and physical properties can be modified with 

either inorganic acid (HCl, HNO3…) or basis (NaOH, Ca(OH)2). As for sepiolite, acid 

treatment is among the most common and simple methods for zeolite modification and 

its effectiveness depends on the chemical composition, structure, mineral purity, and the 

working conditions [46,61,62]. Generally, acid treatment changes the structure, 

resulting in an amorphization and an increase of the specific surface area and the 

micropore volume. 

  Usually, acid activation involves three steps [72]: removal of exchangeable 

cations (decationating), dealumination of framework (removal of Al from the zeolite 

framework and replacement of exchangeable cations by H+), and formation of 

amorphous silicon-oxygen phase. The sequence and intensity of the steps are 

determined by treatment conditions and specific characteristics of minerals.  

During the decationating process there is a replacement of exchangeable cations 

with hydrogen ions and a break of Si–O–Al bond followed by formation of new active 

centers—three-coordinated aluminum atoms and hydroxyl groups. These three-

coordinated aluminum atoms polarize adjacent hydroxyl groups whose protons become 

able to participate in an exchange reaction with the cations of solution during sorption. 

Dealumination of the clinoptilolite framework may be represented as follows: 

In addition to decationating and dealumination processes, there is an acid 

dissolution of impurities contained in zeolite, leading to opening of blocked active sites 

and, therefore, to an increase in effective surface and specific surface area, which is the 

reason for changes in adsorption properties of zeolite [72]. According to the Brønsted 

and Lewis theory, dissolution of natural zeolites in acid solution occurs as a result of the 

acidic/basic behaviour of the aluminosilicate structure in the presence of H+ or OH- ions 

in the solution. 

The extraction of framework silicon by treatment in alkaline solutions, referred 

to as desilication or base leaching, is a widely used method to prepare hierarchical 

porous zeolites. The controlled leaching of Si by OH- forms intracrystalline mesopores, 

which facilitate the access and diffusion of molecules in the zeolite [73]. Desilication of 

zeolite by alkaline treatment could deteriorate a crystallinity of zeolite, resulting in 
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decrease of Si/Al ratios [74]. Moreover, the desilication also created larger pores, 

allowing improved transport of molecules or ions in the zeolite. As in the case of acid 

treatment, the effects of alkaline treatment depend on the process conditions, especially 

on type and concentration of base and the length of the treatment. It was shown [73] that 

organic bases are intrinsically less reactive towards silicon dissolution than inorganic 

hydroxides. This makes the demetallation process highly controllable in comparison 

with the fast silicon dissolution kinetics in NaOH. The organic hydroxide is also less 

selective for silicon extraction, i.e. higher Al leaching compared to NaOH is observed 

and therefore higher Si/Al ratios in the mesoporous zeolites are attained. The 

differences in porosity and composition are determined by the nature of the cation in the 

organic base. In particular, the steric hindrance induced by the relatively bulky organic 

cation is responsible for this distinct demetallation mechanism.  

 

 

2.3.2. Modification by iron oxides/hydroxides 

 

Recently, zeolite and sepiolite have been modified by iron oxides/hydroxides. 

The zeolite–iron oxide/hydroxide and sepiolite–iron oxide/hydroxide systems were 

synthesized by adding natural sepiolite or zeolite to an iron nitrate or iron chloride 

aqueous solution under strongly basic conditions [66,75]. Such modification enhanced 

all properties responsible for better adsorption process such as specific surface area, the 

total pore volume, number of exchangeable sites, and surface charge [75-77]. It was 

shown that adsorption capacity of so-obtained Fe(III)-sepiolite [66,78] for Ni2+ and Co2+ 

ions is significantly higher than of untreated sepiolite as a result of higher specific 

adsorption and a higher ion exchange capacity. Similarly, adsorption capacity of Fe(III)-

zeolite for  Pb2+, Cd2+, and Zn2+ [65,79, 80] was much higher than that of untreated 

zeolite owing to the higher: specific adsorption caused by the new functional groups 

formed on the zeolite surface, ion exchange due to the presence of easily exchangeable 

ions, and hydroxide precipitation caused by higher point of zero charge of the Fe(III)-

zeolite compared to natural zeolite. 

Generally, different forms of iron have been identified in iron-modified zeolite 

(Fig. 9). These include isolated ions (a) either in framework positions (isomorphously 
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substituted) or (b) in cationic positions in the zeolite channels, (c) binuclear and, in 

general, oligonuclear iron complexes in extra framework positions, (d) iron oxide FeOx 

nanoparticles of size ≤ 2 nm, and (e) large iron oxide particles (Fe2O3) in a wide 

distribution (up to 25 nm in size) located at the surface of the zeolite crystals [75]. 

 
Fig. 9. Schematic presentation of the different iron species identified in iron-

modified zeolite [75]. 

 

 

3. Synthesis, structure, properties and application of magnetite 
 

Iron oxide is found in nature in different forms. Magnetite (Fe3O4), maghemite 

(γ-Fe2O3) and hematite (α-Fe2O3) are the most common among them [81]. Magnetite is 

a very common iron oxide mineral that is found in igneous, metamorphic, 

and sedimentary rocks. It is the most commonly mined ore of iron. It is also 

the mineral with the highest iron content (72.4%) and the most strongly magnetic 

mineral found in nature. [82] 

 

 

3.1. Magnetite structure  

 

Crystallographically, magnetite takes a cubic inverse spinel form. The oxygen 

ions form a close-packed cubic lattice with the iron ions located at interstices between 

the oxygen ions [81]. There are two different interstices, tetrahedral (A) and octahedral 
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(B), which the metal ions can take. The A sites are occupied by Fe3+ and the B sites are 

occupied by equal numbers of Fe2+ and Fe3+ (Fig. 10). The formula can be written as 

[Fe3+]{Fe2+Fe3+}O4, where [] and {} indicate tetrahedral and octahedral interstices, 

respectively.  

 

 
Fig. 10. The crystalline structure of magnetite [83]. 

 

 

3.2. Properties of magnetite 

 

3.2.1. Magnetic properties  

 

3.2.1.1. Types of magnetic materials 

 

Magnetite is an example of a ferrimagnet. Ferrimagnets are similar in properties 

to ferromagnets with a magnetic structure comparable to an anti-ferromagnet (Fig. 11). 

In a simple ferromagnet (Fig. 11 a), the electron spins (and thus the magnetic moments) 

are aligned in one direction giving a large net magnetic moment in the material. In an 

anti-ferromagnet (Fig. 11 b), the spins are aligned so that the magnetic moments are of 

equal magnitude but point in opposite directions, giving a zero net magnetic moment. In 

ferrimagnets, the magnetic moments are aligned oppositely and have different 

magnitudes (Fig. 11 c) due to being made up of two different ions. Above a certain 

temperature, known as the Curie temperature (TC), the alignment of the moments in 

ferromagnetic and ferrimagnetic materials is lost due to thermal energy and the material 

displays paramagnetic behavior: the magnetic moments are disordered in the absence of 
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an applied magnetic field and ordered in the presence of an applied magnetic field (Fig. 

11 c) [84]. Diamagnetic materials are repelled by a magnetic field; an applied magnetic 

field creates an induced magnetic field in them in the opposite direction. 

 

   

 
 a)   b)   c)   d) 

Figure 11. Orientations of magnetic moments in materials: a) ferromagnetism, b) anti-

ferromagnetism; c) ferrimagnetism, d) paramagnetism [84]. 

 

 

3.2.1.2. Magnetic properties of magnetite 

 

Magnetite electronic configuration consists of unpaired 3d electrons, which 

impart net magnetic moments. The spins of the tetrahedrally (A) coordinated Fe3+ and 

the spins of the octahedrally (B) coordinated Fe3+ and Fe2+ are antiparallel (Fig. 12). 

The magnitudes of spins of the tetrahedrally and octahedrally coordinated Fe3+ are equal 

(Fig.12), so that the magnetic moment of the unit cell only comes from the Fe2+ ions 

[85]. 

 
Fig. 12. Spin arrangements in magnetite [85]. 

23 
 

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Induced_magnetic_field
https://en.wikipedia.org/wiki/Paramagnetism


Magnetite exhibits a variety of characteristics, depending on temperature [85]. 

There are three regions of temperature where magnetite behaves differently: (i) between 

0 K and 119 K (the Verwey transition temperature), (ii) 120 K to 840 K (Tc, the Curie 

temperature) and (iii) above 840 K.  

Above 120 K, electrons’ moving from Fe2+ to Fe3+ in B sites is responsible for 

magnetite’s large conductivity at these temperatures. As the temperature is lowered to 

region (i) there is a temperature, called the Verwey temperature (119 K), where a 

sudden change in behavior is seen. Between 120 K and 119 K there is a sharp drop in 

electrical conductivity of the order of 90 times. This change is associated with a change 

in crystal structure from cubic to a lower symmetry ordering, possibly orthorhombic. 

The iron ions on the B sites separate into either Fe3+ or Fe2+ ions (no longer enough 

thermal energy to allow electron hopping between ions), so there are now A sites with 

Fe3+ ions, B sites with Fe3+ ions and B sites with Fe2+ ions. In region (iii) magnetite 

simply behaves as a paramagnetic metal and this phase was not investigated [85]. 

 

 

3.2.1.3. The dependence of magnetization on magnetic field strength 

 

 The density of magnetic moments in a magnetic material is expressed by 

magnetization or magnetic polarization (M). Net magnetization results from the 

response of a material to an external magnetic field, together with any unbalanced 

magnetic dipole moments in the material itself (in ferromagnets and ferimagnets). 

The relationship between magnetization (M) and magnetic field strength (H), so-

called magnetization hysteresis loop, for different types of materials is illustrated 

schematically in Figure 13. 

The parameters extracted from the hysteresis loop that are most often used to 

characterize the magnetic properties of magnetic materials are: 

- the saturation magnetization Ms, where all moments align along the direction of 

applied field, 

- the remanence magnetization MR, which is remained in the material after applied 

field is removed, and 
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- the coercivity field HC, which is the field required to bring the magnetization to 

zero.  

 

 
Fig. 13. Magnetization hysteresis loops of different magnetic materials [85]. 

 

Superparamagnetism is a form of magnetism, which appears in small  

ferromagnetic or ferromagnetic  nanoparticles (size below about 50 nm in the direction 

under the influence of temperature [86]. The typical time between two flips is called 

the Néel relaxation time. In the absence of an external magnetic field, when the time 

used to measure the magnetization of the nanoparticles is much longer than the Néel 

relaxation time, their magnetization appears to be in average zero: they are said to be in 

the superparamagnetic state. In this state, an external magnetic field is able to magnetize 

the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility (the 

degree of magnetization of a material in response to an applied magnetic field) is much 

larger than that of paramagnets. In the Fig. 13, in contrast to the hysteresis observed in 

the case of ferromagnetic nanoparticles, the response of superparamagnetic 

nanoparticles to an external field also follows a sigmoidal curve, but shows no 

hysteresis.  
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3.2.1.4. The dependence of magnetization of superparamagnetic materials on 

temperature  

 

Magnetic ions in the nanoparticle are locked together and produce a permanent 

magnetic dipole moment at any temperature. However, for temperatures higher than a 

so-called “blocking” temperature, TB, the moment flips 180 degrees very rapidly and the 

resulting average moment is near zero. Only for temperatures below TB does the 

moment stay fixed in one direction during the time of the measurement. Thus, the 

particles exhibit a ferromagnetic/ferrimagnetic-like response for temperatures below TB, 

but possess a paramagnetic-like response above TB. [87]. 

The blocking temperature can be determined from the magnetization vs. 

temperature exprements (M(T) curves) for zero-field-cooling (ZFC) and filed-cooling 

(FC) conditions. In ZFC curve, magnetization increased with the temperature and than 

decreased, while magnetization decreased in FC curve (Fig. 14). The temperature at the 

peak point of ZFC curve is the blocking temperature [88]. The blocking temperature 

depends on the size of particles: TB is higher for large particles than for small particles. 

The particle size distribution also influence the shape of the M(T) curve. Narrow peaks 

can be obtained for particles with narrow size distribution, while wide peaks for wide 

size distribution. 

 

 
Figure 14. Experimental strategy for estimating the blocking temperature of magnetic 

nanoparticles [88]. 
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Magnetization of superparamagnetic particles is described by the Langevin 

function (Eq. (2)): 

      (2) 

where Ms saturation magnetization, μ the mean magnetic moment of a single particle, H 

is the applied field and kBT term corresponds to the thermal energy of the particles [89]. 

The Langevin relation considers each particle as a magnetic monodomain. The 

relationship between the mean magnetic moment of a particle and saturation 

magnetization of particles, as described by Eq. (2), can be used to calculate average 

particle size, D [89]; 

   
6

3DM Sπρµ =         (3) 

where ρ is the density of the sample. 

 

 

3.2.2. Other properties of magnetite  

 

Natural and synthesized magnetite micro-scale crystals exhibit metallic luster 

and opaque jet-black color. Magnetite’s density is established at 5.18 g/cm3, slightly 

lighter than reddish-brown hematite (α-Fe2O3; 5.26 g/cm3). At ambient temperatures, 

magnetite particles exhibit hardness of 5.5 (Mohs scale). Specific surface area of 

magnetite vary depending on synthesis method; however, typical micro-scale particles 

with approximate diameters of 0.2 µm exhibit surface areas of approximately 6 m2/g. 

Magnetite particles are not porous. Standard Gibb’s free energy of magnetite formation 

is - 1012.6 kJ/mol; therefore, formation of magnetite is thermodynamically favorable. 

Additionally, the standard enthalpy and entropy of magnetite formation are -1115.7 

kJ/mol and 146.1 kJ/mol/K, respectively. Solubility products differ depending on the 

applicable dissolution reaction; however, magnetite dissolution is much faster than other 

pure ferric oxides [90]. 

 Magnetite melting/boiling points are observed at 1590 and 2623 °C, 

respectively. Electrical conductivities range from 102–103 Ω-1cm-1, which evidence 

semi-conductor behavior of magnetite. This conductivity range borders conductor 
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(metallic) behavior. Semi-metallic behavior is further supported by magnetite’s 

relatively low band gap (0.1 eV).  

As magnetite particle diameters are decreased to the nano-scale, the structural, 

physical, thermal, electrical, and magnetic properties begin to change. Although many 

of these characteristic changes are described in the literature, some of nanoscale 

magnetite properties have not yet been explored. 

Nano-scale magnetite still exhibits a face-centered cubic unit cell, although the 

unit cell volume is slightly larger. Electron probe analyses imply that oxygen 

concentrations within magnetite particles decline as particle size is reduced. 

Consequently, a relative decrease in iron valence is observed, generating greater ferrous 

ion presence. This structural change is insignificant to structural properties of magnetite, 

but some effect is observed on magnetic properties. 

Owing to smaller particles, specific surface area of nano-magnetite is 

significantly larger than of micro-siyed magnetite (approximately 100 m2g-1). Magnetite 

nano-particles are assumed nonporous. Colloidal magnetite solutions are typically 

characterized by the jet-black color, hence no color change between bulk-scale and 

nano-scale magnetite is observed [90]. 

Magnetite readily oxidizes in air to maghemite (Eq. 4):  

4 FeO·Fe2O3 +O2 → 6 Fe2O3       (4) 

Magnetite and maghemite are similar in physical properties and crystalline 

structure. Both display ferrimagnetism, however maghemite has lower saturation 

magnetization. The difference in their magnetic response is because maghemite is 

structurally γ-Fe2O3, which is comprised solely of Fe3+ ions. In the crystalline structure, 

half of the Fe3+ ions are tetrahedrally coordinated and the other half are octahedrally 

coordinated [85].  

 At temperatures higher than 300oC, magnetite oxidizes to hematite, which is 

antiferromagnetic. Therefore, this conversion may be an important consideration in 

certain applications [85]. 

Magnetite surface chemistry plays an important role in magnetite applications. 

In aqueous systems, the Fe atoms coordinate with water, which dissociates readily to 

leave the iron oxide surface hydroxyl functionalized. Surface hydroxyl groups are 

amphoteric and may be protonated or deprotonated, depending on pH of solution. The 
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pH value where the surface displays an equal number of negative and positive surface 

charges is the point of zero charge, PZC. The PZC of magnetite depends on the powder 

properties, but usually is in the range 6.4-6.8 [91].  

 

 

3.3. Applications of magnetite 

 

Among all iron oxides, Fe3O4 presents the most interesting properties for 

applications: (i) it is magnetic, (ii) it contains Fe2+ in the structure which is an important 

electron donor, (iii) the octahedral site in the magnetite structure can easily 

accommodate both Fe2+ and Fe3+, producing a very interesting redox chemistry within 

the solid structure [92,93].  

An important application of magnetite is as an adsorbent for drinking water 

decontamination due to magnetite nanoparticles possess strong adsorption/reduction 

activities, and magnetic property to be easily separated and collected by an external 

magnetic field; these features make it suitable for the adsorption/reduction of quite a 

few heavy metal ions (e.g. Ni(II), Cu(II), Cd(II), Zn(II), Cr(VI), etc.). 

 Magnetite is also of great importance in environmental studies, as it is a 

common product of Fe3+ oxide reduction by biological and abiotic mechanisms, and can 

form by Fe2+ oxidation. 

Magnetite is used in several medicinal and industrial processes as a ferrofluid; 

ferofluids are colloidal suspensions containing nanoscale magnetite particles; in the 

presence of strong magnetic fields, the ferrofluid will grow “spikes” along magnetic 

field lines. The great potential is in a diverse number of biomedical applications due to 

the guidable nature: retinal detachment therapy, cell separation methods, tumor 

hyperthermia, improved magnetic resonance imaging (MRI) contrast agents and as 

magnetic field-guided carriers for localizing drugs or radioactive therapies [85]. 

 There are many other applications of magnetite nano particles: low-friction 

seals, dampening and cooling agents in loudspeakers, magnetically active membrane 

biological reactor, regenerant solution, controlled microfluidic flow etc. Clearly, nano-

scale magnetite offers potential for creation of novel technology in multiple fields of 

study [90]. 

29 
 



3.4. Synthesis of magnetite nanoparticles 

 

The applications of magnetite nanoparticles depend on the preparation method, 

which, in turn, influences particle size and shape, size distribution, agglomeration and 

surface chemistry of the material [21]. 

 Various methods for magnetite synthesis have been developed, such as micro-

emulsion method, thermal decomposition of organic iron precursors in organic solvents, 

co-precipitation process, sol-gel method, solvothermal method, hydrothermal synthesis, 

electrochemical synthesis, ultrasonic chemical co-precipitation, gas/aerosol-phase 

methods, polyols method [81,94], etc.  

 

 

3.4.1. Magnetite synthesis by the co-precipitation method 

 

Co-precipitation from a solution of ferrous/ferric mixed salts has been widely 

used to produce magnetite nanoparticles for engineering application because of ease of 

implementation, large volume capability, and economy.  

There are two methods of adding precursors [95] in the technique of co-

precipitation from a solution of ferrous/ferric mixed salt to synthesize magnetite:  

(i) Normal co-precipitation and (ii) reverse co-precipitation. 

 In the first case, the pH value gradually increases by dropping alkali solution 

into the mixed metals solution. In the second case, the mixed metals solution is directly 

dropped into an alkaline solution. Consequently, the pH value, a critical factor in 

synthesis of magnetite, can be easily controlled at high values. 

In the co-precipitation method, according to reaction (5), the initial molar ratio 

of Fe2+:Fe3+ is considered to be 1:2. However, because Fe2+ oxidizes to Fe3+ in air and 

the oxidation rate is almost independent of the Fe2+ concentration, the Fe2+:Fe3+ ratio of 

the system reduces from the initial value (1:2). 

Fe2+ + 2Fe3+ + 8OH- → Fe3O4 + 4H2O              (5) 

To solve this problem, some researchers synthesized magnetite nanoparticles by 

increasing the initial molar ratio of Fe2+:Fe3+ to more than 1:2 [95]. Generally, the 
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reaction is performed under inert (N2 or Ar) atmosphere, using degassed solutions to 

avoid uncontrollable oxidation of Fe2+ to Fe3+ [21].  

The following reactions are proposed for the mechanism of magnetite formation 

[21]: 

Fe3+ + 3OH−  → Fe(OH)3(s)       (6) 

Fe(OH)3(s) → FeOOH(s) + H2O       (7) 

Fe2+ + 2OH− → Fe(OH)2(s)        (8) 

2FeOOH(s) + Fe(OH)2(s) → Fe3O4(s) + 2H2O     (9) 

An overall reaction is: 

2Fe3+ + Fe2+ + 8OH− → 2Fe(OH)3·Fe(OH)2(s) → FeOOH·Fe(OH)2(s) + 

+ H2O → Fe3O4(s) + 4H2O        (10) 

 

Briefly, the ferric and ferrous hydroxides are precipitated firstly. These reactions 

are very fast. Secondly, the ferric hydroxide decomposes to FeOOH. Finally, a solid 

state reaction between FeOOH and Fe(OH)2 takes place, which produces magnetite. 

