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Geostatistical Modeling of Geochemical Variables in 3D

Geostatistical mapping of soil properties in 3D refers to the application of geostatistical

methods to the soil data in order to produce maps of soil properties at different depths.

Through two separate studies, this thesis elaborates on two different approaches for 3D

soil mapping. At first, the well established Spline-Than-Krige approach for the mapping

of soil pollutants atmospherically deposited from the copper smelting plant, was used. In

the absence of the monitoring data, which can be used for a detailed characterization of the

plume spreading process, this study was confined to the consideration of terrain exposure

to explain spatial trend in arsenic distribution at different depths. This study aims to

explore the extent to which the commonly available information, such as the prevailing

wind direction, or the location of the source of pollution, in combination with the digital

terrain model, can be used to quantify the terrain exposure, and hence to improve the

spatial prediction of the arsenic concentration at several soil depths.

Next, the innovative geostatistical approach to 3D mapping of soil properties, based on

soil profile data, was proposed. It provides the semi-automatic way for 3D modeling of

soil variables, prediction over the regular grids (rasters) and also the evaluation of predic-

tion accuracy. Methodologically, this approach operates within the 3D regression kriging

framework. 3D trend model is conceptualized as hierarchical or non-hierarchical linear

interaction model. This means that the model includes the interactions between the spa-

tial covariates and depth in the hiearchial or non-hierarchial manner. The trend modeling

is based on the application of the penalized regression technique, lasso. The lasso uses

a specific regularization penalty in a fitting procedure to enable the efficient parameter

estimation and variable selection (including interaction terms) at the same time. Special

attention has been paid to accuracy assessment. The proposed approach implements the
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nested cross-validation procedure as a tool for the evaluation of the overall prediction ac-

curacy. The obtained results show that taking the interaction into account can improve the

predictive capabilities of the trend model up to 20%. As expected, the greatest improve-

ment was achieved with variables that have a strong decreasing trend along the depth,

as well as a higher variation in the surface soil layers. In addition, the inclusion of in-

teractions between spatial covariates and depth has lead to models with the more sparse

structure. The complete computational framework was implemented in the set of R func-

tions, with the aim to constitute an R package (penint3D) for 3D soil mapping.

Key words: 3D soil maping, 3D regression kriging, Spline-Than-Krige, lasso, nested

cross-validation, pollution assessment, topographic exposure.

Scientific area: Geodesy

Scientific sub-area: Modeling and Management in Geodesy

UDC number: 528:005(043.3)
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Geostatističko modeliranje geohemijskih promenljivih u 3D prostoru

Geostatističko kartiranje zemljišta u 3D odnosi se na primenu geostatističkih metoda na

zemljišnim podacima u cilju izrade karata zemljišnih karakteristika jednog područja, koje

se odnose na različite dubine zemljišta. U okviru dve nezavisne studije, ova doktorska

disertacija razmatra dva različita pristupa geostatističkog modeliranja zemljišta u 3D. U

okviru prve studije, "Spline-Than-Krige" metod je korišćen za kartiranje koncentracije

arsena u zemljištu, u blizini Rudarsko-topioničarskog basena Bor, na tri različite dubine

(0-5 cm, 5-15 cm i 15-30 cm). Dugogodišnje emitovanje neprečišćenih materija iz topi-

onice rudnika u atmosferu, dovelo je do zagadjenja zemljišta u okolini, taloženjem štetnih

materija nošenih vetrom. U odsustvu podataka kojima bi se detaljnije mogao opisati pro-

ces raspršivanja štetnih materija, ova studija se ograničila na analizu izloženosti terena

uticaju vetra, a time i procesu zagad̄enja. Predstavljen je inovativan pristup kvantifikaciji

izloženosti terena izvoru zagad̄enja. Na osnovu opšte dostupnih podataka, kreirano je

nekoliko parametara kojima se kvantifikuje geometrijska i topografska izloženost svake

tačke terena izvoru zagad̄enja. Tako kreirani parametri, iskorišćeni su za opisivanje pros-

tornog trenda koncentracije arsena na tri različite dubine. Definisani trendovi, korišćeni su

u okviru regresionog kriginga, za prostornu predikciju. Na taj način pokušalo se odgov-

oriti na pitanje, u kojoj meri, opšte dostupni podaci, kao što su pravac dominantnog vetra

ili poznavanje tačne lokacije izvora zagadjenja u kombinaciji sa digitalnim modelom ter-

ena, mogu biti iskorišćeni da bi se unapredila preciznost prostorne predikcije zemljišnih

zagadjivača, kako na površinskim slojevima tako i na većim dubinama.



U okviru druge studije, predstavljen je inovativni geostatistički pristup 3D kartiranju

zemljišnih promenljivih. Metodološki, predloženi pristup je baziran na 3D regresionom

krigingu. Model trenda je definisan linearnom funkcijom koja uključuje članove inter-

akcije izmed̄u površinskih promenljivih i dubine, po hijerarhijskom i nehijerarhijskom

principu. Problem izbora modela i ocena parametara rešen je primenom lasso regular-

izacione regresije. Primenom lasso regresije omogućen je automatski izbor značajnih

prediktora (uključujući i članove interakcije izmed̄u površinskih pomoćnih promenljivih

i dubine). U okviru ove studije preporučeno je korišćenje i način implementacije ugn-

ježdene unakrsne validacije za ocenu preciznosti predikcije modela. Dobijeni rezultati

su pokazali da se uvod̄enjem interakcija može unaprediti model i do 20%. Najznača-

jnija unapred̄enja dobijena su za promenljive sa izraženom varijacijom u gornjim sloje-

vima zemljišta. Pored toga, uvod̄enje interakcija u model, rezultiralo je izborom modela

koji uključuje manji broj pomoćnih promenljivih. Predloženi pristup implementiran je u

okviru PenInt3D paketa funkcija razvijanih u R okruženju.

Ključne reči: 3D modeliranje zemljišta, 3D regresioni kriging, lasso, ugnježdena un-

akrsna validacija, procena zagad̄enosti, topografska izloženost

Naučna oblast: Geodezija

Uža naučna oblast: Modeliranje i menadzment u geodeziji

UDK broj: 528:005(043.3)
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Chapter 1

Introduction

1.1 Motivation

Soil is one of the most important natural resources necessary for life on Earth. It can

be defined as a surface layer of the Earth’s crust, located between the lithosphere and

the atmosphere, formed by the long-term influence of pedogenesis (Kisić, 2012). Soil is

a multipurpose resource that can be used in many aspects of human activity, including:

geology, agriculture, forestry, construction, and commercial use. Its relevance to a wide

range of human activities makes soil even more vulnerable to damage.

Bearing in mind that soil is a non-renewable natural resource, there has been a lot of fo-

cus on the issue of soil degradation over the past few decades. As a result, soil protection

and sustainable soil usage have become popular topics in the field. The exact causes and

types of soil degradation are numerous and complex (Eswaran et al., 2001). Pollution by

harmful elements is one of the most serious examples of soil degradation. Such pollution

is typical for soils in the vicinity of industrial zones, especially for those under mining and

ore processing impact. Mining and smelting activities are recognized as the most effective

sources of pollution. It is not uncommon that harmful dust and fumes from smelting plants

and waste incinerators are released into the atmosphere without processing. The greatest

part of the emitted matter is deposited on the ground through wet and dry depositions,

thereby significantly changing the soil’s chemical compounds. In these cases, the content

1



Chapter 1 Introduction

of harmful elements in the soil usually shows the typical patterns in both horizontal and

vertical (in-depth) sense. Horizontally, the concentration of pollutants typically decreases

as the distance from the source of pollution, or the distance from from the major wind

direction increases. Regional topography and different land (usage) types may also influ-

ence contamination processes thereby making the patterns more complex. Vertically, the

concentration of harmful elements typically decreases as the soil depth increases.

The assessment of soil pollution necessarily involves the creation of maps that delineate

areas where the pollutants exceed the pre-specified allowable levels. It is inevitably pre-

ceded by numerous in-field and laboratory investigation surveys. Moreover, these maps

should provide information about the depths of soil contamination. Depending on the re-

mediation technologies, the volume of contaminated soil may also be required. Volumes

can then be converted into treatment costs, which allows for the selection of the most

cost-effective and applicable remediation technology.

Geostatistics is well established in solving these issues and provides a number of tools for

the exploratory data analysis, spatial predictions, risk mapping and the simulation of pos-

sible realizations of spatial phenomena (Goovaerts et al., 1997; Goovaerts, 2001; Khalil

et al., 2013; Komnitsas and Modis, 2006; Dayani and Mohammadi, 2010; Guastaldi and

Del Frate, 2012; Tavares et al., 2008; García-Sánchez et al., 2010). Even if the character-

ization of soil in 3D is needed, geostatistics is typically used as a tool for horizontal data

analysis and mapping. The requirements for the maps related to other (deeper) soil layers

are commonly met by the modeling of each horizontal layer independently, i.e. each layer

was modeled without considering the soil properties above or below. The most widely

used approach for such mapping was proposed by Malone et al. (2009) later to be called

the ’Spline-than-Krige’ method by (Orton et al., 2016). This method implies the conver-

sion of profile data into a continuous form by fitting a spline function to the profile data

(Bishop et al., 1999), prior to fitting the 2D spatial prediction model. The final product is

a suite of digital maps of soil properties relating to different soil depths. The drawbacks

of this method are twofold: (1) the spline-converted data are estimates with associated er-

rors, which, if used, ultimately create additional source of errors in the model (Hengl and

Heuvelink, 2013); and (2) the independent mapping of different layers poses a risk that

the maps would show illogical discrepancies when overlapping (Meirvenne et al., 2003).
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For these aforementioned reasons, soil should be considered as a 3D body. Soil properties

vary in each direction, and also in time. At some scale, these variations are also spatially

auto-correlated and it makes sense to treat them with 3D geostatistics. The use of 3D

geostatistics in soil science is relatively new and represents the logical continuation of

geostatistical advances in soil mapping. Today, 3D soil mapping is recognized as one of

the main methodological challenges facing the soil scientists community (Arrouays et al.,

2014). Regarding that geostatistical methods do not differ meaningfully if the spatial

phenomena are considered in 2D or in 3D, the key difficulties in the application of the 3D

geostatistical methods can be caused by the very nature of the soil data, or specific soil

properties. This is summarized by Hengl and Heuvelink (2013), as follows:

1. The differences between sampling intervals and spatial correlation in the horizontal

and vertical dimensions are very large. This results in strong anisotropy between

the two directions that must be accounted. The estimation of the anisotropy may be

hampered by a relatively small number of observations along the vertical profile.

2. Soil property values refer to vertical block support (usually because they are com-

posite samples, i.e. the average over a soil horizon), hence some of the local varia-

tion (in the vertical dimension) has been smoothed out.

3. Soil surveyors systematically under-represent lower depths - surveyors tend to sys-

tematically take fewer samples as they assume that deeper horizons are of less

importance for management, or because deeper horizons are more expensive to

collect, or because deeper horizons are assumed to be more homogeneous and uni-

form.

4. Many soil properties show clear trends along the vertical dimension. It may not be

that easy to incorporate a vertical trend because such a trend is generally not con-

sistently similar between different soil types. In addition, the lack of environmental

covariates known in 3D space largely limits the development of 3D spatial models

of soil property.

This research is primarily committed to solving the last problem. However, the other

issues will also be partially addressed.
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1.2 Problem statement

For over more than a hundred years of activity, the exploitation and processing of copper

ore in the mining and metallurgical complex Bor, Serbia, caused serious environmental

problems (Kovačević et al., 2010; Serbula et al., 2013, 2014). This was mainly due to

inefficient control and refinement of toxic fumes during the smelting process. Harmful

compounds released in the atmosphere have spread over the surrounding area and changed

the soil’s geochemistry. A field survey was conducted in 2006 to document the actual

state of soil in the vicinity. The survey included the opening of 205 soil profiles that were

randomly distributed over the area of 200 km2 and were spaced 10 km away from the

mining complex; see Section 3.1. This area was also selected due to its high potential

for further mining investigation. Preliminary data analysis indicated that the soil was

indeed affected by a long term atmospheric pollution processes. This revealed the three-

dimensional, non-stationary pollution problem with complex spatial patterns that can be

connected with many external factors, such as prevailing climatic conditions, soil types,

topography, etc.

Mapping such phenomena by geostatistical methods implies the inclusion of external fac-

tors into the geostatistical model. Even more, the exclusion of these factors may result

in a misleading geostatistical model. However, the incorporation of these into a 3D geo-

statistical model may reveal new challenges. Considering that the external environmental

influences mostly affect the upper soil layers, and that their effect decreases with soil

depth, it may be expected that many of the soil characteristics will show a clear trend

along the soil depth. Furthermore, it may also be expected that the vertical trend varies

spatially due to different soil characteristics across the area. Therefore, the key question

of this research is how these influences can be properly approximated and incorporated

into a 3D geostatistical model to improve the prediction at any location in a 3D space. A

possible solution could be to make a 3D interaction model, i.e. the model that includes

the interactions between the environmental factors and soil depth. However, the inclusion

of interactions will dramatically increase the number of covariates that should be consid-

ered, which imposes the problem of model selection. Another important issue is related

to the modeling of spatial correlation structure. The anisotropic correlation model must

be found, that includes the anisotropy between the vertical and the horizontal direction,
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which is a prerequisite for the application of 3D geostatistical methods on soil measure-

ments.

1.3 Objectives

The final objective of this research is to propose an innovative approach for the 3D map-

ping of soil properties, which combines the advantages of interaction models and 3D

geostatistics. This approach would be particularly suitable for soils and soil properties af-

fected by intensive external environmental factors or human or industrial activities. Con-

sidering the characteristics of the case study, and the methodological challenges, the spe-

cific objectives can be formulated as follows:

1. To examine how case-specific environmental conditions, like exposure to the source

of pollution, can be quantified and mapped based on the limited amount of com-

monly available information, such as terrain topography, prevailing climatic con-

ditions and spatial relations.

2. To determine the contribution of such case-specific environmental layers (maps) to

the mapping of pollutants at different soil depths.

3. To examine how the important interactions can be automatically recognized and

included in a linear 3D trend model.

4. To examine the advantages and the disadvantages of the inclusion of the interactions

between spatial covariates and depth within the linear 3D model of soil variables.

5. To analyze and model the dependency structure of trend residuals in 3D.

1.4 Approach

Methodologically, the approach relies upon point scale geostatistics. Regression kriging

is adopted as a general statistical framework for spatial prediction. Regression kriging

is a two-step approach that combines two conceptually different techniques: regression
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for trend estimation and simple or ordinary kriging to interpolate residuals (Hengl et al.,

2007; Bajat et al., 2013). In this study, trend modeling is based on linear regression.

The restrictive nature of linear models is relaxed by considering interactions between

predictors and their functional expansion in a polynomial form. Environmental factors are

represented by a set of one or more continuous or categorical variables known as spatial

covariates. In Chapter 4, regression kriging was used within the so called Spline-Than-

Krige approach (Malone et al., 2009) (see Section 2.5.2) to map atmospherically deposited

arsenic concentration at several soil depths. In the Chapter 5, penalized regression method

’lasso’ (Tibshirani, 1996) and its extension for hierarchical interaction models proposed

by Bien et al. (2013) (see sections 2.2.7.1 and 2.2.7.2) were used to optimize the 3D

interaction trend model. Subsequently, it was incorporated into the generic framework

for 3D soil mapping. A new approach for model accuracy assessment is also an integral

part of this framework. Nested n-fold cross-validation was proposed to perform model

assessment that preserves the basic principle of predictive modeling, which states that the

modeling process has to be completely separated from the validation process.

1.5 Outline

The dissertation comprises 6 chapters, out of which one is submitted and one is prepared

for submission to peer-reviewed ISCI journals. Each chapter is arranged as introduction,

methodology, results and conclusion.

Chapter 1 offers a brief overview and objectives of the dissertation. It includes a gen-

eral introduction and the motivation for the research work, the research scope and specific

objectives, the applied approach and the thesis outline. Chapter 2 presents the main theo-

retical concepts and methods used in this thesis. It begins with the concept of soil forming

process as a foundation for quantitative soil modeling. The basic concepts of predictive

statistical modeling, including the theory of linear regression and shrinkage regression

methods are included. The main theoretical aspects of geostatistics that are followed by

specific methods used in this study are also provided. At the end of this chapter, the ex-

tension of 2D geostatistical methods to a 3D space was presented. Chapter 3 provides

details on a case study and the data used for this research. Chapter 4 presents the study of
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layer-specific mapping of arsenic concentration that was atmospherically deposited from

the Bor Copper Mining Complex. The presented approach considers the effects of the

prevailing climatic conditions and local topography on the terrain exposure to the dis-

persion of pollutants. Several exposure parameters were created and employed as spatial

covariates within the ’Spline-Then-Krige’ approach. Chapter 5 presents the usage of the

shrinkage regression method Lasso for building the 3D interaction linear trend models of

soil properties. The obtained models were further used as a part of 3D regression kriging

for the interpolation of soil properties over the whole 3D prediction domain. Chapter 6
describes the R package PenInt3D, which is still under development, for the prediction of

soil properties by penalized interaction models. Chapter 7 gives a short summary of the

most important conclusions.
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The main concepts and methods

This Chapter presents the main theoretical concepts and methods used in this thesis. The

specific topics include: (1) A conceptual model of pedogenesis that provides the theoreti-

cal basis for quantitative analysis and mapping of soil properties; (2) Principles of predic-

tive statistical modeling and linear regression techniques; (3) The theory of regionalized

random variable and variography; (4) Basic geostatistical methods; (5) A universal model

of soil variation and hybrid techniques; (6) An extension of geostatistical techniques in

3D space.

2.1 The Concept of Soil Formation-CLORPT model

Soil is a very complex system where a variety of physical, biological, and chemical pro-

cesses interact. The understanding of how their joint influence affect the long-age process

of pedogenesis has always been a challenge facing soil scientists. Initially, a number

of conceptual models were formulated (Stockmann et al., 2011). The most well-known

model of soil formation is Jenny’s (Jenny, 1941) state-factor model, also known as clorpt

model. It conceptualizes the state of soil as a resultant of joint influences of five main

independent factors and a number of additional, unspecified factors:

S = f (cl,o,r, p, t, ...) (2.1)
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where cl is the climate, o are the organisms, r is the topography, p is the parent material,

and t is the time, and ... stands for additional, unspecified factors. Such formulation

has provided an intuitive framework for much of the subsequent work on solving the

function f . Most efforts were spent not to formulate the overall equation f but rather

to examine the individual contribution of each factor. In that regard, empirical methods

have mostly been employed in literature. This approach involves the examination of soil

behavior in situations where one factor is allowed to vary while others are kept constant.

Such treatments led to the development of empirical models, known as climo-functions,

bio-functions, topo-functions, litho-functions, and chrono-functions (Yaalon, 1975).

2.1.1 SCORPAN framework

The conceptual model published by Jenny has served as a foundation for further investi-

gations on quantitative relations between soil and soil forming factors. A variety of inter-

national researchers have sought the way to construct mathematical solutions that would

represent the closest approximation of joint influences of soil forming factors (McBratney

et al., 2000; Minasny et al., 2008).

With the introduction of GIS and digital terrain analysis, new opportunities for soil sci-

entists have arisen. Digital Elevation Model (DEM) along with other digital layers have

provided a detailed quantitative description of the area, thus opening the possibility to

extend the clorpt concept to the spatial domain. Consequently, soil scientists all over the

world have begun to use increasingly mapped auxiliary variables to explain the specific

spatial patterns of soil and hence to produce maps of specific soil properties. Standard

multiple linear regression was used to model the relationship between soil data and ter-

rain attributes (Moore et al., 1993; Gessler et al., 1995). This approach was later termed

as the "environmental correlation" method (McKenzie and Ryan, 1999), or the spatial

prediction by multiple regression with auxiliary variables (Odeha et al., 1994).

Following up on this trend, McBratney et al. (2003) utilized the Jenny’s clorpt concept

to propose a more generic framework called the scorpan model, which primarily aimed

at providing empirical quantitative descriptions of relationships between soil and other

spatially referenced factors. The scorpan model states that the soil type or soil attribute at
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an unvisited site can be predicted from a numerical function or model ( f ) of the environ-

mental factors plus the locally varying, spatial dependent residuals (ε):

Sc = f (s,c,o,r, p,a,n)+ ε or Sa = f (s,c,o,r, p,a,n)+ ε (2.2)

where Sc and Sa represent soil classes and soil attribute respectively. The environmental

factors within the acronym scorpan are: s: soil, other properties of the soil at a point;

c: climate, climatic properties of the environment at a point; o: organisms, vegetation or

fauna or human activity; r: relief, topography or landscape attributes; p: parent material,

lithology; a: age, the time factor; n: space, spatial position.

Mathematical model of f is the empirical quantitative function linking the soil vari-

able (S) to the scorpan factors. Each factor can be represented by a set of one or more

continuous or categorical variables. For example, r can be represented by DEM but also

with the various DEM derivates such as slope, curvature etc. Various data layers can be

used to describe the scorpan factors. Today, the creation of these layers is seen as an

integral part of any digital soil mapping study.

2.2 Predictive soil mapping - linear regression approach

Scull et al. (2003) defined the ’predictive soil mapping" (PSM) as the development of

numerical or statistical model of a relationship among environmental variables and soil

properties, which is then applied to a geographic data base to create a predictive map.

Today, so defined PSM is just an inevitable part of broader concept called Digital Soil

Mapping (DSM) (McBratney et al., 2003; Minasny and McBratney, 2016). Digital soil

mapping is defined as: the creation and population of spatial soil information systems

by the use of field and laboratory observational methods coupled with spatial and non-

spatial soil inference systems (Lagacherie and Mcbratney, 2007).

Jenny’s model and scorpan framework have formed the theoretical basis for using

a variety of statistical methods in predicting soil properties based on auxiliary spatially

referenced data. Advances in mathematical and statistical theory (including machine
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learning techniques) have created a great potential for improvements in predictive soil

mapping. In statistical theory, the term "predictive modeling" refers to the data-driven

process of building a statistical model, which ideally should provide the best possible

prediction. It means that the statistical model must be determined in a way to minimize

the prediction error. The prediction error refers to the average error that results from us-

ing a statistical model to predict the soil variable on data that has not been used in the

model building process (test data). Prediction error is also known as test error. On the

other hand, the training error can be calculated by applying the statistical method to ob-

servations used in its training (training data). Training error is often quite different from

test error. Various statistical methods can be used for this purpose; however, no single

method has been proven dominant when examined using all possible data sets. An ex-

haustive review of recent achievements using this approach was provided by McBratney

et al. (2003); Malone et al. (2016).

In this thesis, the statistical approach used for solving the scorpan problem is based

on linear regression methods. In linear regression, the model has a vector of parameters set

up to minimize the training error. The potential disadvantage of linear regression models

is that the obtained model usually does not match the true unknown form of f very well.

Alternatively, the function f can be approximated by more flexible models (like tree-based

or neural network models) that can fit many different possible functional forms for f . In

linear regression, fitting a more flexible model requires estimating a greater number of

parameters. These more complex models can lead to overfitting, which essentially means

that they follow the observed data too closely.

The following sections provide a brief overview of the statistical methods and fun-

damental principles of predictive modeling that are used in this study. Considering that

linear regression is adopted as a general modeling framework in this thesis, a brief con-

cept of linear regression, their extensions and a review of modern approaches in linear

modeling, will be presented. For more details, the interested reader shall be refered to

Hastie et al. (2009); James et al. (2013); Perović (2005); Kuhn (2008) which are used as

a guide when presenting statistical methods.
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2.2.1 Quantitative Measures of Model Performance

In order to evaluate the performance of a statistical model, a measure must be defined

that can quantify how well predictions match the observed data. In the regression setting,

when the outcome is a number, the most commonly-used measure is the mean squared

error (MSE) given by:

MSE =
1
n

n

∑
i=1

(yi− f̂ (xi))
2 (2.3)

where yi is the i− th observation and f̂ (xi) is the prediction that f̂ gives for data

point xi. The MSE becomes a smaller value as the the predicted values approach the

observations, i.e if the residuals tend to be small. By squaring the residuals, MSE becomes

more sensitive to outliers, as the larger residuals contribute more to the final estimate than

the smaller residuals. Often, a more suitable measure is the root mean squared error

(RMSE, Equation 2.4) which is derived from MSE by taking the square root of the MSE

so that it is in the same units as the original data. The RMSE can be interpreted as the

average distance between the observed values and the model predictions.

