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Abstract 

 

Surfactants are a group of compounds, which are widely used in industrial, 

agricultural, and pharmaceutical markets in various products, including detergents, pesticides, 

petroleum products, cosmetics and pharmaceuticals. Surfactants and their degradation 

products are widely detected in domestic and industrial wastewater. Due to their significant 

effects on the aquatic environment, degradation of surfactants is subject of many research 

papers. In addition to the classical wastewater treatment a lot of research is addressed to the 

usage of advanced oxidation process for removal of various surfactants.  

  The aim of this study was to investigate using of non-thermal plasma (water falling 

film dielectric barrier discharge plasma reactor) for degradation of two anionic surfactants 

(sodium dodecyl sulfate - SDS and sodium dodecylbenezene sulfonate - DBS) and two 

nonionic surfactant  (Triton X-100 and nonylphenol ethoxylate - NPE ). Surfactants examined 

in this research are predominantly used in formulations of laundry detergents and for 

industrial cleaning application. The effects of two catalytic plasma systems,( iron (II) salt and 

hydrogen peroxide), were tested to improve the degradation of  surfactants. Efficiency of 

degradation was determined by spectrophotometric determination of decrease of surfactants 

concentration. Decrease of chemical oxygen demand and total organic carbon were measured 

to determine degree of mineralization.  

In cases of two nonionic surfactants and sodium dodecylbenzene sulpfonate catalytic 

systems exhibited significant improvements in degradation efficiency especially in beginning 

of treatment. In the case of sodium dodecyl sulphate catalysts have no effect on surfactant 

degradation. Mineralization of surfactants in all cases was significantly improved in presence 

of catalyst.  

Toxicity test with Artemia salina (A. salina) test organisms showed that toxicity in all 

case were decreased after treatment of solutions in water falling film dielectric barrier 

discharge plasma reactor.  

 

Key-words: surfactants, advanced oxidation process, non-thermal plasma, dielectric 

barrier discharge, homogenous catalysis, toxicity test 

 

 

 



Izvod 

 

Surfaktanti predstavljaju grupu jedinjenja koja se šitoko koristi u industriji, 

poljoprivredi i farmaceutskoj industriji u različitim proizvodima uključujući detergente, 

pesticide, proizvode petrohemijske industrije, kozmetičke proizvode i lekove. Surfaktanti i 

prozvodi njihove degradacije su vrlo često prisutni u kanalizacionim i industrijskim otpadnim 

vodama. Usled njihovog efekta na vodene organizme degradacija surfaktanata predstavlja 

značajnu oblast istraživanja. Pored klasičnih tretmana otpadnih voda istraživanja su usmerena 

i ka primeni unapređenih oksidacionih procesa za uklanjanje različitih surfaktanata iz 

otpadnih voda. 

Predmet ovoga rada je ispitivanje mogućnosti primene netermalne plazme 

(korišćenjem reaktora sa dielektričnim barijernim pražnjenjem kroz tanak film vode) za 

degradaciju dva anjonska surfaktanta (natrijum-dodecil-sulfata i natrijum-dodecilbenzen-

sulfonata) i dva nejonska surfaktanta (Triton X-100 i nonilfenol etoksilata). Ovi surfaktanti se 

koriste u formulacijama detergenata za pranje veša i u procesima industrijskog pranja. Pored 

toga ispitani su i  efekti homogenih katalizatora (soli gvožđa (II) i vodonik-peroksida na 

poboljšanje efikasnosti degradacije. Efikasnost degradacije je praćena spektrofotometrijskim 

određivanjem smanjenja koncentracije surfaktanata. U cilju određivanja stepena 

mineralizacije odnosno potpune razgradnje organske supstance određeni su hemijska 

potrošnja kiseonika i ukupan organski ugljenik nakon tretmana. 

   U eksperimentima sa dva nejonska surfaktanta i natrijum-dodecilbenzen-sulfonata 

katalitički sistemi su pokazali značajan efekat u povećanju efikasnosti degradacije posebno pri 

nižim vrednsotima primenjene energije. U eksperimentu sa natrijum-dodecil-sulfatom 

katalizatori nisu pokazali uticaj na efikasnost degradacije. U svim eksperimentima katalizatori 

su pokazali značajan uticaj na mineralizaciju rastvora odnosno na razgradnju organske 

supstance. 

  Testovi ispitivanja toksičnosti sa Artemia salina organizmima su pokazali da je u svim 

eksperimentima toksičnost rastvora smanjena nakon tretmana u reaktoru sa dielektričnim 

barijernim pražnjenjem. 

 

Ključne reči: surfaktanti, unapređeni oksidacioni procesi, netermalna plazma, 

dielektrično barijerno pražnjenje, homogena kataliza, test ispitivanja toksičnosti   
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1.General Introduction 

 

1.1 Surfactants - General Introduction 

 

Surfactants are a group of compounds, which are widely used in industrial, 

agricultural, and pharmaceutical markets in various products, including detergents, 

pesticides, petroleum products, cosmetics and pharmaceuticals. Surfactants have a broad 

spectrum of applications because of their amphiphilic nature: they consist of a polar 

head group and a nonpolar hydrocarbon tail and combine both hydrophobic and 

hydrophilic properties in one molecule [1].   

 

 

 

Figure 1. The four main different types of surfactants. 

 

At low concentrations they accumulate at interfaces and surfaces thus reducing 

interface and surface tensions. When adding surfactants to a solution they will enrich at 

interfaces and because of their dual hydrophilic and hydrophobic nature they will lower 

the free energy (surface tension). At the interface, the hydrophilic part of the surfactant 

orients itself towards the aqueous phase and the hydrophobic parts orient itself away 

from the aqueous phase into the second phase [2]. When the interfaces and surfaces are 

fully occupied and the concentration of the surfactants in the water exceeds its 
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solubility, several of their molecules form aggregates called micelles with the 

hydrophobic moieties of the molecules directed to the center (Figure 2). The 

concentration at which micelle formation begins is called Critical Micelle Concentration 

(CMC) [1].  

The CMC of a surfactant is dependent on the hydrophilic head and the 

hydrophobic tail. More hydrophilic heads will result in a higher CMC value, conversely 

the presence of more hydrophobic surfactant will result in a lower CMC value.  

 

 

 

Figure 2. Partitioning of surfactants between air and water and micellization. 

     

The total quantity of surfactants (without soaps) consumed in Western Europe in 

2002 was more than 2.5 Mt, 49.5% of which were non-ionic, 38.5% ionic, 9% cationic 

and 3% amphoteric, according to Statistics of the European Committee of Surfactants 

and their Organic Intermediates (CESIO) [3,4]. A trend in the surfactant production in 

Western Europe during last decade is presented on the Figure 3.  
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Figure 3. Surfactants production in millions tones in Western Europe 2000 - 2011 [5]. 

 

1.1.1. Types of surfactants 

 

1.1.1.1. Anionic surfactants  

Most detergents contain a large amount of anionic surfactants [6]. Anionic 

surfactants are surface-active compounds consisting of a hydrophobic alkyl chain and 

an anionic hydrophilic group. Anionic surfactants are negatively charged in aqueous 

solutions due to the presence of a sulfonate, sulfate, carboxylate or phosphate groups [7] 

(Figure 4).  
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Figure 4. Chemical structures of some anionic surfactants. 

 

Commercial anionic surfactants contain mixtures of homologues with different 

alkyl chain lengths. For some surfactant groups, the existence of different isomers also 

add to the complex nature and versatile application of these substances. [7]. The largest 

volume of anionic surfactants is used in the consumer products like, e.g., laundry 

detergents, cleaning and dishwashing agents as well as the personal care products. 
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Another important application of anionic surfactants includes cleaning agents designed 

for the industrial and institutional market. By volume, the most important groups of 

anionic surfactants are fatty acid soaps, linear alkylbenzene sulfonates, alkyl ether 

sulfates and alkyl sulfates [7].  

Soap has remained the largest surfactant by volume worldwide. It is still the 

surfactant of choice in many countries. A decreased use of soap can be found in laundry 

detergents, due to its sensitivity to water hardness. In Europe, the primary function 

remaining for the soap is  a foam regulator in the laundry detergents [6].   

The production of soap is carried out on a large scale. The prevalent 

manufacture process is hydrolysis of triglycerides with the sodium hydroxide. This 

method coproduces glycerol and the sodium salt of the fatty acid (soap). The 

triglycerides used in the soap manufacturing are commonly derived from beef tallow 

and several vegetable oils (i.e. coconut, palm and palm kernel oils) [8]. 

In Europe, USA, and Japan soap has been largely replaced by the synthetic 

anionic surfactants, such as linear alkylbenzene sulfonate (LAS). LAS show very good 

detergency performance and, as a result of their high solubility, LAS are also frequently 

used in the formulations for liquid detergents. Like soap, LAS are sensitive to water 

hardness [6, 9]; the detergency performance of LAS is reduced with increasing water 

hardness. [6] 

Linear alkylbenzene sulfonate (LAS) is one of the most used synthetic anionic 

surfactants worldwide. They were introduced in the sixties as the principal component 

of household detergents to replace the highly branched alkylbenzene sulfonates (ABS). 

The use of LAS was favored because of the high biodegradability, excellent detergent 

properties and lower production costs [10, 11]. The European consumption of LAS in 

2005 was 430 kt, from which more than the 80% was used in the formulation of 

household cleaning products [10, 12]. 

LAS are produced by the sulfonation of dodecylbenzene (commonly referred to 

as linear alkylbenzene, LAB) with sulfuric acid or sulfur trioxide. Almost 90% of the 

produces dodecylbenzene is consumed in the manufacture of LAS. Dodecylbenzene is 

produced by the alkylation of benzene with dodecene in the presence of an aluminum 

chloride catalyst. Dodecene can be produced by the thermal cracking of wax paraffin to 
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(alpha)-olefins [an (alpha)-olefin is a hydrocarbon with a double bond between the first 

(alpha) and second (beta) carbon atoms] [8]. 

Alkyl sulfates (AS) are used in the laundry detergents, frequently in combination 

with other anionic surfactants. AS are used in special products, including wool-washing 

agents, soap bars and liquid bath soaps, hair shampoos, and toothpastes. Most of the AS 

used in the consumer products are linear primary AS but some linear and branched 

secondary AS are also being used [7]. 

 Alkyl sulfates are produced either from natural fatty alcohols or from 

petrochemical substances. Their use has increased especially in the concentrated 

products [6].  

Secondary alkyl sulfonates SAS are seen as special anionic surfactants for 

consumer products. The SAS include high solubility, fast wetting and good chemical 

stability. Their properties are very similar to LAS in terms of detergency and water 

hardness sensitivity. They are completely insensitive to hydrolysis, even at extreme pH 

values, due to the presence of the stable carbon–sulfur bond [6].  

Alkyl ether sulfates (AES), or alkyl ethoxy sulfates, are being used increasingly, 

frequently in the combination with other anionic and nonionic surfactants, in liquid bath 

soaps, hair shampoos, and mechanical dishwashing agents. [7].  

 

1.1.1.2. Nonionic surfactants  

 

The term nonionic surfactant usually refers to derivatives of ethylene oxide 

and/or propylene oxide with an alcohol containing an active hydrogen atom. 

Nevertheless, other types such as alkyl phenols, sugar esters, alkanolamides, amine 

oxides, fatty acids, fatty amines and polyols are all produced and used widely 

throughout the world in a multitude of industries [13] (Figure 5). 
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Figure 5. Chemical structures of some nonionic surfactants. 
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Nonionic surfactants do not have an electrical charge, which makes them 

resistant to deactivation caused by water hardness. They are excellent grease removers, 

which are used in the laundry products, household cleaners and hand dishwashing 

liquids. The most of laundry detergents contain both nonionic and anionic surfactants as 

they complement each other's cleaning action. Nonionic surfactants contribute to the 

feature that makes the surfactant system less hardness sensitive. The most commonly 

used nonionic surfactants are ethers of fatty alcohols [14]. 

One of the main advantages of the nonionic surfactants is their compatibility 

with all other surfactants. This property is attributed to the presence of the non-charged 

head group in the structure of nonionic surfactants [15, 16]. In general, nonionic 

surfactants have lower CMC levels than anionic and cationic ones. [17]. 

Nonionic surfactants, like most ethylene oxide derivatives, exhibit inverse 

solubility characteristics and may precipitate with the solution’s temperature increase . 

This sometimes precludes their use in high temperature applications but can be an 

advantage if is desired to destroy surfactant activity by temperature elevation [18]. 

Most non-ionic surfactants are not single compounds but rather the products of a 

reaction between ethylene oxide and organic compounds such as alkyl alcohols, 

alkylphenols and fatty acids. These reactions produce mixtures, which have a range of 

ethoxymer chain lengths. The trivial nomenclature for these compounds is generally 

based on their average ethoxymer chain length with for example 'NP9' being used to 

describe a nonylphenol ethoxylate formulation with an average ethoxymer chain length 

of nine. The parent compound of this type of surfactant is described as the alkylphenol 

polyethoxylate (APEO). An estimated 350 000 tons per year of APEOs are currently 

used in the US, Western Europe and Japan [19]. 

The growing popularity of nonionic surfactants in the surfactants market is due 

to several factors including [20]: 

1) Their inherent electrical neutrality is desirable in many applications. 

2) Importance of low foaming nonionic surfactants like ethylene oxide/propylene oxide 

(co-polymers) EO/PO block copolymers in the new generations of washing machines. 

3) Compatibility with other ionic types for suitable surfactant blends, often resulting in 

synergism. 

4) Availability of a wide range of nonionic surfactants to suit specific needs. 
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5) The important role of some nonionic as intermediates for the production of key 

anionic such as alcohol ether sulfates (AES). 

6) The growing importance of ethoxylates in the detergent, cosmetics, food and other 

industrial sectors and the growing preference for narrow range ethoxylates. 

7) A reasonable price structure and current globalization of surfactant markets. 

8) Growing preference for natural-based nonionic products such as alkylpolyglucosides 

(APG) and alkylglucosides (AGA).              

Alcohol ethoxylates AE are the most important nonionics in detergent 

formulations. By varying the length of carbon chain and the degree of ethoxylation, 

these nonionic surfactants can be tailor-made with respect to the washing temperature 

[6]. 

Fatty acid alkanolamides FAA alone have little application in laundry 

detergents. Their most important feature is foam boosting, i.e. adding desired stability to 

the foam produced by detergents prone to heavy foaming [6]. 

Alkylamine oxides AO are produced by oxidation of tertiary amines with 

hydrogen peroxide. They show cationic behavior at acidic conditions and behave as 

nonionic surfactants at neutral or alkaline conditions. Despite the good detergent 

properties, they are rarely included in laundry detergent formulations due to the high 

costs and low thermal stability [6]. 

N-Methylglucamides (NMG) are a new type of nonionic surfactants that has 

been introduced into detergents market in the 1990s. They are increasingly used as co-

surfactants in powder and liquid detergent formulations [6]. 

Alkylpolyglycosides (APG) consists of an alkyl chain (hydrophobic) and sugar 

derivate (hydrophilic) and have distinct lathering characteristics, especially in 

combination with anionic surfactants [6, 21, 22]. Due to their good foaming properties 

APGs are predominantly used in the dishwashing detergents, liquid detergents, and 

special detergents for fine fabrics [6]. 

Nonylphenol ethoxylates (NPEs) are highly effective surfactants that have  been 

safely used for more than 40 years in a number of industrial sectors including textiles, 

pulp and paper, paints, adhesives, resins and protective coatings. NPEs are also used in 

a variety of cleaning products and detergents for home and institutional use [23]. There 

are three main reasons why the nonylphenol ethoxylates have been the material of 
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choice in the pulp and paper industry: cost effectiveness, score on Draves’ wetting test, 

and stability under harsh condition [23]. 

 

1.1.1.3 Amphoteric surfactants 

 

Amphoteric surfactants may contain two charged groups of different sign. They 

can be anionic (negatively charged), cationic (positively charged) or non-ionic (no 

charge) in the solution, depending on the acidity or pH of water. They are compatible 

with all other classes of surfactants and are soluble and effective in the presence of high 

concentrations of electrolytes, acids and alkalis. Whereas the source of the positive 

charge is almost always ammonium, the source of the negative charge may vary 

(carboxylate, sulphate, sulphonate) [14, 25, 26]. 

Amphoteric surfactants include two main groups, i.e. betaines and real 

amphoteric surfactants based on fatty alkyl imidazolines (Figure 6). The key functional 

groups in the chemical structures are the more or less quaternized nitrogen and the 

carboxylic group. Betaines are characterized by a fully quaternized nitrogen atom and 

do not exhibit anionic properties in alkaline solutions, which means that betaines are 

present only as ‘zwitterions’. Another group of amphoterics are designated imidazoline 

derivatives because of the formation of an intermediate imidazoline structure during the 

synthesis of some of these surfactants. This group contains the real amphoteric 

surfactants that form cations in acidic solutions, anions in alkaline solutions, and 

‘zwitterions’ in mid-pH range solutions [7].  The mid-pH range (isoelectric range) in 

which the surfactant has a neutral charge is compound specific and depends on the 

alkalinity of the nitrogen atom and the acidity of the carboxylic group [7]. 
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Figure 6. Chemical structures of some zwitterionic surfactants. 

 

Amphoteric surfactants are mainly used in manual dishwashing and body care 

products. The most important types of amphoterics are: alkyl betaine, alkylamidopropyl 

betaine, betaines derived from imidazolines, alkylamphoacetates [6]. They are used in 

personal care products (e.g. hair shampoos and conditioners, liquid soaps, and cleansing 

lotions) and in all-purpose industrial cleaning agents [7]. 

 

1.1.1.4 Cationic surfactants 

 

Cationic surfactants are surface-active compounds with at least one hydrophobic 

alkyl chain and a hydrophilic group carrying a positive charge. [7]. Cationic surfactants 

are positively charged in the aqueous solutions. The quaternary ammonium compounds 

are especially used in the commercial products [7, 14] (Figure 7). 
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Figure 7. Chemical structures of some cationic surfactants. 

 
A positively charged quaternary nitrogen atom characterizes the structure of 

quaternary ammonium compounds. Commercial raw materials are normally derived 

from natural oils, which imply that homologous mixtures of surfactants with different 

alkyl chain lengths are used in the products [7]. 
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Cationic surfactants represent one of the smaller classes of surfactants when 

compared to anionic and nonionic surfactants. Annual worldwide production of 

cationics is estimates for 500 000 metric tons [13]. 

The mostly used cationic surfactants are fatty amines, their salts and quaternary 

derivatives. Actually, fatty amines are not cationic but anionic surfactants. However, 

they are generally classified with cationics because they are mostly used at acid pH, in 

which their salts are cationic [26].  

 

1.1.2. Environmental fate of surfactants 
 

Surfactants are regarded as one of the major and most undesirable pollutants 

detected in the aquatic and terrestrial environment. Due to the excessive occurrence of 

surfactants and their continuous presence in the environment, there is a considerable 

interest in environmental fate of surfactants [27]. After use, the residual surfactants and 

their degradation products are discharged to sewage treatment plants or directly to 

surface waters, and then dispersed into different environmental compartments. Due to 

their widespread use and high consumption they have been detected at various 

concentrations in surface waters, sediments and sludge-amended soils. In order to assess 

their environmental risks, we need to understand the distribution, behavior, fate and 

biological effects of these surfactants in the environment.  