 

 

3.4.2. Factors influencing the properties of magnetite nanoparticles synthesiyed by the 

co-precipitation method 

 

The properties of magnetite nanoparticles, such as particle size, specific surface 

area, morphology and magnetization, are strongly depended on the synthesis conditions. 

The influence of different parameters, such as: iron salts concentration; the ratio of 

Fe2+/Fe3+; nature of the base used for the co-precipitation; the rate of the addition of the 

base solution; ratio of OH-/(Fe2+ + Fe3+) and temperature on the magnetite properties 

has been investigated [21-25,96].   

Mascolo et al. [21] synthesized magnetite by co-precipitation reaction in a large 

pH range (10.0–13.0) at room temperature, by slow or fast addition of base (NaOH, 

KOH or (C2H5)4NOH) in the reaction mixture. The reverse co-precipitation was also 

applied. It was shown that the size reduction of magnetite nanoparticles, precipitated 

with a certain base, was affected by both pH and the slow or fast addition of the basic 

solution to the solution of mixed Fe2+ and Fe3+ ions. As the amount of base and pH 
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increases, the nanoparticles size decreased. A further reduction of magnetite size was 

achieved by the change of the precipitating base, in accordance with the following 

sequence: [(C2H5)4NOH (6.5nm) < KOH (7.1nm) < NaOH (11nm)]. It was found that 

samples exhibit superparamagnetic properties and lower saturation magnetization had 

samples with smaller particles (crystallites). The agglomeration of individual 

nanoparticles appears to be responsible for the formation of mesoporous structures, 

which are affected by pH, nature of alkali, slow or fast addition of alkaline solution and 

drying modality of the synthesized powders. The degree of agglomeration, determined 

by the interface area among the individual particles, affects the value of saturation 

magnetization. Its reduction with the decrease of magnetite particle size becomes less 

marked for less agglomerated particles. 

Gnanaprakash et al. [23] investigated the effect of temperature (30 or 60 ºC) and 

initial pH of iron salt solutions prior to alkali addition (0.7-6.7) on formation of 

magnetite nanoparticles during co-precipitation. It was found that the formed 

nanoparticles were 100 % spinel iron oxide (magnetite) when the initial pH was below 

5. The content of magnetite decreased with the temperature and pH increasing. These 

results show that the initial pH and temperature of the iron salt solution before initiation 

of the precipitation reaction are critical parameters controlling the composition and size 

of the nanoparticles. 

The impact of parameters of co-precipitation process on the properties of the 

superparamagnetic iron oxide nanoparticles was also investigated by Roth et al. [22]. 

Particle of different sizes and saturation magnetizations were achieved by variation of 

iron salt concentration, reaction temperature, ratio of hydroxide ions to iron ions and 

ratio of Fe3+/Fe2+. The results revealed that the particles' saturation magnetization could 

be enhanced by the employment of high iron salt concentrations and a molar ratio of 

Fe3+/Fe2+ below 2:1. Furthermore, it was shown that the particle size could be increased 

by higher iron salt concentrations and a ratio of hydroxide ions to iron ions of 

1.4:1.Overall results indicate that the saturation magnetization is directly related to the 

particle size. 

The effects of surfactant, temperature, time, solvent and magnetic field on the 

morphology and particle size of the magnetite nanoparticles prepared by a 

coprecipitation method were investigated in the research of Nabiyouni et al. [24]. In all 
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various conditions, nanoparticles with average diameters less than 100 nm were 

synthesized, which exhibited ferrimagnetism behavior at room temperature. Bigger 

particles were obtained with anionic than cationic surfactant, by prolonged time of 

synthesis and with higher quantity of solvent.  

Valenzuela et al. [96] studied the influence of the stirring velocity on the size of 

the magnetite nanoparticles synthesized by the co-precipitation method, where ammonia 

was added in deoxygenated aqueous solutions of Fe2+/Fe3+ (molar ratio 1:2) at 20 0C. 

Two stirring conditions were applied: mechanical stirring (homogenizer) at different 

velocity and magnetic stirring. Then suspensions obtained were aged and digested at 80 
0C under a gentle magnetic stirring. Superparamagnetic nanoparticles of magnetite with 

a mean diameter of 10 nm and narrow size distribution were obtained by using a 

homogenizer at a stirring velocity of 10,000 rpm. At this stirring velocity, the mean 

diameter of the nanoparticles was smaller than the values obtained by vigorous 

magnetic stirring. A decrease in stirring velocity resulted in a larger size of particles 

(~19 nm) and a wider size distribution. At 18,000 rpm, in addition to magnetite, goethite 

is also synthesized in the form of nanoparticles and nanorods. An increase in the 

precursor solution’s temperature by high stirring velocities initially promotes the partial 

thermal oxidation of magnetite to goethite, generating goethite nanorods by the 

hydrothermal process. If the temperature highly increases, the final product is a non-

magnetic mixture of iron oxide, hematite and goethite instead of magnetite.  

 The influence of processing conditions on the crystallite size and magnetic 

properties of Fe3O4 nanoparticles was studied by Upadhyay et al. [25]. The samples 

were prepared by (i) reverse co-precipitation method, at Fe2+/Fe3+ ratio 1:2, at room 

temperature or at 100 0C, and (ii) modified co-precipitation method, using only Fe2+ ion 

and KNO3 as an oxidizing agent, at different reaction times. It was found that the 

crystallite size and lattice parameter increased as the temperature and the reaction time 

increased. Larger magnetite nanoparticles were obtained via oxidation method. 

Magnetically, the synthesized nanoparticles are ranging from superparamagnetic to 

multi domain state. Magnetic parameters of the samples show a strong dependence on 

average crystallite size.  

Overall results indicate that the saturation magnetization of the magnetite 

synthesized by co-precipitation method is directly related to the size of magnetite 
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crystallites, which can be controlled by the type and quantity of base used for co-

precipitation, the temperature and duration of the synthesis, the type and velocity of 

stirring, and concentration of solvent. In addition, saturation magnetization is also 

related to phase composition, i.e. the quantity of other iron phases than magnetite, 

which can be influenced by the quantity of iron salt, ration Fe2+/Fe3+, temperature and 

pH of the iron salts solution.  

 

 

4. Water pollution 
 

Water pollution is the contamination of water bodies (rivers, lakes, oceans, and 

groundwater), very often by human activities when pollutants are directly or indirectly 

discharged into water bodies without adequate treatment to remove harmful compounds. 

The specific contaminants leading to pollution in water include a wide spectrum of 

chemicals, pathogens, and physical changes such as elevated temperature and 

discoloration.  

Water pollution can be caused in a number of ways, one of the most polluting 

being city sewage and industrial waste discharge. Indirect sources of water pollution 

include contaminants that enter the water supply from soils or groundwater systems and 

from the atmosphere via rain. 

The contamination of water resources has important repercussions for the 

environment and human health. For example, water pollution by heavy metals 

represents a serious problem for a variety of living species due to their toxicity, 

persistency and bioaccumulation tendency [80]. Pollution of water bodies with dyes 

causes, in addition to visual pollution, changes in the biological cycles of the aquatic 

biota, particularly affecting the photosynthesis and oxygenation processes of the water 

body, for example by hindering the passage of sunlight through the water. Moreover, 

some classes of dye, especially azo dyes and their byproducts, may be carcinogenic 

and/or mutagenic [97]. A major impact on the quality of natural water, especially lakes 

and streams, has also phosphates, which caused the eutrofication due to over-production 

of algae and water weeds. 
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4.1. Polution by cadmium 
 

 Cadmium is a relatively rare metal with atomic number 48. It prefers oxidation 

state +2 in most of its compounds. In its pure state, cadmium is silvery white with a 

bluish color, insoluble in water and not flammable [98]. Pure cadmium does not exist in 

nature, but it is present as oxide, sulfide, sulfate, carbonate and chloride [99]. 

 Cadmium is used in the production of inks and dyes, as well as in many 

industrial applications such as metal plating, engraving and soldering. It is also used in 

plastics and production of nickel–cadmium batteries, which are in widespread use in 

cell phones, portable computers, and in many toys. Also, cadmium is present in trace 

amounts in food [99]. 

 Common sources of cadmium in natural waters are fertilizer, fungicides, 

pesticides, soil and air pollution [67]. Cadmium also appears in industries as an 

inevitable by-product of zinc, lead and copper extraction. Naturally, a very large amount 

of cadmium is released into the environment, about 25,000 tons a year. About half of 

this cadmium is released into rivers through weathering of rocks and some of it into air 

through forest fires and volcanoes. The rest of the cadmium is released through human 

activities, such as manufacturing [99]. 
 Cadmium is one of the most toxic heavy metals. It accumulates in the body and 

has varying degrees of toxicity where it replaces the body’s stores of the essential zinc 

in the liver and kidneys [99]. According to the world health organization, intake of 

dietary cadmium should not exceed 7 micrograms per kilogram of body weight, per 

week. 

Health effects that can be caused by cadmium are: high blood pressure, diarrhea, 

stomach pains and severe vomiting, osteoporosis due to depletion of calcium, bone 

fracture, reproductive failure and possibly even infertility, damage to the central 

nervous system and destruction of red blood cells, damage to the immune system; 

psychological disorders, possibly DNA damage or cancer development, etc. [100]. 

 As cadmium is presents stably in the environment with great difficulty for 

microbiological degradation, it is necessary to eliminate them from wastewaters by 

using some effective methods before their discharge into environmental systems. 

Several methods have been employed to remove cadmium ions from wastewater, which 
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include precipitation, flotation, ion exchange, membrane-related process, 

electrochemical technique and biological process [101]. Low efficiency performance 

particularly when used on very small concentration of cadmium ions, the necessity of 

using expensive chemicals in some methods as well as accompanying disposal problem 

are among the drawbacks of these conventional methods. In regards of its simplicity and 

high-efficiency characteristics even for low concentrations, adsorption is looked upon as 

a good technology. 

 

 

4.2. Pollution by hexavalent chromium 

 

Chromium is the earth’s 21st most abundant element (about 122 ppm) and the 

sixth most abundant transition metal. The principal chromium ore is ferric chromite, 

FeCr2O4, while crocoite, PbCrO4, and chrome ochre, Cr2O3 are less common. 

Chromium occurs mainly in +III and +VI oxidation states, whereby chromium(VI) 

compounds are more toxic than Cr(III) due to their high water solubility and mobility 

[102]. Cr(VI) compounds include a large group of chemicals with varying chemical 

properties, uses, and workplace exposures [103].  

 Although chromium(VI) is dangerous and toxic, it’s useful in industrial 

applications. Major industrial sources of Cr(VI) to environment are effluents from 

electroplating, metal finishing, magnetic tapes, pigments, leather tanning, wood 

protection, chromium mining and milling, brass, electrical and electronics’ equipments 

manufactures and catalysis [104]. In natural waters, chromium(VI) is present also due to 

erosion of chromium deposits found in rocks and soils. In uncontaminated waters, the 

concentration of chromium is extremely low (< 1 μg/dm3). 

       Hexavalent chromium exists in water primarily as hydrogen chromate ion 

(HCrO4
−) and chromate ion (CrO4

2−), depending on the pH: HCrO4
− predominates at 

pHs between 1.0 and 6.0, and CrO4
2− at pHs above about 6.0 [102]. At pHs less than 

about 1.0, H2CrO4 is dominant species. The dichromate ion (Cr2O7
2−) forms when the 

concentration of chromium exceeds approximately 1 g/dm3. 

Single exposures to hexavalent chromium compounds can cause irritation and 

inflammation of the nose and upper respiratory tract, irritation of the skin and eye 
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damage from splashes. Repeated exposure to hexavalent chromium compounds can 

cause: damage to the nose, including ulcers and holes in the flap of tissue separating the 

nostrils (the nasal septum); inflammation of the lungs; allergic reactions in the skin and 

respiratory tract; kidney damage and cancer of the lung [105]. 

Several treatment technologies have been developed to remove chromium from 

water and wastewater. Common methods include chemical precipitation, ion exchange, 

membrane separation, ultrafiltration, flotation, electrocoagulation, solvent extraction, 

reduction, reverse osmosis, dialysis/electrodialysis, adsorption/filtration, flocculation, 

chelation etc. [102]. Chemical precipitation has traditionally been the most used 

method. The disadvantage of precipitation is the production of sludge, which constitutes 

a solid waste a disposal problem. Ion exchange is considered a better alternative. 

However, it is not economically appealing because of high operational costs. 

Adsorption is a promising process for removal of Cr(VI) because of its economic 

efficiency, simplicity of design, low cost and high selectivity. 
 

 

4.3. Pollution by phosphates    

 

Phosphates exist in three forms in aqueous systems: orthophosphate, 

metaphosphate (or polyphosphate) and organically bound phosphate. Orthophosphate 

are produced by natural processes, but major man-influenced sources include: partially 

treated and untreated sewage, runoff from agricultural sites, and application of some 

lawn fertilizers. Orthophosphate is a readily available to the biological community and 

typically found in very low concentrations in unpolluted waters. Polyforms are used for 

treating boiler waters and in detergents. In water, they are transformed into 

orthophosphate and available for plant uptake. The organic phosphate is the phosphate 

that is bound or tied up in plant tissue, waste solids, or other organic material.  After 

decomposition, this phosphate can be converted to orthophosphate [106]. 

Phosphates stimulate the growth of plankton and aquatic plants, which provides 

food for larger organisms. Initially, this increased productivity will cause an increase in 

the fish population and overall biological diversity of the system. But, as the phosphate 

loading continues and there is a build-up of phosphate in the lake or surface water 

ecosystem, the aging process (eutrophication) of lake or surface water ecosystem will be 
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accelerated. In situations where eutrophication occurs, the excessive inputs, usually a 

result of human activity and development, appear to cause an imbalance in the 

"production versus consumption" of living material in an ecosystem. This 

overproduction can lead to a variety of problems ranging from anoxic waters to toxic 

algal blooms and decrease in diversity, food supply, and habitat destruction. Some blue-

green algae can at times produce toxins, which are harmful to humans, pets, and farm 

animals [106]. 

Controlling phosphorous discharged by municipal and industrial wastewaters is 

a key factor in preventing eutrophication of surface waters. Phosphorus removal from 

wastewater can be achieved either through chemical removal, advanced biological 

treatment or a combination of both [107]. The chemical removal of phosphorus involves 

the addition of calcium, iron and aluminum salts to achieve phosphorus precipitation by 

various mechanisms. Biological phosphorus removal is dependent upon the uptake of 

phosphorus in excess of normal bacterial metabolic requirements and is proposed as an 

alternative to chemical treatment. Adsorption technology, owing to its simplicity, 

efficiency and cost-effectiveness, has been increasingly challenged lately. 

 

 

4.4. Pollution by dyes 

 

Many industries such as textile, leather, food processing, dyeing, and cosmetics 

generate massive amount of wastewater, and dye chemicals represent one of the most 

prominent contaminants contained in the wastewater effluents. The presence of dye in 

the water bodies increases the chemical oxygen demand as well as adversely influences 

the metabolic functions of phytoplankton and aquatic plants by interfering with 

photosynthesis [108]. Intense exposure to dyes leads to have increased heartrate, 

vomiting, shock, Heinz body formation, cyanosis, jaundice, quadriplegia, and tissue 

necrosis in humans [109]. It is noteworthy that some dyes are highly toxic and 

mutagenic, and also decrease light penetration and photosynthetic activity, causing 

oxygen deficiency and limiting downstream beneficial uses such as recreation, drinking 

water and irrigation. 
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Dyes are organic compounds with a complex chemical structure, which includes 

a group of atoms known as chromophores, responsible for the dye color. These 

chromophore-containing centers are based on diverse functional groups, such as azo, 

anthraquinone, methine, nitro, arilmethane, carbonyl and others. In addition, electrons 

withdrawing or donating substituents so as to generate or intensify the color of the 

chromophores are denominated as auxochromes.The most common auxochromes are 

amine, carboxyl, sulfonate and hydroxyl [97]. 

Dyes are persistent in the environment owing to their high stability to light, 

temperature, water, detergents, chemicals, soap and other parameters such as bleach and 

perspiration. The synthetic origin and complex aromatic structure make them more 

recalcitrant to biodegradation [97]. Therefore, to safeguard environment and human 

health, it is necessary to monitor and regulate the concentration of dyes in waste 

effluents before they are discharged into the environment [110]. 

There are four commonly used methods for the treatment of textile wastewater: 

physical methods include membrane technology; chemical methods include 

photochemical oxidation and coagulation processes; biological methods include 

anaerobic/aerobic sequential processes and physico-chemical processes. Among the 

physico-chemical processes, adsorption technology is known to be one of the extremely 

useful technologies, because of its high efficiency, good benefit/cost ratio, the 

availability of different adsorbent types and the possibility of reusing the adsorbent 

and/or adsorbate [111]. By proper selection of the adsorbent, the adsorption can be a 

simple, environmental friendly and low cost operation of high efficiency [112]. 

 

 

5. Application of adsorption for the water pollutants removal 
 

5.1. Adsorption from liquid phase on a solid surface 

 

The adsorption is a mass transfer process by which a substance (adsorbate) is 

transferred from the liquid phase to the surface of a solid (adsorbent), and becomes 

bound by physical and/ or chemical interactions. The adsorption process is referred to as 

physical adsorption if the attraction between the solid surface and the adsorbate is 

39 
 



physical in nature, where the attractive forces are Van der Waals forces, which are 

weak, and the resulting adsorption is reversible in nature. On the other hand, if the 

attraction forces between adsorbate and the solid surface arise due to chemical bonding, 

the adsorption process is called chemisorption; the bonding in this case is strong, and it 

is difficult to remove chemisorbed species from the solid surface.  

A great variety of materials applies as adsorbents for the removal of different 

pollutants from water The most important properties for an adsorbent is the porous 

structure resulting in high surface area; a highly porous solid may be carbonaceous or 

inorganic in nature, synthetic or naturally occurring, and in certain circumstances may 

have true molecular sieving properties [113]. 

 There are three main steps involved in adsorption from liquid phase onto a solid 

adsorbent (Fig. 15): (1) the transport of an adsorbate from the bulk of the liquid to the 

boundary layer (film) around the adsorbent particle; (2) the transport of an adsorbate 

through the boundary layer, (3) internal diffusion through the adsorbent pores, and (4) 

adsorption on the adsorbent’s particle surface.  
 

 
 

Fig. 15. Schematic illustration of adsorption steps [113]. 
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5.2. Factors influencing the adsorption process 

 

The most important factors affecting adsorption are [114]: 

Nature of adsorbate and adsorbent: The nature of the adsorbent has a profound 

effect on the process of adsorption, because it determines the type of adsorbate that will 

be adsorbed. Activated carbon, metal oxides, silica gel, zeolite, and clay are commonly 

used adsorbents. 

Specific surface area and pore sizes of the adsorbent: The surface area 

determines the number of adsorption sites and generally, the greater the specific surface 

area of the solid, the greater would be its adsorption capacity. Pore size is the factor 

which determines the accessibility of the sites for adsorbates. Generally, there is an 

inverse relationship between the pore size and surface area: the smaller the pores for a 

given pore volume, the greater the specific surface area. However, the pores should be 

large enough to allow the adsorbate to enter them. 

 Particle size of the adsorbent: Smaller particle sizes reduce internal diffusional 

and mass transfer limitation to the penetration of the adsorbate inside the adsorbent 

particle. The use of adsorbents in the nanoscale strongly enhances the adsorption 

efficiency because of the high exposed surface able to interact with the adsorbate. 

  Activation of adsorbents: Different methods are applied for specific surface area 

increasing or for change of chemical nature of adsorbent surface. Specific surface area 

can be increased: 

- by making the surface of the adsorbent rough,  

- by dividing the adsorbent into small fine pieces or grains, 

- by removing the compounds already adsorbed, 

- by physical (thermal methods) or chemical (acid or base) activation.  

The properties of adsorbents can be tailored for specific applications through 

surface functionalization, by using different compounds: surfactants, silanes, oxides etc. 

In that way, adsorption capacity for specific adsorbate can be significantly increased.  

Adsorbent dosage: In many instances, higher adsorbent dosages yield higher 

uptakes and higher percentage removal efficiency. Increase in adsorbent dosage 

generally increases the amount of solute adsorbed due to the increase in surface area and 

the number of binding sites. 
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Solubility of the adsorbate: Solubility of an adsorbate is an important factor 

affecting adsorption. In general, the extent of adsorption of a solute is inversely 

proportional to its solubility in the solvent (water) from which adsorption occurs. Such 

effect of solubility on adsorption might be expected since, in order for adsorption to 

occur, solute-solvent bonds must first be broken. The greater the solubility, the bonds 

are stronger and hence the smaller the extent of adsorption. However, there are 

exceptions since many compounds are difficult to adsorb even though they are slightly 

soluble. Some compounds which are very soluble may be adsorbed readily. 

Polarity of adsorbate: A general rule is that polar surfaces prefer polar 

adsorbates and non-polar surfaces prefer non-polar adsorbate. 

Contact Time: Sufficient contact time is required to reach adsorption equilibrium 

and to maximize adsorption efficiency.  