RMSE =

√
1
n

n

∑
i=1

(yi− f̂ (xi))2 (2.4)

Another common measure is the coefficient of determination, which is commonly

denoted as R2. R2 value is a number that indicates how the fit of proposed model is

better than the fit of the simple mean model. The mean model gives the observed mean

value for every predicted value and generally it would be used if there were not any useful

predictors. R2 value takes the form of a proportion and therefore assumes a value between

0 and 1:
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R2 =
T SS−RSS

T SS
= 1− RSS

T SS
where :

T SS =
n

∑
i=1

(yi− ȳ)2

RSS =
n

∑
i=1

(yi− ŷi)
2

(2.5)

As it can be seen from Figure 2.5, the estimation of R2 is based on two sums of

squares, TSS and RSS. TSS measures how far the observed data are from the mean value

and can be thought of as the amount of variability that is left after fitting the mean model.

On the other hand, the RSS reflects the amount of variability that is left after fitting the

proposed model. Hence, the difference between TSS and RSS reflects the improvement

in prediction reached by fitting the proposed model when compared to the mean model.

Dividing that difference by RSS provides the R2 value.

Model selection, which will be discussed later in this chapter, implies the consider-

ation of several models with different subgroups of predictors. If we assess the quality

of these models by comparing training error (i.e. training RMSE), it is very likely to be

shown that the smallest error is provided by fitting the model with the largest number of

predictors. For that reason, the training RMSE or training R2 value can not be used to

rank models that have different numbers of predictors. However, there are several mea-

sures that can penalize the model performance based on how many predictors are used

in the model. For linear regression, a commonly used statistic is the Akaike Information

Criterion (Akaike, 1974):

AIC = n log
n

∑
i=1

(yi− f̂ (xi))
2 +2P (2.6)

where P is the number of terms in the model. The first term of the Equation 2.6

decreases as more variables are added to the model, whereas the second term increases.

In this way, AIC controls for overfitting by penalizing models that include too many vari-

ables.
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The adjusted R2 statistic is another popular measure for model selection. Since RSS

in Equation 2.5 always decreases as more variables are added to the model, the R2 always

increases as more variables are added. For a model with d variables, the Ad justed R2

statistic is calculated as:

Ad justed R2 = 1− RSS/(n−d−1)
T SS/(n−1)

(2.7)

Unlike the AIC, a large value of ad justed R2 indicates a model with a small error.

2.2.2 Resampling methods

Today, the application of any modern regression techniques in predictive modeling cannot

be imagined without the extensive use of resampling methods. Resampling methods in-

volve repeatedly fitting the same statistical method using different subsets of training data

in order to obtain additional information about the fitted model. This information may re-

late to the optimal subset of predictors, which aids in model selection, or eventually to the

predictive accuracy of the model, which is referred to as model assessment. Resampling

methods were devised to compensate for the lack of sufficiently large test sets that can be

directly used for the estimation of test error.

2.2.2.1 Cross-validation

Cross-validation involves splitting the data up into a set of K parts (folds) of approximately

equal size. In each step of the process, one fold is treated as the test data set (validation

data set) while the remaining folds, joined in one group, are treated as the training data

set. Also, in each step, cross-validation uses the training data set to fit the model and

the test data to compute the prediction error (Figure 2.1). By doing so, the K estimates

of prediction error can be combined to obtain the average prediction error. For example,

if each step of cross-validation results in the test MSEk, k = 1,2, . . . ,K, the average

cross-validation MSE is:

14



Chapter 2 The main concepts and methods

MSEcv =
1
K

K

∑
k=1

MSEk (2.8)

Data

Training Test

Test

Test

Test

TrainingTest

FIGURE 2.1: 5-fold data partitioning

In predictive modeling, for methods with meta-parameters (e.g. shrinkage parameter

λ for lasso, see Section 2.2.7), cross-validation is often used as a tool for selecting the

optimal meta-parameter. For example, for a model M that depends on meta-parameter θ ,

a cross-validation error can be computed for a whole set of meta-parameter values θ ∈Θ,

which are set previously. This results in cross-validation error curve which relates the

cross-validation error to the values of θ . The optimal θ is:

θ̂ = argmin
θ∈{θ1,θ2,...,θm}

CV (θ) (2.9)

Cross-validation procedure in model selection is given in Algorithm 1.
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Algorithm 1 Selection of the best value for meta-parameters based on cross-validation
procedure

1: Partition D into stratified sets Di, k = 1, . . . ,K of approximately equal size

2: for k = 1 to K do

3: Let D′ be D\Di

4: for each θ ∈Θ do

5: Fit the model M(θ ,D′)

6: Make predictions by M(θ ,D′) on Di

7: end for

8: For each parameter θ compute the average error MSEcv(θi) =
1
K ∑

K
k=1 MSEk

9: Let θ ∗ be argminθ∈Θ MSEcv(θ)

10: end for

When K = n, we call this leave-one-out cross-validation, because we leave out one

data point at a time.

2.2.2.2 Nested cross-validation

The cross-validation procedure, as explained above, provides a biased estimate of accu-

racy parameters for methods that require the optimization of meta-parameters. Choosing

meta-parameters is also a part of the training process, and, since the whole data set was

used in cross-validation to select the best value of meta-parameters, the whole data set

is used for the training (Krstajic et al., 2014). This procedure violates the fundamental

requirement of predictive modeling in that the training and test data need to be separated.

The use of the nested cross-validation technique can overcome the limitations described

above (Krstajic et al., 2014). In short, the nested cross-validation consists of two nested

cross-validation loops. The outer loop serves to assess the performance of the model,

which was selected in the inner cross-validation loop. For each outer fold, the model is

selected on each outer training set, using a standard cross-validation procedure in the inner

loop and then applied to the outer test set. The process yields a prediction for each fold,

obtained from a model which was not trained on that fold. Using these predictions, the

overall accuracy measure is computed. The nested cross-validation procedure is presented

in Algorithm 2 and in Figure 2.2.
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Inner cross-validation

Partitioning  training data set
D’=D/Di into new k’ folds 

Partitioning entire data set D
into k folds:

D - input data matrix, Θ -set of 

metaparameters

D = {Di }, i=1, … , k

Fit the model on new 

training data M(ϴi, D’’)

For each j, 

j=1,…,k’

For each 

ϴi ∈Θ

Computing ecv(ϴi)  based 

on prediction on entire D’

D’={D’j }, j=1, …, k’

For each i, 

i=1,…,k

Training Data: D’=D\Di

Fit the model M* with ϴ* on 
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test data D’j

• Training data: D’={D\Di}
• Validation Data: Di

Select the ϴ * with 

minimal ecv

Make prediction on validation 

set Di

Compute the RMSE and R2

based on prediction on entire 

data set D

• New training data: D”={D’\D’j}
• Test Data: D’j

FIGURE 2.2: Model assessment based on nested cross-validation procedure.
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Algorithm 2 Nested cross-validation
1: Partition D into stratified sets Di, i = 1, . . . ,k of approximately equal size

2: for i = 1 to k do

3: Let D′ be D\Di

4: for each θ ∈Θ do

5: Partition D′ into stratified sets D′j, j = 1, . . . ,k′ of approximately equal size

6: for j = 1 to k′ do

7: Fit the model M(θ ,D′ \D′j)

8: Make predictions by M(θ ,D′ \D′j) on D′j
9: end for

10: Compute error eθ based on predicted and real target values on D′

11: end for

12: Let θ ∗ be argminθ∈Θ eθ

13: Fit the model M(θ ∗,D′)

14: Make predictions by M(θ ∗,D′) on Di

15: end for

16: Report error computed on predicted and real target values on D

2.2.3 Bias-Variance trade off

The understanding of the concept of bias-variance trade off is particularly important for

any type of statistical predictive modeling. Bias-variance explains how different sources

of error influence the overall accuracy of the model. The expected test error for a particular

test point x0 can be decomposed into the sum of three fundamental quantities, the variance

of f̂ (x), the squared bias of f̂ (x), and the variance of the error variance terms ε:

E(y0− f̂ (x0))
2 =Var( f̂ (x0))+ [Bias( f̂ (x0)]

2 +Var(ε) (2.10)

where E(y0− f̂ (x0))
2 is the expected test error, and refers to the average test error that

would be obtained if f is repeatedly estimated using a large number of training sets and

tested each at test point x0. The equation 2.10 shows that the expected test error reaches a

minimum only if the predictive model achieves the lowest bias and variance possible.
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The variance refers to the error caused by fitting the regression model by using many

different data sets. Since different data sets are used to fit the model, the predictions for a

given point vary between different realizations of the model. Ideally, the f̂ should not vary

significantly between different data sets. The bias refers to the error that is introduced by

modeling the true f by a particular model f̂ . For example, if the true f is non-linear, and

we are trying to fit the linear model, an irreducible error is introduced. This error is known

as bias.

Generally, more flexible methods (like spline or tree-based methods) result in models

with less bias, but with high variance. Figure 2.3 also shows the typical relationship

between the training and test error, as the complexity of model varies. The training error

monotonically decreases as the complexity of the model increases, whereas the test error

decreases as the model reaches a certain complexity. As a result, the test error tends to

increase due to the increasing variance. For example, linear models becomes more flexible

as more variables are included in the model. Therefore, a key task in linear modeling is

to determine which subset of variables should be included in order to provide balance

between bias and variance. The relationship between bias, variance, and test error is

referred to as the bias-variance trade-off. In reality, the true f is not known, so it is

generally not possible to determine how much the adopted model deviates from the true

f . Accordingly, bias-variance trade off is not a rule, but it is rather a kind of a problem

which should always be kept in mind when modeling.

2.2.4 Linear regression

A linear regression model is a very straightforward approach for predicting a quantitative

response Y on the basis of a group of predictor variables (predictors) X j. It assumes that

there is approximately a linear relationship between Y and X j, i.e. each variable is linearly

related to the modeled variable. Mathematically, the linear regression model can written

in the form:

f (X) = β0 +
p

∑
j=1

X jβ j + ε (2.11)

where the β j’s are unknown parameters or coefficients, and the X j can be (Hastie et al.,

2009):
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FIGURE 2.3: Bias-Variance trade-off, from (Hastie et al., 2009)

1. quantitive inputs

2. transformation of quantitive inputs, such as log, square-root

3. basis expansions of inputs, like polynomial function of particular inputs

4. numeric or ’dummy’ coding of the levels of qualitative inputs.

5. interactions between variables, for example, Xi = X jXk

The observed data from which the coefficients β have to be estimated are typically

given in the form of pairs: (x1,y1,x2,y2, . . . ,xN ,yN). Where each xi = (xi1,xi2, . . . ,xip)
T

is a vector of i−th predictor variable measurements. According to the least square estima-

tion, which is the most popular method for estimation, the coefficients β =(β0,β1, . . . ,βp)
T

are determined to minimize the residual sum-of-squares (RSS):
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RSS(β ) =
N

∑
i=1

(yi− f̂ (xi))
2

=
N

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2

(2.12)

If the N× (p+1) matrix, where each row represents the input vector, is denoted by

X, and if the N-vector of outputs in the data is denoted by y, then the residual sum-of-

squares can be written as:

RSS(β ) = (y−Xβ )T(y−Xβ ) (2.13)

If X has full column rank, and hence XTX is a positive definite, and the first derivative

is set to zero XT(y−Xβ ) = 0, the unique solution for β = (β0,β1, . . . ,βp)
T will be given

by:

(β̂ ) = (XTX)−1XTy (2.14)

2.2.5 Extensions of linear models

The standard linear regression model provides an interpretable model form. However, it

makes a set of restrictive assumptions that can be rarely encountered in practice. Two

highly restrictive assumptions state that the relationship between the predictors and the

response variable must be additive and linear.

2.2.5.1 Inclusion of interactions

One way to relax the additive assumption is to extend the linear model by allowing for

interaction effects. Interactions exist when a change in the level of one variable has differ-

ent effects on the response, depending on the value of the other variable. An interaction

effect is an additional term in model setting that is constructed by computing the product
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of two variables. Accordingly, the linear model with interaction terms has the following

form:

Y = β0 +β1X1 +β2X2 +β3X1X2 + ε (2.15)

The effects of interactions can be distinguished if we reformulate the Equation 2.15

as:

Y = β0 +(β1 +β3X2)X1 +β2X2 + ε

= β0 + β̃1X1 +β2X2

(2.16)

where β̃1 = β1+β3X2. Since β̃1 changes concomitantly with X2, the effect of X1 on Y is no

longer constant. Changing in X2 will change the impact of X1 on Y . Therefore, interaction

models distinguishes two types of effects: main effects, which are the individual effect of

single variable and the interaction effects, or the synergy effects of two linked variables.

2.2.5.2 Polynomial expansion

As mentioned previously, the linear regression model assumes a linear relationship be-

tween the response and its predictors. However, in reality, the true relationship between

predictors and the response is often nonlinear. A simple way to address this issue with lin-

ear models is to use a polynomial regression. Polynomial regression involves the polyno-

mial expansion of predictors, i.e. includes the polynomial functions of predictors within

the linear regression model. In other words, polynomial regression extends the linear

model by adding extra predictors, obtained by raising each of the original predictors to a

power (James et al., 2013). For example, a cubic regression uses three variables, X , X2,

and X3, as predictors, which results in the model:

yi = β0 +β1xi +β2x2
i +β3x3

3 + . . .+βdxd
i + εi (2.17)

The coefficients in Figure 2.17 can be easily estimated using least squares linear

regression because this is still a standard linear model. Even though this is a common

linear regression model, the individual coefficients are not of particular interest. Instead,
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the attention should rather be payed on the entire fitted ’function’ that corresponds to the

one variable.

2.2.6 Model selection

Model selection is one of the most frequently encountered problems in statistical data

analysis. Generally, it involves the task of selecting an optimal statistical model from a set

of candidate models. In predictive statistical modeling, model selection should provide a

balance between model complexity and its ability to predict. Complex models fit training

data better, but they are more prone to overfitting and lead to lower quality predictions. In

linear regression modeling, with a large number of predictors, smaller subsets that exhibit

the strongest effects are preferred.

2.2.6.1 Best subset selection

Best subset selection involves the separate-fitting of models consisting of each possible

combination of p predictors, and choosing the one with the smallest test error. This is

usually done through the following algorithm:

Algorithm 3 Best subset selection, from James et al. (2013)

1: Let µ0 denote the model which contains no predictors (null model).

2: for k = 1,2, . . . , p: do

3: Fit all
(p

k

)
models that contain exactly k predictors.

4: Pick the best among these
(p

k

)
models, and call it µk. Best is defined as having the

smallest RSS, equivalently largest R2.

5: end for

6: Select a single best model from among µ0,µ1, . . . ,µp using cross-validated prediction

error, AIC or Ad justed R2.
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Best subset selection is indeed simple and a very conceptually appealing approach

but, on the other hand, it is very computationally demanding. For any subset of p predic-

tors there are 2p models that must be considered. Consequently, the number of possible

models that must be considered increases dramatically as p increases.

2.2.6.2 Forward step-wise selection

Forward stepwise selection is a popular algorithm for considering a sequence of nested

linear regression models. It begins with a model with no predictors, sequentially adding

one predictor at a time until the model with all predictors is fitted. In each step, the pre-

dictor that gives the greatest additional improvement to the fit is added to the model. This

approach appears to be a very appealing alternative to the best subset selection because

it considers a much smaller set of models. The forward stepwise selection procedure is

given in Algorithm 4.

Algorithm 4 Foreward step-wise selection, from James et al. (2013)

1: Let µ0 denote the model which contains no predictors (null model).

2: for k = 1,2, . . . , p−1: do

3: Consider all p− k models that augment the predictors in µk with one additional

predictor.

4: Pick the best among these p−k models, and call it µk+1. Best is defined as having

the smallest RSS, equivalently largest R2.

5: end for

6: Select a single best model from among µ0,µ1, . . . ,µp using cross-validated prediction

error, AIC or Ad justed R2.
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2.2.6.3 Backward step-wise selection

Backward step-wise selection is very similar to forward stepwise selection. Backward

step-wise selection also provides an efficient alternative to the best subset selection. How-

ever, unlike forward step-wise selection, it begins with the full least squares model con-

taining all p predictors and then iteratively removes the least useful predictor one-at-a-

time James et al. (2013). The backward stepwise selection procedure is given in Algo-

rithm 5.

Algorithm 5 Backward step-wise selection, from James et al. (2013)

1: Let µ0 denote the model which contains all p predictors (full model).

2: for k = p, p−1, . . . ,1: do

3: Consider all k models that contain all but one of the predictors in µk for a total of

k−1 predictors.

4: Pick the best among these k models, and call it µk−1. Best is defined as having

the smallest RSS, equivalently largest R2.

5: end for

6: Select a single best model from among µ0,µ1, . . . ,µp using cross-validated prediction

error, AIC or Ad justed R2.

Backward selection has just one important requirement: the number of samples n

must be larger than the number of variables p, considering that the algorithm starts from

the full-model. In contrast, forward step-wise selection can be used even when n < p, and

so it is one of the viable subset methods when p is very large.

2.2.7 Shrinkage Methods

According to Hastie et al. (2009, 2015) there are two main problems with the least squares

estimation:

1. The first problem is prediction accuracy. Least squares estimates for a model with a

large number of predictors often have low bias, but very large variance. In order to
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reduce the variance, a little bit of bias must be introduced. This can be accomplished

by shrinking or setting certain coefficients to zero.

2. The second problem is interpretation. Least squares fitting yields models that re-

tain all predictors of greater or smaller importance. The inclusion of irrelevant

predictors introduces unnecessary complexity into the model. A large number of

predictors make model interpretation difficult. It is not rare that a certain number

of predictors are in fact not associated with the modeled variable.

The possible solutions to overcome these issues are the subset selection or step-wise

selection procedures described previously. The main task of these techniques is to provide

a model with a limited subset of relevant predictors, which would result in a reduction of

variance and also in simpler model interpretation. However, due to their repetitive nature,

a large number of potentially useful predictors can make this task very computationally

demanding. The easiest and the most effective solution for this problem is to use the

Shrinkage methods. Shrinkage methods fit the model containing all p predictors, by using

one of the common loss functions (e.g. square loss) extended with additional regulariza-

tion penalties that shrink the coefficient estimates towards (or exactly to) zero. The two

most popular shrinkage (penalized) methods are ridge regression and lasso (least absolute

shrinkage and selection operator).

The rationale behind the efficiency of shrinkage methods lies in bias-variance trade

off. By shrinking the coefficients towards zero, the flexibility of the model decreases,

leading to an increased bias, but a decreased variance of the model. However, a small

increase in bias may result in a large decrease in variance, which may lead to substantial

improvements in prediction accuracy. The efficiency of shrinkage methods is particularly

evident when the number of variables p is almost as large as the number of observations

n, i.e. exactly in cases where the least squares solution has a high variance. Unlike the

ridge regression, lasso performs the model selection within the fitting procedure, forcing

some of the coefficient estimates to be exactly equal to zero. For this reason, lasso was

used for the trend modeling of the soil variables in this research. The following sections

discuss the lasso in more detail. An exhaustive review of lasso and its generalizations was

recently published in a text by Hastie et al. (2015).
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2.2.7.1 LASSO

Lasso (Least Absolute Shrinkage and Selection Operator) is the computationally attractive

one-step approach for parameter estimation and variable selection for linear regression,

proposed by Tibshirani (1996). Lasso combines the well-known least squares loss func-

tion with the bound on the l1 = ∑
p
j=1 |β j| norm of coefficients, to create a sparse linear

model, which is a unique global solution of the convex minimization problem. l1 norm is

bounded by a pre-specified value t. Therefore, the coefficients of lasso regression are the

solution for the following optimization problem:

min
β0,β

{
1
N

N

∑
i=1

(yi−β0− xT
i β )2

}
subject to

p

∑
j=1
|β j| ≤ t (2.18)

where yi represents the observed value of response, β represents the vector of model

coefficients and xi is a vector of predictor values for the i− th case. The value of t can

be understood as a budget which controls how large ∑
p
j=1 |β j| can be. In this way, lasso

controls the complexity of the model. For a small value t, more coefficients are forced to

be exactly equal to zero, while for sufficiently large t, lasso coefficients are getting closer

to their least squares estimates. In this way, lasso yields models that simultaneously use

regularization to improve the model and to conduct the variable selection.

It is convenient, and more suitable for the optimization process to express Equa-

tion 2.18 in one-to-one corresponding Lagrangian matrix form:

min
β∈Rp

{
1
N
‖y−Xβ‖2

2 +λ‖β‖1

}
(2.19)

where parameter λ (shrinkage or regularization parameter) controls the strength of l1
constraint, as ’t’ does in equation 2.18.

Typically, the use of penalized regression models implies the standardization of pre-

dictors prior to model fitting (Hastie et al., 2009). The reason for this lies in the depen-

dence of the lasso solution on the variables’ unit.

Selecting the optimal value of λ is the most important issue, considering that differ-

ent values of λ can produce very different models. Lasso produces different coefficient
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estimates for each value of λ . The n-fold cross-validation procedure is a common way

to select the best model, or, equivalently, the optimal λ parameter. By defining a grid

of values of λ parameters and computing cross-validation errors ecv for each value, the

optimal λ value is the one which gives the lowest ecv. Figure 2.4 shows the path of the

coefficients over different values of λ , estimated for the SOM (Soil Organic Matter) data

with IntL model, see Chapter 5. The upper x-axis refers to the number of predictors, while

the lower x-axis refers to the log function of λ parameters. The y-axis refers to the values

of estimated coefficients. Each line corresponds to a different model variable, which were

centered and scaled prior to model fitting. As we scan from left to right on the graph,

log(λ ) increases and the the coefficient estimates move toward 0 at different rates. When

the log(λ ) is sufficiently large, many of the coefficients are set to 0. The optimal λ value

can be selected by computing the cross-validation error for each value of λ . The dashed

vertical line denotes the best λ parameter as calculated by the 5-fold cross-validation. In

addition, lasso has one considerable advantage over the step-wise selection methods, or

best subset selection. Within the cross-validation, for any value of λ , lasso fits only a

single model, and the model-fitting procedure can be performed very efficiently.
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FIGURE 2.4: Coefficients path for different value of λ
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2.2.7.2 LASSO for hierarchical interactions

Hierarchical interactions refers to the parameters setting in linear model, according to

which the interaction terms are included in the model only if the associated ’main’ terms

are important or statistically significant for the prediction. The consideration of hierar-

chical interactions in this study is based on an approach proposed by (Bien et al., 2013).