 

TABLE 1. Concentrations of surfactants in sewage influents and effluents. 

 

Surfactant Location Influent (mg/L)
a 

Effluent (µg/L) Ref. 

LAS Germany 0.5–3.5 7–16    29 

LAS The Netherlands 3.1–7.3 <8.1–491    30 

LAS UK 1.73–5.58 40–1090    31 

LAS Italy 3.4–10.7 21–290    32 

LAS The Netherlands 3.4–8.9 (5.2) 19–71 (39)    33 

AES(C12C15)  1.2–6.0 (3.2) 3.0–12 (6.5)    33 

AS(C12C15)  0.1–1.3(0.6) 1.2–12 (5.7)    33 

Soap  14–45 (28) 91–365 (174)    33 

AE(C12C15)  1.6–4.7 (3.0) 2.2–13 (6.2)    33 

AE(C12C15) United States 0.68–3.67 11–114    34 

NPE United States  <LOD–332 (9.3)    35 

NPE Italy  2–27 (10)    36 

NPE Greece 1.18–1.62 (1.4) 35–130 (62)    37 
a
 Concentration range and median in parentheses. LOD = limit of detection. 
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Surfactants in raw sewage or wastewater can easily be treated by modern 

treatment technologies at high rates [28]. The removal efficiency of a surfactant depends 

on its physiochemical properties, treatment plant design and waste load. Results of the 

removal efficiency for some wastewater treatment plants are given in Table 1 [28]. 

In addition to the surfactants, their degradation products are also widely detected 

in sewage effluent. Of greatest concern are alkylphenols, which are the degradation 

products of nonionic surfactant APE. During sewage treatment, APE are biodegraded 

through a mechanism involving stepwise loss of ethoxy groups to shorter APE 

homologues, carboxylated products (alkylphenol ethoxycarboxylates, i.e., APECs), and 

finally alkylphenols such as nonylphenol (NP) and octylphenol (OP) [28]. NP and OP 

are known to be more toxic than their ethoxylate precursors and to mimic the effect of 

the hormone estrogens [28]. The concentrations of NP and OP in the final sewage 

effluents vary widely among various sewage treatment plants from less than the limit of 

detection (LOD) to 343 µg/L (Table 2). 

 

TABLE 2. Concentrations of alkylphenols in effluents of sewage treatment plants [28]. 

Location Sample no. Concentration (mg/L)
a
 

        NP 
 

Concentration (mg/L)
a 

        OP 

Canada         8 0.8–15.1 (1.9) 0.12–1.7 (0.69) 

United Kingdom        16 < 0.2–5.4 (0.5)  

Switzerland         2 5–11  

Spain         3 6–343  

Japan        10 0.08–1.24 0.02–0.48 

United States         1 16 0.15 

United States         6 0.171–37 (1.02) < LOD–0.673 (0.072) 

Germany        16 < LOD–0.77 (0.111) < LOD–0.073 (0.014) 

Italy        12 0.7–4 (1.8)  

a
 Concentration range and median in parentheses. LOD = limit of detection. 

 

 

In wastewater treatment, a proportion of the surfactants are being removed by 

adsorption on sewage solids during the primary settlement of sewage. In many 

countries, the treated sludge (biosolids) may be applied onto agricultural lands as 



 

 

 15 

fertilizers for plants. High concentrations of surfactants were found in treated sludge. 

Surfactants in aerobically treated sludge are found in much lower concentrations than in 

anaerobically digested sludge because of their quicker aerobic biodegradation. Bruno et 

al. [38] determined the surfactants and their metabolites in untreated and anaerobically 

digested sludge and found that the removal rates for anionic surfactants LAS, AS, and 

AES (7%, 28%, and 8%) were lower than for nonionic surfactants AE and NPE (54% 

and 63%) [28]. 

 

TABLE 3. Concentrations of surfactants in treated sludge [28]. 

 

Surfactant Location Treatment Concentration  

(mg/kg dry weight) 

  LAS Switzerland Anaerobically digested sludge 2900–11.900 

  LAS Germany Aerobically treated sludge 

Anaerobically digested sludge 

182–432 

1327–9927 

  LAS Spain Aerobically treated sludge 

Anaerobically digested sludge 

100–500 

7000–30200 

  LAS United States Aerobically treated sludge 

Anaerobically digested sludge 

152 ± 119 

10.462 ± 5.170 

  LAS Italy Anaerobically digested sludge 4342 

  AS   47 

  AES   69 

  AE   143 

  NPE   81 

  OP   17 

  Np   308 

 

However, OP and NP concentrations in the sludge increased after the treatment 

from 14 and 242 mg/kg to 17 and 308 mg/kg, respectively. This is because OPE and 

NPE in the sludge were degraded into OP and NP during the anaerobic digestion. 

Surfactant concentrations up to 416 µg/L have been reported in surface waters (Table 

4). Waters and Feijtel [9] summarized the LAS monitoring data in European rivers with 
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concentrations ranging from under 2.1 to 130 µg/L in water and from 0.49 to 5.3 mg/kg 

in sediment. Sulfophenyl carboxylates, main degradation product of LAS was also 

found in the drinking water samples from Niteroi, Sao Goncalo, and Rio de Janeiro, 

with its concentration ranging from 1.4 ± 0.2 µg /L to 3.7 ± 0.7 µg /L [28,39]. 

 

 

TABLE 4. Concentrations of surfactants in surface waters and sediments. 

 

Surfactant Location River water (µg/L)
a
 Sediment (µg/L) Ref. 

  LAS Brazil  14–155  39 

  LAS Philippines 1.2–102  40 

  LAS Switzerland  190–3400 41 

  LAS Taiwan 11.7–135  42 

  LAS The Netherlands < 2.1–168  30 

  LAS United Kingdom 22–130  43 

  LAS United Kingdom 5–416  44 

  AE United States 2–37  35 

  NPE United States < LOD–17.8 (6.97)  36 

  NPE Taiwan 2.8–25.7 (21.3)  42 
a 
Concentration range and median in parentheses.LOD = limit of detection. 

 

 

The occurrence of APE degradation products (NP, OP) has been widely reported in 

surface waters (rivers, lakes, and coastal waters as well as aquatic biota) around the 

world (Table 5). Concentrations in surface waters were found to be up to 644 µg/L for 

NP and up to 0.47 µg/L for OP, respectively. Owing to their hydrophobic nature, the 

reported alkylphenol levels in the sediments were much higher than in the 

corresponding surface waters. Their concentrations varied between less than 0.1 and 

13,700 µg/kg for NP and up to 670 µg/kg for OP in the sediment. 

 

TABLE 5. Concentrations of alkylphenols in a surface waters and sediments.  

Location Concentration 

(µg/L) in water 
a
  

           NP 

Concentration 

(µg/L) in water 
a
  

          OP 

Concentration 

(µg/kg) in 

 sediment 

        NP 

Concentration 

(µg/kg) in 

sediment 

        OP 

 

Ref. 

Canada <LOD–0.92 <LOD–0.084 0.1–72 <LOD–1.8 45 

United 

Kingdom 

(<LOD) 

<0.03–53 (1.3) 

(<LOD) 

<0.2–22  (<0.2) 

(10.6)
b 

<0.1–1(<0.1) 

(0.41)
b
 46 

47 
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Switzerla

nd 

0.7–26 (2.7)
b
 

<LOD–0.48 

   48 

49 

Spain <LOD–644 (51)   

 

 49 

Japan 0.05–1.08 

0.11–3.08 

<LOD–1.9 

(0.25)
b,c

 

<LOD–3.0 

(0.15)
b,d

 

0.01–0.18 

<LOD–0.09 

30–13000 3–670 50 

51 

52 

 

53 

 

United  

State 

<LOD–1.19 

(1.52) 

12–95 (48)
b
 

0.077–0.416 

(0.2) 

<0.11–0.64 

(0.12)
b
 

<LOD–0.081 

(0.017) 

 

0.00156–0.007 

(0.002) 

 

 

 

6.99–13700 

(2107)
b
 

< 2.9–2960 

(162)
b
 

 

 

 

<LOD–45 (30)
b
 

 

35 

54 

55 

 

56 

 

 

Germany 0.0067–0.134 

(0.023) 

0.0008–0.054 

(0.0038) 

  57 

Taiwan 1.8–10 (3)    42 

 

a
Concentration range and median in parentheses LOD = limit of detection 

b
 Arithmetic mean (± standard deviation) in parentheses for the data in this row 

c
Summer sampling 

d
Autumn sampling 

Once surfactants enter the environment they undergo many processes, such as 

sorption, bioaccumulation, degradation and solubilisation of other organic compounds. 

Sorption of a surfactant onto sediment/soil depends on its physiochemical properties, 

sediment nature and environmental parameters. The information from sorption process 

of a surfactant can be used to estimate the distribution of the surfactant in different 

environmental compartments (sediment/soil and water) and to estimate their 

bioavailability. Sorption also has a significant influence on the degradation of the 

surfactant in the environment. Surfactant molecules may sorb directly onto solid 
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surfaces or may interact with sorbed surfactant molecules. The sorption mechanism is 

dependent on the nature of the sorbent and the surfactant concentration. At low 

concentrations, the surfactant molecules may be sorbed to a mineral surface or clean 

sediment that has very few sorbed surfactant molecules, and sorption may occur mainly 

due to van der Waals interactions between the hydrophobic and hydrophilic moieties of 

the surfactant and the surface. As the surfactant concentration increases, active sorption 

sites on the solid surface become less and less available, and more and more 

hemimicelles start forming. At higher concentrations, such sorption may entail the 

formation of more structured arrangements, including the formation of monomer 

surfactant clusters on the surface or a second layer, for which these arrangements may 

be governed mainly by interactions between hydrophobic moieties of the surfactant 

molecules. Therefore, two-stage sorption isotherms (Figure 8) have been reported for 

nonionic surfactants NPE and AE and anionic LAS, although the sorption behavior is 

different for nonionic and anionic surfactants [28]. 

 

 

 
 

Figure 8. Sorption isotherms for anionic and nonionic surfactants (a.LAS; b.APE and AE, S 

is the sorbed surfactant concentration and C is the surfactant concentration in the solution). 

 

The sorption of LAS on natural soils has two stages. At low LAS concentration 

(<90 µg/cm
3
), the sorption isotherms were linear and the sorption coefficient (Kd) 

ranged from 1.2 to 2.0. At high levels (>90 µg/cm
3
), cooperative sorption was observed 

and the sorption amount of LAS increased exponentially with the increasing of LAS 



 

 

 19 

concentration in the solution [81]. In a real soil environment or aquatic environment, 

where LAS levels are rather low, the LAS sorption ability of a soil or sediment is very 

weak. In contrast, the sorption of a nonionic surfactant reached a maximum on the solid 

surface when the solution is near or just at the CMC level of the surfactant. The 

decreased sorption of nonionic surfactants (APE and AE) on sediment at higher 

concentrations was observed [28].  

At concentrations above the CMC level, surfactants have the ability to solubilize 

more hydrophobic organic compounds than would be dissolve in water alone. The 

effectiveness of surfactants in solubilizing water insoluble or poorly soluble compounds 

is dependent on the sorbed compounds, the environmental media and the surfactant 

[58]. Surfactants may affect the mobility and degradation of hydrophobic organic 

compounds in soil or sediment [59,60]. Aronstein et al. (1991) [58] found that the 

extent of phenanthrene biodegradation was markedly increased at nonionic surfactant 

concentrations of 10 µg/kg soil in both a mineral and organic soil, despite the lack of 

desorption enhancement in the organic soil.  

Ying et al. [61] also found that small percentages (> 1%) of surfactants in water 

could mobilize triazines in the contaminated soils, which have been previously 

stabilized by the activated carbon. Kile and Chiou [62] studied the effect of anionic, 

cationic and nonionic surfactants on the water solubility of DDT and trichlorobenzene. 

As would be expected, the solubility was enhanced when the surfactant was present at 

concentrations greater than the critical micelle concentration. There was also a solubility 

enhancement at surfactant concentrations less than the CMC levels. However, the 

studies by Klumpp et al. [63] and Edwards et al. [59] found that surfactants below CMC 

enhanced the sorption uptake of hydrophobic organic pollutants due to the formation of 

hemimicelles. At higher concentrations, the same surfactants in micellar form 

remobilized those hydrophobic compounds already adsorbed by solubilization.   

Bioconcentration is the accumulation of a chemical in or on an organism when 

the source of chemical is solely water. Bioconcentration is a term that was created for 

use in the field of aquatic toxicology. Bioconcentration can also be defined as the 

process by which a chemical concentration in an aquatic organism exceeds that in water 

as a result of exposure to a waterborne chemical. Bioconcentration factor can also be 

expressed as the ratio of the concentration of a chemical in an organism to the 
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concentration of the chemical in the surrounding environment. In surface water, the 

BCF is the ratio of a chemical's concentration in an organism to the chemical's aqueous 

concentration. BCF is often expressed in units of liter per kilogram (ratio of mg of 

chemical per kg of organism to mg of chemical per liter of water) [28].  

It has been found that longer LAS homologues have higher Kow values (Table 

6). LAS are taken up from water via the fish gills rather than skin [64]. The 

concentrations of the selected LAS homologues (C10LAS to C13LAS) in the liver and 

the internal organs of juvenile rainbow trout increased rapidly demonstrating fast uptake 

into systemic circulation. The bioconcentration factors (BCFs) in rainbow trout ranged 

between 1.4 and 372 L/kg. The BCFs in fathead minnows were higher, ranging from 6 

to 990 L/kg [64]. In the terrestrial environment, BCFs are significantly lower than in the 

aquatic environment and a bioaccumulation of LAS in terrestrial biota is mostly 

unlikely [65]. 

 

TABLE 6. Octanol/Water partition coefficients (Kow) and critical micelle 

concentrations (CMC) of surfactants [28]. 

 

       Compound          Log Kow   CMC(mM) (distilled 

water)  

       C12LAS             1.96              1.1 

       C13LAS            2.54              0.46 

 

 

Tolls et al. [64] produced data for bioaccumulation factors for alcoholethoxylate 

in fathead minnows (Pimephales promelas). The influence of both the alkyl and the 

ethoxylate chain length was studied. The BCF increased with increasing length of the 

alkyl chain and decreasing length of the ethoxylate chain. The bioconcentration factors 

(BCF) ranged between < 5 and 390 L/kg. 

NP and OP also may bioaccumulate in aquatic organisms. This has been 

documented in some fish species from natural waters and from controlled laboratory 

exposure (Table 7). The reported bioconcentration factors (BCF values) in whole fish 

ranged from 21 to 1300 for 4-NP and 267 to 471 for 4-t-OP. The differences in the BCF 
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values of NP and OP among fish species are probably due to their different metabolic 

abilities, functioning of their gills, etc. [28, 66]. 

 

TABLE 7. Bioconcentration factor (BCF, wet weight) data for alkylphenols [28]. 

 

      Species       4-Nonyphenol       4-t-Octylphenol 

      Ayu fish (field) 21 ± 15 297 ± 194 

      Killifish 167 ± 23 267 ± 62 

     Sticklebacks (field) 1300  

     Salmon 282  

     Fathead minnow 270–350  

     Rainbow trout  471 

 

 

1.1.3. Biodegradation of surfactants 

The primary transformation of surfactants occurring in the environment is 

degradation through the microbial activity. Biodegradation is an important process for 

treating surfactants in sewage treatment plants, and it also enhances the removal of these 

surfactants in the environment. 

 

TABLE 8. Biodegradability of surfactants in the environment [28]. 

 

Surfactant   Aerobic condition Anaerobic condition 

LAS Degradable Persistent 

SAS Readily degradable Persistent 

Soap Readily degradable Readily degradable 

Fate acid ester (FES) Readily degradable Persistent 

AS Readily degradable Degradable 

AES Readily degradable Degradable 

Cationic surfactants  

(e.g., TMAC, DTDMAC) 

Degradable Persistent 

APE Degradable Partially degradable 

AE Readily degradable Degradable 
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           During biodegradation, microorganisms can either utilize surfactants as 

substrates for energy and nutrients or cometabolize the surfactants by microbial 

metabolic reactions. The most important factors that affect biodegradation of a 

surfactant in the environment are chemical structure and the physiochemical conditions 

of the environmental media. Different classes of surfactants exhibit different 

degradation behavior in the environment (Table 8). The most of the surfactants can be 

degraded in the environment by microbes, although some surfactants, such as LAS, may 

be persistent under anaerobic conditions [28, 67]. 

Biodegradation of LAS is initiated with a ω-oxidation of the alkyl chain 

followed by successive cleavage of C2 fragments (B-oxidation) (Figure 9). The reaction 

occurring during ω- and β-oxidations generate sulpho phenyl carboxylates (SPCs) 

resulting in the loss of interfacial activity and toxicity [68-70]. (SPCs aromatic ring 

cleavage then follows to achieve LAS mineralization. 

 

 
 

Figure 9. Biodegradation pathway of alkyl benzene sulfonate (LAS)  [71].. 

 

Alkyl sulfates (AS) are among the most rapidly biodegradable surfactants. Both 

primary and ultimate biodegradations are fast and complete in a wide range of test 

designs. The biodegradation is found to involve the enzymatic cleavage of the sulfate 
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ester bonds to give inorganic sulfate and a fatty alcohol. The alcohol is oxidized to an 

aldehyde and subsequently to a fatty acid, with further oxidation following the oxidation 

pathway, thus achieving ultimate biodegradation [68]. 

The primary alkyl sulfatase in the bacterium initiates the biodegradation of SDS 

and hence 1-dodecanol is formed. It is then oxidized to 1-dodecanoic acid by the action 

of alcohol dehydrogenase. Finally it is metabolized by B-oxidation pathway, the 

pathway of SDS degradation in Figure 10 [72]. 

 

 

 

 

Figure 10. The degradation of sodium dodecyl sulfate (SDS). 

                 

The biodegradation of APE in conventional sewage treatment plants is generally 

believed to start with a shortening of the ethoxylate chain, leading to short-chain APE 

containing one or two ethoxylate units. Complete deethoxylation with formation of 

alkylphenols (AP) has been observed only under anaerobic conditions producing mainly 

alkylphenoxy ethoxy acetic acid and alkylphenoxy acetic acid [28]. The three most 
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common groups of intermediates reported were: (a) alkylphenols (e.g., NP and OP); (b) 

short-chain alkylphenol ethoxylates having 1–4 ethoxylate units, with APE2 

predominating; (c) a series of ether carboxylates, including alkylphenoxy acetic acid 

and alkylphenoxy ethoxy acetic acid. Recalcitrant decarboxylated NPE 

biotransformation products with the alkyl chain carboxylated (CAPEs) were also 

detected in a sewage treatment plant effluent. Previous investigations showed that APE 

metabolites degraded more easily under the aerobic than under the anaerobic conditions 

[76]. 

 

 

 

Figure 11. Proposed pathways of aerobic degradation of nonylphenol ethoxylates [76]. 

