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University of Novi Sad, Faculty of Technical Sciences

Assist. Prof. Dr. Marija Nefovska-Danilović
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Vuksanović of the University of Belgrade, for introducing me to the theory of com-

posite materials, continuous encouragement during the development of the thesis,

and finally for being so strict and devoted to our joint work. I am grateful for the

scientific freedom he gave me during the creation of this work which allowed me to

grow as a researcher.

Djordje is not with us anymore. I will miss his selfless support and will always be

proud to have a privilege to work under his dedicated guidance. Thank you George.

I express my gratitude to Prof. Dr. Günther Meschke of the Ruhr University

Bochum for his enthusiastic guidance and valuable discussions. I am not only grate-

ful for his willingness to be a coadvisor of my work, but also for having welcomed

me several times in Bochum during 2012-2015. The research stays at the Institute

for Structural Mechanics have been an invaluable experience in my career.

I appreciate Prof. Meschke’s careful review of this thesis and several research

papers, which helped me to broaden my view in the area of finite element analysis.

My sincerest thanks are addressed to Prof. Dr. Mira Petronijević of the University
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Nonlinear Analysis of Laminated Composite Plates and Shells

with Delaminations using Finite Element Method

Abstract

Laminated composites play an important role in the construction of aircrafts, wind

turbines, ships, cars and other components in mechanical and civil engineering. For

example, the aerospace structures are made of thin-walled cylindrical or spherical

composite shell components having an excellent stiffness-to-weight and strength-to-

weight ratios. It is also well-known that Fiber Reinforced Polymer strengthening

of the RC beams and slabs give excellent structural results, low time required and

moderate cost. Finally, sandwich plates are widely used in civil engineering as roof

and wall panels to provide the thermal isolation of the buildings. For these rea-

sons, numerical analysis of laminated composite and sandwich structures attract

the increasing attention of researchers in the various engineering disciplines.

It is very important that perfect bond between the adjacent layers within the

laminate remain intact for the panel to perform on the designed level. However,

the mismatch of material properties between the adjacent layers, along with some

other factors, may cause a delamination that reduces the stiffness of the component

and leads to the unexpected structural behavior. To predict the response of dam-

aged structure, a computational model capable to describe the kinematics of the

delaminated structures is required.

Several limitations of the Equivalent Single Layer (ESL) laminate theories moti-

vated the researchers to derive the refined (layerwise) plate theories for the analysis

of composite laminates. Therefore, the scope of this study is based on the reduction

of the 3D elasticity problem to a 2D one using the Generalized Laminated Plate The-

ory (GLPT) of Reddy, capable to describe the delamination kinematics. The GLPT

became the basis for the development of enriched layered finite elements, which are

applied in the numerical solution of several structural problems. In addition, lay-

ered plate finite elements were applied in the numerical investigation of delaminated

composite shells using the simple transformations presented in this study.

To accurately capture the buckling phenomena of the laminated composites, as



well as for investigation of the influence of large rotations on the transient response

of delaminated composite and sandwich plates, the geometric nonlinearity is taken

into account upon the von Kármán assumptions. Beside the numerical solution, the

analytical (Navier) solution for linear transient analysis of intact rectangular simply

supported composite plates is provided based on double Fourier series.

During the motion of the plate a small gap maybe formed between the adjacent

layers in delaminated zones. Because the initially present embedded delamination

can open and close in the dynamic loading environment, the node-to-node nonlinear

frictionless contact algorithm which prevent the layer overlapping is introduced. In

addition, energy criterion based on the Virtual Crack Closing Technique is applied in

order to predict a delamination growth in static and dynamic loading environments.

The algorithm allows for the change of the previously imposed delaminated zone.

Finally, the differences between the solutions considering only the stationary delam-

ination and these allowing for delamination propagation have been highlighted.

Pre- and post-processing phases of the simulations are performed using the GiD

Pre/Post Processor software developed in CIMNE, Barcelona. All numerical models

and solution procedures are coded in original object-oriented MATLAB solver. The-

oretical considerations are validated in the variety of numerical examples for bend-

ing, free vibration, buckling and transient analysis of delaminated composite and

sandwich plates and shells. Whenever possible, the obtained results are compared

with the exact, analytical, numerical and experimental data from the literature. In

addition, the variety of new results (especially for the damaged structures) is given

as the benchmark for future investigations. Finally, conclusions and the recommen-

dations for the future work in this field are proposed.

Keywords: laminate, composite plate, composite shell, delamination, GLPT, FEM,

bending, free vibrations, buckling

Research Field: Civil Engineering

Expertise Research Field: Engineering Mechanics and Theory of Structures

UDC: 624.04:[519.61/.64:539.3(043.3)



Nelinearna analiza laminatnih kompozitnih ploča i ljuski sa

delaminacijama primenom metode konačnih elemenata

Rezime

Laminatni kompoziti igraju važnu ulogu u izradi aviona, vetrogeneratora, brodova,

automobila i različitih elemenata u mašinstvu i gradjevinarstvu. Na primer, delovi

kosmičkih konstrukcija su izradjeni od tankozidnih cilindričnih ili sferičnih ljuski koje

imaju odlične odnose krutost-težina i čvrstoća-težina. Takodje je dobro poznato da

ojačanje armirano-betonskih greda ili ploča uz pomoć polimera ojačanih vlaknima

daje odlične rezultate u konstrukcijama, uz mali utrošak vremena i umereno visoku

cenu. Konačno, sendvič ploče se široko primenjuju u gradjevinarstvu u vidu krovnih

ili fasadnih panela kako bi se obezbedila termička izolacija zgrada. Iz ovih razloga,

numerička analiza laminatnih kompozitnih i sendvič konstrukcija sve vǐse privlači

pažnju istraživača u različitim inženjerskim disciplinama.

Veoma je važno da idealna veza susednih slojeva u laminatu ostane neoštećena

kako bi se panel ponašao na projektovanom nivou. Medjutim, razlika u materijal-

nim osobinama susednih slojeva, uz uticaj nekih dodatnih faktora, može da izazove

delaminaciju koja smanjuje krutost konstrukcije i dovodi do njenog neočekivanog

ponašanja. Da bi se predvideo odgovor oštećene konstrukcije potreban je numerički

model koji je u stanju da opǐse kinematiku ploče ili ljuske sa delaminacijom.

Odredjena ograničenja teorija laminatnih ploča zasnovanih na jednom ekvivalent-

nom sloju (ESL) motivisala su istraživače da razvijaju složenije (slojevite) teorije

ploča za analizu laminatnih kompozita. Iz ovog razloga, predmet ovog istraživanja

zasniva se na redukciji trodimenzionalnog problema teorije elastičnosti na dvodimen-

zionalni problem primenom Redijeve Opšte Laminatne Teorije Ploča (GLPT), koja

je u mogućnosti da opǐse kinematiku delaminacije. GLPT predstavlja osnovu za

razvijanje složenih slojevitih konačnih elemenata koji su primenjeni u numeričkom

rešavanju različitih problema. Zatim su slojeviti konačni elementi ploče primen-

jeni u numeričkom ispitivanju laminatnih kompozitnih ljuski sa delaminacijama,

primenom jednostavnih transformacija koje su prikazane u ovom istraživanju.

Kako bi se precizno ispitao problem izbočavanja laminatnih kompozita, kao i



za ispitivanje uticaja velikih rotacija na dinamički odgovor kompozitnih i sendvič

ploča sa delaminacijama, u obzir je uzeta geometrijska nelinearnost bazirana na

von Kármán-ovim pretpostavkama. Pored numeričkog resenja, dato je i analitičko

(Navier-ovo) rešenje u linearnoj dinamičkoj analizi neoštećenih pravougaonih slo-

bodno oslonjenih kompozitnih ploča pomoću dvostrukih Fourier-ovih redova.

Prilikom kretanja ploče može se formirati mali razmak izmedju susednih slojeva

u zonama delaminacije. Kako se prethodno prisutna delaminacija može otvarati i

zatvarati pri dinamičkom opterećenju, uveden je nelinearni čvor-čvor kontaktni algo-

ritam koji sprečava medjusobno preklapanje slojeva. Zatim je primenjen energetski

kriterijum zasnovan na metodi pod nazivom Virtual Crack Closure Technique kako

bi se predvidelo širenje delaminacije pri statičkom i dinamičkom opterećenju. Algo-

ritam omogućava promenu oblika prethodno ubačene delaminacije. Razlike izmedju

rešenja koje razmatra jedino stacionarnu delaminaciju i rešenja koje omogućava

propagaciju delaminacije su na kraju istaknute u ovom radu.

Pre- i post-processing faze u numeričkim simulacijama su sprovedene primenom

programa GiD Pre/Post Processor razvijenog u CIMNE, Barselona. Svi numerički

modeli i procedure rešavanja su kodirane u originalnom objektno-orjentisanom MAT-

LAB programu. Teoretska razmatranja su potvrdjena kroz mnoštvo numeričkih

primera savijanja, slobodnih vibracija, izbočavanja i dinamičke analize laminatnih

kompozitnih i sendvič ploča i ljuski sa delaminacijama. Kada god je bilo moguće,

dobijeni rezultati su uporedjeni sa tačnim, analitičkim, numeričkim i eksperimental-

nim rezultatima iz literature. Zatim je prikazano mnoštvo novih rezultata (naročito

za oštećene konstrukcije) koji će služiti kao odrednice za buduća istraživanja. Na

kraju su izvedeni zaključci i date preporuke za budući rad u ovoj oblasti.

Ključne reči: laminat, kompozitna ploča, kompozitna ljuska, delaminacija, GLPT,

MKE, savijanje, slobodne vibracije, izbočavanje

Naučna oblast: Gradjevinarstvo

Uža naučna oblast: Tehnička mehanika i teorija konstrukcija

UDK: 624.04:[519.61/.64:539.3(043.3)
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1 Introduction

Composite materials are those formed by combining two or more materials on a

macroscopic scale to achieve better engineering properties (such as stiffness, strength,

weight reduction or thermal properties) in comparison with some conventional ma-

terials. Laminated composites are generally made of thin layers (laminae, plies)

of different orthotropic materials. These fundamental building blocks consists of

high-strength fibers (oriented in some prescribed direction) embedded in a matrix

material. In the scope of this study, laminated composite plates composed of thin

unidirectional orthotropic layers will be discussed.

A laminate is a collection of laminae stacked to achieve the desired stiffness and

thickness. The sequence of various orientations of layers in a laminate is called

the lamination scheme or stacking sequence. The lamination scheme and material

properties of individual plies provide the flexibility to designers to tailor the stiffness

and strength of the laminate to match a variety of structural requirements.

Composite materials attract the increasing attention in the various engineering

disciplines. They play an important role in the design and construction of aircrafts,

wind turbines, ships, cars and many other parts in mechanical and civil engineering.

The aerospace structures are generally made of thin-walled cylindrical or spherical

shell components [1], which have an excellent fatigue and corrosion resistance prop-

erties, as well as high stiffness-to-weight and strength-to-weight ratios. Examples are

carbon-fiber, glass-fiber, or fiber-reinforced polymers (FRP), which include carbon-

fiber reinforced plastic (CFRP) and glass-reinforced plastic (GRP). It is well-known

that FRP-strengthening of the reinforced-concrete or wooden beams and slabs give

excellent structural results, low time required and moderate cost.

Another type of plate structures relevant for the numerical model discussed in

this study are sandwich panels, i.e. structural members made of two stiff orthotropic

faces separated by an isotropic core. The low weight of sandwich panels was first
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1. Introduction

exploited in the aircraft industry [2]. In civil engineering, the soft-core sandwich

panels are used as light roof and wall panels usually designed to provide the thermal

isolation of the buildings. It is of the great importance that the bond between the

face sheets and the soft-core in sandwich panel remain intact for the panel to perform

on the appropriate level.

Figure 1.1: Different types of laminar composites: honeycomb sandwich plate

(left), laminated composite plate (middle) and soft-core sandwich

panel (right)

However, because of the mismatch of material properties between the adjacent

layers, the shear stresses produced between the layers may cause delamination, which

is the most common type of damage in laminated composite plates. Delamination

may also result from the different fabrication induced faults in the joining of plies.

Consideration of existing interfacial damage often is relevant for the assessment of

the residual lifetime of such structures [3]. Once significant damage occurs at the

ply level, the kinematic and material description of the problem must be changed

before further analysis can proceed.

The delamination mechanics was first studied by Obreimoff [4], who estimated

the specific work of interlaminar fracture. The development of production engineer-

ing of composites has aroused an interest in delamination mechanics [5]. Among

other references, it is important to mention the work of Kachanov [6], in which the

problem of a thin internal delamination in a circular shell was solved. An overview

of delamination problems can be found in [7] (see references herein for details).

As the laminated composite plates are used for primary or secondary components

of different engineering structures (which are generally loaded with transient loads),

it is of the great importance to understand their fundamental dynamic character-

istics, such as natural frequencies, mode shapes and critical buckling loads. Due to
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their position in the structure, sandwich panels are also often exposed to dynamic

forces such as turbulent wind loading. This requires the adequate computational

models able to consider delamination of plates in dynamic loading environments in

order to predict the transient response of the delaminated structure.

This dissertation is devoted to the numerical investigation of different types of

laminated structures with the presence of delamination. The analysis is based on

the reduction of the 3D-elasticity problem to a 2D one using the Generalized Lami-

nated Plate Theory (GLPT) of Reddy [8], able to properly represent the kinematics

of delamination [9]. The numerical solution based on the Finite Element Method

(FEM) is proposed for the solution of differential equations of the problem. To ac-

curately capture the buckling phenomena due to significant in-plane forces acting on

the laminate, the geometric nonlinearity is taken into account using the nonlinear

plate kinematics according to von Kármán [10].

The energy dissipated during the delamination propagation per unit of a newly

created delaminated area is called Strain Energy Release Rate (SERR), which can

be calculated using the direct or indirect methods that have been developed over

years [11]. In the direct methods, special finite elements have to be implemented to

predict the crack tip singularity [12, 13]. On the other hand, the indirect methods

[14–17] calculate the stress intensity factors from the previously derived displace-

ment or stress field. Within this study, the deformation field obtained from the

numerical solution of the GLPT is used to predict the Strain Energy Release Rate

components, which are further compared with the interlaminar fracture toughness,

using the fracture criteria along the crack boundary. The Strain Energy Release

Rates in delaminated composite plates with straight delamination front are derived

analytically based on a third-order shear deformation theory by Szekrényes [18, 19].

Because the initially present embedded delamination within a plate can open

and close in the dynamic loading environment, the contact algorithms which pre-

vent the layer overlapping in the delaminated zone is incorporated in the numerical

model. Finally, changing of the prescribed delamination shape due to the propaga-

tion of the fracture within a plate is predicted using the novel algorithm. These two

algorithms, along with the finite element code, are implemented in a original com-
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puter program (solver) which is used for all numerical calculations within this study.

The dissertation is organized as follows: in Chapter 2 the overview of the litera-

ture and the previous research in this field is elaborated. Governing equations of the

Generalized Laminated Plate Theory, which served for the derivation of analytical

and numerical solutions, are given in Chapter 3. Analytical solution for transient

response of laminated composite plates without any damage is presented in Chap-

ter 4. The numerical model based on the finite element method as well as the

solution procedures for different structural problems are elaborated in Chapter 5.

Previously mentioned contact algorithm which prevents the layer overlapping in the

delaminated zone is illustrated in Chapter 6. Delamination propagation algorithm

which describe the change of the delamination shape under different types of loading

is described in Chapter 7. After that, the proposed layered finite element of the

plate is extended for the analysis of laminated composite shells in Chapter 8. The

structure of the original object-oriented computer program used for the calculations

in all numerical examples, as well as the development of the graphical user inter-

face for the practical application of the developed computer program using GiDr

Pre/Post Processor is elaborated in Chapter 9.

All theoretical considerations from mentioned Chapters are validated using the

variety of numerical examples which are elaborated in Chapter 10. Whenever pos-

sible, the obtained results are compared with the existing data from the literature,

and the variety of new results, especially for the delaminated structures, is given as

the benchmark for future investigations. Finally, conclusions and the recommenda-

tions for the future work in this field are provided in Chapters 11-12.
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2 Review of Previous Research

The structural response of laminated composite plates can be accurately determined

by the use of simple Equivalent-Single-Layer (ESL) laminate theories, especially

for laminates with high length-to-thickness ratios [20]. However, in the case of

thicker structural components these theories are not adequate since they give too stiff

structural response because of the simplifications associated with the classical plate

kinematics. Example is the First-Order Shear Deformation Theory (FSDT) based on

Mindlin-Reissner assumptions, where the transverse shear effects are accounted by

means of shear correction factors. As shown in Refs. [21–23], ESL theories of higher

order overestimate the fundamental frequencies of laminated composite and soft-core

sandwich plates, especially for laminates with arbitrary layout [24]. For the extensive

overview of ESL plate theories, the reader is referred to the monographs by Staab

[25], Reddy [8], Gay, Hoa and Tsai [26], Leissa [27] and Carrera et al. [28], among

other references. Due to the considerably different material characteristics of the

adjacent layers within a laminate, discontinuities in transverse shear strains at the

interfaces between layers may be significant, but this phenomenon is not accounted

for in ESL theories. Another problem that arise is inability of the ESL theories to

consider the local damage effects, such as matrix cracking, delamination or the free

edge effects within a laminate. These limitations motivated the researchers to derive

the refined (layerwise) plate theories.

The number of exact 3D elasticity solutions of the intact laminated composite

plates is generally limited to the typical cases of plate geometry, loading or boundary

conditions [29, 30]. Also, the exact 3D equations of elasticity which describe the

shell behavior are generally complicated [31], and thus the analyses of the laminated

composite shells are usually carried out using the two-dimensional shell theories. An

overview of recent research in the field of dynamic analysis of laminated composite

shells can be found in papers of Qatu [32–34].
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The finite element solutions of the classical plate theory (CPT) based on the

Kirchhoff’s hypothesis overpredicts natural frequencies and buckling loads due to

the neglecting of transverse shear strains [21, 35]. Reddy [36] developed the finite

element based on the FSDT for geometrically nonlinear analysis of laminated com-

posite and isotropic plates without consideration of delamination. Further, Ju et al.

[37] divided the FSDT-based finite element into the delaminated and intact segments

and calculated the natural frequencies and mode shapes of delaminated composite

plates. Finally, Owen and Li [38] calculated the fundamental frequencies of lami-

nated composite plates using different ESL theories and provided the comparison

study.

In order to accurately incorporate the cross-sectional warping in the FSDT,

Reddy [39] developed a Higher-Order Shear Deformation Theory (HSDT), where

displacement expansion through the plate thickness is approximated using the cubic

series expansion of thickness coordinate. Basar et al. [40] used these refined shear-

deformation models with finite rotations, allowing for a quadratic shear deformation

distribution across the thickness. Vuksanović also [21] investigated the single layer

models of higher order based on the HSDT, and used the HSDT-based finite ele-

ments for the calculation of the dynamic response of intact composite plates. Beside

the application to the analysis of laminated composite plates, HSDT-based finite el-

ements were applied in the analysis of composite sandwich plates, for example in

works of Nayak et al. [41, 42]

Reddy [43] used the shear deformable finite elements for the bending analysis of

laminated composite shells, and derived the finite elements based on the various shell

theories. Khdeir et al. [44] derived the analytical solutions for displacements, natural

frequencies and buckling loads of cross-ply circular cylindrical shells using the CPT,

FSDT and HSDT. The method of differential quadrature (DQM) [45, 46], which was

improved to the Generalized Differential Quadrature Method (GDQM)[47–49], was

also used for the calculation of natural frequencies of laminated composite conical

shells based on different ESL shell theories in Refs. [50–53]. Several analytical so-

lutions for the free vibration problems of laminated composite shells are derived by

Tong [54, 55], based on the power series method on the basis of CPT and FSDT. Jin
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et al. [56–58] have also developed a unified modified Fourier solution based on the

FSDT for the vibration analysis of various composite laminated structure elements

of revolution with general elastic restraints. The exact solution for free vibration

analysis of thick cross-ply laminated composite cylindrical shells based on the dy-

namic stiffness method (DSM) is recently derived in work of Ich Thinh et al. [59].

The Generalized Laminated Plate Theory proposed by Reddy [8] and further im-

proved by Barbero and Reddy [9] became the basis for the development of enriched

layered finite elements, capable to describe the independent motion of every layer

separately. Ćetković and Vuksanović [20] have derived both the analytical and nu-

merical solution of the GLPT for the analysis of intact laminated composite and

sandwich plates. Marjanović and Vuksanović [60] further improved this model to

account for delamination kinematics and applied the model for the calculation of

natural frequencies, mode shapes and critical buckling loads of delaminated com-

posite and sandwich plates. The papers of Yam et al. [61], Lin et al. [62], Wei

et al. [63] and Zhen et al. [64] served as the benchmark for comparison of the

present model with experimental and numerical data. On the other hand, Alnefaie

[65] used a full layerwise finite element model for the calculation of fundamental

dynamic characteristics of laminated plates considering the interlaminar damage.

Basar et al. [66, 67] also developed a family of multi-layer shell elements to calcu-

late the interlaminar stresses with the high accuracy. They used the layerwise shell

models to calculate the free vibration response of laminated structures. In order to

reduce the computational cost arising in the GLPT, Botello et al. [68] derived the

layerwise finite element model of intact composite plates using the triangular finite

elements, introducing the substructuring technique to eliminate the in-plane degrees

of freedom during the assembly process. Ghoshal et al. [69, 70] incorporated the

interlaminar contact algorithm to enrich the plate kinematics during the so-called

”breathing” phenomena in the delaminated zone of smart composite plates. Non-

linear contact conditions were incorporated in the analysis of sandwich panels using

the high-order sandwich plate theory in Ref. [71].

Many authors investigated the delamination in laminated composite and sand-
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wich plates using the shell formulation obtained from a degeneration of 3D solid

elements. Klinkel et al. [72] derived a solid element for the nonlinear analysis of

laminated shell structures, using natural strain and enhanced assumed strain meth-

ods to improve the element behavior. A refined eight-node continuum shell element

with enhanced strain, capable to account for delamination using the interface el-

ement was presented in a work of Sprenger et al. [73]. The shell element with

enhanced assumed strains for a geometrically non-linear theory has been presented

by Klinkel and Wagner [72].

While the many researchers focused their attention on the analysis of laminated

composite plate structures using the layered finite elements [9, 11, 20, 65, 74], there

is still a lack of investigations regarding the applicability of layered finite elements for

the analysis of laminated composite shells with delaminations. Basar et al. [66, 67]

developed a family of layered shell elements to calculate the free vibration response

of laminated composite cylindrical and hyperboloid shells without the delamination.

Regarding the programming issues, the first object-oriented finite element codes

are proposed in [75–80], having some basic classes like Node, Element, DispBC,

ForcedBC, Material and Dof as finite element components and some additional

ones like Gauss and ShapeFunction for assisting in the numerical analysis. Dubois-

Pèlerin et al. [81] have designed a structure for linear dynamic FE analysis, consist-

ing of (1) FEM objects : Node, Element, Load, LoadTimeFunction, Material, Dof,

Domain, and LinearSolver, (2) tools: GaussPoint, Polynomial and (3) collection

classes: Array, Matrix, String. They also developed a nonlinear extension to a

previously developed structure and presented it in Ref. [82].

In Refs. [83, 84] a more detailed codes are published for different algorithms in

the dynamic analysis of structures, introducing some new numerical expressions for

handling the common numerical operations in the FEM. Object-oriented nonlinear

dynamic finite element code is introduced by Miller et al. [85, 86], with some new

classes such as TimeDependentLoad, Constrain, Assemblage and Material, having

the ability to handle both linear and nonlinear materials.

Archer et al. [87, 88] presented the another object-oriented structure for a finite

element program dedicated to simulate a linear and nonlinear static and dynamic

8



2. Review of Previous Research

analysis of structures. In the top level of abstraction, the Analysis class encapsu-

lates the algorithms and the Model class represents the finite element components.

In addition, different handlers are used to handle model dependent parts of the

algorithm (ReorderHandler, MatrixHandler, ConstraintHandler).

Cardona et al. [89] developed the Object Oriented Finite Elements method

Led by Interactive Executor (OOFELIE). They used this flexible tool for solving

coupled problem where their high level language interpreting mechanism provides

an extra flexibility in handling different algorithms in coupled problems. Further

on, Patzák et al. [90] published an structure used in the Object Oriented Finite

Element Modeling (OOFEM) program which is oriented to structural analysis. Re-

cently, Dadvand et al. [91, 92] designed a framework for building multi-disciplinary

finite element programs called Kratos, which contains several tools for the easy im-

plementation of different finite element applications.
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3 Generalized Laminated Plate

Theory

3.1 Introduction

In contrast to the ESL theories, the layerwise plate theories are developed by as-

suming that the displacement field exhibits only C0-continuity through the lami-

nate thickness. Thus the derivatives of displacement components with respect to

the thickness coordinate may be discontinuous, allowing for the possibility of con-

tinuous transverse stresses at the interfaces between the adjacent layers. From the

equilibrium of interlaminar forces the following continuity conditions hold between

the stress field of adjacent layers at their interface [8]:
σx

σy

τxy


(k)

6=


σx

σy

τxy


(k+1)

,


τxz

τyz

σz


(k)

=


τxz

τyz

σz


(k+1)

(3.1)

These conditions in turn imply that the strain field of adjacent layers satisfy the

following conditions: 
γxz

γyz

εz


(k)

6=


γxz

γyz

εz


(k+1)

(3.2)

These continuity conditions can only be achieved by the use of layerwise theories

or a 3-D elasticity theory. The displacement field of the GLPT allows that any

desired number of layers, distribution of layers and order of interpolation can be

achieved by specifying a particular mesh of one-dimensional finite elements through

the thickness. The resulting strain field is kinematically correct: the in-plane strains

are continuous, while the transverse strains are discontinuous through the thickness.

10



3. Generalized Laminated Plate Theory

3.2 Assumptions and Restrictions

The Generalized Laminated Plate Theory in its extended version is based on the

following assumptions:

1. All layers are perfectly bonded together, except in the previously imposed

delaminated area, where the jump discontinuities (delamination openings) in

three orthogonal directions may occur.

2. The previously imposed delaminated zone may change its shape during the

loading process allowing for the propagation of delamination. Debonding of

the boundary nodes is only possible for free plate boundaries.

3. The growth of the delamination can not change the essential boundary condi-

tions along Γ (Dirichlet boundary) - see Figure 3.3.

4. Inextensibility of the transverse normal is imposed.

5. The overlapping of layers is prevented by a contact algorithm described in

Chapter 6.

6. All layers are considered as homogeneous materials, without the possibility of

transverse cracking.

The third assumption imply that the transverse displacement is independent of

the thickness coordinate and the transverse normal strain εzz = 0. In the formulation

of the theory, the following restrictions are imposed:

1. The material of each layer is linearly elastic and has three planes of material

symmetry (orthotropic material).

2. Each layer is of uniform thickness.

3. Nonlinear kinematics according to von Kármán [10] are incorporated to ac-

count for moderately large rotations and small strains.

4. The transverse shear stresses on the top and the bottom surfaces of the lami-

nate are zero (τxz,top = τyz,top = τxz,bottom = τyz,bottom = 0).

11



3. Generalized Laminated Plate Theory

3.3 Formulation

This study deals with the laminated composite and composite sandwich plates com-

posed of n orthotropic material layers with the principal coordinates of the kth

lamina oriented at an angle θk to the laminate coordinate x (the x-axis of the local

(material) coordinates of each lamina coincides with the fiber direction). The typ-

ical plates analyzed in this study are shown in Figures 3.2 and 3.3. Although not

necessary, it is convenient to take the xy-plane of the problem in the mid-plane of

the laminate Ω0, while the z-axis is oriented upward. The overall plate thickness is

denoted as h, while the thickness of the kth lamina is denoted as hk. The adopted

global coordinate system is Cartesian orthogonal coordinate system xyz.

The problem domain consists of the laminate domain Ω0 ≡ Ω0×(−h/2, h/2) and

the domain boundaries: top surface St(z = h/2), bottom surface Sb(z = −h/2) and

the edge Γ ≡ Γ × (−h/2, h/2), where Γ is a curved edge surface with the outward

normal n̂= nxêx + nyêy (see Figure 3.1).

Figure 3.1: Laminated composite plate with a curved boundary

Figure 3.2: Laminated composite plate with delaminations in the global coordi-

nate system xyz

12



3. Generalized Laminated Plate Theory

Figure 3.3: Composite sandwich plate with delamination in the global coordinate

system xyz

3.4 Displacement Field

The displacement field of the arbitrary point of the laminate considering the arbi-

trary time point t, with coordinates (x, y, z) in the global coordinate system accord-

ing to Figures 3.2 and 3.3 is adopted in this study. In the GLPT the displacements

(u1, u2, u3) of the arbitrary point of the plate in three orthogonal directions which

coincide with the global coordinate system are denoted as follows:

u1(x, y, z, t) = u(x, y, t) +
N∑
I=1

uI(x, y, t)ΦI(z) +
ND∑
I=1

U I(x, y, t)HI(z)

u2(x, y, z, t) = v(x, y, t) +
N∑
I=1

v(x, y, t)IΦI(z) +
ND∑
I=1

V I(x, y, t)HI(z)

u3(x, y, z, t) = w(x, y, t) +
ND∑
I=1

W I(x, y, t)HI(z)

(3.3)

In Eqs. (3.3), (u, v, w) represent the displacement components in the mid-plane

of the laminate in directions x, y and z respectively, (uI , vI) represent the relative

displacements of the I th numerical layer through the plate thickness in relation to the

middle plane of the laminate in directions x and y, respectively, and (U I , V I ,W I) are

the jump discontinuities in the displacement field in the I th delaminated interface in

three orthogonal directions (see Figure 3.5). N is the number of interfaces between

the layers including the top and bottom laminate surfaces (St and Sb) in which

nodes through the thickness are located. These interfaces are usually denoted as

numerical layers, and correspondingly N = n + 1. ND represents the number of

numerical layers in which delamination is present.

13



3. Generalized Laminated Plate Theory

The variable W I is the crack opening displacement (COD), thus the condition

W I > 0 should be adopted to provide no-penetration boundary condition for delam-

inated surfaces of the I th delamination. This means that if W I = 0 the delaminated

surfaces of the I th delamination are in the contact condition. The delamination front

is the boundary curve in the delamination plane, along which essential boundary

conditions U I = V I = W I are enforced.

ΦI(z) are selected to be layerwise continuous functions of z-coordinate. In this study,

one-dimensional linear Lagrangian functions are adopted [8, 93], as shown in Figure

3.4:

Φ1(z) = 1− z
h(1)

dΦ1

dz
= − 1

h(1)
z1 ≤ z ≤ z2

ΦI =

 z
h(I−1)

1− z
h(I)

dΦI

dz
=

 1
h(I−1)

− 1
h(I)

zI−1 ≤ z ≤ zI

zI ≤ z ≤ zI+1

ΦN(z) = z
h(N−1)

dΦN

dz
= 1

h(N−1) zN−1 ≤ z ≤ zN

(3.4)

HI(z) are Heaviside step functions which describe the delamination kinematics in

the I th delaminated layer. These functions are defined as (see Figure 3.4):

HI(z) =

 +1 z0 ≤ zI ≤ h

−1 0 ≤ zI < z0

,
dHI(z)

dz
= 0 (3.5)

Figure 3.4: Heaviside step functions HI(z) to represent jump discontinuities (cen-

ter) and Lagrangian functions ΦI(z) to represent the layerwise change

of the displacements (right)

As the consequence of the assumed displacement field, the in-plane displacements

are piece-wise continuous through the thickness of the laminate in the intact region

with the discontinuities at the delaminated interfaces (see Ref. [60] for details),

while the transverse displacement is constant through the thickness, except in the

delaminated zone. The proposed plate model allows for the consideration of an
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Figure 3.5: Physical interpretation of the displacements U1 and W 1 at the delam-

inated interface

arbitrary number of delaminations between layers by using an arbitrary number

of additional delamination expansions in the displacement field. The effect of the

assumed displacement field is illustrated in Figure 3.6.

Figure 3.6: In-plane deformation of the transverse normal AB due to the assumed

displacement field and the delamination between layers 4-5

3.5 Strain Field

For the plate-like structures investigated in this work, it is appropriate to consider

small strains and moderately large rotations in the kinematics description [8]. This

can be achieved by the use of von Kármán kinematic assumptions [10]. The strain

field is divided into a linear and nonlinear part (superscripts L and NL), for the

sake of simplicity. Note that transverse normal strain εz is equal to zero in this case,

as a result of the assumption of the inextensibility of the transverse normal. The

strains are discontinuous at the layer interfaces because of the layerwise definition

of the functions ΦI(z).

The von Kármán nonlinear strains associated with the assumed displacement
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field can be written as follows:

εx =
∂u1

∂x
+

1

2

(
∂u3

∂x

)2

=
∂u

∂x
+

N∑
I=1

∂uI

∂x
ΦI +

ND∑
I=1

∂U I

∂x
HI + (3.6)

+
1

2

(
∂w

∂x

)2

+
∂w

∂x

ND∑
I=1

∂W I

∂x
HI +

1

2

ND∑
I=1

ND∑
J=1

∂W I

∂x

∂W J

∂x
HIHJ

εy =
∂u2

∂y
+

1

2

(
∂u3

∂y

)2

=
∂v

∂y
+

N∑
I=1

∂vI

∂y
ΦI +

ND∑
I=1

∂V I

∂y
HI + (3.7)

+
1

2

(
∂w

∂y

)2

+
∂w

∂y

ND∑
I=1

∂W I

∂y
HI +

1

2

ND∑
I=1

ND∑
J=1

∂W I

∂y

∂W J

∂y
HIHJ

εz =
∂u3

∂z
= 0 (3.8)

γyz =
∂u2

∂z
+
∂u3

∂y
=
∂w

∂y
+

N∑
I=1

vI
dΦI

dz
+

ND∑
I=1

∂W I

∂y
HI (3.9)

γxz =
∂u1

∂z
+
∂u3

∂x
=
∂w

∂x
+

N∑
I=1

uI
dΦI

dz
+

ND∑
I=1

∂W I

∂x
HI (3.10)

γxy =
∂u1

∂y
+
∂u2

∂x
+
∂u3

∂x

∂u3

∂y
=
∂u

∂y
+
∂v

∂x
+

N∑
I=1

(
∂uI

∂y
+
∂vI

∂x

)
ΦI + (3.11)

+
ND∑
I=1

(
∂U I

∂y
+
∂V I

∂x

)
HI +

∂w

∂x

∂w

∂y
+

ND∑
I=1

ND∑
I=1

∂W I

∂x

∂W I

∂y
HIHJ

3.6 Constitutive Equations of the Single Lamina

Before defining the constitutive equations of the single lamina, some comments

regarding the selected constitutive model will be given. A plane stress model is

adopted (see Ref. [94] and references herein for details). This choice is motivated by

the fact, that for thin plates, the layerwise models which account for the transverse

normal stress suffer numerical instabilities. This issue is caused by the presence
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of spurious transverse normal and shear stiffness leading to the shear locking phe-

nomenon. Spurious transverse normal and shear stiffness occurs when the span-to-

thickness ratio of the analyzed domain (say single layer of the laminate) increases.

Furthermore, in the delaminated area, the separated parts of the laminate behave as

two independent thin plates, which can be correctly described using the plane stress

assumptions. In some author’s preliminary investigations [60] it was found that for

the investigated cases the differences are minimal, with reduced computational costs

for the plane stress model.

The constitutive relations for the kth orthotropic layer, for linear elastic mate-

rial that follows Hooke’s law, in local coordinate system of the single layer which

coincides with fiber direction can be written as:

σ =



σ1

σ2

σ6

σ4

σ5



(k)

=



Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55



(k)

ε1

ε2

ε6

ε4

ε5



(k)

= Qε (3.12)

In Eq. (3.12), Q
(k)
ij are the reduced stiffness components for the plane stress case,

calculated as: Q11 = E1

1−ν12ν21 , Q12 = ν12E2

1−ν12ν21 , Q22 = E2

1−ν12ν21 , Q66 = G12, Q44 = G23

and Q55 = G13. In previous relations, E1 and E2 are moduli of elasticity of the

material in two orthogonal directions, G12, G13 and G23 are shear moduli, while ν12,

ν13 and ν23 are Poisson’s ratios. Since the laminate is made of several orthotropic

layers, with their material axes oriented arbitrarily with respect to the laminate

coordinates, the constitutive relations must be transformed from the local (layer) to

the global (laminate) coordinate system using the following relations:

{σ} = [T ] {σ}

{ε} = [T ] {ε}
(3.13)

In Eqs. (3.13), {σ} and {ε} are the vectors of stress and strain components in

the global coordinate system, respectively, while [T ] is the following transformation
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matrix of the kth orthotropic lamina:

T =



cos2 θ sin2 θ 2 sin θ cos θ 0 0

sin2 θ cos2 θ −2 sin θ cos θ 0 0

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ 0 0

0 0 0 cos θ − sin θ

0 0 0 sin θ cos θ



(k)

(3.14)

In Eq. (3.14), θ is the angle between the fiber orientation in the kth lamina (material

coordinate system) and x-axis in the global coordinate system. From here, the

matrix of the plane stress stiffness coefficients of the kth layer in the global coordinate

system is calculated as: [
Q
]

= [T ](k)−1
[Q](k)[T ](k) (3.15)

The stress-strain relations in the kth orthotropic layer in global coordinate system

can now be computed from the plane stress constitutive equations. For the kth

orthotropic lamina the constitutive law is described as:

σx

σy

τyz

τxz

τxy



(k)

=



Q11 Q12 0 0 Q16

Q12 Q22 0 0 Q26

0 0 Q44 Q45 0

0 0 Q45 Q55 0

Q16 Q26 0 0 Q66



(k)

εx

εy

γyz

γxz

γxy



(k)

(3.16)

The previous system of equations can be separated into two independent systems

of equations according to:
σx

σy

τxy


(k)

=


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


(k)

εx

εy

γxy


(k)

 τxz

τyz


(k)

=

 Q55 Q45

Q45 Q44

(k) γxz

γyz


(k)

(3.17)
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The transformed plane stress stiffnesses from Eqs. 3.17 are [8]:

Q11 = Q11 cos4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ +Q22 sin4 θ

Q12 = (Q11 +Q22 − 4Q66) sin2 θ cos2 θ +Q12

(
sin4 θ + cos4 θ

)
Q22 = Q11 sin4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ +Q22 cos4 θ

Q16 = (Q11 −Q12 − 2Q66) sin θ cos3 θ + (Q12 −Q22 + 2Q66) sin3 θ cos θ

Q26 = (Q11 −Q12 − 2Q66) sin3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos3 θ

Q66 = (Q11 +Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ +Q66

(
sin4 θ + cos4θ

)
Q44 = Q44 cos2 θ +Q55 sin2 θ

Q45 = (Q55 −Q44) sin θ cos θ

Q55 = Q55 cos2 θ +Q44 sin2 θ

(3.18)

3.7 Equations of Motion

As noted before, the transverse normal strain εzz is equal to zero in the GLPT.

Consequently, the variation of virtual strain is δεzz = 0 and do not enter the for-

mulation. The governing equations of motion for the present theory can be derived

using the dynamic version of the principle of virtual displacements:

0 =

T∫
0

(δU + δV − δK)dt (3.19)

The virtual strain energy (virtual work of internal forces), virtual work of external

forces and the virtual kinetic energy, respectively, are denoted as [8]:

δU =

∫
Ω

 h/2∫
−h/2

(σxδεx + σyδεy + τxyδγxy + τxzδγxz + τyzδγyz) dz

 dΩ (3.20)

δV = −
∫
Ω

q(x, y)δwdxdy −
∫
Γ

 h/2∫
−h/2

(σ̂nnδun + σ̂nsδus + σ̂nzδw) dz

 ds (3.21)

δK = −
∫
Ω

 h/2∫
−h/2

ρ (u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3) dz

 dΩ (3.22)
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In Eqs. 3.19 - 3.21, q(x, y) is the distributed transverse loading in the mid-plane of

the laminate, (σ̂nn, σ̂ns, σ̂nz) are the specified stress components on the portion Γσ

of the boundary Γ (see Figure 3.1), (δun, δus) are the virtual displacements along

the normal and tangential directions, respectively, on the boundary Γ, ρ is the mass

density of the plate material, while the superposed dot on a variable indicates the

time derivative.

The virtual displacements are zero on the portion of the boundary where the

corresponding actual displacements are specified. For the time-dependent problems,

the admissible virtual displacements must also vanish at times t = 0 and t = T .

Having in mind that if a stress component is specified only on a part of the boundary,

on the remaining part of the boundary the corresponding virtual displacements must

be zero [8]. For the clear notation the derivation will be performed separately for

all components which enter the principle of virtual displacements.

3.7.1 Virtual Strain Energy

Virtual strains are derived from the previously derived strain field (Eq. (3.8)):

δεx =
∂δu

∂x
+

N∑
I=1

∂δuI

∂x
ΦI +

ND∑
I=1

∂δU I

∂x
HI +

∂w

∂x

∂δw

∂x
+
∂δw

∂x

ND∑
I=1

∂W I

∂x
HI +

+
1

2

ND∑
I,J=1

(
∂W J

∂x

∂δW I

∂x
+
∂W I

∂x

∂δW J

∂x

)
HIHJ (3.23)

δεy =
∂δv

∂y
+

N∑
I=1

∂δvI

∂y
ΦI +

ND∑
I=1

∂δV I

∂y
HI +

∂w

∂y

∂δw

∂y
+
∂δw

∂y

ND∑
I=1

∂W I

∂y
HI +

+
1

2

ND∑
I,J=1

(
∂W J

∂y

∂δW I

∂y
+
∂W I

∂y

∂δW J

∂y

)
HIHJ (3.24)
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δγxy =
∂δu

∂y
+
∂δv

∂x
+

N∑
I=1

(
∂δuI

∂y
+
∂δvI

∂x

)
ΦI +

ND∑
I=1

(
∂δU I

∂y
+
∂δV I

∂x

)
HI +

+
∂w

∂y

∂δw

∂x
+
∂w

∂x

∂δw

∂y
+

ND∑
I,J=1

(
∂W J

∂y

∂δW I

∂x
+
∂W I

∂x

∂δW J

∂y

)
HIHJ +

+
∂δw

∂x

ND∑
I=1

∂W I

∂y
HI +

∂w

∂x

ND∑
I=1

∂δW I

∂y
HI +

+
∂δw

∂y

ND∑
I=1

∂W I

∂x
HI +

∂w

∂y

ND∑
I=1

∂δW I

∂x
HI (3.25)

δγxz =
∂δw

∂x
+

N∑
I=1

uI
dΦI

dz
+

ND∑
I=1

dδW I

dx
HI (3.26)

δγyz =
∂δw

∂y
+

N∑
I=1

vI
dΦI

dz
+

ND∑
I=1

dδW I

dy
HI (3.27)

After the incorporation of virtual strains from Eqs. (3.23) - (3.27) into the Eq.

