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Abstract

The aim of this thesis is to provide a link between atomic and electronic struc-

ture of different types of interfaces between domains in organic semiconductors.

In polycrystalline small-molecule organic semiconductors interfaces are formed be-

tween single crystalline domains. We found that grain boundaries in polycrystalline

naphthalene introduce trap states within the band gap of the material. Trap states

are localized on closely spaced pairs of molecules from opposite sides of the bound-

ary. Realistic conjugated polymers, such as poly(3-hexylthiophene) (P3HT), contain

mixed crystalline and amorphous domains. We found that HOMO state of the in-

terface between crystalline and amorphous domain in P3HT belongs to crystalline

domains. States that belong to both domains and trap states were not found. Ef-

fects of thermal disorder are important in realistic conjugated polymers. Our results

show that disorder in backbone chains of P3HT has strong effect on the electronic

structure and leads to the localization of the wave functions of the highest states

in the valence band, similar to the ones that occur in amorphous polymers. At the

interfaces between two materials in organic electronic devices, effects of spontaneous

polarization in one or both of them on electronic properties can be pronounced. We

show that ordered P3HT exhibits spontaneous polarization along the backbone di-

rection, which is caused by the lack of inversion symmetry due to head-to-tail side

chains arrangement. We additionally show that spontaneous polarization in ordered

P3HT keeps significant values even at room temperature when the effects of thermal

disorder are important.

Keywords: organic semiconductors, electronic structure, domain interface, ther-

mal disorder, crystalline domain, amorphous domain, spontaneous polarization

Scientific field: Electrical and Computer Engineering

Research area: Nanoelectronics and Photonics

UDC number: 621.3



Apstrakt

Cilj ove disertacije da je pruži vezu izmedu atomske i elektronske strukture

različitih tipova granica izmedu domena u organskim poluprovodnicima. U po-

likristalnim organskim poluprovodnicima na bazi malih molekula granica se formira

izmedu homogenih kristalnih domena. Ustanovili smo da granica u polikristal-

nom naftalinu dovodi do pojave stanja zamki u energijskom procepu materijala,

lokalizovanih na parovima molekula sa različitih strana granice izmedu kojih je ras-

tojanje malo. Energije stanja zamki su strogo korelisane sa rastojanjem izmedu

molekula. Realistični konjugovani polimeri, kao što je poli(3-heksiltiofen) (P3HT),

sadrže izmešane kristalne i amorfne domene. Utvrdili smo da HOMO stanja granice

izmedu kristalnog i amorfnog dela pripadaju kristalnom domenu. Stanja koja pri-

paduju i kristalnom i amorfnom domenu i stanja zamki se ne formiraju. Efekti

termalne neuredenosti su značajni u realnim konjugovanim polimerima. Naši rezul-

tati pokazuju da neuredenost glavnih lanaca u P3HT ima jak uticaj na elektronsku

strukturu i dovodi do lokalizacije talasnih funkcija najvǐsih stanja u valentnoj zoni,

slično kao u amorfnim polimerima. Na granici dva materijala u organskim elek-

tronskim napravama, efekti spontane polarizacije u jednom ili oba materijala na

elektronska svojstva mogu biti značajni. Utvrdili smo da uredeni P3HT iskazuje

spontanu polarizaciju duž glavnog lanca usled nedostatka simetrije na prostornu

inverziju zbog glava-rep rasporeda bočnih lanaca. Pokazali smo i da spontana po-

larizacija u P3HT ima značajne vrednosti čak i na sobnoj temperaturi kada su efekti

termalne neuredenosti značajni.

Ključne reči: organski poluprovodnici, elektronska struktura, granica domena,

termalna neuredenost, kristalni domen, amorfni domen, spontana polarizacija

Naučna oblast: Elektrotehnika i računarstvo
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Chapter 1

Introduction to organic

semiconductors

1.1 General information about organic semicon-

ductors

Organic semiconductors are materials that gained a lot of interest in last decades

due to their applications in electronic devices, such as organic field-effect transistors

(OFET), organic light emitting diodes (OLED) and organic solar cells (OSC) [1–

6]. Their advantage over inorganic counterparts is that they are flexible and have

low processing cost. However, devices made of organic semiconductors still have

relatively low charge mobility and low efficiency. Organic semiconductors are mostly

composed of carbon atoms and hydrocarbon groups. They can be divided into

two main categories: (1) small-molecule organic semiconductors and (2) conjugated

polymers. Some common organic semiconductors are shown in Fig. 1.1.

Small-molecule based crystalline organic semiconductors (such as pentacene and

rubrene) exhibit the highest mobilities among organic semiconductors that are on

the order of 102 cm2 V −1 s−1 [7]. Electronic devices based on these materials

are typically obtained using vacuum-evaporation technique [8–13]. More recently,

it became possible to use an inexpensive solution processing technique to obtain

structures with high degree of crystallinity and good charge transport properties [14–

1



(a)
(b) (c)

(d)

(e)

pentacene rubrene PCBM

P3HT
PCPDTBT

Figure 1.1: Examples of organic semiconductors given by their structural formulas.

Molecules in the first row are small-molecule organic semiconductors, while those in

the second row are conjugated polymers.

19], which opens the way towards large scale applications. However, highest achieved

mobilities of OFETs based on small molecules are still few orders of magnitude

below inorganic transistors. OSCs mostly use conjugated polymers as constitutive

materials. Currently, the highest reached OSC efficiency is 11.5 %. Besides relatively

low efficiency, the main issue that still keeps OSCs away from markets is instability.

OLEDs are the most commercialized organic electronic devices which are used for

displays and lightnings.

Organic semiconductors not only open possibilities towards low-cost devices, they

also contain intriguing physics. The similarity to inorganic semiconductors is the

existence of bands and band gap. Band gap in organic semiconductors is defined as

difference between the lowest unoccupied molecular orbital (LUMO) and the highest

occupied molecular orbital (HOMO). Now, we look in more detail into the structure

of organic semiconductors, which are carbon-based materials. Carbon in the ground

state has 6 electrons in configuration: 1s2, 2s2, 2p1
x, 2p1

y, 2p0
z, which means that

2 electrons populate 1s orbital, 2 electrons populate 2s orbital etc. When carbon

2



atoms approach their binding partners (other carbon atoms, hydrogen atoms...) they

form hybrid σ and π orbitals which correspond to chemical bonds. These orbitals

determine electronic and optical properties of the material. To show how molecular

states are formed, we use ethylene molecule (C2H4) as example. Ethylene hybrid

orbitals are shown in Fig. 1.2. Two π orbitals form HOMO (bonding) and LUMO

(antibonding) states, as shown in Fig. 1.3.

C C

H

H

H

H

-

Figure 1.2: Hybrid orbitals of ethylene molecule.

LUMO

HOMO

Figure 1.3: HOMO and LUMO states formation in ethylene.

1.2 Interfaces in organic semiconductors

In order to improve electronic properties of organic semiconductors, researchers put

effort to understand processes that occur at the atomic level. Understanding of

electronic processes that occur at the interfaces in organic semiconductors is crucial

issue that has to be properly addressed. Generally speaking, there are there main

interface types in organic semiconductors:

3



(1) Interface between different crystalline grains in the same material.

(2) Interface between ordered (crystalline) and disordered (amorphous) phases

of the same material.

(3) Interface between different materials.

In realistic polycrystalline small-molecule organic semiconductors there are crys-

talline grains with different crystalographic orientations, as sketched in Fig. 1.4.

The detailed structure of interfaces between grains is not yet well understood. At

the interface periodicity of crystals is broken. The interface can be either sharp or

disordered with amorphous region between two crystalline grains. Molecules can

exhibit both stronger or weaker electronic coupling than in single crystal. Exper-

imental measurements show existence of trap states that are attributed to grain

boundaries [11]. However, the origin of trap states is not clarified. Trap states

can originate from the higher electronic coupling that occurs at the boundary [20]

(Fig. 1.5 a). On the other hand, there are suggestions that charges are trapped

by grains and grain boundary acts as barrier [21] (Fig. 1.5 b), which is satisfied if

electronic coupling at the boundary is lower that in single crystal (which is true

if there is significantly long void between grains). Commonly used model is that

grain boundary act as depletion area, which shifts the levels near the boundary to-

ward higher energies [12]. In this case, boundary acts as trap for holes and barrier

for electrons (Fig. 1.5c). Levels at the boundary can be also shifted in the opposite

direction, toward lower energies (Fig. 1.5d). While there is no consensus on the elec-

tronic structure of grain boundaries in organic semiconductors, it is clear that grain

boundaries disrupt charge mobility [9,11]. Realistic description of grain boundaries

is probably a combination of effects shown in Fig. 1.5, where the domination of one

effect depends on the molecule type and the processing procedure of the samples.

The second interface type that occurs in organic semiconductors is the interface

between ordered and disorder phase of the same material. While this interface type

takes place both in small molecules and conjugated polymers, we focus on conju-

gated polymers. Realistic conjugated polymers are found to be complex with inter-

laced crystalline and amorphous domains, as shown in Fig. 1.6. It is believed that

chains mostly belong to both domains [22,23]. There are three types of such chains:

4



Figure 1.4: Sketch of a polycrystalline small-molecule material.

HOMO

LUMO

grain 1 grain 2
HOMO

LUMO

grain 1 grain 2

(a) (b)

(c) (d)

Figure 1.5: Schematic descriptions of a grain boundary in small-molecule organic

semiconductors: (a) trap for electrons and holes; (b) barrier for electron and holes;

(c) trap for holes, barrier for electrons and (d) barrier for holes and trap for electrons.
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(1) bridge chains, which connect different crystalline domains through amorphous

domain, (2) folded chains, which connect different parts of the same crystalline do-

main and (3) extended chains, which extend from crystalline domain and have end in

amorphous domain. The knowledge of electronic structure of the interface between

crystalline and amorphous domain is based on the calculations of single domains,

which show that crystalline conjugated polymers have lower band gap than amor-

phous [22–25]. Therefore, it is intuitive to assume that HOMO and LUMO band

offsets are roughly equal to the half of the band gap difference between amorphous

and crystalline domain, as shown in Fig. 1.7. By following this picture, amorphous

domains present barrier for charge carriers. However, this simple model does not

take into account any interaction between crystalline and amorphous domains, which

can significantly affect electronic structure at domain edges. Therefore, to properly

investigate electronic structure of the interface between crystalline and amorphous

domains, calculations that include both domains are needed.

Figure 1.6: Sketch of a realistic conjugated polymer structure with mixed amorphous

and crystalline domains.

Finally, third interface type that exists in organic semiconductors is the interface

between different materials. OSCs are mostly produced as heterojunctions of two

materials, donor and acceptor, where at least one of the materials is organic. One

of the most studied OSC is P3HT/PCBM heterojunction. Charge separation of

excitons formed by photon absorption takes place at the interfaces between donor

6



crystalline

amorphous

HOMO

LUMO

Figure 1.7: Possible electronic level alignment at the interface between crystalline

and amorphous domains in conjugated polymers.

and acceptor, as shown in Fig. 1.8. After dissociation at the interface, charges flow

independently, which form electric current. Hence, this interface type is important

for OSC performance.

HOMO

LUMO

PCBM

P3HT

+
-

Figure 1.8: Sketch of the interface between P3HT and PCBM.

1.3 Transport in organic semiconductors

To explain transport models used for organic semiocinductors, we start with the

most simple representation of an organic semiconductor: one-dimensional array of

molecules where each molecule is coupled with its first neighbor. Such representation

is given by a purely electronic Hamiltonian:

Hel =
∑

j

εja
†
jaj − τ

∑

j

a†
jaj+1, (1.1)

where a†
j and aj are the creation and annhilation operators of a charge carrier on

site j, εj is the site energy and τ is the electronic coupling between sites j and j +1.

7



Electronic coupling in organic semiconductors will be discussed in more detail in the

next section. Now we introduce phonons into the model. We assume that molecules

have one vibrational degree of freedom which is not coupled with vibrations of the

other molecules. Phonons of the one-dimensional system have energy ~ω0. Then,

phonon Hamiltonian can be written as:

Vphon =
∑

j

~ω0(b
†
jbj +

1

2
), (1.2)

where b†j and bj are creation and annhilation operators of phonons. When a charge

carrier is present on a site, the site energy is changed along its vibrational mode and

its energy is reduced by 1
2
~ω0g

2, where g is the Holstein electron-phonon coupling

constant. Instead of Holstein constant, reorganization energy λ = 1
2
~ω0g

2 can be

used as a measure of the strength of electron-phonon coupling. Hamiltonian that

describes local electron-phonon interaction is given by:

H local
el−phon =

∑

j

g~ω0(b
†
j + bj)a

†
jaj. (1.3)

Here, ”local” refers to electron-phonon coupling that arises from modulations of site

energies. If electron-phonon coupling arises from modulation of electronic couplings,

such electron-phonon coupling is nonlocal, which is now neglected. Finally, total

Hamiltonian can be written as:

H = Hel + Hphon + H local
el−phon. (1.4)

In low temperature limit (T → 0) charge carrier wavefunctions are delocalized.

Charge propagating through the lattice carries with itself a deformation of sur-

rounding molecules. A charge carrier and the corresponding deformation form a

polaron. If charge carrier wavefunctions are delocalized, polarons are also delocal-

ized and transport is band-like, as in inorganic semiconductors. Mobility can be

calculated by a simple formula:

µ = ets/m
∗, (1.5)

where m∗ is the effective mass and ts is the average time between collisions. As

temperature increases, charge carrier wavefunctions and polarons become more lo-

calized. In the high temperature limit (kBT >> ~ω), charges (and polarons) are

8



localized on single molecules. Transport is now described as hopping between neigh-

boring molecules. Such transport model is referred as small polaron hopping model,

in contrast to polaron band transport model, valid in the low temperature limit.

The hopping probability rate is given by:

khop =
τ 2

~
(

π

kBTλ
)1/2e−λ/4kBT , (1.6)

which is in principle the same expression as that given by Marcus formula for charge

hopping probability rate. This formula can be also applied in the strong electron-

phonon coupling regime, where τ << λ. Mobility in the high temperature limit can

be roughly calculated by:

µ =
eL2

kBT
khop, (1.7)

where L is the distance between sites. Therefore, transport under small polaron

hopping model is thermally activated (mobility increases as temperature incraeses),

contrary to polaron band model [1, 7, 26].

Two decribed transport models correspond to two opposite limit cases. It is

still not very clear what happens between two limits. Experimental evidences lead

to mutually opposite conclusions. In pure organic crystals, mobility was shown to

decrease upon the increasing the temperature, which favors the band-like transport

[7]. On the other hand, there are experimental evidences that states in organic

crystals at the room temperature are localized, which supports hopping transport [7].

Moreover, there are recent results that show that polaronic effect in some organic

semiconductors is weak and can be neglected [27]. The criteria for polaron formation

is τ < λ/2. If this condition is not fulfilled, transport entirely consists of charges.

The transport model described above can be applied for organic crystals where

charge transport is limited by dynamic disorder. To describe transport in conju-

gated polymers, which exhibit significant amount of disorder even in the ordered

phase, disorder model is more appropriate [26]. Transport is now described as

charge hopping process. In the case of strong electron-phonon coupling and high

temperature regimes, Marcus formula given above is often used to calculate hop-

ping rates between the sites. In the case of low temperature and weak electronic

coupling regime, Miller-Abrahams formalism is commonly used. Formula for the

9



Miller-Abrahams hopping rate is given by:

kij = ν exp(−2γRij)











exp(− εj−εi

kBT
), εj > εi

1, εj < εi

, (1.8)

where ν is the attempt hopping frequency, Rij is the separation between sites i and

j and γ is the overlap factor [1, 7, 26].

Expressions for hopping rates and mobilities (with polarons or without) given

above can be used only under specific conditions. Even then, their accuracy and

applicability is the subject of suspect. Until now, there is no formalism which can

entirely describe transport in organic semiconductors.

1.4 Electronic coupling in organic semiconductors

Electronic properties of an organic semiconductor are strongly affected by the mod-

ulation of electronic couplings between molecules (or monomers) and site energies

of molecules (or monomers). Such modulation takes a place in amorphous domains,

near interfaces or as a consequence of thermal disorder. To explain the effects of

electronic coupling on the electronic structure, we consider a simple system of two

organic molecules (dimer). Assume that electronic Hamiltonian of dimer H is repre-

sented by a set of orthonormal molecular orbitals ϕi. Site energies εi and couplings

τij are calculated by:

εi = 〈ϕi | H | ϕi〉, (1.9)

τij = 〈ϕi | H | ϕj〉. (1.10)

Energy of dimer splitting ∆E12 between HOMO and HOMO - 1 dimer states reads:

∆E12 =
√

(ε1 − ε2)2 + 4τ 2
12. (1.11)

As can be seen from the previous equation, energy splitting depends on the differ-

ence between molecule site energies and the electronic coupling between them. If

the site energies are equal, then electronic coupling can be calculated as a half of the

dimer splitting energy. The coupling between molecule HOMOs and the resulting

10



HOMO state of dimer are schematically described in Fig. 1.9. If the coupling be-

tween the states is nonzero dimer HOMO state will be coupled state (belonging to

both molecules) and its energy will increase as the coupling between the molecules

increases. On the other hand, if τ12 = 0, then dimer HOMO will belong to the

molecule with higher site energy. Both site energies and electronic couplings are

sensitive on molecular mutual arrangement and can be rationalized only if molecules

adopt cofacial arrangements [26].

HOMO

HOMO - 1

Figure 1.9: The illustration of dimer energy splitting.

1.5 Outline

The thesis is organized as follows. In Chapter 2 the overview of used methods for

electronic structure calculations is given. To obtain equilibrium atomic structure,

Monte Carlo (MC) method is used, which is explained in detail in Sec. 2.1. The basis

for all modern electronic structure calculations is density functional theory (DFT),

explained in Sec. 2.2. However, standard DFT approach is not computationally

efficient enough to calculate the electronic structure for a large system. Methods

used as extension to DFT are summarized in Sec. 2.3-2.6. Finally, modern polar-

ization theory, used to calculate spontaneous polarization in conjugated polymers is

explained in Sec. 2.7. In Chapter 3 we investigate the influence of grain boundaries

on electronic properties of polycrystalline small-molecule organic semiconductors

naphthalene, BTBT and ditBu-BTBT (BTBT with tert-butyl side groups). Based

on the results obtained for small grain boundaries, we calculate density of states

for bigger boundaries. The effects of thermal disorder on electronic properties of

crystalline polymers are investigated in Chapter 4. We consider two different stable

11



configurations of crystalline P3HT and calculate the density of electronic states and

the wave function localization. In Chapter 5, we investigate electronic structure

of the interface between crystalline and amorphous P3HT. Two interface types are

considered: sharp interface and interface composed of extended chains. Finally, in

Chapter 6, we investigate spontaneous polarization in ideally ordered P3HT, ther-

mally disordered P3HT and its effect on electronic structure of the interface between

ordered and disordered P3HT.