 

Alkyl ethoxylates (AE) are easily degradable under aerobic and anaerobic 

conditions. High primary biodegradation (96 ± 0.5%) was found for AEs in the 

continuous-flow activated sludge test with a high concentration of metabolites, free 
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fatty alcohol (FFA) and poly (ethylene glycols) (PEG) [76]. However, in a static test, a 

primary degradability of 75%–98% in an aqueous environment was achieved in 10 

days, without significant accumulation of metabolites PEG. This fact is suggesting that 

AE can be readily biodegraded in a variety of different soil types, suggesting AE will 

not accumulate in aerobic sludge-amended soils. 

It is believed that the mechanism for aerobic biodegradation of AE was initiated 

by the central cleavage of the molecule, leading to the formation of PEG and FFA, 

followed by ω- or β-oxidation of the terminal carbon of the alkyl chain and the 

hydrolytic shortening of the terminal carbon of the polyethoxylic chain [28]. In contrast 

to the aerobic biodegradation, where central cleavage prevails, the first step of anaerobic 

microbial attack on the AE molecule is the cleavage of the terminal ethoxy unit, 

releasing acetaldehyde stepwise and shortening the ethoxy chain until the lipophilic 

moiety is reached [28]. 

 

1.1.4. Ecotoxicity of surfactants 

Ecotoxicity, the subject of study of the field of ecotoxicology (a portmanteau of 

Ecology and Toxicology) refers to the potential for biological, chemical or physical 

stressors to affect ecosystems. Such stressors might occur in the natural environment at 

densities, concentrations or levels high enough to disrupt the natural biochemistry, 

physiology, behavior and interactions of the living organisms that comprise the 

ecosystem. 

The Organization for Economic Cooperation and Development (OECD) test 

guideline has developed specific tests to determine toxicity level in organisms. 

Ecotoxicological studies are generally performed in compliance with the international 

guidelines. Concentration required to cause adverse effect in half the members of a 

tested population (LC50) is the acute toxicity test that tests for the concentrate of tissue 

at which it is lethal to 50% within 96 hours. The test may include eggs, embryos, or 

juveniles and last from 7 to 200 days. 

The EC50 is the effective concentration at 50%, which is the concentration that 

causes adverse effects in 50% of the test organisms.  

Lowest Observed Effect Concentration (LOEC) – The lowest test concentration 

that has a statistically significant effect over a specified exposure time. 
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No Observed Effect Concentration (NOEC) – The highest test concentration for 

which no effect is observed relative to a control over a specified exposure time. 

Aquatic toxicity data are widely available for anionic, cationic, and nonionic 

surfactants. Lewis [77] has summarized the chronic and sublethal toxicities of 

surfactants to aquatic animals and found that chronic toxicity of anionic and nonionic 

surfactants occurs at concentrations usually greater than 0.1 mg/L. Some published 

toxicity data for anionic and nonionic surfactants on several test organisms (algae, 

invertebrates or fish) from the literature is presented in Table 9. and 10. [28]. 

TABLE 9. Aquatic toxicity data for anionic surfactants 

 
Chemical Species      Toxicity value Ref. 
C10LAS Daphnia magna LC50—48 h, 13.9 mg/L   9 
C12LAS  LC50—48 h, 8.1 mg/L  
C14LAS  LC50—48 h, 1.22 mg/L  
C12LAS Dunaliella sp.(green alga) EC50—24 h, 3.5 mg/L   78 
C11–12LAS Oncorhynchus mykiss 

(rainbow trout) 

NOEC—54 d, 0.2 mg/L   79 

C12LAS 

(SDBS) 

Salmo gairdneri (rainbow 

trout) 

Gammbusia affinis (mosquito fish) 

Carassius auratus (gold fish) 

Immobilization, EC50—48 h, 

3.63 mg/L  

Immobilization, EC50—48 h, 

8.81 mg/L 

Immobilization, EC50—48 h, 

5.1 mg/L 

  80 

C12AS (SDS) Salmo gairdneri (rainbow 

trout) 

Gammbusia affinis (mosquito 

fish) 

Carassius auratus (goldfish) 

Immobilization, EC50—48 h, 

33.61 mg/L 

Immobilization, EC50—48 h, 

40.15 mg/L 

Immobilization, EC50—48 h, 

38.04 mg/L 

  80 

Sodium dodecyl 

ethoxy sulfate 

(SDES) 

Salmo gairdneri (rainbow 

trout) 

Gammbusia affinis (mosquito 

fish) 

Carassius auratus (goldfish) 

Immobilization, EC50—48 h, 

10.84 mg/L 

Immobilization, EC50—48 h, 

13.64 mg/L 

Immobilization, EC50—48 h, 

12.35 mg/L 

  80 
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TABLE 10. Aquatic toxicity data for nonionic surfactants 

 
Chemical        Species           Toxicity value Ref. 

C12EO6 Salmo gairdneri(rainbow trout) 

 

Gammbusia affinis (mosquito fish) 

 

Carassius auratus (goldfish) 

 

Immobilization, EC50—48 h, 

22.38 mg/L 

Immobilization, EC50—48 h, 

29.26 mg/L 

Immobilization, EC50—48 h, 

28.02 mg/L 

80 

C9–11EO6 Pimephales promelas (fathead 

minnow) 

LC50—10 d, 2.7 mg/L 81 

OPEO6 Salmo gairdneri (rainbow trout) 

 

Gammbusia affinis (mosquito fish) 

 

Carassius auratus (goldfish) 

Immobilization, EC50—48 h, 

6.44 mg/L 

Immobilization EC50—48 h, 

9.65 mg/L 

Immobilization, EC50—48 h, 

9.24 mg/L 

80 

NPEO8 Australian native frogs Full narcosis, EC50—48 h, 

2.8–3.8 mg/L 

82 

NPEO9 Fathead minnow 

Daphnia magna 

LC50—96 h, 4.6 mg/L 

LC50—48 h, 14 mg/L 

83 

NP Fathead minnow 

Daphnia magna 

LC50—96 h, 0.3 mg/L 

LC50—48 h, 0.19 mg/L 

83 

 

Some recently published toxicity data for the three classes of surfactants on 

several aquatic species have been presented in Table 11. They found that cationic 

surfactants were more toxic than anionic and non-ionic surfactants [84].     

 

TABLE 11. Chronic toxicity of surfactant to aquatic species. 

Organisms Species Surfactants Toxicity value Conc. 

mgL
-1 

Bacteria Vibrio fischeri 

Vibrio fischeri 

Photobacterium 

phosphoreum 

Dunaliella sp. 

Dunaliella sp. 

LAS 

QAC 

QAC 

LAS 

QAC 

EC50-Luminescence 30 min 

EC50-Luminescence 30 min 

EC50-immobilization 24 h 

EC50-24 h 

EC50-24 h 

109.7 

 

0.5 

 

0.15–0.63 

3.5 

0.79 

Algae Scenedesmus 

 subspicatus 

Selenastrum 

Pseudokirchneriella

subcapitata 

AEO 

 

AEO 

PFOS 

 

EC10 

 

EC10 

EC50 

 

0.03 

 

9.791 

146μM 
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C.vulgaris PFOS EC50 96 μM 

Crustaceans Daphnids 

Daphnia magna 

QAC 

(benzalkon

ium 

chloride) 

QAC 

LC50 

 

 

EC50-immobilization 24 h 

0.1–1.0 

 

 

0.13–0.38 

Amphipod Echinogammarus 

 tibaldii 

QAC 

(cetyltrimet

hyl 

ammonium 

bromide) 

LC50 7.7 

Invertebrate Daphnia magna AEO EC50 0.36 -50.5 

 

Significant amounts of surfactants can enter into the soils through sewage 

sludge, which is increasingly applied on agricultural lands as fertilizers for plants. The 

occurrence and the distribution of these surfactants in soil by the application of sewage 

sludge present a potential ecotoxicological risk. Exposure of soil to surfactants makes 

this environment hostile for microorganisms. The effects of surfactant on 

microorganisms were mainly due to the reactions at the cell surface. According to 

Jensen (1999) [65], a depolarization of the cell membrane by the absorption of 

surfactant may result in a decreased absorption of essential nutrients and oxygen 

consumption or a decreased release of toxic metabolic products from the cell leading to 

a build-up [85]. The toxicological effect of surfactants on terrestrial environment is 

presented in Table 12 [84]. 
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TABLE 12 Toxicity of different type of surfactants against various terrestrial 

organisms. 

Organisms Species Surfactants Toxicity value Conc. mg/L 

Soil fauna Eisenia foetida 

Lumbricus 

terrestris 

Platynothrus 

peltifer 

Isotoma viridis 

LAS 

LAS 

 

LAS 

 

LAS 

Mortality (14 days) 

Mortality (14 days) 

 

Mortality (LC50) 

 

Mortality (LC50) 

1000 mg/kg in OECD soil 

1000 mg /kg in OECD soil 

 

319 mg/kg in LUFA soil 

 

661 mg /kg in OECD soil 

Bacteria Azobacter sp. NP  18.8–37.6 mg/kg 

Algea Navicula 

peliculosa 

LAS EC50, 96 h 1.4 

Crustaceans Arcatia tonsa 

Arcatia tonsa 

LAS 

NPEs 

EC50, 48 h 

LC50, 48 h 

1.11 

359 

Fish Pleuronectes 

plateas 

Promelas 

Pimephales 

LAS 

 

NPEs 

EC50, 96 h 

 

LC50, 96 h 

1.0 

 

190 

Invertebrate Folsomia 

fimetaria 

Folsomia candid 

NP 

NP 

EC50 (21 days) 

EC50 (21 days) 

5–133 mg /kg 

5–133 mg/ kg 

Terrestrial Brassica rapa LAS EC50 

(14days)(Growth) 

137.7 mg/ kg 

Plants Malvia pusilla 

Solanum nigrum 

Chenopodium 

album 

Ryegrass Lolium 

LAS 

LAS 

LAS 

 

LAS 

 204.2 mg/kg 

169.2 mg/kg 

164.3 mg/kg 

 

500 kg ha
−1

, strong effects 

 

Although the toxicity of alkylphenol ethoxylates (APEOs) is relatively low, 

concern over their metabolites has received a great attention, especially for those with 

one or two ethoxylate groups or those with none (alkylphenols). Borghi et al. (2011) 

[86] have indicated that nonylphenol ethoxylates and octylphenol ethoxylates are much 

less toxic to aquatic organisms than their degradation products (nonylphenol and 

octylphenol), which are classified as endocrine-disrupting chemicals. They alter the 

normal functioning of the hormonal system of mammalians, fishes and amphibians [84]. 
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1.2. Advanced Oxidation Process (AOPs) 

Advanced oxidation processes are defined as the processes that generate 

hydroxyl radicals in sufficient quantities to be able to oxidize majority of the complex 

chemicals present in the effluent water. The hydroxyl radical is a powerful oxidant and 

a short lived, highly reactive and non-selective reagent that is easy to produce. Thanks 

to high reactivity and non-selective properties of hydroxyl radicals, AOP’s are 

considered as very important methods for treatment of toxic waste in water systems [87, 

88]. 

 

TABLE 13. Oxidizing potential for conventional oxidizing agents in acid [89]. 

Oxidation agent Standard potential (V, NHE) 

Fluorine (F2) 3.03 

Hydroxyl radical (
•
OH) 2.80 

Oxygen (atomic) 2.42 

Ozone (O3) 2.07 

Hydrogen peroxide (H2O2) 1.77 

Potassium-permanganate (KMnO4) 1.67 

Hypobromous acid (HBrO) 1.59 

Chlorine dioxide (ClO2) 1.50 

Hypochlorite (HClO) 1.49 

CHLORINE (CL2) 1.36 

Oxygen (molecular) 1.23 

Bromine (Br2) 1.09 

 

Half-life of hydroxyl radical is about 10
-9

 seconds. Short half-life and extremely 

reactive properties influence the process of its production and application. Because of 

its high reactivity, hydroxyl radical cannot be contained and it must be generated “in 

situ” when needed. The underlying reactions and OH
•
 formation efficiencies of various 

approaches such as the Fenton reaction (Fe
2+

/H2O2), photo-Fenton reaction (Fe
3+ 
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/H2O2/hν), UV/H2O2, peroxone reaction (O3/H2O2), O3/UV, O3/activated carbon, 

O3/dissolved organic carbon (DOC) of water matrix, ionizing radiation, vacuum UV, 

and ultrasound are reviewed [90].  

AOPs show great flexibility at practical use, because of fact that they can be 

used separately or in combination with some other classic methods for water treatment. 

Besides, another great advantage of AOPs over classic methods for wastewater 

treatment is the possibility for doing the treatment at ambient conditions, i.e. 

atmospheric pressure and room temperature and so called ambient AOPs can be used 

for low loaded wastewater.                  

Advanced oxidation processes (AOPs) have already been used for the treatment 

of wastewater containing recalcitrant organic compounds such as pesticides [92], 

surfactants [17], coloring matters [92], pharmaceuticals [93] and endocrine disrupting 

chemicals. Moreover, they have been successfully used as pretreatment methods in 

order to reduce the concentrations of toxic organic compounds that inhibit biological 

wastewater treatment processes [94].   

AOPs can provide effective technological solutions for water treatment. Such 

solutions are vital for supporting and enhancing the competitiveness of different 

industrial sectors, including the water technology sector, in the global market. The main 

goals of academic, research and industrial communities through the development and 

implementation of environmental applications of AOPs will be [95]: 

1) New concepts, processes and technologies in wastewater treatment with potential 

benefits for the stable quality of effluents, energy and operational cost savings and the 

protection of the environment. 

2) New sets of advanced standards for wastewater treatment. 

3) New methodologies for the definition of wastewater treatment needs and framework 

conditions. 

4) New know-how for contributing to enhancing the European water industry 

competitiveness. 
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1.2.1. Ozone O3 

 

Ozone O3 was discovered in 1840 and the structure of the molecule as triatomic 

oxygen was established in 1872. The first use of ozone was reported at the end of the 

19th century as a disinfectant in many water treatment plants, hospitals, and research 

centers [96].   

O3 is known as a very reactive agent in both water and air, which is attributed to 

its electronic configuration. O3 can be represented as a hybrid of four molecular 

resonance structures (see Fig. 12). As can be seen, these structures present negative and 

positively charged oxygen atoms, which in theory imparts to the ozone molecule the 

characteristics of an electrophilic, dipolar and even nucleophilic agent [97].   

 

Figure 12. Chemical structure of the ozone molecule. 

 

The O3 can be generated artificially in the ozone generators. There is two ways 

of generating ozone by ozone generators: (a) the cleavage of oxygen molecules under 

the influence of strong electrical field and (b) the same mechanism like in nature, the 

photolysis of oxygen [96].    

The direct oxidation of organic components by ozone (M + O3) is a selective 

reaction with slow reaction rate constants, typically being in the range of (KD =1.0-10
6 

M
-1

s
-1

). 

The ozone molecule reacts with the unsaturated bonds due to its dipolar 

structure and leads to a splitting of the bond, which is based on the so - called Criegee 

mechanism (see Fig. 13), which was developed for non-aqueous solutions. 
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Figure 13. Plausible aqueous reactions with ozone. 

 

In general, ozone reacts faster with the organic water contaminants, the ones 

having the higher electron density, i.e., the degree of nucleophilicity. Ozone will react 

faster with certain types of aromatic and aliphatic compounds, for example, those 

carrying electron - supplying substituents such as hydroxyl or amine groups. If there is 

no such substituent the rate of ozonation is much slower. The following order of 

reactivity toward ozone can be used as a rule of thumb for the various target compound 

groups: saturated aliphatic < aromatic ring < unsaturated aliphatic e
- 

- detracting 

substitutes < non-substituted < e
−
 - supplying substitutes undissociated < dissociated.  

Table 14 gives some general and specific examples of the reactivity of organic 

compounds toward ozone [98, 99].  

TABLE 14. Oxidation of organic compounds by ozonation.  

Compound Type KD (M
-1

s
-1

) 

 Aliphatic: saturated, alkanes 

Aliphatic: e
-
 supplying substitutes, alcohols 

Aliphatic: unsaturated, alkenes 

Aromatics: nonsubstituted 

     10
-2

 

     10
-2

–1 

     1–10
4
 

     1–10
2
 

Benzene Aromatic ring: nonsubsituted       2 

Chlorobenzene Aromatic ring: e
-
 detracting substitutes       0.8 

Phenol Aromatic ring: e
-
 supplying substitutes undissociated       1.3 × 10

3
 

Phenol Aromatic ring: e
-
 supplying substitutes dissociated        1.4 × 10

9
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This type of reaction is important in acid media and this route leads to a very 

limited mineralization of the organic compounds. Its use for the removal of pollutants 

must be reinforced by modification of the method. 

The stability of ozone largely depends on the water matrix, especially its pH, the 

type and content of natural organic matter (NOM) and its alkalinity. 

The pH of water is important because hydroxide ions initiate ozone 

decomposition that involves the following reactions (Eq. 1-7) [100, 101]: 

 

O3 + HO
– → O2 + HO2

–
                                                       (1) 

HO2
- 
+ O3 → O3

•–
 + HO2

•
 (2) 

HO2
• ⇔ O2

•–
 + H

+
 (3) 

O2
•–

 + O3 → O3
•–

 + O2                                                           
                               (4) 

O3
•–

 + H
+ → HO3

•
 (5) 

HO3
• → HO

•
 + O2 

(6) 

O3 + HO
•⇔ O2 + HO2

•
 (7) 

 

Thus, the decay of ozone initiated by the hydroxide ion leads to a chain 

reactions, producing fast-reacting and nonselective OH radicals. The •OH reacts with 

the target molecule at the position with the highest electron density due to its 

electrophilic properties. Detailed information on kinetics of the oxidation of selected 

organic compounds with ozone and OH radicals at ambient temperature can be found in 

relevant literature [102]. 

Four nonionic groups of surfactants with the trade names Triton 

(polyethyleneglycol-mono-(p-(1,1,3,3-tetramethylbutyl) phenol-ether), Tergitol 

(polyethyleneglycol 2,6,8-trimethyl-4 nonanol ether), Synperonic (polyethyleneglycol 

nonyl phenol ether), and Brij (polyethyleneglycol cetyl ether) with initial concentrations 
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over and below a critical micelle concentration are decomposed by ozone. Authors 

found that presence of the benzene ring made decomposition difficult compared to 

molecules without it. A 28% reduction of Triton X-100 (120 mg/dm
3
) and a 94.1% 

reduction of Tergitol TMN10 (100 mg/dm
3
) were achieved. Molecules with a large 

number of ethoxylated units were more easily degraded than the molecules with a 

shorter chain. For a lower concentration, when the surfactant is in the monomeric form, 

the reaction rate is higher than in the case when it appears in the micelle form: linear 

molecules were more quickly decomposed than the corresponding molecules with a 

branched aliphatic chain [103]. 

In other paper two commercial surfactants (sodium dodecyl sulphate and 

tetraethylammonium dodecylbenzen sulphonate have been submitted to ozone 

treatment. At neutral pH (around 6.2) only 20% elimination of SDS was achieved after 

30 min treatment (according to MBAS method). In basic medium ozonation of same 

surfactant was more efficient (70% elimination). In the case of SDBS author obtained 

significantly better results at neutral pH than those obtained for SDS (50% of 

degradation after 30 min). In basic medium degradation of SDBS was 80% [104]. 