(3.20), the linear and nonlinear portions of the virtual strain energy are derived:

δUL =

∫
Ω

h/2∫
−h/2



σx

(
∂δu
∂x

+
N∑
I=1

∂δuI

∂x
ΦI +

ND∑
I=1

∂δUI

∂x
HI

)
+

+σy

(
∂δv
∂y

+
N∑
I=1

∂δvI

∂y
ΦI +

ND∑
I=1

∂δV I

∂y
HI

)
+

+τxy

(
∂δu
∂y

+ ∂δv
∂x

+
N∑
I=1

(
∂δuI

∂y
+ ∂δvI

∂x

)
ΦI

)
+

+τxy
ND∑
I=1

(
∂δUI

∂y
+ ∂δV I

∂x

)
HI+

+τxz

(
∂δw
∂x

+
N∑
I=1

uI dΦI

dz
+

ND∑
I=1

dδW I

dx
HI

)
+

+τyz

(
∂δw
∂y

+
N∑
I=1

vI dΦI

dz
+

ND∑
I=1

dδW I

dy
HI

)



dzdΩ (3.28)
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3. Generalized Laminated Plate Theory

δUNL =

∫
Ω

h/2∫
−h/2



σx

(
∂w
∂x

∂δw
∂x

+ ∂δw
∂x

ND∑
I=1

∂W I

∂x
HI

)
+

+σx

(
1
2

ND∑
I,J=1

(
∂WJ

∂x
∂δW I

∂x
+ ∂W I

∂x
∂δWJ

∂x

)
HIHJ

)
+

+σy

(
∂w
∂y

∂δw
∂y

+ ∂δw
∂y

ND∑
I=1

∂W I

∂y
HI

)
+

+σy

(
1
2

ND∑
I,J=1

(
∂WJ

∂y
∂δW I

∂y
+ ∂W I

∂y
∂δWJ

∂y

)
HIHJ

)
+

+τxy

(
∂w
∂y

∂δw
∂x

+ ∂w
∂x

∂δw
∂y

)
+

+τxy

(
ND∑
I,J=1

(
∂WJ

∂y
∂δW I

∂x
+ ∂W I

∂x
∂δWJ

∂y

)
HIHJ

)
+

+τxy

(
∂δw
∂x

ND∑
I=1

∂W I

∂y
HI + ∂w

∂x

ND∑
I=1

∂δW I

∂y
HI

)
+

+τxy

(
∂δw
∂y

ND∑
I=1

∂W I

∂x
HI + ∂w

∂y

ND∑
I=1

∂δW I

∂x
HI

)



dzdΩ (3.29)

To reduce the 3D model to a 2D one, we eliminate the z-coordinate by the explicit

integration of stress components multiplied with the corresponding functions ΦI(z)

or HI(z). In this way we introduce the following stress resultants as the integrals

of the stress components through the thickness of the plate:{
Nx Ny Nxy Qx Qy

}
=

n∑
k=1

∫ zk+1

zk

{
σx σy τxy τxz τyz

}(k)

dz{
N I
x N I

y N I
xy

}
=

n∑
k=1

∫ zk+1

zk

{
σx σy τxy

}(k)

ΦIdz{
QI
x QI

y

}
=

n∑
k=1

∫ zk+1

zk

{
τxz τyz

}(k)
dΦI

dz
dz{

N
I

x N
I

y N
I

xy Q
I

x Q
I

y

}
=

n∑
k=1

∫ zk+1

zk

{
σx σy τxy τxz τyz

}(k)

HIdz{
N
IJ

x N
IJ

y N
IJ

xy

}
=

n∑
k=1

∫ zk+1

zk

{
σx σy τxy

}(k)

HIHJdz{
Q
IJ

x Q
IJ

y

}
=

n∑
k=1

∫ zk+1

zk

{
τxz τyz

}(k)

HIHJdz

(3.30)

In Eqs. (3.30), Nx, Ny, Nxy, Qx, Qy are the mid-plane stress resultants, N I
x , N I

y , N I
xy,

QI
x, Q

I
y are relative values of the stress resultants in the I th delaminated interface,

while the N
I

x, N
I

y, N
I

xy, Q
I

x, Q
I

y are the stress resultants in the I th delaminated layer

(the forces to hold the delaminated nodes together in the I th delaminated interface).

If we substitute the stress resultants of the laminate from (3.30) into the Eqs. (3.28)
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3. Generalized Laminated Plate Theory

- (3.29) we obtain the virtual strain energy in the following form:

δUL =

∫
Ω



Nx
∂δu
∂x

+Ny
∂δv
∂y

+Nxy

(
∂δu
∂y

+ ∂δv
∂x

)
+Qx

∂δw
∂x

+Qy
∂δw
∂y

+

+
N∑
I=1

 N I
x
∂δuI

∂x
+N I

y
∂δvI

∂y
+N I

xy

(
∂δuI

∂y
+ ∂δvI

∂x

)
+

+QI
xδu

I +QI
yδv

I

+

+
ND∑
I=1

[
N
I

x
∂δUI

∂x
+N

I

y
∂δV I

∂y
+N

I

xy

(
∂δUI

∂y
+ ∂δV I

∂x

)]
+

+
ND∑
I=1

(
Q
I

x
∂δW I

∂x
+Q

I

y
∂δW I

∂y

)


dΩ (3.31)

δUNL =

∫
Ω



Nx
∂w
∂x

∂δw
∂x

+Ny
∂w
∂y

∂δw
∂y

+Nxy

(
∂w
∂y

∂δw
∂x

+ ∂w
∂x

∂δw
∂y

)
+

+N
I

x

(
∂δw
∂x

ND∑
I=1

∂W I

∂x
+ ∂w

∂x

ND∑
I=1

∂δW I

∂x

)
+

+N
I

y

(
∂δw
∂y

ND∑
I=1

∂W I

∂y
+ ∂w

∂y

∑ND
I=1

∂δW I

∂y

)
+

+N
I

xy


∂δw
∂x

ND∑
I=1

∂W I

∂y
+ ∂w

∂x

ND∑
I=1

∂δW I

∂y
+

+∂δw
∂y

ND∑
I=1

∂W I

∂x
+ ∂w

∂y

ND∑
I=1

∂δW I

∂x

+

+N
IJ

x

ND∑
I,J=1

1
2

(
∂WJ

∂x
∂δW I

∂x
+ ∂W I

∂x
∂δWJ

∂x

)
+

+N
IJ

y

ND∑
I,J=1

1
2

(
∂WJ

∂y
∂δW I

∂y
+ ∂W I

∂y
∂δWJ

∂y

)
+

+N
IJ

xy

ND∑
I,J=1

(
∂WJ

∂y
∂δW I

∂x
+ ∂W I

∂x
∂δWJ

∂y

)



dΩ (3.32)

In previous equations the derivations of virtual displacements exist, which have to

be eliminated. This is done by performing the integration by parts for the surface

integral, using the following formulas:∫
Ω

F (x, y)∂G(x,y)
∂x

dΩ =
∮
Γ

F (x, y)G(x, y)nxds−
∫
Ω

G(x, y)∂F (x,y)
∂x

dΩ∫
Ω

F (x, y)∂G(x,y)
∂y

dΩ =
∮
Γ

F (x, y)G(x, y)nyds−
∫
Ω

G(x, y)∂F (x,y)
∂y

dΩ
(3.33)

After the integration by parts all members corresponding to the specific virtual
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3. Generalized Laminated Plate Theory

displacement are grouped. Consequently:

δUL =
∮
Γ



δu (Nxnx +Nxyny) + δv (Nxynx +Nyny) +

+δw (Qxnx +Qyny) +

+
N∑
I=1

[
δuI

(
N I
xnx +N I

xyny
)

+ δvI
(
N I
xynx +N I

yny
)]

+

+
ND∑
I=1

[
δU I

(
N
I

xnx +N
I

xyny

)
+ δV I

(
N
I

xynx +N
I

yny

)]
+

+
ND∑
I=1

[
δW I

(
Q
I

xnx +Q
I

yny

)]


ds−

−
∫
Ω



δu
(
∂Nx
∂x

+ ∂Nxy
∂y

)
+ δv

(
∂Nxy
∂x

+ ∂Ny
∂y

)
+ δw

(
∂Qx
∂x

+ ∂Qy
∂y

)
+

+
N∑
I=1

[
δuI

(
∂NI

x

∂x
+

∂NI
xy

∂y
−QI

x

)
+ δvI

(
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y

)]
+

+
ND∑
I=1

[
δU I

(
∂N

I
x

∂x
+

∂N
I
xy

∂y

)
+ δV I

(
∂N

I
xy

∂x
+

∂N
I
y

∂y

)]
+

+
ND∑
I=1

δW I

(
∂Q

I
x

∂x
+

∂Q
I
y

∂y

)


dΩ

(3.34)

δUNL =
∮
Γ



δw
[
Nx

∂w
∂x
nx +Ny

∂w
∂y
ny +Nxy

(
∂w
∂y
nx + ∂w

∂x
ny

)]
+

+
ND∑
I=1

δw
[
N
I

x
∂W I

∂x
nx +N

I

y
∂W I

∂y
ny +N

I

xy

(
∂W I

∂y
nx + ∂W I

∂x
ny

)]
+

+
ND∑
I=1

δW I
[
N
I

x
∂w
∂x
nx +N

I

y
∂w
∂y
ny +N

I

xy

(
∂W I

∂y
nx + ∂W I

∂x
ny

)]
+

+
ND∑
I,J=1

δW I

 N
IJ

x
∂WJ

∂x
nx +N

IJ

y
∂WJ

∂y
ny+

+N
IJ

xy

(
∂WJ

∂y
nx + ∂WJ

∂x
ny

) 


ds−

−
∫
Ω



δw
[
∂
∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+ ∂

∂y

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)]
+

+
ND∑
I=1

δw
[
∂
∂x

(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
+ ∂

∂y

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)]
+

+
ND∑
I=1

δW I
[
∂
∂x

(
N
I

x
∂w
∂x

+N
I

xy
∂w
∂y

)
+ ∂

∂y

(
N
I

xy
∂w
∂x

+N
I

y
∂w
∂y

)]
+

+
ND∑
I,J=1

δW I
[
∂
∂x

(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
+ ∂

∂y

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)]


dΩ

(3.35)

Now (δu, δv) should be expressed in terms of (δu0n, δu0s). If the unit outward

normal vector n̂ is oriented at an angle θ from the x-axis, then its direction cosines

are nx = cos θ and ny = sin θ. Since there exists the relations: δu

δv

 =

 nx −ny
ny nx

 δu0n

δu0s

 (3.36)
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 δuI

δvI

 =

 nx −ny
ny nx

 δuIn

δuIs

 (3.37)

 δU I

δV I

 =

 nx −ny
ny nx

 δU I
n

δU I
s

 (3.38)

Also, from the fact that the stresses (σnn, σns) are related to (σx, σy, τxy) by the

transformation:

 σnn

σns

 =

 n2
x n2

y 2nxny

−nxny nxny n2
x − n2

y




σx

σy

τxy

 (3.39)

the transformations of force resultants is expressed as:

 Nnn

Nns

 =

 n2
x n2

y 2nxny

−nxny nxny n2
x − n2

y




Nx

Ny

Nxy

 (3.40)

 N I
nn

N I
ns

 =

 n2
x n2

y 2nxny

−nxny nxny n2
x − n2

y




N I
x

N I
y

N I
xy

 (3.41)

 N
I

nn

N
I

ns

 =

 n2
x n2

y 2nxny

−nxny nxny n2
x − n2

y




N
I

x

N
I

y

N
I

xy

 (3.42)

Similarly, the normal and tangential derivatives
(
∂w
∂x
, ∂w
∂y

)
and

(
∂W I

∂x
, ∂W

I

∂y

)
are

related to the derivatives
(
∂w
∂n
, ∂w
∂s

)
and

(
∂W I

∂n
, ∂W

I

∂s

)
by: ∂w

∂x

∂w
∂y

 =

 nx −ny
ny nx

 ∂w
∂n

∂w
∂s

 ,

 ∂W I

∂x

∂W I

∂y

 =

 nx −ny
ny nx

 ∂W I

∂n

∂W I

∂s


(3.43)
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Finally the following form of the virtual strain energy is obtained:

δUL =
∮
Γ


Nnnδu0n +Nnsδu0s + (Qxnx +Qyny) δw+

+
N∑
I=1

(
N I
nnδu

I
n +N I

nsδu
I
s

)
+

+
ND∑
I=1

[
N
I

nnδU
I
n +N

I

nsδU
I
s +

(
Q
I

xnx +Q
I

yny

)
δW I

]

ds−

−
∫
Ω



δu
(
∂Nx
∂x

+ ∂Nxy
∂y

)
+ δv

(
∂Nxy
∂x

+ ∂Ny
∂y

)
+ δw

(
∂Qx
∂x

+ ∂Qy
∂y

)
+

+
N∑
I=1

[
δuI

(
∂NI

x

∂x
+

∂NI
xy

∂y
−QI

x

)
+ δvI

(
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y

)]
+

+
ND∑
I=1

[
δU I

(
∂N

I
x

∂x
+

∂N
I
xy

∂y

)
+ δV I

(
∂N

I
xy

∂x
+

∂N
I
y

∂y

)]
+

+
ND∑
I=1

δW I

(
∂Q

I
x

∂x
+

∂Q
I
y

∂y

)


dΩ

(3.44)

δUNL =
∮
Γ



δw

[
Nnn

∂w
∂n

+Nns
∂w
∂s

+
ND∑
I=1

(
N
I

nn
∂W I

∂n
+N

I

ns
∂W I

∂s

)]
+

+
ND∑
I=1

δW I
(
N
I

nn
∂w
∂n

+N
I

ns
∂w
∂s

)
+

+
ND∑
I,J=1

δW I
(
N
IJ

nn
∂WJ

∂n
+N

IJ

ns
∂WJ

∂s

)


ds−

−
∫
Ω



δw
[
∂
∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+ ∂

∂y

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)]
+

+
ND∑
I=1

δw
[
∂
∂x

(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
+ ∂

∂y

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)]
+

+
ND∑
I=1

δW I
[
∂
∂x

(
N
I

x
∂w
∂x

+N
I

xy
∂w
∂y

)
+ ∂

∂y

(
N
I

xy
∂w
∂x

+N
I

y
∂w
∂y

)]
+

+
ND∑
I,J=1

δW I
[
∂
∂x

(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
+ ∂

∂y

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)]


dΩ

(3.45)

3.7.2 Constitutive Equations of the Laminate

Before proceeding with the derivation of the virtual work components, it is conve-

nient now to introduce the constitutive equations of the laminate, which relates the

stress resultants of the laminate with the deformation components. The laminate

constitutive equations can be derived by the substitution of the constitutive equa-

tions of the single lamina from Eq. (3.16) in the expressions for stress resultants
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from Eq. (3.30). Here we obtain:
Nx

Ny

Nxy

 =


A11 A12 A16

A22 A26

A66




∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

+ (3.46)

+
N∑
I=1


BI

11 BI
12 BI

16

BI
22 BI

26

BI
66




∂uI

∂x

∂vI

∂y

∂uI

∂y
+ ∂vI

∂x

+

+
ND∑
I=1


EI

11 EI
12 EI

16

EI
22 EI

26

EI
66




∂UI

∂x
+ ∂w

∂x
∂W I

∂x

∂V I

∂y
+ ∂w

∂y
∂W I

∂y

∂UI

∂y
+ ∂V I

∂x
+ ∂w

∂x
∂W I

∂y
+ ∂w

∂y
∂W I

∂x

+

+
ND∑
I,J=1


F IJ

11 F IJ
12 F IJ

16

F IJ
22 F IJ

26

F IJ
66




1
2
∂W I

∂x
∂WJ

∂x

1
2
∂W I

∂y
∂WJ

∂y

∂W I

∂x
∂WJ

∂y


 Qx

Qy

 =

 A55 A45

A44

 ∂w
∂x

∂w
∂y

+
N∑
I=1

 B
I

55 B
I

45

B
I

44

 uI

vI

+

+
ND∑
I=1

 EI
55 EI

45

EI
44

 ∂W I

∂x

∂W I

∂y

 (3.47)
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N I
x

N I
y

N I
xy

 =


BI

11 BI
12 BI

16

BI
22 BI

26

BI
66




∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

+ (3.48)

+
N∑
J=1


DIJ

11 DIJ
12 DIJ

16

DIJ
22 DIJ

26

DIJ
66




∂uJ

∂x

∂vJ

∂y

∂uJ

∂y
+ ∂vJ

∂x

+

+
ND∑
J=1


LIJ11 LIJ12 LIJ16

LIJ22 LIJ26

LIJ66




∂UJ

∂x
+ ∂w

∂x
∂WJ

∂x

∂V J

∂y
+ ∂w

∂y
∂WJ

∂y

∂UJ

∂y
+ ∂V J

∂x
+ ∂w

∂x
∂WJ

∂y
+ ∂w

∂y
∂WJ

∂x

+

+
ND∑
J,K=1


LIJK11 LIJK12 LIJK16

LIJK22 LIJK26

LIJK66




1
2
∂WJ

∂x
∂WK

∂x

1
2
∂WJ

∂y
∂WK

∂y

∂WJ

∂x
∂WK

∂y


 QI

x

QI
y

 =

 B
I

55 B
I

45

B
I

44

 ∂w
∂x

∂w
∂y

+
N∑
J=1

 D
IJ

55 D
IJ

45

D
IJ

44

 uJ

vJ

+

+
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J=1

 L
IJ

55 L
IJ

45

L
IJ

44

 ∂WJ

∂x

∂WJ

∂y

 (3.49)


N
I

x

N
I

y

N
I

xy

 =


EI

11 EI
12 EI
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EI
22 EI

26

EI
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


∂u
∂x
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2

(
∂w
∂x
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∂v
∂y
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2

(
∂w
∂y
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∂u
∂y

+ ∂v
∂x
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∂x

∂w
∂y

+ (3.50)

+
N∑
J=1


LJI11 LJI12 LJI16

LJI22 LJI26

LJI66




∂uJ

∂x

∂vJ

∂y

∂uJ

∂y
+ ∂vJ

∂x

+

+
ND∑
J=1


F IJ

11 F IJ
12 F IJ

16

F IJ
22 F IJ

26

F IJ
66




∂UJ

∂x
+ ∂w

∂x
∂WJ

∂x

∂V J

∂y
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∂WJ
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∂y
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∂WJ

∂x
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+
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1
2
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∂x

1
2
∂WJ

∂y
∂WK

∂y
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∂x
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∂y
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x

Q
I

y

 =

 EI
55 EI

45

EI
44

 ∂w
∂x

∂w
∂y
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J=1

 L
JI

55 L
JI

45

L
JI

44

 uJ

vJ

+

+
ND∑
J=1

 F IJ
55 F IJ

45

F IJ
44

 ∂WJ

∂x

∂WJ

∂y

 (3.51)


N
IJ

x

N
IJ

y

N
IJ

xy

 =


F IJ

11 F IJ
12 F IJ

16

F IJ
22 F IJ

26

F IJ
66




∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

+ (3.52)

+
N∑
K=1


LKIJ11 LKIJ12 LKIJ16

LKIJ22 LKIJ26

LKIJ66




∂uK

∂x

∂vK

∂y

∂uK

∂y
+ ∂vK

∂x

+

+
ND∑
K=1


F IJK

11 F IJK
12 F IJK

16

F IJK
22 F IJK

26

F IJK
66




∂UK

∂x
+ ∂w

∂x
∂WK

∂x

∂V K

∂y
+ ∂w

∂y
∂WK

∂y

∂UK

∂y
+ ∂V K

∂x
+ ∂w

∂x
∂WK

∂y
+ ∂w

∂y
∂WK

∂x

+

+
ND∑

K,L=1


F IJKL

11 F IJKL
12 F IJKL

16

F IJKL
22 F IJKL

26

F IJKL
66




1
2
∂WK

∂x
∂WL

∂x

1
2
∂WK

∂y
∂WL

∂y

∂WK

∂x
∂WL

∂y


Note that in the Eqs. (3.47) - (3.53) the laminate stiffness matrices are introduced,

which respective components are calculated as follows:{
Aij BI

ij B
I

ij DIJ
ij D

IJ

ij

}
=

n∑
k=1

zk+1∫
zk

Q
(k)

ij

{
1 ΦI dΦI

dz
ΦIΦJ dΦI

dz
dΦJ

dz

}
dz{

EI
ij F IJ

ij LIJij L
IJ

ij

}
=

n∑
k=1

zk+1∫
zk

Q
(k)

ij

{
HI HIHJ ΦIHJ dΦI

dz
HJ

}
dz

(3.53)

Nonlinear terms:

{
LIJKij F IJK

ij F IJKL
ij

}
=

n∑
k=1

zk+1∫
zk

Q
(k)

ij

{
ΦIHJHK HIHJHK HIHJHKHL

}
dz

(3.54)

For the linear functions ΦI through the thickness of the laminate, elements of
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the laminate stiffness matrices are:

Aij =
n∑
k=1

Q
(k)

ij h
(k)

B1
ij = Q

(1)

ij
h(1)

2
BI
ij = Q

(I−1)

ij
h(I−1)

2
+Q

(I)

ij
h(I)

2
BN
ij = Q

(N−1)

ij
h(N−1)

2

B
1

ij = −Q(1)

ij B
I

ij = Q
(I−1)

ij −Q(I)

ij B
N

ij = Q
(N−1)

ij

D11
ij = Q

(1)

ij
h(1)

3
D12
ij = Q

(1)

ij
h(1)

6

DI−1,I
ij = Q

(I−1)

ij
h(I−1)

6
DII
ij = Q

(I−1)

ij
h(I−1)

6
+Q

(I)

ij
h(I)

3
DI,I+1
ij = Q

(I)

ij
h(I)

6

DN−1,N
ij = Q

(N−1)

ij
h(N−1)

6
DNN
ij = Q

(N−1)

ij
h(N−1)

3

D
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ij =
Q

(1)
ij

h(1)
D
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ij = −Q
(1)
ij

h(1)

D
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ij = −Q
(I−1)
ij

h(I−1) D
II

ij =
Q

(I−1)
ij

h(I−1) +
Q

(I)
ij

h(I)
D
I,I+1

ij = −Q
(I)
ij

h(I)

D
N−1,N

ij = −Q
(N−1)
ij

h(N−1) D
NN

ij =
Q

(N−1)
ij

h(N−1)

(3.55)

The elements of the laminate stiffness matrices which take into account the

delamination are calculated in a similar way (see Barbero [9]). Note that when von

Kármán nonlinearity is not accounted, all laminate stiffnesses with three or four

superscripts will not enter the governing equations. For the sake of simplicity, the

following vectors of deformations and rotations are introduced:

{ε} =
{

∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

∂w
∂x

∂w
∂y

}T
{
εI
}

=
{

∂uI

∂x
∂vI

∂y
∂uI

∂y
+ ∂vI

∂x
uI vI

}T{
εI
}

=
{

∂UI

∂x
∂V I

∂y
∂UI

∂y
+ ∂V I

∂x
∂W I

∂x
∂W I

∂y

}T
{η} =

{
1
2

(
∂w
∂x

)2 1
2

(
∂w
∂y

)2
∂w
∂x

∂w
∂y

0 0
}T

{
ηI
}

=
{

∂w
∂x

∂W I

∂x
∂w
∂y

∂W I

∂y
∂w
∂x

∂W I

∂y
+ ∂w

∂y
∂W I

∂x
0 0

}T
{
ηIJ
}

=
{

1
2
∂W I

∂x
∂WJ

∂x
1
2
∂W I

∂y
∂WJ

∂y
∂W I

∂x
∂WJ

∂y
0 0

}T
(3.56)

Laminate constitutive relations now can be re-written in the matrix form:

{N} = [A] ({ε}+ {η}) +
N∑
I=1

[
BI
] {
εI
}

+

+
ND∑
I=1

[
EI
] ({

εI
}

+
{
ηI
})

+
ND∑
I,J=1

[
F IJ

] {
ηIJ
}

(3.57)
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{
N I
}

=
[
BI
]

({ε}+ {η}) +
N∑
J=1

[
DIJ

] {
εJ
}

+

+
ND∑
J=1

[
LIJ
] ({

εJ
}

+
{
ηJ
})

+
ND∑
J,K=1

[
LIJK

] {
ηJK

}
(3.58)

{
N
I
}

=
[
EI
]

({ε}+ {η}) +
N∑
J=1

[
LJI
] {
εJ
}

+

+
ND∑
J=1

[
F IJ

] ({
εJ
}

+
{
ηJ
})

+
ND∑
J,K=1

[
F IJK

] {
ηJK

}
(3.59)

{
N
IJ
}

=
[
F IJ

]
({ε}+ {η}) +

N∑
K=1

[
LKIJ

] {
εK
}

+

+
ND∑
K=1

[
F IJK

] ({
εK
}

+
{
ηK
})

+
ND∑

K,L=1

[
F IJKL

] {
ηKL

}
(3.60)

3.7.3 Virtual Work of External Forces

The virtual displacements along the normal and tangential directions δun and δus

in the GLPT follow from the assumed displacement field from Eq. (3.3):

δun = δu0n +
N∑
I=1

δuInΦI +
ND∑
I=1

δU I
nH

I

δus = δu0s +
N∑
I=1

δuIsΦ
I +

ND∑
I=1

δU I
sH

I

(3.61)

After incorporation of the virtual displacements along the normal and tangential

directions from Eqs. (3.61) into the Eq. (3.21), the virtual work of external forces

is derived:

δV = −
∫
Ω

q(x, y)δwdΩ−
∫
Γσ

[∫ h/2

−h/2
σ̂nz

(
δw +

ND∑
I=1

δW IHI

)
dz

]
ds−

−
∫
Γσ

[∫ h/2

−h/2
σ̂nn

(
δu0n +

N∑
I=1

δuInΦI +
ND∑
I=1

δU I
nH

I

)
dz

]
ds−

−
∫
Γσ

[∫ h/2

−h/2
σ̂ns

(
δu0s +

N∑
I=1

δuIsΦ
I +

ND∑
I=1

δU I
sH

I

)
dz

]
ds (3.62)
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3. Generalized Laminated Plate Theory

To reduce the 3D model to a 2D one, the z -coordinate is again eliminatd by the

explicit integration of stress components multiplied with the corresponding functions

ΦI(z) or HI(z), and derive the following stress resultants:{
N̂nn N̂ns Q̂n

}
=

n∑
k=1

zk+1∫
zk

{
σ̂nn σ̂ns σ̂nz

}(k)

dz{
N̂ I
nn N̂ I

ns

}
=

n∑
k=1

zk+1∫
zk

{
σ̂nn σ̂ns

}(k)

ΦIdz{
N̂
I

nn N̂
I

ns Q̂
I

n

}
=

n∑
k=1

zk+1∫
zk

{
σ̂nn σ̂ns σ̂nz

}(k)

HIdz

(3.63)

After the substitution of the stress resultants from Eqs. (3.63), the virtual work

of external forces is obtained as follows:

δV = −
∫
Ω

q(x, y)δwdΩ−
∫
Γσ

[
N̂nnδu0n + N̂nsδu0s + Q̂nδw

]
ds−

−
∫
Γσ

[
N∑
I=1

(
N̂ I
nnδu

I
n + N̂ I

nsδu
I
s

)
+

ND∑
I=1

(
N̂
I

nnδU
I
n + N̂

I

nsδU
I
s + Q̂nδW

I

)]
ds

(3.64)

3.7.4 Virtual Kinetic Energy

The time derivatives of displacements components (velocities) and their respective

virtual velocities are:

u̇1(x, y, z, t) = u̇(x, y, t) +
N∑
I=1

u̇I(x, y, t)ΦI(z) +
ND∑
I=1

U̇ I(x, y, t)HI(z)

u̇2(x, y, z, t) = v̇(x, y, t) +
N∑
I=1

v̇I(x, y, t)ΦI(z) +
ND∑
I=1

V̇ I(x, y, t)HI(z)

u̇3(x, y, z, t) = ẇ(x, y, t) +
ND∑
I=1

Ẇ I(x, y, t)HI(z)

(3.65)

δu̇1(x, y, z, t) = δu̇(x, y, t) +
N∑
I=1

δu̇I(x, y, t)ΦI(z) +
ND∑
I=1

δU̇ I(x, y, t)HI(z)

δu̇2(x, y, z, t) = δv̇(x, y, t) +
N∑
I=1

δv̇I(x, y, t)ΦI(z) +
ND∑
I=1

δV̇ I(x, y, t)HI(z)

δu̇3(x, y, z, t) = δẇ(x, y, t) +
ND∑
I=1

δẆ I(x, y, t)HI(z)

(3.66)

After the substitution of the time derivatives and the respective virtual velocities
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3. Generalized Laminated Plate Theory

from Eqs. (3.65) - (3.66), the virtual kinetic energy is obtained as follows:

δK =

−
∫
Ω

{
h/2∫
−h/2

ρ

(
u̇+

N∑
I=1

u̇IΦI +
ND∑
I=1

U̇ IHI

)(
δu̇+

N∑
I=1

δu̇IΦI +
ND∑
I=1

δU̇ IHI

)
dz

}
dΩ−

−
∫
Ω

{
h/2∫
−h/2

ρ

(
v̇ +

N∑
I=1

v̇IΦI +
ND∑
I=1

V̇ IHI

)(
δv̇ +

N∑
I=1

δv̇IΦI +
ND∑
I=1

δV̇ IHI

)
dz

}
dΩ−

−
∫
Ω

{
h/2∫
−h/2

ρ

(
ẇ +

ND∑
I=1

Ẇ IHI(z)

)(
δẇ +

ND∑
I=1

δẆ IHI

)
dz

}
dΩ

(3.67)

Finally, the z-coordinate is eliminated by the explicit integration of mass density

of the material multiplied with the corresponding functions ΦI(z) or HI(z). During

this procedure, the following mass moments of inertia are derived:{
I0 II IIJ

}
=

n∑
k=1

zk+1∫
zk

ρ(k)
{

1 ΦI ΦIΦJ

}
dz{

I
I
I
IJ

ĨIJ
}

=
n∑
k=1

zk+1∫
zk

ρ(k)
{

HI ΦIHJ HIHJ

}
dz

(3.68)

After the substitution of the mass moments of inertia from Eqs. (3.68), the

virtual kinetic energy is obtained in the following form:

δK = −
∫

Ω



I0 (u̇δu̇+ v̇δv̇ + ẇδẇ) +
N∑
I=1

II
(
u̇Iδu̇+ v̇Iδv̇ + u̇δu̇I + v̇δv̇I

)
+

+
N∑

I,J=1

IIJ
(
u̇Iδu̇J + v̇Iδv̇J

)
+

+
ND∑
I=1

I
I
(
U̇ Iδu̇+ V̇ Iδv̇ + Ẇ Iδẇ + u̇δU̇ I + v̇δV̇ I + ẇδẆ I

)
+

+
N∑
I=1

ND∑
J=1

I
IJ
(
u̇IδU̇J + v̇IδV̇ J

)
+

ND∑
I=1

N∑
J=1

I
JI
(
U̇ Iδu̇J + V̇ Iδv̇J

)
+

+
ND∑
I,J=1

ĨIJ
(
U̇ IδU̇J + V̇ IδV̇ J + Ẇ IδẆ J

)



dΩ

(3.69)

Now the time integration by parts should be performed to eliminate the time

derivatives of virtual displacements. Note that all terms evaluated at t = 0 and

t = T are zero because the virtual displacements are zero there:

T∫
0

Ḟ (t)Ġ(t)dt = −
T∫

0

F̈ (t)G(t)dt. (3.70)
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3. Generalized Laminated Plate Theory

Finally, the expression for the virtual kinetic energy is obtained:

δK = −
∫
Ω



I0 (üδu+ v̈δv + ẅδw) +
N∑
I=1

II
(
üIδu+ v̈Iδv + üδuI + v̈δvI

)
+

+
N∑

I,J=1

IIJ
(
üIδuJ + v̈IδvJ

)
+

+
ND∑
I=1

I
I
(
Ü Iδu+ V̈ Iδv + Ẅ Iδw + üδU I + v̈δV I + ẅδW I

)
+

+
N∑
I=1

ND∑
J=1

(
I
IJ (

üIδUJ + v̈IδV J
)

+ I
JI
(
ÜJδuI + V̈ JδvI

))
+

+
ND∑
I,J=1

ĨIJ
(
Ü IδUJ + V̈ IδV J + Ẅ IδW J

)



dΩ

(3.71)

3.7.5 Strong Formulation

All components of the virtual work are summed, collecting the coefficients of each of

the virtual displacements. The in-plane stress resultants acting on the second order

strains are now introduced:

P (w,W I) = Nnn
∂w
∂n

+Nns
∂w
∂s

+
ND∑
I=1

(
N
I

nn
∂W I

∂n
+N

I

ns
∂W I

∂s

)
P
I
(w,W J) = N

I

nn
∂w
∂n

+N
I

ns
∂w
∂s

+
ND∑
J=1

(
N
IJ

nn
∂WJ

∂n
+N

IJ

ns
∂WJ

∂s

)
N(w) = ∂

∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+ ∂

∂y

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)
N(W I) =

ND∑
I=1

[
∂
∂x

(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
+ ∂

∂y

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)]
N
I
(w) = ∂

∂x

(
N
I

x
∂w
∂x

+N
I

xy
∂w
∂y

)
+ ∂

∂y

(
N
I

xy
∂w
∂x

+N
I

y
∂w
∂y

)
N
I
(W J) =

ND∑
J=1

[
∂
∂x

(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
+ ∂

∂y

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)]
(3.72)

After summation, the following form of the principle of virtual displacements is
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3. Generalized Laminated Plate Theory

obtained:

0 =
T∫
0


∮
Γ


Nnnδu0n +Nnsδu0s +

[
Qxnx +Qyny + P (w,W I)

]
δw+

+
N∑
I=1

(
N I
nnδu

I
n +N I

nsδu
I
s

)
+

ND∑
I=1

(
N
I

nnδU
I
n +N

I

nsδU
I
s

)
+

+
ND∑
I=1

(
Q
I

xnx +Q
I

yny + P
I
(w,W J)

)
δW I

 ds

dt−

−
T∫
0

{∫
Γσ

[
N̂nnδu0n + N̂nsδu0s + Q̂nδw

]
ds

}
dt−

−
T∫
0


∫
Γσ


N∑
I=1

(
N̂ I
nnδu

I
n + N̂ I

nsδu
I
s

)
+

+
ND∑
I=1

(
N̂
I

nnδU
I
n + N̂

I

nsδU
I
s + Q̂

I

nδW
I

)
 ds

 dt−

−
T∫
0



∫
Ω



δu

(
∂Nx
∂x

+ ∂Nxy
∂y
− I0ü−

N∑
I=1

II üI −
ND∑
I=1

I
I
Ü I

)
+

+δv

(
∂Nxy
∂x

+ ∂Ny
∂y
− I0v̈ −

N∑
I=1

II v̈I −
ND∑
I=1

I
I
V̈ I

)
+

+δw

 ∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) +N(w) +N(W I)−

−I0ẅ −
ND∑
I=1

I
I
Ẅ I

+

+
N∑
I=1

δuI
(
∂NI

x

∂x
+

∂NI
xy

∂y
−QI

x − II ü−
ND∑
J=1

I
JI
ÜJ −

N∑
J=1

IIJ üJ
)

+

+
N∑
I=1

δvI
(
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y − II v̈ −
ND∑
J=1

I
JI
V̈ J −

N∑
J=1

IIJ v̈J
)

+

+
ND∑
I=1

δU I

(
∂N

I
x

∂x
+

∂N
I
xy

∂y
− II ü−

N∑
J=1

I
JI
üJ −

ND∑
J=1

ĨIJ ÜJ

)
+

+
ND∑
I=1

δV I

(
∂N

I
xy

∂x
+

∂N
I
y

∂y
− II v̈ −

N∑
J=1

I
JI
v̈J −

ND∑
J=1

ĨIJ V̈ J

)
+

+
ND∑
I=1

δW I

 ∂Q
I
x

∂x
+

∂Q
I
y

∂y
+N

I
(w) +N

I
(W J)−

−IIẅ −
ND∑
J=1

ĨIJẄ J





dΩ



dt

(3.73)

All virtual displacements δu, δv, δw, δuI , δvI , δU I , δV I and δW I except one

are now set to zero separately. To satisfy the previous equation, the coefficients of

δu, δv, δw, δuI , δvI , δU I , δV I and δW I must be zero. For example, if δw 6= 0 and

δu = δv = δuI = δvI = δU I = δV I = δW I = 0 it follows:

0 =
T∫
0

∮
Γ

δw
[
Qxnx +Qyny + P (w,W I)− Q̂n

]
dsdt−

−
T∫
0

∫
Ω

δw

(
∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) +N(w) +N(W I)− I0ẅ −
ND∑
I=1

I
I
Ẅ I

)
dΩdt

(3.74)
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The coefficient of δw from the contour integral
∮
Γ

must be zero to satisfy the

previous expression. From this the natural (force) boundary condition of the theory

is derived. Also, the coefficient of δw from the surface integral
∫
Ω

must be zero, and

from this the equation of motion of the theory is derived.

Repeating the procedure for all virtual displacements, 3 + 2N + 3ND Euler

Lagrange equations of the theory are derived, as well as the natural (force) boundary

conditions. The Euler Lagrange equations of the theory define the ”strong” form

of the geometrically nonlinear problem of the laminated composite plate:

∂Nx
∂x

+ ∂Nxy
∂y

= I0ü+
N∑
I=1

II üI +
ND∑
I=1

I
I
Ü I

∂Nxy
∂x

+ ∂Ny
∂y

= I0v̈ +
N∑
I=1

II v̈I +
ND∑
I=1

I
I
V̈ I

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) +N(w) +N(W I) = I0ẅ +
ND∑
I=1

I
I
Ẅ I

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = II ü+
ND∑
J=1

I
JI
ÜJ +

N∑
J=1

IIJ üJ

∂NI
xy

∂x
+

∂NI
y

∂y
−QI

y = II v̈ +
ND∑
J=1

I
JI
V̈ J +

N∑
J=1

IIJ v̈J

∂N
I
x

∂x
+

∂N
I
xy

∂y
= I

I
ü+

N∑
J=1

I
JI
üJ +

ND∑
J=1

ĨIJ ÜJ

∂N
I
xy

∂x
+

∂N
I
y

∂y
= I

I
v̈ +

N∑
J=1

I
JI
v̈J +

ND∑
J=1

ĨIJ V̈ J

∂Q
I
x

∂x
+

∂Q
I
y

∂y
+N

I
(w) +N

I
(W J) = I

I
ẅ +

ND∑
J=1

ĨIJẄ J

(3.75)

Several structural problems may be considered based on the Euler-Lagrange

equations, taking into account some restrictions:

1. Geometrically Nonlinear Bending Analysis - Inertia forces are neglected,

while the transverse loading is static.

∂Nx
∂x

+ ∂Nxy
∂y

= 0 ∂N
I
x

∂x
+

∂N
I
xy

∂y
= 0

∂Nxy
∂x

+ ∂Ny
∂y

= 0
∂N

I
xy

∂x
+

∂N
I
y

∂y
= 0

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y) +N(w) +N(W I) = 0 ∂Q
I
x

∂x
+

∂Q
I
y

∂y
+N

I
(w) +N

I
(W J) = 0

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = 0
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y = 0

2. Linear Bending Analysis - Inertia forces are neglected, as well as the in-

plane loading acting on the second order strains. The transverse loading is
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static.

∂Nx
∂x

+ ∂Nxy
∂y

= 0 ∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = 0 ∂N
I
x

∂x
+

∂N
I
xy

∂y
= 0

∂Nxy
∂x

+ ∂Ny
∂y

= 0
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y = 0
∂N

I
xy

∂x
+

∂N
I
y

∂y
= 0

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y) = 0 ∂Q
I
x

∂x
+

∂Q
I
y

∂y
= 0

3. Linear Buckling Analysis - Inertia forces are neglected. The only load-

ing acting on the plate are the initial in-plane force resultants N(w0) =

∂
∂x

(
N0
x
∂w
∂x

+N0
xy
∂w
∂y

)
+ ∂

∂y

(
N0
xy
∂w
∂x

+N0
y
∂w
∂y

)
, corresponding to the initial in-

plane stresses σ0
x, σ

0
y and τ 0

xy.