Temperature: In adsorption process, temperature does take effect in rate of 

adsorption and the extent to which adsorption occurs. Generally, adsorption rates 

increase with increase in temperature. However, since the adsorption is generally an 

exothermic process, an increase in temperature normally leads to a decrease in the 

adsorbed amount. However, the influence of temperature on the adsorption from a 

liquid phase can be more complicated because different processes are include in 

adsorption process. 

pH of solution: pH usually plays major role in the adsorption process because it 

affects: the solution chemistry of adsorbate, the activity of the functional groups of the 

adsorbent, solubility of the adsorbate and degree of ionization of the adsorbate during 

adsorption. 

 

 

5.3. Adsorption of ionic species from water onto solid surfaces 

 

Adsorption of ionic species on the active sites of the solid surface results in the 

formation of outer- and inner-sphere complexes. Outer-sphere complexes occur if at 

least one water molecule is interposed between the surface functional group and the 

bound ion (Fig. 16). On the contrary, inner-sphere complexes occur when water 

molecules are not interposed between the bound ion and the functional group of the 
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adsorbent and the adsorbate forms a direct coordinate-covalent bond with surface 

functional groups on the variable charge surface [115,116]. The formation of inner-

sphere complexes are usually denoted as specific adsorption, while the formation of 

outer-sphere complexes belongs to the non-specific adsorption processes.    

 

 

 

Fig. 16. Schematic presentation of different types of adsorption complexes that can be 

occurred on solid surfaces [115]. 

 

Outer-sphere complexes are formed through electrostatic interactions between 

metal ions and oppositely charged solid surface. At the earlier adsorption stages, outer-

sphere complexes are formed at the external surface sites, while, as ions concentration 
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increases, the ions are forced into internal surface sites forming also inner-sphere 

complexes. These inner complexes are more stable compared to the outer-sphere 

complexes due to the formation of covalent bonds or combinations of covalent and ionic 

bonding [116]. On the other hand, outer-sphere complexation is usually rapid and 

reversible, while inner-sphere complexation is slower and may be irreversible [116]. 

During the formation of inner-sphere complexes, protons are released and the 

process causes a total decrease in solution pH. The adsorption will be strongly pH 

dependent, where adsorption of cations generally increases, while the anions adsorption 

decreases with increasing pH. In addition, the metals can be transferred from the bulk 

solution to the solid phase due to precipitation on the mineral’s surface. Mineral 

addition in electrolyte solution can reduce metal solubility and enhance metal 

precipitation on the mineral surface even in a non-saturated environment. At low 

surface coverage complexation tends to dominate, while as the surface coverage 

increases nucleation occurs and results in the formation of distinct entities or aggregates 

on the surface; as loading increases further, surface precipitation becomes the dominant 

mechanism. Precipitation mostly depends on solution pH and initial metal 

concentration. Moreover, co-precipitation of metals may play an important role in the 

surface precipitation mechanism. Surface precipitation is favored by the pH increase. 

[116]. Hence, the addition of minerals that significantly increases the pH enhances 

metal removal from the bulk solution. 

 

 

5.4. Adsorption equilibrium 

 

 Knowledge of adsorption equilibrium is necessary to estimate the maximum 

capacity of an adsorbent, as well as to characterize the molecular forces involved in this 

process. Adsorption equilibrium is a dynamic concept achieved when the rate at which 

adsorbate species adsorb onto a surface is equal to the rate at which they desorb [117]. 

The adsorbent ‘affinity’ for the adsorbate determines adsorbate distribution between the 

adsorbent and liquid (water) phase.  
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The adsorption equilibrium relates the amount of solid-bound adsorbate (qe) and 

its portion remaining in the solution (residual, final or equilibrium concentration, ce) at a 

constant temperature: 

qe  = f (ce)        (11) 

The adsorption equilibrium relationship given by Eq. 11 is termed an adsorption 

isotherm. Typically, this dependence is obtained by gathering the adsorption capacity 

data at a fixed temperature and various adsorbate concentrations and the data are plotted 

as an isotherm, i.e. loading versus concentration at constant temperature. 

Many theoretical and empirical models have been developed to represent the 

various types of adsorption isotherms. At present, there is no single equation that 

satisfactorily describes all mechanisms and shapes [118]. Langmuir, Freundlich and 

Sips models are some of the equations that find common use for describing adsorption 

isotherms [42].  

 

 

5.4.1. Langmuir model 

 

In 1916 Langmuir proposed the monolayer adsorption theory. The assumptions 

made in the derivation of the Langmuir model are: 

- Adsorption sites on adsorbent surface have the same adsorption energy 

- One adsorption site is occupied by one adsorbed molecule 

- There is no lateral interaction between adsorbed molecules 

- Adsorption is complete when a monolayer is formed,  

- Adsorption takes place only at specific localized sites on the surface and the 

saturation coverage corresponds to complete occupancy of these sites [119]. 

 

The Langmuir isotherm is usually described by:  

 

eL

eLm
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cKq
q

+
=        (12) 
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where: 

 qe is the amount of the adsorbate adsorbed per unit mass of adsorbent at equilibrium, 

 ce is the equilibrium concentration of the adsorbate in the bulk solution, 

qm is the maximum adsorption capacity (monolayer capacity) and 

KL is the constant related to the free energy of adsorption. 

 

 

5.4.2. Freundlich model 

 

 The empirical model developed by Freundlich in 1906 [120], can be applied to 

multilayer adsorption, as well as for adsorption at heterogeneous surfaces [121]. The 

Freundlich relation is an exponentional equation that assumes that concentration of 

adsorbate on adsorbent surface increases by increasing the adsorbate concentration in 

the liquid phase [116, 117]. It is represented by the equation: 

qe = fK n
nc1          (13) 

where:  

kF is a constant which indicates the relative adsorption capacity of the adsorbent; it is a 

function of energy of adsorption and temperature;  

n is a sorption intensity parameter, where the strength of adsorption bonds is higher 

when n is higher; values of n > 1 represent favorable nature of adsorption. 

 

 

5.4.3. Sips model 

 

Sips isotherm is a combined form of Langmuir and Freundlich expressions 

deduced for predicting the heterogeneous adsorption systems and circumventing the 

limitation of the rising adsorbate concentration associated with Freundlich isotherm 

model. At low adsorbate concentrations, it reduces to Freundlich isotherm; while at high 

concentrations, it predicts a monolayer adsorption capacity, characteristic of the 

Langmuir isotherm. Generally, the equation parameters are governed mainly by the 

operating conditions such as the alteration of pH, temperature and concentration [122]. 
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The Sips isotherm is described by:  
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where:  

Ka is the Sips equilibrium constant and  

nS is the index of heterogeneity. 

 

 

5.5. Adsorption kinetics 

 

Kinetic performance of a given adsorbent is of a great significance for the 

practical applications. The kinetic parameter, that is helpful for the prediction of 

adsorption rate, gives important information for design of adsorption systems [123]. 

Residence time required for completion of adsorption may be established according to 

kinetic analysis [124]. To describe the rate of an adsorption process, three kinetic 

models are usually used.  

 

 

5.5.1. Pseudo-first order equation model  

 

 The Largergren model [125], proposed in 1898, is widely used for adsorption 

kinetics. It can be represented by the equation: 

 

t
q
d

d e =k1(qe-qt)        (15) 

where:  

qe and qt are adsorption capacity at equilibrium and at time t, respectively and  

k1 is the pseudo-first order rate constant of adsorption. 
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After integration and applying of boundary conditions: from t = 0 and qt = 0 to t 

= t to qt = qt, equation (15) becomes: 

303.2
log)log( 1

ete
tkqqq −=−        (16)  

 

5.5.2. Pseudo-second order model 
 

 If the adsorption involves rather complex interactions and the effects of transport 

phenomena and chemical reactions that are not experimentally inseparable, the pseudo 

second order model is used [126]. This model is based on the assumption that the 

adsorption capacity is proportional to the number of the active sites [127]. 

The model is expressed as: 

t
q
d

d t = k2(qe-qt)2          (17) 

where k2 is the pseudo-second order rate constant of adsorption. 

After integration and applying of boundary conditions: from t = 0 and qt = 0 to t 

= t to qt = qt, equation (17) becomes: 

e
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5.5.3. Intra-particle diffusion model 

 

The overall adsorption rate is shown to be controlled by one or more steps, e.g., 

film or external diffusion, pore diffusion, surface diffusion, and adsorption on the pore 

surface, or a combination of more steps [112]. 

In order to assess the extent to which diffusion, as the rate-controlling step, 

participates in the adsorption process, the intra-particle diffusion model, proposed by 

Weber and Morris [128] was used: 
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 qt = ktd t1/2 + C        (19) 
 

where: 

ktd is the intra-particle diffusion rate constant, and 

c is a constant that gives information about thickness of the boundary layer.  

  

This model considered the intra-particle diffusion as the rate controlling step 

when the value of c is close to zero [112]. 
 

 

5.6. Adsorption thermodynamics 

 

5.6.1. Influence of temperature on adsorption 

 

A number of adsorption studies deals with the influence of temperature on the 

adsorption. Temperature increase results in changes related to both kinetics and 

equilibrium due to:  

- increase in the kinetic energy which facilitates the access of the adsorbate to the active 

adsorption sites, 

- decrease in the mass transfer resistance; the increase in temperature causes a decrease 

in the thickness of the boundary layer surrounding the adsorbent, so that the mass 

transfer resistance of the adsorbate in the boundary layer decreases; it results in an 

increase in the diffusion rate of the adsorbate in the adsorbent,  

- lowering of pHPZC; the resulting decrease in surface charge at constant pH lead to a 

decrease in electrostatic repulsion; However, at very high temperatures physical damage 

to the adsorbent can occur, reducing its adsorption capacity [129,130]. 

In most cases, it is desirable to evaluate the adsorption capacity of an adsorbent 

at room temperature, since at higher temperature the operational cost of the process 

increases. 

Most studies of cations adsorption show that an increase in temperature 

enhances the adsorption process. In the anion adsorption case, there are several studies 

on the adsorption on oxide mineral with respect to temperature dependence. It is 
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generally expected that an increase in temperature causes a decrease in adsorption 

capacity because of the change in charge [130]. 

 

5.6.1. Evaluation of thermodynamic parameters 

 

Thermodynamic parameters of adsorption, free energy of adsorption (∆Go), 

enthalpy (∆Ho) and entropy (∆So), are calculated by using the thermodynamic 

equilibrium constant ka, which has also been derived in different ways in the literature 

[131]. 

According to thermodynamic law, ΔG° of adsorption is calculated as follows: 

 a
o kRTG ln−=∆        (20) 

where: 

T is the absolute temperature,  

R is the gas constant and  

ka is thermodynamic equilibrium constant.  
 

The relationship of ΔG° to enthalpy (ΔH°) and entropy (ΔS°) of adsorption is 

expressed as: 

       o∆G = °∆H – T o∆S                 (21) 

 

According to Liu [131], ka can be obtained using Langmuir constant kL, as 

follows: 

)(
e

L
sa ckk ⋅=

γ
                          (22) 

where: 

γe is the activity coefficient of the adsorbate at the adsorption equilibrium, and 

cs is the molar concentration of the standard reference solution (1 mol/dm3)  

 

In the case of a dilute solution of charged adsorbate (e.g., heavy metal ions), the 

activity coefficient in Eq. 22 would be close to unity, thus Eq. 22 can be reduced to: 
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L
o kRTG ln−=∆              (23) 

The substitution of Eq. 23 into Eq. 21 gives: 

   
R
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∆

−=ln               (24) 

 

By plotting lnkd vs 1/T, the enthalpy (ΔH°) and the entropy (ΔS°) of adsorption 

are determined from the respective slope and intercept of the straight line of (Eq. 24). It 

was concluded [131] that the thermodynamic equilibrium constant of adsorption can be 

reasonably approximated by the Langmuir equilibrium constant for neutral adsorbates or 

adsorbates with very weak charge and also for a dilute solution of charged adsorbate. In 

this case, the Langmuir equilibrium constant can be applied for determination of ΔG°. It 

was stated that special attention should be given if the equilibrium constants derived 

from other adsorption isotherm equations.  

In 1987, Khan and Singh [132] proposed the method used to calculate 

thermodynamic parameters (Eq. 28) by using distribution coefficient (kd): 

dk =
e

e

c
q

                (25) 

It was proposed that at very low concentrations of absorbate, kd is equal to the 

thermodynamic equilibrium constant ka. Thus, kd value is obtained by plotting (qe/ce) 

against ce and extrapolating ce to zero. The data fitline intersection with the vertical axis 

gives the value of kd. So obtained value is used for ΔH° and ΔS° determination 

according to Eq. 25 [80]. 

 

 

6. Synthesis, properties and application of magnetic composite adsorbents 

 

Recently, magnetic separation technology has attracted much attention and made 

progress in water treatment because of improvement material performance as an 

adsorbent, and its easy and fast separation.  
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Owing to adsorption/reduction activities and the possibility to easily separate 

from a treated water by applying an external magnetic field, magnetite nanoparticles 

have a huge potential in the field of water treatment [1,2] for the removal of different 

pollutants from contaminated waters, including lead [3,133,134], cadmium [4], 

hexavalent chromium [3,133], arsenic [6] and phosphates [135]. However, nanoparticles 

of magnetite tend to aggregate and oxidize in air, which decreases the efficiency in the 

process of water pollutants removal. To prevent the aggregation of magnetite 

nanoparticles, magnetic adsorbents are prepared by loading magnetic nanoparticles on 

the surface of carrier. At present, many kinds of materials have been used as carrier to 

prepare magnetic composite adsorbents for different contaminants removal from water. 

In most cases, the composites were synthesized by co-precipitation method, by adding 

base in deoxygenated suspension of the support with Fe2+ and Fe3+ ions. 

 Besides by co-precipitation method, Yuan et al. [7] synthesized 

montmorillonite-supported magnetite nanoparticles also by loading montmorillonite in 

synthesiyed magnetite hydrosol. Co-precipitation was performed by dropping the 

suspension of montmorilonite in alkaline solution into the ferric chloride/ferrous 

chloride solution, without changes the parameter of synthesis (one ratio Fe2+/Fe3+, one 

ratio iron salts/montmorilonite etc.). It was shown that montmorillonite-supported 

magnetite nanoparticles exist on the surface or inside the interparticle pores of the clay. 

The supported magnetite nanoparticles synthesized via hydrosol method were shown to 

be better dispersive than those synthesized via co-precipitation method and the 

unsupported magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a 

physico-chemical process, which included an electrostatic attraction followed by a 

redox process in which Cr(VI) was reduced into trivalent chromium. It was shown that 

the adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption 

followed the pseudo-second-order model. The adsorption data fit well with the 

Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite 

nanoparticles showed better adsorption capacity per unit mass of magnetite (15.3 mg/g) 

than unsupported magnetite (10.6 mg/g), and were more thermally stable than the 

unsupported sample.  
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 Nourmohamadi et al. [136] synthesized Fe3O4/bentonite magnetic composite by 

using NH3. As in other composites, magnetite particles were less aggregated then in 

pure magnetite. The composite was used for the copper removal from wastewater.   

 Commercial NaY zeolite was used to obtained zeolite/magnetite composite [9] 

by co-precipitation method, by adding NaOH in the suspension of NaY in iron salt 

solution. Just one sample was prepared and used for the removal of Cu2+, Cr3+ and Zn2+ 

from water. It was shown that the main magnetic phase formed is maghemite, not 

magnetite. It was suggested to selectively reduced maghemite to magnetite in order to 

enhance the magnetization of the composites. This increase in magnetization might be 

of importance to improve the magnetic separation of the adsorbent from its medium. 

The composites showed high adsorption capacities for the Cu2+, Cr3+ and Zn2+ in 

aqueous solution and no reduction of the adsorption was produced by the formation of 

the composite. In addition, the magnetic composites showed good chemical resistance 

in a wide pH range 5–11. The same synthesis procedure was applied for the synthesis of 

zeolite composite for the removal of pharmaceutical compounds from aqueous solution 

[137]. As in previous case, just one sample was prepared, without varying the synthesis 

parameters. 

Magnetic zeolite nanocomposite was successfully synthesized also by a two 

sequential steps method [138]. In the first step, nanocrystalline zeolite A was 

synthesized; then, magnetite nanocrystals were prepared in the presence of nanozeolite. 

The magnetic measurements showed that composite has sufficiently magnetic properties 

to be attracted by a magnetic field. The composite was used for the removal of Cs+ and 

Sr2+ ions. This nanocrystalline zeolite composite showed higher adsorption capacity for 

the ions than microcrystalline zeolite composite. Adsorption of the ions was fast and 

experimental kinetic data were well fitted with pseudo-second-order kinetic model.   

 In addition, magnetic zeolite composites with different ratio zeolite/magnetite 

were synthesized by adding previously synthesized Fe3O4 in the precursor of zeolite 

[139]. The addition of Fe3O4 makes the zeolite with good magnetic susceptibility and 

good magnetic stability regardless of the Fe3O4 loading, confirming the considerable 

separation efficiency. Additionally, Fe3O4 loading had alittle effect on removal of heavy 

metal by magnetic zeolite (Cu2+ and Pb2+).  
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Sepiolite was also used as a support for magnetite [10] and the composite 

adsorbents obtained by co-precipitation method was used for atrazine removal from 

water. The co-precipitation was performed in air, by adding ammonia in the sepiolite 

suspension with iron salts. Synthesis parameters were not changed and just one sample 

was prepared. It was shown that magnetite particles were uniformly distributed in 

sepiolite matrix and the composite had higher specific surface area than pure sepiolite. 

Magnetic hysteresis loop measurements indicate that composite had relatively high 

saturation magnetization, low remanent magnetization and small coercivity, which 

ensures separation by external magnetic field. The adsorption experiments show that the 

composite possessed high adsorption capacity for atrazine and the adsorption process 

followed the Langmuir isotherm model. Similar method of synthesis was applied for the 

sepiolite-magnetite composite which was used for the removal of Cd2+ and Co2+ ions 

[26], and the composite [140] used for safranin dye removal from water. 

Slightlly modified co-precipitation method was used for magnetite/paligorskite 

composite synyhesis [12]. Fe3+ ions were firstly adsorbed on palygorskite nanoparticles 

and then Fe2+ ions were added, followed by ammonia addition for co-precipitation. All 

characterizations confirmed the palygorskite nanoparticles’ surface modification by 

magnetite particles, which gave them a superparamagnetic behavior with high saturation 

magnetization. Despite the reduction of their specific surface area after surface 

modification of the palygorskite, which should result in reduced absorptive potential of 

this clay, the magnetic nanoparticles are easily removed from the medium by a simple 

magnetic separation procedure, proving that magnetic palygorskite nanoparticles can be 

effectively used to remove methylene blue from contaminated wastewaters. 

Magnetite composites were also prepared with activated carbon, at different 

ration magnetite/activated carbon [15] and with different bases [16]. It was shown that 

magnetic nanoparticles were successfully decorated on the surface of the activated 

carbon via precipitating mixture of ferrous and ferric chloride by NaOH or NH3 [16].  

The two precipitating agents cause significant differences on activated carbon. NaOH 

results a decrease in the surface area and a slight increase in the alkalinity of the sample, 

while NH3 causes a collapse in the texture and a significant surface acidity of the 

sample. The saturation magnetization of the sample obtained with NH3 was much lower.  

54 
 



It was shown that the impregnation with magnetite decreases the adsorption capacity of 

activated carbon for the Reactive Black 5 dye. 

  In adition to standard co-precipitation methods of the composites synthesis, 

some modifications of the synthesis were applied in order to improve dispersity of 

magnetite particles and general properties of the composites. For example, sepiolite-

supported magnetite nanocomposite with excellent dispersity was successfully prepared 

by a facile, robust and time-saving microwave-assisted co-precipitation of Fe2+ and Fe3+ 

in the mixed solvent of water and ethylene glycol [141]. The composite exhibited 

excellent removal ability to low concentrations of Cr(VI) and the removal capacity 

(33.4 mg/g, per unit mass of magnetite) at pH 3.0 was higher than that of the 

unsupported magnetite nanoparticles (22 mg/g). In addition, magnetic sepiolite 

nanofibers were prepared by thermal decomposition of organic iron precursors [11]. The 

obtained composites had a high specific surface area, high loading amount, the non-

aggregated nature of magnetite nanocrystals, good dispersion and magnetic properties, 

which make them promising for use as a separable adsorbent for As(III) removal with 

high adsorption capacity and magnetic separation properties.  

 Regardless of some improvements in the synthesis of magnetic composites, it is 

obvious that co-precipitation method was not optimized, i.e. the synthesis was 

performed usually under constant conditions, without examining the influence of 

synthesis parameters on the composites properties and the adsorption capacity. 
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7. Experimental procedure 

7.1. Materials 

Natural sepiolite (SEP) from Andrići (Serbia), natural zeolite (NZ) from Slanci 

locality (Serbia), and acid-activated sepiolite (ASEP), prepared according to the 

previous study [20], were used as the starting materials. Briefly, ASEP was prepared by 

10 h stirring of dispersion of 10 g of sepiolite in 100 cm3 of 4 M HCl solution, at the 

room temperature. The solid was then separated from the liquid phase by centrifugation 

and washed with distilled water until Cl- ion free. The obtained sample was dried at 110 

°C for 2 h. 