 

1.2.2 Ozone/ UV - Radiation O3 / UV 

Ozone in aqueous solution absorbs UV radiations between 200 and 360 nm with 

a maximum at 253.7 nm ((low-pressure Hg lamp - λ = 253.7 nm)) (molar absorption 

coefficient ε max = 3600 L mol
-1

cm
-1

). The photolysis of ozone in water leads to the 

formation of 
•
OH radicals, according to the following successive and competitive steps 

(Eq. 8-12) [105]:  

 

O3 + H2O + hυ → 2 
•
OH + O2 (8) 

O3 +
 •
OH → HO2

•
+ O2 (9) 

O3 + HO2
•
→ 

•
OH + 2 O2 (10) 

•
OH + HO2

•
→ H2O + O2                                (11) 

2
•
OH → H2O2 (12) 
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In their paper Amat et al. [19] examine degradation of SDS and SDBS with 

ozone and combination of ozone and UV (low-pressure Hg lamp 254 nm). They 

compare results of decrease of surfactants concentration (MBAS method) after 30 min 

of treatment with ozone and combination ozone/UV. In the case of SDS decrease of 

SDS concentration with ozone at neutral pH was 20% and with ozone/UV around 90%. 

In the case of SDBS decrease of concentration was 60% for ozone and 90% for 

ozone/UV.  

In another paper significant increase in COD (16.71% ozone, 77.42 ozone UV 

medium pressure) and TOC 3.7 ozone, 64.27 ozone UV medium pressure) reduction 

were achieved after NPEO40 solution treatment [106].   

 

1.2.3 Ozone + Hydrogen Peroxide (O3/H2O2)  

 

The reaction of H2O2 with O3, often termed peroxone process, is one of the 

AOPs that produce hydroxyl radicals (
•
OH) in aqueous solution with 

•
OH yield per O3 

close to 50%. 

Mechanism of hydroxyl radical is presented in reactions (Eq. 13-18). 

 

H2O2 → H
+
 + HO2

-
                                            (13) 

HO2
 -
 + O3 → HO2

•
+ O3

•-
                                   (14) 

HO2
•
 → O2

•- 
+ H

+
                                              (15) 

O2
•-
 + O3 → O2 + O3

•-
                                (16) 

O3
•-
 + H

+
 → HO3

•
 (17) 

HO3
•
 → 

•
OH + O2 (18) 

 

Recently, this mechanism has been modified by assuming that the electron 

transfer in reaction 14 is preceded by adduct formation (reaction 19), and the conversion 

of O3
•- 

 into  
•
OH must proceed via reactions 20 and 21 rather than by reactions 17 and 

18. 
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HO2
-
 + O3 → HO5

-
 (19) 

HO5
-
 → HO2

•
 +O3

•-
 (20) 

O3
•- 

→ O2 + O
•-
 (21) 

O
•-
 + H2O →

 •
OH + OH

- 
                                                                         (22) 

HO2
-
 + O3 → HO2

•
 + O3

•-
       

k11 = 2.2×10 
6
 M

−1
 s

-1
 

(23) 

            In the case of ozonation of SDS and SDBS in the presence of hydrogen peroxide 

nearly complete elimination of the surfactant species was accomplished but degradation 

was lower compared with the ozone/UV treatment [104].  

In other study authors found that presence of H2O2 considerably increased the 

removal rate during SDBS ozonation and decrease was virtually double that removed by 

the use of ozone alone [107]. 

  

1.2.4 Hydrogen Peroxide – UV Radiation (H2O2/UV) 

 

The direct photolysis of hydrogen peroxide H2O2 leads to the formation of 
.
OH 

radicals (Eq. 24) [108]. 

 

H2O2 
hv  2 

•
OH                                   (24) 

Also HO2
–
, which is in an acid–base equilibrium with H2O2, absorbs the UV 

radiation of the wavelength 254 nm (Eq. 25 and 26):  

 

H2O2 →  HO2
- 
+ H

+
                                   (25) 

HO2
- hv

•
OH + O

•-
                                                                 (26) 

 

The basic concept of these systems is the decomposition of H2O2 with the 

formation of free radical intermediates, especially the hydroxyl radical. This radical is 
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capable of reacting with a variety of organic compounds leading to either partial or 

complete degradation of these compounds to CO2, H2O and inorganic ions.  

Factors affecting UV-H2O2 treatment are presented as following [109]:  

1) Usually there is an optimum concentration beyond which the presence of hydrogen 

peroxide is detrimental to the degradation reaction due to the scavenging action. (Eq. 27 

and 28). 

•
OH + H2O2 → H2O + HO2

•
       k = 2.7 × 10

7
 M

−1
 s

−1
         (27)                          

•
OH + HO2

− → HO2
•
 + OH

−
       k = 7.5 × 10

9
 M

−1
 s

−1            (28) 
 

 

2) Presence of compounds (e.g. humic acid), which results in strong absorption of 

incident UV light is another factor that needs to be considered while adjusting the dose 

of hydrogen peroxide. 

3) Lower operating pH (in the range 2.5–3.5) is usually preferred for the combination 

technique of UV photolysis coupled with H2O2. 

4) Synergism between UV photolysis and H2O2 will be beneficial only for the 

contaminants, which require a relatively higher level of oxidation conditions (higher 

activation energies). 

In their paper Sanz et al. examined photochemical degradation of LAS with UV-

H2O2 system. They found that pH has no significant influence on oxidation and that the 

degradation is favored by the amount of peroxide up to a certain critical value (molar 

ratio H2O2/LAS around 20). Beyond this value there are no improvement in degradation 

[110].    

In another paper Arslan Alaton et al. [111] optimized reaction parameter for 

degradation of mixture of alkyl ethoxylate. COD value of treated sample was in the 

range 150-900 mg L
-1

.  They found that complete organic carbon removal could be 

achieved after 60 min, corresponding to UV dose of 21 kWh/m
3
 and H2O2 

concentrations 30 - 40 mmol/L.  Degradation of the original surfactant traced via HPLC 

analyses occurred appreciably faster (ca. 15–20 min). 

Degradation of NPE-9 was tested for UV-C runs in the absence and in the 

presence of H2O2 (1:1 and 1:0.5 NPE-9/H2O2 molar ratios). Dark reactions with H2O2 

gave less than 15% degradation in 3 h. Although NPE-9 could be very well degraded by 
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UV-C light alone (reaching 75% depletion in 180 min), H2O2 addition increased the 

rate, but no significant differences were found between the two H2O2 concentrations 

used [112].  

The degradation products during advanced oxidation of the nonionic surfactant 

nonylphenol decaethoxylate with the H2O2/UV-C were also investigated [113]. 

H2O2/UV-C ensured complete removal of NP-10 and partial mineralization (79%), 

which was accompanied by the generation of polyethylene glycols with 3–8 ethoxy 

units. PEGs containing 3–8 ethoxy units, aldehydes and carboxylic acids including 

formic, acetic and oxalic acids were identified as the degradation products of NP-10 by 

the H2O2/UV-C.  

 

1.2.5 Fenton System (H2O2/Fe
2+

) 

 

Fenton and related reactions encompass reactions of peroxides (usually H2O2) 

with iron ions to form active oxygen species that oxidize organic or inorganic 

compounds when they are present [114-116]. The history of Fenton chemistry dates to 

1894, when Henry J. Fenton reported that H2O2 could be activated by Fe (II) salts to 

oxidize tartaric acid. 

The mechanism for decomposition of H2O2 in acidic solution in the dark and in 

the absence of an organic compound consists of the sequence of reactions 29–35 [117].  

 

Fe(II) + H2O2 → Fe(III) + OH
-
 +HO

•
 (29) 

Fe(III) + H2O2 → Fe(II) + HO2
•
 + H

+
 (30) 

HO
•
 + H2O2 → HO2

•
 + H2O (31) 

HO
•
 + Fe(II) → Fe(III) + OH

-
 (32) 

Fe(III) + HO2
•
 → Fe(II) + O2H

+
 (33) 

Fe(II) +HO2
•
 + H

+
 → Fe(III) + H2O2 (34) 

HO2
•
 +HO2

•
 → H2O2 +O2 (35) 
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Fenton process is strongly dependent on the solution pH due to iron and 

hydrogen peroxide speciation factors. The optimum pH for the Fenton reaction was 

found to be around 3 [118].   

At higher pH the activity of Fenton reagent is reduced due to formation of ferric 

hydroxide precipitate and the presence of relatively inactive iron oxohydroxides [119]. 

At pH below 3, decrease in degradation efficiency was observed [120]. At very low pH 

values, iron complex species [Fe(H2O)6]
2+

 exist, which reacts more slowly with 

hydrogen peroxide than other species. Usually the rate of degradation increases with an 

increase in the concentration of ferrous ion [121]. However, the extent of increase is 

sometimes observed to be marginal above a certain concentration of ferrous ion. 

Concentration of hydrogen peroxide plays a crucial role in deciding the overall 

efficiency of the degradation process. Usually it has been observed that the pollutant’s 

degradation percentage increases with an increase in the dosage of hydrogen peroxide 

[122].   

Elements with multiple redox states (like chromium, cerium, copper, cobalt, 

manganese and ruthenium) can also decompose H2O2 into hydroxyl radical through 

conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition 

into HO
• 

can be also achieved using electron transfer mechanism in zero-valent 

aluminum/O2 system. Mechanisms and practical limitations influencing their 

environmental applications have been reviewed [123]. Photo-Fenton process, a 

combination of hydrogen peroxide and UV radiation with Fe
2+

 or Fe
3+

 oxalate ion, 

produces more hydroxyl radicals compared to conventional Fenton method or 

photolysis and in turn increases the rate of degradation of organic pollutants [124,125].  

Fenton reaction accumulates Fe
3+

 ions in the system and the reaction does not 

proceed once all Fe
2+

 ions are consumed. In photo-Fenton reaction, photo-reduction of 

ferric ions (Fe
3+

) regenerates ferrous ions (Fe
2+

). The newly generated ferrous ions react 

with H2O2 and generate hydroxyl radical and ferric ion, and the cycle continues. 

Working at an initial pH value of 8, a Fe
2+

 dosage of 600 mgL
-1

 and a H2O2 

dosage of 120 mgL
-1

, the chemical oxidation demand (COD) and linear alkylbenzene 

sulfonate (LAS) were decrease from 1500 and 490 mgL
-1

 to 230 and 23 mgL
-1

 after 40 

min of fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton 
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reagent was very effective at enhancing the biodegradability of this kind of wastewater 

[126]. 

Fenton’s reagent has shown high efficacy in SDBS transformation at pH 2 but 

does not mineralize the dissolved contaminant and is ineffective at pH 7. The efficacy 

of this advanced oxidation process is mainly determined by the amount of Fe(II) used, 

whereas H2O2 only affects the rate of the process, dissolved oxygen had little effect 

except at pH 7. This is because (i) dissolved oxygen can compete with H2O2 for the 

oxidation of Fe(II) only at pH>5 , because Fe(II) is not oxidized by O2 at low pH, (ii) at 

pH 7, the Fe(III) formed from oxidation of Fe(II) with H2O2 precipitates as Fe(OH)3 and 

therefore no longer takes part in the catalytic reaction, and (iii) according to Fe(II) 

speciation, it is well known that Fenton’s reaction is not effective at neutral or basic pH.  

Fenton oxidation of 10 nonionic surfactants (6 alcohol ethoxylates and 4 

alkylphenol ethoxylates) was investigated. Oxidation reactions were quite fast (less than 

5 min) [42] and led to a maximum surfactants removal of 96–99%. The dosages of 

Fenton reagents (H2O2 and Fe
2+

) necessary for achieving the maximum removal linearly 

increased with the length of the surfactants ethoxy chain [128].  

Fenton and photo-Fenton processes were tested for the degradation of a sodium 

dodecyl sulphate.  When soft conditions are employed (1 mM Fe
2+

; 4 mM H2O2), only a 

14% of degradation is achieved in 60 min. By increasing the iron and the oxidant 

concentration around one magnitude order, the removal efficiency of SDS improved 

63% approximately in the same reaction time At the same reaction conditions tested 

(10 mM FeSO4; 60 mM H2O2), 63% of SDS degradation was achieved in the absence of 

solar radiation whereas a 79% of SDS removal was obtained in the CPC reactor (tubular 

pyrex glass reactor located in the focus of a compound parabolic concentrator) [129].  

Similar results were obtained in Fenton and photo-Fenton process degradation of 

NPE-9. With the same concentrations of reactants (1:1:0.5 NPE-9/H2O2/Fe
2+

) authors 

obtained significantly better results in photo-Fenton reactions (degradations of 9_NPE 

in Fenton reaction was 60 % and in photo-Fenton reaction 96 %) [112].   

A wide range of solid materials, such as transition metal exchanged zeolites 

have been proposed as heterogeneous catalysts for the oxidative degradation of organic 

compounds through the Fenton-like reaction [130]. Commercial linear alkylbenzene 

sulphonic acids (LAS) have been chosen as model compound in photo-Fenton reaction 
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with heterogenous Fenton catalysts. Good results, comparable with classic photo Fenton 

reaction, have been obtained with H2O2/FeOOH and H2O2/[Fe(III)/SiO2 (3%)] and 

sunlight.                                          

Advantages of heterogenous system have been: extent of mineralization of the 

same order of homogeneous photo activated method, recycling of catalyst with low 

material cost and no sludge formation [131]. 

 

1.2.6 Photocatalytic Oxidation (UV/TiO2) 

 

Among AOPs, heterogeneous photocatalysis has proved to be efficient tool for 

degrading aquatic organic contaminants Heterogeneous photocatalysis involve the 

acceleration of photoreaction in presence of semiconductor photocatalyst. One of the 

major applications of heterogeneous catalysis is photocatalytic oxidation to effect partial 

or total mineralization of liquid phase contaminants. Even though degradation begins 

with a partial degradation, the term ‘photocatalytic degradation’ usually refers to 

complete photocatalytic oxidation or photomineralization, essentially to CO2, H2O, 

NO
3−

, PO4
3−

 and halide ions. Heterogeneous photocatalysis has attracted constant 

research since its infancy considering the high number of excellent reviews and books 

devoted by many researchers [132-134].  

Many chalcogenide semiconductors such as TiO2, ZnO, ZrO2, CdS, MoS2, 

Fe2O3 and WO3 have been examined and used as photocatalysts for the degradation of 

organic contaminants [135]. In spite of the constant vigorous research activities over 

two decades in search for an ideal photocatalyst, titanium dioxide in its anatase 

modification (Degusa P-25) has remained a benchmark against which any emerging 

material candidate will be measured since it was reported to have the best combination 

of photoactivity and photostability.  

In order to activate the degradation process, pure TiO2 requires photo-excitation 

with light at wavelengths exceeding the band gap of the active anatase phase of 3.2 eV, 

that is, wavelengths of ≤ 387 nm, This produces electron-hole (e
−
 / h

+
 ) pairs (Eq. 36). 

 

TiO2 + hv = e
−
 cb (TiO2) + h

+
 vb (TiO2) (36) 

 Where cb is the conduction band and vb is the valence band.  
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Thus, as a result of irradiation, the TiO2 particle can behave either as an electron 

donor or acceptor for molecules in contact with the semiconductor. The electron and 

hole can recombine, releasing the absorbed light energy as heat, or they can participate 

in redox reactions with adsorbed species as the valence band hole is strongly oxidizing 

while the conduction band electron is strongly reducing. On the semiconductor surface, 

the excited electron and the hole can participate in redox reactions with water, 

hydroxide ion (OH
−
), organic compounds or oxygen leading to mineralization of the 

pollutant. 

Photodegradation of a commercial detergent whose major components are an 

anionic surfactant in aqueous TiO2 dispersions under irradiation with concentrated 

sunlight in the presence of air was examined. Authors found that the optimal operational 

parameters for this detergent were, respectively: TiO2 loading, 6 gL
-1

; circulation flow 

rate, 4.9 L min
-1

; and pH 4.9. The increase in surface tension as the degradation 

proceeded was faster than the temporal degradation of the detergent [136].  

In another paper [137] SDBS surfactant was degraded photocatalytically in a 

batch mode with a circulation system exposed to concentrated sunlight using a parabolic 

round sunlight concentrator Applied PRC reactor essentially consisted of a parabolic 

round mirror concentrator for geometric concentration of solar light, that was equivalent 

to 70 suns (aperture diameter 1.0 m, mirror area 0.785 m
2
), and a round bottom flask 

photoreactor (Pyrex walls; volume, 1.3 l). 

They also examined the effect(s) that additives such as potassium persulfate 

(K2S2O8) have on the process. Authors found that enhancement of TOC removal depend 

on the pH, the TiO2 loading and the quantity of the K2S2O8 additive. At pH 5.0 and at a 

TiO2 loading of 5.0 g L
−1

 the degradation of SDBS was not enhanced on addition of the 

extraneous K2S2O8 oxidant in the concentration range between 1.0 and 30 mM. 

However, on using a loading of 0.20 g L
−1

 of TiO2 the degradation of SDBS was 

significantly enhanced in the presence of persulfate additive (K2S2O8, 5.0 and 20 mM). 

Sodium lauryl sulfate (0.1–0.6 mM) in aqueous solution was photocatalytically 

decomposed in the fluidized bed reactors with UV illumination by a TiO2 photocatalyst 

immobilized on a porous SiO2 support [138]. As the lamp intensity increased, the 

photon rate became higher and a higher photoefficiency was obtained. It was also found 
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that the pH is another important parameter in determining the reaction rate and the 

acidic conditions were favorable for the sodium lauryl sulfate and TiO2 system.  

In photocatalytic degradation of 9-NPE (TiO2-UV-C) authors found decrease of 

9-NPE concentration (89%) and TOC decrease (42.7%). TOC decreased rapidly in the 

first 5 min and then stopped, indicating the formation of recalcitrant intermediates 

[112]. 
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1.3. Non-thermal plasma 

 

Plasmas are ionized gases. They consist of positive and negative ions, electrons, 

as well as neutral species. The plasma state is often referred to as the fourth state of 

matter. Much of the visible matter in the universe is in the plasma state.  

All plasma systems, in terms of thermodynamic equilibrium (related to electronic 

density and temperature), are defined into two categories: thermal and non-thermal 

plasma [139]. Thermal plasma (arc discharges, torches or radio frequency plasma) is 

associated with sufficient energy introduced to allow plasma constituents to be in 

thermal equilibrium. Non-thermal plasma is obtained using less power (corona 

discharge, dielectric barrier discharge, gliding arc discharge, glow discharge and spark 

discharge), which is characterized by an energetic electron temperature much higher 

than that of the bulk-gas molecules.  

Thermal plasma is sustained with introducing high electrical energy, so that a 

high flux of heat is created, which can be used in processing even the most recalcitrant 

wastes via thermal incineration processes. It is a promising alternative to conventional 

and industrially mature thermal processes for waste treatment [140]. 

Non-thermal plasma produced in water solutions forms the basis of innovative AOPs 

for the water treatment [141,142]. The non-thermal plasma process can remove 

chemical and biological wastes in all three states (gas, liquid and solid). The method can 

be used in treatment of wastewater with both high and low concentration of organic 

matter, even in a large flux.  