∂Nx
∂x

+ ∂Nxy
∂y

= 0 ∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = 0 ∂N
I
x

∂x
+

∂N
I
xy

∂y
= 0

∂Nxy
∂x

+ ∂Ny
∂y

= 0
∂NI

xy

∂x
+

∂NI
y

∂y
−QI

y = 0
∂N

I
xy

∂x
+

∂N
I
y

∂y
= 0

∂Qx
∂x

+ ∂Qy
∂y

+N(w0) = 0 ∂Q
I
x

∂x
+

∂Q
I
y

∂y
= 0

4. Linear Free Vibration Analysis - There is no loading acting on the plate.

∂Nx
∂x

+ ∂Nxy
∂y

= I0ü+
N∑
I=1

II üI +
ND∑
I=1

I
I
Ü I

∂Nxy
∂x

+ ∂Ny
∂y

= I0v̈ +
N∑
I=1

II v̈I +
ND∑
I=1

I
I
V̈ I

∂Qx
∂x

+ ∂Qy
∂y

= I0ẅ +
ND∑
I=1

I
I
Ẅ I

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = II ü+
ND∑
J=1

I
JI
ÜJ +

N∑
J=1

IIJ üJ

∂NI
xy

∂x
+

∂NI
y

∂y
−QI

y = II v̈ +
ND∑
J=1

I
JI
V̈ J +

N∑
J=1

IIJ v̈J

∂N
I
x

∂x
+

∂N
I
xy

∂y
= I

I
ü+

N∑
J=1

I
JI
üJ +

ND∑
J=1

ĨIJ ÜJ

∂N
I
xy

∂x
+

∂N
I
y

∂y
= I

I
v̈ +

N∑
J=1

I
JI
v̈J +

ND∑
J=1

ĨIJ V̈ J

∂Q
I
x

∂x
+

∂Q
I
y

∂y
= I

I
ẅ +

ND∑
J=1

ĨIJẄ J
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3. Generalized Laminated Plate Theory

5. Geometrically Nonlinear Transient Analysis

∂Nx
∂x

+ ∂Nxy
∂y

= I0ü+
N∑
I=1

II üI +
ND∑
I=1

I
I
Ü I

∂Nxy
∂x

+ ∂Ny
∂y

= I0v̈ +
N∑
I=1

II v̈I +
ND∑
I=1

I
I
V̈ I

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) +N(w) +N(W I) = I0ẅ +
ND∑
I=1

I
I
Ẅ I

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = II ü+
ND∑
J=1

I
JI
ÜJ +

N∑
J=1

IIJ üJ

∂NI
xy

∂x
+

∂NI
y

∂y
−QI

y = II v̈ +
ND∑
J=1

I
JI
V̈ J +

N∑
J=1

IIJ v̈J

∂N
I
x

∂x
+

∂N
I
xy

∂y
= I

I
ü+

N∑
J=1

I
JI
üJ +

ND∑
J=1

ĨIJ ÜJ

∂N
I
xy

∂x
+

∂N
I
y

∂y
= I

I
v̈ +

N∑
J=1

I
JI
v̈J +

ND∑
J=1

ĨIJ V̈ J

∂Q
I
x

∂x
+

∂Q
I
y

∂y
+N

I
(w) +N

I
(W J) = I

I
ẅ +

ND∑
J=1

ĨIJẄ J

6. Geometrically Linear Transient Analysis - The in-plane loading acting

on the second order strains is neglected.

∂Nx
∂x

+ ∂Nxy
∂y

= I0ü+
N∑
I=1

II üI +
ND∑
I=1

I
I
Ü I

∂Nxy
∂x

+ ∂Ny
∂y

= I0v̈ +
N∑
I=1

II v̈I +
ND∑
I=1

I
I
V̈ I

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) = I0ẅ +
ND∑
I=1

I
I
Ẅ I

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = II ü+
ND∑
J=1

I
JI
ÜJ +

N∑
J=1

IIJ üJ

∂NI
xy

∂x
+

∂NI
y

∂y
−QI

y = II v̈ +
ND∑
J=1

I
JI
V̈ J +

N∑
J=1

IIJ v̈J

∂N
I
x

∂x
+

∂N
I
xy

∂y
= I

I
ü+

N∑
J=1

I
JI
üJ +

ND∑
J=1

ĨIJ ÜJ

∂N
I
xy

∂x
+

∂N
I
y

∂y
= I

I
v̈ +

N∑
J=1

I
JI
v̈J +

ND∑
J=1

ĨIJ V̈ J

∂Q
I
x

∂x
+

∂Q
I
y

∂y
= I

I
ẅ +

ND∑
J=1

ĨIJẄ J

All previous expressions are valid for the appropriate boundary conditions of the
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3. Generalized Laminated Plate Theory

theory. The boundary integral from the Eq. (3.74) can be re-written as:

0 =

T∫
0



∮
Γ



(
Nnn − N̂nn

)
δu0n +

(
Nns − N̂ns

)
δu0s+

+
[
Qxnx +Qyny + P (w,W I)− Q̂n

]
δw+

+
N∑
I=1

[(
N I
nn − N̂ I

nn

)
δuIn +

(
N I
ns − N̂ I

ns

)
δuIs

]
+

+
ND∑
I=1

[(
N
I

nn − N̂
I

nn

)
δU I

n +

(
N
I

ns − N̂
I

ns

)
δU I

s

]
+

+
ND∑
I=1

(
Q
I

xnx +Q
I

yny + P
I
(w,W J)− Q̂

I

n

)
δW I


ds


dt (3.76)

The natural boundary conditions are given by:

Nnn − N̂nn = 0, Nns − N̂ns = 0, Qn − Q̂n = 0

N I
nn − N̂ I

nn = 0, N I
ns − N̂ I

ns = 0

N
I

nn − N̂
I

nn = 0, N
I

ns − N̂
I

ns = 0, Q
I

n − Q̂
I

n = 0

(3.77)

on the boundary Γ, where:

Qn = Qxnx +Qyny + P (w,W I)

Q
I

n = Q
I

xnx +Q
I

yny + P
I
(w,W J)

(3.78)

The primary variables (generalized displacements) of the theory are un, us, w,

uIn, uIs, U
I
n, U I

s and W I , while the secondary variables (generalized forces) of the

theory are Nnn, Nns, Qn, N I
nn, N I

ns, N
I

nn, N
I

ns and Q
I

n. The initial conditions of the

theory involve specifying the values of the displacements and their first derivatives

with the respect to time at t = 0.
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4 Analytical Solution for Linear

Transient Analysis of Intact

Plates

In this chapter the analytical solution of the GLPT for the intact, rectangular, cross-ply

simply supported laminated composite plates is discussed. Linear transient analysis is

performed. The governing partial differential equations of motion are reduced to a set of

ordinary differential equations in time using Newmark’s integration schemes for the second

order differential equations. The Navier solution method is used to determine the spatial

variation of the transient solution, while the initial displacements and velocities are known

from the initial conditions.

After the displacement field of the laminated plate is determined, the stress field can be

derived using the constitutive equations in each time step. The time evolution of the

stresses in any point of the plate is exactly the same as for the time history plot of the

displacements. The solution is numerically validated through several examples in Chapter

10.4. The part of the presented results is taken from the works of Marjanović and Vuk-

sanović [95–97].

4.1 Equations of Motion

The development of analytical solution of the GLPT is by no means simple, es-

pecially for the arbitrary boundary conditions. Here the analytical solution of the

GLPT for the rectangular simply supported laminated composite plate is discussed,

taking into account the following restrictions:

40



4. Analytical Solution for Linear Transient Analysis of Intact Plates

1. cross-ply laminates are considered, in which fibers are oriented alternately with

angles of 0o and 90o,

2. the plate is intact,

3. geometrically linear transient analysis is performed.

From the first restriction follows that the following elements of constitutive matrix

of the laminate are identically zero: A16 = A26 = A45 = BI
16 = BI

26 = B
I

45 = DIJ
16 =

DIJ
26 = D

IJ

45 . The previously derived Euler-Lagrange equations are then simplified:

∂Nx
∂x

+ ∂Nxy
∂y

= I0ü+
N∑
I=1

II üI

∂Nxy
∂x

+ ∂Ny
∂y

= I0v̈ +
N∑
I=1

II v̈I

∂Qx
∂x

+ ∂Qy
∂y

+ q(x, y, t) = I0ẅ

∂NI
x

∂x
+

∂NI
xy

∂y
−QI

x = II ü+
N∑
J=1

IIJ üJ

∂NI
xy

∂x
+

∂NI
y

∂y
−QI

y = II v̈ +
N∑
J=1

IIJ v̈J

(4.1)

Also the expressions for stress resultants are simplified:

Nx = A11
∂u
∂x

+ A12
∂v
∂y

+
N∑
I=1

(
BI

11
∂uI

∂x
+BI

12
∂vI

∂y

)
Ny = A12

∂u
∂x

+ A22
∂v
∂y

+
N∑
I=1

(
BI

12
∂uI

∂x
+BI

22
∂vI

∂y

)
Nxy = A66

(
∂u
∂y

+ ∂v
∂x

)
+

N∑
I=1

BI
66

(
∂uI

∂y
+ ∂vI

∂x

)
N I
x = BI

11
∂u
∂x

+BI
12
∂v
∂y

+
N∑
J=1

(
DJI

11
∂uI

∂x
+DJI

12
∂vI

∂y

)
N I
y = BI

12
∂u
∂x

+BI
22
∂v
∂y

+
N∑
J=1

(
DJI

12
∂uI

∂x
+DJI

22
∂vI

∂y

)
N I
xy = BI

66

(
∂u
∂y

+ ∂v
∂x

)
+

N∑
J=1

DJI
66

(
∂uI

∂y
+ ∂vI

∂x

)

(4.2)

Qx = A55
∂w
∂x

+
N∑
I=1

B
I

55u
I

Qy = A44
∂w
∂y

+
N∑
I=1

B
I

44v
I

QI
x = B

I

55
∂w
∂x

+
N∑
J=1

D
JI

55u
I

QI
y = B

I

44
∂w
∂y

+
N∑
J=1

D
JI

44v
I

(4.3)
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4. Analytical Solution for Linear Transient Analysis of Intact Plates

There are two major steps in the solution process: (1) assume the spatial varia-

tion of the displacements and reduce the governing partial differential equations to a

set of ordinary differential equations in time, and (2) solve the ordinary differential

equations numerically.

The Navier solution method is used to determine the spatial variation of the

transient solution. The coefficients of the double Fourier series are assumed to

be functions of time. The solution is derived for rectangular simply supported

laminates, with dimensions a × b, under uniformly distributed transverse loading

q(x, y, t). In this case, the boundary conditions are (see Figure 4.1):

Figure 4.1: Rectangular plate a× b considered in the analytical solution

x = 0, x = a : v = w = vI = Nx = N I
x = 0

y = 0, y = b : u = w = uI = Ny = N I
y = 0

(4.4)

The displacement field which satisfy the boundary conditions on the edges of the

simply supported plate and Euler-Lagrange equations of motion is given as:

u(x, y, t) =
∞∑
m=1

∞∑
n=1

Xmn(t) cosαx sin βy

v(x, y, t) =
∞∑
m=1

∞∑
n=1

Ymn(t) sinαx cos βy

w(x, y, t) =
∞∑
m=1

∞∑
n=1

Wmn(t) sinαx sin βy

uI(x, y, t) =
∞∑
m=1

∞∑
n=1

RI
mn(t) cosαx sin βy

vI(x, y, t) =
∞∑
m=1

∞∑
n=1

SImn(t) sinαx cos βy

(4.5)

In previous equations, m and n denote number of members in double Fourier series,

Xmn, Ymn, Wmn, RI
mn and SImn are Fourier coefficients which are chosen only in a

way that u, v, w, uI and vI satisfy the boundary conditions, α = mπ
a

, β = nπ
b

. The

second part of the expansion determines the spatial variation of transient solution.
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4. Analytical Solution for Linear Transient Analysis of Intact Plates

In a same manner the loading is expanded in the double trigonometric series:

q(x, y, t) =
∞∑
m=1

∞∑
n=1

qmn(t) sinαx sin βy (4.6)

where

qmn(t) =
4

ab

a∫
0

b∫
0

q(x, y) sinαx sin βydxdy (4.7)

If we substitute the simplified stress resultants into the Euler-Lagrange equations,

and incorporate the assumed expansions of displacements, we derive the matrix form

of the governing equations of the problem:

 k kI

kI kJI




Xmn(t)

Ymn(t)

Wmn(t)

RI
mn(t)

SImn(t)


+

 m mI

mI mJI




Ẍmn(t)

Ÿmn(t)

Ẅmn(t)

R̈I
mn(t)

S̈Imn(t)


=



0

0

−qmn(t)

0

0


(4.8)

where:

k =


A11α

2 + A66β
2 A12αβ + A66αβ 0

A12αβ + A66αβ A22β
2 + A66α

2 0

0 0 A44α
2 + A55β

2

 (4.9)

kI =


BI

11α
2 +BI

66β
2 BI

12αβ +BI
66αβ

BI
12αβ +BI

66αβ BI
22β

2 +BI
66α

2

B
I

44α B
I

55β

 (4.10)

kJI =

 DJI
11α

2 +DJI
66 β

2 +D
JI

44 DJI
12αβ +DJI

66αβ

DJI
12αβ +DJI

66αβ DJI
22 β

2 +DJI
66α

2 +D
JI

55

 (4.11)

m =


I0

I0

I0

 , mI =


II 0

0 II

0 0

 , mJI =

 IJI

IJI

 (4.12)

The previous system of equations can be re-written in the compact matrix form:

[M ] {d̈}+ [K] {d} = {f} (4.13)
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4. Analytical Solution for Linear Transient Analysis of Intact Plates

4.2 Numerical Time Integration

The system of algebraic matrix equations in time are solved numerically using New-

mark’s integration scheme for second order differential equations [98]. The time

derivatives are approximated using the truncated Taylor’s series, thus the solution

is obtained only for discrete time points and not as a continuous function of time.

If we assume that the mass matrix [M ] and the stiffness matrix [K] do not change

through time and that the transient loading is defined as a time function in discrete

time points 0 ≤ t ≤ T , the governing system of equations in time point tn+1 is:

[M ]
{
d̈n+1

}
+ [K] {dn+1} = {fn+1} (4.14)

In the Newmark’s constant average acceleration method the time function and its

first derivative are approximated using truncated Taylor’s series where only terms

up to the second derivative are included:

{dn+1} = {dn}+ ∆t
{
ḋn

}
+ ∆t2

2

{
d̈n+ 1

2

}
{
ḋn+1

}
=
{
ḋn

}
+ ∆t

{
d̈n+ 1

2

}
{
d̈n+ 1

2

}
= 1

2

({
d̈n

}
+
{
d̈n+1

}) (4.15)

where ∆t is the time increment and indexes n and n+ 1 denote the current and the

next time points in which the solution is calculated, respectively. It is assumed that

the solution at time tn is known. Substituting the third equation from (4.15) into

the first two and solving for
{
d̈
}

the following equations are obtained:{
ḋn+1

}
=
{
ḋn

}
+ 1

2
∆t
{
d̈n

}
+ 1

2
∆t
{
d̈n+1

}
{
d̈n+1

}
= 4

(∆t)2
({dn+1} − {dn)} − 4

∆t

{
ḋn

}
−
{
d̈n

} (4.16)

If the second equation from the previous system is multiplied with [M ] and

substituted in Eq. (4.13), the following equation is obtained:

[M ]

[
4

∆t2
{dn+1} −

4

∆t2
{dn} −

4

∆t

{
ḋn

}
−
{
d̈n

}]
+ [K]{dn+1} = {fn+1} (4.17)

and finally:[
4

∆t2
[M ] + [K]

]
{dn+1} = {fn+1}+ [M ]

[
4

∆t2
{dn}+

4

∆t

{
ḋn

}
+
{
d̈n

}]
(4.18)
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4. Analytical Solution for Linear Transient Analysis of Intact Plates

Equation (4.18) represents the system of algebraic equations among the discrete

values of {d} at time tn+1 in terms of known values at time tn (recurrent formula).

For the completion of solution, the initial values of {d},
{
ḋ
}

and
{
d̈
}

are needed.

The initial displacements and velocities are known from the initial conditions, while

the initial acceleration are calculated from:{
d̈0

}
= [M ]−1 ({f0} − [K]{d0}) (4.19)

4.3 Computation of the Interlaminar Stresses

After the displacement field of the laminated plate is calculated, the stress field can

be derived using the constitutive equations (3.16), as shown in [93]. The stress field

should be derived in each time step, substituting the Eqs. (4.5) in Eqs. (3.16). The

in-plane stresses are then:

σ
(k)
x (x, y, z, t) = −

∞∑
m=1

∞∑
n=1

 Q
(k)

11 α

(
Xmn(t) +

N∑
I=1

RI
mn(t)ΦI(z)

)
+

+Q
(k)

12 β

(
Ymn(t) +

N∑
I=1

SImn(t)ΦI(z)

)
 sinαx sin βy

σ
(k)
y (x, y, z, t) = −

∞∑
m=1

∞∑
n=1

 Q
(k)

12 α

(
Xmn(t) +

N∑
I=1

RI
mn(t)ΦI(z)

)
+

+Q
(k)

22 β

(
Ymn(t) +

N∑
I=1

SImn(t)ΦI(z)

)
 sinαx sin βy

τ
(k)
xy (x, y, z, t) = Q

(k)

66

∞∑
m=1

∞∑
n=1

 β

(
Xmn(t) +

N∑
I=1

RI
mn(t)ΦI(z)

)
+

+α

(
Ymn(t) +

N∑
I=1

SImn(t)ΦI(z)

)
 cosαx cos βy

(4.20)

In addition, the transverse shear stresses are defined as given in [93]:

τ
(k)
xz (x, y, z, t) = Q

(k)

55

∞∑
m=1

∞∑
n=1

[
αWmn(t) +

N∑
I=1

RI
mn(t)dΦI

dz
(z)

]
cosαx sin βy

τ
(k)
yz (x, y, z, t) = Q

(k)

44

∞∑
m=1

∞∑
n=1

[
βWmn(t) +

N∑
I=1

SImn(t)dΦI

dz
(z)

]
sinαx cos βy

(4.21)

The definition of functions ΦI(z) from Eqs. (3.4) implies the discontinuity of

in-plane stresses at the layer interfaces if different materials or different fiber orien-

tations are used, while the transverse shear stresses are constant within each material

layer. For the calculation of transverse shear stresses, the algorithm presented in [20,
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4. Analytical Solution for Linear Transient Analysis of Intact Plates

74, 93] can be used. Because the stress field is derived directly from the previously

calculated displacement field, the time evolution of the stresses in any point of the

plate is exactly the same as for the time history plot of the displacements.

This completes the derivation of the analytical solution for the linear transient

analysis of the intact, simply supported cross-ply laminated composite plates. The

solution will be numerically validated through several examples in Chapter 10.4.

The stress distribution will be also presented through the examples to illustrate the

layerwise change of stresses through the thickness of the plate.

46



5 Finite Element Model

5.1 Introduction

As shown in Chapter 4, analytical solution of the GLPT exists only for the rela-

tively simple plate geometries, loading and boundary conditions. However, for the

analysis of structural elements of arbitrary shape, loading, boundary conditions, as

well as for the analysis of laminated composite plates with delaminations of arbitrary

shape and arbitrary positioned within a plate, numerical solution is required.

The Finite Element Method [99] is a powerful computational technique for the

solution of differential and integral equations. The basic idea of the FEM is to

approximate the given domain as an assemblage of simple geometric shapes (finite

elements). The advantage of this concept is the possibility to systematically generate

the approximation functions for the chosen domains. The approximation functions

are constructed using the ideas of the interpolation theory [8], and hence they are

also called the interpolation functions.

For a given differential equation, it is possible to develop different finite element

approximations (models), depending on the choice of a particular variational and

weighted-residual method. The FEM allows coupling of various physical problems

because finite elements based on the different problems can be easily generated in

the same computer program.

In Chapter 3, the Euler-Lagrange differential equations of motion are derived,

which define the ”strong” formulation of the geometrically nonlinear problem of

the laminated composite plate. These governing equations will serve as a basis

for the development of a numerical solution based on FEM. The weighted-integral

or ”weak” formulation of the governing differential equations over a typical finite

element domain Ωe will be defined as follows.
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5. Finite Element Model

5.2 Weak Formulation

When deriving the ”weak” form, first we multiply the 3 + 2N + 3ND governing

differential equations of the problem from (3.75) with δu, δv, δw, δuI , δvI , δU I , δV I

and δW I , respectively, and integrate over the finite element domain Ωe:

0 =
∫
Ωe
δu

[
−∂Nx

∂x
− ∂Nxy

∂y
+ I0ü+

N∑
I=1

II üI +
ND∑
I=1

I
I
Ü I

]
dΩe

0 =
∫
Ωe
δv

[
−∂Nxy

∂x
− ∂Ny

∂y
+ I0v̈ +

N∑
I=1

II v̈I +
ND∑
I=1

I
I
V̈ I

]
dΩe

0 =
∫
Ωe
δw

[
−∂Qx

∂x
− ∂Qy

∂y
− q(x, y, t)−N(w)−N(W I) + I0ẅ +

ND∑
I=1

I
I
Ẅ I

]
dΩe

0 =
∫
Ωe
δuI

[
−∂NI

x

∂x
− ∂NI

xy

∂y
+QI

x + II ü+
ND∑
J=1

I
JI
ÜJ +

N∑
J=1

IIJ üJ
]
dΩe

0 =
∫
Ωe
δvI
[
−∂NI

xy

∂x
− ∂NI

y

∂y
+QI

y + II v̈ +
ND∑
J=1

I
JI
V̈ J +

N∑
J=1

IIJ v̈J
]
dΩe

0 =
∫
Ωe
δU I

[
−∂N

I
x

∂x
− ∂N

I
xy

∂y
+ I

I
ü+

N∑
J=1

I
JI
üJ +

ND∑
J=1

ĨIJ ÜJ

]
dΩe

0 =
∫
Ωe
δV I

[
−∂N

I
xy

∂x
− ∂N

I
y

∂y
+ I

I
v̈ +

N∑
J=1

I
JI
v̈J +

ND∑
J=1

ĨIJ V̈ J

]
dΩe

0 =
∫
Ωe
δW I

[
−∂Q

I
x

∂x
− ∂Q

I
y

∂y
−N I

(w)−N I
(W J) + I

I
ẅ +

ND∑
J=1

ĨIJẄ J

]
dΩe

(5.1)

Here the virtual displacements δu, δv, δw, δuI , δvI , δU I , δV I and δW I take the

role of the weight functions. Integration by parts to weaken the differentiability of

u, v, w, uI , vI , U I , V I and W I results in the following expressions (nx and ny denote

the direction cosines of the unit normal on the element boundary Γe):

0 =

∫
Ωe

 ∂δu
∂x
Nx + ∂δu

∂y
Nxy + I0δuü+

+
N∑
I=1

IIδuüI +
ND∑
I=1

I
I
δuÜ I

 dΩe −
∮
Γe

δu (Nxnx +Nxyny) ds

0 =

∫
Ωe

 ∂δv
∂y
Ny + ∂δv

∂x
Nxy + I0δvv̈+

+
N∑
I=1

IIδvv̈I +
ND∑
I=1

I
I
δvV̈ I

 dΩe −
∮
Γe

δv (Nxynx +Nyny) ds

48



5. Finite Element Model

0 =

∫
Ωe


∂δw
∂x
Qx + ∂δw

∂y
Qy + ∂δw

∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+ ∂δw

∂y

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)
+

+
ND∑
I=1

[
∂w
∂x

(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
+ ∂w

∂y

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)]
−

−δwq(x, y, t) + I0δwẅ +
ND∑
I=1

I
I
δwẄ I

 dΩe−

−
∮
Γe

δw


Qxnx +Qyny +

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
nx +

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)
ny+

+
ND∑
I=1

[(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
nx +

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)
ny

]
 ds

0 =

∫
Ωe

 ∂δuI

∂x
N I
x + ∂δuI

∂y
N I
xy + δuIQI

x + IIδuI ü+

+
ND∑
J=1

I
JI
δuIÜJ +

N∑
J=1

IIJδuI üJ

 dΩe −
∮
Γe

δuI
(
N I
xnx +N I

xyny
)
ds

0 =

∫
Ωe

 ∂δvI

∂y
N I
y + ∂δvI

∂x
N I
xy + δvIQI

y + IIδvI v̈+

+
ND∑
J=1

I
JI
δvI V̈ J +

N∑
J=1

IIJδvI v̈J

 dΩe −
∮
Γe

δvI
(
N I
xynx +N I

yny
)
ds

0 =

∫
Ωe

 ∂δUI

∂x
N
I

x + ∂δUI

∂y
N
I

xy + I
I
δU I ü+

+
N∑
J=1

I
JI
δU I üJ +

ND∑
J=1

ĨIJδU IÜJ

 dΩe −
∮
Γe

δU I
(
N
I

xnx +N
I

xyny

)
ds

0 =

∫
Ωe

 ∂δV I

∂y
N
I

y + ∂δV I

∂x
N
I

xy + I
I
δV I v̈+

+
N∑
J=1

I
JI
δV I v̈J +

ND∑
J=1

ĨIJδV I V̈ J

 dΩe −
∮
Γe

δV I
(
N
I

xynx +N
I

yny

)
ds

0 =

∫
Ωe



∂δW I

∂x

(
N
I

x
∂w
∂x

+N
I

xy
∂w
∂y

)
+ ∂δW I

∂y

(
N
I

xy
∂w
∂x

+N
I

y
∂w
∂y

)
+

+
ND∑
J=1

 ∂δW I

∂x

(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
+

+∂δW I

∂y

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)
+

+∂δW I

∂x
Q
I

x + ∂δW I

∂y
Q
I

y + I
I
δW I ∂2w

∂t2
+

ND∑
J=1

ĨIJ ∂
2WJ

∂t2


dΩe−

−
∮
Γe

δW I


Q
I

xnx +Q
I

yny+

+
ND∑
J=1

[(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
nx +

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)
ny

]
 ds

(5.2)

The primary variables of the problem are u, v, w, uI , vI , U I , V I and W I . The

coefficients of the virtual displacements δu, δv, δw, δuI , δvI , δU I , δV I and δW I

in the contour integrals
∮
Γe

are the secondary variables (generalized forces) of the
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problem. If we re-write the forces on the boundary of the finite element Γe as:

Nn = Nxnx +Nxyny, Ns = Nxynx +Nyny, Qn = Qxnx +Qyny

Pn =
(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
nx +

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)
ny

P
I

n =
(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
nx +

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)
ny

P
IJ

n =
(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
nx +

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)
ny

N I
n = N I

xnx +N I
xyny, Ns = N I

xynx +N I
yny

N
I

n = N
I

xnx +N
I

xyny, N
I

s = N
I

xynx +N
I

yny, Q
I

n = Q
I

xnx +Q
I

yny

(5.3)

we finally obtain the ”weak” formulation in the following form:

0 =

∫
Ωe

[
∂δu

∂x
Nx +

∂δu

∂y
Nxy + I0δuü+

N∑
I=1

IIδuüI +
ND∑
I=1

I
I
δuÜ I

]
dΩe−

∮
Γe

δuNnds

0 =

∫
Ωe

[
∂δv

∂y
Ny +

∂δv

∂x
Nxy + I0δvv̈ +

N∑
I=1

IIδvv̈I +
ND∑
I=1

I
I
δvV̈ I

]
dΩe −

∮
Γe

δvNsds

0 =

∫
Ωe


∂δw
∂x
Qx + ∂δw

∂y
Qy − δwq(x, y, t) + I0δwẅ +

ND∑
I=1

I
I
δwẄ I+

+∂δw
∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+ ∂δw

∂y

(
Nxy

∂w
∂x

+Ny
∂w
∂y

)
+

+
ND∑
I=1

[
∂w
∂x

(
N
I

x
∂W I

∂x
+N

I

xy
∂W I

∂y

)
+ ∂w

∂y

(
N
I

xy
∂W I

∂x
+N

I

y
∂W I

∂y

)]
 dΩe−

−
∮
Γe

δw [Qn + Pn] ds

0 =

∫
Ωe

 ∂δuI

∂x
N I
x + ∂δuI

∂y
N I
xy + δuIQI

x+

+IIδuI ü+
ND∑
J=1

I
JI
δuIÜJ +

N∑
J=1

IIJδuI üJ

 dΩe −
∮
Γe

δuIN I
nds

0 =

∫
Ωe

 ∂δvI

∂y
N I
y + ∂δvI

∂x
N I
xy + δvIQI

y+

+IIδvI v̈ +
ND∑
J=1

I
JI
δvI V̈ J +

N∑
J=1

IIJδvI v̈J

 dΩe −
∮
Γe

δvIN I
s ds

0 =

∫
Ωe

 ∂δUI

∂x
N
I

x + ∂δUI

∂y
N
I

xy+

+I
I
δU I ü+

N∑
J=1

I
JI
δU I üJ +

ND∑
J=1

ĨIJδU IÜJ

 dΩe −
∮
Γe

δU IN
I

nds
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0 =

∫
Ωe

 ∂δV I

∂y
N
I

y + ∂δV I

∂x
N
I

xy+

+I
I
δV I v̈ +

N∑
J=1

I
JI
δV I v̈J +

ND∑
J=1

ĨIJδV I V̈ J

 dΩe −
∮
Γe

δV IN
I

sds

0 =

∫
Ωe



∂δW I

∂x
Q
I

x + ∂δW I

∂y
Q
I

y + I
I
δW Iẅ +

ND∑
J=1

ĨIJẄ J+

+∂δW I

∂x

(
N
I

x
∂w
∂x

+N
I

xy
∂w
∂y

)
+ ∂δW I

∂y

(
N
I

xy
∂w
∂x

+N
I

y
∂w
∂y

)
+

+
ND∑
J=1

 ∂δW I

∂x

(
N
IJ

x
∂WJ

∂x
+N

IJ

xy
∂WJ

∂y

)
+

+∂δW I

∂y

(
N
IJ

xy
∂WJ

∂x
+N

IJ

y
∂WJ

∂y

)



dΩe−

−
∮
Γe

δW I
[
Q
I

n + P
IJ

n

]
ds (5.4)

5.3 Spatial Approximation

As shown before, the primary variables of the problem are u, v, w, uI , vI , U I , V I

and W I . Thus the proposed theory allows adopting only translation components

in three orthogonal directions as generalized displacements in the nodes. Nodal

variables (degrees of freedom - DOFs) are the displacement components (u, v, w)

in the middle plane, relative displacements (uI , vI) in I th numerical layer (node)

through the thickness of the plate, and displacement jumps (U I , V I ,W I) in I th

delaminated numerical layer, which means that the number of nodal variables is

layer-dependent: 3 + 2N + 3ND.

Figure 5.1: Typical layered finite element with nine nodes (quadratic interpola-

tion)

The displacement based finite element model is derived in a following way: we

substitute the assumed interpolation of the displacement field into the previously
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derived weak formulation, for the single finite element of the plate. The finite

element mesh is generated only in the 2D plane, and the adopted interpolation

functions through the plate thickness are used for out-of-plane interpolation of the

unknown variables (which eliminates the z-coordinate from the calculation). This

assumption allows interpolating the unknown field variables independently for the

in-plane and out-of-plane distribution.

We assume that all generalized displacements are interpolated using same inter-

polation functions, for the sake of simplicity:

(
u, v, w, uI , vI , U I , V I ,W I

)
=

m∑
i=1

(
ui, vi, wi, u

I
i , v

I
i , U

I
i , V

I
i ,W

I
i

)
ψi (5.5)

In the previous interpolation, m is the number of nodes per 2D finite element,

while
(
ui, vi, wi, u

I
i , v

I
i , U

I
i , V

I
i ,W

I
i

)
are the ith node values of the displacements(

u, v, w, uI , vI , U I , V I ,W I
)
, respectively. The natural coordinate system ξ − η of

the single FE is located at the centroid of the element, as shown in Figure 5.1. The

functions ψi are the 2-D Lagrangian interpolation polynomials associated with the

ith node of the 2-D finite element. For the clear notation, the displacements (u, v, w),

(uI , vI) and (U I , V I ,W I) are interpolated separately in the following way:


u

v

w

 =



m∑
i=1

uiψi
m∑
i=1

viψi
m∑
i=1

wiψi


= [Ψ] {∆} ,

 uI

vI

 =


m∑
i=1

uIiψi
m∑
i=1

vIi ψi

 =
[
Ψ
] {

∆I
}

 u

v

 =
[
Ψ
]
{∆} ,

 U I

V I

 =
[
Ψ
]{

∆
I
}


U I

V I

W I

 =



m∑
i=1

U I
i ψi

m∑
i=1

V I
i ψi

m∑
i=1

W I
i ψi


= [Ψ]

{
∆
I
}

(5.6)

In Eqs. (5.6), {∆}, {∆I} and {∆I} are displacement vectors in the mid-plane, the
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I th numerical layer and the I th delaminated interface, respectively:

{∆} =



u1

v1

w1

...


3m×1

, {∆I} =


uI1

vI1
...


2m×1

, {∆I} =



U I
1

V I
1

W I
1

...


3m×1

(5.7)

In this study, four-node and nine-node Lagrange quadrilateral finite elements are

derived. [Ψ],
[
Ψ
]

and
[
Ψ
]

are the matrices of Lagrangian interpolation functions:

[Ψ] =


ψ1 0 0

0 ψ1 0 · · ·

0 0 ψ1


3×3m

,
[
Ψ
]

=

 ψ1 0

0 ψ1 · · ·


2×2m

[
Ψ
]

=

 ψ1 0 0

0 ψ1 0 · · ·


2×3m

(5.8)

Interpolation of Strain Field

If we incorporate the displacement interpolations from Eqs. (5.6) into the kinematic

relations from Eqs. (3.7) - (3.12), we obtain the discretized version of strain matrices:

{ε}5×1 = [B]5×3m{∆}3m×1

{εI}5×1 =
[
B
]

5×2m
{∆I}2m×1

{εI}5×1 = [B]5×3m{∆
I}3m×1

{η}5×1 = [BNL]5×3m {∆}3m×1

{ηI}5×1 = [BNL]5×3m {∆
I}3m×1 +

[
B
I

NL

]
5×3m

{∆}3m×1

{ηIJ}5×1 = 1
2

([
B
I

NL

]
5×3m

{∆J}3m×1 +
[
B
J

NL

]
5×3m

{∆I}3m×1

)
(5.9)

The corresponding variations of strain matrices are:

{δε}5×1 = [B]5×3m{δ∆}3m×1

{δεI}5×1 =
[
B
]

5×2m
{δ∆I}2m×1

{δεI}5×1 = [B]5×3m{δ∆
I}3m×1

{δη}5×1 = 2 [BNL]5×3m {δ∆}3m×1

{δηI}5×1 = 2 [BNL]5×3m {δ∆
I}3m×1 + 2

[
B
I

NL

]
5×3m

{δ∆}3m×1

{δηIJ}5×1 =
[
B
J

NL

]
5×3m

{δ∆I}3m×1 +
[
B
I

NL

]
5×3m

{δ∆J}3m×1

(5.10)
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5. Finite Element Model

In the previous expressions, kinematic matrices [B],
[
B
]
, [BNL] and

[
B
I

NL

]
relate

generalized displacements (degrees of freedom) with the respective strain resultants:

[B] =



∂ψ1

∂x
0 0

0 ∂ψ1

∂y
0

∂ψ1

∂y
∂ψ1

∂x
0 · · ·

0 0 ∂ψ1

∂x

0 0 ∂ψ1

∂y


5×3m

,
[
B
]

=



∂ψ1

∂x
0

0 ∂ψ1

∂y

∂ψ1

∂y
∂ψ1

∂x
· · ·

ψ1 0

0 ψ1


5×2m

[BNL] = 1
2



0 0 ∂w
∂x

∂ψ1

∂x

0 0 ∂w
∂y

∂ψ1

∂y

0 0 ∂w
∂x

∂ψ1

∂y
+ ∂w

∂y
∂ψ1

∂x
· · ·

0 0 0

0 0 0


5×3m

[
B
I

NL

]
= 1

2



0 0 ∂W I

∂x
∂ψ1

∂x

0 0 ∂W I

∂y
∂ψ1

∂y

0 0 ∂W I

∂x
∂ψ1

∂y
+ ∂W I

∂y
∂ψ1

∂x
· · ·

0 0 0

0 0 0


5×3m

(5.11)

Substituting the approximations (5.10) into the weak formulation, and introduc-

ing the vectors of external nodal loading {q}, mid-plane nodal loading {t} on the

boundary of the element Γe, nodal loading
{
tI
}

of the I th layer on the boundary

of the element Γe and nodal loading
{

t
I
}

of the I th delaminated interface on the

boundary of the element Γe, respectively:

{q} =
{

0 0 q1 · · ·
}T

3m×1
, {t} =

{
Nn1 Ns1 Qn1 + Pn1 · · ·

}T
3m×1

(5.12)

{
tI
}

=
{
N I
n1 N I

s1 · · ·
}T

2m×1
,
{

t
I
}

=
{
N
I

n1 N
I

s1 Q
I

n1 + P
I

n1 · · ·
}T

3m×1

and introducing the kinematic matrix [G] and the matrix of initial mid-plane force

resultants acting on the second order strains [N0]:

[G] =

 0 0 ∂ψ1

∂x
· · ·

0 0 ∂ψ1

∂y
· · ·


2×3m

, [N0] =

 N0
x N0

xy

N0
xy N0

y


2×2

(5.13)
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the matrix form of the weak formulation is obtained:

0 =

∫
Ωe

 ({δε}+ {δη})T {N}+
N∑
I=1

{
δεI
}T {

N I
}

+

+
ND∑
I=1

({
δεI
}

+
{
δηI
})T {

N
I
}

+
ND∑
I,J=1

{
δηIJ

}T {
N
IJ
}
 dΩe+

+

∫
Ωe



I0 {δ∆}T [Ψ]T [Ψ]
{

∆̈
}

+
N∑
I=1

II {δ∆}T
[
Ψ
]T

[Ψ]
{

∆̈
}

+

+
N∑
I=1

II
{
δ∆I

}T [
Ψ
]T [

Ψ
]{

∆̈
}

+
ND∑
I=1

I
I {δ∆}T [Ψ]T [Ψ]

{
¨

∆
I
}

+

+
ND∑
I=1

I
I
{
δ∆

I
}T

[Ψ]T [Ψ]
{

∆̈
}

+
N∑

I,J=1

IIJ
{
δ∆I

}T [
Ψ
]T [

Ψ
] {

∆I
}

+

+
N∑
I=1

ND∑
J=1

I
JI
({

δ∆I
}T [

Ψ
]T [

Ψ
]{

∆
J
}

+
{
δ∆

J
}T [

Ψ
]T [

Ψ
] {

∆J
})

+

+
ND∑
I,J=1

ĨIJ
{
δ∆

I
}T

[Ψ]T [Ψ]
{

∆
J
}


dΩe+

+

∫
Ωe

[G]T
[
N0
]

[G] {∆} dΩe −
∫
Ωe

[
{δ∆}T [Ψ]T [Ψ] {q}

]
dΩe−

−
∮
Γe

[
{δ∆}T [Ψ]T [Ψ] {t}+

N∑
I=1

{
δ∆I

}T [
Ψ
]T [

Ψ
] {

tI
}

+
ND∑
I=1

{
δ∆

I
}T

[Ψ]T [Ψ]
{

t
I
}]

ds

(5.14)

By considering the matrix form of the laminate constitutive equations from Eqs.

(3.57) - (3.60) and substituting into Eq. (5.14) the discretized weak formulation is

obtained:∫
Ωe

(I1 + I2) dΩe +

∫
Ωe

[G]T
[
N0
]

[G] {∆} dΩe =

∫
Ωe

[
{δ∆}T [Ψ]T [Ψ] {q}

]
dΩe+

+

∮
Γe

[
{δ∆}T [Ψ]T [Ψ] {t}+

N∑
I=1

{
δ∆I

}T [
Ψ
]T [

Ψ
] {

tI
}

+
ND∑
I=1

{
δ∆

I
}T

[Ψ]T [Ψ]
{

t
I
}]

ds

(5.15)
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where the integrand I1 =

{δ∆}T [B + 2BNL]T [A] [B +BNL] {∆}+
N∑
I=1

{δ∆}T [B + 2BNL]T
[
BI
] [
B
] {

∆I
}

+

+
ND∑
I=1

{δ∆}T [B + 2BNL]T
[
EI
] (

[B +BNL]
{

∆
I
}

+
[
B
I

NL

]
{∆}

)
+

+
ND∑
I,J=1

1
2
{δ∆}T [B + 2BNL]T

[
F IJ

] ([
B
I

NL

]{
∆
J
}

+
[
B
J

NL

]{
∆
I
})

+

+
N∑
I=1

{
δ∆I

}T [
B
]T [

BI
]

[B +BNL] {∆}+
N∑

I,J=1

{
δ∆I

}T [
B
]T [

DIJ
] [
B
] {

∆J
}

+

+
N∑
I=1

ND∑
J=1

{
δ∆I

}T [
B
]T [

LIJ
] (

[B +BNL]
{

∆
J
}

+
[
B
J

NL

]
{∆}

)
+

+
N∑
I=1

ND∑
J,K=1

1
2

{
δ∆I

}T [
B
]T [

LIJK
] ([

B
J

NL

]{
∆
K
}

+
[
B
K

NL

]{
∆
J
})

+

+
ND∑
I=1

{
δ∆

I
}T

[B]T
[
EI
]

[B +BNL] {∆}+
ND∑
I=1

N∑
J=1

{
δ∆

I
}T

[B]T
[
LJI
] [
B
] {

∆J
}

+

+
ND∑
I,J=1

{
δ∆

I
}T

[B]T
[
F IJ

] (
[B +BNL]

{
∆
J
}

+
[
B
J

NL

]
{∆}

)
+

+
ND∑

I,J,K=1

1
2

{
δ∆

I
}T

[B]T
[
F IJK

] ([
B
J

NL

]{
∆
K
}

+
[
B
K

NL

]{
∆
J
})

+

+
ND∑
I=1

2

(
{δ∆}T

[
B
I

NL

]T
+
{
δ∆

I
}T

[BNL]T
)[

EI
]

[B +BNL] {∆}+

+
ND∑
I=1

N∑
J=1

2

(
{δ∆}T

[
B
I

NL

]T
+
{
δ∆

I
}T

[BNL]T
)[

LJI
] [
B
] {

∆J
}

+

+
ND∑
I,J=1

2 {δ∆}T
[
B
I

NL

]T [
F IJ

] (
[B +BNL]

{
∆
J
}

+
[
B
J

NL

]
{∆}

)
+

+
ND∑
I,J=1

2
{
δ∆

I
}T

[BNL]T
[
F IJ

] (
[B +BNL]

{
∆
J
}

+
[
B
J

NL

]
{∆}

)
+

+
ND∑

I,J,K=1

(
{δ∆}T

[
B
I

NL

]T
+
{
δ∆

I
}T

[BNL]T
)[

F IJK
]

2
[
B
J

NL

]{
∆
K
}

+

+
ND∑
I,J=1

({
δ∆

J
}T [

B
I

NL

]T
+
{
δ∆

I
}T [

B
J

NL

]T)[
F IJ

]
[B +BNL] {∆}+

+
ND∑
I,J=1

N∑
K=1

({
δ∆

J
}T [

B
I

NL

]T
+
{
δ∆

I
}T [

B
J

NL

]T)[
LKIJ

] [
B
] {

∆K
}

+

+
ND∑

I,J,K=1

2
{
δ∆

I
}T [

B
J

NL

]T [
F IJK

] (
[B +BNL]

{
∆
K
}

+
[
B
K

NL

]
{∆}

)
+

+
ND∑

I,J,K,L=1

{
δ∆

I
}T [

B
J

NL

]T [
F IJKL

] ([
B
K

NL

]{
∆
L
}

+
[
B
L

NL

]{
∆
K
})

(5.16)
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and integrand I2 =

I0 {δ∆}T [Ψ]T [Ψ]
{

∆̈
}

+
N∑
I=1

II {δ∆}T
[
Ψ
]T

[Ψ]
{

∆̈
}

+

+
N∑
I=1

II
{
δ∆I

}T [
Ψ
]T [

Ψ
]{

∆̈
}

+
ND∑
I=1

I
I {δ∆}T [Ψ]T [Ψ]

{
¨

∆
I
}

+

+
ND∑
I=1

I
I
{
δ∆

I
}T

[Ψ]T [Ψ]
{

∆̈
}

+
N∑

I,J=1

IIJ
{
δ∆I

}T [
Ψ
]T [

Ψ
] {

∆I
}

+

+
N∑
I=1

ND∑
J=1

I
JI
({

δ∆I
}T [

Ψ
]T [

Ψ
]{

∆
J
}

+
{
δ∆

J
}T [

Ψ
]T [

Ψ
] {

∆J
})

+

+
ND∑
I,J=1

ĨIJ
{
δ∆

I
}T

[Ψ]T [Ψ]
{

∆
J
}
.