The reagent grade chemicals such as NaOH, FeCl3·6H2O, FeSO4·7H2O, 

Cd(NO3)2, K2Cr2O7, KH2PO4, Basic Yellow 28 and C.I. Reactive Orange 16 were used 

without any further purification. Structures of dyes Basic Yellow 28 and C.I. Reactive 

Orange 16 are shown in Fig. 17.  

 

 
 

  a)       b) 

Fig. 17. Structure of dye: a) Basic Yellow 28, b) C.I. Reactive Orange 16. 

 

 

7.2. Preparation of magnetic nanocomposites and pure magnetite  

 

The sepiolite-magnetite and zeolite-magnetite composites were prepared by the 

precipitation of magnetite onto the SEP, NZ and ASEP surfaces.  

Two procedures were applied for the MNCs synthesis: 

Procedure 1: 5 g of SEP or ASEP or NZ powder was first added into 500 cm3 of 1 M 

NaOH or NH3 solution under stirring to make a suspension, which was further kept 

under a N2 atmosphere for 30 min. After dissolving 4.51 g of FeCl3·6H2O and 2.31 g 
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FeSO4·7H2O (molar ratio of Fe2+:Fe3+ = 1:2) in 100 cm3 of distilled water that was 

deoxygenated by bubbling N2 gas for 30 min, the solution was kept under a N2 

atmosphere in a water bath at ~ 60 oC. Then, the suspension of SEP or ASEP or NZ in 

NaOH solution was dropped into the solution, followed by the stirring of the mixture for 

2 h at the same temperature. The SEP-based composites were prepared also using 1.5 M 

NaOH solution and with different quantity of iron salts in order to obtain composite 

with 50 % more (6.77 g FeCl3·6H2O and 3.46 g FeSO4·7H2O) or 50 % less (2.25 g 

FeCl3·6H2O and 1.15g FeSO4·7H2O) magnetite.  

Procedure 2: First, 4.51 g of FeCl3·6H2O was dissolved in 500 cm3 deionized water and 

then 5 g of SEP, ASEP or NZ was added, followed by treatment in an ultrasonic bath 

for 15 min. The dispersion was bubbled by a N2 gas for 30 min before the solution of 2. 

31 g of FeSO4 .7H2O in 100 cm3 deoxygenated water was added. The mixture was 

stirred for 30 min under a N2 atmosphere and then placed in a water bath, at ~ 60 0C, 

followed by the drop wise addition of the NaOH or NH3 solution (25%) until a black 

precipitate was formed. The suspension was aged for 2 h at the same temperature. The 

synthesis with NH3 was repeated with ratio Fe2+/Fe3+ = 1:1.5 for all supported materials, 

SEP, ASEP and NZ. 

The pure magnetite was synthesized by the following procedure: the solution of 

4.51 g of FeCl3·6H2O and 2. 31 g of FeSO4·7H2O in 100 cm3 deionized degassed water 

was kept under a N2 protection in a water bath at ~ 60 oC and NaOH solution (25 %) 

was added drop wise until a black mixture was formed (~ 15 cm3). The mixture was 

stirred and aged for 2 h at 60 oC.   

In all cases, after magnetic separation or filtration, the solid phase was washed 

three times with deoxygenated deionized water (100 cm3) and finally with ethanol (50 

cm3). The drying was performed under vacuum at 60 oC until constant mass.  

Schematic presentation of the procedures used for the composite synthesis is 

given in Fig. 18. 
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Procedure 1                                           Procedure 2                       
 

5 g SEP/ASP/NZ in 500 cm3 
of NaOH or NH3 solution

100 cm3 of Fe2+ + Fe3+  solution 
(N2 treated) in water bath (60 ºC)

stirring for 2 h at 60 ºC

magnetic separation  and/or 
filtration

washing with water and etanol

vacuum drying at  60 ºC

dropping  into    

stirring for 30 min at 60 ºC

magnetic separation  and/or 
filtration

washing with water and etanol

vacuum drying at  60 ºC

addition of NaOH or NH3  

5 g SEP/ASP/NZ in 500 cm3 
of Fe3+ solution (N2 treated) +
100 cm3 of Fe2+ (N2 treated) 

                                     

 
 

                                                             

Figure 18. Schematic presentation of the procedures used for the composite synthesis 

 

A qualitative assessment of the magnetization of the composites was 

demonstrated by a hand-held magnet. Examples of the magnetization assessment are 

shown in Fig. 19. 
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                                       a) 

 
                                   b) 

 
                                        c) 

 
                                   d) 

 
                                          e) 

 
                                   f) 

 

Fig. 19. A qualitative assessment of the magnetization of the: a) pure magnetite, b) SEP-

M(1)NaOH(1:2), c) NZ-M(1)NaOH(1:2), d) SEP-M(2)NH3(1:2), e) ASEP-

M(2)NH3(1:2), f) NZ-M(2)NH3(1:2). 

 

 

7.3. Characterization 

 

The X-ray diffraction (XDR) analysis of the samples was carried out with an 

ITAL STRUCTURES APD 2000 diffractometer using CuKα radiation, in the 2θ angle 

range from 5° to 50°, with a 0.02° step. The average crystallite sizes of the compounds 

in the composites were calculated by applying the Scherer equation [142]:  
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θβ

λ
cos
kD =                                             (26) 

where: D - crystallite size, k - a dimensionless shape factor, λ - X-ray wavelength, θ - 

diffraction angle, and β - the peak width at the half-maximum height after subtraction of 

the instrument broadening. 

The FTIR analysis was performed on a MB BOMAN HARTMANN 100 

instrument in the wave number range from 4000 to 400 cm−1. The samples were 

prepared by the KBr method, with a sample to KBr ratio of 1:150.  

The particles morphology of the samples was observed by a Tescan MIRA3 

field emission gun scanning electron microscope (FESEM), with electron energies of 20 

kV in a high vacuum. The samples were sputter-coated with an Au-Pd alloy to ensure 

the surface conductivity.  

The TEM analysis of samples was performed on a JEOL T-100 instrument. The 

samples were ultrasonically dispersed in ethanol to form a dilute suspension. A drop of 

the suspension was applied onto a holy carbon film supported by a copper-mesh TEM 

grid and air-dried at room temperature. 

The specific surface area (SBET) and the pore size distribution of the samples 

were determined using the nitrogen adsorption–desorption isotherms obtained by a 

Micrometrics ASAP 2020 instrument. Before the sorption measurements, the samples 

were degassed at 150 °C for 10 h under reduced pressure. The SBET of the samples were 

calculated according to the BET method [143], taking into account the linear part of the 

nitrogen adsorption isotherm. The volume of the mesopores and the pore size 

distribution were analyzed according to the Barrett, Joyner and Halenda (BJH) method 

[144], from the desorption isotherm. The volume of the micropores was calculated 

according to the α-plot analysis [145].  

The differential thermal and thermo-gravimetric analyses were conducted on an 

SDT Q600 TGA/DSC instrument (TA Instruments), at a heating rate of 20 °C/min, with 

less than 10 mg of the sample. The analyses were done in air, with a flow rate of 100 

cm3/min. 

The magnetic measurements were performed using a Quantum Design MPMS 

XL-5 SQUID magnetometer. The DC magnetization measurements were carried out as 

a function of temperature (T = 5-300 K) in the magnetic field of 100 Oe. The 
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magnetization vs. magnetic field strength measurements (hysteresis) were performed at 

temperatures 5 K and 300 K in the fields up to 50 kOe. 

The point of zero charge (PZC) was determined by a batch equilibration method 

[20,78], in KNO3 solutions having concentration of 0.1 M, 0.01 M or 0.001 M. The 

initial pH values (pHi) of KNO3 solutions (20 cm3) were adjusted by addition of 0.1 M 

HNO3 or 0.1 M KOH, in the pH range from 3 to 9. Then 0.02 g of the sample was added 

to the solution and kept under constant stirring for 24 h at 25 ºC. Finally, the samples 

were filtrated and the pH values of the filtrates (pHf) were measured. The PZC was 

determined from the pHf vs. pHi dependence as the pH value of a plateau [20,78].  

 

 

7.4. Adsorption experiments 

  

The adsorption experiments were performed by batch technique to investigate 

the removal of Cd2+, chromates (Cr(VI)), phosphates, Basic yellow 28 dye and C.I. 

Reactive Orange 16 dye onto pure compounds and MNCs. The solutions were prepared 

by dissolving Cd(NO3)2, K2Cr2O7, KH2PO4, Basic Yellow 28 and C.I. Reactive Orange 

16, respectively, in deionized water. The general method used for the adsorption 

experiments is described as follows: 20 cm3 of solution was placed in 50 cm3 reagent 

bottle, the pH value was adjusted and then the constant amount of adsorbent (0.02 g) 

was added to each bottle, followed by shaking for a given period of time. 

For the purpose of determining the adsorption isotherms, solutions of different 

concentrations were prepared and equilibrated with an adsorbent at 25 oC for 24 h, at the 

initial pH value (pHi) of 7.0 ± 0.1 (Cd2+), 2.0 ± 0.1 (chromates), 5.0 ± 0.1 (phosphate), 

5.0 ± 0.1 (Basic Yellow 28) and 4.0 ± 0.1 (C.I. Reactive Orange 16).  

The effect of temperature on Cd2+ and Cr(VI) adsorption was conducted for 

some samples by determining the adsorption isotherms at different temperatures, under 

the same conditions as those employed for the determination of the adsorption isotherms 

at 25 oC. 

The amounts of ions retained by the adsorbents at equilibria, qe (mg/g), were 

calculated using the equation:      
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         qe = V
m

cc
⋅

− ei                                (27)   

where ci is the initial metal ion concentration (mg/dm3), ce is the equilibrium 

concentration (mg/dm3) of metal ions in the solutions, V is volume of solution (dm3) and 

m is mass of the adsorbent (g). 

The kinetics analysis of the Cd2+ adsorption was done using solution of 100 

mg/dm3 concentration. For the kinetic analysis of Cr(VI) adsorption, solutions of 40 

mg/dm3 concentration was used. The suspensions of adsorbent in ion solutions were 

equilibrated for different time intervals and the amounts of ions retained by the 

adsorbents at time t, qt (mg/g), were calculated using the equation:    

 

                               qt = V
m

cc
⋅

− ti                                                (28)                      

where and ct (mg/dm3) is the metal ion concentration in the solution after time t. 

After adsorption of Cd2+ and Cr(VI), the adsorbent was separated from the 

suspension using filter paper, whereas in the case of adsorption of dye centrifugation 

was used. The final solution pH (pHf) was measured using a pH meter (Ino Lab WTW 

series pH 720). The initial concentrations of Cd2+ and Cr(VI), as well as the 

concentrations after the adsorption, were determined using the atomic absorption 

spectrometer (AAS) (Perkin Elmer 730). The concentrations of phosphate, Basic yellow 

28 and C.I. Reactive Orange 16 were determined by UV–Vis spectroscopy (Shimadzu 

1800 instrument). The solutions for analysis by UV–Vis spectroscopy were prepared by 

passing through a syringe filter (pore size of 0.22 μm). Absorbance measurements were 

made at 880 nm (for phosphate), 439 nm (for Basic Yellow 28) and 493 nm (for C.I. 

Reactive Orange 16).  

The adsorption equilibrium data were fitted to the Langmuir (Eq. 12), 

Freundlich (Eq. 13), and Sips (Eq. 14) isotherms. The adsorption isotherms constants 

were determined by non-linear regression analysis using the OriginPro 8.5. 

 The adsorption kinetics data were analyzed by the pseudo-first (Eq. 15) and 

pseudo-second order (Eq. 16) kinetics models. 

Thermodynamic parameters of adsorption were calculated by using equations 21 

– 25. 
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8. Results and discussion 
 

8.1. A qualitative assessment of the magnetization 

 

A qualitative assessment of the magnetization of the composites and the 

synthesis conditions are systematized in Table 4. 

Generally, for the magnetite synthesis by a co-precipitation (Eq. 5 - 10) it is 

necessary to prevent Fe2+ oxidation and to provide enough OH- ions for Fe2+ and Fe3+ 

co-precipitation [21]. During the synthesis of the composites and pure magnetite, a 

nitrogen bubling provided an inert atmosphere to prevent the oxidation, while the 

quantity of OH- ions was optimized by the pH value adjustment using NaOH or NH3. 

When a support like sepiolite or zeolite is present in the reaction mixture, the pH value 

is determined not just by the quantity of base added, but also by the interaction of the 

surface functional groups of the support with H+ (at pH < pHpzc) or OH- (at pH > pHpzc) 

ions from the solution [20].  

In the Procedure 1 of the composite synthesis (Figure 18, Table 4), the 

suspension of a support was stirred with base, before the mixture of Fe2+ and Fe3+ was 

added. The idea was to form, in that way, negatively charged sites on the support 

surface, which can attract Fe3+ and Fe2+ in order to ensure magnetite precipitation 

directly on the surface, providing a better dispersion of the magnetite particles. In the 

case of ASEP as the support, because of a high interaction of the acid functional groups 

with OH- ions, there was not enough OH- ions in the solution for magnetite formation 

and the red material without magnetite properties was formed (Table 4), probably the 

Fe(OH)3/ASEP composite. As the solubility of Fe(OH)3 is much lower than of Fe(OH)2, 

when there was not enough OH- ions for Fe3+/Fe2+ co-precipitation, Fe(OH)3 was 

precipitated. The increase of the concentration of the NaOH/NH3 solution did not 

provide conditions for magnetite synthesis, probably because ASEP reacted with base at 

very high concentrations. Thus, the composites with ASEP formed by the Procedure 1 

were without magnetic properties (samples ASEP-M(1)NaOH(1:2) and ASEP-

M(1)NH3(1:2)). 
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Table 4. The experimental conditions of the composites preparation and the assessment of the magnetization (yes – magnetic sample, no – 

sample without magnetic properties) 

 

Sample 

 

Support  Base Procedure FeSO4·7H2O (g) FeCl3·6H2O (g) 
 

Fe2+:Fe3+ ratio Magnetization 

SEP-M(1)NaOH(1:2)  

SEP 

NaOH 1 

2.31 4.51 

1:2 
yes 

SEP-M(2)NaOH(1:2) 2 

SEP-M(1)NH3(1:2) 
NH3 

1 

SEP-M(2)NH3(1:2)  2 

SEP-M(1)NaOH(1:2)* NaOH (1.5 M) 

1 SEP-M(1)NaOH(1:2)more 
NaOH 

3.46 6.77 

SEP-M(1)NaOH(1:2)less 1.15 2.25 

SEP-M(2)NH3(1:1.5) NH3 2 2.78 4.06 1:1.5 

ASEP-M(1)NaOH(1:2) 

ASEP 

NaOH 
1 

2.31 4.51 

1:2 
no ASEP-M(2)NaOH(1:2) 2 

ASEP-M(1)NH3(1:2) 

NH3 

1 

ASEP-M(2)NH3(1:2) 2 

yes 

ASEP-M(2)NH3(1:1.5) 2.78 4.06 1:1.5 

NZ-M(1)NaOH(1:2) 
NZ 

NaOH 1 
2.31 4.51 1:2 

NZ-M(2)NH3(1:2) 
NH3 2 

NZ-M(2)NH3(1:1.5) 2.78 4.06 1:1.5 
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 In the Procedure 2, NaOH or NH3 was added in the suspension of the support 

with Fe2+ and Fe3+ and the co-precipitation could take place before the interaction of 

OH- ions with the functional groups of the support. When NH3 was used, the magnetic 

composites with both SEP and ASEP were obtained, whereas the magnetic properties 

were not achieved when NaOH, as a strong base, was applied for the co-precipitation 

in the presence of ASEP (sample ASEP-M(2)NaOH(1:2)). 

  The magnetic composites based on NZ as a support were prepared 

intentionally with NaOH by Procedure 1 and with NH3 by Procedure 2. 

 Hereinafter, the properties of the samples with magnetic properties (MNCs) 

were analyzed in comparison to the properties of SEP/ASEP/NZ and Fe3O4. 

 

 

8.2. XRD analysis 
 

The XRD patterns of the magnetite composites together with the patterns of 

the pure components are shown in Figs. 20-22. The patterns of SEP and ASEP (Figs. 

19 and 20, respectively) show that sepiolite (JCPDS card no. 13-0595) is the only 

phase in the samples. According to the previous research, the crystallinity of ASEP is 

lower due to acid-activation [20]. The XRD pattern of the NZ sample (Fig. 22) 

revealed clinoptilolite (C) as the dominant phase with lower contents of quartz (Q) 

and feldspar (F).    

The presence of the peaks characteristic for SEP and ASEP are obvious in the 

patterns of the SEP/ASEP-based magnetic composites (Figs. 20 and 21, respectively), 

indicating that the SEP and ASEP structures were preserved. The intensities of the 

peaks for SEP and ASEP in XRD patterns of the composites are lower than for pure 

compounds, due to the lower quantity of SEP or ASEP in the composites because of 

magnetite presence. The sizes of the sepiolite crystalite in the MNCs were 

approximately the same as in SEP (11.0 nm)/ASEP (8.1 nm), indicating that the 

crystallinity of SEP and ASEP did not decrease during the composites preparation. 

The values of the sepiolite crystallite sizes were calculated by using the Sheerer 

equation (Eq. 26), according to the width of the peak at 2θ ~ 7.2o. 
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Fig. 20. XRD patterns of the Fe3O4, SEP and the SEP-based MNCs. 
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Fig. 21. XRD patterns of the Fe3O4, ASEP and the ASEP-based MNCs. 
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Fig. 22. XRD patterns of the Fe3O4, NZ and the NZ-based MNCs. 
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The main diffraction peak of Fe3O4 (JCPDS card no. 65-3107) is observed at 

2θ of ~ 35.5o, and it was used for calculation of the size of crystallite in the pure 

magnetite (10.2 nm). This peak is visible in the XRD patterns of the SEP/ASEP-based 

magnetic composites, but it partially overlapped with the sepiolite peak at 2θ ~ 35o. 

Therefore, the size of magnetite crystallites in MNCs could not be precisely calculated 

according to the XRD analysis. However, taking into account that intensity and width 

of the peak in the patterns of the MNCs are similar as in the pattern of pure magnetite 

(Figs 20 and 21), it can be stated that the Fe3O4 crystallites in MNCs are of similar 

sizes as in the pure magnetite. Differences are visible in the case of samples with 

lower and higher content of magnetite (SEP-M(1)NaOH(1:2)less and SEP-

M(1)NaOH(1:2)more). The most intensive magnetite peak is hardly noticeable in the 

pattern of the SEP-M(1)NaOH(1:2)less sample, probably because of the low quantity 

of magnetite in the sample. On the other hand, in the case of the sample with higher 

content of magnetite, SEP-M(1)NaOH(1:2)more, wide peak can indicate the presence 

of small crystallites as a result of the formation of high number of nuclei at high 

concentration of Fe2+ and Fe3+. In addition, it seems that size of magnetite crystallites 

in the sample ASEP-M(2)NH3(1:1.5) is lower than in the sample ASEP-

M(2)NH3(1:2). 

The XRD patterns of the zeolite-based MNCs obtained with NH3 at different 

Fe2+ and Fe3+ ratios are very similar (Fig. 22). The intensities of the peaks of both 

clinoptillolite and magnetite in the pattern of sample NZ-M(1)NaOH(1:2) are lower 

and peaks are wider than in the patterns of samples NZ-M(2)NH3(1:2) and NZ-

M(2)NH3(1:1.5). Lower intensities of the clinoptilolite peaks can be explained by the 

reaction of the clinoptilolite with NaOH, i.e. alkali leaching which can destroy the 

crystal structure of clinoptilolite. As in the SEP/ASEP composites, the size of 

magnetite crystallites in the zeolite-based MNCs could not be determined due to 

overlapping of the zeolite peak with the magnetite peak. According to the peak 

intensities and width, it can be supposed that size of crystallites of magnetite in the 

sample NZ-M(1)NaOH(1:2) is smaller than in samples NZ-M(2)NH3(1:2) and NZ-

M(2)NH3(1:1.5). 
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8.3. FTIR analysis 

 

The FTIR spectra of the MNCs are shown in Figs. 23-25 together with the 

spectra of pure components, SEP/NZ/ASEP and Fe3O4. 
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Fig. 23. FTIR patterns of the Fe3O4, SEP and the SEP-based MNCs. 