 

1.3.1. Types of non-thermal plasma 

Based on the plasma-phase distribution, electrical discharges with liquids can be 

subdivided into three main groups, namely, electrical discharges above liquid surface, 

direct electrical liquid discharges and discharges in bubbles/vapor in liquids (Figure 14) 

[143]. 
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Figure 14. Typical electrode configurations for the three different types of discharges in 

contact with liquids. (a) Direct liquid phase discharge reactor (b) gas phase discharge 

reactor with liquid electrode (c) example of bubble discharge reactor [143]. 

 

The discharge directly in the liquid, so-called direct liquid streamer or corona 

discharges are almost always generated by pulsed excitation in a pin-to-plate 

configurations or in plate–plate configurations [144,145]. The most commonly used 

excitation method is the capacitor discharging by means of a spark gap or another 

triggering device or to produce pulsed excitation with use of pulse forming lines as used 

in high power water switching. Electrical breakdown is generally defined as the moment 

when a conductive plasma channel forms an electrical connection between the two 

metal electrodes inside the liquid. Historically, regarding the breakdown initiation in 

liquids under pulsed excitation two principal schools of thought emerged a few decades 

ago. The first favours an electron multiplication theory in the liquid, whereas the second 

favors a bubble mechanism breakdown theory or more generally a phase change 

mechanism breakdown theory. Discussion of this two thoughts and experiments that 

confirm theory and influence of different factors on electrical breakdown in liquid have 

been reviewed [143]. 
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Figure 15. Various reaction zones involved in the production and reactions of reactive 

species formed by the high voltage electrical discharge in water. [146] 

 

In their paper Sahni and Locke [146] proposed three critical reaction zones in 

the pulsed streamer discharge processes (Figure 15): a high temperature electrical 

discharge zone (depicted by the orange region) where the radicals such as OH
·
 and H

·
 

are formed from water dissociation (eq 37), a radical recombination zone (depicted by 

the white region) where the radicals recombine to yield molecular products such as 

H2O2, H2, and O2 that diffuse into the bulk (eqs 38–40), and the zone representing the 

bulk solution (depicted by the blue region) where radicals and molecular species 

diffusing into the bulk react with molecular species (Eq. 41 and 42 these two reactions 

may also occur in the recombination zone). 

 

H2O → OH
•
+H

•
  (37) 

OH
•
 +H

•
 → H2O2 

 (38) 

H
•
 +H

•
 → H2 

 (39) 

OH
•
 + H

•
 → H2O

  (40) 

OH
•
 + probe → products  (41) 

OH
•
 + H2O2 → HO2

•
 + H2O  (42) 
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Experiments over a wide range of probe concentrations strengthen the 

hypothesis that the hydroxyl radical is the predominant precursor of hydrogen peroxide 

formation. They also found that by increasing the power input linear increase in the rate 

of production of hydroxyl radicals is observed.   

In the cases of electrical discharges above liquid surface, the plasma generation 

and gas phase breakdown above liquid surface is mostly similar to the gas electrical 

discharge. Fast imaging of electrical breakdown in a metal-to-water electrode system 

with DC applied voltages shown that the Taylor cone is fully developed before the 

electrical breakdown occurs [147] (Figure 16). 

 

 

Figure 16. Taylor cone formation and electrical breakdown. 

 

Overview of important reactions in the air plasma–liquid cathode interaction 

was reviewed. In general in this type of non-thermal plasma, the solution pH decrease as 

a result of nitric acid formation. Also, conductivity of solution increase as a 

consequence of formation of nitric acid and the formation of the H3O
+
 ions in the water 

due to the electronic and ionic bombardment. The formation of hydrogen peroxide, 

hydroxyl radicals and ozone strongly depends on reactor configuration [148]. 

Pulsed electrical discharges in a single bubble in water has been studied 

fundamentally, in the case with a metal needle electrode of which the tip extends inside 

a bubble and a disk counter electrode immersed in the de-ionized water (Figure 17) 

[149]. 

Authors observed two distinct types of discharges. The discharge is 

fundamentally different from unipolar dielectric barrier when a bubble covers the entire 

gap between the electrodes and no dielectric covers either electrode.  
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Figure 17. Schematic diagram of the bubble – water arrangement showing the bubble 

around the needle electrode with the disk electrode immersed in water. Gas is fed through 

the needle and a stationary bubble forms surrounding the tip of the needle [149]. 

 

1.3.2. Physicochemical properties of non-thermal plasma 

 

. Non-thermal plasma produced by gas discharges is a mixed atmosphere 

consisting of high-active species, such as electrons, ions, radicals, excited atoms and 

molecules [150,151]. The addition of water molecules into electrical discharge process 

leads to generating OH
•
 and H

•
 via dissociation, ionization and vibrational/rotational 

excitation of water molecules. For example, the pulsed streamer discharge process 

produces charged particles having energies of about 5–20eV, which can initiate the 

reactions of vibrational/rotational excitation of water (threshold energy < 1 eV), 

dissociation of water (threshold energy ≈ 7.0 eV) or even ionization energy of water 

(threshold energy ≈ 13 eV) as Eq. (43-46) [152]. 

 

 

 

 



 

 

 50 

Dissociation: H2O + e
-
 → OH

•
 + H

•
 + e

-
                                  (43) 

Ionization: H2O + e
-
 → 2e

-
 + H2O

+ 
                     

                           
 (44) 

H2O
+
 + H2O → OH

•
 + H3O

+                                                                 
 (45) 

Vibrational /rotational excitation: H2O + e
-
 → H2O

*
 + e

-
      (46) 

H2O
•
 + H2O → H2O + H

•
 + OH

•                                                       
 (47) 

H2O
•
 + H2O → H2 + O

• 
+ H2O

 
(48) 

H2O
•
 
 
+ H2O → 2H

•
 +O

•
 + H2O (49) 

 

Eq. (47-49) demonstrated that vibrationally/rotationally excited water molecules 

relax into a lower energetic state through which some active radicals can be produced. 

When oxygen is exposure to electrical discharge, O atom (E
0

O/H2O =2.42 V) can 

be generated according to equation via dissociation of O2
•
. Generated oxygen atom 

boosts the rate of production of OH
•
.  

 

e
-*

 + O2 → O
•
 + O

•
 +e

-
 (50) 

O
•
 + H2O → 2OH

•
 (51) 

 

Furthermore, O atom can directly react with contaminants and also takes part in 

the reactions with O2 resulting in the formation of O3 (E
0
 O3/O2 = 2.07 V). 

 

O
•
 + O2 + M → O3 + M (52) 

 

Ozone as a strongly oxidizing allotropic form of oxygen reacts best when it can 

act as an electron transfer acceptor for the oxidation of metal ions, as an electrophile for 

the oxidation of phenol and other activated aromatics, and as a dipole addition reagent 

by addition to carbon–carbon multiple bonds. Ozone is unstable and decomposes 
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through a cyclic chain mechanism to produce hydroxyl radicals in neutral and basic 

solutions (Figure 18). 

 

Figure 18. Cyclic chain mechanism of ozone decomposition [153]. 

 

Moreover, with the presence of H2O2 in plasma system, ozone can react with 

HO2
-
 giving OH

•
 [101]. 

 

H2O2 → H
+
 + HO2

-
 (53) 

O3 + HO2
-
 →•

O2
-
 + OH

•
 + O2 

(54) 

 

 OH
•
  radicals have very short lifetime in a gas (3.7 x 10

-9
 s), and low diffusion 

distance (approximately 6 x10
-9

 m) [154]. So their diffusion from the plasma zone into 

the surrounding water seems unlikely. Recombination of OH
•
 radicals formed long-

lived plasma chemical product, hydrogen peroxide (E
0
 H2O2/H2O = 1.77 V), especially in 

the cases of underwater plasmas. Hydrogen peroxide does not significantly react with 

most organic compounds, but in his presence much more OH
•
 can be directly or 

indirectly generated via various reactions (e.g., dissociation, photolysis and metal-based 

catalytic reactions). 

Plasma discharges in air usually generate not only oxygen and water dissociation 

species but also nitrogen oxide compounds known as reactive nitrogen species (RNS). 

RNS include nitric oxide, nitrous acid and peroxynitrous acid, which can diffuse into 
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the bulk water phase and further be oxidized into undesirable toxic species (NO2
−
 and 

NO3
−
). This can result in an increased toxicity of treated water and a pH decrease. Nitric 

oxide (NO) and nitrogen dioxide (NO2) formed in the plasma phase can be dissolved in 

water and react with plasma-generated active species such as hydroperoxyl radical, 

ozone or hydrogen peroxide in order to give other RNS such as nitrous acid (HONO) 

and peroxynitrous acid (ONOOH). Detailed mechanism of RNS formation was 

described [155] via Eq. 55-66: 

 

O2 + e
-
 (+M) → 2O

•
 + e

- 
(+M) (55) 

N2 + O
•
 →•

NO + N
•
 (56) 

N
•
 + O

• →•
NO (57) 

N
•
 (

2
D) + O2 →

•
NO + O

•
 (58) 

•
NO + 

•
OH → ONOH (59) 

NO + O → ONO (60) 

ONO + NO + H2O → 2ONOH (61) 

NO
•
 + HO2

•
 → ONOOH (62) 

HNO2 + H2O2 → HNO3 + H2O (63) 

NO2 + 
•
OH → H

+
 + NO3

-
 (64) 

ONOOH → NO3
-
 + H

+
 (65) 

3NO2
- 
+ 2H

+
 → NO3

- 
+ 2NO + H2O (66) 

 

In study of the behavior of an anthraquinonic dye (ARS) exposed to gliding arc 

discharge in presence or absence of incorporated sulphamic acid known for its ability to 

inhibit the formation of nitrite ions and their derivatives, authors found that nitrite and 

peroxynitrite ions are the key agents of the degradation process [156]. 
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Aqueous contaminants can be removed by reductive degradation pathways due 

to the presence of reductive species in electrical plasma. Aqueous electron, as a strong 

reducing agent (E
0
 H2O/e

- 
aq= - 2.77 V), can be formed by the irradiation of water with 

high-energy electrons [157]. Additionally, H radicals are formed directly by the electron 

collision with water molecules and from the reaction of hydrated electrons with acids. 

The H radicals, as strong reducing agents (E
0

H2O/H’ = - 2.30 V), undergo two general 

types of reactions with organic compounds: (i) hydrogen addition to unsaturated bond 

and (ii) hydrogen abstraction saturated compounds [158]. 

As a result of excited species (generated from the collisions between electrons 

and neutral molecules) relaxation to lower energetic states, all plasmas containing water 

have UV light emission. UV light participates in degradation of organic molecule in two 

ways. Organic molecule (M) irradiated by UV light absorbs the radiation and gets to an 

excited state (M
•
). The excited molecules M

•
 have short lifetime (10

-9
–10

-8
 s) and 

immediately returns to the ground state through which excited molecule can decompose 

into new molecules [159]: 

 

M + hv  → M
•
  → products            (67) 

 

Another way is photolytic dissociation of the hydrogen peroxide and ozone 

thereby causing hydroxyl radical generation in the plasma system [160]. These 

supplementary hydroxyl radicals in turn destroy the pollutants and thus enhance the 

utilization of input electrical energy. 

Due to the limited space in the water, plasma cannot spread freely, and a 

pressure as high as 105-107 MPa is generated. Because of the incompressibility of the 

water, the high pressure would transform into impact shock wave in water. Thus, 

shockwave can be produced by high electric energy only directly introduced in the 

liquid or bubbles [161]. Streamer-like discharges in liquid produce shock [162], and 

diaphragm-like discharges in bubbles in the liquid can generate weaker shockwaves at 

the moment of bubble implosion [163]. Gas-phase plasmas normally do not induce any 

shockwaves in the liquid, but they can affect the liquid motion under three plasma 

generation situations, namely, cold plasma jets or plumes, ionic wind and the formation 

of Taylor cones in plasma–water interface [164].  
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1.3.3 Reactors for plasma treatment 

 

Varieties of different reactors with liquid phase or gas–liquid phase electrical 

discharges have been developed. Representative reactors were discussed in Jiang review 

[141], according to the classification of discharge types. They classified reactors as 

following: 

a) Pulsed corona/streamer/spark discharge 

 Pulsed discharge reactor is driven by a pulsed electric generator able to create a 

very sharp high voltage pulse with a range of nanosecond or microsecond of the 

duration time. In this discharge process, only free electrons gain high energy with 

producing energetic electrons leading to non-thermal plasma generation [165]. The 

typical configurations involve two asymmetric electrodes, one is very high curvature 

electrode (e.g., needle [166], ring [167] or wire [168]) and the other one is small 

curvature such as a plate. The discharge inception voltage in this configuration was 

reduced because uniform electric field generated on the large curvature electrode can 

induce a high potential gradient. Types of pulsed discharge plasma reactors are: (a) 

liquid discharge reactor [169], (b) gas discharge reactor, (c) hybrid gas–liquid discharge 

reactor [170], (d) wires-plate reactor [168], (e) electrostatically atomized ring–mesh 

reactor [171] and (f) aerosol reactor [172]. 

 

b) DC pulseless corona discharge 

 

The pulseless corona system can obtain a high flux of electrons from DC 

electrical discharge in gases or liquids. This system supplies active radical species like 

hydroxyl radical, ozone and atomic hydrogen, for chemical oxidations. The advantage 

of the DC corona is that it can continuously produce radical species. Disadvantage is 

that it consumes more energy because of the continuous operation. These types of 

reactors are also significantly affected by water conductivity. Some types of DC 

pulseless corona discharge reactors are: (a) submerged capillary point electrode reactor 

[173], (b) multiple wires-plate reactor [174], (c) wire-cylinder wetted-wall reactor 

[175]. 
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c) Dielectric barrier discharge 

This discharge type is based on the use of at least one dielectric barrier (quartz, 

glass, mica and alumina, ceramics) in the discharge gap with time varying voltages 

applied to the electrodes. Dielectric barrier prevents spark formation, eliminates 

electrode etching and corrosion and distributes the discharge almost uniformly over the 

entire electrode area. Industrial generation of ozone with oxygen or air feed is based on 

dielectric barrier discharge (DBD) technology. In this type of electrical discharge 

systems a large number of chemical active species with very high oxidation potentials 

are produced. Some types of described DBD reactors are: (a) multiple tubes-liquid 

electrode reactor [176], (b) rod-cylinder reactor [177], (c) coaxial cylinder reactor [178] 

and (d) rotating drum reactor [179]. 

 

d) Gliding arc discharge 

The gliding arc discharge (GAD) exhibits a dual character of thermal and non-

thermal plasma. A typical reactor consists of insulating cover, „knife-edge“ divergent 

electrodes, high voltage power supply, the nozzle and impedance [180]. High voltage is 

introduced between two or more thin “knife-edge” divergent electrodes and when the 

electric field reaches approximately 3 kV mm
-1

 in air, at the narrowest point electrical 

breakdown results in the arc discharge. High velocity gas flows through the nozzle and 

the length of the arc (actually a thermal plasma) increases. The temperature of the 

ionized gas decreases, so that it becomes a non-thermal quenched plasma upon breaking 

into a plasma plume. After the decay of the plasma plumes, the evolution repeats from 

the initial breakdown. This technique allows introduction of high electrical power and 

consequently results in the larger yields of short-lived active species.  

Interestingly, hydrogen peroxide and ozone were not detected for any working gas in 

the solution for this type of discharge. Presence of water vapor strongly suppresses 

ozone formation and the hydroxyl radicals generated in the plasma do not recombine to 

produce measurable levels of hydrogen peroxide [181]. 
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e) DC glow discharge 

 In DC glow electrical discharge process, a thin wire anode is in contact with the 

surface of the electrolyte. The DC glow discharge is initiated in a thin sheath film of 

vapor covering the electrode surface. Vapor phase water molecules are electrolytically 

dissociated at a high temperature with generations of active species such as OH
•
, H

•
 and 

HO2
•
. Under the influence of the large electric field driving force, H2O

+
 gas ions 

produced from vapor H2O molecules bombard the gas–liquid interface and subsequently 

react with liquid H2O molecules to form additional OH and H radicals [182]. In efforts 

to improve the treatment efficiency, multiple anodes can be used to generate large 

volume plasma [183]. In the case submersed glow discharge electrolysis technologies 

are used, two electrodes are placed in liquid so the power dissipation in the vicinity of 

the electrode is large enough to evaporate the liquid. The glow plasma is generated in 

the vapor layer and covers the metal electrode [184]. 

Advantage of glow discharge technology is that it can be operated under high-

salt containing water, because the aqueous solution itself serves as the cathode in glow 

discharge processes [185]. 

Some described types of glow discharge reactors are (a) contact glow discharge 

reactor [186], (b) contact glow discharge reactor with two cells [187], (c) submerged 

glow discharge reactor [184] and (d) DC diaphragm glow discharge reactor [188]. 

 

f) DC arc discharge 

 Thermal plasma has also been applied for water treatment. Due to its high 

temperatures and energy densities, reduction or oxidation atmosphere and rapid 

quenching rate (10
5
–10

6
 K s

-1
), it can produce non-equilibrium chemical compositions 

[189]. The widely utilized thermal plasma generation reactor is a torch configuration. In 

this type of reactors the contaminated solution is usually directly introduced into torch 

as plasma forming gas. When the arc is ignited, the aqueous solution evaporates 

spontaneously to provide the generation of 100%-water plasma due to enormous heat 

from an anode. Anode is cooled by the water evaporation; therefore no cooling-

controlled units are required [190]. 
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In his paper Malik [191] compares relative energy yields (value expressing the 

amount of pollutant converted divided by the energy input required at 50% conversion 

of the pollutant) of about 27 major types of plasma reactors. The results reveal dramatic 

differences in the energy yields, up to five orders of magnitude. The most efficient are 

pulse-powered reactors, in which plasma is formed in gas phase and the waste solution 

is sprayed into it.  

 

1.3.4 Catalysis in plasma treatment 

 

There are many papers that describe use of catalyst in plasma treatment in order 

to improve energy efficiency. Some of most interesting catalyst are activated carbon 

materials (mechanism of degradation are based on sorption of organic compounds and 

oxidizing molecules) [192]. Activated carbon fibers [193] and multiwalled carbon 

nanotubes [194] are also applied as catalyst in the plasma treatment. In plasma-

photocatalysis process, the high electric field is thought to be able to prevent 

recombination of electrons with holes on the surface of TiO2, which could improve the 

quantum effect of photocatalysis [195]. TiO2 mounted on activated carbon can 

significantly improve the decomposition of phenol adsorbed on activated carbon and the 

simultaneous regeneration of the saturated activated carbon [196]. Some other oxides, 

e.g., Fe3O4, NiO and Ag2O were also applied for assessing the synergistic effect for 

organic abatement in plasma system [197,198].  

Addition of ferrous salt in plasma system is an attractive alternative arising from 

the fact that adding iron salts can catalytically transform previously formed H2O2 into 

hydroxyl radicals via Fenton reactions [178]. In addition, the Fenton reaction in plasma 

system can be activated by self-generated „white light“ containing wavelengths from 

200 nm in the UV range to 1000 nm in the infrared range. Other metal ions like Mn and 

Co could also catalyze the plasma treatment [199]. 
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1.3.5 Application of non-thermal plasma in degradation of organic 

contaminants 

Plasma, as reagentless technique (no external reagents needed) and with high removal 

efficiencies of a large variety of contaminants within a short contact time, could be 

competitive in comparison to the other AOPs. Applications of non-thermal plasma 

technologies to decontaminate waters from organic contaminants are recently reviewed 

[142]. Magueranu et al. recently reviewed degradation of pharmaceutical compounds 

[200]. In Table 15 application of plasma treatment for some selected compounds are 

reviewed. 