(5.17)

Collecting the coefficients of all displacement vectors from the previous equations,

the matrix form of the finite element model is derived:
[K11]

[
KI

12

] [
KI

13

][
KI

21

] [
KIJ

22

] [
KIJ

23

][
KI

31

] [
KIJ

32

] [
KIJ

33

]

e

{∆}{
∆I
}{

∆
I
}

e

+


[M11]

[
M I

12

] [
M I

13

][
M I

21

] [
M IJ

22

] [
M IJ

23

][
M I

31

] [
M IJ

32

] [
M IJ

33

]

e


{
∆̈
}

{
∆̈I
}{

∆̈
I
}


e

+

+


[G]T [N0] [G] [0] [0]

[0] [0] [0]

[0] [0] [0]


e

{∆}{
∆I
}{

∆
I
}

e

=


{F}{
F I
}{

F
I
}

e

(5.18)

or in the following form:

[
KNL

]e {d}e +
[
KG
]e {d}e + [M ]e

{
d̈
}e

= {f}e (5.19)

In Eq. (5.19),
[
KNL

]e
is the nonlinear element stiffness matrix,

[
KG
]

is the element

geometric stiffness matrix (which describe the initial in-plane forces acting on the

second-order strains), [M ]e is the element mass matrix, {d}e is the vector of gener-

alized displacements,
{
d̈
}e

is the element acceleration vector and finally {f}e is the

element force vector.
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Element Stiffness Matrix

Submatrices of the stiffness matrix of the single, representative finite element of the

laminated composite plate with embedded delaminations are:

[K11] =

∫
Ωe


[B +BNL]T [A] [B +BNL] +

ND∑
I=1

[B]T
[
EI
] [
B
I

NL

]
+

ND∑
I=1

2 [BNL]T
[
EI
] [
B
I

NL

]
+

ND∑
I=1

2
[
B
I

NL

]T [
EI
]

[B +BNL] +

+
ND∑
I,J=1

2
[
B
I

NL

]T [
F IJ

] [
B
J

NL

]

 dΩe

[
KI

12

]
=

∫
Ωe

(
[B + 2BNL]T

[
BI
] [
B
]

+
ND∑
J=1

2
[
B
J

NL

]T [
LIJ
] [
B
] )

dΩe

[
KI

13

]
=

∫
Ωe


[B + 2BNL]T

[
EI
]

[B +BNL] +
ND∑
J=1

[B]T
[
F IJ

] [
B
J

NL

]
+

+
ND∑
J=1

2 [BNL]T
[
F IJ

] [
B
J

NL

]
+

ND∑
J=1

2
[
B
J

NL

]T [
F IJ

]
[B +BNL] +

+
ND∑
J,K=1

2
[
B
J

NL

]T [
F IJK

] [
B
K

NL

]

 dΩe

[
KI

21

]
=

∫
Ωe

( [
B
]T [

BI
]

[B +BNL] +
ND∑
J=1

[
B
]T [

LJI
] [
B
J

NL

] )
dΩe

[
KIJ

22

]
=

∫
Ωe

( [
B
]T [

DIJ
] [
B
] )

dΩe

[
KIJ

23

]
=

∫
Ωe

( [
B
]T [

LIJ
]

[B +BNL] +
ND∑
K=1

[
B
]T [

LIJK
] [
B
K

NL

] )
dΩe

[
KI

31

]
=

∫
Ωe


[B + 2BNL]T

[
EI
]

[B +BNL] +
ND∑
J=1

[B]T
[
F IJ

] [
B
J

NL

]
+

ND∑
J=1

2 [BNL]T
[
F IJ

] [
B
J

NL

]
+

ND∑
J=1

2
[
B
J

NL

]T [
F IJ

]
[B +BNL] +

ND∑
J,K=1

2
[
B
J

NL

]T [
F IJK

] [
B
K

NL

]

 dΩe

[
KIJ

32

]
=

∫
Ωe

(
[B + 2BNL]T

[
LJI
] [
B
]

+
ND∑
K=1

2
[
B
I

NL

]T [
LJIK

] [
B
] )

dΩe

[
KIJ

33

]
=

∫
Ωe


[B + 2BNL]T

[
F IJ

]
[B +BNL] +

ND∑
K=1

[B]T
[
F IJK

] [
B
K

NL

]
+

ND∑
K=1

2 [BNL]T
[
F IJK

] [
B
K

NL

]
+

ND∑
K=1

2
[
B
I

NL

]T [
F IJK

]
[B +BNL] +

+
ND∑

K,L=1

2
[
B
I

NL

]T [
F IJKL

] [
B
L

NL

]

 dΩe

(5.20)
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Element Mass Matrix

Mass matrix of the single, representative FE of the laminated composite plate with

embedded delaminations is:

[M ]e =

∫
Ωe


I0

[
ΨT
]

[Ψ]
N∑
I=1

II
[
Ψ
]T

[Ψ]
ND∑
I=1

I
I

[Ψ]T [Ψ]

N∑
I=1

II
[
Ψ
]T [

Ψ
] N∑

I,J=1

IIJ
[
Ψ
]T [

Ψ
] N∑

I=1

ND∑
J=1

I
IJ [

Ψ
]T [

Ψ
]

ND∑
I=1

I
I

[Ψ]T [Ψ]
ND∑
I=1

N∑
J=1

I
JI
[
Ψ
]T [

Ψ
] ND∑

I,J=1

ĨIJ [Ψ]T [Ψ]


dΩe

(5.21)

Element Force Vector

Force vector of the single layered finite element of the laminated composite plate

with embedded delaminations is:

{f}e =


{F}{
F I
}{

F
I
}
 =



∫
Ωe

[Ψ]T [Ψ] {q} dΩe +
∮
Γe

[Ψ]T [Ψ] {t} dΓe∮
Γe

[
Ψ
]T [

Ψ
] {

tI
}
dΓe∮

Γe
[Ψ]T [Ψ]

{
t
I
}
dΓe


(5.22)

5.4 Coordinate Transformations

When solving a structural problem using the conventional finite element method,

an accurate representation of irregular domains can be accomplished by the use of

refined meshes and irregularly shaped elements. A nonrectangular region cannot

be accurately represented using all rectangular elements, so triangular or quadri-

lateral elements should be used. On the other hand, it is convenient to derive the

interpolation functions for a rectangular element, as well as to evaluate integrals

over rectangular geometries than over irregular ones. Therefore quadrilateral ele-

ments with straight or curved sides are used, but the interpolation functions are

generated over the rectangular elements. A coordinate transformation between the

coordinates (x, y) in the global coordinate system and the element coordinates (ξ, η)
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results in the algebraically complex expressions which cannot be solved analytically.

Therefore, the numerical integration is performed to evaluate these expressions.

Numerical integration schemes, such as the Gauss-Legendre numerical integra-

tion, require the integral to be evaluated on a specific domain or with respect to a

specific coordinate system. Gauss-Legendre quadrature requires the integral to be

expressed over a square region Ω of dimensions 2× 2 and the coordinate system be

such that −1 ≤ (ξ, η) ≤ 1. The element Ω is called a master element.

The transformation between Ωe and Ω is done using the following coordinate

transformation:

x =
m∑
i=1

xiψi(ξ, η), y =
m∑
i=1

yiψi(ξ, η) (5.23)

while some dependent variable var(x, y) is approximated according to:

var(x, y) =
m∑
i=1

variψi(x, y) =
m∑
i=1

variψi (x(ξ, η), y(ξ, η)) (5.24)

In Eqs. (5.23)-(5.24), ψi denote the interpolation functions of the master element

Ω and ψi are the interpolation functions of the typical element Ωe, m is the number

of nodes per element, while (xi, yi, vari) denote the (x, y) coordinates and the value

of the variable var of the ith node, respectively. The above transformations exist

if the Jacobian of the transformation is a positive-definite. The positive-definite

requirement of the Jacobian dictates the admissible geometries of the elements in

a finite element mesh. Also, note that in this study a isoparametric formulation of

the finite elements is used, where equal degree of approximation is used both for the

geometry and the dependent variables.
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The linear and quadratic Lagrange shape functions of rectangular element are:



ψ1

ψ2

ψ3

ψ4


=

1

4



(1− ξ)(1− η)

(1 + ξ)(1− η)

(1 + ξ)(1 + η)

(1− ξ)(1 + η)


,



ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8

ψ9



=
1

4



(ξ − ξ2)(η − η2)

(ξ + ξ2)(η2 − η)

(ξ + ξ2)(η + η2)

(ξ2 − ξ)(η + η2)

2(1− ξ2)(η2 − η)

2(ξ + ξ2)(1− η2)

2(1− ξ2)(η + η2)

2(ξ2 − ξ)(1− η2)

4(1− ξ2)(1− η2)



(5.25)

Gauss-Legendre Quadrature

The coefficients of the algebraic equations in the finite element model contain in-

tegrals of the physical parameters and the functions used for the approximation of

primary variables. These complicated integral expressions are solved numerically.

First the integral from Ωe is transformed to the master element Ω. The integrand

usually contains not only ψi(x, y), but also their derivatives with respect to the

global coordinates (x, y). The relations between the derivatives of ψi with respect

to global coordinates and the derivatives of ψi with respect to natural coordinates

are derived by the chain rule of partial differentiation:
∂ψi
∂ξ

∂ψi
∂η

 =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η


∂ψi
∂x

∂ψi
∂y

 (5.26)

The coefficient matrix in Eq. (5.26) is called the Jacobian matrix, while its determi-

nant is called the Jacobian, which must be greater than zero in order to invert Eq.

(5.26). Inverting the Eq. (5.26) we obtain:
∂ψi
∂x

∂ψi
∂y

 = [J ]−1


∂ψi
∂ξ

∂ψi
∂η

 (5.27)

This requires the Jacobian matrix [J] to be nonsingular.

While evaluating the integral
∫
Ωe
F (x, y)dΩe, the element area dΩe = dxdy in

element Ωe is transformed to dΩe = dxdy = det[J ]dξdη in the master element Ω.
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Table 5.1: Gauss points (ξI , ηJ) and corresponding weighting factors WI and WJ

of the Gauss-Legendre quadrature

n× n ξI ηJ WI WJ

1× 1 ξ1 = 0 η1 = 0 W1 = 2 W1 = 2

2× 2
ξ1 = −1/

√
3 η1 = −1/

√
3 W1 = 1 W1 = 1

ξ2 = 1/
√

3 η2 = 1/
√

3 W2 = 1 W2 = 1

3× 3

ξ1 = −
√

3/5 η1 = −
√

3/5 W1 = 5/9 W1 = 5/9

ξ2 = 0 η2 = 0 W2 = 8/9 W2 = 8/9

ξ3 =
√

3/5 η3 =
√

3/5 W3 = 5/9 W3 = 5/9

Using the Gauss quadrature formula for integrals defined over a rectangular master

element Ω, we obtain:∫
Ωe
F (x, y)dxdy =

∫
Ω

F (ξ, η)dξdη =
1∫
−1

1∫
−1

F (ξ, η)dηdξdet[J ] −→

∫
Ωe
F (x, y)dxdy ≈

M∑
I=1

N∑
J=1

Fij (ξI , ηJ)WIWJ

(5.28)

In Eq. (5.28), M and N denote the number of Gauss quadrature points in the ξ

and η directions, (ξI , ηJ) are the natural coordinates of the Gauss point, while WI

and WJ denote the corresponding Gauss weights (see Table (5.1)).

Shear Locking

Although the layerwise model may be primarily indended for thick plate situations

(a/h < 20), it is important to determine the limits of the layerwise model’s applica-

bility to thin plate situations (a/h > 20). Generally, finite elements which possess

full 3D modeling capability can exhibit spurious transverse shear stiffness, spuri-

ous transverse normal stiffness and ill-conditioned stiffness matrices as the span-to-

thickness ratio increases (see [8] for details).

The spurious shear stiffness phenomenon is caused by the interpolation incon-

sistency that prevents the finite element from modeling a state of zero transverse

shear stress in the presence of general nonzero bending strains. As the plate’s span-

to-thickness ratio approaches the thin plate limit, the transverse shear deformation
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must tend toward zero relative to the bending deformation. The elements which

are poor approximators of this condition are known to exhibit shear locking, while

elements which are better approximators may exhibit a slight overstiffness. As

the span-to-thickness ratio increases, the computed solution tends to suppress the

higher-order terms of the interpolation. If a reduced quadrature is used to evaluate

the terms contributing to the transverse shear energy, then the Kirchhoff’s condition

will not be enforced as stringently as in the case of the full quadrature [8]. The re-

duced quadrature is required only when integrating the transverse shear terms with

respect to x and y (not the thickness coordinate z ), because the transverse interpo-

lation inconsistency is insignificant compared with the in-plane inconsistencies. The

problem of the spurious transverse normal stiffness is explained in detail in Ref. [8].

Within this study, element stiffness and mass matrices were evaluated using full

integration (3×3 Gauss-Legendre quadrature for 9-node quadrilateral finite element,

or 2× 2 quadrature for 4-node quadrilateral finite element) and reduced integration

(2×2 Gauss-Legendre quadrature for 9-node or 1×1 quadrature for 4-node element).

5.5 Assembly Procedure

After the derivation of the characteristic element matrices, the assembly procedure is

done in a usual manner. After the assembly procedure of the characteristic element

matrices and vectors, we obtain the mathematical model on the structural level:[
KNL

]
{d}+ [M ]

{
d̈
}

= {f} (5.29)

From the previous equation several structural problems may be considered, using

the same restrictions as in the ”strong” formulation, see Section 3.7.5:

1. Geometrically Nonlinear Bending Analysis[
KL +KNL

]
{d} = {f},

2. Linear Bending Analysis[
KL
]
{d} = {f},

3. Linear Buckling Analysis([
KL
]
− λ

[
KG
])
{d} = 0,
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4. Linear Free Vibration Analysis([
KL
]
− ω2 [M ]

)
{d} = 0,

5. Geometrically Nonlinear Transient Analysis[
KL +KNL

]
{d}+ [M ]

{
d̈
}

= {f},

6. Geometrically Linear Transient Analysis[
KL
]
{d}+ [M ]

{
d̈
}

= {f}.

5.6 Assignment of Boundary Conditions

The FE model represents the system of algebraic equations, where unknown param-

eters are displacement components (degrees of freedom). To solve this system we

need to assign the appropriate boundary conditions. The natural (displacement)

boundary conditions constrain the nodal displacements, which lead to the unique

solution of the system of governing equations (the matrix of coefficients of gov-

erning equations becomes regular). The displacement boundary conditions can be

homogeneous or non-homogeneous.

For the rectangular plate, in general case exist three types of natural boundary

conditions on the plate edges:

1. Simply-Supported Edge (SS)

for x = 0 and x = a: v = w = vI = U I = V I = W I = 0;

for y = 0 and y = b: u = w = uI = U I = V I = W I = 0.

2. Simply-Supported Edge (NN)

for x = 0 and x = a: u = v = w = vI = U I = V I = W I = 0;

for y = 0 and y = b: u = v = w = uI = U I = V I = W I = 0.

3. Clamped Edge (CC)

for x = 0 and x = a: u = v = w = uI = vI = U I = V I = W I = 0;

for y = 0 and y = b: u = v = w = uI = vI = U I = V I = W I = 0.

Also, on delamination boundary the following boundary condition are enforced:

1. Delamination Front: U I = V I = W I = 0
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Figure 5.2: Rectangular plate a× b with delamination

5.7 Solution Procedure for the Time

Independent Problems

In the nonlinear formulation based on a GLPT, the geometric nonlinearity in the

form of the von Kármán strains is included. For small strains and moderately large

deflections and rotations, these assumptions yield good results [8].

The spatial discretization of the problem using finite elements results in a system

of ordinary differential equations in time, given in Eq. (5.29). If the time dependency

of the problem can be neglected, then the system of nonlinear ordinary differential

equations reduces to a system of nonlinear algebraic equations on the structural

level: [
KNL

]
{d} = {f} (5.30)

We note that the nonlinearity of the stiffness matrix
[
KNL

]
is solely due to the

transverse deflection w and the Crack Opening Displacements W I , as can be seen

from Eqs. (5.11). The stiffness matrix
[
KNL

]
is not symmetric because:[

KI,NL
12

]
= 2

[
KI,NL

21

]
,
[
KIJ,NL

32

]
= 2

[
KIJ,NL

23

]
(5.31)

After the assignment of boundary conditions defined in the previous Section, the

Eq. (5.30) must be solved using the numerical methods for the solution of nonlinear

algebraic equations. Generally, the nonlinear system of equations can be written in

the following form [93]:

K(d) · d = R(d) = F −→ R(d, F ) = R(d)− λ · F = 0 (5.32)

where d is the unknown solution for the displacements, K(d) is the known function

of d (known from the previous iteration), F is the known force, λ is the loading
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parameter, R(d) is the internal force vector and R(d, F ) is the unbalanced loading

(residuum). The procedures for solving the Eq. (5.31) can generally be divided in

two main categories:

1. The iteration methods, for finding the equilibrium states for an incremental

load change, such as Picard method and Newton-Raphson method,

2. The control methods or control procedures, which describe the successive load

application, such as Arc-length method.

5.7.1 Iteration Methods

In the Direct Iteration (Picard) Method, the solution (displacement) vector

from the previous iteration is used to evaluate the stiffness matrix, and the solution

at the subsequent iteration is determined by solving the assembled equations after

the imposition of boundary conditions:

[
K(diter−1)

] {
diter

}
=
{
f iter

}
(5.33)

where {diter} denotes the solution vector from the current iteration, and iter is the

iteration index. The coefficients Kij are obtained by evaluating the element stiffness

matrix coefficients using the solution {diter−1}. The solution of the current iteration

is obtained by solving:

{diter} =
[
K(diter−1)

]−1 {
f iter

}
(5.34)

At the beginning of the loading step (iter = 0), we assume the homogeneous

initial conditions so that the solution at the first iteration is the linear solution

(
[
KNL

]
= 0). The iteration process is continued until the convergence criterion is

satisfied (the error is less than or equal to some prescribed tolerance (say ε < 1%)):√
(diter − diter−1)2

(diter)2
< ε (say10−3) (5.35)
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Newton-Raphson method is based on the multi-dimensional Taylor series

expansion of the internal forces vector R at a deformation state determined by the

structural displacement vector diterstep [100]:

R
(
diterstep

)
= R

(
diter−1
step

)
+
∂R
(
diter−1
step

)
∂diter−1

step

(
diterstep − diter−1

step

)
+ · · · (5.36)

The result of a Taylor series is approximated by the vector of internal forces of

the displacements state diterstep in the neighborhood of the point diter−1
step , where index

iter stands for the iteration index in dealing with the iteration procedure, while

index step denotes the current loading step. To generate the iteration procedure,

the Taylor row expansion is truncated after the linear term, and the displacement

increment can be defined as ∆diter = diterstep − diter−1
step . The internal force vector can

now be re-written as:

R(diterstep) = R(diter−1
step ) +

∂R(diter−1
step )

∂diter−1
step

∆diter = R(diter−1
step ) + [KT ](diter−1

step )∆diter (5.37)

where [KT ] is the tangent stiffness matrix. This completes the linearisation of the

internal force vector ∆R(diter−1
step ). Now the Eq. (5.32) can be re-written as:

R(diter−1
step ) + [KT ](diter−1

step )∆diter = Fstep (5.38)

From the previous equation follows:

∆diter =
[
[KT ](diter−1

step )
]−1 ·

(
Fstep −R(diter−1

step )
)

(5.39)

and the displacement vector in the current iteration can be calculated

diterstep = diter−1
step +

[
[KT ](diter−1

step )
]−1 ·

(
Fstep −R(diter−1

step )
)
. (5.40)

The iteration process is continued until the convergence criterion is satisfied (the

error is less than or equal to some prescribed tolerance (say ε < 1%)):√
(diterstep − diter−1

step )2

(diterstep)
2

< ε (5.41)

To complete the formulation, the internal force vector in the first iteration (pre-

dictor) is calculated as the converged solution from the previous step:

R(d0
step) = R(dstep−1) (5.42)
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5.7.2 Control Methods

The application of the iterative methods is not possible when the structure becomes

unstable (the stiffness matrix becomes singular), i.e. at the snap through points on

the load-displacement curve. In this cases, Control Methods such as Arc-Length

Controlling Method are used. These methods will not be discussed in this study.

5.8 Solution Procedure for the Time Dependent

Problems

When the weak formulation is spatially discretized using the finite elements, a system

of ordinary differential equations in time is obtained:[
KNL

]
{d}+ [M ]

{
d̈
}

= {f} (5.43)

From the experimental evidence it is known that damping effects occur in the

structures undergoing dynamic motion, due to the viscose effects in the material

or the internal friction. Then an additional term in the previous equation has to

be introduced. It is usually done by introducing the damping matrix [C], which

is proportional to mass and stiffness matrices [C] = α [M ] + β
[
KNL

]
(Rayleigh

damping).

However, if the structure is loaded with a single pulse, the effect of damping is

usually not important, unless the system is highly damped [101]. Maximum response

to an impulsive load will be reached in a very short time, before the damping forces

can absorb the energy from the structure [102]. Consequently, in further calculations

only the undamped structural response will be considered.

The Eq. (5.43) in the time point tn+1 should be re-written to obtain the following

discretized form of the governing equations system:

[M ]
{
d̈n+1

}
+ {R} (dn+1) = {fn+1} (5.44)

where {R} (dn+1) is the vector of internal forces in the time point tn+1 defined as:

{R} (dn+1) =
[
KNL

]
{dn+1} (5.45)
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Finally, the initial conditions have to be described. These are the values of the

displacements {d} and velocities
{
ḋ
}

at time t0:

{d} (t = 0) = {d0} ,
{
ḋ
}

(t = 0) =
{
ḋ0

}
(5.46)

Basically, two options are available for the solution of Eq. (5.44), which are

known as explicit and implicit integration schemes. In the scope of this study,

an implicit integration scheme is employed, which replaces the time derivatives by

quantities which depend on quantities from the last time step in time tn as well

as from the still unknown quantities at time tn+α. This requires the solution of

a nonlinear algebraic system at every time step - the implicit methods have to be

combined with the iterative methods described in the Section 5.8. The advantage of

implicit methods is that they can be constructed such that they are unconditionally

stable (see [8, 36, 98, 101–103] and references herein).

In the implementation of the proposed plate model the Newmark’s method [98] is

used, in which accelerations and velocities are approximated using truncated Taylors

series. The governing differential equations of the system are then satisfied in dis-

crete time points tn+1. Displacements and velocities at time tn+1 are approximated

as:

{dn+1} = {dn}+ ∆t{ḋn}+ ∆t2

2

[
(1− 2β){d̈n}+ 2β{d̈n+1}

]
,

{ḋn+1} = {ḋn}+ ∆t
[
(1− γ){d̈n}+ γ{d̈n+1}

] (5.47)

In Eqs. (5.47), β and γ are constants which determine the behavior of the integration

method, and they are chosen as β = γ = 0.5 because of the proven mathematical

stability. Then the Eqs. (5.47) become:

{dn+1} = {dn}+ ∆t{ḋn}+ ∆t2

2
{d̈n+1},

{ḋn+1} = {ḋn}+ ∆t
2

[
{d̈n}+ {d̈n+1}

] (5.48)

The Eqs. (5.48) are re-written in the following form:

{d̈n+1} = 2
∆t2

({dn+1} − {dn})− 2
∆t
{ḋn},

{ḋn+1} = 1
∆t

({dn+1} − {dn}) + ∆t
2
{d̈n}

(5.49)

By incorporation of the approximations for {d̈n+1} and {ḋn+1} in Eq. (5.43), we
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obtain the following:

[M ]
[

2
∆t2

({dn+1} − {dn})− 2
∆t
{ḋn}

]
+
[
KNL

]
{dn+1} − {fn+1} = 0 −→[

[M ] 2
∆t2

+
[
KNL

]]
{dn+1} = {fn+1}+ [M ]

[
2

∆t
{ḋn}+ 2

∆t2
{dn}

]
(5.50)

The Eq. (5.50) represents a system of algebraic equations at tn+1, in terms of known

values at tn. In this study, homogeneous initial conditions are prescribed. Because[
KNL

]
depends on the unknown solution {dn+1}, the assembled equation must be

solved iteratively until the convergence criterion is satisfied (the error is less than

or equal to some prescribed tolerance (say ε < 1%)).

5.9 Post Processing of Interlaminar Stresses

As previously shown in Chapter 4, the interlaminar stresses in the GLPT can be

calculated using the constitutive equations (3.16) from the previously derived dis-

placement field, as shown in [9, 93]. The definition of ΦI(z) leads to the disconti-

nuity of in-plane stresses at layer interfaces, while the transverse shear stresses are

approximated as constant within each material layer. For the approximate solution

for transverse shear stresses, the algorithm presented in [20, 74, 93] can be used,

which use the previously derived in-plane stress information from the finite element

solution to provide the approximation of transverse shear stresses.
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6 Contact Algorithm

This chapter explains the node-to-node nonlinear frictionless contact algorithm which

prevent the layer overlapping in the delaminated zone of the composite plate, during its

motion in transient loading environment. The contact condition is iteratively enforced in

every solution step, until the convergence criterion is satisfied. After the global equilibrium

in the current step is satisfied, the next time step is computed where the contact status

is again checked. The advantage of the proposed method is that it can be implemented

easily into the geometrically nonlinear transient analysis algorithm. The efficiency of the

contact algorithm is illustrated in Chapter 10.4, while the part of the results is already

published by author in [94, 104, 105].

Obviously, during the transient response of laminated composite or sandwich

plates with delamination, a small gap maybe formed between the adjacent layers in

delaminated zones of the plate. After that, the separated layers may unload and

again contact each other at that delaminated interface. This phenomenon is referred

to as ”breathing” of a delamination (see [69, 70] for details).

In this study, the node-to-node nonlinear frictionless contact algorithm is en-

forced, as illustrated in Figure 6.1. For the sake of simplicity, the algorithm will

be illustrated using the example of a restrained simply-supported beam under tran-

sient forces F (t) as shown in Figure 6.1. In the first iteration (predictor phase), the

displacement field is calculated without any contact restraints, from:

[Muu] {d̈u}+ [Kuu] {du} = {Fu}, (6.1)

where [Muu] and [Kuu] are the system mass and stiffness matrices, respectively,

while {d̈u} is the acceleration vector. {du} is the displacement vector and {Fu}

is the vector of external transient loadings, where the subscript u refers to the
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unknown displacement components. In the contact detection algorithm all nodes

with the overlap are detected and the gap is computed and stored in a vector {dc}

(the subscript c refers to the contact nodes). At the respective set of contact nodes

the negative values of the gap are assigned as the prescribed displacements and

computed as transient forces Fc(t), as shown in Figure 6.1. The extended governing

equations of the system are then obtained in the format:

[Muu] {d̈u}+ [Kuu] {du} − [Kuk] {dk} = {Fu}

[Muu] {d̈u}+ [Kuu] {du} = {Fu}+ {Fc,u}
(6.2)

where the subscript k refers to the known displacement components.

Figure 6.1: Contact algorithm to prevent overlapping in delaminated interfaces

(left) and the flowchart of the program (right)

Eq. (6.2) replaces Eq. 6.1 if any overlapping occurs. The contact condition is

iteratively enforced until the convergence criterion is satisfied (the error is less than
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or equal to some prescribed tolerance (say ε < 1%). After the iterative enforcement

of the contact condition and the global equilibrium in the current step is satisfied,

the next time step is computed, where the contact status is again checked. The

advantage of the proposed method is that it can be implemented easily into the

geometrically nonlinear transient analysis algorithm explained in this study. Figure

6.1 illustrates the flowchart of the program.

The efficiency of the contact algorithm will be illustrated in Example 10.4.1.,

which purpose is only to highlight the difference between the behavior of delaminated

adjacent interfaces with and without the implementation of the contact algorithm.

The parametric study of the influence of delamination position and size will be

further discussed in several examples in Section 10.4.
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7 Delamination Propagation

In this chapter, the method for tracking the moving delamination front is presented as the

extension of the algorithm proposed by Xie et al. [106, 107] which was restricted to the

structured FE meshes. The displacement field obtained from finite element calculation

is used for the computation of three components Gi of the Strain Energy Release Rate

along the delamination front, using the Virtual Crack Closure Technique, which requires

the calculation of the delamination opening behind the crack front, the nodal forces along

the front and the virtually closed area in front of the existing delamination. To predict the

delamination growth the calculated Gi components are compared with the interlaminar

fracture toughness. The direction in which delamination will grow is described by the

vector normal to the delamination front, which components are accurately calculated in

this study unlike the majority of the models from the literature. The virtually closed area

is determined using 6 control points for every node along the delamination front. After

that, the forces along the delamination front, as well as the delamination openings behind

the front, are computed. The Gi components are approximated as the product of the

calculated forces and the delamination openings, in the region of the virtually closed area.

A mixed-mode fracture criterion is applied next in all considered nodes. The algorithm

is repeated until there are no more propagating nodes in the current step of the analysis.

Subsequently, the analysis continues with the next time or loading increment. Some basics

of the proposed algorithm are published by author in [108].

7.1 Introduction

To predict the delamination growth, the Strain Energy Release Rate distribution

along the delamination front must be derived first. The total Strain Energy Release
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7. Delamination Propagation

Rate (G) is divided into three components GI , GII and GIII , depending on the

fracture mode (see Figure 7.1). In order to predict delamination growth, the calcu-

lated Gi components are compared with the interlaminar fracture toughness, which

is a material property obtained experimentally. For simple examples such as the

Double-Cantilever-Beam (DCB) problem, some components of the Strain Energy

Release Rates can be also calculated analytically [109–113]).

Figure 7.1: Different modes of delamination

For the modeling of delamination growth in laminated structures a number of

computational strategies exist (see [114] and references therein). The Virtual Crack

Closing Technique (VCCT) is an approximate method which is derived from the

more fundamental Crack Closure Technique (CCT), assuming that the strain energy

released during the delamination growth is equal to the work required to close the

crack to its original length [115]. The VCCT approach was originally proposed by

Rybicki and Kanninen [17] and was extended to 3D analysis by Shivakumar et al.

[116]. For an overview of the history and applications of the VCCT we refer [117]

among other references. The VCCT approach is advantageous because only a single

FE solution step is used for the derivation of the Gi components. In [118] it is shown

that the distributions of the Strain Energy Release Rate along the delamination front

calculated using the CCT and VCCT are similar . This method is used in [13, 106,

107, 111, 115, 119–124].

In the non-linear spring approach the 1D interface element between upper and

lower nodes in the delaminated zone is defined as a spring with a very small stiffness

in tension and a high stiffness in compression to prevent the interlaminar penetration

of the adjacent layers [125, 126]. These elements are usually combined with the
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7. Delamination Propagation

VCCT, because the forces in the nodes on the delamination front can be easily

extracted [114]. Using this approach, a node-to-node discontinuous propagation can

be modeled.

In the cohesive zone model, zero thickness interface elements are placed between

solid composite layers in the delaminated zone [113, 114, 117, 127–129]. A softening

interface law is generally adopted, characterized by an initial high positive stiffness

until a critical stress level is reached, followed by a negative tangent stiffness rep-

resenting the gradual loss of bonding strength between the laminae. To place an

interface element between adjacent ”layers” in the plate/shell formulation, the addi-

tional degrees of freedom are needed to describe the relative displacements between

the upper and lower portions of the composite laminate in the delaminated zone,

which can be achieved using the GLP Theory. Tenchev and Falzon [112] provide

an extensive overview of cohesive interface elements, while numerical aspects are

elaborated in [130].

The method for tracking of the moving delamination front which is proposed in

this study is the extension of the previously proposed algorithm by Xie et al. [106,

107] that was used by Hosseini et al. in [122–124]. The previous algorithm was

restricted to structured FE meshes, with maximum of four elements connected to

the considered node. Although the previously proposed method covers the major-

ity of typical structural applications, in this study it is extended to the unstruc-

tured meshes of 4- and 9-node quadrilateral elements. The algorithm has been

implemented in the previously derived MATLAB code for the transient analysis of

damaged composite plates, using a layered finite element model.

7.2 Assumptions

In this study, the displacement field obtained in the finite element calculation is used

for the computation of three modes of the Strain Energy Release Rate along the crack

front using the Virtual Crack Closure Technique. The VCCT requires the calculation

of the delamination opening behind the crack front, the nodal forces in the nodes

at the front and the virtually closed area in front of the existing delamination. The
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7. Delamination Propagation

delamination front is the curve in the delamination plane, along which essential

boundary conditions U I = V I = W I = 0 are enforced. The algorithm presented

here is based on the following assumptions:

1. The energy released during the delamination extension from (A + ∆A) to

(A+2∆A) is identically equal to the energy required to close the delamination

of the same area ∆A.

2. The forces required to close the crack are identical to the forces acting on the

upper and lower surfaces of the closed crack. In the GLPT, these are the

forces to hold the delaminated nodes together in the delaminated area [129]

and these forces correspond with the displacements U I , V I and W I .

3. The specified crack extension does not change the stress and displacement

state at the crack tip significantly. The displacements behind the crack tip at

the observed node are approximately equal to the displacements behind the

original crack tip.

4. There exists the previously imposed delamination area between two layers of

the laminated composite plate. Because the displacement-based FE model is

used it is convenient to impose the delaminated area by selecting the nodes in

which the prescribed structural debonding exist (see Figure 7.2, left).

The post-processing algorithm presented in this study for the detection of the

delamination front, calculation of Gi components, and the prediction of the delam-

ination growth should be applied in all nodes of the finite element model after the

each calculation step. The procedure is repeated for all delamination zones in the

plate. For the sake of simplicity, the procedure is explained here only for a single

embedded delamination zone.

7.3 Detection of Delamination Front

To start, the algorithm detects all nodes in which the essential condition U I =

V I = W I = 0 is satisfied. This is performed by checking the vicinity of each a
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priori imposed delaminated node (red dots in Figure 7.2, left). The detected nodes

are intact nodes defining the undamaged area of the plate. Nodes dividing the

undamaged from the delaminated plate area are the nodes which define the node-

to-node delamination front (blue dots in Figure 7.2, center). The delaminated zone

is encapsulated by the polygonal line connecting the nodes along the delamination

front (blue line in Figure 7.2, center). Finally, the shape of the delamination front

is slightly corrected by excluding the nodes from the front for which the virtually

closed area will become small (close to zero), according to Figures 7.6 and 7.7.

The status of these nodes is changed to delaminated and a new polygonal line to

represent the delamination front is generated (see Figure 7.2, right) and used in

further calculations.

Figure 7.2: Detection of the delamination front (blue line) according to the

debonded nodes (red circles)

7.4 Calculation of Two Direction Vectors and

the Local Coordinate System

In the majority of the previously proposed models [111, 114, 115, 129], the orien-

tation of the normal vector which defines the direction in which delamination will

grow is assumed a priori. For example, in [129], a variety of crack front patterns

and the delamination growth areas for different combinations of bonded and delam-

inated nodes in the vicinity of the node on the delamination front are listed. This

approach is convenient when the delamination front is of regular shape and when

the finite element mesh is structured.
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However, for embedded delaminations of arbitrary shape (which generally occur

in structural applications), the orientation of the normal vector is also arbitrary.

The delamination front in node N is defined by two vectors pointing away from

point N to two adjacent points on the delamination front. These vectors divide

the bonded nodes from the debonded ones, and they are denoted as −→v1 and −→v2 ,

respectively. After checking of the status of the nodes in the vicinity of the node N

(i.e. the nodes belonging to the element which contain the node N), the proposed

algorithm detects the adjacent nodes on the delamination front, which are denoted

as A1 and A2. Figure 7.3 illustrates the situation for a 4-node and 9-node element

(red nodes are delaminated, while the yellow nodes are intact).

A

B

Figure 7.3: Calculation of auxiliary vectors −→v1 and −→v2 to describe the direction of

the delamination propagation

After the derivation of the vectors −→v1 and −→v2 , the vector that is normal to the

delamination front at node N is calculated as a unit vector laying on the symetral

of the angle defined by −→v1 and −→v2 . After the derivation of the normal vector −→n , its

corresponding tangent vector
−→
t is defined from the vector −→n = nx

−→
i + ny

−→
j as:

−→
t = −ny

−→
i + nx

−→
j (7.1)
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Figure 7.4: Normal vectors determined at the nodes along the delamination front

and the local coordinate system defined by −→n and
−→
t (left: 4-node,

right: 9-node element)

The vector
−→
k is the vector perpendicular to the delamination plane. Three

unit vectors (−→n ,−→t ,
−→
k ) form a base of the local coordinate system, in which all Gi

components will be calculated.

7.5 Determination of the Virtually Closed Area

To determine GI , GII and GIII the virtually closed area needs to be calculated.

It is defined using 6 control points for every node N along the delamination front.

The first three control points are known after the calculation of the vectors −→v1 and

−→v2 . The point P1 coincides with the node N , while the points P2 and P3 are the

mid-points of the segments N − A1 and N − A2, respectively.

The control points P4 and P5 are derived based on the status of the nodes in

the vicinity of node N . To find these two points, first we find the finite elements

corresponding to the vectors −→v1 and −→v2 (denoted as Elements 1 and Elements 2). If

the delamination front crosses through the adjacent element, the control point P4

(or P5) is the only intact node from the current element. On the other hand, if the

delamination front is located on the boundary between two elements, the control

point P4 (or P5) is is located in the middle of the current element. Respective

examples are illustrated in the Figure 7.5 for a 4-node element. An analogous

procedure is performed for the 9-node element.

Finally, to find the point P6, first we calculate the location of the points P6a
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Figure 7.5: Detection of control points P4 and P5 considering different nodes on

delamination front, for 4-node elements (red color: delaminated nodes,

yellow color: intact nodes)

and P6b (see Figure 7.6). The point P6a is the intersection point of the direction

of the normal vector −→n and the line parallel to −→v1 through the point P4. On the

other hand, the point P6b is the intersection point of the direction of −→n , and the

line parallel to −→v2 through P5. The point P6 is the midpoint of the line P6a − P6b.

The point P0 is on the direction of vector −→n , anti-symmetric to the point P6 about

node N . This point is also essential because the delamination openings behind the

crack front are calculated in P0.

After the six control points P1 − P6 are determined, the virtually closed area
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Figure 7.6: Calculation of locations of the control points P6a and P6b based on the

previously derived control points P1-P5 (left) and the virtually closed

area with the point P0 (right)

is calculated using the MATLABr function. Note that an overlap of the virtually

closed areas corresponding to the adjacent nodes on the delamination front is a

priori prevented (see Figure 7.7, left).

7.6 Calculation of Forces and Opening

Displacements

After the the virtually closed area is determined one needs to compute the forces Q
I

x,

Q
I

y and Q
I

z (which correspond to the displacements U I , V I and W I) in the nodes on

the crack front, as well as the delamination openings behind the crack front. The

forces and the displacements are calculated in the global coordinate system.

The reaction force Q
I

z corresponding to the delamination opening W I can be used

directly because the global z-axis coincides with the vector
−→
k in the local coordinate

system. However, the in-plane reaction forces Q
I

x and Q
I

y must be transformed into

the local coordinate system (−→n ,−→t ,
−→
k ) to reflect the true crack opening mechanisms

according to

Qx = nxQ
I

x + nyQ
I

y ,

Qy = nyQ
I

x − nxQ
I

y.
(7.2)

The delamination openings behind the crack front are calculated in the point

P0, which is anti-symmetric to the point P6 with respect to the node N . When the

point P0 is defined (see Figure 7.6), the required jump displacement components are
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evaluated from the nodal values of the finite element in which the point P0 is located.

For the calculation of GI , the crack opening displacement W I can be used directly.

In-plane delamination openings must be transformed to the local coordinate system

(−→n ,−→t ,
−→
k ) to calculate GII and GIII :

∆u = nxU
I + nyV

I

∆v = nyU
I − nxV I

(7.3)

7.7 Calculation of Strain Energy Release Rate

Components and Application of the Fracture

Mechanics Criteria

The three components of the strain energy release rate GI , GII and GIII are approx-

imated as the product of the nodal forces at node N and the delamination openings

at point P0 in the region of the virtually closed area A:

GI ≈
1

2A
QzW

I , GII ≈
1

2A
Qx∆u, GIII ≈

1

2A
Qy∆v (7.4)

Once the Gi components are calculated, a mixed-mode fracture criterion for delam-

ination propagation is applied:

Ed =
GI

GIc

+
GII

GIIc

+
GIII

GIIIc

≥ 1 (7.5)

GIc, GIIc and GIIIc are the critical values of the strain energy release rate corre-

sponding to Mode I, Mode II and Mode III fracture, respectively. They are assumed

to be constant during the delamination growth and their derivation is not in a scope

of this study. If the criterion (7.5) is satisfied, the status of the considered node on

the delamination front is changed. The node in which the criterion is satisfied is

referred as a propagating node (green color in Figure 7.7, right). After moving to the

next calculation step, the new front is set and the calculation of the Gi components

in all nodes along the delamination front is repeated for the same level of loading.