 

The sharp peak in the spectrum of Fe3O4 at 593 cm-1 can be ascribed to 

vibrations of Fe–O bonds [146-148], while peaks at 3434 cm-1 and 1634 cm-1 could 

correspond to the stretching and bending vibrations of the hydroxyl groups from 

adsorbed water, respectively [146,149]. The spectra of SEP and ASEP have also a 

peak at 3434 cm-1, which corresponds to vibration of hydroxyl groups from adsorbed 

and zeolitic water from the sepiolite [20]. In addition, the band corresponding to the 

stretching vibrations of the hydroxyl groups attached to the octahedral Mg2+ ion in the 

structure of sepiolite is positioned at 3690 cm-1, while the band at 3565 cm-1 originates 
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from coordinated water in the sepiolite structure. The peak at 1634 cm-1 in the spectra 

of SEP and ASEP corresponds to the vibration of adsorbed, zeolitic and coordinated 

water. The bands in the 1250–400 cm-1 range are characteristic of silicate structure of 

sepiolite: bands assigned to Si–O–Si vibration, centered at 1016 and 460 cm-1; bands 

at 1215, 1076 and 980 cm-1 due to Si–O bonds; band at 437 cm-1 originating from Si–

O–Mg bonds and bands at 690 and 637 cm-1 corresponding to the Mg–OH bond 

vibrations.   
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Fig. 24. FTIR patterns of the Fe3O4, ASEP and the ASEP-based MNCs. 

 

In the FTIR spectra of NZ and zeolite-based MNCs, the main band 

characteristic for the zeolite structure is at about 1060 cm-1, which is attributed to 

asymmetric O-(Si,Al)-O stretching vibration. This band is sensitive to the content of 

framework Si and Al [150]. The same position of the band in the spectra of the 

composites obtained with NH3 as in the spectra of NZ (~ 1062 cm-1) indicates 

insignificant removal of framework Si and Al during the composite preparation. On 

the other hand, the shifting of the band position in the spectrum of the sample NZ-
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M(1)NaOH(1:2) to lower wave numbers (~ 1054 cm-1) indicate different content of 

framework Si and Al in comparison to NZ, probably as a result of alkali leaching, as 

it was assumed according to XRD analysis. 
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Fig. 25. FTIR patterns of the Fe3O4, NZ and the NZ-based MNCs. 

 

The bands at 460 cm-1, 604 cm-1, 791 cm-1 and 1210 cm-1, corresponding to  

the vibration of the (Si,Al)O4 groups and bonds inside these groups, are at the same 

positions for all zeolite-based MNCs, indicating unchanged basic zeolite framework. 

In the spectrum of sample NZ-M(1)NaOH(1:2), the intensity of the band at 604 cm-1 

is lower and the width is higher than in the spectra of samples obtained with NH3, 

indicating some differences in the structure of these samples. As in the case of SEP-

based composites, due to the presence of the characteristic zeolite bands, the typical 

magnetite peak at 593 cm-1 can not be clearly identified in the spectra of the MNCs. 

The bands corresponding to the stretching and bending vibrations of the 

hydroxyl groups from adsorbed/zeolitic water are positioned at ~ 3430 and 1640  

cm-1, respectively, for the composites and pure compounds. The band (shoulder) at 
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3620 cm-1, corresponds to the bridging OH groups in –Al–OH–Si–, which is 

attributed to the hydrogen atoms on different oxygen atoms in the framework, is not 

visible in the spectrum of NZ-M(1)NaOH(1:2). The disappearance of this band for 

the sample NZ-M(1)NaOH(1:2) indicates that these specific O–H bonds do not 

vibrate or do not exist because of the changes caused during the formation of the 

new system. However, the band is visible in the spectrum of samples obtained with 

NH3, indicating lower degree of the interaction of the zeolite surface with NH3 than 

with NaOH. Namely, during the composite synthesis, due to strong basic condition, 

the surface functional groups lose their hydrogen ions and become negatively. The 

basic conditions were stronger when NaOH was used, so the removal of hydrogen 

ions was more intensive. In addition, in the spectra of composites obtained by using 

NH3, wide band at ~ 3300 - ~3050 cm-1 is visible, while this band is not appeared in 

the spectrum of the sample NZ-M(1)NaOH(1:2). This band can be assigned to the 

polymeric hydrogen bonds [150], indicating higher content of OH groups in the 

samples obtained with NH3. 

Similar as for SEP/ASEP-based composites, there are differences in the 

spectra of the composites obtained with NH3 and NaOH in the region around 1400 

cm-1: the band is sharper and more intensive in the spectra of the MNCs obtained 

with NH3.  

The FTIR spectra of the MNCs (Figs. 23- 25) showed that there are some 

differences between samples obtained by using NH3 and NaOH and confirmed that 

the synthesized magnetic composites maintained the basic structure of 

sepiolite/zeolite.  

 

 

8.4. Specific surface area and pore size distribution analysis 

 

 The nitrogen adsorption/desorption isotherms and mesopore size distribution 

(PSD) curves of the MNCs and pure compounds are shown in figs 26-28, while the 

textural properties of the samples are given in Table 5.  
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Fig. 26. N2 adsorption–desorption isotherms and pore size distributions of the Fe3O4, 

SEP and the SEP-based MNCs. 
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Fig. 27. N2 adsorption–desorption isotherms and pore size distributions of the ASEP 

and ASEP-based MNCs. 
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Fig. 28. N2 adsorption–desorption isotherms and pore size distributions of the NZ and 

NZ-based MNCs. 

 

 The specific surface area of SEP sample is high (Table 5) owing to structural 

microporosity, i.e. the presence of channels in the structure, and inter-fibre micro- and 

mesoporosity [34]. The specific surface area of ASEP is even higher (Table 5) due to 

acid activation [20]. The PSD curves of SEP and ASEP (Figs. 26b and 27b) show 

primary peak at Dmax = 3.2 nm, which corresponds to the main pore population in the 

samples, but larger mesopores are also present, and the mean pore diameter, Dmean, is 

larger than Dmax (Table 5).  
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Table 5. The textural properties of the Fe3O4, SEP, ASEP and the magnetic 

composites 
 

Sample 
SBET 

(m2/g) 

Vmicro 

(cm3/g) 

Vmeso 

(cm3/g) 

Dmax 

(nm) 

Dmean 

(nm) 

SEP 359.9 0.139 0.343 3.2 6.7 

ASEP 461.6 0.161 0.368 3.2 4.8 

NZ 26.7 0.0037 0.092 4.0 18.0 

Fe3O4 89.0 0.027 0.463 21.6 18.8 

SEP-M(1)NaOH(1:2) 212.6 0.074 0.442 4.1 8.9 

SEP-M(1)NH3(1:2) 250.9 0.098 0.379 4.1 7.3 

SEP-M(1)NaOH(1:2)* 160.6 0.051 0.427 3.8 10.2 

SEP-

M(1)NaOH(1:2)more 
182.6 0.059 0.354 3.7 7.9 

SEP-

M(1)NaOH(1:2)less 
215.1 0.081 0.498 4.0 10.6 

SEP-M(2)NaOH(1:2) 219.7 0.079 0.439 3.4 8.6 

SEP-M(2)NH3(1:2) 174.5 0.057 0.443 3.0 11.2 

SEP-M(2)NH3(1:1.5) 173.1 0.058 0.432 3.12 11.2 

ASEP-M(2)NH3(1:2) 238.0 0.079 0.585 3.8 9.7 

ASEP-M(2)NH3(1:1.5) 251.2 0.085 0.636 3.1 10.8 

NZ-M(1)NaOH(1M) 112.8 0.0016 0.561 24.7 18.9 

NZ-M(2)NH3(1:2) 63.4 0.019 0.220 3.70 12.4 

NZ-M(2)NH3(1:1.5) 57.9 0.018 0.206 3.70 13.3 

   SBET - specific surface area, Vmicro  - micro pore volume, Vmeso  - meso pore volume,    

   Dmax - maximum pore diameter, and Dmean - mean pore diameter. 

 

 The specific surface area of zeolite is much lower than of sepiolite and it is 

close to the values published for natural clinoptilolite [151]. The dominant pores are 

of 4.0 nm size, but the value of the mean pore diameter (Table 5) indicates the 

presence of larger pores in the sample. The results indicate that SEP and ASEP are 

micro/mesoporous materials, while zeolite contains dominantly mesopores. The pure 

magnetite contains dominantly mesopores, which are pores among magnetite particles 

76 
 



[151,152], while a very low volume of micropores (Table 5) indicates that the 

particles are almost nonporous. The broad pore size distribution of magnetite (Fig. 

26b) shows the presence of pores of different sizes, probably because of the presence 

of particles of different sizes and because of different degree of the particles 

aggregation. 

 The results (Table 5) show that the values of the specific surface areas of the 

SEP/ASEP-based composites are between the values for pure compounds, Fe3O4 and 

SEP/ASEP. The mesopore volume of the MNCs is higher, while the micropore 

volume is lower than of SEP/ASEP (Table 5), which can be a consequence of a partial 

closing of sepiolite structural micropores during the modification and formation of 

new mesopores between magnetite particles in the composites. However, such results 

can be explained also by the fact that the composites contain some quantity of the 

compound with high SBET (sepiolite) and some quantity of compound with low SBET 

(magnetite). By comparing SEP-M(2)NH3(1:2) and ASEP-M(2)NH3(1:2), obtained by 

the same procedure and the same base, it is obvious that composite with higher SBET 

and micro- and mesopore volume was obtained by using the support with higher SBET, 

Vmicro and Vmeso. 

 With the exception of samples SEP-M(1)NaOH(1:2)* and SEP-

M(1)NaOH(1:2)more, the specific surface area, volume of mesopores and volume of 

micropores of the SEP-based MNCs obtained with NaOH are very similar, despite the 

different procedures of synthesis. It is obvious that higher quantity of iron salts and 

higher concentration of NaOH caused lower SBET, Vmicro and Vmeso, probably because 

of higher magnetite content and aggregation, as well as higher closing of sepiolite 

micropores. In the case of MNCs obtained with NH3, the specific surface area of the 

sample obtained by first procedure is higher due to higher volume of micropores, 

while mesopores volume is lower than of the sample obtained by the second 

procedure (Table 5). The ratio Fe2+/Fe3+ had almost no influence on the textural 

properties of the composites, especially in the case of SEP-based MNCs; the only 

difference is the appearance of the maximum at PSD curve of SEP-M(2)NH3(1:1.5) 

sample at 48.8 nm, indicating higher content of larger pores, probably between the 

bundles of fibers of sepiolite. In the case of ASEP-based MNCs, small differences can 

be a result of the different content of magnetite in the samples because of the different 

Fe2+/Fe3+ ratio. 
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 Similarly as for SEP-based MNCs, the ratio Fe2+/Fe3+ had no significant 

influence on the properties of the zeolite-based MNCs, obtained with NH3: there is 

small difference in mesopore volume and mean pore size, which caused small 

differences in SBET. In comparison to pure zeolite, all zeolite-based MNCs have larger 

specific surface area and mesopore volume. Obviously, deposition of magnetite 

particles on the zeolite surface provided higher specific surface area owing to the 

presence of small particles.  

The shape of PSD curve for zeolite-based MNCs, obtained with NH3 is similar 

as of NZ (Fig. 28 b and d), but the pore volume is significantly higher. On the other 

hand, PSD curve of the sample NZ-M(1)NaOH(1:2) is similar to the curve of 

magnetite and the specific surface area is higher than of other zeolite-based MNCs 

and higher than of pure magnetite. In addition, the mesopore volume is higher than of 

zeolite and magnetite. Such results can be explained by the good distribution of the 

magnetite particle on the zeolite surface and also by the increase of the zeolite specific 

surface area during the composite preparation due to some alkali leaching, as it was 

supposed according to the XRD analysis. 

 

 

8.5. SEM and TEM analysis  

 

 Electronic microscopy analyses were used to reveal morphological 

characteristics of the pure compounds and the composites. The representative 

scanning electron micrographs (SEM) of SEP, ASEP and Fe3O4 and transmission 

electron micrograph (TEM) of Fe3O4 are presented in Fig. 29. 

The particles of SEP and ASEP (Fig. 29 a and b) have a needle-like 

morphology, but these particles form bundles-like aggregates by the surface 

interaction between the individual needle-type particles [34]. It seems that ASEP 

contains slightly shorter and disintegrated particles in comparison to SEP, as a 

consequence of acid activation, but the acid treatment did not cause de-aggregation, 

i.e. formation of smaller aggregates. 
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a) (SEP) 

 
b) (ASEP) 

 
c) (Fe3O4) 

 

 
d) (Fe3O4) 

Fig. 29. SEM micrographs of: a) SEP, b) ASEP and c) Fe3O4; and d) TEM 

micrograph of Fe3O4 

 

Fig. 29c shows that pure magnetite consists of nearly spherical particles ~20-

30 nm in size, which are highly aggregated. Such type of magnetite powders is 

usually obtained by nucleation and growth from solution through rapid agglomeration 

of nanometric particles [21,22]. The TEM micrograph of the magnetite (Fig. 29d) 

shows faceted primary particles, with sizes of about 10 nm. Actually, these primary 

particles are the magnetite crystallites. 

 SEM micrographs of the SEP-based composites are shown in Figure 30, while 

the micrographs of ASEP-based composites in Figure 31. In addition, TEM 

micrographs of some SEP-based composites are presented in figure 32, and of ASEP-

based composite in figure 33. 
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a) (SEP-M(1)NaOH(1:2)) 

            
b) (SEP-M(2)NaOH(1:2)) 

           
c) (SEP-M(1)NH3(1:2)) 

              
d) (SEP-M(2)NH3(1:2)) 

       
e) (SEP-M(1)NaOH (1:2)*) 

            
f) (SEP-M(2)NH3(1:1.5)) 

80 
 



                    
g) (SEP-M(1)NaOH(1:2) more) 

     
h) (SEP-M(1)NaOH(1:2)less) 

 

Fig. 30. Scanning electron micrographs (SEM) of the composites: a) SEP-

M(1)NaOH(1:2), b) SEP-M(2)NaOH(1:2), c) SEP-M(1)NH3(1:2), d) SEP-

M(2)NH3(1:2), (e) SEP-M(1)NaOH (1:2)*, (f) SEP-M(2)NH3(1:1.5), (g) SEP-

M(1)NaOH(1:2) more and (h) SEP-M(1)NaOH(1:2)less. 

 

 
          a (ASEP-M(2)NH3(1:2)) 

 
           b (ASEP-M(2)NH3(1:1.5)) 

 

Fig. 31. Scanning electron micrographs (SEM) of the ASEP-based composites: a) 

ASEP-M(2)NH3(1:2) and b) ASEP-M(2)NH3(1:1.5). 
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a)  (SEP-M(1)NaOH(1:2)) 

 

 
b) (SEP-M(2)NaOH(1:2)) 

 
c)  (SEP-M(1)NH3(1:2)) 

 
d) (SEP-M(2)NH3(1:2)) 

 

Fig. 32. Transmission electron micrographs (TEM) of the composites: a) SEP-

M(1)NaOH(1:2), b) SEP-M(2)NaOH(1:2), c) SEP-M(1)NH3(1:2), d) SEP-

M(2)NH3(1:2). 

 
 

Fig. 33. Transmission electron micrographs (TEM) of the composite ASEP-

M(2)NH3(1:2). 
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The SEM micrograph of the SEP-M(1)NaOH(1:2) composite (Fig 30 a) shows 

both fine and aggregated magnetite particles distributed throughout the sepiolite 

matrix. Similar situation is observed in the case of the sample SEP-M(1)NH3(1:2) 

(Fig. 30 c), that seems to have the magnetite particles better dispersed. In the TEM 

micrographs of the composites (Figs. 32 a and c), the isolated fibers and tiny bundles 

of the sepiolite fibers are clearly visible. Also, the magnetite particles of ~ 10 nm in 

size and fine aggregates attached to the sepiolite fibers/bundles, can be observed. 

Despite the fact that the magnetite particles are not distributed on the surface of the 

sepiolite fibers/bundles entirely as separated particles, the presence of sepiolite 

provided formation of fine aggregates, i.e. decreasing of magnetite agglomeration in 

comparison to pure magnetite. In addition, the primary magnetite particles/crystallites 

are spherical, not faceted as in pure magnetite (Fig. 29 d). The morphology of the 

samples SEP-M(1)NaOH(1:2)* (Fig. 30 e), SEP-M(1)NaOH(1:2)more (Fig. 30 g) and 

SEP-M(1)NaOH(1:2)less (Fig. 30 h) are similar as morphology of the sample SEP-

M(1)NaOH(1:2). Regardless of the different content of magnetite in samples SEP-

M(1)NaOH(1:2)more and SEP-M(1)NaOH(1:2)less, significant differences in 

morphology were not observed (Figs. 30 g and h). 

According to SEM micrographs of the samples SEP-M(2)NaOH(1:2), SEP-

M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5) (Figs. 30 b, d and f), it is obvious that the 

magnetite particles are better dispersed in these composites than the samples obtained 

by the Procedure 1 (Figs. 30 a, c, e, g and h). Best dispersibility was achieved in the 

SEP-M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5) samples (Figs. 30 d and f), where the 

sepiolite fibers and fine bundles are uniformly decorated with the spherical particles 

and very fine aggregates of magnetite particles. The ratio Fe2+/Fe3+ did not have 

influence on the morphology of the composite (Figs. 30 d and f).  

The TEM analysis confirmed that spherical magnetite nanoparticles (~ 10 nm 

in size) and small aggregates were anchored on the surface of sepiolite fibers/bundles 

with high density in the SEP-M(2)NH3(1:2) sample (Fig. 32 d). In the case of the 

SEP-M(2)NaOH(1:2) sample, both the aggregates of very fine particles, smaller than 

10 nm in size, and the individual, larger faceted magnetite crystalite, sizes of ~ 30 nm, 

are present. 

The ASEP-M(2)NH3(1:2) and ASEP-M(2)NH3(1:1.5) composites contain 

large sepiolite bundles, larger than in the composites with SEP, and the magnetite 

aggregates larger than in the MNCs with SEP (Figs. 31 and 33). Obviously, stronger 
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interfibers bonds exist in ASEP than in SEP, which reduced disaggregation of the 

acid-activation of sepiolite and prevented good dispersibility of the magnetite 

particles.  

SEM micrographs of the natural zeolite and the obtained composites are 

shown in Fig. 34. A tabular morphology of the zeolite is seen in Fig. 34a. In the case 

of the zeolite-based composites, the individual magnetite particles, as well as 

aggregates, are attached to the surface of the zeolite particles (Figs. 34 b, c and d). It is 

obvious that the magnetite particles are better dispersed in NZ-M(2)NH3(1:2) and NZ-

M(2)NH3(1:1.5) (Figs. 34 c and d) than in composite NZ-M(1)NaOH(1:2) (Fig. 34 b), 

similar as in the case of SEP-based composite. 

 

 
a) (NZ) 

 
b) (NZ-M(1)NaOH(1:2)) 

 
c) (NZ-M(2)NH3(1:2)) 

 
d) (NZ-M(2)NH3(1:1.5)) 

Fig. 34. Scanning electron micrographs (SEM) of: a) NZ, b) NZ-M(1)NaOH(1:2), c) 

NZ-M(2)NH3(1:2) and d) NZ-M(2)NH3(1:1.5). 

 

The SEM and TEM analysis showed that the dispersibility of the magnetite 

particles depends on the type of the supported material (natural or acid-activated 
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sepiolite or zeolite), the type of base (NaOH or NH3) and the sequence of reagents 

mixing (Procedure 1 or Procedure 2), while the ratio Fe2+/Fe3+ did not have a 

significant influence on the dispersibility of the magnetite particles in MNCs. The best 

dispersibility was achieved by the Procedure 2, with ammonia as a precipitating agent 

and with the natural sepiolite or natural zeolite as the support media. 

 

 

8.6. Differential-thermal/thermo gravimetric analyses (DTA/TGA) 

 

 Differential-thermal and thermo gravimetric analyses were applied to 

investigate a thermal behavior of the composites. The SEP-based composites obtained 

at Fe2+/Fe3+ = 2 , by both bases and both procedures (SEP-M(1)NaOH(1:2), SEP-

M(1)NH3(1:2), SEP-M(2)NaOH(1:2) and SEP-M(2)NH3(1:2)) were chosen to 

investigate the influence of the type of base used for co-precipitation and the reagent 

mixing order on the thermal behavior. The results are presented in Fig. 35. 

 DTA patterns showed the presence of the peaks characteristic for both parent 

materials: the exothermal peaks in the region 200-350 ºC, indicating magnetite 

oxidation [153], and the exothermal peak at ~ 800 ºC, indicating the phase 

transformation of sepiolite to enstatite (MgSiO3) and SiO2 [20]. In addition, 

endothermal peak at about 100 ºC indicates the removal of physically adsorbed water 

and zeolitic water from sepiolite channels. 

 The TGA curves showed the weight loss in the whole temperature range 

because of the removal of different types of water from sepiolite: adsorbed, zeolitic, 

bound and constitutional water. The lost of constitutional water of sepiolite, 

dehydroxilation, takes place at temperatures just below its temperatures of 

transformation to enstatite (in the region from 730-780 ºC) [20]. On the other hand, 

the samples weight should be increased in the region from 200-350 ºC due to 

magnetite oxidation [153]. Apparently, the weight loss due to water removal is higher 

than the weight increase due to the magnetite oxidation, so the samples weight was 

continually decreasing. 