12



Chapter 2

Methods for atomic and electronic

structure calculations

This chapter is dedicated to the methodology used to calculate atomic and electronic

structure of organic semiconductors. Procedure of electronic structure calculations

is divided into two main steps (1) generation of equilibrium atomic (molecular)

structure and (2) performing electronic structure calculations for obtained atomic

structure. Atomic structure can be generated using well-known techniques such as

MC simulations or molecular dynamics (MD). In this work MC technique was chosen

as method to generate atomic structure because it was shown that MC could reach

equillibrium confugraton faster than MD for similar systems [28]. Hence, it will be

the subject of detailed explanation in Sec. 2.1. Electronic structure calculations are

mostly done using DFT approach. This approach, implemented in many computer

codes, is described in Sec. 2.2. However, standard implementations of DFT with

plane basis representation do not allow one to calculate electronic structure of a

large system (with more than thousand atoms). Methods used in this work which

overcome computational limits of DFT, namely the charge patching method (CPM),

the folded spectrum method (FSM), the overlapping fragments method (OFM) and

density functional tight-binding method (DFTB) are discussed in Sec. 2.3-2.6. Fi-

nally, modern polarization theory using Berry phase approach, implemented in many

DFT-based computer codes is explained in Sec. 2.7.
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2.1 Monte Carlo simulations

Monte Carlo (MC) technique is widely used simulation techniques in science. It was

developed by von Neumann, Ulam and Metropolis at the end of the Second World

War during the investigation of the diffusion of neutrons in fissionable materials [29].

It has many applications in physics, mathematics, material science, finance etc.

2.1.1 Fundamentals of statistical physics

Firstly, we recall some fundamentals of statistical physics. Let us consider, a macro-

scopic system, given by coordinates (particle positions and momenta) in multidi-

mensional space that is called phase space. If the system has N particles (which

can be atoms, molecules, charges...), the phase space is 6N-dimensional. Having the

coordinates in hand, one can observe parameters such as temperature and pressure,

while other parameters can be calculated using fundamental equations of thermo-

dynamics. Let us use abbreviation Γ for a particular point in the phase space.

Instantaneous value of observed parameter A is denoted by A(Γ). As the system

evolves in time, it is therefore more reasonable to calculate time average of A(Γ),

which is given by:

Aobs = 〈A(Γ(t))〉time = lim
tobs→∞

1

tobs

∫ tobs

0

A(Γ(t))dt. (2.1)

Parameters are measured in discrete points in time. If the number of points in time

is τobs, we can rewrite preceding equation in discrete form:

Aobs = 〈A〉time =
1

τobs

τobs
∑

τ=1

A(Γ(τ)) (2.2)

Due to the complexity of time evolution of observed parameters, it is more convenient

to use ensemble averages instead of time averages. Ensemble is a set of Γ points in

phase space. The distribution of points in the phase space is given by a probability

density ρ(Γ). Each point represents the system in a particular moment in time.

Consequently, density function ρ(Γ) evolves in time, as well. If the system is in an

equilibrium state given by ρeq, then ∂ρeq/∂t = 0. By replacing the time average
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with average taken over all members of the ensemble, we have:

Aobs = 〈A〉ens =
∑

Γ

A(Γ)ρens(Γ). (2.3)

Sometimes it is more convenient to use weight function wens(Γ) instead of density.

It satisfies following equations:

ρens(Γ) = Q−1
enswens(Γ), (2.4)

Qens =
∑

Γ

wens(Γ), (2.5)

〈A〉ens =

∑

Γ wens(Γ)A(Γ)
∑

Γ wens(Γ)
. (2.6)

The weight function is actually non-normalized form of density function with a

probability function Qens, which is a sum over states, serving as normalizing factor.

Probability function is a function of the macroscopic properties of the ensemble and

it is connected with thermodynamic potential Ψens by relation:

Ψens = − ln Qens. (2.7)

This function has a minimal value at thermodynamical equilibrium.

In statistical physics there are 4 common ensembles:

(1) microcanonical NVE (constant number of particles N , volume V and energy

E) ensemble,

(2) canonical NVT (constant number of particles, volume V and temperature T )

ensemble,

(3) isothermal - isobaric constant NPT (constant number of particles, pressure

P and temperature) ensemble,

(4) grand canonical ensemble µVT (constant chemical potential µ, volume and

temperature) ensemble.

The probability density for the canonical ensemble is proportional to:

exp(−H(Γ)/kBT ), (2.8)

where H(Γ) is the Hamiltonian of the system. Partition function is given by:

QNV T =
∑

Γ

exp(−H(Γ)/kBT ), (2.9)
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or in quasi-classical form:

QNV T =
1

N !

1

h3N

∫

exp(−H(r,p)/kBT )drdp. (2.10)

Appropriate thermodynamic potential is the Helmholtz free energy A:

A/kBT = ln QNV T . (2.11)

In the case of the isothermal-isobaric ensemble, probability density is proportional

to:

exp(−(H + PV )/kBT ). (2.12)

The corresponding partition function is given by:

QNPT =
∑

Γ

∑

V

exp(−(H + PV )/kBT ) =
∑

V

exp(−PV/kBT )QNV T , (2.13)

or in quasi-classical form:

QNPT =
1

N !

1

h3N

1

V0

∫

dV

∫

exp(−(H + PV )/kBT )drdp. (2.14)

The corresponding thermodynamic function is the Gibbs free energy G:

G/kBT = − ln QNPT . (2.15)

2.1.2 Thermodynamic properties

Ensembles are mutually equivalent. Therefore, thermodynamic properties of the

system can be calculated as averages in any ensemble. Now, we give expressions for

some common thermodynamic quantities. Total energy of the system is calculated

as a sum of average kinetic and potential energy:

E = 〈H〉 = 〈K〉 + 〈Vpot〉 . (2.16)

Temperature and pressure can be derived from the virial theorem, written in the

form:

〈pk∂H/∂pk〉 = kBT, (2.17)

〈qk∂H/∂qk〉 = kBT, (2.18)
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for any coordinate qk and momentum pk. In atomic case, momenta appear as squared

terms in the Hamiltonian. Hence, we can rewrite that equation in the form:

〈

N
∑

i=1

| pi |2 /mi

〉

= 2 〈K〉 = 3NkBT, (2.19)

from which temperature can be directly calculated. Pressure can be derived as

follows. If we choose Cartesian coordinates and use equations of motion, the coor-

dinate derivative that appears in the second virial equations is the negative force fi

on particle i. Hence, we can write:

1

3

〈

N
∑

i=1

ri · ftot
i

〉

= −NkBT. (2.20)

Here, expression ftot
i is used to denote total (external and internal) force. External

force is related to the average external pressure P that is applied to a container of

volume V by:

1

3

〈

N
∑

i=1

ri · fext
i

〉

= −PV, (2.21)

while internal (interparticle) forces are related to the internal pressure that we call

internal virial W :
1

3

〈

N
∑

i=1

ri · fint
i

〉

= W. (2.22)

Finally, we can write:

PV = NkBT + 〈W 〉 . (2.23)

It may be useful to write W in a more compact form which will be done by writing

fint
i as the sum of forces fint

i on particle i from particle j:

∑

i

rif
int
i =

∑

i

∑

j 6=i

rifij =
1

2

∑

i

∑

j 6=i

(rifij + rjfji). (2.24)

Now we exploit Newton’s third law fij = −fji to switch indices:

∑

i

ri · fint
i =

1

2

∑

i

∑

i6=j

rij · fij =
∑

i

∑

j>i

rij · fij =

=
∑

i

∑

j>i

rij · ∇rij
v(rij) = −

∑

i

∑

j>i

w(rij),
(2.25)
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where rij = ri − rj and w(r) is interparticle pair virial function. Now, virial term

can be written as:

W = −1

3

∑

i

∑

j>i

w(rij). (2.26)

Fluctuations of observed variables are important as they are related to some

thermodynamic properties. Root-mean-square deviation of the observed variable A

is defined as:

σ2(A) =
〈

δA2
〉

ens
=

〈

A2
〉

ens
− 〈A〉2ens , (2.27)

where δA = A − 〈A〉ens. Now, let us assume canonical ensemble. Specific heat CV

is given by fluctuation in the total energy:

〈

δH2
〉

NV T
= kBT 2CV (2.28)

Cross-correlation of potential energy and virial fluctuations gives the expression for

the thermal pressure coefficient γV :

〈δV δW 〉NV T = kBT 2(V γV − NkB). (2.29)

In the isothermal-isobaric ensemble volume and energy fluctuations may occur. Vol-

ume fluctuations are related to the isothermal compessibility βT :

〈

δV 2
〉

NPT
= V kBTβT . (2.30)

Thermally expansion coefficient αP can be calculated from the cross-correlation of

the enthalpy H + PV and volume:

〈δV δ(H + PV )〉NPT = kBT 2V αP . (2.31)

2.1.3 Structural properties

The simulated structure can be charaterized by several structural quantities. The

most common one is the pair distribution function g(ri, rj) or g(rij). It is defined

by the probability that pair of atoms is found to have mutual distance rij relative

to the probability expected for completely random pair distribution at the same

density. This quantity is a good measure of the system ordering and can be used to
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distinguish between crystalline and amorphous phase of solids. The expression for

the pair distribution function is given by:

g(r) =
V

N2

〈

∑

i

∑

j 6=i

δ(| r | − | rij |)
〉

. (2.32)

The other structural quantity of interest is the spatial Fourier transform of the

number density, given by:

ρ(k) =
N

∑

i=1

exp(ik · ri), (2.33)

with k = (2π/L)(kx, ky, kz), where L is the length of the box and kx, ky and kz are

integers. This quantity is related to the structure factor S(k):

S(k) = N−1 〈ρ(k)ρ(−k)〉 , (2.34)

which can be experimentally measured [29,30].

2.1.4 Basic example of MC technique

Now, we can get back to MC simulations. Firstly, let us have a look at simple

example that illustrates the MC technique. The most common illustration of MC

technique is the evaluation of the number π. The value of π is equal to the surface

of the circle with unit radius, shown in Fig. 2.1. Trial shots are generated within

square OABC. At each trial, two random number between 0 and 1 are chosen.

These number represent coordinates of the chosen point. Then, distance between

the chosen point and the center of the circle (and square) is calculated. If the

distance is smaller or equal 1, then point belongs to the shaded area and trail is

counted as hit. Otherwise, it is counted as miss. If the total number of trials is

Ntrial and total number of hits is Nhits, then:

π ≈ 4 × P (OCA)

P (OABC)
=

4Nhits

Ntrial

. (2.35)

The value of π is closer to the exact value as the number of trials increases.

2.1.5 Metropolis algorithm

This example has illustrated the main idea of MC technique that some variable can

be calculated from random configuration after sufficient number of trials. Let us
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Figure 2.1: The illustration of the evaluation of the number π by hit and miss

approach. The figure is taken from Ref. 30.

consider canonical ensemble and property A that has to be evaluated. Therefore,

we want to calculate:

〈A〉NV T =

∫

dΓρNV T (Γ)A(Γ). (2.36)

Metropolis algorithm requires the sequence of random states (trials) where each

state occurs with appropriate probability. Such sequence is called Markov chain and

its satisfies two conditions:

(1) Each state belongs to a finite set of states Γ1, Γ2, ..., Γn that is called state

space,

(2) Each state is dependent only on the preceding state.

Two neighboring states Γm and Γn are connected with a transition probability

πmn which is the probability of moving from state m to state n. Let ρ(i) be the

probability that system is in state i. This probability is proportional to the Boltz-

mann factor exp(−H(i)/kBT ). In equilibrium, the average number of moves from

state m to state n should be equal to the number of reverse moves. This statement

is expressed by the detailed balance condition:

ρmπmn = ρnπnm. (2.37)
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Many possible transition matrices πmn satisfy the previous equation. MC simulation

uses Metropolis algorithm to calculate the transition matrix. Probability πmn can

be decomposed into two probabilities: (1) probability of performing the trial move

from m to n, denoted by α(m → n) and (2) probability that trial move is accepted,

denoted by p(m → n). Therefore, we can write:

πmn = α(m → n) × p(m → n) (2.38)

In the original Metropolis scheme, matrix α is chosen to by symmetric: α(m →
n) = α(n → m). If we insert this condition into the detailed balance condition, we

obtain:

ρ(m)p(m → n) = ρ(n)p(n → m) (2.39)

and
p(m → n)

p(n → m)
=

ρ(n)

ρ(m)
= exp(−H(n) − H(m)

kBT
). (2.40)

There is the apparent condition that probabilities p(m → n) and p(n → m) should

not exceed 1. Metropolis algorithm in the final form is given by:

p(m → n) =











ρ(n)
ρ(m)

= e−(H(n)−H(m))/kBT , H(n) > H(m)

1, H(n) ≤ H(m)

(2.41)

As noticed previously, there are other possible solutions, but Metropolis algorithm

was shown to give better sampling of the phase space than other solutions. Metropo-

lis algorithm accepts new state n unconditionally if its energy is lower than the

energy of the previous state m. Otherwise, new state is accepted with a probability

equal to the Boltzmann weights ratio of states n and m. In practice, ratio of the

Boltzmann weights is compared with a random chosen number between 0 and 1. If

the number is lower than the ratio, trial move is accepted, otherwise it is rejected.

Metropolis condition given above assumes NVT ensemble. In the case of NPT

ensemble, the condition should be modified. Instead of calculating only energy

difference, we now include volume change. We calculate ∆ given by:

∆ =
1

kBT

[

H(f) − H(i) + P (V (f) − V (i)) − N ln
V (f)

V (i)

]

, (2.42)
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where V (f) and V (i) are volumes of the final and the initial state, respectively.

Again, if ∆ is negative, new configuration is accepted, otherwise, it is accepted with

a probability equal to exp(−∆) [29,30].

The schematic description of the MC algorithm is given in Fig. 2.2. We as-

sume system which consists of N molecules. The algorithms starts with an initial

configuration, which can be either random or lattice structure. Random initial con-

figuration is appropriate choice for amorphous structure simulation. On the other

hand, if one wants to simulate ordered structure, the initial structure given by lattice

is more appropriate choice. The MC algorithm is repeated T times, where T is the

number of MC steps. In each MC step, energy of the present system configuration is

calculated. Then, a random molecule is chosen, which is afterwards translated and

rotated by a random vector. In such a way the new configuration of the system is

obtained. The energy of the new system configuration is calculated and Metropolis

condition is applied to decide whether the new configuration is accepted or not. The

number of MC steps should be large enough to ensure that the system has reached

the thermodynamic equilibrium. The saturation of the total energy of the system

is the most common indicator that system is in the equilibrium.

Figure 2.2: The schematic description of the MC algorithm.
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2.1.6 Technical aspects of MC simulations

In this subsection we discuss on some technical aspects of MC simulation such as

energy calculation and problem of finite size simulation box. Energy of molecular

system is calculated using classical force fields. Generally, there are two different

types of interactions in molecular systems: (1) short-range interactions and (2) long-

range interactions. Short-range interactions describe interactions between pairs,

triples and dihedrals of neighboring atoms of the same molecule. On the other

hand, long-range interactions describe interactions between non-bonded pairs of

atoms. Two atoms are non-bonded if they belong to different molecules or if there

are at least four bonds apart in the case they belong to the same molecule. Potential

of the interaction between two neighboring atoms i and j is calculated as:

Eij = Kr(r − r0)
2, (2.43)

where Kr is a coefficient that depends on the atom types and r and r0 are in-

stantaneous and equilibrium distance between atoms, respectively. Potential of the

interaction between atoms i, j and k that form a triplet of the neighboring atoms

is given by:

Eijk = kθ(θ − θ0)
2, (2.44)

where kθ is a coefficient that depend on the atom types and θ and θ0 are instan-

taneous and equilibrium angle formed by the atoms, respectively. Potential of a

dihedral that form neighboring atoms i, j, k and l is usually given in the form:

Eijkl =
V1

2
(1+cos(ϕ+ϕ1))+

V2

2
(1+cos(ϕ+ϕ2))+

V3

2
(1+cos(ϕ+ϕ3))+

V4

2
(1+cos(ϕ+ϕ4)),

(2.45)

where V1, V2, V3 and V4 are coefficients that depend on the atom type, ϕ is the

dihedral angle and ϕ1, ϕ2, ϕ3 and ϕ4 are phase angle that also depend on the atom

type. All components of short-range potentials are intramolecular potentials. Most

small molecules can be regarded as rigid molecules and interatomic bonds, angles

and dihedrals within such molecules remain constant during the simulation. Con-

sequently, corresponding potential terms are constant and do not affect the energy

difference. Therefore, for rigid molecules, calculations of short-range interactions
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can be avoided, which saves a lot of computation time. Long-range interaction is

given as a sum of Van der Waals non-bonding potential and Coulomb potential.

Van der Waals potential between non-bonding atoms i and j is commonly given by

Lennard-Jones (LJ) potential:

vLJ = 4εij((
σij

rij

)12 − (
σij

rij

)6), (2.46)

where rij is the distance between atoms and σij and εij are LJ parameters. This

potential is extensively used in molecular simulations. Hence, it will be examined

in more detail. The typical LJ potential shape is given in Fig. 2.3. The potential

contains strong repulsive part, which is dominant at low distances and weak attrac-

tive part which is dominant at higher distances. The minimum of the potential is

at (21/6σ,−ε), while the zero value is obtained at r = σ. As can be seen in Fig. 2.3,

potential has very large values at low distances. Therefore, it is convenient to set

minimal distance between atoms that can occur in the simulation. Usually, this

minimal distance is set to be between 0.7σ and 0.9σ. Additionally, one can notice

that potential converges to 0 at higher distances. Hence, potential cut-off distance

rC can be introduced and potential can be neglected at distances higher than rC ,

which is computationally efficient. Cut-off distance usually takes values from 2.5σ to

4σ. Values for σ and ε are given for particular atoms or atom groups. To calculate

these parameters for the interaction between different atoms or groups, combination

rules have to be applied. Combination rules for atoms A and B according to OPLS

force filed [31] are given by σAB =
√

σAσB and εAB =
√

εAεB. Finally, Coulomb

potential defines the interaction between atomic charges qi and qj by:

Eq =
1

4πǫ0

qiqj

rij

, (2.47)

where ǫ0 is the electric permittivity of vacuum.

Simulation boxes used in molecular simulations are finite and their size is usually

limited by the amount of available computer resources. On the other hand, the

simulations of bulk system are often required. In that case, periodic boundary

conditions are applied to extend finite system into infinite bulk system. Periodic

boundary conditions replicate the system box in the each of three dimensions. In
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Figure 2.3: The LJ potential between two carbon atoms with values for σ and ε

given by OPLS parameter set [31].

such a way, each particle in the original box has its pair in each replicated box, which

is illustrated in Fig. 2.4. Particles, denoted by red dots, interact with other particles

in the original gray box and in the surrounding boxes within cut-off radius rc. Here,

a distinction between short-range and long-range interactions should be made. In

the case of short-range interactions, cut-off radius should be less than a half of the

box size to ensure that particle interact with other particles only ones (with original

particle or one of its copies, the closest one). This is known as minimum image

convention. In the case of long-range interactions, interaction with original particle

and all (or most of) copies should be taken into account. In order to make such

calculation faster, Ewald summation technique can be applied [29,30].

2.1.7 MC simulations of molecules

As mentioned, Monte Carlo move involves molecule translation and rotation. Trans-

lation occurs in three dimensions, where the molecule center of mass is translated

by a random number X between 0 and 1:

r
′

x = rx + (2X − 1)δrmax, (2.48)

r
′

y = ry + (2X − 1)δrmax, (2.49)

r
′

z = rz + (2X − 1)δrmax, (2.50)
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Figure 2.4: The illustration of the periodic boundary condition in two dimensions.

where δrmax is a parameter which defines maximal allowed translation along each

axis. Rotation of rigid molecules requires three rotation angles to be assigned to a

molecule. The most common is to use Euler angles or some similar set of angles.

