, 2014.

UNIVERSITY OF BELGRADE FACULTY OF MECHANICAL ENGINEERING

LJUBISA A. VLADIC

IMPLEMENTATION ANALYSIS OF VACUUM DEGASSING OF FEED WATER FOR DISTRICT HEATING SYSTEMS

DOCTORIAL THESIS

BELGRADE, 2014.

:

,

,

,

,

()

,

,

: ____.2014.

:

:

Београд, Април 2014.

,

,

,

,

,

,

,

мр Љубиша А. Владић

,

.

.

,

.

"

,

,

,

na p

•

na

,

"

a

_

.

,

:

,

,

,

,

,

•

IMPLEMENTATION ANALYSIS OF VACUUM DEGASSING OF FEED WATER FOR DISTRICT HEATING SYSTEMS

SUMMARY

Degasification of water plays a crucial role in corrosion protection of pipelines and equipment in district heating systems. In practice, most commonly used degasification methods are thermal, catalytic and membrane degasification. Besides them there is another method: stripping of dissolved gases from water at reduced pressure in the presence of an inert gas. This method also called vacuum stripping has not been tested sufficiently and has been applied in practice only on few occasions. The main part of this dissertation includes the experimental work on vacuum stripping plant of semi-industrial scale and the analysis of the gathered data in order to describe the process in complete. The calculation procedure established in the dissertation is statistically proven as reliable. Other part of dissertation is the economic optimization of working parameters in order to obtain minimal costs, as well as the comparison of vacuum stripping process and other well-known processes.

Keywords:District heating, degassing, economic analysisScientific field:EngineeringMajor in:Processing engineeringUDC:66.067:621.182.1 (043.3)697.34 (043.3)

1	
2	
2.1	
2.2	
2.3	
2.4	
2.5	
3	.12
3.1	
3.2	
3.3	
3.4	
3.5	
3.6	
3.7	
3.8	
4	
4.1	45
4.2	
4.3	
4.4	
4.5	a
5	
5.1	

 5.2
 5.3
 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7
 6.8
 6.9
 6.9
 7
 0

<i>p</i> (barA)	-
<i>p</i> (bar)	-
p (bar)	-
\dot{m} (kg/h)	-
\dot{m} (m ³ /h)	-
\widetilde{x} (ppb _{mas})	-
\widetilde{x} (ppm _{mas})	-
<i>t</i> (°C)	-
<i>T</i> (K)	-
$V(m^3)$	-
H_d (KJ/m ³)	-
(-)	-
(%)	-
$Q(\mathbf{W})$	-
P_{el} (kW)	-
M (kg/kmol)) -
R (J/(kmolK)-
h (J/kg)	-
(h)	-
<i>L</i> (m)	-
<i>D</i> (m)	-
<i>w</i> (m/s)	-
(kg/m^3)	-
(Pa s)	-
c _p , kJ/(kgK)	-
Re (-)	-
De (-)	-
(Pa/m)	-
C (EUR)	-
<i>f</i> (-)	-
	-

	-		
	-		
CEPCI	- chemical engineering plar	nt cost index ()	
ISBL	- inside battery limits ()	1
OSBL	- outside battery limits ()
UKT	-		
NR	-		
RHPV	-		

1

e

ja

.

-2012/0209.

.

,

:

(

, ,

);

1

;

m³/h.

•

•

•

20

2

2.1

K , [2.1],

(

:

(

4%

• ,

• (), ; • ;

•

. ,

()

, , .).

•

,

, , , .).

[2.2]. 15%

,

;

[2.2]. :

,

2.2) :

- ;
- (pitting) ;
- ;
- ;
- ;
- ;
- ;
- ;
- ;
- ;

()

()

(

:

2.2

- ;
- •

,,

,,

:				$Fe \rightarrow Fe^{2+} + 2e^{2}$	
			:	$^{\prime\prime}O_2 + H_2O + 2e^- \rightarrow 2OH^-$	
	:			$\mathrm{Fe}^{2+} + 2\mathrm{OH}^- \rightarrow \mathrm{Fe}(\mathrm{OH})_2$	
()	:		$Fe + "O_2 + H_2O \rightarrow Fe(OH)_2$	
				$Fe(OH)_2($).

 $Fe(OH)_2$

:

(). (FeO, Fe_2O_3 , Fe_3O_4) (

Fe $_2\mathrm{O}_3\cdot\mathrm{H}_2\mathrm{O}$, $\ \ \mbox{Fe}_3\mathrm{O}_4\cdot\mathrm{H}_2\mathrm{O}$),

(,

)

(

[2.4]. 2÷25 ~m [2.5],

2.2.2

 $H_2O + CO_2 \Leftrightarrow H_2CO_3 \Leftrightarrow H^+ + HCO^{3-}$

$2H_{2}O + 2CO_{2} + Fe - Fe$	· → Fe(HCO ₃)	$_{2} + H_{2}$	
2.3			
	,		EN 12952-12: 2003
[2.7],		$20 \sim g/l$.	
, 10÷50 ∼g/l .			[2.8]
j	5 ppb(mas)		
14 bar,			43 ppb(mas) .
5 ppb(mas).	[2.9]		
$7 \sim g/l = 7 \text{ ppb (mas)}$. [2.10]	[=]		
	pН	$=9,5 \div 9,8,$	
(-	1 mm	
,	10%.		
20~g/l			
			,
			(.
)		,	
		[2 10]	2.2.
5%		, [2.10]	
•	7		(Danish District
Heating Association)		[2.6]	
. 4			: ,
,			
рН		$9,8\pm0,2$	
20 ppb(mas) .			< 25 ~S/cm .

2.2

: $< 10 \sim S/cm$,

•

 $pH=9,8\pm0,2$

100 ppb(mas) .

[2.11].

75 [2.12]. CO₂ , [2.13], 1

ppm(mas)

CO_2	1	[2.13]
O_2		

,

	1	[2.13]
	, ppm _{mas}	, ppm _{mas}
CO_2	100	1
O2	7,2	0,005
N2	12,1	

2.4

.

,

.

:

(oxygens cavenger,), . : • ((); • ().

- [2.1] DIN EN ISO 8044: Corrosion of Metals and Alloys-Basic Terms and Definitions (ISO 8044:1999) Trilingual version EN ISO 8044:1999
- [2.2] NBS: Economic Effects of Metallic Corrosion in the United States, National Bureau of Standards, Special Publication, Vol. 511 (NBS, Gaithersburg 1978)

[2.3]

, 2003.

- [2.4] Corrosion Volume I Metal/Environment Reactions Edited by L.L. Shreir, R.A. Jarman,G.T. Burstein, Butterworth-Heinemann Linacn House, Jordan Hill, Oxford, 2000
- [2.5] http://www.cip.ukcentre.com/steam.htm
- [2.6] Hilbert L.R., Nielsen L.V., Andersen A., Corrosion Rate Monitoring In District Heating Systems, Nordic Industrial Fund, Project no, 00071, "Monitoring corrosion in district heating systems", Final Report, May 2004
- [2.7] EN 12952-12: 2003 Kotlovi sa cevima sa vodom i pratece instalacije Deo 12: Zahtevi za kvalitet napojne vode kotla i kotlovske vode
- [2.8] Improving Steam System Performance, A Sourcebook for Industry U. S. Department of Energy's (DOE) Industrial Technologies Program (ITP)
- [2.9] CIBO Energy Efficiency Handbook, Council Of Industrial Boiler Owners (CIBO) 6035 Burke Centre Parkway, Suite 360Burke, VA 22015, 1997
- $[2.10]\,http://www.energy.rochester.edu/dk/dea/dh/ren.htm$
- [2.11] Chapter 2: District Heating Systems Used In Western Europe, Danfos
- [2.12] M. Poulsen, Maintenance Of District Heating Pipelines, Journal No 4/2008, www.dbdh.dk
- [2.13] Rasquin E. A., Lynn S., Hanson D.N.: Vacuum Degassing of Carbon Dioxide and Oxygen from Water in Packed Columns, Ind. Eng. Chem., Fundam., Vol. 16, No.1, pp 103-108, 1977.

^{2.5}

3

2, , .

, 3.1

(-) .

- ;
- ; • .

.

).

),

. .

) [3.1]:

3

. . (

. (

- ; • ; ()
- , (Pd),
- $\begin{array}{ccc} & (& . \mbox{ oxygen} \\ scavenger) & (N_2H_4), & (Na_2SO_3), \\ (CH_6N_4O) & , & & . & [3.6] \end{array}$

50 ppb(mas).

3.2

,

.

[3.2]

- ();
- ($1,2 \div 1,7 \text{ barA}$);
- (1,7÷7barA).
- [3.2] (3.1.a 3.1.), (3.2.) (3.3.).
 - : (3.1.)
 - (3.1.).
 - $(5 \div 7 \,\mathrm{mm} \, [3.2]).$

:

(3.2).

14

30÷45 min.

Ca(HCO₃)₂ \Rightarrow CaCO₃ + CO₂ + H₂O Mg(HCO₃)₂ \Rightarrow MgCO₃ + CO₂ + H₂O MgCO₃ + H₂O \Rightarrow Mg(OH)₂ + CO₂ , [3.3], [3.4] [3.5]

1°d

(1) (2) (11) (12). (13) , (14) ,

.

(

(10).

•

(6)

•

:

(9)

.

)

3.3.

(8)

3.2.2

20 m3/h

• $\dot{m}_4 = 20 \text{ m}^3/\text{h}$ • $t_1 = 12 \,^{\circ}\text{C}$ • () $p_m = 120 \text{ kPa}$ • $\tilde{x}_{0_2} = 13,01 \text{ ppm}$ • $\tilde{x}_{N_2} = 21,12 \text{ ppm}$ • $\tilde{x}_{CO_2} = 0,982 \text{ ppm}$ • () $p_7 = 10 \text{ bar}$ • $t_7 = 179,9^{\circ}\text{C}$ 3.1.

17

	1	2	3	4	5
, kg/h	20167	20167	87,1	20000	3,6
, °C	12	86,34	95,06	30	95,06
, barA	1,2	1,2	1,2	1,2	1,2
	0	$4,44 \cdot 10^{-5}$	1	0	1
, kJ/kg	50,52	361,91	2763,80	125,04	2763,80
, kg/kmol	18,015	18,015	18,071	18,015	18,071
, kg/m ³	999,08	925,52	0,716	995,34	0,716
, m ³ /h	20,186	21,791	121,88	20,095	5,06
	1		1		1
, kg/h		0,9	87,1		3,6
, kJ/kg		120,98	2763,80		2763,80
, kg/kmol		23,5871	18,0705		18,0705
, kg/m ³		0,951	0,716		0,716
, m ³ /h		0,942	121,88		5,06
	1		1	I	
, kg/h	20167	20166		20000	
, kJ/kg	50,52	361,91		125,04	
, kg/kmol	18,0152	18,0151		18,015	
, kg/m ³	999,08	967,28		995,34	
, m ³ /h	20,186	20,849		20,095	
	-	,	kg/h		
()	20167	20167	86,42	20000	3,5719
	0,2624	0,2624	0,2520	0	0,0104
	0,4259	0,4259	0,4091	0	0,0169
	0,0198	0,0198	0,0189	0	0,0008
		, %ma	ıs ; ppb		
()	99,99650	99,99650	99,21925	100	99,21925
	0,001301	0,001301	0,289357	20ppb	0,289357
	0,002112	0,002112	0,469733	32ppb	0,469733
	0,000098	0,000098	0,021663	0	0,021663

3.1

		6	7	8	9
, kg/h		833	758	75,0	20000
, °C		104,81	179,95	179,95	104,81
, barA		1,2	10	10	1,2
		0	1	0	0
, kJ	/kg	438,91	2775,71	763,81	439,51
, kg/kmol		18,015	18,015	18,015	18,015
, kg/m ³		954,3	5,03	886,8	954,3
, m ³ /h	1	0,8733	150,638	0,0846	20,960
			İ		
, kg/h			758		
, kJ	/kg		2775,71		
, kg/kmol			18,015		
, kg/m ³			5,03		
, m ³ /h	1		150,638		
, kg/h		833		75,0	20000
, kJ	/kg	438,91		763,81	439,51
, kg/kmol		18,015		18,015	18,015
, kg/m ³		954,3		886,8	954,3
, m ³ /h	1	0,873		0,0846	20,960
			, kg/ł	1	
()		833	758	75,0	20000
		0	0	0	0
		0	0	0	0
		0	0	0	0
, %mas ; ppb					
()		100	100	100	100
		20ppb	20ppb	20ppb	20ppb
		32ppb	32ppb	32ppb	32ppb
		0	0	0	0

3.1 -

		11	12	13	14
,	kg/h	19360	807	30,3	727,7
, °C		86,34	86,34	179,95	179,95
, barA		1,2	1,2	10	10
		4,44 .10-5	$4,44 \cdot 10^{-5}$	1	1
	, kJ/kg	361,91	361,91	2775,71	2775,71
, kg	/kmol	18,015	18,015	18,015	18,015
, kg/m ³		925,52	925,52	5,03	5,03
¥	, m ³ /h	20,918	0,872	6,026	144,612
	· · · · · · · · · · · · · · · · · · ·			*	
,	kg/h	0,864	0,036	30,3	727,7
	, kJ/kg	120,98	120,98	2775,71	2775,71
, kg	/kmol	23,5871	23,5871	18,015	18,015
, kg/m ³		0,951	0,951	5,03	5,03
	, m ³ /h	0,904	0,038	6,026	144,612
,	kg/h	19359,36	806,64		
	, kJ/kg	361,91	361,91		
, k	g/kmol	18,0151	18,0151		
, kg/m ³		967,28	967,28		
	, m ³ /h	20,015	0,833		
			, kg/h		
()	19358,6826	806,6118	30,3	727,7
		0,2519	0,0105	0	0
		0,4089	0,0170	0	0
		0,0190	0,0008	0	0
			, %mas ; pj	pb	
()	99,996501	99,996501	100	100
		0,001301	0,001301	20ppb	20ppb
		0,002112	0,002112	32ppb	32ppb
		0.000098	0.000098	0	0

() (/)

[3.7]

0,05~m

[3.8].