 Two exothermal peaks at ~ 200 ºC and ~ 310 ºC, indicating the magnetite 

oxidation, are visible on the DTA curves of the SEP-M(1)NH3(1:2) and SEP-

M(2)NH3(1:2) samples, while just one peak for the magnetite oxidation appeared on 

the DTA curves of the samples SEP-M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2).   
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Fig 35. The DTA patterns of the samples: a) SEP-M(1)NaOH(1:2), b) SEP-

M(2)NaOH(1:2), c) SEP-M(1)NH3(1:2) and d) SEP-M(2)NH3(1:2). 

 

 According to the literature [153], the oxidation of the magnetite occurs first 

on the surface of the particles, resulting in the formation of a protective film of Fe2O3 

around the particles (the first peak on the DTA curve) and then, at higher 

temperatures, the remaining magnetite is oxidized by diffusion of oxygen through the 

Fe2O3 layer into the magnetite structure (the second peak on the DTA curve).  

 The presence of just one peak on the DTA curves of the samples SEP-

M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2) indicates a one-step oxidation process or 

the overlapping of the peaks for the surface and the bulk oxidation. The overlapping is 

clearly visible for the sample SEP-M(2)NaOH(1:2). Such one-step oxidation process 
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can be explained by the presence of very small particles, where the surface oxidation 

is dominant. However, the SEM and TEM analyses showed the presence of particles 

of similar sizes in these samples as in the samples obtained by using NH3. Therefore, 

it can be supposed that the SEP-M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2) samples 

contain both larger and very small particles, which cannot be seen clearly by SEM and 

TEM. In addition, the area of the peak originated from the magnetite oxidation in the 

SEP-M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2) samples is larger than the sum area of 

the peaks originated from the magnetite oxidation in the SEP-M(1)NH3(1:2) and SEP-

M(2)NH3(1:2) samples. It is an indication of a higher content of the magnetite in the 

SEP-M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2) samples, obtained with a strong base, 

than in the SEP-M(1)NH3(1:2) and SEP-M(2)NH3(1:2) samples, obtained by using a 

weak base. Having in mind that all samples were prepared at the same Fe2+/Fe3+/SEP 

ratio, lower quantity of magnetite in the samples SEP-M(1)NH3(1:2) and SEP-

M(2)NH3(1:2) can be explained by higher quantity of iron(III)-oxihydroxide due to 

the oxidation during the synthesis or due to some precipitation of Fe(OH)3 instead of 

co-precipitation owing to lower quantity of OH- ions when weak base was used.  

 

 

8.7. Magnetic properties  

 

 In addition to qualitative assessment of the magnetization, the detailed 

investigation of the magnetic properties was performed for some SEP/ASEP based 

composites synthesized by Procedure 2 in order to investigate the influence of the 

support type (SEP or ASEP) and the ratio Fe2+/Fe3+ on the magnetic properties of the 

composites. The temperature dependence of the magnetization was recorded for these 

samples (SEP-M(2)NH3(1:2), ASEP-M(2)NH3(1:2), SEP-M(2)NH3(1:1.5) and ASEP-

M(2)NH3(1:1.5)) in two modes: the ZFC (measurement was performed after the 

sample cooling from room temperature to 5 K in the zero field), and the FC mode 

(measurement was performed after cooling to 5 K in the field of 100 Oe) [154]. As it 

can be seen in the Fig. 36, all the samples showed similar behavior. 
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Fig. 36. Temperature dependence of the magnetization recorded in H = 100 Oe for the 

samples: a) SEP-M(2)NH3(1:2), b) ASEP-M(2)NH3(1:2), c) SEP-M(2)NH3(1:1.5) and 

d) ASEP-M(2)NH3(1:1.5). 

 

 The large difference between ZFC and FC magnetization branches below 

certain blocking temperature, TB, speaks in favor of the existence of a strong magnetic 

anisotropy, and the maximums at TB can be attributed to the blocking process of 

single domain magnetic nanoparticles. Below this temperature the magnetic moment 

inside the particle is blocked in a certain direction, while above TB it oscillates i.e. the 

particles are in superparamagnetic state [155,156]. It can be seen that the blocking 

temperature of the samples lie in relatively narrow range from 140 K to 190 K. From 

this it can concluded, that in all the samples, the size distribution of magnetic 

nanoparticles, i.e. nanocrystals should be similar, but lower TB values for the ASEP-
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based composites indicates somewhat smaller crystals than in the SEP-based MNCs 

[156]. By comparing these TB values with the literature data [157] it can be expected 

that the size of the magnetite crystals in these samples is well below 50 nm. Above 

this size, the so-called Verwey transition [157] appears which is not detected in these 

measurements. Also, an almost flat FC branch at low temperatures indicates the 

existence of some interactions between the magnetic nanoparticles. 

Further insight in the properties of the magnetic composites can be obtained 

from M(H), i.e. from hysteresis measurements. The dependence of magnetization of 

the samples on magnetic field strength was determined at constant temperature below 

blocking temperature (at 5 K). In addition to already mentioned samples, M(H) 

dependence was determined for the sample SEP-M(1)NaOH(1:2), to compare the 

magnetization of the samples synthesized with SEP by both procedures. For this 

sample, the measurements were performed at 5 K and well above blocking 

temperature, at T = 300 K. The hysteresis curves are depicted in Fig. 37. 

It can be seen that at 5 K the SEP-M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5) 

samples exhibits higher magnetization than the ASEP-M(2)NH3(1:2) and ASEP-

M(2)NH3(1:1.5). Taking into account the TB values, it can be supposed that the lower 

magnetization of the ASEP-based composites is a result of the lower magnetite 

crystallites. Regardless of different Fe2+/Fe3+ ratio, the magnetization of the samples 

SEP-M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5) is the same. On the other hand, 

magnetization of the ASEP-M(2)NH3(1:1.5) is lower than of ASEP-M(2)NH3(1:2), 

indicating lower content of magnetite or smaller crystallites. According to the TB 

values, it can be supposed that lower magnetization of ASEP-M(2)NH3(1:1.5) is a 

result of smaller magnetite crystallites than in sample ASEP-M(2)NH3(1:2). 
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Fig. 37. Magnetic field dependence of magnetization. 

 

 The magnetization of the sample SEP-M(1)NaOH(1:2) is lower than of SEP-

M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5) (Fig. 37), which is in an agreement with the 

qualitative assessment of the magnetization, where it was found that all MNCs 

obtained with NaOH had lower magnetization in comparison to the MNCs obtained 

with NH3. In addition, magnetization at 300 K is lower than at 5 K, as it can be seen 

for the SEP-M(1)NaOH(1:2) sample (Fig. 37). Such behavior was expected, because 

the degree of the orientation of the magnetic moments decreases with increasing 

temperature. 

 In the Fig. 38, the M(H) dependence is given for the sample SEP-

M(1)NaOH(1:2) at 5 and 300 K, for low H values. From the dependence at 5 K, the 

remanent magnetization MR of 4.1 emu/g and coercivity HC of 288 Oe can be found 

(Table 6). At 300 K (~ room temperature), the sample shows superparamagnetic 

behavior where both, the remanence magnetization MR and the coercivity HC, are zero 

(Fig. 38), ensuring that the composite does not retain magnetization when the 

magnetic field is removed. The values of the parameters MR and HC for other samples 

at 5 K are also given in Table 6. 
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Fig. 38. The M(H) dependence for SEP-M(1)NaOH(1:2) sample at 5 and 300 K, for 

low H values. 

 

Table 6. The values of the parameters MR and HC at 5 K for some SEP/ASEP based 

composites 

Sample MR (emu/g) HC (Oe) 

SEP-M(2)NH3(1:2) 8.9 256 

SEP-M(2)NH3(1:1.5) 9.1 246 

ASEP-M(2)NH3(1:2) 6.5 261 

ASEP-M(2)NH3(1:1.5) 5.2 283 

  

The MR and HC values given in Table 6 are close to the values for sample 

SEP-M(1)NaOH(1:2), which is an indication that the size distribution of the magnetic 

nanocrystals are similar in all samples. However, it can be seen that for samples SEP-

M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5), the values of MR are higher and the values 

of HC lower than for SEP-M(1)NaOH(1:2) and the ASEP-based composites, 

indicating larger magnetite crystallites. These results and conclusions are in an 

agreement with the previous results and conclusions made based on TB values and 

M(H) dependences. 

 Further information on the size and size distribution of the magnetic 

nanoparticles can be extracted from M(H) measurements in superparamagnetic region 

(at 300 K for sample SEP-M(1)NaOH(1:2)). Assuming that all particles have the same 
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magnetic moment, μ, the M(H) dependence (Fig. 37) can be described by the 

Langevin function (Eq. 2) [89,158]. Fitting this equation to the experimental data, the 

average magnetite crystallites diameter of 7.6 nm was obtained (Eq. 3) for the sample 

SEP-M(1)NaOH(1:2), which is in agreement with the results of XRD analysis. It can 

be assumed that the magnetite crystals are little larger because the magnetic 

measurements detect only particle core which is magnetically ordered while its shell 

is often disordered and in most cases magnetically ‘‘dead’’.  

 

 

8. 8. Determination of the point of zero charge (PZC) 

 

An important parameter characterizing solids used as adsorbents is the point of 

zero charge (PZC), which represents the solution pH value at which the net surface 

charge of the solid equals zero [20]. The surface is positively charged at pH<PZC due 

to the protonization of the surface functional groups and negatively charged at 

pH>PZC as a results of the deprotonation. The PZC values of the Fe3O4, SEP, NZ, 

ASEP and the composites, obtained as the pH value of the plateau at the pHf vs. pHi 

dependence, are shown in Table 7. The results of the PZC determination for some 

samples are illustrated in Fig. 39.  

The position of the plateau in all cases was at the same pH value for KNO3 

solutions of different concentrations, which indicates that KNO3 was indifferent 

electrolyte, i.e. pH value of the plateau was PZC. 

The PZC of the synthesized magnetite was 4.8 ± 0.1, which is lower than PZC 

of most of commercial Fe3O4, but lies within the reported range of values for 

magnetite [3,91,159]. For example, the PZC of magnetite nanospheres was 2.11 [3], 

while the PZC of one commercial magnetite was 8.2 [159]. The PZC values of all 

magnetic composites, except for NZ-M(1)NaOH(1:2), were between the values for 

pure compounds, but closer to the PZC of SEP/ASEP/NZ due to their higher quantity 

in the composites.  
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Fig. 39. Determination of the PZC of the samples: a) Fe3O4, b) SEP-M(1)NaOH(1:2), 

c) SEP-M(2)NH3(1:2), d) NZ-M(2)NH3(1:2), e) ASEP-M(2)NH3(1:2), f) SEP-

M(1)NaOH(1:2)more, in KNO3 solutions of different concentrations. 
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The magnetic composites that were synthesized by using NaOH have higher 

PZC than that synthesized by using ammonia. Generally, lower PZC indicates higher 

acidity of the surface functional groups and vice versa. Thus, higher values of PZC of 

the samples obtained by using NaOH can be explained by some leaching of acid 

compounds from the sepiolite/zeolite structure when NaOH used for co-precipitation. 

Namely, sepiolite and zeolite contain interconected SiO4 tetrahedra, which can 

partially react with NaOH as a strong base. In that way, the samples obtained by using 

NaOH contain less acid groups and higher PZC values than the samples obtained by 

using NH3. The leaching is especially pronounced in the case of the zeolite-based 

composite (sample NZ-M(1)NaOH(1:2)), as it was concluded according to XRD and 

FTIR analyses, so the PZC of this sample is the highest.  

 

Table 7. PZC of the Fe3O4, SEP, NZ, ASEP and the magnetic composites. 

Sample PZC 

SEP [20] 7.4 ± 0.1 

ASEP [20] 6.9 ± 0.1 

NZ [19] 7.5 ± 0.1 

Fe3O4 4.8 ± 0.1 

SEP-M(1)NaOH(1:2) 7.2 ± 0.1 

SEP-M(2)NaOH(1:2) 7.3 ± 0.1 

SEP-M(1)NH3(1:2) 6.6 ± 0.1 

SEP-M(1)NaOH(1:2)more 7.4 ± 0.1 

SEP-M(1)NaOH(1:2)less 7.4 ± 0.1 

SEP-M(1)NaOH(1:2)* 7.3 ± 0.1 

SEP-M(2)NH3(1:2) 6.6 ± 0.1 

SEP-M(2)NH3(1:1.5) 6.7 ± 0.1 

NZ-M(2)NH3(1:2) 6.4 ± 0.1 

NZ-M(2)NH3(1:1.5) 6.3± 0.1 

NZ-M(1)NaOH(1:2) 8.3 ± 0.1 

ASEP-M(2)NH3(1:2) 6.5 ± 0.1 

ASEP-M(2)NH3(1:1.5) 6.4 ± 0.1 
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The PZC of the ASEP-M(2)NH3(1:2) and ASEP-M(2)NH3(1:1.5) samples is 

slightly lower than for the SEP-based samples obtained with ammonia, because the 

acid-activated sepiolite, i.e. sepiolite with more acid groups than SEP, was used for 

the synthesis.  

 

 

8.9. Adsorption studies and isotherms modeling 
 

The adsorption experiments were performed to compare the adsorption 

capacities of the synthesized magnetic nanocomposites (MNCs) for Cd2+, Cr(VI), 

phosphate, Basic Yellow 28 and C.I. Reactive Orange 16.  

 

8. 9.1. Adsorption of Cd2+ ions  

 

 The adsorption isotherms were determined for the MNCs and the pure 

compounds at the initial pH = 7.0 ± 0.1 [160] and the obtained results are presented in 

Figs. 40 - 42. The Langmuir, Freundlich and Sips isotherms constants are summarized 

in Table 8. In the figures, the Sips model fit curves, as the best fit, are presented with 

the experimental data. 
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Fig. 40. Adsorption isotherms for Cd2+
 onto the pure compounds and the SEP-based 

composites (adsorbent dosage = 0.02 g/20 cm3, pHi = 7.0 ± 0.1). 
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Fig. 41. Adsorption isotherms for Cd2+

 onto the pure compounds and the ASEP-based 

composites (adsorbent dosage = 0.02 g/20 cm3, pHi = 7.0 ± 0.1). 
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Fig. 42. Adsorption isotherms for Cd2+
 onto the pure compounds and the NZ-based 

composites (adsorbent dosage = 0.02 g/20 cm3, pHi = 7.0 ± 0.1). 
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Table 8. Langmuir, Freundlich and Sips isotherms constants and coefficient of correlation (R2) for the adsorption of Cd2+ onto the Fe3O4, SEP, 

ASEP, NZ and the magnetic composites at pHi = 7.0 ± 0.1 

Sample 

Adsorption model 

Langmuir Freundlich Sips 

qm (mg/g) KL (dm3/mg) R2 kf (mg
(1-1/n)

dm
3/n

/g) 1/n R2 qm (mg/g) Ka (dm3/mg)ns nS R2 

SEP 27.71 0.099 0.984 8.083 0.254 0.994 29.05 0.156 0.457 0.995 

SEP-M(1)NaOH(1:2) 73.07 7.93 0.975 39.30 0.176 0.968 76.06 1.01 0.539 0.982 

SEP-M(1)NaOH(1:2)more 83.39 0.274 0.977 51.02 0.140 0.878 82.10 4.240 1.450 0.988 

SEP-M(1)NaOH(1:2)less 89.80 1.73 0.851 66.04 0.087 0.856 88.93 0.185 0.107 0.856 

SEP-M(1)NaOH(1:2)* 84.50 0.895 0.916 43.40 0.177 0.846 80.05 0.704 2.360 0.958 

SEP-M(2)NaOH(1:2) 72.12 0.528 0.932 39.08 0.160 0.926 75.52 0.542 0.966 0.932 

SEP-M(1)NH3 (1:2) 47.00 1.04 0.955 24.08 0.177 0.986 56.12 0.117 0.211 0.986 

SEP-M(2)NH3(1:2) 56.54 0.758 0.964 26.64 0.193 0.988 64.40 0.431 0.398 0.993 

SEP-M(2)NH3(1:1.5) 59.96 0.918 0.927 30.20 0.174 0.926 57.78 0.700 3.190 0.956 

ASEP 25.99 0.027 0.994 2.752 0.420 0.931 25.49 0.025 1.030 0.944 

ASEP-M(2)NH3(1:2) 65.71 0.372 0.936 29.01 0.202 0.995 68.06 0.068 0.225 0.995 

ASEP-M(2)NH3(1:1.5) 69.80 0.437 0.965 27.40 0.240 0.967 71.45 0.363 0.530 0.971 

NZ 29.40 0.048 0.993 5.40 0.331 0.966 26.40 0.021 1.351 0.996 

NZ-M(1)NaOH(1:2) 101.30 0.898 0.861 59.50 0.159 0.874 105.6 0.035 0.167 0.874 

NZ-M(2)NH3(1:2) 72.10 0.530 0.940 39.05 0.153 0.940 86.40 0.066 0.514 0.944 

NZ-M(2)NH3(1:1.5) 77.20 1.09 0.948 45.96 0.142 0.953 89.04 0.741 0.391 0.956 

Fe3O4 33.51 0.181 0.926 12.64 0.224 0.924 39.41 0.265 0.647 0.946 
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Metal cations adsorb from aqueous solutions on amphoteric oxide materials 

mainly via formation of outer-sphere complexes (electrostatic bonding) or inner-

sphere complexes, where the adsorbing ion forms a direct coordinate covalent bond 

with surface functional groups (specific adsorption) [115]. Besides specific 

adsorption, the main mechanisms of Cd2+ adsorption onto sepiolite is ion-exchange 

with the structural Mg2+ ions [20], while in the case of zeolite, Cd2+ ions form both 

other-sphere complexes (ion-exchange with exchangeable ions in the zeolite channels) 

and inner-sphere complexes with (Si,Al)-OH groups at the surface [19,80]. The 

adsorption of cations on amphoteric oxide materials is affected by the solution pH, 

because the pH influences both degree of protonation or deprotonation of functional 

groups at the adsorbent surface and the metal chemistry (e.g. speciation and 

precipitation). The adsorption capacity generally increases with the increase of initial 

pH because the number of H+ ions that compete with the cations for the adsorption 

sites decreases. In addition, at higher pH values, Cd2+ can precipitate as Cd(OH)2, 

which increases the removal efficiency. According to the value of the solubility 

product constant of Cd(OH)2 and Cd2+ concentration used in the experiments, the 

Cd(OH)2 precipitation can starts at pH > 8.5. In order to avoid precipitation in the 

experiments, because the precipitation is not mechanism of Cd2+ removal by the 

adsorbent, the experiments were done at the pH lower than 8.5. On the other hand, in 

order to exclude the influence of protonization or deprotonization of the surface 

functional groups, the adsorption was investigated at the initial pH 7, which is very 

close to pHpzc of the composites. In that way, the electrostatic bonding can be 

minimized and Cd2+
 can form dominantly the inner-sphere complexes. 

According to the adsorption isotherms (Figs. 40-42), it is obvious that the 

capacities of all the MNCs are higher than of the pure compounds. In addition, the 

capacity of magnetite is higher than of SEP, ASEP and NZ. The capacity of ASEP is 

lower than of SEP due to the removal of the structural magnesium during acid 

activation, as it was shown previously [20].  

The higher capacity of MNCs than of the pure compounds can be explained by 

lower aggregation of the compounds in the composites than of the pure 

SEP/NZ/ASEP and magnetite and, in that way, the higher accessibility of the surface 

to the ions. It was shown [161] that adsorption capacity of magnetite for Cd2+ is 

highly dependent on the specific surface area, i.e. on the size and aggregation of 

magnetite particles. For example, the adsorption capacity of magnetite with Sp = 351.9 
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m2/g is much higher (~ 224 mg/g) than of magnetite synthesized in this work (Sp ~ 89 

m2/g, adsorption capacity ~ 33.5 mg/g), owing to higher Sp.  

The influence of the type of basis used for co-precipitation: The adsorption 

capacities of all SEP-M,NH3 composites are lower than of the SEP-M,NaOH samples 

(Fig. 40), regardless of better dispersibility of the magnetite particles and higher 

magnetization. As already stated, the magnetization depends on the quantity of 

magnetite and the size of magnetite crystallite [21,22]. According to the TEM and 

magnetic measurements, the magnetite crystallites in the composites have similar 

sizes, although the magnetic measurements showed slightly larger crystallites in the 

SEP-M,NH3 than in SEP-M,NaOH samples. On the other hand, it was shown by the 

thermal analysis that the quantity of the magnetite is lower in the SEP-M(1)NH3(1:2) 

and SEP-M(2)NH3(1:2) than in the SEP-M(1)NaOH(1:2) and SEP-M(2)NaOH(1:2) 

composites. Having in mind lower content of magnetite, the higher magnetization of 

the SEP-M,NH3 composites can be explained by higher content of crystalline 

magnetite, while the SEP-M,NaOH composites probably contain larger quantity of 

amorphous, disordered magnetite, which is magnetically ‘‘dead’’. It can be supposed 

that the amorphous magnetite was formed as very fine particles or as a layer at the 

sepiolite surface when the strong base was used, providing high number of nuclei for 

the magnetite formation due to the high OH- concentration. In that way, the adsorption 

capacity of the SEP-M,NaOH composites is higher and the magnetization is lower, 

but high enough for the magnetic separation. 