 

TABLE 15. Application of plasma treatment for some selected compounds. 

 

Ref. Plasma properties Target properties 

Phenol and derivatives 

201 gas corona discharge Non-pulsed direct 

current (DC), high voltage (13.7–19 

kV) 

Phenol (50 mg/L) 

202 streamer corona discharge and spark 

discharge 

Phenol (500 µmol/L) 

203 pulsed high-voltage corona discharge 

plasma 

Phenol (100 mg/L) 

204 DBD reactor (≈17 kV, 50 Hz),  Phenol (47 mg/L) 

205 coaxial DBD (16 kV, 50 Hz, 0.56 mA) Resorcin and pyrocatechol (59 mg/ L) 

206 pulsed-electric discharge reactor (60 

kV). 

2,4-dichlorophenol  (1 g /L) 

207 three parallel coaxial DBD reactors (20 

kV) 

2-chlorophenol, 4-chlorophenol and 2,6- 

dichlorophenol 20 mg /L) 

208 multi-tube parallel surface discharge 

plasma reactor (20–30 kV, 30–150 W) 

p-nitrophenol (40 L, COD 

80 mg L
−1

) 
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209 nonthermal plasma hybridseries gas–

liquid electrical discharge reactor (45 

kV, 60W). 

Catechol, resorcinol, hydroquinone), (2-, 3-, 

and 4-chlorophenol) and (2-, 3- and 4-

nitrophenol) 

Pesticides 

210 DBD, 80 V ,  1–2.5 A Nitenpyram 

211 gas–liquid hybrid discharge reactor a 

needle-plate electrode 

Diuron 

212 wire–cylinder dielectric barrier 

discharge reactor, 50 W 

Atrazine 

213 pulsed electrical discharge, 45 kV, 60 

Hz 

Atrazine 

214 DBD, applied power = 85 W, airgap 

distance = 5 mm, and treatment time = 

7 min. 

Dimethoate 

215 Dielectric barrier discharge  Mesotrione 

216 Dielectric barrier discharge, 170 W Acetamiprid (50 mg/L) 

217 Dielectric barrier discharge (DBD) 

reactors; one was a conventional batch 

reactor (R1) and the other a coaxial 

thin-falling-water-film reactor 

Atrazine, chlorfenvinfos, 2,4-dibromophenol, 

and lindane), (1–5 mg/ L) 

 

 

Dyes 

218 Glow discharge electrolysis Polar brilliant B concentration of 50 mg/L 

219 Contact glow discharge electrolysis, f 

480 V and a current of 65–80 mA 

Methyl orange dissolved in sodium sulfate 

(0.015 M) 

178 Dielectric barrier discharge  Reactive Black 5, Reactive Blue 52, Reactive 

Yellow 125, and Reactive Green 15 (100 ppm) 

220 Dielectric barrier discharge, t 22 kV 

with a frequency of 

10.5 kHz. 

Methylene blue, 100 mg/L 

221 Dielectric barrier discharge Azo dyes (Astrazon Red, Realan Red RC, 

Realan Golden Yellow RC, Optilan Blue 

MF-2RLA, Optilan Golden Yellow MF-RL, 

Lanaset Yellow 4GN) Anthraquinone dyes 
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(Realan Blue RC, Lanaset Blue 2R) Indole 

dyes (Astrazon Yellow, Astrazon Brilliant 

Red), Mixed dyes (Astrazon Blue) 

222  Contact glow discharge electrolysis, o 

580V, 80 mA 

Reactive Yellow 176 (Y3RS), Reactive Red 

239 (R3BS) and Reactive Black 5 (B5) (50 

mg/L 

223 Gliding arc Orange I, Crystal Violet, and Eriochrome 

Black T 

224 Pulsed discharge plasma, : (i) streamer, 

(ii) spark, (iii) spark–streamer mixed 

mode 

Rhodamine B (basic dye), Methyl Orange 

(acid dye), and Chicago Sky Blue 

225 Pulsed discharge reactor with TiO2-

loaded activated carbon fiber 

Methyl orange 

226 Gas–liquid series highvoltage pulsed 

discharge water treatment reactor 

Basic dyes (Basic Orange, Methylene Blue), 

acid dyes (Methyl Orange, Eosin Yellowish) 

Pharmaceuticals and personal care products 

 

227 
DBD with falling liquid film 

Antibiotics (amoxicillin, ampicilin, oxacilin 

 (100 mg/L) 

 

228 

Point to plate corrona with gas 

bubbling 
Antibiotic Tetracycline (50 mg/L) 

 

229 DBD with falling liquid film Anticonvulsant carbamazepine (20 mg/L) 

230 Wetted wall corrona discharge Anti-inflamatory ibuprofen (60 mg/L) 

231 DBD with falling liquid film Anti-inflamatory ibuprofen (60 mg/L) 

232 Corona with liquid shower Analgesic, paracetamol (100 mg/L) 

233 Corona with liquid shower Hormone, 17β-estradiol (3 mg/L) 

234 DBD with falling liquid film vasodilatator, pentoxyfiline (100 mg/L) 
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2. Materials and methods  

2.1. Chemicals  

The anionic surfactants, sodium dodecyl sulfate SDS and sodium 

dodecylbenzene sulfonate SDBS were purchased from Sasol S.P.A (Italy) and used 

without further purification.  The non-ionic surfactant TX-100 was purchased from ICN 

Biomedicals and used without further purification. Homogeneous catalysts used in 

degradation reactions were hydrogen peroxide (30% H2O2, Carlo Erba, Italy) and 

ferrous sulfate (FeSO4 · 7 H2O, Merck, Germany). Other chemicals for 

spectrophotometric determination purchased from Merck (Germany) and Sigma Aldrich 

were of analytical grade. All solutions were prepared with deionized water with 

conductivity between 1.0 and 1.5 μS cm
--1

. Syringe filters (13 mm, PTFE membrane 

0.45 μm) were purchased from Supelco (USA). Solvents used in HPLC and UPLC-MS 

analysis were purchased from Sigma Aldrich and were HPLC and HPLC-MS grade, 

respectively.   

 

2.2 Water falling film DBD reactor (WFF DBD) 

 

The degradation of surfactants using a coaxial dielectric barrier discharge DBD 

was designed as an atmospheric non-thermal plasma reactor for the treatment of various 

water solutions. In this reactor water forms a falling film that is in direct contact with 

the plasma, as shown in Figure 19.  

A cylindrical reactor was prepared with Pyrex tubes that had an internal 

diameter of 28.5 mm and length of 600 mm. The outer electrodes were made with 

aluminum foil, which was sealed on an outer glass tube with 400 mm in length. The 

inner electrode was a glass cylinder with a diameter of 20 mm that was silver-plated on 

the inside. 
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Figure 19. Water falling film dielectric barrier discharge (DBD) reactor used in the 

experiments. 

 

A solution of surfactant flows up through a vertical hollow cylindrical electrode 

and flows down, thus making a thin dielectric film over the inner electrode. A barrier 

discharge is generated in air within a 3.5 mm gap between the dielectric and the water 

layer by applying a sinusoidal voltage of 19 kV on the peak. 

The thin layer of water is in direct contact with the plasma, and oxidative species 

are transferred from the plasma into the liquid phase, where the reactions with the 

pollutants occur, which is of great importance, especially for short-living active species. 

To increase the total flow of the treated solution, three discharges are connected in 

parallel. The plug-in power for this system of discharges was 180 W. After the 

treatment, the solution was collected in a reservoir at the bottom of the reactor. The 
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collected solution was re-introduced through the reactor for the next treatment, when the 

total amount of solution from the previous run had already passed. 

The energy density (ED) of ~ 45 kJ L
-1

 was introduced into the solution with one 

pass through the reactor. Applied energy density was increased by recirculating the 

solution up to the point when applied energy density reached 450 kJ L
-1

. 

A high voltage transformer was used as a power supply, which allows the variation of 

the sinusoidal voltage up to 20 kV. The frequency for the plasma reactor was set at the 

optimal value of 300 Hz. The total flow rate through three parallel DBD reactors was 

210 cm
3
 min

--1
. In all experiments, the treatment was started with 2 L of the surfactant 

solutions at a concentration of 100 mg L
-1

.                          

 

2.3 Analytical procedures 

 

2.3.1. Determination of pH value        

 

All measurements of pH value were done using a pH meter (Microcomputer pH-

vision 6071, JENCO Electronics Ltd. Taiwan) with combined electrode type HI 1131 

(Hanna Instruments). The pH of all samples was adjusted to 7.0 ± 0.2. 

 

2.3.2. Spectrophotometric analysis 

 

Spectrophotometric measurements were done by GBC Cintra 10 (GBC 

Scientific Equipment Pty Ltd., Australia) spectrometer at a fixed slit width (1 nm) with 

quartz cuvettes (1 cm long optical path), 5 minutes after the plasma treatment.  

 

 

2.3.2.1. Determination of anionic surfactants as methylene blue active 

substances 

 

 Methylene blue reagent was prepared by dissolving 100 mg methylene blue in 100 cm
3
 

water.  30 cm
3 

of prepared solution was transfered to 1000 cm
3
 flask. 500 cm

3  
water, 41 
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cm
3
 3M H2SO4 and 50 g sodium phosphate, (monobasic, monohydrate, NaH2PO4⋅H2O) 

was added. After dissolving, the solution was diluted to 1000 cm
3
.  

A 5 cm
3
 sample of each of the above solutions was used for the analysis (instead 

of 100 cm
3
, as used in the standard method). Each sample was placed in a test-tube (20 

mm x 150 mm). The sample was adjusted to alkaline pH using NaOH, with the pH 

exceeding 8.3 as indicated by the phenolphthalein in end-point. The pink colour from 

phenolphthalein was then discharged by the addition of a few drops of H2S04. Then 2 

cm
3
 of chloroform and 2 cm

3
 of Methylene Blue reagents were added to each sample. 

The samples were shaken for 30 s using the vortex mixer. After allowing the phases to 

separate, the surfactant complex with the chloroform in the organic phase, was 

transferred into a second test-tube using a Pasteur pipette. This extraction procedure was 

repeated twice on the solution in the first test-tube using 2 cm
3
 of chloroform each time.  

Then 10 cm
3 

of the wash solution was added to the second test-tube with the first 

phase extract (approximately 6 cm
3
).  The tube was shaken for 30 s using the vortex 

mixer. After settling of the contents, a Pasteur pipette was used to transfer the washed 

organic phase with MBAS into a third test-tube. The solution in the second test-tube 

was extracted twice using 2 cm
3
 chloroform each time. This washed extract of the 

organic phase with MBAS (about 10 cm
3
) was filtered through glass wool to transfer it 

into a fourth 20 cm
3
 marked test-tube. 

The third test-tube was rinsed twice with 2 cm
3
 of chloroform each time. The 

chloroform was transferred into the 20 cm
3
 marked fourth test-tube, through the glass 

wool. The final  volume in the fourth test-tube was made up to 20 cm
3
 with chloroform, 

making sure that all blue-coloured surfactant complex was transferred from the glass 

wool into the test-tube. This 20 cm
3
 final extract solution was used for measuring the 

absorbance at 652 nm against a blank of CHCl3.  

 

2.3.2.2. Determination of nonionic surfactants as cobalt thiocyanate active 

substances 

 

Sample volume of 10 cm
3
 was transferred to centrifugal cuvette. The pH was 

adjusted to 7.  After that 3 cm
3
 of cobalt thiocyanate reagents (prepared by dissolution 

of 6.2 g ammonium-thiocyanate (NH4SCN) and 2.8 g cobalt-nitrate hexahydrate 
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((Co(NO3)2•6H2O) in demineralized water and diluted to 100 cm
3
) and 3 g of sodium 

chloride were added. Solution was shaken until salt dissolution. After dissolution, 15 

cm
3
 of chloroform was added. Mixture was shaken and after that centrifuged 5 minutes. 

Organic phase was transferred to spectrometer cuvette and absorbance was determined 

on 320 nm against the blank of chloroform.  

The efficiency of degradation is defined as a percentage decrease of absorbance 

of surfactant derivatives according to Eq. (68): 

                                           

                                                (68)   

 

Where A0 presents the absorbance of starting solution at the wavelength that 

shows the maximum absorption of surfactant derivative (λmax), while A presents the 

absorbance at λmax of the surfactant derivatives after the plasma treatment.  

 

2.3.2.3. Hydrogen peroxide determination 

 

The titanium sulfate test reagent was prepared by reaction 1 g of anhydrous 

titanium dioxide with 100 cm
3
 of sulfuric acid (specific gravity 1.84) for 15 to 16 hours 

on a sand bath at a temperature of 150° C. The solution was cooled, diluted with 4 parts 

(by volume) of distilled water, and filtered prior to use.  

A standard hydrogen peroxide solution was made by diluting 20 cm
3
 of 30% 

hydrogen peroxide solution to 1 liter with distilled water and standardized by titration 

with permanganate. 

1 cm
3
 of titanium sulfate reagent was added to 10 cm

3
 of solution and 

absorbance was measured at 407 nm.  

2.3.2.4. Indigo colorimetric method for ozone determination 

 

a) Indigo stock solution: Add about 500 cm
3
 distilled water and 1 cm

3
 conc. phosphoric 

acid to a 1-L volumetric flask. Add 770 mg potassium indigo trisulfonate, 

C16H7N2O11S3K3 (commercially available at about 80 to 85% purity). Fill to mark with 

distilled water. A 1:100 dilution exhibits an absorbance of 0.20 ± 0.010 at 600 nm. The 
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stock solution is stable for about 4 months when stored in the dark. Discard when 

absorbance of a 1:100 dilution falls below 0.16. Do not change concentration of dye for 

higher ranges of ozone residual. Volume of dye used may be adjusted. 

b) Indigo reagent I: To a 1-L volumetric flask add 20 cm
3
 indigo stock solution, 10 g 

sodium dihydrogen phosphate (NaH2PO4), and 7 cm
3
 conc. phosphoric acid. Dilute to 

mark. Prepare solution fresh when its absorbance decreases to less than 80% of its 

initial value, typically within a week. 

c) Indigo reagent II: Proceed as with indigo reagent I, but add 100 cm
3
 indigo stock 

solution instead of 20 cm
3
. 

Spectrophotometric, volumetric procedure: 

1) Concentration range 0.01 to 0.1 mg O3/ L—10.0 cm
3
 indigo reagent I was added to 

each of two 100-cm
3
 volumetric flasks. One flask (blank) was filled to mark with 

distilled water. Other flask was filled to mark with sample. Absorbances of both 

solutions were measured at 600 nm. 10-cm cell was used.  

2) Range 0.05 to 0.5 mg O3/L—Proceeded as above using 10.0 cm
3
 indigo reagents II 

instead of reagent I. Absorbance was measured in 5-cm cells. 

3) Concentrations greater than 0.3 mg O3/L—Proceeded using indigo reagent II, but for 

these higher ozone concentrations correspondingly smaller sample volume was used. 

Resulting mixture was diluted to 100 cm
3
 with distilled water. 

Ozone concentrations were calculated according to Eq. 69: 

 

 

(69) 

 

Where: 

ΔA = difference in absorbance between sample and blank, 

b = path length of cell, cm, 

V = volume of sample, cm
3 

(normally 90 cm
3
), and 

f = 0.42. 
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2.3.3. Determination of OH radicals 

 

Four milliliter samples (pH 7.0) taken from the reactor vessel, 5 cm
3
 of 0.5 mol 

L
-1

 phosphate buffer (NaH2PO4-H3PO4, pH 4.0), and 0.4 cm
3
 of 6 mmol L

-1
 DNPH were 

mixed and diluted to 10 cm
3
. Thus formed hydrazone was equilibrated to room 

temperature for 30 min and then analyzed on analytical column Hypersil Gold aQ C18 

(150 mm, 3 mm, 3 µm) at 30 
°
C. Mobile phase consisted of 40% of water as component 

A and 60% of methanol (HPLC grade, Sigma Aldrich) as component B. The 

chromatographic elution was conducted at flow rate of 0.4 cm
3
 min

-1
 in isocratic mode. 

An injection volume of 20 μL was used each time. Detector was set at 355 nm, and 

calibration curve was made with formaldehyde (HACH Company, USA; Formaldehyde 

standard solution CH2O=4000 mg L
-1

, ampules). Samples were filtered through syringe 

filters (25 mm, PTFE membrane, pore size 0.45 μm) purchased from Supelco 

(Bellefonte, PA, USA). Data analysis was performed by software Chromeleon, v6.8 

(ThermoFisher Scientific, Bremen, Germany). 

2.3.4. Determination of the chemical oxygen demand (COD)  

 

Chemical oxygen demand (COD) value of initial solutions (0 kJ L
-1

) of two 

anionic surfactants and the solutions after the plasma treatment (450 kJ L
-1

) was 

determined. COD value was determined for plasma-treated samples with applied energy 

density of 45 and 450 kJ L
-1

. COD determination, was done using microwave digestion 

at high temperature and pressure (up to 100 bar). Microwave digester was ETHOS 1. 

Advanced microwave digestion System, Milestone Italy with segmented rotor HPR-

1000/10S.  In this type of apparatus, with poly Teflon vessels up to ten samples can be 

done simultaneously which considerably speeds up the process. 

 

2.3.5. Determination of the total organic carbon (TOC) 

 

Total organic carbon (TOC) analysis was done in accordance with method ISO 

8245:2007 [235] 
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2.3.6. Ultra-high pressure liquid chromatography – Orbitrap - 

Mass (UHPLC-Orbitrap-MS) 

               

The degradation products were identified using the UHPLC-Orbitrap-MS 

(Thermo Fisher Scientific). A column Acclaim Surfactant (150 × 3 mm, 3 μm, Thermo 

Scientific) was used for separation. The mobile phase was composed of 0.1 M 

ammonium acetate as component A and acetonitrile (both HPLC grade, Sigma Aldrich) 

as component B.  The compounds were eluted at a flow rate of 400 μL/min, and the 

injection volume was 10 μL.  The system was operated in the full spectral acquisition 

mode in the mass range of 50-900 m/z. The mass spectrometer was operated in the 

positive ionization mode. HESI-source parameters were as follows: source voltage 3 

kV, capillary voltage −20 V, tube lens voltage −150 V, capillary temperature 275°C, 

and sheath and auxiliary gas flow (N2), 30 and 8 (arbitrary units). Collision-induced 

dissociation (CID) was accomplished at collision energy of 40 eV. 

The UHPLC system was coupled to a linear ion trap-Orbitrap hybrid mass 

spectrometer (LTQ Orbitrap MS) equipped with a heated electrospray ionization probe 

(HESI-II, Thermo Fisher Scientific, Bremen,Germany). Instrument control, data 

acquisition and data analysis were handled by computer equipped with Xcalibur 

software.       