,

•

.

).

(

10,*3*bar.

_

(hollowfiber =).

$$X-40 \quad X-50$$
 Liqui-Cel
 $3.2. \quad X-50$

3.2

•

Liqui - Cel

	X-40	X-50
, ~m	300	300
, ~m	200	220
, %	25	40
, ~m	0,03	0,04

1,7 barA.

3.3

3.3

,

$d \ge L$, inch	m ³ /h	m ³ /h
1 x 5.5	0,06 ÷ 0,3	$0,006 \div 0,03$
1.7 x 5.5	$0,2 \div 0,9$	$0,02 \div 0,09$
2.5 x 8	$0,2 \div 1,8$	$0,03 \div 0,2$
4 x 13	$0,8 \div 4,8$	$0,04 \div 0,4$
4 x 28	$1,6 \div 9,6$	$0,08 \div 0,8$
6 x 28	1,6÷32	$0,04 \div 0,8$
10 x 28	$6,4 \div 40,2$	0,3 ÷ 5,6
14 x 28	10 ÷ 64	0,34 ÷ 17

•

3.4

)

450m³/h 1ppb. 1700m³/h [3.10].

•

3.3.2 M

20m³/h

-) $\dot{m}_1 = 20 \text{ m}^3/\text{h}$ (
- $t_1 = 12^{\circ}\mathrm{C}$

12°C 101,3 kPa

:

 $\tilde{x}_{O_2, p} = 10,983 \text{ mg/l} = 10,983 \text{ ppm(mas)}$

 $\tilde{x}_{O_2,k} = 0,02 \text{ mg/l} = 20 \text{ ppb(mas)}$ $\tilde{x}_{N_2, p} = 17,831 \text{mg/l} = 17,831 \text{ppm(mas)}$ $\tilde{x}_{CO_2, p} = 0,829 \,\text{mg/l} = 0,829 \,\text{ppm(mas)}$ 3.4.

	1	2	3	4	5			
, kg/h	20000	19999,155	1,3118	2,1664	232,1758			
, °C	12	12	12	12	13,4998			
, barA	3	2,61	0,067	0,067	1,0132			
	0	0	1	1	0,008053			
, MJ/h	-3,19 +05	-3,19 +05	-	-4,244	-3667,9			
, kg/kmol	18,0152	18,015	28,0143	26,3042	18,0681			
, kg/m ³	999,0929	999,1424	0,0792	0,0744	130,1874			
,	20,0182	20,0163	16,5673	29,1355	1,7834			
, kg/h			1,3118	2,1664	1,8698			
, MJ/h			-	-4,244	-0,32931			
, kg/kmol			28,0143	26,3042	28,3097			
, kg/m ³			0,0792	0,0744	1,2041			
,			16,5673	29,1355	1,5528			
c _p , kJ/(kgK)			1,0421	1,1489	1,0374			
, kg/h	20000	19999,155			230,306			
, MJ/h	-3,19 +05	-3,19 +05			-3667,5			
, kg/kmol	18,0152	18,015			18,0152			
, kg/m ³	999,0929	999,1424			998,9022			
,	20,0182	20,0163			0,2306			
c _p , kJ/(kgK)	4,1862	4,1863			4,1862			
			, kg/h					
	0,3477	0,0295	1,3117	1,6308	1,6308			
	0,2197	0,0002	0,0001	0,2195	0,2195			
	0,0166	0,0086	0	0,0079	0,0079			
()	19999,415	19999,117	0	0,3082	230,3176			
, %mas; ppb								
	0,001738	0,000147	99,99	75,27509	0,702388			
	0,001098	0,000001	0,01	10,13354	0,094556			
	0,000083	0,000043	0	0,366417	0,003420			
()	99,997079	99,999809	0	14,22494	99,19963			

3.4
	6	7	8	9	10
, kg/h	1,8698	230,0066	0,2994	229,71	230,0095
, °C	13,4998	13,4998	13,4998	12	12,0018
, barA	1,0132	1,0132	1,0132	2	1,0132
	1	0	0	0	0
, MJ/h	-0,32931	-3662,8	-4,7683	-3659,6	-3664,4
, kg/kmol	28,3097	18,0152	18,0152	18,015	18,015
, kg/m ³	1,204	998,902	998,902	999,145	999,145
. , m³/h	1,5528	0,2303	0,0003	0,2299	0,2302
	/	,			
, kg/h	1,8698				
, MJ/h	-0,32931				
, kg/kmol	28,3097				
, kg/m ³	1,2041				
,					
m ³ /h	1,5528				
$c_p, \mathrm{kJ/(kg \cdot K)}$	1,0374				
, kg/h		230,0066	0,2994	229,71	230,0095
, MJ/h		-3662,8	-4,7683	-3659,6	-3664,4
, kg/kmol		18,0152	18,0152	18,015	18,015
, kg/m ³		998,902	998,902	999,145	999,145
,					
m ³ /h		0,2303	0,0003	0,2299	0,2302
$c_p, \mathrm{kJ/(kg \cdot K)}$		4,1862	4,1862	4,1863	4,1863
			, kg/h		
	1,6264	0,0044	0	0	0
	0,2183	0,0012	0	0	0
	0,0068	0,0011	0	0	0
()	0,0183	230	0,2994	229,71	230,0094
			,%mas		
	86,98043	0,001913	0,001913	0	0,000002
	11,67709	0,000519	0,000519	0	0,000001
	0,365311	0,000482	0,000482	0	0,000001
()	0,977153	99,997085	99,997085	100	99,999994

$$v_{b} = \frac{\tilde{x}_{O_{2},p} - \tilde{x}_{O_{2},k}}{\tilde{x}_{O_{2},p}} = \frac{10983 - 20}{10983} = 0,99818 = 99,818\%$$

$$\dot{m}_{1} = 20 \text{ t/h} \qquad 10 \text{ x } 28 \qquad \text{XIN-Industria,}$$

$$10 \div 56,8 \text{ m}^{3}/\text{h.}$$

•

 $v_b = 0,999 = 99,9\%$,

 $\tilde{x}_{O_2,k} = 10.98 \text{ ppb(mas)}.$

1,05 m_N³/h 1,31 kg/h , : • 5 barA; • 0,067 barA. 3.4

$$2H_2 + O_2 \rightarrow 2H_2O$$

(Pd).

3.7,

 $H_2 + Pd^0 \rightarrow Pd^0 + 2H$ 2H+O−O → 2HO-H 2H + 2HO - H → 2H₂O

3 : [3.11] Pd (. X50 polypropylene hollow fiber) ; [3.12], [3.13] [3.14] / [3.15] (Lewatit Purolite [3.1]). : 8:1); (: ; ;), (; [3.17];

[3.17];

[3.15] [3.17], 10÷20min.

() $0,4 \div 1,3$ mm. [3.15]

 $\tilde{x}_{\text{H2}}^* = 4,06 \text{ mg/l}.$

2,5÷3barA.

	3.5	()	
Lewatit K3433	,		,	
	,	,		
			,	
Lewatit K6333	,			
Lewatit K7333	,			

1 g 1 l . [3.15] ()

•

3.5. Lewatit K6333

3.4.2

,

,

20 m³/h

• (
(
)
$$\dot{m}_L = 20 \text{ t/h}$$

• $t_L = 12 \,^{\circ}\text{C}$
• $p_m = 3 \text{ barA}$
• 12°C 101,3 kPa $\tilde{x}_{\text{O}_2,p} = 10,983 \text{ ppm}$
• $\tilde{x}_{\text{O}_2,k} = 20 \text{ ppb}$
• $\tilde{x}_{\text{O}_2,k} = 20 \text{ ppb}$

$$\dot{m}_{\rm H_2} = \dot{m}_L \cdot \frac{\tilde{x}_{\rm O_2, p} - \tilde{x}_{\rm O_2, k}}{8} = 20 \cdot \frac{10,983 \cdot 10^{-6} - 20 \cdot 10^{-9}}{8} = 0,0275 \text{ kgH}_2/\text{h}$$
(30) 50%

$$\dot{m}_{\rm H_2,max} = 1.5 \cdot \dot{m}_{\rm H_2} = 1.5 \cdot 0.0275 = 0.0412 \,\rm kg H_2/h$$

:

3.6

3.6

[3.23]

	CO ₂	O ₂	N ₂	CO ₂	O ₂	N_2
, Pa		4266			4400	
, ppm _{mas}	100	7,2	12,1	100	7,2	12,1
, ppb _{mas}	4400	93	-	4200	35	-
, %	95,60	98,71	-	95,8	99,51	-

[3.23],

;

[3.16] (3.7): • 100 (0,000499 s⁻¹ 0,0488 s⁻¹); • 3.6 (), :

3.7

)

•

([3.23].

3.7

[3.16]

				[5.10]				
		CO ₂	O ₂	N ₂	CO ₂	O ₂	N ₂]
	, Pa		4266			4400		
	, ppm _{mas}	100	7,2	12,1	100	7,2	12,1	
	, ppb _{mas}	675	27,0	59,4	1261	29,8	61,3	
	, %	99,30	99,62	99,51	98,74	99,59	99,49	
[3.24]						265	5 m ³ /h,	
	3390 Pa		17	∕,5°C.				
	,			2		100 ppt	o _{mas} . T	
	()		2		34
ppb _{mas} .								
	356 µm/go	d,		۷	41 µm/g	od.		
3.6								
				;				
	7 ÷ 40 ppb(mas) [3.18]	, [3.19],		< 15	ppb(ma	s) [3.20)].	
	a (oxygen scavenger-a,),					
	. [3	.20]						
				50 pp	b(mas)			
	(3.9)).					
			,				,	
						•		
				•				
		()		

.

,

.

•

•

•

.

$$\mathrm{N_2H_4} + \mathrm{O_2} \rightarrow \mathrm{N_2} + 2\mathrm{H_2O}$$

,

 $6\mathrm{Fe}_{2}\mathrm{O}_{3} + \mathrm{N}_{2}\mathrm{H}_{4} \rightarrow 4\mathrm{Fe}_{3}\mathrm{O}_{4} + \mathrm{N}_{2} + 2\mathrm{H}_{2}\mathrm{O}$

• (
100°C);
•
$$pH$$
 ($pH < 7$,
).
 $pH > 9 \div 9,5$ 100÷107°C 20 ~g/kg
 $2 \div 3$ s

 $2 \div 3 \mathrm{s}$.

:

1kg

 $\widetilde{x}_S = 1 \cdot \widetilde{x}_{O_2} + 1 \text{ ppm(mas)}$

,

205°C

$$2N_2H_4 + O_2 \rightarrow 2NH_3 + N_2 + H_2$$

•

- $(N_2H_4 \cdot H_2O),$ $(N_2H_4 \cdot HCl)$
- $(N_2H_4 \cdot H_2SO_4).$

NIOSH).