Next, the method to advance the delamination front once the propagating nodes

are identified is discussed. As mentioned before, in this study the propagating
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Figure 7.7: Non-overlapping virtually closed areas along the delamination front

(left) and the generation of new delaminated zones after the propagat-

ing nodes are identified (right)

nodes are only those in which the criterion (7.5) is satisfied. However, the previous

investigations [131] showed that this approach may be quite conservative due to

the fact that the assumption of the similarity of the crack before and after the

propagation is violated.

In addition to the previously described method, Orifici et al. [129] consider

another two node-to-node propagation mechanisms. If any of the nodes on the

delamination front is released, either all nodes on the front are released subsequently,

irrespective of whether or not these nodes had also failed (option 1), or only two

adjacent nodes on the delamination front are released (option 2). They force crack

growth of the nodes in which the fracture criterion from Eq. (7.5) is not satisfied,

which underestimates the fracture toughness Gic of the material. These mechanisms

can significantly accelerate the solution process leading to a smaller number of nodes

to be checked, but they do not represent the real state at the crack tip. On the

other hand, they more or less provide the self-similar crack growth which is one of

the assumptions of the VCCT.

In this study, option 2 is adopted as soon as the delamination front reaches the

plate boundary (see Figure 7.8, center). If any node on the delamination front, which

is also in the vicinity of the boundary node, is released (see green node in Figure

7.8, center), the boundary node is also released (Figure 7.8, right). As previously

mentioned, debonding of the boundary nodes is only possible for free (F) plate

boundaries, without the possibility to change the previously prescribed essential
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boundary conditions along Γu (e.g. along clamped (C) boundaries).

The algorithm is repeated until there are no more propagating nodes in the

current step of the analysis. Subsequently, the analysis continues with the next

time or loading increment.

Figure 7.8: Debonding mechanism of the boundary nodes (left: delamination front

with the new debonding nodes, center: creation of the new delamina-

tion front which reached the plate boundary, right: additional release

of the boundary node)

The algorithm is looped until there are no more propagating nodes in the current

calculation step. After that, depending on the analysis type, the loading is increased

to the next solution step (bending), or the calculation is forwarded to the next time

step (transient analysis).
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8 Analysis of Laminated

Composite Shells

In this chapter the possibility to represent the continuously curved shell surfaces using the

assembly of small flat triangular finite elements is presented. The same assumptions as

used in the analysis of plates (regarding the transverse distribution of strains and stresses)

are valid in the consideration of shells. Some properties of the vector algebra are used

for the transformation of the coordinates and characteristic element matrices. The shape

functions of a triangular element are formulated in the natural coordinate system (on a

master or unit triangle) of the local element plane. However, in the proposed formulation

the difficulty arises if all the elements meeting in a node are co-planar. This situation will

arise for shallow shell structures, flat (folded) shell segments and at straight boundaries

of developable surfaces. The proposed model is applied in the free vibration analysis of

laminated composite shells (see examples in Section 10.5). The part of the presented re-

sults is already published by Marjanović and Vuksanović in [132, 133].

8.1 Introduction

A shell is generally a structure that can be derived from a plate by initially forming

the middle surface as a doubly (spherical) or singly (cylindrical) curved surface.

The same assumptions as used in thin plates regarding the transverse distribution

of strains and stresses are valid in the consideration of the shells. However, the

way in which the shell supports the external loads is quite different from that of

a plate, because the stress resultants acting in the middle surface of the shell have

both tangential and normal components.
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The classical derivation of governing equations for the curved shells will not be

discussed in this study, and the reader is referred to the monographs of Timoshenko

and Woinowsky-Krieger [134] and Reddy [135]. A different ways for the formulation

of curved shell elements arised so far and they are presented in Refs. [136–140]. As

shown in these works, the shallow shell elements are slightly more efficient than the

flat ones because of the coupling of the effects of membrane and bending strain (also

stated in the monograph of Zienkiewicz and Taylor [99]).

However, in this study it is assumed that the behavior of a continuously curved

surface can be more or less accurately represented using the assembly of small flat

(plate) elements. Although the author is aware that this is not the perfect idealiza-

tion of the shell structure, the main motivation is the ease of the extension of the

previously derived rotation-free layered plate element for the analysis of laminated

composite shells.

Laminated composite shells of constant height, composed of n orthotropic lami-

nas, are considered. The global coordinate system is a Cartesian coordinate system,

denoted as xyz. In the treatment of shells, it is convenient to introduce the local

coordinate system of a single FE. This coordinate system is denoted as xyz, and it

defines the ”reference plane” in which all characteristic element matrices and vectors

will be derived before the assembly.

The fiber direction of each lamina coincides with the local x-axis of material

coordinates. The overall shell thickness is denoted as h, while the thickness of the

kth lamina is denoted as hk (see Figure 8.1).

Figure 8.1: Laminated composite shell with embedded delaminations
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8.2 The Geometry of Triangular Finite Element

Each finite element has an orientation in which the angles with the coordinate planes

are arbitrary. To deal with this problem, some properties of the vector algebra are

used. The local axis directions are specified that the x-axis is directed along the

side 1− 2 of the triangle, as shown in Figure 8.2.

Figure 8.2: Triangular layered element for the modeling of composite shells

The vector V21 defines the element side 1− 2, which is in the global coordinates:

V21 =


x2 − x1

y2 − y1

z2 − z1

 =


x21

y21

z21

 (8.1)

The direction cosines are given as:

vx =


Λxx

Λxy

Λxz

 =
1

l21


x21

y21

z21

 , (8.2)

where l21 =
√
x2

21 + y2
21 + z2

21.

The z direction is normal to the local element plane (see Figure 8.2), and it is

obtained by the vector cross product of two sides of the triangle:

Vz = V21 ×V31 =


y21z31 − z21y31

z21x31 − x21z31

x21y31 − y21x31

 =


yz123

zx123

xy123

 , (8.3)

where Vz represents a vector normal to the element plane, whose length is lz =

2∆ =
√

(yz123)2 + (zx123)2 + (xy123)2, as given in [99]. The direction cosines of the
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z-axis are:

vz =


Λzx

Λzy

Λzz

 =
1

2∆


y21z31 − z21y31

z21x31 − x21z31

x21y31 − y21x31

 (8.4)

The direction cosines of the y-axis are established as the direction cosines of a vector

normal both to the x and z directions:

vy =


Λyx

Λyy

Λyz

 = vz × vx =


ΛzyΛxz − ΛzzΛxy

ΛzzΛxx − ΛzxΛxz

ΛzxΛxy − ΛzyΛxx

 (8.5)

8.3 Calculation of Element Matrices

In the division of an arbitrary shell into flat elements only triangular elements can be

used for the doubly curved surfaces, so the triangular finite elements are considered

within this study. Taking into account that the elements of arbitrary shape and size

are considered, the shape functions of the triangular element are formulated in the

natural coordinate system (on a master or unit triangle) of the element plane. The

natural coordinates ξi for an arbitrary material point (x, y, z) of the triangle are the

areas of partial triangles Ai, created by connecting the point (x, y, z) with triangle

corners, as shown in Figure 8.2. Ai is the partial area of the triangle lying opposite

to the node i, so there exist the following conditions [141]:

3∑
i=1

Ai =
3∑
i=1

ξiA = A,
3∑
i=1

ξi = ξ1 + ξ2 + ξ3 = 1, ξ3 = 1− ξ1 − ξ2 (8.6)

From the geometrical considerations it follows that if the observed material point

is located at the node i, the area Ai is equal to area A, and thereby ξi = 1. On the

other hand, if the observed material point is placed at the element edge opposite

to the node i, the area Ai and hence the natural coordinate ξi are equal to zero.

Because of that, the triangle can be completely described by natural coordinates

ξi ∈ [0, 1].

On the element level, the submatrices of the element stiffness matrix [K]e and the

consistent element mass matrix [M ]e are derived using 2D Gauss-Legendre quadra-
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Table 8.1: Natural coordinates and the weighting factors of triangular element

Accuracy Points ξ1 ξ2 WI

Linear a 1/3 1/3 1/2

Quadratic

a 1/2 1/2 1/6

b 0 1/2 1/6

c 1/2 0 1/6

ture over single triangular finite element domain Ωe (see Figure 8.2). This procedure

is explained in detail in Section 5.4.

The Gauss-Legendre quadrature for triangular domain is:

∫
Ωe

F (x, y)dxdy =

1∫
0

1−ξ2∫
0

F (ξ1, ξ2)dξ2dξ1det[J ] ≈
M∑
I=1

F
(
ξI1 , ξ

I
2

)
WI , (8.7)

where F (x, y) is the function to be calculated numerically, [J ] is the Jacobian ma-

trix, M and N denote the number of Gauss quadrature points in the ξ1 and ξ2

directions, (ξI1 , ξ
I
2) are the natural coordinates of the Gauss point, while WI denotes

the corresponding Gauss weights. Table 8.1 shows the coordinates and the weight-

ing factors used for the calculation of element matrices, for linear and quadratic

triangular element [142], as shown in Figure 8.3.

Figure 8.3: Linear and quadratic triangular finite elements with corresponding in-

tegration points

The unknown displacement components are interpolated in the local element

plane. For the sake of simplicity, the same shape functions are used for the dis-

cretization of all generalized displacements.

90



8. Analysis of Laminated Composite Shells

8.4 Transformation to Global Coordinates and

the Assembly Procedure

It is now convenient to define the transformation matrices for each finite element.

Following the preceding considerations, the number of nodal degrees of freedom in

the local coordinate system is NDOF,local = 3 + 2N + 3ND (see Figure 8.4).

Figure 8.4: Transformation of nodal degrees of freedom of the layered triangular

element (6 material layers with two delaminations)

The local displacement components should be transformed using the element

transformation matrix into the following global displacement components (nodal

degrees of freedom in the global coordinate system): NDOF,global = 3 + 3N + 3ND.

This leads to the following transformation matrix:

[
T̂
]

=



dT 0

0
. . .c

dT 0 0

0 T 0

0 0
. . .c

dT 0

0
. . .c


(8.8)

where

[T ] =


Λxx Λxy Λxz

Λyx Λyy Λyz

Λzx Λzy Λzz

 , [T ] =

 Λxx Λxy Λxz

Λyx Λyy Λyz

 . (8.9)
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8. Analysis of Laminated Composite Shells

In previous equations, Λij is the direction cosine of the angle between the global

axis i and the local axis j. Now the global element matrices/vectors of the triangular

finite element can be calculated as follows:

[K]eglobal = [T̂ ]T [K]e[T̂ ], [M ]eglobal = [T̂ ]T [M ]e[T̂ ], {f}eglobal = [T̂ ]T{f}e (8.10)

The global matrices are obtained from the assembly of the respective element

matrices in a usual manner.

8.5 Some Limitations of the Model

In the proposed formulation the difficulty arises if all the elements meeting in a node

are co-planar. This situation will arise for shallow shell structures, flat (folded) shell

segments and at straight boundaries of developable surfaces [99]. The assembled

system of equations become singular in this case, and the detection of this singu-

larity sometimes depends on round-off errors in each computer system. Within this

study, this phenomenon is noticed in the free vibration analysis of the intact shal-

low cylindrical and spherical panels. The results are presented and commented in

Section 10.5.
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9 Object-Oriented Computer

Program

Performance and memory efficiency are two crucial requirements for the finite ele-

ment programs. Therefore the code should be well organized to increase the flexibil-

ity and reduce its maintenance cost. It should be extendable to new formulations,

algorithms and concepts. The solution process in the FEM can be split into several

steps, which are more or less complicated to perform in original codes:

1. Pre-Processing - geometry definition (points, lines, surfaces, volumes), def-

inition of attributes or conditions (BC, loads...), their assignment to the geo-

metrical entities and finally generation of the finite element mesh.

2. Simulation - Calculation in solver.

3. Post-processing - Visualization of the results.

All these steps must be carried out carefully, and must be easy for the user to

perform. Within this study, the pre- and post-processing phases are performed using

the GiD Pre/Post Processor software developed in CIMNE, Barcelona. Typical

algorithm of the GiD-based finite element program is shown in Figure 9.1.

Figure 9.1: The algorithm of the GiD-based finite element program
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9.1 GiD as the Pre-Processing Tool

GiD is a geometrical system in the sense that, having defined the geometry, all

the attributes and conditions are applied to the geometrical entities without any

reference or knowledge of a mesh. When the geometrical domain is defined, the

meshing is performed. GiD allows changing of the geometry while maintaining the

attributes or conditions definitions, as well as the creation of the new meshes on the

same geometrical domain. Once the mesh is generated, new attributes or conditions

can be assigned directly on mesh.

The geometrical domain in GiD is based on four geometrical levels of entities:

points, lines, surfaces and volumes. Note that within this study volume entities

are not used because the 3D structure is modeled using only plate finite elements.

All domains are considered in 3D space (shell analysis) or in 2D space (analysis

of plates). For the visualization purposes, all results are visualized in 3D space to

describe the layered structure of the laminates.

The major strength of GiD is the ability for the users to define and configure

their own GUI within GiD. This is done by creating several configuration files

which define new windows where final user will enter data, such as materials, condi-

tions or load assignments. The collection of these files is called problemtype. The

simulation program coded in MATLAB is then executed to perform the necessary

calculations, while the final phase consists of writing the results information in the

format required by the GiD graphic visualizer.

9.1.1 GiD problemtype layerwiseFE

When GiD is to be used for a particular type of the analysis, it is necessary to

predefine all the information required and to define the way the final information is

given to the solver. To do so, a variety of configuration files are used to describe

conditions, materials, general data, units, symbols and the format of the input

file to the solver. In this study, the layerwiseFE problem type is designed. The

configuration for the analysis is performed according to the particular specifications

of MATLAB solver, regarding the syntax of the programming language. In this
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study, several configuration files are written and will be explained.

layerwiseFE.cnd file contains all the information about the conditions that can

be applied to different entities. The condition can adopt different field values for

every entity. The conditions used in the layerwiseFE.cnd file are: LaminateDef-

inition, DistributedLoadings, NodalForces, CrackOpeningDisplacement,

ClampedEdge, SimplySupportedEdge and DelaminatedNode. The graphi-

cal interface for the assignment of different conditions in GiD is shown in Figure 9.2,

right, while layerwiseFE.cnd file is given in the Appendix.

Figure 9.2: The graphical interface in GiD for the assignment of problem data

(left), materials (center) and conditions (right). The geometrical do-

main of the conical shell with meshed model is shown below.

layerwiseFE.mat file include the definition of different materials that can be

applied within a numerical model. Multiple materials can be defined, but it is

not mandatory to use all predefined materials in the simulation, while it is useful

to generate them for the materials library. The same material can be assigned to

different geometrical entities. The layerwiseFE.mat allows the user to input the

mechanical properties of the orthotropic material. Arbitrary number of material sets

can be inserted. After that, the material can be assigned to the particular lamina

using the LaminateDefinition condition. The layerwiseFE.mat file is given in
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the Appendix, while the graphical interface for the material definition is shown in

Figure 9.2, middle.

layerwiseFE.prb file contains all the information regarding the general problem

and the intervals data. This data is required for performing of the analysis and it

does not concern any particular geometrical entity. The general problem data op-

tions which can be assigned within the layerwiseFE.prb file are: AnalysisType,

DelaminatedInterface, GaussQuadrature, ContactAlgorithm, Geometric-

NonLinearity, NonLinearSolver, Tolerance, MaxIterations, CrackPropa-

gation, NumberOfSteps, CriticalERR1, CriticalERR2, CriticalERR3, Mul-

tiplicator, NumberOfModeShapes, NumberOfBucklingModes, PulseType,

Nx, Ny, Nxy, TimeStep, TotalTime, DampingFactor. The layerwiseFE.prb

file is given in the Appendix, while the Problem Data user interface is shown in Fig-

ure 9.2, left.

At the beginning of the modeling process, the user defines the general problem

data for the simulation. Once the geometry is created and after assignment of the

materials and the conditions, the user generates the mesh using a variety of mesh-

ing options provided by GiD (Mesh Regularity, Quadratic Type, Element Type,

Element Size, Mesh Criteria). It is now necessary to produce the data input files to

be processed by the solver within a simulation. To manage this, GiD interprets the

layerwiseFE.bas file, which describes the format and the structure of the required

data input file for the solver in MATLAB. For this purpose, the layerwiseFE.bas

file is generally written using the MATLAB syntax due to the fact that any infor-

mation written in the layerwiseFE.bas file is reproduced exactly in the output file

ModelName.dat (where ModelName is the chosen file name of the model, see Figure

9.1), apart from the so-called GiD commands. The GiD commands are the core of

the GiD user interface, and they return one or multiple values obtained from the

pre-processing (for example: condition field values, number of nodes in the model,

FE connectivities). The ModelName.dat file is used later in the solver as the input

file, transfering all the important data from the pre-processing to particular objects

within the solver. The layerwiseFE.bas file is given in the Appendix.

To run the solver directly inside from GiD, it is neccesary to create the shell
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script layerwiseFE.bat. The GiD will automatically write the ModelName.dat file

inside the model directory, and after that the shell script will be executed.

*.tcl files are generally used in GiD to add some new functions or functionalities

to the program. These files are written in TCL programming language [143]. In this

study, the layerwiseFE.tcl file is used to remove some unimportant menus from

the program environment, in order to simplify the program for the end user.

9.2 Using GiD in the Post-Processing

The communication between the solver and the GiD Post-Processing module is made

using two output files: ModelName.post.res, which store the results of different

calculations and the optional ModelName.post.msh file, in which the data regarding

the post-process mesh is stored (see Figure 9.1). Note that the post-process mesh

can be different from the pre-process mesh. For example, within this study, the

pre-process mesh of the laminated plate model is 2D, but the post-process mesh is

3D, treating every layer as the three-dimensional volume.

In the ModelName.post.msh file, meshes of different element types can be han-

dled: points, lines, triangles, quadrilaterals etc. Within this file, the 3D nodal

coordinates and elements’ connectivities are stored. In the ModelName.post.res

file, the nodal variables (results) are stored. GiD allows the user to define as many

nodal variables as desired, several calculation steps and analysis cases. When the

post-processing of stresses is performed, Gauss points’ coordinates and the results

on these Gauss points are also stored in the ModelName.post.res file.

In this study, two MATLAB functions MakePostRes.m and MakePostMsh.m are

written to prepare the post-processing files after the calculation in solver. These

functions extract necessary information from the solver and they are provided in the

Appendix. The applicability of layerwiseFE problemtype is illustrated in Figure

9.3 showing the 2D pre-process mesh (left) in GiD, 3D post-process mesh (middle)

created using the MakePostMsh.m function, and finally the results of the simulation

(right) of the DCB, calculated using the MATLAB solver and generated using the

MakePostRes.m function.
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Figure 9.3: 2D pre-process mesh (left), 3D post-process mesh (middle) and the

deformed shape of the Double-Cantilever-Beam (right) in GiD

9.3 MATLAB Solver

Previously derived layered finite elements served as a basis for originally coded

object-oriented MATLAB solver, for the bending, free vibrations, buckling and tran-

sient analysis of laminated composite and sandwich plates with delaminations. Use-

ful procedures for MATLAB programming of the FEM can be found in books of

Ferreira [144] and Kwon and Bang [145].

The main author’s motivation for chosing the object-oriented structure was mo-

tivated by the tendency to split the whole problem into several classes, in order to

create objects and to define their interfaces. The classes that have been used in the

solver are grouped in four categories:

1. modeling classes,

2. finite element model classes,

3. analysis classes,

4. numerical classes and functions.

9.3.1 Modeling Classes

The modeling classes store the global information of the considered project, math-

ematical model and the materials used in the analysis. The modeling classes used

in the solver are BuildProject, BuildModel, Orthotropic, CoefficientsL1 and

OrthotropicLaminaPlaneStress. The instances of BuildProject and BuildModel
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classes are objects MyProject and MyModel, which generally represent the main

driver of the solver, extracting the majority of the input data from ModelName.dat

input file during the initialization of the solver. Each simulation have only one

MyProject and only one MyModel object.

MyModel object store the properties regarding the different aspects of the FE

simulation: geometry(StartCoord, DeformedShape), FE model (NumLayer, NumEl,

Delamination, NodesPerElem, NumNode, ConnectivityInPlane, NodesNumericalZ,

GiDNumEl, NDOF, SDOF, PlotNodes, ElemString), global matrices (GlobalK, GlobalM,

GlobalKG, GlobalQ, GlobalP), results (Result, Reactions) and boundary condi-

tions (CCNodes, SSEdges, DELNodes, ERR1, ERR2, ERR3). The methods used in

the MyModel are: calcNumberOfDOF(), calcSystemMatrices(), assignPenalty(),

calcSystemVectors(), calcStartCoord() and calcDeformedShape().

MyProject object is the instance of BuildProject class, which is an abstract

class, for which no code is supplied to implement some of the methods. MyProject

object is used to store the basic info regarding the FE simulation: FileName,

AnalysisType, SolverType, ElementShape, Integration, Interpolation, Steps,

CrackPropagation, GeometricNonlinearity, Contact, Iterations, Tolerance,

TimeStep, TimeTotal, PulseType and DampingFactor.

Orthotropic represents the class which encapsulates the information regard-

ing the material used in the analysis, with the following properties: E1, E2, E3,

ni12, ni13, ni23, G12, G13, G23, rho. The methods setni21(), setni32() and

setni31() are used to calculate the remaining Poisson’s ratios of the orthotropic

material.

OrthotropicLaminaPlaneStress is the descendant class of the Orthotropic

class, storing the geometrical and mechanical info of the single lamina in the model,

with the following properties: ID, FiberAngle, Thickness, matrixC, matrixQ and

matrixT. The methods setMatC(), setMatQ(), setMatT() and assignMat() are

used to calculate the lamina transformation matrix, compliance matrices in the

local and the global coordinate system and to assign the material to the lamina.

CoefficientsL1 encapsulates the characteristic matrices of the laminate in the

following properties: matrixApq, matrixBpq, matrixDpq, matrixEpq, matrixLpq,
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matrixFpq, matrixLLpq, matrixFFpq, matrixFFFpq, as well as coeffI0, coeffIi,

coefIij, coeffIIi, coeffIIij and IIIIij.

9.3.2 Finite Element Model Classes

For the abstraction of the FE model, several main classes are used within the solver,

which will be explained as follows:

DOF object represents a degree of freedom. It is a lightweight object which holds

only its ID and boolean Free (True/False).

Node object represents the disreete point in the domain (3D space) at which

DOFs are defined. It uses the info from DOF objects, but also encapsulates the addi-

tional information: ID, DOFS, DamageStatus, coordinates XCoord, YCoord, ZCoord,

assigned loadings ForceX, ForceY, ForceZ. The Node object provides the following

methods: assignDOF(), assignDamageStatus(), changeToDEL(), changeToFront(),

changeToIntact() and assignNodalForces(). The Node class allows Node objects

to be created in all types of the analysis used in the present study.

LWL1PlaneStress class is the core of the FE model, which encapsulates the el-

ement formulation of the Layer-Wise Linear Plane Stress finite element with only

1 node per lamina through the thickness. It stores the data regarding the model (ID,

Nodes, NodeDOF, IndexDOF, NumLayers, NumNum, NumNumRed, ElementType, NNodes

and NodalCoord) and local matrices(matrixKtang, vectorQ, matrixK, matrixM,

matrixKG, matrixN0). The instances of LWL1PlaneStress class are Element ob-

jects, which provide an interface for calculating the local matrices and vectors neces-

sary for assembling the global system of equations: calcMatrixK(), calcMatrixM(),

calcTangentMatrixK(), calcMatrixKG() and calcVectorQ(), as well as the inter-

face for setting of the nodal coordinates and DOFs within the particular element:

deriveIndexDOF and setNodalCoord. When the analysis of shells is performed,

the additional calcStartCoordofFE, calcDeformedCoordofFE and calcMatrixT

are used to keep track of the element’s local coordinate system. Each Element

object is associated with the number of Node objects.
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9.3.3 Analysis Classes

When the global matrices are formed within the MyModel object, the solution pro-

cedure is called based on the global data from MyProject object. SOLVER class is

a base class having the following properties: KNOWN, UNKNOWN, Result, ResultType,

NumberOfRecords, and providing the method SolveSystem() which communicate

with MyModel, MyProject, Element and CoefficientsL1 objects.

Several descendent classes are provided based on the SOLVER class, which repre-

sent different types of the analysis. Some of these classes have the additional proper-

ties (Reactions) and provide some additional methods (correctContactNodes()).

These classes are LinearSolver, LinearSolverWithPropagation, TransientSolver,

TransientSolverWithPropagation, BucklingSolver, FreeVibSolver, NRSolver,

NRSolverWithPropagation, NonLinearTransientSolverWithPropagation and fi-

nally NonLinearTransientSolver. These classes solve the governing equations of

the FE model, using the MATLAB’s numerical classes (Vector, Matrix...). They

also describe the general flow of the solution process and update the results in the

data structure. Some of these classes are very similar to each other, with the differ-

ence only in some local solution steps.

9.3.4 Numerical Classes and Functions

A finite element program has several common procedures that should be imple-

mented as basic tools to be used by other parts of the program, for example for

integrating, calculating shape functions and other geometrical parameters. While

many of this tools are used in the most inner parts of the code, their performance has

a great importance for the general execution of a program. For example integration

tools are called inside the element objects and any overhead in their performance will

cause a great overhead in program executing time. In this study, four main groups

of functions are used within a code: integration (quadrature) tools, geometry

tools, delamination propagation tools and finally ConstraintHandler func-

tion.
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ConstraintHandler

This function is very important in the flow of the FE code. It communicates with

Node and MyModel objects, collects the prescribed data regarding the boundary con-

ditions and assigns the Free/Restrained status to the DOF objects.

Integration (quadrature) tools

Evaluation of the characteristic element matrices is usually done by integrating some

function over the element domain or boundary. This makes necessary the designing

and implementing an efficient integration tool which handle integration with less

overhead as possible. As stated before, Gauss-Legendre quadrature is used within

this study. The functions used in order to handle numerical integration over quadri-

lateral or triangular domains are: ShapeQ4(), ShapeQ9(), ShapeT3(), ShapeT6(),

GaussCoordinatesQuad(), GaussCoordinatesTriangle(), findNaturalCoord()

and evaluate().

Geometry tools

The variety of geometry functions are implemented in solver to handle some geomet-

rical operations, such as findAngle(), findSymetral(), isPointInTriangle(),

isIntersection() and isCounterClockWise().

Delamination propagation tools

The additional set of tools is implemented in order to perform the delamination prop-

agation algorithm, which requires a lot of geometry checking during the consecutive

solution steps. The functions designed for this purpose are: FrontDetection(),

PerformFrontChecking(), ContourDetection(), NodesToFix(), findPoints45(),

findPoints60(), findAdjacent(), findDelaminated(), findPropagatingNodes(),

findDelaminatedNodesBehindCrack(), findElementsWithCentralNodeOnFront().

In addition, vicinity(), narrowvicinity() and opposite() are the tools used to

extract the nodes in the vicinity of the considered node of the finite element model,

in order to perform delamination propagation checking.

The classes and their relationships are shown in Figure 9.4. A simple line between
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two rectangles represents the knows-a relation, a line with the triangle represents

the is-a relation (inheritance) between the descendant and the ancestor class, while

a diamond and a line represent the has-a relation (aggregation) between the ag-

gregation and the component classes.

Figure 9.4: The main classes and their relationships

103



10 Numerical Examples

Theoretical considerations presented in this study are validated through a variety of nu-

merical examples presented in this chapter. All calculations have been made using the

original computer codes written by author. Whenever possible, obtained results are com-

pared against existing exact, analytical, numerical and experimental data from the liter-

ature. The number of results is selected from author’s publications [60, 94–97, 104, 105,

108, 132, 133, 146]. Note should be made of the fact that the numerical model presented

herein is not restricted to any particular boundary condition, lamination scheme, geome-

try or loading type.

10.1 Linear and Geometrically Nonlinear Static

Analysis

Bending Analysis of Intact Plates

Example 10.1.1. In the first validation example, the linear and nonlinear bending

of a fully clamped four-layer cross-ply (0/90/90/0) square laminate is analyzed.

Plate dimensions are a = b = 12in, while the overall plate thickness is h = 0.096in

(see Ref. [8] for details). All layers are of equal thickness and made of the orthotropic

material with the following mechanical characteristics: E1 = 1.8282× 106psi, E2 =

1.8315 × 106psi, G12 = G13 = G23 = 0.3125 × 106psi, ν12 = ν13 = ν23 = 0.2395.

The plate is discretized using different mesh densities (6× 6, 8× 8 and 10× 10) of

9-node layered finite elements with reduced integration. The boundary conditions

are prescribed along clamped edges by constraining all degrees of freedom in edge

nodes.
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Linear transverse deflection of the plate center is calculated for 6× 6 mesh (red

solid line in Figure 10.1) and compared with the existing solutions using ESL plate

theories. After that, the nonlinear response is calculated for different mesh densities

(red dashed lines in Figure 10.1), using 20× 0.2psi load increments. The nonlinear

solution is obtained using Newton-Raphson iterative method (see subsection 5.7.1).

The results are compared with numerical results using CLPT and FSDT laminate

theories [8], as well as with the experimental data from [8].
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Figure 10.1: Load-deflection curves for fully clamped cross-ply (0/90/90/0) square

composite plates under uniformly distributed transverse loading, for

different numerical models

From Figure 10.1 it is obvious that the linear response is in agreement with the

results obtained using FSDT. The nonlinear response converge to the experimental

solution with refining the mesh density. The results obtained using 10 × 10 mesh

are in excellent agreement with the experimental data from [8].
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Bending Analysis of the Double-Cantilever-Beam

Example 10.1.2. In the second validation example DCB problem is analyzed.

Geometry and the loading are shown in Figure 10.2. The T300/976 graphite/epoxy

material is used, with the following material properties: E1 = 139300N/mm2, E2 =

E3 = 9720N/mm2, G12 = G13 = 5580N/mm2, G23 = 3450N/mm2, ν = 0.29.

The critical values of the Strain Energy Release Rates are: GIc = 0.0876N/mm,

GIIc = GIIIc = 0.3152N/mm [123]. The fibers are oriented along the length of the

plate (fiber orientation θ = 0o).

Figure 10.2: Double Cantilever Beam benchmark: Geometry, boundary conditions

and prescribed delamination zone

The cantilever plate is discretized using different mesh densities (30× 6, 50× 10

and 75 × 16) of 4-node and, for comparison, 9-node layered finite elements with

reduced integration. The boundary conditions are prescribed along clamped edge

by constraining all degrees of freedom in edge nodes. The delamination is prescribed

by allowing the motion of displacements U I , V I and W I in the delaminated zone,

as shown in Figure 10.2.

In the first part of this example, the plate is loaded by applying Crack Opening

Displacements (COD) in 50 steps in increments of W I = 0.1 mm along the nodes I

on the free edge of the cantilever. The reaction force is measured in the nodes where

the prescribed displacements are applied and then plotted versus the COD in Figure

10.3. For comparison, the analytical solution of the DCB test based on the Bernoulli
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beam theory and Linear Elastic Fracture Mechanics [111–113] is calculated as:

Rel =
3

2

E1I

a3
0

·∆, Rdel =

√
2

3

(bGIcE1I)3/2

E1I∆
(10.1)

In Eq. (10.1), Rel is the linear part of the R − ∆ chart (before the delamination

propagates), Rdel is the nonlinear part of the R−∆ chart (during the delamination

propagation), ∆ is the prescribed displacement, I = bh3

12
is the moment of inertia of

one delaminated part of the cantilever, h = 1.525mm is the height of one delami-

nated part of the cantilever, b = 25.4mm is the width of the specimen, a0 = 30mm

is the prescribed delamination length and GIc = 0.0876N/mm is the critical value

of the Strain Energy Release Rate for Mode I conditions.
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Figure 10.3: Double Cantilever Beam benchmark: Reaction Force versus Crack

Opening Displacement for different element types and different mesh

densities

Figure 10.3 shows the comparisons of the numerical and the analytical results

of the DCB test for different mesh densities of the 4-node elements (left) and the

9-node elements (right). All models generally displayed similar behavior regardless

of the mesh size, resulting in (1) the linear part of the load-displacement diagram

until the initiation of the delamination growth and (2) nonlinear part where the

delamination growth is accompanied by the reduction in the load-carrying behavior.

107



10. Numerical Examples

Mesh refinement in the longitudinal direction generally results in a smoother load-

displacement curve because of the shorter distances between two consecutive stable

delamination fronts.

As shown in Figure 10.3, the elastic branch of the force-displacement curve is

slightly softer in the finite element solutions in comparison with the analytical so-

lution. This has two main reasons:

• The analytical solution is based on the Bernoulli beam model, where the trans-

verse shear deformation is not accounted. Therefore, the Bernoulli beam model

is stiffer in comparison with the numerical solution based on the GLPT.

• The analytical solution does not take into account the orthotropic properties of

the material. Only a single elasticity modulus E1 is accounted, which assumes

that E2 = E3 = E1. Therefore, the plate model, which accounts for E2/E1 < 1

ratio, is slightly softer.

Obviously, slightly higher values of the reaction force are obtained if the model

is discretized using linear elements (left hand side of Figure 10.3). For the fine

discretizations (50×10 and 75×16) using the quadratic elements, the model under-

estimates the critical forces corresponding to the onset of delamination propagation

as compared to the analytical solution due to the same reasons as mentioned above.

In the second part of this validation analysis, the influence of the mesh density

along the width of the cantilever beam on the GI distribution over the width of the

plate is illustrated. The GI distribution is measured along the delamination front

in the moment of the creation of the first propagating node. Six different numerical

models are considered, covering both linear and quadratic layered finite elements.

During the DCB test, consecutive straight delamination fronts should be cre-

ated [129]. As shown in Figure 10.4 left, the distribution of the GI along the plate

width using linear (4-node) elements is nearly constant, leading to the debonding of

all nodes along the delamination front (red nodes). However, Figure 10.4 (middle)

shows, that for the quadratic (9-node) elements the distribution of GI is not constant

due to the differences in nodal force values of the mid-nodes and the corner-nodes

of the 9-node quadrilateral element . This effect is well known for node-to-node de-
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Figure 10.4: Creation of the stable delamination fronts for different numerical

models (left: 4-node elements, middle: 9-node elements, Sub-step

1, right: 9-node elements, Sub-step 2, red circles: debonding nodes)

lamination propagation strategies when quadratic elements are applied. In this step

(Sub-step 1), only one half of the nodes debond. After Sub-step 1 the delamination

front is changed, causing the increase of the GI in the remaining intact nodes, lead-

ing to the final distribution of GI as illustrated in Figure 10.4 (right) after Sub-step

2.

The influence of the mesh refinement in the width direction on theGI distribution

is illustrated in Figure 10.5. The refinement does not seem to significantly influence

the distribution of the GI along the plate width. The Figure 10.5 shows that the

GI distribution is fairly constant in the center part of the specimen progressively

decreasing towards the edges. There is a deviation in GI (about 15%) at the nodes

of free edge. The same behavior is detected in [147]. The non-uniform distribution

of the GI along the plate width is also experimentally proved in [148].

In the final part of this example the influence of the load step on the delamination

propagation is investigated numerically. The plate is discretized using 50×10 4-node

layered finite elements and loaded using different increment sizes of the applied crack

mouth opening displacements. The reaction force is plotted versus the crack opening

displacement in Figure 10.6 and compared with the analytical solution according to

Eq. (10.1). It shows, that the reduction of the displacement increment improves

the agreement with the analytical solution in the nonlinear portion of the chart,

while the elastic branch is still softer due to simplifications in the analytical solution

regarding both the transverse shear deformation and the material properties.
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Figure 10.6: Reaction force versus COD considering different displacement incre-

ments (50× 10 4-node elements)

From previous considerations it is obvious that the proposed algorithm, combined

both with linear and quadratic quadrilateral layered finite elements, is capable to

describe both pre- and post-propagation behavior of the laminated composite plate.
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10.2 Free Vibrations

Free Vibrations of Intact Plates

Example 10.2.1. The effect of incorporated transverse shear deformation on funda-

mental frequencies of intact laminated composite plates is analyzed in this example.

Simply supported square plate is considered, with symmetric cross-ply lamination

scheme and laminas of equal thickness. For comparison, different numbers of layers

through the overall plate height h are considered, as well as different E1/E2 ratios.

Each layer is made of material with the following mechanical characteristics [21]:

G12/E2 = 0.6, G13/E2 = G23/E2 = 0.5, ν12 = 0.25, ρ = 1.0. The fundamental

frequencies are presented in the non-dimenzionalized form:

ω = ω
√
ρh2/E2 (10.2)

The effects of orthotropy and lamination scheme of simply supported cross-ply

laminated composite plate with a/h = 5 are presented in Table 10.1. It is obvi-

ous that incorporation of the transverse shear deformation reduces the fundamental

frequencies. This reduction is more pronounced for the plates with higher level of

orthotropy. The same trend is obtained in both schemes of lamination shown in Ta-

ble 10.1. Natural frequencies are overpredicted in all cases where ESL model is used.

Example 10.2.2. In the second benchmark example, a sensitivity analysis is per-

formed to study the effects of mesh density and integration scheme on fundamental

frequencies. Natural frequencies obtained using the proposed model are compared

with the existing results obtained using commercial software ABAQUSr [65].

An eight-layer free square plate with a side length of 178mm and a total thickness

h = 1.58mm is considered. All plies are of 0◦ orientation and of equal thickness and

made of material with following mechanical characteristics: E1 = 172.7GPa,E2 =

E3 = 7.2GPa,G12 = G13 = 3.76GPa,G23 = 2.71GPa, ν12 = ν13 = 0.30, ν23 =

0.33, ρ = 1566kg/m3 [65].

Table 10.2 shows the natural frequencies of the first six modes for different mesh

densities. The agreement with experimental results of Lin et al. [62] even for the
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Table 10.1: Non-dimenzionalized fundamental frequencies of the intact (0/90/0)

simply supported square laminates with three and five orthotropic

layers using different E1/E2 ratios

Source Layers
E1/E2

3 10 20 30

Vuksanović - CLPT [21]

3

0.2920 0.4126 0.5404 0.6434

Owen and Li - Refined [38] 0.2695 0.3392 0.3898 0.4194

Vuksanović - HSDT [21] 0.2673 0.3318 0.3749 0.4015

Noor - 3D elasticity [30] 0.2647 0.3284 0.3842 0.4109

Present (9-node; 5× 5 FE) 0.2621 0.3262 0.3691 0.3927

Present (4-node; 10× 10 FE) 0.2683 0.3297 0.3685 0.3886

Vuksanović - CLPT [21]

5

0.2920 0.4126 0.5404 0.6434

Owen and Li - Refined [38] 0.2699 0.3453 0.4030 0.4370

Vuksanović - HSDT [21] 0.2684 0.3442 0.3939 0.4269

Noor - 3D elasticity [30] 0.2659 0.3409 0.3979 0.4314

Present (9-node; 5× 5 FE) 0.2618 0.3330 0.3858 0.4166

Present (4-node; 10× 10 FE) 0.2683 0.3396 0.3918 0.4219
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Table 10.2: Comparison of natural frequencies (Hz) of the intact (0/0/0/0)s free

square plate using different mesh densities and different integration

schemes

Source FE
Mode

1 2 3 4 5 6

Alnefaie [65]

25 78.51 100.17 277.31 316.42 489.29 581.06

100 81.23 107.20 207.72 294.01 422.93 523.91

400 81.48 109.20 199.50 300.46 391.40 533.89

Present (9-node; full)

4 82.47 131.69 229.99 351.18 445.07 639.06

25 82.01 112.06 202.69 326.36 413.83 545.47

100 81.78 110.40 200.75 308.07 397.50 538.64

Present (9-node; red.)

4 82.21 115.70 202.41 351.10 443.55 566.39

25 81.67 110.07 199.37 306.17 396.66 538.48

100 81.50 109.90 199.52 303.02 392.17 537.89

coarse mesh of 25 elements is obvious and shown in Table 10.3. Better agreement

is obtained especially for the higher modes. Also, the advantage of the 9-node over

the 4-node element is confirmed in this case.

From Table 10.2 it is obvious that proposed model gives an accurate prediction

of fundamental frequencies even for the coarse mesh of 25 layered finite elements, in

comparison with the results obtained using the commercial software. Also, the pro-

posed model implies a significantly lower number of nodal variables, which saves the

computational time (note that proposed model implies two-dimensional FE mesh,

in contrary to the conventional 3D FE models). In the case of coarse mesh, using

of reduced integration for calculation of element matrices is necessary (because a/h

ratio becomes large and we have thin plate situation), in order to avoid shear locking

(see Table 10.3).

Example 10.2.3. Additional comparison is made with 16-layer plate with dimen-

sions of 240× 180mm and a total thickness h = 2.08mm. Laminate is composed in
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Table 10.3: Comparison of natural frequencies (Hz) of the intact (0/0/0/0)s free

square plate using different numerical models, mesh densities and in-

tegration schemes (* – occur in pairs due – to the symmetry)

Source FE
Mode

1 2 3 4 5 6

Alnefaie [65] 25 78.51 100.17 277.31 316.42 489.29 581.06

Yam et al. [61] 25 83.73 120.52 219.99 373.08 503.21 667.43

Lin et al. [62] 100 83.57 118.42 207.79 329.41 419.83 546.93

Present (9-node; full) 25 82.01 112.06 202.69 326.36 413.83 545.47

Present (9-node; red.) 25 81.67 110.07 199.37 306.17 396.66 538.48

Present (4-node; full) 25 85.13 157.93* 193.46* 252.29 475.12* 515.72

Present (4-node; red.) 25 80.23 116.22 206.38 372.85 441.63 568.94

Experimental [62] 81.50 107.40 196.60 285.50 382.50 531.00

(0/0/90/90/0/0/90/90)s lamination scheme, and each layer is made of material with

the following mechanical characteristics: E1 = 125GPa,E2 = E3 = 8.5GPa,G12 =

G13 = 4.5GPa,G23 = 3.27GPa, ν12 = ν13 = 0.30, ν23 = 0.30, ρ = 1550kg/m3 [65].