Here, we use Tait-Brian angles Ψ, θ and Φ, defined as in Fig. 2.5. These angles are

also known as yaw, pitch and roll angles. The change of angles in each MC step is

the same as for translation moves:

X

Z

Y

N(y')

z

y

x

Figure 2.5: The definition of Tait-Brian angles in Cartesian coordinate system.
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Ψ
′

= Ψ + (2X − 1)δΨmax, (2.51)

θ
′

= θ + (2X − 1)δθmax, (2.52)

Φ
′

= Φ + (2X − 1)δΦmax, (2.53)

where δΨmax, δθmax and δΦmax are maximal allowed changes in angles. Position of

each atom in the molecule can be determined using rotation matrix which multiplies

atom position vector. Rotation matrix for Tait-Brian angles is given by:











cos Ψ cos θ cos Ψ sin θ sin Φ − cos Φ sin Ψ sin Ψ sin Φ + cos Ψ cos Φ sin θ

cos Φ sin Ψ cos Ψ cos Φ + sin Ψ sin θ sin Φ cos Φ sin Ψ sin θ − cos Ψ sin Φ

− sin θ cos θ sin Φ cos θ cos Φ











.

(2.54)

One should note that using rotation angles involves different phase space as

that given by Cartesian coordinates. To transform the original phase space (with

Cartesian coordinates) into the new phase space (with rotation angles), we should

take into account Jacobian of the transformation. Therefore, we have:

dΓ =
∏

i=1,..,N

dxidyidzi = J
∏

j=1,..,M

dqj

∏

r=1,..,3N−M

dcr, (2.55)

where J is the Jacobian of the transformation, qj are new coordinates and cr are con-

straints which serve as a complement to the overall number of Cartesian coordinates.

Jacobian is given by a matrix:

J =











∂x1

∂q1
. . . ∂x1

∂c3N−M

...
...

...

∂zN

∂q1
. . . ∂zN

∂c3N−M











. (2.56)

Modified Metropolis condition (assuming NVT ensemble) is given by:

p(i → f) = min(1,
| det J(f) |
| det J(i) | e

−
H(f)−H(i)

kBT ), (2.57)

where J(f) and J(i) are Jacobians of the final and the initial state. In the case

of rigid molecules for which Tait-Brian-Angles angles are used, it is shown that
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determinat of the Jacobian has a simple form. It is equal to − cos θ, with θ defined

as in Fig. 2.5.

However, for non-rigid molecules, such as polymers, the calculation of Jacobian

transformation can be rather difficult task due to the torsion of dihedrals that is

now allowed. To explain the Jacobian transformation for polymers, let us consider a

P3HT dimer, shown in Fig. 2.6. Coordinates that are moved during the simulations

are: Cartesian coordinates of the center of mass of the left thiophene ring (denoted

by xCM , yCM , zCM), three rotation angles (two of them are denoted by α and β) and

torsion of dihedrals within alkyl chains and between thiophene rings (denoted by

ϕ5,12). Bond lengths and bond angles are considered constant during the simulations,

therefore, they act as constraints. Finally, coordinates in Cartesian space are given

by the atom coordinates. It is usually more convenient to calculate the inverse

derivatives. Therefore, we calculate determinant of the inverse Jacobian matrix:

J−1 =











∂q1

∂x1
. . . ∂q1

∂zN

...
...

...

∂c3N−M

∂x1
. . . ∂c3N−M

∂zN











. (2.58)

Determinant of the original and the inverse Jacobian matrix are mutually reciprocal,

i.e. det J−1 = 1/ det J .

There are several characteristic types of derivatives that appear in the inverse

Jacobian matrix. We will take a example for the each type. The first type are

derivatives of the coordinates of the thiophene center of mass with respect to the

coordinates of atoms. Coordinates of the center of mass are simply given as the

averages of atom coordinates xi:

xCM =
1

5

∑

i

xi, (2.59)

where the sum runs over the atoms within thiophene ring. Therefore, appropriate

derivative reads:
∂xCM

∂xi

=
1

5
. (2.60)

The second type of derivatives are derivatives of bond lengths with respect to the

atomic coordinates. Bond length | rij | between atoms i and j is calculated as:
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| rij |=
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (2.61)

Corresponding derivative is given by:

∂ | rij |
∂xi

=
(xi − xj)

| rij |
. (2.62)

Derivatives of the rotation angles with respect to coordinates can be easily obtain

by differentiating the rotation matrix given by Eq. 2.54. For example, for derivative

of Ψ with respect to xi, we obtain:

∂Ψ

∂xi

=(− sin Ψ cos θRxi + (− sin Ψ sin θ sin Φ − cos Φ cos Ψ)Ryi+

(cos Ψ sin Φ − sin Ψ cos Φ sin θ)Rzi)
−1,

(2.63)

where (Rxi, Ryi, Rzi) are components of the space-fixed vector of an atom i. Now,

we calculate the bond angle derivatives with respect to atomic coordinates. Let us

consider angle θk formed by bonds rki and rkj. From definition of a dot product we

have:

cos θk =
rki · rkj

| rki || rkj |
=

(xi − xk)(xj − xk) + (yi − yk)(yj − yk) + (zi − zk)(zj − zk)

| rki || rkj |
.

(2.64)

By calculating the derivative of cosine function, we obtain:

∂θk

∂xi

=
−1

sin θk

((xj − xk) | rki || rkj | −∂|rki|
∂xi

| rkj | rki · rkj)

(| rki || rkj |)2
. (2.65)

Finally, we have to calculate the derivatives of torsion angles of dihedrals with respect

to atomic coordinates. Let us assume a dihedral formed by atoms i, j, k and l, where

j and k form the central bond of dihedral. Torsion angle can be calculated from a

dot product of vectors nijk and njkl given by:

nijk = rij × rjk (2.66)

and

njkl = rjk × rkl. (2.67)

Derivative of the torsion angle with respect to coordinates can be calculated using the

similar procedure as for bond angles derivatives. Due to the complexity of detailed
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formulas, they are omitted. We have now explained how to calculate derivatives

that appear in Jacobian for the system of two P3HT monomers. This approach

can be extended for a large system by dividing the large system into the subsets of

overlapping dimers.

Figure 2.6: Examples of coordinates used in MC simulation of P3HT.

2.2 Density functional theory

Density functional theory (DFT) is widely used approach for electronic structure

calculations. It is based on idea that ground state and other properties of a electronic

system can be determined from electron density distribution ρ(r). In such a way,

N-electron system is replaced by one-electron system.
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2.2.1 Hohenberg-Kohn theorems

Hohenberg and Kohn published a work [32] where they described DFT as exact

solution to the many-body problem given by Hamiltonian:

H = − ~
2

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i6=j

e2

| ri − rj |
. (2.68)

Modern DFT approach is based on two Hohenberg-Kohn theorems which formula-

tions follows.

Theorem 1. The external potential Vext(r) of a system of interacting particles

is uniquely defined, except for a constant, by the ground state density ρ(r).

Corollary: As the external potential fully determines the Hamiltonian of the

system, except for a constant energy shift, all properties of the system are determined

by the ground state density.

Proof: Suppose that there are two different external potentials Vext(r) and

Vext(r)
′

which differ by more than a constant and which lead to the same ground

density ρ(r). These two different potentials lead to two different wave functions Ψ

and Ψ
′

and two different eigenstates E and E
′

. Since Ψ
′

is not the ground state for

H, then:

E =〈Ψ | H | Ψ〉 < 〈Ψ′ | H | Ψ
′〉 = 〈Ψ′ | H

′ | Ψ
′〉+

〈Ψ′ | H − H
′ | Ψ

′〉 = E
′

+

∫

[Vext(r) − V
′

ext(r)]ρ(r)d3r.
(2.69)

Similar inequality is obtained for Ψ, H
′

and E
′

:

E
′

< E +

∫

[V
′

ext(r) − Vext(r)]ρ(r)d3r. (2.70)

If we sum up Eq. 2.69 and Eq. 2.70 we obtain E + E
′

< E
′

+ E which is the con-

tradiction. Therefore, ground density uniquely determines ground state properties

of the system.

Theorem 2. The universal energy functional E[ρ] in the terms of charge density

ρ(r) can be defined for any external potential Vext(r). For a given potential, exact

ground state of the system is the minimal value of the functional. The density that

minimizes the functional is the exact ground state density.
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Proof: Ground state density determines all properties of the system, including

the total energy functional:

E[ρ] = T [ρ] + Eee[ρ] + Ene +

∫

Vext(r)ρ(r)d3r, (2.71)

where T [ρ] is the kinetic term, Eee[ρ] is the electron-electron interaction term and

Ene is the nuclei-electron interaction term. Functional F [ρ] includes all interelectron

(kinetic and potential) interaction terms:

F [ρ] = T [ρ] + Eee[ρ], (2.72)

which is universal for all electronic systems (independent on the external potential)

as it is only dependent of the ground state density ρ(r). Let us now assume that

ground state density ρ
′

(r) corresponds to external potential V
′

ext(r). Total energy

functional is equal to the expected value of the Hamiltonian in the ground state

with a wavefunction Ψ
′

:

E
′

= E[ρ
′

] = 〈Ψ′ | H | Ψ
′〉. (2.73)

Now let us consider different ground state density ρ
′′

(r) that leads to wavefunction

Ψ
′′

. It follows:

E
′

= 〈Ψ′ | H | Ψ
′〉 < 〈Ψ′′ | H | Ψ

′′〉 = E
′′

. (2.74)

Therefore, the energy given by the functional Eq. 2.71 for the ground density ρ
′

(r)

is the minimal energy. If one knows the functional F [ρ], then the ground state and

density can be obtained by minimizing the total energy functional [32–36]. The

ground state charge density ρ
′

(r) should satisfy the variational principle given by:

δE[ρ
′

] − µ(

∫

ρ
′

(r)dr − N) = 0. (2.75)

where N =
∫

ρ
′

(r)dr and µ is the chemical potential. This leads to the Euler-

Lagrange equation:

µ =
δE[ρ

′

]

δρ′(r)
. (2.76)
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2.2.2 Kohn-Sham equations

As explained in the previous section, ground state of the system minimizes the energy

functional E[ρ] and satisfies the Euler-Lagrange equation. First models used to

obtain charge density were based on the explicit forms of T [ρ] and Eee[ρ] functionals.

Kohn and Sham introduced orbitals into the model in such a way that kinetic term

can be calculated with good accuracy. Let us start with a exact formula for the

kinetic term:

T =
N

∑

i

ni〈Ψi | −
1

2
∇2 | Ψi〉, (2.77)

where Ψi and ni are natural spin orbitals and their occupation numbers, respectively.

According to the Pauli principle, 0 ≤ ni ≤ 1. Additionally:

ρ(r) =
N

∑

i

ni

∑

s

| Ψ(r, s) |2 . (2.78)

For the given interacting system there can be infinite number of solutions to the last

two equations. Kohn and Sham proposed simplified equations given by:

Ts[ρ] =
N

∑

i

〈Ψi | −
1

2
∇2 | Ψi〉 (2.79)

and

ρ(r) =
N

∑

i

∑

s

| Ψ(r, s) |2 . (2.80)

These two equations are the special cases of Eq. 2.77 and 2.78 for ni = 1 for the

first N orbitals and ni = 0 for the other orbitals. Kohn and Sham proposed non-

interacting reference system with a Hamiltonian:

Hs =
N

∑

i

(−1

2
∇2

i ) +
N

∑

i

vs(r), (2.81)

without electron-electron repulsion term. For this Hamiltonian ground state density

is exactly ρ. The ground state wave function can be written as:

Ψs =
1√
N !

det[ψ1...ψN ], (2.82)

where ψi are first N lowest eigenstates of one-electron Hamiltonian hs, given by:

hsψi = [−1

2
∇2 + vs(r)]ψi = εiψi. (2.83)
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Let us write interelectron interaction functional F [ρ] in the form:

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (2.84)

where J [ρ] is the classic part of electron-electron interaction and Exc which contains

the difference between exact kinetic term and Ts[ρ] and the non-classical part of

electron-electron interaction. Therefore, Exc[ρ] can be written as:

Exc[ρ] = T [ρ] − Ts[ρ] + Eee[ρ] − J [ρ]. (2.85)

Euler-Lagrange equation now takes the form:

µ = vs(r) +
δTs

δρ(r)
, (2.86)

where vs(r) is the Kohn-Sham potential defined by:

vs(r) = v(r) +
δJ [ρ]

δρ(r)
+

δExc[ρ]

δρ(r)
= v(r) +

∫

ρ(r
′

)

| r − r′ |dr
′

+ vxc(r), (2.87)

where v(r) is ionic potential.

Set of Kohn-Sham equations is given by Eq. 2.80, 2.83 and 2.87. As can be seen

from the equations, Kohn-Sham potential is dependent on charge density. On the

other hand, charge density is dependent on wave functions, solutions to Hamiltonian

problem. Hence, Kohn-Sham equations should be solved in a self-consistent manner.

The algorithm of Kohn-Sham equations solving starts with a initial guess for charge

density. Self-consistent loop begins with effective Kohn-Sham potential calculation

followed by one-electron Hamiltonian hs solving. New charge density is calculated

using Eq. 2.80 and compared with old charge density (which is the initial guess in

the first iteration of the loop). The loop stops if the difference between the new and

the old charge density is smaller than a predefined accuracy. Described algorithm

is the basic working principle of DFT calculations [33–37].

2.2.3 Local density approximation

Exchange-correlation term in Kohn-Sham equations is not given in an explicit form.

There are several approximations that are used as expression for exchange-correlation
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term. The basic one is the local density approximation (LDA). Within LDA,

exchange-correlation energy is given by:

ELDA
xc [ρ] =

∫

ρ(r)εxc(ρ)dr, (2.88)

where εxc is the exchange-correlation energy of a particle in uniform electron gas at

density ρ. Corresponding potential becomes:

vLDA
xc (r) =

δELDA
xc [ρ]

δρ(r)
= εxc(ρ(r)) + ρ(r)

δεxc(ρ)

δρ
. (2.89)

Kohn-Sham orbital equation now takes a form:

[−1

2
∇2 + v(r) +

∫

ρ(r)

| r − r′ |dr
′

+ vLDA
xc (r)]ψi = εiψi. (2.90)

Exchange-correlation energy εxc can be divided into two terms: exchange and cor-

relation terms. Exchange term is given by:

εx(ρ) = −Cxρ(r)1/3, Cx =
3

4
(
3

π
)1/3, (2.91)

while the exact values for the correlation terms are known thanks to the work of

Ceperley and Alder [38]. Other widely used expression for exchange-correlation term

is generalized gradient approximation (GGA) [29,33–35].

2.3 Charge patching method

Self-consistent calculation in DFT limits the size of the investigated system to around

a thousand atoms due to its computational requirements. In order to calculate

electronic structure for a large system, one should look for the alternatives to classical

DFT approach. One possibility to make calculation feasible for larger system is to

avoid self-consistent calculation. Charge patching method (CPM) [39] is the method

which calculates charge densities for a small prototype system and sums them up

to obtain charge density for a large system, avoiding self-consistent iterations. The

main idea of CPM is the fact that local environment of an atom in a large system

is similar to that in a small system. Consequently, atomic contributions to the

overall charge density of large system can be extracted from calculations on a small
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prototype system. Such contributions are called motifs. Motif charge density that

corresponds to atom A at the position RA is given by:

mA(r − RA) =
wA(r − RA)

∑

B wB(r − RB)
ρ(r). (2.92)

where ρ(r) is the charge density obtained by DFT calculations on small prototype

system and w is the weight function. Overall charge density is then calculated as a

sum of contributions of each atom in the system:

ρpatch(r) =
∑

A

mA(r − RA). (2.93)

Figure 2.7: Motifs in a naphthalene molecule. C1 denotes central carbon atoms that

are not linked to hydrogen atoms, while C2 denotes other carbon atoms.

To explain the concept of motifs, we take a single naphthalene molecule, which

is the prototype system for simulations of naphthalene. Two atoms have the same

motifs if the atoms are the same and their environments (neighboring atoms) are

the same. Naphthalene molecule has 5 different motifs: C1 −C1C2C2, C2 −C1C2H,

C2 −C2C2H, H −C2 −C1C2 and H −C2 −C2C2, as shown in Fig. 2.7. In the used

notation for motifs, first atom is the central and other atoms are neighbors.

CPM allows one to calculate electronic structure for a realistic system without

losing much on accuracy. Average error for energies for acene molecules obtained by
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CPM are around 10 meV with the reference to DFT. In the case of polythiophene,

this error is even smaller (1.6 meV) [39].

2.4 Folded spectrum method

Having the charge density in hand, single particle potential can be constructed and

solved. In the case of large number of particles, calculation of all occupied states is

inefficient. Electronic and transport properties of semiconducting materials can be

determined only with eigenstates in the vicinity of the band gap. Folded spectrum

method (FSM) allows one to calculate eigenstates around the given reference energy

Eref . FSM replaces original problem (given by HΨ = EΨ) with the problem:

(H − Eref )
2Ψ = (E − Eref )

2Ψ. (2.94)

In this way, energy spectrum from the original problem is folded into the spectrum

of the problem given by Eq. 2.94. The lowest energy obtained by FSM is the energy

closest to Eref .

2.5 Overlapping fragments method

The important point that directly affects the complexity of electronic structure

calculations in the choice of the basis set for wave functions representation. The most

simple way, but the most computationally demanding approach is the representation

in plane basis set, given by:

Ψi(r) =
∑

k

ci,ke
ik·r, (2.95)

where k is the reciprocal space vector. The alternatives to the representation in plane

basis set are representation in localized orbital basis set or approach based on the

system division into small fragments. Overlapping fragments method (OFM) [40]

combines these two approaches: it divides system into small fragments and uses

the eigenvalues of the fragments as the basis set for the whole system. The output

of OFM are transfer integrals Hij = 〈φ(m)
i | H | φ

(n)
j 〉 and wave function overlaps
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Sij = 〈φ(m)
i | φ

(n)
j 〉 between the states φ

(m)
i and φ

(n)
j , where φ

(m)
i is the i-th wave

function of the fragment m and φ
(n)
j is the j-the wave function of the fragment n.

Now, generalized eigenvalue problem can be formulated as:

∑

mn

(Hij,mn − ESij,mn)Cmn = 0. (2.96)

OFM is highly suitable for the systems where division into fragments is intuitive,

as in conjugated polymers. The illustration of the system division into the fragments

is given in Fig. 2.8. To achieve sufficient accuracy, only few states per fragment

are needed. Good representation of electronic states is obtained when fragments

mutually overlap [40].

Figure 2.8: Illustration of the system division into the fragments in OFM.

2.6 Density functional tight-binding method

As discussed previously, classical DFT has its limitations due to its large compu-

tational cost. In this section we introduce density functional tight-binding method

(DFTB). This method uses tight-binded local atomic orbitals as a basis set to rep-

resent Kohn-Sham Hamiltonian. It is based on tight-binding approach proposed

by Slater and Koster in 1954 [41]. They proposed Hamiltonian expansion into an

orthogonalized basis set of atomiclike orbitals. Later, Chadi proposed that energy

functional can be written as:

E = Eocc + Erep, (2.97)
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where Eocc is the sum over occupied orbital energies obtained from Hamiltonian

diagonalization and Erep is the short-ranged repulsive two-particle interaction term

which contains ionic repulsion and correction to the approximations made in the

first term [42].