Their approach produces an interaction model that is guaranteed to be hierarchical. They

consider a regression model for an outcome Y and the predictors X1,X2, . . . ,Xp with the

pairwise interactions between these predictors:

Y = β0 +∑
j

β jX j +
1
2 ∑

j 6=k
Θ jkX jXk + ε

where ε = N(0,σ2)

(2.20)

with the goal to estimate β ∈ Rp,Θ ∈ Rp×p, where Θ = ΘT , Θ j j = 0. Additive terms

are called main effects, while the multiplicative terms are called interaction effects. Two

different types of hierarchy restrictions are defined as strong and weak hierarchy:

Strong hierarcy : Θ̂ jk 6= 0 =⇒ β̂ j 6= 0 and β̂k 6= 0

Weak hierarcy : Θ̂ jk 6= 0 =⇒ β̂ j 6= 0 or β̂k 6= 0
(2.21)

They proposed a lasso procedure that produces sparse estimates of β and Θ, while

satisfying either the strong or the weak hierarchy constraint. In contrast to other ap-

proaches, such as grouped lasso penalties (Yuan and Lin, 2006), their approach involves

adding a set of convex constraints to the lasso:

Minimize
β0∈R,β∈Rp,Θ∈Rp×p

q(β0,β
+−β

−,Θ)+λ‖β‖1 +
λ

2
‖Θ‖1

subject to Θ = Θ
T

‖Θ‖1 ≤ β
+
j +β

−
j

β
+
j ≥ 0 for j = 1, . . . , p

β
−
j ≥ 0 for j = 1, . . . , p
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2.3 Geostatistical mapping - concept and methods

This section provides a concise description of geostatistical methods, which are described

in more detail in Cressie (1993); Webster and Oliver (2007); Goovaerts et al. (1997);

Oliver and Webster (2015); Goovaerts (1999a); Hengl et al. (2004); Goovaerts (1999b);

Oliver and Webster (2014); Diggle (2011).

Geostatistics was introduced into soil science more than 30 years ago. Originally,

geostatistics was developed for the mining industry (Krige, 1951), and today it is applied

widely as a modeling tool in environmental sciences. As already mentioned, soil is a

product of many interacting physical, chemical and biological processes. Although these

processes are physically determined, their interactions are quite complex, whereas their

mutual influences make the soil variation appear as if it was random (Oliver and Webster,

2014). For that reason, deterministic or any exact mathematical solution does not cover

all the variations of soil property.

From the geostatistical point of view, the observation of a particular soil property at

any place z(x), where x represents geographic location, is considered to be just one of the

infinite possible values that might be observed. Thus this value can be treated as a random

variable, which is denoted by the capital Z. The set of such random variables at all of these

places in one region constitutes a spatial random process (or random function), denoted as

Z(x). Random variables in the real space, such as the concentrations of elements in soil,

are also called ’regionalized variables’ (Matheron, 1963).

Such a random process cannot have explicit mathematical descriptions, i.e. it cannot

be expressed by a mathematical equation. On the other hand, it can be described by

stochastic relations, such as spatial correlation. This means that levels of environmental

variables at different places may be related to one another in a statistical sense. Intuitively,

the levels of environmental variables appear to be more similar, if the spatial locations,

where the values are taken, are closer to each other.
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2.3.1 Stationarity and Variography

Considering that the set of actual (observed) values is a single realization of a spatial ran-

dom process, it is theoretically impossible to determine any statistical parameter of the

spatial random process, or even of a random process at a particular point in space. In

order to overcome this limitation, geostatistical theory introduces one additional assump-

tion, named stationarity. Stationarity implies that a spatial random process has the same

degree of variation over a region of interest. Under the assumption of stationarity, a spatial

random process can be represented as:

Z(x) = µ + ε(x) (2.22)

where µ is the mean of the process and ε(x) is a random quantity with the mean of zero

and the covariance, C(h) where the h is the separation in space. The covariance can be

expressed as:

C(h) = E[Z(x)−µZ(x+h)−µ] = E[Z(x)Z(x+h)−µ
2] (2.23)

where Z(x) and Z(x+ h) are the values of random variable Z at places x and x+ h,

and E denotes the expectation. In this way, the covariance depends only on h, which

is a separation between samples, and not on their locations within the observed area.

The stationarity assumption implies a constant mean over the whole area. Since this is

rarely the case, Matheron (1963) has introduced a relaxed assumption called intrinsic

stationarity, which implies that the expected differences between the values of a random

variable Z at places x and x+h is equal to zero. Therefore, the covariance is replaced by

half the variance of the differences, referred to as the semivariance:

γ(h) =
1
2

var[Z(x)−Z(x+h)] =
1
2

E[Z(x)−Z(x+h)2] (2.24)

The semivariance, expressed as the function of h, is called the variogram γ(h). Es-

timating the variogram values from the observed data, z(x1),z(x2), ...z(xn) by changing

h, is usually the first step in any geostatistical analysis. The usual way to compute the

variogram values for different h is the Matheron’s method of moments (MoM):
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γ̂(h) =
1

2m(h)

m(h)

∑
i=1

[z(xi +h)− z(xi)]
2 (2.25)

where z(xi) and z(xi +h) are the observed values of z at places xi and xi+h,and m(h)

is the number of paired comparisons at lag h. This set of values is called the experimental

or sample variogram, because it is based on the observed data. The sample variogram can

be modeled by fairly simple mathematical functions. The most used variogram models

are: Nugget, Exponential, Spherical, Gaussian, Linear, and Power (Oliver and Webster,

2014). The obtained model of sample variogram leads to the geostatistical prediction

technique known as kriging.

2.3.2 Ordinary Kriging

Kriging is a generic name for an entire family of geostatistical interpolation techniques.

Kriging technques provide predictions on punctual or block supports that are unbiased

and have minimum prediction errors. For this reason, kriging is often known as the Best

Linear Unbiased Predictor (BLUP). Kriging predicts values at unsampled locations by

weighting the neighboring measurements in a way that takes into account the structure of

spatial dependence, as represented in the variogram or the covariance function.

Ordinary kriging is by far the most common type of kriging. Ordinary kriging is

based on the assumptions that the variation is random and spatially dependent, and that the

underlying random process is intrinsically stationary with a constant mean and a variance

that depends only on separation distance, and not on absolute position within the observed

area (Oliver and Webster, 2015). The whole computation can refer to one, two, or three

dimensional space, as well as to the point or block support. The most common case is still

two-dimensional, but later in this work an extension to the three-dimensional space will

be presented.

If we denote the values of random variable Z that have been collected at locations

x1,x2,x3...xn as z(xi). Kriging prediction Ẑ of a random variable Z at any new point x0 is

given by:
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Ẑ(x0) =
N

∑
i=1

λiz(xi) (2.26)

where λi are the weights. In order to ensure the unbiased estimate the weights are

summed to one:
N

∑
i=1

λi = 1 (2.27)

The prediction variance is given by:

var[Ẑ(x0)] = E[Ẑ(x0)− z((x0)
2
] = 2

N

∑
i=1

λiγ(xi− x0)−
N

∑
i=1

N

∑
j=1

λiλ jγ(xi− x j) (2.28)

where the quantity γ(xi− x0) is the semivariance of Z between the sampling point

x and the target point x0. γ(xi− x j) is the semivariance between the i− th and j− th

sampling points. It is important to note here that the kriging variances are independent

from the data values, and, as such, cannot be used as a measure of reliability of the kriging

predictions.

The essential step in kriging prediction is to find the kriging weights that ensure the

minimized kriging prediction error. These are found by solving the following system of

equations:

N

∑
j=1

λiγ(xi− x j)+ψ(x0) = γ(xi− x0) for all j

N

∑
i=1

λi = 1

(2.29)

the ψ(x0) is the Lagrange multiplier introduced to achieve minimization.

In matrix form, this system can be expressed as:
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[
λ̂0

µ

]
=


γ(x1,x1) · · · γ(1n,xn) 1

... . . . ...
...

γ(xn,x1) · · · γ(xn,xn) 1

1 · · · 1 0


−1

γ(xn,x0)
...

γ(xn,x0)

1

 (2.30)

the additional parameter µ is a Lagrange multiplier, see details in Isaaks and Srivastava

(1990).

2.4 Universal Model of Soil Variation and Hybrid Tech-

niques

Despite the assumption that soil variation is a realization of a spatially random process,

it may turn out that a significant part of variation cannot be treated in this way (Lark

et al., 2006). For example, soil properties that are influenced by topography may show a

pronounced trend across an explored area, which is not consistent with the constant mean

model from Equation 2.22. For this reason, it is convenient to extend this model with a

more generic universal model of soil variation:

Z(x) = u(x)+ ε(x)+ ε (2.31)

The universal model of soil variation distinguishes three major components: (1) the

deterministic-trend component u(x), (2) the spatially correlated component (stochastic

residuals) ε(x) and (3) pure noise ε . The deterministic component refers to a systematic

part of variation caused by the strong impact of other environmental factors, and can be

materialized through a deterministic function of coordinates, or available spatial covari-

ates (scorpan factors). This part of variation is also known as the ’trend component’. The

second component covers spatially correlated small-scale variations, described by the var-

iogram function. Accordingly, the variogram is no longer estimated based on the observed

data but is rather visualized using the residuals ε(x) = Z(x)−u(x). The third component
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includes the part of the spatial variation which cannot be described by the means of the

previous two components.

Numerous mapping techniques have been developed to accommodate the varying

mean by combining the information from auxiliary sources with observations. All these

techniques are known as ’Hybrid Techniques’ (McBratney et al., 2000). The first proposed

and probably the most commonly used hybrid technique is the Universal Kriging method

(Matheron, 1969).

2.4.1 Universal Kriging

Universal kriging (UK) uses an integral computing procedure for the estimation of trend

and residual interpolation by kriging. The original version, proposed by (Matheron,

1969), models the trend as a linear function of spatial coordinates:

u(x) =
K

∑
k=0

βk fk(x) (2.32)

where βk,k = 0,1, . . . ,K are unknown coefficients, and the fk(x) are known functions of

x (i.e. functions of spatial coordinates).

If a variogram model γ(h) is given, the prediction of Z at any x0 can be obtained by:

Ẑ(x0) =
n

∑
i=1

λi fk(xi) (2.33)

where λi, i = 1,2, ...,N are the UK weights. The estimator is unbiased if:

N

∑
i=1

λi fk(xi) = fk(x0) (2.34)

The UK can be expressed as an extended ordinary kriging, taking into account the

fixed effects of the trend in addition to the spatially correlated component (Webster and

Oliver, 2007):
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N

∑
j=1

λiγ(xi,x j)+ψ0 +
K

∑
k=0

ψk fk(x j) = γ(x0,x j) (2.35)

N

∑
i=1

λi = 1 (2.36)

N

∑
i=1

λi fk(xi) = fk(x0) (2.37)

The values of γ(xi,x j) are the semivariances of the residuals between the data points

xi and x j, and the γ(x0,x j) are the semivariances between the target point and the data

points. Moreover, there are additional Lagrange multipliers ψk for each term of the trend

model. The universal kriging, like ordinary kriging, is a set of linear equations which can

be represented in matrix notation by:



λ̂1

λ̂2
...

λ̂N

ψ0

ψ1

ψ2
...

ψK



=



γ(x1,x1) · · · γ(x1,xN) 1 f1(x1) · · · fK(x1)

γ(x2,x1) · · · γ(x2,xN) 1 f1(x2) · · · fK(x2)
... · · · ...

... · · · ...

γ(xN ,x1) · · · γ(xN ,xN) 1 f1(xN) · · · fK(x)N

1 · · · 1 0 0 · · · 0

f1(x1) · · · f1(xN) 0 0 · · · 0

f2(x1) · · · f2(xN) 0 0 · · · 0
... · · · ...

...
... · · · ...

fK(x1) · · · fK(xN) 0 0 · · · 0



−1

γ(x1,x0)

γ(x3,x0)
...

γ(xN ,x0)

1

f1(x0)

f2(x0)
...

fK(x0)



(2.38)

The major limiting factor in using the UK is that it requires the knowledge of a

residual variogram, prior to estimating the regression coefficients. This creates a circular

problem, since the computation of the residual variogram, which is needed for the UK,

requires the estimated trend coefficients.
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2.4.2 Regression Kriging

Regression kriging (RK) assumes that deterministic and stochastic components of spatial

variation can be modeled separately. It is mathematically equivalent to the previously

explained UK, where auxiliary predictors are used to solve the kriging weights directly.

However, RK combines two conceptually different techniques, regression for trend esti-

mation and ordinary or simple kriging, to interpolate stochastic residuals (Hengl et al.,

2007; Bajat et al., 2013).

The regression kriging prediction for variable Z at new location x0 is:

ẑ(x0) = m̂(x0)+ ê(x0) =
p

∑
k=0

β̂k · fk(x0)+
n

∑
i=1

λi · ε(xi) (2.39)

where the β̂i are estimated regression coefficients, the fk is the known function of k− th

covariate, that must be exhaustively known over the spatial domain, and p is the number of

covariates. The λi are the kriging weights determined by the spatial dependence structure,

and e(xi) is the regression residual at location xi.

In practice, trend coefficients are mainly obtained by ordinary least squares (OLS).

However, this can cause bias in the estimates of the residual variogram (Cressie, 1993).

One solution to reduce the bias is to estimate the residuals taking into account the spatial

correlation between the observations Hengl et al. (2007). For that reason, the usage of

Generalized Least Squares (GLS) is recommended instead of the commonly used OLS.

However, GLS implies an iterative procedure for the variogram estimation. In the first

step, the trend model is estimated by using the OLS. The given OLS residuals are then

used to construct the covariance function needed to obtain the GLS estimates. In the

next step, the GLS residuals are used to update the covariance function in order to re-

calculate the GLS residuals, from which an updated covariance function is computed.

This procedure should be repeated until the trend coefficients no longer change. The final

residual variogram is then estimated from the final GLS residuals, and then modeled as a

continuous function of lag distance.
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If the covariance matrix of the residuals is denoted as C, the matrix of covariate

values at the sampling locations as q, and, the vector of measured values of the target

variable as z, the vector of trend coefficients obtained by GLS (β̂GLS), is:

β̂GLS =
(

qT ·C−1 ·q
)−1
·qT ·C−1 · z (2.40)

The Equation 2.39 can be rewritten in matrix form and the kriging prediction at new

location x0 is:

ẑ(x0) = qT
0 · β̂GLS+λ

T
0 · (z−q · β̂GLS) (2.41)

where λ̂0 is the estimated vector of weights for the location x0. Prediction variance is

defined as:

σ̂
2(x0) = (C0 +C1)− cT

0 ·C1 · c0

+
(

q0−qT ·C−1 · c0

)T
·
(

qT ·C−1 ·q
)−1
·
(

q0−qT ·C−1 · c0

) (2.42)

where C0 +C1 is the sill variation and c0 is the vector of covariances of residuals at the

unvisited location, C is the covariance matrix of the residuals, q is a matrix of covariate

values at the sampling locations, q0 is a matrix of covariate values at the unvisited location.

2.5 Mapping in 3D

2.5.1 Modeling Soil Variation with depth

Soil sampling is often based on taking a bulked sample of soil from each horizon within

the soil profile. Accordingly, measurements of particular soil properties are assumed to

reflect the mean values for the soil horizons from which the samples were taken. If we as-

sign the lower and the upper bound of each horizon to each observation, vertical variation
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of profile data can be expressed as a step-wise function of depth. However, this concept

is often too restrictive, because it assumes that the soil horizons are perfectly homoge-

neous. For that reason, soil scientists were interested to find more realistic representations

of vertical soil variation. Such realizations were achieved by fitting continuous functions,

such as exponential decay, log-log functions, polynomials or even piece-wise polynomi-

als, through the mid-depth of horizon data (Moore et al., 1972). Ponce-Hernandez et al.

(1986) proposed the specific depth function, called equal-area spline or mass-preserving

spline, which fit the piece-wise spline function through the horizon averages, maintaining

that the areas above and below the fitted spline in any horizon are equal. However, dif-

ferent functions yield various predictions of soil properties along soil profile. Figure 2.5

depicts a vertical variation of soil carbon modeled by using a logarithmic function (left)

and an equal-area spline (right).

4.1 Aspects of spatial variability of soil variables 123

need to be standardized to some standard depths, otherwise soil observation depth
is an additional source of uncertainty.

The concept of perfectly homogeneous soil horizons is often too restrictive and
can be better replaced with continuous representations of soil vertical variation i.e.
soil-depth functions or curves. Variation of soil properties with depth is typically
modelled using one of two approaches (Fig. 4.2):

I Continuous vertical variation — This assumes that soil variables change con-
tinuously with depth. The soil-depth relationship is modelled using either:

a. Parametric model — The relationship is modelled using mathematical func-
tions such as logarithmic or exponential decay functions.

b. Non-parametric model — The soil property changes continuously but with-
out obvious regularity with depth. Changes in values are modelled using
locally fitted functions such as piecewise linear functions or splines.

II Abrupt or stratified vertical variation — This assumes that soil horizons are
distinct and homogeneous bodies of soil material and that soil properties are
constant within horizons and change abruptly at boundaries between horizons.

mixtures of the two approaches are also possible, such as the use of exponential
decay functions per soil horizon (KEMPEN et al., 2011).
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Fig. 4.2 Vertical variation in soil carbon modelled using a logarithmic function (left) and a mass-
preserving spline (right) with abrupt changes by horizon ilustraetd with solid lines.

Parametric continuous models are chosen to reflect pedological knowledge e.g.
knowledge of soil forming processes. For example, organic carbon usually origins
from plant production i.e. litter or roots. Generally, the upper layers of the soil tend
to have greater organic carbon content, which decreases continuously with depth,

FIGURE 2.5: Log-log depth function (left) and equal-area spline depth function (right),
from (Hengl and Heuvelink, 2013)

Equal-area spline is a continuous function of depth which must be estimated by using

the profile data. The assumptions behind the equal-area spline imply that the f (x) and its

first derivative f ′(x) are continuous, and also that the f ′(x) is square integrable. The depth

is denoted by x, and the depth function describing soil attribute values by f (x). Further, if

the depths of the boundaries of the n horizons are denoted by x0 < x1, . . . ,< xn, where x0

is the soil surface, so that x0 = 0, then the measurement from the horizon i is assumed to
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reflect the mean level of soil properties at this depth (horizon). Thus, the equal-area spline

models the measurements yi as:

yi = f̄i + εi (2.43)

where f̄i =
∫ xi

xi−1
f (x)dx/(xi− xi−1) is the mean value of f (x) over the interval (xi−

xi−1). The errors εi are assumed to be independent, with mean 0 and the variance σ2. The

spline function that models bar f requires choosing the f (x) that minimizes:

1
n

n

∑
i=1

(yi− f̄i)
2 +λ

∫ xn

x0

[ f ′(x)]2 (2.44)

The first term of Equation 2.44 represents a fit to the data, while the second term

measures the roughness of function f (x) represented by its first derivative f (x). The

parameter λ , known as the spline-smoothing parameter, controls the trade-off between

the fit and the roughness penalty. The quality of the fit for the equal-area spline function

largely depends on the λ value. Previous results, obtained in the studies of Bishop et al.

(1999); Adhikari et al. (2012); Odgers et al. (2012) show that the value 0.1 for λ parameter

provides the best fitting results.

Bishop et al. (1999) compared the predictive performance of equal-area spline with

the exponential decay functions, and 1st and 2nd degree polynomial depth functions in

predicting a number of soil properties including soil pH, electrical conductivity (EC),

clay content and organic carbon content. The obtained results indicated the superiority of

equal-area quadratic splines. Malone et al. (2009) made a minor modification to the their

work and proposed a more general method based on equal-area spline, so that input data

segments do not have to be contiguous with depth.

2.5.2 Spline Than Krige

Soil samples may relate to different depth intervals between sampling locations. This may

cause a problem in assessing the spatial distribution of a soil property at a particular depth

interval which may not correspond to the sampled intervals. A common way to map the
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soil property at any depth interval is the so-called Spline-Than-Krige (STK) approach.

The spline-Then-Krige refers to a 2D geostatiscal approach for producing a suite of digi-

tal maps for soil properties at different soil depth intervals, first proposed by Malone et al.

(2009). Methodologically, this approach combines the use of depth functions and geosta-

tistical hybrid techniques to provide the estimate of soil property at unsampled locations

and sepcific depth intervals. This approach was successfully used in many studies for the

mapping of various soil properties (Adhikari et al., 2012, 2014; Lacoste et al., 2014; Mul-

der et al., 2016). Generally, STK approach can be conceptualized through the following

procedural steps:

1. Fitting equal-area spline functions to soil profiles data and selecting the best λ ;

2. Deriving mean values of the ’best’ spline function, within the pre-specified depth

intervals;

3. Modeling the relationship between the mean values and the environmental covari-

ates;

4. Applying the given model onto the wider study area where soil observations do not

exist;

5. Kriging the residuals at each depth interval;

6. Adding the kriging prediction of residuals to the ’trend’ prediction to obtain final

predictions;

7. Reconstructing the spline function at each predicted point with the same λ .

A major disadvantage of converting the soil profile observations to the continuous

form by exact mathematical function is that these values are only estimates with associated

estimation errors. If these values 1 are used as observations for spatial prediction at these

depths, then an important source of error is disregarded, which may jeopardize the quality

of the final soil prediction (Hengl and Heuvelink, 2013).

1values of averaged spline predictions over the depth increments
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2.5.3 Model based 3D modeling

Model based 3D modeling refers to the methodology of soil mapping in which the varia-

tion of a soil property in three dimensions is described by a single model. 3D soil model-

ing is a natural extension of purely 2D approaches, such as Spline-Than-Krige.

The universal model of soil variation (Equation 2.31) from Section 2.4 can be ex-

tended to cover the variation of soil properties in 3D (horizontal + depth). The extension

of the universal model of soil variation is based on the fact that soil varies in both hori-

zontal and vertical directions, as well as that the soil properties are auto-correlated in both

directions. Therefore, the universal model of soil variation can be formulated as follows:

Z(x,d) = µ(x,d)+ ε
′(x,d)+ ε (2.45)

The trend component µ(x,d) is now a function of spatial covariates and the depth,

measured from the terrain surface. It may be further decomposed into additive consisting

of purely spatial and purely depth-related components (Hengl et al., 2014). The spatially

correlated component is typically characterized by the 3D variogram model.

2.5.3.1 3D Variogram modeling

Spatial continuity of soil variables is particularly characterized by the strong anisotropy

between horizontal and vertical directions. Spatial continuity observed in the depths of

a few centimeters may correspond to several kilometers, or more, in horizontal direc-

tion (Hengl et al., 2015). The levels of continuity in both directions can be quantified

and compared by calculating variograms in those directions. However, to incorporate the

anisotropy into a 3D geostatistical model, an anisotropic 3D variogram model must be

provided. Generally, the anisotropy is defined by major direction of continuity and the

anisotropy ratio. The major direction of continuity is the direction in which the greatest

continuity is observed. The continuity in a particular direction is greater if the range of

directional variograms is larger than in any other direction. Geometric anisotropy occures

if the two variograms reach the same sill, but at different ranges. In addition, the zonal

anisotropy can also occur, whereby the sill varies as the variogram direction is changed.
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The anisotropy ratio represents the magnitude of anisotropy. In the two dimensional set-

ting, anisotropy ratio is typically reported as the ratio between the ranges of variograms

calculated in two principal directions of spatial continuity; the direction of the great-

est continuity (major direction) and the direction perpendicular to it, which is typically

considered as the direction of the minimum continuity (minor direction). Therefore, the

anisotropy ratio is used to quantify how much larger the continuity is in a major direction

compared with the minor direction:

anisotropy ratio =
range in minor direction
range in ma jor direction

(2.46)

Alternatively, the anisotropy ratio can be expressed as a relative ratio, where the

larger number represents the relative range in the major direction, and the smaller number

represents the relative range in the minor direction.

In three-dimensional settings, in which the soil data are actually collected, it is com-

mon to distinguish three principal directions: major, minor and vertical (depth). Major

and minor directions represent the two principal directions of spatial continuity in hor-

izontal space. If we assume that the spatial continuity is isotropic in horizontal space,

it remains to determine the anisotropy ratio between the the vertical and any horizontal

direction. This is exactly the case with soil data, where the two principal directions of

spatial continuity are almost always known a priori, considering the fact that the largest

anisotropy ratio occurs between the vertical and the horizontal directions.