Table 10.4 shows the natural frequencies of the first six modes for different nu-

merical models. Results are compared with numerical results of Alnefaie [65] and

numerical and experimental results of Wei et al. [63]. As shown in previous exam-

ples, computational time can be reduced using the proposed FE model.

Example 10.2.4. The final benchmark example in this section is concerned with a

four-layer clamped circular composite plate with symmetric (θ/−θ/−θ/θ) stacking

sequence. The plate diameter is a, while the overall plate thickness is denoted as h.

All laminas are of equal thickness. The following material parameters are assumed

for orthotropic constitutive models of all laminas: E1/E2 = 40, G12/E2 = G13/E2 =

0.6, G23/E2 = 0.5, ν12 = ν13 = ν23 = 0.25, ρ = const [149].

The boundary conditions are prescribed along clamped boundaries by constrain-

ing all generalized displacements in edge nodes. The plate is discretized using two
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Table 10.4: Comparison of natural frequencies (Hz) of the

(0/0/90/90/0/0/90/90)s intact free composite plate using differ-

ent numerical models and integration schemes

Source FE
Mode

1 2 3 4 5 6

Alnefaie [65] 400 89.16 278.97 330.35 354.92 393.26 574.50

Wei et al. [63] 400 90.52 279.17 333.59 354.22 397.62 583.71

Present (9-node; red.) 25 88.51 281.22 332.54 356.48 397.42 578.67

Present (4-node; red.) 25 86.10 296.89 344.06 376.51 414.44 585.79

Experimental [63] 90 289 318 354 386 570

different unstructured mesh densities and two different element types (linear fi-

nite element denoted as Q4 and quadratic finite element denoted as Q9, see Table

10.5) with reduced integration. The nondimenzionalized fundamental frequencies

ω = ω · a2/h
√
ρ/E2 of intact laminated composite plates are calculated and com-

pared with results obtained using different theories: transverse shear deformation

theory [149], FSDT [150] and inverse trigonometric shear deformation theory [151].

The results are elaborated in Table 10.6.

Table 10.5: Properties of the numerical models used in Example 10.2.4.

FE Mesh FE Size Number of FE Number of Nodes

Q4
Mesh 1 a/10 303 335

Mesh 2 a/20 931 994

Q9
Mesh 1 a/10 303 1275

Mesh 2 a/20 931 3849

From Table 10.6 it is obvious that the proposed model is fully capable to predict

the fundamental frequencies of circular laminated composite plates, even by using

the quadrilateral elements to describe the circular plate geometry. It is shown that

115



10. Numerical Examples

Figure 10.7: First 6 nondimenzionalized frequencies ω = ω ·a2/h
√
ρ/E2 and corre-

sponding mode shapes of 4-layer clamped (45/− 45/− 45/45) angle-

ply circular composite plate (a/h = 10, Q9, Mesh 2)

a slightly stiffer response (2-4 %) is obtained using all numerical models and that

mesh refinement leads to the convergence of results, for all considered stacking se-

quences. The first 6 nondimenzionalized frequencies and the corresponding mode

shapes plotted in GiD Post Processor for (45/− 45/− 45/45) stacking sequence of

the clamped circular laminated composite plate are illustrated in Figure 10.7.

Free Vibrations of Delaminated Plates

Obviously, the natural frequencies of a delaminated composite plate will decrease

because of the loss in stiffness caused by the presence of delaminations [37]. In this

section, effects of boundary conditions, delamination geometry and delamination

position on natural frequencies and mode shapes are investigated numerically.

Example 10.2.1. An 8-layer square composite plate with symmetric (0/90/45/90)s

stacking sequence is considered, with all laminas of equal thickness. Overall plate

height is h = 2.12mm. Each layer is made of material with following mechanical

characteristics: E1 = 132GPa,E2 = 5.35GPa,G12 = G13 = 2.79GPa, ν12 = ν13 =

116



10. Numerical Examples

Table 10.6: The nondimenzionalized fundamental frequencies ω = ω · a2/h
√
ρ/E2

of the 4-layer clamped circular laminated composite plates with sym-

metric (θ/− θ/− θ/θ) angle-ply stacking sequence (a/h = 10)

Numerical model θ = 0o θ = 15o θ = 30o θ = 45o

SDT [149] 23.130 23.308 24.063 24.557

MLSDQ-FSDT [150] 22.211 22.774 24.071 24.752

IGA-ITSDT [151] 23.578 23.609 24.208 24.661

Present, Q4, Mesh 1 23.174 23.918 25.333 25.903

Present, Q4, Mesh 2 22.984 23.747 25.175 25.750

Present, Q9, Mesh 1 22.914 23.677 25.108 25.685

Present, Q9, Mesh 2 22.913 23.676 25.107 25.684

0.291, ν23 = 0.30, ρ = 1446.2kg/m3 [37]. Different boundary conditions are adopted

in the analysis. Square delamination is located in the center of the mid-plane of the

laminate, with delamination side of a/2 (where a = 250mm is the side length of the

plate). First 6 modes for intact and delaminated plates are listed in Table 10.7.

Results obtained using the proposed numerical model with 6× 6 mesh of 9-node

layered finite elements are compared with the existing data from the literature, elab-

orated in Table 10.7 and graphically interpreted in Figure 10.8. Reduced integration

is adopted in all calculations to avoid shear locking.

The reduction of the fundamental frequency caused by the presence of the de-

lamination is more pronounced for higher modes, for all four examined cases of

boundary conditions. It is very important to highlight that shear deformation does

not reduce the fundamental frequency (Mode 1) in the case of free and cantilever

plate. In the case of simply supported or clamped plate, fundamental frequency is

reduced, both for the intact and the delaminated plates.

Example 10.2.2. A five layer (0/90/core/0/90) anti-symmetric simply supported

square sandwich plate is analyzed in this example. Plate is composed from the

cross-ply rigid face sheets, each of thickness tf and the soft core of thickness tc.

Face sheets are made of Graphite-Epoxy T300/934 with following mechanical char-

117



10. Numerical Examples

Table 10.7: Comparison of natural frequencies (Hz) of the intact and delaminated

(0/90/45/90)s square plate with different boundary conditions, using

different numerical models

BC Source Crack
Mode

1 2 3 4 5 6

FFFF

Ju et al. - 73.31 202.59 243.37 264.90 306.34 444.80

FSDT [37] a/2 72.94 202.07 241.18 258.51 304.29 421.99

Present - 89.68 201.42 259.61 263.38 327.58 478.18

6× 6 FE a/2 89.66 200.27 248.93 256.67 317.52 442.25

CFFF

Ju et al. - 41.35 60.66 221.52 258.72 286.78 407.98

FSDT [37] a/2 40.26 60.77 220.02 249.69 285.26 395.33

Present - 41.07 68.17 226.26 257.49 299.74 435.58

6× 6 FE a/2 40.29 68.08 221.31 248.23 293.90 403.85

SSSS

Ju et al. - 164.37 404.38 492.29 658.40 854.17 1046.20

FSDT [37] a/2 161.58 348.27 371.19 637.48 704.72 837.45

Present - 169.81 409.78 504.22 672.69 855.48 1044.71

6× 6 FE a/2 167.04 347.88 374.62 611.08 653.97 750.39

CCCC

Ju et al. - 346.59 651.51 781.06 1017.20 1195.40 1487.00

FSDT [37] a/2 334.67 579.43 653.25 851.27 1074.07 1108.80

Present - 346.81 643.44 777.93 982.16 1170.83 1412.03

6× 6 FE a/2 316.88 529.34 554.81 783.80 893.91 947.52
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Figure 10.8: Natural frequencies (Hz) for intact and delaminated (0/90/45/90)s

composite plates with different boundary conditions for the first six

modes

acteristics: E1 = 131GPa,E2 = E3 = 10.34GPa,G12 = G23 = 6.895GPa,G13 =

6.205GPa, ν12 = ν13 = 0.22, ν23 = 0.49, ρ = 1627kg/m3 [20]. Soft core is made of

isotropic material with following mechanical characteristics: E = 6.89MPa,G =

3.45MPa, ν = 0, ρ = 1550kg/m3.

Results presented in Table 10.8 shows that excellent agreement is obtained using

the proposed FE model, in comparison with the closed form solution (CFS) of

Ćetković and Vuksanović [20]. Results are obtained using the reduced integration,

and they are reliable both for the thick and thin plates. After the applicability of

the proposed model for the intact plate is confirmed, a new parametric study is

performed for delaminated plate, using the 4-node element, with 16× 16 mesh. The

goal was to study the influence of the delamination position through the thickness
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Table 10.8: Non-dimenzionalized fundamental frequencies of symmetric intact

simply supported (0/90/core/90/0) square sandwich plates with

tc/tf = 10

a/h Mode ESL [64] HSDT [64] GLPT CFS [20]

Present; Present;

9-node; 4-node;

8× 8 Mesh 16× 16 Mesh

10

1,1 4.96 4.86 1.87 1.85 1.85

1,2 8.19 8.02 3.29 3.23 3.25

1,3 11.99 11.74 5.40 5.25 5.36

2,2 10.52 10.30 4.40 4.31 4.32

2,3 13.75 13.47 6.30 6.12 6.21

3,3 16.45 16.13 7.96 7.71 7.82

100

1,1 15.55 15.51 12.11 11.95 11.97

1,2 39.27 39.03 23.58 23.42 23.56

1,3 73.50 72.76 36.31 36.21 36.71

2,2 55.15 54.76 31.15 30.96 31.05

2,3 84.29 83.44 41.65 41.50 41.75

3,3 106.59 105.38 49.98 49.50 49.42
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Table 10.9: Non-dimenzionalized fundamental frequencies of (0/90/core/90/0)

simply supported square sandwich plate with tc/tf = 10 for differ-

ent positions of square delamination of side length adel = a/2

a/h Mode Intact Mid-plane Interface 1 Interface 2

10

1,1 1.85 1.74 1.78 1.83

1,2 3.25 2.82 2.89 3.18

1,3 5.36 4.88 5.01 5.53

2,2 4.32 4.02 4.10 4.29

2,3 6.21 5.86 5.96 6.18

3,3 7.82 7.51 7.59 7.73

Local 1 - 4.66 4.86 3.95

Local 2 - 5.52 5.48 5.28

100

1,1 1.85 1.74 1.78 1.83

1,2 3.25 2.82 2.89 3.18

1,3 5.36 4.88 5.01 5.53

2,2 4.32 4.02 4.10 4.29

2,3 6.21 5.86 5.96 6.18

3,3 7.82 7.51 7.59 7.73

Local 1 - 4.66 4.86 3.95

Local 2 - 5.52 5.48 5.28

on fundamental frequencies and mode shapes. Square delamination is located at

the center of the plate. Three different positions of the delamination (of side length

adel = a/2) were studied: mid-plane delamination, delamination at the Interface 1

(0/90/core//90/0) or at the Interface 2 (0/90/core/90//0), where // denotes the

delamination position.

Non-dimenzionalized fundamental frequencies of SS square sandwich plate with

the soft core for different delamination positions are presented in Table 10.9. It is

obvious that if the delamination is closer to the mid-plane, fundamental frequency

is more reduced, so the influence of delamination is higher. Also, if the plate is
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delaminated, local mode shapes occur beside the global mode shapes. Global and

local mode shapes for different delamination position are shown in Figure 10.9.

Figure 10.9: Global and local mode shapes of intact and delaminated sandwich

plate with delamination in mid-plane, Interface 1 and Interface 2

From the performed numerical analysis it is obvious that delaminated segment

of the plate oscillate independently from the intact rest of the plate with its own

frequency. Generally, if the delamination is closer to the middle plane of the plate,

local fundamental frequency is higher, because the segment which oscillates inde-

pendently is of higher thickness than if the delamination is near the plate surface.

On the other hand, in the thin plate situation (with a/h = 100, for example), it

is shown that independent oscillation of delaminated segment can achieve second

bending mode, too, as shown in Figure 10.9. This is the confirmation that delam-

inated segment can be treated as the independent plate connected with the rigid
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intact rest of the plate, and it oscillates independently with its own frequency.

This example confirms that proposed model is able to accurately predict the

natural frequencies both for the intact and delaminated sandwich and composite

plates. Fundamental frequency of the delaminated segment can be derived in the

same manner, too. This is very important feature, because it can serve as the basis

for defining the new set of boundary conditions which can be incorporated on delam-

ination boundaries. Accurate results obtained even for the coarse mesh shown that

this method is not computationally expensive, which makes it the powerful tool for

obtaining the fundamental dynamic characteristics of damaged laminar composites.

10.3 Linear Buckling

To derive the eigenvalue buckling problem and the corresponding matrices in the

finite element model, energy approach in combination with the finite element for-

mulation is used [9]. The following analysis assumes that a linear analysis gives a

good approximation of the structural behavior up to the limit of stability.

If the prebuckling deformations can be accurately predicted by a linear solution

(where nonlinear portion of the stiffness matrix is equal to zero), then for a fixed

prescribed loading p0 on the plate [9]:

δ2Π =
([
KL
]

+
[
KG
])
δ{d} = 0 (10.3)

where {d} = {u v w}T , and the second variation δ2Π indicates a critical point

on the equilibrium path. Since a linear solution is used for the prebuckling defor-

mations, the geometric stiffness matrix
[
KG
]

depends linearly on the load, for any

load level λp0 (where λ is the unknown constant). Then it follows:

δ2Π =
([
KL
]

+ λ
[
KG
])
δ{d} = 0 (10.4)

If any nontrivial perturbation δ{d} exists, then λp0 is the buckling load, and the λ is

obtained from the eigenvalue problem. The geometric stiffness matrix of the single

layered finite element is given in Eq. (5.18), while its derivation is given in [9].
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Critical Buckling Loads of Intact Plates

Example 10.3.1. The first example deals with the effects of incorporated shear

deformation on critical buckling loads of intact laminated composite plates. Sym-

metric cross-ply lamination scheme and layers of equal thickness are adopted. The

SS square plates are subjected to an in-plane uniform uniaxial compressive load.

Each layer is made of material with following mechanical characteristics: G12/E2 =

0.6, G13/E2 = G23/E2 = 0.5, ν12 = 0.25, ρ = 1.0 [21]. The critical buckling load is

presented in the non-dimenzionalized form N = σcra
2/ (E2h

2). The effects of or-

thotropy and lamination scheme of simply supported cross ply laminated composite

plates with a/h = 10 are presented in Table 10.10.

Table 10.10: Non-dimenzionalized critical buckling loads of the intact (0/90/0)

simply supported square laminates with three and five orthotropic

layers using different E1/E2 ratios

Source Layers
E1/E2

3 10 20 30

Vuksanović - CLPT [21]

3

5.5738 11.4920 19.7120 27.9360

Owen and Li - Refined [38] 5.4026 9.9590 15.3201 19.6872

Vuksanović - HSDT [21] 5.3587 9.7133 14.5935 18.3890

Noor - 3D Elasticity [30] 5.3044 9.7621 15.0191 19.3040

Present (9-node; 5× 5 FE) 5.3910 9.8427 14.9138 18.9099

Present (4-node; 10× 10 FE) 5.4287 9.8989 14.6739 18.9684

Vuksanović - CLPT [21]

5

5.7538 11.4920 19.7120 27.9360

Owen and Li - Refined [38] 5.4208 10.1609 15.9976 20.9518

Vuksanović - HSDT [21] 5.3746 9.9714 15.4913 20.0732

Noor - 3D Elasticity [30] 5.3255 9.9603 15.6527 20.4663

Present (9-node; 5× 5 FE) 5.3862 10.0001 15.5397 20.1323

Present (4-node; 10× 10 FE) 5.4238 10.0593 15.6115 20.2039
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Example 10.3.2. In the second example, simply supported sandwich plate loaded

by uniformly distributed normal pressure Nx is analyzed. Plate is composed from

cross-ply face sheets, each of thickness tf , and the soft-core. Overall plate thick-

ness is h. Plate has symmetric (0/90/0/90/0/core/0/90/0/90/0) stacking sequence.

Sandwich plate is made of material with following mechanical characteristics [20]:

For the face sheets: E1f/E2f = 19, E2f = E3f , G12f/E2f = G13f/E2f = 0.52, G23f/E2f =

0.338, ν12f = ν13f = 0.32, ν23f = 0.49, while for the soft-core: E1/E2f = 3.2 ×

10−5, E2/E2f = 2.9 × 10−5, E3/E2f = 0.4, G12/E2f = 2.4 × 10−3, G13/E2f = 7.9 ×

10−2, G23/E2f = 6.6× 10−2, ν12 = 0.99, ν13 = ν23 = 0.3× 10−5. The critical buckling

loads are presented in non-dimenzionalized form: Nx = Ncrb
2/ (E2fh

3).

Table 10.11: Non-dimenzionalized critical buckling loads of the intact simply

supported (0/90/0/90/0/core/0/90/0/90/0) square sandwich plates

with different geometries, using different tf/h ratios

Source a/h
tf/tc

0.025 0.050 0.075 0.100

Noor et al. - 3D Elasticity [30]

10

2.2081 3.7385 4.8307 5.6721

Sarath Baby et al. - FSDT [152] 2.2043 3.8662 5.2650 6.4930

Sarath Baby et al. - HSDT [152] 2.2122 3.7499 4.8643 5.7100

Ćetković et al. [20] 2.2639 3.7649 4.8302 5.6255

Present (4-node; 10× 10 FE) 2.2766 3.7795 4.8431 5.6357

Present (9-node; 5× 5 FE) 2.2642 3.7653 4.8305 5.6258

Noor et al. - 3D Elasticity [30]

20

2.5534 4.6460 6.4401 7.9352

Sarath Baby et al. - FSDT [152] 2.5437 4.7128 6.6156 8.2984

Sarath Baby et al. - HSDT [152] 2.5536 4.6756 6.4528 7.9512

Ćetković et al. [20] 2.5660 4.6817 6.4428 7.9184

Present (4-node; 10× 10 FE) 2.5854 4.7136 6.4839 7.9656

Present (9-node; 5× 5 FE) 2.5667 4.6822 6.4439 7.9196

From the results given in Table 10.11, it is obvious that the proposed model

gives the accurate prediction of the critical buckling load, in comparison with the
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close form solution of Ćetković et al.[20] and 3D elasticity solution of Noor et al.

[30]. The accuracy is achieved even for the coarse mesh of 5 × 5 quadratic layered

finite elements and the applicability of the proposed model for the intact plates is

confirmed.

Critical Buckling Loads of Delaminated Plates

Example 10.3.3. The simply supported square 5-layer (0/90/0/90/0) cross-ply

laminated composite plate with layers of equal thickness is investigated. The plate

is subjected to an in-plane uniform uniaxial compressive loading.

Each layer is made of material with following mechanical characteristics [21]:

G12/E2 = 0.6, G13/E2 = G23/E2 = 0.5, ν12 = 0.25, ρ = 1.0, while the critical

buckling loading is presented in non-dimenzionalized form: N = σcra
2/ (E2h

2).

The results of the parametric study are shown in Figure 10.10. Two cases of

delaminated interface were examined and compared with the results for the mid-

plane delamination. Centrally located square delamination of maximum area of

25% of the plate area was investigated. In Figure 10.10, Interface 1 represents

(0/90/0//90/0) delamination (where // denotes the delamination position), while

Interface 2 represents (0/90/0/90//0) delamination.
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Figure 10.10: Critical non-dimenzionalized buckling loads for different de-

lamination interfaces and different delamination positions in

(0/90/0/90/0) cross-ply laminated composite plate
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From Figure 10.10 it is obvious that delaminated area up to the 6% of the plate

area does not reduce the critical buckling load. For the mid-plane delamination,

after increasing of the delaminated area, critical buckling load decreases down to

48.6% of the critical buckling load of the intact plate. If the delamination is located

near the plate surface, it has the smaller influence on the results, because the intact

rest of the plate is stiff enough to hold up to 82.9% or 93.7% of the critical buckling

load for the delamination at the Interface 1 or at the Interface 2, respectively. On

the other hand, delaminated segment is too small to buckle independently from the

intact rest of the plate. Using the proposed numerical model, it is very easy to

calculate the critical buckling loading for the damaged plate, with the delamination

of arbitrary shape or arbitrary position through the plate thickness.

Example 10.3.2. The simply supported 11-layer (0/90/0/90/0/core/0/90/0/90/0)

soft-core sandwich plate with rigid cross-ply face sheets was studied here to investi-

gate the influence of delamination size and position on critical buckling loads. The

plate is subjected to an in-plane uniform uniaxial compression. Three delaminated

interfaces and two face-to-core-thickness ratios (tf/tc) were examined and compared.

Centrally located square delamination of maximum area of 25% of the plate area

was considered. In Figure 10.11, Interfaces 1, 3 and 5 represent (0/90.../0/core//0/90.../0),

(0/90.../0/core/0/90//0/90/0) and (0/90.../0/core/0/90/0/90//0) delaminations,

respectively (where // denotes the delamination position).

The results of the parametric study are shown in Figure 10.11. The critical

buckling loads are presented in non-dimenzionalized form: Nx = Ncrb
2/ (E2fh

3).

From the results shown in Figure 10.11 it is obvious that delaminated area up to

the 6% of the plate area does not reduce the critical buckling loading, in all examined

cases. For delamination located at Interface 1, uniaxially compressed sandwich plate

loses the stability after the increasing of delamination area above the 6% of the plate

area. The reason is that the rest of the plate does not have the enough in-plane

stiffness, because the intact rest of the plate is composed from the face sheet at

the bottom and the soft-core, while the face sheet at the top of the plate buckles

independently.
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Figure 10.11: Critical non-dimenzionalized buckling loads for different delamina-

tion interfaces and different delamination sizes in sandwich plate

with a/h = 10 and (0/90/0/90/0/core/0/90/0/90/0) stacking se-

quence

On the other hand, if the delamination is located at the Interfaces 3 or 5, the

reduction of the critical buckling load is negligible, because the intact rest of the plate

is stiff enough to carry about the 97% of the critical buckling loading of the intact

plate. Global and local buckling modes of soft-core sandwich plate with mechanical

characteristics shown above, with tf/tc = 0.1 and a/h = 0.1, with the delamination

at Interface 1, are shown on Figure 10.12. It is obvious that local mode exists if the

delamination area is bigger than 6%, as stated above.

10.4 Transient Analysis

Proposed methodology of obtaining the transient response through the analytical

and numerical solutions was investigated on several examples presented in this chap-

ter. Homogeneous initial conditions (zero displacements and velocities) were as-

sumed in all cases. Whenever possible, the obtained results are compared with the
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Figure 10.12: Global and local buckling modes of intact sandwich plate (top left

corner) and sandwich plates with delaminations of different sizes in

mid-plane

existing data from the literature. Some new results are presented as a benchmark

for future investigations.

Linear and Geometrically Nonlinear Transient Analysis of

Intact Plates

Example 10.4.1. In the preliminary calculation the influence of number of mem-

bers in Fourier series on normalized transverse deflection is investigated. Simply

supported cross-ply 2-layer laminate with a = b = 25cm was examined and the

analytical solution presented in Chapter 4 is used for the calculation.

The following lamina properties are used: E1 = 52.5 × 106N/cm2, E2 = 2.1 ×

106N/cm2, ν12 = 0.25, G12 = G13 = 0.5E2, h = 1cm, ρ = 8 × 10−6Ns2/cm4. The

plate is subjected to the uniformly distributed loading q0 in a form of the step pulse.

Time increment is chosen as ∆t = 100µs. Normalized center transverse deflection
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Table 10.12: Normalized center transverse deflection at selective times, for differ-

ent values of m× n members in Fourier series

m× n t = 100µs 200 300 400 500 600 700 800

1× 1 0.4697 1.6270 2.8513 3.4860 3.1907 2.1239 0.8576 0.0708

3× 3 0.4127 1.5855 2.8477 3.4173 3.1681 2.1080 0.7849 0.0667

5× 5 0.4185 1.5864 2.8520 3.4202 3.1701 2.1130 0.7853 0.0727

is calculated as: w = w · 100E2h
3/(q0a

4). The results of the analytical solution are

presented in Table 10.12.

Table 10.12 clearly shows that the number of members in double trigonometric

series does not affect severely the transient response of laminated composite plate.

According to this in all calculations it can be adopted that m = n = 1.

Example 10.4.2. Influence of the time increment was investigated numerically

considering thin SS square cross-ply laminated composite plate composed of 4 layers

in (0/90/0/90) stacking sequence. Side length of the plate is a = 25cm, while overall

plate height is h = 1cm (a/h = 25). All material layers are made of the material

with the mechanical characteristics from the previous example.

Plate was exposed to the uniformly distributed step loading q0 in the form of

the step pulse, and solutions were obtained using both analytical and numerical

methods. In the analytical solution, only the first member in the Fourier series

is adopted. In the numerical solution, the plate was discretized using 10 × 10 4-

node layered finite elements with reduced integration. Nondimenzionalized center

transverse deflection is calculated as w = w · 100E2h
3/(q0a

4) and the time histories

of the center transverse deflection are plotted in Figure 10.13.

From the conducted analysis it is obvious that increase of the time increment

reduces the amplitude of oscillations, but increases the period, as showed in Figure

10.13. Maximum transient center transverse deflections in both cases are about two

times that of the static center transverse deflection, as shown in Table 10.13.
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Figure 10.13: Analytical and FEM solutions for (0/90/0/90) laminate considering

different time steps

Table 10.13: Comparison of normalized center transverse deflections in dynamic

and static analysis, for different numerical models

Model wmax,dynamic wmax,static Ratio

4-layer plate (Analytical) 1.6989 0.8936 1.9012

4-layer plate (FEM) 1.7360 0.8554 2.0295

Example 10.4.3. The influence of FE mesh refinement was investigated with 2

SS square cross-ply laminated plates made of 4 layers (0/90/0/90). Two side-to-

thickness rations were used: a/h = 5 and a/h = 25, where a = 25cm is the side

length of the plate. All material layers are made of the material with the mechanical

characteristics given in the previous examples.

Plates were exposed to the uniformly distributed step loading q0 in the form of

the step pulse. Time step of ∆t = 50µs was chosen in all calculations. The plate was

discretized with 3 different mesh densities using 4-node layered finite elements with

reduced integration. Nondimenzionalized center transverse deflection is calculated
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as w = w · 100E2h
3/q0a

4.
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Figure 10.14: Nondimenzionalized deflection versus time for (0/90) laminate con-

sidering different mesh densities

Convergence of solution is reached with 10× 10 FE mesh. Coarse mesh of 4× 4

FE showed a little underestimation of the amplitude and the period in thin plate

situation (Figure 10.14). In the thick plate situation coarse mesh overpredicted the

amplitude of oscillations, and underpredicted the period slightly.

Example 10.4.4. The effect of the lamination scheme on the transient response of

laminated structure is investigated using a cross-ply (0/90) laminates with different

numbers of layers. Side length of the plate is a = 25cm, while overall plate thickness

is h = 1cm (a/h = 25). All material layers are made of the material with the

mechanical characteristics given in the previous examples.

Plates were exposed to the uniformly distributed step loading q0 in the form of

the step pulse. Time step of ∆t = 50µs was chosen. In the numerical solution,

the plate was discretized using 10× 10 4-node layered finite elements with reduced
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integration. Nondimenzionalized center transverse deflection is calculated as w =

w · 100E2h
3/q0a

4 and plotted versus time in Figure 10.15, for the plate center. In
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Figure 10.15: Normalized deflection versus time for cross-ply (0/90) laminates

with a/h = 25, for different lamination schemes and different nu-

merical models

addition, the time history of the nondimenzionalized normal stress σx = σx·h2/(q0b
2)

of the plate center, at the bottom of the laminate (z = −h/2) is plotted for different

lamination schemes in Figure 10.16 (δt = 10µs). The obtained results are compared

with the analytical solution of Reddy [8], and excellent agreement was observed.

Figure 10.15 shows that reduction in the number of layers through the plate

thickness leaded to the more flexible plate response it is increasing the amplitude

as well as the period. By using more cross-ply layers through the same overall plate

thickness, stiffer response is obtained. Very good agreement was obtained between

analytical and numerical solution.

Finally, for the illustration, the stress distribution through the plate thickness for

a (0/90)4 laminate scheme is plotted for t = 280µs (the moment when the maximum

normal stress σx is obtained, red lines in Figure 10.16), for x = a/4, y = b/4. The

stress distribution is illustrated in Figures 10.17 and 10.18.

Example 10.4.5. The influence of different forcing functions which describe the

133



10. Numerical Examples

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0 200 400 600 800 1000

N
or

m
al

iz
ed

 S
tr

es
s

Time [µs]

Reddy (0/90)4

Reddy (0/90)

GLPT (0/90)4

GLPT (0/90)

Figure 10.16: Normalized normal stress σx versus time for cross-ply (0/90) lami-

nates with a/h = 25, for different lamination schemes and different

numerical models
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Figure 10.17: Variation of the normalized transverse shear stresses through a

thickness of a eight-layer cross-ply (0/90)4 laminate under uniformly

distributed transverse load, in x = a/4, y = b/4

load change through time is analyzed in this example. Four different patterns of

load change through the time are adopted as shown in Figure 10.19 and described

as:
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Figure 10.18: Variation of the normalized in-plane normal stresses through a

thickness of a eight-layer cross-ply (0/90)4 laminate under uniformly

distributed transverse load, in x = a/4, y = b/4

1. Step Pulse: F (t) = F0

2. Sine Pulse: F (t) = F0 · sin(πt/T )

3. Triangular Pulse: F (t) = F0 · sin(1− t/T )

4. Exponential Pulse: F (t) = F0 · e−αt

F0 represents the amplitude of the dynamic loading, t is the current time variable,

T is the overall time in which loading acts and α is the damping parameter. For
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Figure 10.19: Normalized deflection versus time for (0/90) laminates with a/h =

10, different boundary conditions and different forcing functions

the purpose of this work, α = 0.005 and T = 1000µs. Nondimenzionalized center

transverse deflection is calculated as w = w · 100E2h
3/q0a

4.

The effect of the applied forcing functions on the transient response of lami-

nated plate is investigated using a cross-ply (0/90) laminates with a/h = 10 and

a = b = 25 cm. In all cases, uniformly distributed step loading was used. Results are

obtained using FEM with 10× 10 mesh, for SS and clamped laminated plates. Fig-

ure 10.19 illustrates the results of the calculation. Analytical solutions using Fourier
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series and the convolution integral for simply supported Mindlin plates are in detail

explained in previous work of Hinton and Vuksanović [153]. Also, FE results are

given in work of Hinton and Vuksanović [154]. As stated in [153], triangular pulse

is used to simulate a nuclear blast loading. The exponential pulse may be used to

simulate a high explosive blast loading. Damping parameter α is adjusted to ap-

proximate the pressure curve from the blast test.

Example 10.4.6. This benchmark example [21] is concerned with a simply sup-

ported rectangular 3-layer composite plate, with one side length a and the other side

length b =
√
a and a side-to-thickness ratio a/h = 0.1. The top and bottom plies are

identical, with h(1)/h = 0.1, while the mid-layer has the thickness h(2)/h = 0.8. Tho

goal of this example is to illustrate the influence of the transverse shear deformation

on the transient response of laminated composite plates.

The plate is subjected to a step pulse with uniformly distributed normalized

loading q0 = 0.02 over whole plate area. The following material parameters are as-

sumed for orthotropic constitutive models of the top (bottom) and the middle layer:

E
(1)
1 = 15, E

(1)
2 = 7.878, G

(1)
12 = 4.392, G

(1)
13 = 2.6715, G

(1)
23 = 4.458, ν

(1)
12 = 0.44, ρ(1) =

5;E
(2)
1 = 1, E

(2)
2 = 0.5252, G

(2)
12 = 0.2928, G

(2)
13 = 0.1781, G

(2)
23 = 0.2972, ν

(2)
12 =

0.44, ρ(2) = 1.

The plate is discretized by 10 × 10 4-node and, for comparison, with 9-node

layered finite elements. The boundary conditions are prescribed along simply-

supported edges as follows: at x = 0 and x = a: v = w = vI = 0 and at y = 0 and

y = b: u = w = uI = 0.

The values of non-dimenzionalized center deflection w0 = w ·E(2)
1 h/q0 versus the

non-dimenzionalized time T0 = T/a ·
√
E

(2)
1 /ρ(2) obtained from analyses using full

and reduced integration are plotted and compared with the analytical results from

the literature using different plate theories [21] (see Figure 10.20).

From Figure 10.20 it is obvious that ESL theories (CPT, FSDT and HSDT)

underestimate the values of the transverse deflection, in comparison with the gen-

eralized laminated plate theory. It is obvious that incorporation of the transverse

shear deformation reduces the natural frequency of the plate. While comparing dif-
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Figure 10.20: Time histories of center deflection using the proposed layered finite

plate model in comparison with analytical solutions from different

plate theories (CPT, FSDT and HSDT)

ferent layered finite element models, only in the case of full integration of 4-node

element matrices, shear locking has occurred (solid black line in Figure 10.20).

Example 10.4.7. In the seventh benchmark example, the influence of the ge-

ometrical nonlinearity incorporated in the proposed finite plate model is inves-

tigated. A 8-layer simply supported intact square plate with a side length of

178mm and a total thickness of 1.58mm is discretized by 10 × 10 9-node layered

finite elements with reduced integration. All plies are of 0o orientation. Eight

laminas of equal thickness are assumed, with the following material parameters:

E1 = 172.7GPa,E2 = E3 = 7.2GPa,G12 = G13 = 3.76GPa,G23 = 2.71GPa, ν12 =

ν13 = 0.25, ν23 = 0.33, ρ = 1566kg/m3 [65].

Uniformly distributed loading q0 = 1kN/m2 over the whole plate area is pre-

scribed. The plate is subjected to step pulse loading lasting for T = 5ms. Time
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Figure 10.21: Linear and nonlinear transient responses of intact composite plate

under different intensities of uniformly distributed step loads over

whole plate area

increments ∆t = 0.25ms were chosen after computation of the natural frequen-

cies of the laminate: f1 = 256.58Hz, f2 = 349.51Hz and f3 = 579.75Hz. The

non-dimenzionalized center deflection is calculated as w0 = w · E1h
3/q0/a4 and the

respective time histories are plotted in Figure 10.21.

Figure 10.21 illustrates the influence of load intensity and of the geometrical

nonlinearity on the transient response of the intact composite plate. The linear

and nonlinear responses are compared for three load intensities. It is shown that

the amplitude and the period of oscillations decrease with increasing load levels.

Furthermore, it is shown, that the influence of geometrical nonlinearity increases

with increasing load levels. The values of negative peaks increase with the load [36].

139



10. Numerical Examples

Linear and Geometrically Nonlinear Transient Analysis of

Delaminated Plates

Example 10.4.8. In this example the efficiency of the incorporated contact algo-

rithm is investigated using the numerical model of SS square composite plate from

Example 10.4.6. In the example, a centrally located square area of delamination

covering 25% of the plate area is incorporated in the mid-plane.

Table 10.14: Natural frequencies (Hz) of the (0/0/0/0/0/0/0/0) simply supported

square composite plates for different mesh densities

Mesh f1 (Hz) f2 (Hz) f3 (Hz)

Mesh 1 - Intact plate 256.58 349.51 579.75

Mesh 2 - Intact plate 255.15 345.65 555.08

Mesh 1 - Delaminated plate 254.40 322.61 503.40

Mesh 2 - Delaminated plate 253.81 323.91 500.12

The plate is discretized using two different finite element mesh densities: a 12×12

mesh using 4-node layered finite elements (Mesh 1) and a 6× 6 mesh using 9-node

(Mesh 2) finite elements with reduced integration. Uniformly distributed loading

q0 = 1kN/m2 is prescribed. The plate is subjected to step pulse loading lasting for

T = 5ms. Time increments and loading duration used in the Newmark’s integration

scheme are selected after the calculation of natural frequencies of the laminate, as

given in Table 10.14.

The results from the analyses are evaluated based upon the normalized COD

calculated as δ0 = δ ·E1h
3 · 103/q0/a

4. The time history of the COD in the centroid

of the delaminated area is plotted in Figure 10.22. As shown, contact algorithm suc-

cessfully ”corrects” the interlaminar penetration during the transient response of the

delaminated composite plate both in the linear and geometrically nonlinear analysis.

The influence of interlaminar penetration is more pronounced in the geometrically

nonlinear response under step loading. The delaminated segment oscillates inde-

pendently from the intact rest of the plate with its own frequency (fdel ∼ 1000Hz),
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Figure 10.22: Temporal evolution of the normalized COD in the centroid of the

delaminated area for two different discretizations

which is much higher than the natural frequency of the laminate.

Example 10.4.9. This example illustrates the linear and geometrically nonlinear

transient response of a delaminated composite plate under step pulse. An 8-layer

simply supported cross-ply (0/90/0/90/0/90/0/90) plate with the same geometry

(side length a) and mechanical characteristics as used in Example 10.4.7. is analyzed.

The influence of delamination size and position on transient response is investigated

numerically for two cases: (a) mid-plane delamination of a square region considering
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two different sizes (a/3 and 2a/3) of the delaminated area as shown in Figure 10.23

and (b) delamination of a square region with side length a/3 located in three different

positions along the height, as shown in Figure 10.23.

Figure 10.23: FE mesh with different sizes of a centrally located delamination

within a square region in the mid-plane (left) and different positions

of the delaminated zone along the plate thickness (right)

The plate is discretized by means of 6× 6 quadratic layered finite elements with

reduced integration. Uniformly distributed loading q0 = 4kN/m2 is prescribed over

whole plate area. The plate is subjected to a step pulse loading. The total loading

duration of T = 10ms is discretized into time increments ∆t = 0.25ms using the

Newmark’s scheme for time integration. The natural frequencies for the analyzed

plate are presented in Table 10.15. The normalized center transverse deflection of

the plate is calculated as δ0 = δ · E1h
3 · 103/q0/a

4. The time history of the plate

center is plotted in Figures 10.24 and 10.25.

Figure 10.24 illustrates the influence of the size of the delaminated zone on the

response predicted by a linear and a geometrically nonlinear transient analysis of

the delaminated composite plate. For the smaller size of the delamination area

(Size 1) a marginal increase of the amplitude and period of the oscillations is ob-

served for the linear analysis, while in the case of geometrically nonlinear analysis

the period of oscillations is slightly reduced because of the added bending stiffness

of the plate. The incorporated contact algorithm does not affect the linear response
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Table 10.15: Natural frequencies (Hz) of the (0/90/0/90/0/90/0/90) SS square

composite plate with different sizes and positions of the delaminated

area

Size Position f1 (Hz) f2 (Hz) f2 (Hz)

Intact Plate 255.15 345.65 555.08

Size 1
Mid-Plane

250.21 635.21 977.00

Size 2 237.76 428.47 535.05

Size 1

Position 1 250.21 635.21 977.00

Position 2 250.23 636.33 666.17

Position 3 249.69 667.41 808.77

severely, while in the geometrically nonlinear case this influence is more pronounced

(solid blue line in Figure 10.24). For the larger size of the delaminated area (Size 2,

see Figure 10.23), the amplitudes and the period of the oscillations of the laminate

are significantly increased due to the reduced bending stiffness. The incorporated

contact algorithm has only a minor effect in the linear transient response. However,

in the geometrically nonlinear analysis, the delamination and its closure has a con-

siderable influence on the time history of the transverse deflection (Figure 10.24).

The results from the analysis considering contact of the delaminated layers (solid red

line) differ considerably from the plots obtained for the analysis with consideration

of contact (dashed line).

Figure 10.25 illustrates the influence of the delamination position on the results

from a linear and a geometrically nonlinear transient analysis of the delaminated

composite plate. In the linear analysis, changing the position of the delamination

zone along the plate thickness does not have a large effect on the frequency of the

oscillations. If the delamination is closer to the top of the plate, the amplitude of the

oscillations is slightly reduced, because the thickness (and rigidity) of the intact rest

of the plate increases. Changing the position of delamination in the geometrically

nonlinear analysis is not affecting the transient response if the interlaminar penetra-

tion of delaminated layers is not prevented. However, if penetration is suppressed by
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Figure 10.24: Temporal evolution of the central transverse deflection of the plate

considering different sizes of the delaminated area

means of the activating the interlaminar contact algorithm, a large influence of the

position of the delaminated region is observed (solid lines in Figure 10.25, down).

The highest amplitudes are calculated for the delamination located in position 3.

Example 10.4.10. This benchmark example is concerned with a simply supported

square 8-layer composite plate with (0/90/45/90)s stacking sequence. The plate is
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Figure 10.25: Temporal evolution of the central transverse deflection of the plate

considering different positions of the delaminated area

analyzed to check the applicability of the proposed model for linear and geomet-

rically nonlinear transient analysis of delaminated plates subjected to a triangular

pulse loading. Also, the purpose of this example is to illustrate the capability of the

proposed model to successfully replicate the independent motions of adjacent delam-

inated interfaces. The plate has a side length a = 250mm and a height h = 2.12mm.

Each layer has an identical thickness and material parameters: E1 = 132GPa,E2 =

5.35GPa,G12 = G13 = 2.79GPa, ν12 = ν13 = 0.291, ν23 = 0.30, ρ = 1446.2kg/m3.
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Table 10.16: Natural frequencies (Hz) of the (0/90/45/90/90/45/90/0) simply

supported square composite plate considering different delamination

sizes and different delamination positions

Size Position f1 (Hz) f2 (Hz) f2 (Hz)

Intact Plate 170.81 419.92 517.66

Size 1
Position 1

170.41 395.37 459.33

Size 2 151.14 294.41 297.61

Size 1 Position 2 170.29 398.61 460.99

The plate is subjected to a triangular pulse loading q(t) = q0(1 − t/T ), with

a uniformly distributed loading q0 = 10kN/m2 over whole area of the plate. The

duration of the triangular pulse is T = 15ms. Time increments ∆t = 0.25ms are

used in the Newmark’s time integration. The plate is discretized using 12×12 linear

layered finite elements with reduced integration. The previously explained contact

algorithm is activated. The natural frequencies of the analyzed plate obtained for

the different delamination scenarios are summarized in Table 10.16.