         

2.4 Toxicity tests  

Each sample was centrifuged for 10 min at 2000 rpm. The supernatant was 

separated for toxicity tests. The hydrogen peroxide present in the samples was removed 

prior to toxicity analysis using the catalase enzyme. 

 

2.4.1 Vibrio fischeri (V. fischeri) 

The toxicity of the treated solutions was tested with Vibro fischeri NRRL B-

11177, according to ISO 11348-3 [236]. Using BioFix Lumi freeze-dried bacteria 

(Macherey-Nagel, Duren, Germany), toxicity was measured as the inhibition of 

bacterial bioluminescence when the bacteria were exposed to surfactant solution before 

and after DBD treatment. 
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The osmolality and pH of all samples were adjusted to 2% NaCl and 7.0 ± 0.2 

(0.1 M NaOH or HCl). Tests were carried out in three replicates. The exposure time was 

15 min (at 15°C), and the EC50 (effective concentration of 50% inhibition) value was 

calculated using Microsoft Excel 2003 and OriginPro 8.0 software.   

 

2.4.2 Artemia salina (A. salina)                 

Artemia salina cysts were purchased from Dajana Pet (Czech Republic).   They 

were hatched and larvae were reared in synthetic sea water (Reef Salt, Aqu Medic, 

Germany) at 32 ± 0.5% [237]. In order to produce instar larvae, the entire suspension 

was illuminated by a tungsten filament light and continuously gently aerated. 

An acute toxicity test was performed in darkness at 25 ± 1°C. The highest 

concentrations of untreated (100 mg L
-1

) and treated (100% v/v) samples after the tenth 

recirculation (ED ≈ 450 kJ L
-1

) through the DBD reactor were tested in triplicate. The 

osmolality and pH were adjusted to 32 ± 0.5‰ and 8.0 ± 0.2 (0.1 M NaOH or HCl). 

With a Pasteur pipette, 40 larvae were placed into vessels containing 50 cm
3
 of the 

solution. Tests were considered valid if the mortality in the control did not exceed 10% 

and if the reference toxicant tests (K2Cr2O7) were within the range of acceptable values. 

The lethal concentration LC50 values (lethal concentration of effluent which 

causes mortality of test organism by 50%) with 95% confidence limits were estimated 

by Spearman–Karber regression model. 

 

 

Figure 20. Photography of  a) brine shrimp Artemia salina; b) Artemia salina cysts 

 



 

 

 70 

 3. Results and Discussion 

 

In the present study, the degradation of four surfactants (two anionic - sodium 

dodecyl sulphate and sodium dodecyl benzene sulphonate, and two nonionic -

nonylphenol ethoxylate and Triton X-100) was studied using non-thermal plasma based 

on coaxial dielectric barrier discharge reactor (DBD). Their structures are presented in 

the Table 16. 

 

TABLE 16. Chemical structure of treated surfactants. 

 

 

Name 

CAS number 

 

 

Chemical structure 

 

Triton X-100 

CAS No.: 9002-93-1 

 
 

 

Nonylphenol ethoxylate 

CAS No.: 68412-53-3 

 
 

Sodium dodecyl sulphate 

CAS No.: 151-21-3 

 
 

Sodium dodecyl benzene 

sulphonate 

CAS No.: 25155-30-0 

  

 

Synthetic surfactants are widely used in detergents and cleaning products, 

ranging from household detergents and cleaners to personal care and toiletry products, 
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with a range of specialized hygiene products used in institutional and industrial 

applications. Other applications of surfactants are in agrochemical, textile, pulp and 

paper industry, as well as paint and coating industry. Surfactants examined in this 

research are predominantly used in formulations of laundry detergents and for industrial 

cleaning application. They are used in large amounts and significant amount of 

surfactants can be found in the water. 

Due to their significant effects on the aquatic environment, degradation of 

surfactants is subject of many research papers. In addition to the classical wastewater 

treatment a lot of research is addressed to the usage of advanced oxidation process for 

removal of various surfactants.  

Dielectric barrier discharge reactor with water falling film constructed at Faculty 

of Physics (University of Belgrade) was previously successfully used for treatment of 

dyes, pesticides, phenols and its derivatives, as well as ibuprofen. Dielectric-barrier 

discharges are characterized by the presence of one or more insulating layers between 

the metal electrodes in addition to the discharge space. In our case the reactor were 

composed of two insulating layers of glass. The outer electrodes were made from 

aluminum foil, which was sealed on an outer glass tube and inner electrode was a glass 

cylinder, silver-plated on the inside.  

Transformer was used as a power supply, which allows variation of the 

sinusoidal voltage up to 20 kV. The frequency for the plasma reactor was set at the 

optimal value, 300 Hz. Water forms a falling film that is in the direct contact with 

plasma. As water constantly flows over the top of the reactor, thin water film constantly 

regenerates, i.e. reactor works on the principle of the flow reactor. Hence, a thin layer of 

water is in direct contact with the plasma, oxidative species are transferred from the 

plasma into the liquid phase, where the reactions with the pollutants occur, which is of 

great importance, especially for short-living active species. To increase the total flow of 

the treated solution and efficiency of the treatment, three discharges are connected in 

parallel. The plug-in power for this system of discharges was 180 W.                

Usage of homogenous catalysts in chemical and technological processes has 

several advantages compare to the heterogeneous catalysis. Homogenous catalysis is a 

lot simpler to perform, especially for industrial wastewater treatment because it is not 
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needed for catalysts to be removed from system afterwards. Heterogeneous catalysts 

must be removed from the system after the catalytic cycle. 

The necessary condition that must be met is that all homogenous catalysts used 

in those treatments are not toxic. Some of them, like H2O2, decompose during time to 

water and oxygen, and even considered as green catalysts. Others like Fe
2+

, Fe
3+

and  

Mn
2+

 are easily deposited by changing the redox conditions in water or by adjusting the 

pH value. 

The goal of this thesis was to determine the degradation efficiency of the 

dielectric barrier discharge reactor with water falling film and effects of homogenous 

catalysts (Fe
2+

 and H2O2) on the efficiency of surfactants degradation, chemical oxygen 

demand (COD) and total organic carbon (TOC). Toxicity of the samples after 

degradation was examined by Artemia salina test (A. salina) and in case of Triton X-

100 by Vibrio fischeri test.  

 

3.1. Spectrophotometric determination of surfactants 

 

Each series of experiments started with the recirculation of 2 L surfactant 

solution (concentration of 100 mg L
-1

 and the native pH value). An energy density (ED) 

of 45 kJ L
-1

 was introduced in the solution with each pass through the reactor. ED was 

defined as the dissipated discharge power divided by the flow rate of the water solution. 

Each solution was recirculated ten times and total energy density introduced after ten 

passes was 450 kJ L
-1

. The total flow rate through three parallel DBD reactors was 210 

cm
3 

min
-1

. After recirculation, a small aliquot was taken to record the absorption spectra 

according to the corresponding spectrophotometric method (MBAS for anionic and 

CTAS for nonionic surfactants) [238].  

Water-soluble anionic surfactants (Methylene blue active substances - MBAS) 

such as linear alkyl sulfates form a 1:1 ion pair with the water-soluble cationic dye, 

methylene blue (MB). The ion pair is effectively neutral and is therefore extractable into 

a water-insoluble organic solvent such as dichloromethane (DCM). The intensity of the 

resulting blue color complex in the organic phase is measured at 650 nm. 

Cobalt thiocyanate active substances (CTAS) are those that react with aqueous 

cobalt thiocyanate solution to give a cobalt-containing product extractable into an 
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organic liquid in which it can be measured. Nonionic surfactants exhibit such activity, 

as may other natural and synthetic materials; thus, estimation of nonionic surfactants as 

CTAS is only possible if substantial freedom from interfering CTAS species can be 

assured. 

The changes in the UV-visible absorption spectra of the derivatized surfactant 

solution with different energy density introduced are shown in Figure 21. With the 

increase of energy density the absorbance of complex was reduced in the whole 

spectrum. In the case of anionic surfactants, in addition to a decrease in absorption at 

320 nm, which originates from the surfactant – ammonium cobaltothiocyanate complex, 

a decrease in absorption at 280 nm could be also observed. 

 

 

 

Figure 21. The changes in the UV-visible absorption spectra of the derivatized 

surfactant solution with different energy density introduced. 
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3.2 Degradation of non-ionic surfactants 

 

3.2.1. Degradation of Triton X-100 in DBD reactor 

 

Triton X-100 was chosen as the model compound for detailed examination of 

the degradation process. At first it was treated without a catalyst. Absorbance 

measurements of all samples (with different energy density introduced) were performed 

5 min and 24 h after the plasma treatment  in order to examine the post treatment 

reactions. Figure 22 shows that the difference in the degradation percentage at 5 min 

and 24 h is negligible.  

 

 

Figure 22.  Degradation efficiency of TX-100 in DBD reactor after 5 min and 24 h. 

 

As described in introduction part, various oxidizing species are formed in the 

treated solution during the plasma treatment. Most of these oxidizing species are active 

radicals with a very short lifetime, so they can react only with the pollutant molecules 

while the solution is flowing through the DBD reactor. Additionally, more stable O3 and 

H2O2 molecules were also generated and they may still influence the degradation of 

surfactants after the treatment. The oxidation potential of O3/H2O2 is based on the fact 

that the conjugate base of H2O2 can initiate ozone decay, which leads to the formation 
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of OH
•
. This combination is usually called peroxone [239]. There was not a 

considerable difference in the degradation percentage after 5 min and 24 h of the plasma 

treatment, therefore we conclude that the main species responsible for the degradation 

of TX-100 are very reactive, short-living radicals. Among these radicals, OH
•
 was the 

major oxidative specie because it has the highest oxidation potential and is not selective 

in the degradation reactions. These results are different than results published in 

previous paper where the same reactor was applied for degradation of dyes. In the 

treatment of reactive dyes authors obtained significant percentage of decolorisation with 

low energy input (45 and 90 kJ) after 24 h in comparison with results after 5 minutes. 

This difference can be explained with the fact that chromophore in the reactive dyes can 

be oxidized with long-lived species (hydrogen peroxide) and in case of surfactants this 

species could not oxidize active groups.  

 

3.2.2. Effect of H2O2 on the degradation of surfactants 

 

In order to optimize concentration of hydrogen peroxide, three different 

concentrations of H2O2 (5, 10, and 20 mmol L
-1

) were added to the surfactant solution to 

examine the effect on the degradation efficiency in the DBD reactor. Higher 

degradation efficiency was expected with H2O2 due to a more efficient generation of 

OH
•
 radicals, according to the following Eq. (24 and 70): 

 

H2O2 
hv  2 •OH                                   (24) 

H2O2 + •O2 
hv •OH + OH

- 
+ O2 

(70) 

 

However, in the presence of ozone, which is one of the reactive species in the 

plasma reactors, H2O2 can initiate both ozone decay and the formation of OH
•
, a 

combination called peroxone [239]. Figure 3 shows that for ED = 45 kJ L
-1

, the 

percentage of degradation in DBD was lower than in the catalytic system H2O2/DBD. 

Almost the same percentage of degradation was obtained for 10 and 20 mmol L
-1

 H2O2, 

thus increasing the H2O2 concentration further will not change the efficiency of 

surfactant degradation. 
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Figure 23. Degradation efficiency of TX-100 in the DBD reactor with the addition of 

H2O2. 

 

Nevertheless, the results in Figure 23 show a lower degradation with H2O2 for 

ED = 200 kJ L
-1

. These results can be explained by the consumption of OH
•
 by 

additional H2O2 through the reactions below (Eq. 31 and 11): 

 

HO
•
 + H2O2 → HO2

•
 + H2O (31) 

•OH + HO2
•
→ H2O + O2                              (11) 

 

When the initial peroxide concentration is very high and concentration of target 

compound is low, generated OH
•
 radicals react primarily with the excess peroxide and 

produce hydroperoxyl radicals (HO2•; Eq. (31)), who are less reactive than OH
•
, and the 

rate of TX-100 degradation is thus decreased. The generated OH
•
 radicals can also 

further react with HO2
•
 and produce water and oxygen (Eq. 11). In this way, the 

concentration of OH
•
 that is available for TX-100 degradation also decreases [241]. 

Thus, at ED = 200 kJ L
-1

, the concentration of H2O2 is sufficiently high that this 

mechanism becomes more significant. As a result, the effective levels of both H2O2 and 

OH
•
 are reduced, and the degradation of TX-100 is inhibited in the presence of H2O2. 

 



 

 

 77 

3.2.3. Effect of Fe
2+

 on the degradation of surfactants 

 

As mentioned above, H2O2 is formed in the solution during the plasma 

treatment. DBD reactor produces H2O2 based on Eq. (71and 72) [240]: 

 

2 H2O + e¯ ˙→ H2O2 + H2 + e¯ (71) 

O3 + hν + H2O → H2O2 + O2 (72) 

 The content of H2O2 in the deionized water was quantified 5 min after the 

treatment. The reaction with titanium sulphate reagent was used for determination of 

hydrogen peroxide [241]. The yellow color was produced due to the formation of 

pertitanic acid. The reaction equation is usually written as: 

 

Ti
4+

 + H2O2 + 2H20 = H2Ti04 + 4H
+
  (73) 

  

Nevertheless, some chemists prefer to write the formula of pertitanic acid as 

TiO2.H202, showing a true peroxide structure.  The results are shown in Fig. 24. 

 

Figure 24. Production of H2O2 in the DBD reactor with different ED values 
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The peroxide concentration increased with each pass through the reactor. 

Therefore, Fe
2+

 was added to the treated solution to initiate the Fenton reaction. The 

formation of hydroxyl radicals and regeneration of Fe
2+

 by photo-reduction from Fe
3+

 

can be represented by the following reactions [117]: 

 

Fe(II) + H2O2 → Fe(III) + OH
•
 +HO

.
 (29) 

Fe(III) + H2O2 → Fe(II) + HO2
•
 + H

+
 (30) 

 

 

Figure 25. Degradation efficiency of TX-100 in the DBD reactor with the addition of 

Fe
2+

. 

 

Different concentrations of Fe
2+

 (1, 5, and 10 mg L
-1

) were added to the TX-100 

solution, and the results are presented in Figure 25. The addition of Fe
2+

 ions 

significantly increased the degradation percentage. Concentrations of 5 and 10 mg L
-1 

of 

Fe
2+

 were more efficient than 1 mg L
-1

 Fe
2+

. They gave almost complete removal of 

TX-100 (97%) for ED = 200 kJ L
-1

. A similar degradation percentage was obtained for 

these two Fe
2+

 concentrations, so we can conclude that catalyst concentrations > 5 mg 

L
-1 

do not lead to further improvement in efficiency. Increased efficiency of degradation 

in systems that contain Fe
2+

 can be explained by Fenton’s reaction and reaction of Fe
2+

 

with ozone
 
[243]: 
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Fe
2+

 + O3 → FeO
2+

 + O2 (29) 

FeO
2+

 + H2O → Fe
3+

 + HO
•
 + O

 
(30) 

 

3.2.4. Degradation of nonylphenol ethoxylate 

 

Nonylphenol ethoxylate was treated in the same experiments as Triton X-100 

with the optimized concentration of catalyst. Similar behavior was noticed in 

comparison to Triton X 100 (Figure 26). 

 

Figure 26. Degradation efficiency of NPE in the DBD reactor with catalyst and without 

catalyst 

Since the structures of these two non-ionic surfactants are quite similar, these 

results are expected.  

 

3.2.5. Identification of oxidation products and degradation mechanism 

of TX-100 

 

The assessment of degradation products was the critical point that yields 

important information about the overall efficiency of the process because some of the 

created products might have an inhibitory effect on certain species. Samples were 
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collected after introducing ED = 200 kJ L
-1

 into the TX-100 solution and using UHPLC-

Orbitrap-MS analysis to identify the products and understand the mechanism of TX-100 

decomposition in non-thermal plasma reactors. The degradation products were 

identified in non-catalytic DBD treatment and in the two catalytic systems that gave the 

highest degradation efficiency, 10 mmol L
-1

 H2O2/DBD and 5 mg L
-1

 Fe
2+

/DBD. 

Degradation products were identified according to the corresponding spectral 

characteristics: mass spectra, accurate mass, and characteristic fragmentation. 

All of the identified products in the three degradation systems are shown in 

Figure 27. 

 

 

 

Figure 27. Degradation scheme of TX-100 decomposition with non-catalytic and 

catalytic DBD treatments. 

 

 

In the non-catalytic DBD treatment, TX molecules with a cluster of mass signals 

separated by 44 mass units (Fig. 29, structure S1) were observed at a retention time of 
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3.5–6.0 min, which corresponded to the characteristic masses of the TX molecules (M = 

206+44 n) (5≤ n ≥16) with H
+
 ion attached (positive MS mode; 427.3, 471.3, 515.4, 

559.4, 603.4, 647.4, 691.5, 735.5, 779.5, 823.5, 867.6, 911.6) or with a water molecule 

attached (444.3, 488.4, 532.4,576.4, 620.4, 664.5,708.5, 752.5, 796.5,840.6, 884.6, 

928.6). Their mass spectrum is shown in Fig. 29. Mass spectrum of starting compounds 

is shown in Fig. 28. 

No extra peaks from degradation products were observed, but the intensity of the 

peaks characteristic of long ethoxy chains was reduced, which indicated the continuous 

attack of OH
•
 radicals on ethoxy units and degradation through the shortening of the 

ethoxy chain. Nonylbenzene, a structurally related compound, is attacked via the v- or 

b-oxidation of the side chain, so the degradation of TX-100 can be assumed to proceed 

through the breakdown of the alkyl chain [244]. However, TX-100 molecules have 

highly branched octyl chains, which prevent b-oxidation, and the primary degradation 

thus begins at the ethoxy chain. We can therefore conclude that the degradation of TX-

100 in the DBD reactor occurs mainly via shortening of the ethoxy chain (Fig. 27, 

structure S1). 
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Figure 28. Mass spectrum of Triton X-100 molecules 
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Figure 29. Mass spectrum of Triton X-100 solution after degradation in the non-

catalytic DBD with introduced energy density of 180 kJ L
-1 
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Figure 30. Mass spectrum of Triton X-100 solution after degradation in the Fe
2+

 DBD 

system with introduced energy of 180 kJ L
-1 

 

The mass spectra of the main degradation products for the Fe
2+

/DBD treatment 

are shown in Fig. 30, and their structures are shown in Fig. 27 (structures S1, S2, and 

S3). The TX molecules with long ethoxy chains have almost completely disappeared 

(Fig. 27, structure S1). Products S2 are attributed to the series M = 222+44 n, and the 
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most intense peak belongs to this series (663.5 with H
+
 ion and 680.5 with H2O 

attached). These products are formed by the addition of the OH
•
 radical to the aromatic 

ring. The cleavage of the bond linking the alkyl chain to the aromatic ring forms 

polyethoxylated phenol and characteristic masses of S3 products are M = 110+44 n. The 

most intense peak of this series has the mass 287.9 with the H
+
 ion attached. 