Anisotropy can be incorporated in the 3D anisotropic variogram model, once the

principal direction of spatial continuity and the anisotropy ratio is determined. In tradi-

tional geostatistics, it is common to calculate the effective anisotropic distances (EAD)

for this purpose. The effective anisotropic distance is a unitless scalar distance that is cal-

culated as Euclidean norm of lag (h) components hma jor,hminor and hdepth, each divided

by the corresponding range of spatial continuity ama jor,aminor and adepth:

hEAD =

√
(
hma jor

ama jor
)2 +(

hminor

aminor
)2 +(

hdepth

adepth
)2) (2.47)
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Each directional variogram is reduced to one common model with a standardized

range equal to 1, i.e. a variogram with range 1 and a variogram with range a yield equal

value for the same lag (Isaaks and Srivastava, 1990):

γa(
h
a
) = γ1(h) (2.48)

Directional model with range a can be reduced to a standardized model with range 1

simply by replacing the separation distance, h, by a reduced distance h/a. Therefore, the

corresponding 3D anisotropic variogram is given by:

γ(h) = γ(hma jor,hminor,hdepth) = γ1(head) (2.49)

In space-time geostatistics, equivalent model is known as the metric model:

γ(h,d) = γ(
√

h2 +(α×d)2) (2.50)

where the distances in the third dimension d are simply rescaled by anisotropy pa-

rameter α in order to be comparable with the distances h in other dimensions.

A more general model is known as the separable (product) covariance model. It was

used in the study by Orton et al. (2016) as a part of their comprehensive approach to three-

dimensional modeling of soil variables. Separable covariance model can be expressed as:

γ(h,d) = nug×1h>0,d>0 + sill× (γs(h)+ γd(d)− γs(h)× γd(d)) (2.51)

The most comprehensive model was proposed by Heuvelink and Griffith (2010).

This model is known as the sum-metric model:

C(h,u) =C1(h1)+Cv(hv)+Clv(
√

h2
l +(αhv)2) (2.52)
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The corresponding variogram model is:

γ(h,d) = γ1(h)+ γd(d)+ γhd(
√

h2 +(αd)2) (2.53)

Brus et al. (2016) made an analogy with the space-time analysis from Heuvelink and

Griffith (2010) and used sum-metric covariance structure to model the spatial structure of

soil organic carbon in 3D. Sum-metric model distinguishes three components of variation:

C1(h1), the covariance in horizontal direction at the distance of h1; Cv(hv), the covariance

in vertical direction at the distance of hv; and Clv(hlv), the covariance in any direction, and

α , the geometric anisotropy ratio. By modeling the covariance as a sum of a covariance

in horizontal direction and a covariance in vertical direction, we can account for different

residual variances in these two directions (zonal anisotropy). The geometric anisotropy

ratio α in the third covariance term is needed because one distance unit in the vertical

direction is not equivalent to one distance unit in the horizontal direction.

2.5.3.2 Spatial prediction in 3D

Common method for spatial prediction in 3D is 3D regression kriging. It can be expressed

as:

ẑ(x0,d0) =
p

∑
j=0

β̂ jX j(x0,d0)+ ĝ(d0)+
n

∑
i=1

λ̂i(x0,d0)ε(xi,di) (2.54)

where ẑ is the predicted soil property, xi are geographical locations and di is depth,

measured downward from the land surface. ∑
p
j=0 β̂ jX j(x0,d0) and the ĝ(d0) are the pre-

dictions of two trend components, horizontal and vertical. Horizontal component is ex-

pressed as a standard multiple linear regression model, whilst the vertical component is

expressed as any function g of depth. In the study of Hengl et al. (2014), the vertical

component is modeled by spline function. The λ̂i(x0,d0) are kriging weights derived

from spatial covariance structure and ε(xi,di) are the residuals interpolated by using 3D

kriging.
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Data and Case Study

3.1 Case Study Area

The study area is situated in the central part of Eastern Serbia, a approximately 10 kilo-

meters in north-east direction from the town of Bor (Figure 3.1). Bor is a small town,

widely known as one of the main centers of mining and metallurgical industry in this part

of Europe. The Municipality of Bor covers an area of 856 km2. The town contains a

total of 35.000 inhabitants and an additional 20.000 people are settled in the surrounding

settlements.

The north-south transect of the survey area is about 20 km, while the east-west tran-

sect is about 10 km. Study area occupies the territory the three districts of Bor municipal-

ity, called Čoka Kuruga, Čoka Kupjatra i Tilva Njagra. More precisely, the area is located

between the Zlot limestone massif on the west, the village of Zlot on the south, Bor lake

on the southeast, Žagubica district on the north, and the Krivelj limestone massif on the

northeast.
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FIGURE 3.1: Location of case study area
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Topographically, this is a predominantly hilly and mountainous area with terrain

heights varying from 387 m to 1243 m. Mountain Crni vrh, Tilva Njagra and the Zlot

limestone massif dominate in the relief structure of the sampling area. The surrounding

area is covered with deciduous forests and agricultural lands. The landscape around the

Bor Lake, where, agricultural crops have been produced for a long time, is predominantly

hilly. Oak is the dominant type of tree in these forests. These forests are well preserved

by a dense upper storey, which is very important for the protection of the forest soils from

erosion, even on very steep slopes. Areas with burned forest occur sporadically.

There are several streams located in the study area. In the southern area there are the

Zlot and Brestovacka Rivers, in the eastern area the river Krivelj, in the northern area the

rivers Lipa and Velika Tisnica with two big tributaries, the Varfa Strz and Crna. Due to

the fact that the rivers are short and located in narrow valleys, they do not influence the

soil formation processes.

The climate of the Bor region is characterized by long severe winters and cool short

summers with moderate precipitation. Mean annual temperature at Bor is 10.1◦C and at

Crni Vrh is 8.0◦C. Temperature range is large with the absolute minimum air temperature

being -27.0◦C in January and the absolute maximum air temperature reaching +41◦C in

July and August, with the mean summer temperature being +20.0◦C. Mean annual pre-

cipitation is 707 mm at Zlot, while at Crni Vrh it is 850 mm. Mean monthly precipitation

is uneven, with most of the precipitation occurring in May and June rather then in Oc-

tober and November. The precipitation amount during the growing period in Bor area is

354 mm. Air circulation is mainly controlled by prevailing northwest and eastern winds.

Winds from the northwest prevail during warmer months, whereas eastern and southeast-

ern winds prevail during colder periods of the year. Table 3.1 depicts the average wind

speed and wind directions in Bor for period 1998-2009.

The development of mining and metallurgy in Bor has caused a serious effects on

the environment over more than hundred years of production. The copper smelter, which

is a part of the Mining-Metallurgical Complex Bor is recognized as the major pollution

source in this region. The Smelter plant which processes copper concentrate, emits high

quantities of SO2 (20,000 tons/year), arsenic (300 tons/year) and heavy metals (including

150 kg mercury/year) into the atmosphere which has caused erosion, high acidity of soils

and destruction of vegetation in the this area. It is estimated that over 25,500 hectares of
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TABLE 3.1: Average wind speed and wind direction (%) in Bor, 1998-2009, from (Ko-
vačević et al., 2010)

Year Calm N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW

1998 56.6 0.2 0.2 0.8 7.5 3.9 0.3 0.3 0.2 3.3 0.7 0.1 1 7 6.9 10 1
1999 61.2 2.2 0 0.1 5.2 3.2 0.5 0.3 0.1 2.7 0.7 0.3 0.5 3.4 6.4 9.7 1.4
2000 75.7 0.5 0.1 0.1 3.1 2 0 0.1 0.2 2 0.7 0.2 0.5 2.4 6.2 5.5 0.8
2001 66.1 0.2 0.1 0.4 3.3 2.6 0.2 0.2 0.2 3.3 0.1 0.4 0.2 3.1 6.4 0 0
2002 58 0.8 0.7 0.6 3.1 8.5 0.5 0.2 0.4 4 0.4 0.6 1.7 7.4 8.4 4.4 0.3
2003 62.3 0.2 0.2 0.1 2.3 7 0.4 0.3 0.3 1.8 0.3 0.3 0.8 6.5 9.4 6.5 1.3
2004 51.7 0.9 0.2 0.3 1.5 7.6 0.9 0.4 0.4 4.7 0.8 0.4 1.2 6.1 11.2 10.7 1
2005 54.3 1.5 0.2 0.3 1.5 8.1 1.2 0.3 0.4 3.9 0.3 0.1 1.4 7.7 9.4 7.1 0.7
2006 53.6 0.7 0.1 0.3 1.4 6.8 1.3 0.4 0.6 3.9 0.3 0.2 1.4 8.5 9.6 8.2 0.8
2007 49.8 0.4 0.7 0.2 2.3 7.9 1.3 0.5 0.6 5.4 1.5 0.4 1.4 8.6 10.7 7.8 1.1
2008 50.9 0.6 0.2 0.1 3 7.6 1.3 0.6 0.6 4.1 2.2 0.5 1.4 10.4 9.2 5.5 1.8
2009 58.2 0.4 0.3 0.6 3.2 7.8 1.7 0.4 0.7 0.7 3.4 0.9 0.2 1.2 9.3 6.4 3.9

Average 58.2 0.7 0.2 0.3 3.1 6.1 0.8 0.3 0.4 3.3 0.7 0.4 1 6 8.6 7.4 1.3

soil are damaged, which accounts for 60% of the agricultural soil in the Bor municipality

(LEAP, 2003). It is known that the distribution of air pollutants emitted from the copper

smelter is strongly influenced by the smelter operation mode and meteorological param-

eters such as wind speed and direction. There are several studies conducted in urban and

sub-urban areas surrounding the copper smelter in Bor which prove the seriousness of the

problem of environmental pollution caused by copper production in Bor (Serbula et al.,

2013, 2014)

3.2 Data

The survey of the area was carried out in June 2006 with the aim to document the existing

conditions of soil prior to mining investigation. The preliminary survey of the land was

performed to obtain the data concerning the natural characteristics of the area and to

approximate the selection of the soil units and soil types.

The in-depth field study has involved the opening of 205 soil profiles and 382 bore-

holes, with recording their coordinates via GPS. The boreholes were used for the estab-

lishment of boundaries between different soil types and soil sub-types, as well as for the

determination of the basic morphological characteristics. In the soil profiles the morpho-

logical characteristics were described and samples were taken from the horizons. Profiles

depth varies considerably, from 24 cm to 1.2 m. Consequently, the number of samples per

soil profile varies from 1 to 5, according to soil horizons. Samples were taken from four

soil horizons including: O (organic soil horizon), A horizon, B (if it existed) and C. The
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depth to the top of the C-horizon varied between 10 and 123 cm. Therefore each sample

corresponds to the different soil depth increments. Table 3.2 summarizes the number of

soil samples according to standard soil depth increments. In total, 450 soil samples were

collected and analyzed for comprehensive physical, chemical, and microbiological prop-

erties. Among other soil properties, As concentration expressed in mg/kg, SOM content

expressed in %, and pH (measured in H2O) were selected as target soil properties for this

research.

TABLE 3.2: Number of soil samples per soil depths

0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

204 204 185 134 52 6

Figure 3.2 illustrates the three different samples of 20 soil profiles. Colors illustrate

the observed values for As concentration, SOM content and pH. Figure 3.3 depicts the

spatial distribution of soil profiles along with the soil type and the depth classes, where

the size and the color of the circle identifies which profiles belongs to which soil type or

reaches particular depth. It is important to note that there exist a number of soil types with

the relatively small number of soil profiles (Figure 3.4) which might hamper a subsequent

statistical modeling of relationship between the soil property and soil type.
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FIGURE 3.2: Soil profiles
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Preliminary data analysis revealed some interesting distributional patterns in the data,

typical for soil that has been exposed to the pronounced human influence for a long time.

Figure 3.5 illustrates the depth-wise distribution of As, SOM and pH observations created

by aqp R package (Beaudette et al., 2013b). The observations from all profiles were

aggregated and summarized over 5 cm depth increments. As it is apparent, the As and

SOM data are characterized by clear decreasing trend in mean with depth as well as by

significantly higher variation in the upper soil layers which is displayed with the inter-

quartile (blue-shaded) area. There can also be spotted the distinct breaking point at 30cm

depth from which the variations appear to be more stable. On the other hand, pH appears

to have varying mean followed by nearly constant variation along depth.

Higher variation of As and SOM in the upper soil layers indicate the strong influence

of external factors on soil in this region. As it is generally known, the high SOM variation

in the surface layers can be attributed to the complex influences of many environmental
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factors, such as climate conditions, topography, soil texture, land use, and other micro-

scale factors that affect the surface soil layers (Parton et al., 1987; Burke et al., 1989).

Similarly, the higher variation of As in the upper soil layers is most probably connected

with long term smelting activity (Kovačević et al., 2010; Serbula et al., 2013, 2014).
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Chapter 4

Layer-specific mapping of arsenic
concentration by considering terrain
exposure

This chapter constitutes a large excerpt from my manuscript entitled Layer-specific As

concentration modeling by considering terrain exposure that has been submitted for pub-

lication in Journal of Geochemical Exploration.

4.1 Introduction

Without a doubt, industrial mining has significant consequences on the environment and

human health (Unit, 2013). Spatial extension and the magnitude of soil pollution in min-

ing areas are conditioned by many environmental factors such as climatic conditions, re-

lief, human or mining activity, the soil type, and land use. In geostatistics, environmental

factors are approximated by spatial covariates. These are mainly maps in raster format, but

could also be the output of some existing models. For example, Goovaerts et al. (2008a)

used an EPA Industrial Source Complex (ISC3) dispersion model EPA (1995) in com-

bination with kriging and geostatistical simulation to delineate areas with high levels of
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dioxin TEQDF WHO98 in soil around an incineration plant. Their dispersion model ex-

plained 47.3% of the variance found in the soil TEQ data, leaving the residuals suitable for

geostatistical analysis. Dispersion models like ISC3 can take a wide range of parameters

into account that pertain to meteorological conditions, the local topography, and the char-

acteristics of the source (e.g., emission rate, stack height and diameter, particle diameter

etc.) (De Visscher, 2014). These parameters are often inaccessible for long-term pollu-

tion processes; therefore soil scientists have to deal with only a few known parameters

that are often related to relative distances from the source of pollution, terrain topogra-

phy or common meteorological parameters including prevailing wind direction and wind

speed. Žibret and Šajn (2008) presented successful implementation of the power function

with negative exponent to model how the level of heavy metal concentrations in the air

and soil decreases in relation to incremental increases of the distance from the source of

pollution. Saito and Goovaerts (2001) incorporated the knowledge of the position of a

pollution source and deviations from major wind direction into a kriging system to map

the spread of pollutants from a known source.

In mountainous or hilly areas, the spatial variation of wind-deposited materials is

highly affected by terrain topography. It is generally known that the amounts of wind-

deposited materials tend to be greater on areas that are more directly exposed to wind

flux. This fact has inspired researchers to develop many topographic indices with the aim

to quantify topographic exposure to wind (Antonić and Legović, 1999; Lindsay and Roth-

well, 2008; Winstral et al., 2002; Winstral and Marks, 2002) . Generally, all topographic

exposure indices are based on Digital Elevation Model (DEM) analysis and tend to deter-

mine whether a particular area is sheltered by a distant topographic obstacle or not. There

are several studies where topographic exposure indices were successfully used to model

the spatial patterns of snow depths (Erickson et al., 2005; Plattner et al., 2004; Winstral

and Marks, 2002).

Antonić and Legović (1999) introduced the aspect of topographic exposure to wind

in their exploration of environmental pollution studies. They proposed the new compre-

hensive index, referred to as the Exposure toward the Wind Flux (EWF). EWF can be

conceptualized as the angle between a plane orthogonal to the wind and a plane that rep-

resents the local topography at a grid cell. They utilized EWF to estimate the direction of

an unknown air pollution source.
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In this study, different aspects of terrain exposure are considered in order to ex-

plain the complex spatial trend of Arsenic (As) concentration that was atmospherically-

deposited from one of the largest Copper Mining and Smelting Complexes in Europe, Bor

in Serbia. Several exposure parameters were created and employed as covariates within

the ’Spline-Then-Krige’ (STK) approach (Malone et al., 2009; Orton et al., 2016) for

producing maps of As concentration at three standard soil depth layers (0-5cm, 5-15cm

and 15-30cm). The created exposure parameters were grouped as follows: geometrical

(proximity) exposure parameters and topographical exposure parameters. The distances

to the source of pollution and angular deviations from prevailing wind direction were uti-

lized to create geometrical (proximity) exposure parameters. Furthermore, topographical

exposure was quantified by using DEM and two DEM derivates: modified EWF index

and the Morphometric Protection Index (MPI). A modification of EWF was performed

to account for the location of the pollution source with the aim to emphasize the effects

of topographical exposure to the known source, and not just limiting the index to wind

direction. This study primarily aims to evaluate the effectiveness of using different ex-

posure parameters for mapping atmospherically-deposited Arsenic at different soil depth

layers. Relative importance analysis was performed to access the individual contribution

of each exposure parameter in the trend model for each depth layer. By analyzing the role

of exposure parameters in As variation at different soil depth layers, the limit of signif-

icant influence of copper smelting in soil depth direction was assessed. This is the first

study of its kind that evaluates the usage of different terrain exposure indices for mapping

atmospherically-deposited pollutants from a known source, so far.

4.2 Data

The data used in this study are described in Section 3.2. The target variable is Arsenic

concentration expressed in mg/kg. Generally, the data consist of 196 soil profiles that

are randomly distributed over the entire study area (Figure 3.1). The soil samples were

digested with concentrated HNO3 and then analyzed for As concentration using the iCAP

6300 ICP optical emission spectrometer (Thermo Electron Corporation, Cambridge, UK).

As shown in Figure 3.5, the distribution of arsenic concentration in soil is character-

ized by pronounced decreasing trend in median with depth, as well as with considerable
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higher variation in the upper soil layers. The abrupt change in the trend of median and

inter-quartile range occurs at about 30 cm depth. The numbers of profiles that contribute

to the estimated median values are shown in percentages on the right vertical axes. It can

be seen that less than 50% of available profiles contribute to the estimated value for layers

below 30 cm of depth. Due to the fact that the number of observations sharply decreases

below the depth of 30 cm, the analysis was confined to the first three standard soil layers

above this depth: 0-5 cm, 5-15 cm and 15-30 cm.

The presence of extreme values is an important characteristic of this data set. Fig-

ure 4.1 depicts the spatial pattern of observations from the first soil layer, allocated within

the 4−th quartile (red circles: 80-326 mg/kg), with respect to the smelter location. The

circle size depicted in the figure is proportional to the observed value. Terrain colors

represent possible spatial coverage of plume dispersion from copper smelter.

High concentration and high variability in the As data at the upper soil layers com-

bined with distinct differences between the upper and lower soil layers are generally con-

sidered to be the indicators of external factors that have a pronounced influence on the

soil. As a result, a hypothesis can be established that the upper soil layers were indeed

affected by a long term pollution process.

4.3 Terrain exposure

In this study, terrain exposure parameters aim to provide the numerical quantification of

terrain exposure with regard to the location of the source of pollution, wind direction and

topography. As mentioned above, the considered terrain exposure parameters have been

divided into two groups: topographical exposure and geometrical (proximity) exposure.

Table 4.1 summarizes the exposure parameters used in this study.

4.3.1 Topographic Exposure

There are many existing parameters that are suitable for explaining the topographic expo-

sures to wind. An exhaustive review of existing topographic wind related parameters was
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FIGURE 4.1: Spatial disposition of extreme values of observations relative to the location
of smelter. Bor is in the lower-right corner; red circles represent the observations that

belong to the fourth quartile.

TABLE 4.1: Exposure parameters used in this study

Name Abbrevation Group Range

1 Digital Elevation Model DEM Topographical 300-1045
2 Exposure toward the Source ES Topographical 0.75-1.33
3 Morphometric Protection Index MPI Topographical 0-0.70
4 Down-wind dilution DD Geometric 0.20-0.64
5 Cross-wind dilution CD Geometric 0.38-1
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outlined in studies reported by Lindsay and Rothwell (2008); Winstral et al. (2002); Win-

stral and Marks (2002). In this study, a topographic exposure analysis was confined to the

following three parameters: Digital Elevation Model (DEM), Morphometric Protection

Index (MPI) and Exposure toward the Source of pollution (ES).

4.3.1.1 DEM

Considering the assumptions that areas on higher altitudes are more exposed than low-

lands, elevation was selected as the first topographic exposure parameter. A high resolu-

tion DEM with a grid size of 20 m was created by digitizing contours from 1:25.000 scale

topographic map sheets (Figure 4.2(a)). All other exposure parameters were computed

based on this grid system.

4.3.1.2 Morphometric Protection Index

The influence of local (neighboring) topography was considered by the Morphometric

Protection Index (MPI) calculated for each grid cell. The calculation of MPI is equivalent

to the "positive openness" described by Yokoyama et al. (2002). It considers neighboring

grid cells of DEM in eight directions (cardinal and diagonal) up to a given distance (with

200 m radius), while searching for the maximum horizon angle in each direction. The

final MPI for one cell represents the average value of eight maximum horizon angles

and quantifies how the neighboring relief protects that cell. The map of MPI is given in

Figure 4.2(a).

4.3.1.3 Exposure toward the Source of pollution

The effects of topography along wind direction were considered through the modified

EWF measure. By definition, the EWF index combines two simple exposure parameters

to quantify topographic exposure to the wind flux. These two parameters are the relative

terrain aspect and the horizon angle:

EWF = cos(µ)sin(β )+ sin(µ)cos(β )cos(δ −ω) (4.1)
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(a) (b)

FIGURE 4.2: a) DEM and b) MPI computed for the whole area

where µ represents the terrain slope, γ is the terrain aspect, δ is the azimuth of the

dominant wind direction, and β is the horizon angle in the wind direction (Figure 4.3,a)).
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The relative terrain aspect represents the orientation of the local terrain plane in re-

lation to the selected wind direction. This is the angle between the land-surface aspect

and the wind direction bounded between 0◦, indicating an exposed location, and 180◦,

indicating sheltered location. The horizon angle quantifies the effects of upwind topogra-

phy searching for the maximum elevation angle along the direction of the prevailing wind

flux. The search distance has a crucial effect on the horizon angle estimation. According

to the definition of the horizon angle, a more exposed area is characterized by a negative

horizon angle, whereas a sheltered area is characterized by a positive horizon angle. Hori-

zon angle has been used as the basis for many subsequently devised parameters (Erickson

et al., 2005; Winstral et al., 2002). Depending on the extent of the horizon angle search

distance, EWF has been referred to the horizontal wind flux (zero search distance), or to

the slope wind flux (search distance differs from zero).

The standard EWF index presumes a constant direction of wind flux, which partici-

pates in two terms of its equation: the relative aspect and the horizon angle. Taking into

account that the contaminated air flux starts from the one copper smelter stack and ex-

pands towards the explored region, it is assumed that: (1) the local terrain plane facing the

source is more exposed to pollution than planes that are not; (2) the topographic obsta-

cles founded within the direction of the source have a greater effect on the redistribution
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of pollutants than the obstacles founded strictly in the upwind direction. Based on these

assumptions, the EWF index was calculated for each grid cell with the adjustable wind

direction. More specifically, the wind direction was defined as the azimuth between each

grid cell and the source of pollution. In this regard, the relative aspect becomes the angu-

lar distance between the land-surface aspect and direction to the source. At the same time,

the horizon angle search path is also directed towards the source (Figure 4.3,b). This new

parameter was denoted as Exposure toward the Source (ES). Figure 4.4 shows the maps

of EWF and ES parameters values for the whole area of interest.