The influence of the type of the procedure: The SEP-M(1)NaOH(1:2) and 

SEP-M(2)NaOH(1:2) composites have similar adsorption capacities. Regardless of 

slightly different morphology, these composites have similar properties: textural 

characteristics, magnetization, point of zero charge and phase composition; therefore, 

the adsorption capacities are similar. Accordingly, in the case of sepiolite, the 

sequence of reagents mixing (procedure 1 or 2) does not have a large influence on the 

properties and adsorption capacity of the composites obtained by using NaOH for co-

precipitation. Obviously, both procedures provide similar conditions for the magnetite 

nucleation and growth when NaOH was used. On the other hand, when the 

composites were prepared by using ammonia, the Procedure 2 provided better 

dispersibility of the magnetite particles and higher adsorption capacity, probably due 

to higher volume of mesopores, despite the fact that the specific surface area of this 

sample is lower than of the SEP-M(1)NH3(1:2) sample.  

99 
 



The influence of the iron content: In the case of the composites obtained by 

first procedure with NaOH, adsorption capacity increased when the concentration of 

NaOH and quantity of iron salts increased (samples SEP-M(1)NaOH(1:2)* and SEP-

M(1)NaOH(1:2)more, respectively). Higher quantity of iron salts provided higher 

content of magnetite in the composites and higher capacity. On the other hand, it can 

be supposed that higher concentration of NaOH provided more centers for the 

magnetite nucleation and formation of smaller crystallites or amorphous magnetite. In 

that way, adsorption capacity is higher, regardless of lower specific surface area 

(Table 5) in comparison to other samples obtained by first procedure, by using NaOH.  

Surprisingly, the adsorption capacity of the sample SEP-M(1)NaOH(1:2)less is 

even higher than of sample SEP-M(1)NaOH(1:2)more, despite the fact that the iron salt 

content in the synthesis was three times lower. It can be supposed that in such 

conditions, the magnetite dispersibility was much better than in the composite with 

higher content of iron salts, which provides the highest adsorption capacity. Probably, 

besides fine particles, thin layer of magnetite is formed, which cannot be seen in SEM 

micrographs. 

The influence of the type of sepiolite and Fe2+/Fe3+ ratio: Regardless of worse 

dispersion of the magnetite particles in the ASEP-M(2)NH3(1:2) and ASEP-

M(2)NH3(1:1.5) in comparison to the SEP-M(2)NH3(1:2) and SEP-M(2)NH3(1:1.5), 

the volume of mesopores is higher and the adsorption capacities are higher than of the 

SEP-based MNCs (Figs 40 and 41). In both cases, the Fe2+/Fe3+ ratio did not have 

significant influence on the adsorption capacity. This is understandable for the SEP-

based MNCs, having in mind the same textural and magnetic properties. On the other 

hand, the magnetization of the sample ASEP-M(2)NH3(1:1.5) was lower, the 

mesopore volume was higher and the adsorption capacity was slightly higher, which 

can indicate lower magnetite crystallites.   

The influence of samples aging during storage: The adsorption capacity of the 

SEP-M(1)NaOH(1:2) was checked after storage for 3 month (Fig. 43). The capacity 

was lower than of freshly synthesized sample (new quantity of the sample SEP-

M(1)NaOH(1:2) was synthesized and the adsorption isotherm was determined 

immediately after the synthesis, sample SEP-M(1)NaOH(1:2)fresh in Fig. 43).and it 

was similar to the capacity of the composite SEP/iron(III) oxihydroxide 

(approximately 41 mg/g) [162], which was synthesized previously [66] by the 

precipitation of Fe3+ with NaOH, at the same SEP/Fe ratio as in the MNCs. As it can 
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be seen, the adsorption capacity of the sample SEP-M(1)NaOH(1:2)fresh is the same 

as of the sample presented in Fig. 40. Having in mind that the sample had 

magnetization after storage, it was supposed that just surface of the magnetite 

particles was oxidized and surface groups Fe2+-OH were transformed to Fe3+-OH, 

which have lower affinity for Cd2+ ions. 

These results suggests that the magnetite has higher affinity to Cd2+ ions than 

iron(III)-oxihydroxide compounds, which can be formed by magnetite oxidation in air 

during storage. Therefore, magnetite adsorbents should be storage in the protected 

atmosphere in order to prevent oxidation and retain high adsorption capacity for Cd2+ 

ions. 
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Fig. 43. Adsorption isotherms for Cd2+
 onto fresh SEP-based MNC and the composite 

after storage for 3 months. 

  

Adsorption of NZ-based composites: Similar as for SEP-based composites, 

adsorption capacity of the sample Z-M(1)NaOH(1:2) is significantly higher than of 

samples Z-M(2)NH3(1:2) and Z-M(2)NH3(1:1.5) (Fig. 42), although the dispersibility 

of the magnetite is higher in the samples obtained with NH3 (Fig. 34). Bearing in 

mind the results of XRD analysis, higher adsorption capacity of the sample Z-

M(1)NaOH(1:2) can be explained by the presence of smaller crystallites or 

amorphous magnetite in comparison to samples Z-M(2)NH3(1:2) and Z-
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M(2)NH3(1:1.5). In addition, higher surface area and higher volume of mesopores 

contributes to higher adsorption capacity.  

Comparison of adsorption capacity of zeolite/magnetite and zeolite 

oxihydroxides composites: In Fig. 44, the adsorption isotherm for the sample Z-

M(1)NaOH(1:2) is compared with the adsorption isotherm for the sample Fe(III)-

zeolite [112], synthesized in highly basic conditions starting from FeCl3 [19], at the 

same ratio Fe/zeolite as in the sample Z-M(1)NaOH(1:2). The sample Fe(III)-zeolite 

contains amorphous iron(III) oxihydroxides, the specific surface area is 175 m2/g and 

the point of zero charge is 9.3 [19]. As in the case of sepiolite/magnetite and 

sepiolite/Fe(III) oxihydroxide composites, the adsorption capacity of the 

zeolite/magnetite composite is higher than of sample zeolite/Fe(III) oxihydroxides, 

indicating higher affinity of magnetite to Cd2+ ions than of Fe(III) species. 
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Fig. 44. Adsorption isotherms for Cd2+ ions of the sample NZ-M(1)NaOH(1:2) and 

sample zeolite/ Fe(III) oxihydroxides. 

 

Adsorption isotherms modeling: As shown in Table 8, coefficients of 

correlation (R2) suggest that the Sips model is the best model to explain the adsorption 

behavior of Cd2+ on all the samples, except for ASEP and ASEP-M(2)NH3(1:1.5), but 

also both Langmuir and Freundlich models fit the results well. It is understandable, 

having in mind that the Sips model is a combination of Langmuir and Freundlich 

models. At low adsorbate concentrations, i.e. when the adsorbate content is much 
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lower than the adsorbent capacity, the Sips model is reduced to Freundlich model, 

while at high concentrations, when the adsorbate content is higher than the adsorbent 

capacity, the model predicts a monolayer adsorption capacity, characteristic of the 

Langmuir isotherm [162-164]. Further, the Langmuir model assumes adsorption at 

specific sites of the same energy, without any interactions between adsorbed species 

(formation of chemical bonds) [119], while the Freundlich model describes adsorption 

(possibly multilayer in nature) on a heterogeneous surface consisting of non-identical 

and energetically non-uniform sites [120]. The bonds between adsorbate and 

adsorbent can be chemical (if active sites of adsorbent are strong enough) or physical, 

but the bonds between adsorbate layers are always physical. 

According to the adsorption isotherm modeling, bearing in mind that different 

functional groups are present at the surface of the composites (M-OH, Fe2+-OH, Fe3+-

OH), it can be concluded that Cd2+ is chemisorbed on a heterogeneous surface of the 

composites, as well as on SEP and Fe3O4 (formation of inner-sphere complexes), at 

energetically non-uniform sites until monolayer was formed. The Langmuir model 

fitted better the results of Cd2+ adsorption on ASEP because this material contains 

dominantly Si-OH surface functional groups of the same energy. 

 
 
8.9.2. Adsorption of Cr(VI) ions  

 

The adsorption isotherms were determined for the MNCs and the pure 

magnetite at the initial pH = 2.0 ± 0.1 and the obtained results are presented in Figs. 

45-47. The adsorption isotherms constants are summarized in Table 10. 
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Fig. 45. Adsorption isotherms for Cr(VI) onto Fe3O4 and the SEP-based composites 

(adsorbent dosage = 0.02 g/20 cm3, pH = 2.0 ± 0.1). 
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Fig. 46. Adsorption isotherms for Cr(VI) onto Fe3O4 and the ASEP-based composites 

(adsorbent dosage = 0.02 g/20 cm3, pH = 2.0 ± 0.1). 
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Fig. 47. Adsorption isotherms for Cr(VI) onto Fe3O4 and the NZ-based composites 

(adsorbent dosage = 0.02 g/20 cm3, pH = 2.0 ± 0.1). 

 

According to the literature [165] the retention of Cr(VI) on natural and acid-

activated sepiolites, as well as zeolite was negligible, even at low initial pH values. 

The surface of sepiolite and zeolite is negatively charged in aquatic solutions in a 

wide range of pH values, while Cr(VI) is present as anions, CrO4
2-, HCrO4

- or Cr2O7
2-, 

depending on its concentration and solution pH: HCrO4
- is the main species at low 

concentrations and pH range of 2–4, whereas CrO4
2- becomes dominant species at pH 

≥ 7, and Cr2O7
2- and HCr2O7

- exist only in solutions of high concentration and lower 

pH values. Therefore, the adsorption of Cr(VI) anions on negatively charged surface 

is very low. In addition, previous studies [2,7,133] have shown that the adsorption 

capacity of magnetite and magnetite-composites drastically decreased when pH 

increased from pHi = 2, due to increase of negative charge of the surface with the pH 

increase. 
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Table 10. Langmuir, Freundlich and Sips isotherms constants and coefficients of correlation (R2) for the adsorption of Cr(VI) onto the Fe3O4 and 

the magnetic composites at pHi = 2.0 ± 0.1  

Sample Adsorption model 

Langmuir Freundlich Sips 

qm (mg/g) KL (dm3/mg) R2 kf (mg
(1-1/n)

dm
3/n

/g) 1/n R2 qm (mg/g) Ka  (dm3/mg)ns nS R2 

Fe3O4 17.82 0.579 0.993 9.503 0.206 0.958 17.96 0.481 1.419 0.997 

SEP-M(1)NaOH(1:2) 11.91 1.087 0.994 7.668 0.131 0.997 12.43 0.827 0.359 0.998 

SEP-M(1)NaOH(1:2)more 16.31 0.608 0.992 8.209 0.203 0.987 17.79 0.621 0.738 0.994 

SEP-M(1)NaOH(1:2)less 9.26 0.364 0.963 4.237 0.211 0.981 9.83 0.022 0.219 0.981 

SEP-M(1)NaOH(1:2)* 11.23 1.110 0.960 1.705 0.141 0.980 11.56 0.039 0.148 0.980 

SEP-M(2)NaOH(1:2) 8.84 0.257 0.996 3.755 0.217 0.983 8.00 0.091 1.711 0.999 

SEP-M(1)NH3 (1:2) 9.67 0.098 0.952 2.278 0.397 0.965 9.89 0.007 0.407 0.964 

SEP-M(2)NH3(1:2) 6.79 0.473 0.989 3.816 0.152 0.996 6.95 0.074 0.170 0.996 

SEP-M(2)NH3(1:1.5) 9.85 0.403 0.992 4.930 0.191 0.996 9.54 0.401 0.401 0.996 

ASEP-M(2)NH3(1:2) 5.34 0.0131 0.955 0.252 0.767 0.952 5.23 0.012 1.205 0.956 

ASEP-M(2)NH3(1:1.5) 5.06 0.088 0.982 1.005 0.377 0.988 5.42 0.014 0.396 0.988 

NZ-M(1)NaOH(1:2) 9.43 0.057 0.984 1.158 0.479 0.980 9.76 0.059 0.963 0.984 

NZ-M(2)NH3(1:2) 6.76 0.057 0.984 1.158 0.479 0.980 6.98 0.059 0.963 0.984 

NZ-M(2)NH3(1:1.5) 6.54 0.182 0.983 2.640 0.262 0.980 6.73 0.220 0.818 0.984 
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The influence of initial pH value on the adsorption capacity for the sample 

MSEP-M(1)NaOH(1:2) (Fig. 48) also showed that adsorption capacity significantly 

decreases at pHi > 2. These are the reasons why the Cr(VI) adsorption isotherms were 

determined for initial pHi = 2.   
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Fig. 48. The influence of pHi on the Cr(VI) adsorption onto sample SEP-

M(1)NaOH(1:2) at the initial concentrations 10, 50 and 100 mg/dm3. 

  

According to the literature [167], besides formation of inner- and outer-sphere 

complexes, possible mechanism of Cr(VI) adsorption onto magnetite and magnetite 

composites is the reduction of Cr(VI) by magnetite to Cr(III) and the precipitation of 

Cr3+ ions as Cr(OH)3 or Cr2O3 on the surface of the adsorbent. Bearing in mind that the 

adsorption capacity is very low at pHi > 2, it can be supposed that the main mechanism 

of chromate adsorption on magnetite and magnetite composites is the electrostatic 

interactions of chromate anions and protonated surface functional groups, i.e. formation 

of outer-sphere complexes.  

According to the adsorption isotherm (Figs. 45-47), the adsorption capacity of 

the pure magnetite for Cr(VI) is about 17.5 mg/g, which is comparable with the 

literature data [3, 133]. Adsorption capacities of all MNCs are lower than of the pure 

magnetite, unlike the capacity for Cd2+ ions, where the capacities of MNCs were higher 
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than of the pure magnetite and the support. The highest capacity for chromates has the 

SEP-based composite with the highest content of magnetite (SEP-M(1)NaOH(1:2)more). 

Obviously, the content of magnetite is the factor that determines the adsorption capacity 

because the capacity of the support is negligible. Having in mind that the adsorption 

capacity of the sample SEP-M(1)NaOH(1:2)more is slightly lower than of pure 

magnetite, while the theoretical content of magnetite in the sample is 36.5 mas.%, it can 

be concluded that the presence of sepiolite as a support improved the adsorption 

properties of the magnetite, as it was the case with the Cd2+ adsorption. On the other 

hand, adsorption capacity was not increased as much as in the case of Cd2+. It can be 

explained by different adsorption mechanisms: inner-sphere complexes are formed in 

the case of Cd2+ ions, which are exchanged with H+ ions from surface functional groups, 

while chromate ions formed outer-sphere complexes. Outer-sphere complexes are 

formed when H+ ions protonate the surface functional groups and contra ions (e.g. NO3
- 

ions from HNO3 used for pH adjustment) are concentrated around the particle and 

exchanged with chromate ions. 

Therefore, it can be supposed that the protonization degree is the decisive factor 

for the chromate adsorption. Generally, basic groups are protonated better and the 

chromate ions are adsorbed more than on adsorbent with acidic groups. Accordingly, it 

can be expected that MNCs with lower PZC values have lower adsorption capacities for 

chromates. Indeed, ASEP-based composites and the SEP/NZ-based composites obtained 

with NH3 have lower PZC and lower adsorption capacities than composites obtained 

with NaOH.  

However, despite the similar PZC values and the same ratio SEP/(Fe2++Fe3+), 

the adsorption capacities of the SEP-based MNCs obtained by using NaOH (SEP-

M(1)NaOH(1:2), SEP-M(2)NaOH(1:2) and SEP-M(1)NaOH(1:2)*) are different. 

Higher adsorption capacity was achieved by the first procedure. The adsorption 

capacities of these samples for Cd2+ were similar, although the samples obtained by first 

procedure had slightly higher capacities. Obviously, the synthesis by first procedure 

with NaOH provided best adsorption properties for both cations and anions.  

As shown in Table 10, coefficients of correlation (R2) suggest that the Sips 

model is the best model to explain the adsorption behavior of Cr(VI) on all the samples, 

but also both Langmuir and Freundlich models fit the results well. 
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8.9.3. Comparison of Cd2+ and Cr(VI) adsorption onto the composites and other 

magnetic adsorbents   

 

A comparison between the adsorption capacity of the samples prepared in this 

study and other magnetic adsorbents reported in the literature, for the adsorption of Cd2+ 

and Cr(VI), are listed in Tables 11 and 12, respectively. 

 

Table 11. A comparison between the adsorption capacity of the samples prepared in this 

study and magnetic adsorbents reported in the literature for the adsorption of Cd2+ 

Adsorbent  
Optimal 

pH 

Adsorption 

capacity (mg/g) 

Magnetite/acid-activated sepiolite composite [26] 6.5 14.2 

α-ketoglutaric acid modified magnetic chitosan [168]  6 201.2 

Shellac-coated iron oxide [168] 8 18.8 

Magnetic hydroxyapatite nanoparticles [169] 5 220.7  

Magnetic graphene oxide nanocomposite [170] 6 91.3  

Magnetic mesoporous carbon [171] 7 288.7  

Polyacrylic acid modified magnetic mesoporous carbon 

[171] 

7 406.6  

Magnetic Fe3O4-MnO2 [172] 6 169.9 

Polyethylenimine grafted magnetic adsorbent [168] 6.5 105.3  

Maghemite-magnetite[173] 9 2.7  

Magnetite [this study] 7 31.5 

Magnetic sepiolite composites [this study] 7 49.3-94.4  

Magnetic acid-activated sepiolite composite [this 

study] 

7 67.0-74.1  

Magnetic zeolites [this study] 7 71.2-106.8  
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Table 12. A comparison between the adsorption capacity of the samples prepared in this 

study and magnetic adsorbents reported in the literature for the adsorption of Cr(VI) 

 

Adsorbent 
Optimal 

pH 

Adsorption 

capacity (mg/g) 

Magnetite nanoparticle [2] 2.5 20.2  

Magnetite nanoparticles [133] 2 20.2  

Diatomite-supported/magnetite nanoparticles [2] 2.5 13.7  

Magnetite/reduced graphene oxide nanocomposites 

[171] 

- 33.9  

Montmorillonite-supported magnetite nanoparticles [7] 2.5 13.9  

Magnetite- maghemite [174] 2 2.4  

Magnetic natural zeolite-polypyrrole [175] 2 344.9 

Zero-valent iron (nZVI)–Fe3O4 nanocomposites [176] 3 100  

8 29  

Magnetic multi-wall carbon nanotubes [177] 5 14.3  

Magnetic activated carbon composites [177] 5 2.8 

Nano crystalline iron oxide/hydroxide [178] - 11.2  

Magnetic chitosan composites [179] 3.0−5.0 21.0  

Magnetite [this study] 2 17.3 

Magnetic sepiolite composites [this study] 2 6.6-15.6  

Magnetic acid-activated sepiolite composite [this 

study] 

2 4.0  

Magnetic zeolites [this study] 2 6.3-12.2  

 

 

It can be seen that adsorption capacities for Cd2+ differ significantly depending 

on the support type and type of support modification. The composites synthesized in 

this work have significantly higher capacity than composite synthesized previously with 

110 
 



acid-activated sepiolite as a support [26]. It is worth to point out that the capacities of 

SEP/ASEP/NZ composites are similar to the capacity of the composite based on an 

expensive support (graphene oxide) [171]. On the other hand, the capacities of magnetic 

adsorbents for Cr(VI) are relatively similar, with some exceptions, and generally lower 

than 40 mg/g. The capacity of the sample SEP-M(1)NaOH(1:2)more is comparable to the 

capacity of similar composites (for example montmorillonite-supported magnetite 

nanoparticles [7] and some composites obtained with an expensive support (for example 

multi-wall carbon nanotubes [177]). 

 

 

8.9.4. Adsorption of cationic and anionic dye and phosphate 

 

The adsorption capacities of the composites were checked for some more 

cationic and anionic pollutants: anionic dye C.I. Reactive Orange 16 at pHi = 5 ± 0.1, 

cationic dye Basic Yellow 28 at pHi = 5 ± 0.1 and phosphate anions at pHi = 4 ± 0.1. 

The results obtained for one initial concentration are presented in Table 13.  

The results show that the adsorption capacities of the composites for anions 

(phosphates and C.I. Reactive Orange 16) are very low.  

Adsorption capacities of SEP, ASEP and NZ for phosphates at pHi = 4 ± 0.1 are 

practically equal to zero. The capacity of pure Fe3O4 is relatively low, but comparable 

with the literature data for magnetite obtained by co-precipitation method [180]. 

According to the literature data [180,181], the main mechanism of phosphates 

adsorption onto magnetite is the formation of inner-sphere complexes. The MNC’s 

capacities are lower than capacity of Fe3O4, whereas the SEP- and NZ-based composites 

obtained with NH3 had the highest capacities. These samples have higher magnetization 

in comparison to samples obtained by using NaOH and ASEP-based composites. 