In the system H2O2/DBD, a higher concentration of TX molecules is identified 

than in the Fe
2+

/DBD system (structures S1). The most intense are those peaks with the 

mass 287.9 (with H
+
 ion attached) and 480.3 (with H2O2 attached) that belong to series 

S3 (M = 110+44 n) (Figure 31).  
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Figure 31.  Mass spectrum of Triton X-100 solution after degradation in the H2O2 

/DBD system with introduced energy of 200 kJ L
-1 

 

However, the H2O2/DBD system showed the highest TOC removal efficiency, 

which can be explained by the presence of a high concentration of less reactive species 

that react with degradation products but not with TX molecules. Thus, the presence of 

H2O2 increases the total oxidation power of the plasma. 

TX with a lower ethoxy chain (n = 1–3) was not detected, likely because of the 

short treatment time. 
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3.2.6. Ecotoxicity assessment of surfactants after the DBD treatments 
 

Ecotoxicology connects specific substance / mixture with effects they cause in 

bioassays. Surfactants and their residuals from hospital, municipal and industrial 

wastewaters through sewage system can reach various aquatic environments or be 

transported from the Arctic to the tropics terrestrial environments. These contaminants 

can even be present in the air where foliar uptake (plants) or respiratory exposures can 

occur. Organisms at risk from chemical exposures include plants, fungi, and algae 

(primary producers); invertebrates (such as worms, bugs, beetles, and mollusks); fish; 

amphibians; reptiles; birds; and mammals. In our case aquatic environment is 

potentially at risk so we decided to compare adverse effects of untreated and treated 

solution in toxicity screening with water organism Vibrio fischeri and Artemia salina.  

In ecotoxicology, as a measure of toxicity for tested compound, LC50 and EC50 

values are used. The LC50 (lethal concentration, 50%) is a measure of the lethal dose of 

a toxin. The value of LC50 for a substance is the concentration required to kill half the 

members of a tested population after specified test duration. The LC50 values are 

frequently used as a general indicator of a substance's acute toxicity. A lower LC50 is 

indicative of increased toxicity. 

The EC50 is effective concentration at 50%, which is the concentration that 

causes adverse effects in 50% of the test organisms. 

For the toxicity studies, a treated TX-100 solution was studied after introducing 

ED 450 kJ L
-1

. The applied amounts of Fe
2+

 or H2O2 were, respectively, 5 mg L
-1

 or 10 

mmol L
1
, the most efficient for the degradation of TX-100 in combination with DBD. 

The TX-100 EC50 value for V. fischeri was reported to be 63.6 mg L
-1

 [245], 

similar to the data obtained in this study (EC50 = 56.6 mg L
-1

). The inhibition (%) of 

bioluminescence (toxic effect) was < 10% for all tested samples after DBD treatment 

with and without the addition of a catalyst (H2O2 or Fe
2+

). Therefore, the final 

degradation products of the treated solutions did not cause any significant toxic effect to 

V. fischeri. 

In the toxicity screening with A. salina, a difference in mortality % was 

observed between untreated and solution-treated samples in the DBD reactor (with or 

without a catalyst). When A. salina was exposed to the initial solution of TX-100 (100 

ppm), the observed mortality was 76%. However, after the application of the DBD 
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treatment, the toxic effect was reduced to 16% of mortality. When the homogenous 

catalysts Fe
2+

 or H2O2 were added to DBD, the toxic effect was further reduced to 10% 

in the case of Fe
2+

 and to 6% in the case of H2O2.  These values were equal or lower 

than the validity criterion for mortality in the control group. In the case of nonylphenol 

ethoxylate, the toxicity of starting solution was significantly lower than in the case of 

Triton X-100. It was around 30%. After the DBD treatment without catalyst it decreases 

to only 2%. After the treatment with iron as catalyst their toxicity was as in the case of 

Triton-X. Similar results were obtained with hydrogen peroxide as catalyst.   
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Figure 32. Artemia salina toxicity test results for Triton X-100 and NPE 

 

3.2.7 Chemical oxygen demand analysis 

 

Chemical oxygen demand has been defined as the amount of oxygen that would 

be needed when all the organic ingredients would be oxidized completely. According to 

the name, the oxidation takes place chemically, so the chemical oxygen demand can 

only be defined indirectly. The result of a chemical oxygen demand test indicates the 

amount of water-dissolved oxygen (expressed as parts per million or milligrams per liter 

of water) consumed by the contaminants. The higher the chemical oxygen demand the 

higher the amount of pollution in the test sample. 
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In the case of nonionic surfactants the measured values after the tenth pass 

through the DBD reactor (450 kJ L
-1

 introduced energy density) show that treatment 

without a catalyst show decrease in COD value (around 35%). Degree of mineralization 

was similar for both surfactants. In the case of catalyzed treatment better results were 

obtained with hydrogen peroxide as catalyst (around 58%) in comparison to iron (50%). 

Both catalyst increase mineralization efficiency compared with treatment without 

catalyst.  Similarities in results were expected because their structures were similar. 

Catalyst favors the attack on aromatic ring and this fact explains the increase in 

mineralization.  

 

3.2.8 Total organic carbon analysis 

 

Total organic carbon (TOC) represents the amount of organic carbon present in 

the sample. It is used as an indicator of water quality and it is a non-specific method, i.e. 

it cannot be used for identification of organic substances present but only for a 

determination of their amount. 

Analysis of TOC was performed to compare the differences in the 

mineralization efficiency between the catalytic systems. The initial solution was 100 

mgL
-1

 TX-100 before degradation. The TOC value was measured after ten passes of the 

TX-100 solution through the reactor, i.e., at ED = 500 kJ L
-1

. The mineralization 

efficiency in the non-catalytic DBD treatment was very low (1%). The addition of the 

homogenous catalysts H2O2 or Fe
2+

 significantly improved the mineralization efficiency 

of TX-100. The catalytic system H2O2/DBD resulted in a mineralization efficiency in 

the range of 4–34%, (depending on the H2O2 concentration) whereas the Fe
2+

/DBD 

mineralization efficiency was in the range of 2–21% (depending on the Fe
2+

 

concentration). 

The best result was obtained in the system with 20 mmol L
-1

 H2O2, although this 

system was not the most efficient at removing the surfactant molecules. This result can 

be explained by the formation of less reactive species, such as hydroperoxyl radicals 

(HO2
•
), which were formed at a high concentration of H2O2. Based on the UV–Vis 

spectra, we concluded that the species responsible for the degradation of TX-100 are 

likely very reactive, short-living radicals. 
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Figure 33. Mineralization efficiency after Triton x-100 degradatiton in the DBD reactor 

 

 

3.3 Degradation of anionic surfactants 

 

3.3.1 Efficiency of degradation without a catalyst 

 

Efficiency of degradation was monitored with MBAS test for both surfactants. 

In both cases the loss of surfactant activity was observed (Figure 34). Degradation of 

dodecylbenzene sulphonate was faster and this fact is in accordance with results of 

ozonization of this two surfactants. Dodecylbenzene sulphonate undergo ozonization 

but sodium dodecyl sulphonate degrade only 20% under neutral conditions. In our case 

we obtained better results for SDS degradation. 
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Figure 34. Degradation efficiency of SDBS and SDS with dielectric barrier discharge. 

 

There are few explanations of these facts. At first in examined reaction pH is 

lowering during the treatment. In distilled water pH lower from 5.5 to 2.6 after 5 pass 

(Figure 35). Nitric oxide (NO) and nitrogen dioxide (NO2) formed in the plasma phase 

can be dissolved in water and react with plasma-generated active species such as 

hydroperoxyl radical, ozone or hydrogen peroxide in order to give RNS such as nitrous 

acid (HONO) and peroxynitrous acid (ONOOH). Detailed mechanism of their 

formation was described [155].  
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Figure 35.  Changes of pH with introduced energy density. 

 

At pH 2.6 SDS can undergo fast hydrolysis to sulphuric acid and dodecanol 

[246].
 
Conditions during plasma treatment (local high concentration of hydrogen ion 

and local increase of temperature) could significantly increase hydrolysis of SDS at 

higher pH. Dodecanol does not react in test with methylene blue. Other difference with 

classical ozonization is generation of hydrogen peroxide and hydroxyl radicals as 

oxidizing species in discharge. To confirm these facts concentration of ozone (Figure 

39), hydrogen peroxide (Figure 24) and hydroxyl radical (Figure 38) in distilled water 

were measured.  

The quantification of hydroxyl radicals was performed using DMSO as the 

probe compound [247]. The pathway of degradation of DMSO upon reaction with 

hydroxyl radicals has been extensively studied and results in the formation of methyl 

radicals and methane sulfinic acid as the primary intermediate products. Almost 

quantitative conversion of DMSO into methyl radicals upon reaction with hydroxyl 

radicals has been reported. Methyl radicals further reacts with oxygen and transform 

into peroxy radicals. Peroxy radicals undergo disproportionation in formaldehyde and 

methanol.  
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(CH3)2SO + OH
• 
→ CH3SOOH + CH3

•
 (74) 

CH3
• 
+ O2→ CH3OO

•
 (75) 

2 CH3OO
• 
→ HCHO + CH3OH + O2 (76) 

CH3
• 
+ RH → CH4 + R

•
 (77) 

 

 

Formaldehyde was derivatized with a saturated solution of dinitrophenyl 

hydrazine and quantified using HPLC methods at 360 nm.  

 

Figure 36. DNPH derivative of formaldehyde. 

 

Chromatograms inserted in the Figure 37 present the changes in intensity of 

DNPH derivatives of formaldehyde with number of passes.  

 

Figure 37.  Chromatograms and changes in intensity of DNPH derivatives of 

formaldehyde with number of passes through the DBD reactor. 
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As we can see concentration of OH radicals increase with introduced energy 

density. After calculations, dependence of concentration of OH radicals on introduced 

energy density was plotted (Figure 38). 

 

Figure 38. Changes in concentrations of hydroxyl radical in distilled water with 

introduced energy density 

For determination of ozone in distilled water after treatment in reactor (Figure 

40) indigo method was used [248]. With the indigo method, indigo trisulfonate dye 

immediately reacts with ozone (Figure 39). The color of the blue dye decreases in 

intensity in proportion to the amount of ozone present in the sample. Hydrogen peroxide 

(H2O2) and organic peroxides decolorize the indigo reagent very slowly. H2O2 does not 

interfere if ozone is measured in less than 6 h after adding reagents. 

 

 

Figure 39. Reaction between ozone and indigo dye forming colorless products. 
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Figure 40. Changes of ozone concentration in distilled water with introduced energy 

density. 

 

As we can see their concentrations in solution increase with introduced energy 

density. Those species can accelerate degradation of sodium dodecyl sulphate.   

 

3.3.2 Influence of homogenous catalysts 

 

Concentrations of catalyst optimized in experiments with Triton X-100 were 

used in further experiments with homogenous catalyst. As we can see from the Figure 

41 both catalysts have an influence on the degradation of sodium dodecylbenzene 

sulphonate. Hydrogen peroxide has a greater impact on the degradation than iron (Fe
2+

) 

as the catalyst. The increase was about 30% for the first four passes, while other passes 

showed an increase of about 10%. In the case of iron (Fe
2+

) increase was around 10% 

for all passes. The final degradation efficiency for both catalysts (after ten passes 

through reactor) was increased around 10%.   
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Figure 41. Degradation efficiency of SDBS in DBD reactor. 

 

Increased efficiency of degradation in systems with H2O2 can be explained based 

on peroxone process,
 
where in the reaction of ozone and hydrogen peroxide hydroxyl 

radical was generated. During discharge the UV light was generated so another way of 

hydroxyl radical generation was decomposition of hydrogen peroxide under UV 

radiation (Eq. 2). The hydroxyl radical is strong oxidant species that could attack 

aromatic ring and aliphatic part of a molecule.  Another way of formation of hydroxyl 

radical was through the reaction of ozone with Fe
2+

. 

 

Figure 42. Degradation efficiency of SDS in DBD reactor. 
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Catalysts have no effect on surfactant degradation in the case of sodium dodecyl 

sulphate (Figure 42).  This is in contrary with previous results of ozonization of SDS 

where adding hydrogen peroxide influenced SDS degradation [104] . However, the 

most significant difference between their and our work was the pH value. After first 

pass through the DBD reactor pH decreases from starting pH 7 to 3.5 in the case of 

SDS. After fifth pass pH decrease to 2.6. Similar results were obtained in the case of 

catalyzed reaction. We proposed that rate determination reaction in the case of sodium 

dodecyl sulphate was the hydrolysis of sulphate ester group and not degradation of 

surfactant. Iron (Fe
2+

) and hydrogen peroxide have no influence on hydrolysis of ester 

group and so we could not see differences between experiments with and without a 

catalyst.  

 

3.3.3 Toxicity tests 

 

Toxicity of anionic surfactants, SDS and SDBS, was tested using Artemia salina 

test and expressed as a percentage of Artemia salina mortality. The toxicity of the 

plasma treated samples was significantly decreased in all systems tested (Figure 43).  

According to the literature, the value of LC50 for SDS in the case of A.salina was 41.04 

(35.9-49.6) mg L
-1

 and for SDBS the LC50 value was 40.4 (38.7 – 48.5) mg L
-1

 (249). 

The toxicity effect (%) of initial solutions of both surfactants for the diluted samples 

(1:1) was higher in comparison to the treated solutions of SDS and SDBS in all systems 

(DBD, DBD + Fe
2+

, DBD+H2O2). Treated solution of SDBS in the non-catalytic DBD 

system as well as the catalytic DBD + Fe
2+

 system generated a negative effect in the 

range of test validity criterion (≤10%). A system with hydrogen peroxide as a catalyst 

(DBD+H2O2) had slightly higher toxicity effect, however, the mortality was under 20% 

(Figure 43). In the case of SDS, solution treated in the non-catalytic DBD system and 

the catalytic DBD + Fe
2+

 system induced lower toxicity in comparison to a catalytic 

system with hydrogen peroxide (DBD+H2O2). Therefore, the most efficient reduction in 

mortality was achieved in the system where Fe
2+

 was used as a catalyst (DBD + Fe
2+

). 
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Figure 43. Toxicity of surfactant solutions before and after the plasma treatment 

(Number of replications: 3). 

 

3.3.4 Chemical oxygen demand 

 

The COD value of initial solutions (0 kJ L
-1

) of two surfactants and the solutions 

after the plasma treatment (450 kJ L
-1

) was determined. Determined values of COD are 

presented in Fig. 44. In the case of SDS we obtained a higher degree of COD removal 

with DBD treatment. This can be explained with the fact that higher alcohols have 

something higher value for reaction rate constant that SDBS [250]. Catalyst has an 

influence on COD removal and better results were obtained with hydrogen peroxide as 

catalyst. In the case of SDS the COD value was reduced by 38%. Better results in COD 

removal for SDS than SDBS can also be explained with the resistance of aromatic 

nucleus for oxidation. 
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+  

Figure 44. Mineralization efficiency of plasma treated solutions presented as 

percentage decrease of COD value compared to solutions that didn’t undergo plasma 

treatment. 

 

3.3.5 Total organic carbon 

 

Results obtained for two samples of surfactants, shown in Fig. 45. before and 

after the plasma treatment showed the decrease of TOC value for all systems tested. 

Better mineralization of SDS was achieved for the system where Fe
2+

 was used as 

homogenous catalyst. This could be explained by the fact that iron as catalyst favored 

degradation of oxalic acid (intermediate in alcohols oxidation) [251]. Iron has low 

influence on mineralization of SDBS. On the other hand, hydrogen peroxide has the 

greater influence on SDBS mineralization. In the case of hydrogen peroxide dominant 

mechanism of degradation was through hydroxyl radical that has no influence on 

mineralization of oxalic acid.   
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Figure 45. Mineralization efficiency of plasma treated solutions presented as 

percentage decrease of TOC value compared to solutions that didn’t undergo plasma 

treatment. 
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 4. Conclusions 

 

Degradation of four surfactants (two anionic surfactants: sodium dodecyl sulfate - SDS 

and sodium dodecylbenezene sulfonate – DBS; and two nonionic surfactant  (Triton X-

100 and nonylphenol ethoxylate - NPE ) with non-thermal plasma  (water falling film 

dielectric barrier discharge plasma reactor) were examined.  

After ten pass through reactor and introduced energy of 450 kJ L
-1

 all surfactants were 

degraded with degradation efficiency higher than 80 %. Mineralization efficiency of 

reactions in DBD reactor was low (around 35 % COD decrease and 1 % TOC decrease 

in case of nonionic surfactants and around 10 %  COD decrease and around 6-10 TOC 

decrease in the case of anionic surfactants).  

Catalyst systems generally significantly improve degradation efficiency with except of 

sodium dodecyl sulfate. In case of sodium dodecyl sulfate we proposed that rate 

determination reaction is hydrolysis of sulfate ester under acidic conditions. During 

treatment, pH of solution decrease due to nitric and nitrous acid formation. Catalysts 

also improve mineralization efficiency for all tested surfactants.    

Amounts of catalyst were optimized in experiments of Triton X 100 degradation. Best 

results were obtained for 5 mg L
-1

 Fe
2+

 and 10 mmol L
-1

 hydrogen peroxide. Those 

concentrations were used in all experiments.  

In case of nonionic surfactants better results in degradation were obtained wit Fe
2+

 as 

catalyst especially in beginning of treatment (with introduced 135 kJ L
-1

 more than 80 

% surfactants were degraded (around 50 % without catalyst and 65 % with hydrogen 

peroxide as catalyst). In the catalyzed treatment better results in COD decrease were 

obtained with hydrogen peroxide as catalyst (around 58%) in comparison to iron (50%). 

Hydrogen peroxide gave better results in TOC decrease for higher concentrations (20 

mmol L
-1

). In optimal concentrations iron gave better results in TOC decrease (21 %) 

than hydrogen peroxide (15 %) but both catalyst show better mineralization efficiency 

than treatment without catalyst.   
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Analysis of degradation products indicate that degradation of TX-100 in the DBD 

reactor without catalyst occurs mainly via shortening of the ethoxy chain. In 

experiments with catalyst among products with shorter ethoxylated chain products with 

breakdown of alkyl chain and hydroxylated aromatic nucleus were identified.  

In case of anionic surfactants degradation of dodecylbenzene sulphonate in experiments 

without catalyst was faster. After ten pass and introduced energy of 450 kJ L
-1

 similar 

degradation was observed. Catalyst have not influence degradation of SDS and in case 

of DBS better results in degradation were observed with hydrogen peroxide (75 % for 

hydrogen peroxide, around 50 % for iron and around 40 % in experiments without 

catalyst for introduced energy of 135 kJ L
-1

.  

Decrease of COD value was increased with addition of catalyst and better results 

in decrease were obtained with hydrogen peroxide as catalyst. In all experiments higher 

degree of COD removal were obtained in the case of SDS.  Better results in COD 

removal for SDS than DBS can be explained with the resistance of aromatic nucleus for 

oxidation. 

Better mineralization of SDS was achieved for the system where Fe
2+

 was used 

as homogenous catalyst. This could be explained by the fact that iron as catalyst favored 

degradation of oxalic acid. On the other hand, hydrogen peroxide has the greater 

influence on DBS mineralization. In the case of hydrogen peroxide dominant 

mechanism of degradation was through hydroxyl radical that has no influence on 

mineralization of oxalic acid.   

The toxicity effect (%) of all treated solutions of surfactants in all systems 

(DBD, DBD + Fe
2+

, DBD+H2O2)was lower in comparison to the .initial solutions 

surfactants.  
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