(a) (b)

FIGURE 4.4: a) EWF and b) ES indices computed for the whole area

63



Chapter 4 Layer-specific As concentration modeling by considering terrain exposure

4.3.2 Geometric (Proximity) exposure

The creation of geometric (proximity) exposure parameters was inspired by a dilution

mechanism considered in the Gaussian dispersion model (Gaussian plume model). It as-

sumes that the dilution of plume emitted in the atmosphere could be considered in three

directions: downwind, crosswind and vertical (De Visscher, 2014). The downwind plume

dilution is the result of mixing the plume with the ambient air, while the dilution in the

cross-wind direction is a result of a large number of negligible effects related to atmo-

spheric motions. Taking into account all of the assumptions mentioned before, we pre-

sumed that areas are more geometrically exposed if they are closer to the copper smelter

and/or to the prevailing wind direction. Therefore, the effects of dilution in downwind

and crosswind directions in this study were approximated by Downwind Dilution (DD)

and Crosswind Dilution (CD) parameters computed for each grid cell. These were mod-

eled using a negative-exponential function, where the exponents were the distance to the

smelter for DD and the directional departure from dominant wind direction for CD. The

wind rose (Figure 4.1) shows that the prevailing winds blow from east and northwest di-

rections. However, in order to found the CD which is most correlated with the observed

As data, wind direction was determined based on the correlation analysis between the first

soil layer data and the CD parameter computed for several major wind directions, in the

range of 90◦ ± 30◦, along with increments of 5◦. Finally, the wind direction of 105◦ was

found to be the most correlated with the observed data. Figure 4.5 depicts the graphical

representation of CD and DD parameters.
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FIGURE 4.5: Graphical representation of geometrical (proximity) measures.

4.4 Geostatistical Mapping

In this study, Spline-Then-Krige (STK) (Section 2.5.2) method was used for mapping

As concentration at three different depths. Generally, the STK involves conversion of

profile data into a continuous form by particular depth function, computing mean value

for specific depth interval and, finally, interpolating interval-specific mean values over the

entire area.

4.4.1 Vertical variation modeling

Variation in the soil profile was modeled by equal-area spline function, (see Section 2.5.1.

Equal-area spline function implies continuous vertical variation. This can be expected,

considering the fact that over one hundred years of copper production in Bor, vertical
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leaching of deposited toxic materials in soil has certainly occurred. This function pro-

vides that, for each sampling layer (soil horizon), the average of the spline function equals

the measured value for the horizon, i.e. the area above and below the fitted spline in any

horizon are equal. Figure 4.6 depicts an example of a fitted spline to the measured As data

from profile No. 119. The colored horizontal bars represent the measured As concentra-

tion at different horizons (each bar corresponds to one horizon), while the vertical curve

represents the equal-area spline depth function fitted to these data. In order to obtain the

As concentration related to the selected fixed depth intervals (0-5 cm, 5-15 cm and 15-30

cm), the spline function was averaged within these intervals. These intervals correspond

to the standard soil depth intervals specified in GlobalSoilMap specifications (Arrouays

et al., 2014). Soil profiles containing only one sample layer were not modeled. Instead,

they were considered as profiles with constant As concentration up to the depth of the

sampling horizon. The equal-area spline function was fitted via the mp.spline function

implemented in the GSIF R package Hengl (2015).
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FIGURE 4.6: Equal-Area spline depth function fitted to the data from profile No. 119.
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4.4.2 Trend Analysis and Spatial Prediction

The first task in trend analysis was to identify the type of relationship between the As

data and exposure parameters. It is convenient to represent the relationship between the

target variable and the covariates using a linear model (Pebesma, 2006; Hengl et al., 2007;

Kilibarda et al., 2014). The adequacy of this specification was checked by examining the

residual plots. Prior to model fitting, the exposure parameter values at each profile location

were extracted and joined to the spline-predicted As values for each depth increment. The

interaction effects between each pair of exposure parameters were also considered to be

included in the model. By doing this, it was enabled that the effects of one exposure

parameter depends on the value of the other exposure parameter.

Model selection was conducted by performing stepwise linear regression analysis

using the Akaike information criterion (AIC) (Akaike, 1974) as a selection criterion, (see

Section 2.2.1). The complete process of model selection was conducted on data from the

first soil layer, considering the fact that the effects of atmospheric pollution are the most

pronounced near the terrain surface.

An integral part of this trend analysis was to determine the contribution of each

individual exposure parameter, as well as the interactions between them, to the overall

prediction accuracy. This was achieved by computing the measures for the relative im-

portance of predictors. It is important to note that the term "predictor" is associated to

the independent model variable, which could refer to the main effect or interaction effect

as well. There are several measures for the relative importance of predictors in linear

modeling theory that are all available in the relaimpo R package (Grömping and Oth-

ers, 2006). These measures provide the information about the individual contribution of

each predictor to the portion of the explained variance (R2). The most comprehensive

and recommended measure, called LMG, was used. This measure was first proposed by

Lindeman et al. (1980).

4.4.3 Spatial Prediction

Regression Kriging (RK) was adopted as a general statistical framework for spatial pre-

diction. Regression kriging combines two conceptually different techniques, regression
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for trend estimation, and simple or ordinary kriging for the interpolation of stochastic

residuals (Hengl et al., 2007), (see Section 2.4.2).

For a given trend model and residual variogram, the prediction of a target variable at

an unsampled location s0 is obtained by:

ẑ(s0) =
p

∑
k=0

β̂ · xk(s0)+
n

∑
i=1

λi

[
z(si)−

p

∑
k=0

β̂ · xk(s0)

]
(4.2)

where z(si) represents the observed values at the neighboring locations si, β̂ represents

the estimated trend model coefficients, xk(s0) are the known value of covariates at the

predicted location, xk(si) are the known value of covariates at the location si, and λi are

the kriging weights.

Prediction accuracy was evaluated based on the leave-one-out cross-validation pro-

cedure. The following common statistical measures were calculated to evaluate the pre-

diction accuracy: Mean Error (ME), Root Mean Squared Error (RMSE) and R2 (see Sec-

tion 2.2.1).

4.5 Results and Discussion

Table 4.2 shows the common descriptive statistics measures computed for aggregated pro-

file data divided into a total of six standard depth increments. It is obvious that the mea-

sures of central tendency (mean, median) systematically decrease by depth. The mean

values in the upper layers are almost double the mean value from the layers below the 30

cm depth. This trend is even more pronounced when comparing median values. Decreases

in mean (median) values are accompanied with decreases in variation (IQR and standard

deviation), which result in small changes in coefficients of variation. The presence of

extreme observed values, even in the deeper layers, causes considerable differences be-

tween calculated mean and median values. The same statistical quantities computed with

the data predicted by the equal-area spline function, and averaged over the same depth

increments, reveal that overall distribution remains almost unchanged after the transfor-

mation (Table 4.3).
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TABLE 4.2: Depth-wise summary of observations

depth min 1st quartile mean mean.sd median 3rd quartile max IQR sd CV obs

0−5 cm 4.00 18.80 51.22 1.64 39.00 65.70 328.00 46.90 49.26 0.96 195
5−15 cm 4.00 17.20 45.21 1.03 33.20 57.90 311.00 40.70 45.04 1.00 195

15−30 cm 3.10 10.70 35.53 0.80 23.70 46.50 311.00 35.80 40.02 1.13 181
30−60 cm 2.40 5.80 20.90 0.50 11.20 24.30 246.00 18.50 26.85 1.28 135

60−100 cm 1.80 3.90 19.68 1.28 6.00 11.90 228.00 8.00 44.14 2.24 52
100−120 cm 2.70 4.50 6.99 0.30 5.80 9.60 10.10 5.10 2.84 0.41 6

TABLE 4.3: Depth-wise summary of spline-predicted data

depth min 1st quartile mean mean.sd median 3rd quartile max IQR sd CV obs

0−5 cm 1.00 20.96 52.53 3.50 41.94 67.62 326.15 46.66 48.93 0.93 195
5−15 cm 2.19 18.40 46.81 3.24 35.36 60.40 313.87 42.00 45.23 0.97 195

15−30 cm 1.46 12.76 36.49 3.03 25.54 44.06 305.86 31.31 40.81 1.12 181
30−60 cm 1.63 5.74 21.13 2.62 10.88 23.78 243.10 18.04 30.42 1.44 135

60−100 cm 1.00 3.43 17.30 4.94 6.91 13.16 225.65 9.73 35.65 2.06 52
100−120 cm 3.89 4.46 7.20 1.26 7.10 9.68 11.01 5.22 3.08 0.43 6

4.5.1 Trend analysis and spatial prediction

In order to examine if the assumptions which justify the usage of linear regression are

met, the residual plots were created (Figure 4.7). For this purpose, only the model fitted

to the first layer data (0-5 cm) was selected. First five graphs (except graph in lower-right

corner) depict the relation between residuals and each exposure parameters separately,

while the last graph shows the residuals against the fitted values. The lack of systematic

curvatures in the first five graphs confirms the linearity of the relationship between As

data and exposure parameters. The presence of the increasing variation of residuals, with

the level of fitted values depicted in the last graph, indicates the moderate violation of

the assumption of constant error variance. The final sub-group of predictors was selected

by combining the backward and the forward step-wise regression procedure. According

to the step-wise regression analysis, all exposure parameters were included in the final

model. In addition, the interaction effects between ES and DEM, as well as between

DEM and CD, were also found to be useful for the As prediction. Considering this, the

final model for each soil layer has the following formulation:

mAs(si) = β1 ·DEM(si)+β2 ·ES(si)+β3 ·MPI(si)+β4 ·DD(si)+β5 ·CD(si)

+β6 ·CD(si) ·DEM(si)+β7 ·DEM(si) ·CD(si)
(4.3)
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FIGURE 4.7: Residual Plots for initial regression model fitted on data from the first soil
layer (0-5 cm).

The final model parameters for all three layers were obtained by using the GLS

method within the RK algorithm given above. The estimated model coefficients, together

with accuracy measures for each soil layer, are given in Table 4.4. The values shown in

brackets represent the corresponding OLS coefficient estimates. Considerable differences

between OLS and GLS estimates indicate the existence of significant spatial clustering

between the observations in each layer. The asterisks following the estimated coefficients

indicate the level of statistical significance according to the Wald test. Statistical signifi-

cance for each predictor, except for DD, was confirmed for each soil layer. As expected,

the variance in As data explained by trend models decreased with depth. R2 values ranged

from 0.52, for the first layer, to the 0.49 and 0.35 for the second and third layer. This is
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not so evident in RMSE which gains a marginally smaller value for deeper soil layers.

This is not surprising, considering that the R2 represents the relative measure, whereas

the RMSE value represents the absolute measure of fit.

TABLE 4.4: The trend models coefficients and associated statistics

Trend models:

0−5 cm 5−15 cm 15−30 cm

(1) (2) (3)

Constant 440.18∗∗∗ 394.96∗∗∗ 328.93∗∗∗

(369.88) (385.96) (327.38)

ES −285.37∗∗∗ −235.21∗∗∗ −192.61∗∗

(274.13) (251.37) (224.06)

DEM −0.85∗∗∗ −0.79∗∗∗ −0.64∗∗∗

(0.76) (0.78) (0.63)

MPI 115.63∗∗ 142.68∗∗∗ 144.30∗∗∗

(147.05) (119.28) (112.00)

CD −308.27∗∗ −269.65∗∗ −251.64∗∗

(209.49) (220.80) (204.37)

DD 80.41 51.05 74.03

(76.53) (47.46) (79.58)

ES:DEM 0.44∗∗∗ 0.39∗∗∗ 0.32∗∗∗

(0.45) (0.42) (0.36)

DEM:CD 0.73∗∗∗ 0.65∗∗∗ 0.52∗∗∗

(0.58) (0.58) (0.45)

Observations 195 195 181

R2 0.52 0.49 0.35

AIC 1,940.59 1,919.34 1,793.65

RMSE 33.7 32.2 32.7

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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As the DEM participates in each interaction effect, trend model coefficients for ES

and CD can vary according to the level of altitudes. To illustrate this effect, Table 4.5

lists the trend model coefficients from the first model, estimated for four different levels

of altitude: 400 m, 600 m, 800 m and 1000 m.

TABLE 4.5: Changing ES and CD coefficients according to the altitude level

Elevation ES CD

400 m −109.37 −16.27

600 m −21.37 129.73

800 m 66.63 275.73

1000 m 154.63 421.73

Results for Relative Importance analysis are depicted in Figure 4.8. It can be noted

that the CD appeared as the dominant predictor in each model. For the first two layers,

it participated in R2 with the portion greater than 40%. It was followed by DEM and

two interaction terms, while ES, MPI and DD showed considerably poorer predictive

contribution.
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FIGURE 4.8: Relative importance of predictors for each soil layer (0-5 cm - dark red,
5-15 cm - orange, 15-30 cm - red).

Once the trend model was defined for all soil layers, the obtained residuals were then

analyzed for spatial dependence. The presence of spatial dependence in residuals justi-

fies the usage of kriging to improve the accuracy of the prediction. The lag increment

was set to 550 m, which provided a sufficient number of point pairs for a reliable vari-

ogram estimation. The effects of trend removal on the spatial dependence structure are

shown in Figure 4.9. Typically, the presence of a spatial trend in the observed data causes

the monotonically increasing differences in the data as the separation increases, which is

reflected in the experimental variogram that never reaches the sill. On the other hand,

the residual variograms reflect the spatially correlated random effects more accurately,

reaching the sill at a particular distance. This is more pronounced in the first soil layer,

where the trend removal has the greatest effect (Figure 4.9(a)). This result confirms the

fact that the atmospherically deposited spatial trend is more expressed in the soil surface

layer. Generally, the sill variance and the nugget variances are substantially reduced in
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each soil layer. The differences between the two variograms are smaller in the deeper soil

layers. It is also important to note a considerable decrease of the range parameter in the

next two layers, indicating abrupt changes in spatial correlation over the soil depth (Fig-

ure 4.9(b) and Figure 4.9(c)). Similarly, the nugget variance for the first soil layer is also

substantially higher than in the second two layers. This might be due to a higher variation

in As data in the surface soil.
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FIGURE 4.9: Omnidirectional variogram models for observed data (black line) and resid-
uals (gray line) for all soil layers: (a) 0-5 cm; b) 5-15 cm; c) 15-30 cm

The final prediction accuracy measures, together with residual variogram parame-

ters are reported in Table 4.6. Kriging interpolation slightly improved the trend model

performance in each soil layer, while the accuracy between soil layers remained almost

unchanged. The absolute prediction accuracy (RMSE) still remains almost equal for each
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soil layer. A decrease in accuracy was replicated in R2 values ranging from 0.55 for the

surface soil layer to 0.36 for the deepest layer. This is also supported with the coefficients

of variation (CV) of predicted values, which take the values 0.6, 0.7 and 0.9 for first,

second and third soil layers respectively. The mean errors indicate a negatively biased

prediction for all layers. Considerable lower accuracy obtained for the third layer could

also be noted. This might be due to the fact that a significant part of systematic variation

still remains unexplained by the trend model. The obtained results are comparable with

results outlined in similar studies previously reported by Adhikari et al. (2012, 2014);

Goovaerts et al. (2008a); Saito and Goovaerts (2001); Lacoste et al. (2014) Moreover, the

obtained results are in line with the statement given in Beckett and Webster (1971) that

values the of R2 higher than 0.7 are unusual, and the values of R2<0.5 are quite common

in soil attribute predictions.

TABLE 4.6: Variogram parameters and final prediction accuracy indices.

Nugget Sill Range Nugget/Sill R2 RMSE ME CV

0−5 cm 626.35 1,299.88 2,613.21 48.18 0.55 32.75 −0.23 0.62

5−15 cm 311.65 1,078.30 1,410.76 28.90 0.51 31.70 −0.26 0.67

15−30 cm 368.49 1,084.21 1,192.19 33.99 0.36 32.51 −0.23 0.89

The maps of final prediction for all layers are displayed in Figure 4.10. The exposed

area with high As concentration, in the central part, dominates in all soil layers. The

mean predicted value ranged from 58.1 mg/kg for the first soil layer to the 51.8 mg/kg

and 41.6 mg/kg for the second and third layer, respectively. The far Southwestern part

of the mapped area is also regarded as a highly contaminated area. Topographically, this

area is characterized by a downhill front that is directly exposed to the smelter. However,

the lack of observations in this area makes predictions unverifiable. Due to its location

and topographic configuration, this area could be suitable for additional sampling and

validation for these models.

Interactive Web-based maps were also created in order to obtain a better insight into

the predicted spatial distribution of As concentration. The R package plotGoogleMaps

(Kilibarda and Bajat, 2012) was used for creating these maps. They are available as
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interactive maps in HTML format at the web page http://osgl.grf.bg.ac.rs/materials/Bor.

In addition, the same maps in KML format, interactive point based maps, as well as

background data are also available at the same web page.

4.6 Conclusion

This paper reviews a method for geostatistical mapping of atmospherically-deposited pol-

lutants from a known source, by considering terrain exposure. The methodology applied

is based on the so-called Spline-Then-Krige approach, which enables the production of a

suite of maps for different soil depths. The exposure parameters were created to explain

two different aspects of terrain exposure: geometrical (proximity) and topographical ex-

posure. Based on the obtained results, the main conclusion can be drawn as follows:

1. The equal-area spline depth function provided a reliable estimate of continuous

vertical distribution of As data.

2. Stepwise regression analysis confirmed the predictive capability of all of the de-

signed exposure parameters, as well as of the two interactions: ES:DEM and DEM:CD.

This confirmed the hypothesis that there is an association between spatial spreading

of Arsenic from the copper smelter in Bor and terrain exposure parameters.

3. The trend model showed good overall accuracy for all soil layers. The highest

accuracy was obtained for the surface soil layer, where the model explained 52% of

data variation. The trend model explained 49% of variations for the second layer,

and 35% for the third layer.

4. The relative importance analysis showed that the trend models at each depth were

highly controlled by the CD and DEM. Significant influences of interaction effects

between ES and DEM, as well as between DEM and CD, at each depth, indicate the

importance of considering a more general model that includes interactions between

exposure parameters.

5. The residual spatial dependence showed significant differences in structure between

surface and other soil layers, indicating different effects of trend removal.

76

http://osgl.grf.bg.ac.rs/materials/Bor


Chapter 4 Layer-specific As concentration modeling by considering terrain exposure

(a
)

0-
5

cm
(b

)
5-

15
cm

(c
)

15
-3

0
cm

F
IG

U
R

E
4.

10
:

M
ap

s
of

fin
al

pr
ed

ic
tio

ns
of

A
s

co
nc

en
tr

at
io

n.

77



Chapter 4 Layer-specific As concentration modeling by considering terrain exposure

6. The kriging interpolation improved the regression accuracy for all three layers with

R2 ranging from 0.36 for the deepest layer to the 0.55 for the surface soil layer.

7. The relatively high RMSE values that follow the prediction at each soil layer indi-

cates that a great portion of Arsenic data variation remains unexplained by the trend

models, which implies that other factors, in addition to the wind-driven process,

affect the Arsenic spatial distribution. However, in a situation when the wind in-

deed has an important role on spatial distribution of soil pollutants, the integration

of topographic exposure parameters could be useful for prediction, even at a deeper

soil layers.

8. The prediction maps show that approximately 78% of the mapped area is above

the allowable concentration limits for agricultural soils in Serbia (As<25 mg/kg,

Regulations of the Ministry of the Republic of Serbia, 1994). This percentage,

to some extent, decreases with depth (75% for 5-15cm and 69% for 15-30 cm),

suggesting that long term smelting activity has significant consequences for soil,

even at deeper unexposed layers. It is important to note that the average distance

between the explored area and the copper smelter is approximately 10 km, which

also indicates that the smelting activity significantly affects the large area around.

9. The obtained results were consistent with those reported by Goovaerts et al. (2008b),

suggesting that such an approach could be a promising alternative for complex air

dispersion models. The direct comparison of these two approaches was not possi-

ble in this study due to the missing data necessary for the characterization of the

dispersion model, but it will certainly be the focus of a future study.
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Chapter 5

Modeling soil properties in 3D by using
penalized interaction models

5.1 Introduction

Soil mapping in 3D space (2D+depth) has been recognized as one of the main method-

ological challenges facing soil scientists for the last 20 years (Arrouays et al., 2014).

Spline-Than-Krige approach is the most widely used approach for the prediction of soil

property at different depths, see Section 2.5.2. The first step towards the real 3D predic-

tion model was presented in the GSIF framework for digital soil mapping (Hengl, 2015;

Hengl et al., 2014). The GSIF framework extends the traditional 2D regression-kriging

method to 3D space. With approach it is possible to obtain the prediction of soil proper-

ties at any 3D location, and not only on pre-specified soil depths. The trend component

was modeled as a sum of horizontal and vertical components, which were fitted simulta-

neously. The horizontal component relates spatial covariates to soil properties, while the

vertical component is modeled as a linear or non-linear (spline) function of soil depth.

Considering the fact that all spatial covariates are surface related, these two components

had two very distinct roles in the trend model. In some cases, this could be a limitation

since the effects of spatial covariates are not allowed to vary with depth. In addition, the

effects of vertical component terms cannot vary in 2D space.
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One way to overcome these issues is to fit the trend model by using one of the ad-

vanced machine learning techniques, like Random Forest (Hengl et al., 2015), while tak-

ing into account the soil depth, together with spatial covariates. However, besides many

useful tools and methods that allow "looking inside" such models (Welling, 2016; Jones

and Linder, 2015), their interpretability remains low.

Another approach is to extend the linear model by allowing for the interactions be-

tween spatial covariates and depth, as proposed by Orton et al. (2016). In their study, the

trend is modeled as a multiple linear regression model, extended by linear and quadratic

interaction terms that obey the hierarchy principle. This implies that, during the process

of model selection, the particular main term cannot be excluded from the model, as long

as the related interaction term has proven to be a statistically significant predictor. There-

fore, the important interaction terms were selected according to the importance of the

associated main effect. If the main effect had been proven to be insignificant, according

to the Wald test, it was then excluded from the model, together with the corresponding in-

teraction effects. This process was repeated after each exclusion or retention of particular

main and interaction effects.

The presence of interaction effects in the trend model could contribute to a deeper

understanding of the relationships between spatial covariates and their impact on response

soil properties. However, even a moderate number of covariates p entails the considera-

tion of
p(p−1)

2
two-way interactions to be included in the model. This could be more

demanding if the categorical variables, which should be coded prior to model fitting, are

present. At this point, determining exactly which predictors (including the interactions)

should be included into a model has become a crucial issue, especially if the hierarchy

principle is to be obeyed. There are a number of arguments in favor of enforcing the hier-

archy principle in creating the interaction models (Cox, 1984; Bien et al., 2013). All these

arguments are especially important in cases when the model interpretation is of primary

interest. Otherwise, the inclusion of interactions might be considered only for the purpose

of improving the prediction accuracy.

The present research discusses two approaches, hierarchical and non-hierarchical,

that are based on the penalized regression method, lasso, proposed by Tibshirani (1996).

The lasso uses a specific regularization penalty in a fitting procedure to enable the efficient

parameter estimation and variable selection (including interaction terms) at the same time.
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In this study, rather than looking at all the possible two-way interactions, we examined

only the interactions between spatial covariates and depth. The glmnet R package (Fried-

man et al., 2010) was used to fit a non-hierarchical model. This is a widely popular im-

plementation of the lasso method, because of its extremely efficient fitting procedure. The

hierarchy principle can be obeyed while using lasso, by adding a set of convex constraints

to the lasso estimator, as proposed by Bien et al. (2013). The entire implementation of

this approach is provided via the hierNet R package (Bien and Tibshirani, 2014).

The presented approach was tested on profile observations of As concentration (ex-

pressed in mg/kg), SOM content (%), and pH (measured in H2O), sampled on the 10×20

km area in central Serbia in the vicinity of the Bor Copper Mining and Smelter Complex

(see Chapter 3).

In addition, this study aims to examine whether, and to what extent, the inclusion of

interactions between spatial covariates and depth improves the overall model accuracy. In

order to illustrate this, a total of six trend models was compared for each soil variable. The

models were divided into three groups, depending on whether they included interactions,

and on whether the interaction effects obeyed the hierarchy principle. Further, each group

was divided according to the level of flexibility of vertical components: linear or polyno-

mial. By making a comparison between these models, it can be distinguished how and to

what extent each extension (or hierarchy restriction) improves or impairs the model, and

whether the inclusion of interactions always makes sense.