Obviously, the phosphate adsorption is higher when magnetization is higher.   

Adsorption capacities of the SEP, ASEP and NZ for anionic dye C.I. Reactive 

Orange 16 are not equal to zero, as for phosphate. It can be supposed that large dye 

anions can interact by Van der Waals forces with the mineral’s surface. Due to positive 

charge, regardless of lower specific surface area, the adsorption capacity of the pure 
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Fe3O4 is slightly higher than of the supports. All MNCs had lower capacity than Fe3O4, 

but the dependence of capacity on the composite properties could not be determined. 

 

Table 13. Adsorption capacity of MCNs and pure compounds for Basic Yellow 28 (pHi 

= 5 ± 0.1; ci = 147 mg/dm3, adsorbent dosage = 0.02 g/100 cm3), C.I. Reactive Orange 

16 (pHi = 5 ± 0.1; ci = 72 mg/dm3, adsorbent dosage = 0.02 g/20 cm3) and phosphate 

(pHi = 4 ± 0.1; ci = 16 mg/dm3, adsorbent dosage = 0.02 g/20 cm3). 

 

Sample 

qe (mg/g) 

Basic Yellow 28 C.I. Reactive 

Orange 16 

Phosphates 

SEP 93.6 2.10 ~ 0 

SEP-M(1)NaOH(1:2) 92.4 2.05 1.1 

SEP-M(1)NaOH(1:2)* 85.7 2.92 0.92 

SEP-M(1)NaOH(1:2)more 92.8 1.69 1.5 

SEP-M(1)NaOH(1:2)less 95.1 3.04 0.68 

SEP-M(2)NH3(1:2) 89.1 1.04 2.1 

SEP-M(2)NH3(1:1.5) 90.8 2.10 2.4 

NZ 34.7 1.75 ~ 0 

Z-M(1)NaOH(1:2) - 2.57 1.4 

Z-M(2)NH3(1:2) 33.4 1.11 1.9 

Z-M(2)NH3(1:1.5) 33.3 1.83 2.3 

ASEP 48.3 1.03 ~ 0 

ASEP-M(2)NH3(1:2) 71.2 1.47 0.50 

ASEP-M(2)NH3(1:1.5) 71.1 0.75 0.68 

Fe3O4 4.12 3.48 3.4 

   

 

Adsorption capacity of all supports and the composites are much higher for 

cationic dye Basic Yellow 28 than for the anionic dye, similarly as in the case of Cd2+ 

and Cr(VI) adsorption, regardless of different pHi. Owing to higher capacity of SEP in 

comparison to ASEP and NZ, SEP-based samples had higher capacity than ASEP- and 

112 
 



NZ-based composites. Despite the fact that adsorption capacity of Fe3O4 is much lower 

than of SEP, ASEP and NZ, it seems that the capacities of the MNCs are not lower than 

of the support. In the case of ASEP-MNCs, the capacities are even higher. De-

aggregation during the composite preparation can be the reason for such results, as in 

the case of Cd2+ adsorption.  

Obviously, pure sepiolite is effective adsorbent for cationic dye Basic Yellow 

28, but the presence of magnetite is desirable to provide magnetic separation after the 

adsorption. In order to check whether the presence of magnetite decreases the 

adsorption capacity of sepiolite for the cationic dye, adsorption isotherms were 

determined for pure sepiolite and the composite with the lowest content of magnetite, 

SEP-M(1)NaOH(1:2)less (Fig. 49). It can be seen that the presence of magnetite caused 

just small decrease of the adsorption capacity of sepiolite, which indicate that the 

composite can be used for efficient removal of Basic Yellow 28 from water and can be 

easily separated from water by magnetic separation.  
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Fig. 49. Adsorption isotherms for Basic Yellow 28 onto SEP-M(1)NaOH(1:2)less and 

sepiolite (adsorbent dosage = 0.02 g/100 cm3, pH = 5.0 ± 0.1). 
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8.9.5. Effect of contact time and temperature on Cd2+ and Cr(VI) adsorption 

 

 The effect of contact time and temperature on the adsorption of Cd2+ ions were 

investigated for SEP-based composites, one prepared with NaOH and one prepared with 

NH3 (SEP-M(2)NaOH(1:2) and SEP-M(1)NH3(1:2)), while for Cr(VI) adsorption, 

sample with the highest adsorption capacity was chosen (SEP-M(1)NaOH(1:2)more). 

 

 

8.9.5.1. Adsorption kinetics 

 

 The dependences of adsorbed quantity of Cd2+ or Cr(VI) on adsorption time are 

presented in Figs. 50 and 51, respectively.  

The adsorption equilibrium time was 60 min for Cd2+ ions for both adsorbents, 

while for Cr(VI) the time for equilibrium reaching was longer – 480 min. In addition, it 

can be seen that the adsorption capacity of the sample SEP-M(2)NaOH(1:2) is higher 

than of SEP-M(1)NH3(1:2) sample, as it was shown according to adsorption isotherms 

(Fig. 40). 

The time needed for reaching equilibrium was significantly longer for chromium 

than for Cd2+ adsorption. It can be explained by different mechanism of adsorption: 

Cd2+ ions form stronger bonds with the adsorbent surface, inner-sphere complexes, and 

the ions were captured strongly, practically without desorption. On the other hand, 

chromium ions form outer-sphere complexes, where the ions are concentrated near the 

charged surface and these bonds are weaker than bonds in inner-sphere complexes. 

Therefore, the equilibrium is established slowly. 
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Fig. 50. The effects of adsorption time on the adsorbed quantity of Cd2+ at pHi = 7.0 

±0.1 onto SEP-M(2)NaOH(1:2) and  SEP-M(1)NH3(1:2 ) (Cd2+ concentration was 100 

mg/dm3). 
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Fig. 51. The effects of adsorption time on the adsorbed quantity of Cr(VI) at pHi = 2.0 

±0.1 onto SEP-M(1)NaOH(1:2)more (Cr(VI) concentration was 40 mg/dm3). 
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In order to evaluate the adsorption kinetics of Cd2+ and Cr(VI) on the 

composites, the conventional kinetic models, pseudo-first and pseudo-second order 

models, were applied to test the experimental data. The adsorption kinetics constants, 

obtained by linear fitting and correlation coefficients (R2) are summarized in Table 14.  

The correlation coefficients suggest that the adsorption kinetic data was fitted 

much better by the pseudo-second order rate equation than by the pseudo-first order 

equation. The R2 values for the pseudo-first order model are much lower than 1, while 

for pseudo-second model are close to 1. Moreover, the equilibrium adsorption capacities 

(qe) obtained by the pseudo-second model were close to the experimental ones (qe,exp), 

further confirming the feasibility of this model for both Cd2+ and Cr(VI).  

According to the pseudo-first order model, the adsorption rate is proportional to 

the number of free sites, while in the case of the pseudo-second order kinetic model, the 

rate of adsorption is proportional to the square of the number of unoccupied sites. 

Obviously, the number of free sites is strongly important for the adsorption kinetics, 

therefore the pseudo-second order model is more suitable than pseudo-first order model.   

Analysis of the literature data for different adsorbents and different cations and 

anions as adsorbates showed that the pseudo-second order model fitted the results of 

adsorption kinetics much better than the pseudo-first order model in almost all cases. 

According to a suitability of the model for the kinetic results fitting, the authors usually 

concluded that “the rate-limiting step may be a chemical adsorption involving valency 

forces through sharing or exchanging of electrons between adsorbent and adsorbate”. 

But, the pseudo-second-order is pseudo-model, because it includes all steps of 

adsorption, such as external film (boundary layer) diffusion, internal particle diffusion 

and adsorption. The overall rate of adsorption is controlled by the slowest step. Of the 

three mentioned steps, the adsorption step is assumed rapid and thus the slowest step 

would be either film diffusion or pore diffusion. Therefore, it cannot be stated that 

chemisorption is the rate-limiting step according to an appropriateness of the pseudo-

second order model for the adsorption kinetic data. 
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Table 14. The kinetic parameters and correlation coefficients for the adsorption of Cd2+ 

and Cr(VI) onto the magnetic composites. 

Adsorbent/Adsorbate 

Pseudo-first order model Pseudo-second order model 

k1 

(min-1) 

qe 

(mg/g) 

R2 qe 

(mg/g) 

k2 

(g/mg·min) 

R2 

SEP-M(2)NaOH(1:2)/Cd2+ 0 2.06 0.335 71.43 0.350 0.999 

SEP-M(1)NH3(1:2)/Cd2+ 8.615 1.47 0.390 50.50 0 0.999 

SEP-M(1)NaOH(1:2)more/ Cr(VI) 2.30·10-3 1.53 0.858 16.66 0.074 0.999 

 

 

8.9.5.2. Effect of temperature on adsorption of Cd2+ and Cr(VI) and thermodynamic 

analysis 

 

The effect of temperature on the adsorption of Cd2+ onto SEP-M(1)NH3(1:2) and 

SEP-M(2)NaOH)(1:2) and Cr(VI) onto SEP-M(1)NaOH(1:2)more was studied in the 

temperature range from 25 oC to 60 oC (Figs. 52-54). 

The adsorption capacity of both SEP-M(1)NH3(1:2) and SEP-M(2)NaOH(1:2) 

for Cd2+ ions (Figs. 52 and 53, respectively) increased with increasing temperature, 

indicating that the adsorption process is endothermic in nature. 
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Fig. 52. The effect of temperature on the adsorption of Cd2+ onto SEP-M(1)NH3(1:2). 
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Fig. 53. The effect of temperature on the adsorption of Cd2+ onto SEP-

M(2)NaOH)(1:2). 
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Fig. 54. The effect of temperature on the adsorption of Cr(VI) onto SEP-

M(1)NaOH(1:2)more. 
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It is well known that Cd2+ ions in aqua solutions are well hydrated. In order to 

form inner-sphere complexes, the ions have to be denuded of their hydration sheath 

[80]. That process is an endothermic. On the other hand, the adsorption is exothermic 

process. Obviously, the enthalpy of the dehydration process exceeds the enthalpy of 

adsorption by a considerable extent, so the overall process is endothermic. With 

increasing temperature, dehydration process is more efficient and ion adsorption 

increased.  

Temperature had higher influence on Cd2+ adsorption of onto SEP-

M(1)NH3(1:2) than onto SEP-M(2)NaOH(1:2). It can indicate that enthalpy of 

adsorption for sample SEP-M(1)NH3(1:2) is lower than for sample SEP-

M(2)NaOH(1:2) and the overall enthalpy change of the adsorption process (dehydration 

+ adsorption) is lower for sample SEP-M(2)NaOH(1:2) and the increase of the 

adsorption capacity with the temperature is lower. 

Adsorption capacities at 50 ºC are just slightly higher than those at 40 ºC. It can 

be supposed that the efficiency of the dehydration is similar at these temperatures and 

therefore enthalpy of dehydration is not changed much.  

In the case of Cr(VI) ions adsorption onto SEP-M(2)NaOH(1:2)more (Fig. 54), 

adsorption capacity decreased with increasing temperature, indicating that the 

adsorption process is exothermic in nature. The decrease in adsorption capacity may be 

attributed to a relative increase in the escaping tendency of the Cr(VI) ions from the 

solid phase to the bulk phase with the increase in solution temperature [167]. Bearing in 

mind the proposed mechanism of Cr(VI) adsorption at pHi = 2 ± 0.1, i.e. formation of 

outer-sphere complexes, it can be supposed that endothermic dehydration process was 

not included in the adsorption process. In other words, it is not necessary to remove the 

hydrated layer to form outer-sphere complexes. Therefore, the overall effect of the 

adsorption process is exothermal and increasing of the temperature leads to the decrease 

of the adsorption capacity. 

The adsorption results were fitted by the Langmuir, Freundlich and Sips model 

and the isotherms constants are shown in Table 15. The coefficients of correlation (R2) 

suggest that the Sips model is the best model to explain the adsorption behavior of the 

samples for Cd2+ and Cr(VI) on the investigated temperatures, but also both Langmuir 

and Freundlich models fit the results well. 
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Table 13. Langmuir, Freundlich and Sips isotherms constants and coefficient of correlation (R2) for the adsorption of Cd2+ onto SEP-

M(1)NH3(1:2) and SEP-M(2)NaOH(1:2), and adsorption of Cr(VI) onto SEP-M(1)NaOH(1:2)more . 

 

 

 

 

 

Adsorbate Adsorbent T 

(oC) 

Langmuir model Freundlih model Sips model 

qm 

 (mg/g) 
KL  

(dm
3
/mg) 

R2 kf  

(mg
(1-1/n)

dm
3/n

/g) 

1/n R2 qm  

 (mg/g) 
Ka  

(dm3/mg)ns 

ns R2 

Cd2+ SEP-M(1)NH3(1:2) 25 47.00 1.04 0.955 24.08 0.177 0.986 56.12 0.117 0.211 0.986 

40 55.90 1.77 0.934 28.80 0.190 0.991 61.23 0.029 0.198 0.991 

50 55.4 6.37 0.915 32.20 0.164 0.994   62.21 0.016 0.168 0.994 

Cd2+ SEP-M(2)NaOH(1:2) 25 72.12 0.53 0.932 39.08 0.160 0.926 75.52 0.542 0.966 0.932 

40 72.70 1.86 0.938 48.00 0.129 0.938 84.60 1.24 0.481 0.941 

50 80.10 0.58 0.797 52.20 0.109 0.797 87.20 0.982 0.593 0.797 

Cr(VI) SEP-M(1)NaOH(1:2)more 25 16.31 0.608 0.992 8.209 0.203 0.987 17.79 0.621 0.738 0.994 

40 13.50 0.34 0.975 5.750 0.235 0.976 13.30 0.370 0.581 0.980 

50 12.50 0.42 0.979 5.910 0.208 0.981 12.20 0.444 0.530 0.983 

60 10.40 1.05 0.986 6.840 0.122 0.994 10.80 0.119 0.143 0.994 
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Thermodynamic parameters of adsorption, enthalpy (∆Ho) and entropy (∆So), 

were calculated from the dependence of lnka on 1/T, where ka is thermodynamic 

equilibrium constant. The equilibrium constant was determined as kd, by extrapolating 

the dependence of qe/ce on ce to ce = 0, or the Langmuir constant was used as the 

equilibrium constant (part 5.6.1.). The good correlation (R2 = 0.98) was obtained only 

for Cd2+ adsorption onto SEP-M(1)NH3(1:2), when ka was determined from the 

dependence of qe/ce on ce. The dependences of qe/ce on ce for 25, 40 and 50 °C are 

presented in Fig. 55, while the dependence of lnkd on 1/T, is shown in Fig. 56. ∆Go was 

calculated according to the Eq. 21. The obtained value of ∆Ho, ∆So and ∆Go are 

presented in Table 16. 
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Fig. 55. The dependences of qe/ce on ce for the adsorption of Cd2+ onto SEP-

M(1)NH3(1:2) at 25, 40 and 50 °C. 
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Fig. 56. The dependence of lnkd on 1/T for the adsorption of Cd2+ onto SEP-

M(1)NH3(1:2). 

 

Table 16. Thermodynamic parameters for the adsorption of Cd2+ onto SEP-

M(1)NH3(1:2) 

 

Sample ∆Ho 

(kJ/mol) 

∆So 

(kJ/molK) 

∆Go (kJ/mol) at T (K) 

298.15  313.15  323.15  

SEP-M(1)NH3(1:2) 53.44 0.209 -8.42 -11.45 -14.51 

 

Positive value of ∆Ho indicates that the adsorption process is endothermic, as it 

was already stated. The negative values of ∆Go, which increase with the temperatures, 

show that the process is spontaneous and the spontaneity of the adsorption increases 

with the temperature. 
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9. Conclusions 
 

In this dissertation, natural sepiolite (SEP), partially acid-activated sepiolite 

(ASEP), and natural zeolite (NZ), were used to synthesize the magnetic nano-

composites (MNCs) for the removal of Cd2+, Cr(VI), phosphate and dyes (anionic 

Reactive Orange 16 and cationic Basic Yellow 28) from water. The synthesis conditions 

were varied in order to obtain magnetic nano-composites with high adsorption capacity 

and good magnetic properties. The co-precipitation of Fe3+ and Fe2+ ions by NaOH or 

NH3 in the presence of NZ/SEP/ASEP was applied, while the base was added before 

(procedure 1) or after (procedure 2) adding of Fe3+ and Fe2+ in the support suspension. 

In addition, the molar ratio Fe2+/Fe3+ and the quantity of iron salts have been varied.  

According to the results of the composites characterization and the adsorption 

experiments, the following conclusions were made: 

• Concentration of hydroxyl ions in the suspensions could significantly decrease 

due to the interactions with the support functional groups, that can cause the 

precipitation of just Fe(OH)3 instead of the Fe3+/Fe2+ co-precipitation and the magnetite 

formation. Because of the strong interactions of ASEP with hydroxyl ions, it was not 

possible to synthesize the magnetic composites when NaOH or NH3 was added to the 

support suspension before Fe3+ and Fe2+ adding (procedure 1), but only when NH3 was 

added in the suspension of ASEP having Fe3+ and Fe2+ ions (procedure 2). On the other 

hand, magnetic composites with SEP and NZ were prepared by both procedures, using 

both bases. 

• Sepiolite/zeolite structures were preserved in the composites, although some 

alkali leaching occurred when NaOH was used for co-precipitation, that caused lower 

acidity of the composite’s surface, i.e. higher values of point of zero charge (PZC). 

• Composites contained individual or aggregated magnetite crystalliites, of about 

10 nm size. Dispersibility of the magnetite particles depended on the type of the 

supported material, the type of base and the sequence of reagents mixing, while the ratio 

Fe2+/Fe3+ did not have a significant influence. The best dispersibility was achieved when 

NH3 was added in the SEP or NZ suspension containing Fe2+ and Fe3+ ions. 

• Regardless of higher specific surface area of ASEP in comparison to SEP, 

magnetite dispersibility in ASEP-based composites was lower than in SEP-based 
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composite because of stronger bonds between sepiolite fibers. Nevertheless, the specific 

surface area of ASEP-based MNC was higher than of SEP-based MNC, obtained at the 

same conditions. 

• MNCs obtained by using NH3 oxidized in two steps during heating, while the 

oxidation of the composites obtained by using NaOH was one-step process. Lower 

quantity of magnetite in NH3-MNCs in comparison to NaOH-MNCs obtained at the 

same content of Fe2+ and Fe3+ ions was explained by different quantity of iron(III)-

oxide, formed during synthesis. 

• Regardless of higher quantity of magnetite, magnetization of NaOH-MNCs 

was lower than of NH3-MNCs, which was a result of the higher quantity of amorphous 

magnetite formed as a layer on the support surface. At room temperature, the samples 

showed superparamagnetic behavior, which ensures that the composites do not retain 

magnetization when the magnetic field is removed. 

• Adsorption capacities of the composites are much higher for cations than for 

anions owing to higher affinity of both support and magnetite for cations. 

• Adsorption capacities of the MNCs for Cd2+ at initial pH = 7 were higher than 

of pure compounds, as a result of lower aggregation of compounds in the MNCs and, in 

that way, the higher accessibility of the surface to the ions. Main mechanism of 

adsorption was the formation of inner-sphere complexes. 

• Composites prepared by using NaOH had higher adsorption capacities for Cd2+ 

than composites NH3-MNCs, while all MNCs had higher capacity than the composites 

SEP/NZ- iron(III) oxide. The adsorption capacity of the MNCs decreased during storage 

as a consequence of oxidation. 

• Adsorption capacity of magnetite for cationic dye Basic Yellow 28 is low, but 

the presence of magnetite caused just small decrease of the adsorption capacity of 

sepiolite, which indicates that the composites can be used for efficient removal of Basic 

Yellow 28 from water and can be easily separated from water by magnetic separation. 

• Adsorption capacity of composites for anions decreases with pH increase; at 

pHi = 2, chromates adsorb dominantly by formation of outer-sphere complexes with 

protonated surface. The highest removal efficiency was achieved with the composite 

having the highest content of magnetite. Content of magnetite is the factor that 

determines the adsorption capacity because the capacity of the support is negligible.  
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 • Adsorption of all asorbates onto the composites was best fitted with the Sips 

model, which suggests adsorption on a heterogeneous surface at energetically non-

uniform sites until a monolayer was formed. 

• Rate of Cd2+ adsorption is higher than the rate of chromate adsorption. Pseudo-

second order model fitted the adsorption kinetics for both Cd2+ and chromates much 

better than the pseudo-first order model. 

• Adsorption capacity of the SEP-based composites for Cd2+ ions increased with 

increasing temperature, indicating endothermic nature of the adsorption, while the 

adsorption of chromates was exothermic. 

In summary, the results of this doctoral dissertation enable the optimization of 

the synthesis of magnetic composite adsorbents with a high adsorption capacity and 

high magnetization, providing an efficient treatment of water by the adsorbent and its 

subsequent removal by magnetic separation.  
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