 (Na_2SO_3)

(OSHA,

3÷6 %

 $2\text{Na}_{2}\text{SO}_{3} + \text{O}_{2} \rightarrow 2\text{Na}_{2}\text{SO}_{4}$ 80°C

20 mg/kg.

41bar SO₂ H₂S Na₂SO₃ + H₂O \rightarrow 2NaOH + SO₂ 4Na₂SO₃ + 2H₂O \rightarrow 2NaOH + H₂S + 3Na₂SO₄

pH,, . ., (

1kg

 $\widetilde{x}_{S} = 7,88 \cdot \widetilde{x}_{O_2} + 20 \text{ ppm(mas)}$

1EUR/kg,

[3.19] .

 $\widetilde{x}_{S} = 10 \cdot \widetilde{x}_{O_2}$

,

 $\mathrm{CH}_{\,6}\mathrm{N}_{\,4}\mathrm{O} + \mathrm{2O}_{\,2} \rightarrow \mathrm{CO}_{\,2} + \mathrm{2N}_{\,2} + \mathrm{3H}_{\,2}\mathrm{O}$

1,4.

1ppm(mas)

(

1kg

$$\widetilde{x}_S = 1, 4 \cdot \widetilde{x}_{O_2} + 1 \text{ ppm(mas)}$$

IRGATREAT CI 3010)

(

 $\widetilde{x}_S = (24 \div 25) \cdot \widetilde{x}_{O_2}$

177°C

TOC

,

. Accepta2065

 H_2CO_3 ,

4,36EUR/kg. DEHA

.

.

 $4C_4H_{11}NO + 9O_2 \rightarrow 8CH_3COOH + 2N_2 + 14H_2O$ DEHA $\widetilde{x}_{S} = 1,24 \cdot \widetilde{x}_{O_{2}}$ DEHA $\widetilde{x}_S = 3 \cdot \widetilde{x}_{O_2}$ Accepta2061 DEHA $\widetilde{x}_S = 50 \cdot \widetilde{x}_{O_2} + (5 \div 10) \text{ppm(mas)}$ 10 3.9 [3.21] 21°C pH = 8,51 - Na ₂SO ₃ , 2 - DEHA, 3 – , 4 -).

[3.22]

2012.

•

,

(NV)

HK-318 Dissolve Oxygen Analyzer,

(RHPV)

(NR)

:

•	(RHPV), t (°C) (); \widetilde{x}	
•	O ₂ RHPV, \tilde{x}_{O2} (ppb _{mas}) ();	
•	NR, t (°C);		
•	O ₂ NR, \tilde{x}_{O2} (ppb _{mas});		
		1.	

2

•

2

·

•

·

•

- [3.1] Sinha V., Li K., Alternative methods for dissolved oxygen removal from water: a comparative study, Desalination 127 (2000) 155-164
- [3.2] Parthasarthy C., Boiler Operation Engineering, Tata McGraw-Hill, 2000, ISBN: 0074635611
- [3.3] , .
- [3.4] ., , 1985.
- [3.6] CIBO Energy Efficiency Handbook , Council Of Industrial Boiler Owners (CIBO) 6035 Burke Centre Parkway, Suite 360 Burke, VA 22015, 1997

, 2002.

- [3.7] A. Itoa, K. Yamagiwa, M. Tamura, M. Furusawa: Removal of dissolved oxygen using non-porous hollow-fiber membranes, Journal of Membrane Science 145 (1998) 111-117
- [3.8] F.Wiesler: Membrane contactors: An introduction to the technology, Ultrapure water, 1996
- [3.9] X. Tan, G. Capar, K. Li: Analysis of dissolved oxygen removal in hollow fibre membrane modules: effect of water vapour, Journal of Membrane Science 251 (2005) 111–119
- [3.10] B. Miller, J.Munoz, F. Wiesler: Boiler Feed Water Degasification Using Membrane Contactors - New Methods for Optimized Performance, IWC-05-79, 2005 International Water Conference
- [3.11] R. Van Der Vaarta, I. Petrova, V. Lebedeva, V.Volkov, D. Kochubey, G. Tereshchenko: In-Situ Application Of Catalytic Phase To Commercial Membrane Contactor For Removal Of Dissolved Oxygen From Water, Desalination 199 (2006) 424-425
- [3.12] X. Tan, K. Li: Investigation Of Novel Membrane Reactors For Removal Of Dissolved Oxygen From Water, Chemical Engineering Science 55 (2000) Pp. 1213-1224
- [3.13] K. Li, I. Chua, W. J. Ng And W. K. Teo: Removal Of Dissolved Oxygen In Ultrapure Water Production Using A Membrane Reactor, Chemical Engineering Science, Vol. 50, No. 22, Pp. 3547-3556, 1995
- [3.14] Li K., Tan T., Sinha V., Teo W. K., Simulation Of A Novel Glass Reactor For Dissolved Oxygen Removal From Water, Wat. Res. Vol. 34, No. 7, Pp. 2011-2024, 2000
- [3.15] The Catalytic Removal Of Dissolved Oxygen From Water, Technical Information Lewatit - Lanxess, www.sybronchemicals.com
- [3.16] Ja imovi B., Geni S., Difuzione operacije i aparati Deo 2: Difuzione operacije, Mašinski fakultet, Beograd, 2010.

3.8

- [3.17] NATCO Group, Seaject Compact Deoxygenation, Issue 1 August 2002, Page 1890-A2
- [3.18] Improving Steam System Performance, A Sourcebook for Industry, U. S. Department of Energy's (DOE) Industrial Technologies Program (ITP).
- [3.19] Miller B., Munoz J., Wiesler F., Boiler Feed Water Degasification Using Membrane Contactors - New Methods for Optimized Performance, 66th Annual International Water Conference 2005, Orlando, Florida.
- [3.20] CIBO Energy Efficiency Handbook , Council Of Industrial Boiler Owners (CIBO) 6035 Burke Centre Parkway, Suite 360 Burke, VA 22015, 1997.
- [3.21] Selection Guide For Oxygen Scavengers, 2001 Arkema Inc.
- [3.22] ., ., 07.05-01/2009

, 2009.

- [3.23] Rasquin E. A., Lynn S., Hanson D. N., Vacuum Degassing of Carbon Dioxide and Oxygen from Water in Packed Columns, Ind. Eng. Chem., Fundam., Vol. 16, No. 1, 1977, pp 103-108
- [3.24] Frank W. J., Efficient Removal of Oxygen in a Waterflood By Vacuum Deaeration, Document ID: SPE-4064-MS, Fall Meeting of the Society of Petroleum Engineers of AIME, 8-11 October, San Antonio, Texas, 1972.

5 m³/h

а

4.1

1830 m³.

•

2 23 MW 2 29 MW,

je

104 MW.

•

 $120 \div 150 \text{ m}^3/\text{dan},$

 $10000 \ m^3 \ 6 \ , \qquad 55 \ \div \ 60$

m³/dan.

4.1.

. (3

 $1x30 \text{ m}^3/\text{h}$ $2x17 \text{ m}^3/\text{h}$,

NaCl).

40 m³, Na ₃PO ₄

4.2

 $4 \div 5 \text{ m}^3/\text{h.}$ 3 m,

DN 200,

0,05 bar .

99,99%

:

150 bar.

2 kg/h.

 100 m^3 .

12°C

33°C. $v_b = \frac{\tilde{x}_{O_2, p} - \tilde{x}_{O_2, k}}{\tilde{x}_{O_2, p}} = \frac{10983 - 20}{10983} = 0,99818 = 99,818\%$

•
$$\tilde{x}_{O_2, p} = 10,983 \text{ mg/l} = 10,983 \text{ ppm}_{\text{mas}},$$
 2 (
12° 101.3 kPa):

:

•
$$\tilde{x}_{O_{2},k} = 0.02 \, \text{mg/l} = 20 \, \text{ppm}_{\text{mas}}$$

:

() DN65;
() DN65;
() DN65;
() DN80;
765 mm;
23 m³/h;

15°; 5 barA. 4.2. 12÷17° 5÷8 barA. DN100, (3), (4) 26÷28 m³/h. DN80 23 m³/h DN50. DN80 5 barA (IV) 0.05barA. DN50 (6) $3 \div 5 \text{ m}^{3}/\text{h},$ (7). • (I) 30÷33°. , (8) (II) DN200 3 m. 150 bar 13 $0.5 \div 2$ kg/h $1 \div 2$ bar III V • (22)) (, • (20), (21) (10) , ,

•

[4.1]

;

4.1.

$$G_{nk} = a \cdot V^b$$
, kg/h

je:

- Gnk (kg/h) •
- V (m3) –
- a,b –

;

4.1		a b
p_t , kPa	а	b
$12 \div 101,3$	0,9430	0,6630
2,8 ÷ 12	0,6966	0,6617
$0,41 \div 2,8$	0,4784	0,6579
0,13 ÷ 0,41	0,2415	0,6568
<0,13	0,1220	0,6639

;

 $(V = 0,72 \text{ m}^3,$

(

,

(4.1)

),

$$p = 5,0$$
 kPa)

0,560 kg/h.

(4.1)

[4.2]

(weld leakage rate) :

$$\dot{m}_{infWL} = A \cdot p^B \cdot V^C$$

/

 \dot{m}_{infWL} (kg/h) –

(4.2)

;

4.2.

4.3

	$\dot{m}_{\scriptscriptstyle inf}$,	kg/h
	min	max
	\dot{m}_{inf}	$2\cdot \dot{m}_{inf}$
	$\dot{m}_{_{inf}}$	$\dot{m}_{_{inf}}$

 $\dot{m}_{inf} = 2 \cdot \dot{m}_{infWL}$

(.

)

(4.3)

•

[4

,

 \dot{m}_{in}

- :
- ṁ_{іп}
- V(1)

,

(4.5)

4.3

,

-

					$\dot{m}_{inf}/4$	$\dot{m}_{inf}/2$
	(4.5)			4.3		
		,				
	0,	378 kg/h.				
		[4.3],				
		0.105÷0.17	75 kg/h.	[4.4]		
	1÷50%					
4.1] [4.2].	, 0,0053	33 kg/h.				
.4						
						$0.05 \div ($
arA.			5			
,						
	·	,				,
		,				:
•	;					
•	-	;				
•		;				
• 2			·			
.4.1						
				•		
						Danfo

Danfoss AVQM

DN50 TA STAD.

٠

4.4.5

0,05

30 min.

,

.

•

$$\dot{m}_{inf}(p) = 0 + \frac{\mathrm{d}m}{\mathrm{d}\ddagger}$$
(4.6)

•
$$\dot{m}_{inf}(p)$$
 (kg/s) - ;

•
$$p(Pa)$$
 - ;

.

2

.

• *m* (kg) -

,

$$p \cdot V = m \cdot \frac{R_u \cdot T}{M} \tag{4.7}$$

;

$$dm = \frac{V \cdot M}{R_u \cdot T} \cdot dp \tag{4.8}$$
(4.8)

$$\dot{m}_{inf}\left(p\right) = \frac{V \cdot M}{R_u \cdot T} \cdot \frac{\mathrm{d}p}{\mathrm{d}\ddagger}$$
(4.9)

;

;

;

•

:

• $V(m^3)$ -

- M = 28,96 kg/kmol,
- $R_u = 8314,51 \,\text{J/(kmol} \cdot \text{K})$,

() 0,05 barA

$$p = 0.02 \text{ bar}$$
 ().

,

2.

4.5

- [4.1] Gomez, J. V.: Calculate Air Leakage Values for Vacuum Systems, Chemical Engineering, June 1991
- [4.2] Ryans JL and Croll S (1981). Selecting vacuum systems. Chemical Engineering 88 (25): 73-90
- [4.3] Air leakage in vacuum vessels GEAWiegand GmbH, www.gea-wiegand.com
- [4.4] Peress J.:Estimate emissions from vacuum operations, Chemical Engineering Progress, 98/5; 2002

:

5.1

,

,

4	.4	4	•	5

5.2.

.