Final models for each variable were selected based on the stratified 5-fold cross val-

idation procedure (Krstajic et al., 2014). Residuals obtained from best fit models were

further analyzed for horizontal and vertical dependency, by computing variograms in both

directions. The presence of spatial dependency, in both horizontal and vertical sense, was

utilized for 3D variogram modeling, which was subsequently used for the 3D kriging of

residuals, with the aim to improve the prediction accuracy.

In order to provide a reliable accuracy assessment, the accuracy parameters (R2 and

RMSE) were calculated through the 5-fold nested cross-validation procedure (Krstajic

et al., 2014). The nested cross-validation enables the computation of accuracy parameters

separately from the modeling procedure. Methodologically, this research roughly follows

the generic approach proposed by Kanevski (2013) and, in our case, implies following
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these steps: (1) explanatory analysis and data preparation, (2) data pre-processing and

partitioning, (3) regression model selection, (4) regression model assessment, (5) residual

analysis and spatial modeling, (6) 3D regression kriging accuracy assessment, and (7)

final prediction.

5.2 Materials and Methods

5.2.1 Environmental covariates

Based on available information and the existing knowledge, seventeen environmental co-

variates were selected to make up the initial set of predictors. These include fifteen con-

tinual and two categorical predictors. A 20-m resolution Digital Elevation Model (DEM),

with the extent of 545×1146 cells, was used as the main source, as well as the basic grid

system for the creation of all other covariates. The DEM was derived from 1:25,000 scale

topographic map, produced by the Serbian Military Geographical Institute.

The first nine continual predictors comprise the terrain attributes commonly used

in soil mapping: aspect, topographic wetness index, slope, curvature-planar and cross-

sectional, channel network base level, convergence index, and vertical distance to channel

network.

Bearing in mind that the large amount of toxic materials carried by the wind from

the copper smelter is probably the main contributor to the elevated arsenic concentrations

in certain parts of the area, several terrain parameters related to topographic exposure of

terrain to wind were created. These include: topographic openness - positive and negative,

explaining the topographic protection of a particular point by the surrounding topography

(Yokoyama et al., 2002), and wind e�ect which quantifies the topographic exposure of a

particular point towards the selected wind direction. The original name of this measure

is Exposure toward the wind �ux (Antonić and Legović, 1999), see Section 4.3.1.3. It

was calculated for two major wind directions: 105◦ (eastern) and 315◦ (North-western)

(Figure 4.1). All these covariates were created by SAGA GIS software (SAGA, 2014).
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Besides the predictors mentioned above, two additional predictors were created with

the aim to approximate the dispersion mechanism for the spread of toxic materials from

the copper smelter, as used in Chapter 4. As a reminder, these are modeled as the Eu-

clidean distances between each grid cell and the copper smelter location, and as angular

differences between two azimuths: the azimuth between each grid cell and the smelter

location, and the azimuth of the prevailing wind direction. Then, for each grid value,

a negative exponential function was calculated by taking these quantities as exponents.

These predictors were referred to as Downwind Dilution (DD) and Crosswind Dilution

(CD), and were exclusively used in the of modeling As concentrations.

The soil type map with eight classes, along with the Corine Land Cover map (CLC)

with five classes, were used as categorical predictors. The soil type map was generated

from field observation through the use of the spmultinom function from GSIF R package

(Hengl, 2015). The soil types are classified according to the World Reference Base (WRB)

for Soil Resources (Michéli et al., 2006). The Corine Land Cover (Nestorov et al., 2007),

which was originally created as a vector data set, was transformed to a raster based on a

defined grid system. Table 5.1 offers an overview of the covariates, including the classes

of categorical variables.

5.2.2 Trend Models

Measurements of soil property commonly reflect the average value that corresponds to the

specific depth interval at a particular location s. Accordingly, each soil observation comes

with several common meta-data that describe their position in 3D space, including: 2D

coordinates of sample location, upper and lower bounds of soil layer (u, l), and the ob-

served values of soil properties. If the values of environmental covariates are assigned

to each observation according to a profile spatial location, soil observations could be re-

gressed against spatial covariates and depth by a full 3D regression model. The common

form of such a model is a linear two-component model that models a 3D variation as a

sum of horizontal and depth components:

BaseL : µ(s,d) = β0 +
n

∑
i=1

βixi(s)+βn+1d (5.1)
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TABLE 5.1: Spatial covariates

Name Predictor Name Range Type

TERRAIN ATTRIBUTES

1 Digital Elevation Model DEM 300-1045 C
2 Aspect Aspect 0-6.283 C
3 Slope Slope 1-1.027 C
4 Topographic Wetness Index TWI 2.077-21.751 C
5 Convergence Index ConvInd -97.5-94.4 C
6 Cross Sectional Curvature CrSectCurv -0.038-0.04 C
7 Longitudinal Curvature LongCurv -0.028-0.04 C
8 Channel Network Base Level ChNetBLevel 301.2-974.8 C
9 Vertical Distance to Channel Network VDistChNet 0-281.86 C
10 Negative Openness NegOp 0.796-1.835 C
11 Positive Openness PosOp 0.809-1.726 C
12 Wind Effect (East) WEeast 0.756-1.323 C
13 Wind Effect (North-West) WEnw 0.749-1.323 C
14 Down-wind Dilution DD 0.202-0.646 C
15 Cross-wind Dilution CD 0.389-1 C

16 CORINE LAND COVER 2006

Pastures clc.231 0-1 F
Complex cultivation patterns clc.242 0-1 F
Land principally occupied by agriculture clc.243 0-1 F
Broad-leaved forest clc.311 0-1 F
Transitional woodland-shrub clc.324 0-1 F

17 SOIL TYPE

Dystric Leptosol LPdy 0-1 F
Eutric Leptosol LPeu 0-1 F
Mollic Leptosol LPmo 0-1 F
Dystric Cambisol CMdy 0-1 F
Eutric Cambisol CMeu 0-1 F
Calcaric Cambisol CMca 0-1 F
Dystric Regosol RGdy 0-1 F
Vertisol VR 0-1 F

18 Depth d 0-1.25 C

C-continual; F-factor (categorical)

where x(s) represents a vector of covariate values at sampled location s, d represents

depth, and β represents the vector of model coefficients. The depth component can be

replaced by appropriate higher-order additive function of depth g(d), such as polynomial

or even piece-wise polynomial function (e.g. spline), in order to allow a higher degree of

flexibility in the depth component.

In this study, two such two-component models, that are referred to as Base models,

were considered: the first model uses a linear depth function (BaseL, Equation 5.1), and

the second model uses a third degree polynomial depth function (BaseP, Equation 5.2):
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BaseP : µ(s,d) = β0 +
n

∑
i=1

βixi(s)+
3

∑
j=1

βn+ jd j (5.2)

The Base models were used as benchmarks in comparison to the models extended

by interactions between horizontal and depth model components. Two extended models

were created. The first extended model was derived from the BaseL model, referred to

as IntL. The second extended model was derived from the BaseP model, containing

the interactions between spatial covariates and all polynomial terms of depth component,

referred to as IntP:

IntL : µ(s,d) = β0 +
n

∑
i=1

βixi(s)+βn+1d+
n

∑
i=1

θixi(s)d (5.3)

IntP : µ(s,d) = β0 +
n

∑
i=1

βixi(s)+
3

∑
j=1

n

∑
i=1

θ jixi(s)d j (5.4)

where β denotes the coefficients of the main effect, while θ denotes the coefficients of

the interaction effects.

A common practice in dealing with interaction models is obeying the hierarchy

(heredity) principle. It states that the interaction effect should have non-zero coefficient

value only if both (strong hierarchy), or at least one (weak hierarchy) of the main effects

has a non-zero coefficient value. Bien et al. (2013) pointed out that, practically, violations

of hierarchy occur only in special situations. Therefore, the hierarchy principle should

be enforced when fitting interaction models. Since that issue belongs to the domain of

variable selection, the models used in this study, which obey the hierarchy principle, have

the same formulation as (Equation 5.3, Equation 5.4), and are referred to as intHL and

intHP, respectively.

5.2.3 Model selection and parameter estimation

A large number of potentially useful covariates that arise from the inclusion of interac-

tions or expansion of some covariates in polynomial form in the model, makes the model
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selection one of the most important tasks in this study. A simple way to meet this task

is to iteratively consider a wide range of models that include different subgroups of pre-

dictors, as proposed in the subset selection, or stepwise regression procedures. However,

such procedures are prone to combinatorial explosion, due to a large number of possible

subsets of predictors. To address this issue, a shrinkage regression method, lasso, and its

extension that was specifically developed to produce sparse interaction models that honor

the hierarchy restriction, were used (see Section 2.2.7. In short, lasso uses the l1 regular-

ization penalty, in combination with square-loss function in model fitting, which leads to

a sparse model solution.1 Computationally, lasso is a very attractive technique, because

the model resulting from lasso’s regularization is a unique global solution for a convex

minimization problem.

5.2.4 Modeling procedure

The proposed approach can be presented as follows:

1. Explanatory analysis and data preparation. This step involves inspecting the

horizontal and vertical data distribution, horizontal and vertical coverage and the

magnitude of data variation. It also involves defining the extent of spatial end ver-

tical prediction domain, preparing the covariates, spatial overlapping, and creating

the data matrix of n observations with p covariates (including spatial covariates and

depth). For polynomial depth function models (BaseP, IntP, and IntHP), the matrix

is extended by columns with quadratic or higher order depth terms. In the case of

models with interactions (IntL, IntP, IntHL, and IntHP), the matrix is extended by

columns obtained through the element-wise multiplication of covariates columns

with depth related columns.

2. Data pre-processing. Typically, the use of penalized regression models implies the

standardization of continual covariates, prior to model fitting (Hastie et al., 2009).

The reason for this lies in the dependence of the lasso solution on the variable’s

unit. According to this, each continual variable (including the depth terms) was

scaled and standardized to have the zero mean and standard deviation set to 1. The
1The sparse model is a model with only a subset of non-zero coefficients.
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standardization parameters (mean and standard deviation) were derived from the

data matrix and stored to be used for the preparation of covariates for the final

prediction. In the case of categorical variables, a full dummy coding approach was

used to convert categorical variables into binary variables.

3. Data partitioning It is important to find a good data partitioning strategy, espe-

cially considering that the model selection and accuracy assessment were performed

through the process of cross-validation. The strategy used in this study had to ensure

that each sample was representative according to three criteria: 1) spatial distribu-

tion of profiles; 2) profiles depth and 3) range of observed target values. In order

to approximately fulfill the first criterion, the 3-means clustering was performed,

according to spatial location. Five cross-validation folds were created by the parti-

tioning of profiles of each cluster into 5 parts, and merging the corresponding parts

from each cluster to form a fold. Profiles were kept undivided during the partition-

ing to approximately fulfill the second criterion. Cluster partitioning was stratified

with respect to the weighted mean of the target variable in each profile, while taking

the length of the observed soil horizon as weight. This ensures that the last criterion

is approximately fulfilled. Table 5.7 depicts the summary statistics of SOM per each

fold, where values in brackets refer to the soil depth. Figure 5.1 shows the spatial

distribution of profiles per fold.

4. Regression model selection In the case of lasso regression, model selection im-

plies the selection of the optimal shrinkage parameter. The n-fold cross-validation

procedure is a common way to select the best model, or equivalently the optimal

shrinkage parameter. By defining a grid of values for the λ parameter and comput-

ing the cross-validation error ecv for each value, the optimal λ value is the one which

gives the lowest ecv. In this study, the 5-fold cross-validation, based on previously

described sampling strategy and the sequence of λ between the 0 and 5 with a step

of 0.1, was used. This sequence of λ is exclusively used for the glment models,

while the hierNet algorithm defines the grid of λ automatically, for the IntHL(P)

models.

5. Regression model assessment. Considering that the regression models were fitted

by lasso, the accuracy assessment was based on the nested cross-validation proce-

dure, see Section 2.2.2.2. The same data partitioning strategy, as used for model
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FIGURE 5.1: Spatial distribution of SOM content observations in each fold
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selection, is used for data partitioning in both the outer and the inner loop of nested

cross-validation.

6. Residual analysis and spatial modeling This step is of particular interest in this

study. The residual analysis aims to examine the presence of spatial correlation pat-

terns in residuals. The presence of any non-random structure in residuals justifies

their further modeling by geostatistical tools. The analysis started by computing

vertical and horizontal residual variograms. The measurements, and thereby the

residuals, relate to the specific depth intervals within the soil profile (mostly soil

horizons). This has been a limiting factor for vertical variogam calculation, because

the distances were being calculated only between the mid-points of two horizons.

In order to overcome this problem, we modeled the residuals by using the mass-

preserving (equal-area) spline function (Bishop et al., 1999) which is implemented

in the mpspline function from GSIF R package (Hengl, 2015). By using this ap-

proach, the interval-based residuals were transformed into a continuous form, en-

abling the computation of the semi-variances between any two points along the soil

profile. Due to the continuous form, sample variograms in the vertical direction

were typically modeled with Gaussian theoretical model, with zero nugget. The

sample variogram in the horizontal (2D) space was computed using only the data

from the surface horizons. The fitted variogram ranges were then used for defining

the anisotropic distance according to Equation 2.47 and hence the 3D anisotropic

variogram model was generated. By this approach, a single-structure 3D anisotropic

variogram model, that incorporates the geometric anisotropy between horizontal

and vertical directions, was modeled. Once the 3D variogram has been modeled, it

was used for the 3D kriging prediction, as well as, for the assessment of accuracy

of the kriging prediction via cross-validation.

7. Accuracy assessment of 3D regression kriging In order to ensure the consistency

with the assessment of the regression part, the residual variograms were modeled

exclusively based on the training data residuals. Final accuracy measures were

computed based on the final estimates, which were obtained as sums of regression

estimates and kriging residual estimates on the test data (in outer loop of nested

cross-validation), within the nested cross-validation procedure. In other words, the

residuals obtained by running the trend model on the training data were used for 3D
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variogram modeling, which was then used to interpolate the test residuals by 3D

kriging.

8. Final prediction The final predictions were produced using the sum of the regres-

sion and the 3D kriging predictions for the entire area, at three different depths: 10

cm, 20 cm and 30 cm. But first, this step requires applying the same preprocessing

steps on gridded covariates to make them consistent with the input data.

The entire computation procedure is additionally explained in Chapter 6 through the

description of software functions, specifically developed for this research.

5.3 Results and Discussion

It is important to clarify that the results obtained via glmnet package (BaseL,BaseP, IntL,

and IntP models) and hierNet package (IntHL and IntHP models) are not completely com-

parable due to different implementations of the lasso method. Therefore, the difference

between interaction and non-interaction models should be sought in comparison between

BaseL(P) versus IntL(P), while the results for the IntHL(P) should provide the information

about the consequences of hierarchy constraints, i.e. should show whether the hierarchy

constraints cause any consequences for model selection, or even for overall prediction

performance. Significant differences that exist in training time between two lasso imple-

mentations is also worth noting. For example, in our case, 5-fold nested cross-validation,

that is run on a computer with a 4−th generation i7 processor and 16 Gb RAM, takes

5 seconds for glmnet implementation, while for hierNet implementation it takes about

40 minutes. The reason for such processing time differences most probably lies in the

optimization procedure implemented in hierNet package, which becomes dramatically

complicated by additional constraints added to ensure the hierarchical parameter settings.

Considering that the penalty parameter (λcv) obtained by cross-validation varies de-

pending on the random partitioning of observations, data were split into 5 stratified folds

according to sampling strategy explained in Section 5.2.4, prior to running model selec-

tion or model assessment procedures.
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5.3.1 3D modeling and spatial prediction of arsenic concentration

Table 5.2 shows the summary statistics for 5 folds of As concentration data. Values in

brackets refer to the same statistical parameters calculated for the values of depth in cm 2.

It is important to emphasize here that the same data partitioning strategy was used for the

model selection and the model assessment.

TABLE 5.2: Basic statistical parameters for stratified 5-fold data splitting of As concen-
tration data

Min. 1st Qu. Median Mean 3rd Qu. Max.

fold1 2.7(−0.86) 10.1(−0.38) 23.0(−0.18) 42.7(−0.25) 55.3(−0.11) 328.0(−0.02)
fold2 1.8(−1.25) 9.0(−0.40) 25.4(−0.20) 34.3(−0.29) 52.8(−0.12) 174.0(−0.02)
fold3 2.4(−1.08) 8.7(−0.39) 25.6(−0.18) 38.1(−0.27) 56.0(−0.10) 228.0(−0.01)
fold4 2.4(−0.88) 8.4(−0.36) 23.8(−0.17) 49.7(−0.24) 50.3(−0.10) 392.0(−0.02)
fold5 2.3(−0.96) 9.4(−0.35) 24.9(−0.16) 41.5(−0.26) 47.8(−0.10) 255.0(−0.02)

Table 5.3 shows the RMSE and R2 values obtained by stratified 5-fold nested cross-

validation for BaseP(L), IntP(L) and IntHP(L). It is apparent that models that use the

interactions between the spatial covariates and depth terms perform considerably better

than the benchmark Base models. It is also apparent that differences are more pronounced

in terms of the R2 measures than in RMSE measures, which is to some extent a result of

the inclusion of a larger number of predictors. On the other hand, results obtained for

models with or without respect for the hierarchy, do not differ meaningfully in terms of

RMSE; whereas differences are not negligible in terms of R2 measures. Moreover, it

is noticeable that the inclusion of a polynomial depth component to the Base model do

not contribute much to a better predictive performance. This indicates that the vertical

variation is not equal over the entire area. Hence, the spatially independent vertical trend

is not a good solution. This result underlines the importance of considering the inclusion

of interactions between spatial covariates and depth in the model. This actually means that

a more flexible depth function is not a promising alternative for the inclusion of interaction

effects.
2Negative sign indicates the measurements bellow the terrain surface
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TABLE 5.3: Results of nested 5-fold cross-validation for As models

Model
Base Int IntH

L P L P L P

RMSE 42.46 42.54 39.87 39.95 40.83 40.39
R2 0.36 0.35 0.43 0.43 0.40 0.42

The coefficients for the final 3D regresion models of BaseP, IntP and IntHP regres-

sion settings for As concentration are shown in Table 5.4. 3 Considering that all predictors

are scaled and standardized prior to model fitting, their importance can be compared to a

certain extent simply by observing the magnitude of their regression coefficients.

In the case of the BaseP model, lasso retained all the variables, while setting the

penalty parameter to 0. This resulted in unbiased coefficient estimates that are equivalent

to ordinary least squares estimates. The "depth" terms, wind related variables (CD, DD

and WEno), as well as classes clc321, clc324, CMca, RGdy and LPmo, appear to have

the largest effects on prediction, whereas the other predictors have small to moderate ef-

fects. It is worth knowing that some of the important predictors are almost constant across

observations, which are mostly dummy variables, such as Calcaric Cambisol and Mollic

Leptosol that appear in <20 profiles (see Figure 3.4). Typically, such variables would be

considered as non-informative (near zero variance variables) and as such removed from

further analysis. However, in this case, lasso has recognized their importance.

For the IntP and IntHP models, lasso sets a more sparse model structure by setting

the penalty parameter to 0.8 and 362.1, respectively. Generally, all the main effects are

additionally shrunk towards zero, while some of them (the least important) were equaled

exactly to zero. This is undoubtedly the consequence of the inclusion of interactions

between spatial covariates and depth, which is particularly true for the "depth" terms. It

is apparent that the two approaches for fitting models with interactions (hierarchical and

non-hierarchical) produce two significantly different models. The two main differences

can be observed: first, the main effects are more shrunk towards zero in the case of IntHP

model; second, the selection of interaction terms substantially differs. This is particularly

expressed in interaction terms associated with the dummy variables, where the IntP model

3The "me" columns refer to the coefficients of the mean effects, whilst the "ie" columns refer to the
coefficients of interaction effects.
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TABLE 5.4: Final models coefficients for BaseP, IntP and IntHP models for As concen-
tration.

variable BaseP, λCV = 0 IntP, λCV = 0.8 IntHP, λCV = 362.1

me me ie(d) ie(d2) ie(d3) me ie(d) ie(d2) ie(d3)

Int 36.020 37.248 − − − − − − −
DEM 9.100 7.350 2.996 0 0 7.129 3.856 0 0
Aspect 2.712 1.437 3.095 0 0 1.769 0.212 −1.557 0
Slope 17.017 11.552 5.218 0 0 10.840 3.252 0 0
TWI 14.227 6.710 0.955 0 0 6.889 0 0.728 0
ConvInd -0.552 0 -2.762 0 3.625 −0.928 0 0 0.928
CrSectCurv −8.445 −3.987 −1.052 0 0 −3.442 0 0 0
LongCurv −1.632 0 0 0 0 0 0 0 0
ChNetBLevel 5.405 0 0 0 0 0 0 0 0
VDistChNet 11.288 11.419 7.516 0 0 10.490 5.751 −0.426 0
NegOp −9.914 −0.328 −1.045 0 0 0 0 0 0
PosOp 11.090 0 0 0 1.785 0 0 0 0
WEeast −12.376 −1.967 0 0 0 0 0 0 0
WEnw 7.894 4.404 0.730 0 0 2.740 0 −0.00001 2.633
DD 7.271 2.848 0.401 0 0 2.799 0 −0.737 2.063
CD 15.284 15.735 16.558 0 −4.231 15.035 12.191 0 −0.927
clc.231 −35.241 −22.685 0 1.793 −4.586 −2.064 0 0 0
clc.242 0.006 0 7.121 0 0 0 0 0 0
clc.243 −7.137 −6.779 0 0 0 −2.860 0 1.989 0
clc.311 5.026 2.289 9.301 0 0 1.982 0 0 0
clc.324 24.626 23.371 3.701 0 −31.590 4.247 0 0 0
CMca 53.284 43.280 0 0 −30.626 7.258 0 0 0
CMdy −4.156 0 0 0 −1.057 0 0 0 0
LPdy −1.438 0 7.883 0 −12.964 0 0 0 0
RGdy −46.269 −35.590 0 0 0 −4.686 0 0 0
CMeu 3.341 −1.836 0 0 −1.653 −0.290 0 0 0
LPeu 5.007 −0.197 0 0 0 0 0 0 0
LPmo 17.375 0 3.151 0 0 0 0 0 0
VR 18.782 8.543 3.554 0 0 1.750 0 0 0.100
d 67.703 15.166 0 0 0 25.261 0 0 0
d2 104.247 0 0 0 0 5.437 0 0 0
d3 52.037 −4.739 0 0 0 −6.651 0 0 0

includes several non-negligible interactions, while the same interaction terms in IntHP

model have zero coefficients. Therefore, the two models yield different interpretations.

Thus, according to the IntP model, the abrupt changes in the vertical distribution of As

concentration occur between the categorical classes, while the IntHP model does not yield

the same results.

Figure 5.2(a) and Figure 5.2(b) depict the paths of effects for the most important

continual predictors of the IntP and IntHP models, as functions of depth. Paths were pre-

sented at the depth interval of 0-40 cm. These graphs show how some variables influence

the prediction at particular depths. The variation depends on the type of interactions in-

cluded in the model. For example, the effects of Downwind Dilution and Wind Effect vary

non-linearly in the IntHP model, whereas they have linear form in the IntP model. These
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figures also provide an examination of the relationship between the effects at particular

depths. In other words, based on these graphs, the extent of which certain variables influ-

ence the prediction at particular depths can be examined. Therefore, different effects are

observed and more pronounced near the soil surface whilst, the effects tend to equalize at

deeper depths.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●−0.4

−0.3

−0.2

−0.1

0.0

10 20
Coefficients

D
ep

th

Variables
●

●

●

●

●

●

CD
DD
DEM
Slope
VDistChNet
WEnw

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●−0.4

−0.3

−0.2

−0.1

0.0

10 20
Coefficients

D
ep

th

Variables
●

●

●

●

●

●

CD
DD
DEM
Slope
VDistChNet
WEnw

(b)

FIGURE 5.2: Coefficients path for As models: a) IntP model, b) IntHP model

The IntP model yielded the best predictive performance, and therefore it was used

for further analysis. Residual variograms in the vertical direction, horizontal space and

in 3D are depicted in Figure 5.3. Residuals were obtained via the IntP model. The first

two variograms show a clear spatial dependence in both vertical and horizontal directions.