The normalized center deflections of selected delaminated interfaces are calcu-

lated as δ0 = δ · E1h
3 · 103/q0/a

4. The transient analyses are performed for delami-

nation sizes 1 and 2 and delamination positions 1 and 2, according to Figure 10.23.

The corresponding time histories of the central deflection of two adjacent layers 4

and 5 obtained from the different scenarios are plotted in Figures 10.26 and 10.27.

Figure 10.26 illustrates the influence of the delamination size on the results

from linear and geometrically nonlinear transient analyses of delaminated composite

plate. For the smaller size of the delaminated region (Size 1), the plate oscillates as

one homogeneous structure with negligible relative displacements between adjacent

layers 4 and 5 if linear analysis is employed (Figure 10.26). In the geometrically

nonlinear analysis only a slightly larger influence of the delamination is observed for

the small delamination size, resulting in only little relative displacements between

the adjacent layers 4 and 5. For the larger size of the delaminated area (size 2),

however, the amplitudes and the period of oscillations are considerably increased
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Figure 10.26: Temporal evolution of the central transverse deflection of two ad-

jacent layers 4 and 5 considering different sizes of the delaminated

area

(red lines in Figure 10.26). The mid-plane delamination of size 2 actually splits the

laminate into two portions and reduces its bending stiffness dramatically. The crack

opening displacement is the difference between the temporal central deflections of

Layers 4-5 (the difference between the solid and dashed red lines in Figure 10.26).

Figure 10.27 illustrates the influence of the delamination position on the lin-

ear and geometrically nonlinear transient response of the investigated delaminated

147



10. Numerical Examples

-0.40

-0.20

0.00

0.20

0.40

0.60

0 3 6 9 12 15N
on

d
im

en
zi

on
al

iz
ed

 d
ef

le
ct

io
n

Time [ms]

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0 3 6 9 12 15

N
on

d
im

en
zi

on
al

iz
ed

 d
ef

le
ct

io
n

Time [ms]

Intact Plate Position 2 - Layer 5

Position 1 - Layer 4 Position 2 - Layer 6

Position 1 - Layer 5

Geometrically Linear Analysis

Geometrically Nonlinear Analysis

Figure 10.27: Temporal evolution of the central transverse deflection of two adja-

cent layers 4 and 5 considering different positions of the delaminated

area

composite plate subjected to a pulse loading. In the linear analysis, changing the

position of the delamination along the plate thickness does not lead to significant

changes of the frequency and amplitudes of the oscillations. In the geometrically

nonlinear transient response the position of the delaminated area has a large effect

(Figure 10.27). The crack opening displacements are higher if the delamination is
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closer to the top of the laminate (red lines in Figure 10.27). The transient response

of the delaminated segment is characterized by contributions with higher frequency

compared to the overall laminate.

Two previous examples demonstrate that the proposed model is capable to com-

pute the transient response of laminated composite plates with embedded delam-

inated regions under different types of transient pulse loading. The model very

efficiently replicates the motions of adjacent separated layers with reasonable com-

putational cost. In the next example the same modeling strategy will be applied to

the numerical analysis of the soft-core sandwich plates with embedded delamination.

Example 10.4.11. This benchmark example illustrates the linear and geometrically

nonlinear transient responses of a delaminated sandwich plate under exponential

blast pulse loading. The purpose of this example is to illustrate the capability of

the proposed model to successfully represent the independent motions of adjacent

delaminated interfaces in a sandwich panel. A five layer (0/90/core/0/90) anti-

symmetric SS square sandwich plate is analyzed. The plate is composed from cross-

ply rigid face sheets, with thickness tf and a soft core with thickness tc, where

tc/tf = 10. The side length of the plate is a = 250mm and its height is h = 2.50mm

(a/h = 100).

Figure 10.28: Soft-core sandwich plate with different sizes and positions of an

embedded delamination zone

The face sheets are assumed to be made of Graphite-Epoxy T300/934 with the

following mechanical characteristics: E1,f = 131GPa,E2,f = E3,f = 10.34GPa,G12,f =
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Table 10.17: Natural frequencies (Hz) of the (0/90/core/0/90) simply supported

square sandwich plate with different delamination sizes and different

delamination positions

Size Position f1 (Hz) f2 (Hz) f2 (Hz)

Intact Plate 191.72 375.82 496.92

Size 1
Position 1

190.67 334.46 489.78

Size 2 129.75 156.98 205.42

Size 1
Position 1 190.67 334.46 489.78

Position 2 191.28 372.72 410.91

G23,f = 6.895GPa,G13,f = 6.205GPa, ν12,f = ν13,f = 0.22, ν23,f = 0.49, ρf =

1627kg/m3. For the isotropic soft-core the following material parameters are adopted:

Ec = 6.89MPa,Gc = 6.895MPa, νc = 0, ρc = 1550 kg/m3 [20].

The plate is discretized using a 10×10 mesh of quadratic layered finite elements

with reduced integration. Again, a uniformly distributed loading q0 = 1kN/m2 is

prescribed over the whole plate area as an exponential pulse loading q(t) = q0×e−αt.

The duration of the exponential pulse loading is T = 24ms, using α = 150s−1 as

a fictitious damping factor. The time increment was chosen as ∆t = 0.8ms. The

proposed contact algorithm is activated.

The normalized center transverse deflection is calculated as w0 = w·E1,fh
3/q0/a

4.

The natural frequencies for the analyzed plate are summarized in Table 10.17 for

the different delamination scenarios. The transient response obtained for the de-

lamination sizes 1 and 2 and delamination positions 1 and 2 as illustrated in Figure

10.28 is plotted in Figures 10.29 and 10.30.

Figure 10.29 illustrates the influence of the position of the delaminated zone

on the results of a linear and geometrically nonlinear transient analysis of the de-

laminated sandwich plate. The sandwich plate is highly vulnerable to embedded

delamination between the soft-core and rigid face sheets, when subjected to expo-

nential blast pulse loading (blue lines in Figure 10.29). The global amplitudes of

the intact rest of the plate are increased because of the splitting. The crack opening
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Figure 10.29: Temporal evolution of the central transverse deflection of two adja-

cent delaminated interfaces between the core and the face layer of

a sandwich plate considering different positions of the delaminated

area

displacements are small in the linear and slightly higher in the geometrically non-

linear analysis. On the other hand, if the delamination occurs between the (0/90)

layers within the rigid face sheet, the global amplitudes of the intact rest of the plate

are nearly the same as for the intact plate, because the undamaged part has the
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Figure 10.30: Temporal evolution of the central transverse deflection of two adja-

cent delaminated interfaces between the core and the face layer of

a sandwich plate considering different sizes of the delaminated area

more or less the same bending stiffness as the intact plate (red lines in Figure 10.29)

due to the small thickness of the face layers. However, the delaminated segment

(face 90) strongly oscillates locally with its own local frequency, causing relatively

large crack opening displacements (differences between solid and dashed red lines in
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Figure 10.29).

Figure 10.30 shows the influence of the size of the delaminated zone on the linear

and geometrically nonlinear transient response of the delaminated sandwich plate,

with debonding assumed between the face sheet and the soft core. When the delami-

nation area is small (blue lines in Figure 10.30), the face-core debonding is negligible

and does not severely influence the overall linear transient response. The CODs are

slightly higher in the geometrically nonlinear transient analysis (differences between

solid and dashed blue lines in Figure 10.30, down). The highest amplitudes and

crack opening displacements are reached after 16ms, when the blast pulse intensity

is almost decreased to zero and the free vibration phase is about to start. After

increase of the delaminated area (red lines in Figure 10.30), however, the global

linear plate motion significantly changes and becomes more complex, with increased

amplitudes due to the reduction of the plate stiffness. The crack opening displace-

ments are also increased (differences between solid and dashed red lines in Figure

10.30, up). In the geometrically nonlinear response of the sandwich plates (Figure

10.30, down), the added bending stiffness leads to a reduction of the crack open-

ing displacements (differences between solid and dashed red lines in Figure 10.30,

down) as compared to the linear case. The highest amplitudes and crack opening

displacements are reached at 24ms corresponding (almost) to the end of blast pulse

and start of free vibration phase.

Linear Transient Analysis of Plates with a Propagating

Delamination

Example 10.4.12. In this benchmark example, the influence of the imposed delam-

ination propagation algorithm on transient response of laminated composite plate

is investigated numerically. A 4-layers fully clamped square plate with a side length

a = 600mm and a total thickness h = 10mm (h/a = 0.0333) is considered. All

layers are of equal thickness hk = 2.5mm and they are composed in the symmetric

stacking sequence with the fibers orientations (0/90/90/0). The material parame-

ters for all layers are taken from [107] and they correspond to the carbon/epoxy:
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E1 = 109.34GPa, E2 = E3 = 8.82GPa, G12 = G13 = 4.32GPa, G23 = 3.20GPa,

ν12 = ν13 = 0.342, ν23 = 0.520, ρ = 1500kg/m3, GIc = 306N/m, GIIc = 632N/m

and GIIIc = 817N/m.

Figure 10.31: 4-layers 0o/90o/90o/0o laminated composite plate with embedded

delamination

Uniformly distributed transverse pressure q = 75kPa over the whole plate area

is prescribed in the form of the step pulse lasting for T = 16ms, while the time

increments are varied to check the influence of the time step: ∆t = 0.5ms and

∆t = 1.0ms. The natural frequency of the intact plate is f1 = 259.062Hz. A square

delamination is prescribed between layer 3 and layer 4 (top layer of the plate), as

shown in Figure 10.31.

The plate is discretized using 4-node quadrilateral finite elements with five dif-

ferent mesh densities. The average mesh size varies between 30 (Mesh 1) and 5 mm

(Mesh 5). The numerical models are generated using again the GiDr Pre- and Post-

processing program. Figure 10.32 shows the nodes corresponding to the prescribed

embedded delamination zone as red nodes. The characteristic element matrices and

vectors are calculated using the reduced Gauss-Legendre quadrature to avoid shear

locking.

Influence of the time step and the incorporated algorithm for delamina-

tion propagation

In the first part of this example the influence of the time step for different scenarios

in regards to the embedded delamination zone is checked. The plate is discretized
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Mesh 4 - size~10mm

354 FE, 395 nodes

3700 FE, 3821 nodes

Mesh 5 - size~5mm

15727 FE, 15968 nodes

Mesh 1 - size~30mm Mesh 2 - size~20mm

910 FE, 971 nodes

Mesh 3 - size~15mm

1674 FE, 1755 nodes

Figure 10.32: Different discretizations of the laminated composite plate with em-

bedded delamination (GiD) and the properties of the models

using Mesh 1 (see Figure 10.32). The transient response is analyzed numerically for

the following situations: i) intact composite plate without delamination (black lines

in Figure 10.33), ii) the plate with an delaminated zone, allowing for delamination

growth (red lines) and, for comparison, iii) the plate with an delaminated zone,

suppressing, however, further delamination (red dashed lines). This case has been

analyzed recently in [94].

The time histories of the transverse deflection of the plate center are plotted in

Figure 10.33 for two different time steps, for the intact plate and the plate with an

embedded delamination zone allowing and suppressing further delamination. Con-

sidering case ii), the delamination zone changes considerably during the transient

motion of the plate. In Figure 10.33, these stages are indicated by green circles.

The red bullet in Figure 10.33 indicates the onset of delamination growth.
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Figure 10.33: Temporal evolution of the central transverse deflection of the delam-

inated top layer (layer-4) of the composite plate considering three

scenarios w.r.t. delamination zone and two different sizes of time

increments (red bullet - onset of the delamination growth, green

circles - time points in which the delamination shape is changed)

From the performed computational analysis, conclusions can be drawn:

• Reduction of the time step reduces the period of oscillations for all considered

cases, while the amplitudes are constant.

• Due to the presence of an embedded delamination zone, in the case without

delamination propagation as well as in the case, in which delamination growths

is enabled, the debonded layer oscillates independently from the intact rest of

the plate. This results in the increase of the amplitudes and the reduction of

the frequency in comparison with the intact plate.
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• The incorporation of the delamination propagation algorithm severely influ-

ences the overall response of the delaminated plate in comparison with the

previously presented model [94] with stationary delamination zones in plates.

In the moment of the extension of the delaminated zone, the transient re-

sponse of the delaminated layer changes considerably. This is visualized in

Figure 10.33 by the difference between the the solid and dashed red lines, con-

nected with the reduction of the frequency and an increase of the amplitude

resulting from the stiffness degradation.

Influence of the mesh density

Figures 10.34, 10.35 and 10.36 show the temporal change of the shape of the delam-

ination zone for three different spatial discretizations (Mesh 1, Mesh 3 and Mesh

4). The time step is ∆t = 0.5ms in all cases. The trend of the extension of the

embedded rectangular delamination zone to form an elliptically shaped zone is the

same for all three meshes. The node-to-node propagation algorithm evidently leads

to differences in the final delamination shape. While a smooth delamination front

is obtained for Mesh 3 and Mesh 4, a polygon-shaped front is obtained for Mesh 1.

In this case, the delamination zone reaches the plate boundary.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Figure 10.34: Different phases of delamination propagation for Mesh 1 and ∆t =

0.50ms (numbers indicate time in ms, while red dots are newly

created delaminated nodes)
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

Figure 10.35: Different phases of delamination propagation for Mesh 3 and ∆t =

0.50ms (numbers indicate time in ms, while red dots are newly

created delaminated nodes)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

Figure 10.36: Different phases of delamination propagation for Mesh 4 and ∆t =

0.50ms (numbers indicate time in ms, while red dots are newly

created delaminated nodes)

Finally, the time histories of the transverse deflection of the plate center are

plotted in Figure 10.37 for different mesh densities, varying from coarse to a very

158



10. Numerical Examples

fine mesh, considering delamination growth of the delaminated zone (solid lines).

For comparison, also the results from the respective analyses, in which the growth of

the delamination zone is suppressed, is included in this Figure (dashed lines). The

size of the time increment is ∆t = 0.5ms in all calculations.
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Figure 10.37: Temporal evolution of the central transverse deflection of the delam-

inated plate obtained for different mesh densities and ∆t = 0.5ms

(solid lines - with delamination growth, dashed lines - without de-

lamination growth, red bullet - onset of the delamination growth)

From Figure 10.37 it is observed, that the mesh refinement does not have a

strong influence on the transient response if delamination propagation algorithm is

not included. Only a slight reduction of the frequency of oscillations is detected

(difference between dashed lines of different colors in Figure 10.37). This confirms

that the accurate transient response can be obtained even by using a very coarse

mesh, if a delamination propagation algorithm is not activated.

In case of the analysis, in which delamination propagation is considered, the

mesh density influences the results severely after the new delaminated zone is cre-

ated. Delamination growth starts at ≈ 5.5ms (for all considered mesh densities),

indicated by a red bullet in Figure 10.37. Mesh refinement results in lower ampli-
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tudes and higher frequencies of the oscillations of the delaminated segment. The

fine mesh leads to a smooth step-by-step change of the delaminated zone (see Fig-

ures 10.35-10.36), while in the case of coarse mesh (Mesh 1, see Figure 10.34) the

more abrupt extension of the delaminated area leads to a stronger change of the

plate motion. Comparing the series of solid lines in Figure 10.37 associated with

the activated delamination propagation algorithm, one observes convergence of the

computed response with mesh refinement.

10.5 Free Vibrations of Laminated Composite

Shells

Free Vibrations of Intact Shells

Example 10.5.1. The first benchmark example is concerned with the cylindrical

cross-ply laminated composite shells clamped along both ends. The goal is to check

the influence of the mesh refinement on natural frequencies. The length of the an-

alyzed shells is L = 12m, and the shell radius is R = 3m. The shells are composed

from three orthotropic layers, each of thickness hk = 0.02m, so the total shell thick-

ness is h = 0.06m (length-to-radius ratio L/R = 4 and thickness-to-radius ratio

h/R = 0.02, which is related to thin and moderately long shells). The material

parameters (Graphite-Epoxy) for all layers are assumed as: E1 = 138GPa,E2 =

E3 = 8.96GPa,G12 = G13 = 7.1GPa,G23 = 3.45GPa, ν12 = 0.30, ρ = 1645kg/m3

[59].

Layered triangular finite elements with 3-nodes are used. The shells are dis-

cretized using two different mesh densities and two different meshing strategies

(structured and unstructured mesh). The boundary conditions are prescribed along

clamped edges by constraining all generalized displacements in edge nodes: u = v =

w = uI = vI = 0. The properties of the numerical models are given in Table 10.18,

while the finite element meshes generated in GiD are presented in Figure 10.38.

The values of non-dimenzionalized frequency parameters Ω = ω · 100R(ρ/E2)1/2 are

compared with the results by Narita et al. [155] using 2D ring FE model and Ich
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Table 10.18: Properties of the numerical models used in Example 10.5.1.

Unstructured mesh Element size Number of FE Number of nodes

Mesh 1 0.75m 1080 588

Mesh 2 0.50m 2360 1252

Structured mesh Number of cells per edge Number of FE Number of nodes

Mesh 1 10 800 420

Mesh 2 20 3200 1640

Thinh et al. [59] using continuous element constructed from the dynamic stiffness

matrix. The results for fundamental frequencies are presented in Table 10.19 and

graphically interpreted in Figure 10.39, for different symmetric lamination schemes.

Unstructured Mesh Structured Mesh

Figure 10.38: Unstructured and structured meshes of triangular layered finite el-

ements

From Figure 10.39 it is obvious that mesh refinement leads to the lower values of

frequency parameter, which then converge to the exact solution from Ref. [59], both

for the structured and unstructured FE mesh. In the case of the structured mesh,

slightly higher frequency parameters are obtained because of the higher influence of

clamped edges in boundary conditions (see Figure 10.39). The best agreement with

the exact solution (grey bars in Figure 10.39) is obtained for the Unstructured Mesh

2 (green bars in Figure 10.39), and these results are commented as follows:

1. For the (0/0/0) and (0/90/0) cross-ply lamination schemes, excellent agree-

ment is obtained for the first three modes, while in the higher modes the fre-
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Table 10.19: Comparison of frequency parameters Ω = ω · 100R(ρ/E2)1/2 of cross-

ply cylindrical shells clamped at both ends obtained using different

numerical models (h/R = 0.02, L/R = 4, * - due to the symmetry)

Scheme Numerical model Ω1 Ω2 Ω3 Ω4 Ω5

0/0/0

Narita et al.[155] 18.14 18.87 21.52 22.97 29.43

Ich Thinh et al.[59] 18.10 18.84 21.49 22.91 29.33

Mesh 1 - Unstructured 21.48 22.27 23.68 24.93 29.58

Mesh 2 - Unstructured 17.66 18.75 20.80 22.02 23.27

Mesh 1 - Structured 28.33* 28.39* 31.09* 38.24* 49.85*

Mesh 2 - Structured 18.91* 19.90* 22.56* 27.98* 29.77*

0/90/0

Narita et al.[155] 18.69 20.95 21.51 26.94 30.31

Ich Thinh et al.[59] 23.71 24.36 25.76 27.81 30.75

Mesh 1 - Unstructured 19.18 20.89 21.65 26.13 27.05

Mesh 2 - Unstructured 17.66 18.75 20.80 22.02 23.27

Mesh 1 - Structured 28.04* 28.09* 29.81* 38.82* 47.87*

Mesh 2 - Structured 18.61* 19.03* 22.65* 26.37* 30.18*

90/0/90

Narita et al.[155] 25.54 29.63 35.25 42.70 43.60

Ich Thinh et al.[59] 25.44 29.59 34.96 42.51 43.24

Mesh 1 - Unstructured 23.76 27.47 32.32 39.14 40.23

Mesh 2 - Unstructured 17.66 22.02 23.27 30.20 36.32

Mesh 1 - Structured 27.28* 27.98* 39.01* 45.15* 53.43*

Mesh 2 - Structured 17.88* 22.29* 24.60* 30.13* 36.37*

90/90/90

Narita et al.[155] 21.37 23.07 34.12 34.33 38.82

Ich Thinh et al.[59] 21.26 22.98 33.89 34.04 38.48

Mesh 1 - Unstructured 21.94 23.89 34.09 36.40 38.33

Mesh 2 - Unstructured 18.34 20.44 24.54 30.14 35.32

Mesh 1 - Structured 25.03* 26.03* 38.97* 40.49* 48.93*

Mesh 2 - Structured 16.80* 21.50* 30.09* 33.31* 38.09*
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Figure 10.39: Comparison of frequency parameters Ω = ω·100R(ρ/E2)1/2 of cross-

ply cylindrical shells clamped at both ends obtained using different

numerical models (h/R = 0.02, L/R = 4)

quency parameters obtained using the proposed model are lower. The reason

is the influence of the transverse shear deformation, which effects are simpli-

fied in the FSDT [59], as well as because of the idealizations related to the

application of the plate finite elements in the modeling of curved geometry of
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composite shells.

2. For the (90/0/90) and (90/90/90) schemes, the lower frequency parameters

are obtained for all modes, because of the influence of the transverse shear

deformation and the idealizations regarding the shell geometry.

Example 10.5.2. The second benchmark example is concerned with the cylindrical

cross-ply laminated composite shells with different boundary conditions. The goal is

to check the influence of the incorporated shear deformation and variable boundary

conditions on natural frequencies. The length of the analyzed shells is L = 2m, the

shell radius is R = 1m, while the total shell thickness is h = 0.2m (length-to-radius

ratio L/R = 2 and thickness-to-radius ratio h/R = 0.2, which is related to the thick

and moderately long shells). The shells are composed from orthotropic layers of

equal thickness, in two different stacking sequences: (0/90), where h1 = h2 = 0.1m,

and (0/90/0), where h1 = h2 = h3 = 0.0667m.

The material parameters (Graphite-Epoxy) for all layers are assumed as [59]:

E1 = 40GPa,E2 = E3 = 1GPa,G12 = 0.6GPa,G13 = G23 = 0.5GPa, ν12 =

0.25, ρ = 1600kg/m3.

Layered triangular elements with 3-nodes are used. The boundary conditions

are prescribed along clamped edges by constraining all generalized displacements in

edge nodes: u = v = w = uI = vI = 0. Along the simply supported edges, boundary

conditions are prescribed by constraining the vertical mid-plane displacement w = 0,

as well as by assigning the rigid springs in tangential direction (local coordinate sys-

tem) in each boundary node along the simply supported edge. This is performed by

the penalty method, where kspring = 100 ·kmax, where kspring is the spring stiffness to

be assigned in the local coordinate system, while kmax is the absolute maximal value

from the global stiffness matrix. This operation is performed during the assembly

of the global stiffness matrix, after the transformation of the spring stiffness matrix

(truss element) from the local to the global coordinate system.

The shell is afterwards discretized using two different mesh densities and two

different meshing strategies. The properties of the numerical models are given in
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Table 10.20: Properties of the numerical models used in Example 10.5.2.

Unstructured mesh Element size Number of FE Number of nodes

Mesh 1 0.175m 1160 648

Mesh 2 0.100m 3460 1854

Structured mesh Number of cells per edge Number of FE Number of nodes

Mesh 1 10 800 420

Mesh 2 15 1800 930

Table 10.20, while the FE meshes are presented in Figure 10.40.

Unstructured Mesh Structured Mesh

Figure 10.40: Unstructured and structured meshes of triangular layered FE

The values of non-dimenzionalized frequency parameters Ω = ω · L2(ρ/E2)1/2/h

obtained from analyses are compared with the results by Khdeir et al. [44] using

different theories and Ich Thinh et al. [59] using continuous element constructed

from the dynamic stiffness matrix. The results for fundamental frequencies are

presented in Table 10.21 and graphically interpreted in Figure 10.41, for different

symmetric lamination schemes. Also, fundamental mode shapes and corresponding

frequency parameters of cross-ply cylindrical shells with various boundary conditions

are illustrated in Figures 10.42 - 10.43.

From the results given in Table 10.21 it is obvious that mesh refinement leads to

the lower values of frequency parameter, both for the structured and unstructured

mesh. In the case of structured mesh, higher frequency parameters are obtained

because of the higher influence of constrained edges (see Figure 10.40). In the
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Table 10.21: Comparison of frequency parameters Ω = ω ·L2(ρ/E2)1/2/h of cross-

ply cylindrical shells with various boundary conditions obtained using

different numerical models (h/R = 0.2, L/R = 2, * - symmetry)

Scheme Numerical model CF SS CS CC

0/90

Khdeir et al. - CLPT [44] 9.38 16.30 18.41 21.20

Khdeir et al. - FSDT [44] 9.14 15.52 16.97 18.76

Khdeir et al. - HSDT [44] 9.21 15.66 17.26 19.28

Ich Thinh et al. [59] 8.72 15.19 16.61 17.37

Mesh 1 - Unstructured 7.63 16.13 17.86 19.98

Mesh 2 - Unstructured 7.29 15.47 16.97 18.82

Mesh 1 - Structured 8.71* 17.62* 20.71* 24.62*

Mesh 2 - Structured 8.54* 17.59* 20.24* 23.48*

0/90/0

Khdeir et al. - CLPT [44] 10.99 20.73 26.62 33.38

Khdeir et al. - FSDT [44] 9.88 17.79 19.45 21.29

Khdeir et al. - HSDT [44] 9.95 17.77 19.72 21.91

Ich Thinh et al. [59] 8.72 17.22 19.50 20.83

Mesh 1 - Unstructured 7.75 14.10 16.05 19.03

Mesh 2 - Unstructured 7.41 13.77 15.58 18.14

Mesh 1 - Structured 9.92* 20.09* 20.67* 23.74*

Mesh 2 - Structured 9.67* 15.94* 16.67* 19.34*

following, the results obtained for the Unstructured Mesh 2 (green bars in Figure

10.41) are commented:

1. For the (0/90) cross-ply lamination scheme, excellent agreement is obtained

for SS and CS boundary conditions. For the cantilever shell the fundamental

frequency is lower (as expected) in comparison with [59], while in the case

of clamped shell the fundamental frequency is slightly higher than expected,

because of the idealizations regarding the curved geometry of composite shells

and the highly constrained boundaries.

2. For the (0/90/0) scheme (higher level of orthotropy), the lower frequency pa-
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Figure 10.41: Comparison of frequency parameters Ω = ωL2 ·(ρ/E2)1/2/h of cross-

ply cylindrical shells with various boundary conditions obtained us-

ing different numerical models (h/R = 0.2, L/R = 2)

Figure 10.42: Fundamental mode shapes and corresponding frequency parameters

Ω = ω · L2(ρ/E2)1/2/h of 2-layer (0/90) cross-ply cylindrical shells

with various boundary conditions (h/R = 0.2, L/R = 2)

rameters are obtained for all boundary conditions, because of the high influence

of the transverse shear deformation (which is more pronounced for thick shells).

Example 10.5.3. The third benchmark example is concerned with the conical

167



10. Numerical Examples

Figure 10.43: Fundamental mode shapes and corresponding frequency parameters

Ω = ω ·L2(ρ/E2)1/2/h of 3-layer (0/90/0) cross-ply cylindrical shells

with various boundary conditions (h/R = 0.2, L/R = 2)

Table 10.22: Properties of the numerical models used in Example 10.5.3.

Mesh Element size Number of FE Number of nodes

Mesh 1 0.15m 516 327

Mesh 2 0.10m 942 576

Mesh 3 0.07m 1698 1002

cross-ply laminated composite shells with various boundary conditions (see Figure

10.44). The goal is to check the influence of the mesh refinement and incorporated

shear deformation on natural frequencies of laminated composite conical shells. The

cone length along its generator is L = 0.5m, R0 = 0.75m and R1 = 1.00m are

the cone radii at its small and large edges, respectively, while α0 = 30o is the semi

vertex angle of the cone. The shells are composed from two orthotropic layers, each

of thickness hk = h/2, with the cross-ply stacking sequence (0/90). The total shell

thickness is denoted as h. Ten different h/R1 ratios are investigated numerically,

covering the range from thin (h/R1 = 0.01) to thick (h/R1 = 0.10) shell situations.

The material parameters for all layers are assumed as: E1 = 150GPa,E2 =

E3 = 10GPa,G12 = 5GPa,G13 = G23 = 3.846GPa, ν12 = 0.25, ρ = 1500kg/m3 [58].

Layered triangular elements with 3-nodes are used. The shell is discretized using

three different unstructured mesh densities (see Table 10.22 and Figure 10.45).

The values of non-dimenzionalized frequency parameters Ω = ω · R1(ρh/A11)1/2
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Table 10.23: Comparison of frequency parameters Ω = ω · R1(ρh/A11)1/2 of

clamped-clamped cross-ply conical shells with various h/R1 ratios

obtained using different numerical models

h/R1

Model

Shu [50] Wu et al. [52] Jin et al. [58] Mesh 1 Mesh 2 Mesh 3

0.01 0.2986 0.3045 0.2966 0.6295 0.5069 0.4538

0.02 0.4625 0.4504 0.4504 0.7435 0.6459 0.5899

0.03 0.6210 0.5834 0.5835 0.8541 0.7809 0.7154

0.04 0.7752 0.6986 0.6987 0.9585 0.8899 0.8239

0.05 0.9331 0.7967 0.7971 1.0477 0.9807 0.9170

0.06 1.0843 0.8810 0.8817 1.1204 1.0544 0.9941

0.07 1.2344 0.9476 0.9480 1.1787 1.1139 1.0583

0.08 1.3845 1.0010 1.0017 1.2254 1.1631 1.1118

0.09 1.5206 1.0457 1.0466 1.2627 1.2037 1.1566

0.10 1.5737 1.0831 1.0843 1.2932 1.2376 1.1938

Table 10.24: Comparison of frequency parameters Ω = ω · R1(ρh/A11)1/2 of SS

cross-ply conical shells with various h/R1 ratios obtained using dif-

ferent numerical models

h/R1

Model

Jin et al. [58] Mesh 1 Mesh 2 Mesh 3

0.02 0.3771 0.4869 0.4227 0.3914

0.03 0.4710 0.5322 0.4809 0.4495

0.04 0.5538 0.5715 0.5316 0.5010

0.05 0.6321 0.5632 0.5650 0.5396

0.06 0.7067 0.5521 0.5567 0.5353

0.07 0.7663 0.5441 0.5506 0.5316

0.08 0.8212 0.5381 0.5461 0.5290

0.09 0.8713 0.5336 0.5427 0.5270
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Figure 10.44: The geometry of the conical shells in Example 10.5.3.

Figure 10.45: Unstructured meshes of triangular layered finite elements

(where A11 =
n∑
k=1

Q
k

11 · hk = h
2
·
(
Q

0

11 +Q
90

11

)
) obtained from performed analyses are

compared with the exact solution by Jin et al. [58] using a Fourier series, as well as

with the solution of Shu [50] using the generalized differential quadrature based on

the classical plate theory and the differential quadrature solution of Wu and Lee [52]

based on the FSD Theory. The results for fundamental frequencies are presented in

Tables 10.23 - 10.24 and graphically interpreted in Figure 10.46, for different h/R1

ratios. Also, fundamental mode shapes of conical shells with various h/R1 ratios

and various boundary conditions are illustrated in Figures 10.47-10.48.

From Figure 10.46 it is obvious that mesh refinement leads to the lower values of

frequency parameter. For the CC laminated composite conical shell it is shown that

the present model (green bars in Figure 10.46, left) gives an accurate prediction of

170



10. Numerical Examples

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

N
on

d
im

en
zi

on
al

iz
ed

 f
re

q
u
en

cy

h/R1

CC

Shu - CST-DQ

Wu et al. - FSDT-DQ

Jin et al. - Fourier

GLPT - Mesh 3

GLPT - Mesh 2

GLPT - Mesh 1

SS

h/R1

0.0
2
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7
0.0

8
0.0

9

Figure 10.46: Comparison of frequency parameters Ω = ω ·R1(ρh/A11)1/2 of cross-

ply conical shells with various h/R1 ratios and various boundary

conditions, obtained using different numerical models

Figure 10.47: Fundamental mode shapes of CC 2-layer (0/90) cross-ply conical

shells with various h/R1 ratios

the frequency parameter. For all h/R1 ratios a stiffer response is obtained because of

the geometry idealization using the flat triangular finite elements for the generation
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Figure 10.48: Fundamental mode shapes of SS 2-layer (0/90) cross-ply conical

shells with various h/R1 ratios

Figure 10.49: Fundamental mode shapes of 2-layer (0/90) cross-ply conical shells

with various boundary conditions, for h/R1 = 0.05

of curved surfaces. For thin shells, the present model gives the moderately higher

values of natural frequency in comparison with the Equivalent-Single-Layer shell

theories. In the case of the thick shells, the result obtained using the classical shell

theory is too stiff, because of the neglection of the transverse shear deformation.

In this case the present model gives only the slightly higher results for natural

frequencies, and this can be overcome by the further mesh refinement. This is

the confirmation that the proposed model is appropriate for the analysis of thick

laminated composite shells.

For the SS laminated composite conical shell it is shown that the present model

(green bars in Figure 10.46, right) is capable to accurately calculate the natural
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frequencies for the moderately thin shells (h/R1 < 0.04), while in the case of thick

shells the obtained results diverge from the exact solution by Jin et al. [58].

The Examples 10.5.1. - 10.5.3. clearly show that the mesh refinement leads to

the lower values of frequency parameter (convergence to the exact solution), both for

the structured and unstructured mesh. Higher frequency parameters are obtained

in the case of the structured mesh, because of the higher influence of constrained

edges. This is more pronounced for the numerical models with highly constrained

boundaries (CS, CC). The transverse shear deformation severely influences the fun-

damental dynamic characteristics of cylindrical and conical laminated composite

shells, both for the high and low length-to-thickness ratios (thin and thick shell sit-

uations). This influence is higher for the shells with the higher level of orthotropy.

Also, the influence is higher for the higher modes of oscillation, leading to the lower

values of frequency parameter.

Example 10.5.4. The fourth benchmark example is concerned with the cross-ply

(0/90/0) cylindrical and spherical laminated composite panels with various bound-

ary conditions. The length of the analyzed panels is a = 2m, while the radius is

R = 10m. The panels are composed from three orthotropic layers, each of thickness

hk = 0.0667m, so the total thickness is h = 0.20m (length-to-radius ratio a/R = 0.2

and thickness-to-radius ratio h/R = 0.10, which is related to thick shells). The

material parameters for all layers are assumed as: E1 = 25GPa,E2 = 1GPa,G12 =

G13 = 0.5GPa,G23 = 0.2GPa, ν = 0.25, ρ = 1000kg/m3 [1].

Figure 10.50: The geometry of the cylindrical and spherical panels

The shells are discretized using unstructured mesh of 3-node triangular elements.

Element size is 0.1m (1130 FE, 633 nodes). The finite element meshes generated in
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Table 10.25: Comparison of frequency parameters Ω = 0.02ω of cross-ply cylindri-

cal and spherical shallow panels obtained using different numerical

models (a/R = 0.2, h/R = 0.10)

Model BC Cylindrical Spherical

Ferreira - FSDT [156]

SSSS

12.214 12.417

Ferreira - HSDT [156] 11.851 12.063

Fazzolari - DSM HSDT [1] 11.846 12.054

Present
CCCC 11.391 10.970

CCCF 10.227 7.320

GiD are presented in Figure 10.51. The boundary conditions are prescribed along

clamped edges by constraining all generalized displacements in edge nodes. The

values of non-dimenzionalized frequency parameters Ω = ω · a2
h

(ρ/E2)1/2 = 0.02ω

are compared with the results by Ferreira et al. [156] using a sinusoidal shear

deformation theory and Fazzolari [1] using the dynamic stiffness method based on

the HSDT. The results for fundamental frequencies are presented in Table 10.25.

Spherical PanelCylindrical Panel

Figure 10.51: Unstructured meshes of triangular layered finite elements

From the results shown in Table 10.25 it is obvious that the proposed model

does not predict the fundamental frequencies of the shallow shells adequately. The

discrepancy arises because of the co-planar finite elements meeting in a node, which

lead to the singular assembled system of equations (see Section 8.5). The obtained

results for the clamped-clamped case are in agreement with the data from [1] and

[156] for SS case. This means that the proposed model gives too soft results for

natural frequencies of shallow shells.

By taking the remarks from Examples 10.5.1. - 10.5.4. into account, the pre-

sented model is capable to accurately predict the fundamental frequencies of intact
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laminated composite shells of different shapes. After the verification of the proposed

model for intact shells, the parametric study of the influence of delamination size

on natural frequencies will be discussed in the next subsection.

Free Vibrations of Delaminated Shells

Example 10.5.5. This benchmark example is concerned with the cylindrical cross-

ply laminated composite shells (see Example 10.5.2. for the review of shell geome-

try and mechanical properties of the laminas), with previously imposed rectangular

delaminated area (see Figure 10.52). In all numerical models, delaminations are

imposed in the mid-surface of the shell. The goal of this example is to check the

influence of the delamination size on the natural frequencies of laminated composite

shells.

The cross-ply shells are composed from the orthotropic layers of equal thickness,

in (0/90) stacking sequence, where h1 = h2 = 0.1m are layer thicknesses. Layered

triangular elements with 3-nodes are used.The shell is discretized using the struc-

tured mesh with two different mesh densities (see Figure 10.40). The properties of

the numerical models are given in Table 10.20. The values of non-dimenzionalized

frequency parameters Ω = ωL2
√
ρ/E2/h obtained from analyses are graphically

interpreted in Figure 10.53 for laminated composite cylindrical shells with two dif-

ferent boundary conditions (CC and CF).

mid-surface

delamination

Figure 10.52: The geometry of the cylindrical shell with embedded delamination

Figure 10.53 illustrates the frequency reduction curves due-to the presence of

mid-surface delamination. For the CC laminated shells investigated in this example,

the natural frequency is reduced severely after the increase of the delaminated area

175



10. Numerical Examples

18

20

22

24

26

0 3 6 9 12 15 18N
on

d
im

en
zi

o
n
al

iz
ed

 f
re

q
u
en

cy

Delaminated Area [%]

Clamped -Clamped

Mesh 2
Mesh 3

6

7

8

9

10

0 3 6 9 12 15 18
Delaminated Area [%]

Clamped Free

Mesh 1

-

Mesh 1

Mesh 2

Figure 10.53: Influence of the delaminated area on nondimenzionalized funda-

mental frequencies Ω = ωL2
√
ρ/E2/h of 2-layer (0/90) cross-ply

cylindrical shells with various boundary conditions (h/R = 0.2,

L/R = 2)

above 12% of the shell area. This critical delamination area is influenced slightly

by the mesh density ( 15% for Mesh 2 and 16% for Mesh 3). The mesh density

influences the frequency reduction curves by reducing the natural frequency with

the increase of number of elements used for the discretization.

For the CF laminated shells, the increase of mesh density does not influence the

natural frequencies severely. Also, it is shown that the increase of delaminated area

does not reduce the fundamental frequency. It can be concluded that for the numer-

ical models with highly constrained boundaries, the influence of the delamination

area on natural frequencies is higher (see Figure 10.53).
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11 Conclusions

Triangular and quadrilateral layered finite elements with varying levels of interpo-

lation capable to incorporate the independent motion of adjacent delaminated in-

terfaces are recalled based upon the Generalized Laminated Plate Theory of Reddy.

The numerical model of layered plate finite element is further extended for the anal-

ysis of free vibration response of delaminated composite shells. The extension is

made using simple geometrical considerations which are easy to implement into the

previously derived finite element code. Due to some simplifications of the shell kine-

matics some limitations of the model have arise and they are highlighted in this

study. Geometrical nonlinearity is accounted based upon the von Kármán assump-

tions. Interlaminar penetration between delaminated layers has not been enabled

by activating the contact conditions between the individual layers. A novel delam-

ination propagation algorithm has been implemented based on the Virtual Crack

Closure Technique to allow for the change of the previously imposed delaminated

zone during the static and dynamic motion of the plate.

The proposed models have been verified and their accuracy is demonstrated

using the variety of benchmark examples, for bending, free vibration, buckling and

transient analysis of laminated composite and sandwich plates. The accuracy of the

models is proved both for intact and delaminated composite plates. The differences

between the models considering only the stationary delamination and the models

allowing for delamination propagation have been highlighted. From the number of

numerical analyses, the following conclusions are drawn:

• The simplifications regarding the transverse shear deformation which are em-

ployed in the ESL theories cause the underestimation of the transverse de-

flections and the overestimation of the fundamental frequencies of laminated

composite plates, when compared to the GLPT. When the delamination is

present, the influence of the transverse shear deformation is higher for the
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plates with highly constrained boundaries. While comparing different finite

element models, in the case of full integration of 4-node element matrices, shear

locking has occurred, thus the reduced integration is necessary in thin plate

situation to prevent the negative effects of spurious transverse shear stiffness.

In addition, the transverse shear deformation severely influences the funda-

mental dynamic characteristics of cylindrical and conical laminated composite

shells, both for the thin and thick shell situation. This influence is higher for

the shells with the higher level of orthotropy, as well as for the higher modes

of oscillation.

• It is documented that the proposed model is capable to accurately predict

the fundamental frequencies of intact laminated composite plates of different

shapes, even by using the quadrilateral elements for approximation of the cir-

cular plate geometry. The results obtained using the proposed model are in

agreement with the numerical results from the commercial software and the ex-

perimental data, with reduced computational cost and obvious convergence of

results due to the mesh refinement. A slightly better performance of quadratic

elements is detected in the prediction of higher modes of vibration.

• The reduction of the fundamental frequency of the laminated composite plates

caused by the presence of the delamination is more pronounced for higher

modes of vibration. The position of the embedded delamination through the

plate thickness plays an important role by significantly reducing the global fun-

damental frequency of the delaminated plate (both composite and sandwich)

for mid-plane delamination, and otherwise having an marginal effect when

near-surface delamination is employed. In this case, the delaminated segment

oscillate independently from the intact rest of the plate with its own frequency.

In the thin plate situation the independent oscillation of delaminated segment

can achieve even the second bending mode, too.