•

2. 5.1

_	
- 5	- 1
	. 1

,

,

		р	Δ	Δp	$V \cdot M$	\dot{m}_{inf}
	hh:mm	bar	h	Р	$R_u \cdot T$	kg/h
1	00:00	0,06				
2	33:03	0,08	23.38	2000	9 166.10 ⁻⁶	0,000784
3	58:15	0,10	25.20	2000		0,000727
4	80:11	0,12	21.93	2000		0,000836
5	103:54	0,14	23.28	2000	,100 10	0,000773
6	133:11	0,18	29.28	4000	-	0,001252
7	155:55	0,20	22.73	2000		0,000806
			146,25	14000		0.000877

, 0,000877 kg/h.

	[4.1÷4.3],	:
•	0,15%	(4.1),
•	0,32%	(4.2),
•	0,16%	(4.3),
•	0,23%	(4.5),
•	$0,46 \div 0,93\%$	[4.3]

[4.1 ÷ 4.4]

•

,

•

2

,

.

 $0,\!05 \div 0,\!065$ bar

 $0{,}08 \div 0{,}105$ bar

$$_{2}$$
 ($4,0 \div 4,9 \text{ m}^{3}/\text{h}$) $10 \div 20$

ppb (mas)

- $: 25 \div 30^{\circ}$;
- $: 0,05 \div 0,08 \text{ bar}$;
- $: 0,35 \div 0,9 \text{ kg/h}.$

$$_2$$
 20 ÷ 65 ppb (mas)

:

2

.

(0,45÷0,5 kg/h 0,85÷0,95 kg/h)

5.3

:

- \dot{m}_L , kg/h, ;
- t_{des} , °, ;
- p_{des} , br, ;
- \dot{m}_{GEN} , kg/h, ;
- \widetilde{x}_{O_2} , ppb_{mas},

36 41. (5.1) : • 14,1%; • 95,0%. 5.15, 5.16 5.17 (,)) (,)) kg/h, 99,99% . 0 \div 1 kg/h, 0.05 \div 0.1 barA. : • 20 ppbmas 29,9° 0,0 barA (5.15); • 0,25 kg/h - 20 ppbmas 23,7° 0,05 barA (5.15); • 0,075 barA 0,25 kg/h 2 ppbmas 27,9° (5.16); • 0,1 barA 20 ppbmas 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1	$\widetilde{x}_{O_2} =$	$=\frac{\frac{1410}{(t_{des}-7,2)^{1,4}}\cdot e}{1+14,9\cdot (e)}$	$\exp\left(t_{des} \cdot p_{de}^5\right)$ \dot{m}_{GEN}	(s) (11)	$1,3 \cdot \ln(p_{des})$)+36]			(5.1)
(5.1) : $14,1\%;$ • $95,0\%.$ 5.15, 5.16 5.17 (, $99,99\%$ $0 \div 1 \text{ kg/h},$ $0.05 \div 0.1 \text{ barA.}$: 20 ppbms $29,9^{\circ}$ $0,0$ barA (5.15); • $0,25 \text{ kg/h}$ - $23,7^{\circ}$ $0,05 \text{ barA} (5.15);$ • $0,075 \text{ barA}$ $0,25 \text{ kg/h}$ 2 ppb_{mas} $27,9^{\circ}$ (5.16); • $0,1 \text{ barA}$ 20 ppb_{mas} 1 kg/h $29,3^{\circ}$ (5.17); • $0,25 \text{ kg/h}$ (5.15, 5.1		36				4	1.		
• $14,1\%;$ • $95,0\%.$ 5.15, 5.16 5.17 (,) (, ,) (, ,) $0 \div 1 \text{ kg/h}, 0.05 \div 0.1 \text{ barA.}$ $0 \div 1 \text{ kg/h}, 0.05 \div 0.1 \text{ barA.}$ $29,9^{\circ}$ 0,0 barA (5.15); • $0,25 \text{ kg/h}$ - 20 ppbmas $23,7^{\circ}$ 0,05 barA (5.15); • $0,075 \text{ barA}$ 0,25 kg/h 2 $23,7^{\circ}$ (5.16); • $0,1 \text{ barA}$ 20 ppbmas 1 kg/h 29,3° (5.17); • $0,25 \text{ kg/h}$ (5.15, 5.1 barA (5.15);		(5.1)	:						
• 95,0%. 5.15, 5.16 5.17 (,) kg/h, 99,99% $0 \div 1 \text{ kg/h}$, $0.05 \div 0.1 \text{ barA.}$: • 20 ppbma 29,9° 0,0 barA (5.15); • 0,25 kg/h - 20 ppbmas 23,7° 0,05 barA (5.15); • 0,075 barA 0,25 kg/h 2 ppbmas 27,9° (5.16); • 0,1 barA 20 ppbmas 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 • 0,25 kg/h	•			14,	1%;				
5.15, 5.16 5.17 (,) 500 kg/h, 99,99% $0 \div 1 \text{ kg/h}$, $0.05 \div 0.1 \text{ barA}$. : • 20 ppbma 29,9° 0,0 barA (5.15); • 0,25 kg/h 2 ppbmas 27,9° (5.16); • 0,1 barA 20 ppbmas 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15); • 0,25 kg/h (5.15);	•		95,0%.						
) $(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$		5.15, 5.10	5 5.17					(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,)		
kg/h, 99,99% $0 \div 1 \text{ kg/h}$, $0.05 \div 0.1 \text{ barA}$. : 20 ppbma 29,9° 0,0 barA (5.15); 0,25 kg/h 23,7° 0,05 barA (5.15); 0,075 barA 0,25 kg/h 2 ppbmas 27,9° (5.16); 0,1 barA 20 ppbmas 1 kg/h 29,3° (5.17); 0,25 kg/h (5.15, 5.17);									5000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kg/h,		99,99%						
: 20 ppbma $29,9^{\circ}$ 0,0 barA (5.15); 0,25 kg/h $23,7^{\circ}$ 0,05 barA (5.15); 0,075 barA 0,25 kg/h 2 $27,9^{\circ}$ (5.16); 0,1 barA 20 ppbmas 1 kg/h 29,3° (5.17); 0,25 kg/h (5.15, 5.1 5.17);		0 ÷	- 1 kg/h,			0.05	5 ÷0.1 bar	A.	
• 20 ppbma $29,9^{\circ}$ 0,0 barA (5.15); • $0,25 \text{ kg/h}$ - 20 ppbmas $23,7^{\circ}$ 0,05 barA (5.15); • $0,075 \text{ barA}$ 0,25 kg/h 2 ppbmas 27,9° (5.16); • $0,1 \text{ barA}$ 20 ppbmas 1 kg/h 29,3° (5.17); • $0,25 \text{ kg/h}$ (5.15, 5.17);		:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•								20 ppbmas
barA (5.15); • $0,25 \text{ kg/h}$ - 20 ppb_{mas} $23,7^{\circ}$ $0,05 \text{ barA}$ (5.15); • $0,075 \text{ barA}$ $0,25 \text{ kg/h}$ 2 ppb_{mas} $27,9^{\circ}$ (5.16); • $0,1 \text{ barA}$ 20 ppb_{mas} 1 kg/h $29,3^{\circ}$ (5.17); • $0,25 \text{ kg/h}$ (5.15, 5.17);							29,9°		0,05
• 0,25 kg/h - 20 ppb _{mas} 23,7° 0,05 barA (5.15); • 0,075 barA 0,25 kg/h 2 ppb _{mas} 27,9° (5.16); • 0,1 barA 20 ppb _{mas} 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 5.17).		barA (5.15	5);						
- 20 ppb _{mas} 23,7° 0,05 barA (5.15); • 0,075 barA 0,25 kg/h 2 ppb _{mas} 27,9° (5.16); • 0,1 barA 20 ppb _{mas} 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 5.17).	•	0,2	25 kg/h						
- $20 \text{ ppb}_{\text{mas}}$ $23,7^{\circ}$ 0,05 barA (5.15); • 0,075 barA 0,25 kg/h 2 ppb_{mas} 27,9^{\circ} (5.16); • 0,1 barA 20 ppb_{mas} $1 \text{ kg/h} 29,3^{\circ} (5.17);$ • 0,25 kg/h (5.15, 5.1 5.17).									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			20 ppb	mas			
• 0,075 barA 0,25 kg/h 2 ppb_{mas} 27,9° (5.16); • 0,1 barA 20 ppb_{mas} 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 5.17).		2	3,7°		0,05 ba	rA (5.15);		
ppb _{mas} 27,9° (5.16); • 0,1 barA 20 ppb _{mas} 1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 5.17).	•		0,075 barA			0,2	5 kg/h		20
 0,1 barA 20 ppb_{mas} 1 kg/h 29,3° (5.17); 0,25 kg/h (5.15, 5.1 		ppb _{mas}	27,9°	(5.16);				
1 kg/h 29,3° (5.17); • 0,25 kg/h (5.15, 5.1 5.17).	•		0,1 barA			20 p	pb _{mas}		
• 0,25 kg/h (5.15, 5.1 5.17).			1 kg/h				29,3°	(5.17);
(5.15, 5.1	•			0	,25 kg/h				
5.17).								(5.15, 5.16
		5.17).							

0,25 kg/h.

•

:

0,05 barA

•

0,075 barA

0,05

,

•

(

$$C_{inv} = C_{FC} + C_{WC} + C_{SU}$$
(6.1)
(C_{FC} ,)
, , , ,
, (, , , , ,
), . (C_{WC} ,)

.
$$C_{SU}$$

$$(6.1)$$

$$C_{inv} = C_{FC} \tag{6.1}$$

$$C_{FC} = C_{ISBL} + C_{OSBL} + C_{ENG} + C_{CONT}$$

$$[6.1]:$$

$$(6.2)$$

• *C_{ISBL}*, (inside battery limits - ISBL);

•

20

•

,
- *C*_{SBL}, (outside battery limits SBL);
- C_{ENG} , ;
- *CCONT*,
- 6.1.1

(ISBL) ISBL :

- , , , , , , ,
- , , , , , , (); • , , ,

- . ISBL :
-), , , ,
- , , ,
- ; • , ;
- , , , , , .

6.1.2		
)	(OSBL
	,	. OSBL
		:
•	, (
•) , , , , ,	, .;
•	, , ,	,
	;	
•	, ,	, ;
•	,	;
•	, ;	
•	, , , , ,	, .;
•	, , , , ,	,
•	;	
•	, ,	, , , ,
•	, , .	
		,

6.1.3

							:	
•		(,	,):	,	,
			,					,
		,			,			
•					(/
					,			
	, .);							

- (.);
- ;
- ,

6.1.4

:

- ; (
-); , ;
- ;
- ;

,

(), .

:

;

, $f_{inf} = \frac{C_A - C_B}{C_B}$ (6.3) $C_A \quad C_B$ () $A \quad B$. , , , C_B

.

$$C_A$$

$$C_A = C_B \cdot \prod_{i=1}^n (1 + f_{inf,i})$$

$$f_{inf,i} \qquad i - n \qquad A \quad B.$$
(6.4)

,

$$f_{inf}$$
 (2.4)
 $C_A = C_B \cdot (1 + f_{inf})^n$ (6.5)
1970. 7%,

 $3 \div 4\%$.

•

Β.

.

:

Chemical Engineering

Oil and Gas Journal

Index (CEPCI) Marshall&Swift

(6.6)

Chemical Engineering Plant Cost (M&S equipment cost index);

Nelson-Farrer Refinery Construction

Index (NF index).; Process Engineering •

•

(

,

CEPCI 6.1 [6.2].

)

6.1	CEPCI

CEPCI				
		(), ,	,
			,	
		,		
		,	, ,	,
		,	, , ,	,
	,			
		,	,	
		,		,
			, ,	
		,	,	
			, , ,	
			,	,
			,	
			,	
			, , ,	,
			, ,	
	-		, ,	
		(.)	
	-		,	
	-	,		,
			,	

6.2.

$$C_{ISBL} + C_{OSBL} = C_{ISBL} \cdot f_{OSBL}$$

$$f_{OSBL}$$

$$(6.9)$$

,

$$C_{FC} = (C_{ISBL} + C_{OSBL}) \cdot (1 + f_{ENG} + f_{CONT})$$

$$f_{ENG} \quad f_{CONT} \qquad .$$
(6.10)

. "green field"

.

,

6.2

.