To explain DFTB in a more formal way, we start from general Kohn-Sham energy

functional for a system with M electrons and N nuclei:

E[ρ] =
occ
∑

i

〈Ψi | −
∆

2
+ Vext +

1

2

∫

ρ(r
′

)

| r − r′ |dr
′ | Ψi〉 + EXC [ρ] +

1

2

N
∑

α,β

ZαZβ

| Rα − Rβ | ,

(2.98)

where Rα and Rβ are positions of nuclei α and β. Let us write charge density as

a sum of reference density ρo(r
′

) and small fluctuation δρ(r
′

). If we substitute this

sum into the energy functional, we obtain:

E =
occ
∑

i

〈Ψi | −
∆

2
+ Vext +

∫

ρ0(r
′

)

| r − r′ |dr
′

dr + VXC [ρ0] | Ψi〉−

1

2

∫ ∫

ρ0(r
′

)(ρ0(r) + δρ(r))

| r − r′ | dr
′

dr −
∫

VXC [ρ0](ρ0(r) + δρ(r))dr+

1

2

∫ ∫

δρ(r
′

)(ρ0(r) + δρ(r))

| r − r′ | dr
′

dr + EXC [ρ0 + δρ] + Eii,

(2.99)

where Eii is the ion-ion interaction term. The second term is the correction for

double counting of Hartree term and the fourth term originates form Hartree term

splitting into one related to ρ0 and one related to δρ. By expanding EXC to second

order in density fluctuations, we obtain:

E =
occ
∑

i

〈Ψi | H0 | Ψi〉 −
1

2

∫ ∫

ρ0(r
′

)ρ0(r)

| r − r′ | dr
′

dr + EXC [ρ] −
∫

VXC [ρ0]ρ0dr+

Eii +
1

2

∫ ∫ (

1

| r − r′ | +
δ2EXC

δρδρ′
|ρ0

)

δρδρ
′

dr
′

dr.

(2.100)

One should note that linear terms in δρ have vanished. Hamiltonian H0 is dependent

only on reference charge density ρ0(r).

2.6.1 Zeroth-order DFTB

Zeroth-order non-self-consistent charge DFTB approach neglects the last term in

the energy functional given by Eq. 2.100. In this case, energy functional can be
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written as a sum of the part that depends only on input charge density and the

repulsion term Erep:

ETB = 〈Ψi | H | Ψi〉 + Erep. (2.101)

Single particles wave functions Ψi are expanded into a set of localized atomic orbitals

ϕν :

Ψi(r) =
∑

ν

cα
νiϕν(r − Rα), (2.102)

where cα
νi are expansion coefficients. Atomic orbitals are given in Slater-type rep-

resentation [43]. They are determined from a self-consistent LDA calculations on

free neutral pseudoatoms. By applying variational principle to Eq. 2.101 we ob-

tain DFTB Kohn-Sham equation, which are afterwards expanded into the set of

equations:
M

∑

ν

cνi(Hµν − εiSµν) = 0, ∀µ, i, (2.103)

where Hµν = 〈ϕµ | H | ϕν〉, Sµν = 〈ϕµ | ϕν〉 for ∀µ ∈ α and ∀ν ∈ β. Hamiltonian

Hµν has a form:

Hµν =



























εneutral free atom
µ , µ = ν

〈ϕα
µ | T + Vα + Vβ | ϕβ

ν 〉, α 6= β

0, otherwise.

(2.104)

Here, α and β denotes atoms on which wave functions and potentials are centered,

while Vα and Vβ are atomic potentials. Therefore, only two-center matrix elements

are explicitly calculated. As can be seen from the Hamiltonian, eigenvalues of free

atoms serve as diagonal elements. By solving the Hamiltonian, Kohn-Sham or-

bitals εi (with occupation number ni) are obtained, which defines the first term in

Eq. 2.101. Second (repulsion) term is calculated as a function of distance by taking

the difference between free neutral pseudoatoms energies ESCF
LDA(R) and tight-binding

energy for a reference system:

Erep(R) = ESCF
LDA(R) −

occ
∑

i

niεi(R). (2.105)
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2.6.2 Second-order DFTB

Zeroth-order DFTB gives accurate results when electron density can be approxi-

mated as sum of atomic densities. This is the case in homo-nuclear systems, where

the charge transfer between atoms is negligible. However, for hetero-nuclear polar

molecules the accuracy of the zeroth-order DFTB might not be sufficient. In these

cases, second-order term in Eq. 2.100 should be included into the calculations, which

defines second-order DFTB.

Firstly, we decompose δρ(r) into atom-centered contributions δρα(r) and δρβ(r
′

)

that decay fast with the distance from atom center. Now, second-order term can be

written as:

E2nd =
1

2

N
∑

α,β

∫ ∫

(

1

| r − r′ | +
δ2EXC

δραδρ
′

β

|ρ0

)

δραδρ
′

βdr
′

dr. (2.106)

Next, δρα(r) can be expanded into a series of radial (Kml) and angular (Yml) func-

tions:

δρα(r) =
∑

lm

KmlF
α
ml(| r − Rα |)Ylm(

r − Rα

| r − Rα |) ≈ ∆qαFα
00(| r − Rα |)Y00, (2.107)

where Fα
ml denotes the normalized radial dependence of the density fluctuations on

atom α on corresponding angular momentum and ∆qα is an atomic charge which

satisfies
∑

α ∆qα =
∫

δρ(r)dr. By substituting Eq. 2.107 into Eq. 2.106 we obtain

simplified expression for the second-order term:

E2nd =
1

2

N
∑

α,β

∆qα∆qβγα,β, (2.108)

where:

γα,β =

∫ ∫

(

1

| r − r′ | +
δ2EXC

δραδρ
′

β

|ρ0

)

Fα
00(| r − Rα |)F β

00(| r
′ − Rβ |)

4π
dr

′

dr.

(2.109)

There are two limiting cases under which expression for second-order term can

be simplified: (1) large interatomic distance limit and (2) vanishing interatomic

distance limit. In the case of large interatomic distance (Rα,β =| Rα − Rβ |→ ∞),

exchange-correlation term vanishes and second-order term is given only by Coulomb
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interaction between charges ∆qα and ∆qβ:

E2nd =
1

2

N
∑

α,β

∆qα∆qβ

Rαβ

. (2.110)

On the other hand, when charges are residing on the same atom ((Rα,β =| Rα −
Rβ |→ 0)), rigorous calculation of γα,β would require the known charge distribution.

Here, a simple approximation to γαα is made: it can be written as a difference of

the ionization potential Iα and the electron affinity Aα:

γα,α ≈ Iα − Aα ≈ Uα, (2.111)

which can be approximated by the Hubbard parameter Uα. Therefore, γαβ depends

only on the distance between α and β and parameters Uα and Uβ.

Now, we want to obtain expression for γ which is valid for all system scales and

that is consistent with approximations for two limits discussed above. In accordance

with Slater-type orbitals used as the basis set for Kohn-Sham equations, let us

assume exponential decay of charge densities:

δρα(r) =
τ 3
α

8π
e−τα|r−Rα|. (2.112)

Let us neglect for a moment exchange-correlation term in Eq. 2.106. The second-

order term now reads:

γαβ =

∫ ∫

1

| r − r′ |
τ 3
α

8π
e−τα|r

′

−Rα|
τ 3
β

8π
e−τβ |r−Rβ |dr

′

dr. (2.113)

Integration over r
′

leads to:

γαβ =

∫ [

1

| r − Rα | − (
τα

2
+

1

| r − Rα |)e
−τα|r−Rα|

]

×
τ 3
β

8π
e−τβ |r−Rβ |. (2.114)

After some coordinate transformations (for more detail see Appendix of Ref. 44),

we can write γα,β in a form:

γαβ =
1

R
− S(τα, τβ, R), (2.115)

where R =| Rα−Rβ | and S is an exponentially decaying short-range function given

by:

S(τα, τα, R) =
5

16
τα +

1

R
, R → 0. (2.116)
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If we take R → 0, we are residing in the vanishing interatomic distance limit.

Consequently, we can approximate γα,α with the Hubbard parameter Uα and we

easily obtain:

τα =
16

3
Uα. (2.117)

Hubbard parameter can be calculated by self-consistent ab-initio approach which

includes the second-order exchange-correlation term important for small distances.

In high distance limit, exchange-correlation terms vanishes and Coulomb interaction

becomes dominant.

Finally, we can write tight-binding energy functional with second-order term as:

ETB =
occ
∑

i

〈Ψi | H | Ψi〉 +
1

2

N
∑

α,β

γα,β + Erep, (2.118)

where γα,β = γα,β(Uα, Uβ, | Rα − Rβ |). As in the case of zeroth-order DFTB,

Hamiltonian H depends only on the reference charge density ρ0(r). However, self-

consistent procedure is needed to calculate wave functions Ψi. Wave functions are

expanded into a set of localized atomic orbitals ϕν with expansion coefficients cνi.

Again, Slater-type atomic orbitals are used, determined by free atom self-consistent

LDA calculations. For the charge fluctuations ∆qα = qα − q0
α calculation, Mulliken

charge analysis [45] is apllied. For qα we obtain:

qα =
1

2

occ
∑

i

ni

∑

µ∈α

N
∑

ν

(c∗µicνiSµν + c∗νicµiSνµ). (2.119)

Generalized eigenvalue problem is now formulated as:

M
∑

ν

(Hµν − εiSµν) = 0, ∀µ, i, (2.120)

with

Hµν = 〈ϕµ | H | ϕν〉 +
1

2
Sµν

N
∑

ξ

(γαξ + γβξ)∆qξ = H0
µν + H1

µν ,

Sµν = 〈ϕµ | ϕν〉, ∀µ ∈ α, ν ∈ β.

(2.121)

As in zeroth-order DFTB, repulsive term Erep is calculated by taking the difference

between LDA pseudoatom energy and corresponding DFTB electronic energy [43,

44,46].
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2.7 Modern polarization theory

Macroscopic polarization is the key concept in the description of dielectric materi-

als. It quantifies the material response to applied external electric field. Material

can possess permanent polarization even in the absence of external electric filed.

Such polarization is called spontaneous and materials that have this feature are

called pyroelectrics. Ferroelectrics are subgroup of pyroelectrics where spontaneous

polarization vector changes its orientation upon the change of electric field vector

orientation [47].

Formal definition of polarization was a subject of scientific polemics through

decades. First definition, which had been serving for a long time as valid, defines

polarization as a dipole moment per unit of volume. Dipole moment d is given by

the spatial charge distrubition ρ(r):

d =

∫

ρ(r)rdr. (2.122)

Then, polarization can be defined as:

P =
1

Ω

∫

ρ(r)rdr, (2.123)

where Ω is the unit cell volume. This definition gives the unique value for an isolated

system (e.g. isolated molecule). However, in most cases, bulk polarization is the

quantity of interest. Polarization calculated by Eq. 2.123 is sensitive to unit cell shift,

which leads to polarization indeterminacy. Therefore, definition given by Eq. 2.123

does not apply for bulk polarization.

The new definition of polarization was driven by experimental measurements

which often use electric current to determine some property of a material. Instead

of using charge distribltion, charge flow (electric current) can be used to calculate

polarization difference between two states. This definition is formulated as:

∆P = P(∆T ) − P(0) =

∫ ∆T

0

j(t)dt, (2.124)

where j(t) is the current density given by fundamental equation:

dP(t)

dt
= j(t). (2.125)
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Time that appears in Eq. 2.124 can be interpreted as a dimensionless adiabatic time.

Hence, we replace t with λ which varies continuously from the initial state 0 to the

final state 1. Now, Eq. 2.124 is written in the form:

∆P =

∫ 1

0

dλ
dP

dλ
. (2.126)

To explain the meaning of this definition, let us assume an insulator with cen-

trosymmetric unit cell. In the unit cell with the center of inversion symmetry, spon-

taneous polarization is 0 in each direction [47]. If insulator adopts a new structure

that does not possess the center of inversion symmetry, spontaneous polarization

of this configuration can be calculated as polarization difference between the new

(non-centrosymmeric) and the old (centrosymmetric) structure. This difference is

actually the effective spontaneous polarization of the new structure.

The modern polarization theory, based on idea explained above, was founded in

the early 1990s by works of Resta [48,49], King-Smith [50,51] and Vanderbilt [50–52].

It known as Berry-phase theory of polarization, as polarization is expressed by the

quantum phase known as Berry phase. Now we give the formal description of the

modern polarization theory. Let us assume a periodic crystalline system with wave

function given by Bloch functions: ψnk(r) = eik·runk(r), where k is the unit cell

vector in the reciprocal space. Eigenvalue problem of the periodic system can be

expressed as Hk | unk〉 = Enk | unk〉 where:

Hk =
(p + ~k)2

2m
+ V. (2.127)

Eigenvalues depend on the parameter λ (introduced in the previous paragraph),

which changes slowly in the time. Therefore, we can use first-order perturbation

theory to calculate corrections δψnk:

δψnk = −i~
dλ

dt

∑

m6=n

〈ψmk | ∂λψnk〉
Enk − Emk

| ψmk〉, (2.128)

where ∂λ is the first derivative with respect to λ. First-order current arising from

all n occupied states is given by:

jn =
dPn

dt
=

i~edλ
dt

(2π)3m

∑

m6=n

∫ 〈ψnk | p | ψmk〉〈ψmk | ∂λψnk〉
Enk − Emk

+ c.c. (2.129)
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where ”c.c.” stands for complex conjugate. Again, we replace t with λ. After some

manipulation, we obtain:

dP

dλ
=

ie

(2π)3

∫

〈∇kunk | ∂λunk〉dk + c.c (2.130)

One should note that summation over m unoccupied states has disappeared from

the formula as the polarization is a ground-state property. After the integration

with respect to λ we obtain:

Pel =
e

(2π)3
Im

∑

n

∫

〈unk | ∇k | unk〉, (2.131)

This polarization is the electronic part of the polarization. To obtain total polariza-

tion, ionic part should be added to electronic (P = Pel + Pion). Ionic polarization

is simply defined as:

Pion =
e

Ω

∑

s

qsrs, (2.132)

where qs are charges of ions. One might note that term 〈unk | ∇k | unk〉 also appears

in the Berry phase definition and that is the reason why is the modern polarization

theory called Berry phase. Polarization defined in such a way is multivalued, modulo

e
Ω
Ri, where Ri is the unit cell vector along i-th direction. To obtain single value total

polarization, it should be calculated in reference to the centrosymmetric structure

[49–51,53].

2.8 The algorithm of atomic and electronic struc-

ture calculations

In previous sections we have explained the methods used to calculate atomic and

electronic structure. The algorithm of the whole procedure is schematically de-

scribed in Fig. 2.9. The calculation starts with an initial structure witch can be

ideal crystalline or amorphous structure, depending on the particular case. Then,

MC simulation is performed to obtain equilibrium structure, which is subsequently

used as input for electronic structure calculations. The first step in electronic struc-

ture calculations is CPM which gives charge density spatial distribution. To start the
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CPM calculation, motifs (contributions to overall charge density) are needed. They

are extracted form DFT calculations on small prototype system (single molecule

or few monomers of a polymer). When charge density is calculated, single particle

potential can be obtained by solving Poisson equation and using LDA expression for

exchange-correlation term. To obtain final electronic structure (wave functions and

energies) FSM and OFM can be used. For small molecules FSM provides relatively

quick solution. For conjugated polymers, OFM is more convenient choice due to

the intuitive division of polymers into fragments. In some cases, effects of charge

transfer on electronic structure are important. Then, DFTB+ code, which includes

charge transfer into calculation, is used instead of OFM.

Figure 2.9: Schematic representation of the algorithm for atomic and electronic

structure calculations.

47



Chapter 3

Electronic states at low-angle

grain boundaries in polycrystalline

small-molecule organic

semiconductors

3.1 Introduction

Thin films of crystalline organic semiconductors have a polycrystalline form, which is

composed of many different crystalline grains. It has been shown that the transport

in a single grain boundary device is limited by the grain boundary [9]. A pronounced

dependence of transistor characteristics on the grain size was also established [12,

15,16,54], as well as a strong difference between the characteristics of single crystal

and polycrystalline transistors based on the same material [11]. It was also shown

that grain boundary orientation has a large influence on the charge carrier mobility

[18]. All these results indicate that grain boundaries are the most limiting intrinsic

factor for efficient charge transport in small-molecule based polycrystalline organic

semiconductors.

However, there is still a lack of understanding of the specific mechanism by

which grain boundaries affect the charge transport. It is typically assumed that
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they introduce trap states localized at the grain boundary, with energies of these

states within the band gap of the material [9,11,12,54–56]. The charges in the trap

states do not contribute to transport and therefore the presence of traps reduces the

effective charge carrier mobility. On the other hand, there are some suggestions that

grain boundaries act as barriers and that charge carriers are trapped in the grains

[21]. Calculations of electrostatic potential at molecules near the grain boundary

formed from two misaligned grains indicate the presence of trapping centers at the

boundary [57]. Other theoretical and computational studies are primarily focused

on the properties of single crystals [58–69].

In this chapter we shed light on the nature of electronic states at grain bound-

aries in organic crystalline semiconductors. We directly calculate the wave functions

of electronic states and gain microscopic insight into the origin of these states. Us-

ing these insights, we develop a simple model for density of trap states prediction.

We firstly use naphthalene as a representative of crystalline organic semiconduc-

tors based on small molecules. We find that grain boundaries produce trap states

in the band gap, where the highest states are localized on pairs of molecules at

the grain boundary, whose mutual distance is much smaller than the corresponding

distance in the monocrystal. Strong correlation between the mutual distance be-

tween these molecules and the energies of these states was found. Such a correlation

enables one to calculate the electronic density of states at the grain boundary di-

rectly from mutual distances between molecules. Finally, we do similar calculations

for benzothieno[3,2-b]benzothiophene (BTBT) and 2,7-di-tert-butylBTBT (ditBu-

BTBT) molecules [70]. While results for BTBT are similar to those obtained for

naphthalene, results for ditBu-BTBT are qualitatively different as we find no trap

states at grain boundary, which is explained by the presence of side groups that

prevent molecules from close packing.
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3.2 Electronic states at low-angle grain bound-

aries in polycrystalline naphthalene

The atomic structure of polycrystalline naphthalene is obtained from a relaxation

procedure based on the MC method, and is subsequently used to calculate the

electronic states using the DFT-based based CPM. Initial configuration for MC re-

laxation are two monocrystals with different crystalline orientations joined at their

common boundary. Potential energy of a system is calculated using Transferable po-

tentials for phase equilibria (TraPPE). [71,72] The validity of the empirical potentials

used in the MC simulation was verified by comparing the naphthalene crystal lattice

constants obtained from these empirical potentials to the values from the literature.

The obtained lattice constants are: a = 8.325 Å, b = 5.92 Å and c = 7.77 Å, which

are in good agreement with the values given in Refs. 73–75. Naphthalene molecules

are considered as rigid bodies, hence only interactions between carbon atoms from

different molecules described by the weak Van der Waals interaction are taken into

account. Carbon - hydrogen (CH) groups are treated as one atom with a center

of mass at carbon atoms. TraPPE parameters for interactions between CH groups

are: σ = 3.695 Å, ǫ/kB = 50.5 K and for interaction between C atoms: σ = 3.7 Å,

ǫ/kB = 30 K. A MC algorithm was then used to minimize the energy of the system.

Simulation is performed at a temperature of 300 K. After the thermal equilibrium is

reached, the system is gradually cooled down to 0 K. In this way, dynamic disorder

(crystal disorder induced by thermal motion) effects [58] are excluded. Both the

effects of dynamic disorder and grain boundaries can in principle induce localized

states and it would be very difficult to distinguish between these if the electronic

structure calculations were performed for a structure obtained from a snapshot of

MC simulations at 300 K. To check that the choice of the temperature of 300 K

has only a small effect on the final atomic structure obtained from a MC procedure,

we repeated the simulations using the temperatures of 100 K, 200 K and 400 K, as

well. Atomic structures obtained from these simulations were nearly identical as the

atomic structure obtained from the simulation at 300 K. Therefore, MC simulation

procedure is robust in the sense that the final structure is weakly dependent on the
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details of the procedure.
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Figure 3.1: The dependence of potential energy of the system per molecule on the

misorientation angle between monocrystal grains for a-boundary systems (top) and

b-boundary systems (bottom). Each system consists of 1000 molecules.