• Author’s attempt to describe the free vibration response of composite shell

structures using a very robust numerical model based on the flat layered tri-

angular finite elements showed that the mesh refinement, as expected, reduces
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the natural frequencies of the CC cross-ply cylindrical and conical shells, with

the convergence to the exact solution both for the structured and unstruc-

tured mesh and shell thicknesses varying from thin to thick situation. For

the (0/0/0) and (0/90/0) schemes excellent agreement is obtained in lower

modes, while in higher modes of vibration the frequency parameters are lower

in comparison with the existing data from the literature. For the (90/0/90)

and (90/90/90) schemes, the lower frequency parameters are obtained for all

modes. Because of the geometry idealization using the flat triangular finite

elements for the generation of curved surfaces, a stiffer response then expected

is obtained in the case of conical shells, for all thicknesses. Finally, the pro-

posed model does not predict the fundamental frequencies of the shallow shells

adequately due to the co-planar finite elements meeting in a node leading to

the singular assembled system of equations. The proposed model gives too

soft results for natural frequencies of shallow panels.

• When the delamination is present within a shell structure the natural fre-

quency is reduced severely after the increase of the delaminated area above

12% of the shell area. This critical delamination area is influenced slightly by

the mesh density, which influences the frequency reduction curves by reducing

the natural frequency with the increase of number of elements used for the

discretization. For the numerical models with highly constrained boundaries,

the influence of the delamination area on natural frequencies is higher.

• The proposed model accurately predicts the critical buckling load of laminated

composite plates, in comparison with the existing close form and 3D elasticity

solutions. The accuracy is proven even for the coarse mesh, leading to the

reduced computational cost. It is documented that the delaminated area up

to the 6% of the plate area does not reduce the critical buckling load. When the

delamination position within a plate is considered, near-surface delamination

has smaller influence to the results, because the intact rest of the plate is stiff

enough to hold the majority of the critical buckling loading. The similar trend

is observed for the uniaxially compressed sandwich plates, having in mind that
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thin delaminated layer will buckle independently from the rest of the plate.

• The activation of the contact algorithm during the transient analysis of lami-

nated composite plates showed to have only a minor effect on linear transient

response. However, in the geometrically nonlinear analysis the delamination

has a considerable influence, thus the results from the analysis considering con-

tact of the delaminated layers differ considerably from the plots obtained for

the analysis without consideration of contact. As an illustration, changing the

position of delamination in the geometrically nonlinear analysis is not affecting

the transient response if the contact algorithm is not activated. However, if

penetration is suppressed by means of the activating the contact algorithm, a

large influence of the position of the delaminated region is observed.

• Transient analysis of delaminated composite and sandwich plates showed that

when a small delamination area is present within a laminate only a marginal

increase of the amplitude and the period of oscillations is observed in linear

analysis. The plate still oscillates as one homogeneous structure with negli-

gible relative displacements between adjacent layers. However, in the case of

geometrically nonlinear transient analysis the period of oscillations is slightly

reduced because of the added bending stiffness of the plate, as expected. For

the larger size of the delaminated area the amplitudes and the period of oscilla-

tions of the laminate are significantly increased due to the significant stiffness

degradation. Changing the position of the delamination zone through the

plate thickness does not have a large effect on the frequency of the oscillations

in the linear analysis.

• The sandwich plates are highly vulnerable to embedded delamination between

the soft-core and rigid face sheets when subjected to exponential blast pulse

loading. The global amplitudes of the intact rest of the plate are increased

because of the splitting. The crack opening displacements are small in the

linear and slightly higher in the geometrically nonlinear analysis. On the

other hand, if the delamination occurs within the rigid face sheet, the global

amplitudes of the intact rest of the plate are nearly the same as for the intact
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plate, because the undamaged part has the more or less the same bending

stiffness as the intact plate. When the delamination area is small the face-core

debonding is negligible. The CODs are slightly higher in the geometrically

nonlinear transient analysis. After increase of the delaminated area, however,

the global linear plate motion significantly changes and becomes more complex,

with increased amplitudes due to the reduction of the plate stiffness. In the

geometrically nonlinear response of the sandwich plates the added bending

stiffness leads to a reduction of the crack opening displacements as compared

to the linear case. The highest amplitudes and crack opening displacements

are reached at the end of blast pulse and start of free vibration phase.

• Incorporation of the delamination propagation algorithm severely influences

the transient response of the delaminated plate. In the moment of delamina-

tion extension the response of the delaminated layer is changed considerably

leading to the reduction of the frequency because of the stiffness degradation

and increase of the amplitudes. The general trend of the delamination exten-

sion is independent of the mesh density, but the final shape of the delamination

is mesh-dependent by means of creation of smooth delamination front for fine

mesh and polygon-shaped front for coarse mesh. The considerable change in

the transient response of delaminated plates occurs nearly in the same time

point regardless of the mesh density. The mesh refinement results in the lower

amplitudes of oscillations of the delaminated segment, with higher frequen-

cies, due to the fact that fine mesh allows for smooth step-by-step change in

the delaminated zone, which is a robust and elegant, but also a very simple

approximation of the real behavior of the delaminated structure. The mesh

dependence is caused by a node-to-node delamination propagation algorithm,

which implies two main approximations: (1) the node-to-node approximation

of a virtually closed area A and, (2) the node-to-node approximation of the

movement of the delamination front. It was also shown that the computed

transient response converges with increasing mesh density. The reason is that

the selection of a mesh size causes the previously described approximations to

be more or less violated, further leading to the convergence of the results.
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• On the other hand, when static bending analysis of laminated plates is per-

formed with activated delamination propagation algorithm, it has been found

that linear finite elements result in the slightly higher values of the calculated

reaction force in the displacement-control analysis of the DCB, in compari-

son with the quadratic elements. The distribution of the GI along the plate

width calculated using the linear elements is nearly constant in contrast with

the quadratic elements for which the distribution is curved. The mesh refine-

ment in width direction does not significantly influence the GI distribution,

while the reduction of the displacement increment leads to the convergence of

numerical solution.
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12 Future Work

Based upon the assumptions and restrictions which served as a basis for the pre-

sented model, as well as based on the main conclusions of this work, recommenda-

tions for further research are specified below:

1. Initiation of delamination was not in the scope of this study. There are several

possibilities to simulate the creation of the first debonded node pair within

the finite element model, based on the strength or deformation criteria of the

material. It would be interesting to incorporate these criteria in the presented

model, to simulate the structural behavior of the intact laminated structure

under different types of loading, and to track the behavior from the initiation

of delamination, its propagation until the final collapse.

2. The plane stress model incorporated in this study impose the inextensibility

of the transverse normal, which leads to zero transverse normal deformation.

Considering that transverse normal stress could be relevant for the delamina-

tion study, the full 3D constitutive model can be considered. However, the full

3D constitutive model can lead to the shear locking because of the spurious

transverse normal stiffness, so the solution to overcome this issue should also

be found, for example using the selective integration techniques.

3. The computational cost could be reduced by using some simpler definitions

of the finite elements for the simulation of the composite laminate. The ESL-

based finite elements derived upon the CLPT or FSDT plate theories can be

combined with the GLPT-based layered finite elements, discretizing the dif-

ferent subregions of the considered domain. For example, the intact part of

the analyzed domain can be accurately modeled using the FSDT-based ele-

ments, while in the delaminated subregion enriched layered elements should be

used. In addition, the conditions to provide the compatibility of the degrees-of-

freedom in the adjacent nodes between different elements should be provided.
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4. The proposed model assumes that the ideal bonding exist between the node

pair until the fracture criterion is satisfied. After the new delaminated area is

created, there is no cohesion within the previously bonded node pair, which

is the very robust idealization. Therefore the incorporated frictionless contact

algorithm should be improved by introducing a cohesive law between adja-

cent delaminated interfaces. The convergence problems which can arise in the

cohesive models should also be investigated.

5. The application of the plate layered finite elements for the analysis of laminated

composite shells is done by the simple transformations of the coordinates pre-

sented in this study. However, the discontinuity of the curvatures at elements’

connections leads to some irregularities in the results. The more sophisticated

model could be developed by introducing the patch of triangular elements

[157] to overcome the discontinuity-of-rotations-problem, and afterwards the

obtained results could be compared with these presented within this study.

6. The interfacial material properties (critical energy release rates) are the exper-

imental parameters which are not always easy to obtain. These properties are

generally assumed based on the strength limits of the bulk material using the

simple analytical models. The statistical variation of the interfacial strength

can be implemented in the proposed model to more realistically approximate

the behavior of the real structure.

7. Piezoelectric materials are very interesting due to their potential use in actively

controlling of the elastic deformations of structures in civil engineering. They

exhibit elastic deformations when subjected to an applied electric field. Due to

their compact size and light weight, many of these piezoelectric patches can be

attached to the structure without greatly changing the mechanical properties

of the structure. Therefore, the mechanical and piezoelectric coupling should

be incorporated in the constitutive relations to extend the proposed theory for

the analysis of the laminated structure with piezoelectric layers.

8. In the proposed model the delamination is modeled as a node-to-node dis-
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continuity. It can be also treated as the sum of the contributions of every

delaminated node particularly. For this reason it would be interesting to cal-

culate the transient response of the laminate with the single delaminated node

and to calculate some quantity which describe the vulnerability of the single-

delaminated-node-structure. Then the statistical distribution of the damage

(influence surface) within a plate can be plotted, discovering the dangerous

positions of the damage in the plate for different loading situations, boundary

conditions or plate geometries.

9. Environmental effects (thermal effects, humidity) are not accounted in the

presented study. These aspects should be considered by means of the influ-

ence of the environmental effects on the dynamic properties of the laminates,

especially on the natural frequencies.
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layerwiseFE.cnd file

CONDITION: Laminate_Definition

CONDTYPE: over surface

CONDMESHTYPE: over elems

CANREPEAT: no

QUESTION: Properties(Thickness,Angle,Material)

VALUE:#N# 3 0.0 0 "Material_1"

END CONDITION

CONDITION: Distributed_Loadings

CONDTYPE: over surface

CONDMESHTYPE: over elems

CANREPEAT: no

QUESTION: X_Direction:

VALUE: 0.0

QUESTION: Y_Direction:

VALUE: 0.0

QUESTION: Z_Direction:

VALUE: 0.0

END CONDITION

CONDITION: Nodal_Forces

CONDTYPE: over points

CONDMESHTYPE: over nodes

CANREPEAT: no

QUESTION: X_Direction:

VALUE: 0.0

QUESTION: Y_Direction:

VALUE: 0.0

QUESTION: Z_Direction:

VALUE: 0.0

END CONDITION

CONDITION: Crack_Opening_Displacement

CONDTYPE: over points

CONDMESHTYPE: over nodes

CANREPEAT: no

QUESTION: Value:

VALUE: 0.0

END CONDITION
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CONDITION: Clamped_Edge

CONDTYPE: over lines

CONDMESHTYPE: over nodes

CANREPEAT: yes

END CONDITION

CONDITION: Simply_Supported_Edge

CONDTYPE: over lines

CONDMESHTYPE: over body elements

CANREPEAT: yes

END CONDITION

CONDITION: Delaminated_Node

CONDTYPE: over points

CONDMESHTYPE: over nodes

CANREPEAT: yes

END CONDITION

layerwiseFE.mat file

BOOK: Orthotropic_Lamina

MATERIAL: Material_1

TITLE: Modules_of_Elasticity

QUESTION: E1:

VALUE: 0.0

HELP: Elasticity module in direction 1

QUESTION: E2:

VALUE: 0.0

HELP: Elasticity module in direction 2

QUESTION: E3:

VALUE: 0.0

HELP: Elasticity module in direction 3

TITLE: Poisson_Ratios

QUESTION: ni12

VALUE: 0

HELP: Poisson ratio 12

QUESTION: ni13

VALUE: 0

HELP: Poisson ratio 13

QUESTION: ni23

VALUE: 0

HELP: Poisson ratio 23

TITLE: Shear_Modules

QUESTION: G12:

VALUE: 0.0

HELP: Shear module 12

QUESTION: G13:
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VALUE: 0.0

HELP: Shear module 13

QUESTION: G23:

VALUE: 0.0

HELP: Shear module 23

TITLE: Other

QUESTION: SelfWeight

VALUE: 0

HELP: Mass Density of the Material

END MATERIAL

layerwiseFE.prb file

PROBLEM DATA

TITLE: Analysis

QUESTION:Analysis_Type:#CB#(Bending_Analysis,Transient_Analysis,

Free_Vibration_Analysis,Initial_Stability_Analysis)

VALUE: Bending_Analysis

HELP: Choose the type of Analysis

DEPENDENCIES:(Bending_Analysis, RESTORE,Contact_Algorithm,

#CURRENT#, RESTORE,Geometric_NonLinearity,#CURRENT#,

RESTORE,Crack_Propagation,#CURRENT#, HIDE,Multiplicator,

#CURRENT#,HIDE,Number_of_Mode_Shapes,#CURRENT#,HIDE,

Number_of_Buckling_Modes,#CURRENT#,HIDE,Nx,#CURRENT#,HIDE,Ny,

#CURRENT#,HIDE,Nxy,#CURRENT#,HIDE,Pulse_Type:,#CURRENT#,HIDE,

Time_Step:,#CURRENT#, HIDE,Total_Time:,#CURRENT#,HIDE,

Damping_Factor:,#CURRENT#)

DEPENDENCIES:(Transient_Analysis, RESTORE,Contact_Algorithm,

#CURRENT#, RESTORE,Geometric_NonLinearity,#CURRENT#,RESTORE,

Crack_Propagation,#CURRENT#, HIDE,Multiplicator,#CURRENT#,HIDE,

Number_of_Mode_Shapes,#CURRENT#,HIDE,Number_of_Buckling_Modes,

#CURRENT#, HIDE,Nx,#CURRENT#, HIDE,Ny,#CURRENT#, HIDE,Nxy,

#CURRENT#,RESTORE,Time_Step:,#CURRENT#,RESTORE,Total_Time:,

#CURRENT#,RESTORE,Pulse_Type:,#CURRENT#,HIDE,Damping_Factor:,

#CURRENT#)

DEPENDENCIES:(Free_Vibration_Analysis,HIDE,Contact_Algorithm,

#CURRENT#,HIDE,Geometric_NonLinearity,#CURRENT#,HIDE,

Crack_Propagation,#CURRENT#,HIDE,Critical_EnergyReleaseRate_1,

#CURRENT#, HIDE,Critical_EnergyReleaseRate_2,#CURRENT#,HIDE,

Critical_EnergyReleaseRate_3,#CURRENT#, HIDE,Tolerance,#CURRENT#,

HIDE,Number_of_Steps,#CURRENT#, HIDE,Max_Iterations,#CURRENT#,

HIDE,Non_Linear_Solver,#CURRENT#, RESTORE,Multiplicator,#CURRENT#,

RESTORE,Number_of_Mode_Shapes,#CURRENT#,HIDE,

Number_of_Buckling_Modes,#CURRENT#, HIDE,Nx,#CURRENT#,HIDE,Ny,

#CURRENT#, HIDE,Nxy,#CURRENT#, HIDE,Time_Step:,#CURRENT#,HIDE,
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Total_Time:,#CURRENT#, HIDE,Pulse_Type:,#CURRENT#,HIDE,

Damping_Factor:,#CURRENT#)

DEPENDENCIES:(Initial_Stability_Analysis,HIDE,Contact_Algorithm,

#CURRENT#, HIDE,Geometric_NonLinearity,#CURRENT#,HIDE,

Crack_Propagation,#CURRENT#,HIDE,Critical_EnergyReleaseRate_1,

#CURRENT#, HIDE,Critical_EnergyReleaseRate_2,#CURRENT#,HIDE,

Critical_EnergyReleaseRate_3,#CURRENT#, HIDE,Tolerance,#CURRENT#,

HIDE,Number_of_Steps,#CURRENT#, HIDE,Max_Iterations,#CURRENT#,

HIDE,Non_Linear_Solver,#CURRENT#, RESTORE,Multiplicator,#CURRENT#,

HIDE,Number_of_Mode_Shapes,#CURRENT#,RESTORE,

Number_of_Buckling_Modes,#CURRENT#, RESTORE,Nx,#CURRENT#,RESTORE,

Ny,#CURRENT#, RESTORE,Nxy,#CURRENT#, HIDE,Time_Step:,#CURRENT#,

HIDE,Total_Time:,#CURRENT#, HIDE,Pulse_Type:,#CURRENT#,HIDE,

Damping_Factor:,#CURRENT#)

QUESTION: Delaminated_Interface:

VALUE: 2

HELP: Interface in which Delamination occurs

QUESTION: Gauss_Quadrature:#CB#(FULL,RED)

VALUE: RED

HELP: Type of Gauss-Legendre Quadrature

QUESTION: Contact_Algorithm#CB#(YES,NO)

VALUE: YES

HELP: Include Contact Algorithm in the Analysis

QUESTION: Geometric_NonLinearity#CB#(YES,NO)

VALUE: NO

HELP: Von Karman Geometrical Nonlinear Analysis

DEPENDENCIES:(YES, RESTORE,Non_Linear_Solver,#CURRENT#,RESTORE,

Tolerance,#CURRENT#, RESTORE,Max_Iterations,#CURRENT#,RESTORE,

Number_of_Steps,#CURRENT#)

DEPENDENCIES:(NO, HIDE,Non_Linear_Solver,#CURRENT#,HIDE,Tolerance,

#CURRENT#,HIDE,Max_Iterations,#CURRENT#,HIDE,Number_of_Steps,

#CURRENT#)

QUESTION: Non_Linear_Solver:#CB#(Picard_Method,Newton-Raphson_Method)

VALUE:Newton-Raphson_Method

HELP: Type of the Non Linear Solver

QUESTION: Tolerance:

VALUE: 0.001

HELP: Convergence Criterium

QUESTION: Max_Iterations:

VALUE: 10

HELP: Max Number of Iterations in Geometric Nonlinear Analysis

QUESTION: Number_Of_Steps:

VALUE: 10

HELP: Max Number of Steps

QUESTION: Crack_Propagation#CB#(YES,NO)

VALUE: NO
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HELP: Include Crack Propagation in the Analysis

DEPENDENCIES:(YES,RESTORE,Number_of_Steps,#CURRENT#,RESTORE,

Critical_EnergyReleaseRate_1,#CURRENT#,RESTORE,

Critical_EnergyReleaseRate_2,#CURRENT#,RESTORE,

Critical_EnergyReleaseRate_3,#CURRENT#)

DEPENDENCIES:(NO,HIDE,Number_of_Steps,#CURRENT#,HIDE,

Critical_EnergyReleaseRate_1,#CURRENT#,HIDE,

Critical_EnergyReleaseRate_2,#CURRENT#,HIDE,

Critical_EnergyReleaseRate_3,#CURRENT#)

QUESTION: Critical_EnergyReleaseRate_1:

VALUE: 10000

HELP: Critical Value of ERR in Mode 1 of Delamination

QUESTION: Critical_EnergyReleaseRate_2:

VALUE: 100

HELP: Critical Value of ERR in Mode 2 of Delamination

QUESTION: Critical_EnergyReleaseRate_3:

VALUE: 100

HELP: Critical Value of ERR in Mode 3 of Delamination

QUESTION: Multiplicator:

VALUE: 1

HELP: Multiplicator for Non-Dimenzionalized Natural Frequencies

or Critical Loads

QUESTION: Number_of_Mode_Shapes:

VALUE: 6

HELP: Number of Mode Shapes to be calculated

QUESTION: Number_of_Buckling_Modes:

VALUE: 6

HELP: Number of Buckling Modes to be calculated

QUESTION: Nx:

VALUE: 1

HELP: Initial Normal Force in X-Direction

QUESTION: Ny:

VALUE: 1

HELP: Initial Normal Force in Y-Direction

QUESTION: Nxy:

VALUE: 0

HELP: Initial Shear Force

QUESTION: Pulse_Type:#CB#(STEP,SINE,TRIANGULAR,EXPONENTIAL)

VALUE: STEP

HELP: Choose the type of transient pulse loading

DEPENDENCIES:(STEP, HIDE,Damping_Factor,#CURRENT#)

DEPENDENCIES:(SINE, HIDE,Damping_Factor,#CURRENT#)

DEPENDENCIES:(TRIANGULAR, HIDE,Damping_Factor,#CURRENT#)

DEPENDENCIES:(EXPONENTIAL, RESTORE,Damping_Factor:,#CURRENT#)

QUESTION: Time_Step:

VALUE: 0.1
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HELP: Time Step in Newmark Integration

QUESTION: Total_Time:

VALUE: 100

HELP: Total Time in Newmark Integration

QUESTION: Damping_Factor:

VALUE: 100

HELP: Damping Factor for Exponential Pulse

TITLE: Project

QUESTION: Project_Title:

VALUE:

QUESTION: Author:

VALUE:

QUESTION: Supervisor:

VALUE:

QUESTION: Company:

VALUE:

QUESTION: Date:

VALUE:

END PROBLEM DATA

layerwiseFE.bas file

INTEGRATION = ’*GenData(Gauss_Quadrature:)’;

GEOMETRICNONLINEARITY = ’*GenData(Geometric_NonLinearity)’;

SOLVERTYPE = ’*GenData(Non_Linear_Solver:)’;

TOLERANCE = *GenData(Tolerance:);

NUMBEROFSTEPS = *GenData(Number_of_Steps:);

NUMBEROFITERATIONS = *GenData(Max_Iterations:);

CONTACTALGORITHM = ’*GenData(Contact_Algorithm)’;

ANALYSISTYPE = ’*GenData(Analysis_Type:)’;

multiplicator = *GenData(Multiplicator:);

ModeNumber = *GenData(Number_of_Mode_Shapes:);

ModeNumberBuckling = *GenData(Number_of_Buckling_Modes:);

CRACKPROPAGATION = ’*GenData(Crack_Propagation)’;

Nx = *GenData(Nx:);

Ny = *GenData(Ny:);

Nxy = *GenData(Nxy:);

id = *GenData(Delaminated_Interface:);

TIMESTEP = *GenData(Time_Step:);

TIMETOTAL = *GenData(Total_Time:);

PULSETYPE = ’*GenData(Pulse_Type:)’;

ERR1 = *GenData(Critical_EnergyReleaseRate_1:);

ERR2 = *GenData(Critical_EnergyReleaseRate_2:);

ERR3 = *GenData(Critical_EnergyReleaseRate_3:);
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DAMPINGFACTOR = *GenData(Damping_Factor:);

TITLE = ’*GenData(Project_Title:)’;

AUTHOR = ’*GenData(Author:)’;

SUPERVISOR = ’*GenData(Supervisor:)’;

COMPANY = ’*GenData(Company:)’;

DATE = ’*GenData(Date:)’;

*set var countmat = 0

*loop materials *notused

*set var countmat = countmat+1

*end materials

MATERIALS = cell(*countmat,11);

*set var counter = 1

*loop materials *notused

MATERIALS(*counter,1) = {’*matprop(0)’};

MATERIALS(*counter,2:11) = {

*format "%10.3f %10.3f %10.3f %5.3f %5.3f %5.3f %10.3f %10.3f %10.3

%10.3f"

*matprop(1) *matprop(2) *matprop(3) *matprop(4) *matprop(5) *matprop(6)

*matprop(7) *matprop(8) *matprop(9) *matprop(10)};

*set var counter = counter+1

*end materials

*Set Cond Laminate_Definition

*loop elems *OnlyInCond

STACKING = ’ *cond ’;

*end elems

splitstring = textscan(STACKING,’%s’);

splitstring = splitstring{1};

clear STACKING

STACKING = splitstring;

clear splitstring;

last = size(STACKING,1);

STACKINGNEW = STACKING(3:last-1);

Nlayer = size(STACKINGNEW,1)/3;

STACKING = cell(Nlayer,3);

for i = 1:Nlayer

STACKING(i,1) = STACKINGNEW((i-1)**3+1,1);

STACKING(i,2) = STACKINGNEW((i-1)**3+2,1);

STACKING(i,3) = STACKINGNEW((i-1)**3+3,1);

end

layers = zeros(size(STACKING,1),1);

angles = zeros(size(STACKING,1),1);

for i = 1:size(STACKING,1)
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layers(i) = str2num(cell2mat(STACKING(i,1)));

angles(i) = str2num(cell2mat(STACKING(i,2)));

end

clear i STACKINGNEW last

*if(nnode==3)

Elem_Shape = ’Triangular’; Interpolation = ’Linear’;

elemstring = ’Prism’; plotnodes = 6;

*endif

*if(nnode==6)

Elem_Shape = ’Triangular’; Interpolation = ’Quadratic’;

elemstring = ’Prism’; plotnodes = 6;

*endif

*if(nnode==4)

Elem_Shape = ’Quadrilateral’; Interpolation = ’Linear’;

elemstring = ’Hexahedra’; plotnodes = 8;

*endif

*if(nnode==9)

Elem_Shape = ’Quadrilateral’; Interpolation = ’Quadratic’;

elemstring = ’Hexahedra’; plotnodes = 8;

*endif

nodescoord = [

*loop nodes

*format "%12.5f %12.5f %12.5f"

*NodesCoord(1) *NodesCoord(2) *NodesCoord(3);

*end nodes ];

connectivity = [

*loop elems

*if(ElemsType==2)

*if(ElemsNnode==3)

*format "%6i %6i %6i"

*ElemsConec;

*endif

*if(ElemsNnode==6)

*format "%6i %6i %6i %6i %6i %6i"

*ElemsConec;

*endif

*endif

*if(ElemsType==3)

*if(ElemsNnode==4)

*format "%6i %6i %6i %6i"

*ElemsConec;

*endif

*if(ElemsNnode==9)
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*format "%6i %6i %6i %6i %6i %6i %6i %6i %6i"

*ElemsConec;

*endif

*endif

*end elems ];

nelem = size(connectivity,1);

nnode = *npoin;

*set cond Distributed_Loadings *elems

Distributed_Loadings = zeros(*nelem,3);

*loop elems *OnlyInCond

*format "%6i %12.5f"

Distributed_Loadings(*ElemsNum,1) = *cond(1);

*format "%6i %12.5f"

Distributed_Loadings(*ElemsNum,2) = *cond(2);

*format "%6i %12.5f"

Distributed_Loadings(*ElemsNum,3) = *cond(3);

*end elems

*set cond Nodal_Forces *nodes

Nodal_Forces = zeros(*npoin,3);

*loop nodes *OnlyInCond

*format "%6i %12.5f"

Nodal_Forces(*NodesNum,1) = *cond(1);

*format "%6i %12.5f"

Nodal_Forces(*NodesNum,2) = *cond(2);

*format "%6i %12.5f"

Nodal_Forces(*NodesNum,3) = *cond(3);

*end nodes

*set cond Crack_Opening_Displacement *nodes

CODs = zeros(*npoin,2);

*loop nodes *OnlyInCond

*format "%6i"

CODs(*NodesNum,1) = *NodesNum;

*format "%6i %12.5f"

CODs(*NodesNum,2) = *cond(1);

*end nodes

delete=[];

for i = 1:size(CODs,1)

if CODs(i,1) == 0

delete = vertcat(delete,i);

end

end

CODs(delete,:)=[];
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*set cond Clamped_Edge *nodes

CC = zeros(*npoin,1);

*loop nodes *OnlyInCond

*format "%6i"

CC(*NodesNum,1) = *NodesNum;

*end nodes

CC = CC(CC~=0);

SSpreliminary = [

*set cond Simply_Supported_Edge

*loop elems *onlyInCond

*if(ElemsNnode==2)

*set var i=0

*for(i=1;i<=2;i=i+1)

*ElemsConec(*i) ;

*end

*endif

*if(ElemsNnode==3)

*set var i=0

*for(i=1;i<=2;i=i+1)

*ElemsConec(*i) ;

*end

*endif

*end elems ];

SSrecords = size(SSpreliminary,1)/2;

SS = zeros(SSrecords , 2);

for i = 1:SSrecords

SS(i,:) = SSpreliminary(2**i-1:2**i);

end

*set cond Delaminated_Node *nodes

DEL = zeros(*npoin,1);

*loop nodes *OnlyInCond

*format "%6i"

DEL(*NodesNum,1) = *NodesNum;

*end nodes

DEL = DEL(DEL~=0);

%%MATLAB SYNTAX

%Creation of the Node Objects in MATLAB

Nodes(nnode) = Node();

for i = 1:nnode

Nodes(i) = Node(i,nodescoord);

end
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%Creation of all Materials

Materials(size(MATERIALS,1)) = Orthotropic();

for i = 1:length(Materials)

E1 = cell2mat(MATERIALS(i,2));

E2 = cell2mat(MATERIALS(i,3));

E3 = cell2mat(MATERIALS(i,4));

ni12 = cell2mat(MATERIALS(i,5));

ni13 = cell2mat(MATERIALS(i,6));

ni23 = cell2mat(MATERIALS(i,7));

G12 = cell2mat(MATERIALS(i,8));

G13 = cell2mat(MATERIALS(i,9));

G23 = cell2mat(MATERIALS(i,10));

ro = cell2mat(MATERIALS(i,11));

Materials(i) = Orthotropic(E1,E2,E3,ni12,ni13,ni23,G12,G13,G23,ro);

clear E1 E2 E3 ni12 ni13 ni23 G12 G13 G23 ro

end

Laminas(Nlayer) = OrthotropicLaminaPlaneStress();

for i = 1:Nlayer

Laminas(i) = OrthotropicLaminaPlaneStress(i,angles(i),layers(i));

end

%Assignment of the Materials to Laminas

for i = 1:Nlayer

for j = 1:size(MATERIALS,1)

if strcmp( STACKING(i,3) , MATERIALS(j,1) ) == 1

Laminas(i) = Laminas(i).assignMat(Materials(j));

end

end

end

196



Appendix

MakePostRes.m file

function make_post_res(file_name, MyModel, elements, SOLVER)

%INITIALIZATION

res_file = strcat(file_name(1:end-4),’.post.res’);

fid = fopen(res_file,’w’);

fprintf(fid,’GiD Post Results File 1.0 \n’);

%GAUSS POINTS

if strcmp(MyModel.ElemString,’Prism’) == 1

fprintf(fid,’GaussPoints "Gauss_Points_Prism" Elemtype Prism \n’);

fprintf(fid,’Number of Gauss Points: 6 \n’);

fprintf(fid,’Natural Coordinates: Give \n’);

fprintf(fid,’0.166666666667 0.166666666667 0 \n’);

fprintf(fid,’0.666666666667 0.166666666667 0 \n’);

fprintf(fid,’0.166666666667 0.666666666667 0 \n’);

fprintf(fid,’0.166666666667 0.166666666667 1 \n’);

fprintf(fid,’0.666666666667 0.166666666667 1 \n’);

fprintf(fid,’0.166666666667 0.666666666667 1 \n’);

else

fprintf(fid,’GaussPoints "Gauss_Points_Hexahedra"

Elemtype Hexahedra \n’);

fprintf(fid,’Number of Gauss Points: 8 \n’);

fprintf(fid,’Natural Coordinates: Given \n’);

fprintf(fid,’-0.577350269189626 -0.577350269189626 -1 \n’);

fprintf(fid,’ 0.577350269189626 -0.577350269189626 -1 \n’);

fprintf(fid,’ 0.577350269189626 0.577350269189626 -1 \n’);

fprintf(fid,’-0.577350269189626 0.577350269189626 -1 \n’);

fprintf(fid,’-0.577350269189626 -0.577350269189626 1 \n’);

fprintf(fid,’ 0.577350269189626 -0.577350269189626 1 \n’);

fprintf(fid,’ 0.577350269189626 0.577350269189626 1 \n’);

fprintf(fid,’-0.577350269189626 0.577350269189626 1 \n’);

end

fprintf(fid,’end GaussPoints \n’);

%% FREE VIBRATIONS AND BUCKLING

if strcmp(SOLVER.ResultType, ’Mode Shape’) == 1

result = MyModel.DeformedShape;

records = size(result, 4);

for rec = 1:records

fprintf(fid,’Result "Mode Shape" "Eigen Value Analysis"

%6i Vector OnNodes \n’, SOLVER.NatFreq(rec));

fprintf(fid,’ComponentNames "X", "Y", "Z" \n’);

fprintf(fid,’Values \n’);
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for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i - (j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

result(j, 1:3, realnode_plane,rec));

end

end

fprintf(fid,’End Values \n’);

end

elseif strcmp(SOLVER.ResultType, ’Buckling Mode’) == 1

result = MyModel.DeformedShape;

records = size(result, 4);

for rec = 1:records

fprintf(fid,’Result "Buckling Mode" "Eigen Value Analysis"

%6i Vector OnNodes \n’, SOLVER.CritLoad(rec));

fprintf(fid,’ComponentNames "X", "Y", "Z" \n’);

fprintf(fid,’Values \n’);

for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i - (j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

result(j, 1:3, realnode_plane,rec));

end

end

fprintf(fid,’End Values \n’);

end

end

%% TRANSIENT ANALYSIS

if strcmp(SOLVER.ResultType, ’Deformed Shapes’) == 1

result = MyModel.DeformedShape;

records = size(result, 4);

for rec = 1:records

fprintf(fid,’Result "Total Displacement" "Transient

Analysis" %6i Vector OnNodes \n’, rec);

fprintf(fid,’ComponentNames "X", "Y", "Z" \n’);

fprintf(fid,’Values \n’);

for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i - (j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

result(j, 1:3, realnode_plane, rec));

end

end

fprintf(fid,’End Values \n’);

end
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if strcmp(MyModel.ElemString,’Prism’) == 1

for rec = 1:records

fprintf(fid,’Result "Stresses" "Transient Analysis" %6i

Vector OnGaussPoints "Gauss_Points_Prism" \n’, rec);

fprintf(fid,’ComponentNames "SigmaX","SigmaY","SigmaXY" \n’);

fprintf(fid,’Values \n’);

for layer = 1:MyModel.NumLayer

for elem = 1:MyModel.NumEl

elemID = (layer-1)*MyModel.NumEl + elem;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’,elemID,

FiniteElements(elem).Stress_In_Plane(1,:,layer,rec));

for gaus = 2:6

fprintf(fid,’%12.5f %12.5f %12.5f \n’,

FiniteElements(elem).Stress_In_Plane

(gaus, :, layer, rec));

end

end

end

fprintf(fid,’End Values \n’);

end

else

for rec = 1:records

fprintf(fid,’Result "Stresses" "Transient Analysis" %6i

Vector OnGaussPoints "Gauss_Points_Hexahedra" \n’, rec);

fprintf(fid,’ComponentNames "SigmaX","SigmaY","SigmaXY" \n’);

fprintf(fid,’Values \n’);

for layer = 1:MyModel.NumLayer

for elem = 1:MyModel.NumEl

elemID = (layer-1)*MyModel.NumEl + elem;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’,elemID,

elements(elem).Stress_In_Plane(1,:,layer, rec));

for gaus = 2:8

fprintf(fid,’%12.5f %12.5f %12.5f \n’,

elements(elem).Stress_In_Plane(gaus,:,layer,rec));

end

end

end

fprintf(fid,’End Values \n’);

end

end

end

%% LINEAR SOLVER

if strcmp(SOLVER.ResultType, ’Deformed Shape’) == 1

%DISPLACEMENTS

result = MyModel.DeformedShape;
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fprintf(fid,’Result "Total Displacement" "Load Analysis"

%6i Vector OnNodes \n’, 1);

fprintf(fid,’ComponentNames "X", "Y", "Z" \n’);

fprintf(fid,’Values \n’);

for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i - (j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

result(j,1:3,realnode_plane,1));

end

end

fprintf(fid,’End Values \n’);

%STRESSES

if strcmp(MyModel.ElemString,’Prism’) == 1

fprintf(fid,’Result "Stresses" "Load Analysis" %6i Vector

OnGaussPoints "Gauss_Points_Prism" \n’, 1);

ngaus=6;

else

fprintf(fid,’Result "Stresses" "Load Analysis" %6i

Vector OnGaussPoints "Gauss_Points_Hexahedra" \n’, 1);

ngaus=8;

end

fprintf(fid,’ComponentNames "SigmaX","SigmaY","SigmaXY" \n’);

fprintf(fid,’Values \n’);

for layer = 1:MyModel.NumLayer

for elem = 1:MyModel.NumEl

elemID = (layer-1)*MyModel.NumEl + elem;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, elemID,

elements(elem).Stress_In_Plane(1, :, layer));

for gaus = 2:ngaus

fprintf(fid,’%12.5f %12.5f %12.5f \n’,

elements(elem).Stress_In_Plane(gaus, :, layer));

end

end

end

fprintf(fid,’End Values \n’);

end

%% NONLINEAR SOLVER

if strcmp(SOLVER.ResultType, ’Deformed Shape NL’) == 1

result = MyModel.DeformedShape;

records = size(result, 4);

%DISPLACEMENTS

for rec = 1:records

fprintf(fid,’Result "Total Displacement" "Load Analysis"
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%6i Vector OnNodes \n’, rec);

fprintf(fid,’ComponentNames "X","Y","Z" \n’);

fprintf(fid,’Values \n’);

for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i - (j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

result(j, 1:3, realnode_plane, rec));

end

end

fprintf(fid,’End Values \n’);

end

%STRESSES

for rec = 1:records

if strcmp(MyModel.ElemString,’Prism’) == 1

fprintf(fid,’Result "Stresses" "Load Analysis" %6i

Vector OnGaussPoints "Gauss_Points_Prism" \n’, rec);

ngaus = 6;

else

fprintf(fid,’Result "Stresses" "Load Analysis" %6i

Vector OnGaussPoints "Gauss_Points_Hexahedra" \n’, rec);

ngaus = 8;

end

fprintf(fid,’ComponentNames "SigmaX","SigmaY","SigmaXY" \n’);

fprintf(fid,’Values \n’);

for layer = 1:MyModel.NumLayer

for elem = 1:MyModel.NumEl

elemID = (layer-1)*MyModel.NumEl + elem;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, elemID,

elements(elem).Stress_In_Plane(1, :, layer, rec));

for gaus = 2:ngaus

fprintf(fid,’%12.5f %12.5f %12.5f \n’,

elements(elem).Stress_In_Plane(gaus, :,

layer, rec));

end

end

end

fprintf(fid,’End Values \n’);

end

end

fclose(fid);

end
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MakePostMsh.m file

function make_post_msh(file_name, MyModel)

msh_file = strcat(file_name(1:end-4),’.post.msh’);

fid = fopen(msh_file,’w’);

fprintf(fid,’MESH dimension %6i elemtype %s nnode %6i \n’, 3,

MyModel.ElemString, MyModel.PlotNodes);

fprintf(fid,’coordinates \n’);

for j = 1:length(MyModel.NodesNumericalZ)

for i = (j-1)*MyModel.NumNode+1 : j*MyModel.NumNode

realnode_plane = i-(j-1)*MyModel.NumNode;

fprintf(fid,’%6i %12.5f %12.5f %12.5f \n’, i,

MyModel.StartCoord(j,1:3,realnode_plane) );

end

end

fprintf(fid,’end coordinates \n’);

elements = zeros(MyModel.GiDNumEl,MyModel.PlotNodes);

SubArray = zeros(MyModel.NumLayer,2);

SubArray(1,:) = [1 2];

counter = 1;

for i = 2:length(MyModel.NodesNumericalZ)-1

if MyModel.NodesNumericalZ(i) < MyModel.NodesNumericalZ(i+1)

counter = counter+1;

SubArray(counter,:) = i:i+1;

end

end

switch MyModel.NodesPerElem

case 3

connew = zeros(MyModel.NumEl,3,length(MyModel.NodesNumericalZ));

for i = 1:length(MyModel.NodesNumericalZ)

connew(:,:,i) = MyModel.ConnectivityInPlane(:,:)

+ MyModel.NumNode*(i-1);

end

case 6

connew = zeros(MyModel.NumEl,3,length(MyModel.NodesNumericalZ));

for i = 1:length(MyModel.NodesNumericalZ)

connew(:,:,i) = MyModel.ConnectivityInPlane(:,1:3)

+ MyModel.NumNode*(i-1);

end

case 4

connew = zeros(MyModel.NumEl,4,length(MyModel.NodesNumericalZ));

for i = 1:length(MyModel.NodesNumericalZ)
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connew(:,:,i) = MyModel.ConnectivityInPlane(:,:)

+ MyModel.NumNode*(i-1);

end

case 9

connew = zeros(MyModel.NumEl,4,length(MyModel.NodesNumericalZ));

for i = 1:length(MyModel.NodesNumericalZ)

connew(:,:,i) = MyModel.ConnectivityInPlane(:,1:4)

+ MyModel.NumNode*(i-1);

end

end

for i = 1:MyModel.NumEl

for j = 1:MyModel.NumLayer

elements((j-1)*MyModel.NumEl+i , :) = [connew(i,:,SubArray(j,1))

connew(i,:,SubArray(j,2))];

end

end

%Make New Connectivity for Every Element according to GiD Customization

fprintf(fid,’elements \n’);

switch MyModel.PlotNodes

case 8

for i = 1:MyModel.GiDNumEl

fprintf(fid,’%6i %6i %6i %6i %6i %6i %6i %6i %6i \n’,

i, elements(i,:));

end

case 6

for i = 1:MyModel.GiDNumEl

fprintf(fid,’%6i %6i %6i %6i %6i %6i %6i \n’, i,

elements(i,:));

end

end

fprintf(fid,’end elements’);

fclose(fid);

end
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2D two-dimensional

3D three-dimensional

CC clamped-clamped

CCT Crack Closure Technique

CF clamped-free

CFRP carbon-fiber-reinforced polymers

COD Crack Opening Displacement

CPT classical plate theory

CS clamped-simply supported

DCB Double-Cantilever-Beam

DOF degree-of-freedom

DSM Dynamic Stiffness Method

ESL Equivalent-Single-Layer

F free

FE finite element

FRP fiber-reinforced polymers

FSDT First-Order Shear Deformation Theory

GLPT Generalized Laminated Plate Theory

GRP glass-reinforced plastic

HSDT Higher-Order Shear Deformation Theory

L linear

NL non-linear

OO object-oriented

SERR Strain Energy Release Rate

SS simply-supported

VCCT Virtual Crack Closure Technique
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Užice, Republic of Serbia, where he finished elementary

school and Gymnasium, receiving the ”Vuk Karadžić”
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ing - Science and Practice. Žabljak, Montenegro, 363-370.
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