UKT

,

,

	C	0.0
	C_E	0,2
	f_1	0,2
, , .	f_2	0,15
	f_3	0,05
	f_4	0,05
	f_5	0,05
	f_6	0,05
(, ,)	f_7	1,75
ISBL	<i>fisbl</i>	0
OSBL	fosbl	0,2
	<i>feng</i>	0,05
	fcont	2,1875
	fukt	1

•

,

	(,)					
	(Cot, EUR/§	god)						:
•	(C _{FOT} ,	, EUR/god);	;	_					
•			(C_P)	– ot, EUR	/god),				
	$C_{OT} = C_{FOT} + C_{POT}$							(6.11) ,	
		1	.5	30.					
(,				,	.)		15	30
							8760 h	god.	
6.2.1	1	()	,	
• •	:	; ;	;					·	
•	,	;							

,

6.2

.

.

71

USD/god. 1

6.2.1.1

- ;
- - - (). ,

 - - 100%

EUR/god

- $C_L = 12 \cdot L \cdot PL$ (6.12) : L, ;
- PL, EUR •

,

:

;

,

,

	$0,1 \div 0.2$
	$0,25 \div 0,5$
,	0,16
-	0,5
-	1,0
-	0,5
()	0,25
	$0,125 \div 0,25$
_	1,0
-	0,1
	0,1
($0,2 \div 0,5$
)	
-	1,0
-	0,5

6.2.1.2

,

•

,

		•			
(,	,
), .		
	[6.1]				
		ISBL			3%
5%	ISBL				
	$C_M = (0,03 \div$	$-0,05) \cdot C_{ISBL}$			(6.13)

,

,

,

6.2.1.3

[6.5]

:

$C_{QC} = 0.15 \cdot C_L$	(6.14)
---------------------------	--------

15%

,

 C_L .

6.2.2

74

20%

,

- ; • ; (, , , ,);
- •

6.2.2.1

- · · () · :
- •
- .

,

, , , . , .

6.2.2.2

(). 0,055 EUR/kWh. 0,346 EUR/ m3 33350 kJ/m3. 90%,

0,0415 EUR/kWh.

6.2.2.3

6.2.2.4

6.3

 $(C_{UK}, EUR/god) (C_{am}, EUR/god) (C_{OT}, EUR/god) : (C_{OT}, EUR/god) : (G_{UK}=C_{am}+C_{OT} (G_{Am}+C_{OT}) (G_{Am}-G_{Am}+C_{OT}) (G_{Am}-G_{Am}-G_{Am}-G_{Am}-G_{Am}-G_{Am} (G_{Am}-G_{Am}-G_{Am}-G_{Am}) (G_{Am}-G_{Am}-G_{Am}-G_{Am}-G_{Am}) (G_{Am}-G_{A$

 $C_{UK'} = \frac{C_{UK}}{\dot{m} \cdot \ddagger_{god}}$ (6.17)

je \dot{m} (m ³ /h)	,	god (h/god)
	$\dot{m} = 20 \text{m}^3/\text{h}$	_{god} =8760h/god.

: $\dot{m} = 20 \text{ m}^3/\text{h};$: $_{god} = 8760 \text{ h/god};$: 175.200 m³; $\widetilde{x} = 20 \text{ ppb}_{\text{mas}};$ $t_{vu} = 15^{\circ}C;$ $t_{vuz} = 12^{\circ}C;$ $t_{vul} = 17^{\circ}C;$: t_{top} = 65°C; : Hd = 33.300 kJ/m^3 ; = 0,9; 2 $50 = 100 \text{ m}^3$; 3,6 m, 11 m; : 3,3 kW; 27,8 kW; $C_{el} = 0,055 \text{ EUR/kWh};$ $C_{gas} = 0,346 \text{ EUR/m}^3;$ $C_{te} = 0,0415 \text{ EUR/kWh};$): C_{rs} = 44.064 EUR/god; () $C_{hem} = 718,2 \text{ EUR/god};$ ((2) _ $C_{cp1} = 14.200 EUR;$ (2) $C_{cp2} = 25.500 \text{ EUR};$ (2 : $C_{rez} = 116.800 EUR;$)

•
$$C_{elerez} = 1.600 \text{ EUR/god};$$

• $C_{eletop} = 13.400 \text{ EUR/god}.$
• $f_1 = 0,2;$
• $f_2 = 0,2;$
• $f_3 = 0,15;$
• $f_4 = 0,05;$
• $f_5 = 0,05;$
• $f_6 = 0,05;$
• $f_7 = 0,05.$
ISBL $f_{ISBL} = 1,75.$ SBL
• $f_{SBL} = 0,1$
• $f_{SBL} = 0,1$
• $f_{SBL} = 0.$
• $f_{IRZ} = 0,2$ $f_{NT} = 0,05.$

[6.7] CEPCI 2009. [6.8] 2013. [6.9] () 5. 2013., .

,

2013.

6.4

6.		6.5
	,	6.6

•

.

3.9,

c	4
O	.4

	EUR
-	27.800
	44.600
	15.600
	110.100
	1.100
,	3.800
	359.600
ISBL	629.300
	786.700

.

6.5

			$\dot{Q}_k = 498, 8 \text{ kW}$
			< _{od} = 9,9%
			$<_{kond} = 0\%$
			$<_{odp} = 0,43\%$
O ₂		12°C 1,2 barA	$\tilde{x}_{1,O_2} = 13,01 \text{ ppm(mas)}$
O ₂			$\tilde{x}_{NR,O_2} = 60 \text{ ppb(mas)}$
	()	$\dot{m}_{scav} = 0,0208 \text{ kg/h}$
•			P _{el} =15.000 kW
			Qdzp=3.568 MWh

	, EUR/god
,	1.440
	18.880
	148.070
	407.302

39.333 EUR/god.

•

446.635 EUR/god.

2.549 EUR/m3.

6.6

6.7		3.19,
	7.	
6.8		,
6.9		

6.7

	, EUR
	34.400
	43.900
	3.600
-	540
	600
	239.600
ISBL	419.400
	524.200

Pel=4.7 kW
P _{el} =1.2 kW
Q _{dzp} =5.404 MWh

, EUR/god
2.250
580
17.800
12.582
13.500
224.215
312.178

26.210 EUR/god.

•

338.380 EUR/god.

1,931 EUR/m3.

6.7

6.10		3.23,
	8.	6.11
	,	6.12

6.10

	, EUR
	55.700
	24.200
	4.300
	34.400
	275.100
ISBL	481.500
	662.100

.

$\dot{m} = 2 \text{ kg/h}$
$P_{el} = 2.83 \text{ kW}$
$P_{el} = 7.2 \text{ kW}$
$Q_{dzp} = 5.404 \text{ MWh}$

	, EUR/god
	13.390
	6.432
•	19.822
	19.300
	224.215
	307.360

33.103 EUR/god.

•

340.500 EUR/god.

1,943 EUR/m3.

6.13	
------	--

	, EUR
	11.700
	3.700
	3.000
	3.900
_	2.300
	8.900
	33.100
	5.200
	24.200
	14.200
(2)	116.800
	25.500
	252.700
	552.800

6.8.1

0,05 barA

			6.14
6.15		0,05 barA	6.16
6.17	0,1 barA.		

Ta e a 6.14

0,05 barA

, p (bar)	0,05				
, <i>ṁ</i> (kg/h)	0	1	2	3	4
. , t ₃ (°C)	27,6	22,2	21,4	20,9	20,5
. , t ₄ (°C)	29,9	23,6	22,6	22,0	21,5
. , t ₆ (°C)	17,3	16,4	16,2	16,1	16,0
, t ₆ (°C)	14,8	13,8	13,7	13,6	13,5
. , Pel (kW)		1,42	2,83	4,25	5,66
. , Pel (kW)			4		
. t4, Pel (kW)		31,4	27,8	25,6	23,8
t4, Qzt4 (kW)			0		
, <i>Qdzp</i> (MWh)	5117	5218	5234	5243	5251

Ta e a 6.15

		0,	05 barA			
, p (bar)		0,05				
, <i>ṁ</i> (kg/h)	0	1	2	3	4	
			, UR/g	god		
			27.639			
	0	681	1.363	2.045	2.727	
			1927			
	26.235	15.142	13.382	12.325	11.445	
· ·			1.606			
· ·			13.383			
•	43.152	32.741	31.662	31.287	31.088	
t4			0			
			44.064			
			13.267			
	212.326	216.510	217.174	217.573	217.905	
	312.809	306.582	306.167	306.191	306.325	
	340.449	334.222	333.807	333.831	333.964	
(UR/m3)	1,943	1,908	1,905	1,905	1,906	

Ta e a 6.16

0,1 barA

, p (bar)		0,10			
, \dot{m} (kg/h)	0	1	2	3	4
, t ₃ (°C)	37,3	29,3	28,1	27,3	26,7
, t4 (°C)	41,5	32,0	30,5	29,6	28,9
. , t ₆ (°C)	19,2	17,7	17,4	17,3	17,2
, t ₆ (°C)	16,6	15,1	14,9	14,8	14,7
. , P _{el} (kW)	0	1,41	2,83	4,25	5,66
. , P _{el} (kW)			4		
. t4, P _{el} (kW)	96,8	62,1	56,6	53,4	50,8
t4, Q _{zt4} (kW)		*	0	*	
, <i>Q</i> _{dzp} (MWh)	4931	5083	5107	5122	5133

		C),1 barA			
, p (bar)		0,10				
, <i>ṁ</i> (kg/h)	0	1	2	3	4	
		, UR/god				
			27639			
	0	681	1.363	2.045	2.727	
		1	1.927			
	46.660	29.933	27.292	25.707	24.475	
e		1	1.606			
e		-	13.383			
•	63.577	47.531	45.572	44.669	44.118	
t4		4	0	L	L	
			44.064			
			13.267			
	204.621	210.931	211.927	212.526	212.990	
	325.530	315.794	314.831	314.526	314.440	
	353.169	343.433	342.470	342.165	342.079	
(UR/m3)	2,016	1,960	1,955	1,953	1,953	

6.14, 6.15, 6.16 6.17

:

•

0,05 barA;

•

0,05 barA;

•

barA 2,5÷3,8 %.

6.2. 0,05 barA

0,1 barA.

0,1

6.8.2

0,05 barA

6.18	6.19
0,05	barA

,

0,05 barA

HE-03.

Ta e a 6.18

, p (bar)			0,05		
, <i>ṁ</i> (kg/h)	0	1	2	3	4
, t ₃ (°C)			15,0		
, t4 (°C)	29,9	23,6	22,6	22,0	21,6
, t_6 (°C)	29,9	23,6	22,6	22,0	21,6
, t ₆ (°C)	29,9	23,6	22,6	22,0	21,6
. , P _{el} (kW)	0	1,41	2,83	4,25	5,66
. , P _{el} (kW)	4				
. t4, P _{el} (kW)	347	200	177	163	154
t4, Q _{zt4} (kW)			0		
, <i>Q</i> _{dzp} (MWh)	3579	4221	4323	4384	4425

Ta e a 6.19

•

,	HE-03				
, p (bar)		0,05			
, \dot{m} (kg/h)	0	1	2	3	4
	, UR/god				
			27.639		
	0	681	1.363	2.045	2.727
			1.927		
e	167.106	96.451	85.235	78.507	74021
			1.606		
			13.383		
	184.023	114.049	103.516	97.469	93.664
t ₄			0		
			44.064		
			13.267		
	148.490	175.141	179.372	181.910	183.603
	389.844	346.522	340.219	336.710	334.598
	417.484	374.161	367.859	364.349	362.237
	2,383	2,136	2,100	2,080	2,068

6.20 6.21

0,05 barA

HE-02

(

Г

6.20

, p (bar)			0,05		
, \dot{m} (kg/h)	0	1	2	3	4
, t ₃ (°C)			15,0		
, t4 (°C)	29,9	23,6	22,6	22,0	21,6
, t ₆ (°C)	29,9	23,6	22,6	22,0	21,6
, t ₆ (°C)	29,9	23,6	22,6	22,0	21,6
. , P _{el} (kW)	0	1,41	2,83	4,25	5,66
. , P _{el} (kW)			4		
. t4, Pel (kW)			0		
$t4, Q_{zt4} (kW)$	347	200	177	163	154
, <i>Qdzp</i> (MWh)	3579	4221	4323	4384	4425

).

,

•

6.22

:

, HE-02.

HE-02

6.21

•

6.3

1.