Now, we present the results for the wave functions of states at grain boundaries

in polycrystalline naphthalene. We consider the system consisting of 1000 molecules

(500 at each side of the boundary) arranged in 10 layers which are parallel to the

ab plane [73] of the unit cell. Electronic structure calculations are performed for a

single layer of molecules, which is sufficient to describe the electronic properties of

the material, because the electronic coupling in the c direction is much weaker than

in the ab plane. Calculations are performed for several misorientation angles between

the grains: 5◦, 10◦, 15◦ and 20◦ and for 2 types of grain boundaries: (1) perpendicular

to the a direction (a-boundary) and (2) perpendicular to the b direction (b-boundary)

of the unit cell. Only small angles are considered, because total energy of the system

increases as the angle of misorientation increases, as demonstrated in Fig. 4.3. For

each system, the energies of the 10 highest occupied states in the valence band and

their wave functions are calculated.

Results of electronic structure calculations for the a-boundary system with mis-

orientation angle of 10◦ are presented in Fig. 3.2. These results indicate that there

are several states in the band gap which energies are significantly higher than the
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(1) (2)

(10)(4)

Figure 3.2: Energies of the states at the top of the valence band and the isosurfaces

of their wave function moduli for the system with the misorientation angle of 10◦

and the grain boundary perpendicular to the a direction. Isosurfaces correspond to

the probability of finding a hole inside the surface of 90%.
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energies of the other states. These states are trap states for charge carriers and

could strongly affect transport properties of the material. Wave functions of the

first and the second highest occupied state are localized on the two molecules at

the grain boundary. Distance between these two molecules (defined hereafter as

the distance between their centers of mass) is 3.45 Å, while the distance between

two nearest molecules in the monocrystal is about 5 Å. Highest occupied states in

organic semiconductors originate from electronic coupling of HOMO (highest occu-

pied molecular orbital) levels of different molecules. Electronic coupling that results

from the overlap of HOMO orbitals is strongest for closely spaced molecules. As a

consequence, the highest state in Fig. 3.2 is localized on two molecules with smallest

mutual distance. It is the bonding states of HOMO orbitals of the two molecules,

while the second state in Fig. 3.2 is the antibonding state. At certain energies the

spectrum becomes nearly continuous and the states which are completely delocal-

ized start to appear, such as the 10th calculated state, see Fig. 3.2. States like this

originate from delocalized Bloch states of the monocrystal and therefore are not

induced by grain boundaries.

Electronic calculations for other misorientation angles and boundary directions

show similar results. In Fig. 3.3, the results for b-boundary system and misorienta-

tion angle of 10◦ are presented. In this case, there is only one molecule pair at the

grain boundary with small mutual distance and consequently one trap state deep in

the band gap. Other states are delocalized.

The presented results indicate that grain boundaries introduce electronic states

within the band gap of the material. Hereafter, the states localized at the boundaries

will be called trap states, while delocalized states will be called valence band states.

Some trap states are very deep in the band gap, even more than 1 eV above the

valence band. As a reference, experimentally measured band gap of naphthalene is

about 5.2 eV [74]. The traps with energies significantly above the top of the valence

band (more than 0.1 eV) are always localized on two molecules belonging to different

grains with mutual distance less than the distance between two nearest molecules

in the monocrystal. Such pairs of molecules will be hereafter called trapping pairs.

Other localized states at the grain boundary have energies very close to the energies
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(1) (2)

(3) (10)

Figure 3.3: Energies of the states at the top of the valence band and the isosurfaces

of their wave function moduli for the system with the misorientation angle of 10◦

and the grain boundary perpendicular to the b direction. Isosurfaces correspond to

the probability of finding a hole inside the surface of 90%.
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of the top of the valence band (second state in Fig. 3.3, for example). Consequently,

only pairs of molecules (trapping pairs) will be taken into account. We find that there

is a strong correlation between the distance between the molecules in trapping pairs

and the energy of the trap electronic states. This dependence is shown in Fig. 3.4.

The best fit of this dependence is given by an exponential function ∆E = AeB(R−R0),

where A = 1.4064 eV, B = −4.181 Å−1 and R0 = 3.2 Å.
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Figure 3.4: The dependence of the energy of the grain boundary induced trap states

on the distance between molecules in trapping pairs. The data obtained from all

simulated systems are presented in the figure. Energies of the trapping states are

defined with the top of the valence band as a reference level.

Electronic structure calculations can be performed for relatively small boundaries

only. While such calculations were highly valuable for understanding the origin

and the degree of wave function localization at the boundary, they do not provide

sufficient statistics to reliably calculate the density of trap states. On the other hand,

the remarkable dependence, presented in Fig. 3.4 can be used to predict the energy

of a trap at a given boundary without any electronic calculation, solely based on

the distances between the molecules. This allows us to calculate the energies of all

trap states for very large grain boundaries and consequently calculate the electronic

density of trap states. Based on the degree of scattering of the data from the fit

in Fig. 3.4, we estimate that this method produces an error in the trap energy
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calculation of up to 0.1 eV.

Consequently, we have demonstrated that computationally demanding electronic

structure calculations can be avoided using the aforementioned approach. Next, we

show that even the MC relaxation step can be avoided without significantly compro-

mising the accuracy of electronic density of trap states. By inspecting the atomic

structure near the boundaries in Fig. 3.2, one can notice that it stays nearly un-

changed after the relaxation. Only molecules in the vicinity of the boundary slightly

change their positions and orientations. The difference in the distance between two

molecules in trapping pairs, before and after the relaxation is below 0.1Å, as demon-

strated in Fig. 3.5. Consequently, both MC relaxation and electronic structure cal-

culations can be avoided in the calculation of electronic density of trap states.
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Figure 3.5: Dependence of the distance between trapping molecule pairs after MC

relaxation (dafter) on the distance between them before MC relaxation (dbefore).

The electronic density of trap states was extracted from the calculations of grain

boundaries that contain 100 000 molecules arranged in 100 layers. In the con-

struction of grain boundary atomic structure, there is an ambiguity related to the

width of the void between the two monocrystals that form the boundary. This is-

sue was overcome by shifting one of the crystals in the direction perpendicular to

the boundary and selecting the void width in such a way that the potential energy

of the system is minimal. The distribution of distances between trapping pairs of
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Figure 3.6: Trapping pair distance (d) distributions (DD) at different grain bound-

aries. The boundaries are denoted as Xy, where X is the angle between monocrystal

grains and y is the direction perpendicular to the boundary surface.

molecules is calculated then. Next, using the previously introduced exponential

fitting function, the electronic density of trap states is obtained. The results are

presented for 4 different angles: 5◦, 10◦, 15◦ and 20◦ and for 2 orientations of grain

boundaries: a-boundary and b-boundary. As can be seen from Fig. 3.4, trapping

pairs with mutual distances below 4 Å are responsible for traps which are deep in

the band gap. Other trapping pairs produce shallow traps which are close to the top

of the valence band. The distribution of distances between molecules in trapping

pairs at the grain boundaries is shown in Fig. 3.6. One should note that molecule

pairs with distances below 3.2 Å can also exist. However, these were not present in

small systems the we considered, hence their energy can not be reliably calculated

using the fitting function. Nevertheless, such states are rather rare and we neglect

their surface density.

By inspecting Fig. 3.6, one can notice that trapping pairs distance distributions

for a-boundary systems are similar for all angles. All of them are increasing functions

with similar shapes. On the other hand, the distributions for b-boundary systems

largely depend on misorientation angle. In addition, the distribution is not continu-
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ous as it is for a-boundary and some distances are preferred. This difference can be

explained by the geometry of the naphthalene unit cell. Only a and c directions of

the unit cell are not perpendicular. Therefore, the c direction is not parallel to the

a-boundary surface. For this reason, in the case of a-boundary, different ab planes

give different contribution to trapping pair distance distribution. By adding the

contribution from different ab planes, one obtains a continuous function. In the case

of b-boundary, c direction is parallel to the grain boundary surface. Consequently,

molecule pairs from one ab plane have their copies in other ab planes and each ab

plane gives the same contribution to trapping pair densities. This produces discrete

trapping pair distance distributions. Difference between a- and b-boundary is il-

lustrated in Fig. 3.7, where spatial distribution of trapping pair distance is given.

Each filled circle in Fig. 3.7 represents a molecule in the layer at the grain boundary.

The color of the circle indicates the distance between that molecule and the nearest

molecule from the opposite side of the boundary. As one can notice, in the case of

a-boundary, distributions for different ab planes are different (as evidenced by the

non-periodicity of the pattern shown in the top part in Fig. 3.7), while distributions

for different ab planes in the case of b-boundary are equal (as evidenced by the

periodic pattern in the bottom part in Fig. 3.7).

With trapping pairs distance distributions at hand, the electronic density of trap

states can be straightforwardly calculated as explained. Densities of trap states for

8 aforementioned boundaries are given in Fig. 3.8. Since the focus of this work is on

trap states that are significantly above the top of the valence band, only trapping

pairs with mutual distances below 4 Å are included in the distribution shown in

Fig. 3.8. In addition, we have assumed that each trapping pair introduces one trap

state, although in some cases it can introduce two trap states, as demonstrated

in Fig. 3.2. For a-boundary systems, density of trap states weakly depends on

angle. Going deeper in the band gap, density of trap states monotonously decreases

which is a consequence of the monotonously decreasing density of trapping pairs at

the grain boundary. For b-boundaries, density of trap states is discrete with some

distances preferred as a consequence of discrete density of trapping pairs at the grain

boundary.
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Figure 3.7: Spatial trapping pair distance distribution for a-boundary (left) and

b-boundary (right) system with the misorientation angle of 10◦. Axis perpendicular

to the ab plane is denoted as nab. Spatial trapping pair distance distribution is

calculated using radial symmetric function [76] calculated at position of molecular

center of mass with cut-off radius of 14.8 Å.
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Figure 3.8: Electronic density of trap states at different grain boundaries. The

boundaries are denoted as Xy, where X is the angle between monocrystal grains

and y is the direction perpendicular to the boundary surface. Densities of trap states

are given in a logarithmic scale. Energies of the trapping states are defined with the

top of the valence band as a reference level.
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Our results clearly demonstrate the presence of trap states at the positions in

the grain boundary where two molecules from opposite sides of the boundary are

closely spaced and hence the electronic coupling of their HOMO orbitals is rather

strong. In Ref. 21 it was argued that grain boundaries act as barriers for charge

carriers rather than traps. Such an argument was drawn from an assumption that

electronic coupling between molecules is weaker at the grain boundary than in the

bulk. Our results show that such an assumption is not appropriate; strong electronic

coupling at certain positions at the boundary creates trap states within the band

gap of the material. However, one should also note that electronic coupling between

neighboring molecules from opposite sides of the boundary can be weak at certain

positions. At these positions, grain boundary acts as a barrier and tends to confine

the wave function to one side of the boundary. This effect can be seen from state

(10) in Fig. 3.2 and states (3) and (10) in Fig. 3.3. Positions of strong electronic

coupling and trap states will be absent only in the case of a grain boundary void

when two grains with same orientation are separated by empty space. Consequently,

a void (micro-crack) within an organic crystal [77] is expected to act as a barrier.

On the other hand, various numerical simulations of organic crystal FETs were

based on a model that considers the transport at the boundary as thermoionic jump

over the barrier or tunneling through the barrier [12,16,55,56]. One should note that

FETs typically operate at high charge densities. Therefore, the traps become filled

with carriers, that in turn create an electrostatic potential that acts as a barrier

for the transport of other charges. Such ”trap charging induced barriers” should be

distinguished from the barriers discussed in the previous paragraph.

Using the obtained results, the density of trap states for naphthalene polycrys-

tals can be estimated. The calculated number of trap states per unit of boundary

surface of two misoriented grains is 3×1013 cm−2 in the case of misorientation angle

of 5◦ and a-boundary, and takes similar values for other boundaries. Only trap-

ping pairs with mutual distances below 4 Å were considered in the calculation. In

the work of Chwang and Frisbie [9], the density of trap states was estimated from

activation energies for charge transport in a single grain boundary FET based on

sexithiophene. It was found that trap densities at acceptor-like levels take values
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from 7.0 × 1011 cm−2 to 2.1 × 1013 cm−2, depending on the grain boundary length

and the angle of misorientation. Therefore, our results are of the same order of

magnitude as the experimentally based estimate for the material belonging to the

same class of materials as naphthalene.

Next, we estimate the number of grain boundary induced trap states per unit

of volume and compare it to other relevant material parameters. Typical size of

experimentally evidenced monocrystal grains [8, 9, 54, 78] is of the order of 1 µm,

which translates into volume trap density of Nt = 9× 1017 cm−3 assuming grains of

cubical shape. On the other hand, the number of energy states per unit of volume

in the valence band of a bulk naphthalene monocrystal is Nv = 6.1 × 1021 cm−3.

Although Nt is much lower than Nv, it can still be significant to affect the charge

transport and optical properties of naphthalene. In Ref. 78, grain boundary defects

were identified as the most pronounced and the most stable defects. The density of

point bulk defects was (over)estimated [78] to be in the Np = 1014-1016 cm−3 range.

Since our calculated value of Nt is larger than Np, our results confirm the conclusion

that grain boundary defects are the most pronounced defects [78]. A compilation of

the estimates of the density of trap states from FET characteristics was reported in

Ref. 11. The estimated density of states at 0.2 eV above the valence band is in the

range (0.7− 3)× 1019 cm−3eV−1, while at 0.3 eV above the valence band it is in the

(1.5− 4)× 1018 cm−3eV−1 range (see Fig. 6 in Ref. 11). On the basis of these values

one can roughly estimate that the density of trap states with energies higher than

0.2 eV above the valence band to be in the (1017 − 1018) cm−3 range, which is of the

same order of magnitude as our calculated Nt.

Finally, we discuss the implications of our findings on properties of electronic

and optoelectronic devices based on this class of materials. Since our results show

that hole traps are located at the positions of strongest electronic coupling between

orbitals of the two molecules from opposite sides of the boundary, one expects that

there will be an electronic trap at the same position. We have verified this expec-

tation by performing explicit calculation of electron states at the boundary. As a

consequence, traps at grain boundaries will not prevent radiative recombination of

electrons and holes in LED devices or light absorption in the case of solar cells.
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Nevertheless, the traps will certainly broaden the absorption or emission spectrum

of the material. Furthermore, the estimated number of traps per unit of volume is

comparable to typical charge carrier densities in operating LED and solar cell de-

vices. As a consequence, charge carrier transport will certainly be strongly affected

by the traps. On the other hand, FETs typically operate at charge carrier densities

much larger than the trap densities. As a consequence, the traps are filled with

carriers and affect the charge carrier transport only through electrostatic barriers

created by the trapped charges, as discussed previously.

3.3 Electronic states at low-angle grain bound-

aries in polycrystalline BTBT and ditBu-BTBT

To check the results obtained for naphthelene and to broaden the understanding

of grain boundaries in organic semiconductors, we have additionally investigated

the electronic structure of low-angle grain boundaries in BTBT and ditBu-BTBT

(Fig. 3.9). To obtain the atomic structures of the boundaries, Monte Carlo (MC)

simulations are again applied. The simulation procedure is similar to that applied

for grain boundaries in naphthalene. Initial configuration consists of two misaligned

grains mutually shifted by some distance which minimizes the energy of the system.

Temperature is set to 300 K and MC simulation is performed until the system

reaches equilibrium. After that, system is cooled down to 0 K in order to exclude

the effects of thermal disorder. OPLS - AA [31] parameter set is used to model the

interaction between atoms. Unit cell parameters are taken from the crystallographic

data files for these two molecules. In the case of BTBT these parameters are:

a = 11.80 Å, b = 5.85 Å and c = 7.96 Å and all angles are 90◦ except one

between a and c vectors that is 105.9◦. For ditBu-BTBT these parameters are:

a = 14.02 Å, b = 6.04 Å and c = 10.55 Å and all angles are 90◦ except one

between a and c vectors that is 91.5◦. Compatibility of the unit cell parameters with

interaction parameters is checked by performing NPT MC simulations. Electronic

structure is obtained using charge patching method and folded spectrum method.

We have performed calculations for several angles of misorientation (1◦, 5◦, 7.5◦
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(a) (b)

Figure 3.9: Graphical formula of (a) BTBT and (b) ditBu-BTBT molecules. Sulfur

atoms are yellow, carbon atoms are gray, while hydrogen atoms are omitted.

and 10◦) and two 2 different types of the boundary: c−boundary (boundary surface

is perpendicular to the c direction of the unit cell) and b−boundary (analogously).

Each boundary contains 10 unit cells in b and c direction and 1 in a direction

(electronic coupling is weak in a direction).

Results for the electronic structure of grain boundaries in BTBT are similar to

those obtained for naphthalene. Highest states in the valence band are localized on

molecule pairs at the boundary where the distance between molecules is significantly

smaller than in single crystal (Fig. 3.10 a). There are other localized states at the

boundary (Fig. 3.10 b) which cannot be easily explained by some geometric param-

eter. These states generally have lower energies than states localized on molecule

pairs. Finally, delocalized states start to appear at certain energies. As can be

seen in Fig. 3.10c, they are mostly confined at one side of the boundary. Therefore,

boundary can be interpreted as a barrier for delocalized states.

Energies of the states trapped at the molecule pairs correlate with the distance

between molecules which form a trap. This dependence and exponential fit of the

dependence are shown in Fig. 3.11. One can use this dependence to predict the

number and the depth of trap states for larger system, only having the distribution of

distances between molecules in hand. We have calculated the number of trap states
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Figure 3.10: Wave function moduli squared of the: (a) highest electronic state in

the valence band, (b) second highest electronic state in the valence band (c) highest

delocalized electronic state in the valence band of the grain boundary that consist

of two misaligned BTBT grains with angle of misorientation of 10◦. Isosurfaces

correspond to the probability of finding a hole inside the surface of 75%.

Figure 3.11: Dependence of the energies of trap states relative to the energies of

the highest delocalized states on the distance between molecules that form a trap .

Data is obtained for different angles of misorientation and for c- and b-boundaries

in BTBT. Exponential fit is given by E = a expb(R−R0), where a = 1.582 eV, b =

-5.808 Å−1 and R0 = 3.4 Å.
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per boundary surface for the non-relaxed BTBT c−boundary with misorientation

angle of 10◦ that contains 16000 molecules arranged in 20 layers. Distribution of

distances for this system is given in Fig. 3.12. Peak at around 4.8 Å corresponds

to the minimal distance between adjacent molecules in a single crystal. Number of

molecule pairs per boundary surface (and the corresponding number of trap states)

that have mutual distance below 4 Å is 6.2 × 1012 cm−2, which is comparable to the

same number obtained for naphthalene. Having in mind that number of trap states

is obtained for non-relaxed structure (without performing MC simulations), this

number can be somewhat different for relaxed structures, but general conclusions

would remain the same.
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Figure 3.12: Distribution of distances between molecules at the grain boundary that

consist of two misaligned BTBT grains with angle of misorientation of 10◦.

Results for electronic structure of low-angle grain boundaries in ditBu-BTBT are

significantly different. Here we do not find any trap states at the boundary. Highest

states at the valence band are delocalized and mostly belonging to one grain, as

shown in Fig. 3.13. The absence of trap states is the consequence of the absence

of closely spaced molecules at the boundaries. This can be evidenced form the

distribution of distances between molecules at the boundary which consists of 16000

molecules arranged in 20 layers, shown in Fig. 3.14. Minimal distance is around

5.5 Å, which is not enough small to create a trap. Such a big difference between

BTBT and ditBu-BTBT is the consequence of bulky side groups in ditBu-BTBT

that prevent molecules from close packing. Therefore, side groups play an important
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role in molecule design. They determine the minimal distance between molecules

and consequently the existence of trap states (and their number and depth if exist)

that arise from close packing present at grain boundaries.