Table 5.5 lists the fitted 3D variogram parameters. The geometric anisotropy is expressed

as the value of horizontal distance that corresponds to the 5 cm depth. The Nugget/Sill

ratio shows that residuals are moderately spatially structured according to Cambardella

et al. (1994), indicating that the 3D kriging of residuals is certainly applicable.
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TABLE 5.5: Parameters for the fitted 3D residual variogram model for As concentration

Nugget Sill Range Anisotropy Nugget/Sill

(5cm depth=)

As 581.47 1,256.00 1,632.34 m 343.66 m 0.46
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FIGURE 5.3: Fitted residual variograms for As concentration data: a) Vertical (depth)
variogram, b) Horizontal variogram, c) 3D variogram

The overall accuracy parameters (R2 and RMSE) achieved by the trend model (final

IntP model) and 3D regression kriging are shown in Table 5.6. A considerable improve-

ment in prediction accuracy was achieved by additional kriging of the residuals. The
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RMSE measure has decreased from 39.95 mg/kg to 37.13 mg/kg while the R2 measure

has increased up to 0.51.

TABLE 5.6: Accuracy parameters for the IntP regression model and 3D regression krig-
ing with IntP trend model for As concentration

Method
IntP 3D RK

RMSE R2 RMSE R2

As 39.95 0.43 37.13 0.51

The maps of predicted values As concentration over the entire area are given in Fig-

ure 5.4. The final predictions was performed for the depths of 10 cm, 20 cm and 30 cm.
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FIGURE 5.4: Final prediction maps of As concentration produced by 3D regression krig-
ing with IntP trend model: a) 0.1 m depth; b) 0.2 m depth; c) 0.3 m depth.
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5.3.2 3D modeling and spatial prediction of SOM content

Table 5.7 shows the summary statistics for stratified folds of SOM content data. Values in

brackets refer to the soil depth in cm. When observing each column separately, it can be

noticed that the folds are well-stratified and provide similar statistics for each fold.

TABLE 5.7: Basic statistical parameters for stratified 5-fold data splitting of SOM content
data

Min. 1st Qu. Median Mean 3rd Qu. Max.

fold1 0.11(−1.08) 1.97(−0.35) 3.60(−0.18) 4.48(−0.26) 5.87(−0.10) 21.94(−0.02)
fold2 0.61(−0.96) 1.99(−0.37) 3.64(−0.15) 5.44(−0.23) 6.16(−0.09) 30.73(−0.02)
fold3 0.11(−0.87) 1.83(−0.40) 3.49(−0.18) 5.04(−0.27) 6.04(−0.11) 40.47(−0.02)
fold4 0.27(−1.25) 2.27(−0.38) 3.42(−0.16) 4.45(−0.28) 5.75(−0.10) 19.67(−0.02)
fold5 0.80(−0.85) 2.30(−0.38) 4.15(−0.20) 5.20(−0.26) 6.48(−0.12) 23.65(−0.01)

Comparison of RMSE and R2 measures calculated via stratified nested 5-fold cross-

validation for BaseL(P), IntL(P) and IntHL(P) regression models is shown in Table 5.8.

Considering the pronounced higher variation of SOM content in the upper soil layers

(Figure 3.5), the interaction models yielded considerably better predictive performance,

in comparison to the benchmark Base models. In addition, an inclusion of quadratic and

cubic depth terms and their interactions improves the prediction accuracy to some extent.

TABLE 5.8: Results of nested 5-fold cross-validation for SOM models

Model
Base Int IntH

L P L P L P

RMSE 3.62 3.53 3.49 3.40 3.53 3.48
R2 0.39 0.41 0.43 0.46 0.42 0.43

Table 5.9 lists the estimated coefficients for BaseP, IntP and IntHP regression mod-

els, respectively. It is apparent that the lasso produces quite different models depending

on whether the interactions are considered or not. By including the interactions into the

consideration, many of the main effects are excluded from the model. In the case of BaseP

model, lasso has retained all the input variables in the model although some of them have

coefficients that are very close to zero, which is obviously a consequence of selecting

the penalized parameter equal to 0.3. The importance of dummy variables is noticeable.
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Although the depth terms were expected to be significant, their coefficients turn out to be

surprisingly large in comparison to the other terms. The inclusion of interactions resulted

in a sparse structure in terms of main effects (λ=0.1 for IntP model, while for IntHP model

λ=28.6). This is particularly expressed in the non-hierarchical (IntP) model. The output

for the IntP model shows that, among 30 "main" variables, 15 variables are excluded to

be non-informative for prediction. Some of them, like positive openness, CMca, RGdy,

LPmo, VR and d2 have very strong effects on prediction in the non-interaction model. As

with As concetration models, the coefficients in the interaction models are additionally

shrunk towards the zero. In comparison to the magnitude of the main effects, the interac-

tion effects in both the IntP and IntHP models are relatively strong. The IntP model will

be used for further analysis since this model provided the best predictive performance.

TABLE 5.9: Final models coefficients for BaseP, IntP and IntHP models for SOM
conctent.

variable BaseP, λCV = 0.3 IntP, λCV = 0.1 IntHP, λCV = 28.6

me me ie(d) ie(d2) ie(d3) me ie(d) ie(d2) ie(d3)

Int 3.254 4.549 − − − − − − −
DEM −0.019 0.559 0 0 0 0.169 0.169 0 0
Aspect 0.111 0 0.179 0 0 0.039 0.081 0 0
Slope 1.901 0.799 0.584 0 0 1.033 0.787 0 0
TWI 0.945 0.269 0.075 0 0 0.484 0.325 0 0
ConvInd 0.105 0 0 0 0 0 0 0 0
CrSectCurv −0.193 0 0 0 0 0 0 0 0
LongCurv 0.357 0.200 0.243 0 0 0.290 0.290 0 0
ChNetBLevel 0.656 0 0.434 0 0 0.342 0.342 0 0
VDistChNet −0.094 0 0 0 0 0 0 0 0
NegOp 0.075 0 0 0 0 0 0 0 0
PosOp 1.039 0 0 0 0 0.178 0 0 0
WEeast −0.112 0.092 0 0 0 0.043 0 0 0
WEnw 0.342 0.165 0.120 0 0 0.253 0.210 0 −0.042
clc.231 −0.952 0 0 0 0 0 0 0 0
clc.242 0.682 0 0 0 0 0 0 0 0
clc.243 0.082 −0.450 0 0 −0.115 −0.265 −0.105 0.152 0
clc.311 1.764 0.615 1.219 0 −0.344 0.335 0.335 0 0
clc.324 2.527 0.637 1.390 0 0 0.353 0 0 0
CMca 1.755 0 0 0 0 0.045 0 0 0
CMdy 0.936 0.015 0 0 0 0.079 0 0 0
LPdy 0.269 0 0.766 0 −1.109 −0.012 0.012 0 0
RGdy 1.982 0 1.423 0 0 0.131 0 0 0
CMeu 0.818 −0.026 0 0 0 0 0 0 0
LPeu 0.471 −0.251 0 0 −0.083 −0.060 0 0 0
LPmo 2.228 0 1.410 0 0 0.180 0 0 0
VR 1.420 0 0 0 0 0.070 0 0 0
d 8.288 2.101 0 0 0 3.121 0 0 0
d2 10.907 0 0 0 0 0.416 0 0 0
d3 4.794 −0.425 0 0 0 −0.754 0 0 0

Figure 5.5 depicts the coefficient paths for the six most important continuous vari-

ables of the IntP and IntHP models. These figures graphically illustrate changes in the
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magnitudes of their effects on prediction along 40 centimeters of depth. The pronounced

effect of Slope is dominant along the whole depth interval. These figures also reveal a pro-

nounced decreasing trend in effects of other variables in the IntHP model when compared

to the IntP model.
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FIGURE 5.5: Coefficients path for SOM models: a) IntHP model, b) IntP model

Figure 5.6 and Figure 5.6(b) show fitted vertical and horizontal residual variograms.

These figures reveal that the residuals are clearly correlated in both vertical and horizontal

sense. The variograms suggest that the residuals are correlated horizontally up to 2000

m in distance, whereas the correlation reaches the sill at 20 cm in the vertical direction.

The horizontal variogram, and the 3D variogram, are fitted by the spherical function (Fig-

ure 5.6(c)). Table 5.10 lists the fitted parameters for the 3D residual variogram model.
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FIGURE 5.6: Fitted residual variograms for SOM concentration data: a) Vertical (depth)
variogram, b) Horizontal variogram, c) 3D variogram

TABLE 5.10: Parameters for the fitted 3D residual variogram model for SOM content

Nugget Sill Range Anisotropy Nugget/Sill

(5cm depth=)

SOM 5.50 11.34 2,017.58 m 932.30 m 0.48

Table 5.11 shows the accuracy parameters obtained by 3D regression kriging along

with the accuracy parameters of the trend model. The trend is estimated by the IntP model.
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The subsequent interpolation of the residuals by 3D kriging resulted in an improvement

of the prediction accuracy. Figure 5.7 shows the predicted SOM content via the 3D re-

gression kriging model over the entire area at three different depths: 10 cm, 20 cm and 30

cm.

TABLE 5.11: Accuracy parameters for the IntP regression model and 3D regression krig-
ing with IntP trend model for SOM content

Method
IntP 3D RK

RMSE R2 RMSE R2

SOM 3.40 0.46 3.24 0.51
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FIGURE 5.7: Final prediction maps of SOM content produced by 3D regression kriging
with IntP trend model: a) 0.1 m depth; b) 0.2 m depth; c) 0.3 m depth.
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5.3.3 3D model and spatial prediction of pH

As with As and SOM data, the pH profile data was split into 5 stratified folds according to

the sampling strategy described in Section 5.2.4. Table 5.12 summarizes folds according

to the pH values and depth.

TABLE 5.12: Basic statistical parameters for stratified 5-fold data splitting of pH data

Min. 1st Qu. Median Mean 3rd Qu. Max.

fold1 3.80(−1.18) 4.74(−0.43) 5.50(−0.21) 5.38(−0.31) 5.91(−0.14) 7.30(−0.03)
fold2 3.45(−0.85) 4.66(−0.39) 5.20(−0.18) 5.29(−0.27) 5.92(−0.14) 7.40(−0.02)
fold3 3.60(−0.87) 4.60(−0.41) 5.04(−0.24) 5.22(−0.30) 5.84(−0.12) 7.70(−0.02)
fold4 3.90(−0.85) 4.60(−0.38) 5.25(−0.19) 5.21(−0.26) 5.78(−0.12) 6.90(−0.02)
fold5 3.70(−1.25) 4.65(−0.43) 5.10(−0.24) 5.22(−0.30) 5.83(−0.12) 6.95(−0.05)

Table 5.13 summarizes the results of 5-fold nested cross-validatoin for BaseP(L),

IntP(L) and IntHP(L) models for pH data. All models perform almost the same, indicating

that the inclusion of interactions do not contribute much to predictive performance. This

can be attributed to the quite constant variation of pH along the depth (see Figure 3.5).

However, inspection of Table 5.14 reveals that the three models (BaseP, IntP and IntHP)

take quite different forms. The BaseP model included all 30 variables that constitute the

initial input set of predictors. On the other hand, the IntP and IntHP regressions started

the model selection with an almost three times larger initial set; however, they resulted

in much simpler models (although the interaction terms were not included). In the case

of non-hierarchical regression (IntP), only 6 variables were selected, while in the case of

hierarchical regression (IntHP) a model with 17 parameters was selected. Considering

that the IntP model performs similarly as other models, but with much simpler parameter

settings, it will be used for further analysis and mapping.

TABLE 5.13: Results of nested 5-fold cross-validation for pH models

Model
Base Int IntH

L P L P L P

RMSE 0.59 0.57 0.60 0.60 0.59 0.59

R2 0.52 0.54 0.52 0.52 0.52 0.52
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TABLE 5.14: Final models coefficients for BaseP, IntP and IntHP models for pH.

variable BaseP, λCV = 0 IntP, λCV = 0.1 IntHP, λCV = 12.1

me me ie(d) ie(d2) ie(d3) me ie(d) ie(d2) ie(d3)

Int 5.356 5.301 − − − − − − −
DEM −0.187 −0.098 0 0 0 −0.131 0 0 0
Aspect 0.072 0 0 0 0 0.004 0 0 0
Slope −0.052 0 0 0 0 0 0 0 0
TWI −0.089 0 0 0 0 −0.014 0.014 0 0
ConvInd −0.004 0 0 0 0 0 0 0 0
CrSectCurv 0.011 0 0 0 0 0 0 0 0
LongCurv -0.119 0 0 0 0 -0.053 0 0 0
ChNetBLevel −0.237 −0.276 0 0 0 −0.211 0 0 0
VDistChNet −0.005 0 0 0 0 0 0 0 0
NegOp 0.088 0 0 0 0 0 0 0 0
PosOp −0.103 0 0 0 0 0 0 0 0
WEeast 0.312 0 0 0 0 0.045 0 0 0
WEnw −0.052 0 0 0 0 0 0 0 0
clc.231 0.138 0 0 0 0 0.002 0 0 0
clc.242 0.335 0.146 0 0 0 0.097 0 0 0
clc.243 0.045 0 0 0 0 0 0 0 0
clc.311 −0.180 −0.086 0 0 0 −0.079 0 0 0
clc.324 −0.134 0 0 0 0 −0.014 0 0 0
CMca 0.276 0 0 0 0 0.044 0 0 0
CMdy −0.569 0 0 0 0 −0.069 0 0 0
LPdy −0.240 −0.155 0 0 0 −0.103 0 0 0
RGdy −0.430 0 0 0 0 −0.032 0 0 0
CMsu −0.090 0 0 0 0 0 0 0 0
LPeu −0.125 0 0 0 0 0 0 0 0
LPmo 0.706 0 0 0 0 0.075 0 0 0
VR 0.073 0 0 0 0 0.054 0 0 0
d −0.352 −0.149 0 0 0 −0.216 0 0 0
d2 −0.043 0 0 0 0 0 0 0 0
d3 0.091 0 0 0 0 0 0 0 0

Figure 5.8 depicts the residual variogram models in the vertical and horizontal direc-

tions as well as in the 3D, fitted to the residuals resulting from the IntP model. The spatial

correlation in both the vertical and horizontal senses is observed. The shape of the vertical

variogram model shows a higher continuity of pH residuals in the vertical direction than in

the case of As and SOM residuals. On the other hand, the horizontal variogram obviously

has a much shorter range and reaches a sill at a distance shorter than 1000 m. It is reflected

by a much lower anisotropy ratio than in with As and SOM residuals. A correlation at a

distance of 5 cm in the vertical direction corresponds to the 165 m in horizontal direction

(see Table 5.15), while in the case of As and SOM the corresponding horizontal distances

are ˜900 and ˜350 m. The fitted parameters for the resulting 3D variogram model are

given in Table 5.15.
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FIGURE 5.8: Residual variograms for IntP model: a) Vertical (depth) variogram, b)
Horizontal variogram, c) 3D variogram

TABLE 5.15: Parameters for the fitted 3D residual variogram model for pH

Nugget Sill Range Anisotropy Nugget/Sill
(5cm depth=)

pH 0.10 0.21 1,060.44 m 065.08 m 0.47

The final accuracy parameters for 3D regression kriging and the corresponding trend

model are given in Table 5.16. As is evident in the table, the residual interpolation by 3D

kriging shows remarkable improvements over the regression (IntP) model. Predicton of

pH over the entire area at three different depths, 10 cm, 20 cm and 30 cm, are depicted in

Figure 5.9.
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TABLE 5.16: Accuracy parameters for the IntP regression model and 3D regression krig-
ing with IntP trend model for pH

Method
IntP 3D RK

RMSE R2 RMSE R2

pH 0.60 0.49 0.57 0.54
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FIGURE 5.9: Final prediction maps of pH produced by 3D regression kriging with IntP
trend model: a) 0.1 m depth; b) 0.2 m depth; c) 0.3 m depth.

5.4 Conclusion

This work presents the use of the shrinkage regression lasso method for building the 3D

interaction linear trend models of three soil variables: arsenic concentration, soil organic

matter (SOM) content and soil pH measured in water. The obtained models were further
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used as a part of 3D regression kriging for the interpolation over the entire 3D prediction

domain. The main motivation behind the use of interaction models was to create a 3D

trend model with the ability to change the effects of spatial covariates on a target variable

with depth. Therefore, instead of considering all two-way interactions between all covari-

ates, only the interactions between the spatial covariates and depth were considered. Two

approaches for selecting the important interactions were examined: first, treating all the

effects (main and interactions) individually; second, obeying the principle of hierarchy

between the main and the interaction effects. Accordingly, two lasso implementations

were compared: the widely popular R package glmnet with extremely efficient fitting

procedure and hierNet R package, which were exclusively created for fitting interaction

models subject to strong or weak hierarchy restriction.

The predictive power of each model was tested through the process of nested 5-fold

cross-validation based on stratified samples. Samples were stratified based on a strategy

specifically devised for this purpose. In general, the stratified sampling methodology ap-

plied in this study ensures that each sample is representative according to three criteria: 1)

the lateral distribution of samples; 2) the depth of profiles and 3) the range of the observed

target values. In general, the obtained results show that taking the interaction into account

can improve the predictive capabilities of the trend model up to 20%. As expected, the

greatest improvement was achieved with variables that have a strong decreasing trend

along the depth, as well as a higher variation in the surface soil layers. Furthermore, it

is evident that the inclusion of interactions contribute to the exclusion from the model

of some less or moderately important variables that are eventually selected in the non-

interaction model. In other words, the inclusion of interactions contribute to the sparsity

of the model, in terms of main effects.

The spatial structure of 3D residuals was analyzed by computing the variograms in

the vertical direction, in horizontal space as well as in 3D. The problem of the interval

scale of residuals in the vertical sense was overcome by interpolating the residuals us-

ing the equal-area spline function. The geometric anisotropy was determined as a ratio

between vertical and horizontal variogram ranges, and then incorporated in the 3D vari-

ogram model. The presence of even, moderate and spatially structured residuals was uti-

lized for further residual interpolation. In all cases, geostatistical interpolation of residuals

by 3D kriging has resulted in remarkable improvements in the accuracy of prediction.
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Chapter 6

PenInt3D - package for 3D soil
mapping based on penalized interaction
models

6.1 Introduction

This chapter presents a set of functions, developed under the R environment, that con-

stitute the core of the PenInt3D package, which is under development in our laboratory.

The PenInt3D package is envisaged to provide a semi-automatic technique for explor-

ing and mapping soil variables using linear penalized interaction methods within the 3D

regression kriging framework. In short, the PenInt3D package provides the functions

for exploring spatial continuity of raw profile data in 3D by:(1) making stratified data

partitioning based on several criteria, including spatial location, soil depth and range of

observed values of soil property; (2) building 3D interaction trend models based on soil

profile data; (3) performing model selection based on stratified n-fold cross-validation;

(4) performing model assessment through nested cross-validation; (5) exploring spatial

continuity of residuals in horizontal and vertical directions; (6) fitting 3D variogram mod-

els; and (7) finally, making spatial prediction at specified depths by 3D regression kriging.

PenInt3D combines the functionality of several R packages including: aqp, gstat, GSIF,
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glmnet, hierNet, plyr and ggplot. Therefore, the essentials of R environment, together

with all the previously mentioned R packages, will be presented in the following sections.

6.2 R environment and related packages

R (Team, 2013) is a language and environment for statistical computation and graphics

that provides programming facilities, high-level graphics, interfaces to other languages,

and debugging facilities. R implements a language similar to the S language that was

originally developed by John Chambers (Chambers, 2008). The main difference is in

the license statement, because R is a free and open source software under the terms of

the GNU General Public License in contrast to the S language. R is a fully functional

interpreter which permits the creation of functions and calculations within an environment

defined by a command line window or a graphical user interface (Grunsky, 2002). R is

organized as a collection of packages designated for specific tasks.

The R package system has been one of the key factors in the overall success of the R

project (Team, 2013). The R contains the base system that enables statistical computation,

linear algebra computation, graphics creation, and other similar features. A package is a

related set of functions, help, and data files that have been bundled up together. It is not

necessary to install the specific packages if they are not necessary to the user.

6.2.1 aqp package

The aqp (Algorithms for Quantitative Pedology) package (Beaudette et al., 2013a) is an

unavoidable tool for dealing with profile based soil data. As stated in the manual of

the aqp, this package was developed to address some of the difficulties associated with

processing soils information; specifically related to visualization, aggregation, and classi-

fication of soil profile data. The aqp package defines the S4 class, 'SoilPro�leCollection'

which is used for the storage of soil profile data. It also defines the methods of summariz-

ing, printing, and plotting the soil data.
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6.2.2 sp package

The sp package (Pebesma and Bivand, 2005) provides classes and methods for dealing

with spatial data in R. The spatial data classes implemented are: points, grids, lines, rings

and polygons (each with or without the attribute data).

6.2.3 gstat package

gstat (Pebesma, 2004) is the most accessible geostatistical package. It can be used to

calculate sample variograms, fit valid models, plot variograms, calculate (pseudo) cross

variograms, and calculate and fit directional variograms and variogram models. Ordinary

and simple kriging, ordinary or simple co-kriging, universal kriging, external drift kriging,

Gaussian conditional or unconditional simulation or co-simulation, can also be done.

6.2.4 GSIF package

GSIF (Global Soil Information Facilities) is a generic framework developed in the ISRIC

institute to support the production of global soil information. The GSIF package for R

is just one of several components of the GSIF framework. The GSIF R package contains

tools to handle the soil data and produce gridded soil property maps using a fully auto-

mated approach. It implies that model fitting, prediction and visualization are run using

fully automated and reproducible workflows, thereby providing easy access to new data

integration, map updating and output validation. Methodologically, the GSIF R pack-

age implements the 3D regression kriging to provide the point based prediction of soil

properties. In addition, the R package defines several S4 classes, including: 'geosample',

'GlobalSoilMaps', 'SoilGrids', 'FAO.SoilPro�leCollection', and 'GlobalSoilMap'.

6.2.5 glmnet and hierNet packages

glmnet (Friedman et al., 2010) is a package that fits a generalized linear model via a penal-

ized maximum likelihood. The regularization path is computed for the Lasso or elastic-

net penalty, by using a grid of values for the regularization parameter. The algorithm is
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extremely fast. It uses cyclical coordinate descent, which successively optimizes the ob-

jective function over each parameter, while the others remain fixed, and cycles repeatedly

until convergence.

HierNet (Bien et al., 2013) R package fits sparse interaction models for continuous

and binary responses that are subject to the strong (or weak) hierarchy restriction.

6.3 PenInt3D

PenInt3D package1 is designed to provide a semi-automatic method for the 3D mapping

of soil variables, by using a combination of penalized interaction models and 3D ordinary

kriging. The PenInt3D package contains several functions that are designed to perform

two main tasks: model selection/prediction and model assessment. Both model selection

and model assessment follow the two-step approach of regression kriging. The main dif-

ference between them lies in cross-validation. The model assessment procedure uses the

stratified n-fold nested cross-validation to assess the accuracy, while the model selection

procedure is based on the standard stratified n-fold cross-validation. Only the concepts

and core functions of the PenInt3D package will be presented within the following sec-

tions.

6.3.1 Creating penint3D object

penint3D object is designed to be the common input for both the model selection/predic-

tion and the prediction accuracy assessment tasks. The main motivation for the introduc-

tion of penint3D lies in the need for consistency within these two procedures. A penint3D

object is designed to hold all the necessary input information for these two main tasks.