6.8.3

, p (bar)			0,05		
, \dot{m} (kg/h)	0	1	2	3	4
			, UR/g	god	
			27.639		
	0	681	1.363	2.045	2.727
			1.927		
e			0		
	1.606				
	133.83				
	16.916	17.597	18.279	18.961	19.643
t4	126.067	72.764	64.303	59.227	55.843
			44.064		
			13.267		
	148.490	175.141	179.372	181.910	183.603
	348.804	322.833	319.285	317.429	316.420
	376.443	350.472	346.924	345.068	344.059
(UR/m3)	2,149	2,000	1,980	1,970	1,964

Ta e a 6.21

0,05 barA

•

6.19 6.21

6.14

,

5,3÷10,9%

.

-,--

0,05 barA,

0,05 barA.

(

3.			

4 kg/h,

•

HE-02

HE-03.

0,05 barA

•

.

•

),

4.

 $2 \div 3 \text{ kg/h}$

	, kg/h				
UR/m ³	0	1	2	3	4
, p=0,05 barA	1,943	1,908	1,905	1,905	1,906
, p=0,1 barA	2,016	1,960	1,955	1,953	1,953
. , HE-03, p=0,05 barA	2,383	2,136	2,100	2,080	2,068
. , , . , p=0,05 barA	2,149	2,000	1,980	1,970	1,964

6.23,

·

, EUR	, EUR/god	, EUR/m3
552.800	333.810	1,905
524.200	338.380	1,931
662.100	340.500	1,943
786.700	446.635	2,549

,

- [6.1] Towler G., Sinnott R. K., Chemical Engineering Design, Elsevier, 2008.
- [6.2] Vatavuk W., Updating the CE Plant Cost Index. Chemical Engineering, vol. 101, no. 1, pp. 62-70, 2002.
- [6.3] Douglas J., Conceptual Design of Chemical Processes, McGraw-Hill, New York, 1988.
- [6.4] ., ., ., .,
- [6.5] Vatavuk W. M., How to Estimate Operating Costs, Chemical Engineering, vol. 104, no. 7, pp. 33-37, 2005.
- [6.6] ., ., ., , .2, .14-19,2009. [6.7] ., ., 07.05-01/2009 -,2009. [6.8] ., ., ., .,

, 2010.

[6.9] Economic indicators, Pages from Chemical Engineering, 2014.

7

EN 12952-12: 2003 $20 \sim g/l$ (ppb_{mas}).

,

:

,

,

ja

a

(

j

)

- , ,
- ;
- . .
- , ;
- (-2012/0209)
 - 5 m³/h;
 - 5 m³/h;

 - (
- ; •
 - .
- •
- ;

:

94

);

:

,

;

:

;

2	1:
97	
	2:
2	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:

	1:				2	
	•			/		
•	RHPV-			(
)				
•	R-	()	
•		, ()				
•		t, °C				
•			\widetilde{x} o ₂ , (ppm _{mas} ;	ppb _{mas})		
		2	:			
•		: Orbisphere	3650, Micro O	2 Logger,		Orbisphere –
	Hachultra					

• : HK-318 Dissolve Oxygen Analyzer, Beijing Huakeyi Power Plant Instrument Research Institute

1.1			2			
	RHPV-			NR –		
		t	\widetilde{x} O ₂		t	\widetilde{x} o ₂
	()	(^{o}C)	(ppm)	()	(°C)	(ppb)
19.07.2010.	10.00	62	5,84	10.00	102	90
				10.30	102	93
				11.35	102	87
				12.40	102	86
				13.40	102	86
				19.00	102	89
20.07.2010.	00.05	60	6,02	00.05	102	95
				6.15	102	83
				7.00	102	93
				10.45	102	87
				12.00	102	86
				19.00	102	79
				24.00	102	75
21.07.2010.	06.30	58	6,10	06.30	102	75
				09.00	102	93
				19.00	102	102
				23.50	102	115

1	1
	1.
	•

	2	

	RHPV-			NR –		
		t	\widetilde{x} o ₂		t	\widetilde{x} o ₂
	()	(^{o}C)	(ppm)	()	(°C)	(ppb)
08.07.2010.	7.00	20	9,18	9.15	104.2	230
				10.30	104.2	147
				11.45	104.5	96
				12.30	104.1	75
				12.31	104.1	83
				12.40	103.8	89
				13.20	104.3	108
				13.30	104.2	108
				14.20	104.4	113
				17.00	101.4	135
09.07.2010.	7.05	19.3	9,76	7.05	104.9	145
				7.25	104.7	460
				8.15	104.5	111
				9.15	104.9	106
				10.25	104.4	77
				11.15	104	64
12.07.2010	7.10	10.7	0.00	14.20	97.4	210
12.07.2010.	7.10	19.5	9,88	7.10	104.8	131
				8.30	104.5	48
				9.20	104.3	30
				10.25	104.9	8/
				11.25	104.1	64
				12.15	104.8	44
				13.20	104.6	73
13.07.2010.	7.15	20.3	9,11	7.15	104.6	140
				8.15	104.3	188
				9.00	104.3	154
				10.00	104.3	130
				11.00	104.2	156
				12.30	104.3	145
				13.30	104.2	135
				14.00	104.6	149
14.07.2010.	7.00	20.5	8,80	7.00	104.3	190
				8.00	104.4	161
				9.00	104.3	183
				10.10	104.4	165
				10.45	104.6	199
•	RHPV-			NR –		
-------------	-------	-----------	--------------------------------	-------	-----------	--------------------------------
		t	\widetilde{x} O ₂		t	\widetilde{x} o ₂
	()	(^{o}C)	(ppm)	()	(^{o}C)	(ppb)
05.12.2011.	07.30		9,23	7.30	105,8	132
				8.00	105,8	124
				8.30	105,8	101
				9.00	105,8	106
				9.30	105,8	110
				10.00	105,8	119
				10.30	105,8	125
				11.00	105,8	127
				11.30	105,8	126
				12.00	105,8	130
				12.30	105,8	131
				13.00	105,8	138
				13.30	105,8	141
				14.00	105,8	146
				14.30	105,8	147
				14.35	105,8	149
				14.40	105,8	150
				14.45	105,8	151
06.12.2011.	08.00		8,99	08.00	105,8	207
				08.30	105,8	142
				09.00	105,8	141
				09.30	105,8	134
				10.00	105,8	139
				10.30	105,8	140
				11.00	105,8	141
				11.30	105,8	141
				12.00	105,8	131
				12.30	105,8	104
				13.00	105,8	254
				13.30	105,8	449
				14.00	105,8	613
				14.30	105,8	932
				14.55	105,8	154
07.12.2011.	08.00		9,01	08.00	105,8	152
				08.30	105,8	109
				09.00	105,8	105
				09.30	105,8	121
				10.00	105,8	127
				10.30	105,8	127
				11.00	105,8	134
				11.30	105,8	134
				12.00	105,8	134

2

1.3

•

1	.3
_	

	RHPV-			NR –		
		t	\widetilde{x} O ₂		t	\widetilde{x} o ₂
	()	(^{o}C)	(ppm)	()	(°C)	(ppb)
				12.30	105,8	135
				13.00	105,8	137
				13.30	105,8	133
				14.00	105,8	132
				14.30	105,8	134
08.12.2011.	07.30		8,9	07.30	105,8	120
				08.00	105,8	94
				08.30	105,8	96
				09.00	105,8	99
				09.30	105,8	97
				10.00	105,8	103
				10.30	105,8	105
				11.00	105,8	112
				11.30	105,8	114
				12.00	105,8	113
				12.30	105,8	115
				13.00	105,8	118
				13.30	105,8	117
				14.00	105,8	117
				14.30	105,8	124
				15.00	105,8	120
09.12.2011.	07.00		9,1	07.00	105,8	136
				07.30	105,8	104
				08.00	105,8	122
				08.30	105,8	130
				09.00	105,8	134
				09.30	105,8	137
				10.00	105,8	140
				10.30	105,8	138
				11.00	105,8	136
				11.30	105,8	137
				12.00	105,8	136
				13.00	105,8	142
				13.30	105,8	140
				14.00	105,8	140
				14.30	105,8	138
10.12.2011.	07.00		9,05	07.00	105,8	134
				07.30	105,8	138
				08.00	105,8	129
				08.30	105,8	129
				09.00	105,8	129
				09.30	105,8	137

·

RHPV-			NR –		
	t	\widetilde{x} O ₂		t	\widetilde{x} O ₂
()	(^{o}C)	(ppm)	()	(°C)	(ppb)
			10.00	105,8	140
			10.30	105,8	138
			11.00	105,8	136
			11.30	105,8	137
			12.00	105,8	136
			12.30	105,8	140
			13.00	105,8	142
			13.30	105,8	139
			14.00	105,8	140
			14.30	105,8	138
			15.00	105,8	139
			07.30	105,8	138
			08.00	105,8	129
			08.30	105,8	129
			09.00	105,8	130
			09.30	105,8	128
			10.00	105,8	124
			10.30	105,8	128
			11.00	105,8	128
			11.30	105,8	126
			12.00	105,8	127
			12.30	105,8	123
			13.00	105,8	132
			13.30	105,8	127
			14.00	105,8	126
			14.30	105,8	127
			15.00	105,8	129

1	2

2	1
4.	T

	р	d	dp	$\frac{V \cdot M}{R_u \cdot T}$	\dot{m} inf	\dot{m} inf
(hh:mm)	(barA)	(s)	(Pa)		(kg/s)	(kg/h)
11:26	0.06					
08:05	0.08	74340	2000	9.166E-06	2.466E-07	0.000888
09:20	0.10	90900	2000	9.166E-06	2.017E-07	0.000726
		165240	4000	9.166E-06	2.219E-07	0.000799

	р	d	dp	$\frac{V \cdot M}{R_u \cdot T}$	\dot{m} inf	\dot{m} inf
(hh:mm)	(barA)	(s)	(Pa)		(kg/s)	(kg/h)
09:40	0.06					
09:03	0.08	84180	2000	9.166E-06	2.178E-07	0.000784
10:15	0.10	90720	2000	9.166E-06	2.021E-07	0.000727
08:11	0.12	78960	2000	9.166E-06	2.322E-07	0.000836
08:54	0.14	85380	2000	9.166E-06	2.147E-07	0.000773
13:11	0.18	105420	4000	9.166E-06	3.478E-07	0.001252
11:55	0.20	81840	2000	9.166E-06	2.240E-07	0.000806
		526500	14000	9.166E-06	2.437E-07	0.000877

3:

:

- p, (bar)
- \dot{V} , (m³/h)
- t, (°C)
- 2 () $\tilde{x} o_2$, (ppm)
- $_2$ () $\tilde{x} o_2$, (ppb)
- p, (mmVS)
- \dot{m} , (kg/h)
- :
- V-
- u-
- u-
- i-
- E-
- O-
- N-

•

2

bar
0.95
m3/h,
4.0
1.
режим
Радни
3.1
Табела

Датум мерења	28.05.2013.
Баром. притисак (bar)	p = 1,012
Садржај О2 на улазу (ррm)	$\tilde{X}_{02} = 6,80$

b poj	Bpeme	BakyM		L	Тинија в	оде		Отпарак	Ejer	dor			Линија	1 23012		
мерења	мерења		y _r	Ia3		Излаз							Мерна	I CTasa	Potan	гетар
i,	1	$^{\Lambda d}$	Ų.	t _{vu}	$\dot{V}_{\nu i}$	t_{vu}	\widetilde{X}_{O_2}	to	\dot{V}_E	PE	p_N	t_N	N dp	m _N	\dot{V}_N	m N
	hh:min	bar	m ³ /h	<mark>Э</mark> °	m ³ /h	°C	dqq	°C	m ³ /h	bar	bar	°C	mmVS	kg/h	NL/h	kg/h
1	12:05	0.95	4.0	17,0	4.0	17,0	60,2	18,0	21,7	4,0			1			
7	12:07	0.95	4.0	17,0	4.0	17,0	59,1	18,0	21,7	4,0						
3	12:30	0.95	4.0	17,0	4.0	17,0	31,5	18,0	21,3	3,7	1,9	18,0	75	0,981	420	0,85
4	12:45	0.95	3,9	17,0	3,9	17,1	28,7	19,0	21,7	3,9	1,9	18,0	30	0,561	270	0,55
5	13:00	0.95	4.0	17,0	4.0	17,0	37,4	19,0	21,9	4,0						
9	14:05	0.94	3,9	17,0	3,9	17,1	26,0	24,0	20,7	3,4	0,5	18,0	24	0,327	225	0,33
7	14:35	0.94	4.0	17,0	4.0	17,1	27,9	24,0	21,3	3,7	2,0	21,0	70	0,960	390	0,80
8	15:08	0.94	3,8	25,0	3,8	23,4	30,5	24,0	21,2	3,4						
6	15:28	0.94	3,9	24,0	3,9	20,8	16,8	24,0	21,1	3,6	2,7	24,0	30	0,651	230	0,52
10	16:00	0.94	4.0	28,0	4.0	24,9	16,2	24,0	22,1	4,0						
11	16:30	0,94	4,0	28,0	3,9	25,0	15,5	24,0	21,9	4,0	2,0	24,0	30	0,500	230	0,52