(a)

c

b

(b)

c

b

Figure 3.13: Wave function moduli squared of the: (a) highest electronic state in

the valence band, (b) second highest electronic state in the valence band of the

grain boundary that consist of two misaligned ditBu-BTBT grains with angle of

misorientation of 10◦. Isosurfaces correspond to the probability of finding a hole

inside the surface of 75%.
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Figure 3.14: Distribution of distances between molecules at the grain boundary that

consist of two misaligned ditBu-BTBT grains with angle of misorientation of 10◦.
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Chapter 4

Effects of thermal disorder on

electronic properties of ordered

polymers

4.1 Introduction

Conjugated polymers contain both crystalline and amorphous regions and conse-

quently their electronic properties strongly depend on their morphology. In crys-

talline regions of the material, thiophene rings are connected into main (backbone)

polymer chains, which then form two dimensional lamellar structures separated by

insulating side chains.

Crystalline polymer regions exhibit better transport characteristics than amor-

phous regions. At first, one may expect that the electronic states in crystalline

regions are fully delocalized due to the effect of periodicity. On the other hand,

wave functions of electronic states in amorphous regions are well localized due to

the effects of disorder. Calculations of the electronic structure of amorphous poly-

mers show that wave functions of the highest states in the valence band are localized

on few rings only [24,79]. The electronic states in crystalline regions may also exhibit

localization due to the effects of thermal disorder; at finite temperature the atoms

are displaced from their equilibrium positions in a random manner and the atomic

positions no longer exhibit periodicity. The importance of the effects of thermal (or
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dynamic, which is an alternative expression often used in the literature) disorder

in small molecule based organic crystals is now widely recognized [80–86]. On the

other hand, the effects of thermal disorder in polymers are less well understood.

Currently available simulation results [87–89] suggest that the highest valence band

states in ordered polymer materials at room temperature are localized. However,

most of these calculations either consider a single polymer chain or do not include

the effects of side chains.

The aim of this chapter is to investigate in detail the effects of thermal disor-

der on electronic properties of ordered polymer materials and to identify relative

importance of various sources of thermal disorder. For concreteness, we choose

poly(3-hexylthiophene) (P3HT) polymer for our study. We calculate the electronic

density of states (DOS) and the localization of hole wave functions. Atomic con-

figurations at finite temperature are obtained using MC [30] simulations, while

CPM [20,24,39,79,90] and OFM [40,79,90] are used for electronic structure calcu-

lations.

The disorder in the structure at finite temperature comes both from the disorder

in the shape of the flexible alkyl side chains (that will be referred to as side chain

disorder from now on) and from the disorder due to variations of torsion angles

between thiophene rings in the main chains and the position of main chains (that

will be referred to as main chain disorder from now on) [91]. One should note that

disorder of main or side chains does not imply an amorphous material. While it

is well known that the wave functions in conjugated polymers are localized on the

main chain, side chains with a disordered shape still affect the electronic structure

as they create a disordered electrostatic potential on the main chain. Disorder in the

shape of the main chain mostly affects the electronic structure through variations in

electronic coupling between the rings. To isolate the effects of main and side chain

disorder we investigate three types of structures: (1) the structures with straight

main chains and disordered alkyl side chains; (2) the structures with disordered

main chains in the absence of side chains; (3) the structures with both main and

side chains disordered.

We find that the effects of disorder are least pronounced in the structures with
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disordered side chains. Strong wave function localization of highest valence band

states occurs in structures with main chains disordered, both with and without side

chains. Such a localization is most likely the origin of thermally activated transport

observed in all reported P3HT mobility measurements.

4.2 Methodology

The initial structure for MC simulations is the ideal crystalline structure of P3HT.

Atomic structure of crystalline P3HT was extensively studied and different possible

configurations were found [92–101]. Two different stable crystalline structures are

simulated at 300 K: aligned and shifted, which are shown in Fig 4.1. In the aligned

structure, thiophene rings from two adjacent main chains in the π-π stacking di-

rection are aligned. On the other hand, in the shifted structure, thiophene rings

from two adjacent chains in the π-π stacking direction are mutually shifted by the

half of the unit cell in the main chain direction. Parameters of the unit cells are

found using NPT (constant pressure and temperature) MC simulation at 300 K and

101.325 kPa. During the simulation, the size of the box in the main chain direction

is kept constant, while two other dimensions are changed. The energy of the system

is modeled as a sum of the long-range (Van der Waals and Coulomb) interactions

between atoms from different chains. The unit cell parameters are determined as the

parameters obtained when the system reaches thermal equilibrium. For the aligned

structure these are: a/2 = 15.7 Å, b = 8.2 Å and c = 7.77 Å , while for the shifted

structure these are: a/2 = 15.7 Å, b = 8.1 Å and c = 7.77 Å. All unit cell angles

are taken to be 90◦. These parameters are in very good agreement with previous

computational results for the same structures of P3HT. For example, the unit cell

parameters obtained for the aligned structure in Ref. 93 are: a/2 = 16 Å, b = 8.2

Å and c = 7.81 Å, while for the shifted these are: a/2 = 16 Å, b = 7.85 Å and

c = 7.81 Å. On the other hand, experimental results based on the X-ray diffraction

measurements suggest somewhat higher value for the side chains stacking direction

of 16.8 Å [98]. This difference might originate from the assumption of the ideal

crystal structure without disorder made in the calculations, which is not the case
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in reality. Interdiggitation between side chains from different lamellas is weaker in

more disordered structures, and consequently, the unit cell parameter for the side

chains stacking direction is higher. We find that the shifted structure is more stable

at 300 K, since its potential energy per number of rings is 0.38 eV lower than the

corresponding energy in the aligned structure, confirming the result given in Ref. 93

that the shifted structure is more energetically favorable.

With the initial structure at hand, MC simulations are performed to obtain the

snapshots of the atomic structure at room temperature. During the MC simulations

bond lengths and bond angles are kept constant, while some or all torsion angles are

changed. Variations of torsion angles affect electronic coupling between orbitals more

strongly than variations of bond lengths and bond angles. For example, the thermal

energy at room temperature kBT = 25 meV leads to displacement of an atom due

to bond stretching on the order of 0.02 Å , while the same energy leads to interring

torsion angle change on the order of 45◦, which yields the atomic displacements

of more than 1 Å. For this reason, it is reasonable to keep bond angles and bond

lengths constant. In each step of the MC simulation a new configuration is generated

by changing the torsion angles and moving the whole polymer chain. The new

configuration is accepted if it satisfies the Metropolis condition [30]. The energy

of the system is calculated as a sum of torsion potentials and long range Van der

Waals and Coulomb interactions. Thiophene - thiophene torsion potential is taken

from Ref. 24, while thiophene - side chain torsion potential is taken from Ref. 93.

The parameters for long range interactions are taken from the OPLS parameters

set [31], which was previously successfully applied for the simulations of the same

material [87]. This parameter set is also used for the torsion potentials within side

chains. Periodic boundary conditions are applied in each direction of the unit cell

for the systems with disorder in side chains. Boundary conditions are open in the

main chain direction for the systems with disorder in main chains. The final atomic

structure is taken after the system is thermally equilibrated at 300 K, which is

evidenced from the saturation in the dependence of potential energy on the number

of MC steps. Afterwards, electronic structure is obtained as explained in Sec. 2.8.

In this work, the effect of polarons was not included. Previous DFT calculations
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Figure 4.1: Two stable configurations of crystalline P3HT: (a) aligned and (b)

shifted. The main chain direction is denoted by c, the π-π stacking direction by

b and the side chains direction by a.

of long straight polythiophene chains at zero temperature indicate that polaron

binding energy is on the order of few meVs only and that it can be ignored [102,103].

However, it is more difficult to assess the role of polarons at finite temperature when

thermal disorder is present in the material. Since the main goal of this work is to

understand the effect of thermal disorder on wave function localization and DOS, as

well as the contributions from main and side chains to thermal disorder, polaronic

effects were not considered.

Next, we discuss the appropriateness of LDA for the description of the local-

ization effects. The localization effects that we observe essentially come from two

effects: (i) variations of on-site energies of rings; (ii) variations in electronic cou-

pling between the rings. The effect (i) comes mainly from disordered long range

electrostatic potential that side chains, the rest of the main chain and other main

chains produce on a certain ring. Within DFT, electrostatic potential is taken into

account through the Hartree term in the Kohn-Sham equation, which is an exact

term. Therefore, for the effect (i), the use of LDA in our calculation is not an is-

73



sue. To check if LDA gives reliable values of electronic coupling (the effect (ii)), we

have performed the calculation of electronic energy levels of ten units long straight

thiophene oligomer using either LDA or B3LYP functional for the same atomic con-

figuration. We find that the spacing between energy levels calculated using these

two functionals differs typically by 15 %. Since the spacing between energy levels

of straight oligomers is proportional to electronic coupling between the rings, we

conclude that possible uncertainties in electronic coupling calculated using LDA are

on the order of 10-20% and such uncertainties are not expected to significantly affect

the localization lengths.

4.3 Results

The effects of thermal disorder in crystalline P3HT are investigated by examining 3

different types of structures: the structures with disorder in side chains, the struc-

tures with disorder in main chains and the structures with disorder in both side and

main chains. In the first case, main chains are kept rigid during the MC simula-

tion, while side chains are allowed to move freely. In the second case, side chains

are removed (more precisely, replaced with a hydrogen atom) before the electronic

structure calculations start, in order to isolate the effects of main chains disorder.

In the case of structures with the presence of disorder in both main and side chains,

the same atomic configurations are used as for the second case, but side chains are

not removed in this case. To get sufficiently large statistics, for each of the inves-

tigated cases and for both aligned and shifted structures, 100 different realizations

are generated. Each configuration contains 10 polymer chains stacked in the π-π

direction, while each chain contains 10 rings. The total number of atoms in each

configuration is 2520. For subsequent analysis only 10 highest states from each con-

figuration are taken into account, since they cover a spectral range of about 0.5 eV

below the HOMO level, which is the range of interest for the electrical transport

properties. To analyze the effects of disorder, we calculate the density of electronic

states and the localization length of hole states.

Densities of states obtained from the calculations are shown in Fig. 4.2. In
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Figure 4.2: DOS in the case of: (a) aligned structure with disorder in the side chains

(bins) and ideal crystalline aligned structure (vertical lines); (b) shifted structure

with disorder in the side chains (bins) and ideal crystalline aligned structure (vertical

lines); (c) aligned structure with disorder in main chains and side chains omitted; (d)

shifted structure with disorder in main chains and side chains omitted; (e) aligned

structure with disorder in both side and main chains (f) shifted structure with

disorder in both side and main chains.
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the case of disorder in side chains in the aligned structure, DOS is nearly discrete,

composed of several peaks (Fig. 4.2a and Fig. 4.2b). These peaks correspond to the

peaks in the DOS of the ideal crystalline structure without any disorder. In the

shifted structure, peaks are broader and overlap more than in the aligned structure,

making DOS continuous. Thus, the effects of side chains disorder on DOS are more

pronounced in the shifted structure than in the aligned. The difference in DOS

for shifted and aligned structures can be explained by the difference in the spatial

distribution of side chains in these two structures. In the aligned structure, side

chains connected to the aligned thiophene rings from neighboring chains in the π -

π direction are at the same side of the main chains (chains denoted by 1 and 2 in

Fig. 4.1a). On the other hand, in the shifted structure these side chains are at the

opposite sides. The distance between nearest side chains in the shifted structure

(chains denoted by 1 and 2 in Fig. 4.1b) is greater than in the aligned. Therefore,

side chains in the shifted structure have more conformational freedom than in the

aligned. This is evidenced by the distributions of the thiophene-side chain torsion

angle for both structures, given in Fig. 4.3a and Fig. 4.3b. The distribution of

thiophene-side chains torsion angles is significantly wider in the shifted structure,

which results in higher degree of side chains disorder. This difference in morphology

leads to the difference in the electronic structure.

In the structures with disordered main chains, DOS is continuous (Fig. 4.2c and

Fig. 4.2d). In the case of aligned structures distribution of energies is significantly

wider than in the shifted structure. Distributions of thiophene - thiophene torsion

angles for the aligned and shifted structures are similar (Fig. 4.3c and Fig. 4.3d) and

agree well with the results of Ref. 88. Therefore, the difference in the distribution of

the energies is not caused by the shape of the chains. Electronic coupling between

different chains is 0.11 eV in the ideal aligned structure and 0.07 eV in the ideal

shifted structure. This substantial difference leads to the wider distribution of the

energies in the aligned structure. When both main and side chains are disordered,

the DOS is continuous (Fig. 4.2e and Fig. 4.2f) without any apparent difference

between structures. This similarity in DOS can be explained by the effect of com-

pensation between wider energy distribution in the shifted structure when only side
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Figure 4.3: Distribution of the: (a) thiophene-side chains torsion angles in the

aligned structure; (b) thiophene-side chains torsion angles in the shifted struc-

ture; (c) thiophene-thiophene torsion angles in the aligned structure; (d) thiophene-

thiophene torsion angles in the shifted structure. In panels (c) and (d) the angles

are shifted by 180◦ for clarity. To exclude the effects of finite box dimension in the

main chain direction, in (c), (d), (e) and (f) only torsion angles between rings in the

middle of the chains are taken into account.

chains are disordered and wider energy distribution in the aligned structure when

only main chains are disordered.

Suitable measure of disorder in the system is the distribution of diagonal Hamil-

tonian elements given by Hii = 〈i | H | i〉, where | i〉 are wave functions of trimers

and H is the Hamiltonian of the system. Wave functions of the trimers are localized

on the main chain and on the carbon atoms in the side chains closest to the thio-

phene rings. Consequently, if main chains of trimers are rigid, their wave functions

and energies of HOMO levels will be equal. When only disorder in side chains is

applied, difference between diagonal Hamiltonian elements arises only from varia-

tions in H, due to the variations in the electrostatics potential caused by side chains

disorder. On the other hand, when disorder in main chains is present, variations in

Hii arises both form H and | i〉, since wave functions of trimers now differ signifi-
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cantly. Distributions of diagonal elements of the Hamiltonian are given in Fig. 4.4.

As expected, distributions are widest in the case when both disorders are present

(Fig. 4.4e and Fig. 4.4f). Having in mind the results for DOS presented above which

suggest that disorder in main chains has more impact on the electronic structure

of P3HT than disorder in side chains, one may find unexpected that distributions

given in Fig. 4.4c and Fig. 4.4d are similar to the distributions given in Fig. 4.4a

and Fig. 4.4b. Side chains have more conformational freedom than main chains, es-

pecially in the shifted structure. Therefore, their disorder affects the electrostatical

potential more than disorder in main chains. When effects of disorder in main chains

are isolated, side chains are removed and, consequently, variations of electrostatic

potential are weaker than in the case of disorder in side chains, which leads to the

weaker variations in H.

Wave functions of HOMO levels for 6 different cases are shown in Fig. 4.5. In the

ideal crystalline structure the wave function of HOMO level (and any other level) is

completely delocalized, as Bloch theory predicts. When the side chains disorder is

partially applied, wave functions remain delocalized (Fig. 4.5a and Fig. 4.5b). They

are not delocalized along the whole structure, as in the ideal structure. Delocaliza-

tion is broken both in the π-π stacking direction and in the main chain direction.

On the other hand, wave functions of HOMO levels in the case of disorder in main

chains are localized, both with and without side chains included (Fig. 4.5c - f). They

are localized on 5 - 15 rings, usually on 2 neighboring chains (as in Fig. 4.5c and

Fig. 4.5e). Therefore, thermal disorder in the crystalline P3HT localizes the wave

function of HOMO level, as in the amorphous phase [24,79].

To investigate the effects of disorder on the wave functions localization more

precisely, we calculate two localization lengths for each state: localization in the π-π

stacking direction Lb and localization in the main chain direction Lc. If the wave

functions are represented in the orthonormal basis set of well localized orbitals,

the localization length can be generally defined as L = 1/
∑

m |dm|4, where dm are

expansion coefficients of the wave functions in the orthonormal basis |m〉 [79]. The

basis set used in the OFM calculations is not orthonormal. The orthonormal basis

set is constructed by transformation |m〉 =
∑

m Tmi |i〉 with transformation matrix
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Figure 4.4: Distribution of the diagonal elements of the Hamiltonian in: (a) aligned

structure with disorder in side chains; (b) shifted structure with disorder in side

chains; (c) aligned structure with disorder in main chains and side chains omitted;

(d) shifted structure with disorder in main chains and side chains omitted; (e) aligned

structure with disorder in both main and side chains and (f) shifted structure with

disorder in both main and side chains. To exclude the effects of finite box dimension

in the main chain direction, in (c), (d), (e) and (f) only trimers in the middle of the

chains are taken into account.
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Figure 4.5: Wave function moduli of the HOMO level of crystalline P3HT in the
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T = (S−1/2)
∗
, where S is the original overlap matrix and |i〉 are original basis wave

functions. Expansion coefficients of the orthonormal basis set are related to the

original coefficients ci via dm =
∑

i(S
1/2)mici. For the orthonormal basis set the

condition
∑

m |dm|2 = 1 is satisfied. In our case, this sum can be divided into two

sums, one over different chains and other over rings in one chain:
∑Nc

i=1

∑Nm

j=1 |βij|2 =

1 , where Nc and Nm are the number of chains and the number of rings within one

chain, respectively. Following the general definition of the localization length, Lb is

defined as Lb = 1/
∑

i

∣

∣β
′

i

∣

∣

4
, where

∣

∣β
′

i

∣

∣

2
=

∑Nm

j=1 |βij|2. Similarly, Lc is defined as

Lc = 1/
∑

j

∣

∣β
′′

j

∣

∣

4
, where

∣

∣β
′′

j

∣

∣

2
=

∑Nc

i=1 |βij|2.
Plots of the dependence of Lb on energy of the electronic states are shown in

Fig. 4.6. In the ideal crystalline structure (both aligned and shifted), Lb of the

HOMO level is equal to the number of chains, which is 10 in this case. Lower states

in the ideal structure have Lb either 6.67 or 10. In the case of the aligned structure

with disordered side chains (Fig. 4.6a), the values of Lb for HOMO level vary from 4

to 10. Other states have Lb which is around the value of Lb in the ideal structure. In

the case of the shifted structure, distribution of the energies of states is wider then in

the aligned. Consequently, it is difficult to isolate the values of Lb for HOMO levels

from Fig. 4.6b. Looking into the range of 0.2 eV below the highest energy, value of

Lb is between 3 and 6, which is lower than the values of Lb in aligned structures.

Therefore, wave functions of HOMO levels are more localized in the shifted structure

than in the aligned. In all remaining cases (Fig. 4.6c-f) we get qualitatively similar

results. Values of Lb for the highest occupied states are low, they take values from

2 to 4 chains. States with lower energies have wider distributions of Lb, suggesting

that delocalized states exist. Shape of the plot of Lb is similar to the plot of the

hole localization length of the amorphous P3HT, given in Ref. 79.