By creating the penint3D object, double defining the same input parameters, as well as

the repetition of common steps, such as spatial overlay, data-pre-processing and data-

partitioning, are avoided. In order to create the penint3D object, a penint3D function

must be run. There are a number of input arguments (parameters) that must be defined,

1https://github.com/pejovic/int3D
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predint3D

Regession matrix is stored

Pre-processing parameters 
are stored

Profiles, Function,Covariates,…  

Spatial Overlay

Data pre-processing

Computing interactions

Regression matrix

Funtion: stratfold3D                                                                                           Data partitioning scheme is stored
Data partitioning

penint3D object

FIGURE 6.1: Creating of penInt3D object

including: profile data (as SoilPro�leCollection object), gridded covariates (as SpatialPix-

elsDataFrame), formula object that relates the target variable and covariates (depth must

be included in the formula), a number of folds, etc.

Figure 6.1 depicts the main steps in creating a penint3D object. At the beginning,

spatial overlay is performed by extracting the covariate values and merging them with ob-

servations according to profile locations. The data-preprocessing step involves the stan-

dardization of continual variables to have zero mean and standard deviation equals one,

and the dummy coding of categorical variables. The standardization parameters and cod-

ing schemes are stored in the penint3D object (item "pre-processing") for further usage.

In the next step, the interactions between spatial covariates and depth are calculated and

merged with other data to create an overall data matrix (item "data"). Considering that
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cross-validation is an integral part of both the model assessment and prediction proce-

dures, the penint3D function performs the data-partitioning. The data partitioning step

invokes a new function named stratfold3D that partitions the data into a number of strati-

fied folds. The stratification can be performed in accordance with several parameters: 1)

spatial distribution of observed target values; 2) profile depths and 3) range of measure-

ments of target variables. The vector with indexes identifying what fold each observation

contains, is also stored in the penint3D object (item ’folds’). This step is particularly im-

portant because properly conducted data partitioning ensures greater representativeness

on characteristics of interest within each fold. For this reason, data partitioning can be

checked by running the function plotfold3D with the item folds as input arguments. Run-

ning this functions generates the statistical ’summary’ of each fold together with the 2D

plots of each sample. For example, Table 5.7 depicts the summary statistics of created

folds for SOM data, while the Figure 5.1 shows the spatial allocation of samples (folds).

Finally, penint3D is an object of the 'list' class, with the following structure:

1. cogrids - gridded covaraites

2. data - data matrix

3. pre-processing - pre-processing parameters. Mean and standard deviation for each

continual variable and dummy coding scheme for each categorical variable,

4. folds - output from stratfold3D function

5. lambda - values of regularization parameters

6.3.2 Prediction

The prediction involves the sequential running of two functions: predint3D and krige3D.

Figure 6.2 shows the work-flow algorithm for the prediction procedure.

6.3.2.1 Trend modeling

predint3D function provides an automatic method for building a 3D trend model, which

includes the interactions between spatial covariates and depth, using lasso to perform
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kriging3D

Exploring auto-correlation of residuals in 
vertical and horizontal directions

predint3D

3D kriging

Prediction of residuals by 
3D kriging

cross-validation

PREDICTION on 3D GRIDS

penint3D  

Model Training

Best Model

3D kriging of residuals

FINAL PREDICTION

Prepearing of 3D grids (applying 
pre-processing parameters)

Computin 3D residuals

3D VARIOGRAM MODELING

FIGURE 6.2: Prediction algorithm in PenInt3D package
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model selection and parameter optimization. The optimal model is selected through the

process of repeated n-fold cross-validation that is based on stratified samples stored in the

penint3D object (item $folds), as well as on the pre-specified values of regularization pa-

rameter (item penint3D$lambda). Considering that the level of regularization (λ ) directly

affects the model settings, cross-validation error ecv is computed. The optimal value of λ

yields the lowest ecv. The function decides whether the hierarchy constraints should be

included or not, depending on whether the argument hier is TRUE or FALSE.

Once the best trend model is selected, the prediction can be performed in any 3D

point within the sampling area. Predictions are usually required to be made over the

entire area and at specific depths, so as to form a list of maps relating to different soil

depths. Accordingly, all spatial covariates, which are included in the model, have to be

prepared (standardized), by using the same pre-processing parameters, as when the model

was built. The whole procedure of making prediction grids (3D grids) consists of the

following steps that are executed automatically:

1. Creating a list of gridded covariates that are included in the final model as Spa-

tialPixelsDataFrame (SPDF) (one SPDF per each prediction depth). The depth must

be added as third coordinate.

2. Adding ’depth’ (or polynomial depth terms) also as new variable(s) in each SPDF.

3. Using preprocessing parameters from penint3D$preprocessing to transform SPDFs.

4. Computing the interactions between spatial variables and depth terms for each

SPDF.

5. Adding interactions to corresponding SPDF as new variables.

Once the 3D prediction grids are defined, the final model is run to produce trend pre-

dictions. Parallel to the prediction on grids, the final model is run to make a prediction on

the observed data points, enabling the computation of the trend model residuals. Finally,

the running of the predint3D function ends by generating the list object with the following

structure:

1. $prediction-SpatialPixelsDataFrame with predictions at different depths,
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2. $summary- a list object consisting of: 1) Accuracy measures; 2) Model definition;

3) Preprocessing parameters; 4) Coefficients 5) Prediction (data frame with follow-

ing variables: ID, longitude, latitude, depth, observed, predicted, and residuals.

6.3.2.2 Residual modeling and spatial prediction

krige3D function provides residual dependency analysis, 3D variogram modeling and 3D

kriging prediction. Each task requires the running of the krige3D function separately with

different input arguments.

Residual dependency analysis refers to the process of exploring the sample resid-

ual variograms in horizontal and vertical directions. The main objective of this phase is

to detect the range of spatial dependency in both directions and to establish the level of

anisotropy as the ratio between two ranges. For this purpose, krige3D function requires as

input: 1) output from the predict3D function; 2) horizontal and vertical ’cutoff’; 3) hor-

izontal and vertical ’width’ parameter. The variogram calculation and modeling routines

are provided using the variogram and �t.variogram methods from the gstat R package.

However, the computation of variograms in vertical directions is met with two main diffi-

culties. The first issue rests in the fact that soil profile measurements refer to the specific

soil depth intervals, which are mostly soil horizons. In point scale geostatistics, such mea-

surements refer to the horizon mid-point, resulting in the loss of sensitivity in detecting

local variation in vertical direction. The second issue is that the number of measurements

in a soil profile is usually small (often between 2 and 5), and is mostly taken from upper

soil layers that may introduce an additional uncertainty in variogram estimation. In order

to overcome these issues, the krige3D function uses the mass-preserving spline function

to interpolate the residuals between the horizon mid-points. In this way, the step-wise

form of the residuals in each profile is modeled by a continuous function providing the

possibility to compute semi-variances for any vertical distance with a sufficient amount

of data. However, such a transformation introduces an additional error in the characteri-

zation of vertical variation. But, as long as the the main objective is only to establish the

range of spatial dependency in the vertical direction, it makes sense. Figure 6.3(a) and

Figure 6.4(a) show the plots of sample variograms computed in vertical and horizontal

directions, respectively.
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FIGURE 6.3: Vertical residual variogram: a) Sample variogram b) Fitted variogram
model

Based on visual inspection of variogram graphs, the theoretical variogram models

with similar shape can be selected. The selected variogram models can be fitted by re-

running the krige3D function, whereby, the selected variogram model is provided as an

input argument. The variogram model must be defined as variogramModel class (out-

put of vgm method from gstat package). Figure 6.3(b) and Figure 6.4(b) show the fitted

variogram models plotted on graphs of sample variograms in vertical and horizontal di-

rections, respectively.
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FIGURE 6.4: Horizontal residual variogram: a) Sample variogram b) Fitted variogram
model
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If the fitted variogram models look reasonable, they can be adopted. If not, the other

model should be selected and fitted as long as the chosen criterion is not satisfied, which

is met through either visual inspection or statistical measures of goodness of fit.

The second phase involves the 3D variogram modeling. In the current phase of

development of the PenInt3D package, krige3D enables the user to create only the single-

structure 3D variogram model. Once the horizontal and vertical variograms are fitted, the

anisotropy ratio is automatically determined as a ratio between the two variogram ranges.

The 3D residual variogram graph can also be explored in order to define the appropriate

theoretical model. Estimated anisotropy is automatically incorporated into initial parame-

ters for the theoretical model of a 3D variogram. Therefore, it is only required to provide

the initial variogram parameters without the additional parameters that pertain to the geo-

metrical anisotropy. Figure 6.5 shows the 3D sample residual variogram (a) and the fitted

3D variogram model (b):
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FIGURE 6.5: 3D residual variogram: a) Sample variogram b) Fitted variogram model

The last phase refers to the 3D prediction. Once the 3D variogram model is adopted,

residual 3D kriging can be run. Depending on the logical argument krige=TRUE/FALSE,

the krige3D function decides whether the prediction should be run. By running the 3D

kriging on 3D prediction grids, the final maps are produced and stored in the output as

'list' of SpatialPixelsDataFrame objects.
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6.3.3 Accuracy assessment

The entire accuracy assessment in the PenInt3D package is based on nested n-fold cross-

validation. The implementation of nested cross-validation for the two-step procedure,

such as regression kriging, implies the ensurance of consistency throughout the whole

modeling procedure. This means that the same test data (test folds) must be used for

assessment of both the trend model and for 3D kriging of the residuals.

Figure 6.6 depicts the flow-chart of the nested cross-validation procedure for 3D

regression kriging implemented in the PenInt3D package. Similarly, as for the ’pre-

diction’ procedure, model assessment requires the sequential running of two functions:

penint3Dncv and krige3Dncv with the penint3D object as a starting input parameter.

Accuracy assessment starts by running the penint3Dncv function with the aim to

assess the accuracy of the trend model. In the first step, the first fold (test data) is held

out, while the other k−1 folds (training data) enter the inner loop. Within the inner loop

of the nested cross-validation (see Algorithm 2), stratfold3D function splits the training

data into new k stratified folds that are then used for model selection (model training)

through standard cross-validation. The resultant optimal model is then run to predict on

both the ’outer’ test data, as well as on the training data set. Therefore, each step of the

outer loop involves the storing of one optimal trend model along with the associated test

and the training predictions, within the prediction storage. Consequently, at the end of

the process, the prediction storage will contain the k sets of test and training predictions.

Each set corresponds to one data partitioning from the outer loop.

Calling the penint3Dncv function generates the object with the following structure:

1. $measure - data frame with accuracy measures (R2 and RMSE) calculated for each

outer-loop step as well as for overall test prediction

2. $coef - sparse matrix of class 'dgCMatrix' with models coefficients.

3. $folds - penint3D$folds

4. $train.results - list of k data frames that hold the predictions of each model on train-

ing data. Each data frame contains six columns: ID, observed, predicted, longitude,

latitude, and depth.
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krige3Dncv
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vertical and horizontal directions

Kriging Prediction Storage
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Data Partitioning

FIGURE 6.6: Nested cross-validation procedure for 3D regression kriging implemented
in PenInt3D package
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5. $test.results - list of k data frames that hold the predictions of each model on test

data. Each data frame contains six columns: ID, observed, predicted, longitude,

latitude, and depth.

The next step of the accuracy assessment procedure refers to the assessment of 3D

regressin kriging prediction. At the begining, 3D spatial dependence structure of each set

of training residuals must be checked. The krige3Dncv function provides the possibility

for jointly processing 3D variogram modeling in the same way as it was done for the

prediction modeling. Each training prediction may have a different structure. However,

the spatial dependence structure would not differ too much considering that the majority

of data are common (for 5-fold cross-validation 80% of data are common). Nevertheless,

the first call of the krige3Dncv function in this phase is intended for exploring the hori-

zontal and the vertical sample residual variograms. Therefore, the initial parameters for

theoretical variogram models are not required. After visual inspection, theoretical models

can be fitted to each residual variograms separately, or one to all, depending on how data

sets differ between each other. Figure 6.7, Figure 6.8 and Figure 6.9 show the 1D, 2D and

the 3D variogram models fitted to each sample variogram. Each variogram corresponds

to one training set.

Each 3D variogram model is then used for 3D regression kriging of the test residuals.

The final 3D regression kriging prediction is obtained by adding the test residual kriging

prediction to the test trend model prediction. The final accuracy can then be assessed

by combining the observed data with final test predictions and computing the accuracy

measures.
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FIGURE 6.7: Five vertical variograms fitted to each training data set within the 5-fold
nested cross-validation
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FIGURE 6.8: Five horizontal variograms fitted to each training data set within the 5-fold
nested cross-validation
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FIGURE 6.9: Five 3D variograms fitted to each training data set within the 5-fold nested
cross-validation
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Chapter 7

Conclusion

The aim of this thesis was to contribute to the development of a geostatistical approach

for the 3D mapping of soil properties. The contributions are primarily reflected in inves-

tigating the existing methods, as well as in proposing inovative modeling and accuracy

evaluation approaches. The most important results of this thesis are presented in Chapters

4, 5 and 6.

In Chapter 4, the two aspects of terrain exposure - geometrical and topographical -

were considered and incorporated into the Spline-Than-Krige approach to produce maps

of atmospherically deposited arsenic concentration at different soil depths. The aim of this

research was to explore the extent to which the commonly available information, such as

the prevailing wind direction or location of the source of pollution, in combination with

digital elevation model (DEM), can be used to improve the spatial prediction of the de-

posited pollutants at several soil depths. The geometrical aspect was approximated by two

parameters that quantify the exposure of any cell, regarding the distance to the source of

pollution, or angular distance from the major wind direction which is measured by the

location of source. On the other hand, topographic parameters take into consideration

the neighboring topography of each cell in order to quantify the topographical protection

from the wind. Therefore, the topographical exposure was quantified by: DEM, modified

Exposure towards the Wind Flux (EWF) index and the Morphometric Protection Index

(MPI). A modification of EWF index was performed to account for the location of the

pollution source, with the aim of emphasizing the effects of topographical exposure to the
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known source. This modification was achieved by replacing the wind direction with the

azimuth between each grid cell and the source of pollution. In this regard, only the topog-

raphy along this direction was considered. This new parameter was denoted as Exposure

toward the Source (ES). Regression analysis confirmed the presence of a significant sta-

tistical association between the As data and all exposure parameters. The trend model

showed good overall accuracy, explaining 52% of the variance in As data for the surface

soil layer (0-5 cm), 49% for the middle layer (5-15 cm), and 35% for the deepest layer

(15-30 cm). Relative predictors importance analysis revealed the importance of consid-

ering a more general model that includes interactions between exposure parameters. The

kriging interpolation of residuals improved to some extent, the regression accuracy for all

three layers with R2 values ranging from 55% for the surface layer to 36% for the deepest

soil layer. Generally, a relatively high RMSE characterizes the prediction on each soil

layer and indicates that such a model cannot still be used for decision making purposes.

However, in a situation when the wind has an important role on the spatial distribution of

soil pollutants, the integration of topographic exposure parameters could be useful for a

prediction even on deeper soil layers.

Chapter 5 focuses on the introduction of the shrinkage regression method lasso

within the 3D regression kriging, as a tool for creating the 3D interaction model of soil

properties. The main motivation of creating interaction models is to provide better uti-

lization of spatial covariates, by allowing their interaction with soil depth. One of the

principal advantages of using lasso to fit the 3D model lies in its ability to automati-

cally select all the important variables, including the interaction terms, simultaneously

with the optimization of the parameters, in order to provide the best possible prediction.

As a result, an interpretable predictive 3D trend model is selected. It is important to

emphasize here that the consideration of two-way interactions, even between the spatial

covariates and depth, doubles the number of predictors that must be considered. For that

reason, an automatic selection of important variables is preferred. Considering that the

model selection in the case of lasso is based on selecting the shrinkage parameter that

minimizes the mean prediction error, the complete process runs through stratified n-fold

cross-validation. However, the resulting model is still linear and therefore retains all the

limitations related to linear models, such as high bias or sensitivity to outliers. Residuals

of the regression model are analyzed for dependency in 3D space to check the applicabil-

ity of 3D kriging. The presence of residual dependency in a vertical and horizontal sense
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is then used for constructing the anisotropic lag distance and ultimately the anisotropic 3D

variogram model. Once the 3D residual variogram is modeled, 3D kriging of residuals

can be run. The final prediction is obtained by summing the estimates of trend models

and the estimates of the 3D kriging of residuals. The inventiveness of the methodology

proposed in this work largely lies in the implementation of nested n-fold cross-validation

as a method for accessing the prediction accuracy of the two-step procedure of the 3D

regression kriging. Nested n-fold cross-validation, in each step, keeps one fold (testing

set) independent of the data used for modeling the trend and residual variogram. In this

way, the computation of a more reliable accuracy measures is provided. This process is

especially recommended for models for which the trend model is selected via the standard

n-fold cross-validation. The results of applying the proposed methodology to the profile

data of arsenic concentration, SOM content and soil pH (measured in H2O) generally em-

phasizes the importance of the inclusion of the interactions between spatial covariates and

depth in the 3D trend model. The amount of benefits that could be received from such a

model largely depends on causal linkage between the modeled variable and the environ-

mental factors. The interactions would be more valuable if the depth-wise distribution of

the modeled variable is affected by the environmental factors more. For that reason, these

factors should be approximated by spatial covariates as close as possible. Therefore, the

3D interaction models for As concentration and SOM content yielded a 20% improve-

ment over the non-interaction models. A detailed spatial and depth-wise explanatory data

analysis is also highly recommended. It can provide sufficient information as to whether,

and to what extent, the soil is affected by external influences. Today, it can be easily con-

ducted by using a variety of packages which are exclusively developed for this purpose,

such as: aqp, sp, spatstat, and many other R packages.

Another important consequence of considering the interactions is related to the model

selection. Generally, the inclusion of interactions between spatial covariates and depth has

lead to models that have a smaller number of variables than non-interaction models, i.e.

more sparse structure. Even if more predictors (main effects and interactions) are included

in the interaction models, a smaller number of individual variables actually participates

in the model, since interactions are not the newly introduced variables, but rather the

derivates of the existing variables.

The complete computational framework was implemented in the set of R functions
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created by the author of this thesis, with the aim to constitute an R package (penint3D) for

3D soil mapping, by using interaction penalized models. The R package penint3D uses

profile based soil data and gridded spatial covariates as main input arguments. The pack-

age is still under development and future work will be mostly concentrated on improving

the modeling of the 3D covariance structure.
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S., and Matić-besarabić, S. (2010). Preliminary analysis of Levels of Arsenic and other

metalic elements In PM10 sampled Near Copper Smelter Bor (Serbia)*. Chemical

Industry & Chemical Engineering Quarterly, 16(3):269–279.

Krige, D. (1951). A statistical approach to some mine valuation and allied problems on

the Witwatersrand: By DG Krige.

Krstajic, D., Buturovic, L. J., Leahy, D. E., and Thomas, S. (2014). Cross-validation

pitfalls when selecting and assessing regression and classification models. Journal of

Cheminformatics, 6(1):1–15.

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal Of

Statistical Software, 28(5):1–26.

Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., and Walter, C. (2014).

High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural

landscape. Geoderma, 213:296–311.

Lagacherie, P. and Mcbratney, A. B. (2007). Spatial Soil Information Systems and Spatial

Soil Inference Systems : Perspectives for Digital Soil Mapping. Development in Soil

Science, 31(2004):3–22.

Lark, R. M., Cullis, B. R., and Welham, S. J. (2006). On spatial prediction of soil prop-

erties in the presence of a spatial trend: The empirical best linear unbiased predictor

(E-BLUP) with REML. European Journal of Soil Science, 57(6):787–799.

Lindeman, R. H., Merenda, P. F., and Gold, R. Z. (1980). Introduction to bivariate and

multivariate analysis. Scott, Foresman Glenview, IL.

133



Bibliography

Lindsay, J. B. and Rothwell, J. J. (2008). Modelling Channelling and Deflection of Wind.

Advances in Digital Terrain Analysis, page 383.

Malone, B. P., Jha, S. K., Minasny, B., and McBratney, A. B. (2016). Comparing

regression-based digital soil mapping and multiple-point geostatistics for the spatial

extrapolation of soil data. Geoderma, 262:243–253.

Malone, B. P., McBratney, A. B., Minasny, B., and Laslett, G. M. (2009). Mapping con-

tinuous depth functions of soil carbon storage and available water capacity. Geoderma,

154(1):138–152.

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8):1246–1266.

Matheron, G. (1969). Le krigeage universel.

McBratney, A. B., Odeh, I. O. a., Bishop, T. F. a., Dunbar, M. S., and Shatar, T. M. (2000).

An overview of pedometric techniques for use in soil survey, volume 97.

McBratney, A. B., Santos, M. M., and Minasny, B. (2003). On digital soil mapping,

volume 117.

McKenzie, N. J. and Ryan, P. J. (1999). Spatial prediction of soil properties using envi-

ronmental correlation. Geoderma, 89(1-2):67–94.

Meirvenne, M. V., Maes, K., and Hofman, G. (2003). Three-dimensional variability of

soil nitrate-nitrogen in an agricultural field. Biology and Fertility of Soils, 37(3):147–

153.

Michéli, E., Schad, P., Spaargaren, O., Dent, D., and Nachtergaele, F. (2006). World

reference base for soil resources: 2006: a framework for international classification,

correlation and communication. FAO.

Minasny, B. and McBratney, A. B. (2016). Digital soil mapping: A brief history and some

lessons. Geoderma, 264:301–311.

Minasny, B., McBratney, A. B., and Salvador-Blanes, S. (2008). Quantitative models for

pedogenesis - A review. Geoderma, 144(1):140–157.

134



Bibliography

Moore, A. W., Russel, J. S., and Ward, W. T. (1972). NUMERICAL ANALYSIS OF

SOILS: A COMPARISON OF THREE SOIL PROFILE MODELS WITH FIELD

CLASSIFICATION. Journal of Soil Science, 23(2):193–209.

Moore, I. D., Gessler, P., Nielsen, G. A., and Peterson, G. A. (1993). Soil attribute pre-

diction using terrain analysis. Soil Science Society of America Journal, 57(2):443–452.

Mulder, V. L., Lacoste, M., Richer-de Forges, A. C., Martin, M. P., and Arrouays, D.

(2016). National versus global modelling the 3D distribution of soil organic carbon in

mainland France. Geoderma, 263:16–34.

Nestorov, I., Protic, D., and Nikolic, G. (2007). Land cover mapping in serbia. Wetlands,

21176:0–27.

Odeha, I., a.B. McBratney, and Chittleborough, D. (1994). Spatial prediction of soil

properties from landform attributes derived from a digital elevation model. Geoderma,

63(3-4):197–214.

Odgers, N. P., Libohova, Z., and Thompson, J. a. (2012). Equal-area spline functions

applied to a legacy soil database to create weighted-means maps of soil organic carbon

at a continental scale. Geoderma, 189-190:153–163.

Oliver, M. A. and Webster, R. (2014). A tutorial guide to geostatistics: Computing and

modelling variograms and kriging. Catena, 113:56–69.

Oliver, M. A. and Webster, R. (2015). The Variogram and Modelling. In Basic Steps in

Geostatistics: The Variogram and Kriging, pages 15–42. Springer.

Orton, T. G., Pringle, M. J., and Bishop, T. F. A. (2016). A one-step approach for mod-

elling and mapping soil properties based on profile data sampled over varying depth

intervals. Geoderma, 262:174–186.

Parton, W. J., Schimel, D. S., Cole, C., and Ojima, D. (1987). Analysis of factors con-

trolling soil organic matter levels in great plains grasslands. Soil Science Society of

America Journal, 51(5):1173–1179.

Pebesma, E. J. (2004). Multivariable geostatistics in s: the gstat package. Computers &

Geosciences, 30(7):683–691.

135



Bibliography

Pebesma, E. J. (2006). The role of external variables and GIS databases in geostatistical

analysis. Transactions in GIS, 10(4):615–632.

Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data in r. R

news, 5(2):9–13.
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