·

				ц		9	8		5	4		8		5
		метар	т "	kg/l		0,37	0,65	ç	0,37	0,61		0,35		0,37
		Рота	\dot{N}_{N}	NL/h		220	385		220	360		210		220
	1 330T	CT333	m n	kg/h		0,596	1,042		0,596	1,002		0,573		0,596
	Линија	Мерна	dp_N	mmVS		32	80		32	<u>75</u>		30		32
			t_N	°C		17,0	17,0		18,0	18,0		19,0		19,0
			MM	bar		2,0	2,0		2,0	2,0		2,0		2,0
	top		PE	bar	4,1	4,2	4,0	4,0	4,0	4,2	4,2	4,2	4,0	4,2
	Ejes		\dot{V}_E	m ³ /h	21,8	22,4	21,2	21,2	21,0	22,3	22,3	22,4	21,6	22,4
	Отпарак		t_o	°C	18,0	18,0	19,0	22,0	23,0	23,0	24,0	25,0	26,0	27,0
			$\widetilde{\mathfrak{X}}_{O_2}$	ppb	64,9	26,2	30,1	28,5	16,9	18,3	23,9	12,8	26,1	16,1
	оде	Излаз	t _{vu}	°C	17,4	17,2	17,0	23,7	23,9	23,6	26,8	26,8	28,7	28,6
5	Іинија в		\dot{V}_{yi}	m ³ /h	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,6
	h	a 3	t _{vu}	°C	17,5	17,5	17,5	25,0	25,0	25,0	28,0	28,0	30,0	30,0
		Ŋл	$\dot{V}_{\nu u}$	m ³ /h	4,6	4,5	4,6	4,5	4,5	4,5	4,5	4,5	4,6	4,6
	Вакум	0	$^{\Lambda}d$	bar	56 '0	0,95	56 ,0	0,95	0, <mark>9</mark> 4	0,94	0,94	0,94	0,93-0,94	0,93-0,94
	Време	мерења	1	hh:min	11:45	12:15	12:45	13:15	13:45	14:15	14:45	15:15	15:45	16.15
	B poj	мерења	ł		I	2	3	4	5	9	7	8	6	10

Табела 3.2 Радни режим 1; 4,5 m3/h; 0,95 bar

p = 0,999

04.06.2013.

7,34

 $\widetilde{X}_{02} =$

Садржај О2 на улазу (ррш)

Датум мерења Баром. притисак (bar)

Табела 3.3 Радни режим 3; 4,7 m3/h; 0,95 bar

Датум мерења	05.06.2013.
Баромометарски притисак (bar)	p = 1,000
Садржај О2 на улазу (ррт)	$\tilde{X}_{02} = 8,18$

,

	191		-		2	e.	<u> </u>	4		m	
	метар	in _N	kg/l		0,39	0,66	2	0,37		0,38	
	Рота	\dot{V}_N	NL/h		230	390		220		225	
1 330T	CT333	m _N	kg/h		0,662	1,119		0,596		0,618	
Линија	Мерна	dp N	mmVS		38	06		32		34	
		t_N	°C		19,0	20,0		20,0		20,0	
		p_N	bar		2,0	2,0		2,0		2,0	
dor		PE	bar	4,2	4,1	4,1	4,3	4,2	4,1	<mark>4</mark> ,1	4,1
Ejer		\dot{V}_E	m ³ /h	22,3	22,3	22,2	22,6	22,4	22,2	22,1	22,2
Отпарак		to	°C	18,0	18,0	19,0	23,0	24,0	25,0	25,0	19,0
		\widetilde{x}_{0_2}	ppb	64,9	36,9	39,6	38,4	16,1	25,5	13,9	62,7
эде	Излаз	t_{vu}	°C	17,4	17,4	17,3	25,2	25,3	28,0	27,9	17,4
инија во		\dot{V}_{vi}	m ³ /h	4,7	4,7	4,7	4,7	4,7	4,7	4 ,7	4,7
IL	[83	t vu	°C	17,5	17,5	17,5	26,0	26,0	29,0	29,0	17,5
	Ул	Ų, vu	m ³ /h	4,7	4,7	4,7	<mark>4</mark> ,7	4,6	4,7	<mark>4,7</mark>	4,7
F	Бакум	p_V	bar	56 [°] 0	0,95	0 <mark>,95</mark>	0,95	0,94	0,93-0,94	0,93-0,94	0,95
Bpeme	мерења	Ţ.	hh:min	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00
Bpoj	мерења	t	Ū	1	2	3	4	5	9	7	8

Табела 3.4 Радни режим 4; 4 m3/h, 0.90 bar

,

Датум мерења	06.06.2013.
Баром. притисак (bar)	p = 1,000
Садржај О2 на улазу (ppm)	$\tilde{x}_{02} = 7,95$

	метар	V_N	kg/h		0,356	0,578	0,595		0,381	
	Ротал	V_N	NL/h		220	340	350		225	
a a30Ta	CT333	V_N	kg/h		0,614	1,002	1,042		0,662	
Ллиниј	Мерна	Н	mmVS		36	75	80		38	
		t_N	°C		19,0	20,0	20,0		22,0	
		p_N	bar		1,8	2,0	2,0		2,0	
Top		PE	Bar	4,0	4,1	4,0	3,9	4,0	4,0	4,2
Ejek		V_E	m ³ /h	20,1	20,4	20,1	19,7	20,1	20,0	21,4
Отпарак		t_o	°C	18,0	18,0	19,0	19,0	24,0	25,0	26,0
		\widetilde{X}^{0_2}	dqq	79,0	43,4	50,8	56,1	36,7	21,6	18,3
де	Излаз	t_{vu}	°C	16,8	16,8	16,8	16,8	25,3	25,3	27,9
інија во		p_{vi}	m ³ /h	4,0	4,0	4,0	4,0	4,0	4,0	4,0
Ль	83	t _{vu}	°C	17,5	17,5	17,5	17,5	26,0	26,0	29,0
	Ул	p_{vu}	m ³ /h	4,0	4,0	4,0	3,9	4,1	4,0	4,0
Down	Dakym	$^{\Lambda d}$	bar	0,90-0,91	0,90-0,91	0,90-0,91	0,89-0,90	0,91	0,91	0,92
Bpeme	мерења	æ	hh:min	11:00	11:30	12:00	12:30	13:00	13:30	14:00
bpoj	мерења	ï	-5	1	2	3	4	5	9	7

Табела 3.5 Радни режим 5; 5 m3/h; 0,95 bar

Датум мерења	07.06.2013.
Баром. притисак (bar)	p = 1,010
Садржај О2 на улазу (ррт)	$\widetilde{X}_{02} = 8,70$

Bpowe speka Baryw Mepchea Jinney baryw Jinney Mepchea Jinney Mepch		î	<u> </u>	1	-						10 - 10 1 - 1 - 1	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		метар	V_N	kg/h		0,596	0,417		0,374		0,357	
Bpoin Bpeake Baryn \square <th< td=""><td></td><td>Poral</td><td>V_N</td><td>NL/h</td><td></td><td>350</td><td>245</td><td></td><td>220</td><td></td><td>210</td><td></td></th<>		Poral	V_N	NL/h		350	245		220		210	
Bpond Bpond $F_{\rm THMID}$ $F_{\rm TMID}$ <td>1 33073</td> <td>I CTa3a</td> <td>V_N</td> <td>kg/h</td> <td></td> <td>1,081</td> <td>0,733</td> <td></td> <td>0,573</td> <td></td> <td>0,573</td> <td></td>	1 33073	I CTa3a	V_N	kg/h		1,081	0,733		0,573		0,573	
Bpois Bpeake Event Event Event Event Event Firstop Firstop <td>Линија</td> <td>Мерна</td> <td>H</td> <td>mmVS</td> <td></td> <td>85</td> <td>45</td> <td></td> <td>30</td> <td></td> <td>30</td> <td></td>	Линија	Мерна	H	mmVS		85	45		30		30	
Bpoin Bpeake BaxyM $\overline{T_{TMH}}$ $\overline{T_{TM}}$ T_{TT			t_N	°C	e	19,0	20,0		20,0		20,0	
Bpoi Backed Definition Definition Definition Ejectrop Ejectrop Ejectrop cpetbaa Mepetbaa Me			p_N	bar	14	2,0	2,0		2,0		2,0	
Bpoi Bpeake \square	crop		PE	Bar	4,0	4,0	4,1	4,1	4,1	4,0	3,9	3,9
Epoi Bpewe Отнарак cpetha Mepetha Bakym Y_{JIIA} Отнарак Отнарак - - p_V p_{vu} t_{vu} \tilde{X}^{02} t_o t_o - - p_V p_{vu} t_{vu} \tilde{X}^{02} t_o t_o - hh:min bar m^3/h \circ C m^3/h \circ C p_{vu} \tilde{X}^{02} t_o t_o 1 12:30 0,95 5,0 17,5 5,0 17,2 68,5 18,0 \circ C 2 13:00 0,95 5,0 17,5 5,0 17,3 43,8 20,0 \circ C a_0 \circ C a_0 \circ C a_0 σ C a_0 σ C a_0 a_0 σ C a_0	Ejer		V_E	m ³ /h	21,6	21,5	21,6	21,7	21,6	21,5	21,2	21,2
Epoi Bpewe Линија воде срења Вакум Линија воде - $ p_V$ p_{vi} t_{vu} $\tilde{\chi}_{02}$ - $ p_V$ p_{vu} t_{vu} $\tilde{\chi}_{02}$ $\tilde{\chi}_{02}$ - hh:min bar m^3/h \circ C m^3/h \circ C pp_v 1 12:30 0,95 5,0 17,5 5,0 17,2 68,5 2 13:00 0,95 5,0 17,5 5,0 17,3 56,4 3 13:30 0,95 5,0 17,5 5,0 17,3 56,4 4 14:00 0,95 4,9 27,0 5,0 17,3 38,7 5 14:30 0,94 5,0 25,0 25,3 25,0 25,3 25,0 6 15:00 0,95 4,9 27,0 25,3 22,0 25,3 25,0 25,3 25,0 27,9 <t< td=""><td>Отпарак</td><td></td><td>to</td><td>°C</td><td>18,0</td><td>19,0</td><td>20,0</td><td>23,0</td><td>24,0</td><td>25,0</td><td>26,0</td><td>26,0</td></t<>	Отпарак		to	°C	18,0	19,0	20,0	23,0	24,0	25,0	26,0	26,0
Epoj boj hene bethaBakym V_{TIAS} $J_{TIHHIJA BOAC}$ $ p_V$ p_{Vu} p_{Vu} t_{vu} $ p_V$ p_{Vu} p_{Vu} t_{vu} $-$ hh:min harbar m^3/h $\circ C$ m^3/h $\circ C$ 1 $12:30$ 0.95 5.0 17.5 5.0 17.2 2 $13:00$ 0.95 5.0 17.5 5.0 17.3 3 $13:30$ 0.95 4.9 17.5 5.0 17.3 4 $14:00$ 0.95 4.9 27.0 5.0 17.3 4 $14:00$ 0.95 4.9 27.0 4.9 25.3 5 17.5 5.0 17.5 5.0 17.3 6 $15:00$ 0.94 5.0 27.0 4.9 25.3 7 $15:30$ 0.94 5.0 27.0 4.9 25.3 7 $15:30$ 0.94 5.0 4.9 27.0 27.9			\widetilde{x}^{o_2}	ppb	68,5	56,4	43,8	38,7	22,0	29,9	15,1	21,9
Epoi Bpeake $Baxy_{M}$ Линија во срења $mepeњa$ $y_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	эде	Излаз	t _{vu}	°C	17,2	17,3	17,3	25,1	25,3	27,9	28,1	28,7
Epoi Bpeake $BakyM$ T_{max} epetha Mepetha $BakyM$ Y_{max} - - p_V p_w t_{wu} - - p_V p_w t_{wu} - hh:min bar m^3/h $\circ C$ 1 12:30 $0,95$ $5,0$ $17,5$ 2 13:00 $0,95$ $5,0$ $17,5$ 3 13:30 $0,95$ $4,9$ $17,5$ 4 14:00 $0,95$ $4,9$ $27,0$ 5 14:30 $0,94$ $5,0$ $27,0$ 6 15:00 $0,94$ $5,0$ $29,0$ 7 15:30 $0,94$ $4,9$ $29,0$	инија во		p vi	m ³ /h	5,0	5,0	5,0	5,0	4,9	4,9	4,9	4,9
Број ерења - Време мерења - Вакум ул Ул - - р р - - р р - - р р - 1 12:30 0,95 5,0 1 12:30 0,95 5,0 1 2 13:00 0,95 4,9 1 4 14:00 0,95 4,9 1 5 14:30 0,94 5,0 1 6 15:00 0,94 5,0 1 7 15:30 0,94 4,9 1	ЛL	la3	t _{vu}	°C	17,5	17,5	17,5	27,0	27,0	29,0	29,0	30,0
Epoj EpojBpeme BakymcpethaMepethaBakym <i>p pp p</i> -112:300.95213:000.95313:300.95414:000.95514:300.94615:000.94715:300.94		y ₁	p vu	m ³ /h	5,0	5,0	4,9	4,9	5,0	5,0	4,9	4,9
БројВремесрењамерењаhh:min112:30213:00313:30414:00514:30615:00715:30	ŕ	Бакум	$^{\Lambda d}$	bar	0,95	0,95	0,95	0,95	0,94	0,94	0,94	0,93-0,94
Број ерења - 3 3 3 3 7 7	Bpeme	мерења		hh:min	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00
W	Bpoj	мерења	i.	23	1	2	3	4	5	9	7	8