Results for Lc are similar to the results for Lb. Minimal value for Lc when both

side and main chains are disordered is 3. Electronic coupling is stronger in the

main chain direction than in the π-π stacking direction and therefore localization in

the π-π stacking direction is stronger than in the chain direction. It is interesting

to note that the highest states in the valence band are typically localized on 2

neighboring chains. State will be localized on two chains if the electronic coupling
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Figure 4.6: Dependence of Lb on the energy of the electronic state in the case of:

aligned structure with disorder in the side chains; (b) shifted structure with disorder

in the side chains; (c) aligned structure with disorder in main chains and side chains

omitted; (d) shifted structure with disorder in main chains and side chains omitted;

(e) aligned structure with disorder in both side and main chains (f) shifted structure

with disorder in both side and main chains.
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Figure 4.7: Distribution of difference between electronic coupling between chains

and variations of diagonal Hamiltonian elements in the case of: (a) aligned and (b)

shifted structure.

tmn = 〈m|H |n〉 between orbitals m and n from different chains is greater then

variations of the diagonal Hamiltonian elements. The distributions of the quanitity

d = tmn − |Hmm − Hnn| are given in Fig. 4.7. Since d takes positive values as well,

existence of strong coupling between chains is confirmed, which explains localization

on two neighboring chains.

Total localization length can be found using general definition previously given.

Plots of its dependence on energy of the states is given in Fig. 4.8. For the highest

states, when main chains are disordered, it takes values from 5 to 15 rings (Fig. 4.8c-

f). These values are slightly higher then the values of the localization length of

highest states in the valence band of amorphous P3HT, which is around 5 [79].

This difference is expected, since crystalline P3HT, despite high degree of disorder,

is still more ordered than amorphous. In the sense of the hole localization length,

effects of disorder in crystalline and amorphous P3HT are similar. Delocalized states

(localized on more than 10 rings) start to appear only few hundreds of meV below

the top of the valence band. This is in agreement with findings presented in Ref. 89

where DOS and localization length in PBTTT are calculated. Results for the carrier

localization orbital density of HOMO levels of crystalline P3HT at 300 K, given in

Ref. 87, indicate the presence of both localized (4-10 rings) and weakly (more than 10

rings) localized states. These calculations were performed without alkyl side chains

and for isolated main chains. We obtain qualitatively the same results for Lc, since
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we find states localized on few rings within a chain and states that are extended over

the entire chain. To conclude, our findings agree with previous that wave functions

of the highest states in the valence band are localized and that delocalized (or weakly

localized) states also exist below these states.

Results for total localization length and Lb are qualitatively similar for the struc-

tures with isolated disorder in main chains and with both disorder in main and side

chains. Nevertheless, side chains have a significant quantitative effect on electronic

properties. This can be seen by comparing the DOS (Fig. 3.8c vs. Fig. 3.8e and

Fig. 3.8d vs. Fig. 3.8f), localization length (Fig. 4.8c vs. Fig. 4.8e and Fig. 4.8d vs.

Fig. 4.8f) and on-site Hamiltonian elements (Fig. 4.4c vs. Fig. 4.4e and Fig. 4.4d vs.

Fig. 4.4f). By comparing the figures one can also see that the effect of side chains

disorder is stronger in the shifted than in the aligned structure which happens due to

their larger conformation freedom in the shifted structure, as previously discussed.

If disorder of side chains is stronger, which is the case on the higher temperatures, it

will contribute more to the electronic structure. Therefore, to obtain reliable results,

side chains should be included into the calculations.

4.4 Discussion

We now discuss the consequences of our findings about thermal disorder on electrical

properties of the material. In small-molecule based organic crystals (SMOCs) the ef-

fects of thermal disorder [86] were used to explain the temperature dependence of the

mobility where the mobility that decreases with increasing temperature is typically

observed. On the other hand, all mobility measurements of P3HT, even for highest

quality ordered samples, yield a thermally activated temperature dependence.

Our results suggest that in ordered P3HT there is a spectral region within first

200 meV below the top of the valence band with electronic states localized to just a

few rings. In a combined molecular dynamics - electronic structure study in Ref. 87

such states were found to be persistently localized in the sense that their position

does not vary over the time on the order of few nanoseconds. Below the spectral

region with localized states, there is a region where both localized and delocalized
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Figure 4.8: Dependence of the total localization length on the energy of the electronic

state in the case of: aligned structure with disorder in the side chains; (b) shifted

structure with disorder in the side chains; (c) aligned structure with disorder in main

chains and side chains omitted; (d) shifted structure with disorder in main chains

and side chains omitted; (e) aligned structure with disorder in both side and main

chains (f) shifted structure with disorder in both side and main chains.
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states exist. It is well understood that the spatial and energetic distribution of

electronic states that we obtained leads to thermally-activated transport; at low

temperature most carriers populate localized states at the top of the valence band

which yield low mobility, while at higher temperatures less localized or delocalized

states become more populated and the transport is much better then [104].

However, what is the main difference between polymers and SMOCs where a

different temperature dependence of mobility is observed? In SMOCs, thermal dis-

order leads to localized electronic states, as well. However, the spectral region where

these states exist is much narrower. For example, in Ref. 85 the spectral region with

strongly localized states has the width of approximately 0.2t, where t is the electronic

coupling transfer integral between two neighboring molecules (which is typically on

the order of 100 meV in SMOCs). In Ref. 82 this range is equally narrow and is

comparable to or even smaller than thermal energy kBT at room temperature. For

this reason, thermally activated behavior is not observed in SMOCs.

The comparison between the effects of thermal disorder in ordered polymers and

SMOCs illustrates the dual role of temperature when thermal disorder and transport

properties are concerned. The temperature acts on the one hand to create well

localized states and on the other hand to promote the carriers from such localized

states to delocalized states with better transport. In SMOCs higher temperatures

lead to better localization of the states and consequently to a smaller mobility. On

the other hand, in ordered P3HT polymers, in the range of temperatures from 100K

to 300K, the temperature has a weak effect on the electronic density of states and on

the dependence of localization length on energy. This conclusion was obtained from

the comparison of these two quantities at 100K and 300K, presented in Fig. 4.9. A

weak effect of temperature on the degree of localization was also shown in Ref. 87

(Table I). Therefore, the temperature dependence of mobility in ordered polymers

originates from thermal activation of carriers from localized states to delocalized or

less localized states with better transport.
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Figure 4.9: (a) DOS of the shifted structure with disorder in main and side chains at

100 K. (b) Dependence of the total localization length on the energy of the electronic
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Dependence of the total localization length on the energy of the electronic state of

the shifted structure with disorder in main and side chains at 300 K.
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Chapter 5

Electronic states at the interfaces

between crystalline and

amorphous domains in conjugated

polymers

5.1 Introduction

Understanding the electronic and transport properties of conjugated polymers is

the precondition for the enhancement of their performance. On the other hand,

electronic structure of a material is strongly affected by its atomic structure. Con-

jugated polymers exhibit complex structure: they contain both crystalline (ordered)

and amorphous (disordered) domains [22,23]. While the electronic structures of sin-

gle crystalline and single amorphous domains are well understood, there is a lack of

knowledge about the electronic structure of the interface between these two regions.

In real conjugated polymers, amorphous and crystalline domains are interlaced.

According to previous works [22, 23, 105, 106], it is believed that a single polymer

chain typically spreads across both amorphous and crystalline domains. There are

three types of such chains: bridge chains, which connect different crystalline re-

gions through an amorphous region; folded chains, which connect different parts
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of the same crystalline domain and extended chains, which are extended out from

crystalline and have their end in the amorphous domain [22, 23]. However, chains

can also be entirely localized in the crystalline or amorphous domain. Amorphous

domains have larger band gap than crystalline due to reduced electronic coupling

between monomer units [22–25]. Differences in band gaps produce band offsets in

the valence and conduction band between crystalline and amorphous domains. Off-

set in the valence band acts as a barrier for a hole to jump from crystalline domain

into amorphous [21, 22, 25, 107]. In all previous works, amorphous and crystalline

domains in conjugated polymers were investigated separately and the effects of the

interface between these two domains were not explicitly taken into account.

To fully understand electronic properties of conjugated polymers, calculations

which include both crystalline and amorphous domains are needed. In this chapter

we perform such calculations and obtain microscopic insights into the electronic

states at the interface between crystalline and amorphous regions in P3HT. We

consider two types of interface that we call type A and type B. Type A interface

is a sharp interface between an amorphous and an ordered domain where P3HT

chains belong exclusively to one of these regions, as shown in Fig. 5.1a. Such type

of interface is an idealization that is highly suitable to investigate the difference

between ordered and disordered regions. On the other hand, it is unlikely that a

realistic interface is that sharp. Therefore, we additionally consider type A’ interface

where an intermediate region exists between the ordered and amorphous region (Fig.

5.1b). Type B interface consists of two ordered domains whose chains extend into

the region between them and form an amorphous region (Fig. 5.1c). It is believed

that this type of interface is a reasonably good representation of interfaces that exist

in real materials [22,23].

In this chapter, we mainly investigate the energy level alignment between the

states in the two regions and the possibility of having interface trap states within

the band gap of the material. For all interface types we model the ordered region

as an ideal crystal. Realistic ordered regions are not perfect crystals and exhibit

the effects of thermal (dynamical) disorder and paracrystallinity. In the prevous

chapter, we showed that the effects of thermal disorder produce variations of the
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Figure 5.1: Atomic structures of interfaces considered in this work: (a) type A; (b)

type A’ and (c) type B.
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energy levels in the valence band on the order 0.1 - 0.2 eV and therefore we do not

include them in this work. Along the same line, we do not expect that the effect of

paracrystallinity, when it is reasonably small, will change the main conclusions of

our work.

Our results indicate that wave functions of HOMO states are delocalized and

belong to ordered domains, regardless of the interface type. Localized states in dis-

ordered domains start to appear at the energies few hundreds meV below HOMO in

the case of realistic type B interface. In the case of sharp type A interface, difference

between HOMO levels in crystalline and amorphous domains is even larger. Addi-

tionally, there is no evidence of the existence of states belonging to both domains.

Therefore, disordered regions present barriers for hole transport which consequently

dominantly goes through crystalline regions.

5.2 Methodology

Atomic structure of the interface between ordered and disordered region was gener-

ated using in-house developed MC simulations [30], while electronic structure was

calculated using CPM [39] and OFM [40]. These methods were described in detail

in Chapter 2. Therefore, in this section we focus on the description of the procedure

for generating the atomic structure, which is significantly different to that used for

thermally disordered P3HT, considered in the previous chapter.

During MC simulations crystalline domains were kept rigid. There are several

types of crystalline structures reported in the literature [93, 95, 108]. We chose

the shifted structure (neighboring chains in the π - π stacking direction mutually

shifted by a half of the unit cell in the main chain direction) with interdigitated

side chains as representative, since it was shown that this structure is energetically

favorable [93, 108]. Lattice constants were obtained from NPT (constant pressure

and temperature) MC simulations at zero temperature and pressure of 101.325 kPa,

using the OPLS parameters set [31, 87] for non-bonded interactions. These lattice

constants are: a/2 = 15.55 Å, b = 8.1 Å and c = 7.77 Å.

The procedure for generation of amorphous domains is different for type A and
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B interfaces. In the case of type A interface, at the beginning, P3HT chains were

randomly placed in the simulation box which was significantly larger than the final.

The box was gradually compressed until the density of amorphous P3HT reached

its experimental value of around 1.1 g/cm3 [109]. Type A’ interface was generated

using the same atomic configuration as for the type A interface, with a difference

that several chains in the crystalline domain closest to the amorphous region were

allowed to move freely. For type B interface two different starting configurations

were used: one with interdigitated backbone chains and the other where backbone

chains were separated by a predefined distance in the backbone direction (denoted

as c-direction in figures). In this case, simulation box was compressed only in the

backbone direction until the density in the amorphous region between crystalline

domains reached its experimental value. For all types of interfaces, the tempera-

ture of 1000K was used in MC simulations. At the end, when the final density of

the amorphous region is reached, the system was cooled down to 0 K. By keeping

crystalline structure rigid and by cooling the amorphous structure, effects of ther-

mal disorder [108] were excluded, to keep focus on the difference between crystalline

and amorphous region. Energy of the system in MC simulations was modeled as a

sum of non-bonded van der Waals and Coloumb interactions and interring torsion

potentials. OPLS parameter set was used for non-bonded interactions and torsion

potentials of dihedrals within side chains, while thiophene-thiophene torsion po-

tential was taken from Ref. 24. Periodic boundary conditions were applied in all

directions. Each of the obtained interface atomic structures contains around 10000

atoms.

5.3 Results

As explained, type A interface is a sharp interface between crystalline and amor-

phous region where each chain belongs to one of these regions. Both regions in

the structures that we simulated contain 20 P3HT chains, each 10 thiophene rings

long. In the crystalline region, the chains are arranged in 2 lamellas, where one

lamella contains 10 chains stacked in the π-π direction (denoted as b-direction in
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figures). We have calculated energies and wave functions of the electronic states in

the valence band for 4 different random realizations of the system. The results that

were obtained are similar for all realizations and indicate that 3 different types of

electronic states exist: (1) delocalized states in the crystalline domain (Fig. 5.2a),

(2) localized states at the edge of the crystalline domain (Fig 5.2b) and (3) local-

ized states in the amorphous domain (Fig. 5.2c). Highest states are delocalized

and belong to the crystalline domain. These states have highest energies due to the

strongest electronic coupling between thiophene rings (both inter- and intra-chain

coupling). Localized states in the crystalline domain start to appear at energies of

around 0.4 eV below HOMO. These states are localized at P3HT chains which are

nearest to the amorphous region. Diagonal Hamiltonian elements of the rings near-

est to the interface are smaller than diagonal Hamiltonian elements of the rings far

from the interface, which can be clearly seen from the distribution of the diagonal

Hamiltonian elements across b-direction, given in inset of Fig. 5.2c. Values of the

elements are obtained by averaging the diagonal Hamiltonian elements of the rings

that have the same b-coordinate. Consequently, such states have lower energies than

the energy of delocalized HOMO state. Localized states are not possible in ideal

crystalline domains which are periodic in all crystallographic directions. Therefore,

localized states in the crystalline domain near the interface are induced by the in-

terface. Finally, localized states in the amorphous domain start to appear at the

energies around 1 eV below HOMO. These states fully resemble the states in purely

amorphous P3HT [24,79].

Band offsets of HOMO and LUMO levels between amorphous and crystalline

domains were estimated from local density of states (DOS), given in Fig. 5.3 for one

realization of the structure for each interface type. Values of offsets can vary up to

0.2 eV depending on the structure. According to Fig. 5.3a, HOMO band offset for

type interface A is around 1 eV. On the other hand, LUMO in the amorphous domain

has similar energy as LUMO in the crystalline domain. It is usually assumed that

HOMO and LUMO offsets are equal to the half of the band gap difference between

crystalline and amorphous domain. According to previously reported results, this

offset is expected to be in the range of 0.1 - 0.3 eV [22, 24, 25, 107]. Our results
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Figure 5.2: Wave function moduli squared of the (a) highest electronic state in the

valence band in the crystalline domain, (b) localized electronic state in the valence

band in the crystalline domain and (c) highest electronic state in the valence band

in the amorphous domain in the case of type A interface. The inset shows the

distribution of the averaged diagonal Hamiltonian elements in the crystalline domain

along b-direction. Isosurfaces correspond to the probability of finding a hole inside

the surface of 75%.
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indicate that the presence of disordered domain affects the energy levels in crystalline

domains. This can be clearly seen from the distribution of diagonal Hamiltonian

elements from different chains in crystalline region (inset of Fig. 5.2c). Difference

between the diagonal Hamiltonian elements of the rings furthest from the interface

and the rings closest to the interface is around 0.3 eV. Therefore, energy levels in

the crystalline domain far from the interface are shifted by approximately 0.3 eV

toward higher energies. This shift leads to an increase in HOMO band offset and a

decrease in LUMO band offset in comparison to the offsets estimated as half of the

band gap difference. The shift may originate from uneven charge distribution at the

interface between ordered and disordered chains.

(c)(a) (b)

Figure 5.3: Density of electronic states (arbitrary units, logarithmic scale) of crys-

talline (red) and amorphous (blue) region in the case of (a) type A interface; (b)

type A’ interface and (c) type B interface.

Intermediate region between amorphous and crystalline region (type A’ interface)

presents a more realistic interface model than the sharp interface. In our simulation

it consists of 5 P3HT chains and there is the same number of chains in crystalline re-

gion. As expected, chains closer to the crystalline region are well-ordered and chains

closer to the amorphous region are more disordered (Fig. 5.1b). The main differ-

ence between electronic structures of type A and A’ interfaces is in the localization

lengths of the states in the ordered domains. Wave function of HOMO state of the

type A’ interface is delocalized (Fig. 5.4a), but with significantly lower localization

length than HOMO state of the interface type A due to disorder in the intermediate

domain. Highest states in the perfectly ordered domains (Fig. 5.4b) have energies

only few meV below HOMO. Difference between HOMO state and highest localized
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states in the amorphous domain (Fig. 5.4c) is around 1 eV (Fig. 5.3b), similar as

in the case of sharp interface.

(a) (b) (c)

a a a

bbb

c cc

Figure 5.4: Wave function moduli squared of the (a) highest electronic state in the

valence band in the intermediate domain, (b) highest electronic state in the valence

band in the crystalline domain and (c) highest electronic state in the valence band

in the amorphous domain in the case of type A’ interface. Isosurfaces correspond to

the probability of finding a hole inside the surface of 75%.

Type B interface is composed of 20 chains, where each chain contains 20 thio-

phene rings. Half of the rings in each chain belong to the amorphous, other half

to the crystalline region. Results for the hole wave functions and energies were

extracted from 8 different realizations (4 for each starting structure). We have

found that in such structure two types of states exist: (1) delocalized states in crys-

talline domain (Fig. 5.5a) and (2) localized states in amorphous domain (Fig. 5.5b).

HOMO state is completely delocalized in the ordered domain. Localized states start

to appear at the energies around 0.4 eV below HOMO (Fig. 5.3c). This result is

more in-line with previous expectations due to the fact that this interface type is

more realistic, contrary to the sharp type A interface. Wave functions of the states

can leak slightly from crystalline domain to amorphous and vice versa, but they are

dominantly localized in one of them. Interestingly, states in the amorphous domain

can be localized on two chains, which can be explained by the presence of some

degree of ordering between disordered chains.
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Figure 5.5: Wave function moduli squared of the (a) highest electronic state in the

valence band in the crystalline domain and (b) highest electronic state in the valence

band in the amorphous domain in the case of type B interface. Isosurface correspond

to the probability of finding a hole inside the surface of 75%.

5.4 Discussion

Our results indicate that the interface between amorphous and crystalline domain

does not introduce trap states in the band gap of crystalline domain. This is a

generally positive feature, having in mind that the presence of such trap centers

would deteriorate charge mobility. Moreover, there are no states which belong to

both domains. These results are qualitatively different from the results for the

electronic structure of grain boundaries between misaligned naphthalene crystals,

given in Chapter 3. At the grain boundaries in polycrystalline naphthalene there are

points of both stronger and reduced electronic coupling between molecules. States

localized at the points of strong electronic coupling act as traps. On the other hand,

electronic coupling between chains in amorphous and crystalline domains in P3HT

is always smaller than the coupling between chains in crystalline domains. This

coupling is even not able to form the states which belong to both domains. The

only type of states which are in some way induced by the interface are localized

states at the edge of crystalline domains in type A interface. In type B interface

similar states do not exist, because the drop in the electronic coupling between the

rings in the direction perpendicular to the plane of the interface is not that high.

In the next chapter we consider type C interface, where interface surface between

single crystalline and single amorphous domains is perpendicular to the backbone
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direction. For such kind of interface, spontaneous polarization in P3HT, the subject

of the next chapter, has significant effect on electronic structure.

98



Chapter 6

Spontaneous polarization in

ordered poly(3-hexylthiophene)

induced by side chains

6.1 Introduction

As pointed out in the previous chapter, conjugated polymers have complex structure

composed of mixed amorphous and crystalline domains. Therefore, it is important

to take into account all significant effects that take place at the interfaces between

different materials or between different domains of the same material. At the in-

terfaces, the effects of spontaneous polarization in materials can play an important

role.