Табела 3.6 Радни режим 6; 4,2 m3/h; 0,95 bar

Датум мерења	11.06.2013.
Баром. притисак (bar)	p = 0,995
Садржај О2 на улазу (ppm)	$\tilde{x}_{0_2} = 7,82$

-		<u> </u>						-		
	метар	V_N	kg/h	2	0,277	0,475	0,806	*	0,399	
	Рота	V_N	NL/h		230	395	670	*	235	
1 3 30Ta	CT333	V_N	kg/h	1- - -	0,580	0,960	1,379	2,002	0,743	
Линија	Мерна	Η	mmVS		46	105	190	350	46	
		t_N	°C		20,0	20,0	20,0	21,0	21,0	
		Nd	bar	2	1,0	1,0	1,0	1,0	2,0	
dor		PE	Bar	4 <mark>,2</mark>	4,2	4,2	4,1	4,2	4 <mark>,2</mark>	4,1
Ejer		V_E	m ³ /h	22,4	22,4	22,5	22,2	22,3	22,3	22,2
Отпарак		to	°C	18,0	19,0	19,0	19,0	20,0	20,0	21,0
		\widetilde{x}^{o_2}	ppb	64,5	38,5	43,8	51,6	55,0	43,8	63,9
де	Излаз	t _{vu}	°C	17,2	17,3	17,3	17,4	17,4	17,4	17,5
инија во		P _{vi}	m^{3}/h	4,2	4,2	4,2	4,1	4,2	4,2	4,2
Л	83	t _{vu}	°C	17,5	17,5	17,5	17,5	17,5	17,5	17,5
	ул	p_{vu}	m ³ /h	4,2	4,2	4 ,2	4 ,1	4,2	4,2	4,2
Donne	равум	$^{\Lambda d}$	bar	56 [°] 0	0,95	0,94-0,95	0,94	0,93-0,94	0,94	0,95
Bpeme	мерења	1	hh:min	00:60	09-30	10:00	10:30	11:00	11:30	12:00
B poj	мерења	Ľ		1	2	3	4	5	9	7

* вредност протока ван опсега мерења ротаметра

4: T

	:
•	p, (bar)
٠	p, (mmVS; bar)
•	\dot{V} , (m ³ /h)
•	<i>ṁ</i> , (kg/h)
•	L, (m)
•	D, (m)
•	w, (m/s)
•	, (kg/m ³)
•	, (Pa s)
•	, Re
•	, D
•	, (Pa/m)
•	S_{CZ} , (m)
•	D _{CZ} , (m)
•	Re _{lt}

N.	(Pa/m)	0.1043	0.0687	0.0542	0.0459	0.0413	0.0358	0.0349	0.0336	0.0325	0.0316	0.0308	0.0301	0.0295
Dcz	(<i>m</i>)	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
Relt		6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947
Re		1300	2601	3901	5201	6241	7022	7802	9102	10402	11703	13003	14303	15603
De	(<i>m</i>)	259	518	777	1036	1243	1398	1553	1812	2071	2330	2589	2848	3107
<mark>S</mark> cz	(<i>m</i>)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
v	(Pas)	1.70E-05												
d	(kg/m3)	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797	23.797
m	(m/s)	2.322	4.644	6.966	9.288	11.146	12.539	13.932	16.254	18.577	20.899	23.221	25.543	27.865
D	(<i>m</i>)	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040
L	<i>(m)</i>	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
v	(m3/s)	2,92E-02	5.84E-05	8.75E-05	0.000117	0.00014	0.000158	0.000175	0.000204	0.000233	0.000263	0.000292	0.000321	0.000350
в	(kg/h)	0.25	0.5	0.75	1	1.2	1.35	1.5	1.75	2	2.25	2.5	2.75	3
d	(Pa)	167	441	782	1177	1526	1673	2013	2640	3340	4108	4945	5848	6816
Δ _i	(mmH20)	17	45	80	120	156	171	205	269	340	419	504	596	695

Табела 4.1 Притисак истицања азота p=1bar

â															
	N.	$(P \alpha/m)$	0.1043	0.0687	0.0542	0.0459	0.0413	0.0358	0.0349	0.0336	0.0325	0.0316	0.0308	0.0301	0.0295
	Dcz	(<i>m</i>)	0.10	0.10	0.10	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	Relt		6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947	6947
	Re		1300	2601	3901	5201	6241	7022	7802	9102	10402	11703	13003	14303	15603
	De	(<i>m</i>)	259	518	<i>LLL</i>	1036	1243	1398	1553	1812	2071	2330	2589	2848	3107
	Scz	(<i>m</i>)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	٧	(Pas)	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05
	β	(kg/m3)	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697	35.697
	w	(m/s)	1.548	3.096	4.644	6.192	7.431	8.360	9.289	10.837	12.385	13.933	15.481	17.029	18.577
	D	(<i>w</i>)	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040
	T	(m)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ν	(m3/s)	1,95E-02	3.89E-05	5.84E-05	7.78E-05	9.34E-05	0.000105	0.000117	0.000136	0.000156	0.000175	0.000195	0.000214	0.000233
	m	(kg/h)	0.25	0.5	0.75	1	1.2	1.35	1.5	1.75	2	2.25	2.5	2.75	3
	b	(Pa)	112	294	522	785	1017	1115	1342	1760	2226	2739	3297	3899	4544
	Q	(mmH2 0)	11	30	53	80	104	114	137	179	227	279	336	397	463

Табела 4.2 Притисак истицања азота p=2bar

		<u> </u>			r –							_
Дец.	542.2	618.4	554.2	597.9	776.3	417.5	895.2	467.2	620.0	331.2	494.6	
HoB.	524.0	618.0	555.9	601.0	768.2	413.9	895.2	465.9	624.2	331.1	493.7	0000
OKT.	527.9	623.6	567.0	605.5	768.9	403.8	896.3	464.2	636.5	331.7	495.4	
Cent.	525.7	621.5	563.4	604.0	768.3	409.7	895.9	464.7	632.5	327.5	493.2	
ABr.	521.9	615.8	560.9	599.1	752.0	400.7	895.9	462.1	630.8	327.5	491.1	
пуL	521.1	601.2	542.8	589.8	732.1	387.8	898.5	459.1	615.9	327.5	487.0	
JyH	512.0	601.5	538.0	584.9	749.0	391.8	898.9	459.8	610.0	325.6	485.7	
Maj	509.1	596.8	529.9	583.0	748.1	389.0	896.7	458.9	602.4	326.6	485.4	
Anp.	511.7	600.4	534.2	584.9	752.5	390.1	897.5	460.2	609.0	326.5	487.9	
Март	522.6	616.6	563.2	597.3	761.0	385.1	898.0	459.6	636.1	325.7	494.9	
Феб.	532.3	631.9	587.0	615.2	770.6	384.6	897.0	458.7	660.9	323.7	495.5	0.000
Јан.	539.6	642.4	603.4	620.0	781.8	389.6	902.1	457.9	671.5	324.5	500.0	
2009	CEPCI	Опрема	Размењивачи топлоте и резервоари	Процесне машине	Цевоводи, вентили и фитинзи	Процесни инструменти	Пумпе, компресори, вентилатори	Електрична опрема	Носеће конструкције	Радна снага	Зграде	

Табела 5.1 ЦЕПЦИ месечни индекс за 2009.годину

Табела 5.2 ЦЕПЦИ индекс за септембар 2013.године

CEPCI	567.3	Пумпе, компресори, вентилатори	924.3
Опрема	686.2	Електрична опрема	513.7
Размењивачи топлоте и	618.3	Носеће конструкције	747.1
Процесне машине	654.7	Радна снага	321.7
Цевоводи, вентили и фитинзи	875.3	Зграде	533.4
Процесни инструменти	411.2	Инжењерски надзор	324.6

, (),	,
, -	
(800 kg/h
- -	13,0 bar
	13,0 bar
	10,0 bar
	$25,0{ m m}^2$
	103°C
	DN 200
	522 kW
/	89,2/89,5%
	584 kW
	63 m ³ _{STP} /h
	52 kg/h
	675m ³ _{STP} /h
	235°C
/	3700/6200 kg
-	8kW
_	1,5 kW
	4100 2000 2300 mm
, ,	
() ,	, -
	-
	105°C
	0,5 bar
	19360 kg/h
	2 bar
	$14 \mathrm{m}^3$

6:

·

/	5800/22000 kg
	6400 2400 5000 mm
_	
	105°C
	0,5 bar
	807 kg/h
	0,2 bar
	2 bar
	0,7m ³
/	300/1100 kg
	1600 750 3000 mm
•	13,0 bar
	75 kg/h
	3001
_	
	1,5 bar
	105°C
	1747kW
	$0,050 \mathrm{m}^2 \cdot \mathrm{K/kW}$
-	0,25 bar
	1200 kg
	1200 600 1500 mm

$10 \div 48 \mathrm{m^{3}/h}$
5,2 bar
50°C
EPDM (ANSI / NSF 61)
44/57 kg
FRP
w325x1200 mm
22 kg
SS
400 180 220 mm
1,2 kW
-
w 200 1800 mm
SS
Pressure Swing Adsorption
$20.4 \mathrm{m^{3}/h}$
8,5 bar
ISO 8573.2:2001.2.4.1
0,01 ~m
2,3 kW
601
700 700 1300 mm
150 kg

7:

·

850 mm
1800 mm
891 mm
909 mm
0,55 m ²
36,4 m/h
40 ZS/h
36,10 kPa
0,5 m ³
$20 \text{ m}^3/\text{h}$
$0,484 \mathrm{m_N^3/h}$
1,44 m/s
0,31 bar
DN 65 1000 mm
$0.6 {\rm m_N^3/h}$
4 bar
99÷99.99%
7,2 kW
≥1MΩ/cm
910 700 1600 mm
300 kg

8:

117

	50	0 mm
	300	00 mm
	2,	5 m^2
	700	2500 mm
	450	1800 mm
	7,7	7 kg/h
_		
		3
	26	$5,7 \text{ m}^2$
	27	7,7 m ²
	29	9,9 m ²
-		
	46	5 kW
	Pressure Sw	ing Adsorption
	4	kg/h
	8,	5 bar
	ISO 8573	.2:2001.2.4.1
	5,	7 kW

9:

10.1

2

2

·

10:

18.04.1972. . 1996. , 2006. . 2001. , , ,

.

•

1997. ""

•

•

.

: , . . : -

- ,
- /
 - .

, 30.04.2014.

: , . : -

: -: .

: , .

/ , , ,

,

, 30.04.2014.

:

122

(Creative Commons)

,,

1.		
2.	_	
3	_	_
4.	_	_
5.	_	
6.	_	

:

,,

, 30.04.2014.

•

•

"

"