Spontaneous polarization is an intrinsic property of a material that it exhibits

in the absence of external electric field and occurs in crystals that do not have a

center of inversion symmetry, as explained in Sec. 2.7. There are many materials

that are known to have high values of spontaneous polarization, such as some oxides,

nitrides, etc [47,48,52,110]. Within the class of conjugated polymers, polyvinylidene

fluoride (PVDF) is reported to have the highest spontaneous polarization of 0.1-0.2

C/m2 [111].

Despite the fact that P3HT serves as a model conjugated polymer and that it

has been widely investigated, the effects of spontaneous polarization in this material
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have not been discussed before. In this chapter, the importance of spontaneous po-

larization in ordered regioregular poly(3-hexylthiophene) (P3HT) is pointed out. We

show that this effect arises from head-to-tail side chain arrangement which breaks

the symmetry along the backbone chain. Firstly, we have calculated spontaneous

polarization of ideally crystalline P3HT using density functional theory (DFT) [35]

and modern theory of polarization. Next, we demonstrate that the effects of thermal

disorder reduce this polarization but still keep it at significantly large value. Finally,

we discuss the effects of spontaneous polarization in crystalline P3HT on electronic

properties of the interface between crystalline and amorphous P3HT where the in-

terface is perpendicular to the backbone direction of P3HT chain.

6.2 Methodology

Spontaneous polarization of an ideal crystal can be calculated using modern polar-

ization theory as implemented in several DFT-based computer codes. To calculate

the effective polarization in a thermally disordered structure, calculations of systems

involving a large number of atoms are required. Standard DFT-based codes are lim-

ited to several hundreds of atoms and cannot be used for such systems. Alternative

way to extract the polarization of the material is from the calculation of electric

fields in the system consisting of alternating layers of the material and vacuum. Let

us consider such a system consisting of a material with spontaneous polarization

Ps along x-direction and vacuum, as shown in Fig. 6.1. Polarization in dielectric

medium is given by formula:

P = Ps + ǫoχE, (6.1)

where ǫo is the electric permittivity of vacuum, χ is the electric susceptibility of

material and E is the electric field in material. From the definition of the electric

displacement vector, it follows that:

D = ǫoE + P, (6.2)
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while the Maxwell equation for D reads

∮

S

D · dS = ρ. (6.3)

If we assume that there is no free charge at the interface between material and

vacuum (ρ = 0), we obtain the equation D1 = D2 for the x-projections of the

electric displacement vector in material and vacuum, respectively. Using Eq. 6.1

and 6.2, we then obtain:

Ps = ǫoE2 − ǫoǫrE1, (6.4)

where ǫr is the relative permittivity of material. Hence, spontaneous polarization

can be easily obtained with known electric fields in material and vacuum, which can

be calculated as electrostatic potential derivatives.

s

Figure 6.1: Sketch of the interface between a material with spontaneous polarization

and vacuum.

6.3 Spontaneous polarization of ideally crystalline

P3HT

Spontaneous polarization of ideally crystalline P3HT was calculated using DFT as

implemented in ABINIT [49–51, 112] and Quantum ESPRESSO packages [50, 113].

We used norm-conserving pseudopotentials with LDA expression for the exchange-

correlation term. There are several crystalline structures of P3HT reported in the

literature [92–101,114]. We have considered the aligned structure (Fig. 6.2a), where
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chains are mutually aligned in the π - π stacking direction (b-direction, not shown

in Fig. 6.2). Unit cell parameters for this structure at 0 K, obtained from energy

minimization calculated using classical potentials [31], are: a = 15.55 Å, b = 4.1 Å ,

c = 7.77 Å and all angles are 90◦ [108]. The obtained value for the spontaneous

polarization in the backbone direction from both calculations is 6.0 ·10−3 C/m2. In

the other two directions spontaneous polarization is 0. We have additionally checked

that the value of spontaneous polarization in the backbone direction remains almost

the same upon the structure relaxation. For comparison, spontaneous polarization in

nitrides (GaN, InN, AlN) takes values from 2.9 to 8.1·10−2 C/m2 [52], while BaTiO3

has one of the highest reported spontaneous polarization of around 0.9 C/m2 [110].

(a) (b) (c)

c

a

c c

a a

..
C C

Figure 6.2: (a) P3HT unit cell with head-to-tail side chains arrangement, (b) PT

unit cell, (c) P3HT unit cell with tail-to-tail side chains arrangement.

To understand the origin of the spontaneous polarization in the backbone direc-

tion, we have calculated the polarization in that direction for the structure without

side chains, which is actually polythiophene (PT), shown in Fig. 6.2b. This structure

does not have spontaneous polarization in the backbone direction. Additionally, we

considered the P3HT unit cell with tail-to-tail side chains arrangement (Fig. 6.2c).

This structure does not show pyroelectric properties as well. Therefore, we have

concluded that spontaneous polarization in the first unit cell arises from head-to-
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tail arrangement of side chains. Atoms in side chains do not have their inversion

symmetry pairs, which breaks the symmetry. On the other hand, structures shown

in Fig. 6.2b and Fig. 6.2c exhibit inversion symmetry where each atom has its cor-

responding pair.

Structures with head-to-head and tail-to-tail side chains arrangement are not

regioregular and they are not able to form well-ordered crystalline structure. There-

fore, crystalline structure with head-to-tail arrangement of side chains is more rep-

resentative. Regarding different types of P3HT unit cells, we expect that each unit

cell with the lack of the inversion symmetry would have nonzero spontaneous polar-

ization. To check this, we have calculated spontaneous polarization in the shifted

structure of P3HT that we considered in previous chapters. The calculated sponta-

neous polarization in the backbone direction is 6.2 ·10−3 C/m2, which is nearly the

same to that for aligned structure. Therefore, we conclude that spontaneous polar-

ization is robust upon the structure change if the asymmetric arrangement of side

chains is preserved. Recently, P3HT unit cell with P21/c symmetry group was pro-

posed [114]. This symmetry group is centrosymmetric and spontaneous polarization

in this structure is not expected to occur.

To check the reliability of the alternative method for spontaneous polarization

calculation described in the previous section, we have calculated the electrostatic

potential along the backbone direction in the supercell that consists of 10 thiophene

rings long rigid P3HT chain and a vacuum region of the same length as P3HT

chain. This potential is shown in Fig. 6.3. Within the material, potential is periodic

with additional linear trend arising from the electric filed caused by spontaneous

polarization. The peaks of this potential correspond to atom positions. Electric

field in P3HT was calculated as a negative derivative of the envelope that connects

the peaks. In vacuum, the potential is linear and electric field is calculated as its

negative derivative. The relative permittivity of P3HT is taken to be 4.0 [115].

Using Eq. 6.4 calculated polarization is 5.6 ·10−3 C/m2, which is very close to the

value obtained using DFT-based codes and modern theory of polarization.
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Figure 6.3: Electrostatic potential along rigid P3HT chain and vacuum. This po-

tential is one-dimensional, obtained from three-dimensional potential by averaging

in other two dimensions.

6.4 Spontaneous polarization of thermally disor-

dered P3HT

Next, we consider the effects of temperature on polarization of P3HT. At non-zero

temperature the atoms are displaced from their equilibrium positions and periodicity

of the structure is broken. This effect is known as thermal or dynamic disorder and

is significant in conjugated polymers [22, 87, 90, 91, 108]. Side chains of P3HT are

more disordered than backbone chains. It is expected that spontaneous polarization

induced by side chains is lower at finite temperature than in perfectly ordered chain.

We used the structures that we produced to investigate the effects of thermal disorder

in P3HT [90,108]. Each of the structures contains 2520 atoms arranged in 10 chains.

Due to high number of atoms, electrostatic potential cannot be extracted from DFT-

based codes. We instead applied the DFTB+ code [116], which is based on DFTB

method [44], explained in Sec. 2.6. To check if DFTB+ gives the same results as

ABINIT or Quantum ESPRESSO, we have calculated electrostatic potential for the

structure we used to test the method for the spontaneous polarization calculation.

This potential (shown in Fig. 6.4 with dashed line) was calculated as Coulomb

potential from the point charges at atom positions, where the charge of an atom is

a sum of its ion and electron charges. Obtained potential differs from the potential

104



obtained by DFT-based codes in two ways: (1) it does not contain the exchange-

correlation term and (2) atoms are modeled as point charges which is not the case

in DFT-based codes. These two differences result in the potential shift and its

amplitude oscillations reduction in the P3HT domain. However, potential shape

and electric fields in P3HT and vacuum remained almost the same, which resulted

in the spontaneous polarization of 6.3 ·10−3 C/m2. Therefore, DFT-based codes can

be replaced by the DFTB+ code to calculate the spontaneous polarization for large

systems.

P3HT vacuumc

b

Figure 6.4: Averaged electrostatic potential along the interface of disordered P3HT

chain and vacuum at 300K (solid line) and at 0K (dashed line). The inset shows the

structure used to calculate the potential along the interface of thermally disordered

P3HT and vacuum.

Averaged electrostatic potential along backbone direction of P3HT at 300K for

one structure is shown in Fig. 6.4. Potential envelope within P3HT domain is not

unique as for rigid chains. Consequently, the choice of the envelope would affect the

obtained value for electric field and spontaneous polarization. To avoid this issue, we

took several different structures and calculated averaged electric field. The electric

field is calculated in the middle of chains in order to exclude the effects of higher

disorder present at the chain edges. The calculated value of polarization is 3.6 ·10−3

C/m2, which is lower than for rigid chain. However, this value is significant and

shows the important feature that spontaneous polarization in ordered P3HT exists

even at room temperature. Spontaneous polarization is expected to vanish only for
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completely disordered chains, as in amorphous domains.

Electrostatic potential in vacuum is linear and there is no uncertainty of the

value for corresponding electric field. It would be interesting to compare the values

for the electric field for structures with rigid and thermally disordered chains since

the spontaneous polarization is linearly dependent on the electric field in vacuum

(Eq. 6.4). The value for the electric field in vacuum for the structure with the rigid

chain is 8.0 ·107V/m, while the corresponding value for thermally disordered chains

(averaged over different structures) is 3.4 ·107V/m. The ratio between these elec-

tric fields is close to the ratio between spontaneous polarizations for corresponding

structures. Therefore, electric field in vacuum can be used as a good measure for

the estimation of the effect of thermal disorder on the spontaneous polarization in

conjugated polymers.

Next, we estimate possible effect of spontaneous polarization in P3HT on charac-

teristics of P3HT/fullerene blends relevant for solar cell applications. In P3HT/fullerene

based heterojunctions characteristic length of each domain is on the order of 10 nm.

If we assume that layers of P3HT and C60 are arranged in an ideal superlattice

where each domain is 10 nm long and that P3HT polarization is perpendicular to

the domain interface, we obtain potential drop in C60 domain of around 0.9 V at low

temperature and around 0.5 V at room temperature (relative permittivity of C60

is taken to be 3.6 [117]). These are significant values of potential drop that should

strongly affect the performance of bulk heterojunction - based devices. While the

superlattice model is certainly a simplification of real bulk heterojunction, it demon-

strates the importance of the effect of spontaneous polarization and one should

expect potential drop of the same order of magnitude in real bulk heterojunctions.
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6.5 Effects of spontaneous polarization on elec-

tronic states at the interface between crys-

talline and amorphous P3HT

Realistic conjugated polymers contain both crystalline and amorphous domains.

Average spontaneous polarization in an amorphous domain is 0 due to random

orientation of dipoles. If spontaneous polarization exists in a crystalline domain,

there is a discontinuity of the polarization at the interface between crystalline and

amorphous domain, analogously to the interface between material with spontaneous

polarization and vacuum shown in Fig. 6.1. Hence, there is a surface charge density

at the end of the crystalline domain induced by spontaneous polarization, which

affects the energy levels in both domains.

c

b

Figure 6.5: Wave function moduli squared of the highest electronic state in the

valence band of the type C interface. Isosurfaces correspond to the probability of

finding a hole inside the surface of 75%.

In the previous chapter we have investigated the electronic states at the interface

between crystalline and amorphous domains in P3HT where we found that highest

states in the valence band were delocalized and belonged to crystalline domain.

We have investigated two interface types: (1) sharp interface between crystalline

and amorphous domain where interface surface is perpendicular to the π-π stack-

ing direction (type A interface) and (2) more realistic interface composed of chains
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extended from crystalline into amorphous domain in the backbone direction (type

B interface). In the case of type A interface, spontaneous polarization in P3HT

does not have any influence on electronic states as there is no spontaneous polar-

ization along the π-π stacking direction. On the other hand, in the case of type

B interface, spontaneous polarization effects exist but they are relatively weak as

the consequence of soft transition from ordered to disordered chains. Such transi-

tion corresponds to slow spontaneous polarization decline form Ps to 0. Now, we

investigate the effects of spontaneous polarization in the backbone direction on the

electronic states at the interface between crystalline and amorphous domains where

the interface surface is perpendicular to the backbone direction (type C interface).

Following the same procedure as in the previous chapter, the amorphous structure

was generated by Monte Carlo simulation by compressing the large box until the

density of amorphous domain reached experimental value of 1.1 g/cm3. To calcu-

late the electronic structure for obtained atomic structure, DFTB+ code was used.

As expected, wave function of the highest state in the valence band (Fig. 6.5) is

delocalized and belongs to the crystalline domain. However, due to spontaneous

polarization in the backbone direction, the state is confined at one side of the crys-

talline domain. As one may notice, this interface type is sharp and hence not very

realistic. To build a more realistic interface model, effects of thermal disorder and

disorder at the crystalline domain edges should be included. We have shown above

that spontaneous polarization does not vanish with thermal disorder. Additionally,

we have shown in the previous chapter that the introduction of intermediate region

between ideal crystalline and amorphous regions (referred to interface type A’) does

not qualitatively change the results. Based on these two conclusions, we expect

that localization of the wave function at one side of the crystalline domain would be

present even in the realistic model. This effect will be completely absent only in the

case of centrosymmetric P3HT structure, as that proposed in Ref. 114. Therefore,

spontaneous polarization can significantly affect electronic properties of conjugated

polymers.
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Chapter 7

Summary

The aim of this work was to elucidate the electronic properties of the interfaces in

realistic organic semiconductors from the theoretical point of view. The main results

can be summarized as follows:

(1) Grain boundaries in polycrystalline small-molecules organic semiconductors

introduce localized trap states at the points of strong electronic coupling. However,

they can act as barriers for delocalized states.

(2) Thermal disorder has a significant effect on the electronic states of conjugated

polymers: the disorder of main chains localizes charge carriers on few, mostly two

neighboring chains.

(3) Highest states in the valence band of conjugated polymers belong to crys-

talline domains, making the amorphous domains barriers for charge transport.

(4) Spontaneous polarization in P3HT arising from head-to tail side chains ar-

rangement is significant. This effect is pronounced at the interfaces between crys-

talline and amorphous domains in P3HT or between P3HT and other materials.

Now let us review the results in more detail. Chapter 1 was an introductory

to organic semiconductors, providing an overview of transport models and putting

special attention on electronic coupling, which is important for electronic properties

of organic semiconductors. In Chapter 2 we explained the methods used for atomic

and electronic structure calculation. Firstly, MC method was explained in detail,

making the references with fundamentals of statistical physics. Then, the overview

of DFT method and related extensions (CPM, OFM, DFTB) was given. Finally,
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modern polarization theory was introduced.

In Chapter 3 we have introduced the methodology for the calculation of elec-

tronic states at grain boundaries in small-molecule based organic semiconductors.

We focused our study on low-angle grain boundaries, since our results indicated that

they have lower energies than high-angle grain boundaries. The results indicate that

grain boundaries introduce trap states within the band gap of the material. Wave

functions of these states are localized on pairs of molecules from opposite sides of

the boundary whose mutual distance is smaller than the distance between two adja-

cent molecules in a monocrystal. Strong electronic coupling between the orbitals of

the two molecules is responsible for the creation of trap state. While naphthalene,

BTBT and ditBu-BTBT molecules were used in our study, we expect that the origin

of trap states will be the same in any other small molecule based organic semiconduc-

tor since electronic coupling as a mechanism of trap state creation is present in any

other material from this class. The energy of the trap state was found to correlate

to the distance between two molecules which create the trap. This correlation was

then used to calculate the electronic density of trap states solely based on geomet-

rical arrangement of molecules near the boundary. This approach was exploited to

calculate the density of trap states for different boundaries and estimate the number

of trap states per unit of volume in a real polycrystal. This number is significant

and may consequently reduce the carrier mobility and deteriorate the performance

of devices based on polycrystalline organic semiconductors. The next step in the

understanding of grain boundaries in small-molecule organic semiconductors would

be the calculation of transport properties across grain boundary.

In Chapter 4 the effects of thermal disorder on the electronic structure of crys-

talline P3HT were investigated. The influence of side chains and main chains on

the thermal disorder were investigated separately for the first time. The main con-

clusions from the obtained results can be summarized as follows. The disorder in

side chains has a relatively weak effect on the electronic structure of P3HT. The

effect is more pronounced in the shifted structure than in the aligned, due to higher

conformational freedom of side chains. The disorder in main chains has a stronger

effect on the electronic structure than the disorder in side chains, where the effect is
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equally pronounced in aligned and shifted structures. The disorder in main chains

is sufficient to cause localization of HOMO levels wave functions to few rings only.

Such a degree of localization is similar to the localization in amorphous P3HT and

it is likely the cause of thermally activated mobility that is typically observed in

ordered polymers.

In Chapter 5 electronic states at the interface between crystalline and amor-

phous domains in P3HT were investigated. We have considered two different in-

terface types: sharp interface and more realistic interface that consists of extended

chains. Results can be summarized as follows. Highest states in the valence band

are delocalized in the crystalline domains for both interface types. Highest states in

the amorphous domains are localized on one or two chains, as in the case of single

amorphous domain. Amorphous domain presents a barrier for hole transport due to

high energetic offset between highest states in the crystalline and in the amorphous

domain. This offset is comparable to other reported results in the case of interface

that consists of extended chains. In the case of sharp interface, this offset is larger

due to the energy levels shift in the crystalline domain. Importantly, we find that

none of the investigated interfaces leads to formation of trap states at the inter-

face. These results indicate that in conjugated polymer materials charge transport

takes place through crystalline domains. While our results indicate that amorphous

domains present barriers for charge transport, we note that paths for fast charge

transport through the amorphous domain could exist if well-ordered bridging chains

connect the crystalline domains through the amorphous domain, as proposed in Ref.

22. Future directions in this topic are transport calculations of the interface between

crystalline and amorphous domains and the construction of macroscopic model of

realistic conjugated polymers.

Finally, in Chapter 6 we have shown the existence of spontaneous polarization

along the backbone chain in ordered P3HT. This effect is caused by inversion sym-

metry breaking arising from head-to-tail arrangement of side chains. We proposed

the method to calculate spontaneous polarization in large and realistic systems.

Then, we applied the method to calculate spontaneous polarization for disordered

crystalline P3HT at 300K and showed that spontaneous polarization is still signif-
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icant at room temperature. Effects of spontaneous polarization are important at

the interfaces between materials with different spontaneous polarization. We have

demonstrated that spontaneous polarization confines the hole states at one side of

crystalline domain of P3HT in the presence of the interface between crystalline and

amorphous domain. In organic solar cells at the interfaces between different ma-

terials electric field caused by spontaneous polarization can assist or hinder charge

separation, depending on the relative orientations of polarization vectors. The pro-

cedure for calculating the spontaneous polarization in P3HT can be applied for any

organic semiconductor and for difference interfaces that occur in realistic organic

semiconductors.
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